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Chapter 17
Bilirubin: A Ligand of the PPARα Nuclear 
Receptor

Stephen Hong, Darren Gordon, David E. Stec, and Terry D. Hinds Jr

Abstract  Bilirubin is the product from red blood cell lysis, which releases heme 
that is reduced to biliverdin by heme oxygenases (HO). Later, the biliverdin is con-
verted to bilirubin by the biliverdin reductase (BVR) enzyme. Studies have revealed 
that bilirubin is significantly lower in obese patients with nonalcoholic fatty liver 
disease (NAFLD). While the mechanisms that reduce plasma bilirubin are unknown, 
it has been shown that increasing plasma bilirubin lowers body fat percentage and 
liver fat content in obese animal models. The bilirubin actions have been attributed 
to a newly revealed function that it is a hormone, which binds directly to the PPARα 
nuclear receptor transcription factor. PPARα regulates fatty acid oxidation (FAO) 
and peroxisomal function to maintain cellular homeostasis and catabolism of fatty 
acids. Here, we discuss the partnership of bilirubin-PPARα, along with the two 
other PPAR isoforms PPARβ/δ and PPARγ, and how they function to control per-
oxisomes and mitochondria that mediates fatty acid β-oxidation and adiposity. 
There may be clinical interest in bilirubin-PPARα functionality to rectify NAFLD 
and insulin resistance in the obese.
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17.1  �Introduction

With the growing obesity epidemic, multiple diseases have manifested that affects 
tens of millions of people. Consequentially, nonalcoholic fatty liver disease 
(NAFLD) is on the rise, which plays a role in developing insulin-resistant diabetes 
and cardiovascular diseases. NAFLD progression without corrective measures can 
worsen to nonalcoholic steatohepatitis (NASH), a fatty degeneration that can culmi-
nate into cirrhosis or hepatocellular carcinoma [1]. When examining the pathogen-
esis of NAFLD, the “two-hit” model focuses on the steatosis of the liver (first “hit”) 
and then inflammation that follows (second “hit”) [2]. The liver’s fatty buildup can 
be initiated by hepatic insulin resistance, which increases circulating insulin induc-
ing peripheral tissue to develop glucose intolerance [3]. The circulating glucose is 
collected by the liver to be converted into fat for de novo lipogenesis, leading to 
fatty liver development [4]. This process is exacerbated in patients with hyperinsu-
linemia, as there is an even higher amount of glucose deposition into the liver [4]. 
Consuming high caloric intake causes hepatic fat accumulation by two primary 
methods: (1) hepatic de novo lipid synthesis or (2) peripheral fat content in the body 
is redirected to the liver [5]. Sustained elevated levels of fat in the liver can result in 
pathological sequelae, such as inflammation and oxidative stress, which are natural 
responders against the adverse environment. NAFLD treatments are currently lim-
ited to lifestyle changes and diet modifications, as weight loss is the most effective 
method to reverse NAFLD [6]. However, drugs are being developed to target the fat 
accumulation pathways and inflammation, but these are yet to be approved for clin-
ical use.

To reduce fat, mitochondrial or peroxisomal oxidation can play a vital role and 
serve as primary therapeutic targets for NAFLD. Although most oxidation is medi-
ated through mitochondrial β-oxidation, peroxisomes assist mitochondria in oxidiz-
ing fat [7]. Peroxisomes have the ability to begin the oxidative process of 
very-long-chain fatty acids (VLCFAs) that cannot be oxidized by mitochondria [8]. 
Increasing this activity could be crucial in correcting NAFLD, which can be 
enhanced by activating the peroxisome proliferator-activating receptors (PPARα) 
nuclear receptor transcription factors. The PPARs were initially discovered by 
ligands that were thought to increase cellular peroxisomes directly, hence, peroxi-
some proliferation [9]. However, peroxisomal proliferation is based on the cellular 
response of PPARα activation. PPARβ/δ and PPARγ are two isoforms that were 
classified as PPARs based on their homology to the PPARα gene; however, neither 
induces peroxisome proliferation [10]. PPARα has been mostly studied for its role 
in lipid-lowering effect and, more recently, anti-inflammatory role [11, 12]. All of 
the PPAR isoforms reduce inflammation, which can provide additional protection 
from NAFLD [13]. Recently, bilirubin was shown to be a ligand for PPARα [14–
16], which also significantly reduces hepatic fat accumulation [13, 17, 18]. In 
patients, bilirubin levels are inversely correlated with body weight [19–22]. These 
finds suggest that antioxidants, at least in the case of bilirubin, may reduce adiposity 
and NAFLD via PPARs. Here, we aim to elucidate the protective pathway that 
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PPARs and peroxisomes play against NAFLD with a discussion of the role of 
bilirubin.

17.2  �PPARα Protein Structure

The three PPAR isoforms, α, β/δ, and γ, have different tissue expression [9]. They 
all work similarly in that ligand activation induces binding to DNA and heterodi-
merization with the retinoid X receptor (RXR) on PPAR response elements (PPREs), 
eliciting a gene response (Fig. 17.1) [23]. PPARα is a nuclear protein produced in 
response to reduced serum nutrients, such as in the case of fasting. It should be 
noted that after discovering that PPARs bind fatty acids, the mainstream thinking 
was that increased fatty acids during fasting must be inducing PPARα in the liver 
during this time. However, this is no longer the mainstream thinking as there was a 
published paper showing that PPARβ/δ is increased in the liver by free fatty acids 

Fig. 17.1  PPAR Transcriptional Signaling Pathway. The PPARs are a superfamily of nuclear 
receptors, and three isoforms exist: α, β/δ, and γ. All isoforms perform through ligand activation 
that induces binding to DNA on PPAR response elements (PPREs) and heterodimerization with 
the retinoid X receptor (RXR), which controls gene transcription. PPARα binding with its ligands 
(e.g., bilirubin) upregulates transcription of genes that increase metabolism, such as FGF21, 
UCP1, CPT1A, and ADRB3
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and that it serves as the “plasma free fatty acid sensor in liver” [24]. Since this paper, 
others have shown data supporting these findings and have rerouted the thinking of 
free fatty acids for increasing PPARα in the liver during fasting. PPARα being 
increased during fasting most likely occurs by lower circulating insulin levels, but 
this is still inclusive.

The PPARα gene is located on Chromosome 22 in humans and 15 in mice and is 
studied primarily for its role in lipid and glucose regulation in the liver, adipose, and 
other tissues [25, 26]. The PPAR proteins are arranged in similar domains: the 
N-terminal domain that includes the amino-terminal transactivation region (AF-1), 
DNA-binding domain (DBD), the hinge region, and the ligand-binding domain or 
LBD (also known as activation factor-2, AF2) [27]. Investigating the role of these 
domains can enhance our understanding of their significance in cellular metabolic 
pathways and potential impact on metabolic disease. While there are structural sim-
ilarities, the PPARs have different LBDs that lead to diverse functionalities when 
bound to their cognate ligand. PPARα activation can lead to specific coregulator 
(coactivators and corepressors) recruitment that might affect the other PPAR iso-
forms differently. The AF-1 region is critical in recruiting coregulators that lead to 
the control of gene activity by the PPARs [28]. Our lab has previously identified an 
inhibitory PPARα phosphorylation amino acid at serine 73, which is in the AF-1 
region. Serine 73 phosphorylation is lower in mice with elevated bilirubin levels 
[13]. The DBD plays an essential role in the heterodimerization of PPARα with 
RXR, enhancing PPARα functionality [29], and this cooperativity enhances the 
expression of metabolic genes [30, 31]. The DBD also contains phosphorylation 
sites, including the threonine 129 site, which is based on PKC activation and 
enhances PPARα activity [32]. The hinge region of PPARα serves several roles, 
which include coregulator binding [33] and is a target of both phosphorylation (ser-
ine 179) as well as SUMOylation (lysine 185) [32, 34]. Lastly, while there are some 
pan-PPAR agonists [31, 35, 36], structural differences in the LBD/AF2 cause pref-
erential activation of specific PPAR isoforms to regulate gene-specific responses 
[15, 37]. Understanding the structural layout of PPARα is crucial as we explore the 
effects of several ligands and their ability to alter the coregulator recruitment to 
PPARα, which controls gene-pathway specific actions. We have previously shown 
by in silico analysis that bilirubin docks in the LBD of PPARα [15], which we later 
showed by competitive ligand-binding assays that bilirubin and fenofibrate compete 
for the same binding regions in the LBD [16]. We also showed that bilirubin induced 
a specific set of coregulators to PPARα protein (mouse and human) [16]. These 
indicate that bilirubin has a hormonal function by activating PPARα by direct bind-
ing that induces a physiological change.
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17.3  �Bilirubin Generation and Excretion

One enzyme that may have a key role in attenuating the detrimental impacts of liver 
pathology is biliverdin reductase (BVR) [13, 38–40]. During red blood cell destruc-
tion, hemoglobin is released into the plasma and is converted into biliverdin via 
heme oxygenase (HO) [41]. Then, through the conversion of a double bond to a 
single bond by BVR, biliverdin is converted to bilirubin [42–45]. The excretory 
process for bilirubin is mediated by the UDP-glucuronosyltransferase 1-1 (UGT1A1) 
enzyme that conjugates bilirubin [46], allowing for excretion into the biliary cana-
liculi and deposition in the intestine [5, 47]. The gut microbiome transforms conju-
gated bilirubin into other forms, such as urobilinogen and stercobilin, which are 
mostly excreted, although some can be reabsorbed [5]. The role of bilirubin metabo-
lism and hepatic function has yet to be elucidated. However, recently, bilirubin 
nanoparticles were shown to improve fatty liver and reduce hepatic biomarkers AST 
and ALT enzymes [17].

The two known isozymes of BVR (BVRA and BVRB) have different structural 
and functional properties, which is further implicated as the genes are located on 
two different chromosomes [20]. BVRB compared to BVRA in zebra fish larvae has 
increased expression in states of oxidative stress [48], and global BVRA knockout 
mouse was subjected to greater oxidative stress [49]. Hepatic BVRA has also been 
implicated in metabolism as it was shown to protect PPARα for GSK3β inhibition 
by phosphorylated PPARα at serine 73 to increase turnover and decrease transactiv-
ity [13, 40]. BVRA may protect against Alzheimer’s disease, which is known to be 
associated with insulin resistance [50–56]. There remain many scientific questions 
on BVRA and BVRB and their involvement with the PPAR isoforms, such as regu-
lating all PPAR isoforms, or do they play an integral role in the use of bilirubin by 
PPARα. Future work on the BVR isozymes and how they signal to the PPAR iso-
forms is needed.

17.4  �Bilirubin as a PPARα Ligand

The beneficial effects of elevated bilirubin levels have been observed in humans 
with the Gilbert’s polymorphism. They contain a polymorphism in the UGT1A1 
promoter that lowers its expression, increasing plasma bilirubin. People with 
Gilbert’s have lower rates of ischemic heart disease and higher rates of high-density 
lipoproteins (HDL), also known as “good cholesterol” [57]. A humanized Gilbert’s 
syndrome mouse model has been generated using the human UGT1A1*28 poly-
morphism and has been found to have significantly less fat mass, body fat percent-
age, cholesterol in the liver, liver stenosis, fasted blood glucose levels, and plasma 
insulin levels on a high-fat diet (HFD) compared to control on HFD [58]. In addi-
tion, there was a significant increase in the CYP4A subfamily of enzymes that are 
also activated by PPARα [59]. This same model was later shown to 
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hyperphosphorylate PPARα in white adipose tissue (WAT) and enhanced coactiva-
tor recruitment [16].

Previous research has shown that PPARα ligands, such as WY 14,643 and feno-
fibrate, act as selective PPAR modulators (SPPARM) based on different binding 
affinity or the recruitment of different coregulators [60–62]. Ultimately, the tran-
scriptional differences provide different protective factors as fibrates are better for 
anti-inflammatory processes, while WY 14,643 is more suited for lowering blood 
glucose levels [63]. Based on nonpathogenic increased levels of bilirubin, it may 
influence the positive effects of both fibrates and WY 14,643.

These beneficial outcomes can be seen in experiments with the direct application 
of bilirubin to diseased tissues. Colitis-induced rats were given intragastric gavages 
of unconjugated bilirubin and were shown to have decreased inflammation and a 
faster recovery rate than controls [64]. These anti-inflammatory effects were further 
supported using intravenous administration of polyethylene glycol (PEG)-bound 
bilirubin (bilirubin nanoparticles) to colitis-induced rats. Bilirubin nanoparticles 
preferentially localized to areas of inflamed colon and significantly halted the pro-
cess of inflammation in these areas [65]. However, neither of these studies could 
elucidate the mechanism of how bilirubin was able to reduce inflammation.

To further stress the point of bilirubin activation of PPARα, bilirubin has been 
shown to attenuate inflammatory processes similarly to PPARα [66, 67]. Two differ-
ent studies examined the effect of fenofibrate and bilirubin on the proliferation of 
Th17 differentiation, a T-helper cell associated with autoimmune diseases [68]. 
Chang et al. found that the activation of PPARα via fenofibrate decreased Th17 cell 
differentiation by inhibiting the IL-6/STAT3/RORγt pathway [69]. Congruently, 
Longhi et al. showed that the introduction of bilirubin to mononuclear cells down-
regulated Th17 cells and IFNγ production via ectonucleoside triphosphate diphos-
phohydrolase 1 (ENTPD1 or CD39) [70]. CD39 is essential for autoimmunity as it 
hydrolyzes extracellular ATP down to AMP that is converted to immunosuppressive 
adenosine [71]. In both cases, the downstream effect leads to decreased IL-17, a 
pro-inflammatory cytokine of Th17 cells, and increased Foxp3 expression, the mas-
ter regulator of Treg cells. In addition, multiple sources have found that PPARα can 
upregulate the activity of CD39, showing a more significant correlation between 
bilirubin and its ability to activate PPARα pathways [72, 73]. The similarities of 
these results continue to support the interaction between bilirubin and PPARα.

Recent studies have shown that bilirubin activates the PPARα pathway by 
directly activating the receptor [13, 15]. It had been previously established that acti-
vation of PPARα and its other two isoforms leads to increased heme oxygenase-1 
(HO-1), the rate-limiting enzyme responsible for synthesizing the bilirubin precur-
sor biliverdin [74–80]. This indicates that there is a positive feedback mechanism 
between PPARα and bilirubin. There are also limits on this positive feedback mech-
anism as PPARα has been shown to activate UDP-glucuronosyltransferase 1 family, 
polypeptide A1 (UGT1A1), the enzyme that conjugates bilirubin, its primary clear-
ance mechanism [79, 81]. This correlation between bilirubin and PPARα may be 
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able to explain bilirubin’s protective ability against NAFLD by a peroxisomal 
mechanism.

By establishing the relationship between bilirubin and PPARα, it is possible to 
formulate a mechanism the body naturally forms to protect against the increased 
inflammation and hepatic damage in NAFLD. The process begins with an increase 
in bilirubin levels, a general indicator of liver damage or disease. The activation of 
PPARα ensues, which activates multiple pathways, including the positive and nega-
tive feedback loops, indicated previously. The major pathways important for 
NAFLD protection are the increase in fatty acid oxidation (FAO) to lower the over-
all fat content within the body and the attenuation of inflammation. Although PPARs 
were discovered to increase peroxisome levels [9], it is essential where these cells 
are activated as it can be assumed that more FAO indicates greater protection from 
NAFLD.  Fenofibrate increases PPARα transcription and induces general down-
stream gene expression of enzymes in skeletal muscle [82], including FAO gene 
production in lean and obese patients [83]. This is highly warranted as the sheer 
amount of muscle mass outweighs any other organ that contains high levels of 
PPARα. It can be assumed that bilirubin can have a similar effect in skeletal muscle 
as it can be transported ubiquitously in the body. In addition to just increasing per-
oxisomal content, there is evidence that bilirubin through PPARα activation can 
bolster peroxisomal and mitochondrial FAO through other supportive mechanisms.

17.5  �Peroxisomal Protection against NAFLD

Peroxisomes are single-membrane organelles that contain matrix proteins used for 
fatty acid metabolism, sequestration of reactive oxygen species (ROS), and biosyn-
thesis of phospholipids [84]. Peroxisomes have often been characterized as the side-
kick to mitochondria for their ability to break down VLCFAs and eliminate ROS 
generated by mitochondria (Fig. 17.2) [85]. Thus, a known partnership exists among 
the two, which is supported by both organelles’ FAO, following the same process of 
dehydrogenation, hydration, dehydration, and thiolytic cleavage, albeit with differ-
ent enzymes [86]. However, peroxisomal FAO is not limited to very-long-chain 
fatty acids. Recent research found that in mitochondrial fatty acid transport dys-
function or overload, peroxisomes can oxidize medium- and long-chain fatty acids 
[87], making them relevant in reducing NAFLD. The closeness in the relationship 
between peroxisomes and mitochondria is shown in the coordination of peroxisome-
mitochondria FAO using shared enzymes and the mirroring between transport 
enzymes such as the peroxisome’s ATP-binding cassette subfamily D (ABCD) 
transporters and the mitochondria’s carnitine palmitoyl-transferases (CPT) [88, 89]. 
Furthermore, the main regulator of mitochondrial biosynthesis, peroxisome 
proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), utilizes the 
PPAR pathway to increase the expression of peroxisomal enzymes required for 
FAO [11, 90].
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Fig. 17.2  Cross talk of mitochondrial and peroxisomal pathways. Peroxisomes communicate with 
mitochondria by preparing very-long-chain fatty acids (VLCFAs) into long- and medium-chain 
fatty acids (LCFAs and MCFAs) for β-oxidation. The VLCFAs and LCFAs enter the peroxisome 
via ABCD transporters, and, after catabolism, shorter-chain fatty acids are exported via CROT, a 
peroxisomal carnitine O-octanoyltransferase. The oxidizing of reactive oxygen species (ROS) cre-
ated from mitochondria and peroxisomes protects the cell. The mitochondria import medium-
chain fatty acids via the carnitine palmitoyl-transferase (CPT1) and communicate to CPT2 inside 
the mitochondria to signal for β-oxidation. Upregulation of the peroxisome allows for improved 
metabolic activity
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In addition to FAO, peroxisomes contain both catalase (CAT) and superoxide 
dismutase 1 (SOD1), which are vital in the reduction of ROS generated through 
FAO and other cellular processes [91]. These enzymes represent the main mecha-
nism of ROS removal by converting it into water. It is vital to eliminate these ROS 
as they damage DNA, including mitochondrial DNA [92]. This becomes a central 
issue in NAFLD as Nassir et al. have established the link between mitochondrial 
dysfunction and NAFLD [93], indicating that higher oxidative stress and ROS dam-
age are the root cause of this dysfunction. Peroxisomes act as a significant defensive 
line against ROS-mediated mitochondrial DNA damage to maintain proper tran-
scription and FAO. With the peroxisome’s FAO and ROS sequestration abilities, 
these intracellular organelles’ proliferation and activation may be a key in prevent-
ing and correcting NAFLD.

The biogenesis of peroxisomes is regulated by the transcription of peroxin (PEX) 
genes, which produces a family of proteins necessary for the formation and activity 
of peroxisomes [94]. Knockouts of essential PEX genes, such as Pex11a, showed 
significant increases in fat mass, body weight, blood glucose, hemoglobin A1C, 
insulin, hepatic triacylglycerol (TG), and many other factors [95–99]. This is mir-
rored in PPARα knockout mice, as similar results were found [11, 100, 101]. 
Removal of these integral proteins cause increased blood glucose and lipid deposi-
tion into the liver, which exacerbate NAFLD. Although it is unclear if most peroxi-
somes are formed de novo from the endoplasmic reticulum or the fission of 
preexisting peroxisomes [102, 103], the activation of PPARs directly expands the 
number of peroxisomes in cells [9].

17.6  �Peroxisomes, Oxidative Stress, and Antioxidants

Peroxisomes can be both sources and traps for reactive oxygen species (ROS) due 
to the oxidative metabolism of fatty acids and the degradation of H2O2 by catalases. 
Peroxisomes contain a subset of enzymes, including the flavin adenine dinucleotide 
(FAD) and flavin mononucleotide (FMN)-dependent oxidase, which generate H2O2 
[104]. Peroxisomes also contain several H2O2-eliminating enzyme systems, includ-
ing catalase and peroxiredoxins (PRDXs). Catalase is abundant in peroxisomes; 
however, during increased ROS production conditions, the importation of catalase 
into peroxisomes can be reduced to increase the amount of catalase in the cytosol to 
protect against H2O2 damage [105]. PRDX5 reduces peroxynitrite (ONOO−) and a 
variety of lipid peroxides (LOOH) via NADPH-dependent thioredoxin (TXN)/TXN 
reductase (TXNTR) system. They can also transfer oxidizing equivalents from HsOs 
to target proteins through thiol-disulfide reshuffling [106]. PRDX5 and CAT play 
nonoverlapping roles in H2O2 clearance, supported by the distinct kinetic charac-
teristics of both antioxidant enzymes. Catalase scavenges H2O2 in the low milli-
molar range, while PRDXs work in the low micromolar range [107]. Glutathione 
S-transferases and epoxide hydrolases can also contribute to ROS balance in peroxi-
somes [108].
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Peroxisomes play an essential role in a healthy redox balance demonstrated in 
conditions that interfere with normal peroxisomal function and biogenesis. Long-
term exposure to peroxisomal proliferators, such as dibutyl phthalate and gemfibro-
zil, in rodents has been reported to cause oxidative liver damage, and ROS 
imbalances the induction of ROS-generating peroxisomal enzymes [109]. However, 
this effect of long-term exposure of peroxisomal proliferators on liver function may 
be species dependent. Humans appear to be relatively insensitive or nonresponsive 
at dose levels that produce a marked response in rodents.

17.7  �Peroxisomes and Inflammation in NAFLD

The ABCD family of genes, found on the peroxisomal surface, helps import fatty 
acids or fatty acyl-CoAs [110]. Activation of PPARα significantly increases the 
transcription of both ABCD2 and ABCD3 transporters, increasing peroxisomal FAO 
[111–114]. In support of this greater import of fat into peroxisomes, bilirubin 
decreases the levels of the ATP-binding cassette subfamily A member 1 (ABCA1) 
transporters on macrophages [115]. This may seem counterintuitive as ABCA1, 
also known as cholesterol efflux regulatory protein (CERP), pumps cholesterol and 
phospholipids to an extracellular acceptor, apolipoprotein A1, a vital process in the 
formation of HDL [116]. However, this decrease in the ABCA1 export of lipids out 
of macrophages may reduce fat in the body. One of HDL’s major functions is to 
return peripheral fat in the body to the liver to be excreted as bile [117], which is 
unwarranted in NAFLD. To correlate this decreased ABCA1 expression, HO-1 and 
PPARα agonists have been shown to promote M2 macrophage over M1 macro-
phage polarization {Stec, 2019 #25713} [118, 119]. M2 macrophages have anti-
inflammatory properties and are considered the “repair” macrophages, following 
injury by promoting growth factors such as PDGF and VEGF [120, 121]. Unlike its 
M1 counterpart that uses glycolysis, these macrophages are powered by FAO 
through AMP-activated protein kinase (AMPK). Therefore, it is favorable that mac-
rophages would want to lower the efflux of cholesterol and other fatty acids as they 
are actively degrading them for the activation of PPARα.

To highlight the importance of peroxisomes in glucose regulation, mice that 
lacked the Cpt1b gene, a key enzyme in mitochondrial FAO, exhibited enhanced 
glucose regulation by increasing peroxisomal activity [122]. Furthermore, mice 
with double knockouts of muscle-specific Cpt1b and Pex5 exhibited impaired glu-
cose tolerance due to the lack of peroxisomal compensatory activity [123]. To sup-
port this relationship in an endogenous system, our lab has shown that mice with the 
human UGT1A1 locus with the Gilbert’s polymorphism, a mutation in the gene that 
reduces bilirubin clearance increasing plasma levels, were protected against hepatic 
steatosis alongside improved glucose regulation as compared to control [58]. We 
revealed this is due to a decrease in PPARα phosphorylation in the S73 site, which 
downregulates PPARα activity [58], resulting in an enhanced gene activity.
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Activation of PPARα by WY 14,643 and fenofibrate, both known PPARα ligands, 
increases catalase and SOD1 activity within cells [124, 125]. Whether this is due to 
increasing peroxisomal number or individual peroxisomal ROS removal efficiency 
is unknown. Regardless, this shows that PPARα activation protects the cell from 
ROS damage at least partially by peroxisomal activity [11]. In addition, upregula-
tion of HO-1 and therefore bilirubin’s peroxisomal activation via PPARα have been 
shown to increase catalase and SOD activity [126], which are further supplemented 
with bilirubin acting directly as an antioxidant by reducing ROS [127]. In relation 
to obesity and insulin resistance, why adiposity lowers bilirubin levels and, as a 
result, progresses to NAFLD will benefit millions of patients.

17.8  �Extra-Peroxisomal PPARα Pathways Against NAFLD

PPARα produces several other responses that combat NAFLD through extra-
peroxisomal mechanisms via the upregulation of fatty acid transport proteins 
(FATPs) and solute carrier family 27 members 1, 2, and 4 (Slc27a1, Slc27a2, and 
Slc27a4) [128–130]. Complementary to this, PPARα has also been shown to 
increase adipose differentiation-related protein (ADRP), which stimulates fatty acid 
storage in cytosolic lipid droplets rather than the formation of very-low-density 
lipoproteins (VLDLs) that are released into the bloodstream {Stec, 2019 #25713} 
[131]. The increases in fatty acid transport into the cell and the decrease in VLDLs 
lower plasma TG levels [132]. PPARα is also a mediator for the activation of cyto-
chrome P450 enzymes of 4A subfamily (CYP4A) [11, 133], which is a class of 
enzymes capable of hydroxylating the terminal ω-carbon of saturated and unsatu-
rated fatty acids [134]. Not surprisingly, mice with hyperbilirubinemia have higher 
CYP4A expression [58]. This provides an additional possible mechanism of how 
PPARα lowers the levels of fatty acids.

NAFLD progression increases with inflammation, and PPARα and bilirubin have 
been shown to function in an anti-inflammatory capacity. PPARα activation reduced 
the initiation and progression of several inflammatory diseases, such as Parkinson’s 
disease and autoimmune disorders [69, 135]. The protection against autoimmune 
disorders may be based on the reduced amount of reactive immune cells needed to 
handle infections. Peroxisomes are required for proper phagocytosis and clearance 
of bacteria through oxidative burst [136]. The activation of PPARα increases peroxi-
some concentration in immune cells and their ability to kill bacteria, indicating a 
need for less immune cells for infection clearance and a lowered chance for autoim-
mune disorders to develop. However, this hypothesis has yet to be proven. 
Nevertheless, the activation of PPARα is paramount in attenuating NAFLD as it 
reduces fat content and inflammation seen in the disease progression.
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17.9  �PPARγ and PPARβ/δ Effects on Peroxisomes 
and NAFLD

In the case of the other two isoforms of PPARs, not all things were created equally 
in protecting the body against NAFLD. Bilirubin was not shown to interact or acti-
vate the other PPAR isoforms PPARγ or PPARβ/δ [16]. In particular, PPARγ is criti-
cal in lipogenesis and adipocyte differentiation [137–140]. It is important to note 
that peroxisomes are also vital in producing phospholipids and other phospholipid 
derivatives critical for cellular functions, such as neuronal myelin sheaths and the 
formation of the pro-inflammatory precursor, arachidonic acid [89]. This lipid syn-
thesis is typically associated more with PPARγ activation rather than the two other 
isoforms. Thiazolidinediones (TZDs), a well-known PPARγ activator, are used as 
an antidiabetic medication to increase insulin sensitivity without increasing hepatic 
glucose production [140, 141]. This may seem a practical pathway to nullify lipid 
accumulation as insulin sensitivity allows for greater efficiency of carbohydrate 
uptake and less lipid production. However, TZDs have been implicated in weight 
gain as a common side effect, significantly increasing subcutaneous fat compared to 
visceral fat due to a higher concentration of PPARγ receptors in this tissue [142].

PPARβ/δ is the least studied isoform of the three. This isoform may play a role 
similar to PPARα’s protective nature as it has been shown to work with AMP-
activated protein kinase (AMPK) [143, 144]. AMPK is a master regulator of energy 
metabolism and homeostasis at the cellular and full-body levels by controlling food 
intake [145, 146]. PPARβ/δ activation via exercise with AMPK synergy has been 
shown to increase β-oxidation in skeletal muscle cells [147]. However, with PPARs 
generally associated with anti-inflammatory properties, PPARβ/δ’s role is compli-
cated by conflicting reports [148]. One study has found that PPARβ/δ knockouts 
could not access the anti-inflammatory properties of exercise on vascular inflamma-
tion [149]. Counter to this, patients with psoriasis, an autoimmune condition of the 
skin, had higher PPARβ/δ, and activation of these receptors sustained inflammation 
[150]. Further studies will be required to understand a possible selective transcrip-
tion and modulation of PPARβ/δ.

17.10  �Conclusion

The recent discovery that bilirubin is a hormone that interacts with PPARα poten-
tially explains the bilirubin-mediated improvement of several metabolic diseases, 
including obesity and diabetes. Potential mechanisms of how bilirubin is reduced 
during metabolic disease have implications for improving therapeutics. The 
bilirubin-PPARα axis appears to be essential in regulating peroxisomes and mito-
chondria that control fat-burning mechanisms to improve adiposity. Mounting 
experimental evidence has demonstrated a vital role for peroxisomes in protecting 
hepatic lipid accumulation and inflammation. Future studies are needed to precisely 
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determine if bilirubin acting through PPARα can directly stimulate peroxisomal 
fatty acid metabolism as well as peroxisomal proliferation. Further investigation 
into the role of PPARα in peroxisomes is needed to completely understand how 
peroxisomes contribute to the regulation of hepatic function so that novel therapies 
could be developed in the future to treat conditions such as NAFLD.
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