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Preface

As transcription factors, nuclear receptors regulate numerous biological functions. 
Consequently, altering the activities of these receptors is proposed, and indeed 
documented, to affect many physiological and pathological conditions in 
experimental animals and humans.

This book presents a unique perspective in the field of nuclear receptors through 
an attempt to decipher the thought process scientists go through in their respective 
research efforts. The chapters of this book are presented in an order to narrate a 
story, beginning with a lofty goal seeking to conceptualize a treatment for a disease 
and ending with making available a therapeutic for that disease. Collectively, these 
chapters shed light on intricate phases involved in designing as well as developing 
physiological and pharmacological means to modulate the activity of nuclear 
receptors.

Last but not least, I would like to extend my utmost gratitude to my world- 
renowned colleagues who agreed to share with the reader their professional expertise 
and extensive experience acquired through decades of working with nuclear 
receptors.

Kansas City, MO, USA Mostafa Z.Badr  
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Chapter 1
Molecular Pharmacology of the Youngest 
Member of the Nuclear Receptor Family: 
The Mineralocorticoid Receptor

Mario D. Galigniana

Abstract The mineralocorticoid receptor (MR) was the last member of the nuclear 
receptor superfamily to evolve. It is responsible for the maintenance of the water 
and salt homeostasis. Like most ligand-activated transcription factors of this super-
family, it is activated by ligand binding. The MR exists as a large heterocomplex 
assembled with the heat-shock protein of 90-kDa chaperone, Hsp90, and other asso-
ciated chaperones and cochaperones. The composition of this heterocomplex is 
affected by the nature of the bound steroid. MR biological responses are also 
affected by the redox status of the cell or due to protein phosphorylation. In this 
chapter, the conformational requirements of the steroid to become an optimal MR 
ligand, the role of the Hsp90-based heterocomplex, and the influence of MR modi-
fications by oxidation and phosphorylation is discussed. These properties are ana-
lyzed in the light of the relevance of this nuclear receptor as a key pharmacological 
target for disorders mostly related to the hydroelectrolytic homeostasis.
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1.1  An Overview of the MR Physiology

The conserved steroid receptor subfamily is comprised within the nuclear receptor 
superfamily. They are counted among the first members of the nuclear receptor 
superfamily to be cloned and structurally characterized [1]. The last two steroid 
receptors that emerged during evolution are the close-related partners GR [2] and 
MR [3]. The high homology between these two receptors led to confirm the close 
kinship that was hypothesized previously due to the cross-talk of their biochemical 
and pharmacological properties. This is particularly remarkable since the GR is a 
receptor that can replace MR in some functions. Simply to begin with, the main 
glucocorticoid ligand, cortisol, shows the same affinity for MR as the natural min-
eralocorticoid ligand, aldosterone [4]. In view of the higher plasma levels of circu-
lating cortisol (2–3 orders of magnitude higher than those of aldosterone), there is a 
problem for the specificity of the biological response since a priori, the MR should 
be permanently activated by cortisol. In other words, the typical response to aldoste-
rone (sodium- and water-retention and potassium and proton elimination) can be 
triggered by cortisol.

In most epithelial tissues and exceptionally in a few non-epithelial tissues such 
as vessel walls and nucleus tractus solitarius of the medulla oblongata, the MR is 
protected from activation by cortisol due to the action of the microsomal enzyme 
11βHSD2 (11β-hydroxysteroid dehydrogenase type-2), which is co-expressed in the 
same cells where MR is expressed, and converts cortisol into the receptor-inactive 
oxidized metabolite cortisone [5]. When the enzyme expression is deficient or 
blocked by drugs or natural products such as liquorice, this protective mechanism 
fails, and cortisol is available to bind and activate MR. Consequently, a pseudohyper- 
aldosteronism syndrome is developed, i.e., a paradoxical syndrome of hyperaldoste-
ronism showing hypertension and high levels of sodium retention but also normal or 
low plasma levels of aldosterone (see [6] for a comprehensive review).

In most non-epithelial cells, remarkably in the brain, the MR is not protected by 
that enzymatic activity since there is no 11βHSD2 co-expression in these cells. 
Inversely, in the nervous system, there is a considerable expression of MR coexist-
ing with high levels of GR in the same cell types. Remarkably, the intranuclear 
distribution of MR and GR in the same hippocampal neurons shows a distinctive 
individual distribution, i.e., specific speckles that exclusively contain MR or GR, 
but not colocalization of both of them [7]. This clearly indicates that there are spe-
cific nuclear sites capable to specifically recognize each receptor. Does it mean that 
the biological response is redundant for both receptors? It does not seem to be the 
case since, for example, salt-intake is still aldosterone-regulated, and it is not a 
cortisol-dependent phenomenon [8, 9]. MR activation has also been related to 
behavioral responses, including memory-related events and affection feelings [10]. 
Interestingly, the MR is also expressed in the granulosa cells of the ovary, one of its 
proven specific roles being the regulation of progesterone synthesis [11], a steroid 
with MR antagonistic action. The reasons for the exclusion of alternative ligands 
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and the specificity for aldosterone action in these tissues are still subject of intensive 
investigation and speculations.

The most important and relevant pathology associated with the biology of MR is 
the hypertension syndrome that results from high plasma levels of aldosterone and 
consequently hypernatremia and water retention. Therefore, patients with primary 
hyperaldosteronism have higher cardiovascular risk profiles [12] and greater evi-
dence of cardiovascular damage [13]. Furthermore, the MR has also been associated 
with other pathological situations such as inflammation processes, organ fibrosis, 
oxidative stress, adipocyte metabolism, and aging [14]. It has been documented that 
MR activation induces the proliferation of smooth muscle cells in pulmonary arter-
ies, which is a contributing factor for the development of pulmonary arterial hyper-
tension [15]. Retina is also a target of mineralocorticoid action, such that the use of 
MR antagonists has shown beneficial effects in retinal diseases [16].

1.2  Evolutionary Profile of the MR

It is accepted that the first life forms originated in the sea. Because of this origin, it 
is thought that the circulating fluids of today living beings resemble the composition 
of the sea water of some millions of years ago, when life began. However, the com-
position of the primitive Archean Ocean has been gradually changing since that 
time. This was the consequence of the permanent precipitation of salts on the seabed 
and the washing-down of compounds from the land that were deposited in the sea 
by the erosive action of rivers. Today animals are unquestionably consequence of a 
slow but constant evolutionary adaptation to that new environment during this long 
period of time. Despite the biological divergence, the composition of their blood is 
remarkably alike in ionic composition. This fact suggests that the life conditions 
should be highly restricted, and it is likely that they remained relatively constant 
during this evolutionary process. Thus, animal life has been regulated by mecha-
nisms whose main purpose was the maintenance of an inner optimal environment or 
the continued life of its constitutive cells. The Dobzhansky’s aphorism “nothing in 
biology makes sense except in the light of evolution” [17] is quite appropriate for 
the case of the MR.

It is reasonable to postulate that when the first life forms abandoned the salty 
waters of the sea, they must solve an additional difficulty for keeping the osmotic 
pressure of their blood above that of the surrounding fresh water. Furthermore, 
when animals moved on to the land from the waters, far-reaching adjustments of 
their regulatory mechanisms became a mandatory condition simply because the 
limits of tolerance were even narrower as a consequence of the influence of previ-
ously inexistent variables, for example, evaporation and perspiration. This is the 
point where both the ligand aldosterone and the receptor MR emerged simultane-
ously during the evolutionary process, i.e., when amphibians jumped from the 
waters to land. Interestingly, most fish lack both aldosterone and the enzyme respon-
sible for its synthesis [18]. Actually, the main corticosteroid produced by the fish 
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interrenal tissue is cortisol, which is the steroid that manages not only the metabo-
lism but also the regulation of salt and water balance in these animals.

The biosynthetic pathway of aldosterone provides some insights into the evolu-
tion the MR ligands. Aldosterone is at the end of the pathway, i.e., it is the youngest 
ligand. As a matter of fact, the late developing of the MR along with CYP11B2 
(aldosterone synthase) offers a clear example of a co-evolutionary process to pre-
serve the intracellular milieu from environmental changes. Also, the six related ste-
roid receptors expressed in vertebrates—GR, MR, estrogen receptors (ER) α and β, 
progesterone receptor (PR), and androgen receptor (AR)—evolved thanks to a 
series of gene duplications from a common ancestral receptor gene [19]. It is 
regarded that the first steroid receptor was ER, followed by PR. More recently, AR 
and corticosteroid receptors appeared. There is a common ancestor of the two 
youngest members of the steroid receptor subfamily, GR and MR—the CR [20]. 
Like the GR and MR, CR is promiscuous in the sense that it is activated by both 
mineralocorticoids and glucocorticoids. Descendants of this ancestral receptor are 
still found in jawless fish, lampreys, and hagfish (along with the expression of ER 
and PR), which evolved about 530 million years ago and are located at the base of 
the vertebrate line. These species do not produce neither cortisol nor aldosterone, 
but 11-deoxycortisol and 11-deoxycorticosterone, which represent their respective 
biosynthetic precursors and are present at physiologically relevant levels [21]. 
Recently, it was suggested [22] that 11-deoxycortisol is the main steroid that con-
trols the hydromineral balance in sea lamprey, an organism that represents the most 
basal osmoregulating vertebrate. GR and MR are derived from that CR in cartilagi-
nous fishes about 450 million years ago, and the consensus is that 
11- deoxycorticosterone, corticosterone, and cortisol were all of the ligands for MR 
before the CYP11B2 enzyme required to make aldosterone from DOC evolved, fol-
lowing the divergence of those two receptors [23, 24].

MR is the largest protein among all human steroid receptors and the last to 
evolve. Like the other members of the nuclear receptor superfamily, it shows three 
major functional domains (Fig.1.1a): The N-terminal domain (∼603 amino acids), 
which has the most variable comparative sequence compared to the other steroid 
receptors (≤15%). It is classically known as the transactivation domain (TD). The 
central DNA-binding domain (DBD) shows the highest homology with other mem-
bers of the subfamily, especially with GR (∼94% identity across the 66 amino acid 
domain). It contains two Zn-finger protrusions responsible for the recognition of the 
DNA promoter sequence of the target genes. The C-terminal domain (∼253 amino 
acids) comprises the ligand-binding domain (LBD) where the steroid binds. 
Between the LBD and the DBD, there is a “hinge” domain (HD), a region of ∼62 
amino acids that it is thought to play a role in receptor dimerization.

There are two possible evolutionary reasons that may lead to that particular intra-
molecular organization of these receptors. Perhaps different domains showing dif-
ferent origins such that those related to the regulation of metabolism became fused 
to a DNA-binding motif to generate a novel transcription factor. Alternatively, a 
multi-domain precursor that at first may mediate a simple signal transduction path-
way could have acquired increasingly complex functions during the evolution. 
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Based on the analysis of protein sequences and the evolutionary trees, the second 
model is more likely and the one accepted by general consensus. However, regard-
less of how the organization of nuclear receptors had taken place during evolution, 
these proteins only stand for a part of the tale; the other significant part corresponds 
to the steroid. Therefore, the information encrypted in the hormonal response is 
dictated neither by the steroid nor the receptor exclusively, but it is complementary 
written in both modules of a multifaceted operational unit. In turn, this functional 
unit is subject of other kinds of non-hormonal- and non-receptor-dependent regula-
tions such as receptor modifications by post-transcriptional modifications stimu-
lated by ligand binding, association with other proteins that may conduct to 
trans-repression mechanisms, or the competitive action of metabolizing enzymes 
that sequester active ligands from the medium making them unavailable for the 
receptor.

1.3  The Hsp90-Based Heterocomplex

Steroid receptors exist as oligomeric structures with the Hsp90-based chaperone 
heterocomplex (Fig.1.1b). The assembly of the oligomeric structure has been well 
characterized for GR [25], PR [26], and MR [27] and appears to be quite representa-
tive for the assembly of most Hsp90-client proteins associated to the same oligo-
meric complex. The chaperone Hsp90 always function as a dimer, such that the 

Fig. 1.1 (a) Structural domains of human MR. Black dots show potential phosphorylation sites 
based on the consensus sequence. (Modified from Ref. [92]). These sites correspond to serines in 
position 8, 129, 183, 250, 255, 259, 262, 274, 283, 299, 311, 361, 424, 543, 703, and 843. (b) 
Mature heterocomplex of MR with the Hsp90-based chaperone machinery. The black crescent of 
the immunophilin (IMM) represents its TPR domain, and the bay in the Hsp90 dimer represents 
the TPR-acceptor site

1 Molecular Pharmacology of the Youngest Member of the Nuclear Receptor Family…
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stoichiometry of the mature receptor•(Hsp90)2 complex shows one molecule of 
Hsp70, one molecule of p23, and a TPR (tetratricopeptide repeat)-domain cochap-
erone bound to the TPR accept or site of the Hsp90 dimer [28–31]. The final hetero-
complex depicted in Fig.  1.1b must pass through a maturation cycle in the cell 
cytosol [32].

Due to the high hydrophobicity the steroid binding cleft of the LBD of MR, this 
domain is collapsed and consequently unable to bind aldosterone, unless the Hsp90- 
based heterocomplex is bound to the receptor. When this happens, the steroid bind-
ing cleft of the LBD becomes thermodynamically more stable and steroid binding 
does occur. It is accepted that the minimal composition for the assembly of MR that 
permits aldosterone binding is the cytosolic complex named “foldosome,” which 
already exists folded in the cytoplasm. It includes (Hsp90)2•Hop•Hsp70/Hsp40•p23. 
Nonetheless, a step-by-step mechanism primed by binding of Hsp70 to the receptor 
followed by Hop and Hsp90 binding is also viable [25, 33]. Note that Hsp70 is 
associated with Hsp40, which is required in sub-stoichiometric quantities to enhance 
the intrinsic ATPase activity of Hsp70. The foldosome is transferred to the receptor 
in an ATP-, K+-, and Mg2+-dependent manner, and the resultant complex is now able 
to bind steroid.

Although the MR is biologically inactive in the sense that it does not bind hor-
mone, it should be pointed out that the Hsp90-based chaperone system binds to a 
structure that shows a stable tertiary structure rather than to a denatured protein. The 
TPR-domain protein Hop (formerly called p60) is important because it brings 
together Hsp90 and Hsp70, two chaperones that are essential for the complex, but 
they are incapable to associate by themselves spontaneously. It occurs that Hsp90 
dimers are in a dynamic equilibrium between an open (ADP-bound) and closed 
(ATP-bound) conformation [34]. Hop first stabilizes the open (V-shaped) conforma-
tion of the dimer and consequently prevents the intrinsic ATPase activity of Hsp90. 
Then, the small acidic cochaperone of p23 is recruited to the Hsp90 dimer. This step 
is critical for two reasons: first because p23 stabilizes the MR•Hsp90 association 
and, second, because p23 binding favors the release of Hop from the TPR-acceptor 
site of Hsp90 since the dimer closes its open conformation. This weakens Hop bind-
ing [35, 36]. In other words, even though Hop is required for priming the folding of 
the heterocomplex, it is not present in the final, mature form of the oligomer. 
Nevertheless, some Hop can always be recovered co-immunoprecipitated with MR, 
but it merely represents the intermediate complexes.

When Hop is released, the TPR-acceptor site of Hsp90 dimers is empty and can 
be occupied by other TPR-domain co-chaperone such as a TPR-domain immu-
nophilin. Because there is only one acceptor site per dimer [29, 37], these TPR 
proteins compete one another for binding to Hsp90 in a mutually exclusive manner 
[38–40]. The most frequent members of the immunophilin family that can interact 
with Hsp90 in steroid receptor complexes are FKBP51, FKBP52, CyP40, and PP5 
[41–43]. They are also found associated with cytoskeleton shaping the phenotype of 
the cell [44–46]. In the cases of MR and GR, the presence of CyP40 in the final 
mature heterocomplex is unusual in biological samples. CyP40 is more frequently 
found associated with PR and ER [47].
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Binding of the Hsp90-based chaperone complex to the MR is mediated by the 
C-terminal of the hinge region [48]. The dissociation of Hsp90 or its functional 
disruption by drugs leads to the polyubiquitylation and consequent proteasomal 
degradation of MR via the ubiquitin-protein ligase CHIP (C-terminus of Hsp70- 
Interacting Protein) [49]. This E3 ligase is also shared with the GR [50].

1.4  MR Trafficking

In the absence of ligand, the MR is primarily cytoplasmic, and rapidly translocates 
into the nucleus upon steroid binding [51–53]. For decades, it has been heuristically 
accepted that Hsp90 anchors MR to cytoplasmic structures, such that its release 
from the complex was thought to be a requirement to permit the nuclear localization 
of the receptor. However, it has been proved that the Hsp90•FKBP52 complex is 
necessary for the active retrotransport of cytoplasmic receptors on cytoskeletal 
tracks, the motor protein dynein powering this transport (see Fig. 1.2). This model 
was first demonstrated for the GR [54, 55] and then for the MR [38, 40, 56]. A simi-
lar model was also reported for the transcription factor NF-κB, but in this complex 
Hsp90 in not an interactor and the binding of the immunophilin occurs directly to 
the p65/RelA [57].

In unstimulated cells, the immunophilin FKBP51 is primarily bound to the 
MR•Hsp90 complex. Upon steroid binding, FKBP51 is exchanged by FKBP52, an 
immunophilin that shares 75% similarity with FKBP51 and is capable to interact 
with the dynein/dynactin motor protein machinery via its PPIase domain (i.e., a 
domain that has enzymatic activity of peptidylprolyl isomerase). Immunophilins 
FKBP52, CyP40, and PP5 can associate dynein via their respective PPIase domains, 
but not FKBP51 [58]. When the PPIase domains of FKBP51 and FKBP52 were 
exchanged in chimera constructs and assayed in intact cells, the properties of both 
immunophilins were also exchanged, i.e., FKBP51, but not FKBP52 was capable to 
favour the retrotransport of GR via dynein [55]. Interestingly, FKBP51 has also 
been reported as a mitochondrial protein [59, 60] and is also complexed with mito-
chondrial GR in identical oligomers as that depicted for cytosolic GR in Fig.1.1b.

Because of its biological relevance in the receptor retrotransport, we named the 
(Hsp90)2•FKBP52•dynein functional unit as “transportosome.” The active, 
transportosome- dependent movement occurs on microtubules filaments [40, 44, 58, 
61]. When the MR reaches the nuclear pore complex, the entire transportosome 
passes intact through the nuclear pore, the chaperones and immunophilins being 
interacting factors with the nucleoporins and importins of the pore complex [40, 62, 
63]. The permeability barrier of the pore is in part due to a sieve structure created by 
the reversible cross-linking between Phe and Gly (FG)-rich nucleoporin repeats, 
which create a three-dimensional meshwork with hydrogel-like properties [64]. 
According to the novel model, nuclear transport receptors overcome the size limit 
of the sieve and catalyze their own nuclear pore passage by a competitive disruption 
of adjacent inter-repeat contacts, which transiently opens adjoining meshes. The 
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chaperone complex would enhance the capability of the MR to overcome the resis-
tance of the meshwork simply by accomplishing its standard role of chaperones. 
Therefore, the MR•Hsp90 complex dissociates in the nucleus rather than in the 
cytoplasm as it has always been thought. The receptor dimerizes in the nucleoplasm 
[65–67] and becomes activated to acquire its main biological role, i.e., to be a tran-
scription factor. In contrast to the classic model of action posited for steroid recep-
tors years ago, all these mechanistic steps are not heuristic and have been 
experimentally supported for each individual step.

An additional relevance of the presence of FKBP52 associated with the MR is 
the capability of this immunophilin to anchor the receptor to nuclear matrix struc-
tures [63]. Actually, the overexpression of FKBP51 expels MR from the nuclear 
compartment, perhaps due to competition with FKBP52 for the nuclear anchoring 
sites [40]. Similar observations and conclusions were also achieved for the role of 
FKBP52 in the mechanism of action of NF-κB [57, 68].

Fig. 1.2 Transportosome model. In the absence of steroid, MR forms cytoplasmic complexes with 
Hsp90, Hsp70, p23, and FKBP51. Upon hormone (H) binding, MR undergoes a conformational 
change, and FKBP51 is exchanged by FKBP52, an immunofilin that recruits dynein in its PPIase 
domain. MR is actively transported to the nucleus, passes intact through the nuclear pore complex 
(NPC), is “transformed” in the nucleoplasm, and dimerizes and binds to the promoter sequences of 
target genes. The Hsp90-based heterocomplex can be recycled. The black crescent represents the 
TPR domain of the immunophilins
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1.5  Agonist Structure-Activity Relationship

Binding of the cognate ligand to its specific receptor is the primordial first step to 
trigger cellular events that lead to the final biological effect in the body, i.e., binding 
of aldosterone to MR have profound effects in the electrolyte balance of the body, 
plasma osmolarity, blood pressure, heart rate, adiponectins activity, slow wave 
sleep, salt appetite, interoception, emotionality, etc. Therefore, the proper recogni-
tion of both components of the ligand-receptor functional unit is essential. Decades 
ago, Duax et al. [69–71] summarized the minimal conformational requirements on 
ring A of steroid hormones for optimal binding to different receptors. According to 
that study, the optimal conformation for the MR would be a 1α-envelope to a 1α,2β- 
half- chair containing the 3-keto-4-ene function. Better affinity ratios for the MR 
were also measured when those substituents that show the tendency to bend the 
A-ring toward the α face of the steroid molecule were eliminated, for example, for 
steroids lacking the C11-hydroxy function or the C19-methyl group [72]. An equiva-
lent result is also observed upon introduction of ketalic bridges that flatten the over-
all structure, for example, in the cases of aldosterone itself and related 18-oxygenated 
analogues [73].

Although several compounds have been synthesized for all the other members of 
the steroid receptor family (and many of them have even replaced the natural ligands 
in many clinical treatments), only one synthetic MR agonist showing no cross- 
reaction with the other members of the steroid receptor subfamily is currently avail-
able to study the agonist mineralocorticoid function—11,19-oxidoprogesterone 
[74, 75] (see its structure in Fig. 1.3). In vivo assays in rats demonstrated that this 

Fig. 1.3 Most stable conformers for some pairs of steroids. Under physiologic conditions, all 
ligands on the left column exhibit better Na+-retaining activity and higher relative affinity for MR 
than the bent partners depicted on the right column
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steroid shows identical activity to the naturally occurring mineralocorticoid 
11-deoxycorticosterone at low doses and becomes undistinguishable from aldoste-
rone at as low dose as 10μg/100 g [75]. On the other hand,  the bent conformers 
6,19-oxidoprogesterone and its 21-hydroxylated derivative are devoid a mineralo-
corticoid effect and show no binding to the MR [75, 76]. Similar observations can 
be made for other pairs of steroids that share similar or identical functional groups 
but show different conformational structures (Fig. 1.3 depicts some practical exam-
ples). Based on these facts, it has been postulated that the essential requirement of a 
ligand to become a mineralocorticoid ligand is to possess an overall planarity of the 
steroidal frame, and its ability to preserve it in vivo is critical to confer a steroid 
mineralocorticoid activity [75, 77, 78]. The last statement refers to putative chemi-
cal modifications the steroid may suffer because of the metabolism or associations 
with other molecules or proteins that may affect its conformational structure accord-
ing to its molecular flexibility. Thus, A/BCD angle for progesterone is not greatly 
different from that of aldosterone (−24.0° vs −21.4°, respectively), but progester-
one is a highly flexible steroid, whereas the presence of a hemiketalic ring that 
involves the C18-aldhehyde in aldosterone (from which the name of the steroid 
derives) favors that aldosterone can preserve its overall conformational flatness due 
to the rigidity of the molecule. A similar property is conferred by the presence of the 
C11-O- C19 bridge in the synthetic agonist 11,19-oxidoprogesterone.

An interesting property of the dose-response curves for Na+-retention is that 
most agonists exhibit a parabolic shape [74, 75], that is, a maximal antinatriuretic 
action at certain doses and then, a clear reversion at higher doses, a feature that is 
less evident for the most active ligands versus the less active steroids. Such a bipha-
sic function of the dose-response curves makes unsuitable the concept of a conven-
tional ED50 to quantify properly the entire function of the biological effect. 
Nevertheless, a good correlation could be observed if the overall function is consid-
ered as a second-order polynomial function defined by the equation y = ax2 + bx + c. 
Thus, the second-order coefficient “a” is a direct measure of the concavity of the 
polynomials and quantifies the biopharmacological parameters of the dose-response 
curve. Therefore, the most potent mineralocorticoid action corresponds to the low-
est “a” value. Figure 1.4 shows the excellent correlation between this coefficient and 
the relative affinity of the steroid for the MR (Fig.1.4a) and the overall flatness of 
the conformers estimated as the angle between the C3-carbonyl and the middle 
plane of the D ring (Fig.1.4b).

1.6  MR Antagonism

Aldosterone antagonists that are capable to impair the activation of the MR have a 
cardinal importance in the treatment of cardiovascular diseases [79]. Consequently, 
a considerable effort has been made by several laboratories and companies for the 
development and safe clinical use of synthetic anti-mineralocorticoid steroids, par-
ticularly during RALES (Randomized Aldactone Evaluation Study), EPHESUS 
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(Eplerenone Post-AMI Heart Failure Efficacy and Survival Study), and 
EMPHASIS-HF (Eplerenone in Mild Patients Hospitalization And Survival Study 
in Heart Failure) pioneer past trails, and most recently the ARTS (Arterial 
Revascularization Therapies Study) series [80, 81].

During the 1960s, spironolactone (Aldactone®) became the first synthetic anti- 
mineralocorticoid approved for massive human use. This synthetic steroid is indi-
cated in cases of primary hyperaldosteronism, congestive heart failure, edematous 
conditions, hepatic cirrhosis, and nephrotic syndrome [82], among the most com-
mon pathologies. With time, it was also indicated for cases of severe heart failure 
and hypokalemia when standard alternative treatments were not well tolerated or 
are ineffective. Eplerenone (Inspra®) was approved in the year 2002. Even though 
it shows lower pharmacologic potency than spironolactone as an MR antagonist, it 
has other advantages such as longer half-life and does not generate active metabo-
lites [83].

From the physiologic perspective, it should be pointed out that at the renal level, 
progesterone behaves as an MR antagonist in most vertebrates [84]. Progesterone 
shows equivalent affinity to aldosterone for the MR, a property conserved among 
mammalian species, suggesting the potential existence of unexplored roles for this 
ligand bound to MR. During pregnancy, progesterone raises plasma levels up to one 
order of magnitude higher than those of aldosterone, perhaps it is a self-protective 
mechanism since aldosterone also increases its concentration. Interestingly, it has 
been reported that a single nucleotide mutation (S810L) in the gene encoding the 
human MR and creates an MR that responds to progesterone resulting in early-onset 
hypertension, which is very much exacerbated during pregnancy [85].

The crystal structure of MR associated with aldosterone and antagonists [86] 
unrevealed key structural characteristics of the MR for the further development of 

Fig. 1.4 (a) Mineralocorticoid response measured as the co-efficient “a” of the parabolic dose- 
response curves (low “a” means high response, see text). RBA: Relative binding affinity relative to 
[3H]-aldo-sterone. (●) 21-hydroxyste-roids (○) 21-deoxysteroids. (b) Steroid flatness improves 
the biological effect (‘a)
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synthetic antagonists. In combination with mutational studies, it was evidenced that 
Asn770 is essential for MR activation and also that the interactions of Thr945 in helix 
10 are critical for the activation of the receptor. The crystal structure of MR with the 
natural antagonist progesterone evidenced that the orientation of the Thr945 side 
chain is somehow vague because of competition between the ligand and intramo-
lecular hydrogen bond acceptors. This decrease of both number of hydrogen bonds 
and the strength of the effective hydrogen bonds, plus the lack interaction with the 
Asn770 residue is the most likely molecular reason by which progesterone produces 
a weak activation (if any) of the MR despite the fact that its affinity for the receptor 
is high.

As a consequence of these studies, various possible antagonistic mechanisms 
have been postulated for the MR [86], i.e., competitive antagonism where there are 
no conformational changes induced in the LBD (such as in the case of spironolac-
tone binding); impairment of MR dimerization; ligands whose binding favors MR 
degradation; and the case of selective ligands (antagonists or agonists) of trans- 
repression, this being a similar situation to that already reported for GR antagonists 
[87]. As it was stated above, the distinction between an MR antagonist and an MR 
agonist could be subtle since the substitution of a single amino acid (S810L) can 
make the difference and transforms not only progesterone, but also the antagonist 
spironolactone and the endogenous cortisone in strong MR agonists [85, 88].

1.7  MR Regulation by Phosphorylation and Redox Potential

Like most members of the nuclear receptor superfamily, the MR is a phosphopro-
tein. The first evidence was obtained when hMR was expressed in Spodoptera fru-
giperda cells grown in the presence of 32P [89]. Then, it was demonstrated that rat 
kidney MR is a phosphoprotein in a physiologic milieu [90, 91]. In that early work, 
a treatment of native MR with alkaline phosphatase resulted in the loss of 
aldosterone- binding capacity and dramatic changes of MR hydrodynamic proper-
ties in sucrose density gradients, causing a strong shift from the 8.8 S (untrans-
formed, Hsp90-bound) isoform to the 5.1 S, transformed isoform. During the late 
1990s, it was postulated that Ser/Thr-phosphatases of the PP1/PP2A family are 
involved in the mechanism of activation of MR and that this fact enhances its capac-
ity to interact with the promoter sequences of target genes in the DNA [90, 91]. It 
was also hypothesized that the phosphorylated forms of MR are not beneficial for 
aldosterone-binding capacity [51, 90]. These early findings were confirmed years 
later by the Lifton lab [92, 93] in a study where it was demonstrated that phosphory-
lation at S843 in the MR LBD prevents aldosterone binding. In line with this, an MR 
phosphomimetic mutant (S843E) revealed showed that steroid binding capacity is 
severely impairs, increasing the dissociation constant by more than 100-fold [93]. 
This phosphorylated form of the MR was found in intercalated cells of the distal 
nephron. Importantly, angiotensin II signalling decreases phospho-MR levels, a 
phenomenon dependent on the activity of a PP1 protein-phosphatase, just as it had 
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been predicted in the early studies [90, 91]. This increases the aldosterone- dependent 
biological response of the cells. More recently it was demonstrated that the effect of 
angiotensin II is due to inhibition of the Ser/Thr-protein-kinase ULK1 (Unc-51 
Like-autophagy-activating Kinase 1), which results in decreased MR phosphoryla-
tion via mTOR [94].

Phosphorylation of MR is also related to the regulation of the receptor by the 
redox potential of the cell, glutathione (GSH) being the most prevalent and abun-
dant (mM range) intracellular reducer thiol. GSH is not required in the diet, but 
synthesized by the sequential actions of two enzymes: Q-glutamyl-cysteine synthe-
tase and GST [94]. GSH is exported continuously and degraded extracellularly. 
Therefore, in vivo GSH deficiency can achieved with the inhibitor of the enzyme 
that generate GSH and BSO (L-buthionine-(S,R)-sulfoximine). When adrenalecto-
mized rats were treated with BSO [95], the low redox potential generated exerted 
drastic and uncompensated inhibition of the MR-dependent response with loss of 
the mineralocorticoid response (i.e. Na+-retention, kaliuresis, low aldosterone- 
binding capacity) accompanied by a higher level of receptor phosphorylation. The 
loss of steroid binding capacity was assigned to the oxidation of essential cysteine 
groups of the MR but also due to an inefficient synthesis of MR due to failures at the 
elongation/termination step during the receptor translation, mimicking the observa-
tions made with rats along the ageing process. There are several other variables that 
may affect the MR-dependent response by influencing the redox milieu. For exam-
ple, the use of drugs that are designed for unrelated applications, but they may affect 
the redox potential of the cell. It is known that melatonin affects the GR nuclear 
translocation due to unknown reasons [95], and its influence on the close-related 
partner MR has not been studied to date.

As is was detailed in the first section, when 11βHSD2 activity is deficient or 
blocked, its protective mechanism on the MR against cortisol activation fails, such 
that cortisol activates principal cell MR. In tubular intercalated cells, MR but not 
11βHSD2 is expressed. However, the MR is protected from cortisol activation by 
phosphorylation at S843. When MR becomes dephosphorylated in response to angio-
tensin II, MR can be stimulated by both steroids, aldosterone or cortisol, but more 
likely by the latter given its 2–3 orders of magnitude higher of plasma levels com-
pared to aldosterone [11]. In addition to converting cortisol to cortisone, this enzyme 
also produces NADH from NAD+. Interestingly, it has been postulated that what 
appears to hold cortisol-MR complexes inactive is the high levels of NADH gener-
ated [96].

In the renal target cells, the enzyme 11βHSD2 can debulk intracellular cortisol 
by 90%, i.e., to levels ∼tenfold those of aldosterone. This implies that when 
11βHSD2 is functional, most epithelial MR pool can be still occupied by cortisol, 
but it is not active. When intracellular redox state changes due to inhibition of 
11βHSD2 (no NADH is produced), the increased production of ROS and oxidized 
glutathione (GSSG) could transform cortisol from an MR antagonist to an MR ago-
nist. Thus, it was reported [96, 97] that when rabbit cardiomyocytes are patch 
clamped and treated with 10  nM aldosterone, ion-influx is increased tenfold (as 
expected), whereas 100 nM cortisol shows no effect. When both steroids are added 
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together, the aldosterone action is 90% antagonized. If 5  mM GSSG is instilled 
intracellularly (i.e., to mimic the redox state under tissue damage conditions) corti-
sol becomes an MR agonist and similar effect as that measured with aldosterone 
alone is observed. Cardiomyocytes do not express 11βHSD2, so MR is “unpro-
tected” and overwhelmingly occupied by cortisol, previously shown not to mimic 
the effects of aldosterone via MR in neonatal rat cardiomyocytes [98]. In line with 
these observations, in other study it was also demonstrated that corticosterone action 
via MR in rat ventricular cardiomyocytes requires an oxidized milieu [99]. 
Therefore, oxidative stress experienced after a postischemic reperfusion would 
favor glucocorticoid activation of the MR and the potentiation of the GR response, 
such that both receptors could contribute to remodelling the functional properties of 
ventricular cardiomyocytes. This makes them prone to spontaneous contractions 
and consequently, increasing the deadly risk of ventricular arrhythmias.

Importantly, oxidative stress can be transmitted through a glutathione-S- 
transferase (GST) “switch” connecting to kinase cascades influencing cell signal-
ling. High ROS can cause a disassociation of the GST•JNK complex, thus activating 
JNK pathways [100]. PKC can also be activated, a protein-kinase that has been 
related to phosphorylation of MR [101, 102]. Aldosterone-dependent activation of 
MR induces the expression of the immunophilin FKBP51 [103], a phenomenon also 
reported for angiotensin II stimulation of smooth muscle cells via MR where PKC 
activation is also involved [102]. ROS effects are not entirely surprising since sev-
eral studies have already shown that many kinases affect their activity upon the 
onset of oxidative stress such as JNK, p70-S6 kinase, Akt/PKB, PDK1, and SGK, 
among many other examples [104, 105]. Interestingly, the last two kinases are 
linked to the MR-dependent response. SGK affects the activation of the epithelial 
sodium channel and is in turn regulated PDK1 [106].

1.8 Conclusions

The MR and its two most potent physiologic ligands aldosterone and 
11- deoxycorticosterone have evolved together under the evolutionary pressure of 
maintaining the internal homeostatic balance of water and electrolytes in an envi-
ronment where especially the offer of water is frequently limited. On the other hand, 
glucocorticoids took on the task of ensuring energy homeostasis. Both receptors, 
MR and GR, may often work in concert or in counterpoint to meet the constant pres-
ence of new and varied environmental challenges. Therefore, the MR/GR ratio of 
selective activation is critical for normal function of the body. This is particularly 
relevant for the brain, where the highest concentrations of MR per gram of tissue are 
expressed. Within the most conventional diseases, hypertension is perhaps the best 
known when there is unequal or inappropriate MR/GR occupation and activation, as 
well as it is the case of metabolic syndrome and depressive disorders.

In pathologic situations, it is regarded that MR can be often be occupied by glu-
cocorticoids rather than aldosterone. Moreover, the required concentration of local 
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ligand necessary to activate the MR could be quite different from their plasma con-
centrations, especially in the nervous system and other systems where both aldoste-
rone and glucocorticoids could be produced locally in an reduced or increased 
manner under pathologic situations.

It should be kept in mind that the transactivation activity of the MR is crucially 
dependent on the nature of the bound ligand. Agonist or antagonist ligands are capa-
ble to induce a unique conformational change that drives interactions of the MR 
with several coregulators and tissue-specific transcriptional factors. Therefore, each 
ligand•MR complex surely shows distinct and often opposite tissue-specific target 
genes and therefore distinct downstream biological effects depending on how the 
steroid has been accommodated in the ligand binding pocket.

The uncovered mechanism of action of the MR to date show a complex picture 
of multifunctional systems that require additional studies to unravel several poorly 
understood events such as the protection of the MR against nonspecific activation, 
by its several binding ligands, or the influence of the cellular context for its activa-
tion. Its cognate endogenous ligand aldosterone is a key therapeutic target in hyper-
tension [81, 107] and chronic heart failure [108, 109]. Accumulating data also 
indicate that MR antagonists can be protective against the chronic kidney disease 
[109, 110]. After several years of intensive research, the development of new thera-
peutic approaches and the development of novel cardiovascular drugs is a fact based 
on studies that began explaining the basics of the molecular mechanism of action of 
the youngest member of the nuclear receptor superfamily. Nonetheless, more 
detailed characterization of the molecular mechanisms regulating MR function in 
the kidney, heart, brain, and other tissues may reveal new targets that might be 
exploited for therapeutic purposes.
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Chapter 2
A Simple Method for Visual Assessment 
and Quantification of Altered Subcellular 
Localization of Nuclear Receptors

Sudhir Kumar, Jyoti Kashyap, Keshav Thakur, and Rakesh K. Tyagi

Abstract All nuclear receptors reside in the nuclear compartment when transcrip-
tionally active. However, their subcellular localization can vary when unliganded, 
functionally inactive, or dysregulated in diseased conditions. This property of dif-
ferential localization and inducible nuclear translocation of nuclear receptors has 
proven to be useful tool in characterizing their transcription functions, discovery of 
novels drugs, ligands (agonists, antagonists, selective modulators of receptor action, 
endocrine disruptors, endobiotics, xenobiotics, etc.), partner-mediated interactions 
and coregulators. To efficiently study these ligand-modulated transcription factors, 
we describe a simple method for visual assessment and quantification of subcellular 
localization achieved by these receptors under varying physiological conditions. 
Contrary to some of the emerging high-end instrument-based assessments, the cur-
rent method is simple, economical and highly reproducible, giving options to con-
duct similar studies in less sophisticated settings. It is expected that the current 
assessment approach will help investigators in their discovery of mechanisms of 
actions of these receptors in health and disease, and also in defining novel small 
molecule modulators to overcome physiological perturbations.

Keywords Steroid/thyroid/nuclear receptors · Subcellular localization · Live-cell 
imaging · Cell quantification · Fluorescence microscopy

2.1  Introduction

Members of steroid/thyroid/nuclear receptor (NRs) superfamily are a group of evo-
lutionarily related, intracellular, and ligand-modulated transcription factors with a 
total of 48 affiliates identified in the human genome [1–3]. These NRs are now well- 
established to have vital roles in a multitude of physiological events relating to 
development, reproduction, metabolism, and homeostasis [4]. Some of these 
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receptors have already been shown to have enormous potential as targets for small 
molecule modulators in the treatments of health-threatening diseases such as diabe-
tes, osteoporosis, asthma, thyroid disorders, endocrine-related cancers, and several 
other metabolic diseases [5, 6].

NRs are believed to be nucleocytoplasmic shuttling proteins, and their steady- 
state localization is a consequence of a fine balance between the operational 
strengths of their nuclear localization signals and nuclear export signals [7–9]. 
Under normal physiological conditions, these receptors are routinely observed to be 
nuclear when transcriptionally active or liganded [10–13]. On the contrary, in unli-
ganded or transcriptionally inactive form, their subcellular localization may vary to 
a differing extent between nuclear and cytoplasmic compartments [12, 14–16]. 
Since the early years of their cloning during the 1980s, the exact subcellular local-
ization of NRs remained mostly ambiguous and ridden with controversies, which 
could be partly attributed to the quality of the antibodies or limitations of detection 
tools, cell type expressing it or the interspecies differences between these receptors 
[17]. However, with the arrival of different fluorescent protein probes, a chimera of 
these receptors could be generated, expressed, and visualized in living cells in dif-
fering physiological states [9]. This revolutionized the field in terms of divulging 
the cellular dynamics, subcellular localization, and mechanisms of actions of these 
receptors [9, 18]. However, a significant number of these receptors remain incom-
pletely understood in terms of their exact physiological roles and activating 
ligands [3].

Appropriate localization and dynamics of cellular proteins at the site of its action 
is crucial to execute a physiological function in a specific biological network [19]. 
This will also be true for transcription factors in general and NRs in particular. Once 
synthesized in the cytoplasm, the cellular residency of the factor determines its site- 
specific interacting partners, its post-translational modifications, as well as its pre-
paredness for its physiological action [20]. In context to receptor-specific diseases, 
the aberrant localization, deregulation of receptor dynamics behavior, or altered 
response to the interacting partners/ligands will be reflected mostly in the “loss of 
function” or sometimes even “gain of function” of NRs or other transcription fac-
tors [21]. This may sometimes warrant for a search for novel therapeutic NR ligands 
or receptor modulators for normal functioning of the receptor. Several reviews have 
discussed the concepts and strategies for therapeutic restoration of disrupted or 
altered protein localization to prevent a disease-inflicting event(s) [19, 21].

Normal functional attributes to NRs can be assigned by observing their responses 
to cognate ligand interactions, receptor-coregulator interactions, or other physiolog-
ical cues released in a time-bound manner to orchestrate an event [13, 22]. 
Classically, other than promoter-reporter-based assays, the receptor response to a 
signaling cue has also been observed using immunological tools for documenting 
the altered receptor localization, nuclear translocation, or inter-molecular interac-
tions [23]. The latter test assays are exploited for both fixed cells and tissues and, 
more recently, with live cells imaging using fluorescent probes [9, 17, 18]. These 
receptor localization and translocation assays based on nuclear import or export 
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have proven to be exceptionally useful, for understanding the mechanisms of their 
action. In addition, these assays have the potential to develop into high-throughput 
screening protocols for novel drug discovery, endocrine-disrupting chemicals, or 
discovery of unknown physiological ligands for orphan receptors [14, 24–26]. 
These simple cell-based receptor localization and translocation assays, though not 
exploited to the utmost potential, have proven to be extremely promising in terms of 
being direct, fast, reliable, economical, and simple [24, 26–29]. Without the employ-
ment of advanced, sophisticated instrumentations, these cell-based assays can be 
adapted (i) to characterize novel small molecule modulators [24, 30]; (ii) to study 
the relative potency and kinetics of receptor translocation by diverse ligands [13, 24, 
31]; (iii) to study receptor-partner or receptor-protein interactions [8, 32]; (iv) to 
establish the transcriptional status of the receptor [14, 21, 33]; (v) to determine the 
receptor-chromatin interactions [34, 35]; and (vi) to examine the regained or lost 
functional status of the disease-inflicting non-functional receptor [21, 34, 35].

Since cytoplasmic retained inactive NRs have the inherent property to translo-
cate to nuclear compartment when induced by specific ligand(s) or signaling mech-
anisms, it provides an excellent opportunity for studying the receptor functioning 
and the underlying signaling mediators (hormones, growth factors, pharmacules, 
small molecule modulators, endocrine disruptors, dietary or herbal compounds, 
etc.) [12, 36]. For the purpose of quantification of nuclear translocation or strength 
of the inducer in inducing the event, the receptor can be classified into five distinct 
patterns of receptor distribution, as shown in Fig. 2.1 and described in material and 
methods.

A few other methods are also utilized for subcellular localization and/or quanti-
fication purposes of NRs, albeit less frequently. These methods include (i) cell frac-
tionation into nuclear and cytoplasmic fractions followed by western blotting; (ii) 
bioinformatics tools-based approaches; (iii) immunocytology and immunohisto-
chemistry approaches; and (iv) automated high-throughput single-cell image 
cytometry [17, 20, 37–41]. Most of these methods however offer limited or specific 
advantages.

Some challenges in cell selection for quantification purposes may be evident 
when working with transiently expressed proteins/receptors. More often than not, it 
will be observed that not all transfected cells in a given population express the ecto-
pic gene to a similar extent or level. A range of gene expression profile, with some 
cells expressing relatively lower while others expressing higher levels of protein, 
are routinely observed. A small population of cells may also be observed which 
exhibit aberrantly high expressions with a fraction of protein/receptor aborted 
mostly in the cytoplasm. These fewer cells may also appear to be multi-nucleated or 
have abnormal morphology [42]. Such cells are to be best avoided for quantification 
and data representation as they do not represent the larger and normal population of 
the gene expressing cells.

The method discussed above for the assessment and quantification of subcellular 
localization and translocation of NRs is readily applicable to other nucleocytoplas-
mic proteins as well and has been in use for a few decades [7, 11, 12, 23, 32, 43–46]. 
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Despite having good reproducibility, and efficacy between what is visualized and 
recorded, the method has not been as widely used as would be expected. However, 
when the scientific literature is surveyed, it is convincingly observed that a large 
number of major discoveries in the “nuclear receptor biology” have been based on 
this method of quantification as mentioned earlier for subcellular localization of 
transcription factors [12, 23, 26–28, 32, 42–45]. However, with the advent of emerg-
ing sophisticated instrument-based technologies [47–49], where NR translocation is 
assessed by high-throughput screening and with a much larger number of small 
molecule modulators, the classical fundamental approach has also been provided a 
much-awaited credence as an attractive option. Nonetheless, the classical method 
presented herein is still superior for routine laboratory studies in terms of it being 
highly reproducible, economical, and simple.

N

N>C

N=C

C>N

C

N

N>C

N=C

C>N

C

A B

Fig. 2.1 Representation of categories for differential subcellular localization using transiently 
expressed green fluorescent protein-tagged androgen receptor (GFP-AR). Mammalian COS-1 
cells were transiently transfected with GFP-AR chimeric plasmid and allowed to express the 
receptor protein for 30 hours post-transfection. A total of 100 cells were randomly visualized, 
counted with a cell counter and simultaneously assigned into any of the five different categories 
based on receptor distributions profiles, as indicated in the figure. The representative patterns of 
subcellular localization were recorded using live-cell imaging with fluorescence microscopy. 
Approach to assign and categorize cells into different groups is suggested (a). Single-cell panel on 
the right (b) is shown to represent diversity and category based on receptor localization in a single 
cell. N nuclear, C cytoplasmic
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2.2  Materials and Methods

 1. Mammalian Cell Lines

Some mammalian cell lines are preferred for gene expression studies as they are 
highly transfectable with plasmids and include COS-1, COS-7, HEK-293T, CHO 
cells, and baby hamster kidney (BHK21) cell lines. These cells can be procured 
from ATCC (USA) or other national or international cell depository. Other cell lines 
may also be moderately transfectable or difficult to transfect. The success of achiev-
ing efficient transfection also depends on the nature and the type of transfection 
reagent used, the presence of endotoxins in the plasmid preparations, and optimiza-
tion of the protocol with the specific experimental cell line.

 2. Cell Culture Condition and Media

The mammalian cells are typically cultured in a humidified incubator at 37 °C 
with 5% CO2. The pH value of NaHCO3-buffered culture media depends on the CO2 
content of the incubator’s atmosphere. Maintenance of optimum CO2 in the incuba-
tor is necessary to achieve a stable pH of culture media to maintain healthy cells. 
The media and supplements are chosen according to the specific requirement of cell 
lines as is generally recommended by the culture provider. Here, we used a “com-
plete DMEM” that was supplemented with 10% FBS and antibiotics-amphotericin 
for the routine culture procedures. When required for NRs, the 10% FBS was 
replaced in the media with 5% steroid-stripped serum.

 3. Steroid-Free Media and Cell Culture

Steroid-free conditions for cell cultures can be easily maintained by culturing the 
cells in steroid-depleted serum-containing media. Due to the absence of steroids, 
the steroid receptor family members and a few other receptors exhibit only minimal/
basal transcriptional activity in promoter-reporter transcription assays. The receptor 
is also observed to be localized in the cytoplasm or is shifted toward the cytoplasmic 
compartment. Both the observations support the ligand-unbound status of the 
nuclear receptor. The better this ligand-free status of the receptor is achieved, the 
superior will be the observed results obtained after ligand treatment. A steroid-free 
serum can be prepared in the laboratory or easily procured from a few commercial 
sources.

 4. Transfection Reagents

A few readily available transfection procedures (e.g., calcium phosphate, elec-
troporation, lipofection) are commonly used which may be preferred depending on 
the experimental cell type being used. In the current examples, the simple and easy 
lipofection method was used according to the manufacture’s protocol. Lipofectamine 
is a cationic lipid-based transfection reagent which provides an advantage over con-
ventional methods in terms of higher transfection efficiency, reproducibility, and 
simplicity. A few other variables of lipofection reagents are commercially available, 
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including but not limited to lipofectamine 3000 (Invitrogen); lipofectamine Plus 
(BD Biosciences); FuGENE (Roche Applied Science); ESCORT (Merck), etc.

 5. Live Cell Imaging and Image Acquisition

Generally, the commonly used microscopes for the live cell imaging are equipped 
with different lenses, appropriate filters, lamps, shutters, camera, and stage. For cell 
imaging performed here, we have used a Nikon upright fluorescence microscope 
(model 80i) equipped with water immersion objectives and connected to cooled 
CCD digital camera model Evolution VF, Media Cybernetics, USA.

 Receptor subcellular localization was recorded by visualizing the fluorescence 
intensity of tagged receptor protein in cellular compartments. As an example, the 
subcellular localization of androgen and estrogen receptors fused with GFP and 
treated with and without hormone are quantified and represented in Figs. 2.1, 2.2 
and 2.3.

 6. Cell Counter or Blood Cell Counter

We have observed that a commonly available blood cell counter is best suited to 
record the five diverse subcellular localization (spread between N and C localiza-
tion) of NRs or other proteins (Fig. 2.4). When recording a total of 100 cells, the 
numbers acquired for localization will directly represent values in percent (%). If 
counted above or below 100, the values will have to be calculated into percentages 
for convenience of representation.

 7. Cell Quantification for Receptor Localization

Changing physiological status is central to alterations in dynamic behavior of 
cellular proteins including nuclear receptors. Therefore, recording and quantifying 
the altered behavior and localization of cellular proteins or receptors help decoding 
a cellular event. The current method shown underneath is such one approach to 
achieve this objective.

The classification for quantification of nuclear receptor distribution includes (i) 
the extreme ligand-unbound, inactive, and exclusively cytoplasmic receptor (C) and 
(ii) the other extreme ligand-bound, transcriptionally active, and fully nuclear- 
shifted receptor (N). Between these two extreme states of localization (C & N), a 
further distinction into three more categories can also be easily made. When the 
receptor appears only partly shifted to the nuclear compartment and is still primarily 
localized in the cytoplasm, it is classified as C > N. If the receptor is uniformly dis-
tributed between the nucleus and cytoplasm compartments, it is classified as 
N=C. However, if the receptor is predominantly shifted into the nuclear compart-
ment, but a significant fraction is observable in the cytoplasm, it is considered as 
N > C. In this way, the receptor distribution can be visually judged into five different 
categories, namely, N, N > C, N=C, C > N and C. The Fig. 2.1 depicts a visual 
example for the classification of diverse possibilities experienced during receptor 
localization studies. Subsequently, Fig. 2.2 shows the application of this assessment 
and quantitation using androgen receptor as a representative example. These five 
categories work best for the receptors which are exclusively cytoplasmic when 
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unliganded and transcriptionally inactive (e.g., glucocorticoid receptor, androgen 
receptor) and translocate almost fully to the nuclear compartment when bound to an 
activating ligand. For the purpose of counting these five categories, a “manual blood 
cell counter” is found to be most suitable and efficient.

However, some unliganded inactive NRs (e.g., estrogen receptor, vitamin D 
receptor) may show a significant population of receptor cells as exclusively nuclear 
(N) or predominantly nuclear (N > C) and a few other cells as N=C. Similarly, a few 
other ligand-unbound receptors may exhibit a dominant population of cells distrib-
uted uniformly between nuclear and cytoplasmic compartment. Nonetheless, when 
bound to an activating ligand/agonist, they exhibit a larger cell population with the 
nuclear-shifted receptor. In such instances, the receptor quantification with N, 
N > C, N=C for former and N + N > C, N=C, C > N + C for the latter may be more 
convenient for data collaging and interpretation for receptor localization. Figure 2.3 
depicts the concept using estrogen receptor as an example. This brings in objectivity 
to the real experimental observations when represented graphically. With little 
experience and clear inclinations, the data profile obtained by these approaches 
have proven to be surprisingly close between the experimentalist and the blind 
observers. Counting and categorizing a total of 100 cells per experimental set con-
verts the values conveniently into percent (%) distributions as shown in Figs. 2.2 
and 2.3.
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Fig. 2.2 Quantification of differentially expressed GFP-AR receptor before treatment (control 
vehicle) and after hormone (androgen) treatment. (a) Representative population of GFP-AR recep-
tor in the presence and absence of hormone treatment are shown. (b) A total of 100 cells for each 
set of experiments were randomly counted and recorded with a cell counter according to the speci-
fied category by receptor subcellular distribution. (c, d) Graphical representation of subcellular 
localization (%) of GFP-AR by two different bar graphs is shown. N nuclear, C cytoplasmic
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 8. Data Acquisition and Image Processing Softwares

There are numerous image acquisition and image processing software available 
with, manufacturers (e.g., Image Pro-plus, cellSense dimensions, NIS-Element, 
ImageJ, Metamorph (Molecular Devices, USA). These softwares are helpful in 
image acquisition, processing, quantification, compilation, labelling, and improving 
the presentation of the acquired images. However, appropriate care must be taken to 
apply the processing parameter on the whole image without the introduction of 
unwarranted features that were not observable when initially acquired.
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Fig. 2.3 Representation and quantification of categories for differential subcellular localization of 
transiently expressed green fluorescent protein-tagged estrogen receptor (GFP-ER) before treat-
ment (control vehicle) and after hormone (estrogen) treatment. (a) The representative population 
of GFP-ER receptor-expressing cells in the presence and absence of hormone (estrogen) treatment 
are shown. Approach to assign and categorize cells into different groups is also suggested here. (b) 
Single-cell panel on the right represents the diversity and category based on receptor localization 
in single cells. (c) A total of 100 cells for each set of experiments were randomly counted and 
recorded with a cell counter according to the specified category by receptor subcellular distribu-
tion. (d, e) Graphical representation of subcellular localization (%) of GFP-ER by two different bar 
graphs. N nuclear, C cytoplasmic
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 9. Data Processing and Analysis

In each experiment, as per statistical requirement, random 100 cells are quanti-
fied in each set according to our scoring strategy as mentioned under “cell quantifi-
cation for receptor localization.” Here, for convenience of representation, we 
suggest two different bar graphs which can be plotted by using the GraphPad prism 
or Microsoft office (Figs. 2.2 and 2.3).

2.3  Notes

 1. DNA Transfection: Transient Versus Stable Protein Expressions

Protein trafficking can be studied with the endogenous cellular protein if a cell 
expresses it in a significant amount. Transcription factors are generally expressed at 
much lower levels or only moderately in some target tissues/cells. In view of this 
limitation, transient transfections and expression are methods of general choice. 
Improved transfection efficiency can be achieved in serum-free and antibiotic-free 
culture conditions that are introduced at least a day before transfection steps. But 
transient transfection approaches help to express a cellular protein only transiently, 
sometimes raising concerns of non-uniform or overexpression of a gene within 
the same cell population. In this context, stably transfected cells express a protein 
much uniformly without overexpressing the gene or inviting serious concerns [24]. 
In all the above cases, wild-type or chimeric fluorescent/non-fluorescent protein 
tags can be conveniently used to suit one’s needs.

Fig. 2.4 A blood cell counter adapted as manual cell counter for quantification of five cell catego-
ries representing different receptor distribution between nucleus and cytoplasm as indicated in the 
figure. The “total” represents the overall fixed number of cells that the experimentalist intends 
to count
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 2. NLS-Deleted or RFP-Tagged Nuclear Receptors

Nuclear translocation studies can be easily conducted with those protein factors 
that have cytoplasmic localization as a starting point. Not all NRs when unliganded 
are cytoplasmic or predominantly cytoplasmic [23, 44]. For these reasons, constitu-
tive NLS (nuclear localization signal) of NRs may be deleted for retention in the 
cytoplasm. Subsequently, the treatment with an activating ligand will help induce 
nuclear translocation of the receptor. In another approach, the application of a red 
fluorescent protein (DsRed-express) tagging to some NRs were observed to prefer-
entially shift the nuclear protein towards the cytoplasm side [50]. This cytoplasmic 
shifted protein expressed in ligand-free conditions could then be subsequently acti-
vated to shift into the nuclear compartment [50]. Fluorescent protein-tagged NR 
constructs can be easily generated, procured as a gift or obtained from a non-profit 
company Addgene (Watertown, Massachusetts, USA).

 3. Nuclear Translocation: Detection in Fixed Cells Versus Live Cell Microscopy

Several standard cell fixations and permeabilization methods are currently 
adapted by different laboratories for subcellular localization of a protein by immu-
nocytochemistry analysis. However, some limitations or artifacts may be encoun-
tered depending on the cell type, fixative reagents, nature of antigen, and quality of 
primary and secondary antibodies employed for detection. Currently, the use of 
chimeras generated with fluorescent proteins tags serve as excellent tools for the 
standard implementation of receptor investigation and localization by fluorescence 
microscopy. An excellent review on this central topic has been elaborately compiled 
by Schnell et al. (2012) [17].

 4. Buffering of Live Cells During Microscopic Analysis

Not all microscopes are equipped with an inbuilt chamber providing culture con-
ditions, while cells are being examined for imaging and quantitation. Observing the 
same set of cells for a prolonged period may alter the optimum pH and temperature 
of the cell media. To stabilize the pH changes, it is advisable to add a calculated 
amount of sterile HEPES buffer from a 1.0M stock buffer (pH 7.4) to achieve the 
final concentration of 10 mM.

 5. A Point of Consideration When Viewing Cells for Protein Localization

An adherent cell manifests different appearance when viewed from top vis-à-vis 
laterally. Even when a protein is uniformly distributed throughout the cell, it may 
appear to be more concentrated in the nuclear compartment when viewed from the 
top. This is due to the fact that the depth of field in the nuclear region is more than 
the exclusive cytoplasmic regions. This point should be considered when assessing 
the subcellular localization of a protein distributed in these two cell compartments 
(Fig. 2.5). In addition, when performing optical sectioning of a cell, the localization 
of a protein may not be accurately predicted until all the optical sections are consid-
ered for the holistic image.
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 6. Miscellaneous Notes

Standard mammalian culture facility and fluorescence microscope imaging facil-
ity will be essential to conduct the studies discussed herein. When imaging fluores-
cent live cells, it is preferred that water immersion objectives are attached to a 
dedicated fluorescence microscope. The quality of epifluorescence-based imaging 
is generally superior by these water immersion objectives.

Hoechst 33258 (0.5 μg/ml) and DAPI (0.1 μg/ml) are commonly used counter-
stain for viewing cell DNA/nuclei. DAPI is generally used with fixed cells as it is 
less permeable through cell membrane, while Hoechst is used for the live cells due 
to its high membrane permeability. Hoechst dye is also less toxic than DAPI and 
allows staining and visualization of live cells for a prolonged period.
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Chapter 3
Multifaceted Effects of Ligand on Nuclear 
Receptor Mobility

Lizabeth A. Allison and Vincent R. Roggero

Abstract Members of the nuclear receptor superfamily function as both intracel-
lular receptors and transcription factors, modulating transcription of target genes in 
response to hormone. In the classical model of steroid hormone action, after cross-
ing the plasma membrane hormone binds to cytoplasmic pools of receptor that are 
then rapidly translocated to the nucleus to facilitate gene transcription. Extensive 
studies since then have revealed a far more complicated story. The nuclear receptors 
are remarkably dynamic proteins that can undergo rapid nucleocytoplasmic shut-
tling in the presence or absence of hormone. They display a diversity of distribu-
tions within the cell, showing variation in transport mechanisms between the 
cytoplasmic and nuclear compartments and in their intranuclear dynamics. This 
chapter highlights key features of three main categories of intracellular localization 
into which the nuclear receptors can be roughly sorted: ligand-dependent nuclear 
accumulation, ligand-dependent intranuclear localization, and ligand-independent 
trafficking.

Keywords Nuclear receptors · Nucleocytoplasmic shuttling · Intranuclear 
dynamics · Nuclear import · Nuclear export · Steroid hormones · Thyroid hormone

3.1  Introduction

Members of the nuclear receptor superfamily are both intracellular receptors and 
transcription factors. As such, they are able to bypass the elaborate second messen-
ger signaling pathways and phosphorylation cascades of cell surface receptors. 
Their mode of action at first glance may appear a model of simplicity. Yet, 
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underlying this perceived simplicity is an intricate complexity. In essence, the 
nuclear receptors act as highly abbreviated signaling pathways. When ligand enters 
the cell from the surrounding environment, nuclear receptors directly regulate 
ligand- dependent transcription of target genes linked to a wide array of biological 
processes, including metabolism, cell proliferation, reproduction, development, and 
the inflammatory response. Cloning of the glucocorticoid receptor (GR) cDNA in 
1985 was followed closely by cloning of cDNAs encoding the estrogen receptor 
(ER) and the thyroid hormone receptor (TR) [1–7]. The field has since exploded, 
with 48 members of the nuclear receptor superfamily identified in humans alone [8, 
9]. The ligands for nuclear receptors are equally diverse, including endogenous hor-
mones, metabolites, drugs, and xenobiotics (e.g., herbicides and plasticizers). 
Adding to this complexity, the response to ligand is less straightforward than origi-
nally thought, and it is now understood that unliganded receptors play critical roles 
in both the regulation of gene activation and repression.

Despite their diversity, the nuclear receptors share characteristic structural fea-
tures which define the superfamily. With the exception of the atypical receptors SHP 
(small heterodimer partner) and DAX (dosage-sensitive sex-reversal adrenal hypo-
plasia congenital critical region on the X chromosome gene 1), almost all members 
of the nuclear receptor superfamily share a common modular domain structure, with 
five domains, labeled A-E [10, 11] (Fig.  3.1). The A/B domain is a disordered, 
poorly conserved N-terminal region that houses a ligand-independent transcrip-
tional activation function surface, termed AF-1. The DNA-binding domain (DBD), 
or C domain, is the most conserved of the domains. The DBD consists of two zinc 
fingers important for receptor dimerization and DNA binding. The D domain, also 
referred to as the hinge region, is a short flexible linker with the least sequence and 
size conservation, although it harbors a conserved nuclear localization signal (NLS) 
in some receptors [12]. The C-terminal ligand-binding domain (LBD), or E domain, 
is a structurally conserved domain that commonly contains 11 α-helices and four 
β-strands that fold into a bundle, forming a hydrophobic ligand-binding pocket. 
Helix 12 houses the ligand-dependent AF-2 surface, which interacts with transcrip-
tional coregulator proteins. The LBD recognizes specific ligands that are lipophilic 
molecules, such as steroid hormones, vitamin D, thyroid hormones, and fatty acids. 
Finally, there is a highly variable C-terminal region, absent in several nuclear recep-
tors, that is sometimes designated as the F domain.

Fig. 3.1 Schematic representation of nuclear receptor domain structure. A typical nuclear receptor 
contains five structural and functional domains, labeled A-E. Key domain functions are depicted 
above and below the diagram. NLS, nuclear localization signal; NES, nuclear export signal; AF-1 
and AF-2, activation function domain-1 and domain-2, respectively
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Nuclear receptors modulate transcription through many distinct mechanisms. In 
most cases, ligand binding stabilizes an active state, in which nuclear receptors 
recruit coactivator proteins that then recruit histone modifying enzymes, such as 
histone acetyltransferases (HATs) that facilitate the opening of chromatin, making 
it accessible to the transcription machinery [13]. Nuclear receptors also can repress 
transcription by binding corepressors in the unliganded state, such as histone 
deacetylases (HDACs) that facilitate the closing of chromatin, blocking the tran-
scription machinery from accessing the DNA. Alternatively, nuclear receptors can 
interact with “negative” DNA response elements. In this mode of action, the nuclear 
receptor adopts a conformation distinct from the conformation when bound to a 
“positive” DNA response element and facilitates corepressor recruitment to block 
transcription [14, 15]. In order to modulate gene expression, after synthesis in the 
cytosol, precise targeting to their ultimate destination in the cell is essential for 
nuclear receptor function.

Categorizing the diversity of nuclear receptors is akin to sorting LEGO® bricks 
into bins. Should they be sorted by color, shape, or function? How does one deal 
with the complexity of curvy bricks? If each subtle difference is taken into account 
a sorting solution might need multiple bins for what overall is a limited number of 
bricks (Fig. 3.2). Reflecting this conundrum, the nuclear receptor superfamily is not 
only divided into seven subfamilies based on structural characteristics and the type 
of ligand [11] but also classified into four mechanistic subtypes, based on dimeriza-
tion properties and intracellular localization (Table 3.1). One of the hallmarks of 

Fig. 3.2 Categorizing nuclear receptors is analogous to sorting LEGO® bricks into bins. (a) A 
one-bin sorting scheme for white, curvy bricks. (b, c) Alternative sorting schemes based on func-
tional characteristics. (d) A two-bin sorting scheme. (Photo courtesy of Andrew C. A. Levine)
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eukaryotic cells is the compartmentalization of the genome into the nucleus, a sepa-
rate membrane-bound organelle. Trafficking of nuclear receptors into and out of the 
nucleus represents an additional level of transcriptional regulation beyond DNA- 
protein interactions. This chapter focuses on select members within subfamilies 1, 
2, and 3 of the nuclear receptor superfamily that have well-studied nucleocytoplas-
mic shuttling characteristics and intranuclear dynamics in response to ligand. The 
following questions are addressed: Are unliganded receptors localized in the cyto-
plasmic “bin” or the nuclear “bin” within a cell? Are there additional “bins” within 
the nuclear space? What effect does ligand have on receptor localization?

3.2  Nucleocytoplasmic Shuttling of the Nuclear Receptors

The members of the nuclear receptor superfamily are remarkably dynamic proteins 
that display a diversity of distributions within the cell and variation in transport 
mechanisms between the cytoplasmic and nuclear compartments (Table 3.1). In the 
classical model of steroid hormone action, after crossing the plasma membrane, 

Table 3.1 Comparison of nuclear transport mechanisms of select members of the nuclear receptor 
superfamily

Subfamily
Mechanistic 
subtype Nuclear receptor Ligand Dimerization

Predominant 
cellular 
localization 
of the 
unliganded 
receptor

3C Type I Glucocorticoid 
receptor (GR)

Glucocorticoids Homodimer Cytoplasm

3C Type I Mineralocorticoid 
receptor (MR)

Mineralocorticoids 
(aldosterone) and 
glucocorticoids

Homodimer Cytoplasm

3C Type I Androgen 
receptor (AR)

Androgens 
(testosterone)

Homodimer Cytoplasm

3A Type I Estrogen receptors 
(ERα, ERβ)

Estrogens Homodimer Nucleus

1A Type II Thyroid hormone 
receptors (TRα, 
TRβ)

Thyroid hormones Heterodimer Nucleus

2B Type II Retinoid X 
receptors (RXRα, 
RXRβ, RXRγ)

9-cis retinoic acid Heterodimer Nucleus

1B Type II Retinoic acid 
receptors (RARα, 
RARβ, RARγ)

Retinoic acid Heterodimer Nucleus

1I Type III Vitamin D 
receptor (VDR)

1,25-dihydroxy 
vitamin D3

Heterodimer Nucleus
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hormone binds to cytoplasmic pools of receptor that are then rapidly translocated to 
the nucleus. Once in the nucleus, the liganded receptor associates with specific 
DNA regulatory sequences and activates or represses target gene transcription. With 
the discovery in the early 1980s that unliganded nuclear receptors can be distributed 
in the cytoplasm and nucleus, it became clear that this simple model did not fit all 
nuclear receptors [16–21]. In addition, extranuclear signaling pathways have been 
proposed for some of the nuclear receptors [2], but these nongenomic effects are 
outside the scope of this chapter.

Regardless of their primary localization at steady-state, it is now clear that mem-
bers of the nuclear receptor superfamily undergo rapid shuttling between the cyto-
plasm and the nucleus [22–26]. While the biological significance of shuttling is not 
always readily apparent, what has emerged is that the fine balance among nuclear 
import, nuclear retention, and nuclear export of nuclear receptors is a critical control 
point for modulating hormone-responsive gene expression, and potentially for 
inducing extranuclear signaling pathways [27, 28]. Given their structural and func-
tional diversity, it should come as no surprise that there is no general mechanism for 
nucleocytoplasmic shuttling of the nuclear receptors. Instead, there are multiple 
pathways for both nuclear import and export. How is receptor nuclear localization 
achieved?

3.2.1  Nuclear Pore Complexes: Gatekeepers of the Nucleus

Nuclear receptors, like other macromolecules, cross the nuclear envelope, the dou-
ble membrane that surrounds the nucleus, through the nuclear pore complexes 
(NPCs). The NPCs are intricate protein assemblages of approximately 120 MDa 
with a central channel that acts as a “gatekeeper” for nuclear entry [29, 30] (Fig. 3.3). 
This selective barrier, generated by proteins called nucleoporins that contain intrin-
sically disordered phenylalanine-glycine (FG) repeats, allows diffusion of small 
molecules and ions, but hinders diffusion of proteins greater than 3 nm in diameter 
and ~40 kDa in size [31]. Proteins destined for the nucleus, even those as large as 
40 nm in diameter, can be rapidly transported through this mesh-like barrier by a 
temperature- and energy-dependent mechanism. Nuclear transport is mediated by 
members of the family of evolutionarily conserved karyopherin β-like transport fac-
tors, 20 of which have been identified so far in humans. Karyopherins weakly bind 
to the FG repeats in the cytoplasmic filaments of the NPC and facilitate transloca-
tion through the central channel. Karyopherins that import proteins into the nucleus 
are called importins, whereas those that export proteins back to the cytoplasm are 
called exportins [32, 33], with each member performing a distinct nuclear import, 
export, or bidirectional transport function [32, 34–41]. Most nuclear proteins con-
tain nuclear localization signals (NLSs) that direct binding with importins, and they 
also may contain nuclear export signals (NESs) that direct nuclear export by inter-
acting with exportins [41–44]. Transport is driven by the asymmetrical distribution 
of the small GTPase Ran in either its GTP or GDP bound state. A high nuclear 
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RanGTP concentration is required for dissociation of import complexes in the 
nucleus and for assembly of export complexes that will exit the nucleus [45].

3.2.2  Nuclear Import Pathways

In the classical import pathway, used by many of the nuclear receptors, importin β1 
interacts with one of seven adaptor proteins from the importin α family, which binds 
directly to a classical lysine-arginine-rich NLS within the protein, while importin β1 
interacts with the nucleoporins [46] (Fig.  3.3). Nuclear receptors typically have 
more than one NLS, as is the case for the estrogen and progesterone receptors where 
three NLSs have been defined, one in the hinge domain and two in the LBD [47–
50]. TRα1 harbors two NLSs, NLS-1 in the hinge domain and NLS-2 in the A/B 
domain, while TRβ1 only contains NLS-1 [12]. NLS-1 and NLS-2 in TRα1 both 
interact with the importin α1/β1 heterodimer, while NLS-2 also interacts with 
importin 7 [27, 51]. As another example, the mineralocorticoid receptor (MR) and 
the androgen receptor (AR) contain three NLSs: NLS0  in the N-terminal A/B 

Fig. 3.3 Nuclear import and export pathways of nuclear receptors. Nuclear receptors bind to spe-
cific importins in the cytoplasm, as indicated. The NR-importin complex passes through a nuclear 
pore complex (NPC) embedded in the nuclear envelope into the nucleus, where the complex is 
disassembled and the NR binds to target genes. The NR exits the nucleus through the NPC in 
association with specific exportins or calreticulin (CRT)/CRM1. The most commonly used impor-
tins and exportins are in bold type
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domain, a bipartite NLS1 in the DBD/hinge region, and a ligand-dependent NLS2 in 
the LBD [52–55]. NLS1 in MR and AR is recognized by the importin α/β1 heterodi-
mer. Interestingly, importin 7 regulates AR in a counterintuitive way: it binds to AR, 
masks NLS1, and inhibits nuclear import in the absence of ligand. Androgen bind-
ing then induces a switch that promotes exchange of importin 7 for the importin  α/
β1 heterodimer, which mediates nuclear translocation [56]. In this case, ligand bind-
ing causes a conformational change in AR, unmasking both the dimerization domain 
and the NLS that allows nuclear import [57].

Nuclear entry of nuclear receptors is also mediated by other members of the 
karyopherin family. For example, GR has two NLSs, NL1 in the hinge domain and 
NL2 in the LBD [58], both of which are ligand-inducible, and can follow multiple 
pathways through the NPCs. Importin-α/β1 heterodimers, importin 7, importin 8, 
and importin 13 have all been shown to mediate nuclear import of GR [59, 60]. In 
contrast, nuclear import of the vitamin D receptor (VDR) and the retinoid X recep-
tor (RXR) follows another pathway, mediated by importin 4 [61–63].

3.2.3  Nuclear Export Pathways

The predominant pathways for nuclear export of nuclear receptors involve CRM1 
(Chromosome Region Maintenance 1), also known as exportin 1, and the calcium- 
binding protein calreticulin (CRT) [64, 65] (Fig. 3.3). Some nuclear receptors are 
exported by CRM1, some by CRT, and some by both [66, 67]. CRM1 recognizes the 
canonical, 8–15 amino acid NES that includes 4–5 hydrophobic residues rich in 
leucine [68]. Nuclear export signals, in general, have proven to be difficult to fully 
define as both necessary and sufficient for exit from the nucleus. However, nonca-
nonical sequences in the LBD and DBD of nuclear receptors have been shown to act 
as NES-like sequences that can be recognized by CRM-1 and other exportins. 
Illustrating the complexity of nuclear export, rapid GR export is mediated by CRT 
via binding to a NES in the DBD [64, 65], but it is suggested that there is another 
slower export pathway mediated by CRM1 [69]. Upon withdrawal of ligand, the 
GR-DNA complex dissociates and is thought to complex with hsp90 and p23, which 
facilitate nuclear export [66, 70]. In addition, a “nuclear retention signal” has been 
identified in the hinge region of GR that overlaps with NLS1 and slows down 
nuclear export mediated by CRT. In this way, GR transcriptional activity is enhanced 
by its increased nuclear accumulation [71]. As another example, upon steroid with-
drawal, MR export is very slow, remaining present in the nucleus after 16 hours, a 
time frame in which GR would be exported. Originally this observation suggested 
that transport of MR might be unidirectional [54]; however, there appears to be a 
conserved CRM1-independent NES in the LBD, and MR may also use the DBD as 
an NES [54, 72, 73].

Nuclear export is also mediated by other members of the karyopherin family. For 
example, although nuclear export of AR is mediated in part by CRT, using the DBD 
as an NES [64], exportin 5 also can stimulate AR export [74]. Moreover, 
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exemplifying the interplay between functional domains, a CRM1-independent NES 
in the LBD that is necessary for AR nuclear export, is dominant over the NLS in the 
DBD/hinge region in the absence of ligand. When hormone is present, the NES is 
repressed, and the NLS directs nuclear localization of AR. This ligand-regulated 
NES is also present in MR and ERα [73], but it also has been proposed that the 
nuclear export of ERα is mediated via its DBD [64]. Similarly, nuclear export of the 
retinoic acid receptor α (RARα) and RXR are proposed to be mediated via their 
DBDs [64]. Highlighting the multiple pathways out of the nucleus, TRα1 export is 
mediated by multiple NESs, including at least two CRM1-independent NESs in the 
LBD (NES-H3/H6 and NES-H12) and an unidentified CRM1/CRT-dependent NES 
[12]. Export can follow multiple pathways, mediated by CRM1/CRT, exportin 4, 
exportin 5, and exportin 7 [28, 51, 75].

3.2.4  Dynamics of Movement Within the Nucleus

Even within the nucleus, transcriptional events do not occur homogeneously across 
the nuclear space. Transcription may be limited to defined spatial regions which are 
not physically separated by membranes, including phase-separated nuclear conden-
sates that concentrate macromolecules, such as RNA polymerase II and mediator 
subunit 1 (MED1) [76, 77]. Current models propose that dynamic exchange of 
nuclear receptors and other proteins, including pioneer factors, drives increased 
chromatin accessibility and transactivation. Intrinsically disordered transactivation 
domains are thought to play a key role in the assembly of highly dynamic transcrip-
tion factor signaling hubs [78–82]. Transcription factor mobility is a key determi-
nant in gene expression regulation, corresponding to transcriptional fine-tuning. 
How is receptor function modulated by its localization and exchange between 
nuclear subcompartments? Visualizing intranuclear organization in living cells in 
real-time has offered an intimate glimpse into the trafficking of nuclear receptors 
across the nuclear landscape, their dynamic and stochastic assembly into transcrip-
tional complexes, and how they reach their recognition sites in a vast array of DNA 
[83, 84].

Major strides in quantifying the dynamics of protein shuttling kinetics in live 
cells have been made since the development of fluorescence recovery after photo-
bleaching (FRAP) [85]. FRAP has been instrumental, for example, in our examina-
tion of TR nucleocytoplasmic shuttling, where recovery of a completely bleached 
nucleus in a cell with multiple nuclei occurs within 60–120 minutes [28, 75]. Early 
on, intranuclear FRAP experiments revealed that most nuclear proteins are highly 
mobile and the interaction of proteins with chromatin and nuclear compartments is 
highly dynamic. After photobleaching of a region of interest in the nucleus, many 
transcription factors exhibit complete recoveries within seconds [86], indicating 
that they can diffuse throughout the entire nucleus and are immobilized to nuclear 
structures only transiently [87]. Even such transient interactions, however, are 
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sufficient to promote large-scale remodeling of chromatin lasting a few hours and 
correlate with transcriptional activation.

Prior to acting as a transcription factor within the nucleus, however, each type of 
nuclear receptor begins its journey in the cytoplasm, after synthesis on free, cyto-
solic ribosomes. Three main intracellular localization “bins” can be used to roughly 
sort members of the nuclear receptor superfamily according to how their journey 
unfolds: ligand-dependent nuclear accumulation, ligand-dependent intranuclear 
localization, and ligand-independent trafficking (Fig. 3.4).

3.3  Ligand-Dependent Nuclear Accumulation 
of Nuclear Receptors

GR, MR, and AR all primarily localize in the cytoplasm in the absence of ligand 
[88]. As early as the 1980s to 1990s, however, it was recognized that a small propor-
tion of unliganded receptors could be found in the nucleus [21, 53, 89–94] 
(Fig. 3.4a). After ligand binding, the cytoplasmic receptors rapidly translocate into 
the nucleus and accumulate fully within 30–60  minutes. On the other hand, the 
unliganded progesterone receptor (PR) has a subtype-specific subcellular distribu-
tion that spans two “bins,” with the A form predominantly in the nucleus and the B 
form in both the nucleus and cytoplasm [95–98]. In endometrial cancer cells, PR-B 
is principally cytoplasmic and becomes enriched inside the nucleus in response to 
ligand [99]. How does this rapid ligand-dependent translocation occur?

Soluble proteins can move by simple diffusion in the cytoplasm, but the crowded 
cellular environment needs to be taken into account. Protein movement may be 
impeded by the highly organized cytoskeletal filaments and the close packing of 
other macromolecules. Is random movement rapid enough for cell signaling? A 
more direct mechanism for soluble protein movement to the nucleus is directed 
retrograde movement along the microtubules using molecular motor proteins. In the 
next sections, the routes to the nucleus employed by GR, MR, and AR will be 
examined.

3.3.1  Glucocorticoid Receptor Nuclear Accumulation 
and Intranuclear Dynamics

The glucocorticoid receptor regulates a wide variety of processes, including cell 
proliferation, metabolic homeostasis, and aspects of development and reproduction 
and also contributes to the stress, inflammatory, and immune responses [66, 100–
102]. In the classical model, nuclear import of ligand-bound GR is initiated by dis-
sociation of the chaperone complex in the cytoplasm (Fig. 3.4a). However, it turns 
out that both ligand-bound and unbound forms of GR can shuttle between the 
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Fig. 3.4 Models of the three main intracellular localization “bins” for nuclear receptors. (a) 
Ligand-dependent nuclear accumulation is exemplified by the glucocorticoid receptor, mineralo-
corticoid receptor, and androgen receptor. (b) Ligand-dependent intranuclear localization is exem-
plified by the estrogen receptor. (c) Ligand-independent trafficking is exemplified by the thyroid 
hormone receptor and retinoic acid receptor. A detailed description of each model is provided in 
the text
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nucleus and cytoplasm [103]. The distinction is that nuclear accumulation is ligand- 
dependent for nuclear receptors in this “bin,” although shuttling is ligand- 
independent. This distinction suggests that the relative rate of import versus export 
in the presence or absence of ligand is what determines the distribution pattern of GR.

3.3.1.1  GR Nuclear Accumulation

In its inactive state, GR is unbound by ligand and mainly resides in the cytoplasm in 
a multimeric chaperone complex composed of heat shock protein 90 (hsp90), hsp70, 
hsp90-binding protein p23, immunophilins, and other factors [104, 105]. Heat 
shock proteins are rapidly synthesized by eukaryotic cells in response to stress, 
although some members of the heat shock protein family are expressed normally 
within cells and are involved in protein folding, assembly, and transport [106]. This 
ATP-dependent chaperone complex aids in folding of GR into a conformation with 
high affinity for ligand. Activation of GR and intranuclear accumulation can be 
induced by natural glucocorticoids such as cortisol, by synthetic glucocorticoids 
such as dexamethasone, but also by antagonists of GR-mediated gene expression, 
such as RU486 [107]. In an interesting twist, Italian Espresso extract has been 
shown to block the conversion of inactive cortisone to active cortisol by 
11β-hydroxysteroid dehydrogenase type 1 (HSD1). This inhibitory effect prevents 
nuclear accumulation of GR and, as a consequence, prevents transcriptional activa-
tion [108]. Consumption of both caffeinated and decaffeinated coffee is associated 
with reduced risk for the development of type II diabetes [109]. Although it is not 
clear what compound in coffee is responsible for the observed effects, these findings 
point to the intriguing possibility of a link between GR mislocalization and 
pathogenesis.

It was once thought that dissociation of the chaperone complex was the first step 
in GR nuclear import. However, experimental evidence is consistent with a model 
in which the chaperone machinery is not left behind in the cytoplasm, but instead is 
required for rapid and efficient nuclear import of GR and for interaction with the 
NPC [26]. Hsp90, p23, the immunophilin FKBP52, dynamitin, and dynein together 
assist in facilitating the retrograde movement of GR along the microtubules en route 
to the nucleus [110–112]. NLS1 near the DBD/hinge boundary of GR has been 
shown to mediate rapid nuclear import of GR (t1/2 = 4–6 minutes), by retrograde 
movement along microtubules. In contrast, NLS2 in the LBD mediates import that 
is much slower and less efficient (t1/2 = 45–60 minutes), likely occurring by diffu-
sion [58, 113, 114] (Fig. 3.4a).

3.3.1.2  GR Intranuclear Dynamics

Once in the nucleus, ligand-activated GR functions as a homodimer that binds to 
positive or negative glucocorticoid response elements (GREs) in target genes, lead-
ing to transcription activation or repression, respectively [107]. Alternatively, GR 
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can act as a monomer that cooperates with other transcription factors, such as AP-1 
and NK-κB, to activate or repress transcription, by modulating activity of those 
transcription factors without direct binding to DNA. Earlier studies have shown that 
receptor mobility is dependent on ligand [87, 115, 116]. For example, in baby ham-
ster kidney (BHK) fibroblast cells, ligand-activation induces colocalization of 
mCherry-GR and GFP-NCoA-2 (nuclear receptor coactivator 2) to a large number 
of intranuclear foci, or “hyperspeckles” [117]. These nuclear foci rely on the integ-
rity of DNA, but the biological relevance of these structures is still under debate. 
This highly punctate distribution of GR within the nucleus has been shown to occur 
in the presence of high-affinity ligands, whether agonists or antagonists, suggesting 
that GR intranuclear distribution depends on affinity-based differences between 
ligands, as opposed to transcriptional activity alone. In support of this model, 
although GR localizes to the nucleus in the presence of low-affinity agonists and 
antagonists, it distributes homogeneously under these conditions [107].

Depending on the technique used, various populations of GR in the nucleus have 
been described. As an example, an experiment that used single-molecule tracking- 
based measurements to quantify dwell time and the fraction of GR molecules on 
target DNA in live cells, showed that approximately half of ligand-bound GR is 
freely diffusing, while the remaining population is bound to DNA, either for short 
periods of time (~0.7 seconds) or for longer time periods (~2.3 seconds) [87]. Other 
studies using simultaneous tracking of GFP-tagged RNA polymerase II revealed 
that approximately 10% of GR resides at sites with active transcription. The dwell 
time of GR at these sites was approximately 10  seconds, basically showing the 
GR-chromatin association is dominated by transient interactions of small popula-
tions of approximately 5–10% of the receptor on chromatin for only short periods 
of times (less than a millisecond) [118–120].

Fluorescence correlation spectroscopy (FCS) studies, which collect information 
on faster interactions compared with single molecule tracking methods, provide 
another view of the mobility of ligand-activated GR. FCS data suggest that the dif-
fusing fraction of GR represents 45–65% of the total GFP-GR population, while the 
remaining population is engaged in shorter-lived (lifetime of 20–60 milliseconds) 
and longer-lived (lifetime of 200–500 milliseconds) interactions, including associa-
tion with chromatin targets, DNA-dependent foci, and NCoA-2 nuclear foci. These 
proportions vary with the amount of ligand and appear to depend on receptor con-
formation [107]. Another recent study combined use of FRAP, which has better 
resolution over longer periods of time (i.e., seconds) and single-molecule micros-
copy, which has better resolution over shorter time periods (i.e., milliseconds), to 
further distinguish between diffusing and immobile states of GR [121]. In this study, 
YFP-GR expressed in COS-1 cells was shown to diffuse rapidly through the nucleus 
at an impressive rate of 3.1 μm2/s, likely as a dimer or in complexes with other pro-
teins. In this state, liganded GR can potentially search large areas of the nucleus for 
GREs. Once it leaves this free diffusion state after >10 seconds, data suggest that 
GR enters a repetitive switching mode where it is proposed to alternate between 
slow diffusion (0.5 μm2/s) as a result of brief, nonspecific DNA-binding events that 
include short sections of sliding, hopping, and intersegmental exchange and a short 

L. A. Allison and V. R. Roggero



49

immobile state (~0.6 seconds) which may represent interactions with DNA medi-
ated through the N-terminal domain or LBD via “tethering” with other protein part-
ners, such as AP-1. Finally, a long immobile state (~2.9 seconds) is proposed to 
depend entirely on the DNA-binding capacity of the receptor and to represent direct 
specific DNA binding by GR to a GRE [121].

3.3.2  Mineralocorticoid Receptor Nuclear Accumulation 
and Intranuclear Dynamics

The mineralocorticoid receptor (MR), also known as the aldosterone receptor, plays 
a key role in sodium transport in renal cells when bound to aldosterone. However, 
MRs are found in varying abundance in both epithelial and nonepithelial tissues and 
have multiple roles in cardiovascular function, immune cell signaling, neuronal fate, 
and adipocyte differentiation [122, 123]. In addition, MRs have equivalent affinity 
for the glucocorticoids, cortisol, and corticosterone. Like GR, MR resides primarily 
in the cytoplasm in the absence of ligand (Fig. 3.4a).

3.3.2.1  MR Nuclear Accumulation

MR is kept in a complex with hsp90  in a high-affinity conformation ready for 
ligand-binding. When MR binds ligand, the chaperone complex undergoes an 
immunophilin switch. FKBP51 is replaced by FKBP52, which forms the connect-
ing partner between the MR-hsp90 complex and the microtubule network. Recent 
studies suggest that hsp90 does not dissociate from MR directly after binding ligand, 
but is still attached when MR enters the nucleus [124, 125].

3.3.2.2  MR Intranuclear Dynamics

As for GR, rapid dynamics of nuclear import and recruitment of coactivators have 
been observed for ligand-bound MR [90]. MR binds cortisol with high affinity, 
about tenfold higher than GR. In the hippocampus, for example, MR is activated at 
low concentrations of cortisol, whereas GR is only activated at high concentrations. 
MR has been shown to accumulate in the nucleus faster than GR in the presence of 
10−9 M cortisol; in contrast, no significant difference was shown in accumulation 
rate in the presence of 10−6 M cortisol [126]. In a comparative FRAP study, liganded 
GFP-tagged GR and MR both showed a high degree of colocalization and mobility 
in the nuclei of transiently transfected, cultured hippocampal neurons [126]. The 
half-time for recovery of GR was longer than that of MR in the presence of 10−6 M 
cortisol (4.5 vs 3.7  seconds) but shorter (2.4 vs 4.2  seconds) in the presence of 
10−9 M cortisol. Interestingly, inhibition of the proteasome increases the nuclear 
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accumulation of GR and reduces its mobility within the nucleus, in a similar manner 
to other steroid receptors such as ER, AR, and PR [127–130]. These findings sug-
gest that there is a direct link between proteasome activity, receptor turnover, and 
transcriptional regulation.

3.3.3  Androgen Receptor Nuclear Accumulation 
and Intranuclear Dynamics

Androgen receptor-regulated genes are involved in the development and mainte-
nance of the male phenotype. Like GR and MR, unliganded AR resides primarily in 
the cytoplasm. Comparable to MR, AR is sequestered in a cytoplasmic complex 
with hsp90 in a high-affinity conformation that is poised for ligand binding.

3.3.3.1  Androgen Receptor Nuclear Accumulation

Upon androgen binding, the chaperone complex undergoes a switch from the immu-
nophilin FKBP51 to FKBP52, allowing the AR-hsp90 complex to associate with the 
microtubule network. Dynein has been shown to mediate AR trafficking to the 
nucleus. Further, treatment with taxane, which binds to microtubules and prevents 
their disassembly, results in cytoplasmic sequestration of AR, implicating microtu-
bules in the shuttling of AR from the cytoplasm to the nucleus [131]. However, 
more recent studies using multimodal image correlation spectroscopy (mICS) in 
both HeLa cells and a prostate cancer cell line (PC3) revealed that the majority of 
GFP-AR is not bound to microtubules and is likely free to diffuse throughout the 
cytoplasm. These findings suggest that the probability of AR crossing the nuclear 
membrane by cytoplasmic diffusion is an important factor in determining AR distri-
bution between the cytoplasm and nucleus, independent of retrograde transport on 
the microtubules [132].

3.3.3.2  Androgen Receptor Intranuclear Dynamics

After ligand-dependent translocation into the nucleus, within 20–30 minutes, AR 
forms intranuclear foci, or hyperspeckles [132–135]. Both agonists and antagonists 
promote nuclear translocation of AR, but only agonists appear to cause GFP-AR to 
form these discrete foci that colocalize with coactivators [134]. For example, within 
minutes of addition of agonist to HeLa cells, cytoplasmic GFP-AR was imported 
into the nucleus, where it displayed a hyperspeckled pattern that also correlated 
with decreased mobility [136]. Nuclear accumulation of AR was readily apparent 
after 10 minutes and complete by 30 minutes. In contrast, antagonist-bound AR had 
a more diffuse intranuclear distribution, consistent with a lack of transcriptional 
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activity. Further, nuclear import was shown to be slower for antagonist-bound AR, 
only reaching partial nuclear accumulation after 30 minutes, and import remained 
incomplete after 90 minutes. In this study, FRAP showed that agonist-bound AR 
had reduced mobility relative to unliganded or antagonist-bound AR (half-maximal 
recovery of ~2.5 seconds in the absence of ligand and ~5.5 seconds in the presence 
of agonist) [136]. Further only agonist-bound CFP-AR was shown to colocalize 
with YFP-CBP (CREB binding protein), and CBP mobility was comparable to AR 
mobility.

Notably, amino acid substitutions in the first zinc finger motif of the AR-DBD 
that are associated with two patients with androgen insensitivity syndrome lead to 
receptor mislocalization in transfected cells. AR-DBD mutants were shown to ini-
tially form large cytoplasmic dots. After the addition of dihydrotestosterone, a pro-
portion of the proteins moved into the nucleus and localized in larger foci compared 
to wild-type AR [135]. FRAP analysis revealed significantly reduced intranuclear 
mobility of the mutants compared to wild-type AR.  These findings suggest that 
mislocalization and lower mobility of the mutant ARs may contribute to pathogen-
esis of androgen insensitivity syndrome.

3.4  Ligand-Dependent Intranuclear Localization

In contrast to GR, MR, and AR, the estrogen receptors, ERα and ERβ, are primarily 
distributed in the nucleus, even in the absence of ligand, but they still shuttle rapidly 
between the nucleus and cytoplasm (Fig. 3.4b). Estrogen is mainly secreted by the 
ovary and maintains female homeostasis by regulating development of secondary 
sex characteristics, maintenance of the reproductive cycle, sexually dimorphic 
behaviors, bone metabolism, and cardiovascular and nervous system protection 
[137]. Unliganded ER, and PR as well, have been shown to associate with hsp90 in 
both the nucleus and cytoplasm [25, 138]. Outside the nucleus, a small population 
of ERα localizes to the plasma membrane [139, 140].

In the unliganded state, ERs are diffusely distributed in the nucleoplasm, and 
FRAP analysis shows that unliganded GFP-ERα is highly mobile [141]. When 
ligand-bound, shuttling of ERα decreases, promoting further accumulation in the 
nucleus [24, 142]. Within minutes of exposure to ligand, as visualized by GFP- 
tagging of ERα and ERβ, there is formation of hyperspeckles, and recruitment of 
coactivators [130, 141, 143, 144]. Upon ligand binding, ERα and ERβ form homodi-
mers, bind to a specific estrogen-responsive element (ERE), and regulate expression 
of target genes. During the receptor activation process, transcriptional cofactors are 
recruited that form a large protein complex which alters chromatin conformation. 
Ligand activation-associated interaction with nuclear structures, chromatin, and 
coregulatory proteins restricts ER mobility [141]. In the transcriptionally active 
state, the ER dwell time on chromatin is on the order of seconds.

The complexity of ligand-specific mobility patterns of YFP-tagged human ERα 
in living cells has been analyzed in more detail by diffusion-time distribution 
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analysis (DDA), a method based on fluorescence correlation spectroscopy (FCS) 
[84]. In the absence of ligand, YFP-ER was shown to be homogenously distributed 
and upon addition of the agonist 17β-estradiol (E2), the well-documented hyper-
speckled pattern appeared. However, even in the absence of ligand, the population 
of ER is not completely homogeneous, suggested that there are at least two mobility 
states, affected by ligand and the availability of DNA binding sites. For example, 
increasing the concentration of E2 results in a gradual shift toward longer diffusion 
times, and FCS data show that the average time ERα is found in the bound state is 
longer on an integrated, multicopy prolactin gene array [142].

Recently, live cell imaging has demonstrated that the antagonist fulvestrant dra-
matically slows the intranuclear mobility of ER, resulting in transcriptional inhibi-
tion of ER. For wild-type mNeon-tagged ER, after a 45-minute treatment with the 
partial agonist 4-OHT, between 70 and 80% of the original fluorescence intensity 
was recovered within 5 seconds post-bleach during FRAP. In contrast, cells treated 
with the full antagonist fulvestrant recovered to only ~50% of the original fluores-
cence level within 5 seconds and to <70% at the end of the 60-second experiment. 
These findings reinforce the key role of nuclear receptor intranuclear dynamics in 
gene transactivation and, more specifically, may have implications for developing 
treatments for ER-positive breast cancer [145].

3.5  Ligand-Independent Trafficking

TR, RAR, RXR, and VDR are also primarily nuclear, like ER, but ligand-dependent 
hyperspeckles have not been observed [146, 147] (Fig.  3.4c). What has been 
observed, however, is that mutants of TRα1 and TRβ1 that mimic nonacetylation 
adopt a granular, mottled appearance in the nucleus, compared to the characteristic 
smooth, diffuse pattern of wild-type TRα1 and TRβ1 [148]. This altered distribution 
pattern correlates with reduced intranuclear mobility and decreased transactivation 
by the nonacetylation mimics. In addition, VDR, RAR, and TR do not interact with 
hsp90 [149, 150]. However, studies using fluorescent-tagged ligand to track VDR in 
living cultured cells showed that VDR localizes to the microtubules [151], and stud-
ies using human monocytes and microtubule-disrupting agents suggest that nuclear 
import of ligand-bound VDR requires an intact microtubule network [152].

3.5.1  Thyroid Hormone Receptor Intracellular Trafficking

By mediating thyroid hormone action in numerous tissues, TRs play key physiolog-
ical roles in the regulation of many aspects of development, growth, and metabolism 
[153–155]. Their most well-characterized role is as thyroid hormone-dependent 
transcription factors; TRs bind thyroid hormone response elements (TREs) in the 
presence or absence of thyroid hormone to facilitate the expression of target genes, 
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often as heterodimers with the RXR [153–177]. On positive TREs, corepressors, 
such as nuclear receptor corepressor 1 (NCoR1) and histone deacetylase, are bound 
to TR in the absence of ligand, leading to repression of target gene expression [178–
180]. Upon thyroid hormone binding, TR undergoes a conformational change, 
resulting in binding of coactivators such as SRC-1, histone acetyltransferase, and 
MED1, a subunit of the Mediator complex that functionally bridges TR with the 
general transcription apparatus [181–183]. Interactions of TR with coactivators lead 
to changes in chromatin structure and the subsequent transcription of the target gene 
[24, 184–193].

Although they primarily reside in the nucleus, we and others have shown that the 
TR subtypes, TRα1 and TRβ1, whether ligand-bound or unbound, shuttle rapidly 
between the nucleus and cytoplasm [22, 194]. In Xenopus (amphibian) oocytes, 
localization of microinjected 35S-labeled TRα1 to the nucleus was enhanced in the 
presence of hormone [22], and nuclear localization of GFP-tagged TRβ1 in mam-
malian cells has also been reported to be enhanced in the presence of thyroid hor-
mone, displaying a shift from 60% to 85% nuclear [195]. However, we have not 
observed any significant differences between TRα1 nucleocytoplasmic shuttling 
kinetics in the presence or absence of thyroid hormone in mammalian cells [75, 
148]. Although ligand binding does not appear to be obligatory for import of TR, 
interacting partners such as NCoR1 and RXR [24, 194], and MED1 [146] have been 
implicated in promoting nuclear retention of unliganded TR. For example, when 
MED1 was overexpressed, there was a striking shift towards a greater nuclear local-
ization of TRβ1 and the oncoprotein v-ErbA, subtypes with cytosolic populations at 
steady-state. Consistent with a role for MED1  in nuclear retention, the cytosolic 
TRα1 and TRβ1 population was significantly greater in MED1−/− knockout cells, 
compared with wild-type MED1+/+ cells [146].

Using FRAP in transfected cells, we have shown that TR is highly dynamic, with 
a half maximal recovery time (t1/2) of less than 1 second, with up to 99% of TR 
within the mobile fraction [146, 148] (Fig. 3.5). When MED1 was overexpressed, 
TRβ1 intranuclear mobility was reduced, whereas for TRα1, there was no observ-
able change in its predominantly nuclear distribution pattern or mobility [146]. 
Further, exposure to thyroid hormone had no significant effect on TRα1 intranuclear 
dynamics, and although there was a significant difference in overall recovery rate 
for TRβ1 in the presence of thyroid hormone, there was no significant difference in 
the mobile and immobile fraction or t1/2. In contrast to the minimal impact of ligand 
on TR trafficking, we have shown the post-translational modification of TR by acet-
ylation significantly alters its shuttling and nuclear mobility. Nonacetylation corre-
lates with nuclear retention, while acetylation promotes cytosolic localization of TR 
[148]. In addition, FRAP analysis showed wild-type intranuclear dynamics of the 
TR acetylation mimic TR, whereas the nonacetylation mimic had significantly 
reduced mobility and transcriptional activity. Taken together, these findings suggest 
that post-translational modification of TR may make a greater contribution to TR 
intracellular trafficking than ligand.
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3.5.2  Retinoic Acid Receptor Intracellular Trafficking

Study of the diffusion of GFP-RARα in the nucleus by fluorescence correlation 
spectroscopy in HeLa cells revealed two distinct species with different mobilities in 
the absence of ligand. The fast component, corresponding to dimers, or other smaller 
complexes, has a diffusion coefficient of 1.8–6.0 μm2/second and was interpreted to 
represent freely diffusing receptors or DNA-scanning receptors with short residence 
times on DNA. The slow component has a diffusion coefficient of 0.05–0.10 μm2/
sec and was interpreted to represent the fraction of transcriptionally competent, 
ligand-bound RAR that has a longer residence time on chromatin [196]. More 
recently a combination of Single Plane Illumination Microscopy (SPIM) and fluo-
rescence (cross-) correlation spectroscopy (F[C]CS) was used to simultaneously 
map the molecular proximity and co-mobility of RAR and RXR and to study their 
dimerization and DNA-binding behavior [197]. Data from this study showed that 
RAR agonist enhances RAR-RXR mobility and heterodimerization and that their 
chromatin binding and heterodimerization are positively correlated.

3.6  Retinoid X Receptor and Vitamin D Receptor 
Intracellular Trafficking: A Bin of Their Own?

In the scheme presented in this chapter, which intracellular localization “bin” best 
fits RXR and VDR is not clear-cut, in part because the effect of ligand on intracel-
lular trafficking may be cell-type specific and because of the interaction between 
RXR and VDR during the transport process. As noted earlier, RXRα plays a critical 

Fig. 3.5 Rapid intranuclear dynamics of the thyroid hormone receptor visualized by fluorescence 
recovery after photobleaching (FRAP). HeLa cells were transfected with an expression plasmid 
encoding GFP-TRα1. Strip-FRAP was conducted using a stimulation laser bleaching line near the 
middle of a nucleus. Confocal microscopy images show examples of a nucleus prior to bleach (pre- 
bleach), directly after beaching was terminated (Bleach), and at the end of the recovery period 
(Recovery). Scale bar 10 μm
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role in DNA binding and transcriptional activity through heterodimerization with 
other nuclear receptors, including TR, RAR, and VDR.

1α,25-dihydroxyvitamin D3 (1,25[OH]2D3), the hormonally active metabolite of 
vitamin D, affects bone and mineral homeostasis and immunomodulation and pro-
motes cellular differentiation [198]. Early on, studies showed that binding of 
1,25[OH]2D3 to VDR in the cytoplasm of COS-7 kidney cells stimulates heterodi-
merization of VDR with RXR and the redistribution of the VDR-RXR- hormone 
complex to the nucleus [151]. The VDR/RXR heterodimer then binds to vitamin D 
response elements of target genes resulting in activation or repression of transcrip-
tion via interaction with cofactors and the basal transcription machinery. VDR and 
RXRα have also been reported to be both cytoplasmic and nuclear in the absence of 
ligand in transformed human keratinocytes, with ligand addition significantly 
increasing nuclear accumulation of both endogenous and fluorescent protein- tagged 
receptors [147]. In Caco-2 cells (intestinal cell line), however, unliganded VDR is 
about 60% nuclear, and 1,25[OH]2D3 treatment was not shown to lead to further 
nuclear accumulation of VDR.  Instead, FRAP experiments suggested that an 
increased rate of nuclear import in the presence of ligand was balanced by nuclear 
export of VDR [199].

It is still debatable as to whether RXR and VDR move independently or as a 
complex through the NPC; however, some current models propose that nuclear 
import of VDR/RXR is controlled by RXR and regulated by vitamin D [147, 200]. 
Phosphorylation of RXR at serine-260 has been shown to disrupt its nuclear local-
ization, interaction with VDR, intranuclear trafficking, and binding to chromatin of 
the VDR-RXR complex [147]. These data suggest that RXR dominates the activity 
of the heterodimer; but this differs from another study suggesting that nuclear accu-
mulation of RXR-VDR is mediated predominantly by VDR.  In this latter study, 
RXR and VDR were shown to translocate into the nucleus by distinct pathways, 
with RXR import mediated directly by importin β1 and VDR by the adapter impor-
tin α [63]. RXR was shown to be predominantly nuclear in the absence of ligand, 
with nuclear localization modestly enhanced by its ligand, 9-cis-retinoic acid. VDR 
nuclear import also was enhanced by 1,25[OH]2D3; however, RXR-VDR dimeriza-
tion recruited the heterodimers to importin α, and nuclear import of the heterodi-
mers occurred in response to 1,25[OH]2D3. In other words, in this case, nuclear 
import of RXR-VDR heterodimers was mediated preferentially by VDR and was 
controlled by the VDR ligand.

Adding to the complexity of RXR-VDR trafficking, a recent study provides evi-
dence that agonist binding directs dynamic competition among nuclear receptors for 
heterodimerization with RXR [201]. Results from a three-color imaging system that 
detected changes in heterodimerization between RXRα and one of its partners in the 
presence of another competing partner showed dynamic competition. In the absence 
of agonist treatment, there was a hierarchy of affinities between RXRα and its part-
ners, with RARα having greater affinity than VDR. Upon agonist treatment, RXRα 
is thought to favor the liganded partner.
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3.7  Conclusions

The nuclear receptor superfamily is the focus of intensive research that aims to 
develop therapeutics for diseases such as diabetes, cancer, and inflammatory disor-
ders, as well as for protection against environmental endocrine disruptors [202, 
203]. Understanding of nuclear receptor movement has progressed from the simple 
classical model of steroid hormone signaling to complex trafficking pathways for 
both liganded and unliganded receptors. Exploration of the machinery that drives 
nucleocytoplasmic shuttling and intranuclear mobility should provide insights into 
the complex nature of nuclear receptor-mediated transcriptional regulation. With 
regard to development of novel therapeutic approaches, for drug design, it will be 
important to consider the overall consequences of both synthetic agonists and antag-
onists on nuclear receptor trafficking. Selectively inhibiting nucleocytoplasmic traf-
ficking of specific proteins has garnered much interest but remains a challenge 
[204]. On the other hand, live cell imaging technologies combined with high- 
throughput systems may enable drug screens for small molecule regulators of 
nuclear receptor dynamics [145].
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Chapter 4
Chemical Considerations in Discovery 
of Receptor Modulators

Anush Abelian and Adeboye Adejare

Abstract Nuclear receptor drug discovery has been an area of increased interest in 
recent years. These receptors are attractive pharmacotherapeutic targets due to their 
omnipresent role in gene transcription that controls several biological processes, 
including cell proliferation, reproductive functions, and metabolism. Nuclear recep-
tor modulators are unique intracellular messengers in that they must possess certain 
chemical structure characteristics and/or physicochemical properties in order to be 
transported or pass through the cell and/or nuclear membranes to reach the receptor 
in the nucleus. Receptor modulation is inherently contingent upon ligand-receptor 
binding and, by extension, ligand-receptor interactions. These interactions are based 
on intermolecular bonding forces, including hydrogen bonds, hydrophobic bonds, 
and other interactions. Stereochemical considerations and steric effects have also 
been shown to influence these interactions. Ligand-receptor binding can be either 
strengthened or weakened by modifying the chemical functional groups based on 
structure-activity relationship studies. In this chapter, we will explore various chem-
ical fundamentals of ligand-receptor binding and probe the chemical considerations 
needed in drug discovery for nuclear receptors.
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4.1  Introduction

The prototypical approach for receptor modulator development prompts scientists 
to first identify the receptor of interest in the pathological signal transduction and 
then develop a ligand to modulate it. Usually, the ligand is designed to bind to the 
ligand binding pocket (LBP) in the ligand binding domain (LBD) of the receptor. 
However, alternate sites in the LBD are potentially viable targets as well and are 
currently being investigated in intracellular receptor pharmacology [1]. General 
drug discovery principles and applications can be found in other publications of the 
authors [2–5].

A ligand will only bind to the LBP if it is chemically and structurally able to 
interact with it. Receptors are generally proteins, so naturally, ligand design will be 
based upon the specific amino acid residues that the LBP is comprised of. In par-
ticular, the amino acid residues of the binding regions are fundamental in dictating 
receptor-ligand interactions. The different chemical composition of these residues 
give rise to variations in shape, size, charge, and spatial orientation, all of which 
help determine ligand binding [6].

For nuclear receptors in particular, the ligand must pass through the cell mem-
brane in order to bind to the transport protein in the cytosol which will deliver it to 
the nucleus or be able to cross both cell and nuclear membranes in order to reach the 
receptor. So, it must be lipid-soluble. Nuclear receptors are relatively similar in 
structure and follow similar signal transduction pathways. The key components of a 
nuclear receptor include the N-terminal domain (activation function 1 or AF-1), the 
DNA binding domain (DBD), the hinge region, the LBD, and the C-terminal domain 
(activation function 2 or AF-2). The DNA binding region contains nine cysteine 
residues, eight of which bind two zinc ions, called the zinc finger domain. The zinc 
finger domain stabilizes and contributes to the conformational changes of the DNA 
binding region. These regions recognize specific nucleotide sequences. Once the 
ligand has crossed the cell and nuclear membranes, with or without the assistance 
of a transporter protein, it binds to the ligand binding site of the receptor in an 
induced fit manner which causes the receptor to morph in shape. This conforma-
tional change causes ligand-receptor complex dimerization. The dimer then binds to 
a co-activator protein, and then this complex binds to a specific DNA region of the 
cell. Since the dimer contains two receptors and two DNA binding regions, the 
complex recognizes two sequences of nucleotides that are base pairs in the DNA 
that are close together. Binding to the DNA either prompts or inhibits the start of 
transcription and protein synthesis. Overall, many nuclear receptors are implicated 
in various disease states and are therefore viable targets for the development of 
pharmacotherapeutics. Nuclear receptor ligands may act in an agonistic, partial ago-
nistic, or antagonistic manner due to the gene and/or tissue. As a result, these diver-
gent factors must be taken into consideration during modulator design. In fact, 
desire for increased selectivity in modulation of nuclear receptors is a clear trend 
and perhaps the most influential factor in the design and discovery of nuclear recep-
tor modulators [7–9].
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4.2  Intermolecular Binding Forces Drive Ligand Action

Arguably, the most important factor in determining ligand binding specificity and 
selectivity are intermolecular forces. These forces help the ligand to cross the cell 
and nuclear membranes as well as draw a ligand to the receptor. They vary in nature 
and bond strength and are dependent upon the functional groups that constitute the 
ligand as well as the receptor binding site. Ionic bonds, also called electrostatic 
bonds, are the strongest of all of the intermolecular forces and occur between atoms 
that carry opposite charges. A positively charged ammonium ion of a ligand will 
interact with a negatively charged carboxylate ion of aspartic or glutamic acid on 
the receptor. This bond becomes stronger as the distance between the two charged 
species become shorter. Ionic bonding is stronger in a nonpolar environment, a 
characteristic of binding sites in most proteins. This feature can be used as a strategy 
for receptor modulation. Raloxifene (Fig. 4.1), for example, is an antagonist at the 
estrogen receptor. It contains a side chain with a positively charged protonated 
amine group that interacts with the negatively charged carboxylate moiety of the 
aspartate residue in the binding pocket. This interaction causes the side chain to 
protrude from the binding pocket and sterically prevents the protein folding, co- 
activator binding, and signal transduction pathway that normally follows with bind-
ing of the agonist estradiol [10].

Hydrogen bonds and Van der Waals interactions are also particularly significant 
for nuclear receptors, since the ligand must pass through the hydrophobic cell mem-
brane in order to reach the receptor. For example, estradiol (Fig. 4.2) contains a 
hydrophobic skeleton, which aids in passing through the hydrophobic membranes 
to reach the estrogen receptor. The phenolic hydroxyl group hydrogen on estradiol 
can interact with the carboxylic acid on the glutamate residue, and the oxygen on 
the phenolic hydroxyl group interacts with the amines of the arginine residue in the 
binding pocket. Additionally, the aliphatic hydroxyl group on estradiol can interact 
with the amines of the histidine residue in the binding pocket.

Dipole-dipole and ion-dipole interactions, which can be attractive or repulsive 
forces, are also intermolecular forces found in ligand-receptor binding. All of these 
forces must be considered synergistically in ligand design. Ligands are drawn to the 

Fig. 4.1 Raloxifene’s protonated amine group can have ionic interactions with the asparagine resi-
due in the LBP of the estrogen receptor
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binding pocket as a result of the presence of multiple different types of these forces. 
The small but critical differences between agonists and antagonists, e.g., estradiol 
and raloxifene, illustrate the significance of intermolecular forces in nuclear recep-
tor drug discovery. Going even further, some ligands can show a mixed agonist/
antagonist binding profile depending on the tissue site of the receptor. For example, 
tamoxifen acts as an antagonist of the estrogen receptors in breast tissue but ago-
nizes estrogen receptors in endometrial tissue thus leading to adverse effects. This 
phenomenon is most likely due to the difference in expression of co-activator pro-
teins in different tissues [7], which is another factor that must be considered during 
ligand design [11].

4.3  Sterics and Hydrophobicity in Ligand Binding

In addition to intermolecular forces, the size and shape of both ligands and receptors 
influence their binding. Even if a ligand contains functionalities that bind with the 
amino acid residues of the binding pocket, the shape of the ligand could sterically 
hinder it from binding properly. However, with nuclear receptors, the effects of 
induced fit need to be considered. In this case, although a compound may appear too 
large compared to the endogenous ligand, an induced fit could allow the compound 
to bind. One example of this phenomenon is the binding of cortisol, the endogenous 
ligand, compared to synthetic deacylcortivazol at the glucocorticoid receptor binding 
pocket. Compared to cortisol, deacylcortivazol contains a phenylpyrazol group 
(Fig.  4.3) which renders it too bulky to fit into the binding site the same way. It 
instead binds in an altered induced fit that involves hydrophobic interactions between 
a new channel in the binding pocket and the phenylpyrazol group [8, 12].

Fig. 4.2 Estradiol can hydrogen bond with the glutamate, arginine, and histidine residues in the 
LBP of the estrogen receptor. The hydrophobic backbone is shown in green
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4.4  Stereochemical Considerations

The stereochemistry of a ligand can influence its binding and therefore its physico-
chemical properties. Stereochemical isomers include geometric (cis/trans or E/Z), 
optical (enantiomers and diastereomers), and conformational (staggered, Gauche 
and eclipsed) isomerism. Consider the vitamin A derivatives tretinoin and isotreti-
noin (Fig.  4.4). Tretinoin is all-trans-retinoic acid and is used topically for skin 
disorders, whereas isotretinoin is 13-cis-retinoic acid and is used orally for skin 
disorders and cancer. All-trans-retinoic acid binds directly to the retinoic acid recep-
tor, whereas isotretinoin is taken orally as a prodrug to produce metabolites that 
bind to the retinoic acid receptor. Isotretinoin itself does not bind directly to the reti-
noic acid receptor. The only chemical difference between the two ligands is the 
geometric isomerization of the carboxylic acid moiety on carbon 2 [13].

Moreover, there are multiple studies suggesting stereoselectivity of estrogen 
receptors. Estrogen receptor alpha, for example, exhibits stereoselectivity in both 
ligand binding and transactivation for a number of structural analogs and metabo-
lites of diethylstilbestrol, a synthetic estrogen (Fig. 4.5). There is also evidence to 
suggest a difference between the R and S enantiomers of indenestrol A, a diethylstil-
bestrol metabolite, in transcription activator potency in vitro. The S isomer was 
shown to have higher binding affinity and transactivation potency compared to the 
R isomer [14].

Fig. 4.3 Deacylcortivazol contains the phenylpyrazol, compared to cortisol, which only bears a 
ketone in that position. (Adapted from [8])

Fig. 4.4 Tretinoin is a direct retinoic acid receptor modulator, compared to isotretinoin, which 
acts as a prodrug for the retinoic acid receptor
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4.5  Molecular Dynamics as a Tool for Modulator Design

Ligand-LBD binding can be observed through x-ray crystallography or cryo- 
electron microscopy. However, these interactions can be effectively predicted 
through computational methods in order to facilitate ligand design by predicting 
ligand potency. Additionally, molecular simulations have indicated that conforma-
tional changes of the receptor occur upon ligand binding and release. Several simu-
lations have supported the hypothesis that the quaternary state of nuclear receptors 
is significant in determining the prevalence of a particular pathway, indicating that 
nuclear receptor dimerization is integral in ligand dissociation. With this in mind, 
molecular docking can be approached using specific conformations of the nuclear 
receptor that ligands may interact with preferentially [15, 16]. Several agonists, 
antagonists, and inverse agonists have been explored using molecular dynamics 
[17, 18].

4.6  Case Study: A Holistic Approach to Liver X Receptor 
Modulator Design

The central concepts of drug design are typically ubiquitous for any receptor of 
interest. The challenges lie in probing pharmacodynamics and pharmacokinetics of 
the designed ligand with respect to the target receptor, as well as off-target receptor 
interactions. However, there are several factors to consider in ligand design, espe-
cially with intracellular receptors. Therefore, we will take a hollistic approach to 

Fig. 4.5 Diethylstilbestrol metabolites exhibit difference in stereoisomer potency in vitro
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summarize and exemplify key considerations in nuclear receptor drug design 
through illustrating the simplified design of a liver X receptor (LXR) modulator.

The LXR is implicated in lipid metabolism, and its transcriptional activation is 
stimulated through increased cellular cholesterol levels. These receptors are pivotal 
regulators of cholesterol homeostasis and are also implicated in fatty acid and glu-
cose metabolism. There are two known isoforms of the LXR: LXRα and LXRβ. 
LXRα is found primarily in the liver, adipose tissue, macrophages, and intestines, 
whereas LXRβ is found systemically throughout the body, [19, 20]. LXRα and 
LXRβ are ligand-dependent and heterodimerize with retinoid X receptors (RXRs). 
These dimers bind to LXR response elements in DNA promoters and subsequently 
regulate expression of several genes via transactivation [20]. Murine models have 
shown differential actions of LXRα and LXRβ, and both have been investigated as 
potential therapeutic targets for metabolic, cardiovascular, and even neurodegenera-
tive disease states [20]. We will focus our case study on the suppression of liver 
LXR activity as a potential pharmacotherapeutic approach for treatment of hepatic 
disease states, such as cirrhosis and hepatosteatosis.

LXR agonists have the potential to reverse cholesterol transport and impede 
inflammation and fatty plaques in the arteries. Although several LXR agonists have 
been designed and investigated, none are in use clinically as a result of lipogenesis 
side effects, such as hepatic steatosis and elevated triglyceride levels. Because ago-
nism induces these effects, we can reasonably predict that antagonism and inverse 
agonism of the LXR receptors will inhibit or even reverse these effects, respec-
tively [18, 20].

As existing data permits, an effective first step to modulator discovery is elucida-
tion of the structures of the endogenous ligands. Oxysterols, which are derivatives 
of cholesterol (22-(R)-hydroxycholesterol, and cholestenoic acid), have been clas-
sified as the endogenous ligands of LXR [21, 22], (Fig. 4.6). Next, the interactions 
between the endogenous ligands and the LBP of the LXR can be predicted. More 
effectively, if the crystallographic data exists, various ligand-LBP interactions can 
be observed and better explored.

Several X-ray crystal structures for LXR-ligand complexes have been resolved 
and are available in the Brookhaven Protein Data Bank (PDB). Analagous to other 
nuclear receptors, the LXR contains an N-terminal activation domain that is ligand- 
independent, a zinc finger DNA binding domain, a hinge region, the LBD contain-
ing the LBP, and a C-terminal domain [23]. The amino acid residues constituting the 
LBP give it an overall hydrophobic character, but some residues contain polar moi-
eties that interact with the ligand. Several ligand-receptor interactions (Fig.  4.7) 
have been shown to be pervasive across all of the existing crystal structures. 
Hydrogen bonding is critical for receptor activation, particularly between the ligand 
and histidine residues in both the LXRα and LXRβ. This interaction has been shown 
to stabilize the histidine-tryptophan switch, holding the receptor in its active confor-
mation [24] and allowing co-activator interactions. Upon binding of an agonist to 
the LBP of LXR, corepressors are released and AF-2 undergoes a conformational 
change that allows coactivators to bind, permitting gene transcription [25]. As a 
result, ligands that have been designed to bind tightly to the LXR and prevent the 
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helix from undergoing this conformational change have been hypothesized to act as 
antagonists that can downregulate gene transcription [18].

Although the hydrogen bonding is critical for receptor activation, several ligand- 
receptor interactions can be observed in Fig.  4.7 which show the potent agonist 
VTP-766 in a simplified schematic of the LXRβ LBP. Most of these interactions are 
aliphatic in character. This observation is common for nuclear receptor ligands, 
since they require hydrophobic characteristics in order to permeate the cell and/or 
nuclear membranes. Binding strength variations modify receptor activity profiles 

Fig. 4.6 Examples of oxysterols, which are the endogenous ligands of the LXR

Fig. 4.7 A simplified schematic of the LBP of LXRβ and interactions of the agonist {2-[(2R)-4-
[4-(hydroxymethyl)-3-(methylsulfonyl)phenyl]-2-(propan-2-yl)piperazin-1-yl]-
4-(trifluoromethyl)pyrimidin-5-yl}methanol with key amino acid residues. Hydrogen bonding is 
shown in blue and aliphatic interactions are shown in green. (Adapted from [18])
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among agonists, antagonists, and inverse agonists. One strategy to approach this 
phenomenon is to alter critical bonding groups with bioisosteres. For example, 
replacement of the two hydroxymethyl groups on VTP-766 with fluorine and chlo-
rine showed less potency, which is likely due to the decrease in the strength of 
hydrogen bond interactions (although fluorine can still form loose bonds with 
hydrogen). Both the R and S isomers of VTP-766 were investigated, and the R iso-
mer was found to bind more potently than the S [18, 26].

Interestingly, analogues of the endogenous LXR agonist oxysterol have been 
developed as inverse agonists (Fig.  4.8). 25,25-difluoro-27-norcholestenoic acid, 
for example, shows in vitro inverse agonist activity in vivo and shows a disruption 
in the histidine-tryptophan interaction required for receptor activation through 
molecular docking. These minor modifications of the cholestenoic acid side chain 
can induce conformational changes in the C-terminal domain of the LXR, thereby 
altering its activity profile from an agonist to an inverse agonist [27].

4.7  Conclusions

The chemical principles of drug design and discovery are ubiquitous, but not 
absolute, especially considering nuclear receptors. The key components discussed 
here, including intermolecular forces, steric considerations, and stereochemistry 
are paramount in ligand-receptor interactions. Contemporary investigations of 
nuclear receptor ligands involve non-LBP targets, such as AF2, in the effort to 
modulate signal transduction cascades without inducing adverse effects that occur 
with traditional LBP ligands. Different signal transduction pathways that influ-
ence gene expression, as well as metabolism, must be considered in a holistic 
manner in order to effectively progress nuclear receptor modulator design and 
discovery.

Fig. 4.8 25,25-difluoro-  
27-norcholestenoic acid, a 
difluorinated oxysterol 
analog that acts as an 
inverse agonist at the 
LXRβ receptor
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Chapter 5
Structure-Based Design of Estrogen-Related 
Receptors Modulators

Shaimaa S. Goher and Bahaa Elgendy

Abstract Estrogen-related receptors (ERRs) are members of the nuclear hormone 
receptor (NR) superfamily. The ERR subfamily comprise three members, ERRα, 
ERRβ, and ERRγ. They are closely related to the estrogen receptors (ERα and 
ERβ), but unlike ER receptors, ERRs have constitutive activity and can function in 
the absence of ligands. The ERRs are orphan receptors because no natural ligands 
have been identified for any of the three ERR isoforms. Although ERRs are structur-
ally related to ERs and share sequence similarity with these receptors, they do not 
bind with estrogens. ERRs are expressed mostly in all tissues that have been exam-
ined to date with variation of the level and type of isoform existed in a particular 
tissue. ERRs play an essential role in many physiological processes, and they are 
potential therapeutic targets in many disease areas such as Alzheimer’s disease, can-
cer, diabetes, and other metabolic diseases. In this chapter, we mainly focus on the 
structure and function of ERRs, and the medicinal chemistry efforts to design mod-
ulators of these receptors. We put great emphasis on the structure-based design of 
ERR modulators, which we believe is an essential tool to advance the drug discov-
ery in this particular research area.

Keywords Estrogen-related receptors · Structure-based design · Agonists · Inverse 
agonists · Alzheimer’s disease
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5.1  Introduction

Estrogen-related receptors (ERRs) were the first orphan receptors to be identified 
among the nuclear receptor (NRs) superfamily, but their endogenous ligand is yet to 
be identified [1]. ERRs are constitutively active receptors that belong to class III of 
the steroid hormone receptor subfamily (estrogen receptor-like) [2]. There are three 
known isoforms of the ERRs, namely, ERRα, ERRβ, and ERRγ. ERRα (NR3B1, 
ESRRA gene) and ERRβ (NR3B2, ESRRB gene) were the first estrogen-related 
receptors to be discovered, while ERRγ (NR3B3, ESRRG gene) was the latest [1, 
3]. Both ERRα and ERRβ were initially named hERR1 (human estrogen-related 
receptor 1; renamed as hERRα) and hERR2 (human estrogen-related receptor 2; 
renamed hERRβ), respectively [1, 4]. The gene encoding ERRγ was isolated in 
1998 from the critical region of Usher Syndrome Type IIa at 1q41 [5]. One year 
later, ERRγ was identified functionally because it was shown to interact with its 
transcriptional coactivator glucocorticoid receptor interacting protein 1 (GRIP1) 
both in mammalian cells and in yeast using yeast two-hybrid system [6].

ERRs are expressed mostly in all tissues that have been examined to date with 
variation of the level and type of isoform existed in a particular tissue. ERRα has 
ubiquitous expression and is highly expressed in metabolically active tissues such 
as the heart, kidney, intestinal tract, brown adipose tissue (BAD), and skeletal mus-
cles and functions as a key regulator of energy metabolism [1, 7–9]. It is also highly 
expressed in prostate especially in prostate stromal cells, cerebellum, and hippo-
campus and with lower expression level in the liver, lungs, and spleen [1]. ERRα is 
also expressed throughout the adipocyte differentiation program and in bone- 
derived macrophages activated by interferon γ (INF-γ) or lipopolysaccharide [10–
12]. ERRβ and ERRγ are important in early embryonic development, and their 
expression is restricted to metabolically active and highly vascularized tissues such 
as the heart, kidney, brain, and skeletal muscle [1, 3, 5]. ERRγ is predominantly 
expressed in various tissues associated with central nervous system, circadian clock, 
brain stem, and spinal cord. The three ERR isoforms are widely distributed in the 
tissues related to CNS [5, 8, 12, 13].

ERRs play essential role in many physiological processes, and they are potential 
therapeutic targets in many disease areas such as breast cancer, diabetes, and other 
metabolic diseases [14–16].

ERRs share common target genes with ERs such as lactoferrin, osteopontin, and 
pS2 [17–19]. Moreover, ERRα was found to regulate the aromatase gene involved 
in estrogen synthesis through encoding the enzyme that catalyzes the conversion of 
androgens to estrogens, and this suggested that ERRs might modulate the estro-
genic response [20].

Similar to ERα, ERRα and ERRβ bind to and regulate transcription through clas-
sical estrogen response element (ERE) and the SF-1 response element (SFRE) [18]. 
On the other hand, DNA binding and transcriptional activity of ERβ is limited to the 
ERE.  The binding motif was designated as (TCAAGGTCA) and called ERR 
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response elements (ERREs), which was identified using an unbiased binding site 
selection approach.

ERRs can bind not only as monomers and homodimers but also as a heterodimer 
of two ERR isoforms [21–24]. In contrast, the ERs bind as homodimers to the clas-
sical ER response element (ERE) designated as 5-AGGTCANNNTGACCT-3 sepa-
rated by three nucleotides N, and that is why their function is distinct from ERRs [3, 
7, 19, 25]. The DNA binding data of both ERs and ERRs suggests a crosstalk 
between the two receptors, which in return suggest that these receptors may control 
overlapping regulatory pathways [26]. Despite ERRs being constitutively active and 
independent of exogenous ligands, their activity is highly dependent on the pres-
ence of coregulator proteins in the cell that are either coactivators or corepressors 
[27–30]. For instance, ERRs are activated by peroxisome proliferator activated 
receptor γ (PPARγ)-coactivator 1 α (PGC-1α) and PGC-1β. Therefore, PGC-1α and 
PGC-1β were often considered as protein ligands for ERRs. On the other hand, 
ERRα was found to act as a repressor to the PGC-1α transcriptional activity sug-
gesting a novel transcriptional mechanism [9]. Steroid receptor coactivator (SRC-1) 
and glucocorticoid receptor-interacting proteins (GRIP-1) were also found to bind 
as coactivators to ERRs, while the small heterodimer partner (SHP) and the small 
heterodimer partner interacting leucine zipper protein (SMILE) can act as corepres-
sors for ERRs [6, 28, 29]. These protein-protein interactions and the unique binding 
mechanism of ERR and coactivators or corepressors as protein ligands provided the 
evidence for the significant constitutive activity of ERRs in absence of exogenous 
ligands (Fig. 5.1) [6, 27, 28, 31].

ERRs play an important role in the regulation of several physiological processes 
[9, 26, 30, 32–35]. For example, they were identified as key regulators of several 
glucose transporters (e.g., SLC2A1, SLC2A2, SLC2A4, and SLC2A12, also known 
as GLUT1, GLUT2, GLUT4, and GLUT12, respectively) (Fig.  5.2) [36]. ERRS 

Fig. 5.1 Structural features and activation of ERRs: A.  NRs domains. B.  Activation mecha-
nism of ERRs
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were found to regulate cellular, liver, and mitochondrial metabolism, mitochondrial 
activity, biogenesis, and cardiac mitochondrial biogenesis [35], fatty acid oxidation 
[35], glycolysis, bone morphogenesis by regulating the osteopontin gene [37], bone 
resorption, and osteoprogenitor cell proliferation and differentiation [11, 38, 39]. 
Therefore, targeting ERRs therapeutically is of great importance in treatment of 
diseases such as type 2 diabetes, liver diseases, heart failure, cancers, bone resorp-
tion, etc. [39, 40]. For example, modulating ERRs can be of great importance in 
treating breast cancer where ERRα and ERRγ were found to be the major isoforms 
expressed in the human breast cancer cell lines [19, 41]. Interestingly, ERRα was 
found to act as a repressor of ERE-dependent transcription in MCF-7 and Hela cells 
[9]. Moreover, ERRs can be a good therapeutic target for colon cancer by directly 
targeting Osteopontin (OPN) [37]. ERRs are promising target in the treatment of 
diabetes. For example, increasing ERRα expression was found to enhance the mito-
chondrial function and oxidative capacity and inhibit hepatic gluconeogenesis and 
lower plasma glucose levels [42]. ERRs directly regulate several genes that are 
involved in the mitochondrial function, alongside with other factors controlling 
mitochondrial gene expression, such as NRF1 and NRF2/GABPA [43]. Targeting 
ERRs can play a role in modulating immunity because ERRα was found to be a 
selective regulator of effector (Teff) subset of T-cells through regulation of their 
essential metabolic pathways. Inhibition of ERRα in vivo showed pharmacological 
effect in autoimmune encephalomyelitis models as it reduced Teff generation and 
T-cell proliferation [44].

Fig. 5.2 ERRs as regulators of energy metabolism
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5.2  Structure and Function

Estrogen-related receptors (ERRs) share the common structural features of NRs, 
and they have three major domains: (i) N-terminal domain (A/B) that contains the 
transcription activation function (AF-1 domain), which is poorly conserved domain 
among all NRs; (ii) ligand binding domain (LBD), which sometimes called 
C-terminal domain that shares 10–60% of homology among the family members; 
and (iii) a highly conserved DNA-binding domain (DBD) that contains two zinc 
fingers and share the highest homology (40–90%) among all NRs family. DBD 
folds to form a single structural domain where it binds to the specific response ele-
ment called ERRE. ERRs have hinge region described as the D domain [2, 
15, 45–47].

Sequence analysis showed that ERRs share a high degree of homology in amino 
acid sequence with the classical estrogen receptors (ERs) within both DNA binding 
domains (DBD) and ligand binding domains (LBD). For example, ERRα shares 
about 68% amino acid sequence identity of its DBD and about 33% of its LBD with 
ERα (Fig. 5.3a) [48, 49]. Despite this significant homology with ERs, ERRs does 
not bind to estrogens like estradiol or thyroid hormones and their endogenous ligand 
is yet to be identified [6, 26, 48–51]. In humans, the major ERRα1 consists of 422 
amino acid polypeptide and its coding gene exists on chromosome 11q12–q13 with 
predicted molecular weight of 46  kDa (NCBI accession NP_004442.3) [52–54]. 
Another ERRα2 protein that consists of 506 amino acid and a predicted molecular 
weight of 56 kDa was detected and found to have an additional exon at the 5′-end 
and an in-frame translational start site [52]. Another processed human ERRα pseu-
dogene was found on chromosome 13q12.1 [53]. In addition, ERRβ consists of 500 
amino acids and its coding gene exists on chromosome 14q24.3 with predicted 
molecular weight of 56  kDa (NCBI accession NB_004443.2) [53, 55]. Human 
ERRγ has three mRNA species ERRγ1, ERRγ2, and ERRγ3, and they are alterna-
tively spliced at the 5′-end. The major ERRγ1 protein consists of 458 amino acids 
and encoded by chromosome 1q41 with predicted molecular weight of 51 kDa [5, 
55]. ERRγ2 and ERRγ3 consists of 435 amino acid each with a predicted molecular 
weight of 49 kDa. They are 23 amino acid smaller than ERRγ1 protein, and they 

Fig. 5.3 (a) Organization of ERRs and sequence identity related to ERRα. (b) LBP of ERRα
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differ than ERRγ1 in the N-terminal A/B region where they lack the activating func-
tion 1 (AF-1) [55–57]. Moreover, ERRs share a significant sequence identity with 
each other specially within their LBD and DBD. ERRβ and ERRγ shares 63% and 
62% of their LBD with ERRα LBD, respectively. They share 91% and 92% DBD 
identity with ERRα (Fig.  5.3a). ERRβ and ERRγ shares 77% sequence identity 
within their LBP and 98% within their DBD [3, 47]. ERRα and ERRγ differ in 7 
amino acid residues in the LBP; F328/A272 (H3), V366/I310 (H5), F382/Y326 
(S1), G402/N346 (H7), L405/I349 (H7), V491/A431 (H11), and L492/V432 (H11) 
for ERRα/ERRγ, respectively [58].

As we previously mentioned, ERRs regulate the transcription via binding not 
only as monomers and homodimers but also as a heterodimer of two ERR isoforms 
to the estrogen response element [21, 22]. The affinity of ERRα for binding to 
ERRE is affected by its acetylation mediated by the acetyltransferase PCAF and the 
deacetylases, HDAC8 and SIRT1 on four lysine residues located in the DBD [59]. 
Transcription activity was also regulated via SUMOylation and phosphorylation of 
the N-terminal domain (NTD) of ERRα and ERRγ [60]. In ERRs, the less con-
served LBD, which contains the activated function-2 (AF-2), adopts a conformation 
that supports the recruitment of coactivators in absence of any ligand. Hence, they 
were classified as a constitutively active receptor [15, 28, 61, 62]. X-ray crystallog-
raphy revealed that ERRs has a small hydrophobic ligand binding pocket (LBP) 
with few polar residues (e.g., His494, Glu331, and Arg372  in ERRα), which are 
conserved among all ERRs [58, 63]. This LBP comprises 12 α-helices and small 
1β-fold with a canonical α-helical three-layered sandwich structure. The cavity vol-
ume in ERRα is about 100 Å3, which can be occupied by a ligand consists of four 
or five non-hydrogen atoms [58]. This cavity is small compared to that of ERRγ, 
which is 220 Å3. This small size cavity in ERRα is partially occupied with side 
chains, particularly the bulky phenylalanine residue Phe328 on H3, which fills the 
LBP and is essential for the constitutive activity of ERRα (Fig. 5.3b). Consequently, 
the LBP adopts an agonist conformation that allows it to bind to PGC-1α pep-
tide [58].

In order to reveal molecular basis of small molecule regulations of ERRγ, Notle 
and his coworkers [51] determined the X-ray crystal structure of ERRγ LBD in 
three different states: unliganded, inverse agonist bound, and agonist bound. The 
unliganded structures were solved in the absence and presence of the cofactor pep-
tide RIP140. There were no significant differences between these two unliganded 
structures. The most important observation was the identification of two distinct 
LBPs in both structures. The first pocket (pocket 1) (Fig. 5.4) is analogous to the 
LBP of ERα but much smaller (280 Å3 in ERRγ vs. 480 Å3 in ERα). The second 
pocket (pocket 2) (Fig. 5.4) was larger in size with a volume of 390 Å3. Phe435 of 
ERRγ, which corresponds to Leu525 in ERα, blocks common steroidal estrogens 
from binding to ERRγ. Two more residues, Ala431 and Phe450, define the topology 
and volume of ERRγ LBP. Ala431 and Phe450 in ERRγ correspond to Gly521 and 
Leu540 in ERα, respectively. These data provided an explanation for why ERR does 
not bind to steroids and showed that the LBP is partially filled with bulky residues 
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that stabilize the active conformation of the receptor in cells to recruit coactiva-
tors [51].

The X-ray structure of inverse agonist 4-OHT complexed with ERRγ showed 
conformational changes to the end of helix 10 and the AF-2 helix. Phe435 rotated 
from its original conformation in the apo-ERRγ structure and induced steric clashes 
with Leu454 and Phe450 on the AF-2 helix (Fig. 5.5). These steric clashes lead to 
displacement of AF-2 from its original position where it caps the LBP and conse-
quently blocks coactivators from binding to the receptor [51]. When compared to 
apo structure, no substantial changes in the conformation of helices 1–10 were 
observed in ERRγ.4-OHT structure. It is worth mentioning that the ERRγ.4-OHT 
structure is tetrameric and the interaction of one homodimer to another block at 
least one of coregulatory binding sites. As a result, we do not know if this mode of 
binding is relevant in vivo or not.

The X-ray structure of agonist GSK4716 complexed with ERRγ.RIP140 showed 
AF-2 helix adopting agonist conformation (Fig. 5.6). The overall structure is similar 
to the apo structure where Phe435 and Phe450 did not change their conformation to 

Fig. 5.4 Overlay of unliganded ERRγ (PDB ID: 2GP7) and ERRγ complexed with GSK4716 and 
RIP140 (PDB ID: 2GPP)
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accommodate GSK4716. The major conformational changes were observed in the 
region between helices 1 and 3 where three residues (i.e., Pro246, Glu247, and 
Lys248) showed significant movements compared to the apo structure. These move-
ments took place in parallel with the move of the phenolic binding residues Glu275 
and Arg316 and allowed GSK4716 to access the additional pocket away from AF-2 
helix and led to formation of a larger pocket with a volume of 610 Å3. The phenolic 
hydroxyl of GSK4716 did not interact with the phenolic binding residues Glu275 
and Arg316 but made contacts with Arg328 located near the surface of the receptor. 
Interestingly, the carbonyl group of GSK4716 made contacts with Arg316 through 
a water bridge [51]. This study showed clearly that ERRγ has remarkable plasticity 
within the LBP and provide explanation for the molecular basis of the receptor regu-
lation via small molecules.

Kallen and his coworkers [64] successfully crystalized ERRα LBD with the 
inverse agonist cyclohexylmethyl-(1-p-tolyl-1H-indol-3-ylmethyl)-amine (6) and 
showed that ERRα has significant degree of plasticity similar to ERRγ. The LBP of 
ERRα underwent dramatic conformational changes to accommodate the ligand. 
Phe328 (on helix 3) that partially fills the LBP and Phe510 (on helix 12) has to 
rotate to avoid steric clashes and consequently dislocated helix 12 from its original 
agonist conformation. Surprisingly, helix 12 binds in the same groove where 

Fig. 5.5 X-ray of ERRγ complexed with 4-OHT (PDB ID: 2GPU)
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coactivator usually binds and inactivates the receptor (Fig. 5.7). This binding mode 
is similar to the binding mode observed in ERα.4-OHT complex but different from 
ERRγ.4-OHT complex where helix 12 was completely dissociated from the LBD.

Exploiting all available structural information is very crucial in the process of 
structure-based design of novel modulators of ERR receptors.

5.3  Medicinal Chemistry of ERR Modulators

ERRs are orphan nuclear receptors with no endogenous ligand identified, but sev-
eral synthetic ligands were developed as potent ERR modulators. ERRs are consti-
tutively active with small cavity size that can only accommodate small molecules, 
which make them a challenging drug target. The majority of identified modulators 

Fig. 5.6 Overlay of unliganded ERRγ.RIP140 (PDB ID:2GPO) and ERRγ with GSK4716- 
RIP140 peptide (PDB ID:2GPP)

5 Structure-Based Design of Estrogen-Related Receptors Modulators



88

were inverse agonists (i.e., modulators that suppress ERRs basal activity) for 
ERRα/γ, and few agonists (i.e., modulators that enhance ERRs basal activity) were 
also reported.

5.3.1  ERR Inverse Agonists

Inverse agonists 1–3 (Fig. 5.8) were developed from SAR of a hit compound identi-
fied through HTS. The thiadiazoleacrylamide 3 (XCT-790) is the first potent and 
selective ERRα inverse agonist. The activity and potency of 1–3 were measured 
using fluorescence polarization (FP) assay and were confirmed in a cell-based 

Fig. 5.7 (a) The 3D crystal structure of ERRα LBD and PGC-1α peptide complex. (b) Co-crystal 
structure of inverse agonist 6 with ERRα LBD. (c) Overlay of (a) and (b)
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co-transfection assay using Gal4-ERR format. XCT-790 (3) exhibited the highest 
potency in the cell-based GAL4-ERRα transfection assay and was selective to 
ERRα (IC50 = 0.37 μM) with no activity observed toward ERRγ, ERα, and ERβ. The 
thiadiazole analogue 2 (IC50 = 0.54 μM) was 4-fold more potent than thiadiazolopy-
rimidine 1 (IC50 = 2 μM).

The three compounds incorporate the vanillin core, which was found to be ben-
eficial to ERRα activity [65]. Suppressing ERRα activity using XCT-790 (3) was 
found to alter the ERRα/PGC-1 signaling pathways, suppress mitochondrial bio-
genesis, increase the ROS production, activate HIF-1α, and induce glucose trans-
porters expression thus controlling β-oxidation and affect glucose uptake indirectly. 
This validates the role of ERRα in the regulation of energy metabolism and type II 
diabetes [65, 66]. Additionally, XCT-790 (3) induced apoptosis in HepG2 hepato-
carcinoma and its MDR sub-line R-HepG2 and synergized with paclitaxel. This 
shed light on the importance of ERRα inverse agonists as chemotherapeutic agents 
[67]. Furthermore, XCT-790 (3) was reported to be potent and fast-acting mitochon-
drial uncoupler that potently activates AMP kinase (AMPK) in a dose-dependent 
and ERRα-independent manner with concentrations 25-fold more than those used 
to inhibit ERRα. XCT-790 (3) share common structural features with the chemical 
uncouplers carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) and 
carbonyl cyanide m-chlorophenyl hydrazone (CCCP), suggesting similar mode of 
action as a proton ionophore [68]. Moreover, it was demonstrated that XCT-790 (3) 
suppress the proliferation of the triple negative breast cancer cells (TNBC) both 
in vitro and in vivo by raising the ROS generation, induce the mitochondrial-related 
apoptosis, and increase the expression of the growth inhibition-related proteins like 
p53 and p21. XCT-790 (3) elevates the proteins related to the endoplasmic reticu-
lum (ER) stress like ATF4/6, XBT-1, and CHOP. Other multiple signaling pathways 
were found to be involved in the inhibition effects of XCT-790 on TNBC prolifera-
tion [69].

Compound 4 (Fig.  5.9) emerged from a high-throughput screening of ERR 
coactivator HTRF assay of a collection of approximately, 1,256,187 chemical com-
pounds. Its specificity was confirmed by dissociation enhanced lanthanide fluores-
cence immunoassay (DELFIA) where it showed 100-fold affinity over that of DES 
with an IC50 = 170 nM. Compound 4 did not inhibit the interaction of PGC-1α with 
ERRβ or ERRγ, but it did with ERRα, which shows excellent selectivity toward 
ERRα [70, 71]. Further studies revealed that compound 4 inhibits ERRα transcrip-
tional activity in MCF-7 breast cancer cells in luciferase assay but has little to no 
effect on mRNA levels measured by RT-PCR. It also decreased the level of some 
ERRα target genes such as pS2 (TFF1), osteopontin (SPP1), and aromatase 
(CYP19A1) mRNA. Besides, it increased the ERRα protein degradation through 
ubiquitin proteasome pathway [71].

SR16386 (5) is a steroidal antiestrogen that was found to selectively bind to 
ERRα but do not bind to either ERRβ or γ. It inhibits the transcriptional activity of 
ERRα and prevents the binding of coactivators to ERRα and also prevents their 
recruitment to the promoters or enhancers of target genes. SR16386 (5) inhibited 
the proliferation of human prostate tumor xenografts in mice when used alone or 

5 Structure-Based Design of Estrogen-Related Receptors Modulators



90

when combined with paclitaxel by 61% compared to untreated xenograft tumors. It 
also inhibited the proliferation of broad tumor cell lines after 24 h of treatment by 
SR16386 (5) [72]. Compound 6 is a synthetic inverse agonist that binds to ERRα 
LBP and induces significant conformational changes. There were unexpected move-
ments in H12 which led to dislocation of H12 to bind in the coactivator binding 
groove [64]. Zhang and his coworkers identified HSP1604 (7) as a novel selective 
ERRα inverse agonist in a transient transfection luciferase reporter assay and a 
time-resolved fluorescence resonance energy transfer (TR-FRET) coactivator assay. 
HSP1604 (7) inhibited the ERRα transcription activity with IC50 = 1.477 ± 0.17 μM 
and decreased protein and mRNA levels of downstream target genes such as PDK4, 
pS2, and SPP1. Additionally, 7 inhibited the proliferation of several human cancer 
cell lines and inhibited the proliferation of human breast cancer in  vivo [73]. 
Similarly, LingH2–10 (8) was found to bind to ERRα and inhibits its transcriptional 
activity with IC50  =  0.58  ±  0.09  μM in cell-based luciferase reporter assay. 
LingH2–10 (8) downregulated several ERRα target genes such as PDK4, SPP1, and 
pS2. It also inhibited the proliferation in several human cancer cell lines and the 
triple negative breast human cancer cell lines both in vitro and in vivo [74].

Kaempferol (9) (Fig. 5.10) is a dietary flavonoid that has antiproliferative and 
antiangiogenic activities and also induces cancer cell apoptosis [75]. Kaempferol 
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(9) was found to act as dual ERR inverse agonist that binds to both ERRα and ERRγ 
LBP blocking the binding site from interacting with the coactivator PGC-1α and 
suppressing the receptor transcriptional activity. Kaempferol (9) suppressed the 
expression of ERR target genes PDK2 and PDK4 [76]. Troglitazone (10) is another 
dual ERR inverse agonist that was found to interfere with ERRα and ERRγ interac-
tions with PGC-1α. Troglitazone (10) suppressed PGC-1α and PGC-1β expression, 
which are key regulators of mitochondrial functions. Hence, it dwindled the mito-
chondrial mass and suppressed the expression of superoxide dismutase to increase 
ROS production, which in turn induce cell cycle inhibitor p21WAF1 expression [77]. 
Recently, endogenous estradienolone-like steroid ED (11) was reported as the first 
endogenous inverse agonist for both ERRα and ERRγ in human as it was found to 
bind to their LBP and inhibits their transcriptional activity. ED (11) exhibited anti-
proliferative activity against both the negative and positive estrogen receptors breast 
cancer cell lines (MDA-MB-231 and MCF-7) in a dose-dependent manner. ED (11) 
anti-mitogenic effect in breast cancer cells is ERRα-dependent. Interestingly, it 
exhibited little to no effect on the normal epithelial breast cells [78]. On the other 
hand, 4-hydroxy tamoxifen (4-OHT) (12) is an ERRβ/γ inverse agonist that binds to 
their LBP, dissociate the complex between the receptor and coactivator SRC-1, and 
inhibit their transcriptional activity [79, 80]. 4-OHT (12) did not bind to ERRα 
binding site because of the bulky phenylalanine that corresponds to alanine in 
ERRγ. [3H]4-OHT bound to recombinant ERRαF232A with affinity similar to 
ERRγ, which proves the similarity between ERR isoforms LBP [79].

Fig. 5.10 Dual ERR inverse agonists 9–12
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The diaryl ether-based thiazolidinedione 13 (Fig. 5.11) was found to inhibit the 
peptide coactivators binding to ERRα with IC50 = 0.04 μM and 50-fold selectivity 
over ERRγ (IC50 = 2.8 μM). The X-ray crystal structure of ERRα with compound 13 
complexed in the LBP revealed a conformational change and side-chain rotation of 
Phe328 to accommodate the ligand with a reversible covalent interaction between 
the protein and the ligand. Compound 13 normalized the insulin and circulating 
TGs level in two mouse models for obesity and type II diabetes with significant 
improvement of insulin sensitivity and glucose tolerance in vivo [81].

Xu et al. developed and synthesized a series of 1,2,3-triazole derivatives 14–22 
(Fig. 5.11) as an orally bioavailable suppressors of ERRα transcriptional activity. 
Structure-activity relationship (SAR) studies showed that compound 14, which 
incorporate OH group in ortho-position of ring A inhibited the transcriptional activ-
ity with IC50 = 0.39 μM. Replacing the OH group in the ortho-position with NH2 
group in 15 increased the inhibition activity 10-fold with IC50 = 0.041 μM. On the 
contrary, repositioning NH2 group into meta (i.e. 16) or para position (i.e. 17) of 
ring A led to significant decrease in potency compared to 15 with IC50 = 0.31 μM 
and 0.16 μM, respectively. Compound 18 that bears an isopropyl group at meta posi-
tion of ring B exhibited twice the potency of 15 in inhibiting ERRα transcriptional 
activity. The isopropyl group at the meta position of ring B is essential for the high 
potency of this series, and the existence of smaller or larger hydrophobic group at this 
position was crucial for suppression of ERRα transcriptional activity. Other com-
pounds in the series with small hydrophobic groups like 20 and 21 were less potent and 
inhibited ERRα transcriptional activity with IC50 = 0.43 μM and 0.20 μM, respec-
tively. The potency was directly proportional to the size of the hydrophobic group. 
For example, compound 21 with t-Bu in the meta position and 22 with phenyl group in 
the same position showed improved potency with IC50 values of 0.094 μM and 0.65 μM, 

Fig. 5.11 Selective ERRα inverse agonists 13–23
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respectively. The 2-aminophenyl-(1-(3- isopropylphenyl)-1H-1,2,3-triazol-4-yl)methan-
one (18) was the most promising compound among the series in inhibiting the ERRα 
transcriptional activation with IC50 = 0.021 μM in a cell-based reporter gene assay. 
Compound 18 reduced both ERRα mRNA and protein levels. The most potent 
ERRα inverse agonists 15, 18, and 21 exhibited antiproliferative activity against 
MCF-7 cancer cell line in vitro with an IC50 of 6.7, 3.7, and 17.2 μM, respectively. 
Moreover, they inhibited the growth of MDA-MB-231 breast cancer cells. 
Compound 18 showed good pharmacokinetics with 71.8% oral bioavailability and 
1.5 h in vivo half-life [82].

Patch et  al. developed the indazole-based N-alkylthiazolidenediones as ERRα 
selective inverse agonists. Compound 23 was identified as the most potent and 
selective ERRα repressor among the developed series. It inhibited the recruitment 
of coactivator peptide by ERRα with IC50 value of 0.023 μM, with no activity against 
other metabolically active nuclear receptors. Besides, 23 enhanced the glucose con-
trol and reduced the circulating TGs upon chronic oral administration in two animal 
models for obesity and diabetes [83].

Du et al. designed novel small molecules inverse agonists for ERRα based on the 
most potent inverse agonist XCT-790 (3). They were able to identify a good hit, 
1-(2,5-diethoxy-benzyl)-3-phenyl-urea (24) (Fig.  5.12), that resembles XCT-790 
(3) in possessing 4-atom linker between rings A and B. However, compound 24 
lacks an additional ring that exists in XCT-790 (3) and interact with ERRα via 

N
H

N
H

O R2

O
R1O

O
HN

S OO

O

A

B

25-32

N
H

N
H

O

O
HN

S OO

O

A

B

24

4-atom Linker

Design

Strategy 4-atom Linker

25: R1= n-Bu-,R2= MeO-
26: R1= Bn-, R2= MeO-
27: R1= Et-, R2= Bn-NH-
28: R1= Et-, R2= Ph-NH-
29: R1=Et-, R2= 4-MePhNH-
30: R1=Et-, R2= 3-MeOPhNH-
31: R1=Et-, R2= i-PrNH-
32: R1=Et-, R2=4-MeO-BnNH-

H
N

N

O

Cl

S
O

O

33

A.

B.

Fig. 5.12 Design strategy for selective: A.  ERRα inverse agonist 24–32. B.  ERRα inverse 
agonist 33

5 Structure-Based Design of Estrogen-Related Receptors Modulators



94

hydrophobic interactions. Compound 24 was weaker than XCT-790 (3), which may 
be attributed to the lack of ring C. Further chemical modifications led to the identi-
fication of compounds 25–32 (Fig.  5.12). Compound 25 which incorporate 
3-MeOCO- and 4-BuO-groups in ring B was 6-fold more potent than the starting 
compound 24 with an  IC50 value of 3.43 ± 1.17 μM. Compound 26 with benzyl 
group on ring B has better potency than 24 with IC50 = 4.06 ± 0.12 μM. Using a 
smaller group like ethyl group on ring B alongside with the bulky 3-Bn-NHCO- 
group in compound 27 resulted in a more potent inverse agonist with 
IC50 = 3.81 ± 0.17 μM. The enhanced activities were correlated to enhancement in 
the hydrophobic interactions with the LBP of ERRα. Further optimization of com-
pound 27 led to identification of compounds 28–32, which showed similar potency 
to compound 27 with IC50 < 4.23 μM. Besides, compound 32 exhibited the highest 
potency in inhibiting the transcriptional activity of ERRα with 2-fold improved 
potency over 27 with IC50 = 1.90 ± 0.39 μM. Further investigation of antiprolifera-
tive activity of compound 32 against several human cancer cell lines revealed that it 
has wide and strong antiproliferative effect on eight different cancer cell lines 
including ER-positive and ER-negative cancer cell lines. The best antiproliferative 
effect of 32 was observed against ER-negative MDA-MB-231 cells, where 32 inhib-
ited the growth of this cell line with an IC50 value of 1.46 ± 0.12 μM [84].

Zhao and his coworkers used structure- and ligand-based approaches to identify 
novel ERRα inverse agonists. They succeeded to identify 17 compounds by virtu-
ally screening a library of 211,297 compounds. Only compound 33 exhibited supe-
rior activity over other compounds when they were tested for their ERRα- PGC-1α 
inhibition in a TR-FRET assay [85]. Moreover, compound 33 was more potent than 
XCT-790 (3) in inhibiting the ERRα- PGC-1α interaction with IC50 value of 
0.5 ± 0.04 μM. Compound 33 was found to inhibit proliferation of MCF-7 cells with 
GI50 value of 1.3 ± 0.08 μM. Moreover, 33 inhibited ER-negative MDA-MB-231 
breast cells proliferation with GI50 value of 2.5 ± 0.4 μM, which further suggest this 
compound is a good ERRα inhibitor [85]. Further investigation of the effect of com-
pound 33 on the target genes and proteins of ERRα showed that 33 reduced the 
mRNA level of both PDK4 and PGC-1α in a dose-dependent manner in real-time 
PCR assay. Additionally, it reduced the levels of ERRα, PDK4, and PGC-1α pro-
teins in western plot analysis. Compound 33 exhibited moderate anti-proliferative 
activity against both ER-positive and ER-negative breast cancer cell lines.

Molecular docking studies of 33 in the LBD of ERRα (PDB ID: 2JPL) shows 
that it forms two hydrogen bonds with the side-chain carboxylic acid of Glu331, 
which is important for the ERRα-PGC-1α inhibitory activity [85].

Lynch and his coworkers [86] identified a set of antineoplastic agents that could 
inhibit the ERRα signaling using HTS assays. They screened 10,000 compounds 
library in a HEK293 cells containing the ERRα-reporter or the reporter containing 
PGC-1 expression. Their study revealed two groups of ERRα antagonists that con-
tains 78 compound that inhibit ERRα with efficacy >50% of the positive control, 
XCT-790 (3). The identified compounds inhibited the PGC/ERRα pathway, and 
results were confirmed using gene-expression studies. Bortezomib 35 (Fig. 5.13), a 
tubulin disruptor and topotecan 39, a topoisomerase inhibitor, was among the most 
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potent ERRα antagonists identified from the screening. Five antineoplastic agents 
(34–38) and nine pesticides (40–48) (Fig. 5.13) were confirmed as an ERRα antago-
nists and were able to suppress ERRα target genes in gene expression studies [86].

Selective ERRγ inverse agonists were developed based on 4-OHT using structure- 
based design. GSK5182 (49) (Fig. 5.14) exhibited 25-fold selectivity toward ERRγ 
over ERα with an IC50 value of 0.250 μM. Compound 49 showed a hydrogen bond-
ing interaction with Tyr326 and Asn346 residues in the LBP of ERRγ (PDB ID: 
2EWP). It showed a similar binding mode to that of 4-OHT complexed with the 
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LBP of ERRγ. It showed interaction between the phenolic part with the Glu275 and 
Arg316, while the other part interacts with Asp273 [87].

Koo and his coworkers used structure-based virtual screening of 4000 structur-
ally diverse natural products in the X-ray of ERRγ bound with inverse agonist 
GSK5182 (49) (PDB ID: 2GPU). Eryvarin H (50) was identified as an ERRγ inverse 
agonist. Docking of Eryvarin H (50) in ERRγ-LBP revealed both dipole-dipole 
interactions and hydrophobic interactions. The most important interactions were the 
hydrogen bonding interaction between the hydroxyl group on Eryvarin H (50) and 
amino acids Asp273, Tyr326, and Asn346 and dipole-dipole interaction between the 
ether linkage of Eryvarin H (50) and Cys269. Eryvarin H (50) showed good inverse 
agonist activity against ERRγ when tested in cell-based reporter gene assay in 
HEK-293 T cells at 10 μM. Compound 51 (Fig. 5.14), an eryvarin H derivative, 
exhibited good inverse agonistic activity against ERRγ. The activity of both 50 and 
51 was very weak compared to GSK5182 (49) but showed selectivity toward ERRγ 
over ERα [88]. Compound 52 (DY181) (Fig.  5.14) was reported to be the most 
potent and selective ERRβ to date with IC50 value of 0.01 μM. Molecular docking 
studies revealed that it forms an extensive hydrogen bonding with the ERRβ-LBP 
residues. In the homology model of the ERRβ protein, 52 formed 3-hydrogen bonds 
with Asp248, Glu250, and Tyr321 residues in the ERRβ-LBP [89].

Kim and her coworkers developed compound 53 (Fig. 5.14) as an inverse agonist 
for ERRγ. This compound was identified through structural modification of 
GSK5182 (49). 53 exhibited good binding toward ERRγ over other subtypes (i.e., 
ERRα, ERRβ, and ERα) with IC50 of 0.44  μM, and showed 95% transcription 
repression at 10 μM while maintaining acceptable AMDET profile [79].
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Similarly, Compound 54 (DN200434) was identified based on GSK5182 (49) as 
a novel, highly potent, and selective ERRγ inverse agonist (IC50 = 0.006 μmol/L). 
Compound 54 was validated as lead compound using an array of biochemical and 
cell-based assays. Binding affinity was measured to assess the subtype selectivity of 
54, and it exhibited good selectivity toward ERRγ (IC50  =  0.040  μmol/L) over 
ERRα, ERRβ, and ERα (IC50 > 10, 1.330, 1.240 μmol/L, respectively). X-ray crys-
tal structure of 54 complexed with ERRγ showed a similar binding mode to ERRγ.
GSK5182 (49). The binding affinity of 54 to ERRγ was higher than GSK5182 (49) 
due to better fitting in the LBP and stronger interactions with Tyr326, Asn346, and 
Glu275. The OH group of 54 makes two hydrogen bonding interactions with 
Tyr3266 and Asn346. Phenol makes hydrogen bonding interation with Glu275 
while piperazine nitrogen forms a hydrogen bonding interaction with Asp273 
(Fig.  5.15). Movement of both His434 and Phe435 led to tighter packing of 54 
inside the LBP. Compound 54 retained inhibitory activity of ERRγ upon mutation 
of key amino acid residues Glu275, Tyr326, and Asn346 into alanine. However, the 
inhibitory effect of 54 was lost upon mutation of Asp273 into alanine, which sug-
gests that the ionic interaction of 54 basic chain with Asp273 is crucial for 54 to 
retain activity toward ERRγ.

Fig. 5.15 X-ray of compound 54 inside the LBP of ERRγ
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From 124I PET/CT imaging analysis, compound 54 enhanced ATC tumor radio-
iodine avidity in an ATC tumor model via upregulation of iodide-handling genes. 
This in turn led to successful radioiodine therapy of conventional radioiodine 
therapy- refractive ATC tumors [90]. These results suggest that 54 and related com-
pounds are potential therapeutic agents toward ERRγ-related cancers [91].

5.3.2  ERRs Agonists

Suetsugi and his coworkers reported flavone 56 and isoflavones 57–60 (Fig. 5.16) as 
ERRα agonists using a combination of structure-based virtual screening and 
receptor- binding assays. The virtual screening was performed in a homology model 
of ERRα. Compounds 56–59 can activate ERRs at 10 μM in both mammalian cell 
transfection and mammalian two-hybrid experiments [92].

Molecular docking of identified ligands showed that they packed tightly inside 
the small LBP of ERRα. The ligands’ hydroxyl groups form hydrogen bonds with 
the conserved water molecule and with Glu235, Arg276, and His398 residues. 
Additional hydrophobic interactions between ligands’ aromatic rings and several 
phenyl alanine residues help in fixing these ligands in favorable binding conforma-
tion. The modelling data suggest that planar ligands with aromatic rings will be 
favorable ERRα agonists [92].

Equol (60) (Fig. 5.16), an isoflavone, was found to act as an ERRγ agonist and 
stimulated its transcriptional activity in transiently transfected PC-3 and U2-OS 
cells. Moreover, 60 enhanced the interaction between the GRIP1 and ERRγ. 60 
induced a conformational change in the ERRγ-LBD and enhanced the ERRγ growth 
inhibition effect on the prostate cancer PC-3 cell lines [93].

Pyrido[1,2-α]pyrimidine-4-ones (Fig. 5.17) were identified as ERRα agonists, 
and they were found to enhance the transcriptional activity and to elevate both the 
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mRNA levels and the protein levels of ERRα downstream target genes [94]. 
Compound 61 upregulated the transcriptional functions of ERRα. Replacement of 
the 8-methyl group of 61 with slightly larger hydrophobic groups like ethyl (cf. 62), 
isopropyl (cf. 63), and cyclopropyl group (cf. 64) improved ERRα activity 2.7-, 2.5-, 
and 2.6-fold, respectively at 10  μM.  Compound 62 enhanced the transcriptional 
activity of ERRα in a dose-dependent manner and elevated the ERRα- driven lucif-
erase activity in Kaempferol pretreated 293FT cells where ERRα basal constitutive 
activity was reduced. Additionally, 62 was found to moderately elevate the tran-
scriptional activity of ERRγ; and improved the glucose and fatty acid uptake in the 
C2C12 muscle cells [94].

Cholesterol (65) (Fig. 5.17) was reported to function as an ERRα agonist and 
bound to the ligand binding pocket forming a hydrogen bonding interaction between 
its hydroxyl group and the Glu235 residue in addition to other hydrophobic interac-
tions with Phe232 and Leu228 residues. Upon binding to the LBP of ERRα, 65 
induced conformational changes, increased PGC-1 coactivator recruitment, and 
enhanced the ERRα-mediated transcription [95].

N-Acyl hydrazones were reported as agonists for ERRγ [96, 97]. DY131 (66) is 
a  selective ERRγ agonist at lower concentrations. It was reported to effectively 
enhance the activity of ERRγ by 5-fold at 3 μM and 6.6-fold at 30 μM. 66 was 
reported to activate ERRβ 3- to 4-fold at 10–30 μM [97]. Compound 66 (GSK9089) 
has a binding affinity of 0.66 μM in an ERRγ FRET assay with 55% efficacy [96]. 
GSK4716 (67) exhibited remarkable selectivity toward ERRβ and ERRγ over other 
estrogen receptors. GSK4716 (67) was found to activate both ERRβ and ERRγ in 
comparable way to the protein ligand PGC-1α [96].

Compound 68 (E6) (Fig. 5.18) is a synthetic acylhydrazone derivative that was 
identified as a selective and potent ERRγ agonist derived from GSK4716 agonist 
through a combinatorial approach [98]. 68 was identified from a library of 30 com-
pounds that was designed based on analyzing the interactions of agonist GSK4716 
and inverse agonist 4-OHT in the LBD of ERRγ at the molecular level. Both 
GSK4716 and 4-OHT bind in two distinct pockets in the LBD of ERRγ. The iso-
propyl group of GSK4716 extends into the second pocket where the phenolic part 
of 4-OHT binds. The new ligands were designed to fit the two pockets and maintain 
the favorable interactions of GSK4716. The designed ligands were screened 
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virtually in the two cavities identified earlier for both GSK4716 and 4-OHT. The 
ligands with highest docking scores and favorable interactions were synthesized 
using microwave-assisted solution phase parallel synthesis. The synthesized com-
pounds were evaluated in a cell-based reporter-gene assay using GSK4716 and 
4-OHT as controls. Compound 68 (E6) enhanced the transcriptional activity of 
ERRγ and did not show agonistic effect toward ERRα and ERRβ. The potency of 68 
was comparable to GSK4716 at both 10 and 1 μM concentrations [98].

Due to the lack of chemical probes to study ERRα, many groups embarked on 
developing ERRα agonists with limited success so far. Elgendy lab was successful 
in engineering high affinity ERRα agonism into GSK4716 (selective ERRβ/γ dual 
agonist) [101]. They used structure-based design approach to identify the key struc-
tural requirement to induce ERRα agonism. Removing hydroxyl group of GSK4716 
that form hydrogen bonding interaction with Glu384 in ERRγ proved to be impor-
tant to increase affinity toward ERRα. Additionally, removing bulky group at the 
para position of ring B was important for enhancing ERRα activity since the LBP of 
ERRα is much smaller in volume. Changing the length of the linker was detrimental 
to activity toward both isoforms. Compound 69 (Fig. 5.18), which incorporate a 
p-methyl substituent at ring A while no substituent on ring B, enhanced the potency 
toward ERRα (EC50  =  0.209  μM) and maintained good activity toward ERRγ 
(EC50 = 0.194 μM). This compound was equipotent toward both isoforms with EC50 
α/γ = 1.07. Molecular modeling of compound 69 in the LBD of both ERRα and 
ERRγ showed that it forms л-л interactions between ring B and Tyr326 in ERRγ 
and Phe328 on helix 3 in ERRα. The NH of the N-acyl hydrazone forms hydrogen 
bonding interaction with Phe382 in ERRα while it forms the same interaction with 
Tyr326 in ERRγ. The binding mode of 69 inside the LBP of ERRα showed that it 
induced conformational changes where Phe328 was displaced to accommodate the 
ligand inside the cavity.

Compound 70 (Fig. 5.18) with two hydroxyl groups on the ortho-position of both 
rings was less potent than 69 but was fourfold more selective toward ERRα over 
ERRγ (EC50 = 0.378 μM for ERRα and EC50 = 1.645 μM for ERRγ) with EC50 
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α/γ = 0.23. The binding mode of 70 was similar to 69 with the hydroxyl group on 
ring A forming a hydrogen bond interaction with Glu331 in the LBP of ERRα.

The best ERR pan agonists identified by Elgendy lab elevated the expression of 
ERR target genes, PGC-1α, PGC-1β, CPT1α, and PDK4 in C2C12 mouse myoblast 
cell line. They did not exhibit any signs of toxicity at 1 and 10  μM concentra-
tions [99].

Bisphenol A (71) [BPA; 2,2-bis(4-hydroxyphenyl) propane] (Fig.  5.19), an 
endocrine disruptor and ER ligand, was found to strongly and selectively bind to 
ERRγ (KD = 5.5 nM) with high activity in a dose-dependent manner with IC50 value 
of 13.1  nM.  It showed 5- to 50-fold higher potency than 4-nonylphenol and 
DES. The X-ray crystal structure of 71 complexed with the ERRγ-LBD revealed 
that one of the hydroxyl groups forms a hydrogen bonding with Glu275 and Arg316 
residues and the other hydroxyl group with Asn346. Additionally, 71 did not disrupt 
helix 12 and maintained the active conformation, but it deactivated ERRγ in the 
reporter gene assay suggesting that it can act as agonist/inverse agonist for ERRγ 
[100–102]. Furthermore, Okada and his coworkers specified the structural charac-
teristics for a strong binding of Bisphenol A and its derivatives with human ERRγ. 
They demonstrated that only one hydroxyl group was essential for the full binding 
and removing one methyl group allowed the maximum activity. The calculated 
binding affinity constant from the Scatchard plot analysis data exhibited KD of 
5.50  nM, while the receptor density (Bmax) was 14.4  nmol/mg. 4α-cumylphenol 
(72), a one-hydroxyl group-deficient analogue of BPA, exhibited activity compara-
ble to BPA, which suggests that phenol derivatives are good endocrine disruptor that 
binds to ERRγ [103]. 4-α-Cumylphenol (72) (Fig. 5.19), a derivative of 71 lacking 
one hydroxyl group, bound tightly to ERRγ- with IC50 value of 13.9 nM. This tight 
binding was attributed to the back and forth rotation of the Leu345-β-isobutyl group 
in an induced fit manner [104].

Parabens (73a–e) (Fig. 5.19), a p-hydroxy benzoic acid esters that vary in the 
ester group, were demonstrated to have an agonistic activity similar to PBA toward 
ERRγ in a coactivator recruiting assay and in silico molecular docking. All tested 
parabens 73a–e with methyl, ethyl, butyl, propyl, and benzyl groups exhibited 
potent agonistic activity toward ERRγ. Compounds 73a–e were well-fitted in the 
ERRγ active site forming a hydrogen bond between parabens hydroxyl group and 
both Glu275 and Arg316 residues in ERRγ LBD [105].
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Recently, Lin and his coworkers designed and synthesized novel ERRγ agonists 
based on GSK4716 as lead compound. Their design strategy was based on replace-
ment of the unstable hydrazide moiety, which was most likely responsible for the 
observed poor metabolic stability of GSK4716 analogs with more stable amide 
group. They explored the structure activity relationships of the lead compound 
where they modified parts A and B, and the hydrazone linker. They explored several 
bioisosteres of the N-acyl hydrazone linker (e.g. ureas, sulfonamides, α,β- 
unsaturated ketones, … etc) and the amide bioisostere was the only successful 
replacement. Exploration of parts A and B led to identification of SR19881 (74) and 
SR19797 (75) (Fig. 5.20) as the most potent agonists within synthesized analogs. 
Both compounds are structurally similar to the lead GSK4716 with the same phenol 
group in part A and bulky substituent at the para position of part B. SR19881 (74) 
was slightly selective toward ERRγ (EC50 = 0.39 μM) over ERRβ (EC50 = 0.63 μM) 
in FRET assay. SR19881 (74) exhibited weak agonistic activity in a cell-based 
assay (EC50 = 4.7 μM) [106].
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Chapter 6
PPARα and δ Ligand Design: Honing 
the Traditional Empirical Method 
with a More Holistic Overview

Benjamin S. K. Chua and John B. Bruning

Abstract Peroxisome proliferator-activated receptor (PPAR) ligands have been 
used in clinical therapy to treat metabolic disease since the 1960s. However, these 
ligands have side effects that restrict their use, thought to be caused, in part, by their 
broad specificity. Efforts have been made to synthesize new ligands; however, most 
have failed to pass clinical trials. Here we examine the available crystal structures 
of PPAR in complex with ligands to identify common ligand design factors for 
selectivity towards a PPAR subtype. Methods to improve drug-lead identification 
and optimization and other factors that may contribute to design of a successful 
PPAR ligand are discussed.

Keywords PPAR · Metabolism · Specificity · Structure guided drug design

6.1  Introduction to the PPAR Protein

The peroxisome proliferator-activated receptors (PPARs) are a group of ligand- 
activated nuclear receptors that control various cellular pathways, most notably 
involved in energy metabolism and homeostasis [23, 61]. These receptors belong to 
the nuclear receptor type II (NR2) subgroup, which dimerizes with the retinoid X 
receptor Retinoid X Receptor (RXR). There are three subtypes of PPAR in humans, 
each with a distinct tissue distribution and function [23, 62]. PPARα coordinates the 
regulation fatty acid metabolism and is predominantly expressed in the liver, heart 
and intestines [23, 85]. Activation of PPARα improves serum lipid and cholesterol 
profiles as well as glucose tolerance in type 2 diabetes mellitus (T2D) patients [23, 
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116]. PPARγ controls adipogenesis and is expressed mainly in adipose tissue and 
macrophages [18, 51]. Activation of this receptor induces adipocyte differentiation 
and improves insulin sensitivity and glucose tolerance [23]. PPARδ is expressed 
ubiquitously, at lower levels throughout the body [7, 19, 102]. Its exact function has 
not been determined to date, but PPARδ has been shown to play a role in lipid, glu-
cose, lipoprotein and cholesterol metabolism, cancer, muscular fiber switching and 
endurance and cell differentiation in the CNS [7, 81, 102, 109, 113, 115]. The 
PPARs coordinate a wide array of genes that, when disrupted, lead to diseases such 
as metabolic syndrome, heart and neurological diseases and even cancer [23]. Thus, 
the PPARs represent a prime target for drug development [23, 82].

In fact, synthetic ligands for the PPARs have already been in development for a 
few decades. It was observed early on that PPARs were able to bind a wide variety 
of naturally occurring and synthetic ligands [31, 106]. Fibrates have been in clinical 
use for dyslipidemia since the 1960s but were only found to act through PPARα 
later on [80]. The discovery of the PPAR NR subfamily sparked a wave of develop-
ment of synthetic PPAR ligands, of which two classes are currently licensed for 
clinical use: Fibrates, which bind PPARα preferentially, are used as hypolipidemic 
agents and Thiazolidines (TZDs) that bind PPARγ preferentially and are used as 
hypoglycemic agents and insulin sensitizers [23, 91]. However, these drugs have 
either limited efficacy or presented side effects that limit their therapeutic utility; 
these include edema, obesity, osteoporosis, hepatotoxicity, bladder cancer, increased 
atherogenic risk, and mortality rate [16, 19, 23, 111]. Currently, there are no clini-
cally approved drug classes for PPARδ. In the early 2000s, PPARδ agonist 
GW501516 was synthesized by GlaxoSmithKline (GSK) and displayed excellent 
cholesterol-modulating properties. However clinical trials of GW501516 were 
halted when it was found to be carcinogenic in mice models [28, 64, 65]. Initially, 
to alleviate the side effects seen from single PPAR subtype activation, the idea of 
dual or even pan subtype acting agonists was conceived. The Glitazar drug class 
was aimed at reducing the weight gain from PPARγ activation with the fat-oxidizing 
or energy-modulating properties of PPARα and δ activation, respectively. However, 
most have been dropped from clinical trials due to various safety concerns [23, 71, 
72]. Later, research moved towards improving subtype selectivity [28, 58, 63–65].

The fear of side effects, widely thought to be caused by the lack of subtype selec-
tivity, limits the exploitation of the enormous therapeutic utility of PPAR activation 
[16, 23]. Despite this, attempts to identify ligands of PPAR and new therapeutic 
uses for existing drugs are still underway [23, 28]. To facilitate this effort, this 
review attempts to provide tools to design a subtype specific ligand. First, we pres-
ent an introduction to the PPAR protein structure, focusing on its ligand binding 
domain (LBD), and we review different ligands and examine the structural basis for 
their selectivity and potency, to provide possible explanations for variations of 
potency between ligands. We also present common ligand design factors, followed 
by novel methods and other insights that could streamline the reader’s efforts in 
designing a clinically effective and, more importantly, safe PPAR ligand.
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6.1.1  Overall PPAR LBD Protein Structure

Like most nuclear receptors, the PPAR protein consists of five domains A–E 
(Fig. 6.1a). The highly mobile domains A and B contain the activation function 1 
(AF1) sequence which is involved in ligand-independent transcriptional activation 
and nuclear localization and also contain sites of phosphorylation [21, 62, 105]. 
This is followed by domains C, the DNA binding domain (DBD); D, the hinge 
region; and E, which contains the LBD and Activation Function 2 (AF2) surface 
(Fig. 6.1a). Amino acid sequence numbers for the PPAR LBD referred to here were 
taken from the following UniProt entries: Identifier Q07869-1 for PPARα, P37231-2 
for PPARγ and Q03181-1 for PPARδ. The secondary structure elements in the LBD 
were first numbered based on the RXR crystal, a convention that has been used by 
most crystallographers since (Fig. 6.1b) [106, 113, 114].

Fig. 6.1 (a) The domain architecture of the PPAR protein subtypes. (Adapted from Uppenberg 
et al. [106]). (b) The canonical PPAR LBD with helices labelled according to convention estab-
lished by Uppenberg et al. [106] (PDB ID: 2GWX). (c) The PPARδ Y-shaped LBD cavity high-
lighted (PDB ID: 2GWX Arms 1: dark blue, 2: light grey, 3: orange)

6 PPARα and δ Ligand Design: Honing the Traditional Empirical Method with a More…
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The LBD (domain E, Fig. 6.1b) consists of 13 α helices and 4 β-stranded sheets. 
The LBD contains a Y shaped cavity of approximately 1300 Å, bordered by helices 
H4 and 5 superiorly, H2′ and H6 inferiorly, H3 and Ω loop anteriorly, H7 and 
H10/11 posteriorly and H12 and β stranded sheets laterally (Fig. 6.1b) [114]. Most 
ligands of PPAR bind in this cavity, referred to as the ligand binding pocket (LBP). 
The LBD contains the AF2 surface, which sits in a cleft above H12, formed by H3, 
H4, H5 and H12. This surface contains the four polar residues that typically form 
hydrogen bonds with ligands binding in the LBP (Table 6.1). The LBD also contains 
a dimerization surface made up of H8, H9 and H10 (Fig. 6.2) [42, 115].

The PPAR LBD, compared to other nuclear receptors, contains two unique struc-
tural characteristics. Firstly, PPAR contains an extra helix, designated as helix H2′ 
between the first β sheet strand and helix 3. The extra helix H2′ increases the space 
in the PPAR LBD (the largest of the NRs) which allows accommodation of a wide 
variety of ligands [113]. Due to the position of H2′, H2 is arranged differently in the 
tertiary structure and is hypothesized to allow easier access for ligands [33, 79]. 
Secondly, the H2′–H3 loop or the ‘ω loop’ is thermally mobile and typically left 
unmodelled in most PPAR structures [79, 113]. This loop is the proposed entry site 
for PPAR ligands and is restricted by a hydrogen bond ‘latch’, formed by residues 
α: Y334 and E282, γ: E343 and E291 and δ: N307 and E255 [11, 27, 33]. This flex-
ible H2′–H3 loop is thought to allow PPAR to adapt to chemically diverse 
ligands [113].

6.1.2  Mechanism of PPAR Gene Transcription

PPAR forms an obligate dimer with RXR, regardless of ligand binding status, via 
helices 8, 9, 10 and 12 (Fig. 6.2) [7, 21, 42, 121]. The PPARs can dimerize with all 
three subtypes of RXR, forming different PPAR-RXR subtype complex combina-
tions [108]. These PPAR-RXR complexes then bind to PPAR response elements 
(PPREs), which are comprised of direct repeat elements of hexanucleotide sequences 
separated by a single nucleotide spacer (DR1), recruit various cofactors and assem-
ble the gene transcriptional complex to regulate gene transcription [17, 121].

In the apo or antagonist bound state, H12 of PPAR remains flexible and assumes 
a range of conformations [14, 21, 40, 95, 115, 116, 123]. When H12 is flexible, the 
larger 3 turn α-helical LXXXIXXXL corepressor motif preferentially occupies the 
space parallel to H3, bordered by H3, H4, H5 and H12 [52, 116]. This corepressor 
motif is positioned by interactions between the conserved clamp and motif residues 
α: K310 and E+2, the carbonyl backbone of α: Y464 and K+7 and α: K292 and 
carbonyl backbone of L+9 (Fig. 6.2b.). This positions the L+1, I+5 and L+9 resi-
dues optimally to interact with the cleft between H3 and H4. The PPAR-corepressor 
complex then binds to PPREs and causes repression of downstream target genes 
[88, 102, 121].
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Table 6.1 Corresponding residues of the PPAR LBD subtypes
Conserved residues are highlighted in grey, the four polar residues of the AF2 surface that form 
hydrogen bonds are highlighted in green. Residue numbers used are taken from UniProt ID: 
P37231-2, Q03181-1, Q07869-1 and aligned using Jalview

Region PPAR± PPAR´ PPAR³ Secondary
structure

Arm 1 E269 S242 A278 H3

F273 F246 F282

Q277 Q250 Q286

S280 T253 S289

Y314 H287 H323 H5

I317 I290 I326

F318 F291 Y327

F351 F324 F360 H7

I354 I327 F363

H440 H413 H449 H10/11

V444 M417 L453

I447 I420 I456

K448 K421 K457 H11-12 loop

A454 T427 M463

A455 S428 S464

L456 L429 L465

L460 L433 L469 H12

Y464 Y437 Y473

Arm 2 I241 I213 I249 β-sheet 4

M244 I216 M252 H2'

L247 L219 L255

A250 A222 G258

E251 E223 E259

A268 I241 V277 H3

R271 H244 R280

I272 V245 I281

C275 R248 G284

C276 C249 C285

T279 T252 R288

V332 V305 I341 β-sheet 2

I339 V312 M348 β-sheet 3

F343 F316 F352 H6

L344 L317 L353

L347 L320 L356

M355 I328 M364 H7
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Fig. 6.2 (a) PPARδ LBD dimerization surface highlighted (PDB ID: 2GWX), (b) PPARα LBD 
complexed with the corepressor motif (PDB ID: 1KKQ) and (c) the coactivator motif (PDB 
ID: 1K7L)

Arm 3 N219 N191 P227 H1-2 loop

M220 M192 L228

E282 E255 E291 H3

T283 T256 A292

E286 E259 E295

M320 M293 M329 H5

L321 L294 L330

V324 I297 L333

M325 V298 M334 β-sheet 1

M330 L303 V339 β-sheet 2

L331 L304 L340 

Y334 N307 E343 β-sheet 2-3
loop

K358 K331 K367 H7

F359 F332 F368

Tab. 6.1 (continued)
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On agonist binding, H12 is stabilized in the active position through direct or 
indirect interactions with the ligand [11, 106, 113]. H12 interaction is crucial, but 
not sufficient for full activation of PPAR [6]. In this active position, the AF2 surface 
is stabilized – the ‘charge clamp’ residues α: E462 δ: E436 γ: E472 and α: K292 δ: 
K265 γ: K301 are optimally positioned to interact with the coactivator motif 
LXXLL. The charge clamp positions the leucine residues to interact with the hydro-
phobic pockets created by H3, H4 and H12 and stabilizes the complex. The charge 
clamp is essential for interaction with the smaller LXXLL motif [116]. The PPAR- 
RXR- coactivator complex then binds to PPREs, recruits the gene transcriptional 
machinery and transcribes PPAR controlled genes.

The PPAR complex can also exert functions through non-genomic means, for 
example, by sequestering coregulators from other metabolic pathways in an apo 
state or binding to kinases and phosphotases [43, 66, 102].

6.1.3  Differences in LBD Between PPAR Subtypes

Although the overall fold of the three receptors is very similar and about 80% of the 
LBD residues are conserved, each subtype has a distinct pharmacological or ligand 
binding profile [41, 101]. The differences in the sequence of the PPAR subtypes lie 
in regions that are likely to affect ligand binding, such as the Ω loop and, more 
importantly, the ligand binding pocket [27, 113]. Of note, the Ω loop and H9 regions 
contain the highest sequence deviation between the PPAR subtypes, which could 
have implications in interactions with other components of the gene transcriptional 
complex [21].

Generally, differences in amino acid sequence change the possible interactions 
that each PPAR subtype can form with the chemical motifs of a ligand; mutation of 
a single residue was sufficient to change the ligand binding phenotype of one sub-
type to another [101]. These differences in the ligand binding pocket confer the 
affinity of each subtype for certain ligands and can be exploited to create subtype 
specific ligands. In Table 6.1, we list the residues of the ligand binding pocket of the 
PPAR subtypes [41].

6.2  Catalogue of Known Ligands

Numerous attempts have been made by research groups to exploit the therapeutic 
effects of PPAR activation. Counting structural-based investigations alone, there are 
288 unique entries in the Protein Data Bank (PDB) for PPAR-ligand complexes as 
of 2020 (rcsb.org) [10]. However, there are currently only 9 PPAR-activating ligands 
that are approved for clinical use [23]. To attempt to bridge this disparity between 
effort and successes, we examine the previous attempts at synthesizing PPAR 
ligands, focusing on ligand design and PPAR-ligand interactions.

6 PPARα and δ Ligand Design: Honing the Traditional Empirical Method with a More…
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Ligands generally consist of a few regions, a ‘head’ that interacts with residues 
in Arm 1, a ‘tail’ that forms hydrophobic interactions with residues in Arm 2 and a 
‘fin’ region that interacts with residues in Arm 3. These three Arms are connected to 
the ligand ‘core, marked by the amino acid residue α: T279, δ: T252, γ: R288’ 
(Fig.  6.3) [113]. PPARγ ligand design has already been discussed in a previous 
publication [62]. Here we focus on examining attempts at synthesizing chemical 
tools and therapeutic drugs for PPARα and δ, although we will include PPARγ – 
activating dual or pan agonist examples. PPAR-ligand interactions were determined 
using Discovery Studio Visualizer© with the default search parameters [29]. We 
define the total number of interactions as all unique interactions between receptor 
and ligand.

6.2.1  PPARα Ligands

In the early 1950s, an analogue of an insecticide was found to have plasma 
cholesterol- lowering effects [16, 80]. This class of drugs, called fibrates, were later 
found to mediate their effects through the PPARα receptors [80]. Thus, PPARα 

Fig. 6.3 (a) The regions of the archetypal Y-shaped PPAR ligand. Arms 1, 2 and 3 are highlighted 
in blue, orange and grey, respectively (GW2433, PDB ID: 1GWX). (b) The PPAR ligand bound to 
the PPAR LBP. The parts of the ligand are highlighted
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became the first PPAR subtype with a clinically available, subtype specific drug 
class. Fibrates contain the fibrate head group, a phenoxyisobutyric acid motif in the 
ligand head region which makes hydrogen bond contacts with the AF2 surface, and 
are typically full agonists for PPARα [13, 16].

Fenofibrates are one such example in clinical use – they have considerably milder 
side effects compared to the PPARγ-specific TZDs and have been beneficial in treat-
ing cholesterol- or lipid-related conditions [16, 23]. However, PPARα-specific 
fibrates have low affinity and poor subtype selectivity and may as a result have 
lower efficacy than statins [16, 23, 76]. As such, research groups have focused on 
designing more potent full agonists of PPARα, hypothesizing that increasing affin-
ity will increase therapeutic effects [58, 76, 97].

6.2.1.1  PPARα Full Agonists

WY14643 or Pirinixic Acid

WY14643, a potent PPARα agonist, has been used in therapy as an anticholestore-
mic agent. It was initially used for its peroxisome-proliferating properties in the 
discovery of PPAR [49, 93] and has since been used as a control for PPARα drug 
discovery [11]. The WY14643-PPARα complex was first crystallized by Bernardes 
and group, in their study to understand its binding mode and the role of PPARα in 
ocular inflammation (Fig. 6.4, Table 6.2) [11]. This is the first crystal structure of a 
single PPARα LBD monomer binding to two ligand molecules.

WY14643 is smaller than the typical ligand, only containing the head and core 
regions. Like other PPAR agonists, WY14643 forms hydrogen bonds with 4/4 of the 
polar residues in Arm 1 and hydrophobic contacts with seven residues from Arm 1, 
2 and 3. Selectivity is likely imparted by interactions with the larger side chains of 
residues α: Y314 and M330 that are unique to PPARα. Surprisingly, it was found 
that WY14643 also bound to a secondary binding site, around the solvent exposed 
surface of H3, sandwiched between H2′, H2′–H3 loop and H3. The charge cluster 
formed between α: D453-H274-K266-WY14643  in the second binding pocket 
anchors H12 to H3 via the Ω loop, resulting in stabilization of the AF2 surface. The 
stabilization imparted by the binding of two ligand molecules in the LBD was suf-
ficient to induce gene transactivation despite making substantially fewer contacts in 
the LBP.

GW590735/Compound 25a

GSK developed the high affinity PPARα agonist GW590735 to treat dyslipidemia 
and tackle the risk factors of coronary artery disease. GW590735 lowered serum 
triglycerides (TG), very low density cholesterol (VLDLc) and low density choles-
terol (LDLc) and raised high density cholesterol (HDLc) in animal models. It had 
improved potency and selectivity for PPARα compared to previous Fibrates, which 
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was proposed to increase therapeutic benefits and reduce side effects [58, 97]. The 
PPARα-GW590735 complex was crystallized by Sierra et al. [97] as part of their 
SAR study to synthesize a high affinity, PPARα-specific agonist using GW501516 
as the lead compound (Fig. 6.5, Table 6.3).

Fig. 6.4 (a) PPARα LBD in orange complexed with WY14643 in dark purple (PDB ID: 4BCR). 
(b) Interaction map of WY14643 in the LBP with PPARα. (c) Interaction map of WY14643 in the 
secondary binding site with PPARα
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By swapping the oxy-propanoic head with an isobutyric acid head, the L-shaped 
GW590735 makes hydrogen bond contacts with 4/4 of the polar residues of Arm 
1 in PPARα. The gem-dimethyl groups make additional hydrophobic interactions 
with α: V444 (γ: L453, δ: M417) and F273. The bulkier corresponding residues of 
α: V444 in the other subtypes may sterically interfere with ligand, accounting for 
the affinity of the gem-methyl motif for PPARα.

The amide group in the core region confers rigidity to the ligand, which tends to 
increase the stability of interactions with and affinity for the LBP [113]. The phe-
noxy motif in the head region as well as the thiazole motif in the tail region interacts 
with α: C276. The 4-methyl substitution on the thiazole motif makes multiple alkyl 
interactions with α: M330 and M355 in Arm 3 and I339 on the β3. Corresponding 
residues of PPARδ and γ in Arm 3 are not bulky enough to form favorable interac-
tions with the 4-methyl group. In addition, corresponding residue of α: I339  in 
PPARγ (γ: M348) might sterically interfere with this group. The tail region makes 
hydrophobic and π-donor hydrogen bond interactions with residues in Arm 2 as 
well as α: V255 in the Ω loop. Only the corresponding residues in PPARδ can make 
similar interactions with the ligand, which explains why this scaffold was successful 
in both PPARα and δ but not γ.

Table 6.2 The activity of WY14643 at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
WY14643 5.38 >100 >100

EC50 values were determined by dual luciferase assay in HepG2 cells, values were normalized to 
Renilla activity

Fig. 6.5 (a) PPARα LBD in orange complexed with GW590735 in dark purple (PDB ID: 2P54). 
(b) Interaction map of GW590735 with PPARα
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Pemafibrate

Pemafibrate is a selective, high affinity PPARα agonist synthesized by Kowa 
Pharmaceuticals [119]. Pemafibrate has been in clinical trials for treatment of mul-
tiple ailments and is set to replace previous PPARα agonists [23]. The 

Table 6.3 The activity of GW590735 at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
GW590735/25a 0.004 ± 0.002 (95%) 2.83 ± 1.18 (82%) >10

EC50 values were determined by dual luminescence assay in CV-1 cells, measuring alkaline phos-
phatase activity normalized to β-galactosidase activity. Maximal activity (%) was defined as the 
activity of Compound 25a, Compound 1 and Rosiglitazone for PPARα, δ and γ, respectively [97]

Fig. 6.6 (a) PPARα LBD in orange complexed with pemafibrate in dark purple (PDB ID: 6L96). 
(b) Interaction map of pemafibrate with PPARα

Table 6.4 The activity of Permafibrate at each PPAR subtype

Ligand PPARα PPARδ PPARγ
Pemafibrate IC50 (μM)

0.13 ± 0.04 – 9.58 ± 1.85
EC50 (μM)
0.001 1.58 1.10

IC50 values were determined by isothermal titration calorimetry (ITC). EC50 values were taken 
from Yamazaki et al. [119], determined by dual luciferase assay in HepG2 cells, values were nor-
malized to Renilla activity
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PPARα- Pemafibrate- SRC1 complex was crystallized by Kawasaki and colleagues 
(Fig. 6.6, Table 6.4) [58].

Pemafibrate has a Y-shaped design that contains a 2-phenoxybutanoic acid head, 
instead of a isobutyric acid head as seen in GW590735. This fibrate head forms 
hydrogen bonds with 4/4 of the polar residues in Arm 1, but sits slightly lower to 
accommodate the shorter distance to the core, as well as the fin substituent in Arm 
3 [119]. The unique α: Y314 residue in PPARα allows the formation of favourable 
hydrogen bonds with the acid head compared to the histidine residues in PPARδ/γ. 
The ethyl substituent (versus gem-dimethyl) interacts more closely with α: F273 
than V444. α: M355 ‘stretches out’ (compared to GW590735 structure PDB ID: 
2P54) to interact with the phenoxy motif in the head region. The head is connected 
to the fin and tail regions via a nitrogen core.

Pemafibrate is one of the only fibrates that contains a benzoxazole fin substituent 
that interacts with three residues in Arm 3. The area of the tail region adjacent to the 
core does not contain substituents. The tail 1-butoxy-4-methoxybenzene motif 
interacts with residues in Arm 2. The methyl group at the tip of the tail region rotates 
and interacts with α: V256 or V247. The lack of posterior facing substituents in the 
core and tail regions might contribute to the decrease of affinity for PPARδ, due to 
its smaller residues in Arm 2 compared to other subtypes (δ: V245, I328, V312).

Fig. 6.7 (a) PPARα LBD in orange complexed with GW6471 in dark purple (PDB ID: 1KKQ). 
(b) Interaction map of GW6471 with PPARα
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6.2.1.2  PPARα Antagonist

GW6471

GW6471 is an antagonist developed by GSK using the PPARα and γ dual agonist 
GW409544 as a chemical scaffold. The PPARα-GW6471-SMRT complex was 
crystallized by Xu and colleagues in 2002 to explore the structural basis for PPAR 
antagonist binding (Fig. 6.7, Table 6.5) [116]. This was the first PPAR structure 
crystallized with an antagonist.

The N-shaped GW6471 contains a non-acidic N-phenylpropyl-propanamide 
head motif. The propylamide group occupies the typical position of H12 residue α: 
L460, destabilizing H12 and disrupting the AF2 surface. This group also forms 
interactions with the corepressor. This group sits 5.2 Å further laterally towards H12 
than typically seen with the carboxylic acid groups in full PPARα agonists.

GW6471 contains a unique amino-phenylbutanone substituent at the head region 
that is not normally seen in ligands. This motif occupies the inferior part of Arm 1 
and extends into the posterior area of Arm 2, forcing H3 and H7 outward, compared 
to full agonists. The tail substituent utilizes a similar design to GW590735, having 
a methyl substituent that projects into the back of the junction/Arm 2 area. This tail 
substituent makes interactions with Arm 2 and Ω loop residues α: L254 and A250.

6.2.2  PPARδ Ligands

As of 2020, PPARδ remains as the only PPAR subtype without a clinically approved 
drug. Unlike PPARα and γ, there were no preexisting drug classes that were found 
to mediate their effects through PPARδ, and early efforts to create such a drug class 
were plagued by discouraging results [23, 64, 65]. Nevertheless, the clinical success 
of Bezafibrate shows that PPARδ activation is not inherently toxic [16]. Due to its 
role in energy and lipid metabolism, and the side effects seen with long term use of 
PPARα/γ-based therapies, PPARδ makes for a particularly attractive therapeutic 
target [16, 28, 113]. Most of the work on PPARδ ligands have been directed towards 
creating full agonists.

Table 6.5 The activity of GW6471 at each PPAR subtype

Ligand

IC50 (μM)

PPARα PPARδ PPARγ
GW6471 0.24 – –

IC50 values were determined by dual luminescence assay in CV-1 cells, measuring alkaline phos-
phatase activity normalized to β-galactosidase activity, in the presence of 10 nM GW409544
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6.2.2.1  PPARδ Full Agonists

GW2433

GW2433 was the first high affinity PPARδ ligand developed by GSK [13]. GW2433 
was developed from a ‘biased library’ comprised of motifs taken from other suc-
cessful ligands. The PPARδ-GW2433 complex was crystallized by Xu and col-
leagues in their study (Fig. 6.8, Table 6.6) [114]. This was the first crystal structure 
of the human PPARδ LBD. Despite containing a fibrate head, this ligand shows 
affinity for PPARδ, showing that the fibrate motif is insufficient for PPARα 
specificity.

GW2433 is a Y-shaped ligand that contains the typical phenoxyisobutyric acid 
head that forms hydrogen bonds with 3/4 of the polar residues in Arm 1. The gem- 
dimethyl substituents form hydrophobic interactions with five residues in the infe-
rior region of Arm 1. GW2433 wraps around δ: C249, which interacts with the 
different regions of the GW2433. The tail phenyl also makes interactions with six 

Fig. 6.8 (a) PPARδ LBD in orange complexed with GW2433 in dark purple (PDB ID: 1GWX). 
(b) Interaction map of GW2433 with PPARδ

Table 6.6 The activity of GW2433 at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
GW2433 0.17 0.19 2.5

EC50 values were taken from [112], determined by dual luminescence assay in CV-1 cells, measur-
ing alkaline phosphatase activity normalized to β-galactosidase activity
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residues in Arm 2. GW2433 contains a chloro-ethylbenzene fin substituent, that 
interacts with four residues along the Arm 1/Arm 3 region. In PPARγ, residues γ: 
M348 and R288 likely interferes sterically with the halogen substituents on the 
ligand in Arms 2 and 3, respectively, selecting against PPARγ affinity. The three 
ligand regions are connected to a nitrogen core.

GW2331

GW2331 is a fibrate that was developed as a high affinity ligand, to be used as a 
control for PPAR α and γ in ligand binding assays. In 1997, Kliewer and colleagues 
designed and used GW2331 in an inhibitory assay to prove that several fatty acids 
and eicosanoids bind to PPARα directly. GW2331 was shown to activate PPARδ at 
concentrations of >1  μM). Interestingly, despite being a PPARα/γ dual agonist, 
GW2331 was only ever crystallized with PPARδ. The PPARδ – GW2331 complex 
was obtained by Takada and colleagues as part of their study into PPAR subtype 
selectivity and PPAR phylogenetics (Fig. 6.9, Table 6.7) [101]. Strangely, this com-
pound was successfully crystallized with PPARδ despite having no detectable 
IC50 values.

GW2331 is a Y-shaped ligand that contains a 2-methyl-2-phenoxybutanoic acid 
head, which makes hydrogen bond interactions with 3/4 of the polar residues in 
Arm 1. The methyl and ethyl groups in the head region form hydrophobic 

Fig. 6.9 (a) PPARδ LBD in orange complexed with GW2331 in dark purple (PDB ID: 1Y0S). (b) 
Interaction map of GW2331 with PPARδ
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interactions with Arms 1 and 2.The larger ethyl group was observed to sit very near 
to H3 (3.3 Å) possibly causing repulsion. The larger δ: M417 also likely interferes 
with the accommodation of these alkyl substituents in Arm 1. The heptane chain in 
the tail region makes interactions with only three residues in Arm 2, 1 in Arm 3 and 
δ: W228 on the Ω loop. GW2331 contains a N-(1,4-difluorophenyl)amide fin sub-
stituent, which makes interactions with four residues in Arms 1 and 3 as well as a 
bridging interaction to δ: T252 in Arm 2. The three ligand regions are connected to 
a nitrogen core. The repulsion caused by the ethyl substituent in the head coupled, 
with the lack of interactions in Arm 2 possibly explains the selectivity of GW2331 
against PPARδ.

Table 6.7 The activity of GW2331 at each PPAR subtype

Ligand PPARα PPARδ PPARγ
GW2331 IC50 (μM)

0.348 ND 0.670
EC50 (μM)
0.071 ± 0.035 (79%) ND 0.249 ± 0.238 (90%)

IC50 and EC50 values were taken from [32]. IC50 values were determined by fluorescence polariza-
tion assay. EC50 values were determined by luciferase assay in HEK293 cells. Maximal activity 
(%) was defined as the activity of 1 μM of ligand relative to 1 μM of GW2331 and Rosiglitazone 
for PPARα and γ, respectively. ND – not determined; compounds had no activity against PPARδ

Fig. 6.10 (a) PPARδ LBD in orange complexed with LC1765 in dark purple (PDB ID: 2J14). (b) 
Interaction map of LC1765 with PPARδ
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LC1765

Epple and colleagues derived PPARδ selective full agonist LC1765, to be used as a 
tool for investigation of the pharmaceutical benefits of activating PPARδ. The 
PPARδ-LC1765 complex was crystallized by Epple and colleagues, in their study to 
improve the pharmacokinetic properties of their 3,4,5-trisubstituted isoxazoles 
(Fig. 6.10, Table 6.8) [38].

LC1765 had a Y-shaped design, with a phenylacetic acid head region, forming 
hydrogen bond interactions with 4/4 of the polar residues in Arm 1 and hydrophobic 
interactions with two and one residues in Arms 1 and 2, respectively. This phenyl 
ring in the head region is 1,3 substituted as opposed to 1,4 substituted and thus sits 
lower than other PPARδ ligands to accommodate the core and fin substituents 
in Arm 3.

The isoxazole core of LC1765 sits further posteriorly than where the typical 
ligand core sits and interacts with residues in the interface of Arms 1, 2 and 3. 
Corresponding methionine residues of δ: I328 in PPARα and γ (α: M355 γ: M364) 
likely clash sterically with the core, selecting for affinity towards PPARδ. The phe-
nyl fin substituent projects backward into H7, making hydrophobic contacts with 
four residues in the inferior area of Arm 3. The tail region contains a 1-ethoxy- 2,4-
dichlorobenzene, N-linked via an amide to the isoxazole core. This amide lies in the 
same plane as the core, pushing the 1-ethoxy-2,4-dichlorobenzene substituent for-
ward anteriorly. The 2,4 substituted chloride groups on the tail substituent points 
down and backwards, making hydrophobic interactions with six residues in Arm 2.

Compound 48

This PPARδ selective full agonist was developed by GSK, continuing their work on 
partial agonists [39, 96]. Optimization of a lead from a search of their internal data-
base resulted in Compounds 46 and 47. The Compound 48–PPARδ complex was 
crystallized to understand the structural basis for the activity of the partial agonist 
Compounds 46 and 47 in the series (Fig. 6.11, Table 6.9).

This Y-shaped Compound 48 contains a naphthoxyacetic acid head region. It 
forms the hydrogen bond interactions with 4/4 of the polar residues in Arm 1. The 
naphthalene interacts with three residues in Arms 1 and 2. The sulfonamide core 
interacts with δ: F291 and forces a cis conformation between the head and tail 
regions. The butane fin substituent interacts with five residues in the inferior part of 

Table 6.8 The activity of LC1765 at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
LC1765 >10 0.07 (83%) >10

EC50 values were determined by cell-based transactivation assay. Maximal activity (%) was defined 
as relative to GW501516 for PPARδ
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Arm 3. The tail biphenyl interacts with four residues in Arms 1 and 2. The methane-
thiol para substituent interacts with five residues in Arm 2 and δ: W228 on the Ω 
loop, spanning the whole of Arm 2.

Affinity to PPARδ is likely imparted by the close proximity of the core and tail 
to δ: I328 and V312, respectively, and by the fin interactions with δ: L303 and 
V298 in Arm 3. The corresponding bulkier methionine residues in PPARα and γ 
likely clash sterically with compound 48, presumably having a negative impact on 
PPARα/γ binding.

Fig. 6.11 (a) PPARδ LBD in orange complexed with Compound 48  in dark purple (PDB ID: 
3PEQ). (b) Interaction map of Compound 48 with PPARδ

Table 6.9 The activity of Compound 48 at each PPAR subtype

Ligand PPARα PPARδ PPARγ
Compound 48 IC50 (μM)

– 0.0316 –
EC50 (μM)
– 0.0079 (90%) –

IC50 values were determined by scintillation proximity assay (SPA), using [H3]GW2331, 
[H3]GW2433 and [H3]BRL49653 as radioligands for PPARα, δ and γ, respectively. EC50 values 
were determined by dual luminescence assay in CV-1 cells, measuring alkaline phosphatase activ-
ity normalized to β-galactosidase activity. Maximal activity (%) was defined as relative to 
GW501516 for PPARδ. 
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Isoquinoline Compound 5

Compound 5 was part of the optimization process that led to identification of tetra-
hydroisoquinoline compound 18 by Luckhurst and colleagues using leads from 
AstraZeneca’s hit identification program. The PPARδ-Compound 5 complex was 
crystallized by Luckhurst and colleagues (Fig. 6.12, Table 6.10) [72] in their study 
to identify a less lipophilic drug for PPARδ.

In the Y-shaped Compound 5, the (2-methylphenoxy)acetic acid motif makes 
hydrogen bonds with 4/4 of the polar residues and hydrophobic contacts with five 
other residues in Arm 1. The tail 2,4-dichlorophenylamide motif also interacts with 
seven residues in the superior part of Arm 2. The phenyl portion in the core iso-
quinoline act as a fin substituent, interacting with five residues in Arm 3. However, 
it does not make any interactions with residues at the bottom of Arm 2 or the Ω loop 
due to the shorter ligand tail. This double ring core sits further back into H7. 
Corresponding methionine residues in PPARα and γ (α: M355 γ: M364) likely clash 
with the core motif, selecting for affinity towards PPARδ. This compound is the 

Fig. 6.12 (a) PPARδ LBD in orange complexed with Compound 5  in dark purple (PDB ID: 
3OZ0). (b) Interaction map of Compound 5 with PPARδ

Table 6.10 The activity of isoquinoline compound 5 at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
Compound 5 >30 0.025 (110%) >30

EC50 values were determined by luciferase assay in HEK-293 cells. Maximal activity (%) was 
defined as relative to GW501516
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only reported crystal structure of a full agonist with 110% activity compared to 
GW501516 in a cell-based assay.

TIPP-204

Kasuga and group synthesized the PPARδ-specific agonist TIPP-204 from the 
PPARα/γ agonist TIPP-401, which was in turn synthesized from PPARα agonist 
KCL [54]. The PPARδ-TIPP-204 complex was crystallized by Oyama and col-
leagues to understand the different binding modes in their series of compounds that 
includes PPARα and PPARδ-specific agonists and a PPARα/γ dual agonist 
(Fig. 6.13, Table 6.11) [82]. The TIPP ligands have a reversed amide compared to 
KCL and differ from each other by an extended fin substituent in TIPP-204 com-
pared to TIPP-401.

TIPP-204 is a Y-shaped ligand. The isobutyric acid head interacts with 3/4 polar 
of the residues and three other residues (including δ: M417) in Arm 1. The 
1,3,4- substituted phenoxy core interacts with two residues in Arm 2 and 3. Its tail 
substituent, an amino linked 2-fluoro-4-(trifluoromethyl)benzene interacts with 

Fig. 6.13 (a) PPARδ LBD in orange complexed with TIPP-204 in dark purple (PDB ID: 2ZNP). 
(b) Interaction map of TIPP-204 with PPARδ

Table 6.11 The activity of TIPP-204 at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
TIPP-204 0.250 0.00091 1.100

EC50 values were determined by GAL4 transactivation activity in HEK-293 cells, relative to 
GW501516 for PPARδ and rosiglitazone for PPARγ [54]
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V312, four other residues and δ: W228 on the Ω loop. Its fin butanol substituent 
interacts with δ: I328 in Arm 2, and four other residues in Arms 3.

Affinity for PPARδ is likely mediated by δ: L303 and V298 in Arm 3. The larger 
corresponding residues in PPARα/γ (α: M330 and α: M325 γ: M334) sterically 
clash with the fin. The tail substituent interacts with δ: V312 and potentially clashes 
with PPARγ (γ: M348). The relatively high affinity for PPARα might be due to the 
reversed amide, which makes contacts with α: T279 (δ: T252, γ: R288) and the flex-
ibility of α: M355, to accommodate the fin substituent. This might also be the case 
for the other methionine residues in PPARα (α: M330 and M325). Strangely, 
increasing the length of the fin also increased the potency towards PPARγ, com-
pared to TIPP-401. This may suggest the ligand adopts an alternative top-down 
conformation in PPARγ as seen for compounds GL479 and compound 21 and that 
the fin substituent may be able to make additional contacts in Arm 1 (PDB ID: 4CI5 
and 3H0A).

GW0742

PPARδ full agonist GW0742 was synthesized by GSK along with GW501516 and 
showed superior selectivity against PPARγ compared to GW501516 [100]. Batista 
and colleagues crystallized the PPARδ-GW0742 complex in their study (Fig. 6.14, 
Table 6.12) [9]. This compound is still in the preclinical stages as of 2020, although 
it was found to be associated with side effects [23, 28].

The L-shaped ligand contains a (2-methylphenoxy)acetic acid motif in the head 
region that interacts with 3/4 of the polar residues and hydrophobic contacts with 

Fig. 6.14 (a) PPARδ LBD in orange complexed with GW0742 in dark purple (PDB ID: 3TKM). 
(b) Interaction map of GW0742 with PPARδ
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five residues in Arm 1. The thiazole core interacts with two residues in Arm 3 and 
one in Arm 2. The 3-fluoro,4-(trifluormethyl)benzene motif in the tail region inter-
acts with three residues in Arm 2. The compound GW0742 does not contain a fin 
substituent.

The structural selectivity was likely imparted by three residues: δ: I328 α: M355 
γ: M364, δ: V312 α: I339 γ: M348 and δ: M417 α: V444 γ: L453. The correspond-
ing methionine residues at position δ: I328 and V312 will clash with PPARα and 
PPARγ, respectively, increasing selectivity for the PPARδ. This was confirmed by 
the binding assays of δ: I328M and V312M mutants [9]. δ: M417 in Arm 1 makes 
closer contacts with the carboxylate head than the corresponding PPARα and γ resi-
dues, which might contribute to GW0742’s strong selectivity towards PPARδ. The 
interactions with other residues in Arm 1 likely contribute to the high potency 
of GW0742.

GW501516, Compounds 1–16

GW501516 was the first highly selective and potent PPARδ to make it to clinical 
trials when, unfortunately, it was found to be carcinogenic in mice models [64, 65, 
81, 100]. Wu and colleagues synthesized Compounds 1–16 to mimic fatty acids and 
to occupy Arm 3 of the PPARδ LBD, using GW501516 as a benchmark in their 
SAR study. The PPARδ-GW501516/Compounds 1–16 complexes were crystallized 
by Wu and colleagues as part of their SAR study to identify new selective and potent 
compounds for PPARδ (Fig. 6.15, Table 6.13) [113]. Here we discuss GW501516 
as well as their representative lead compounds 2 and 4.

The L-shaped GW501516 contains a (2-methylphenoxy)acetic acid head motif. 
The acetic acid motif forms hydrogen bonds with 4/4 of the polar residues in Arm 
1. The 2-meythlphenoxy motif in the head region makes hydrophobic contacts with 
five other residues in Arms 1 and 2. It is connected to the core tail motif via a meth-
anethiol linker. The tail motif consists of a 3-thiazolidine, which makes contacts 
with δ: C249 and two other residues, and a (trifluoromethyl)benzene, which makes 
interactions with five other residues in Arm 2.

In the Y-shaped Compound 2, the phenoxyhexanoic acid head region forms 
hydrogen bonds with 1/4 polar residues in Arm 1 and forms hydrophobic interac-
tions with five other residues in Arms 1, 2 and 3. The head region is linked via a 
methyl chain to an amide core. This amide core forms hydrogen bonds with one 
water molecule and is N-linked to an isopropyl fin substituent. The fin substituent 

Table 6.12 The activity of GW0742 at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
GW0742 ND 0.00325 ND

EC50 values were determined by dual luciferase assay in HepG2 cells, values were normalized to 
Renilla activity. ND – not determined; EC50 values could not be calculated up to 10 μM of ligand
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Fig. 6.15 (a) PPARδ LBD in orange complexed with GW501516 in dark purple (PDB ID: 5U46). 
(b) PPARδ LBD in orange complexed with Compound 2  in dark purple (PDB ID: 5U3R). (c) 
PPARδ LBD in orange complexed with Compound 4  in dark purple (PDB ID: 5U3T). (d) 
Interaction map of GW501516 with PPARδ. (e) Interaction map of Compound 2 with PPARδ. (f) 
Interaction map of Compound 4 with PPARδ
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forms hydrophobic contacts with one residue in Arm 3. The core is C-linked to the 
biaryl tail substituent. The biaryl tail substituent consists of a phenyl ring and 2-furyl 
group, which forms hydrophobic contacts with five residues in Arm 2.

In Compound 4, the phenoxyhexanoic acid head region forms hydrogen bonds 
with 3/4 polar residues in Arm 1 and forms hydrophobic interactions with six other 
residues in Arms 1, 2 and 3. The head region is also linked via a methyl chain to an 
amide core and contains the same N-linked isopropyl fin substituent. The core 
makes hydrogen bonds with one water molecule and S-1,2-propanediol, an additive 
used in crystallization. The fin makes hydrophobic interactions with one residue in 
Arm 3. The core is also C-linked to a biaryl tail substituent, which consists of a 
phenyl ring and 3-thienyl group, which makes hydrophobic contacts with five resi-
dues in Arm 2 and 3.

Affinity of GW501516, Compounds 2 and 4 against PPARα and PPARγ is likely 
imparted by residue δ: V312. The larger corresponding methionine residues (α: 
M330 γ: M348) interfere with the tail region of GW501516. Compared to 
Compounds 2 and 4, GW501516 has lower absolute affinity towards PPARα and γ 
[100] (EC50 α: 1.1 μM and γ: 0.85 μM). This might be due to the lack of posterior 
facing substituents in the core or tail region of GW501516. Even though Compounds 
2 and 4 do not contain such substituents, the core region is positioned slightly lower 
compared to GW501516 and closer toward H7, causing interference with corre-
sponding residues of δ: I328 and V298 in PPARα and γ (α: M355, M325 γ: M364, 
M334). In PPARα, interference between the larger α: Y314 (δ: H287 γ: H323) resi-
due on the AF2 surface and the longer hexanoic acid head would possibly force the 
core and tail substituent of the ligand into an unfavourable position, clashing with 
corresponding residue of δ: L303 (α: M330). These observations were confirmed by 
mutagenesis [113].

Compound 18 and Compound 13

Compounds 18 and 13 were synthesized by Astellas pharma in SAR studies which 
eventually led to MA-0204, a potential therapeutic for Duchenne Muscular 
Dystrophy (DMD). These compounds were optimized to have better pharmacoki-
netics and an improved safety profile over GW501516 [63–65]. The 

Table 6.13 The activity of lead compounds at each PPAR subtype

Ligand

EC50 (μM)

PPARαa PPARδ PPARγa

GW501516 2.591 ± 0.0012 0.0012 ± 0.0003 2.591 ± 0.0012
Compound 2 >10 0.0090 ± 0.0003 >10
Compound 4 >10 0.0172 ± 0.0007 >10

EC50 values were determined by luciferase assay
aEC50 for PPARα and γ was given as a single value in the study. Luciferase assay methods were 
not given
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PPARδ  – Compound 18/13 complexes was crystallized by Lagu and colleagues 
(Fig.  6.16, Table  6.14) [63–65] in their search for a potent, selective and safer 
PPARδ agonist.

These L-shaped compounds differ slightly in the arrangement of the acidic head 
and tail region. Compound 18 contains a 4-methyl,4-hexenoic acid head and an 
amide motif in the tail, and Compound 13 contains a hexanoic acid head and an 
imidazole motif in the tail. The head region of compounds 18 and 13 makes similar 
hydrogen-bonding interactions with 4/4 of the polar residues and hydrophobic con-
tacts with two residues in Arm 1 and 2. The extra 4-methyl substituent in compound 

Fig. 6.16 (a) PPARδ LBD in orange complexed with Compound 18 in purple (PDB ID: 5XMX). 
(b) PPARδ LBD in orange complexed with Compound 13 in purple (PDB ID: 5ZXI). (c) Interaction 
map of Compound 18 with PPARδ. (d) Interaction map of Compound 13 with PPARδ
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18 makes an additional contact in Arm 1. The core phenoxy motif in both com-
pounds interacts with four residues in Arms 2 and 3. The 2-phenylfuran tail motif of 
Compound 18 interacts with 5 residues in Arm 2 and 1 in Arm 3. The larger imidaz-
ole motif of Compound 13 makes additional contacts with 3 residues in Arms 
1 and 2.

The compound has increased affinity for PPARδ due to having the head and tail 
connected to the phenyl core at the ortho position, pushing the core closer to H7. 
Corresponding methionine residues of δ: I328 in PPARα and γ (α: M355 γ: M364) 
would clash sterically with the core. The corresponding residue of δ: V312  in 
PPARγ (γ: M348) would also interfere with the 2-furyl group in the tail end, select-
ing for affinity towards PPARδ.

6.2.2.2  PPARδ Partial Agonists

Partial agonism of PPARδ has been studied by several groups, motivated by the 
increased safety profile seen from partial agonism of PPARγ [14]. Having a suite of 
chemical tools is beneficial for exploration of PPAR function, but whether partial 
agonism of PPARδ has any therapeutic benefits over full agonism remains to 
be seen.

Compound 2

Novo Nordisk synthesized the partial PPARδ agonist Compound 2. The goal of 
lowered efficacy came from the observations of the reduced side effects seen in 
partial agonists for PPARγ [14, 84]. This compound was derived from GW501516, 
to design a rigid PPARδ selective full agonist that could fill the PPAR LBP. The 
PPARδ-Compound 2 complex was crystallized by Pettersson and colleagues to 
investigate the structural basis for partial agonism induced by Compound 2 
(Fig. 6.17, Table 6.15) [84]. This was the first crystal structure of a partial agonist 
of PPARδ.

Compound 2 utilizes a Y-shaped design, swapping the methyl substituent in the 
(2-methylphenoxy)acetic acid in the head region to a cyclopentyl. The head region 

Table 6.14 The activity of lead compounds at each PPAR subtype

Ligand PPARα PPARδ PPARγ
IC50 (μM)

Compound 18 – 0.057 ± 0.001 –
EC50 (μM)

Compound 18 6.100 0.0370 ± 0.0050 >10.000
Compound 13 6.970 0.0007 ± 0.0002 >10.000

IC50 values were determined by surface plasmon resonance (SPR) [63]. EC50 values were deter-
mined by luciferase assay in CV-1 cells [63]
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adopts a lower position compared to full agonists and forms hydrogen bonds with 
1/4 of the polar residues in Arm 1 and interacts with five other residues in Arms 1, 
2 and 3. The lack of interactions with residues on H12 might have destabilized H12 
(unmodelled in structure) and the AF2 surface, contributing to its partial agonistic 
activity. The core interacts with two residues from Arms 2 and 3. The trifluorometh-
ylbenzene motif in the tail interacts with five residues in Arm 2. The morpholine 
motif in the fin interacts with four residues in Arm 3, reaching up to H5. The fin is 
connected to the core via a rigid alkyne carbon linker.

To accommodate the fin, the core sits further anteriorly than usually seen for 
PPARδ ligands. The cyclopentyl motif in the head is too close to the core due to the 
short core-head sulphur linker and points posteriorly into δ: I328, selecting against 

Fig. 6.17 (a) PPARδ LBD in orange complexed with Compound 2 in dark purple (PDB ID: 
2Q5G). (b) Interaction map of Compound 2 with PPARδ

Table 6.15 The activity of Compound 2 at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
Compound 2 ND 0.13 (39%) ND

EC50 values were determined by dual luminescence assay in CV-1 cells, measuring alkaline phos-
phatase activity normalized to β-galactosidase activity. Maximal activity (%) was defined as rela-
tive to NNC 61-4655, GW501516 and rosiglitazone for PPARα, PPARδ and PPARγ, respectively. 
ND – not determined; EC50.was not calculated if activity was lower than 10% at ligand concentra-
tion of 30 μM
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PPARα/γ affinity as previously mentioned and pushing H7 out posteriorly. This 
causes the carboxylic acid head to sit lower than other PPARδ agonists, preventing 
interaction with H12. The trifluoromethyl substituent in the tail also interacts with 
δ: V312, selecting against PPARγ affinity.

GW9371

The PPARδ partial agonist GW9371 was identified by GSK through a high through-
put screening (HTPS) of their in-house compound collection. This was part of their 
efforts to identify a range of chemical tools to investigate biological role of PPARδ. 
The PPARδ-GW9371 complex was crystallized by Shearer and colleagues in their 
SAR study that yielded partial agonist compounds GSK1115 and GSK7227 
(Fig. 6.18, Table 6.16) [96].

The L-shaped GW9371 contains a tetrahydroisoquinoline interacts with 1/4 of 
the polar residues in Arm 1 and 2 residues in Arms 2 and 3. This motif does not form 
hydrogen bonds with H12, likely resulting in its partial agonistic activity. It contains 
a sulfonyl core which makes a total of four interactions with residues in Arms 1, 2 
and 3. A formylanthranilic acid motif comprises the tail region of the ligand and 
makes polar interactions with δ: T252 and R248 and hydrophobic interactions with 
four other residues in Arm 2.

Ortho-substituted acids are generally not tolerated in Arm 1 of PPARδ, and thus 
the compound binds to Arm 2 as predicted by Shearer and colleagues [96]. The 
proximity of the carboxylic acid and amide substituents likely causes intra-ligand 
interactions, further reducing the likelihood of accommodation of this motif in Arm 
1, which then places the tetrahydroisoquinoline motif in Arm 1. Affinity to PPARδ 

Fig. 6.18 (a) PPARδ LBD in orange complexed with GW9371 in dark purple (PDB ID: 3DY6). 
(b) Interaction map of GW9371 with PPARδ
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is likely due to the proximity of the sulfonyl core to δ: I328 (α: M355 γ: M364), 
clashing with methionine residues in and selecting against PPARα and γ.

6.2.3  Dual or Pan Agonist Ligands

Dual or pan agonists refer to agonists that bind specifically to at least two or all three 
of the PPAR subtypes, respectively, and result in transactivation of PPAR genes. 
Groups that synthesize these agonists attempt to combine the unique pharmacologi-
cal benefits of activating each PPAR subtype [23]. This was initially done to allevi-
ate the side effects seen in activation of a single subtype, such as weight gain with 
PPARγ-activating TZDs. Another motive for such therapeutics is that ligands com-
bining the effects of multiple receptors may reduce risks associated with using mul-
tiple drugs in combination to treat complex ailments [6]. Some dual agonists 
combine the effects of different nuclear receptor families or enzymes, opening the 
possibility of an even wider range of pharmacological outcomes [37, 68]. Examining 
the structural basis of dual and pan agonists often reveal important insights into 
selectivity and unexpected binding modes.

6.2.3.1  PPARα/γ Dual Agonists

TZD-based therapies were efficacious in lowering blood glucose levels, decreasing 
insulin levels and increasing sensitivity to insulin. However, they did not modulate 
serum lipid levels and often resulted in weight gain. Since fibrates modulate serum 
lipid levels, the prominent idea during this period was to create ligands with PPAR 
α and γ affinity. In theory this would combine the insulin sensitization effects of 
TZDs and the lipid modifying effects of fibrates to reduce the weight gain seen with 
TZD treatment [34]. Based on this hypothesis, many groups have attempted to syn-
thesize dual α/γ agonists, however many of these drugs have been dropped during 
various stages of clinical trials due to side effects [23, 110, 123]. Since then, several 
PPARα/γ dual agonists have been approved for clinical use, such as lobeglitazone. 

Table 6.16 The activity of GW9371 at each PPAR subtype

Ligand PPARα PPARδ PPARγ
GW9371 IC50 (μM)

>10 0.1258 7.9432
EC50 (μM)
– 1.2589 (61%) –

IC50 values were determined by scintillation proximity assay (SPA), using [H3]GW2331, 
[H3]GW2433 and [H3]BRL49653 as radioligands for PPARα, PPARδ and PPARγ respectively. 
EC50 values were determined by dual luminescence assay in CV-1 cells, measuring alkaline phos-
phatase activity normalized to β-galactosidase activity. Maximal activity (%) was defined as rela-
tive to GW501516 for PPARδ. 
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This suggests that PPARα/γ dual agonism may not be inherently toxic, but further 
investigation is required to synthesize and determine the safety of new compounds 
[45, 123].

GW409544

GW409544 is a L-tyrosine analogue, modified from Farglitazar [115]. It was devel-
oped to improve on Farglitazar’s affinity for PPARα and to balance its affinity for 
PPARα and γ [115]. The GW409544-PPARα-SRC1 complex was crystallized by 
Xu and colleagues (Fig.  6.19, Table  6.17) [115], continuing their study into the 
structural determinants of selectivity between the PPAR subtypes [114, 115]. This 
is the first PPARα crystal structure published, as well as the first PPARα structure 
crystallized with a coactivator motif.

The N-shaped GW409544 forms H bonds with 4/4 of the polar residues in Arm 
1. It contains an atypical a phenyl-butanone substituent near the acidic head group. 

Fig. 6.19 (a) PPARα LBD in orange complexed with GW409544 in dark purple (PDB ID: 1K7L). 
(b) Interaction map of GW409544 with PPARα

Table 6.17 The activity of GW409544 at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
GW409544 0.0023 ± 0.0005 >10 0.00028 ± 0.00006

EC50 values were determined by dual luminescence assay in CV1 cells, measuring luciferase activ-
ity normalized to β-galactosidase activity
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This group points downwards from Arm 1 diagonally towards H7, pushing against 
F273 and interacting with four other residues in Arms 1 and 2. The phenoxy core 
wraps around H3 and makes interactions with three different residues in Arms 2 and 
3. The tail substituent makes interactions with six residues in Arms 2 and 3.

Selectivity to PPARα and γ is likely imparted by a few features. Firstly, residues 
α: F273 γ: F282 is flexible and can accommodate the head phenyl-butanone sub-
stituent, but in PPARδ, δ: M417 likely prevents flexing of corresponding δ: F246. 
This substituent is able to occupy the posterior part of Arm 2, a characteristic not 
normally seen in PPARα agonists due to methionine residues α: M355 and M330. 
The phenyl ring at the tip of the tail does not contain bulky, polar substituents that 
interfere with γ: M348. Finally, the tail is connected to the phenoxy core via a flex-
ible alkyl chain linker. The skinny alkyl chain does not interfere with methionine 
residues in PPARα/γ (α: M355 γ: M364 and α: M330) and allows optimal position-
ing of the tail substituent to accommodate PPAR γ: M348 in Arm 2. The smaller 
corresponding residues in PPARδ are unable to form favourable interactions with 
GW409544.

Azetidinone Compounds 17 and 35

Wang and colleagues from Bristol-Myers Squibb developed the dual α/γ agonist 
Azetidinone Compounds 17 and 35. These compounds were developed to be struc-
turally distinct from Muraglitazar to avoid the associated side effects seen with the 
ligand [110]. Only the PPARα-Compound 17 complex was crystallized to confirm 
the stereochemistry of Compound 17, as part of their SAR study (Fig.  6.20, 
Table 6.18) [110].

Fig. 6.20 (a) PPARα LBD in orange complexed with Compound 17  in dark purple (PDB ID: 
2REW). (b) Interaction map of Compound 17 with PPARα
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Compound 17 is an N-shaped, full PPARα/γ agonist. In the head region, the 
2-substituted formic acid group on the azetidinone motif forms hydrogen bonds 
with 4/4 of the polar residues in Arm 1. It contains an atypical 1-substituted methox-
benzene motif which makes interactions with five residues in the ‘Benzophenone 
pocket’, bordered by H3, H11 and the H11–H12 loop. The para-substituted phe-
noxy core interacts with two residues in Arms 2 and 3. This optimally positions the 
tail substituent, to interact with the bulky methionine residues in the Arm 3 region 
of PPARα. In the tail region, the aryl rings interact with eight residues in Arm 
2 and 3.

Compound 17 selects against PPARδ, similar to GW409544 described above. 
The core and tail motifs are identical, making contacts with the methionine residues 
in PPARα and PPARγ. However, α: F273 flexes and points towards H7 allowing the 
head methoxybenzene substituent to occupy the benzophenone pocket, a conforma-
tion previously seen for PPARγ in Montanari et al. [77]. PPARδ cannot accommo-
date this substituent due to the presence of a bulkier δ: M417 residue in this pocket. 
This conformation of α: F273 might also push H3 anteriorly (compared to all other 
PPARαs structures examined) and induce instability to H3, accounting for the varia-
tion in affinity between Compound 17 and GW409544.

GL479

In 2012, Giampietro and colleagues synthesized compound GL479, a dual α/γ ago-
nist that had full agonistic activity toward PPARα and partial agonistic activity 
toward PPARγ. This specific activation profile was selected based on the hypothesis 
that side effects seen in previous dual α/γ agonists were caused by full agonist activ-
ity toward PPARγ [45]. The PPARα/γ – GL479 complexes were crystallized by dos 
Santos and colleagues in their study (Fig. 6.21, Table 6.19) [33].

The L-shaped GL479 contains a fibrate head which forms hydrogen bonds with 
¾ of the polar residues in Arm 1. The gem-dimethyl motif here interacts with four 
other residues in Arm 1. An ethanol core links the head to the tail region. The tail 
azobenzene motif interacts with six residues in Arms 2 and 3. Interestingly, in 

Table 6.18 The activity of Azetidinone compound 17 at each PPAR subtype

Ligand PPARα PPARδ PPARγ
Compound 17 IC50 (μM) Ki

0.360 ± 0.005 – 0.100 ± 0.003
EC50 (μM)
0.070 ± 0.005 (>90%) – 0.090 ± 0.021 (>90%)

IC50 values were determined by fluorescence polarization assay (FPA), against probes 
7- benzyloxy-4-trifluoromethyl coumarin and 7-benzyloxyresorufin for PPARα and PPARγ, 
respectively. EC50 values were determined by luciferase assay in HEK293 cells. Maximal activity 
(%) was defined as activity of 1 μM of ligand relative to 1 μM of GW-2331 and rosiglitazone for 
PPARα and γ, respectively. 

6 PPARα and δ Ligand Design: Honing the Traditional Empirical Method with a More…



144

Fig. 6.21 (a) PPARα LBD in orange complexed with GL479 in dark purple (PDB ID: 4CI4). (b) 
PPARγ LBD in orange complexed with GL479 in the ‘tail-up’ conformation in dark purple (PDB 
ID: 4CI5). (c) PPARγ LBD in orange complexed with GL479 in the ‘top-down’ conformation in 
dark purple (PDB ID: 4CI5). (d) Interaction map of compound GL479 with PPARα. (e) Interaction 
map of GL479 in the ‘tail-up’ conformation with PPARγ. (f) Interaction map of GL479 in the top- 
down conformation with PPARγ
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PPARγ GL479 adopts two distinct conformations. In the first conformation, it 
adopts a tail-up conformation and interacts with Arm 3 [114]. This can be due to: (1) 
The smaller γ: H323 (α: Y314) residue forces the ligand to bind closer to H12 in 
PPARγ. The ligand would be unable to effectively span across H3 into Arm 2, pos-
sibly explaining its partial agonism for PPARγ. (2) The tail region likely makes 
more contacts in the tail up conformation for PPARγ, due to the smaller correspond-
ing residues of α: C275 and M330 in Arms 2 and 3 (γ: G284, V339). It forms inter-
actions with five residues in Arm 3. In the second conformation of PPARγ-GL479 
complex, GL479 adopted a top-down conformation spanning Arms 3 and 2. Partial 
agonists for PPARγ often adopt this top-down conformation [14, 25]. It makes inter-
actions with three residues in Arm 1, six residues in Arm 2 and γ: H266 and F264 
on the Ω loop. 

The affinity towards PPARα and γ, like GW409544 and Azetidinone compounds 
17 comes from the slim core and tail design, allowing accommodation by the methi-
onine residues in PPARα and γ Arms 2 and 3. However, it is the lack of substituents 
in the tail region that likely accounts for its low potency. GL479 makes 16 interac-
tions with PPARα, which is comparable to other ligands with low affinity like 
WY14643 or 17-oxoDHA. Although GL479 makes more interactions (20 in both 
conformations) with PPARγ, it is more potent at PPARα (16 interactions). The top 
down conformation is possible in PPARγ due to residues γ: G284 and R280.

6.2.3.2  PPARα/δ Dual Agonists

Targeting PPARα and γ has been the focus drug discovery due to availability of 
selective ligands and thus a better understanding of its biochemistry and therapeutic 
utility. Tools for PPARδ arrived much later, and consequently the therapeutic ben-
efits of PPARδ were discovered later compared to PPARα and γ [53]. As such, 
PPARα/δ and δ/γ dual agonists are very rare [23]. A recent example was PPARα/δ 
Elafibranor which displayed a desirable safety profile but did not perform signifi-
cantly better than placebo against non-alcoholic steatohepatitis [44, 86]. Whether 
this problem was specific to elafibranor or due to the inherent biochemistry of 
PPARα/δ activation remains to be seen.

Table 6.19 The activity of GL479 at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
GL479 0.6 ± 0.01 (158%) – 1.4 ± 0.02 (21%)

EC50 values were determined by dual luciferase assay in HEK293 cells, values were normalized 
to Renilla activity. Maximal activity (%) was defined as relative to Clofibric acid Rosiglitazone for 
PPARα and γ respectively [45]. 

6 PPARα and δ Ligand Design: Honing the Traditional Empirical Method with a More…



146

TIPP-401

Kasuga and colleagues first synthesized TIPP-401 by optimizing the ligand tail and 
core regions, using their previous PPARα specific compound KCL as a lead [53]. 
The PPARδ-TIPP-401complex was later crystallized by Oyama and colleagues to 
explore the structural selectivity between the PPAR subtypes (Fig. 6.22, Table 6.20) 
[82]. The only difference between the PPARα selective KCL and PPARα/δ dual 
agonist TIPP-401 is a 2-substituted fluorine atom on the phenyl in the tail motif and 
a reversed carbon amide core-tail linker.

TIPP-401 is a Y-shaped ligand that interacts with 3/4 of the polar residues and 
two other residues (including δ: M417) via the isobutyric acid head motif in Arm 1. 
It contains a 1,3,4-substituted phenyl core that interacts with two residues in Arm 2. 
The tail amino linker interacts with δ: T288. Its tail substituent, an amino linked 
2-fluoro-4-(trifluoromethyl)benzene interacts with δ: V312, five other residues and 
W228 on the Ω loop, similar to TIPP-204. Its fin methanol substituent interacts with 
δ: I328 in Arm 2 and four other residues in Arms 3.

Like TIPP-204, affinity for PPARδ of TIPP-401 was likely increased by revers-
ing the amide linker, compared to the PPARα specific KCL, creating interactions 

Fig. 6.22 (a) PPARδ LBD in orange complexed with TIPP-401 in dark purple (PDB ID: 2ZNQ). 
(b) Interaction map of TIPP-401 with PPARδ

Table 6.20 The activity of TIPP-401 at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
TIPP-401 0.010 0.012 4.900

EC50 values were determined by luciferase activity in HEK-293 cells. Maximal activity (%) was 
defined as relative to GW501516 for PPARδ and Rosiglitazone for PPARγ [53]
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between the carbonyl and residue δ: T288 [54]. Affinity against PPARγ is likely 
mediated by the close proximity of the tail to δ: V312, corresponding residues in 
PPARγ would clash sterically (γ: M348). As seen in the PPARα-TIPP-703 complex 
(PDB ID: 2ZNN), α: M355 flexes to avoid clashing with the fin substituent, explain-
ing the high affinity of TIPP-401 for PPARα.

6.2.3.3  PPARδ/γ Dual Agonists

Phenoxyacetic Acid Compounds 10 and 21

Connors and colleagues identified Compounds 10 and 21 from a SAR study [25]. 
They attempted to combine the fatty acid-oxidizing properties of PPARδ 
activation,and the safer, antiadipogenic character of partial agonists of PPARγ. The 
PPARδ-Compound 10 and PPARγ-Compound 21 complexes were crystallized by 
Connors and colleagues to understand the structural basis for the binding profile of 
the compounds (Fig. 6.23, Table 6.21) [25].

Compounds 10 and 21 both uses a Y-shaped design. In the PPARδ – Compound 
10 complex, we see that the (2,3-dimethylphenoxy)acetic acid head motif in com-
pound 10 makes hydrogen bonds with 4/4 polar residues in Arm 1 and hydrophobic 
interactions with five residues in Arms 2 and 3. It contains a phenyl core which 
interacts with δ: L294 in Arm 3. This core is 1,2,4-substituted with the head, fin and 
tail regions, respectively. The ethanol fin interacts with four residues in Arm 3. The 
4-trifluoromethylphenol interacts with seven residues in Arm 2. In the PPARγ- 
Compound 21 complex, the ligand adopts a top-down conformation. The head inter-
acts with γ: R288 and three other residues in Arm 3. The core and tail regions interact 
with five residues in Arm 2 and γ: I262 on the Ω loop. The 2-pentyn-1-ol fin sits 
between H3 and H7 below Arm 1.

Affinity for PPARδ is likely imparted by the oxygen and sulphur linkers from the 
head, tail and fin to the core. This 1,2,4-substituted core optimally positions it to 
interact with δ: I328 and V334. Corresponding methionine residues in PPARα and 
γ would likely clash with the ligand. This clash likely forces Compound 21 to 
assume an atypical top-down conformation in PPARγ but not α, which was possible 
due to residue γ: G284 (α: C275 δ: R248) and R280 (α: R271 δ: H244). These resi-
dues create space for the tail substituent to be accommodated in Arm 2, away from 
γ: M348.

Sulfonylthiadiazole Compounds 6, 11t and 20a

Compounds 6, 11t and 20a are sulfonylthiadiazole analogues synthesized by Sanofi- 
Aventis from a SAR study of PPAR. The rationale for this series of compounds was 
similar to the study by Connors et al. [25]. The PPARδ-compound 6, 11t and 20a 
complexes were crystallized by Keil and colleagues to understand the binding mode 
of and optimize their compounds (Fig. 6.24, Table 6.22) [59]. The lead compound, 
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Table 6.21 The activity of phenoxyacetic acid compounds at each PPAR subtype

Ligand PPARα PPARδ PPARγ
IC50 (μM)

Compound 10 0.21 0.004 0.30
Compound 21 0.88 0.005 0.033

EC50 (μM)
Compound 10 6.1 (48%) 0.054 (86%) 3.0 (40%)
Compound 21 >10 0.044 (94%) 0.16 (34%)

IC50 values for PPARα and δ were determined by scintillation proximity assay (SPA), using [3H] 
GW2433 as a radioligand for PPARα and δ. IC50 values for PPARγ were determined by a filtration 
assay (FA), using [3H] rosiglitazone. EC50 values were determined by luciferase assay in CV-1 
cells. Maximal activity (%) was defined as relative to GW501516 and rosiglitazone for PPARδ and 
PPARγ, respectively

Fig. 6.23 (a) PPARδ LBD in orange complexed with Compound 10  in dark purple (PDB ID: 
3GZ9). (b) PPARγ LBD in orange complexed with Compound 21 in dark purple (PDB ID: 3H0A). 
(c) Interaction map of Compound 10 with PPARδ. (d) Interaction map of Compound 21 with PPARγ
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Fig. 6.24 (a) PPARδ LBD in orange complexed with Compound 6  in dark purple (PDB ID: 
2XYJ). (b) PPARδ LBD in orange complexed with Compound 11t in dark purple (PDB ID: 
2XYW). (c) PPARδ LBD in orange complexed with Compound 20a in dark purple (PDB ID: 
2XYX). (d) Interaction map of Compound 6 with PPARδ. (e) Interaction map of Compound 11t 
with PPARδ. (f) Interaction map of Compound 20a with PPARδ
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Compound 6, was a low affinity, low efficacy pan agonist compound. The tail region 
of Compound 6 was optimized to give Compound 11t and Compound 20a with 
vastly improved affinity, potency and efficacy.

These N-shaped compounds bind to the bottom of Arm 1, between H3 and 
H7 in the inferior region of LBD and Arm 2. All three compounds occupy similar 
position and binding mode in PPARδ. These compounds contain a sulfonyl head 
region with a 2-isopropyl-1, 3, 4-thiadiazole substituent and wrap around H3 at 
δ: C249.

The sulfonyl head region in Compound 6 forms hydrogen bonds with three water 
molecules. It makes π-donor hydrogen bonds with two residues in Arm 1 and 2 and 
interactions with two other residues in the inferior region of Arm 1. The phenyl core 
interacts with two residues in Arm 1 and 2. The core is linked to the tail substituent 
via an N-ethylformamide linker, which forms hydrogen bonds with δ: C249 and one 
water molecule. The 2-methoxy-5-chlorobenzene tail substituent makes hydropho-
bic interactions with five residues in Arm 2 and δ: W228, and one hydrogen bond 
with δ: C249 via the methoxy group.

The sulfonyl head region in Compound 11t forms weak hydrogen bonds with 
three residues in Arms 1, 2 and 3. It makes hydrophobic interactions with four other 
residues in Arms 1, 2 and 3. The phenyl core makes interactions with two residues 
in Arm 2. The core is linked to the tail substituent with the same N-ethylformamide 
linker, which forms hydrogen bonds with δ: C249. The benzothiophene tail sub-
stituent makes hydrophobic interactions with five residues in Arm 2.

In Compound 20a, the sulfonyl head region forms a π-donor hydrogen bond with 
δ: C249 and interacts with four other residues in Arms 1 and 2. The phenyl core 
interacts with two residues in Arms 2 and 3. The core is connected to the tail sub-
stituent via a propanimine linker. The 3-chloro-5-trifluoromethylpyridine tail sub-
stituent forms interactions with six residues in Arm 2.

The high potency of this series of compounds can be attributed to the strong 
interactions between the linker and δ: C249. The rigidity of Compound 20a com-
pared to Compounds 6 and 11t might account for its increased potency. Compared 

Table 6.22 The activity of lead sulfonylthiadiazole analogues at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
Compound 6 1.6900 (13%) 0.7380 (30%) 3.2300 (13%)
Compound 11t ND 0.3180 (40%) 1.1990 (33%)
Compound 20a ND 0.0016 (26%) 0.3360 (26%)

For PPARα and δ, EC50 values were determined by luciferase activity in stably transfected HEK 
cells. For PPARγ, EC50 values were determined by dual luciferase assay in HEK cells, and values 
were normalized to Renilla activity. Maximal activity (%) was defined as relative to fenofibric acid, 
GW501516 and rosiglitazone for PPARα, PPARδ and PPARγ, respectively. Compounds were 
tested up to 30 μM. ND – not determined; if compounds exhibited <10% activity, the EC50 values 
would not be calculated
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to GW501516 [97, 113], the trifluouromethyl motif in the tail substituent sits lower, 
reducing interference with corresponding methionine residue of δ: V312 in PPARγ 
(γ: M348).

6.2.3.4  Pan Agonists

The rationale behind synthesizing pan agonists follows that for dual agonists – to 
combine the therapeutic benefits of each PPAR subtype and to reduce the risk of 
multiple pharmacology [6, 55, 56, 82]. These efforts are spurred on by the clinical 
success of bezafibrate [16, 55, 56]. Pan agonism presents a challenging design prob-
lem, as pan agonists need to interact with areas conserved among all three sub-
types – this is difficult as these regions of dissimilarity are spread throughout the 
LBP (Table 6.1). Here we see two different design approaches: (1) by decreasing the 
size of the ligand [6, 19] and (2) by using a Y-shaped ligand [82].

Indeglitazar

Artis and group synthesized the pan agonist indeglitazar. The group took an unorth-
odox approach in the drug screening phase where they selected ligands with weak 
activity across all three receptors and then optimized for affinity towards all PPAR 
subtypes, as opposed to selecting ligands with stronger affinity for a specific sub-
type and then optimizing for selectivity. The rationale was that the side effects of 
PPAR activation were not only caused by non-specific binding but also by the sup-
raphysiological activation  of the PPAR receptor [118]. The PPARδ, PPARα and 
PPARγ-indeglitazar complexes were crystallized by Artis and colleagues to under-
stand the binding mode of their pan agonist (Fig. 6.25, Table 6.23) [6].

The Y-shaped indeglitazar assumes a nearly identical conformation in all three 
PPAR subtypes. It binds to the inferior area of Arm 1, in the space between H3 and 
H7. It has a propionic acid head that interacts with 3/4 of the polar residues in 
PPARα, δ and γ. In PPARα, α: Y314 pushes this acid motif slightly towards H3 to 
interact with S280 instead of H440. In PPARγ, the acid motif rotates slightly in 
comparison, interacting with γ: S289 instead of H449. This acid group is connected 
to the 5-methoxy-1H-indene group, which makes interactions with six residues in 
PPARα/γ and seven residues with PPARδ in Arms 1 and 2. The short tail substitu-
ent, a 4-methoxy1-sulfonylbenzene, wraps around H3 at the interface of Arms 2 and 
3. It makes interactions with five residues in PPARα, with seven residues in PPARδ 
and γ, in Arms 1, 2 and 3.

The atypical architecture of indeglitazar avoids the methionine residues in Arms 
2 and 3 and makes contacts in the inferior region of Arm 1 and posterior region of 
Arm 2. Although indeglitazar interacts with most polar residues in PPAR, it does 
not have full agonistic activity, showing that interaction with H12 is not sufficient 
for full agonism.
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Fig. 6.25 (a) PPARα LBD in orange complexed with Indeglitazar in dark purple (PDB ID: 3ET1). 
(b) PPARδ LBD in orange complexed with Indeglitazar in dark purple (PDB ID: 3ET2). (c) PPARγ 
LBD in orange complexed with Indeglitazar in dark purple (PDB ID: 3ET3). (d) Interaction map 
of Indeglitazar with PPARα. (e) Interaction map of Indeglitazar with PPARδ. (f) Interaction map 
of Indeglitazar with PPARγ
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TIPP-703

Kasuga and group synthesized the pan agonist TIPP-703 during their exploration of 
the effects of the trifluoromethyl tail substituent on structural selectivity [55, 56]. 
The PPARα/γ-TIPP-703 complexes were later crystallized by Oyama and col-
leagues to explore the structural selectivity of PPAR (Fig. 6.26, Table 6.24) [82].

TIPP-703 is an L-shaped ligand. In PPARα, the isobutyric acid head motif inter-
acts with 3/4 of the polar residues and three other residues in Arm 1. The 
1,3,4- substituted phenyl core interacts with α: C276. The core-tail amide linker 
interacts with T279. The tail substituent interacts with six residues in Arm 2 and α: 
L254 V255 on the Ω loop. The fin propanol substituent interacts with four residues 
in Arms 2 and 3 including α: M330 and M355. In PPARγ, the isobutyric acid head 
motif forms hydrogen bonds with 2/4 of the polar residues and hydrophobic interac-
tions with four other residues in Arm 1. The 1,3,4-substituted phenyl core interacts 
with four different residues. The tail phenyl interacts with three residues including 
γ: G284, while the adamantyl group interacts with γ: R280 and two other residues. 
In the PPARγ crystal structure the fin propanol substituent is disordered and left 
unmodelled.

The affinity for all three PPARs is likely explained by the slim core area with the 
longer tail motif with the bulky adamantyl group. The core avoids the methionine 
residues in PPAR α and γ. The architecture of the tail substituent avoids clashing 
with γ: M348 in PPARγ. Additionally the flexible γ: R288 (α: T279, δ: T252) allows 
the tail motif to move closer to H3 and for the adamantyl group to occupy the space 
between γ: G284 and R280 in Arm 2 of PPARγ. This adamantyl group is still able 
to make favourable interactions with Arm 2 of PPARα/δ. The propanol fin substitu-
ent makes sufficient contacts with the Arm 3 area which likely increases affinity for 
PPARδ without interfering with PPARα α: M330 [55, 56].

AL29-26

Capelli et al. [19] synthesized compound AL29-26, selected through a structure- 
based virtual screening process that considers experimentally determined PPAR- 
ligand interactions. The PPARα/γ-AL29-26 complexes were crystallized by Capelli 

Table 6.23 The activity of Indeglitazar at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
Compound 1 ≈100 >200 ≈150
Indeglitazar 0.99 1.3 (67 ± 18%) 0.85 (45 ± 10%)

EC50 values were determined by luciferase assay in HEK293T cells. Maximal activity (%) was 
defined as relative to WY-14643, L-165041 and rosiglitazone for PPARα, PPARδ and PPARγ, 
respectively
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and colleagues (Fig. 6.27, Table 6.25) [19] to identify the structural basis for the 
difference in AL29-26 activity at the three PPAR subtypes.

AL29-26 adopts a similar, L-shaped conformation in both PPARα and γ. In 
PPARα, the isobutyric acid head forms hydrogen bonds with 4/4 of the polar resi-
dues in Arm 1 and hydrophobic interactions with three other residues. The 

Fig. 6.26 (a) PPARα LBD in orange complexed with TIPP-703 in dark purple (PDB ID: 2ZNN). 
(b) PPARγ LBD in orange complexed with TIPP-703 in white (PDB ID: 2ZNO). (c) Interaction 
map of TIPP-703 with PPARα. (d) Interaction map of TIPP-703 with PPARγ
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Table 6.24 The activity of TIPP-703 at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
TIPP-703 0.061 0.120 0.043

EC50 values were determined by Dual luminescence assay in HEK293 cells, measuring luciferase 
activity normalized to β-galactosidase activity [53]

Fig. 6.27 (a) PPARα LBD in orange complexed with AL29-26 in dark purple (PDB ID: 5HYK). 
(b) PPARγ LBD in orange complexed with AL29-26  in dark purple (PDB ID: 5HZC). (c) 
Interaction map of AL29-26 with PPARα. (d) Interaction map of AL29-26 with PPARγ
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phenoxy core interacts with three residues in Arm 1. The diphenyl tail makes inter-
actions with four residues in the ‘benzophenone pocket’ in Arm 1 [77]. This is 
made possible by the flexing of α: F273 to accommodate the diphenyl. In PPARγ, 
the isobutyric acid head forms interactions with γ: R288 and two other residues in 
Arm 3. The phenoxy core and diphenyl tail interacts with seven residues in Arms 
2 and 3.

This ligand possesses a much lower transactivation activity for PPARδ and 
PPARγ than seen for other ligands. This is likely due to the relatively smaller num-
ber of residues it interacts with in the PPAR LBD. Selectivity of this ligand for all 
subtypes likely arises from the fact that the ligand is small and does not interfere 
with residues of the different subtypes in PPAR. The fibrate motif in the acidic head 
may increase affinity towards PPARα, due to the larger α: Y314 residue, positioning 
it to interact with S280 [19]. AL29-26 resembles another known peroxisome prolif-
erator nafenopin.

6.2.3.5  Endogenous Agonists

The PPAR subtypes have unique and overlapping affinities for different endogenous 
ligands, usually fatty acids or related metabolites [31, 61]. These fatty acids are usu-
ally present at micromolar concentrations in blood in the human body [114]. Various 
techniques have been used in the discovery of these ligands, but it was Xu and col-
leagues that first confirmed fatty acids as bona fide endogenous PPAR ligands 
through protein crystallography [31, 114]. Analysis of the binding mode of endog-
enous ligands often reveals important insights that can be applied to the design of 
better or safer synthetic ligands [82, 113].

Eicosapentaenoic Acid (20:5 EPA)

Eicosapentaenoic acid (C20:5) is a polyunsaturated fatty acid (PUFA). These 
PUFAs are thought to act through the PPAR receptor and has lipid lowering and 
insulin sensitization effects [114]. The PPARδ-EPA complex was crystallized by Xu 
and colleagues as part of their study into structural selectivity of PPARδ (Fig. 6.28, 
Table 6.26) [114]. In this study, EPA was found to bind in two distinct conforma-
tions, the ‘tail-up’ and ‘tail-down’ modes.

Table 6.25 The activity of AL29-26 at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
AL29-26 0.31 ± 0.13 (87 ± 8%) 11.0 ± 2 (54 ± 6%) 5.3 ± 1.6 (27 ± 3%)

EC50 values were determined by dual luminescence assay in HepG2 cells, measuring luciferase 
activity normalized to β-galactosidase activity
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The EPA molecule assumes an L-shaped conformation. The carboxylic acid 
head forms hydrogen bonds with δ: Y473. Its lipophilic alkyl tail interacts with resi-
dues in Arm 2 or Arm 3 of PPARδ in the tail down or tail up conformation respec-
tively. In the tail-up conformation, the lipophilic tail interacts with three residues in 
Arm 1, two residues in Arm 2, three residues in Arm 3. In the tail-down conforma-
tion, the lipophilic tail interacts with δ: H449, Q286 in Arm 1 and I363, I364, L339, 
C285, V281 and L255 in Arm 2.

In both conformations, all the unsaturated bonds adopt a cis configuration. In the 
tail-up conformation, the tail curves upwards to δ: M329 in H5 and then back down 
and out anteriorly towards the plane of H3. In the tail down confirmation, the tail it 
extends along the lateral edges of Arm 2 interacting with δ: I328, V312, L303, H7 
and the β-sheet.

Vaccenic Acid (18:1)

Fyffe and colleagues found that a previously published ‘apo’ PPARδ protein struc-
ture contained significant electron density in the LBP. They found that bacterial 
fatty acid vaccenic acid binds to PPARδ during the protein purification process, 

Fig. 6.28 (a) PPARδ LBD in orange complexed with EPA in both conformations in dark purple 
(PDB ID: 3GWX). (b) Interaction map of EPA in the tail-down conformation with PPARδ. 
Interaction map of the tail-up conformation is not available

Table 6.26 The activity of Eicosapentaenoic acid at each PPAR subtype

Ligand

IC50 (μM)

PPARα PPARδ PPARγ Assay

Eicosapentaenoic acid (C20:5) 1.1 ± 0.23 4.0 ± 0.90 1.6 ± 0.20 SPA

IC50 values were determined by scintillation proximity assay (SPA), using [3H] GW2331, [3H] 
GW2433 and [3H] BRL49653 as radioligands for PPARα, PPARδ and PPARγ respectively [114]
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causing H12 of PPARδ to be locked in an active conformation. The PPARδ-vaccenic 
acid complex was crystallized by Fyffe and colleagues to prove that vaccenic acid 
binds to PPARδ during protein purification (Fig. 6.29) [41].

Vaccenic acid assumes an L-shaped conformation. The acidic head interacts with 
Arm 1 residues via δ: Y473, H449, H323 and T289. The lipophilic tail interacts with 
δ: M453, K367, I364, I363, V348, L339, L330, C285, R284 and V281, wrapping 
around H3 and interacting with Arm 2.

Iloprost

Iloprost is a prostaglandin I2 (PGI2) synthetic analogue, developed to study the role 
of a related but metabolically unstable eicosanoid PGI3 in cardiovascular homeosta-
sis. It was previously demonstrated that PPAR subtypes are differentially regulated 
by prostaglandins [122]. Here, the PPARα/δ-Iloprost-coactivator complexes were 
crystallized by Jin and colleagues to uncover the molecular mechanisms for selec-
tivity of Iloprost towards PPARα and δ (Fig. 6.30 Table 6.27) [52].

The Iloprost assumes an L-shaped conformation. In PPARα, the 5-hexenoic acid 
head interacts with 3/4 of the polar residues in Arm 1. It forms hydrophobic interac-
tions with five other residues in Arms 1 and 2. The 2-oxy-octahydropentalene core 
interacts with four residues in Arms 1, 2 and 3. The tail region forms a hydrogen 
bond with α: T279 in Arm 2 and hydrophobic interactions with two other residues 
in Arm 2.In PPARδ, the acidic head motif interacts with 2/4 polar residues in Arm 
1. It also forms hydrophobic interactions with three other residues in Arm 1 and 2. 
The 2-oxy-octahydropentalene core interacts with four residues in Arms 2 and 3. 
The tail region forms a hydrogen bond with δ: T252 in Arm 2 as well as six other 
residues in Arm 2.

Fig. 6.29 (a) PPARδ LBD in orange complexed with vaccenic acid in dark purple (PDB ID: 
2AWH). (b) Interaction map of Vaccenic acid with PPARδ
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Fig. 6.30 (a) PPARα LBD in orange complexed with Iloprost in dark blue (PDB ID: 3SP6). (b) 
PPARδ LBD in orange complexed with Iloprost in dark blue (PDB ID: 3SP9). (c) Interaction map 
of Iloprost with PPARα. (d) Interaction map of Iloprost with PPARδ

Table 6.27 The activity of Iloprost at each PPAR subtype

Ligand

EC50 (μM)

PPARα PPARδ PPARγ
Iloprost ≈0.200 ≈0.200 >20

The EC50 values were determined by dual luciferase assay in Cos-7 cells, and values were normal-
ized to Renilla activity
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Selectivity against PPARγ may be caused by interference with the corresponding 
residue γ: R288 (α: T279, δ: T252). γ: R288 would also be unable to form hydrogen 
bonds with the oxygen group in the tail substituent.

17(S)-oxoDHA (22:6)

17(S)-oxodocosahexaenoic acid (17(S)-oxoDHA) is an endogenous ligand of 
PPAR. The PPARα/γ – 17(S)-oxoDHA complexes have been crystallized by Egawa 
and colleagues, continuing their previous research into binding mode of endoge-
nous ligands (Fig. 6.31) [35]. This represents the first crystallized example of an 
endogenous fatty acid bound to PPARα.

Fig. 6.31 (a) PPARα LBD in orange complexed with 17(S)-oxoDHA in dark purple (PDB ID: 
5AZT). (b) PPARγ LBD in orange complexed with 17(S)-oxoDHA in dark purple (PDB ID: 
5AZV). (c) Interaction map of 17(S)-oxoDHA with PPARα. (d) Interaction map of 17(S)-oxoDHA 
with PPARγ
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17(S)-oxoDHA assumes an L-shaped conformation in PPARα. Here, the acidic 
head of 17(S)-oxoDHA interacts α: Y464, Y314 and S280. The lipophilic tail inter-
acts with Arm 1, 2 and the Ω loop. It makes a covalent bond with α: C275 and 
interacts with α: V332, M330, C276, C275, I272, A250, L247 and I241.

In PPARγ 17(S)-oxoDHA adopts a slightly different, folded L-shaped conforma-
tion and occupies the Arm 1, 2 area near the β1 sheet. The lipophilic tail interacts 
with γ: H449, M348, I341, V339, L330, Y327, R288, C285, F282, I281 and forms 
a covalent bond with γ: C285. The acidic head interacts with R288. This covalent 
bond is also seen in other PPARγ-endogenous ligand complexes [50; 107].

6.3  Ligand Design Factors

The PPAR ligand binding pocket contains areas of similarity and dissimilarity 
between the subtypes (Table 6.1). From SAR studies, especially studies regarding 
dual and pan agonists, interesting trends can be observed – different substituents on 
the same general ligand scaffold changes affinity of the ligand towards each PPAR 
subtype [13, 82, 113]. The structural basis for the variations in affinity can be eluci-
dated when structural information is present, and for this reason, drug-discovery 
studies now typically include some form of structure-related information, protein 
docking or simulation, NMR, MS or crystallography. Our analysis of the PPAR- 
ligand interactions in Sect. 6.2 revealed common observations of the binding pat-
terns of ligands, which we describe below.

 1. PPARδ has the ‘narrowest’ Arm 1 and does not appear to accommodate residues 
in the ‘Benzophenone pocket’ observed in α or γ [77].

The size of Arm 1 was noted in [115]. PPARα-specific agonist GW590735 
was optimized based on this difference, between PPARδ vs α in Arm 1 by replac-
ing the acid head motif with the ‘Fibrate head’ motif that tends to be specific to 
PPARα [97]. Some groups achieve different subtype selectivity by swapping the 
head region of the ligands. GSK has made multiple ligands with this method: 
GW590735 from GW501516, GW6471 from GW409544 and compound 48 
from GW501516.

 2. PPARα contains a unique AF2 hydrogen bonding network α: Y464, H440, Y314 
instead of δ: Y437, H413, H287 γ: Y473, H449, H323.

This difference has been used to optimize for and against PPARα selectivity 
[115, 119]. α: Y314  in PPARα allows binding of ligands with a shorter head 
region. This was seen in the optimization of pemafibrate, where it was found that 
increasing the distance between the core and acid motif decreases specificity for 
PPARα [119]. A counter example is seen in Sierra et al. [97], where the longer 
head-core distance allows for better interaction between PPARδ/γ (δ: H287/γ: 
H323) and the fibrate head.
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 3. PPARδ has the widest Arm 2, followed by α and γ.
Ligands selecting against PPARδ tend to contain smaller tail motifs that do 

not contain substituents that project posteriorly into Arm 2, for example, 
TIPP-204 and TIPP-401 vs KCL and GW590735 and pemafibrate compared to 
LC1765 [82]. Kasuga and colleagues also observed that a longer core-tail linker 
increased affinity for PPARδ [53]. Trifluoride tail designs in this area have been 
very successful for high affinity activation of PPARs (GW409544, GW0742, 
TIPP-204, TIPP-401, GW501516, Compound 20a). Adding fluoride atoms to the 
tail has been used to achieve more favourable pharmacokinetic properties [55, 
56]. Wu et al. [113] made a similar observation in their study and confirmed this 
using mutagenesis of PPARδ residues δ: V298, L303 and V312.

 4. Each PPAR has a unique Ω loop forming the anterior wall of Arm 2. PPARδ has 
the bulkiest Ω loop residues, followed by α and then γ.

Studies showed that showed that substituents at the tail can interact favour-
ably with the Ω loop. LC1765 and pemafibrate demonstrated the use of halogen 
substituents in its ligand tail region to make interactions with Arm 2 [58, 97]. In 
their study, Wu and colleagues demonstrated that their compounds caused a con-
formational switch in residue δ: W228 [113].

 5. PPARδ has the widest Arm 3, followed by γ and then α.
Kasuga and colleagues observed that a longer fin substituent that extended 

into the inferior area of Arm 3 increased selectivity for PPARδ [54].
 6. PPARα and PPARγ contain a series of methionine residues in Arms 2 and 3 (α: 

355 γ: 364, α: 325 γ: 334, α: M330, γ: M348), differing at residue α: M330 and 
γ: M348. PPARδ contains none of these residues.

These methionine residues serve as an important selection criteria between 
the PPARs. The methionine residues in LBD for PPARα and γ seem to have an 
‘induced fit’ effect, stretching or compressing to accommodate chemical groups 
when needed (PDB ID: 6L69/2ZNN vs 2P54). Many PPARδ specific agonists 
adopt an ortho substituted cyclic core design which tends to fully occupy the 
extra space in this region α: M355 δ: I328 γ: M364 [38, 113]. Decreasing the size 
of the core or ligand substitutions in the tail region just adjacent to the core 
selects against PPARδ, as less interactions with the PPARδ LBP are formed [53]. 
These methionine residues are very sensitive to proximity, the same trifluoro-
methyl substitution affects affinity differently due to slight shifts in position in 
the LBD (PDB ID: 2XYX vs 5U46)

 7. Forming multiple interactions with residue α: C276 δ: C249 γ: C285 on H3 
seems to be correlated to high affinity.

Ligands that form multiple interactions with this cysteine residue on H3 tend 
to show high affinity [28]. The sulfonylthiadiazole compound series by Keil and 
colleagues made significant interactions with δ: C249 and displayed high affinity 
despite having low efficacy [59]. Partial agonists of PPARγ also interact with this 
residue [14]. In PPARγ, this cysteine residue is able to form a covalent bond with 
endogenous ligands [35].
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6.4  Tools and New Information

In this section, we mention some of the novel methods used by groups in conjunc-
tion with protein crystallography during their drug discovery process.

6.4.1  Examples of Computer-Aided Drug Design

Traditionally, new ligands for PPAR were identified and/or optimized from previ-
ously synthesized compounds and validated through binding or cell-based assays. 
These methods are still frequently used [13, 45, 54, 63, 84, 97, 115]. In many SAR 
studies, researchers identified lead compounds from their own internal databases 
[13, 39, 59, 72, 96]. As an example, the scaffold for GW501516 was identified from 
a screen of libraries for compounds with characteristics of lipophilic carboxylic 
acids, prepared using combinatorial chemistry and structure-based design [100].

These methods have been quickly surpassed by virtual screening methods that 
are able to sift through massive, open access chemical databases for novel chemical 
scaffolds [6, 19, 28]. Chemical ligand databases include ENAMINE, CHEMBL, 
and WOMBAT [28, 104]. Typically, virtual screening methods can be grouped into 
ligand-based or structure-based [104]. Lu and colleagues adopted a ligand shape- 
based search method, for ligands that are likely to adopt a specific conformation that 
would fit the LBP [71]. On top of a multi-step structure-based virtual screening 
process, Capelli and colleagues utilized a ‘structure interaction fingerprints’ 
approach which considers important interactions with the PPAR subtypes, as 
opposed to the shape of the LBP [19]. Da’adoosh et al. [28] recently identified 13 
chemically diverse, novel compounds with nanomolar affinity at the PPARδ recep-
tor by screening a database of 1.56 million molecules, a feat that trumped all previ-
ous lead-based compound optimization in terms of number of novel compounds 
identified in a single study and the affinity of the compounds identified. They made 
use of a machine learning algorithm to screen for potential PPAR agonists from the 
ENAMINE database [28]. Ehrt et al. [36] provide an overview on some computer- 
based methods in rational ligand design, specifically for to distinguishing between 
different protein subtypes.

Virtual screening methods frequently use docking programs to validate hits in 
silico or to understand the structural basis for ligand affinity, especially when bio-
physical or biochemical techniques are inaccessible, impractical or unsuccessful 
[24]. Research groups have utilized many different programs such as Glide, GOLD, 
AutoDock Vina, MOE and OEdocking, typically validating docking results with 
cell-based assays [28, 37, 69, 91, 104]. However, the transferability of in silico 
docking results to in vitro/in vivo experiments depends greatly on the appropriate 
validation of the docking program used and scoring criteria. In addition, accurate 
selection of the ligand binding site, as well as appropriate preparation of both the 
molecular target and the chemical ligand, such as assigning adding hydrogens, 
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replacing unmodelled residues and hydrogen atoms and selection of force fields, is 
also required [28, 99, 104]. Docking tools have been discussed in recent reviews 
[99, 104].

Currently, it is still a requirement that in silico docking programs and its results 
are validated by experimental structural information [104]. This is due to inherent 
limitations in simulation algorithms, computing power or simply due to wrongly 
processed input data or faulty parameterization [99, 104]. These limitations are 
exemplified by the fact that crystallization can often reveal unexpected and novel 
binding modes – although crystallization comes with its own caveats as discussed 
by Davis and colleagues [30]. In the case of pemafibrate, the docking result pre-
dicted a conformation different from that of the crystal structure PDB ID: 6L69 [58, 
117]. Uncommon binding modes were also seen in crystal structures of PPARγ 
antagonist SR10171 and PPARα agonist WY14643, with ligands binding outside of 
the typically defined ligand binding pocket [11, 40].

6.4.2  Pharmacokinetics and Pharmacodynamics

Early drug discovery is a multistep process that involves the interrogation of the 
pharmacokinetic and pharmacodynamic properties of a lead compound [48]. These 
properties can cause discrepancies between their apparent binding affinity in vitro 
and their potency or efficacy in vivo [74]. Commonly, researchers measure pharma-
cokinetic properties, such as maximum drug plasma levels (Cmax), ligand half-life 
and clearance rate and oral bioavailability in mice or rat models [25, 38, 39, 63–65].

One aspect of the pharmacokinetics of a ligand is its absorption, which can be 
affected by its lipophilicity [48, 74]. Some examples of researchers that optimize 
against hydrophobicity include Luckhurst et  al. [72], who optimized their com-
pounds based on favourable cLogP value, a measure of hydrophobicity, and Evans 
et al. [39] and Lagu et al. [63] who used various measures to gauge the solubility of 
their compounds. Other researchers employ cell permeability tests for their com-
pounds. Evans et al. [39] tested permeability of their compounds 46 and 47 through 
an artificial membrane. Lagu et al. [63] used Caco-2 permeability assays as a mea-
sure of cell permeability.

Another aspect is the metabolism of the ligand [48, 74]. The inclusion of certain 
chemical motifs in the ligand could slow its metabolism, therefore increasing the 
bioavailability of the ligand [74]. For example, some researchers intentionally adopt 
fluorine atoms into their ligands, which block metabolically labile sites [55, 56, 74]. 
Unfavourable rates of metabolism of ligands could also be predicted by its reactivity 
against cytochromes P450s. Bristol-Myers Squibb, GSK and Astellas Pharma 
implemented inhibition tests against cytochrome P450 isoforms 3A4, 2C9, 2C19, 
2D6 and 1A2 [39, 63, 110]. In their study, AstraZeneca employed a more direct 
measure of metabolism by checking their compounds for clearance, via incubation 
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with rat hepatocytes [72]. Other researchers utilized a similar strategy with liver 
microsomes to check the metabolic stability of their compounds [38, 39]. Astellas 
Pharma used liquid chromatography–mass spectrometry (LC-MS) to analyse the 
metabolites formed from incubation with liver microsomes, revealing ‘metabolic 
fault lines’ in their compounds [63]. This allowed for optimization of the chemical 
motifs in the compounds to reduce liver clearance, increasing exposure. However, 
one should exercise caution when optimizing solely for low clearance. Lagu et al. 
[64, 65] hypothesize that, at least for PPARδ ligands, maximum exposure achieved 
with a relatively low dosage and any more might have toxic effects.

Acknowledging the inherent differences between models, some researchers 
incorporate simultaneous in  vitro and in  vivo tests with their structural studies 
[38]. Research groups from GSK, Takara bio, Plexxikon and Astellas Pharma con-
ducted receptor cross-reactivity tests to ensure ligand specificity towards PPAR 
only [6, 64, 65, 81, 82]. Other cross-reactivity targets include human Ether-a-go-
go-Related Gene (hERG). Wang et al. [110] performed a hERG assay to ensure 
their compounds do not interfere with cardiac repolarization. hERG testing has 
since become regulation for any compounds to be approved by the FDA and has 
been performed by other studies [64, 65, 103]. Inherent genetic differences between 
animal models and humans can also result in discrepancies. One such difference is 
the absence of a PPRE in the Apo-A1 gene in mice. Some researchers used human 
Apo-A1 transgenic mice for their in  vivo tests to account for this difference 
[92, 97].

Such in vitro/in vivo tests can be costly and time consuming for smaller research 
groups or simply impractical during the identification process of new drug leads. 
Fortunately, there are a range of in silico web tools that can be used to predict 
pharmacokinetic and even pharmacodynamic properties such as hydrophobicity, 
CP450 inhibition and hERG inhibition. Online tools such as preADMET can be 
used to predict pharmacokinetic parameters of any compound. In addition, preAD-
MET can predict the ‘drug-likeness’ of a compound based on Lipinski’s Rule of 5 
and other defined drug-like rules [67]. A similar tool, FAF-Drugs3 (now FAF-
Drugs4), was used by Capelli et al. [19] as a final screening step in their initial 
virtual screening process. Ehrt et al. [36] lists binding site comparison tools, which 
can be invaluable in identifying off-target effects. It is important to note, however, 
that as of now these web tools are still unable to completely substitute in vitro/in 
vivo tests [2].

6.4.3  Wider Considerations for PPAR

In this section we examine other factors that might affect the translation of in vitro/in 
vivo successes into a clinical setting. This could also provide possible explanations 
as to why some patients respond to currently available drugs, while others do not.
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6.4.3.1  LBD Mutations

Mutations in the PPAR protein can result in aberrant gene activation or repression 
[3, 89]. In fact, these mutations are relatively common – it is estimated that 1 in 500 
people have mutations in their PPARγ genes [75]. As previously mentioned in Sect. 
6.1.3, in their study, Takada and colleagues demonstrated that even the mutation of 
one amino acid residue could change the ligand binding phenotype from one sub-
type to another [101]. The first documented mutation for PPARγ was a dominant- 
negative mutation of γ: V290M and P467L in the PPARγ LBD [8]. This and other 
characterized PPARγ mutations have been correlated with familial partial lipodys-
trophy type 3 and also with various cancers (Table 6.28).

Majithia and colleagues observed that single mutations in the protein sequence 
altered protein function to a variable degree, resulting in a gradient of phenotypes 
instead of the traditionally conceptualized ‘on/off’ effects of mutations [75]. These 
mutations can have varying effects on the stability and thus on the activity of the 
LBD, perturbations that can be rescued by synthetic ligands as demonstrated by 
Agostini and colleagues [3]. These mutations can also potentially alter ligand bind-
ing and subtype affinity, causing aberrant cross activation [3, 101]. A patient could 
even have mutations in other related genes and/or proteins that alter their down-
stream responses or cross-reactivity to a PPAR ligand [89]. Thus, it is important that 
mutations in PPAR and other related genes are considered during treatment of 
patients with drugs [3].

6.4.3.2  PPAR Intact Structure and Implications

While the focus of this review was on the interactions in the LBD, PPAR works in 
concert with multiple components to exert its gene transcriptional activity [121]. 
Hence, models of ligand binding and stabilization of the LBD should always be 
considered in the context of the full intact structure.

Table 6.28 Non-exhaustive list of PPAR LBD mutations and its associated diseases

PPAR Mutation Disease Reference

α V227A Non-alcoholic fatty liver disease Chen et al. [22]
γ V290M, P467L Familial partial lipodystrophy type 3 Barroso et al. [8]

Q286P, R288H Colon cancer Sarraf et al. [90]
F360L Familial partial lipodystrophy type 3 Hegele et al. [47]
R397C Familial partial lipodystrophy type 3 Agarwal and Garg 

[1]
D396N Familial partial lipodystrophy type 3 Ludtke et al. [73]
R280P, A233E Familial partial lipodystrophy type 3 Agostini et al. [3]
K422Q, L423P Colon cancer, familial partial 

lipodystrophy type 3
Broekema et al. 
[12]

S221L, M252I, I262M, 
T447M

Luminal bladder tumor Rochel et al. [89]

B. S. K. Chua and J. B. Bruning



167

Chandra et  al. [21] crystallized the ligand-PPAR-RXR-coactivator-DNA com-
plex, providing the first look at a ligand bound DNA/NR complex (Fig. 6.32). Each 
component of complex assumed conformations similar to previously, individually 
determined structures [21] (PDB ID: 2ENV). In this complex, the RXRα DBD and 
PPARγ DBD interact with the β-sheet and H2 region and H7–8 loop and H9–10/11 
of the PPARγ LBD, respectively [21, 120] (Fig. 6.32). This suggests that partial 
agonists, that only stabilize the β-sheet region and/or inhibit phosphorylation of 
S245 (on H2–H2′ loop), may be able to induce gene transcription through stabiliza-
tion of the DBD [14, 87].

As mentioned previously in Sect. 6.1.3, the poorly conserved regions Ω loop and 
H9 in the LBD and the hinge region (domain C) are exposed to the bulk solvent [21, 
113]. These regions could possibly form interactions with other components of the 
gene transcriptional complex [21, 120]. Mutations in H9 and the hinge region could 
affect assembly of the PPAR gene transcriptional complex. Ligands that aim to bind 
and stabilize the Ω loop can also have similar effects [57].

The poorly conserved and highly mobile A/B domains were left unmodelled in 
this structure, and its exact position is still currently unknown even though experi-
ments have been conducted to uncover details of these domains [17, 94]. A recent 
electron cryo-microscopy (cryoEM) structure of ER suggests that its A/B domains 
sits lateral to the ER/RXR dimer core, exposed to the solvent [120]. In this PPAR- 
RXR structure, N terminal end of the modelled PPARγ protein leading to the A/B 

Fig. 6.32 Intact structure of PPARγ LBD-DBD region (orange) complexed with RXRα (light 
grey) and bound by their respective ligands rosiglitazone and 9-cis-retinoic acid (dark blue), coact-
ivator peptides (dark blue) and DNA sequence 5′-GCAAACTAGGTCAAAGGTCAG-3′ and 
5′-CTGACCTTTGACCTAGTTTGC-3′ (dark blue). The N terminal end of the modelled protein is 
circled in black (PDB ID: 3DZY)
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domain seems to point towards the anterior face of the PPARγ LBD, suggesting that 
the PPARγ A/B domains occupy a similar position to that for ER (Fig. 6.32) [21, 
120]. If so, mutations or post translational modifications (PTMs) in A/B domains 
could have a structural effect on the LBD and vice versa [15, 46, 78, 120]. This 
scenario is likely, as mutations in A/B domains have also been correlated with dis-
eases, and PTMs have been shown to affect receptor activity [4, 7, 17, 89]. It has 
even been shown that domains A/B are involved in binding of cofactors and increase 
selectivity of each PPAR subtype [17]. More work needs to be done to understand 
the structure and implications of domains A and B in PPAR.

Adding on to the puzzle, it was noted that all the intact NR/DNA complexes 
published so far adopt different quaternary conformations [60]. In the case of PPAR, 
its length was laterally aligned with the DNA [21]. This observation could possibly 
challenge the paradigm that ligands in general should aim to stabilize H12 in the 
active conformation, as this could potentially have varying effects in different NR, 
assembly of the gene transcriptional complex and transcription of downstream genes.

6.4.3.3  Coregulators and FABPs

Just from the studies examined in Sect. 6.2, we see a wide variety of cell types, 
assay formats and animal models used. The variety of experimental methods used 
generally depends on availability or ease of access. However, using different models 
can become an issue when comparing results between studies, due to inherent dif-
ferences between models, such as differences in the levels of proteins that could 
affect potentiation of a ligand’s effects [26, 121].

Fatty acid binding proteins (FABPs) bind to and shuttle endogenous and syn-
thetic ligands into the nucleus for interaction with PPARs. Each FABP subtype 
interact specifically with one PPAR subtype and typically only bind ligands that are 
specific for its own PPAR subtype (α: FABP1, δ: FABP5 γ: FABP4) [5, 83]. The 
transactivation assays that are commonly used to test ligand-LBD EC50 values 
should also, in theory, test for ligand-FABP binding. While FABPs can bind ligands 
specific for another PPAR subtype, it does not potentiate its transcriptional activity. 
This has potential implications on research conducted with different cellular models 
as different cells contain different subtypes and levels of FABP [83].

Coregulators play a crucial part in gene regulation. Each coregulator seems to be 
able to coordinate different and distinct genetic pathways [88, 121]. PPARs are able 
to bind to a range of coregulators, including NCoR1, SMRT, PGC-1α, CBP and 
SRC1 [18, 52, 70, 88, 116, 121]. Coregulators play a huge part in potentiation of 
NR-activated gene transcription [26]. Interestingly, PPAR ligands were able to dif-
ferentially recruit coregulators. Specifically, this was observed for PPARγ partial 
agonist PA-082, where PGC-1α seems to be preferentially recruited as opposed to 
SRC1 when compared to rosiglitazone [18, 70]. In PPARδ, Lagu and colleagues 
demonstrated that two compounds can activate different subsets of genes, despite 
having similar affinities and plasma exposure [64, 65]. This difference could pos-
sibly be mediated by differential recruitment of cofactors. Considering that different 
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cells models have different levels of coregulators, the implications on cell-based 
assays or data could be significant [7].

6.5  Conclusion

The biology of PPARs presents a valuable therapeutic target for the treatment of 
metabolic diseases, heart and neurological conditions and cancers [23, 82]. However, 
there are many structural, pharmacological and biochemical challenges to designing 
a safe but efficacious PPAR drug [6, 64, 65]. There seems to be an interesting irony 
with PPAR ligand discovery. On one hand, a potential PPAR drug candidate must 
perform significantly better than currently available drugs on a given set of param-
eters. However, in the case of PPAR, it seems that most drug candidates that improve 
on affinity, potency and efficacy often fall short due to unforeseen side effects. A 
widely held hypothesis suggests that a lack of selectivity for one specific subtype 
causes side effects [58, 72, 113]. Interestingly, this issue of selectivity is not unique 
to the PPAR subtypes; two proteins with different sequences and even folds can 
have similar binding pocket environments, and ligands can adapt to multiple bind-
ing pockets [36, 98]. Another recent hypothesis states that PPAR might also have a 
therapeutic index; if a specific range of ligand concentration in the blood or if a 
hypothetical ‘threshold of activation’ is exceeded, side effects will occur [64, 65]. 
These side effects of PPAR activation may also be due to aspects of cross talk with 
other nuclear receptors that are still currently unknown [20, 64, 65].

For now, the complexity of the PPAR regulation network will remain an obstacle 
when scaling from cell and animal-based models to a clinical setting [26]. The dif-
ferences in cell and animal models used between studies also add to the complexity 
[7, 102, 109]. An important point not discussed in this review is that different spe-
cies have different PPAR ligand binding selectivity; the implications of species 
selectivity becomes significant, considering preclinical safety trials are conducted 
in animal models [31, 61]. However, advances in global screening methods and 
single cell quantitative polymerase chain reaction (qPCR) analysis of human tissues 
may play a key role in unravelling this problem [7, 26]. The research into PPAR 
ligand discovery thus far has revealed many insights into the activation and function 
of the PPARs. In this review, we have attempted to tackle the issue of absolute selec-
tivity of PPAR ligands, by examining the available structural information of the 
PPAR ligand binding domain. From this, we have identified a few observations that 
can be used to create a subtype-specific PPAR agonist. There still remain a few 
issues in the field of PPAR structural selectivity: The identification of the full-length 
structure, including the A/B domains for all the PPAR subtypes, its implications on 
ligand function and selectivity between subtypes, the elucidation of PPAR gene 
activation networks and the regulation of those networks in different contexts, such 
as cell and animal models.
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Chapter 7
Pregnane X Receptor: Understanding Its 
Function and Activity at the Molecular 
Level

Sergio C. Chai and Taosheng Chen

Abstract The pregnane X receptor (PXR) is a ligand-activated nuclear receptor 
recognized as an important player in xenobiotic detoxification because it regulates 
the expression of drug-metabolizing enzymes and transporters. Because of its noto-
rious role in drug metabolism and disposition, PXR’s activity may result in unin-
tended drug-drug interactions, decreasing drug efficacy, inducing resistance, and 
causing toxicity. As such, PXR has become an attractive target for the development 
of PXR antagonists that can be used as co-drugs. However, PXR agonists have 
emerged as potential therapeutics against certain diseases, such as inflammatory 
bowel disease. This book chapter describes the molecular basis of PXR activity, 
correlating biochemical and structural elements to describe the promiscuous nature 
of PXR in recognizing a wide array of chemicals and the challenges in developing 
PXR modulators.

Keywords PXR · Drug metabolism · Antagonist · Agonist · Inflammatory 
bowel disease

7.1  Introduction

The pregnane X receptor (PXR, NR1I2) is a ligand-activated transcription factor 
and a member of the nuclear receptor (NR) superfamily [1]. As part of the xenobi-
otic detoxification system, PXR recognizes environmental chemicals and modulates 
the expression of enzymes involved in the biotransformation, metabolism, and elim-
ination of xenobiotics [2, 3]. PXR also plays diverse roles in the biotransformation 
of endobiotics, being involved in physiologic processes such as gluconeogenesis, 
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lipid metabolism, and the homeostasis of bile acids, steroids, and thyroid hor-
mone [4].

In its role as master xenosensor, PXR regulates the concerted transcriptional acti-
vation of an array of genes encoding phases I/II drug-metabolizing enzymes (DMEs) 
and phase III ATP-binding cassette drug transporters [5, 6]. Some of the target genes 
regulated by PXR encode for oxidative enzymes (e.g., cytochrome p450 or CYP) 
and conjugative enzymes (e.g., UDP-glycosyltransferases, glutathione 
S-transferases, and sulfotransferases). Among the transporter proteins regulated by 
PXR are the multidrug resistance proteins and multidrug resistance-associated pro-
teins [7].

Although the detoxification system is a vital mechanism for organisms to protect 
themselves against toxic compounds while maintaining appropriate physiologic 
levels of endobiotics, PXR has become a therapeutic target because of its significant 
impact on clinical drugs by potentially compromising drug efficacy, causing drug 
resistance and inducing toxicity [8, 9]. Moreover, PXR has been implicated in phys-
iologic processes related to cancer [10], inflammatory bowel disease (IBD) [11], 
infectious diseases [12], and energy metabolism [13–15]. However, PXR has proven 
to be a challenging therapeutic target primarily because of its notoriety for promis-
cuously binding to structurally diverse chemicals [6].

7.2  The Chemical Landscape of PXR Ligands

As a master xenobiotic sensor, PXR has evolved to recognize a multitude of chemi-
cals that it can bind to. The ligands display extensive diversity in terms of size, 
lipophilicity, chemical scaffold, and surface area. Figure 7.1 provides a preview of 
the chemical landscape of reported PXR ligands, reflecting the vast range of phys-
iochemical properties that these ligands encompass and indicating the promiscuity 
of PXR [16–27]. Principal component analysis (PCA) of common physiochemical 
properties (molecular weight, partition coefficient, hydrogen bond acceptors, and 
hydrogen bond donors) provides a simple, yet effective way to visualize the wide 
spectrum of these ligands (Fig.  7.1a, blue dots). Although the data spread is 

Fig 7.1 (continued) tory that are used for high-throughput screening is illustrated alongside (light 
red dots). The wide spectrum of physicochemical properties of PXR ligands is demonstrated by the 
distribution in (b) molecular weight, (c) predicted partition coefficient AlogP, (d) predicted molec-
ular surface area, and (e) predicted molecular solubility. The two-dimensional PCA sets and physi-
cochemical properties were computed by using the software package Pipeline Pilot (BIOVIA). (f) 
Circular representation of PXR ligands’ hierarchical clustering based on chemical structure simi-
larity shown with the respective molecular weight values (blue bars). Reported PXR inhibitors are 
indicated by a red dot. (g) Rectangular tree representation of the hierarchical clustering of PXR 
ligands, with the distribution of molecular descriptors (JOELib) represented as bars: number of 
aliphatic hydroxyl groups (purple), number of acidic groups (red), number of basic groups (light 
blue), number of heterocycles (green), and fraction of rotatable bonds (orange). The clustering 
trees and JOELib molecular descriptors were generated by using the online tools ChemMine and 
Interactive Tree of Life
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Fig. 7.1 The promiscuity of PXR is reflected in the diversity of PXR ligands (including agonists 
and inhibitors). (a) The chemical space of PXR ligands (blue dots) can be visualized by using 
principal component analysis (PCA) of several physiochemical properties: molecular weight, par-
tition coefficient (AlogP), hydrogen bond acceptors, and hydrogen bond donors. For comparison, 
PCA of >1,000,000 compounds from the St. Jude Children’s Research Hospital compound reposi
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considerable enough to indicate that PXR’s activity can be modulated by a variety 
of chemicals, a boundary for the types of compounds that can be accommodated in 
PXR’s ligand binding pocket likely exists. For comparison, chemicals from a large 
collection of over a million compounds intended for high-throughput screening 
(from the St. Jude Children’s Research Hospital repository) are plotted alongside 
the reported PXR ligands (Fig. 7.1a, light red dots). It becomes apparent that not all 
types of compounds may be able to serve as PXR modulators, as compounds with 
extreme properties were not identified or reported. Furthermore, the analysis of the 
individual physicochemical properties cannot provide a narrow range in terms of 
molecular weight (Fig. 7.1b), predicted partition coefficient AlogP (Fig. 7.1c), pre-
dicted molecular surface area (Fig.  7.1d), or predicted molecular solubility 
(Fig. 7.1e). These observations exemplify the difficulty of predicting PXR modula-
tors without the need to experimentally confirm their effect on PXR’s activity. 
Similarly, the hierarchical clustering of these reported PXR ligands does not show 
correlations between chemical structure similarity and molecular weight (Fig. 7.1f), 
nor do chemical structure and reported PXR inhibitors seem to be associated. 
Likewise, chemical structure and frequency of the different types of chemical 
groups (aliphatic hydroxyl groups, acidic groups, basic groups, heterocycles) are 
incongruent (Fig.  7.1g). The unpredictability and the wide distribution of these 
physicochemical characteristics validate PXR as a master xenobiotic sensor, but 
they also manifest the challenges in developing PXR antagonists and performing 
structure-activity relationship studies of PXR modulators.

7.3  The Structural Architecture of PXR

As a master xenobiotic sensor, PXR recognizes a range of chemicals with differing 
physicochemical properties. The molecular basis of PXR’s activity and xenosensing 
abilities can be elucidated by the results of numerous structural studies conducted 
on PXR and complemented by findings obtained from other NRs. PXR is a multi- 
modular protein that displays the prototypical architecture of NRs, consisting of an 
N-terminal sequence-specific DNA-binding domain (DBD), the multi-functional 
ligand-binding domain (LBD), and a flexible hinge region that connects the LBD to 
the DBD [28, 29]. The crystal structure of the full-length peroxisome proliferator- 
activated receptor gamma (PPARγ) adequately illustrates the organization of these 
modules (Fig. 7.2). PXR’s control of target gene expression is mediated by zinc 
fingers situated within the DBD, which engage the PXR-responsive element module 
(PXRRE) in the proximal promoter and distal enhancer regions of target genes [30, 
31]. Although PXR exhibits similarities in these domains with other NRs, it lacks 
the long N-terminal A/B domain and the C-terminal F domain seen in some other 
NRs [32].
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The LBD is the most distinguishable feature of NRs (Fig.  7.2). It is a multi- 
functional module that contains the activation function 2 (AF-2) domain at the 
C-terminus, which engages either coactivator or corepressor proteins depending on 
the specific positioning of the AF-2 helix. The first reported crystal structure of the 
LBD of human PXR (hPXR) depicts a three-layered helical sandwich fold compris-
ing the sets H1/H3, H4/H5/H8, and H7/H10 [29]. The PXR LBD consists of 11 
α-helices, but in several of the available x-ray structures, H2 and H6 are modeled as 
an extended flexible loop due to disorder; it is being postulated that the former one 
is involved in forming a channel for ligand access to the ligand-binding site [33]. In 
addition, the LBD is composed of a layer of five stranded anti-parallel β-sheets, 
including the two novel β1 and β1’ not observed in other NRs [29].

The B factors (temperature factors) of the available PXR LBD crystal structures 
uncovered consistent regions of dynamic mobility [34]. The three regions with the 
highest disorder have been identified, corresponding to the loops between H1 and 
β1, β1′ and H3, and β4 and H7 [34]. Some of these regions were not modeled 
because of the high degree of disorder. Additionally, other regions with thermal 
mobility include the loops between H8 and H9, H9 and H10, and the C-terminal of 
the AF-2 region.

Fig. 7.2 Comparison of the structural architecture of PXR and PPARγ. (a) Surface representation 
of the structures of PXR LBD (light blue) and RXRα LBD (light orange), with the PXR AF-2 helix 
(cartoon representation) shown in pink (PDB code 4J5X). (b) For comparison, the structures of the 
full-length PPARγ (light blue) and full-length RXRα (light orange) are oriented similarly to those 
of the PXR-RXRα complex. The DBD of PPARγ and that of RXRα are seen interacting with DNA 
(PDB code 3DZY)
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7.4  Dimerization of PXR

Many of the 3D structures depict PXR as a homodimer, even though it is widely 
assumed that PXR functions as a monomer when participating in heterodimeriza-
tion with regulatory proteins. One of the earliest crystallographic reports was 
focused specifically on proving that homodimerization of PXR is indeed present in 
solution and is required for activity [35]. The homodimerization interface is formed 
by the terminal β1′ strands from each monomer, where the corresponding Trp-223 
and Tyr-225 residues from each strand create an interlocking system. Analytical 
ultracentrifugation and size-exclusion studies indicate that Trp-223Ala and 
Tyr-225Ala double mutants prevent homodimerization. These mutants also affected 
PXR’s transcriptional activity in cell-based assays by reducing CYP3A4 induction.

The LBD also contains a heterodimerization interface enabling association with 
the coregulatory protein retinoid X receptor α (RXRα), which is a heterodimeriza-
tion partner for several NRs. The co-crystal structure of PXR LBD with the RXRα 
LBD reveals that the monomers are attracted by electrostatic and polar interactions. 
The heterodimerization interface occupies a surface of approximately 1200  Å2, 
which is formed by H5, H9, and H10 of PXR and H7, H9, and H10 of RXRα [36]. 
While forming a complex with RXRα, PXR was shown to keep the homodimer 
conformation through the β1′ interface. Therefore, the crystal structure illustrates a 
potential heterotetramer complex that can exist in solution. The higher structural 
order was shown to increase the affinity for steroid receptor coactivator-1 (SRC-1) 
peptides, which is also enhanced by agonist binding. It appears that the stabilization 
of the entire complex is a dynamic process in which ligands, partner, and coregula-
tory proteins work together.

7.5  Coregulatory Recruitment to PXR

Ligand binding to the PXR LBD triggers conformational changes leading to the 
recruitment or dissociation of coregulatory proteins, depending on whether the 
ligand is an agonist, antagonist, or inverse agonist. One of the most important struc-
tural changes after ligand binding is the positioning of the AF-2 helix in a specific 
orientation, which directly affects the association or dissociation of coactivators or 
corepressors to and from PXR. An agonist induces an active conformation in PXR’s 
structure, enhancing the binding of a coactivator protein to PXR’s AF-2 region. The 
NR box motif Leu-Xxx-Xxx-Leu-Leu (where Xxx is any other amino acid residue) 
within the coactivator is buried in a hydrophobic groove on the AF-2 region, which 
is formed by helices H3, H4, and the AF-2 helix. Coactivator binding is stabilized 
by a charge clamp involving PXR’s residues Lys-259 of H3 and Glu-427 of the 
AF-2 helix. Prominent coactivators include the SRC-1 and the transcriptional medi-
ator/intermediary factor 2 (TIF2) [37].
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The negative regulation of PXR’s transcriptional activity involves the recruit-
ment of corepressor proteins that bind PXR in the AF-2 region through CoRNR 
boxes with the motif Ile/Leu-Xxx-Xxx-Ile/Val-Ile [4]. Some of the common core-
pressors are the nuclear receptor corepressor (NCoR) and silencing mediator for 
retinoid or thyroid hormone receptors (SMRT). No x-ray structures of PXR with a 
corepressor peptide exist, but crystallographic studies with other NRs indicate that 
the corepressor peptide resides in the same groove on the surface of the AF-2 
domain as the coactivator peptide does in the active PXR conformation [38].

The interplay between ligand binding and coactivator recruitment does not seem 
to be a unidirectional process. Reciprocally, association of the coactivator may 
influence the binding of the ligand. The agonist SR12813 is modeled to be in three 
distinct orientations within the ligand-binding pocket of PXR in the absence of the 
SRC-1 coactivator peptide [29], but the presence of the coactivator peptide fixes the 
ligand in a single position [33].

7.6  AF-2 Helix Orientation Dictates PXR’s Activation

The AF-2 helix’s orientation is the main factor enabling discrimination between 
coactivator or corepressor recruitment, and ligand binding encourages bias toward 
an active or inactive form. [39] When PXR is in the active conformation due to 
agonist binding, the AF-2 helix is positioned against the body of the LBD, trapping 
the agonist in the ligand-binding site and creating a favorable surface on PXR’s 
LBD for coactivator recruitment (i.e., AF-2 region). This orientation of the AF-2 
helix is stabilized by its interactions with residues comprising the ligand-binding 
site and, in many cases, with the agonist.

There is no crystal structure of PXR in the inactive conformation, where the 
AF-2 helix is oriented in a position different from that of the active state. However, 
a few x-ray structures of other NRs provide valuable insights that can be extrapo-
lated to PXR. The 3D structure of RXRα reveals that the AF-2 helix extends away 
from the LBD [40]. The structure of the apo testicular receptor 4 (TR4) shows that 
the AF-2 helix is lodged in the coactivator binding site, presumably preventing the 
binding of a coactivator or corepressor [41]. The autoinhibition by TR4 is a peculiar 
mechanism that has also been observed in the chicken ovalbumin upstream 
promoter- transcription factor II (COUP-TFII) LBD [42]. Surprisingly, all the apo- 
form structures of PXR and most other NRs show the AF-2 helix in the agonist- 
induced conformation, probably due to the non-physiologic conditions under which 
crystals are formed [43]. Therefore, it is argued that crystallography cannot easily 
illustrate the multiple populations of NRs present in solution, where the AF-2 helix 
is favored to be pre-locked in the active state by crystallographic conditions [44].

Several lines of evidence indicate that the AF-2 helix is present in several inter-
mediate states instead of either of the two discrete states of active or inactive. 
Fluorescence anisotropy studies of PPAR concluded that the AF-2 helix is highly 
mobile and ligand binding diminishes its motion [45]. In addition to lessons taken 
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from crystallography [46, 47], NMR studies revealed that in the absence of a ligand, 
an NR can exist in solution in various conformations because of its fluid and flexible 
nature, displaying unsteadiness in regions including the AF-2 helix [48]. Similar 
observations have been made using hydrogen-deuterium mass spectrometry 
(HDX-MS) studies of vitamin D receptor (VDR), where full and partial agonists 
stabilize the AF-2 helix in a graded manner, with corresponding differential strength 
for coactivator peptide recruitment [49].

PXR is not considered to have constitutive activity because it is not thought to 
have basal activity in the unliganded form, unlike the constitutive androstane recep-
tor (CAR). In the absence of agonist, the AF-2 helix of CAR can remain in the 
active conformation, but the AF-2 of PXR would most likely display high random 
mobility [50, 51]. A short and rigid AF-2 helix is believed to be a major contributor 
to CAR’s constitutive activity. This rigidity is due to the presence of the short helix 
HX between H10 and the AF-2 helix, composed of only four to six residues [39]. 
CAR’s AF-2 helix is further stabilized by charge-charge interactions with H4, and 
its movement is restricted by the short linker connecting it to HX [51]. In contrast, 
these features observed in CAR are not present in PXR: the link connecting H10 to 
the AF-2 is seen as an extended loop instead. Interestingly, comparative analysis of 
the relative B factors of the structures of PXR LBD and CAR LBD indicates that the 
AF-2 region in CAR is more ordered than that in PXR [34].

7.7  Ligand Binding Stabilizes the Structure of PXR

In addition to playing a role in the stability of the AF-2 helix in the active or inactive 
conformation, ligand binding increases overall structural stability. The unliganded 
PXR is probably present in solution in a dynamic balance between partially unfolded 
and fully folded forms. For PXR to associate with coregulatory proteins, a fully 
folded and stable structure would be needed to enable stability at the protein-protein 
interaction interface. The crystal structures of PXR show the ligand completely 
enclosed and buried deep within the core of the LBD, where the AF-2 helix forms a 
cap that entraps it. In general, there does not appear to be an obvious ligand entry 
point to the ligand-binding pocket of NRs [52], unlike those of most enzymes. 
Therefore, LBD may need to partially unfold through structural rearrangements for 
the ligand to access the ligand-binding site. Several molecular dynamic simulations 
have been applied to several NRs to identify ligand entry and exit pathways. Flexible 
regions have been identified close to the ligand “gates” in PPARγ [53]. Multiple 
pathways of ligand escape from the LBD in thyroid hormone receptors (TRs) have 
been simulated, identifying several conformational rearrangements involving heli-
ces and β-sheets [52]. All these point to the probable partial unfolded state of NRs 
in the unliganded form.

Solution-based studies indicate that the ligand-binding site and the coregulatory 
protein interface were identified as fluid and malleable regions in the absence of 
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ligand, and ligand binding constrains these conformations to fewer and more ener-
getically stable subsets [48]. HDX-MS analysis of TR shows that ligand anchoring 
in the binding pocket results in a more stable LBD [54]. Protein thermal shift studies 
investigating direct interactions of ligands with CAR corroborate the partial unstruc-
tured state of the protein in the apo-form, which is stabilized in the presence of a 
ligand [55]. HDX-MS studies of PXR and CAR demonstrate regions of the LBD 
that are stabilized by agonists and antagonists, with further restraint of structural 
motion with the addition of coactivator or corepressor peptides [21, 55]. These stud-
ies would indicate that any type of ligand (agonist, antagonists, and inverse agonist) 
would confer the structural integrity needed for coactivator (in the case of agonists) 
or corepressor recruitment (in the case of antagonists and inverse agonists) by pro-
viding internal networks and acting as “glue” [56].

7.8  Ligand-Binding Site of PXR and Ligand Promiscuity

A relatively large number of hPXR structures co-crystallized with various ligands 
have been reported, providing perspectives into the nature of the ligand-binding site 
and its relationship with ligand promiscuity. These structures are valuable because 
of the diversity in scaffold, size, and polarity of PXR ligands that were co- crystallized 
with PXR (Fig. 7.3). The ligand-binding site is formed by 28 amino acid residues, 
most of which are hydrophobic [29]. Only eight residues have polar or charged side 
chains, with salt bridges neutralizing some of these charges (e.g., between Glu-321 
and Arg-410 and between Asp-205 and Arg-413). The LBD of PXR is notably large 
compared to that of other NRs, with a ligand-binding pocket volume of approxi-
mately 1150 Å for the apo-form [29]. The fluid character of PXR’s LBD can be 
appreciated in the hPXR co-crystal structure with SR12813, where the ligand is 
seen to adopt multiple orientations and the ligand-binding pocket volume expands 
to 1344 Å3 (Fig. 7.3a) [33]. However, the PXR region that interacts with SR12813 
shrinks in the presence of a coactivator peptide, resulting in the constraint of 
SR12813 in a single orientation (Fig. 7.3b). The LBD is very flexible and dynamic, 
expanding and conforming its shape to accommodate ligands of different sizes and 
shapes. For instance, in the presence of hyperforin, the volume increases to 1544 Å3 
[57]. The induced fit behavior of the LBD occurs in the presence of rifampicin, one 
of the largest PXR agonists (Fig. 7.3c) [58]. Without the expansion of the LBD, 
rifampicin would not fit in the ligand-binding site of the apo-form. The dynamic 
nature of the PXR LBD is also evident by its large variance in B factors, particularly 
when compared to that of other NRs with similar function [34].

Figure 7.3 compares the binding modes of several PXR ligands in spatial relation 
to the AF-2 helix (red surface) and Trp-299 (blue surface). Agonists generally stabi-
lize the AF-2 helix in NRs by interacting with some of its residues; however, Trp-299 
is a residue residing deep inside the ligand-binding site that interacts, to some 
degree, with all co-crystallized ligands. In addition to Trp-299, some of the other 
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residues that are commonly seen interacting with ligands include Met-243, Ser-247, 
Gln-285, His-407, and Phe-420 [59]. Few of these structures exemplify the limited 
number of hydrogen bonds that can form between the ligand and residues lining the 
ligand-binding pocket, such as those involving Ser-247, Gln-285, His-407, His-327, 

Fig. 7.3 Relevant and recently reported co-crystal structures of hPXR LBD and agonists, with 
residues from the AF-2 helix shown as raspberry red spheres and Trp-299 shown as purple spheres: 
(a) SR12813  in the absence of SRC-1 peptide, displaying three different conformations of 
SR12813 (PDB code 1ILH). (b) The presence of SRC-1 peptide fixes SR12813 in a single orienta-
tion (PDB code 1NRL). (c) Rifampicin, one of the largest PXR agonists (PDB 1SKX). (d) 
T0901317 (PDB 2O9I). (e) SJB7, an analog of the antagonist SPA70 (PDB 5X0R). (f) Binary 
complex of the two small molecules 17α-ethinylestradiol and the pesticide trans-nonachlor (PDB 
4X1G). (g) Compound 25a, a retinoic acid-related orphan receptor inverse agonist (PDB code 
6BNS). (h) Compound 7, a metabotropic glutamate receptor 2 modulator (PDB code 6DUP). (i) 
XPC-7455, a voltage-gated sodium channel inhibitor (PDB code 6S41). (j) Compound 25, a P2X4 
inhibitor (PDB code 6HTY). (k) Compound 3, a retinoic acid-related orphan receptor inverse 
agonist (PDB code 6NX1). (l) Garcinoic acid (PDB code 6P2B). The ligands are represented as 
sticks, and the transparent spheres illustrate proximity of ligand atoms to the protein residues. 
Ligand color scheme: carbon, white; nitrogen, blue; oxygen, red; sulfur, yellow; chlorine, green; 
fluorine, light blue
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and Arg-410 [56]. Additional attractive forces, such as π-stacking, are provided by 
Trp-299, Phe-288, and Tyr-306. Given the hydrophobic nature of the ligand-binding 
pocket, it is evident that the bulk of the interactions occurs through hydrophobic and 
van der Waals forces.

Crystallography can be a powerful tool in the development of PXR antagonists. 
Initial efforts to rationally design PXR antagonists relied on the analysis of the 
PXR-T0901317 structure (Fig. 7.3d) [60]. Attempts were made to generate a PXR 
antagonist based on the T0901317 scaffold, which failed because of the difficulty in 
predicting molecules that can antagonize a promiscuous protein such as PXR. More 
recently, the structure of PXR in complex with the agonist SJB7 provided insights 
into the molecular basis of PXR antagonism by the analog SPA70 (Fig. 7.3e) [21]. 
The para-methoxy group in SJB7 stabilizes the AF-2 helix in the active conforma-
tion, amenable for coactivator recruitment; the lack of this chemical group in SPA70 
would prevent it from doing so. The design of PXR antagonists is largely hampered 
by the flexibility of PXR’s ligand-binding pocket, making it challenging to study 
structure-activity relationships of closely related compounds. In fact, the binding of 
ligands to PXR is so unpredictable that a PXR structure with two distinct chemicals 
was obtained occupying the ligand-binding site (Fig. 7.3f) [61]. The two compounds 
are the pesticide trans-nonachlor and the contraceptive agent 17α-ethinylestradiol, 
which were shown to act synergistically in activating PXR. The enhancement in 
PXR activation as a consequence of the inter-ligand interactions is proposed to 
result in a “supramolecular ligand,” and it opens the possibility that other binary 
complexes may similarly activate PXR.

There is a great impetus in developing therapeutics that do not activate PXR in 
order to prevent metabolic liabilities. Structure-based design based on the co- 
crystallization of these compounds with PXR can lead to chemical modifications 
that prevent their binding to PXR (Fig. 7.3g–k). Successful examples include deriv-
atives of an inverse agonist of retinoic acid-related orphan receptor (RORγt) 
(Fig. 7.3g) [27], a metabotropic glutamate receptor 2 (mGluR2) allosteric modula-
tor (Fig. 7.3h) [26], a voltage-gated sodium (NaV) channel inhibitor (Fig. 7.3i) [25], 
a P2X4 receptor (ligand-gated ion channel) inhibitor (Fig. 7.3j) [24], and a phenyl 
(1-phenylcyclopentyl)sulfone compound acting as a RORγt inverse agonist 
(Fig. 7.3k) [23]. These structures reveal features in the agonist that can be substi-
tuted to create steric clashes, increase polarity in a hydrophobic pocket, or diminish 
important contacts to reduce binding affinity to PXR while maintaining potency to 
their intended target.

Conversely, highly selective and nontoxic PXR agonists that can serve as a 
potential treatment for inflammatory diseases are being sought. One such example 
is garcinoic acid (Fig.  7.3l), which was extracted from Garcinia kola seeds and 
determined to be selective against a panel of NRs, with in vivo efficacy [22]. The 
authors of the study believe, partly based on findings obtained from the crystal 
structure, that garcinoic acid can serve as a template for medicinal chemistry efforts 
to improve potency and metabolic stability.
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7.9  Species Selectivity in PXR Activation

The amino acid sequences of PXR LBDs differ significantly among species, which 
account for the species-selective ligand-induced transactivation [62]. The prototypi-
cal hPXR ligands rifampicin and SR12813 can markedly activate hPXR while hav-
ing little effect on the mouse PXR (mPXR) ortholog. Conversely, PCN is a strong 
mPXR agonist and a poor hPXR activator [3]. An interesting mutagenesis study has 
been conducted, wherein key LBD amino acids in mPXR were changed to the cor-
responding hPXR residues on the basis of crystallographic data of hPXR with 
SR12813. The resulting mPXR mutant could be activated by SR12813 without a 
response to PCN [29]. These results corroborate that few residues are critically 
involved in species-based selectivity.

Species-based agonistic effects of PXR can have striking implications in 
organism- level studies, in which mouse models are often used to evaluate PXR 
activation by hPXR ligands. To circumvent this issue, several humanized mouse 
models of PXR have been developed, which have wide-ranging applications in drug 
development and PXR functional studies. The first such hPXR mouse model was 
based on the random insertion of the hPXR gene into a mouse genome without the 
mPXR gene. Expression of hPXR was under the control of either the liver-specific 
albumin promoter [63] or the rat fatty acid-binding protein promoter [64]. A second- 
generation hPXR mouse model was developed by randomly integrating the entire 
hPXR gene and its promoter into a Pxr-null mouse genome [65]. A mouse model 
expressing hPXR and CYP3A4 was generated that displayed robust CYP3A4 
induction by rifampicin to levels comparable to those in humans [66]. An alternative 
model was based on replacing the mPXR gene with the hPXR gene under the control 
of the endogenous mouse promoter [67]. Further improvements led to a mouse 
model expressing a chimeric PXR (mDBD-hLBD) [68], which has the advantage of 
minimizing the effects of species-based differences in DNA binding.

7.10  PXR Inhibitors

The unintended activation of PXR has been associated with adverse clinical out-
comes [16, 20, 69]. The upregulation of PXR-mediated drug-metabolizing enzymes 
plays major roles in the reduction of drug efficacy, resistance to chemotherapies, 
and drug-induced liver injury [56, 70]. Consequently, there is great motivation to 
discover PXR antagonists that can counteract the effects of PXR activation, particu-
larly for clinical applications. However, the development of such PXR antagonists 
has been hampered primarily because PXR can be activated by different types of 
chemicals [71], with PXR’s promiscuity complicating endeavors to develop highly 
selective and potent PXR antagonists to prevent off-target mediated side effects [72].

Several natural products inhibit PXR’s activity. Ecteinascidin-743 (ET-743), 
which is derived from the Caribbean marine tunicate Ecteinascidia turbinata [73], 
exemplifies the complex chemical scaffolding seen in many ligands of natural 
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sources, comparable to that of the classical PXR agonist rifampicin. ET-743 was the 
first reported inhibitor of agonist-induced PXR transactivation, repressing the 
expression of CYP3A4 and MDR1 [74]. Its clinical application has been limited 
due to its potent cytotoxic properties, which are due in large part to its interference 
with DNA repair pathways by binding to the minor groove of DNA [75]. Conversely, 
sulforaphane (SFN), a phytochemical in the daily diet, is relatively safe for potential 
clinical use. It is found in certain cruciferous vegetables and was the first naturally 
occurring PXR antagonist to be reported [76]. A human clinical study concluded 
that SFN was not an effective hPXR antagonist in vivo [77]. The relative high con-
centrations required to abrogate PXR’s function in vitro and its off-target effects at 
lower concentrations are the main concerns used to justify further studies on the 
direct effects of SFN on PXR antagonism [78]. Among the other reported PXR 
inhibitors in plant materials are coumestrol (a phytoestrogen from legumes and soy 
beans) [79], sesamin (a lignan from sesame seeds) [80], and camptothecin (an alka-
loid from the plant Camptotheca acuminata) [81]. However, these compounds were 
shown to be weak PXR inhibitors, which could limit their application.

Repurposed compounds have a potential for a more expedited development of 
drug candidates to be used in clinical settings because of their established safety and 
desirable PK/PD profiles. Leflunomide is being used in the treatment of rheumatoid 
arthritis and psoriatic arthritis, and it is considered as the first FDA-approved drug 
to be repurposed for PXR inhibition [82]. The antifungal compound ketoconazole is 
among the most extensively studied PXR inhibitors, which include the synthesis of 
a series of derivatives and their mechanistic investigations [83]. Other notable 
examples include the antidiabetic agent metformin [84] and the HIV protease inhib-
itor A-792611 [85].

A handful of PXR inhibitors have been identified, mostly by cell-based assays 
that monitor reporter gene expression or biological marker. Aside from the many 
advantages inherent in these types of assays, they cannot conclusively establish if 
the observed reduction in PXR activity is due to direct interactions of the compound 
with PXR or by indirectly modulating alternate pathways. Few of them have been 
characterized at the biochemical level to confirm their binding to PXR. Based on the 
displacement of radiolabeled ligands for PXR, it is believed that SFN [76], poly-
chlorinated biphenyls [86], and coumestrol [79] interact at the ligand-binding site. 
More recently, SPA70 was identified from a high-throughput screening campaign 
and shown to interact in the ligand-binding pocket based on a combination of tech-
niques that include HDX-MS, docking, and crystallographic analysis of its analog 
SJB7 [21]. Furthermore, SPA70 becomes an agonist for the Trp-299Ala PXR 
mutant, where Trp-299 is one of the residues lining the ligand-binding site, confirm-
ing direct interaction of SPA70 with the ligand-binding site [87]. Other PXR inhibi-
tors are believed to interact directly with PXR but through alternate sites other than 
the ligand-binding pocket. Among these include ketoconazole [83], SPB03255, and 
SPB00574 [82], which are thought to reside at the AF-2 region, thus blocking the 
recruitment of coactivators.

The activity of PXR can be inhibited by several mechanisms. The most attractive 
approach in repressing PXR’s function is by an antagonist, which competes directly 
with the agonist for occupancy of the ligand-binding site [71]. A PXR inhibitor can 
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also engage in an allosteric site, either by negatively affecting the recruitment of 
partner proteins required for transcription (e.g., coactivators or RXRα) or by enhanc-
ing the recruitment of corepressors. It is also possible to modulate PXR’s activity by 
interfering with upstream events, such as perturbing posttranslational modifications.

7.11  PXR Agonists as Therapeutics

Although PXR activation can lead to drug-drug interactions and toxicity during 
drug therapy, evidence suggests that PXR agonists can be used to treat certain dis-
eases, such as inflammatory bowel disease (IBD) [88]. IBD is characterized by 
inflammation of the gastrointestinal tract, and several observations point to an asso-
ciation of its pathology with PXR. The expression and activity of PXR and its target 
genes are reduced in the intestines of patients with IBD [89]. Mouse models indi-
cate protection from dextran sulfate sodium (DSS)-induced IBD upon treatment 
with the mPXR agonist PCN [90]. Similar preventive effects were observed in 
humanized PXR mouse models after treatment with the hPXR agonist rifaximin. 
Furthermore, rifaximin effectively alleviated IBD in clinical settings [91]. 
Mechanistic studies indicate that PXR activation results in the suppression of the 
NF-κB signaling cascade, with an eventual repression of proinflammatory 
responses [92].

Considering the encouraging application of PXR agonists in the treatment of 
IBD, including the approval of rifaximin by the FDA [22], several PXR agonists 
have been identified and studied as potential IBD therapy. Among these PXR ago-
nists are solomonsterol A (obtained from the marine sponge Theonella swinhoei) 
[93], artemisinin (isolated from the plant Artemisia annua and used in the treatment 
of malaria) [94, 95], chrysin (a plant-derived flavonoid) [96], isorhamnetin (a com-
mon flavonoid in food) [97], and garcinoic acid (isolated from Garcinia kola seeds) 
[22]. Unexpectedly, the well-established hPXR agonist rifampicin did not affect 
IBD [90]. In contrast to rifampicin, rifaximin is concentrated in the intestines and is 
poorly transported to the liver [98]. The wide distribution of rifampicin in the liver 
is hypothesized to cause the decrease of hepatic stearoyl-CoA desaturase-1 expres-
sion, which results in the reduction of anti-inflammatory unsaturated fatty acids that 
oppose the beneficial effects of gut-specific PXR agonism [90].

7.12  Conclusion

PXR is an important therapeutic target because of its essential role in drug metabo-
lism and disposition. However, the primary obstacles hindering the development of 
PXR antagonists are due to its ability to promiscuously recognize a wide range of 
chemicals, which mostly act as agonists. Ironically, PXR agonists have emerged as 
potential therapies in treating inflammatory diseases such as IBD.  A thorough 
understanding of the molecular basis of PXR modulation is needed in the pursuit to 
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successfully develop a PXR antagonist with in  vivo efficacy, improved potency, 
enhanced selectivity, and reduced toxicity.

A simplistic view of the molecular mechanism of PXR transactivation—and 
probably that of other NRs—can be summarized as a sequential step (Fig. 7.4): (1) 
Apo-PXR can be present in solution as a mixed population with differing structural 

Fig. 7.4 Perspectives on the molecular basis of PXR agonism and antagonism, based on mecha-
nistic investigations of PXR and other NRs. In the unliganded form, PXR is present in a mixture 
of the population that includes folded and partially unfolded states: in the latter, PXR rearranges 
its structure to enable a ligand to access the ligand-binding pocket. In the absence of ligand, the 
AF-2 helix is not fixed in any particular orientation, with a small subpopulation being in a position 
enabling coactivator or corepressor binding. A ligand (agonist or antagonist) can stabilize the over-
all structure, forming a more compact and less fluid LBD, which allows for more favorable protein- 
protein interactions with coregulatory partners. The AF-2 helix is also constrained in either the 
active (by an agonist) or repressive (by an antagonist or inverse agonist) conformation for coactiva-
tor or corepressor recruitment, respectively. However, certain antagonists/inverse agonists could 
also abrogate PXR’s activity by disrupting the positioning of the AF-2 helix from either the active 
or repressive states, thus inhibiting PXR’s activity without forming a complex with a corepressor
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conformations due to its flexibility and elasticity, including fully and partially 
unfolded states. (2) The binding of agonists and some antagonists/inverse agonists 
shifts the balance toward a fully folded structure by providing an internal network 
of ligand-to-protein interactions. A compact and properly folded PXR is needed to 
maintain a stable interface for protein-protein interactions with regulatory and part-
ner proteins. (3) The binding of agonists concomitantly stabilizes the AF-2 helix to 
provide an accessible surface on the LBD for coactivator association. Certain antag-
onists/inverse agonists would conversely stabilize the AF-2 helix in a different con-
formation favorable for corepressor recruitment, while other types of inhibitors fail 
to fixate the AF-2 helix in any position (sometimes they are referred to as passive 
antagonists [71]). In such cases, the mobile AF-2 helix would have reduced the abil-
ity to recruit the corepressor. (4) Binding of agonists would lead to recruitment of 
accessory proteins such as RXR along with the coactivator protein.
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Chapter 8
Strategies for the Design of Vitamin D 
Receptor Ligands

Tania R. Mutchie, Daniel A. Webb, Elliot S. Di Milo, and Leggy A. Arnold

Abstract Structure-activity relationship analysis is a powerful tool to elucidate the 
structural requirements for high-affinity vitamin D receptor (VDR) ligands. This 
chapter systematically interrogates the structural features of 1α,25(OH)2D3, the 
vitamin D metabolite with the highest VDR affinity. It can be concluded that the 
C1α and C25 hydroxyl groups of 1α,25(OH)2D3 are very important for binding. 
Optimal spatial arrangement of both hydroxyl groups was achieved with either a 
hydrophobic semi-flexible secosteroid scaffold or a simplified, flexible carbon 
chain. Y-shaped ligands with high affinity confirmed a highly inducible VDR ligand- 
binding pocket, which has been visualized by X-ray crystallography. Substitution of 
the secosteroid scaffold by other hydrophobic spacers such as carboranes or aro-
matic ring systems has led to many non-secosteroid VDR ligands. Exploration of 
ligand substitution has led to the development of antagonists that are accommodated 
by the inducible VDR ligand-binding pocket but alter the overall conformation of 
VDR in ways that prevent interactions with coactivator proteins from occurring and 
ultimately result in reduced gene transcription.

Keywords Vitamin D · Vitamin D receptor · 1,25-Dihydroxyvitamin D3 · 
Structure-activity relationship · Agonist · Antagonist · Coactivator

8.1  Introduction

The vitamin D receptor (VDR) takes a special place among nuclear receptors 
because the biosynthesis of its endogenous ligand, 1α,25-dihydroxyvitamin D3 
(1α,25(OH)2D3), is dependent on sun exposure. Poor living conditions during the 
industrial revolution, when people were destined to work and live inside with 
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minimal light exposure, caused bone deformations and skin diseases with symp-
toms that were alleviated by light therapy. Once irradiated food was found to have 
the same medicinal effect [1], isolation of vitamin D was rapidly accomplished [2]. 
Identification of the corresponding receptor turned out to be difficult; however, 
vitamin D does not bind VDR at physiological concentrations. Once radiolabeled 
vitamin D was generated [3], 25(OH)D3 and 1α,25(OH)2D3 were identified [4, 5], 
which in turn enabled the identification and cloning of VDR [6, 7]. The genomic 
function of VDR regulates genes involved in calcium homeostasis, cell prolifera-
tion, and cell differentiation. The endocrine receptor is expressed in the epithelia of 
the endocrine organs, digestive tract, kidneys, and thymus [8] but is also found in 
leukocytes and bone cells. VDR can be found in the cytosol or membrane-bound 
[9]. In the nucleus, VDR is liganded and binds DNA and the retinoid X receptor 
(RXR) [10]. VDR-specific gene promoter sequences have been identified [11]. The 
transcriptional complex includes, among other proteins, nuclear receptor coactiva-
tors and corepressors that interact with RNA polymerase II [12], changing chroma-
tin packing and enabling specific gene transcription [13].

This chapter is not a complete review describing more than 3000 VDR ligands 
that have been reported since 1970. Therefore, I refer the reader to five chapters 
within the recent edition of Vitamin D and cited references, as well as excellent 
recent reviews [14–20]. This chapter highlights the relationship between molecular 
ligand structure and VDR affinity. Other downstream biological effects can be 
found in the references and the recent two volumes of Vitamin D. Most VDR ligands 
have been characterized by their ability to compete with tritium-labeled 
1α,25(OH)2D3. Transcription assays have been used to distinguish between agonists 
and antagonists. VDR coactivator recruitment has been studied with two-hybrid 
assays or biochemically using homogeneous time-resolved fluorescence (HTRF). 
Tertiary assays employed for the characterization of VDR ligands included, among 
others, cell differentiation, cell proliferation, cellular calcium uptake, intestinal cal-
cium transport, and serum calcium changes. Herein, we predominately report VDR 
affinity independent of cell permeability, metabolic stability, plasma binding (vita-
min D-binding protein), and other factors that change with the structure of a small 
molecule.

8.2  Secosteroid VDR Ligands

Calcitriol, or 1α,25(OH)2D3, has the highest affinity for VDR among all vitamin D 
metabolites. The competitive VDR binding of 1α,25(OH)2D3 using 
[3H]-1α,25(OH)2D3 as a probe has been reported in the range of 0.04–0.16 nM with 
protein isolated from the tissue and cells or recombinantly expressed VDR as full- 
length receptor or ligand-binding domain [21, 22]. Other assays such as biochemi-
cal coactivator recruitment assays reported EC50 of 1.2 nM for 1α,25(OH)2D3 [23]. 
For most cases, the affinities of new compounds in comparison to 1α,25(OH)2D3 are 
reported as percent affinity in this chapter.
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1α,25(OH)2D3 has six chiral centers and two trisubstituted double bonds that can 
adopt an E or Z configuration. First, we will compare VDR binding of 1α,25(OH)2D3 
epimers and stereoisomers depicted in Figs. 8.1, 8.2, 8.3, and 8.4.

1α,25(OH)2D3 is the metabolic product of vitamin D3, which lacks a hydroxyl 
group in the C1 and C25 positions (Fig. 8.1). 25-Hydroxyvitamin D-1α hydroxy-
lase, located primarily in the kidneys but also in other tissues, stereospecifically 
introduces a C1α-hydroxyl group [24–27]. The 3-OH group is present in vitamin D3 
and its precursor 7-dehydrocholersterol. The evaluation of A-ring diastereomers of 
1α,25(OH)2D3 demonstrated that binding to VDR is more impacted by the stereo-
chemistry of the C1-position than the C3-position [28]. VDR affinity for 2 was 24% 
in comparison to 1α,25(OH)2D3 but only 0.2% and 0.8% for 3 and 4, respectively. 
1α,25(OH)2-3-Epi-D3 has been identified as a natural metabolite of 1α,25(OH)2D3 
[29] and was intensively studied in  vivo. 1β,25(OH)2D3 was first synthesized in 
1977 [30] and has also recently been identified as a natural metabolite of vitamin D 
[31]. 1β,25(OH)2D3 has been reported as a non-genomic antagonist of 
1α,25(OH)2D3 [28].

Secosteroids in contrast to steroids have a “broken” B-ring resulting in a triene 
system with 5(Z),7(E) configuration (Fig. 8.2). The formation of secosteroids occurs 
via a retro Diels-Alder reaction in the presence of light followed by a [1,7] sigma-
tropic rearrangement. In the skin, this conversion occurs with high 
stereoselectivity.

Isomer 5 retains a good affinity toward VDR, which is 13% in comparison to 
1α,25(OH)2D3 [32]. The E,E stereochemistry can be generated by light in the pres-
ence of iodine [33] or by a cheletropic addition-elimination with sulfur dioxide [34]. 
In contrast, isomers 6 and 7 were not observed for photochemical reactions but 
synthesized using a chromium(0)-mediated isomerization reaction with a vinylal-
lene precursor [34]. The affinity toward VDR was 0.82% for 6 and 1.6% for 7 in 
comparison to 1α,25(OH)2D3. Thus, the position of the A-ring with respect to the 
B- and C-ring is more important for VDR binding than the location of the termi-
nal alkene.

The stereochemistry of the fused B,C-ring system of 1α,25(OH)2D3 originates 
from 7-dehydrocholesterol. Interestingly, the configuration of the fused system has 
a direct influence on the equilibrium of the thermal [1,7] sigmatropic rearrangement 
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reaction (Fig.  8.3). When 1α,25(OH)2D3 was heated at 80  °C, only 12% of the 
pre-1α,25(OH)2D3 was detected [35]. However, when epimer 8 was heated at 80 °C, 
a 95:5 ratio in favor of the pre-structure was formed.

Pure 8 was synthesized by epimerization of Grundmann’s ketone and retained a 
VDR affinity of 15% in comparison with 1α,25(OH)2D3 [35]. Interestingly, no 
reports were found for compounds 9 and 10.
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The synthesis of 11 has been reported [36]. Later, an improved route was devel-
oped but VDR binding was not reported [37]. However, inhibition of human breast 
cancer cell (MCF-7) proliferation was more pronounced in the presence of 11 than 
1α,25(OH)2D3. Epimer 12 demonstrated inhibition of T-cell proliferation at picomo-
lar concentrations [38]. The VDR binding was 88% in comparison to 
1α,25(OH)2D3 [39].

Next, the importance of functional groups and substituents with respect to VDR 
binding is discussed. Analogs that lack certain structural elements are compared to 
1α,25(OH)2D3 (Fig. 8.5).

25OHD3 is a metabolic product of vitamin D3 and was identified in 1968 [4]. It 
is abundant in blood and used to determine the vitamin D status in humans [40]. The 
binding toward VDR is 900-fold less than 1α,25(OH)2D3 [41]. In contrast to 13, the 
affinity of 14 was only 1/8 less effective than 1α,25(OH)2D3, making the 1α-OH 
group significantly more important for VDR binding than the 3-OH group [41]. 
Compound 15 lacking the methylene group was first synthesized in 1990 and has 
been shown to induce the differentiation of HL-60 cells at the same concentration as 
1α,25(OH)2D3 [42]. The VDR binding was 30% in comparison to 1α,25(OH)2D3 
[43]. Compound 16 was reported to be three times more potent than 1α,25(OH)2D3 
with respect to porcine VDR binding [44]. Thus the presence of C18 impaired VDR 
binding, contrasting with compound 17, in which a lack of the C21 methyl reduced 
affinity toward chick VDR to 10% that of 1α,25(OH)2D3 [45]. Interestingly, substi-
tution of C20 by oxygen reduced VDR affinity to 0.1% in comparison to 
1α,25(OH)2D3 [45], emphasizing the importance of hydrophobicity for good recep-
tor binding. Compound 18 with possible (R) and (S) configurations has not been 
reported. VDR binding of 19 has not been investigated; however, the ability to 
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differentiate HL-60 cells compared to 1α,25(OH)2D3 was 1% at the same concentra-
tion [46]. For a similar molecule with a terminal alkene in the 2-position, a 1.9% 
VDR affinity was reported in comparison to the parent compound [47]. Compound 
20, also known as alfacalcidol, was first reported in 1973 [48, 49]. Alfacalcidol is 
converted to 1α,25(OH)2D3 in vivo and, therefore, exhibits similar activities. The 
VDR affinity was 900-fold less than 1α,25(OH)2D3 [41]. Thus, it can be concluded 
that hydroxyl groups in the C1α and C25 positions are the most important substitu-
ents to promote VDR binding.

Further investigations into the significance of the bicyclic structure of 
1α,25(OH)2D3 with respect to VDR binding is represented by compounds depicted 
in Fig. 8.6.

Removal of the five-membered ring of 1α,25(OH)2D3 was investigated with 21 
and analogs thereof [50]. The relative stereochemistry of C17 marginally influenced 
VDR binding; however, large differences between these epimers were observed for 
anti-proliferation and calcium homeostasis. VDR binding of 21 was 60% in com-
parison to 1α,25(OH)2D3. The VDR affinity of the C20 epimer of 21 was 70%. The 
same report characterized compounds like 22 with a VDR affinity of 80% in com-
parison to 1α,25(OH)2D3. The synthesis of 23 was reported but VDR binding was 
not determined [51]. However, 24 with the terminal alkene moved from position 10 
to position 2, exhibited 80 times lower affinity toward VDR than 1α,25(OH)2D3 [21].

Overall, it can be concluded that structural changes to the hydrophobic core of 
1α,25(OH)2D3 can still result in high-affinity ligands for VDR. The ligand-binding 
domain of VDR consists of 12 helices when bound to 1α,25(OH)2D3. The most 
essential features of 1α,25(OH)2D3 are the C1α and C25 hydroxyl groups, which 
have been shown to form canonical hydrogen bonds with VDR (Fig. 8.7).

The interaction of 25-OH with His305 (loop H6-H7) and His 397 (H11) is vital 
to the conformational change VDR undergoes when interacting with coregulator 
proteins. 1-OH interacts with Ser237 (H3) and Arg274 (H5), anchoring the ligand 
in the binding pocket. 3-OH interacts with Ser278 (H5) and Tyr143 (loop H1-H2), 
but compounds like 2 and 14 have shown that these contacts merely provide further 
stabilization to the complex. 1α,25(OH)2D3 only fills 56% of the VDR-binding 
pocket, which helps explain the large variety of high-affinity ligands that have been 
developed for VDR.  Important, however, is the spacing and orientation of the 
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hydroxyl groups, which are supported by ring structures, a diene moiety, and chiral 
carbon centers. The majority of the central VDR ligand pocket surface is hydropho-
bic and assembled by leucine, isoleucine, and valine side chains.

8.3  Non-secosteroid VDR Ligands

The first non-secosteroid ligands with a diarylmethane moiety were reported by 
Ligand Pharmaceuticals (Fig. 8.8). The quaternary carbon center bearing two ethyl 
substituents was superior to other alkyl substituents, and aligned well with the fused 
ring system of VDR-bound 1α,25(OH)2D3 [53].

The racemic mixture of LG190178 exhibited a VDR affinity of 0.3% in compari-
son to 1α,25(OH)2D3 [54]. The synthesis of individual LG190178 stereoisomers 
identified the (2S, 2’R) isomer as the most active compound with a 28.3% VDR 
affinity in comparison to 1α,25(OH)2D3 [55]. The systematic development of these 
ligands resulted in 26, which was equally as active as 1α,25(OH)2D3 in a cell-based 
transcription assay [56]. An analog of 26, which replaced the ethyl groups adjacent 

Fig. 8.7 Crystal structure of 1α,25(OH)2D3 bound to human VDR [PDB ID:1DB1] [52]
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to the tertiary alcohol with trifluoromethyl groups, showed a fivefold improvement 
in the transcription assay [57]. In recent years, many similar compounds were 
developed with thiophene, pyrrol [58], and other heterocycles, though compound 
27, which contains a pyridine substituent, exhibited the highest affinity toward VDR 
at 37% of the VDR-1α,25(OH)2D3 interaction [59].

Another successful approach for non-secosteroidal VDR ligand design was the 
incorporation of a dicarba-closo-dodecaborane as a hydrophobic moiety, rather than 
the fused ring system of natural VDR ligands (Fig. 8.9).

The development of carborane-based VDR ligands with different side chains 
resulted in 28, which exhibited an affinity of 640 nM (IC50) [60]. The (R) isomer 
was one-fifth as active. Subsequent research identified compound 29 being twice as 
potent as 28 in a HL-60 differentiation assay [61].

Other approaches for VDR ligands included the incorporation of aromatic ring 
structures, which are absent from natural VDR ligand, 1α,25(OH)2D3. The earliest 
examples were identified from a library of bis-aromatic compounds (Fig. 8.10).

CD4528 was characterized with a CYP24A1 reporter assay demonstrating an 
EC50 of 1.7 nM [62]. For the same assay, the EC50 of 1α,25(OH)2D3 was 1.0 nM. Other 
related VDR ligands exhibited similar low nanomolar activities, for example, 
CD4849 (0.5  nM) [63]. A recent study employing the A-ring structure of 
1α,25(OH)2D3 resulted in 32, which displayed a VDR affinity 24% that of 
1α,25(OH)2D3 [64]. Less active was 33, exhibiting a 0.01% VDR affinity in com-
parison to 1α,25(OH)2D3 [65]. Other nutritional ligands with low VDR affinities 
were reported by Haussler et al. [66].

VDR is highly expressed in the intestine and has been described as a bile acid 
sensor due to its ability to bind lithocholic acid (Fig. 8.11) [67].

The affinity of VDR for lithocholic acid was less than 0.005% in comparison to 
1α,25(OH)2D3. The corresponding acetate was more potent with a 0.01% VDR 
affinity in comparison to 1α,25(OH)2D3 [68]. A later VDR-binding study reported 
an IC50 of 30 μM for both 35 and 36 [69]. Recently, a methylsulfonate analog of 
lithocholic acid showed an IC50 of 1.2 μM [70]. For estrone analog 38, an EC50 of 
850 nM was reported in a VDR transactivation assay [71].

The first Y-shaped VDR ligand called Gemini was introduced in 2000 by Norman 
et al. [72] (Fig. 8.12).
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Gemini exhibited a VDR affinity of 38% in comparison to 1α,25(OH)2D3. Based 
on an available crystal structure of VDR bound to 1α,25(OH)2D3, it was hypothe-
sized that VDR might accommodate this second side chain in a so-called A pocket 
(alternative pocket) [73]. The later reported crystal structure of VDR bound to 
Gemini confirmed the adaptability of VDR to accommodate Y-shaped ligands [74]. 
Further developments resulted in 40 and its C20 epimer, 41, which were 36- and 
22-fold more active in a gene reporter assay than 1α,25(OH)2D3 [75].
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8.4  VDR Antagonists

Throughout the last two decades, many different antagonists with strong VDR affin-
ities have been reported [76]. The earliest disclosed antagonists were derivatives 
from the natural-occurring vitamin D metabolite, (23S,25R)-1α,25(OH)2D3-26,23- 
lactone [77], such as compound TEI-9647 and its C23 epimer TEI-9648 (Fig. 8.13).

The VDR affinity of TEI-9647 was 10% compared to 1α,25(OH)2D3. Its C23 
epimer TEI-9648 bound VDR with a 8% affinity [78]. Further research confirmed 
that these unsaturated esters underwent a conjugate addition reaction with cysteine 
residues in the human VDR ligand pocket [79]. Methyl substitutions at positions 2 
and 24 (43) significantly increased VDR affinity (63% in comparison to 
1α,25(OH)2D3) [80]. The introduction of a cyclopropyl group on the lactone ring 
resulted in 44, which surpassed the VDR affinity of 1α,25(OH)2D3 (166%) [81].

Based on the structure of calcipotriol (45), an approved treatment for psoriasis 
and a high-affinity VDR ligand, other related ligands were able to be synthesized by 
Schering (Fig. 8.14).

In contrast to agonist calcipotriol, ZK159222 and ZK168281 were poor inducers 
of VDR transcription and reduced 1α,25(OH)2D3-meditated transcription [82]. For 
ZK191784, a VDR affinity of 33% in comparison to 1,25-(OH)2D3 was reported. 
[83] Thus, the VDR affinities of these ligands are strong but induce an antagonistic 
VDR conformation. Additionally, these antagonists were investigated in vivo and 
demonstrated promising anti-inflammatory properties [76].

Amide-based VDR antagonists that were inspired by calcitriol lactone were 
introduced in 2004 (Fig. 8.15).

The corresponding lactam 49 exhibited a VDR affinity of 10.2 nM in comparison 
to 1α,25(OH)2D3 with 0.5 nM [84]. The measured VDR binding of 50 was 1.9 nM 
(IC50). Importantly, 50 inhibited VDR-mediated transcription at nanomolar concen-
trations without showing any agonist activity in the absence of 1α,25(OH)2D3 [85]. 
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Further improvement was achieved with 51, which exhibited 52% VDR-binding 
affinity compared to 1α,25(OH)2D3 and inhibited 1α,25(OH)2D3-mediated tran-
scription with an IC50 of 90 nM [86]. For ortho-aniline compound 52, an IC50 of 
107 nM was reported [87].

Introduction of a bulky adamantane group was conceived as another approach to 
change the conformation of VDR (Fig. 8.16).

Compound 53 exhibited 2% VDR affinity compared to 1α,25(OH)2D3 [88]. In 
the presence of 1α,25(OH)2D3, VDR-mediated transcription was inhibited at 
100 nM. Among a series of diastereomeric analogs, 54 exhibited the highest affinity 
toward VDR with 17% affinity in comparison to 1α,25(OH)2D3 [89]. Further 
improvements resulted in ligands with an internal alkyne named ADTK1-4 [90]. 
The compound with the highest VDR affinity among this group was 55 reaching 
90% of the VDR-1α,25(OH)2D3 interaction. This compound behaved as a partial 
agonist. Finally, a library of VDR ligands with a diyne system were synthesized and 
evaluated, achieving a 7% VDR affinity in comparison to 1α,25(OH)2D3 [91].
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A series of Y-shaped VDR ligands that were inspired by Gemini were developed 
and, dependent upon their substitution pattern, were found to be antagonists, partial 
agonists, or superagonists (Fig. 8.17).

Among a series of diastereomers with a butyl substituent in the C22 position, 56 
was identified as a VDR antagonist [92]. The VDR affinity was 4.1% in comparison 
to 1α,25-(OH)2D3 [92]. Interestingly, the C20 epimer of 56 was identified as an 
agonist with a 2.5% affinity toward VDR in comparison to 1α,25(OH)2D3. The 
influence of the alkyl chain length with respect to VDR binding was investigated for 
very similar compounds containing a methylene group in the C2 position (57–60) 
[47, 93]. The presence of a butyl substituent resulted in antagonist 59, which had a 
VDR affinity of 61% in comparison to 1α,25(OH)2D3. Partial agonists 57, 58, and 
60 exhibited lower VDR affinity. Further structural changes to compound 59 
included the introduction of two methyl substituents in the C24 position or elonga-
tion of the hydroxyl-bearing carbon chain by one carbon. Both of these structural 
changes also resulted in antagonistic ligands; however, implementing the carbon 
chain inherent to 1α,25(OH)2D3 resulted in a superagonist with higher VDR affinity 
than 1α,25(OH)2D3 [47]. Other superagonists were produced with the introduction 
of C22 substituents for 20-epi-1α,25-(OH)2D3 (12) [94]. Compound 63 exhibited 
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the highest affinity for VDR (797%) followed by 62 and 61. Finally, antagonists 
were produced with an isopropyl group at C24 (64) [92]. Among different diaste-
reomers, 64 exhibited the highest VDR affinity of 1.4% in comparison to 
1α,25(OH)2D3.

A high-throughput screen of 390,000 compounds identified PPARδ agonist 
GW0742 as a novel VDR antagonist (Fig. 8.18) [95].

The VDR affinity of 65 was 8.7 μM. The structural change of the acid function 
into an hydroxyl group resulted in partial VDR agonist 66 with an EC50 of 120 nM 
[96]. The evaluation of a library of compounds related to 65 demonstrated that CF3 
substituents in the meta- and ortho-position reduced the affinity toward PPARδ 
without influencing the affinity for VDR [97]. Recently, VDR antagonist 67 was 
reported with activity of 660 nM [98]. This compound did not bind PPARδ. Virtual 
screening of known nuclear receptor ligands for application in VDR binding identi-
fied several compounds as possible candidates. VDR binding was demonstrated for 
several compounds, including H6036 [99].

8.5  Concluding Remarks and Future Directions

Novel VDR ligand design and synthesis is still a very active research area, with 
many international research groups working together to develop new drug candi-
dates for disorders caused by vitamin D deficiency, cancer, and inflammatory dis-
eases. Recently discovered VDR ligands are being investigated in clinical trials, 
reflecting the need for new medications in the respective disease areas. A great 
number of ligands have been elucidated in complex with VDR using X-ray crystal-
lography. The structural information has guided new ligand design while also 
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demonstrating that the VDR ligand pocket is amendable to very different ligand 
shapes. However, as highlighted in this chapter, hydrogen bonding on opposite ends 
of the ligand pocket is essential for high VDR affinity. Another important feature is 
distinct spacing of these groups by a flexible hydrophobic spacer. Recently, endog-
enous ligands for VDR such as lithocholic acid and fatty acids have been identified, 
although their biological function is still unclear. Furthermore, new vitamin D 
metabolites have been identified in the last few decades, offering new areas of 
research in the field of vitamin D.

Acknowledgments This work was supported by the University of Wisconsin-Milwaukee, the 
Milwaukee Institute for Drug Discovery, the UWM Research Growth Initiative, NIH R03DA031090, 
the UWM Research Foundation, the Lynde and Harry Bradley Foundation, and the Richard and 
Ethel Herzfeld Foundation.

References

 1. Steenbock H, Black A. Fat-soluble vitamins. XVII. The induction of growthpromoting and 
calcifying properties in a ration by exposure to ultraviolet light. J Biol Chem. 1924;61:405–22.

 2. Askew FA, Bourdillon RB, Bruce HM, Jenkins RGC, Webster TA. The distillation of vitamin 
D. Proc R Soc. 1930;B107:76–90.

 3. Chalk KJ, Kodicek E. The association of 14C-labelled vitamin D2 with rat serum proteins. 
Biochem J. 1961;79:1–7.

 4. Blunt JW, DeLuca HF, Schnoes HK. 25-hydroxycholecalciferol. A biologically active metabo-
lite of vitamin D3. Biochemistry. 1968;7(10):3317–22.

 5. Holick MF, Schnoes HK, DeLuca HF, Suda T, Cousins RJ.  Isolation and identification of 
1,25-dihydroxycholecalciferol. A metabolite of vitamin D active in intestine. Biochemistry. 
1971;10(14):2799–804.

 6. Brumbaugh PF, Haussler MR. 1Alpha,25-dihydroxyvitamin D3 receptor: competitive binding 
of vitamin D analogs. Life Sci. 1973;13(12):1737–46.

 7. McDonnell DP, Mangelsdorf DJ, Pike JW, Haussler MR, O’Malley BW.  Molecular 
cloning of complementary DNA encoding the avian receptor for vitamin D.  Science. 
1987;235(4793):1214–7.

 8. Wang YJ, Zhu JG, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys. 
2012;523(1):123–33.

 9. Huhtakangas JA, Olivera CJ, Bishop JE, Zanello LP, Norman AW. The vitamin D receptor is 
present in caveolae-enriched plasma membranes and binds 1 alpha,25(OH)(2)-vitamin D-3 
in vivo and in vitro. Mol Endocrinol. 2004;18(11):2660–71.

 10. Orlov I, Rochel N, Moras D, Klaholz BP.  Structure of the full human RXR/VDR nuclear 
receptor heterodimer complex with its DR3 target DNA. EMBO J. 2012;31(2):291–300.

 11. Haussler MR, Jurutka PW, Mizwicki M, Norman AW. Vitamin D receptor (VDR)-mediated 
actions of 1 alpha,25(OH)(2)vitarnin D-3: genomic and non-genomic mechanisms. Best Pract 
Res Clin Endocrinol Metab. 2011;25(4):543–59.

 12. White JH, Salehi-Tabar R, Dimitrow V, Bouttier M.  Diverse mechanism of transcriptional 
regulation by the vitamin D receptor. In: Feldman D, editor. Vitamin D, vol. 1. 4th ed. London: 
Elsevier; 2018. p. 175–87.

 13. Nurminen V, Neme A, Seuter S, Carlberg C. The impact of the vitamin D-modulated epig-
enome on VDR target gene regulation. Biochim Biophys Acta. 2018;1861(8):697–705.

T. R. Mutchie et al.



213

 14. Verlinden L, Bouillon R, De Clercq P, Verstuyf A. Analogs of calcitriol. In: Feldman D, editor. 
Vitamin D, vol. 2. 4th ed. Academic Press, Elsevier; 2018. p. 583–611.

 15. Stites RE, Mackrell JG, Stayrock KR. Nonsecosteroidal ligands and molulators of the vita-
min D receptor. In: Feldman D, editor. Vitamin D, vol. 2. Academic Press, Elsevier; 2018. 
p. 615–25.

 16. Makishima M, Yamada S. Bile acid-derived vitamin D receptor ligands. In: Feldman D, editor. 
Vitamin D, vol. 2. Academic Press, Elsevier; 2018. p. 629–41.

 17. Yu OB, Arnold LA. Moldulating vitamin D receptor-coregulator binding with small mole-
cules. In: Feldman D, editor. Vitamin D, vol. 2. Academic Press, Elsevier; 2018. p. 657–64.

 18. Saitoh H. Vitamin D receptor antagonists. In: Feldman D, editor. Vitamin D, vol. 2. Academic 
Press, Elsevier; 2018. p. 679–91.

 19. Maestro MA, Molnar F, Carlberg C.  Vitamin D and its synthetic analogs. J Med Chem. 
2019;62(15):6854–75.

 20. Maestro MA, Molnar F, Mourino A, Carlberg C. Vitamin D receptor 2016: novel ligands and 
structural insights. Expert Opin Ther Pat. 2016;26(11):1291–306.

 21. Plonska-Ocypa K, Grzywacz P, Sicinski RR, Plum LA, DeLuca HF. Synthesis and biologi-
cal evaluation of a des-C,D-analog of 2-methylene-19-nor-1alpha,25-(OH)2D3. J Steroid 
Biochem Mol Biol. 2007;103(3–5):298–304.

 22. Mottershead DG, Polly P, Lyons RJ, Sutherland RL, Watts CK. High activity, soluble, bac-
terially expressed human vitamin D receptor and its ligand binding domain. J Cell Biochem. 
1996;61(3):325–37.

 23. Molnar F, Sigueiro R, Sato Y, Araujo C, Schuster I, Antony P, et al. 1alpha,25(OH)2-3-epi- 
vitamin D3, a natural physiological metabolite of vitamin D3: its synthesis, biological activity 
and crystal structure with its receptor. PLoS One. 2011;6(3):e18124.

 24. Monkawa T, Yoshida T, Wakino S, Shinki T, Anazawa H, Deluca HF, et al. Molecular cloning 
of cDNA and genomic DNA for human 25-hydroxyvitamin D3 1 alpha-hydroxylase. Biochem 
Biophys Res Commun. 1997;239(2):527–33.

 25. Takeyama K, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S. 25-Hydroxyvitamin D3 
1alpha-hydroxylase and vitamin D synthesis. Science. 1997;277(5333):1827–30.

 26. St-Arnaud R, Messerlian S, Moir JM, Omdahl JL, Glorieux FH. The 25-hydroxyvitamin D 
1-alpha-hydroxylase gene maps to the pseudovitamin D-deficiency rickets (PDDR) disease 
locus. J Bone Miner Res. 1997;12(10):1552–9.

 27. Zehnder D, Bland R, Williams MC, McNinch RW, Howie AJ, Stewart PM, et al. Extrarenal 
expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab. 
2001;86(2):888–94.

 28. Norman AW, Bouillon R, Farach-Carson MC, Bishop JE, Zhou LX, Nemere I, et  al. 
Demonstration that 1 beta,25-dihydroxyvitamin D3 is an antagonist of the nongenomic but 
not genomic biological responses and biological profile of the three A-ring diastereomers of 1 
alpha,25-dihydroxyvitamin D3. J Biol Chem. 1993;268(27):20022–30.

 29. Bischof MG, Siu-Caldera ML, Weiskopf A, Vouros P, Cross HS, Peterlik M, et  al. 
Differentiation-related pathways of 1 alpha,25-dihydroxycholecalciferol metabolism in 
human colon adenocarcinoma-derived Caco-2 cells: production of 1 alpha,25-dihydroxy-3epi- 
cholecalciferol. Exp Cell Res. 1998;241(1):194–201.

 30. Paaren HE, Schoenen HK, DeLuca HF.  Synthesis of 1β-hydroxyvitamin D3 and 1β,25- 
dihydroxyvitamin D3. Chem Commun. 1977;23:890–2.

 31. Pauwels S, Jans I, Billen J, Heijboer A, Verstuyf A, Carmeliet G, et  al. 1beta,25- 
Dihydroxyvitamin D3: a new vitamin D metabolite in human serum. J Steroid Biochem Mol 
Biol. 2017;173:341–8.

 32. Wecksler WR, Norman AW. Studies on the mode of action of calciferol XXV. 1 alpha,25- 
dihydroxy- 5,6-trans-vitamin D3, the 5E-isomer of 1 alpha,25-dihydroxyvitamin D3. Steroids. 
1980;35(4):419–25.

8 Strategies for the Design of Vitamin D Receptor Ligands



214

 33. Kobayashi T, Moriuchi S, Shimura F, Katsui G. Synthesis and biological activity of 5,6-trans- 
vitamin D3 in anephric rats. J Nutr Sci Vitaminol (Tokyo). 1976;22(4):299–306.

 34. VanAlstyne EM, Norman AW, Okamura WH. 7,8-Cis geometric isomers of the steroid hor-
mone 1a,25-dihydroxyvitamin D. J Am Chem Soc. 1994;116:6207–16.

 35. Maynard DF, Trankle WG, Norman AW, Okamura WH. 14-epi stereoisomers of 25-hydroxy- 
and 1 alpha,25-dihydroxyvitamin D3: synthesis, isomerization to previtamins, and biological 
studies. J Med Chem. 1994;37(15):2387–93.

 36. Kurek-Tyrlik A, Michalak K, Wicha J. Synthesis of 17-epi-calcitriol from a common andro-
stane derivative, involving the ring B photochemical opening and the intermediate triene ozon-
olysis. J Org Chem. 2005;70(21):8513–21.

 37. Michalak K, Wicha J. Total synthesis of a CD-ring: side-chain building block for preparing 
17-epi-calcitriol derivatives from the Hajos-Parrish dione. J Org Chem. 2011;76(16):6906–11.

 38. Binderup L, Latini S, Binderup E, Bretting C, Calverley M, Hansen K. 20-epi-vitamin D3 
analogues: a novel class of potent regulators of cell growth and immune responses. Biochem 
Pharmacol. 1991;42(8):1569–75.

 39. Zhou X, Zhu GD, Van Haver D, Vandewalle M, De Clercq PJ, Verstuyf A, et al. Synthesis, 
biological activity, and conformational analysis of four seco-D-15,19-bisnor-1alpha,25- 
dihydroxyvitamin D analogues, diastereomeric at C17 and C20. J Med Chem. 
1999;42(18):3539–56.

 40. Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B. Estimation 
of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J 
Clin Nutr. 2006;84(1):18–28.

 41. Procsal DA, Okamura WH, Norman AW.  Structural requirements for the interaction of 
1 alpha, 25-(OH) 2- vitiamin D3 with its chick interestinal receptor system. J Biol Chem. 
1975;250(21):8382–8.

 42. Perlman KL, Sicinski RR, Schnoes HK, DeLuca HF. 1α,25-dihydroxy-19-nor-vitamin D3, 
a novel vitamin D-related compound with potential therapeutic activity. Tetrahedron Lett. 
1990;31(13):1823–4.

 43. Bouillon R, Sarandeses LA, Allewaert K, Zhao J, Mascarenas JL, Mourino A, et al. Biologic 
activity of dihydroxylated 19-nor-(pre)vitamin D3. J Bone Miner Res. 1993;8(8):1009–15.

 44. Sicinski RR, Perlman KL, Prahl J, Smith C, DeLuca HF. Synthesis and biological activity of 
1 alpha, 25-dihydroxy-18-norvitamin D3 and 1 alpha, 25-dihydroxy-18,19-dinorvitamin D3. J 
Med Chem. 1996;39(22):4497–506.

 45. Kubodera N, Miyamoto K, Matsumoto M, Kawanishi T, Ohkawa H, Mori T. Synthetic studies 
of vitamin D analogues. X. Synthesis and biological activities of 1 alpha,25-dihydroxy- 21-
norvitamin D3. Chem Pharm Bull (Tokyo). 1992;40(3):648–51.

 46. Ostrem VK, Lau WF, Lee SH, Perlman K, Prahl J, Schnoes HK, et al. Induction of mono-
cytic differentiation of HL-60 cells by 1,25-dihydroxyvitamin D analogs. J Biol Chem. 
1987;262(29):14164–71.

 47. Sakamaki Y, Inaba Y, Yoshimoto N, Yamamoto K. Potent antagonist for the vitamin D receptor: 
vitamin D analogues with simple side chain structure. J Med Chem. 2010;53(15):5813–26.

 48. Haussler MR, Zerwekh JE, Hesse RH, Rizzardo E, Pechet MM. Biological activity of 1alpha- 
hydroxycholecalciferol, a synthetic analog of the hormonal form of vitamin D3. Proc Natl 
Acad Sci U S A. 1973;70(8):2248–52.

 49. Holick MF, Semmler EJ, Schnoes HK, DeLuca HF. 1 Hydroxy derivative of vitamin D3 : a 
highly potent analog of 1, 25-dihydroxyvitamin D3. Science. 1973;180(4082):190–1.

 50. Verstuyf A, Verlinden L, van Etten E, Shi L, Wu Y, D'Halleweyn C, et al. Biological activity 
of CD-ring modified 1alpha,25-dihydroxyvitamin D analogues: C-ring and five-membered 
D-ring analogues. J Bone Miner Res. 2000;15(2):237–52.

 51. Kutner A, Zhao H, Fitak H, Chodyn M, Halkes SJ, Wilson SR, et al. Inventors new pharmaceu-
tically active compounds. 1995. Patent, WO1995019963A1.

 52. Rochel N, Wurtz JM, Mitschler A, Klaholz B, Moras D. The crystal structure of the nuclear 
receptor for vitamin D bound to its natural ligand. Mol Cell. 2000;5(1):173–9.

T. R. Mutchie et al.



215

 53. Kakuda S, Okada K, Eguchi H, Takenouchi K, Hakamata W, Kurihara M, et al. Structure of the 
ligand-binding domain of rat VDR in complex with the nonsecosteroidal vitamin D3 analogue 
YR301. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008;64(Pt 11):970–3.

 54. Boehm MF, Fitzgerald P, Zou A, Elgort MG, Bischoff ED, Mere L, et al. Novel nonsecoste-
roidal vitamin D mimics exert VDR-modulating activities with less calcium mobilization than 
1,25-dihydroxyvitamin D3. Chem Biol. 1999;6(5):265–75.

 55. Hakamata W, Sato Y, Okuda H, Honzawa S, Saito N, Kishimoto S, et al. (2S,2'R)-analogue of 
LG190178 is a major active isomer. Bioorg Med Chem Lett. 2008;18(1):120–3.

 56. Kashiwagi H, Ono Y, Ohta M, Morikami K, Takahashi T. Systematic SAR study of the side 
chain of nonsecosteroidal vitamin D(3) analogs. Bioorg Med Chem. 2012;20(14):4495–506.

 57. Kashiwagi H, Ohta M, Ono Y, Morikami K, Itoh S, Sato H, et al. Effects of fluorines on non-
secosteroidal vitamin D receptor agonists. Bioorg Med Chem. 2013;21(3):712–21.

 58. Ge Z, Hao M, Xu M, Su Z, Kang Z, Xue L, et al. Novel nonsecosteroidal VDR ligands with 
phenyl-pyrrolyl pentane skeleton for cancer therapy. Eur J Med Chem. 2016;107:48–62.

 59. Taniguchi K, Katagiri K, Kashiwagi H, Harada S, Sugimoto Y, Shimizu Y, et al. A novel non-
secosteroidal VDR agonist (CH5036249) exhibits efficacy in a spontaneous benign prostatic 
hyperplasia beagle model. J Steroid Biochem Mol Biol. 2010;121(1–2):204–7.

 60. Fujii S, Masuno H, Taoda Y, Kano A, Wongmayura A, Nakabayashi M, et al. Boron cluster- 
based development of potent nonsecosteroidal vitamin D receptor ligands: direct observa-
tion of hydrophobic interaction between protein surface and carborane. J Am Chem Soc. 
2011;133(51):20933–41.

 61. Fujii S, Kano A, Masuno H, Songkram C, Kawachi E, Hirano T, et al. Design and synthesis 
of tetraol derivatives of 1,12-dicarba-closo-dodecaborane as non-secosteroidal vitamin D ana-
logs. Bioorg Med Chem Lett. 2014;24(18):4515–9.

 62. Perakyla M, Malinen M, Herzig KH, Carlberg C. Gene regulatory potential of nonsteroidal 
vitamin D receptor ligands. Mol Endocrinol. 2005;19(8):2060–73.

 63. Ciesielski F, Sato Y, Chebaro Y, Moras D, Dejaegere A, Rochel N. Structural basis for the 
accommodation of bis- and tris-aromatic derivatives in vitamin D nuclear receptor. J Med 
Chem. 2012;55(19):8440–9.

 64. Gogoi P, Seoane S, Sigueiro R, Guiberteau T, Maestro MA, Perez-Fernandez R, et  al. 
Aromatic-based design of highly active and noncalcemic vitamin D receptor agonists. J Med 
Chem. 2018;61(11):4928–37.

 65. Chen F, Su Q, Torrent M, Wei N, Peekhaus N, Mcmasters D, et al. Identification and character-
ization of a novel nonsecosteroidal vitamin D receptor ligand. DrugDev Res. 2007;68(2):51–60.

 66. Haussler MR, Haussler CA, Bartik L, Whitfield GK, Hsieh JC, Slater S, et al. Vitamin D recep-
tor: molecular signaling and actions of nutritional ligands in disease prevention. Nutr Rev. 
2008;66(10 Suppl 2):S98–112.

 67. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, et al. Vitamin D receptor 
as an intestinal bile acid sensor. Science. 2002;296:1313–6.

 68. Adachi R, Honma Y, Masuno H, Kawana K, Shimomura I, Yamada S, et al. Selective acti-
vation of vitamin D receptor by lithocholic acid acetate, a bile acid derivative. J Lipid Res. 
2005;46(1):46–57.

 69. Ishizawa M, Matsunawa M, Adachi R, Uno S, Ikeda K, Masuno H, et al. Lithocholic acid 
derivatives act as selective vitamin D receptor modulators without inducing hypercalcemia. J 
Lipid Res. 2008;49(4):763–72.

 70. Masuno H, Kazui Y, Tanatani A, Fujii S, Kawachi E, Ikura T, et al. Development of novel litho-
cholic acid derivatives as vitamin D receptor agonists. Bioorg Med Chem. 2019;27(16):3674–81.

 71. Arichi N, Fujiwara S, Ishizawa M, Makishima M, Hua DH, Yamada KI, et al. Synthesis and 
biological evaluation of steroidal derivatives bearing a small ring as vitamin D receptor ago-
nists. Bioorg Med Chem Lett. 2017;27(15):3408–11.

 72. Norman AW, Manchand PS, Uskokovic MR, Okamura WH, Takeuchi JA, Bishop JE, et al. 
Characterization of a novel analogue of 1alpha,25(OH)(2)-vitamin D(3) with two side chains: 
interaction with its nuclear receptor and cellular actions. J Med Chem. 2000;43(14):2719–30.

8 Strategies for the Design of Vitamin D Receptor Ligands



216

 73. Mizwicki MT, Keidel D, Bula CM, Bishop JE, Zanello LP, Wurtz JM, et al. Identification of an 
alternative ligand-binding pocket in the nuclear vitamin D receptor and its functional importance 
in 1alpha,25(OH)2-vitamin D3 signaling. Proc Natl Acad Sci U S A. 2004;101(35):12876–81.

 74. Ciesielski F, Rochel N, Moras D. Adaptability of the Vitamin D nuclear receptor to the syn-
thetic ligand Gemini: remodelling the LBP with one side chain rotation. J Steroid Biochem 
Mol Biol. 2007;103(3–5):235–42.

 75. Huet T, Maehr H, Lee HJ, Uskokovic MR, Suh N, Moras D, et al. Structure-function study 
of gemini derivatives with two different side chains at C-20, Gemini-0072 and Gemini-0097. 
MedChemComm. 2011;2(5):424–9.

 76. Teske KA, Yu O, Arnold LA.  Inhibitors for the vitamin D receptor-coregulator interaction. 
Vitam Horm. 2016;100:45–82.

 77. Ishizuka S, Yamaguchi H, Yamada S, Nakayama K, Takayama H.  Stereochemistry of 
25-hydroxyvitamin D3-26,23-lactone and 1 alpha, 25-dihydroxyvitamin D3-26,23-lactone in 
rat serum. FEBS Lett. 1981;134(2):207–11.

 78. Miura D, Manabe K, Ozono K, Saito M, Gao Q, Norman AW, et  al. Antagonistic action 
of novel 1alpha,25-dihydroxyvitamin D3-26, 23-lactone analogs on differentiation of 
human leukemia cells (HL-60) induced by 1alpha,25-dihydroxyvitamin D3. J Biol Chem. 
1999;274(23):16392–9.

 79. Kakuda S, Ishizuka S, Eguchi H, Mizwicki MT, Norman AW, Takimoto-Kamimura 
M. Structural basis of the histidine-mediated vitamin D receptor agonistic and antagonistic 
mechanisms of (23S)-25-dehydro-1alpha-hydroxyvitamin D3-26,23-lactone. Acta Crystallogr 
D Biol Crystallogr. 2010;66(Pt 8):918–26.

 80. Saito N, Saito H, Anzai M, Yoshida A, Fujishima T, Takenouchi K, et al. Dramatic enhance-
ment of antagonistic activity on vitamin D receptor: a double functionalization of 1alpha- 
hydroxyvitamin D3 26,23-lactones. Org Lett. 2003;5(25):4859–62.

 81. Saito N, Matsunaga T, Saito H, Anzai M, Takenouchi K, Miura D, et al. Further synthetic and 
biological studies on vitamin D hormone antagonists based on C24-alkylation and C2alpha- 
functionalization of 25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactones. J Med Chem. 
2006;49(24):7063–75.

 82. Bury Y, Steinmeyer A, Carlberg C. Structure activity relationship of carboxylic ester antago-
nists of the vitamin D(3) receptor. Mol Pharmacol. 2000;58(5):1067–74.

 83. Zugel U, Steinmeyer A, Giesen C, Asadullah K.  A novel immunosuppressive 1alpha,25- 
dihydroxyvitamin D3 analog with reduced hypercalcemic activity. J Invest Dermatol. 
2002;119(6):1434–42.

 84. Kato Y, Nakano Y, Sano H, Tanatani A, Kobayashi H, Shimazawa R, et  al. Synthesis of 
1alpha,25-dihydroxyvitamin D3-26,23-lactams (DLAMs), a novel series of 1 alpha,25- 
dihydroxyvitamin D3 antagonist. Bioorg Med Chem Lett. 2004;14(10):2579–83.

 85. Nakano Y, Kato Y, Imai K, Ochiai E, Namekawa J, Ishizuka S, et al. Practical synthesis and 
evaluation of the biological activities of 1 alpha,25-dihydroxyvitamin D-3 antagonists, 1 
alpha,25-dihydroxyvitamin D-3-26,23-lactams. Designed on the basis of the helix 12-folding 
inhibition hypothesis. J Med Chem. 2006;49(8):2398–406.

 86. Cho K, Uneuchi F, Kato-Nakamura Y, Namekawa J, Ishizuka S, Takenouchi K, et al. Structure- 
activity relationship studies on vitamin D lactam derivatives as vitamin D receptor antagonist. 
Bioorg Med Chem Lett. 2008;18(15):4287–90.

 87. Lamblin M, Spingarn R, Wang TT, Burger MC, Dabbas B, Moitessier N, et  al. An 
o- aminoanilide analogue of 1alpha,25-dihydroxyvitamin D(3) functions as a strong vitamin D 
receptor antagonist. J Med Chem. 2010;53(20):7461–5.

 88. Inaba Y, Yamamoto K, Yoshimoto N, Matsunawa M, Uno S, Yamada S, et  al. Vitamin D3 
derivatives with adamantane or lactone ring side chains are cell type-selective vitamin D recep-
tor modulators. Mol Pharmacol. 2007;71(5):1298–311.

 89. Igarashi M, Yoshimoto N, Yamamoto K, Shimizu M, Ishizawa M, Makishima M, et  al. 
Identification of a highly potent vitamin D receptor antagonist: (25S)-26-adamantyl-25- 
hydroxy-2-methylene-22,23-didehydro-19,27-dinor-20-epi-vita min D3 (ADMI3). Arch 
Biochem Biophys. 2007;460(2):240–53.

T. R. Mutchie et al.



217

 90. Kudo T, Ishizawa M, Maekawa K, Nakabayashi M, Watarai Y, Uchida H, et al. Combination 
of triple bond and adamantane ring on the vitamin D side chain produced partial agonists for 
vitamin D receptor. J Med Chem. 2014;57(10):4073–87.

 91. Watarai Y, Ishizawa M, Ikura T, Zacconi FC, Uno S, Ito N, et al. Synthesis, biological activi-
ties, and X-ray crystal structural analysis of 25-hydroxy-25(or 26)-adamantyl-17-[20(22),23- 
diynyl]-21-norvitamin D compounds. J Med Chem. 2015;58(24):9510–21.

 92. Inaba Y, Yoshimoto N, Sakamaki Y, Nakabayashi M, Ikura T, Tamamura H, et al. A new class 
of vitamin D analogues that induce structural rearrangement of the ligand-binding pocket of 
the receptor. J Med Chem. 2009;52(5):1438–49.

 93. Anami Y, Sakamaki Y, Itoh T, Inaba Y, Nakabayashi M, Ikura T, et al. Fine tuning of agonistic/
antagonistic activity for vitamin D receptor by 22-alkyl chain length of ligands: 22S-hexyl 
compound unexpectedly restored agonistic activity. Bioorg Med Chem. 2015;23(22):7274–81.

 94. Yamamoto K, Inaba Y, Yoshimoto N, Choi M, DeLuca HF, Yamada S. 22-Alkyl-20- 
epi-1alpha,25-dihydroxyvitamin D3 compounds of superagonistic activity: syntheses, biologi-
cal activities and interaction with the receptor. J Med Chem. 2007;50(5):932–9.

 95. Nandhikonda P, Yasgar A, Baranowski AM, Sidhu PS, McCallum MM, Pawlak AJ, et  al. 
Peroxisome proliferation-activated receptor delta agonist GW0742 interacts weakly with mul-
tiple nuclear receptors, including the vitamin D receptor. Biochemistry. 2013;52(24):4193–203.

 96. Teske K, Nandhikonda P, Bogart JW, Feleke B, Sidhu P, Yuan N, et al. Modulation of transcrip-
tion mediated by the vitamin D receptor and the peroxisome proliferator-activated receptor 
delta in the presence of GW0742 analogs. J Biomol Res Ther. 2014;3(1):1000111.

 97. Teske KA, Rai G, Nandhikonda P, Sidhu PS, Feleke B, Simeonov A, et al. Parallel chemistry 
approach to identify novel nuclear receptor ligands based on the GW0742 scaffold. ACS Comb 
Sci. 2017;19(10):646–56.

 98. Teske KA, Bogart JW, Arnold LA. Novel VDR antagonists based on the GW0742 scaffold. 
Bioorg Med Chem Lett. 2018;28(3):351–4.

 99. Teske K, Nandhikonda P, Bogart JW, Feleke B, Sidhu P, Yuan N, et  al. Identification of 
Vdr antagonists among nuclear receptor ligands using virtual screening. Nucl Recept Res. 
2014;1:1–8.

8 Strategies for the Design of Vitamin D Receptor Ligands



219© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Z. Badr (ed.), Nuclear Receptors, https://doi.org/10.1007/978-3-030-78315-0_9

Chapter 9
What Makes a Good Antagonist: Lessons 
Learned from the Estrogen and Aryl 
Hydrocarbon Receptors

Hollie I. Swanson

Abstract Traditionally, ligands of receptors have been classified as agonists, par-
tial agonists, or antagonists. Study of the estrogen receptor, however, introduced the 
field of pharmacology to the concept of selective modulators that varied in their 
ability to either activate or inhibit the receptor. The mechanisms underlying these 
events were mapped to their unique positions within the ligand-binding cavity of the 
estrogen receptor and their interactions with key amino acid residues residing within 
this pocket. Building on these lessons, selective aryl hydrocarbon receptor modula-
tors are currently being developed to finely tune the activities of the aryl hydrocar-
bon receptor and inhibit disease-modifying processes. These ongoing lessons will 
challenge modern pharmacologists to develop new tools and approaches for predict-
ing the ultimate pharmacological effects of these emerging therapeutics.
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DBD DNA-binding domain
DC50 Half-maximal degradation concentration
E2 17β-estradiol
ER Estrogen receptor
ERE Estrogen response element
FICZ 6-formylindolo[3,2-b]carbazole
HSP90 Heat shock protein of 90 kDa
IC50 Half-maximal inhibition concentration
ITE 2-(1′H-indolo-3′-carbonyl)-thiazole-4-carboxylic acid 

methyl ester
KD Equilibrium dissociation constant
LDB Ligand-binding domain
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
PROTAC Proteolysis-targeting chimera
SAHRD Selective aryl hydrocarbon receptor downregulator
SAHRM Selective aryl hydrocarbon receptor modulator
SERCA Selective estrogen receptor covalent antagonist
SERDs Selective estrogen receptor downregulator
SERM Selective estrogen receptor modulator
STEAR Selective tissue estrogenic activity regulator
TCDD 2,3,7,8 tetrachlorodibenzo-p-dioxin
XAP HBV X-associated protein 2

9.1  Introduction: What Is an Antagonist?

What is an antagonist? This question and its corollary – “why are some drugs ago-
nists and other drugs antagonists?” – are the ones that have bedeviled pharmacolo-
gists since the beginning of our discipline’s history [32, 64]. As stated in many 
pharmacology textbooks, “an antagonist is a drug (any substance that brings about 
a change in biological function via its chemical action) that binds to a receptor and 
competes with and prevents receptor binding with other molecules.” This definition 
arose from the observations of early pharmacologists who used antagonists to 
develop several important pharmacological concepts that are core to our under-
standing of how receptors behave. For example, analyses of competitive antagonism 
led to the now familiar parallel shift in dose-response curves. An additional pharma-
cological concept represented by the equilibrium dissociation constant, KD, used for 
quantifying the affinity with which a ligand binds to its cognate receptor, also arose 
from the experimental use of antagonists. Finally, the use of noncompetitive antago-
nists aided the development of the concept of efficacy. Here, it was found that a 
relationship existed between a receptor’s conformation and the ability of its ligand 
to incur a biological response. That is, efficacy was a reflection of a ligand’s prefer-
ence for the resting versus active state of a given receptor. In this manner, an agonist 
with high efficacy would greatly prefer the active conformation of the receptor. An 
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antagonist, however, would show no preference, be able to bind equally to either 
resting or active forms, and thus be incapable of producing an effect due to its 
inability to shift the receptor to its active state. Using these fundamental concepts, 
early receptor pharmacologists then assigned known ligands as either “agonists” or 
“antagonists” based on the affinity of the ligand for the receptor and ability of the 
ligand to induce a measured response that could be quantitatively measured. Several 
assumptions provided the foundation for their reductionist thinking including theo-
ries that (1) the dose-response curve appropriately reflects a receptor’s occupancy 
relationship, (2) the biological response is directly proportional to the receptor’s 
occupancy, and (3) in the absence of agonist, the receptor is silent.

The purpose of this chapter is to reexamine fundamental receptor concepts as 
they pertain to our understanding of nuclear receptors and contribute to our identi-
fication and definition of their antagonists. Using the estrogen and aryl hydrocarbon 
receptors (ER and AHR, respectively) as specific examples, we will briefly review 
key events that have led to the development of ligands that selectively activate or 
inactivate their respective receptors as well as the molecular events that govern 
these actions. In addition, we will examine current efforts focused on developing 
novel approaches to be used for blocking the actions of these receptors with high 
affinity and high specificity.

9.2  Identification and Development of ER Antagonists

9.2.1  A Brief History of the Development of ER Antagonists

The development of ER antagonists began in the early 1960s during efforts to 
expand the availability of oral contraceptive drug products [31, 62]. Tamoxifen, one 
of the initial compounds in this drug pipeline, was synthesized by a chemist, Dora 
Richardson. Known as “compound ICI 46,474,” its failure to suppress ovulation 
would have doomed its further development if not for the tenacity of the team leader, 
Dr. Arthur Walpole. Dr. Walpole was an astute collaborator who in an effort to 
revive its patent promise, proposed that it would be useful for treating breast cancer. 
At that time, cancer was largely treated using either surgical or radiotherapy 
approaches. Those utilizing chemotherapy were viewed with skepticism as it was 
considered to be a relatively novel and untested concept. Despite considerable resis-
tance from his company’s “suits,” Dr. Walpole was able to persevere due in large 
part to clinical evidence supporting his idea. Thus, tamoxifen was launched into the 
market both as an agent to be used for infertility and as a breast cancer therapeutic. 
Nearly two decades later, subsequent clinical trials initiated in the 1980s confirmed 
that tamoxifen is effective for both treating and preventing breast cancer.

Tamoxifen’s dark side, however, was also revealed during these early days of its 
development and clinical use. Studies performed in mouse models indicated that a 
correlative relationship between its anti-estrogenic/anti-tumor effects and its ability 
to increase uterine wet weight, a pro-estrogenic effect, existed. This proved to be an 
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early warning sign of a serious side effect of tamoxifen, as it foretold the increased 
risk of endometrial cancer (by fourfold) in post-menopausal women treated with 
tamoxifen. It also raised questions as to the true nature of its anti-estrogen actions. 
Another issue illuminated upon the discovery of the ER and the development of ER 
binding assays was that tamoxifen exhibited very low affinity for receptor binding. 
This latter issue was resolved when it was realized that the true nature of tamoxi-
fen’s ER antagonist activity lays within the formation of its high-affinity metabo-
lites, in particular, 4-hydroxytamoxifen and endoxifen. That is, the true ER 
antagonists were 4-hydroxytamoxifen and endoxifen with endoxifen exerting 
greater efficacy. These findings provided the basis for the development of structure- 
activity relationships, thereby resulting in the discovery of raloxifene and ultimately 
ICI 164,384 (fulvestrant) (Fig.  9.1). Additional observations that accelerated the 
development of ER antagonists were the findings that tamoxifen promoted bone 
density, a patent-worthy observation. A key characteristic of ICI 164,384 and its 
descendent, ICI 182,780 (now referred to as fulvestrant), is its long side chain. The 
importance of long side chains in determining the antagonistic activity of drugs like 
fulvestrant will be discussed in a latter section.

The idea that the ER could be “selectively modulated” was supported by the 
clinical observations that tamoxifen, as well as raloxifene, had pro-estrogenic prop-
erties (i.e., retarding osteoporosis and atherosclerosis) while also exerting anti- 
estrogenic, anti-breast cancer activities [41, 56]. Thus, the development of SERMs, 
selective estrogen receptor modulators, was well on its way. First-generation 
SERMs are derivatives of triphenylethylene and include tamoxifen as well as tore-
mifene (Fig. 9.1). Second-generation SERMs, which include raloxifene, are benzo-
thiophene derivatives. However, understanding how SERMS can selectively activate 
or inhibit the actions of the ER within tissues of interest requires deeper insights 
into the structural attributes of the receptor.

9.2.2  Molecular Characterization of ERs

In the late 1970s, the use of radiolabeled binding assays confirmed the existence of 
a receptor capable of interacting specifically with estrogen [20, 28, 66]. With the 
advent of molecular biological approaches and the subsequent cloning of the ER 
during the following decade, the long envisioned molecular structure of the ER (i.e., 
ERα) became a reality. It is now known that estrogen is capable of binding and 
activating two forms of the estrogen receptor, ERα and ERβ. In tissues such as the 
breast and uterus, ERα is thought to be the predominate receptor, whereas in tissues 
that require estrogen for their structural maintenance, such as the prostate, ovary, 
vascular endothelium, and immune system, ERβ likely plays a major role in mediat-
ing estrogen-induced signaling.

In the absence of ligand, ERα and ERβ are found primarily in the cytosol. In the 
presence of ligands, like E2 (17β-estradiol), the receptors dimerize, translocate to 
the nucleus, and interact with specific DNA recognition sites termed estrogen 
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Fig. 9.1 Chemical structures of representative SERMs, SERDs, SERCAs, and STEARS
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response elements (EREs). Throughout this series of events, ERα and ERβ interact 
with a plethora of proteins that facilitate their agonist-induced conformational tran-
sition from their “unactivated” to “activated” states, mediate their dimerization and 
cellular localization, and allow the receptors to either activate (i.e., via interactions 
with coactivators) or repress (i.e., via interactions with corepressors) gene transcrip-
tion. Coactivators facilitate gene activation by engaging in activities such as chro-
matin modification, transcriptional initiation, alterations of RNA processing, and 
degradation of activated nuclear receptor complexes. Corepressors block transcrip-
tion by directly interacting with unbound estrogen receptors and/or competitively 
displacing coactivators from binding to ERα/ERβ.

The ultimate biological effects of ERα/ERβ also impinge on their ability to 
crosstalk with a number of other transcription factors such as Sp1, AP-1, and the Rel 
subunit of NF-κB.  Many of these protein-protein interactions occur in ligand- 
specific manners which ultimately determine which genes are regulated and the 
directionality of their regulation. The transcriptional response to estrogens within a 
target cell is a combinatorial event involving dynamic populations of ligands, estro-
gen receptors, estrogen receptor-modifying enzymes, and coregulators. For exam-
ple, the protein-protein interactions involving the estrogen receptors (i.e., the 
“interactome”) are ligand specific. In addition, the expression levels of the involved 
proteins are highly variable with estrogen receptor turnover being dependent on the 
timing of uninterrupted ligand exposure. Further, ERα-/ERβ-interacting proteins 
are expressed in a cell-type-dependent manner. Given this, it is proposed that assess-
ing the efficacy of estrogen receptor ligands should incorporate temporal measure-
ments of gene transcription within a variety of tissues [63].

The estrogen receptors are composed of five domains; the A/B (N-terminal 
domain); C, D, E domains; and at the C-terminus, the F domain [20, 28, 66]. A 
schematic of the key domains of ERα is shown in Fig. 9.2a. The A/B domain medi-
ates transcriptional activation which is facilitated primarily by a region referred to 
as AF1 (activation function 1). The adjacent C region bears sites involved in recep-
tor dimerization and DNA binding (DNA-binding domain, DBD). The DBD con-
sists of two zinc finger structures that interact specifically with the ERE. The 
canonical ERE is defined as the palindrome GGTCAnnnTGACC. However, more 
than 70,000 EREs have been identified in the human genome and vary with respect 
to their specific sequence compositions and their positions relative to the mRNA 
transcription start site. While canonical ERE sites were initially identified within 
gene promoters, more extensive analyses have revealed that the majority of estrogen- 
induced binding of ERα occurs outside of promoter regions and within introns and 
intergenic regions [26].

The D domain, also referred to as the “hinge,” is involved in nuclear transloca-
tion of the receptor [28]. Specific amino acid sequences harbored within this site, 
nuclear localization sequences, are essential for sequestering the ERs within the 
cytosol. Ligand binding “unmasks” these sites and allows for the receptors to enter 
the nucleus. The E domain at the C-terminus harbors the ligand-binding domain 
(LDB) as well as a second site involved in transcriptional activation, termed the AF2 
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Fig. 9.2 ERα structure, post-translational modifications, and conformational changes induced by 
different ligands. (a) Schematic representation of ERα structure. AF1/AF2, activation function 1/2; 
DBD, DNA-binding domain; NLS, nuclear localization signal; LBD, ligand-binding domain. 
SUMOylation sites identified by mass spectrometry in the presence of ICI 182,780 are indicated in 
purple. Residues phosphorylated in the presence of antiestrogens or implicated in the modulation 
of sensitivity to antiestrogen treatment are indicated in orange. (b) LBD ERα–estradiol (E2)–TIF2 
NR box 3 complex [82]. (c) LBD ERα–4-hydroxytamoxifen complex (OHT) [70]. (d) LBD ERβ–
ICI 164,384 complex [58]. (e) LBD ERα–GW5638 complex [86]. Representations were generated 
using PyMOL. Helix 12 is highlighted in red and each ligand is shown in green. The α-helical TIF2 
coactivator motif is shown in gold. (Reproduced with permission from Ref. [80])
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domain. The hydrophobic nature of the ligand-binding site is determined by the 
hydrophobic residues that reside within five helices (H3, H6, H8, H11, and H12) as 
well as the S1/S2 hairpin that lines its cavity [7, 38]. Full transcriptional activation 
of the ERs requires both AF1 and AF2 domains which function synergistically to 
recruit coactivators [34]. While both ERα and ERβ harbor fully functional AF2 
domains, the AF1 domain of ERβ functions to a lesser extent when compared to that 
of ERα. Binding of coactivators to only the AF1 domain results in either no or par-
tial transcriptional activation, but this is thought to be promoter and cell type depen-
dent. Studies performed examining the function of the F domain of ERα indicate 
that at least with respect to activation via 4-hydroxytamoxifen, the F domain gov-
erns its species-specific (i.e., human versus murine) transcriptional activation [1].

ERs characteristically bind ligands in a promiscuous manner which is attributed 
to their large binding cavities and combination of specific polar and nonpolar inter-
actions [53]. Ligand-binding preferences between ERα and ERβ are distinct and 
thought to be dictated by structural differences within their LBDs. These respective 
domains are significantly different, sharing only a 59% identity. Interestingly, the 
amino acids that line their binding cavity are highly conserved differing by only two 
amino acids with Met-421 of ERα corresponding to Ile-373 of ERβ and Leu-384 of 
ERα corresponding to Met-336 of ERβ. Given that the subtlety of these amino acid 
differences contrasts with the wide variety in ligand-binding preferences of ERα 
versus ERβ, it is highly likely that amino acids positioned beyond the ligand- binding 
cavity play an important role in determining their ligand specificity.

9.2.3  The Antagonistic Activity of SERMs Involves 
Repositioning of Helix 12

A consistent theme that has emerged from structural models derived from the analy-
ses of an array of nuclear receptors is the key role enacted by helix 12 within their 
LBDs that facilitate their ligand-induced conformational changes [80]. Here, ago-
nist (i.e., E2) activation is thought to increase helical integrity, thereby decreasing 
the mobility of helix 12. Agonist-induced stabilization of helix 12 and its subse-
quent docking between helix 3 and helix 12 exposes a cleft within the AF2 domain 
and a site of interaction with the LXXLL motif found within all coactivators 
(Fig. 9.2b). In the absence of ligand, however, the apo ligand-binding state of the 
ERα, helix 12 is highly mobile. In this repressed state, ERα interactions with core-
pressors are favored, while interactions with coactivators are discouraged. Binding 
of antagonist is thought to incur similar events by preventing helix 12 from assum-
ing its agonist-induced conformation, thereby displacing coactivator binding while 
providing a surface for interactions with corepressors. The distinct actions of the 
SERMs described in the previous section are thought to arise from the fact that these 
ERα ligands have distinct sizes which alter their ability to “fill the space” of the 
binding cavity. Side chains of SERMs like tamoxifen and raloxifene contain tertiary 
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amines that engage in steric clashes capable of repositioning helix 12 to the 
coactivator- binding groove (Fig. 9.2c). It is their “tails” that interact differently with 
the receptor, thereby differentially altering the ability of helix 12 to establish contact 
with helix 5. A key event involves Asp351 which resides within helix 3. Here, the 
tertiary side chain of antagonists like raloxifene forms a salt bridge with Asp351. As 
a result, helix 12 is forced to reposition over the coactivator-binding groove. SERMs 
which fail to engage in an interaction with Asp351 fail to achieve “pure” antagonis-
tic activity due to their partial agonist actions.

9.2.4  Additional Classes of ERα Antagonists

SERDs As efforts to develop a “pure” ER antagonist continued, a new class of 
antagonists arose termed SERDs, selective estrogen receptor downregulators 
(Fig. 9.1) [56]. These drugs bind ER, induce rapid ER downregulation, and exert no 
observable ER agonist activity in any tissue. Based on their chemical structures, two 
groups of SERDs exist, (1) steroidal (e.g., fulvestrant) and (2) nonsteroidal (e.g., 
GW 5638), which bear structural similarity to tamoxifen. At this time, the only 
FDA-approved SERD is fulvestrant (also referred to as ICI 182,780). Because of its 
poor solubility, it is typically administered intramuscularly, and thus its use is lim-
ited. The key moieties underlying the pure antagonistic activity of SERDs are their 
bulky and/or extended side chains which are thought to exert enhanced helix 12 
disruption and increase exposure of ERα’s hydrophobic surface, thereby facilitating 
its proteosomal degradation (Fig. 9.2d) [84]. In addition, SERDs such as fulvestrant 
are efficient at enhancing the ability of ERα to recruit corepressors [83]. Subtle 
change in the composition of the side chain of SERDs is sufficient for enabling 
“pure” antagonistic behavior involving disruption of helix 12 and increased confor-
mational helix mobility [18]. For example, side chains of GW 5638, a tamoxifen 
analog, is capable of forming hydrogen bonds with both Asp351 and the backbone 
of helix 12 (Fig. 9.2e) [80]. The ultimate consequence is that helix 12 is able to 
maintain its interaction with the coactivator-binding groove despite the increased 
exposure of its hydrophobic surface. The role of these structural changes in dictat-
ing both the anti-estrogenic action of the antagonist and degradation of the ERα 
protein is yet to be completely understood. In fact, a recent report has questioned 
whether the actions of fulvestrant require its ability to degrade the ERα. Instead, it 
is proposed that the extent to which fulvestrant acts as an anti-estrogen more likely 
involves its ability to immobilize ERα within the nuclear matrix which subsequently 
and completely inhibits its ability to transactivate genes [26].

A distinct and emerging class of SERDs are PROTACs (Proteolysis-targeting 
chimeras which represent a targeted approach to direct the cell’s protein degradation 
toward a specific protein of interest [67, 74]. Here, bi-functional molecules are used 
wherein one end is tasked with binding the protein of interest and the other with 
recruiting proteolytic enzymes. The first of this class linked a peptide derived from 
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IκBα to the E3 ligase recognition site. Subsequent studies have reported on the use 
of the PROTAC approach to successfully target dozens of proteins including nuclear 
steroid receptors, such as the androgen and estrogen receptors as well as the aryl 
hydrocarbon receptor (AHR). Our efforts at developing PROTACs that targeted 
ERα included strategies that incorporated a second ligand (E2) resulting in a “two 
headed” PROTAC which enhanced binding affinity and efficacy as determined by 
degradation of the ERα protein [15]. An additional improvement was the determina-
tion of the optimal distance, a chain length of 16 atoms, between the E3 ligase rec-
ognition site and the ligand [14]. The most recently developed ERα-targeting 
PROTAC, ARV-471, has been developed by Arvmas and is currently being tested in 
Phase I clinical trials to treat women with locally advanced or metastatic ER+ breast 
cancer [45]. ARV-471 is orally bioavailable and has been shown in preclinical stud-
ies to be more effective than fulvestrant [74]. The efficacy of PROTACs is assessed 
using DC50 values which reflect half-maximal degradation concentrations. While 
the DC50 value of ARV-471 has not been disclosed, that of the androgen-targeting 
PROTAC, ARV-110 which is also in Phase I clinical trials, has a reported DC50 value 
of 5 nm. Recently, a highly potent ER PROTAC (ERD-308, DC50 = 0.17 nM) has 
been developed (Fig. 9.1). In cultured breast cancer cells, ERD-308 exerts a more 
complete (i.e., greater than 95%) degradation than that of fulvestrant [29].

STEARs A third class of ER antagonists are termed STEARs, selective tissue 
estrogenic activity regulators [22]. STEARs are structurally distinct from SERMs 
and are also capable of impacting the activity of progesterone and androgen recep-
tors as well as altering the metabolism of estrogen. The most commonly used 
STEAR is tibolone (Fig. 9.1). It is proposed for use as hormone replacement ther-
apy to treat symptoms associated with menopause (vaginal atrophy, vasomotor 
symptoms, and poor bone density).

SERCAs A major problem that arises in breast cancer patients following their 
long-term exposure to anti-estrogens is acquired resistance. To circumvent resis-
tance, a new class of ER antagonists, termed SERCAs (selective estrogen receptor 
covalent antagonists), has been developed (Fig. 9.1) [21, 61]. In a substantial por-
tion of patients who are resistant to anti-estrogens, mutated forms of the ER are 
enriched within the surviving tumor cells which engage in ligand-independent, 
ERα-dependent proliferation. Among the mutations involved in conferring constitu-
tive activity are those found within the AF2 helix of ERα. Here, in the absence of 
ligand, amino acid substitutions (Y537S and D5386) shift the receptor toward its 
agonist-induced conformation. Targeting a nonconserved cysteine (C530) with a 
covalently bound pharmacophore (H3B-5942) has been found to be sufficient for 
shifting the mutated ERα into an antagonist-induced conformation. Further, binding 
of both wild-type and mutated ERα to H3B-5942 could stimulate formation of a 
receptor complex that binds DNA but lacks coactivators. Finally, in cultured endo-
metrial cells, H2B-5942 did not impact transcription of the canonical ERα target 
gene, PGR, or impact cell proliferation indicating that its actions may spare ERα- 
mediated events within the endometrium.
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9.3  Development of AHR Antagonists

9.3.1  Early Days of AHR Discovery

The road leading to the discovery of the AHR began with observations that expo-
sures to polyaromatic hydrocarbons increased the protein levels and activity of an 
enzyme termed “benzopyrene hydroxylase” (subsequently termed “aryl hydrocar-
bon hydroxylase” and now referred to as CYP1A1 and CYP1A2) in rat liver [2, 52]. 
The use of inbred mouse strains, C57B6 and C57D2, led to the realization that this 
response of “polyaromatic hydrocarbon inducibility” localized to a single gene, the 
Ah locus. Subsequent genetic analyses performed using cultured mouse hepatoma 
cells ultimately identified three key genes, Ahr, Arnt, and Cyp1a1, that were required 
for mediating this response. A second line of research utilized a pharmacological 
approach, i.e., use of radiolabeled ligand-binding assays, to demonstrate that 
polyaromatic hydrocarbons like 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) bound 
a cytosolic protein with high specificity and affinity. In addition, it was found that a 
structure-affinity/structure-activity relationship with respect to ligand-binding affin-
ity and biological response (i.e., induction of enzyme activity) existed. With the 
advent of molecular biology came the discovery that specific DNA sequences 
located upstream of the CYP1A1 transcription start site (termed AHREI, aryl hydro-
carbon receptor response elements; XREs, xenobiotic response elements, but also 
referred to as DREs, dioxin response elements) were responsible for the observed 
increase in CYP1A1 mRNA levels. This observation ultimately led to the definition 
of a core consensus DNA-binding site that was identified as GCGTG (AHREI), 
with nucleotides flanking this site playing nonessential but supportive roles [77].

Initial biochemical analyses reported many similarities between the cellular 
activities of the protein identified as the AHR and that of the steroid receptors, in 
particular, the glucocorticoid receptor [13]. For example, cellular exposure to ago-
nists of either an AHR or glucocorticoid receptor resulted in relocation of the 
respective receptor from the cytosol to the nucleus. This event was accompanied by 
a poorly understood biochemical process wherein the receptors were “transformed” 
to a form that was capable of binding DNA. While the AHR and steroid receptors 
share many biochemical features, cloning of the AHR refuted the idea that they 
were members of a common protein family. The AHR was found to belong to a 
distinct class of proteins, the basic helix-loop-helix PAS (bHLH/PAS) proteins, that 
at the time was composed of PER, ARNT, and SIM [8]. A key, differentiating attri-
bute that distinguishes the AHR from that of the steroid receptors pertains to the 
manner with which they interact with DNA. While the DNA-binding forms of ste-
roid receptors exist as either homodimers or heterodimers with RXR, that of the 
AHR exists as a heterodimer with ARNT.  Further, the structural motifs of their 
DNA-binding domains, leucine zippers versus basic regions, are distinct. 
Nonetheless, as ligand-activated transcription factors, they share key aspects per-
taining to their activation and protein-protein interactions that lend insight into how 
their unique ligands alter physiological homeostasis. These common attributes 
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provide clues for developing tools to be used for effectively blocking their deleteri-
ous or inappropriate actions.

During the past two decades, significant advances have contributed to our under-
standing of the endogenous function of the AHR and how its activation by a variety 
of ligands can impact cellular and physiological processes. A model of the events 
initiated following agonist activation is depicted in Fig. 9.3. In the absence of ligand, 
the AHR exists as a complex composed of an HSP90 dimer, XAP2, and p23 [50]. In 
this unliganded form, the AHR engages in dynamic nucleocytoplasmic shuttling but 
is found primarily within the cytosol. The chaperone proteins, HSP90, XAP2, and 
p23, play important roles in the ability of the AHR to respond to ligand, its cellular 
localization, and the extent to which it is subject to degradation. Both HSP90 and 
XAP2 govern localization of the AHR within the cell. The interaction between the 
AHR and HSP90 is thought to shield the nuclear localization signal within the AHR 
from exposure. Upon ligand binding, a conformational change in the AHR ensues 
that shifts its interaction with HSP90 such that the nuclear localization signal resid-
ing within the bHLH domain of the AHR is revealed, thereby allowing the HSP90- 
bound AHR to enter the nucleus. Within the nucleus, the AHR’s dimerization 
partner, ARNT, displaces HSP90 from the AHR. XAP2 also appears to play a role 

b HLH PAS TAD
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Fig. 9.3 Events initiated upon agonist activation of the AHR. Binding of agonist (e.g., TCDD) 
induces nuclear translocation of the AHR complex. Within the nucleus, the AHR dimerizes with 
ARNT or other transcription factors such as ERα or RelB, thereby altering gene transcription. The 
AHR/ARNT heterodimer complex upregulates genes containing AHREI and AHREII sites. 
Interaction of the AHR with AHRR results in gene repression and may involve either tethering of 
the AHR or direct binding of the AHR/AHRR complex. The agonist-bound AHR is also thought to 
engage in cytoplasmic-nuclear shuttling and serve as a target for proteolytic degradation
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in the nuclear translocation of the AHR by inhibiting its ability to interact with the 
nuclear transport protein importin β. In addition, p23 and XAP2 are involved in 
maintaining proper protein levels of AHR by modulating its degradation. While 
AHR degradation occurs following its binding to ligand and subsequent ubiquitina-
tion, the degradation pathways incurred by the chaperone proteins (i.e., p23 and 
XAP2) are thought to be distinct and involve the latent, unliganded receptor [54].

Activation of the AHR pathway via ligand-independent mechanisms has also 
been reported and is thought to involve tyrosine kinases and cAMP [40]. Evidence 
of tyrosine kinase-mediated events include the observation that flavonoids, like 
genistein and daidzein, which harbor tyrosine kinase activity, are able to block 
omeprazole-induced activation of the AHR. It is proposed that the underlying mech-
anisms include increased activity of tyrosine kinases as well as enhanced levels of 
cAMP that trigger protein-protein interactions that promote AHR nuclear 
translocation.

The ability of the AHR/ARNT dimer to activate gene transcription involves its 
binding to both the consensus (canonical) AHREI and non-canonical AHREII [75]. 
Similar to other transcription factors, AHR-/ARNT-induced transcriptional activa-
tion requires its recruitment of coactivators, chromatin rearrangement, and enhanced 
accessibility of the gene promoter. Genes regulated via the consensus AHREI 
include the prototypical CYP1A1, whereas those regulated by AHREII involve 
genes encoding transporters and ion channels. The agonist-activated AHR also reg-
ulates gene transcription via its interaction with other transcription factors such as 
ERα, NF-κB (RelA and RelB), and Sp1. The agonist-bound AHR also forms a het-
erodimer with the AHRR which is capable of repressing gene transcription either 
via a tethering mechanism or direct interaction with AHREI [87]. Agonist activation 
of the AHR modulates the expression of genes involved in a myriad of cellular pro-
cesses including metabolism, proliferation, and the regulation of cell fate decisions 
such as apoptosis and differentiation. As a consequence key, disease processes, such 
as inflammatory and immune responses and cancer progression, are impacted. Thus, 
AHR antagonists, with their propensity for modulating these processes, are attrac-
tive, potential anti-inflammatory, and anti-cancer agents and thus are of consider-
able interest to the scientific and clinical communities.

As we consider the consequences of agonist activation of the AHR, it is impor-
tant to note that the transcriptional activation of the AHR initiated by its agonists is 
tightly regulated by a number of negative feedback loops as follows [2]:

 1. The prototypical AHR target gene, CYP1A1, often catalyzes the degradation of 
many AHR agonists, thereby limiting their activities. In the presence of an AHR 
agonist, CYP1A1 is commonly the most extensively upregulated gene product.

 2. The agonist-activated AHR increases the expression levels of a repressor protein, 
AHRR (aryl hydrocarbon receptor repressor). This bHLH/PAS protein harbors a 
transcriptional repression domain at its C-termini and competitively displaces 
ARNT from interacting with the AHR.

 3. The cellular levels of the AHR are subject to the above  mentioned ligand- 
dependent and ligand-independent proteolysis of the AHR protein. Thus, the 
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ultimate effect of an AHR antagonist on this battery of events as well as its ulti-
mate effect is often difficult to predict.

9.3.2  Molecular Structure of the AHR

The 16-member family of bHLH/PAS proteins is widely thought of as “sensor” 
proteins that allow a host organism to adapt to changes in its environment by trans-
mitting a variety of responses [85]. The bHLH/PAS proteins are classified as either 
Class I, proteins directly involved in the “sensing” activity, or Class II, which act as 
common dimerization partners that interact with Class I proteins. Typical of many 
Class I proteins, the expression of AHR varies in a cell- and tissue-type-dependent 
manner. In contrast, the protein expression of that of its DNA-binding partner 
ARNT, a Class II protein, is thought to be constitutively and ubiquitously expressed. 
As previously mentioned, a third bHLH/PAS protein involved in AHR signaling is 
the AHRR, AHR repressor protein, which is also classified as a Class I protein.

Like many bHLH/PAS proteins, the basic domain of the AHR lies at its N-termini 
and is followed by a helix-loop-helix motif and two highly conserved PAS regions 
(PAS-A and PAS-B) (Fig. 9.3) [2]. The bHLH domain is composed of two α helices 
that are connected by a short loop. The key DNA-binding interface of the AHR is 
localized within the first loop of the basic region, wherein 4–6 amino acids, in par-
ticular R39, interact with the major groove of DNA [68, 69]. Sites that govern 
nuclear localization and nuclear export of the AHR have been identified within the 
HLH domain [25]. However, additional sites identified within the C-terminus using 
bioinformatics may also be involved. The bHLH and PAS-A domains are essential 
for mediating dimerization between the AHR and ARNT [2, 52]. Also within the 
N-terminus (i.e., bHLH/PAS domains) of the AHR lie surfaces that facilitate inter-
actions between the AHR and coactivators/corepressors. The “sensing” activity of 
the AHR mediated by its ligand-binding cavity, lies within its PAS-B region. While 
the AHR is as of yet the only identified member of the bHLH/PAS family to bind 
ligand, based on structural characterizations, it has been hypothesized that all 
bHLH/PAS may be transcriptionally activated by endogenous ligands.

At the C-terminus lies the TAD, the transcriptional activation domain required 
for facilitating its interactions with a variety of coactivators involved in transcrip-
tional activation. A common feature of the C-termini of bHLH/PAS proteins is the 
significant variability in their primary protein structures which is characterized as 
an “intrinsically disordered region” [35]. It is proposed that the presence of sites for 
post-translational modification indicates that the C-termini, in addition to contribut-
ing to the activity of transcriptional complexes, is involved in regulating the stabil-
ity/activity of the protein. Further, it is thought that the flexibility and disorder found 
within this region are relevant to the diverse functions of this protein class. Here, the 
ultimate structure of AHR’s transcriptional activation domain as a component of a 
given transcriptional complex is likely to be dependent on how it interacts with 
ARNT as well as coactivator proteins. These protein-protein interactions, in turn, 
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would be differentially influenced by the bound agonist, thereby eliciting ligand- 
dependent transcriptional activation.

9.3.3  Agonist-Induced Activation of the AHR

Our understanding of how AHR binding to its agonists promotes changes in its 
conformation to render it capable of activating gene transcription has been ham-
pered of the lack of crystal structures of the agonist-bound form of the AHR. However, 
some insights are offered by recent crystal structure analyses of a complex formed 
by a heterodimer consisting of the bHLH/PAS A regions of both the AHR and 
ARNT bound to the consensus TTGCGTG sequence [69]. As previously predicted, 
ARNT was found to interact with the GTG half-site; while the AHR interacted with 
the 5′ end of the recognition site, GC/CG via H-bonds formed with R39 that resides 
within its basic region. One of the most striking observations was that the AHR has 
extensive interdomain interactions (i.e., within its bHLH and PAS-A domains), 
while within ARNT, these two domains are involved in minimal contact. A second 
important observation was that the interactions between the AHR and ARNT were 
found to be highly intertwined consisting of a number of domain-to-domain and 
cross-domain interactions. These involved interdomain interactions are consistent 
with allosteric mechanisms that facilitate agonist-induced activation of nuclear ste-
roid receptors [19, 42]. Here, agonist binding that occurs at a distal region of the 
receptor is capable of “transmitting” this event to promote significant structural 
alterations in domains engaged in other activities such as interacting with DNA or 
other proteins. Allosteric interactions occur between the ligand-binding and DNA- 
binding domains which can reciprocally alter the specificity of interactions occur-
ring at either the ligand- or the DNA-binding site. Further, the identity of the ligand 
(i.e., agonist, inverse agonist, or antagonist) is thought to induce distinct conforma-
tions of the ligand-binding site that are sensed by other regions of the protein, dif-
ferentially expose the nuclear localization sequences, and differentially determine 
binding preferences for the LXXLL coregulators, thereby either inducing or repress-
ing distinct gene expression patterns. Thus, the AHR, like many nuclear hormone 
receptors, is highly attuned to sensing unique ligands and transmitting their distinct 
signals.

9.3.4  The AHR Is Activated by a Diverse Cadre of Ligands

Study of the interactions between the AHR and a diverse group of ligands over the 
past four decades has yielded some insights into the rules that govern its agonist 
activation. The classically defined AHR agonists encompass the high-affinity halo-
genated aromatic hydrocarbons (i.e., polychlorinated dibenzo-p-dioxins, dibenzo-
furans, biphenyls, and poly aromatic hydrocarbons) [16]. Many of these interact 
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with the AHR with high affinity and are poorly metabolized and widely studied 
because of their toxic, adverse effects. The toxicity of these AHR agonists is thought 
to arise from their ability to inappropriately and persistently activate the AHR path-
way. However, as the number of AHR ligands found in the diet or formed endoge-
nously has expanded, a corresponding transition in our understanding of the 
AHR-mediated response as a “toxic” to a potentially beneficial response has 
occurred. Dietary and endogenous AHR ligands, which include indoles, flavones, 
imidazoles, lipids, and lipid metabolites, are typically less potent than their haloge-
nated aromatic hydrocarbon counterparts and bind the AHR with lower affinity. The 
variety of structures exemplified by these ligands indicates that the AHR harbors a 
promiscuous ligand-binding pocket. More importantly, these observations imply 
that understanding how the AHR ligand-binding domain accommodates this variety 
in ligand structures is a key step required for improving AHR-based therapeutics.

To better understand the events involved in ligand binding of the AHR, computa-
tional molecular docking approaches using homology modeling have been used 
[23]. Here, a model of the AHR ligand-binding site was created using elements 
predicted by a closely related protein family member, hypoxia-inducible factor 2, 
HIF 2α. The model was then tested using site-directed mutagenesis of the AHR 
LBD followed by ligand-binding analyses. The results from these studies have 
allowed for an initial grouping of well-characterized AHR agonists based on how 
they interact with the AHR ligand-binding cavity. Group 1 consisted of prototypical, 
high-affinity agonists (TCDD, 2,3,7,8 dibenzo-p-furan and benzo[a]pyrene) 
(Fig.  9.4). Group 2 contained more bulky, polyaromatic hydrocarbons: 
3- methylcholanthrene, dibenzo[a,h]anthracene, and 3,3′4,4′5-pentachlorobiphenyl. 
Group 3 contained flavones and indoles which may be more representative of 
endogenous ligands: β-naphthoflavone, 6-formylindolo[3,2-b] carbazole (FICZ), 
indirubin and leflunomide. The basis of these three groupings was in large part due 
to their predicted positions within the binding cavity. Group 1 ligands (containing 
the high affinity, TCDD) were found to bind deep within the hydrophobic region of 
the inner cavity (Fig.  9.5). Groups 2 and 3 bind nearer the cavity entrance with 
Group 3 appearing to be limited in its ability to interact with amino acid resides 
because of its poorer mobility.

9.3.5  Development of Selective AHR Modulators (SAHRMs)

In addition to observations made by the study of AHR agonists, important advances 
were also gained while developing AHR antagonists. Early work in this regard was 
focused on chemically modifying the structures of high-affinity dioxins and furans. 
For example, the first reported AHR antagonist, 1-amino-3,7,8-trichlorodibenzo-p- 
dioxin, initially synthesized to aid in detecting TCDD in biological samples, was 
found to be effective in competitively inhibiting TCDD/AHR binding as well as 
blocking the ability of TCDD to induce both CYP1A1 enzyme activity and myelo-
toxicity [39]. The observation that α-naphthoflavone also harbored AHR antagonist 
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activities led to a second line of investigations that were focused on utilizing fla-
vones as a structural backbone (Fig. 9.6) [5]. This resulted in the development of 
3′4′dimethoxyflavone and 3′-methoxy-4′aminoflavone both of which proved to be 
relatively potent AHR antagonists and, given that they represented a class of com-
pounds that were distinct from the HAH, lessened concerns regarding their potential 
toxicity [27, 37].

The realization that despite the classification of high-affinity AHR agonists, like 
TCDD, as “highly toxic,” some biological responses could in fact be beneficial initi-
ated efforts to develop selective AHR modulators (SAHRMs). Specifically, could 
the ability of TCDD to inhibit the estrogen receptor be exploited to develop novel, 
AHR-based breast cancer therapies? With this in mind, derivatives of 6-MCDF that 
retained their ability to bind the AHR and exert anti-estrogenic activities but lacked 
the toxicity typically associated with TCDD were developed [65]. The identification 
of additional classes of AHR agonists and antagonists was also aided by efforts 
focused on elucidating the mechanisms by which phytochemicals exerted their che-
mopreventive actions. This led to the identification of indolo[3,2-b]carbazole that 
was found to bind the AHR with relatively high affinity but lacked the toxicity 
associated with prototypical AHR agonists, like TCDD [4]. An additional line of 
work focused on the study of TCDD-induced immune suppression, a “toxic” effect. 
Here, it was found that agonist activation of the AHR suppressed the potent pro- 
inflammatory NF-κB pathway [79] which ultimately led to our current efforts to 
develop AHR-based therapies for treating immune and inflammatory diseases [51]. 
The most recent advances in this regard again used α-naphthoflavone as a starting 
point [46]. The resultant SAHRM was 3,4-dimethoxy-α-naphthoflavone which was 
capable of suppressing cytokine-mediated gene expression but failed to impact 
AHR/AHREI-driven events. It is proposed that 3,4-dimethoxy-α-naphthoflavone 
exerts its anti-inflammatory effects via mechanisms that are ARNT-independent and 
involve interactions of the AHR with other transcription factors (e.g., Rel B). An 
agent with similar properties, SGA 360, was also developed via synthesis of 

Group 1
2,3,7,8-Tetrachlorodibenzo-Ρ-dioxin

TCDD

Group 2
3,3’4,4’5-Pentachlorobiphenyl

PCB 126

Group 3
6-Formylindolo[3,2-b]carbazole

FICZ

Fig. 9.4 Chemical structures of AHR agonists representing of three different groups
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Fig. 9.5 Occupancy of different sites within the AHR cavity by the three groups of AHR ligands 
as determined by computational molecular docking analyses. Group 1 is depicted in the upper 
panel, Group 2 in the middle panel, and Group 3 in the lower panel. The ligands are depicted as 
sticks. (Reproduced with permission from Ref. [23])

H. I. Swanson



237

derivatives of WAY-169916, an imidazole with SERM activities (Fig.  9.6) [48]. 
SGA 360 fails to bind the ER yet exerts anti-inflammatory activities via mecha-
nisms that involve AHR binding, cytosolic retention of the AHR, and inhibition of 
AHR/NF-κB crosstalk [44]. While the clinical efficacy of these AHR-based anti- 
inflammatory agents is yet to be determined, they have paved the way for further 
development of SAHRMs and AHR antagonists.

9.3.6  Toward the Development of “Pure”1 AHR Antagonists

Problems frequently associated with the use of AHR antagonists that were initially 
developed included their off-target effects (in particular, inhibition of the catalytic 
activity of CYP1A1). In addition, they often proved to act as partial agonists exhib-
iting agonist properties when used in high concentrations. It is important to note that 
a “pure” AHR antagonist should be able to block all activities of the AHR. These 
would include genomic events mediated by AHREI and AHREII as well as non- 
genomic events, such as those involving protein-protein interactions of the AHR 
with other transcription factors. Efforts to identify “pure” AHR antagonists utilized 
random screening of a synthetic chemical library and resulted in the discovery of 
CH223191, containing three connected aromatic rings, which could block the 
actions of TCDD both in  vitro and in  vivo (Fig.  9.6) [33]. While CH223191 is 
capable of blocking the actions of multiple AHR agonists (i.e., TCDD, endogenous 

1 In this context, a “pure” AHR antagonist is capable of blocking all actions of the AHR with high 
efficacy, exhibits high AHR-binding affinity, and lacks measureable agonist activity.

α-Naphthoflavone
αNF

6-Methoxy-1,3,8-triCDF
6-MCDF

SGA 360

6,2’4’Trimethoxyflavone
TMF

Trans-3,5,4-trihydroxystilbene
(Resveratrol)

2,3,7-Trimethyl-indole
TMI

GNF 351 CH233191StemRegenin1
SR1

3’ Methoxy-4’nitroflavone
MNF

Fig. 9.6 Chemical structures of a variety of SAHRMs
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FICZ, and ITE (1′H-indolo-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester) 
[11], agonist- and off-target effects have recently been reported [43]. Here, 
CH223191 was found to exert modest yet significant agonist activities when cells 
were subjected to highly reduced conditions. Further, CH223191 was shown to 
inhibit CYP1A1 activity and reduce metabolic clearance of FICZ while also increas-
ing formation of reactive oxygen species in an AHR-independent manner. Hence at 
this time, it is unclear as to whether the ability of CH223191 to act as an AHR 
antagonistic lies solely within its occupation of the AHR ligand-binding site or also 
include its ability to upregulate CYP1A1 and thereby reduce the cellular levels of 
endogenous AHR agonists.

Structure-activity relationship analyses confirmed that a key aspect pertaining to 
the potency of CH223191 as an AHR antagonist was the presence of moieties with 
strong electronegative properties [10]. Interestingly modifications designed to cre-
ate a form of CH223191 that closely resemble resveratrol (trans-3,5,4- 
trihydroxystilbene), termed “AL-3,” resulted in a compound that was capable of 
binding the AHR (IC50 = 0.76μM) but exerted modest AHR agonist activity [11]. 
However, rather than blocking the actions of AHR agonists (i.e., TCDD, FICZ, and 
ITE), co-treatment of AL-3 and either of these agonists will result in a substantial 
and synergistic enhancement of their ability to induce gene transcription. At this 
time, the mechanisms underlying this type of synergism with respect to AHR ago-
nist activity is undefined but may prove to be invaluable for outlining the rules that 
govern a ligand’s AHR antagonistic activities.

A second “pure” AHR antagonist, StemRegenin-1 (Fig. 9.6), was identified in an 
unbiased screen of compounds to test their ability to promote expansion of CD34+ 
hematopoietic stem cells [6]. StemRegenin-1 is a heterocyclic purine derivative that 
binds the AHR with high affinity (IC50 = 40 nM), competitively displaces TCDD, 
and blocks its ability to induce canonical AHR signaling (i.e., induction of AHRR 
and CYP1B1 mRNA). Interestingly, StemRegenin-1 displays species selectivity, 
preferentially inhibiting the actions of the human versus murine AHR. Reports from 
clinical trials indicate that StemRegenin-1 may be effective for preventing lympho-
penia in patients who have undergone hematopoietic stem cell transplants [71].

A third “pure” AHR antagonist that has been described is GNF 351 which is 
closely related to the analog of StemRegenin-1 [72]. GNF 351 effectively blocks 
both AHREI-dependent and AHREI-independent activities of AHR agonists. While 
GNF 351 was shown to be highly potent in vitro, its in vivo properties have been 
found to be limited by its poor absorption and extensive metabolism [17].

9.3.7  Development of Flavone-Based AHR Antagonists

Flavonoids have intrigued pharmacologists for centuries due to their wide array of 
purported medicinal properties and extensive use in traditional medicines. With 
respect to AHR-relevant activities, they are capable of acting as either agonists, 
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partial agonists, or antagonists [49, 59, 88]. Building on work that had established 
3′4′dimethoxyflavone and 3′-methoxy-4′aminoflavone as AHR antagonists [27, 37], 
a screen of flavonoids identified 6,2,4′trimethoxyflavone as a potent AHR antago-
nist that lacks partial agonist activity (Fig. 9.6) [47]. A similar luciferase reporter- 
based screen performed in human hepatoma cells revealed that flavonoids with the 
most potent, dose-responsive antagonist activities were apigenin, chrysin, and 
kaempferol [59]. Using competitive ligand-binding assays, kaempferol was shown 
to interact with the AHR with relatively high affinity (IC50-39.8 nM), inhibited AHR 
nuclear translocation and DNA binding, and was able to inhibit the ability of ciga-
rette smoke condensate to induce transformation of human lung cells. When exam-
ined in human head and neck squamous cell carcinomas from the pharynx (FaDu), 
oral cavity (PCI-13), and metastatic lymph nodes (PCI-15B), both apigenin and 
kaempferol reduced cell viability [78]. However, some differences in the in vitro 
actions of apigenin versus kaempferol were observed. For example, apigenin 
appeared to be more potent than kaempferol with respect to incurring loss of viabil-
ity. More importantly, these in vitro results were not consistent with those obtained 
in vivo using tumor explants. Here, daily administration of apigenin significantly 
increased growth as indicated by an increase in tumor volume. Similar but less dra-
matic results were obtained upon administration of kaempferol. These studies illus-
trate a major problem associated with the use of flavonoids as AHR antagonists – the 
inability to predict their in  vivo actions. A likely explanation is that flavonoids 
exhibit a plethora of activities which include their activation/inhibition of nuclear 
receptors, kinases, and transporters, as well as their ability to act as antioxidants 
[76]. The conditions of in vitro, cell culture models may not appropriately mirror 
the in vivo tumor environment and thus may not be conducive for measuring this 
wide range of activities. Whether or not a flavonoid is anti- or pro-tumorigenic may 
thus depend on the circuitry of these key signaling pathways within either a particu-
lar tumor cell or its tumor microenvironment.

A recent examination of the structure-activity relationship of flavones with 
respect to their AHR agonist versus antagonist activities specifies the importance of 
three main properties; (1) the number of hydroxyl groups, (2) their relative posi-
tions, and (3) the measured biological response [30]. For example, the hydroxyl and 
carboxyl oxygen residue of apigenin (an AHR antagonist) appears to engage in the 
formation of three hydrogen bonds as well as hydrophobic and π-π interactions. 
Quercetin (with AHR agonist properties), like TCDD, appears to interact with simi-
lar residues. However, it is proposed that it is the relative strength of these interac-
tions that dictate agonist activity of quercetin versus antagonist activity of apigenin.

9.3.8  Development of Indole-Based AHR Antagonists

As mentioned previously, a number of ligands (i.e., indolo[3,2-b]carbazole, ICZ; 
6-formylindolo[3,2-b]carbazole, FICZ; and 2-(1′H-indolo-3′-carbonyl)-thiazole-4- 
carboxylic acid methyl ester, ITE) that bind the AHR with high affinity contain an 
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indole moiety. Recently, a recent screen of methylated and methoxylated indoles 
has offered insights into the rules that may determine how indoles may act as either 
AHR agonists or antagonists [73]. Here, indoles that exerted high agonist activity 
were 4-Me-indole and 7-Meo-indole, whereas those with the most potent antagonist 
activity were 2,3-diMe-indole (IC50 = 11μM) and 2,3,7-triMe-indole (IC50 = 12μM). 
Interestingly, 4-methylindole and 7-methoxyindole also exhibited synergistic ago-
nist activity wherein their co-treatment with TCDD significantly enhanced the 
TCDD-induced response. Molecular docking analyses revealed that key interac-
tions of the agonists involved (1) a hydrogen bond with Thr289, (2) aromatic inter-
actions with Phe324 and His29, and (3) arene-H interactions with Gln383. In 
addition, a number of hydrophobic and hydrophilic interactions were identified. The 
synergistic effect of 4-methylindole and 7-methoxyindole was proposed to arise 
from their ability to simultaneously occupy the AHR ligand-binding pocket. The 
antagonists, however, lacked many of the conserved interactions favored by ago-
nists and also participated in distinct interactions. For example, 2,3-diMe-indole 
and 2,3,7-triMe-indole both form an aromatic interaction with Phe 351 that was not 
observed with those harboring agonist activities.

9.3.9  Development of Stilbene-Based AHR Antagonists

Interest in stilbenes as AHR antagonists was initiated by reports that resveratrol 
(trans-3,5,4-trihydroxystilbene) (Fig. 9.6) could inhibit the ability of TCDD to acti-
vate genes [12] and act as a competitive antagonist [9] that inhibited AHR recruit-
ment at the CYP1A1 promoter [3]. Subsequent efforts that focused on further 
developing stilbenes as SAHRMS included the synthesis and analyses of derivatives 
with high hydrophobicity that enhanced their AHR-binding affinity [81]. As of yet, 
however, the currently reported stilbenes exert dual roles acting as both agonists and 
antagonists [55]. For example, an analysis of 13 hydroxystilbenes and methoxystil-
benes revealed that all exhibited AHR antagonistic activity with IC50 values ranging 
from 1 to 25μM. However, the most potent antagonist (E)-3,4′5-trimethoxystilbene 
(IC50 1.1μM) retained considerable potency as an agonist (EC50 15.3μM). Thus, 
efforts to develop stilbene-based AHR antagonists have met with limited success.

9.3.10  Development of AHR-PROTACs (SAHRDs)

The observation that apigenin interacted with the AHR with relatively high affinity 
(IC50 = 0.29μM) and inhibited a number of agonist-induced events in a variety of 
cultured cells [59] provided support for the idea that it would be a good starting 
material for developing AHR-PROTAC molecules. We reasoned that the in  vivo 
effects and safety properties of apigenin have been well studied and that the addition 
of the PROTAC moiety would enhance its ability to block the actions of the 
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AHR. We first determined that modifications of the 4′hydroxyl group of the api-
genin molecule did not significantly impact its ability to interact with the AHR [36]. 
To develop apigenin-PROTAC, we then attached a linker moiety as well as a peptide 
containing the recognition site of the specific E3-pVHL ubiquitin ligase (Fig. 9.7) 
[60]. As a negative control, we replaced a key amino acid within the recognition site 
with alanine (i.e., apigenin-PROTAC [Ala]). In vitro studies demonstrated that 
apigenin- PROTAC effectively decreased protein levels of the AHR and blocked the 
ability of TCDD to induce formation of the AHR/ARNT/DNA-binding complex 
and activate canonical AHR target genes (CYP1A1 and CYP1B1). Apigenin- 
PROTAC represents the first in class, SAHRD, selective AHR downregulator. The 
in vivo pharmacological function and efficacy of apigenin-PROTAC is yet to be 
demonstrated.

9.3.11  Elucidating the Rules That Govern Agonist Versus 
Antagonist-Induced AHR Activity

A recent structural analysis utilizing a molecular docking approach and “agonist- 
optimized” homology model has provided some insights into how AHR agonists 
and antagonists may differ with respect to their interactions with residues of the 
AHR ligand-binding pocket [57]. The basis of this model was formed from the 
analyses of 16 known AHR agonists and 26 “inactive” chemicals which assigned 
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TCDD the top score. This model suggests that hydrogen bonds with His291 and 
Ser365 are key for determining agonist affinity. Further, it is predicted that agonists 
must contain two hydrogen bond-accepting groups. Using GNF351 as the AHR 
antagonist, the model predicts that an antagonist conformation involves more exten-
sive contacts with the amino acids that reside within the region bordered by amino 
acids 307 and 329 of the AHR. Further, the apo state of the receptor was found to be 
very dynamic but subsequently stabilized upon binding to either agonist or antago-
nist. The prevailing hypothesis is that in the apo state, the 307–329 region of the 
AHR is held in an “open” configuration that is accessible to ligands via its interac-
tion with HSP90. Agonist binding alters the configuration to promote nuclear trans-
location of the AHR. Antagonist binding, however, favors a distorted configuration 
which shifts the AHR/HSP90 interaction to a state that prohibits AHR nuclear 
translocation.

A more recent approach used a combination of cell culture-based and in silico 
methods to probe a diverse set of AHR antagonists [24]. Here, the characteristics of 
an AHR antagonist was defined as having (1) a strong hydrophobic character; (2) a 
connected ring system, in particular aromatic rings with electron-rich and electron- 
deficient moieties; and (3) an electron acceptor group. These defined characteristics 
will be useful for future identification of additional AHR antagonists.

9.4  Conclusions and Future Directions

In addressing the question posed many decades ago – “what is an antagonist?”, we 
have learned that holding a perspective of agonists versus antagonists as it pertains 
to nuclear receptors, like the ER and AHR, presents a false dichotomy. This limited 
view does not allow for our current understanding of how agonists bind and activate 
their respective receptors, the finely tuned progression of events that facilitate 
ligand-induced responses, and the ligand-, context-, and time-dependent nature of 
their elicited responses. Agonist activation requires pivotal interactions between key 
moieties of the ligand molecule and specific amino acid residues that are buried 
deep within the ligand-binding pocket of the receptor protein. These ligand-amino 
acid interactions initiate events that are propagated throughout multiple protein 
domains. Ligands vary subtly with respect to characteristic “agonist” interactions 
and exert activities that may be identified as either selective modulators or “pure” 
antagonists. The context-dependent responses to this myriad of ligands are multidi-
mensional often involving unique cellular milieus, multiple protein/protein interac-
tions, and a variety of signaling pathways. In addition, ligand-initiated events have 
proven to be time-dependent with latter events strongly influenced by multiple feed-
back mechanisms regulating receptor expression and function. Finally, we have 
learned that antagonists are multifarious in their actions. As described by our early 
pharmacologists, they may simply block the actions of a given agonist. However, 
they may also thwart agonist induction of a given receptor by initiating additional 
events, such as those involving proteolytic degradation of the targeted receptor. Our 
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challenge then, as modern pharmacologists, is not only to develop antagonists that 
act with high specificity and efficacy but also to develop innovative tools and 
approaches to be used for accurately predicting their ultimate pharmacological 
effects.
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Chapter 10
Design of Novel PPAR Agonist 
for Neurodegenerative Disease

Ian Steinke and Rajesh Amin

Abstract Peroxisome proliferator-activated receptors (PPARs) are ligand-activated 
transcription factors of the nuclear hormone receptor superfamily comprising three 
subtypes: PPARα, PPARγ, and PPARβ/δ. The PPAR family of nuclear receptors is 
centrally involved in regulating whole-body energy homeostasis and metabolic 
function. Endogenous ligands include free fatty acids, eicosanoids, and leukotrienes. 
Synthetic ligands developed to serve as full agonists aim at treating diabetes type 2, 
hyperlipidemia, and other metabolic-related diseases. Further, there has been a 
developing interest in the role of PPAR agonist’s role in neurodegenerative disease. 
However, many of these clinically practical therapeutics are associated with harmful 
effects on human health. Therefore, new approaches have led to a new class of 
selective PPAR modulators (SPARMs), or partial agonists meet this challenge. In 
addition, these partial agonists have been observed to show a favorable impact on 
insulin sensitivity, blood glucose levels, and dyslipidemia with significantly reduced 
side effects on human health. Partial agonists have been found to display differences 
in transcriptional and cellular outcomes by acting through distinct structural and 
dynamic mechanisms within the ligand-binding region when compared to full 
agonists. Recently, a new focus on PPAR agonists’ class has intensified for 
neurodegenerative diseases, as new ligands and novel biological roles have emerged 
particularly for its therapeutic potential in Alzheimer’s disease (AD). The present 
chapter critically analyzes current PPAR ligands using in silico modeling and the 
implication of promising new therapeutics in neurodegenerative disorders.
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10.1  Introduction

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear 
hormone receptor superfamily that are ligand-activated transcription factors [1]. 
These receptors have been linked to many systemic and cellular functions including 
insulin sensitivity and whole-body energy regulation. PPARs exhibit isotype- 
specific tissue expression patterns based upon energy demand in the regulation of 
cellular process. PPARα is abundantly expressed in tissues that utilize fatty acid 
catabolism such as the heart, liver, brown adipose tissue, and kidney [2, 3]. PPARγ 
exists in two isoforms, γ1 and γ2, and is principally expressed in white and brown 
adipose tissues, where they regulate adipocyte differentiation and lipid storage [4, 
5]. Although expression of PPARγ2 is mostly observed in adipose tissue, PPARγ1 
is ubiquitously expressed in tissues including the gut and immune cells, where they 
promote anti-inflammatory processes [6]. PPARδ/β has broad expression patterns 
and prominent roles in the skeletal muscle, adipose tissue, skin, gut, and brain [7, 8].

10.2  Overview of PPARs and Their Structures

PPARs act as transcription factors by binding and functionally responding to endog-
enous small molecule ligands [9]. These ligands, either endogenous or synthetic, 
bind to an orthosteric pocket existing in the core of the nuclear receptor ligand-
binding domain. PPARs exist as a conserved domain association, including a central 
DNA-binding domain (DBD) flanked by two regulatory regions, a distinct amine 
(N)-terminal activation function-1 (AF-1) domain. In addition there is also a car-
boxyl (C)-terminal ligand-binding domain (LBD) containing the activation func-
tion-2 (AF-2) domain that has a coregulator interaction surface [10, 11] (Fig. 10.1). 
The N-terminal regulatory domain consists of A and B domains and the AF-1 
domain, which is involved in ligand-independent coregulator binding [12, 13]. This 
region is not conserved because it varies greatly between members of this class of 
nuclear receptors. Two highly conserved zinc fingers are central in the recognition 
of specific DNA half-sites termed peroxisome proliferator response elements 
(PPREs) [14]. These sites are represented as either direct or indirect repeats and are 
separated by a spacer of base pairs. Each zinc finger contains several cysteine 
residues allowing for the interactions to a zinc ion. These specific zinc finger motifs 
permit for the discernment of nuclear receptors from other DBDs (Fig. 10.1).

Mechanistically, DNA binding allows for either the activation and recruitment of 
DNA transcription machinery or the repression of transcription. All members of the 
PPAR nuclear receptor superfamily bind to DNA as a heterodimer, where the DNA 
binding is in association with the retinoic acid receptor (RXR) [14]. Each DBD 
subunit binds to a separate DNA half-site. The most poorly conserved PPAR region 
is the flexible hinge domain, which allows for rotation between the DBD and the 
LBD, and contains a nuclear localization signal. The LBD is the largest domain in 
PPAR molecule and is highly conserved across all PPARs. Ligand binding stabilizes 
the AF-2 domain and facilitates the interaction with coregulator molecules to 

I. Steinke and R. Amin



251

remodel chromatin resulting in the induction of gene expression [15]. Although the 
LBD is highly conserved, specific differences exist in the amino acid make-up of 
the active site and thus influences the ligand specificity. Ligand binding influences 
the conformation of the ligand-binding surface of the AF-2 domain, resulting in 
adapting the binding affinity for chromatin remodeling and transcriptional 
coregulator proteins. Together these modifications to the ligand-binding domain 
result in the activation or repression of selective gene transcription [16, 17]. Further 
knowledge for understanding the conformational changes associated with ligand 
receptor interactions have been identified by crystal structures that help define the 
inactive or repressive and active conformations, which result in binding of 
transcriptional corepressor or coactivator proteins, respectively, by stabilizing spe-
cific conformations of the AF-2 region [18].

AF-1 DBD Hinge AF2NH2 COOH
AB domain LBDA

B

RXR DBD PPAR γ DBD

PPAR γ LBD

Co-ac�vatorPep�de

AF2 (H12)

Entrance (H2’/betasheet)

Arm 2 (H3)

RXR LBD

Fig. 10.1 (a) Linear illustration of the PPARγ structure, where the ligand binds to the ligand- 
binding domain (LBD) in the AF-2 domain. (b) Full agonist rosiglitazone bound to PPARγ in 
complex with the heterodimeric partner RXR. PPARγ LBD lies within the RXR-LBD and DNA 
(DBD) to stabilize interactions with the PPRE. Additional recruitment of coactivator peptides to 
the PPARγ AF-2 LBD and RXR-LBD allows for additional gene transcription through ligand- 
stabilized conformations. Ligand stabilization of the β-sheet region and the H2’ and H3 helices 
allow for enhanced stabilization of the RXR-DBD and additional binding of the PPARγ DBD to 
the PPRE. Specific ligand-induced modifications may allow for enhanced coactivator recruitment 
and enhanced gene transcription. Crystal structure PDB-(3DZY) was used for constructing the 
image [10]
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Recent findings describe how ligands can potentially form interactions with the 
AF-2 ligand-binding domain via an induced fit or conformational selection 
mechanism [19]. In the conformational selection scenario, ligands selectively bind 
to the receptor resulting in selecting a specific conformation that is occupied within 
the ligand-binding conformational group. In the induced fit model, ligand binding 
occurs through an encounter complex which results in promoting the ligand-binding 
conformational group to transform into the final ligand-bound complex. Once this 
complex becomes stabilized in the active, ligand-bound position, the AF-2 site acts 
as a binding site for coregulator proteins [19].

10.3  PPAR-Gamma Activation Site

PPARγ relies on cytosolic ligand binding to activate the complex and consequences 
in the translocation to the nucleus. For gene transcription to occur, PPARγ forms a 
heterodimeric complex with RXR and binds to the PPAR recognition element 
(PPRE). Interestingly, the PPARγ LBD intersects the DBD and LBD of RXR, 
whereby stability of gene transcription is dependent upon the stabilization of this 
interaction. Stability is greater with the intact nuclear receptor versus the DBD 
alone. PHE 347 was shown to greatly impact binding to the PPRE indicating that 
stabilization of this residue is important for gene transcription. Other heterodimeric 
protein interactions along with coactivator recruitment are also possible leading to 
increased gene transcription through cooperation [20]. Fatty acids and 
cyclooxygenase-derived eicosanoids are endogenous activators of PPARγ owing to 
its specific role in lipid storage, adipogenesis, and glucose metabolism [21, 22]. 
PPARγ ligands have distinct pharmacophore properties including a carboxylic acid 
head followed by an aromatic ring with a hydrophobic tail. In a study done with 
clofibric acid analogs, extension of the hydrophobic tail showed enhanced activity 
for both the PPARγ and alpha subtypes [23, 24]. This indicates that stabilization of 
residues outside of the LBD greatly influences the transcriptional potential of novel 
PPAR ligands. This interaction most likely arises from the ability to influence DBD 
stabilization to the PPRE outside of initial LBD activation. Specificity for the 
different PPAR isoforms becomes evident as the length of the hydrophobic tail is 
increased, highlighting unique gene transcription profiles between them based on 
the substrate available [25].

10.4  Structure of the Ligand-Binding Domain

The understanding of the PPARγ structure was deciphered by X-ray crystallography 
and determined that the ligand-binding domain consists of 13 α-helices that are 
labeled H1–H12 and H2′, as well as one β-sheet region, as shown in Figs. 10.1 and 
10.2 [11, 26, 27]. Further, the ligand-binding pocket is located in the core of the 
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ligand-binding domain [11, 26]. The ligand-binding domain is composed of 270 
amino acids and resembles a large Y-shaped cavity and thus three branches, each 
branch having different properties based upon binding preferences [11, 28]. For 
example, arm 1, which displays a hydrophobic character, includes H3, H5, H11, and 
H12 and is the binding site for the acidic head group of ligands such as rosiglitazone 
[29, 30]. In comparison, arm 2, which is surrounded by helices H2′, H3, H6, and 
H7, includes the β-sheet region and is hydrophobic in nature, while arm III, which 
is surrounded by the β-sheet and helices H2, H3, and H5, and has both hydrophobic 
and hydrophilic regions [29]. The large ligand-binding pocket in PPARγ allows for 
the promiscuous binding of many ligands (endogenous and synthesized) with lower 
affinity, thus allowing for targeting of variable ligand interactions. The AF-2 surface 
includes stands H12, H3, H4, and H5 and forms a hydrophobic binding fork on the 
surface of PPARγ to which the coactivators bind. Ribbon diagrams of the full-length 
PPARγ-RXR heterodimer on DNA can be viewed in Fig.  10.1 and partially in 
Figs. 10.2, 10.3, and 10.4. These structures show that the PPAR/RXR ligand-binding 
domains dimerize with a view of a PPARγ DNA-binding domain [27]. The hinge 
region is composed of coils that allow for movement of the ligand- binding domain 
and DNA-binding domain around each other. Surprisingly, minimal surface contact 
is observed between the RXR and PPARγ DNA-binding domains. The region of the 
PPARγ ligand-binding domain that is near the β-sheet, proximal loops, and small 
helices (H2 and H2′) thus contacts the RXR DNA-binding domain (rather than the 
ligand-binding domain surface near the AF-2). This interaction allows for under-
standing as to how signals are conducted from the ligand-binding domain to the 
DNA-binding domain and vice versa. The LBD of PPARγ consisting of the tran-
scriptional AF-2 motif associated with helix 12 mediates most of the pharmacologi-
cal actions of PPARγ agonists [31]. The importance of AF-2 domain for regulating 
PPARγ-targeted gene expression is based upon the mechanism of ligand-induced 
transcriptional activation by PPARγ [31, 32]. In close inspection (Fig. 10.2), the 
AF-2 domain exists in an equilibrium state between closed (active) and open (inac-
tive) conformations in the absence of the ligand [31]. Therefore, the binding of a full 
agonist induces the AF-2 domain conforming into the closed (active) state, thereby 
allowing the recruitment of coactivators for transcriptional activation [31]. Thus, a 
rational mechanism for developing novel PPARγ ligands would be to stabilize AF-2 
domain in distinct states between closed and open conformations. Several studies 
have reported that locking the AF-2 domain in its closed conformation is responsi-
ble for the anti-diabetic effects as well as unwanted adverse effects from PPARγ 
agonists like thiazolidinediones [31, 33]. More recently, selective PPAR agonists 
and dual agonists are proving to be more efficacious in eliciting therapeutic efficacy 
and avoiding unwanted physiological effects associated with full agonism. More 
research is needed to understand how specific binding motifs can promote gene 
transcription to better utilize this drug target and remove the stigma surrounding this 
class of nuclear receptors. Therefore further evaluation of the stability and confor-
mation and cofactor recruitment if the closed conformation will yield possibilities 
for the design of better therapeutic agents with increased tolerability.
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Fig. 10.2 RXR in the (a) open conformation illustrating the “mouse trap” model in the heterodi-
merization with PPARγ. As dimerization occurs, the RXR-LBD and DBD are stabilized through 
the ligand-induced activation of PPARγ’s LBD. PDB(3DZY). (b) PPARγ in the closed conforma-
tion. As dimerization occurs PPARγ’s DBD is able to bind to the major and minor grooves in the 
DNA allowing for gene transcription to occur. PDB(3DZY) [10]
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10.5  Structural Dynamics of PPAR Gamma

Initial predictions postulated that mechanism of action of full agonists stabilizes the 
AF-2 surface through H12, thus allowing less of a physical price for coactivator 
binding and full transcriptional yield. Likewise, it was thought that partial agonists 

TYR 473 (AF2/H12
Rosiglitazone

)

HIS 323 (H5)

SER 289(H3)

ARG 288(H3)

Rosiglitazone Full Agonist

Fig. 10.3 Rosiglitazone bound within the PPARγ LBD active site. Rosiglitazone’s polar head 
forms a tight hydrogen bond network with the AF-2 TYR 473 residue, and additional hydrogen 
bonds with HIS 323 allows for PPARγ activation and subsequent nuclear translocation. Additional 
stabilization of the H3 alpha helix in ARG 288 and SER 289 along with hydrophobic interactions 
to the beta-sheet region provides stabilization upon heterodimerization with RXR allowing for 
gene transcription to occur. PDB(3DZY)

TYR 473 (AF2/H12)

HIS 449 (H10)

ARG 288 (H3)

BADGE Antagonist

Fig. 10.4 PPARγ antagonist (BADGE) bound within the PPARγ LBD. Strong hydrogen bonding 
to the AF-2 leads to PPARγ activation. However, conformational changes in the H3-ARG288 
result in destabilization of this region opening ARG288 to post-translational modification and gene 
silencing. PDB(3DZY) [10]
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can only partially stabilize the AF-2 domain through the H12 helix by generating 
more of an physical burden for coactivator binding resulting in less transcriptional 
output. Thus the activating ligands, particularly full agonists, induced the reposition 
of helix H12 according to the “mousetrap model,” and the movement of H12, 
following ligand binding, traps the ligand within the ligand-binding pocket 
(Fig.  10.2) [33, 34]. Despite these models involving helix H12, the significance 
toward stabilization of helix H12 for coregulator binding and transactivation may 
not be completely understood. In particular, partial agonists are observed to 
preferentially stabilize other regions of the ligand-binding domain, specifically 
those associated with the β-sheet region. The connection between the impact of 
upon stabilization by partial agonists, coactivator recruitment, and PPARγ activity, 
including insulin-sensitizing effects, is an important question for investigation. The 
mechanism of action of PPARγ is initiated by ligand binding, resulting in a 
conformational change of the receptor and the dissociation of any corepressor 
complexes, including those associated with histone deacetylase activity and the 
resulting recruitment of coactivators [34]. When the PPAR-RXR receptor 
heterodimer is unbound to a ligand (natural or synthetic), it becomes associated 
with corepressor proteins, including NCoR (nuclear receptor corepressor 1) and 
SMRT (silencing mediator of retinoic acid and thyroid hormone receptor). These 
inactive complex functions to prevent PPAR-activated transcription and keep 
homeostatic PPAR-mediated transcription minimal. Upon ligand binding (full or 
partial), the corepressors dissociate from the receptor (PPAR-RXR) complex, 
permitting for the recruitment of coactivators. These coactivators then implement 
diverse functions to promote transcription, including altering chromatin structure 
(acetylation) and recruiting transcriptional machinery to the target gene promoter. 
Members of the PPAR coactivator family include CBP (CREB-binding protein), 
MED1 (Mediator 1, also known as PBP/TRAP220/DRIP205), SRC1 (steroid 
receptor coactivator 1), SRC2, SRC3, and PGC1α (peroxisome proliferator- 
activated receptor gamma coactivator 1 α) [27].

10.6  Selective PPAR Modulators (SPPARMs)

The popularity of full PPARγ agonist as insulin-sensitizing agents has been con-
strained because of their association with several adverse effects, including increased 
plasma volume and edema that is associated with inducing or exacerbating conges-
tive heart failure, osteoporosis, as well as weight gain. Thus, there exists a critical 
need to develop newer PPARγ-targeted that display robust efficacy with improved 
tolerability. Consequently we and others have identified and characterized promis-
ing selective PPAR modulators (SPPARMs). SPPARMs are PPARγ ligands that 
serve as partial agonists of the receptor in cell-based transcriptional activity and 
adipogenesis assays [35, 36]. They have also been shown to generate attenuated and 
selective gene expression patterns in adipocytes in vitro. The greater therapeutic 
window of several SPPARγMs has been established in preclinical species. These 
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findings would include improved insulin-sensitizing activity with attenuated adverse 
effects on weight gain, adiposity, and cardiac hypertrophy relative to a potent 
PPARγ full agonist [37–40]. Previous reports indicate that the unique properties of 
the SPPARMs may be due to their selective physical interaction with the distinct 
amino acids in the PPARγ receptor, resulting in selective conformational stability of 
the receptor when compared to full agonists. Findings from X-ray co-crystallographic 
studies of the PPARγ ligand-binding domain (LBD) associated with full agonist 
rosiglitazone indicated that the nitrogen of the thiazolidinedione (TZD) ring of 
rosiglitazone formed hydrogen-bonding interactions with the tyrosine (Y) 473 side- 
chain hydroxyl group in helix 12 of the human PPARγ LBD [11]. The tyrosine-473 
is known to exist deep in the AF-2 ligand-binding domain as demonstrated by in 
silico analysis [30]. In contrast, X-ray co-crystallography and molecular modeling 
studies with PPARγ LBD and SPPARγMs indicate that the carboxylic acid moiety 
of such ligands avoids forming hydrogen-bonding interactions with Tyr473 [41, 
42]. The result of these partial interactions demonstrated by biochemical and NMR 
studies demonstrates that SPPARγMs induce a unique and less stable receptor 
conformation of the ligand-binding domain than PPARγ full agonists [37]. This 
instability of the AF-2 ligand-binding domain by SPPARγMs results in the 
compromised interactions with the transcriptional coactivator-binding pocket of the 
ligand-binding domain [11, 43] and thus serves as the physical basis for the altered 
receptor-coactivator interactions, reduced transcriptional activity, and resulting 
improved tolerability observed in preclinical studies with these ligands [37–40, 44, 
45]. In summation, these findings suggest that Tyr473 is a critical site of interaction 
between the PPARγ LBD and full agonists but not SPPARγMs.

10.7  PPAR Delta Active Site Description

PPARs are approximately 70% conserved in homology, which allows promiscuity 
of ligand binding between the three PPAR isotypes. Furthermore the key features of 
the PPARδ active site can be distinguished between PPAR gamma and alpha. 
Crystallography structures of PPARδ that are bound with the selective agonist 
GW-0742, a full PPARδ agonist, display a preference for arm 2 occupation with its 
hydrophobic tail. This occupation of arm 2 of PPAR delta is attributed to the unique 
interactions involving Valine-312 residue. The VAL312 allows for a slightly larger 
volume and greater flexibility to accommodate PPAR-delta ligands in the arm 2 
occupation, when compared to arm 2 in PPARγ. These observations were verified 
by mutating the VAL-312 to MET resulting in a 2.5-fold reduction in the EC50 of 
GW-0742 [46]. Crystallographic data showing PPARδ bound with EPA illustrate 
the dynamic interactions that are crucial for determining ligand-specific binding. 
EPA’s hydrophobic tail can assume a tail that extends up arm 2 or a tail down that 
extends into the entrance conformation. These interactions induce a conformational 
stability that can regulate the binding of selective coactivators to PPARδ. Rational 
drug design for PPAR selectivity must consider not just the AF-2 interaction but 
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more importantly the stabilizing ability of the hydrophobic tail to increase interaction 
in PPRE interactions [47].

10.8  PPAR Alpha Active Site Description

In all PPARs, 80% of the active binding site residues are conserved. PPARα is 
uniquely different when examining the AF-2 region, where a histidine residue is 
substituted for a tyrosine (TYR) residue on the H5 helix. The larger TYR can 
explain some of the selectivity of the polar head when designing ligands for PPAR 
alpha. Although the binding site volume in PPARs is conserved, PPAR alpha is 
narrower in nature when approaching the AF-2 due to the larger volume of the 
residues involved in forming the AF-2 stabilizing hydrogen bond network [48].
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10.9  PPARS and Neurodegenerative Diseases

PPARγ agonists have shown efficacy in Alzheimer’s disease, Parkinson’s disease, 
brain and spinal injuries, and ALS. Interestingly, in the brain the relative expression 
of all three isoforms of PPARs are expressed; however PPARδ/β is most abundant 
in the brain with expression in neurons and microglial cells [57]. PPARγ is observed 
less in the neuron and microglia, and PPARα is observed mostly in astrocytes [57]. 
These findings offer PPARs as potential therapeutic targets for mitigating 
neurodegenerative diseases. Although PPARδ/β is the most abundant PPAR isotype 
in the brain, PPARγ has been the most extensively studied by using clinical 
applicable therapeutics in brain injury and degenerative models. The application of 
PPARγ agonists has been significantly investigated in rodent models of Alzheimer’s 
disease. Findings indicating improvement in amyloid beta burden as well as 
neurodegeneration have allowed PPARγ agonists to offer promise at the clinical 
levels. Clinical investigations using PPARγ agonists have revealed a significant 
reduction in amyloid beta and tau pathology measured in patient samples suffering 
from AD [58, 59]. More recently, PPARs have been demonstrated to modulate 
inflammation by inhibiting the production of pro-inflammatory molecules by 
peripheral immune cells as well as resident inflammatory cells. Furthermore, PPAR 
agonists have effectively suppressed the development of CNS inflammation in 
animal models of neuroinflammation and neurodegeneration [60]. In line with this 
oral administration of the pioglitazone (PPARγ), agonist nullified glial cell activation 
and the accumulation of Aβ-positive plaques in the hippocampus and cortex [61]. 
However, the protective signaling mechanisms mediated by central PPARγ 
activation resulting in improved cognition in AD have not been extensively 
investigated. Furthermore, PPARγ agonist has been observed to improve cognitive 
deficits in AD but is limited due to its poor bioavailability in the brain and off-target 
effects [62, 63].

Furthermore, failures at the clinical level and trials have quenched the clinical 
applicability of these agonists and have negated volumes of findings verifying these 
therapeutics for mitigating pathology and neurodegeneration associated with 
AD. Therefore, there is a perilous need to develop novel PPAR-targeted agents that 
display improved bioavailability and tolerability. To understand the significance of 
the chemical interactions on pharmacological consequences will help develop 
newer PPAR agonists for different cellular targets. Currently, no SPPARγMs have 
been applied to the clinical level, and mechanistically it remains unclear how to 
achieve selective PPARγ activation. The current review discusses the role of PPAR 
in modulating the pathologies of AD followed by SPPARMs under development for 
treating AD.
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10.10  PPARS for Alzheimer’s Disease: Overview of AD

The manifestation of clinical symptoms associated with AD is due to years of patho-
logical markers related to AD. For example, the development of AD is thought to be 
due to the amyloid beta cascade, which involves amyloid beta deposition and dam-
age and leads tau hyperphosphorylation. However, alternative signaling mecha-
nisms associated with the development and progression of pathological mechanisms 
promote development of clinical AD [64]. Therefore, therapeutics with multi-tar-
gets of action against AD pathology may offer potential for treatment of AD 
(Fig. 10.5).

10.11  PPARs and Neuroinflammation

Neuroinflammation is now considered one of the hallmark’s early mediators for 
developing the pathological process of AD [65]. The inflammatory process is 
associated with abeta plaque formation as well as microglial activation. Over time, 
the increase in inflammatory signals associated wit microglia or infiltrating 
monocytes and macrophages induces cytokine expression and reactive oxygen 
species in neurons, resulting in spine loss and reduced neural plasticity (Fig. 10.6). 
The development of memory dysfunction in the later stages of AD is correlated with 
the levels of synaptic destruction and severity of tau pathology [67]. Therefore, an 
ideal AD drug would target multiple facets of the disease including Aβ formation 
and/or clearance, provide anti-inflammatory properties, and reduce tau-related 
pathologies. However, failures at the clinical level in late-stage AD clinical trials 
have encouraged researchers to focus on prophylactically administration of PPARγ 
agonists in the pre-symptomatic phase where Aβ and inflammation play a critical 
role in the neurodegenerative process and progression. One of the many potential 
characteristics of PPARγ is to suppress inflammatory signaling pathways in immune 
cells [68, 69]. For example, PPARγ activation reduces the Aβ burden by inducing 
microglial phagocytosis of Aβ and consequences in reduced cytokine levels as well 
[70]. In addition, the activation of PPARγ suppresses transcription factors associated 
with neuroinflammation including nuclear factor-kB, Stat-1, and transcription factor 
activator protein-1 [71]. Additionally, PPARγ also downregulates cyclooxygenase-2 
(COX-2), metalloproteinase-9 (MMP-9), inducible nitric oxide synthase (iNOS), 
pro-inflammatory cytokines, chemokines, and interleukins [72, 73]. Similarly, the 
anti-inflammatory effects of full PPARγ agonists including rosiglitazone and 
pioglitazone were observed to be efficacious in several rodent models [74]. 
Specifically, pioglitazone reduced Aβ levels as well as astrocyte and microglial 
activation in the cortex and hippocampus in APP695SWE mice that are associated 
with over-expression of Aβ and TGF-β1 [75]. Mechanistically, PPARγ reduces 
macrophage polarization from M1 to M2, in neurodegenerative diseases. M1 
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microglia are pro-inflammatory and neurotoxic via secretion of pro-inflammatory 
cytokines including interleukin IL-1α, IL-1β, tumor necrosis factors (TNF), and 
nitric oxide (NO) (Fig. 10.6). The alteration of microglia polarization axis from M1 
to M2 when treated with PPARγ agonist results in increased anti-inflammatory gene 
expression profile and increased neurotrophin expression [76, 77]. Surprisingly 
12-month-old APP/PS1 mice treated with pioglitazone showed a significant 
alteration of M1 to M2 microglial in the area surrounding Aβ deposits and a 
reduction in GFAP-immunopositive astrocytes adjacent to the amyloid plaques 
[78]. These data validate PPARγ agonist inducing an anti-inflammatory phenotype 
in microglia and astrocytes and in the process also facilitate the removal of Aβ 
pathology. However, further research in understanding the mechanisms how TZDs 
and PPARs confer their anti-inflammatory properties for AD will fill the gaps in 
knowledge for how newer PPAR agonists can be developed. For example, PPARδ is 
the most prominent form of PPAR expressed in the brain from the PPAR family. To 
this, GW501516, a potent PPARδ agonist, demonstrated anti-inflammatory activity 
[79]. Alternatively, a study by Malm et al. applied a short-term treatment of a PPARd 
agonist GW0742 to 5XFAD mice and observed a reduction in the parenchymal Aβ 
load. This was associated with a decrease in overall microglial activation (M1 
levels) and reduction in pro-inflammatory cytokines. Instead, microglial 
immunoreactivity around Aβ deposits was increased [80]. Importantly, the reduction 
in the pro-inflammatory condition induced by GW0742 resulted in reduction of 
neuronal loss in the 5XFAD mice.

TYR 473 (AF2/H12)

ARG 288(H3)

SER 342(beta sheet)

nTZDpa Partial Agonist

Fig. 10.5 nTZDpa a partial agonist bound within the PPARγ LBD. Partial agonism of the PPARγ 
LBD progresses in the absence of interactions with the full AF-2 domain. Therefore full stabilization 
of the AF-2 domain stabilization by the ligand is not required for PPARγ activation. Binding to the 
ARG288 and SER342 permits stabilization to occur between the RXR-LBD and DBD, and 
dimerization can proceed. However the recruitment of coactivators may be a factor that arise in 
regulating gene transcription because of partial agonism PDB(3DZY) [10]
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10.12  PPARs and Microglia and Neurotrophins

Microglia are associated with synaptic pruning by regulating spine formation and 
reduction as a normal process associated with alterations in memory and aging. 
However advancing AD from moderate to severe stages is highlighted by the 
development of synaptic deficits and memory impairment. Moreover, neuronal 
plasticity is associated with synaptic dysfunction, which is due to the loss of 
dendritic spines. However, neurotrophins mediated by microglia are significantly 
involved in regulating spine formation and dendritic spine density (Fig.  10.6). 
Brain-derived neurotrophic factor (BDNF), a major neurotrophin, is known to 
progressively decrease in expression as AD progresses from moderate to severe 
stages of AD [81]. Microglia are central mediators associated with inducing 
neurotrophins including BDNF. Rosiglitazone has been shown to prevent dendritic 
spine loss and improve synaptic function in hippocampal neurons treated with Aβ 
oligomers [82]. These findings can be explained mechanistically by the findings that 
demonstrated ligand activation of PPARγ induced the BDNF promoter in a 

Fig. 10.6 Schematic illustration demonstrates that (1) microglia polarization/activation from M2 
to M1 results in secretion of cytokines. Increased cytokines and neuroinflammation are associated 
with the progression of Alzheimer’s disease which is associated with the resulting synaptic deficits 
and loss in dendritic spines. (2) Further advancement in spine loss potentiates neuronal 
degeneration. (3) PPARγ/δ agonists are known to reduce neuroinflammation and induce an 
increase in neurotrophins, including BDNF [66]. (4) The neurotrophins then enhance spine 
formation resulting in increased spine density
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dose- dependent manner [66]. Supportive findings from alternative studies in 
Aβ-injected rats treated with pioglitazone demonstrated reduced levels of active 
caspase-3 and enhanced BDNF levels yielding improved synaptic plasticity [83]. 
These observations suggest that PPARγ agonists prevent the development of synap-
tic deficits by improving BDNF expression and the resulting dendrite spine density.

Alternative protective signaling mechanisms are observed in studies that confirm 
that the full PPARγ agonist, rosiglitazone, increases the expression of neurotrophic 
factor-α1 (NF-α1), a neuroprotective protein, which results in the increase of the 
pro-survival protein BCL 2 expression in the hippocampus [84]. These observations 
are important because the use of PPARγ agonists improves mitochondrial function 
and synaptic plasticity and mitigates memory loss. In summation, PPARγ agonism 
can promote mitochondrial viability while also improving metabolic and energy 
regulation, modulate neuroinflammation, stimulate spine growth, and clear toxic Aβ 
from the brain [85]. Findings from our lab has observed that direct PPARg activation 
induces an increase in BDNF and the ensuing post-synaptic density marker 95 
(PSD95), thus representing an increase in spine formation [66].

10.13  PPARS, TREM2, and Amyloid Beta

Dysfunction of microglial appears implicit to the etiology of late-onset Alzheimer’s 
disease (LOAD), as explained in findings from genetic studies that discovered 
variants in LOAD risk-associated genes that are highly expressed in microglia [86, 
87]. One gene in particular from the study, the triggering receptor expressed on 
myeloid cells 2 (TREM2), a single-pass transmembrane immune receptor was 
observed to be expressed selectively in microglia within the CNS. TREM2 is a 
phagocytic receptor and has been demonstrated to be involved in the phagocytosis 
of apoptotic neurons (Fig. 10.7). However, recent findings demonstrate that TREM2 
over-expressing macrophages accumulate on Aβ plaques where they exhibit an 
inflammatory phenotype yet paradoxically and phagocytically ineffective, as 
verified by the progressive increase in plaque burden through the course of the 
disease. Conversely, work by Zhao et al. has observed that TREM2 directly binds to 
Aβ oligomers with high affinity [88]. Further that TREM2 deficiency results in 
preventing Aβ degradation in primary microglial culture and in TREM 2 knock-out 
mice. It is well known that TREM2 suppresses inflammatory gene expression, based 
on findings from knockdown or genetic knock-out models of TREM2 that show 
higher levels of pro-inflammatory cytokines and increased levels of Aβ accumulation 
[89–91]. Thus, neurobiological functions of TREM2 and its pathophysiological 
ligands remain controversial and need further investigation to understand the role of 
TREM2 in AD. Clinically, TREM2 levels are regulated by proteolytic cleavage by 
ADAM10 and ADAM17 at the amino acids His157–Ser158 peptide bonds, resulting 
in the release of the soluble TREM2 (sTREM2) into cerebrospinal fluid [92, 93]. 
This soluble form of TREM2 is considered a new biomarker for AD because it is 
abundantly detected in human cerebrospinal fluid (CSF) and its levels are elevated 
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in the CSF of patients with sporadic AD [94, 95]. Recent work by Savage et al. [95] 
provides evidence that nuclear receptors (PPARγ and PPARδ) act to stimulate the 
Aβ plaques from the brain, by inducing the expression of the phagocytic receptors 
Axl and MerTK on macrophages. The observation that these cells are from 
circulating monocytes and express TREM2 suggests that the actions of TREM2 and 
myeloid cells are involved in ameliorating AD pathogenesis. Additionally, Wang 
et al. observed that brain-residing TREM2 over-expressing microglia sense lipids 
that accumulate during Aβ deposition and thus more efficiently clear the Aβ plaques 
[96]. Further work on understanding the neuroprotective signaling mechanism of 
TREM 2 is required, including understanding the mechanism and consequence of 
PPAR-mediated increase in expression of TREM2 on reducing Aβ and tau phos-
phorylated levels in AD (Fig. 10.8).

PPARs and Astrocytes Astrocytes play a crucial role in brain homeostasis. Among 
other functions, they provide metabolic support for neurons, uptake neurotransmitters 
such as glutamate, and blood-brain barrier maintenance [97]. Similar to microglia, 
astrocytes rapidly react to a wide array of insults or damaging events. Reactive 
astrocytes, which are characterized by increased expression of glial fibrillary acidic 
protein (GFAP), a constituent of the intermediate filaments, are typical of most 
brain pathologies. Thus, astrocytes represent an important target for anti- 
inflammatory and neuroprotective therapeutic strategies. In addition, rosiglitazone 
and the non-TZD agonist L-796,449 induced a concentration-dependent increase in 
glutamate transporter EAAT2/GLT-1 expression and glutamate uptake in primary 
rat astrocytes, which may help in improving the glutamate dysregulation associated 
with the progression of AD from mild cognitive impairment to full dementia 

Fig. 10.7 Schematic illustration demonstrating that PPARγ ligands promote amyloid beta clear-
ance by microglia. Mechanistically, PPARγ agonists induce an increase in TREM2 expression by 
transcriptional regulation. The increase in TREM2 via Syk-PI3K signaling results in diffuse and 
reduced levels of amyloid beta plaques in the brain by microglia activity
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(Fig. 10.2). In addition, the authors identified six putative PPREs in the promoter 
region of GLT1/EAAT2 gene, suggesting GLT1/EAAT2 glutamate transporter is a 
novel PPARγ target gene [98]. These findings suggest that PPAR ligands can reduce 
glutamate-mediated neurotoxicity; however critical intervention with the ligands 
will offer protection against the progression of glutamate-mediated cytotoxicity.

10.14  Conclusion

PPARs offer a unique advantage in treating disease states brought on by chronic 
inflammation and metabolic dysregulation. Current clinical PPAR therapeutics offer 
a molecular tool to investigate PPAR roles in neurodegenerative pathologies, yet 
barriers remain with these compounds as CNS activity is poor at best. High dosages 
required to achieve CNS activity only compound the unwanted systemic side effects 
seen at normal therapeutic levels, further complicating in vivo results. Advancements 
in the design and development of novel selective PPAR agonists may allow 
researchers clinically relevant compounds that are capable of achieving more 
efficacious CNS activity without excessive dosing. Achieving selective PPAR 
agonism may also be beneficial as specific gene transcription can avoid systemic 

Fig. 10.8 Schematic illustration shows that (1) glutamate regulation is compromised in moderate 
to late stages of AD. (2) PPARγ ligands can induce an increase in expression of GLT1/EAAT2 
glutamate uptake receptor in astrocytes. (3) The increase in surface levels of GLT1/EAAT2 
receptors results in improved glutamate handling in the synaptic cleft
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side effects and elicit cellular-specific gene profiles in targeting various stages of 
disease pathology. When designing novel selective PPAR agonists, a greater 
emphasis on understanding the specific roles each arm in the PPAR LBD plays in 
the ability to recruit coactivators and promotes gene transcription is imperative. 
PPARs have long been stigmatized as clinically irrelevant therapeutics, but lack of 
understanding on how to regulate such a powerful molecular tool should not rule out 
further investigation. Furthermore, understanding the dynamic roles of PPARs in 
immune cell regulation is crucial to mitigate the pro-inflammatory signaling cascade 
and improve tissue regeneration. Energy dysregulation and metabolism are at the 
heart of all disease pathologies, and PPARs offer a unique tool to modulate 
reorganization of metabolic pathways in various tissue types.
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Chapter 11
Functional Bioassays Lithograph Ligand 
Reflections in the PPARα Sphere

Pallavi R. Devchand

Abstract The discovery of PPARα led to a global explosion of scientific research 
in both academia and pharmaceutical companies. Almost 30 years later, this nuclear 
receptor remains an enigma. Here, I focus on the ligand-binding domain (LBD) of 
PPARα and chart a trajectory of landmark bioassays for receptor activation and 
ligand binding. What were the hurdles? And how were they addressed? The LBD 
facet is just a small part of the PPARα protein, but it plays a pivotal role in the func-
tional machinations. It arguably symbolizes how the interplay of competition and 
collaboration between research groups is required to fuel discovery toward safe and 
effective medicines. Perhaps in reflection, we can bring some light to how the LBD 
of PPARα forms functions to direct dynamic fate.

Keywords PPAR bioassays · Leukotriene B4 · Glitazone · Drug discovery · 
Adaptive homeostasis

I am myself: a light.
In me you find your fate.
So be not blind to the truth,
shining from my glow. 

―A.E. Drijfhout in Emblamata (1932)

The goal is to take an investigational drug to a medicine. This path of drug develop-
ment necessitates meandering through animal models before testing an investiga-
tional drug in man. But mouse is not always reflective of man. For example, some 
clinically relevant lipid-lowering drugs can rapidly induce expression of key peroxi-
somal enzymes and also trigger proliferation of peroxisome organelles in the liver 
of rodents.
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11.1  PPARs Are Nuclear Hormone Receptors

In focused searches, Issemann and Green [10] identified a novel transcription factor 
as a transducer of the rodent peroxisomal proliferation response to non-genotoxic 
carcinogens, and named it PPAR (the peroxisome proliferator-activated receptor). 
The PPAR protein sequence depicted a classic nuclear hormone receptor with dis-
tinct DNA-binding and ligand-binding domains connected by a hinge region (Fig. 
11.1). Dreyer et al. [6] later cloned three isotypes of PPAR from the frog Xenopus 
laevis and also delineated a DNA response element that mediated rapid induction of 
transcription by PPARs when activated (Fig. 11.1).

11.2  The RXR Obligation

Further investigation by several research teams indicated that PPARα functioned as 
a heterodimer with RXR, the retinoid receptor [9, 11, 14]. In the native form, RXRα, 
β  or  γ is required for the full-length PPARα activation of transcription from a 
PPRE. Clearly, activities of both nuclear receptors can be modulated by ligands [14, 
17]. The genomic landscape is peppered with PPREs that inherently confer impor-
tant adaptive and developmental roles of PPARα [2, 3]. The nuances of transcrip-
tional control are in part due to relative affinities of the PPAR-RXR heterodimer for 
DNA based on the 5′-flanking sequences of the PPRE [12].

Fig. 11.1 PPARα is a nuclear receptor that conceptually has two major globular domains (DNA- 
binding and ligand-binding) connected by a hinge. This nuclear receptor can be activated by xeno-
biotics to rapidly induce transcription from a PPRE, a direct repeat (DR+1) DNA response element
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11.3  Screening for PPAR Activators

Initial mass screenings for activators were performed using the mouse and Xenopus 
PPARs, primarily because these were the tools at hand. Transient transfection 
experiments in cell culture used two approaches to reporter systems:

 1. Use of a native PPRE and optimized combinations thereof
 2. Use of an artificial fusion protein that tethers the PPAR(LBD) to an unrelated 

DNA-binding element

It is worth noting that these systems also differed in basal promoter elements of the 
reporter construct and cell type. Some examples are presented below.

11.4  Reporter Plasmids of PPAR-RXR Heterodimer Activity

When using the native PPAR-RXR heterodimer as transducer, the primary strategy 
is to create a reporter plasmid that has a low background and a robust response.

Fig. 11.2 PPAR-RXR heterodimer is the functional unit at a PPRE on a target gene. The crystal 
structures depict the human RXRα (left) and its interactions with the 9-cis-retinoic acid ligand 
(right). 1FBY deposited by [7] was obtained from RCSB protein database [1]
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For example, the promoter of cytochrome P450A6 responds robustly to PPARα 
activators like the xenobiotic Wy 14.643. In this example, eicosanoid modulators 
are screened in HeLa cells using an efficient reporter system with a palindromic 
arrangement of two Cyp4A6 PPREs upstream of a thymidine kinase basal promoter 
that drives CAT expression [4] (Fig. 11.3).

Alternate PPREs used in compound screens for PPARα include those from pro-
moters of adipocyte protein 2, acyl co-enzyme A oxidase and hydratase dehydroge-
nase [15, 16, 21]. The sensitive reporters have also proved invaluable in pin-pointing 
differences of species-specific responsiveness [13].

11.5  Power of the Imperfect

An alternate avenue for a screening strategy involved assaying the PPAR-LBD as a 
fusion with an unrelated protein. This scenario, while pushing aside the RXR obli-
gate and any potential heterodimer to PPRE effects, has been fruitful as a prelimi-
nary screen. This approach necessitates characterizing the native PPAR-RXR 
heterodimer response after identification compounds of interest.

For example, the yeast GAL4 transcription factor has two distinct domains: a 
DNA-binding domain and an activator domain. GAL4 acts as a homodimer to regu-
late transcription of galactose-inducible genes via a distinct DNA response ele-
ment (Fig. 11.4). This system was adopted to define thiazolidinediones as targets of 
PPARγ [18] and also to follow up in identification of a novel glitazone as a dual 
PPARα/PPARγ activator [15].

Another successful assay used the bacterial Tet repressor system with a lucifer-
ase reporter in U2OS cells [21]. This example indicates differential activation of 
PPARα by enantiomers of 8-HETE (Fig. 11.5).

In totality, the above screens for activators allowed for two parallel approaches: 
mass screening of catalogues of  compounds – literally! [8, 15, 16]  – and also a 
knowledge-based approach based on the study of published literature [3]. Once an 
activator of interest is identified, it remains to be determined as to whether the 
mechanism of activation is indirect or direct.

11.6  Is It a Ligand?

Logically, a compound is a ligand if:

 
free compound PPARalpha COMPLEX[PPARalpha(LBD) + ligaLBD+ ( ) → nnd]

 

Several methods were developed to measure the outcome, in part due to technical 
difficulties in expression of mammalian PPARα (LBD) proteins.
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Fig. 11.3 A PPRE reporter generated from the Cyp4A6 promoter sequence used to screen modu-
lators of the BLTR eicosanoid receptor. The Cyp4A6 PPRE is in a palindromic arrangement 
upstream of a TK basal promoter. Expression of chloramphenicol acetyltransferase activity is then 
quantified by an enzyme assay. A β-galactosidase construct is used to normalize transfection effi-
ciency between samples. (Figures reproduced from Devchand et  al. [4] (Journal of Biological 
Chemistry))
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Fig. 11.4 A GAL4-based system. The fusion of PPAR-LBD to a GAL4-DBD, albeit forming 
homodimers, still proves powerful in measuring PPAR activation via the PPAR ligand-binding 
domain. (Figures are from [18] (Journal of Biological Chemistry))
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11.7  Saturation and Competition-Binding Analyses

In vitro, the conventional experiment requires a labeled ligand that can be a quanti-
fied and also requires soluble, purified PPARα(LBD) protein. Early attempts at 
producing substantive amounts of GST fusions of human and murine 
PPARαLBDs proved difficult. Fortunately, the Xenopus laevis PPARα (LBD) pro-
tein was amenable for direct binding assay studies with radiolabeled eicosanoid 
LTB4 and the glitazone GW2331 [3, 13, 15]. Alternately, the use of sensitive fluo-
rescently-labeled trans- parinaric acid facilitated calculation of equilibrium con-
stants of binding of ligands with His-tagged mPPARα(LBD) proteins [19].

11.8  Ligand-Dependent Conformational Change

Alternate approaches to determine binding of ligands to the receptor PPARα LBD 
were based on conformational change of the protein. For example, Dowell et al. [5] 
developed a differential protease sensitivity assay, radiolabeled the GST–mPPARα 
(LBD) fusion protein, and resolved fragments generated by specific chymotrypsino-
gen cleavage at sites that were exposed by conformational change upon ligand bind-
ing (Fig. 11.6).

The CARLA assay developed by Krey et al. [16] used the fact that binding of a 
ligand alters conformation of helix 12 of the PPARα LBD and exposes a surface for 
binding of the nuclear cofactor SRC-1. This assay was developed using Xenopus 
PPARα LBD and later adapted to the mouse PPARα LBD (Devchand et al., 1997). 
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Fig. 11.5 A TetR-based system. The fusion of PPARα LBD to TetR offers a sensitive assay which 
reports via a Tet operon-driven luciferase reporter. (Figures are from [21] (Journal of Biological 
Chemistry))
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Interestingly, this assay affords generation of dose-response curves that correlate to 
ED50s in co-transfection assays (Fig. 11.7).

11.9  Altered DNA-Binding Affinity

The PPAR-RXR heterodimer binds to a PPRE DNA response element. This can be 
measured using a standard electromobility shift assay (EMSA). Interestingly, 
Forman et al. [8] demonstrated that under very limiting conditions, the binding of 
the heterodimer to DNA can be ligand-dependent. This ligand-induced complex 
(LIC) assay is amenable for evaluating PPARα and PPARβ but not PPARγ. Like the 
CARLA system, this is a semi-functional assay that can provide dose-dependent 
readouts (Fig. 11.8).

11.10  Crystal Structure

At the finish line, in terms of medication in patients, knowledge on the human sys-
tem would be the ideal. Xu et al. [20] reported a crystal structure of a His-tagged 
human PPARα (LBD) in complex with the ligand GW409544 and the cofactor 
motif of SRC-1 (Fig. 11.9). This is an instructive structure in its detail and no doubt 
will provide insight into further studies on human PPARα responsiveness to differ-
ent medications and diets.

11.11  Summary

The narrative of PPARα started with a quest for understanding the species-specific 
proliferation of peroxisomes in the liver that surfaced in rodents during drug devel-
opment. After a long journey, the challenge remains to understand how endogenous 

Fig. 11.6 Differential protease sensitivity assay. In this assay, ligand-induced PPAR conforma-
tional change is monitored by susceptibility to chymotrypsinogen cleavage. (Figure is from [5] 
(Journal of Biological Chemistry))
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Fig. 11.7 The semi- 
functional CARLA. This 
assay correlates the 
pull-down of radiolabeled 
SRC-1 cofactor with the 
binding of GST- PPARα 
(LBD) to ligand. The 
dose-dependent nature is 
reflective of ligand affinity. 
(Figures are from [4] 
(Journal of Biological 
Chemistry))
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Fig. 11.8 The LIC assay. This figure demonstrates that LTB4 and its stable analogue CF3-LTB4 are 
ligands of mPPARα. (Figure is from [4]) (Journal of Biological Chemistry))

Fig. 11.9 Crystal structure of human PPARα (LBD) complexed with SRC-1 cofactor motif (left) 
with a weak ligand GW509544 (right). 1K7L deposited by [20] was obtained from RCSB protein 
database [1]
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lipid mediators, exogenous natural compounds, and xenobiotics trigger molecular 
and cellular mechanisms of adaptive homeostasis. A reflection and reevaluation of 
data from the perspective of the PPARα ligand-binding domain are warranted. We 
must continue to create lithographs of views from within the PPARα LBD in order 
to appreciate the dynamics of the bigger picture of health (Fig. 11.10).
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Chapter 12
Computational Applications on Food 
Contact Chemicals as Nuclear Receptor 
Binders

Francesca Cavaliere, Giulia Spaggiari, and Pietro Cozzini

Abstract Humans, but also animals, are exposed to chemicals in everyday life. 
Many of these compounds are present in our food as food contact chemicals (FCCs), 
naturally occurring (toxins produced by plants), intentionally added (food additives, 
flavourings) or unintentionally added (pesticides, bisphenols, polychlorinated 
biphenyls). It is well-known that some of them can act as endocrine-disrupting 
chemicals (EDCs), which can interfere with the endocrine systems mainly by acting 
through their interaction with nuclear receptors (NRs). NRs are a superfamily 
constitute of 48 ligand-regulated transcription factors that are expressed in the 
animal kingdom and are essential for cell signalling, survival and proliferation. 
Thus, the alteration of nuclear receptor pathways is correlated to a large number of 
pathologies. Given the high number of EDCs we are exposed to, it is fundamental 
to test the endocrine disruptor properties of FCCs with alternative methods to animal 
testing. In this chapter, we focus our attention on the most common in vitro bioassays 
and in silico analysis as methods that can consider different endpoints of the NR 
pathway.

Keywords Endocrine disruptors · Food contact chemicals · Food safety prediction 
· In silico methodology · In vitro bioassays · Nuclear receptor-associated diseases

12.1  Introduction

Nuclear receptors (NRs) are a superfamily constitute of 48 ligand-regulated tran-
scription factors that are expressed in the animal kingdom. NRs because of the 
activation of small molecules play diverse roles in cell differentiation/development, 
proliferation and metabolism. Nuclear receptors share a common structural 
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organization (Fig. 12.1). The N-terminal region, called the A/B domain, is highly 
variable and contains the transcriptional activation function (AF-1) and other 
transactivation domains. The most conserved region is the DNA-binding domain 
(DBD), or C domain, which contains a P-box and two zinc fingers. The former is 
responsible for DNA-binding specificity, and it is involved in the dimerization of 
NRs, while the latter is essential for protein-protein interactions. A D-domain, 
localized between the DNA-binding and the ligand-binding domains, contains the 
nuclear localization signal.

The ligand-binding domain (LBD) is the largest, and it is contained in the E-F 
domain, close to the carboxy terminus. The LBD, contained a conserved core of 12 
α-helices (H1–H12) and two short β-sheets, is responsible for ligand recognition but 
also the coactivator and corepressor binding. These ligands can be classified into 
two different categories: (i) agonists, which promote the nuclear receptors activity, 
and (ii) antagonists, which block the effect of agonist through competitive 
interactions to the same binding site. The activation of LBD is determined by the 
equilibrium of different α-helix 12 (H12) conformations induced by the ligand. In 
fact, it rather changes the equilibrium towards more active conformations, 
characterized by a close H12, in the case of agonists and inactive conformations, 
characterized by an open H12, in the case of antagonists [8].

Depending on the structure and the ligands, the nuclear receptors could be 
divided into seven subfamilies (Table  12.1). The first group (Subfamily 0) is 
composed of only two proteins characterized by only a ligand-binding domain. 
Subfamilies 1 and 3 are composed of a large variety of receptors (peroxisome 
proliferation-activated receptors, liver X receptor, progesterone receptor, and many 

Fig. 12.1 Representative nuclear receptors’ structure (PDB ID: 3E00). The ligand-binding site is 
in green (in this case it is composed of two nuclear receptors, RXRα and PPARγ, and their, 
respectively, ligands, 9-cis-retinoic acid and 2-chloro-5-nitro-N-phenylbenzamide, in red), while 
the DNA-binding domain is in blue
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others) that can interact with a vastness of ligands. The following receptors’ group 
(Subfamily 2) contains orphan receptors, so called because the putative ligand 
remains to be identified, and the retinoid X receptor (RXR), important receptor 
because the capability of form heterodimeric complexes with other NRs. Finally, 
Subfamilies 4, 5 and 6 contain orphan receptors important for the development and 
the metabolism [25].

Along with the endogenous ligands, very different types of molecules are able to 
bind nuclear receptors. These compounds can be divided into two groups: the first 
one are molecules that are synthesized to treat NR diseases (drugs) and the other 
one consists of unintentional binders. In this latter case, they are able to change the 
important biochemical pathway in which NRs are involved and they are named 
endocrine disruptor compounds. They include a variety of molecules such as 
bisphenols (BPs), mycotoxins, food additives, cosmetics, printing ink, plasticizers, 
etc. From a purely chemical point of view, there are no differences between these 
different molecules. The common result is that many of them are possible endocrine 
disruptors. These molecules can be present intentionally or unintentionally in our 
food, and in this chapter, we define this huge set of molecules simply as food contact 
chemicals (FCCs).

12.2  Methods to Evaluate Food Contaminants as Nuclear 
Receptor Modulators

In this chapter, we want to talk about alternative animal tests that can be used to 
screen food contact chemicals against nuclear receptors to evaluate their endocrine 
disruptor proprieties. Firstly, we have considered in vitro bioassays that are currently 
accepted by different agencies involved in this field. Secondly, the in silico methods 
have been discussed to evaluate the interactions and the mechanism of action of 
FCCs as possible EDC molecules.

12.3  In Vitro Bioassays to Study the Mechanism of Action 
(MoA) of Endocrine Disruptor Compounds

Since the 1930s endocrine disruptor compounds have been studied using a range of 
in  vivo models. However, since the use of animals has ethical, economic and 
scientific limitations, European legislation has prompted the reduction, refinement 
and replacement (3R) of animal experiments. Considering the higher number of 
compounds that are synthesized every year, it is not feasible to screen this huge 
amount using only in vivo study because of their high costs and low throughput. 
Moreover, it has been shown that a mixture of chemicals can act additively inducing 
a more potent endocrine-disrupting outcome [15]. Thus, human exposure to different 
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Table 12.1 List of the 48 nuclear receptors with the respective diseases

No. Subfamily Approved name
Gene 
name

Crystallography 
PDB structurea NR diseases

1 NR0B1 Dosage-sensitive 
sex reversal, 
critical region on 
the X 
chromosome

DAX1- 
AHC

Yes (1) Adrenal failure; salt-losing 
crises in the neonatal period; 
nausea; weight loss; 
hypotension; hyper- 
pigmentation; Ewing tumours 
typical of children, 
adolescents and young adults; 
adrenocortical tumours; 
ovarian, endometrial, 
prostate, lung and breast 
cancer; X-linked adrenal 
hypoplasia congenita (AHC); 
hypogonadotropic 
hypogonadism (HHG)

2 NR0B2 Small heterodimer 
partner

SHP Yes (6) Obesity

3 NR1A1 Thyroid hormone 
receptor alpha

THRA Yes (8) Alzheimer’s diseases, thyroid 
neoplasms, osteoporosis, 
cardiovascular and coronary 
disorders, osteoarthritis, 
hypertension

4 NR1A2 Thyroid hormone 
receptor beta

THRB Yes (18) Hyperthyroidism, diabetes, 
female infertility, end-organ 
unresponsiveness to thyroid 
hormone, abnormal growth 
and bone maturation, and 
deafness, asthma, abortion, 
narcolepsy

5 NR1B1 Retinoic acid 
receptor alpha

RARA Yes (6) Cleft lip and palate, diabetes, 
autistic and bipolar diseases, 
obesity, myopia, neural tube 
defects, neoplasms, diabetes, 
mental disorders, 
schizophrenia

6 NR1B2 Retinoic acid 
receptor beta

RARB Yes (6) Bipolar and autistic disorders, 
Creutzfeldt-Jakob syndrome, 
mental disorders, gout, 
diabetes, myopia, 
meningomyelocele, cleft lip 
and palate

7 NR1B3 Retinoic acid 
receptor gamma

RARG Yes (11) Diabetes, liver cirrhosis, 
bipolar and autistic disorders, 
oedema, Alzheimer’s disease, 
neoplasms

(continued)
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Table 12.1 (continued)

No. Subfamily Approved name
Gene 
name

Crystallography 
PDB structurea NR diseases

8 NR1C1 Peroxisome 
proliferator- 
activated receptor 
alpha

PPARA Yes (18) Dementia, coronary restenosis 
and stenosis, carcinoma, brain 
ischemia, diabetes, 
oesophageal, lung and liver 
neoplasms, rhinitis, kidney 
failure, IGA, ventricular 
dysfunction, obesity, 
thrombosis, premature birth, 
ovarian and prostatic 
neoplasms, hepatitis C, 
hyperlipidaemia, 
hypercholesterolaemia, 
chorioamnionitis

9 NR1C2 Peroxisome 
proliferator- 
activated receptor 
delta

PPARD Yes (41) Bipolar disorder, adenoma, 
diabetes, adenocarcinoma, 
colonic and oesophageal 
neoplasms, oedema, 
hypertrophy, growth 
disorders, gout, weight gain 
and loss, multiple myeloma, 
personality inventory, obesity, 
schizophrenia, metabolic 
syndrome X, peripheral 
nervous system diseases, 
coronary and cardiovascular 
diseases

10 NR1C3 Peroxisome 
proliferator- 
activated receptor 
gamma

PPARG Yes (178) Diabetes mellitus, metabolic 
syndrome X, cardiovascular 
and coronary artery diseases, 
colorectal and lung 
neoplasms, myocardial 
infarction, weight gain and 
loss, obesity, rectal and 
prostatic neoplasms, disease 
progression, stroke, 
leiomyoma, atherosclerosis 
and arteriosclerosis, oedema, 
pulmonary and metabolic 
diseases, peptic ulcer, chronic 
and Hodgkin’s diseases, 
dementia, sleep apnoea, 
neoplasms, memory and 
mental disorders, hip 
fractures, lipid metabolism, 
and growth disorders

(continued)
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Table 12.1 (continued)

No. Subfamily Approved name
Gene 
name

Crystallography 
PDB structurea NR diseases

11 NR1D1 Rev-ErbA alpha THRAL/
ErbA

Yes (1) Hypothyroidism congenital 
nongoitrous, REM sleep 
behaviour disorder, major 
depressive disorder, enhanced 
s-cone syndrome, delayed 
sleep phase disorder

12 NR1D2 Rev-Erb beta Rev- 
ErbB

Yes (4) Atrioventricular septal defect 
(AVSD), metabolic disorders, 
plasmin system abnormalities, 
cardiovascular diseases

13 NR1F1 RAR-related 
orphan receptor A

RORA Yes (3) Wet molecular degeneration, 
mental and macular disorders, 
oedema, choroidal 
neovascularization, bipolar 
and depressive disorders, 
mood and sleep disorders, 
vasculitis

14 NR1F2 RAR-related 
orphan receptor B

RORB No Epilepsy, enhanced s-cone 
syndrome, refractive error

15 NR1F3 RAR-related 
orphan receptor C

RORG Yes (81) Diabetes, celiac diseases, 
breast neoplasms, carcinoma, 
lymphedema

16 NR1H2 Liver X receptor 
B

LXRB Yes (17) Calcinosis, dementia, 
atherosclerosis, encephalitis, 
oedema, coronary and 
Crohn’s diseases, obesity, 
diabetes mellitus type 2, 
metabolic syndrome X, 
neoplasms, colitis

17 NR1H3 Liver X receptor 
A

LXRA Yes (7) Cardiovascular diseases, 
diabetes mellitus type 2, 
metabolic syndrome X, 
polycystic ovary syndrome, 
coronary and cerebrovascular 
diseases, oedema, myocardial 
ischemia, dyslipidaemias, 
hypertension, lymphoma, 
dementia

(continued)
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Table 12.1 (continued)

No. Subfamily Approved name
Gene 
name

Crystallography 
PDB structurea NR diseases

18 NR1H4 Farnesoid X 
receptor

FXR Yes (73) Lung neoplasms, pregnancy 
complications, inflammatory 
bowel diseases, insulin 
resistance, liver cirrhosis, 
cholestasis, colitis, coronary 
and Crohn’s diseases, 
calcinosis, diarrhoea, 
Hepatitis C, dyslipidaemias, 
liver and cardiovascular 
diseases, metabolic syndrome 
X, neoplasms, osteoporosis, 
overweight, irritable bowel 
syndrome, urinary bladder 
neoplasms, Alzheimer’s 
disease

19 NR1I1 Vitamin D 
receptor

VDR Yes (45) Periodontitis, vitamin D 
deficiency, disease 
progression, obesity, diabetes, 
tuberculosis, rickets, 
melanoma, adenoma, 
prostatic hyperplasia, 
psoriasis, lead poisoning, 
carcinoma, kidney calculi

20 NR1I2 Pregnane X 
receptor

PXR Yes (23) Liver cirrhosis and 
neoplasms, asthma, diabetes, 
oedema, lung and liver 
neoplasms, leukaemia, 
dementia, head and neck 
neoplasms, viremia, anaemia, 
Crohn’s and cardiovascular 
diseases, carcinoma, acquired 
immunodeficiency syndrome

21 NR1I3 Constitutive 
androstane 
receptor

CAR Yes (2) Renal carcinoma, 
neutropenia, prostatic 
neoplasms, memory and 
mental disorders, leukopenia, 
dementia, 
hypertriglyceridemia

22 NR2A1 Hepatocyte 
nuclear factor 4 
alpha

HNF4A Yes (5) Hyperinsulinism, 
tubulointerstitial kidney 
disease, diabetes, Fanconi 
renotubular syndrome 4 with 
maturity-onset diabetes of the 
young

(continued)
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Table 12.1 (continued)

No. Subfamily Approved name
Gene 
name

Crystallography 
PDB structurea NR diseases

23 NR2A2 Hepatocyte 
nuclear factor 4 
gamma

HNF4G Yes (1) Maturity-onset diabetes of the 
young, hyperuricemia, 
chromosome 8q21.11 
deletion syndrome, ulcer, 
diabetes mellitus, colitis, 
Crohn’s diseases, pancreatic 
neoplasm, carcinoma, 
inflammatory bowel diseases, 
dengue fever

24 NR2B1 Retinoic acid 
receptor alpha

RXRA Yes (85) Carcinoma, colonic and 
colorectal neoplasms, 
coronary stenosis and 
diseases, diabetes, autistic 
and bipolar disorders, 
keratoconus, microsatellite 
instability, neoplasms, 
hypercholesterolemia and 
hypertriglyceridemia, 
schizophrenia, pulmonary 
diseases

25 NR2B2 Retinoic acid 
receptor beta

RXRB Yes (6) Diabetes, gallstones, 
gallbladder neoplasms, bile 
duct neoplasms, arthritis, 
neoplasms, cryptorchidism, 
pulmonary diseases, psoriasis, 
hypospadias, lung and 
prostatic neoplasms, 
tonsillitis

26 NR2B3 Retinoic acid 
receptor gamma

RXRG Yes (1) Obesity, hypospadias, 
oesophageal neoplasms, 
metabolic syndrome X, 
adenocarcinoma, neoplasms, 
autistic and bipolar disorders, 
diabetes, acquired 
immunodeficiency syndrome, 
carcinoma, Alzheimer’s 
diseases

27 NR2C1 Testicular 
receptor 2

TR2 No Urothelial cancer, infertility

28 NR2C2 Testicular 
receptor 4

TR4 Yes (1) Premature aging, lateral 
myocardial infarction, 
epilepsy, anterior cerebral 
artery infarction, 
teratocarcinoma, cancer

(continued)
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Table 12.1 (continued)

No. Subfamily Approved name
Gene 
name

Crystallography 
PDB structurea NR diseases

29 NR2E1 Tailless homolog TLX Yes (1) Enhanced s-cone syndrome, 
retinitis pigmentosa, 
chromosome 17q21.31 
duplication syndrome, 
microphthalmia, autism 
spectrum disorder, bipolar 
disorder, neurological 
diseases

30 NR2E3 Photoreceptor- 
specific nuclear 
receptor

PNR Yes (1) Enhanced s-cone syndrome, 
retinitis pigmentosa, colour 
vision deficiency, cone-rod 
dystrophy

31 NR2F1 Chicken 
ovalbumin 
upstream 
promoter 
transcription 
factor I

COUP- 
TFI

No Exotropia, Bosch-Boonstra- 
Schaaf optic atrophy 
syndrome, unilateral 
polymicrogyria, adrenal 
cortical adenoma, cerebral 
visual impairment

32 NR2F2 Chicken 
ovalbumin 
upstream 
promoter 
transcription 
factor II

COUP- 
TFII

Yes (1) Congenital heart defects’ 
multiple types 4 (CHTD4), 
complete atrioventricular 
canal-tetralogy of Fallot 
syndrome, complete 
atrioventricular canal-left 
heart obstruction syndrome, 
complete atrioventricular 
canal-ventricle hypoplasia 
syndrome, partial 
atrioventricular canal

33 NR2F6 V-erbA-related 
protein 2

EAR-2 No Patulous Eustachian tube, 
Eustachian tube disease

34 NR3A1 Oestrogen 
receptor alpha

ERA Yes (266) Osteoporosis, breast and 
prostatic diseases, 
cardiovascular diseases, 
female infertility, 
hypertension, scoliosis, 
uterine and colorectal 
neoplasms, cryptorchidism, 
polycystic ovary syndrome, 
inflammation, primary 
ovarian syndrome, stroke, 
osteoarthritis, hip fractures, 
leiomyoma, metabolic 
syndrome X

(continued)
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Table 12.1 (continued)

No. Subfamily Approved name
Gene 
name

Crystallography 
PDB structurea NR diseases

35 NR3A2 Oestrogen 
receptor beta

ERB Yes (32) Cardiovascular diseases; 
beast, colorectal and prostatic 
neoplasms; osteoporosis; 
endometriosis; male and 
female infertility, 
hypertension, oligospermia, 
obesity, Parkinson’s and 
Alzheimer’s diseases, 
azoospermia, 
adenocarcinoma, ovarian and 
testicular neoplasms, colonic 
and endometrial neoplasms, 
gallstones, hip fractures, 
anorexia nervosa, abortion, 
inflammation

36 NR3B1 Oestrogen-related 
receptor alpha

ESRRA Yes (4) Diabetes mellitus type 2, 
cardiovascular diseases, 
oedema, glandular and 
epithelial neoplasms, obesity, 
ovarian neoplasm

37 NR3B2 Oestrogen-related 
receptor beta

ESRRB No Deafness autosomal 
recessive, adrenal hypoplasia, 
hereditary hearing loss and 
deafness, autosomal recessive 
non-syndromic sensorineural 
deafness-type DFNB

38 NR3B3 Oestrogen-related 
receptor gamma

ESRRG Yes (17) Breast and colorectal 
neoplasms, diabetes mellitus 
type 2, hearing, neoplasms, 
osteoporosis, overweight, 
stomach neoplasms

39 NR3C1 Glucocorticoid 
receptor

GR Yes (43) Obesity, bipolar disorder, 
bronchiolitis, cardiovascular 
and coronary diseases, 
diabetes mellitus, 
hypertension, inflammation, 
fatigue syndrome, metabolic 
syndrome X, adenoma, 
premature birth, 
schizophrenia, mental and 
psychotic disorders, multiple 
sclerosis

(continued)
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Table 12.1 (continued)

No. Subfamily Approved name
Gene 
name

Crystallography 
PDB structurea NR diseases

40 NR3C2 Mineralocorticoid 
receptor

MRL Yes (25) Bipolar and attention deficit 
disorders, myocardial 
infarction, reward, stress and 
mental disorders, metabolic 
syndrome X, hypotension, 
hyperkalaemia, child 
behaviour disorders, 
pseudohypoaldosteronism, 
pregnancy complications, 
oedema

41 NR3C3 Progesterone 
receptor

PGR Yes (20) Breast and ovarian 
neoplasms, premature birth, 
uterine and prostatic 
neoplasms, male and female 
infertility, carcinoma, 
gallstones, abortion, 
musculoskeletal diseases, 
neoplasms, vertigo, 
thrombophilia, skin and 
pulmonary diseases, obesity

42 NR3C4 Androgen 
receptor

AR Yes (82) Prostatic and breast 
neoplasms, infertility (male), 
polycystic ovary syndrome, 
alopecia, ovarian neoplasms, 
oligospermia, prostatic 
hyperplasia, testicular 
neoplasms, disease 
progression, endometrial, 
neoplasms, carcinoma, insulin 
resistance, cryptorchidism, 
neoplasms, hypospadias, 
hypogonadism, Klinefelter 
syndrome, diabetes mellitus 
type 2, adenocarcinoma, acne, 
androgen insensitivity 
syndrome, obesity, 
azoospermia, cardiovascular 
diseases, Alzheimer’s disease, 
leiomyoma 
hyperandrogenism, 
osteoporosis, ovarian failure, 
gender identity, metabolic 
syndrome X, abortion, 
autistic disorder, chromosome 
aberrations, depressive 
disorder, endometriosis

(continued)
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contaminants could also have an additive effect. Although in vivo studies have their 
advantages, the complexity of the biological system often generates controversial 
results: for example, where the same experiment was possible between humans and 
animals, a correlation of 60% has been found [14]. Thus, the results of animal tests 
cannot be always related to the human outcomes. Keeping this in mind, in silico and 
in vitro analysis should be preferred over in vivo studies.

Table 12.1 (continued)

No. Subfamily Approved name
Gene 
name

Crystallography 
PDB structurea NR diseases

43 NR4A1 Nerve growth 
factor IB-like 
receptor

NGF IB Yes (15) Pseudohypoaldosteronism, 
salivary gland carcinoma, 
pyomyositis, night blindness 
congenital stationary type 1, 
salivary gland disease, 
metabolic disease, colorectal 
and pancreatic cancer, lung 
and breast cancer, 
inflammatory disease

44 NR4A2 NGFI-B/nur77 
beta-type 
transcription 
factor homolog

NURR1 Yes (2) Parkinson’s disease, arthritis, 
rheumatoid arthritis, 
attention-deficit/hyperactivity 
disorder, alcohol dependence, 
colorectal, lung, 
adrenocortical and cervical 
cancer

45 NR4A3 Neuron-derived 
orphan receptor 1

NOR1 No Chondrosarcoma, epithelial- 
myoepithelial carcinoma, 
myxoid and extraosseous 
chondrosarcoma, Ewing 
sarcoma (ES)

46 NR5A1 Steroidogenic 
factor 1

STF1 Yes (4) 46,XY sex reversal 3 
(SRXY3), 46,XX sex reversal 
4 (SRXX4), premature 
ovarian failure 7 (POF7), 
spermatogenic failure 8 
(SPGF8), adrenal 
insufficiency NR5A1-related 
(AINR), prostate cancer

47 NR5A2 Liver receptor 
homolog-1

LRH1 Yes (17) Oedema, diarrhoea, obesity, 
osteoporosis, irritable bowel 
syndrome, adenocarcinoma, 
cardiovascular diseases, 
diabetes mellitus type 2

48 NR6A1 Germ cell nuclear 
facto

GCNF No Embryonal carcinoma, 
teratocarcinoma, ureter 
cancer, retinitis pigmentosa

aIn brackets are the number of the nuclear receptors’ structures present in PDB until 2017
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This section does not want to be an exhaustive list of in vitro studies to screen 
endocrine disruptor compounds, but we want to make a brief discussion about the 
most accepted and used in vitro tests considering the guidelines of agencies that are 
most active in this field: US Environmental Protection Agency (EPA) (https://www.
epa.gov/), European Chemicals Agency (ECHA) (https://echa.europa.eu/it/home), 
Organisation for Economic Co-operation and Development (OECD) (https://www.
oecd.org/) and European Food Safety Authority (EFSA) (https://www.efsa.europa.
eu/it). Chemicals intentionally or unintentionally coming in contact with food can 
adverse human health, in most cases functioning as endocrine disruptor compounds. 
To evaluate their potential ED proprieties, different in vitro tests are currently used. 
To understand how they function, a short discussion about how NRs work should be 
made. Nuclear receptors are composed of two principal domains: a DNA-binding 
domain and a ligand-binding domain. When an agonist ligand binds to the ligand- 
binding pocket of LBD, the receptor (as a monomer, homodimer or heterodimer) 
can migrate inside the nucleus, where the DBD recognized specific DNA sequence 
named DNA-responsive element located upstream to the gene regulated by the 
receptor. Once the NR is bound to the DNA, it recruits additional proteins of the 
transcriptional machinery and activates the transcription and transduction of the 
gene. Thus, an endocrine disruptor is a compound able to bind the nuclear receptor 
inducing its activation or deactivation. As a consequence, it determines an 
upregulation or downregulation of the genes that the receptor modulates. The 
endocrine-disrupting issue is not a recent discussion. In 1998, EPA convened a 
committee for developing a tiered approach to evaluate the oestrogen, androgen and 
thyroid-related effects of a great number of chemical contaminants for a rapid 
prioritization following by in vivo tests on only relevant compounds. After that, in 
2012, the OECD has released a revised guidance document in which test guidelines 
are exposed for evaluating chemicals for endocrine disruption, and that has been 
updated in 2018. In vitro assays are part of the Level 2 Framework of OECD, and 
most of them refer to the oestrogenic and androgenic pathway as well as 
steroidogenesis (Fig. 12.2).

However, compounds could also interfere with other nuclear receptors/pathways, 
and thus additional in  vitro assays are required to detect all endocrine activity. 
Operating with the same principle, most of the in vitro tests cited in the OECD 
document are also available for other NRs.

Since the scope of this section should be to make a brief discussion about in vitro 
tests that could be useful to validate in silico methodologies and that are used for 
studying EDCs, we have categorized them according to the biological endpoint 
under investigation. Accordingly, since an EDC could act at different levels of the 
biological systems and induce different responses, we discuss bioassays considering 
the effect resulting from EDC exposure: the chemical interaction with hormone 
receptors, the induced gene expression by the ligand binding to the receptor, and the 
cellular responses to EDCs (Table 12.2).
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12.3.1  Ligand-Binding Assays

OECD guidelines and EPA documents refer to only the oestrogenic/androgenic 
binding assay. The first in vitro test to screen the capability of a compound to bind 
a nuclear receptor is the ligand-binding assay. The older version of the test, applied 
to the oestrogen receptor, used rat uterine cytosol as a source of the oestrogen 
receptor protein. Since there are two different isoforms (alpha and beta) of the 
receptor, the test does not make any distinction between them (although the alpha 
isoform is the most abundant protein in rat uterine cytosol). Thus, a homogenates 
tissue extract can be used that must be specific for the receptor under investigation: 

In vitro screen

OECD

Binding Assay

Estrogen
receptor

Transac�va�on
Assay

Estrogen
receptor

Androgen
receptor

Steroidogenesis

Non-OECD

Binding Assay

Androgen
Receptor

Aromatase
Receptor

Fig. 12.2 Flowchart of in vitro approaches

Table 12.2 List of the in vitro tests based on the biological endpoint under investigation

Level of 
response Type of bioassay Mechanism Endpoint

Receptor Ligand binding 
assays

Detect the direct ligand binding 
to nuclear receptors

Receptor binding

Isothermal titration 
calorimetry
Differential scanning 
fluorimetry

Transcription Reporter gene assays Detect the agonistic/antagonistic 
effects

Receptor 
transactivation

Steroidogenesis H295R assay Detect metabolic activation 
induced by EDCs

Hormone 
productionAromatase assay

F. Cavaliere et al.



299

that is, it is advisable to use a cell line derived from a specific tissue that expresses 
the nuclear receptor at higher levels. However, a modern binding assay method uses 
a recombinant protein of the human receptor produced in and isolated from 
baculovirus-infected insect cells expressing a full-length human recombinant 
protein or the human recombinant ligand-binding domain only. Homogenates of 
cells or tissues with a radiolabelled or fluorescent (fluorescent polarization binding 
assay) compound are incubated together with different concentrations of tested 
compounds. Plotting the bound reference ligand against the log concentration of the 
tested compound gives the possibility to generate the competitive binding curve. 
The binding activity is quantified as the concentration of the competitor needed to 
displace half of the reference compound (IC50) or as relative binding affinity 
calculated from the ratio between the IC50 of the reference compound and the test 
chemical. Thus, the binding assay cannot determine whether a compound is an 
agonist or an antagonist since it does not consider the transcriptional activity of the 
receptor, but it only divides compounds into binders (strong to weak) and non- 
binders. As an advantage, since the ligand-binding domain of some nuclear receptors 
is highly conserved across different vertebrate species, the assay results could be 
referred to many taxa. Among in vitro tests used, this represents the best method for 
correlating in silico results since it refers to the direct binding of a compound to the 
receptor. However, the great advantage of in silico methods could be evident: 
although the rationale of binding assay could be extended to other nuclear receptors, 
the document of 2018 guidelines is only provided for oestrogen-, androgen- and 
aromatase-receptor. The great versatility of in silico methods lies in the possibility 
to consider different NRs all at once to predict the direct binding of chemical 
contaminants to receptors. This can be done in a very fast and inexpensive way 
compared to the binding assay. They do not require cell lines; no solutions and no 
compounds are needed for the experimentation. Moreover, there are fewer interfering 
factors compared to cell lines, where it has been reported that a certain grade of 
variability exists in the assay results influenced by protein concentration and/or 
plate temperature. The phenomenon of partial degradation and/or denaturation of 
the protein could influence the ligand-receptor interaction inducing a reported 
decrease of the binding that it is, in reality, a false-positive result. Another important 
issue can be encountered that when being tested compounds that themselves fluo-
resce or interfere with light emission report an erroneous interaction.

However, although LBA is the only direct binding assay in the OECD guidelines 
and the only one accepted by EPA, which refers to OECD documents, in literature 
some other in vitro methodologies have been used to evaluate the direct endocrine 
disruptor binding with NRs. Isothermal titration calorimetry (ITC) assay, for 
example, is often used to study the binding of a small molecule to large 
macromolecules, such as proteins. It directly measures the heat realized or absorbed 
along with a bimolecular reaction depending on the type of binding, i.e. whether 
exothermic or endothermic. The instrument is composed of two different cells that 
are kept at steady temperature and pressure: (i) the main cell where the NR ligand- 
binding domain is placed in its buffer solution and (ii) the reference cell which is 
generally filled with water or with the solvent used for the analysis. During the 
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experiment, the tested compound is titrated into the receptor solution (main cell). 
Since the reaction leads to a heat release or consumption, the binding induces a 
variation in the temperature of the main cell. For maintaining it at the same 
temperature as the reference cell, the instrument spends energy. The heat change is 
calculated by integrating the power spent over the time (seconds) that corresponds 
to the enthalpy of the reaction and, thus, to the fraction of bound ligand. For instance, 
Zhang and colleagues have used an in silico approach to screen indoor dust 
contaminants against thyroid hormone receptor β1 (THRβ1) [27]. Of the 31 
compounds predicted as potential (THRβ1) binders, 5 have been tested using ITC, 
and the binding affinity has been calculated. The results showed that four of five 
molecules were THRβ1 binders. ITC is often useful when the synergic effect of 
compounds would be studied. Balaguer and colleagues used ITC to study the 
cocktail effects of two molecules alone and in combination against the peroxisome 
X receptor (PXR) reporting that the two compounds can interact contemporarily 
with the nuclear receptor [2]. Thouennon and co-workers used the ITC to characterize 
the ability of some environmental chemical contaminants to bind oestrogen-related 
receptor γ (ERRγ) finding that bisphenol E was a more potent binder compared to 
bisphenol A [22]. An additional in  vitro technique that exploits protein 
thermodynamic characteristic to study ligand-protein binding is the differential 
scanning fluorimetry (DSF), also known as thermal shift assay (TSA) or thermal 
denaturation assay (TDA). The methodology is based on the principle that bounded 
nuclear receptors are more stable than the apo-form and thus are much less prone to 
denaturation process induced by the heating temperature. DSF uses a real-time PCR 
instrument to monitor thermally induced denaturation of protein at different ligand 
concentrations by measuring the fluorescence of a dye that binds preferentially 
unfolded proteins. Compounds that significantly increase the protein Tm as 
compared to the vehicle controls are good binders of the nuclear receptor. Since the 
magnitude of ΔTm is negatively correlated to Kd of the interaction, DSF allows 
obtaining the binding affinity of different compounds. DeSantis and colleagues 
have reported the capability of this technique to identify known interactors of ERα 
contained in a commercially available compound library, showing that the two 
agonists β-estradiol and estrone and the antagonist tamoxifen citrate can increase 
significantly the Tm of the receptor compared to the control sample [11].

12.3.2  Gene Reporter Assays

If the experiment’s purpose is to distinguish against agonist and antagonist com-
pounds, reporter gene or gene transactivation assay can be applied. Monitoring the 
transcriptional levels of downstream genes is an efficient in  vitro test to screen 
endocrine-disrupting properties of food contact chemicals. Cell cultures are 
co-transfected with two plasmids: the first one containing the genomic sequence of 
a nuclear receptor and the second one reporting the specific DNA-responsive 
element fused with the genomic sequence of a product that can easily be quantified 
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(e.g. luciferase, a fluorescent protein or β-galactosidase). Cells are treated with 
tested compounds, and the agonistic activity could be detected by monitoring the 
NR-mediated transactivation of the reported gene compared to control cells 
(normally treated with the vehicle alone). The antagonistic activity of a compound 
can be instead detected co-treating cells with a chemical and a potent agonist to 
establish whether it determines a reduction in response and data are compared to 
cells treated with the potent agonist alone. Finally, if the compound is not able to 
bind the nuclear receptor and/or induce an agonistic or antagonistic activity, no 
differences will be reported in the transcription of the reported gene in both 
experiments. One of the first versions of this assay utilized yeast cell lines carrying 
the human nuclear receptor together with a vector containing the reported gene, and 
it is widely used for screening environmental samples. Actually, more specific 
human mammalian cell lines could be used. They could be properly selected for the 
type of nuclear receptor under investigation, i.e. cell lines that are well-known to 
express at high dose the NR. In this latter case, cells are only transfected with report 
gene construct using selected mammalian cells that naturally express the receptor of 
interest. Alternative, dual receptor-reporter transfections are also common for 
mammalian endocrine-screening assays. However, reducing performances could be 
encountered due to the transcriptional activation of the reporter gene construct 
induced by non-ER or non-AR-mediated process. To solve this issue, a chimeric 
construct is utilized in some cases that involve the use of the human ligand binding 
fused with the DBD of a yeast-specific protein. Importantly, this in vitro test has 
significant interlaboratory variability, in part influenced by assay parameters such as 
pH and solvent effect. In silico methods can be, in some circumstances, compared 
to gene transactivation assay result. Generally speaking, molecular docking allows 
predicting if a compound is a good, a weak or a bad binder of the receptor since it 
predicts the binding strength of a protein-ligand interaction without considering the 
effect of this interaction in terms of agonistic and/or antagonistic activity of a 
compound. However, for some NRs, such as the oestrogen receptor, two different 
protein conformations are well-known differing for the helix 12 positions: a close 
(agonist) conformation where the H12 is located towards the receptor and an open 
(antagonist) conformation, where H12 is displaced from the receptor. Taking in 
consideration both the receptor conformations during molecular docking, screening 
allows to distinguish towards agonist and antagonist compounds: if a compound has 
a high score in the agonist conformation and not in the antagonist conformation, it 
can be speculated that it could act as an agonist compound; on the other side, if a 
molecule has a higher score in the open conformation compared to the agonistic 
one, it could probably act as an antagonist. Although not included in the OECD 
guidelines, additional in vitro tests could be performed to analyse the capability of 
a compound to interfere with the endocrine system. The effects of EDCs on the 
expression of NR target genes can be also examined using real-time PCR (RT-PCR). 
Cell lines expressing the nuclear receptor under investigation are treated with 
different concentrations of a tested compound and incubated for a variable period of 
time. Total RNA content is then extracted, and the mRNA of specific genes 
transcribed by the NR is converted into cDNA. Different techniques could be used 
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in this passage, but generally they allow to detect the mRNA conversion in real time. 
Since the conversion is a linear reaction, the methodology allows us to quantify the 
expression levels of mRNA transcribed and thus the ability of a compound to induce 
the nuclear receptor activation. For example, Dellafiora and colleagues have used 
quantitative RT-PCR to measure the transcriptional activity of oestrogen receptor- 
controlled genes (GREB1, growth receptor by oestrogen in breast cancer 1; PR, 
progesterone receptor) induced by two mycotoxin compounds, the well-known 
xenoestrogenic zearalenone (ZEN) and zearalenone-14-glucoside (ZEN14Glc), a 
metabolite produced by plants and is present in food intended for human and animal 
consumption [10]. They have found that ZEN14Glc can induce a more potent 
activation of ER target genes and thus supposedly a more potent oestrogenic 
interference. The same experiment has been used by Yin and co-workers for 
evaluating different probable EDC compounds for their capability to activate the 
oestrogenic activity showing that bisphenol A and bisphenol AF consistently can 
activate endogenous ER target genes [17].

12.3.3  Steroidogenesis Assay

Endocrine disruptor compounds can also affect steroid biosynthesis influencing the 
NR activity as an indirect effect. A range of in vitro models for steroidogenesis is 
available, and the H295R assay is the one accepted by OECD (OECD TG 456) and 
also included in the EPA Endocrine Disruptor Screening Program (EPA 640- 
C- 09-003). The human adenocarcinoma H295R cell line expresses all enzymes 
needed to convert cholesterol to the key steroids. However, although the interaction 
of EDCs with steroidogenesis proteins can influence the production of different sex 
steroids such as oestrogens and androgens as well as progesterone, glucocorticoids 
and aldosterone, the assay was validated only to detect testosterone and estradiol. In 
brief, H295R cells are exposed to seven concentrations of the tested compound in at 
least triplicate for 48–72 h. At the end of the exposure period, the concentration of 
hormones secreted into the medium can be measured using a variety of methods, 
such as radioimmunoassay, ELISA (enzyme-linked immunosorbent assay) or 
chemical analysis. The results are expressed as fold changes in hormone 
concentration compared with the negative control. Chemicals that may induce 
steroidogenesis increase the production of estradiol and testosterone; rather, 
chemicals that inhibit the steroidogenesis decrease the concentration of the two 
hormones. However, the test does not provide specific information concerning the 
interaction of the test substance with the endocrine pathway, and thus the results 
cannot be correlated with in silico studies. Additionally, aromatase assay can be 
used to identify chemicals that may affect the endocrine system (e.g. steroidogenesis) 
by inhibiting the catalytic activity of aromatase, the enzyme responsible for the 
conversion of androgens to oestrogens. It is included in the EPA’s EDSP Tier I 
screening protocol (EPA 740-C-09-004). Human recombinant microsomes are 
incubated with radiolabelled androstenedione [3H]ASDN, an aromatase substrate 
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and an essential cofactor (NADPH) for the aromatase activity together with 
increased concentration of the tested compound. The rate of tritiated water (3H2O) 
released during the conversion of [3H] ASDN to estrone is quantified, and it is 
influenced by the activity of aromatase. If a chemical is able to interact and inhibit 
the enzyme binding to the binding pocket of the androstenedione, a decrease in the 
tritiated water (3H2O) is reported. Thus, plotting the production of 3H2O as a 
percent of the solvent control versus the log of the concentration of the test chemical, 
it is possible to obtain the response curve that allows classifying a compound as an 
aromatase inhibitor or non-inhibitor.

Although in vitro studies are common usage for screening endocrine disruptor 
compounds, the huge amount of food contact chemicals highlights the importance 
of alternative methods (in silico) that can predict EDCs in a faster, safer and 
better way.

12.4  In Silico Methods for Screening Endocrine 
Disruptor Compounds

12.4.1  3D Protein Structure: The Starting Point 
of Computational Methods

Currently, over 700 nuclear receptors’ structures have been solved using X-ray crys-
tallography or NMR spectroscopy. When a structure is solved, it is deposited in 
various structural databases, such as PDB. This database, called Protein Data Bank 
(PDB), contains the experimental data of the protein structures. In the PDB database, 
protein 3D structures are represented as a set of coordinate triplets (x, y and z) that 
define the position of protein atoms. The quality of the PDB structure is defined by 
two parameters: the resolution (Å) value and the B-factor value. The resolution 
value is influenced by how well the crystal diffracts and by the amount of time 
needed to collect resolution data. When a structure has a high resolution, the value 
is around 1 Å, whereas when it has a lower resolution is around 3 Å and above 
(Fig. 12.3).

The B-factor monitors the oscillation amplitudes of the protein atoms around 
their equilibrium positions, or it can be defined as a probability density function for 
the location of each atom in the protein [7]. The B-factor is defined according to the 
following equation:

 B u= ( )8 2 2π  

where u is the mean displacement of a scattering centre, measured in Angstroms, 
and it is an isotropic displacement parameter associated with the reference atom. 
Usually, an isotropic model is used to model protein motion characterized by a low 
resolution and a spherical shape, while an anisotropic or ellipsoid model is used to 
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describe the protein motion of small organic crystals (Fig. 12.4) [23]. The latter 
provides both the magnitudes and the directions of each atom shift, and, thus, it 
allows a dynamic description of the protein structure.

However, as shown in Table 12.1, not all the nuclear receptors’ structures are 
crystallized. In fact, the major limitation of the X-ray crystallography technique is 
that the molecules under study must be able to adopt sufficient compact and rigid 
structures to pack and form a crystal. Instead, nuclear receptors are very complex, 
both for their flexibility, characterized by an essential biological conformational 
transition under relatively mild conditions in a wide range of time and space scales, 
and for the millions mechanism of action given from the relationship between the 
receptor conformation and the ligand binding. Moreover, some of the structures of 
the nuclear receptors are unknown, both for the flexibility and the plasticity of the 
system than for the expenses, labour and time of the procedure. These gaps can be 
filled in by computational techniques, in particular, due to the use of homology 
modelling. Homology modelling is the most common and used techniques 
fundamental to predict the 3D structure of proteins. The basic principle of homology 
modelling is that proteins with similar sequences may display common structural 
features. It is for this reason that the accuracy of 3D structures obtained is highly 
dependent on the sequence identity to the reference structural models.

Fig. 12.3 PDB structures of oestrogen receptor alpha with two different resolution values. In blue 
the protein (PDB ID: 2YJA) with a high-resolution value (1.82 Å resolution) and in magenta the 
protein (PDB ID: 1ERE) with a low-resolution value (3.10  Å resolution) are shown. The box 
highlights the part of the protein resolute in 2YJA
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12.4.2  Ligand-Based Virtual Screening

In silico methods (Fig. 12.5) are widely used in the fields of computational chemis-
try, computational biology and material sciences to study molecular systems, rang-
ing from a small system to large biological molecules. Virtual screening is a 
powerful tool to predict the activity of a huge number of chemicals in a reasonable 
time. Several databases of molecules are currently available for virtual screening 
campaigns, such as ZINC, a free database of commercially available compounds; 
ChEMBL, a database of bioactive molecules; and PubChem (https://pubchem.ncbi.
nlm.nih.gov/), a database of chemical information [9, 18, 21]. Virtual screening 
approaches can be divided into ligand-based when the information of known ligands 
is used, and structure-based, when the information of the targeted protein-binding 
site is used.

The increasing number of chemical product synthesized and released in the mar-
ket every year has necessitated the development of computational approaches to 
speed up the process of their food safety and security. Although the usage of 
computational approaches was started from the drug discovery field with the aim to 
identify new potential drug candidates, in recent years, the usage of virtual screening 
is becoming more important in the food risk assessment area, too. This is because 
on the molecular scale, interaction is an interaction, and thus from a chemical point 
of view, it is not important if a compound is a drug or a food contact chemical 
(FCC). Thus, in silico methods can be easily moved in the food safety field to screen 
the capability of FCCs to interact with target proteins interfering with their natural 
biological activity. In silico screening techniques of a large compound databases are 
commonly defined as virtual screening (VS), referring to those computing techniques 
that use a complementary tool to identify potential binder compounds on a pool of 
chemicals. Like high-throughput screenings (HTS), VS is used as a first step to 

Fig. 12.4 The epitestosterone shown above, made by the program ORTEP [12], illustrates the 
thermal ellipsoid
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process large libraries of compounds. The main advantage of VS compared to HTS 
is the rapidity of the screening method and the decreasing costs since it does not 
require compounds to be synthesized or purchased and tested. Since virtual 
screening methodologies are knowledge-based approaches, they require structural 
information about the binding site and/or the nature of ligand that should bind. 
Thus, based on the available information, virtual screening can be divided into 
ligand-based virtual screening and structure-based virtual screening. If the three- 
dimensional structure of target binding site is unknown, ligand-based virtual 
screening (LBVS) can be used since it faces the problem by the ligand point of view. 
In fact, based on known active molecules, this methodology searches for similar 
compounds. Ligand-based methods consider molecule dimensionality, with 1D or 
2D methods being considered separately from 3D methods. The former searches for 
molecules’ numerical descriptors that are independent by their molecular structure 
to attempt to relate them with their known biological activity, and they are mainly 
described as quantitative structure-activity relationship (QSAR). Instead, three- 
dimensional (3D) LBVS methods incorporate the molecular conformation and can 
be mainly divided in subgroups based on the method used for the similarity search: 
(i) pharmacophore-based, (ii) shape-based, (iii) molecular field-based methods, (iv) 
fingerprint-based methods and (v) electrostatic potential similarity.

The concept of pharmacophore was introduced by Ehrlich in the nineteenth cen-
tury based on the idea that specific groups within a molecule are responsible for its 
biological activity. The pharmacophore concept was developed over time reaching 
the modern IUPAC (International Union of Pure and Applied Chemistry) definition: 
“a pharmacophore is the ensemble of steric and electronic feature that is necessary 
to ensure the optimal supramolecular interactions with a specific biological target 
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structure and to trigger (or to block) its biological response” [26]. Thus, it describes 
the essential features that a molecule should have for the binding with the target 
protein and does not represent a real molecule. The three-dimensional (3D) struc-
ture of known active molecules is superimposed considering shared pharmacophore 
features in order to identify key interaction points for building a skeleton of abstract 
characteristics that define interaction type, such as hydrophobic and aromatic con-
tacts, hydrogen-bond donors and acceptors and charged interactions.

Shape-based strategies, such as ROCS and shape screening (Schrodinger), are 
based on the concept that if a molecule has an overall similarity shape with a known 
binder, then it is likely to fit in the same binding pocket [19, 20]. Thus, they compare 
atomic radii instead of atom types and do not consider particular properties of the 
reference ligands. Therefore, shape-based methods are often used in combination 
with other approaches which consider some chemical properties.

Molecular field-based or grid-based methods, such as CoMFA (comparative 
molecular-field analysis), CoMSIA (comparative molecular similarity index 
analysis) and GOLPE based on GRID compared to molecules aligning the dataset 
compounds using different rules. Steric, electrostatic or hydrophobic potential fields 
(but also can be included hydrogen-bond donors and acceptor descriptors) are 
calculated at each grid point using a probe atom for identifying the similarity 
between the molecules [3].

Fingerprint-based methods are based on the concept to reduce the complexity of 
the molecular representation considering molecules as a sequence of bits which can 
then be easily compared. The similarity is then calculated using Euclidean distance 
or most commonly the Tanimoto coefficient. According to the nature of bits, 
fingerprints can be classified as sub-structure key-based, topological or path-based, 
circular and pharmacophore fingerprints [6, 13]. Finally, since electrostatic 
interactions often play a critical role in ligand binding, another approach of LBVS 
uses the electrostatic potential of a reference ligand to collect compounds that have 
similar electrostatic distribution [13].

12.4.3  Molecular Docking

Two molecules can interact in several ways let alone the interaction of a protein and 
protein/small molecules. Molecular docking is a computational technique that 
involves finding the most favourable binding mode of a ligand to the target protein. 
First of all, to have an accurate docking prediction, a high resolution X-ray, NMR or 
homology-modelled structure is necessary. Molecular docking can be achieved 
through two steps: (i) the different conformations’ prediction of the ligand in the 
active site of the protein and (ii) the conformations ranked via a scoring function. 
There are a huge number of binding modes between two molecules. For this reason, 
various sampling algorithms have been developed in molecular docking software 
(Table 12.3). These algorithms should be able to reproduce the experimental bind-
ing mode between two molecules.
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As mentioned before, the nuclear receptors are flexible and plastic systems. The 
protein may adopt different conformations in the unbound and bound states and 
may adopt different conformations with different ligands. For these reasons, 
molecular docking methods can be divided into rigid docking where the bond 
angles, the bond lengths and the torsion angles of the ligand and the protein are not 
modified and flexible docking that permits conformation changes. The flexibility 
could be applied to the ligand and/or to the protein. If the flexibility is imposed on 
the ligand, it can be able to explore all the conformational space of the protein. The 
ligand flexibility is commonly considered in docking simulations, while the protein 
flexibility still remains a challenging goal, mainly because of the dynamic 
complexity and of the computational time required for running the simulations. A 
considerable option is to impose the flexibility only to a region of the protein. Then, 
a limited number of atoms are considered, for example, the pocket side chains.

Obtaining a huge number of ligands binding mode, scoring functions are funda-
mental to estimate and calculate the ligand-binding affinity between the protein and 
the ligand, to delineate the correct poses from incorrect poses. Two main aspects 
characterize a docking simulation and influence its results: (i) a search engine that 
defines the sampled conformational space and (ii) an empirical scoring function that 
is used to approximately predict the ligand-protein binding affinity and, in a virtual 
screening campaign, is used as a measure to rank screened compounds. Scoring 
functions can be divided into force field-based, empirical and knowledge-based 
scoring functions. The first estimates the binding energy calculating the sum of the 
non-bonded interactions. The basis of the second scoring function is that the bind-
ing energies of the complex can be approximated by the sum of individual energy 
components: hydrogen bond, ionic interaction, hydrophobic bond and binding 
entropy. The knowledge-based scoring function uses statistical analysis of the 
ligand-protein complex to obtain the interatomic contact frequencies and/or a dis-
tance between the two components. As a technique that aims to furnish a quick 
result for the analysis of a complex biological process, the molecular docking has 
some limitations: (i) scoring functions are very sensitive to ligand size and are 
implemented mainly considering electrostatic contributions and underestimating 
the hydrophobic effect, and (ii) a docking simulation can be performed only between 

Table 12.3 The most used molecular docking programs with the respective algorithms
Molecular docking program Algorithm

DOCK, LibDock Matching algorithm (MA)
DOCK4.0, SLIDE, FlexX Incremental construction (IC)
AutoDock, DockVision1.0.3 Monte Carlo (MC) technique
GOLD, FLIPDock Genetic algorithm (GA)
GLIDE Hierarchical method

The MA based on molecular shape maps a ligand into an active site of a protein in terms of shape 
features and chemical information. The IC fragments the ligand from rotable bonds into various 
segments. The MC modifies gradually the ligand using bond rotation and translation or rotation of 
the entire ligand. The GA is similar to the MC method, but it is used to find the global minima. The 
hierarchical method precomputes and aligns the low energy of ligand
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two molecules per time; it cannot predict the effect of water molecules and/or cofac-
tors to the ligand binding. In such case studies, where the role and the position of a 
water molecule are well established, the water molecule can be explicitly consid-
ered even for docking simulations. However, it is challenging to determine the effect 
of waters in the binding when the experimental structure is not available. In order to 
deeply rationalize the ligand-protein binding process, molecular dynamics simula-
tions can be used.

12.4.4  Consensus Scoring

A solution to overcome the intrinsic limitations of a specific docking/scoring soft-
ware is the consensus scoring. Because of any embedded force field used to score 
the docked solution that is intrinsically linked to the searching engine (the algorithm 
used to search the possible positions of a ligand within a receptor cavity), a solution 
for a more reliable result is to use more than one package or more than one evalua-
tion function. This is in order to achieve a “convergence”, a “consensus” to the best 
possible solution. We have three possible approaches: (i) one package with a differ-
ent internal scoring function, not a great solution because the newest scoring func-
tion is, in general, an updated version of the previous one, and then it works better; 
(ii) two or more packages with the internal scoring function; and (iii) more packages 
with their internal scoring function plus a rescoring using one or more external 
independent scoring functions. Compared to a single scoring function, Wang and 
Wang have reported that using different scoring functions can reduce false positives 
and improve hit rates [24]. Moreover, Bissantz and co-workers have highlighted that 
using three different scoring functions allows to reduce the number of false posi-
tives and enhance the capability to reach hit rates from 10% up to 65–70% [4].

12.4.5  Molecular Dynamic Simulations

The power of the existing supercomputers allows us to carry out microsecond-scale 
MD simulations in a few days or a week depending on the architecture of the system. 
The atoms in a biomolecule are in constant motion, and both the molecular functions 
and the intermolecular interactions depend on the dynamics of the molecules 
involved. Molecular dynamic (MD) simulation is a computational technique used 
for analysing the physical movements of atoms and molecules and for investigating 
the structure, dynamics and thermodynamics of biological systems with the use of 
computer. The molecular dynamic simulation is based on Newton’s second law or 
the equation of motion, F = ma (F is the force exerted on the particle, m is the mass 
and a is the acceleration). From a knowledge of the force on each atom, it is possible 
to determine the acceleration of each atom in the system. Integration of the equations 
of motion then yields a trajectory that describes the positions, the velocities and the 
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accelerations of the particles as they vary with time. From the trajectory, the average 
values of properties can be determined. MD trajectories provide a view of the 
motion of a molecular system in a time-space, allowing to consider the macro 
flexibility and the influence of the solvent. Water molecules solvate the protein but 
can also enter the cavity-binding site and influence its shape or, more importantly, 
mediate the ligand-receptor binding. There are different approaches to treat water 
molecules during the simulations. When water molecules play an important 
stabilizing effect, explicit water treatment should be used. In the case of HIV1 
protease, a water molecule (named W301) functions as a bridge between two lysins 
in the ligand-binding site and the ligand (i.e. the drug Saquinavir). Without this 
water, the ligand will not able to interact with the protein.

With the computational cost of MD simulations, it is impossible to screen the 
huge number of FCCs with this technique. However, if the scope of the analysis is 
to study the mechanism of action (MoA) of an endocrine disruptor, molecular 
dynamics can be applied to a limited number of molecules. The analysis can give 
insight into how an EDC interacts with the NR, i.e. if it induces conformational 
changes compared to the endogenous ligand, the type of binding interactions inside 
the binding pocket, the effect of the compound in respect to the coactivator and 
corepressor binding, etc. Some kinds of parameters can be exploited to analyse the 
MD simulation results. The most commons are the use of the RMSD (root-main- 
square deviation) and RMSF (root-main-square fluctuation) values to monitor the 
stability of the system. Additionally, the hydrogen bond networks between the 
protein and the ligand and/or the protein and the coactivator/corepressor can be 
monitored during the simulation time to explore in more detail how ligand interacts 
with the NR compared to the endogenous ligand.

12.5  Case Studies

In this section, we illustrate some real case studies where in silico methods are 
applied together with the wet test (in vitro tests). Until a few years ago, the word 
computational in food science identified statistical applications, QSAR or COMFA 
applications. Taking into consideration what has been previously done in the 
medicinal chemistry field, screening, molecular docking and scoring functions can 
be used to discover new possible endocrine disruptors from a large dataset of food 
contact chemicals, such as food additives [1]. Starting from a joint FAO-WHO 
database of 1500 chemicals, Amadasi and colleagues screened 31 compounds 
predicting 13 of them as potential xenoestrogens towards oestrogen receptor alpha. 
Four of these compounds have been previously reported as well-known ER 
endocrine disruptors. Thus, the in silico analysis confirmed the prediction. For the 
other nine compounds, the binding affinity and oestrogenic effects were determined 
using in vitro assays. The most interesting result is propyl gallate that is a widely 
used antioxidant (in particular in the fish industry), and hexylresorcinols (www.fao.
org/ag/agn/jecfa- additives) are predicted as oestrogen receptor binders both by in 
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silico and in vitro analyses. It may be hypothesized that the latter has an indirect 
effect and facilitates the interaction between unliganded ER and coactivators, 
inducing the transcription of the reporter.

Recently, EFSA considered “Safety and efficacy of propyl gallate for all animal 
species” paper important for the panel on additives and products or substances in 
animal feed  [28].

Kenda and co-workers conducted a screening of 1046 US-approved and mar-
keted small-molecule drugs for estimating their endocrine-disrupting properties 
[16]. Binding affinity to 12 nuclear receptors was assessed with a molecular dock-
ing program, Endocrine Disruptome. They identified 130 drugs with a high binding 
affinity to a nuclear receptor that is not their pharmacological target. Another 
software, VitualToxLab, has been used to evaluate a subset of molecules, and the 
results have been compared with in vitro results from the Tox21 database.

Another interesting approach of nonstatistical in silico prediction to screen oes-
trogenic and androgenic activity and to decipher the mechanism of binding (MOA) 
of substances of very high concern (SVHC) for the European Union is the case of 
bisphenols [5].

Bisphenol A (BPA) has been considered at first as toxic for reproduction and 
subsequently as an endocrine-disrupting chemical that interferes with the endocrine 
system mimicking the effects of oestrogen. Some European countries banned BPA 
from industrial production to avoid contact with the food and consequently with the 
human organism. Instead of BPA, they allowed the use of bisphenol S (BPS) as an 
alternative less active. The authors analysed a series of BPA alternatives and 
derivatives with similar physical-chemical properties that have been produced and 
used by companies for substituting it. They evaluated the oestrogenic and androgenic 
binding activity of 26 BPs against six different nuclear receptors using literature 
in vitro data for comparison. In this specific case, they propose a rough classification 
of the results, high binder, medium binder and low binder compared to bisphenol A 
as a reference. This rough ranking list could be useful and faster for massive 
screening instead of complex statistical analysis.
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Chapter 13
Nuclear Hormone Receptors and Host-Virus  
Interactions

Nadine Ahmed, Noreen Ahmed, Roxana Filip, and John Paul Pezacki

Abstract Viruses are a diverse class of obligate parasites that require a host to 
propagate. Viruses have evolved to exploit host signaling pathways to promote 
propagation and facilitation of their life cycle. Host-virus interactions are a complex 
network that can enable the viral life cycle within the host. These interactions also 
allow for the host’s immune system to overcome the infection. Successful viral 
infection and the resultant antiviral response are highly dependent on the dynamic 
molecular interactions between the viral components/factors and the host’s antiviral 
and cellular signaling pathways. These interactions are also modulated by the cel-
lular microenvironment that can be beneficial or detrimental to the viral life cycle. 
Recently, increasing evidence has emerged highlighting the role of the nuclear hor-
mone receptor superfamily in facilitating host-virus interactions. The nuclear hor-
mone receptor family is a diverse group of transcription factors that share analogous 
structure and architectures. They can be activated or repressed depending on the 
upstream signal. This chapter will focus on the diverse roles that nuclear hormone 
receptors play in modulating host-virus interactions, as well as highlighting the 
crosstalk between viruses and specific subtypes of nuclear receptors, namely, per-
oxisome proliferator-activated receptors (PPARs), liver X receptor (LXRs), and 
retinoid X receptors (FXRs).
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13.1  Introduction

Viruses are obligate parasites that heavily depend on the host’s cellular machinery 
for propagation and production of viral progeny. They lack the molecular machinery 
required for the replication and spread of their viral genetic material. Viruses have 
evolved to dysregulate the host’s metabolic processes and signaling pathways to 
favor the efficient progression of the viral life cycle [56, 85, 118, 172]. Viruses have 
been shown to redirect the cellular energy toward the production and assembly of 
progeny virions, thus hijacking the translational and metabolic machinery of the 
host. This digression in the equilibrium results in the dysregulation of the homeo-
static balance in cellular signaling pathways that maintain a stable cellular microen-
vironment. In addition, viruses induce the remodeling of the host structural 
architecture to promote the replication and the multiplication of the viral progeny 
[115]. For example, Flaviviridae family is found to greatly remodel the host’s cyto-
plasm to promote the replication of the viral RNA. Precisely, the virus associates 
with endoplasmic reticulum-derived membranes and alters the cellular lipid compo-
sition to promotes the formation of virus-induced cellular enclosures called replica-
tion organelles (RO) to facilitate its genomic replication [105]. These remodeling 
events and alteration in signal transduction pathways are tightly regulated by the 
action of receptors and transcription factors that control cellular and physiological 
function at the molecular level in order to fine-tune and shift the equilibrium toward 
a more favorable state for the virus.

The nuclear hormone receptor family is an abundant family of transcription fac-
tors that is ubiquitously expressed in a variety of different cell types [175]. This 
superfamily of transcription factors is composed of key players that modulate a vast 
majority of biological and physiological processes including metabolism, prolifera-
tion, and immune responses [146]. Additionally, this group of proteins has been 
shown to be involved in the development and the regulation of various pathological 
conditions, such as cancer, diabetes, and other metabolic conditions [146]. 
Mechanistically, nuclear hormone receptors regulate gene expression following a 
response to ligand activation, generally a lipophilic molecule. Commonly, these 
proteins bind to a specific DNA sequence to regulate the expression of gene down-
stream. The binding event acts as an on-off switch to control diverse regulatory 
processes in the cells ranging from development and metabolism to response to 
infection and immune responses [5, 146].

Historically, nuclear receptors have been generally characterized into three dis-
tinct classes. These classes include steroid/thyroid hormone receptors, orphan hor-
mone receptors with unknown ligands, and finally adopted receptors with known 
and characterized ligands [5]. The adopted family of nuclear hormone receptors 
includes peroxisome proliferator-activated receptors (PPARs), liver X receptor 
(LXRs), and retinoid X receptors (FXRs), which will be the focus of this chapter. 
Over the past few years, nuclear receptors have evolved to have a much-appreciated 
role in modulating host-pathogen interactions and regulating immune responses 
against viruses and other pathogens. Therefore, understanding the role of nuclear 
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receptors in modulating the antiviral responses and viral pathogenesis may create 
novel therapeutic avenues in the treatment of infectious diseases. In this chapter we 
will focus on highlighting the roles of PPARs, LXRs, and FXRs in modulating host- 
virus interactions. How viruses may alter the function, activity, and transcriptional 
levels of these nuclear hormone receptors to promote their propagation, replication, 
and dissemination will also be discussed.

13.2  Nuclear Receptor Structure and Function

Structurally, the nuclear hormone receptor family of proteins shares a high degree 
of similarities among the varying subcategories [61]. To date, roughly around 900 
genes known to express nuclear hormone receptor proteins have been identified, 
making this group of proteins one of the most diverse families of receptors [22, 61]. 
This group of proteins is described as transcription factors activated by sterols, lip-
ids, fatty acids, and other metabolites [50]. Based on that, they have shown to be 
involved in a wide variety of cellular processes such as developmental processes, 
metabolic processes, and cellular proliferation [5, 146]. They have been heavily 
associated with infection progression, where they contribute to the host-virus inter-
play [121]. To better understand this connection, it is useful to understand the struc-
tural components of these receptors and how these components contribute to viral 
pathogenesis or host immunity.

Most nuclear hormone receptors share common structural features, which makes 
them easy to identify and categorize accordingly. Common aspects include an 
N-terminal region known as the A/B domain, which is variable in length [61]. This 
domain is characterized by a constitutively active region identified as AF-1 and 
several autonomous transactivation domains [50]. On the other hand, the C-terminus 
contains a highly conserved region, which exhibits the DNA-binding functionality. 
This region is known as the transactivation domain or DNA-binding domain (DBD), 
which includes the P-box, with binding specificity to the AGGTCA motif [22, 50, 
121]. In addition, the C-terminus houses the ligand-binding domain (LBD), which 
is linked to the DBD via a hinge region known as the C-terminus extension region 
[61]. The ligand-binding domain is independent from the AF-1 region in the 
N-terminus of the receptor, which harbors the transactivation function of the protein 
[22, 61, 121]. The ligand-binding domain, in addition to binding the appropriate 
ligand, contains an activation function within itself known as AF-2, which helps 
recruit transcriptional activators [22, 50, 121]. In general, the ligand-binding event 
regulates the nuclear hormone receptor allosterically, leading to surface regions 
within the receptor to be exposed for co-regulators and co-activators to bind and 
interact with hydrophobic regions to be more accessible to lipophilic regulatory 
molecules. The activation of the nuclear receptor is initiated by the binding of the 
receptor’s ligand. Upon the association of the ligand, the receptor undergoes confor-
mational and structural rearrangements which allow the recruitment of various 
cofactors that modulate the structure and function of the receptor [22, 50, 121].
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13.3  PPAR Signaling and Host-Virus Interactions

Peroxisome proliferator-activated receptors (PPARs) are a part of the nuclear recep-
tor family which have been found to be required for the transcription of genes essen-
tial for regulation of cellular processes ranging from lipid and lipoprotein metabolic 
processes to inflammation and immunity, all of which are indispensable for tissue 
and cellular function [116]. Imbalance in such PPAR-controlled cellular functions 
is found to result in the development of a range of metabolic and pathological dis-
eases [176]. There are three primary isotypes within the PPAR subfamily: PPARα, 
PPARβ/δ, and PPARγ, encoded by NR1C1, NR1C2, and NR1C3, respectively [33, 
68, 94]. A study that investigated the differences in the binding of the chimeric 
PPARα/β/γ proteins highlighted the requirement of AF-1 region for isotype- 
dependent gene activation and transcription [67]. PPARα/β/γ nuclear receptor sub-
sets, generally, bind DNA as heterodimers with retinoid X receptors (RXR)-α/β/γ 
[42]. Following association of the dimer, the complex translocates into the nucleus, 
where it binds to consensus sequence spaced by a single nucleotide, termed peroxi-
some proliferator-responsive elements (PPREs) [5]. Binding to the PPREs results in 
the activation of the transcription of target genes required for the modulation of 
various biological processes depending on the upstream activation signal/ligand. 
Long-chain fatty acids and eicosanoids are examples of endogenous ligands that act 
on activating PPARα and PPARβ [103, 188]; on the other hand, PPARγ is generally 
activated by arachidonic acid metabolites such as 5-oxo-15(S)-hydroxyeicosatet-
raenoic acid and 5-oxo-eicosatetraenoic acid [3, 107]. Although the various PPAR 
isotypes share a high degree of structural similarities, they display different biologi-
cal functions within the cells. For example, PPARα primarily regulates fatty acid 
catabolism, whereas PPARγ regulates lipid storage and adipogenesis [67, 92, 116]. 
Different functions can be attributed to different tissue distributions of the receptors. 
Additionally, PPARs are found to control the expression of putative long-chain fatty 
acid transporters such as CD36 and fatty acid transport protein (FATP) and as a 
result control the transport of fatty acids into hepatocytes and regulate hepatic lipid 
homeostasis [99]. As a result, the transported lipids can be stored as triglycerides or 
can be oxidized via β-oxidation. Both outcomes are controlled by the activity of 
PPARs [75].

Additionally, PPARs have been found to have a role in the suppression of various 
inflammatory and innate immunity regulatory transcription factors such as nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-κB), signal transducer 
and activator of transcription (STAT), and activator protein 1 (AP-1) [137, 168]. 
Given the role that such nuclear receptors play in regulating host cellular signaling 
pathways that are essential for the viral life cycle, it is not surprising that evidence 
has been emerging which highlights the role of PPARs in viral pathogenesis. 
Therefore, the interest in the development of novel drugs that targets PPARs for the 
treatment or the regulation of viral infection, in addition to other pathologies such 
as obesity, diabetes, and cardiovascular disease, has been increasing over the past 
decades.
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13.3.1  PPARs and Hepatitis C Virus (HCV)

HCV affects a large percentage of the global population, with a prevalence of 
roughly 2–3% [119]. The infection results in chronic hepatitis in up to 80% of 
infected individuals, and it is the major cause of chronic liver disease and liver trans-
plantation worldwide [8]. Additionally, the virus is considered the leading cause of 
liver steatosis, cirrhosis, and HCV-mediated hepatocellular carcinoma (HCC) [70]. 
Hepatitis C virus is highly dependent on the host’s cellular lipid metabolism, cho-
lesterol, and fatty acid biosynthesis [162]. It has been clear that the virus hijacks 
host machinery to promote its propagation in the host’s cellular environment. 
Similar to other members of the flaviviruses family, HCV greatly alters the host’s 
structural and cellular architecture to enhance its replication and progression [105, 
115]. In particular, HCV alters cellular signaling to enhance lipogenesis and modi-
fies the pathways involved in cholesterol/fatty acid biosynthesis in order to promote 
viral particle formation and facilitate genomic replication [43, 70, 142, 160]. An 
early study by Su and Pezacki et al. uncovered the critical involvement de novo lipid 
and cholesterol biogenesis in modulating HCV pathogenesis [160]. Moreover, HCV 
hijacks the very-low-density lipoprotein (VLDL) and LDL secretion pathways in 
order to promote viral entry and replication [46]. These events result in alterations 
in the de novo lipid and fatty acid biosynthetic pathways [46, 142, 160].

During chronic HCV infection conditions, upregulation of triglyceride and fatty 
acid synthesis in conjunction with a decrease in serum cholesterol levels is usually 
observed [162]. Pathways controlling these conditions have been found to be tightly 
regulated by several host factors that orchestrate the interactions between the virus 
and the host. Interactions between several such factors and viral proteins were 
proven instrumental for the progression of the viral life cycle in the infected indi-
vidual. For example, Nasheri et al. confirmed the dysregulation of fatty acid syn-
thase enzyme (FASN) activity and expression in hepatoma cells expressing the 
subgenomic and genomic HCV replicons. In the same study, the same phenotype 
was also confirmed in chimeric SCID/Alb-uPA mice infected with HCV genotype 
1a [104].

Phosphatidylinositol 4-kinase (PI4K) is another example of a host factor which 
has been identified to play instrumental roles in promoting HCV replication. PI4K 
is a lipid kinase which has been found to promote a favorable lipid environment for 
HCV RNA replication [12]. Thus, modulation of host factors within key lipid regu-
latory pathways may indirectly suppress the infectivity and spread of HCV. Due to 
the high degree of dependence of HCV on the host’s cellular lipid environment, it is 
therefore not surprising that the virus would fine-tune the function of regulators of 
such processes. Nuclear hormone receptors are master regulators of lipid homeosta-
sis, biosynthesis, metabolism, and β-oxidation, all of which are processes that are 
intrinsically essential for HCV infection and propagation. Dysregulation of such 
processes has been observed during HCV infection [160]. It is, therefore, essential 
to understand the intricate crosstalk between HCV and nuclear receptor regulation 
of host cellular pathways during infection.
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PPARs have been found to play crucial roles in the modulation of hepatic meta-
bolic processes including lipid and glucose metabolism and homeostasis [176]. 
They have been highlighted as targets for the study of HCV-mediated alteration of 
host’s cellular environment given their role in the regulation of various processes 
hijacked and dysregulated by the virus [36]. One of the most well-studied host fac-
tors which has been shown to have roles in modulating HCV pathogenesis is PPARα. 
PPARα is prevalent in hepatocytes, cardiomyocytes, and brown adipocytes and has 
been found to regulate the transcription of various genes involved in the fatty acid 
metabolism and oxidation. Some noteworthy PPARα-regulated gene targets are car-
nitine palmitoyl acyl-CoA transferase 1A (CPT1A) and fatty acid transporters 
CD36 and FATP [99, 120]. These PPARα-regulated gene targets have been shown 
to play instrumental roles in HCV life cycle.

Some studies have provided evidence for dysregulation in the levels and activity 
of PPARs during HCV infection. For example, in HCV-infected patients, it’s been 
shown that PPARα activity is repressed which results in the suppression of CPT1A 
transcription, a PPARα target gene. As previously mentioned, CPT1A is a key gene 
responsible for the transport of long-chain fatty acids across the mitochondrial 
membrane. Thus, it seems that HCV alters the activity of PPARα to modulate the 
levels of genes essential for lipid homeostasis in the cell [25]. It is also possible that 
the altered activity is the result of the host response to the virus. Interestingly, Cheng 
et al. have highlighted that deficiency in the transcriptional activity and levels of 
PPARα results in HCV-mediated steatosis. Similarly, another study by Dharancy 
et  al. suggested the same findings, where PPARα expression and activity were 
impaired in chronic HCV patients, which in turn resulted in lower levels of the 
PPARα target, CPT1A [32]. In the same study, the group observed an analogous 
phenotype in HepG2 hepatoma cell lines expressing HCV core protein [32]. 
Moreover, in a study by De Gottardi et al., the levels of PPARα and PPARγ were 
significantly lower with genotype 3 HCV infection relative to genotype 1. In the 
same study, the group demonstrated that HCV-induced steatosis is correlated with a 
decrease in the levels of PPARα and PPARγ. Thus, from this study, it is clear that 
both genotype 3 HCV infection and steatosis are associated with a decrease in the 
levels of PPARs [45]. Altogether, these studies suggest an association of PPARα/γ 
levels with HCV infection in human subjects.

Consistent with the previous study, Rakic et al. have demonstrated the suppres-
sion HCV replication in Huh7 cells through 2-chloro-5-nitro-N-(pyridyl)benzamide 
(BA)-mediated antagonism of PPARα activity [126]. Interestingly, in the same 
study, antagonism of PPARγ had no effect on HCV replication, suggesting that only 
PPARα activity is likely essential for the formation of membranous webs required 
for HCV replication [126]. Similarly, Lyn et  al. [91] highlighted the effects of 
PPARα antagonism using 2-chloro-5-nitro-N-(pyridyl)benzamide (BA). They 
observed an induction of hyperlipidemia and increase in triglyceride levels in Huh7 
cells. These changes in the cellular lipid microenvironment induced the disruption 
of HCV replication complexes [91].
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A more recent study highlighted the role of calcitriol-mediated activation of vita-
min D receptor in Huh7.5 cells in inhibiting HCV infection through the suppression 
of PPARα/β/γ activity [88]. Conversely, other studies have emerged that highlight 
the role of PPARα activation in the suppression of HCV infection. For example, 
bezafibrate, a PPARα agonist, has been found to decrease the levels of HCV titers 
in the serum of chronic HCV patients [38]. On the other hand, a study by Tanaka 
et  al. has shown that activation of PPARα is essential for the pathogenesis of 
HCV.  Interestingly, chronic treatment of mice with a PPARα agonist resulted in 
HCV-induced HCC and hepatic steatosis [163]. This may represent more complex 
dependencies that include the differential sensing and involvement of the innate and 
adaptive immune responses.

A more recent study by Goldwasser et  al. demonstrated that the naringenin- 
mediated induction of PPARα levels and activity results in a dose-dependent 
decrease in the production of infectious HCV particle [44]. This may reflect differ-
ences in HCV genotype sensitivity as well as differential effects on different steps 
of the virus life cycle in cell culture models for infection. Figure 13.1 highlights 
some of the controversial roles of PPARα during HCV infection.

As previously discussed in this chapter, there is crosstalk between the activity of 
PPARs and the regulation of the inflammatory response during infection. Specifically, 
PPARα has been shown to control the inflammatory response in hepatocytes during 
infection by negatively regulating the activity of transcription factors that mediate 
inflammation, such as NF-κB and AP-1. Consistent with that, HCV core protein has 
been found to suppress the inhibitory effects of PPARα on NF-κB activity [87].

Connections between PPARγ activity and HCV have also been established. 
PPARγ activity controls several cellular processes involved in lipogenesis, glucose 
homeostasis, and inflammation. Studies have suggested that the expression of 
PPARγ is generally abundant in mature adipocytes and can be found preeminent in 
fatty livers eventually resulting in the development of liver steatosis [143]. 
Interestingly, PPARγ is usually referred to as the “master regulator” of lipogenesis 
[143]. Some of the lipogenic genes regulated by PPARγ are fatty acid synthase 
(FASN), acyl-CoA carboxylase (ACC), and stearoyl-CoA deyhydrogenase-1 
(SCD-1) [41]. Inhibition of any of these genes using pharmacological inhibitors 
results in the restriction of HCV replication [104, 152, 160]. Given the dependence 
of HCV on the cellular lipid environment to promote its propagation, it is therefore 
not surprising that HCV NS5A has been found to induce the transcriptional activity 
of PPARγ and thus enhancing HCV-induced lipid accumulation in hepatocytes [78]. 
However in a conflicting study, a decrease in the levels of PPARγ was observed in 
huh7 cells expressing HCV core protein genotype 3a. Suppression of PPARγ results 
in a consequential decrease in the levels of suppressor of cytokine signaling 7 
(SOCS-7), which has been found to be regulated by PPARγ transcriptional activity 
[117]. Overall, these findings highlight novel and often complex roles of PPARγ in 
regulating hepatic metabolism and signaling during HCV infection.
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13.3.2  PPARs and Flaviviruses

Members of the Flavivirus genus are arthropod-borne RNA viruses with high 
dependency on host lipids. The most common examples include the yellow fever 
virus, the dengue virus, Japanese encephalitis, West Nile virus, and the Zika virus 
[7]. The last two decades have revealed a complex set of interactions between flavi-
viruses and cell lipid metabolism. However, PPAR-Flavivirus interplay has yet to 
be defined. Indeed, dengue virus has been shown to increase fatty acid synthesis 
[56, 167], modulate cholesterol levels [20, 141, 156], and alter membrane composi-
tions [83, 105, 178]. Tongulan et al. showed that genotype 2 dengue infection of 
HEK293T/17 cells increases PPARα levels for up to 3 days post-infection. However, 
the implications of this change and the connections between the nuclear receptor 
and the lipid variations mentioned above have not been further investigated to date.

Fig. 13.1 PPARα modulation alters lipid microenvironment and affects HCV pathogenesis. 
Activation of PPARα chemically or endogenously results in the increase of β-oxidation, ketogen-
esis, and suppression of steatosis in hepatic cells. HCV core has been shown to activate PPARα- 
regulated transcription. Antagonism of PPARα results in hyperlipidemia and increase in triglyceride 
levels, which in turn results in hepatic steatosis. Some studies have demonstrated that inhibition of 
PPARα activity using benzamide can suppress HCV replication
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In addition to its roles in lipid metabolism, PPARα is also known to mediate anti- 
inflammatory responses in the cell [17]. Another prevalent Flavivirus, the Japanese 
encephalitis virus (JEV) has been shown to cause severe neurological inflammation 
and lead to encephalopathy [180]. Interestingly, Sehgal et al. have shown that the 
PPARα agonist fenofibrate protects mice from JEV-induced inflammation and sig-
nificantly reduces mortality when given prior to infection. Therefore, the prophylac-
tic use of nuclear receptor agonists may be beneficial to combat certain viral 
infections.

Finally, the Zika virus has shown to be a reoccurring epidemiological threat with 
the latest outbreak in Central America in 2015–2016. This virus has been associated 
with microcephaly in newborns and Guillain-Barré syndrome in adults [179]. 
Recently, de Oliveira et al. used a metabolomics approach to identify biomarkers of 
the disease in the saliva of infants. From this screen, they identified 15-deoxy- 
Δ-12,14-prostaglandin J2 as a marker of congenital Zika syndrome. This metabolite 
is an endogenous ligand of PPARγ, suggesting that the receptor may be activated as 
response to microglial inflammation [109]. This points to a connection between 
Zika infection and nuclear receptor function in the central nervous system.

13.3.3  PPARs and Human Immunodeficiency Virus (HIV)

HIV is part of the Retroviridae family which has been shown to primarily infect 
CD4 T lymphocytes; however there are several other examples that highlight the 
ability of HIV to infect other cell types [73]. It has been estimated that approxi-
mately 36.7 million individuals are living with HIV worldwide in 2015 [138]. For 
cellular entry, it depends on the presence of a CD4 receptor, with which it interacts, 
as well as the chemokine receptors, CCR5 or CXCR4 [29, 30]. HIV is characterized 
by the presence of regulatory and accessory genes which modulate viral replication. 
HIV, similar to other families of viruses, requires specific and often tightly regulated 
conditions to propagate efficiently. Thus, it is of interest to understand the crosstalk 
between HIV and the host cell and how the host modulates and alters cellular func-
tions as a response to HIV infection. Among the host factors that were shown to be 
involved in HIV pathogenesis, the PPAR nuclear hormone receptors are especially 
noteworthy.

Several early studies examined the effects of PPAR activation in context of HIV 
infection. A study by Skolnik et al. explored the roles of drugs known to modulate 
the activity of PPARs, namely, thiazolidinediones (TZDs), which are frequently 
used to treat type II diabetes, and hyperglycemia, in HIV infection [155]. In this 
study, Skolnik and colleagues demonstrated the efficiency of TZD-related PPARα 
and PPARγ agonists in inhibiting HIV replication. Particularly the group investi-
gated the effects of the agonists in peripheral blood mononuclear cells (PBMCs) 
infected with HIV-1, in chronically infected monoblastoid cell line and in alveolar 
macrophages from HIV-1-infected and HIV-uninfected individuals [155]. 
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Treatments with PPAR agonist resulted in the suppression HIV-1 levels in all inves-
tigated models. Intriguingly, treatment with the drugs also resulted in a decrease in 
the levels of TNFα, which has previously been shown to increase HIV-1 replication 
[155]. Similarly, a study by Hayes and colleagues confirmed the suppressive effects 
of PPARγ agonism on HIV replication [55]. In particular, the group took advantage 
of cyclopentenone prostaglandins (cyPG), which have been previously shown to act 
as PPARγ agonists, to investigate the effects of PPARγ agonism on HIV replication. 
This study further highlighted the suppressive effects of PPARγ activity on HIV-1 
gene expression in macrophages [55]. Moreover, a more recent study by Hanley 
et al. has likewise highlighted the role of PPARγ activation in the repression of HIV 
infection in macrophages. More specifically, the group highlighted that the inflam-
matory response mediated by PAM3CSK4, a TLR1/2 agonist, which is required for 
the activation of HIV replication and propagation in infected cells and macrophages 
is potently suppressed following PPAR activation [54]. Overall, these studies high-
light the major role that PPARs play in modulating HIV infections in various 
cell types.

The PPAR nuclear receptor subfamily has also been found to be involved in the 
modulation of host-HIV interactions. A prominent biological function of PPARs is 
the regulation of oxidative stress and inflammatory responses during infection [31, 
40]. Previously, Ramirez et al. have reported that inflammatory responses induced 
by HIV infection is often subverted by PPAR agonism using synthetic ligands, 
which include fibrates for PPARα-specific activation and TZDs for PPARγ-specific 
activation [129]. In particular, the group demonstrated that PPARγ activation in 
primary human brain endothelial cells (BMVEC) significantly suppresses the adhe-
sion and migration of HIV-1-infected monocytes across primary endothelial cells 
[129]. Conversely, PPARα activation failed to elicit the same response/phenotype. 
Functionally, the group demonstrated that PPARγ activation specifically suppressed 
the activity of Rac1 and RhoA GTPases. Inhibition of their activity prevents the 
adhesion and migration of HIV-1-infected monocytes across the endothelium [129].

Several more recent studies have suggested that PPARγ activation results in a 
neuroprotective phenotype in the context of HIV-1 infection [65, 66, 123]. For 
example, Huang et al. have highlighted the protective role of PPARs against HIV- 
induced disruptions of tight junctions responsible for the integrity of the blood- 
brain barrier (BBB) in HIV-infected patients [64]. These HIV-induced modifications 
are often subverted by the activation of PPARα- and PPARγ-mediated cellular sig-
naling. Functionally, PPARα and PPARγ activation suppresses the function of 
matrix metalloproteinase (MMP) 2 and 9 and proteasome activities which aids in 
the maintenance of the BBB integrity [64]. A more recent study by Omeragic et al. 
highlights the role of rosiglitazone and pioglitazone, PPARγ agonists, in inhibiting 
the induction of gp120-induced inflammatory response in primary cells of mixed 
glial cells and in a HIV-1 gp120 rat model [110]. A more recent study by the same 
group emphasized the role of PPARγ agonist treatment in promoting anti-HIV and 
anti-inflammatory responses in an EcoHIV in vivo model of HIV infection [111]. 
Moreover, additional studies showed that the use of rosiglitazone results in the inhi-
bition of HIV infection in other cell lines including Th1Th17 cells and macrophages 
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[13, 123]. On the other hand, pioglitazone has as well displayed potential in clinical 
trials for the treatment of HIV-1-associated lipodystrophy syndrome (HALS) [124].

Recent advancement in HIV research, such as development of HIV antiretroviral 
treatments (HAART), has resulted in the increase and extension of life expectancy 
and the quality of lives of HIV-infected patients. However, this came with the devel-
opment of various other chronic conditions because of the toxicity associated with 
such treatments. Chronic HIV infections are often characterized by lipodystrophy, 
which has been reported in 50% of HIV patients, and bone abnormalities [11]. 
Adipocyte and osteoblast development and maintenance is often controlled by the 
activity of PPARs [11]. In addition, it has been reported that antiretroviral treat-
ments may cause alterations in free fatty acid flux and accumulation of intramyocel-
lular lipids [39, 52]. In addition to these dysregulations, a reduction in the levels of 
PPARγ has also been observed in subcutaneous adipocytes of HIV patients under-
going antiretroviral treatments [10]. Overall, these findings provide new avenues for 
the development of effective therapeutic strategies that could acclimatize the levels 
and activity of PPARs to improve the quality of lives of HIV-infected patients and 
develop avenues for potential novel treatments and cures.

13.3.4  PPARs and Other Examples of Viruses

13.3.4.1  Hepatitis B Virus

HBV is an enveloped, partially double-stranded DNA virus which belongs to the 
Hepadnaviridae family. Its life cycle includes the repair of its incomplete relaxed 
circular DNA (rcDNA) to form covalently closed circular DNA (cccDNA). The 
cccDNA is transcribed into subgenomic RNA (sgRNA) and pregenomic RNA 
(pgRNA), the latter of which will be reverse transcribed into DNA before being 
packaged into new virions [47]. Four promoter (core, pre-S1, pre-S2/S, and X) and 
two enhancer (EN1 and EN2) regions regulate translation [4]. The EN2-core pro-
moter controls the synthesis of the pgRNA, and interestingly it possesses multiple 
binding sites for host hepatic nuclear receptors, including RXR-PPARα heterodi-
mers [130]. Binding of the RXR-PPAR complex was also shown to occur at the first 
enhancer [58]. Interestingly, RXR- independent activation of HBV genome tran-
scription by PPARα was also demonstrated in transgenic mice lacking the heterodi-
mer-binding site [131]. Consistent with these observations, Guidotti et al. showed 
that treatment of HBV transgenic mice with agonists of PPARα significantly 
increased HBV replication, although they modestly increased genome transcription 
[48]. Furthermore, Tang and McLachlan demonstrated that expressing RXRα and 
PPARα in non-hepatic cell lines allows the cells to support HBV replication, sug-
gesting that these nuclear receptors are important in determining viral tropism [166].

In addition to PPARα, there is a growing body of evidence for interactions 
between HBV and PPARγ. However, the effects of this nuclear receptor on HBV 
infection have been controversial. Indeed, Choi et  al. showed that the HBV X 

13 Nuclear Hormone Receptors and Host-Virus Interactions



326

protein, HBx, binds the receptor and interferes with its nuclear localization. PPARγ 
activation decreases cell growth and promotes apoptosis, reducing cancer prolifera-
tion [139]. It is therefore thought that this HBx-PPARγ interaction plays a role in 
HBV-induced HCC [27]. On the other hand, Kim et al. showed that HBx overex-
pression induces the expression of PPARγ and upregulates downstream genes 
implicated in hepatic steatosis [77]. From a pharmacological perspective, Wakui 
et al. reported inhibition of HBV replication using the PPARγ agonist rosiglitazone 
in HepG2 cells. Interestingly, they did not see any effects on the virus with the 
PPARα agonist bezafibrate [174]. In contrast, Yoon et al. showed that treatments of 
HBV expressing HepG2 cells with rosiglitazone upregulated viral replication. They 
also reported that silencing the PPARγ-controlled gene adiponectin reduces HBV 
infection [186]. From a clinical standpoint, Zhao et al. showed that chronic hepatitis 
B patients have significantly lower PPARγ expression due to increased methylation 
of the gene [193]. Interestingly, reduced methylation and recovery of PPARγ expres-
sion improved prognosis of patients with acute-on-chronic hepatitis B liver failure 
[194]. Most recently, Du et al. treated HBV-infected mice with bezafibrate, fenofi-
brate (a PPARα agonist), and rosiglitazone. In all cases, the viral mRNA, DNA, and 
serum antigen loads increased, suggesting that agonism of both PPARα and PPARγ 
increases HBV infection [34]. Based on all these studies, interactions between the 
hepatitis B virus and PPARs are complex, and the observed effects may be specific 
to the models and conditions used. Therefore, there is an ever-present need for more 
research in this area.

13.3.4.2  Influenza A Viruses (IAVs)

IAVs are negative-sense, single-stranded, segmented RNA viruses [9]. Several sub-
types have been identified to be the etiological agents of influenza in birds and 
mammals. Influenza viruses cause heterogeneous respiratory infections which can 
range from self-limiting symptoms that are mild to more serious non-resolving 
pathology in the lungs. Worldwide, more than 500,000 lives are claimed yearly by 
influenza [62]. More recently, immunomodulatory agents have been used as poten-
tial treatment approaches to reducing mortality in both seasonal and pandemic influ-
enza [37]. Agonists of PPARα have been shown to affect lipid metabolism but were 
also demonstrated to have immunomodulatory effects. PPARα and PPARγ agonists 
(Glitzones and Fibrates) were shown to reduce the mortality in patients with viral 
pneumonia caused by IAV, as well as in mouse models of IAV [37]. In an early 
report by Moseley et al., evidence underscoring the success of PPARγ agonists in 
providing protection in mice infected with highly pathogenic influenza A strains 
was demonstrated [98]. Pre-treatments with PPAR agonist, rosiglitazone, produced 
protection against the infection by reducing the morbidity and mortality of infected 
mice [98]. A later study by Huang et al. further strengthened the association between 
PPARs and their roles during IAV infection. In this study, PPARγ was shown to be 
downregulated in alveolar macrophages (AM) following IAV infection [62]. 
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Additionally, myeloid PPARγ deficiency caused by the infection led to a higher rate 
of host morbidity and increased inflammation [62], thus further cementing the con-
nection between the critical role of PPARγ expression in the lungs and the modula-
tion of the viral response. Furthermore, mice with intrinsic deficiency of myeloid 
PPARγ showed increased influenza-induced deposition of collagen in the lung tis-
sue, leading to a dysfunctional lung model. Deficiencies in activation of damage 
repair genes were observed in the cells [63]. It is evident that activation of PPARs, 
which are critical regulators of inflammation, plays a protective role against IAV 
infections since they can antagonize inflammatory responses [9].

13.3.4.3  Herpesviruses

Herpesviruses belong to the family of Herpesviridae, which is a large family of 
DNA viruses [165, 172]. Nine herpesviruses are known to infect humans including 
herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), Epstein-Barr virus (EBV), and 
human cytomegaloviruses [59, 122, 140]. With respect to host’s lipid metabolism, 
studies have explored the role of these pathways in modulating herpesvirus infec-
tions [59, 165]. A unique feature of herpesviruses is that they undergo both a lytic 
replication cycle and exhibit latency [1]. Drastic differences between both life 
cycles lead to different requirements for host-derived metabolites. Thus, there is a 
continuous need for the understanding of the interplay between the viral infections 
and host lipid metabolism. HCMV is the leading infectious causing agent for con-
genital defects [165].

HCMV uses a cholesterol-mediated cell entry process [122]. It has been previ-
ously shown that treatments with statins, causing inhibition of cholesterol synthesis, 
led to an antiviral response [122]. Furthermore, HCMV glycoprotein B (gB) was 
demonstrated to be post-translationally palmitoylated [114]. Due to the reported 
connections between lipid metabolism and HCMV, it is apparent that nuclear recep-
tors play a part in infection modulation. In an early report by Rauwel et al., it was 
demonstrated that HCMV infection induces the expression of PPARγ in cells. 
PPARγ antagonism was shown to impair viral particle production [132]. Additionally, 
a more recent report by Rolland et al. showed similar effects of HCMV infection in 
both neural stem cells (NSCs) and brain sections from infected fetuses [140]. 
HCMV infection was shown to induce the expression of PPARγ. Levels of 
9-hydroxyoctadecadienoic acid (9-HODE) were shown to be elevated in infected 
NSCs. 9-HODE is an endogenous PPARγ ligand [140]. Treatments of uninfected 
cells with 9-HODE recapitulated the effect of infection on PPAR expression [140]. 
Overall, these results reveal the role of PPARγ in modulation of HCMV infection. 
These studies highlight the present link between nuclear receptors and herpesvi-
ruses, specifically HCMV.
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13.4  Liver X Receptors (LXRs) and Host-Virus Interactions

LXRs are nuclear hormone receptors that act as “sterol sensors,” and they respond 
to the physiological concentrations of sterols in the cells [90]. Their roles in the 
modulation of host-pathogen interactions have been proven integral for both the 
host and invading pathogens [81]. Historically, these receptors were identified as 
orphan receptors with unclear classification. Later, these receptors were classified 
as nuclear receptors that respond to cholesterol metabolites, oxysterols [69]. Some 
of the natural ligands for LXRs include derivatives of oxysterols such as 
25- hydroxycholesterol (25-HC), 27-hydroxycholesterol (27-HC), 
22(R)-hydroxycholesterol, 24(S), 25-epoxycholesterol [24(S), 25-EC], and 5α,6α- 
epoxycholesterol [5,6-EC] [14, 69, 82]. LXRα (NR1H3) and LRXβ (NR1H2) are 
two distinct genes that encode two isoforms of the LXR nuclear receptors [69]. 
While LRXβ is ubiquitously expressed, LXRα expression is restricted to metabolic 
tissues including the liver, kidney, adipose tissue, and macrophages [136].

Cholesterol regulation has been found to play instrumental roles in modulating 
the life cycles of various viruses, especially viruses that require enrichment of the 
lipid and cholesterol microenvironment for their propagation [15, 89, 102, 147, 
190]. LXRs play an opposing role to sterol response element-binding proteins 
(SREBP). Their primary function is to sense oxysterols in the environment and 
respond by increasing the expression of various genes that regulates cholesterol 
transport/efflux and the conversion of cholesterol to bile acid and to promote intes-
tinal cholesterol absorption [192]. Some of the genes regulated by LXRs encode 
phospholipid transport proteins, apolipoproteins and ATP-binding cassette (ABC) 
transporters, ABCG5 and ABCG8 [135], as well as cholesterol 7α-hydroxylase 
(CYP7A1), one of the first identified targets of LXRs and an enzyme known to be 
involved in catalyzing the rate-limiting step of the bile acid biosynthesis path-
way [49].

LXRs are as well involved in the regulation of triglyceride and fatty acid synthe-
sis. These functions are mediated through LXR-controlled genes such as fatty acid 
synthase (FAS), ACC, and SCD1 [71, 134, 149, 187]. The utilization of LXR ago-
nists has been shown to enhance HDL-mediated tissue cholesterol efflux, thus 
resulting in free-circulating HDL molecules [157]. Moreover, an enhanced incorpo-
ration of fatty acids into phospholipids and triglycerides is observed in LXR knock-
out C57BL/6 mice [79]. Thus, given LXR’s role in regulating fatty acid, triglyceride, 
and cholesterol biosynthesis pathways, it is not surprising that it has been identified 
as an attractive therapeutic target for various metabolic diseases, such as liver ste-
atosis, and cardiovascular diseases such as atherosclerosis [16, 84].

As previously mentioned, for some viruses such as viruses in the Flaviviridae 
family, fatty acid and cholesterol biosynthetic pathways have been proven vital for 
viral propagation and dissemination. These processes are generally hijacked by the 
viruses to facilitate viral replication and the production of viral progeny. Given that 
LXR nuclear receptors are one of the major regulators of such processes, it is not 
surprising that they play instrumental roles in modulating host-virus interactions. 
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Recently, there is an increasing interest in the developments of drugs and small 
molecules that regulate the activity of LXRs to suppress the life cycle of viruses that 
depend on fatty acid and cholesterol metabolic processes and thus create an LXR- 
dependent intrinsic antiviral state.

13.4.1  LXR and HCV

Over the past years, the role of LXR in regulating the viral life cycle during infec-
tion has become more apparent. In recent studies, LXR has been reported to control 
HCV infection and particularly the entry of the virus through modulation of the 
levels of LDL receptor (LDLR) [189, 190]. In particular, idol, an LXR-inducible E3 
ubiquitin ligase, has been found to post-transcriptionally regulate the expression 
levels of LDLR through the promotion of the ubiquitination of its cytoplasmic 
domain [189]. Zeng et al. have demonstrated a decrease in the levels of infection of 
HCV JFH-1 strain in HCV-susceptible Huh7.5.1 hepatoma cell line with the over-
expression of LXR-inducible protein, idol [190]. They were also able to demon-
strate the inhibitory effects of LXR synthetic ligands (T0–901317 or GW3965) on 
HCV entry and intracellular levels. Conversely, Nakajima et al. have highlighted the 
inhibitory effects that a fungus-derived antagonist of LXRs, neoechinulin B (NeoB), 
exhibits on the HCV life cycle. In particular, the group demonstrated that the treat-
ment of HCV-permissive cells with the compound results in the inhibition of the 
formation of specialized HCV replication sites and membrane compartments essen-
tial for the viral replication cycle [102]. The formation of these sites is controlled by 
mechanisms modulated through LXR-mediated transcription [102]. Overall, this 
work opened potential avenues to explore for the impediment of HCV life cycle 
through LXR-dependent mechanisms.

Another study that highlights the role of LXR-mediated signaling in modulating 
HCV infection has revealed the potential role of the LXR-regulated gene, ATP- 
binding cassette transporter A1 (ABCA1), in inhibiting HCV infection [15]. In this 
study, Bocchetta et al. revealed the importance of cholesterol efflux modulated by 
ABCA1 function in suppression of HCV infection in hepatoma cells [15]. In this 
study the group treated hepatocytes with GW3965, an LXR agonist, which resulted 
in the upregulation of ABCA1 levels and consequentially a decrease in the levels of 
the virus [15]. ABCA1 is a transmembrane protein that regulates the transfer of 
cholesterol and phospholipids across the cellular membrane and controls the forma-
tion of lipid-free ApoA1, which is crucial for the formation of HDL particles [113, 
164]. The function of ABCA1 is essential for the maintenance of cholesterol homeo-
stasis in liver cells. Disruptions in physiological cholesterol levels are generally a 
characteristic of initial phases of viral infection [173]. Thus, it is not surprising that 
dysregulations of the levels of ABCA1 levels is generally observed during vial 
infections.

An earlier study by Moriishi et al. confirmed the role of HCV core protein in the 
promotion of hepatic steatosis through LXRα-/RXRα-mediated transcription of 
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SREBP-1c [95]. This activation promotes the initiation of fatty acid biosynthetic 
pathway due to the activation of sterol regulatory element-binding protein 1 
(SREBP-1c) promoter activity. In the same study, the group highlighted the role of 
PA28γ/REGγ, a proteasome-activating protein, in the degradation of HCV core pro-
tein in the nucleus of hepatocytes [95]. They revealed that the HCV core-induced 
binding of LXRα/RXRα to the LXR response element in the SREBP-1c gene only 
occurs in the presence of PA28γ [95]. Thus, HCV-induced hepatic steatosis is medi-
ated through the interactions between PA28γ and LXRα/RXRα.

A more recent study by Singaravelu et  al. highlighted the role of 
25- hydroxycholesterol (25-HC), an LXRα-activating endogenous oxysterol, in 
inducing the transcription of microRNAs that display potent antiviral activity 
against HCV infection in Huh7.5 hepatoma cell line [89, 151]. In this study, the 
group identified, through employing a small molecule-mediated annotation of 
miRNA targets (SMART) screen, 25-HC-induced miR-185 and miR-130b which 
displayed antiviral activity against HCV [151]. Overall, these studies highlight the 
role of LXR-mediated transcription in modulating HCV pathogenesis and hepatic 
metabolism during infection. Figure  13.2 illustrates some of the effects of LXR 
modulation on HCV pathogenesis.

13.4.2  HIV-1 and LXR

Sterols and oxysterols have been shown to play crucial roles in HIV life cycle and 
infectivity [97]. Specifically, HIV-1 requires cholesterol for the assembly and bud-
ding of the virions from its target cells [97, 101, 127]. HIV-1 budding occurs at 
cholesterol-enriched “lipids rafts,” and consequently, it has been shown that there is 
a higher ratio of cholesterol to phospholipids within the viral envelope [18]. It has 
been reported that cholesterol depletion markedly reduces HIV-1 particle produc-
tion and release decreasing infectivity of the produced virions. Due to these connec-
tions, it is evident that the LXR-regulated signaling can play crucial roles in the 
modulation of viral progression and production [112, 195]. Both the cholesterol- 
related and trans-repression activities of LXR contribute to reported suppression of 
HIV-1 progression and infectivity. Depletion of cholesterol from lipid rafts lead to a 
decrease in infectivity and virus production [97, 101].

Due to this reported connection, cholesterol-sequestering drugs have been uti-
lized as a mean to inhibit viral infectivity. β-Cyclodextrin, a cholesterol- sequestering 
drug, has been designed to inhibit viral entry by inhibiting viral attachment to target 
cells, preventing the membrane fusion step [51]. Morrow et al. have revealed that 
the use of LXR agonists can affect HIV-1 replication, including T0–901317, a 
potent stimulator of ATP-binding cassette transporter A1 (ABCA1) expression. 
T0–901317 restored cholesterol efflux from HIV-1-infected T lymphocytes and 
macrophages. This ligand has been utilized to suppress HIV-1 replication in these 
cell models, as well as in ex vivo cultured lymphoid tissue, highlighting the connec-
tion between the stimulation of LXR pathways and the induction of ABCA1, which 
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leads to inhibition of the HIV-1 replication cycle [97]. Dubrovsky et al. have dem-
onstrated that treatment with T0–901317 potently reduced viral replication, and 
they were able to show the prevention of HIV-1-mediated reduction of plasma HDL 
in humanized NOD.Cg-PrkdcscidIL2rgtm1Wjl/SzJ (NSG) mice [35].

Stimulation of LXR has been linked to inhibition of dendritic cell-mediated 
HIV-1 capture and trans-infection [54]. Dendritic cells (DC) contribute to HIV-1 
transmission by capturing and transporting infectious particles from the mucosa to 
the draining lymph nodes, thus transferring the virus to CD4+ T cells. Hanley et al. 
have shown that LXR prevented DC capture of HIV-1 by decreasing DC-associated 
cholesterol, due to LXR signaling inducing cholesterol efflux from DC [53]. In 
addition, LXR stimulation has been linked to ABCA1-mediated cholesterol efflux 
from DC, which is related to the decreased ability of capturing HIV-1 particles. 

Fig. 13.2 LXR activity modulation alters lipid microenvironment and affects HCV pathogenesis. 
Activation of LXR results in the increase of idol, an LXR-inducible E3 ubiquitin ligase, which has 
been demonstrated to suppress the levels of HCV. Treatment of hepatoma cells with LXR agonists 
(T0–901317 or GW3965) results in the suppression of HCV entry and levels. LXR activation 
induces ABCA1 transcription, which has been demonstrated to inhibit HCV infection. 
25-Hydroxycholesterol (an endogenous LXR agonist) was shown to induce the transcription of 
miR-185 and miR-130b, which were demonstrated to promote an anti-HCV environment. 
Conversely, an antagonist of LXR (neoechinulin B) has been displayed to suppress HCV replication
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LXR ligands have been connected to the repression of DC-mediated trans-infection 
and DC migration, leading to HIV-1 inhibition [53, 54].

HIV-1-related comorbidities involving diseases such as metabolic and cardiovas-
cular disorders have also been linked to cholesterol metabolism and lipid rafts. 
More specifically, Nef, a viral protein, has been linked to an increase in viral infec-
tivity by promoting viral budding from lipid rafts [195]. Stimulation of ABCA1 
expression via LXR agonists was shown to counteract the effect of Nef [86, 161].

In another experiment by Trabattoni et al., it was demonstrated that thiazolides 
(TZDs) induce the expression of cholestrol-25-hydroxylase (CH25H), which is an 
interferon-stimulated gene (ISG) responsible for the generation of 25-HC [170], 
suggesting that this upregulation could be linked to innate immune responses and 
production of ISGs involved in cholesterol biogenesis and LXR-regulated path-
ways, leading to a potent antiviral responses. An 87% inhibition of HIV-1 replica-
tion was observed in vitro upon treatment with TZDs, once again linking the potent 
inhibitory effect on HIV-1 replication to the reduction of intracellular cholesterol 
levels and systemic administration of LXR agonists or activators of LXR-mediated 
signaling [170].

Conversely, LXR has been linked to HIV-1 viral pathogenesis. HIV patients have 
been shown to develop hepatic steatosis and fatty liver disease [2]. A study by 
Agarwal et al. has reported that transgenic mice-expressing HIV-1 Vpr developed 
high levels of liver triglyceride leading to hepatic defects such as de novo lipogen-
esis (DNL). DNL was linked to co-activation of LXR-α by Vpr, leading to increased 
expression of targets such as SREBP1c, carbohydrate-response element-binding 
protein (ChREBP), liver pyruvate kinase (LPK), diglyceride acyltransferase 
(DGAT), FASN and SCD1, and intranuclear SREBP1 and ChREBP [2]. The evi-
dence presented here suggests an association between the LXR response and HIV 
pathogenesis. Further research needs to be conducted to better understand the 
molecular mechanism by which this level of regulation is controlled.

13.4.3  LXR and Other Examples of Viruses

13.4.3.1  Influenza A Viruses

Viral pathogens have been shown to interfere with macrophage cholesterol metabo-
lism mainly through inhibition of the LXR signaling pathway [21, 170, 191]. This 
specific phenomenon has been attributed to the activation of Toll-like receptors 
(TLR) 3 and 4 by viral pathogen-associated molecular patterns (PAMPs) leading to 
blocking of LXR target genes including ABCA1 [21]. An early report demonstrated 
that upon infection of peritoneal macrophages with influenza A in the presence of 
LXR agonist GW3965, inhibition of LXR target genes was achieved; however the 
LXR mRNA was not affected [21]. Overall, it is reported that LXR gene expression 
is strongly compromised in macrophages upon influenza A viral infection, thus 
linking the innate immunity component to LXR signaling. This was shown to be 
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achieved through the induction of interferon β (IFN- β) and myxovirus resistence-1 
(MX-1) [21].

13.4.3.2  Herpesviruses and LXR 

Additionally, a connection has been established between the role LXR and DNA 
viruses, namely, the herpes simplex virus 1 (HSV-1) [19, 89]. HSV-1 is a member 
of Herpesviridae, which causes viral infections in humans. HSV-1 consists of a 
double-stranded, linear DNA genome [19]. 25-HC and 27-HC, which were shown 
to exhibit antiviral effects, have been reported to induce the expression of CH25H 
in an LXR dependent manner, leading to the conclusion that LXR plays a funda-
mental role in the antiviral response [19, 89]. Liu et al. have shown that activation 
of LXR using either natural ligands or synthetic agonists leads to a decrease in 
HSV-1 infection in HepG2 liver cells or RAW 264.7 macrophages.

Interestingly, it was validated that using genetic deletion of LXRα or LXRβ leads 
to increased HSV-1 infection and susceptibility. The same phenotype was achieved 
upon knockout of CH25H, cementing the connection between the role of LXR and 
the antiviral mechanism against HSV-1 infection [89]. Additionally, LXRs have 
been shown to modulate gammaherpesviruses. Gammaherpesviruses are viruses 
that establish persistent lifelong infections [80]. More recently, Lang et  al. have 
demonstrated that deficiency in LXRα/β leads to an increase in cholesterol and fatty 
acids in the primary macrophages, which in return led to an increase in gammaher-
pesvirus replication, confirming the antiviral role of LXRs [80]. Upon infection, 
type I interferon caused an induction of LXRs; however, this was associated with 
suppression of the target genes’ expression, leading to the decrease of fatty acid and 
cholesterol synthesis and underscoring the intrinsic metabolic mechanism leading 
to restriction of viral replication in innate immune cells [80]. Furthermore, it was 
later confirmed that LXRα restricts the reactivation of gammaherpesviruses from 
latently infected peritoneal cells [81]. LXRα was shown to restrict the reactivation 
through a mechanism independent of the CD8+ T-cell antiviral response [81].

13.4.3.3  HBV

Furthermore, other viruses that are dependent on components of liver metabolism 
were shown to be linked to LXR signaling. HBV infection is closely related and 
associated with liver metabolism, so it is no surprise that the LXR pathway can play 
a crucial role in this virus’ interaction with its host cell [148]. LXR is a crucial regu-
lator of lipid and cholesterol metabolism, which are essential in HBV’s life cycle 
[148]. In a study by Zeng et al., the role of LXR in HBV infection has been studied. 
HBV-infected primary hepatocytes were shown to potently inhibit the infection if 
treated with synthetic LXR agonists including T0901317, GW3965, and LXR-623. 
Reduction of viral RNA was observed, underscoring the role of LXR activation in 
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eliciting a potent anti-HBV response. This potent inhibition was linked to sustained 
reduction of covalently closed circular DNA (cccDNA) [191]. Thus, all the previous 
examples illustrate the interplay between the different viruses and the LXR path-
way. Through modulation of the different components of the pathway, it is evident 
that viruses can promote their own replication or propagation in the host cell; also, 
the host can affect the virus life cycle by controlling the expression of pathway 
regulators.

13.5  FXR and Host-Virus Interactions

The Farnesoid X receptor (FXR), also known as bile acid receptor, is nuclear recep-
tor mainly expressed in hepatocytes and enterocytes. Its primary function is to regu-
late synthesis, transport, and metabolism of bile acids. However, it is also known to 
regulate aspects of lipid metabolism and lipoprotein homeostasis, making it an 
important host factor in interactions with hepatotropic lipid-dependent viruses such 
as hepatitis B and C.

13.5.1  FXR Signaling

Bile acids are synthesized from cholesterol in the liver, stored in the gallbladder, and 
secreted into the intestine postprandially to facilitate emulsification and absorption 
of dietary fats. Although 95% of these acids are recovered in the ileum, 5% are lost 
through excretion and need to be synthesized de novo in the liver each day. In 
humans, the principal bile acids are cholic acid (CA) and chenodeoxycholic acid 
(CDCA) [26]. In order to prevent toxicity from overaccumulation of these bile salts, 
they exert a complex feedback mechanism to regulate their own synthesis. In 1999, 
Makishima et al. identified FXR as a nuclear receptor capable of biding bile acids. 
Activation of this receptor was shown to downregulate levels of CYP7A1, the first 
and rate-limiting enzyme in bile acid synthesis [93]. This regulation does not result 
from direct binding of FXR to the CYP7A1 promoter but rather through FXR- 
mediated control of the atypical nuclear receptor small heterodimer partner (SHP).

Activation of FXR through binding of bile acids leads to the formation of a FXR- 
RXR heterodimer which induces expression of SHP. In turn, this partner interacts 
with the hepatic nuclear factor 4 (HNF4) or the liver receptor homolog-1 (LRH-1) 
to directly reduce CYP7A1 expression [28]. An alternate mechanism has been iden-
tified through which binding of bile acids to FXR in enterocytes leads to expression 
and secretion of fibroblast growth factor 15 (FGF15). This factor binds FRFR4 
receptors on hepatocytes and leads to repression of CYP7A1 expression via activa-
tion of the c-Jun N-terminal kinases (JNK) pathway [171].

More recent work has focused on FXR’s role in regulating lipid and glucose 
metabolism. This was based on the early observation that FXR null mice had 
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elevated levels of not only cholesterol but also triglycerides and lipoproteins in the 
sera [150]. In contrast, agonism of the receptor decreases plasma triglycerides and 
VLDL secretion. A study of the mechanisms underlying these changes identified 
several metabolic genes under the control of the FXR receptor. The previously men-
tioned effects were found to be mediated via repressed expression of SREBP-1c and 
microsomal triglyceride transfer protein (MTP), both of these genes being under the 
indirect control of SHP [57, 177]. Additionally, activation of FXR directly increases 
expression of apolipoprotein C2 (ApoC-II), a cofactor for lipoprotein lipase, a 
hydrolase responsible for the breakdown of triglycerides from chylomicrons and 
VLDL [74]. Other apolipoproteins under the direct or indirect control of FXR 
include ApoAI, ApoB, ApoCIII, and ApoE [72]. Furthermore, hepatic lipase (HL), 
an enzyme responsible for remodeling high-density lipoprotein (HDL) particles, 
has also been shown to be downregulated with FXR ligand treatments [153]. Some 
effects of FXR activation on triglyceride stores have been linked to induced expres-
sion of PPARα [169]. Finally, levels of VLDL receptor (VLDLR) have also been 
shown to be induced with FXR agonism [154]. Therefore, through modulation of 
these central factors as well as other target genes, FXR can significantly affect lipid 
pools in the liver. These changes can be meaningful when considered from the per-
spective of host-pathogen interactions.

13.5.2  FXR Signaling During HCV Infection

Given the extensive role of the FXR in hepatic metabolism, it is not surprising that 
its activation could modulate HCV replication. The exact mechanisms through 
which FXR signaling and the HCV life cycle are linked are still not fully under-
stood, but there is a significant overlap between the metabolic processes controlled 
by FXR and host factors implicated in HCV pathogenesis. As previously discussed 
in the chapter, the virus induces hepatic steatosis, decreases serum cholesterol, pro-
motes accumulation of lipid droplets in hepatocytes, and hijacks VLDL assembly 
[6, 60, 96, 145]. Chronic HCV infection and persistent inflammation often lead to 
fibrosis, cirrhosis, and hepatocellular carcinoma [24, 158, 185].

Interestingly, two early reports have shown that FXR agonism increases HCV 
replication, suggesting that elevated levels of bile acids in the liver may worsen viral 
infection [23, 144]. In both studies, activation of the receptor was achieved by treat-
ment with free bile acids including deoxycholic and chenodeoxycholic acids. These 
treatments stimulated the levels of HCV 1a and 1b in replicon models, while FXR 
antagonism by guggulsterone countered this effect [23, 144]. Interestingly, the 
JFH1-2a genotype was not affected by these treatments [144]. Most recently, Wu 
et al. showed that the FXR agonist GW4064 inhibits JC1 HCV entry by downregu-
lating protein, but not mRNA, levels of the scavenger receptor class B type I (SR- 
BI), a receptor required for viral entry. This group also saw a decrease in HCV 
levels with two other synthetic FXR agonists as well as with CDCA treatment and 
overexpression of FXR [181]. However, they do not convincingly uncover the 
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mechanisms behind these observations. Therefore, the effects of the FXR pathway 
on the life cycle and infectivity of the hepatitis C virus lack consensus and require 
further investigation. Figure 13.3 illustrates some of the proposed interplay between 
FXR signaling and HCV pathogenesis.

13.5.3  FXR Signaling During HBV Infection

The connection between the HBV and bile acid signaling is better established than 
that of its HCV counterpart. Although the interaction between the HBV genome and 
the HNF4α and PPARα nuclear receptors was demonstrated in the late 1990s, the 
first evidence of direct interaction with FXR was only presented in 2008 by Ramiere 
et al. They showed that FXR binds the HBV enhancer II and that maximal transcrip-
tion can be achieved by co-expressing FXR with RXR in the presence of bile acids 
[128]. The increase in HBV gene expression mediated by bile acids was later 

Fig. 13.3 Activators and inhibitors of FXR exert effects on metabolism and HCV replication. Bile 
acids activate FXR and lead to decreased VLDL secretion and increased PPARα activation which 
decreases HCV replication [23, 144]. The synthetic agonist GW4064 lowers SR-B1 signaling and 
reduces HCV cell entry [181]. The FXR antagonist Guggulsterone inhibits HCV replication [144]
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confirmed by Kim et al. Interestingly, their study also showed the involvement of 
the JNK/c-Jun pathway in the CDCA/FXR-mediated activation of HBV transcrip-
tion and demonstrated that bile acids disrupt the antiviral effects of interferon alpha 
(IFN-α) [76]. Reese et al. further confirmed that bile acids increase HBV transcrip-
tion via FXR-RXR without the need for independent RXR activation [133].

An important advancement in our understanding of bile acid-HBV host-virus 
interactions was the discovery of the sodium taurocholate cotransporting polypep-
tide (NTCP) as an essential receptor for HBV entry [183]. NTCP is the principal 
transporter of bile acids into hepatocytes from the portal blood [159]. The pre-S1 
domain of the large envelope protein of HBV was shown to interact with NTCP, and 
interestingly this interaction blocks the normal uptake of bile salts by the trans-
porter. Conversely, occupation of the receptor by bile salts was able to decrease 
virus entry [184]. This evidence brought forth a new level of complexity to the 
interactions between the virus and host metabolism. It was later shown that binding 
of the virus to the NTCP receptor leads to a strong upregulation of CYP7A1 expres-
sion. This was coupled with an upregulation of genes involved in cholesterol uptake 
and biosynthesis [108]. Adding to this complexity, Radreau et al. showed that the 
FXR agonists GW4064 and 6-ECDCA decrease HBV infection in HepaRG cells 
and primary human hepatocytes. This was a surprising finding considering the pre-
viously demonstrated direct effects of FXR on HBV gene expression. This discrep-
ancy might be explained by differences in the cell models, the use of FXR 
overexpression vectors, as well as variation in infection incubation times [125]. 
Since then, the controversial role of FXR in HBV progression has not been defined. 
Xu et al. showed that the green tea catechin epigallocatechin-3-gallate (EGCG) acts 
as an antagonist of FXR and inhibits HBV replication [182]. Meanwhile, the HBx 
was shown to directly interact with FXR as a co-activator capable of increasing its 
transcriptional activity [106]. Most recently, Mouzannar et al. made the argument 
that FXR is indeed a pro-viral factor for HBV, as its silencing in infected cells 
decreased viral DNA pools. However, they showed that agonism of FXR with 
GW4064 inhibits this pro-viral effect. Additionally, treatment of infected mice with 
the same agonist had decreased HBV DNA [100]. Therefore, the role of FXR and 
bile acid metabolism in the progression of HBV infection is of ongoing interest. 
However, a more in-depth understanding of these host-pathogen interactions is 
required before this pathway can be considered for therapeutic intervention in HBV 
infection.

13.6  Conclusions

In this chapter, we have highlighted the critical and diverse roles that nuclear hor-
mone receptors play during viral infection. Associated signaling pathways can be 
diverted to meet the needs of invading pathogens, and thus the receptors can repre-
sent pharmacological targets for antiviral therapies. In addition to their effects on 
cellular metabolism, diverse roles also include modulation of inflammatory 
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responses to infection, immunomodulation, and immunometabolism. This is con-
sistent with the rich biological roles of different nuclear receptors. Thus, there is 
still much work to be done to understand how and why different viruses have 
evolved to modulate receptor function and exert control over the associated cellular 
signaling pathways. It is also becoming clear that aspects of the innate immune 
response restrict viruses in diverse ways that may also include reversing virus- 
induced changes to metabolic pathways. Ultimately, a greater understanding of this 
interplay will lead to innovative new strategies to combat viruses that have deleteri-
ous effects to human health.
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Chapter 14
Retinoic Acid-Related Orphan Receptor 
(ROR) Inverse Agonists: Potential 
Therapeutic Strategies for Multiple 
Inflammatory Diseases?
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Abstract Retinoic acid-related orphan receptors (RORs) function as ligand- 
dependent transcription factors. Several (oxy)sterols have been identified that acti-
vate or repress ROR transcriptional activity by functioning as either ROR agonists 
or inverse agonists. RORs are involved in the control of many biological processes, 
including the regulation of differentiation and function of neural, immune, and met-
abolic tissues, bone, and heart. Many of the processes and functions regulated by 
RORs play a critical role in various pathologies, including autoimmune and other 
inflammatory diseases, metabolic syndrome and diabetes, neurological and psychi-
atric disorders, and cardiac injury. Together, these studies raised the possibility that 
modulation of ROR activity by synthetic ligands might be a useful approach to 
intervene in these diseases. This led to the identification of many synthetic ROR 
(inverse) agonists that repress or induce ROR transcriptional activity. Most studies 
have been focusing on RORγt inverse agonists that repress the generation of inter-
leukin 17 (IL-17)-producing immune cells and the production of pro-inflammatory 
cytokines, such as IL-17, which play a critical role in various inflammatory dis-
eases. Treatment of autoimmune disease in several experimental rodent models with 
RORγ inverse agonists was shown to reduce the production of pro-inflammatory 
cytokines and ameliorate the disease. Thus, ROR (inverse) agonists may potentially 
provide new therapeutic strategies to treat various pathologies.
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14.1  Introduction

The retinoic acid-related orphan receptors, RORα, RORβ, and RORγ, constitute a 
subfamily ligand-dependent transcription factors encoded by the RORA-C (or 
NR1F1–3) genes, respectively [23, 28, 54, 64, 65, 79, 80]. By alternative splicing 
and/or the use of different promoters, RORA-C generate several isoforms that 
exhibit different patterns of cell type-specific expression and control distinct physi-
ological processes and target genes [4, 38, 65, 79, 105, 112]. RORs regulate gene 
transcription by binding to the promoter-regulatory region of target genes. This 
binding is mediated by a conserved DNA-binding domain (DBD), containing two 
C4-type zinc fingers that recognize ROR response elements (ROREs) consisting of 
the RGGTCA consensus preceded by an A/T-rich sequence [53, 79, 113]. Whether 
RORs act as transcriptional activators or repressors is determined by the interaction 
of their ligand-binding domain (LBD) with, respectively, an agonist or inverse ago-
nist that facilitate the recruitment of coactivators or corepressors, respectively [71, 
79, 95, 145, 175]. In addition to (inverse) agonists, several other factors, including 
various posttranslational modifications and protein interactions, play an important 
role in modulating ROR transcriptional activity [80].

Various (oxy)sterols, including cholesterol sulfate, 7-dehydrocholesterol, des-
mosterol, 20α-hydroxycholesterol (20α-OHC), 25-OHC, 7β, 27-OHC, and 27-OHC, 
have been demonstrated to act as endogenous ligands of RORα and/or RORγ [70, 
80, 84, 86–88, 130, 139, 146, 175]. They function as either agonists or inverse ago-
nist of RORs. Moreover, RORs control several biological processes that are critical 
in the development and progression of a variety of pathologies, including several 
metabolic, immune, and neurological diseases. Together, these discoveries raised 
the possibility that synthetic ROR ligands might be potentially useful to intervene in 
biological processes that underlie these pathologies and that RORs provide potential 
therapeutic targets to treat a variety of these diseases. This led to an intensive search 
for synthetic, small molecule ROR (inverse) agonists [44, 49, 80, 86, 144, 153]. In 
this chapter, we provide a selective overview of RORs and their (inverse) agonists 
and their role in the development and potential treatment of several inflammatory 
diseases.
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14.2  Functions of RORs in Immune Cells

Using alternative promoters, RORC generates two isoforms: RORγ1 and RORγt 
(RORγ2) [38, 65, 79, 112]. Via a combination of alternative splicing and promoter 
usage, murine and human RORA generate 4 and 2 isoforms, respectively [54]. 
RORγ1 is expressed in many endocrine and metabolic tissues, whereas RORγt 
expression is restricted to several immune cell types, including CD4CD8 double- 
positive thymocytes, T helper 17 (Th17) cells, innate lymphoid 3 (ILC3) cells, lym-
phoid tissue inducer (LTi) cells, NKp46+, and γδ T cells [28, 38, 39, 75, 76, 79, 96, 
114, 133, 154] (see Fig. 14.1).

Both RORα and RORγt have a critical role in thymopoiesis and the development 
of T lymphocytes [37, 79, 96, 154]. During thymopoiesis, RORγt is selectively 
expressed in CD4CD8 double-positive (DP) thymocytes. Loss of RORγt function 
causes accelerated apoptosis in DP cells in part due to the downregulation of the 
antiapoptotic gene, Bcl-XL, resulting in reduced generation of single-positive T lym-
phocytes [96, 154]. Recent studies have provided additional insights into the role of 
RORγt in the regulation of positive selection [122, 123]. This study demonstrated 
that the histone deacetylase HDAC3 represses RORγt transcriptional activity and 
consequently the expression of the RORγt target gene, the purinergic receptor 
P2X7, a proapoptotic gene. RORγ-deficient mice have further been reported to 
exhibit a high probability developing lymphoblastic lymphomas during adulthood 
[103, 160].

Pathogenic
Immune

Responses

Macrophages

CD4+ and  CD8+

Lymphocytes

ILC2

γδ

ILC3

Th17

Tc17

Protective
Immune

Responses

Autoimmune diseases &
other inflammatory diseases

Th17

ROR α+ ROR γt+

Fig. 14.1 RORα and RORγt are selectively expressed in a variety of immune cells, including 
ILCs, Th17, macrophages, Tc17, and γδ cells, that have protective as well as pathogenic roles. 
(Inverse) agonists modulate ROR transcriptional activity and/or regulate the generation and func-
tions of these cells. Subsequently, they can positively or negatively influence inflammatory 
responses and diseases
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RORγt is also expressed in IL-17-producing CD8+ T cells, termed Tc17, that are 
derived from RORγt+ CD4CD8 DP thymocytes [109]. These cells can participate in 
protective, as well as pathogenic, immune responses, including protection against 
bacterial and viral infections, and contribute to several inflammatory diseases, 
including psoriasis, multiple sclerosis, and ulcerative colitis.

In addition, RORγt is important in the development of γδ17 T cells during intra- 
thymic differentiation [2]. As in Th17 cells, RORγt regulates the transcription and 
production of IL-17  in these cells. γδ17 T cells have been implicated in several 
inflammatory diseases, including psoriasis, multiple sclerosis, and collagen-induced 
arthritis [2].

In the mouse, group 1–3 innate lymphoid cells (ILC1–3), natural killer (NK) 
cells, and lymphoid tissue inducer (LTi) cells are derived from common lymphoid 
progenitors (CLPs) [34, 114]. RORγt is required for the development of ILC3s and 
their production of IL-17 and IL-22. These cells have a role in the pathogenesis of 
various autoimmune diseases, host defense responses, and tumor immunity [7]. 
RORγt is also essential for the development of lymphoid tissue inducer (LTi) cells, 
which are required for the development of secondary lymphoid organs, including 
Peyer’s patches and intestinal lymphoid follicles ([39] #455; [96, 154]).

Much of the focus of RORγ has been on its role in the differentiation and func-
tion of T helper 17 (Th17) cells [28, 36, 75, 76]. Th17 cells produce a series of pro- 
inflammatory cytokines, including IL17A, IL-17F, and IL-22, that play a critical 
role in several autoimmune diseases. These cells are also important in protecting the 
host against bacterial and fungal infections. RORγt is induced during the early 
stages of differentiation of naïve T cells into Th17 and is required for the generation 
of Th17 cells and IL-17 synthesis [36, 75, 178]. RORγt directly regulates the tran-
scription of the pro-inflammatory cytokines, including Il17a, Il17f, Irf4, and Il23r 
[173, 178]. RORα4 is also expressed in human Th17 cells, where it also regulates 
Th17 cell differentiation and cytokine production; however, RORγ plays a more 
significant role than RORα [24, 178]. The regulation of gene transcription by RORα 
and RORγ overlaps, and many Th17 genes, including IL-17A, IL-17F, IL-23R, 
CCL20, and CCR6, are regulated by both RORγt and RORα4.

In addition to the function of RORα4 in Th17 cells, RORα has important roles in 
several other immune cells (see Fig.  14.1). RORα is important for lymphocyte 
development, and both T- and B-cell developments are abnormal in RORα-deficient 
mice [37]. RORα is highly expressed in CD4+ and CD8+ lymphocytes, while DP 
thymocytes are almost completely absent in the thymus of RORα-deficient mice. 
RORα is also critical for the development of ILC2s, which produce IL-5, IL-9, and 
IL-13 [171]. These cells have an important protective role in the innate response to 
helminth parasites and in the immunopathology of asthma and other allergy-related 
pathologies. In addition, RORα regulates inflammatory responses in macrophages. 
Stimulation of RORα-deficient macrophages with lipopolysaccharide (LPS) was 
reported to induce hyperexpression of several pro-inflammatory cytokines, includ-
ing IL-1β and TNFα [93]. Subsequent studies reported that RORα promotes M2 
polarization of macrophages [61, 172].
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14.3  RORs and Autoimmune Disease

Together, these studies revealed that RORα and RORγ have many critical functions 
in the immune system and control the development and function of various immune 
cells that play a crucial role in the pathogenesis of autoimmune and several other 
inflammatory diseases. Autoimmune and allergic inflammatory diseases are com-
plex diseases that involve genetic and environmental factors. In addition, a variety 
of different immune cells, particularly the IL-17-secreting Th17, ILC3, and γδ T 
cells, but also ILC2 and Th1/2 responses, have been reported to play a critical 
pathogenic role in these diseases [85, 110]. The extent to which various immune 
cells participate in the immunopathology varies among different autoimmune dis-
eases. Studies demonstrating that following: (1) neutralizing anti-IL-17 antibodies 
ameliorate autoimmune inflammation [11, 101, 111]; (2) RORγt, and to a lesser 
extent RORα, is critical for the generation of these cells and the production of pro- 
inflammatory cytokines, including IL-17; (3) RORα- and RORγ-deficient mice 
show a reduced susceptibility against several inflammatory diseases in several 
experimental autoimmune and allergic inflammatory disease models [16, 28, 75, 78, 
80, 157, 178]; and (4) the discovery that RORs function as ligand-dependent tran-
scription factors [86, 87, 150] suggested that inhibition of ROR activity by ROR 
(inverse) agonists could potentially provide new strategies in the treatment of these 
pathologies. Subsequently, these observations induced a strong interest in develop-
ing chemical ligands that inhibit ROR activity. Most studies have been focusing on 
the identification of RORγt inverse agonists that inhibit pro-inflammatory responses 
by IL-17-producing immune cells and that might be potentially useful in the man-
agement of autoimmune disease.

Digoxin and its synthetic derivatives, 20,22-dihydrodigoxin-21,23-diol and 
digoxin-21-salicylidene, ursolic acid, and SR1001 were among the first small mol-
ecules reported to inhibit RORγ activity [71, 145, 175] (see Fig. 14.2a). Digoxin and 
ursolic acid are RORγ selective, where SR1001 inhibited both RORα and RORγ 
activity. Subsequently, many additional inverse agonists were identified [13, 43, 44, 
48, 50, 63, 80, 83, 94, 134, 148, 153, 165]. Many of these inverse agonists were 
shown to inhibit Th17 differentiation, repress the transcriptional activation of the 
IL17 promoter by RORγ and the production of IL-17, and alleviate inflammatory 
responses in experimental mouse models of autoimmune disease. Moreover, they 
inhibited the interaction of RORγ with coactivator peptides and facilitated its inter-
action with corepressor peptides, suggesting that they function as RORγ inverse 
agonists. Crystal structure analysis, molecular modeling, and differential hydrogen-
deuterium exchange mass spectrometry (HDX-MS) analysis of the RORγ(LBD)-
inverse agonist interactions indicated that many of them bound the ligand-binding 
pocket of the RORγ(LBD) [13, 84, 86, 87, 102, 119, 141, 145, 155, 164]. Some 
inverse agonists, such as GSK805, do not alter significantly the interaction of RORγ 
with ROREs in target genes, while others moderately (e.g., TMP778) or signifi-
cantly (e.g., TMP920) alter the binding to genomic RORγ target sites [173](see 
Fig. 14.2b). Recently, several other studies reported on alternative modes of action 
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of RORγ antagonists. The inverse antagonistic effect of MRL-871 was shown to be 
mediated through an allosteric interaction with RORγ(LBD) and a different helix 12 
conformational change [132](see Fig. 14.2b). Another study identified two addi-
tional types of RORγ inverse agonists, referred to as “short” and “long” biaryl 
amides (see Fig. 14.3a); the “short” amide stimulates corepressor peptide binding 
and blocks coactivator peptide binding, while the “long” amide prevents binding of 

Fig. 14.2 Chemical structures of several RORγ inverse agonists. (a) Digoxin [71], SR1001 
(RORα and RORγ inverse agonist) and SR2211 [91], and ursolic acid [175]. (b) GSK805 [163], 
TMP778 and TMP920 [173], and MRL-871 [132]

Fig. 14.3 “Short” and “long” biaryl amides [164]. The “short” amide stimulates corepressor pep-
tide binding and blocks coactivator binding, while the “long” amide prevents binding of both. (b) 
A small change in chemical structure of a sulfonamide can determine whether it functions as an 
agonist or antagonist [125]
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both [164]. Small changes in the chemical structure of oxysterols or synthetic RORγ 
ligands have been reported to determine whether they act as inverse agonists as 
shown for two sulfonamides in Fig. 14.3b [125].

14.4  Vitamin D3, VDR, and RORs

Recent studies showed that vitamin D, but particularly iCYP11A1-derived vitamin 
D3 hydroxyderivatives, can function as weak inverse agonists for both RORα and 
RORγ [81, 135, 138, 141]. Vitamin D3 (D3) is formed via the photochemical and 
thermal transformation of 7-dehydrocholesterol (7DHC) by ultraviolet B radiation 
[67]. Prolonged exposure to UVB leads to production of lumisterol (L3)[162]. D3 
is hydroxylated by CYP2R1/CYP27A1 and subsequently by CYP27B1 to generate 
the biologically active 1,25(OH)2D3, which functions as an agonist of the vitamin D 
receptor (VDR) (see Fig. 14.4). 1,25(OH)2D3 is inactivated by hydroxylation at 
C24 by CYP24A1 and further shortening of the side chain [158]. D3 can also be 
hydroxylated by CYP11A1 generating a series of additional hydroxylated D3 
metabolites, including, but not limited to, 20(OH)D3, 22(OH)D3, 20,23(OH)2D3, 
20,22(OH)2D3, and 17,20,23(OH)3D3, with a main product and precursor molecule 
being 20(OH)D3 [140, 158](see Fig.  14.4a, b). These intermediates can also be 
hydroxylated by other CYPs, including CYP27B1, to produce wide range of vita-
min D3 hydroxyderivatives [137, 140, 158]. Lumisterol (L3), a product of photoi-
somerization of pre-vitamin D3, can also be further hydroxylated by CYP11A1, 
producing several hydroxylated derivatives, including 20(OH)L3, 22(OH)L3, and 
20,22(OH)2L3 [138](see Fig. 14.4a, b). D3 and L3 hydroxyderivatives are able to 
inhibit RORE-dependent transactivation by RORγ and the recruitment of a coacti-
vator peptide in TR-FRET and reporter assays [138, 141]. In addition, they inhibit 
ROR-mediated activation of the RORα/γ target gene promoter, Bmal1, and the 
RORγ target gene promoters, G6pase and the Il17 [138, 139, 141]. Molecular mod-
eling of the interaction of the RORα(LBD) and RORγ(LBD) with hydroxylated D3 
and L3 derivatives showed good docking scores, suggesting favorable binding 
[139]. These studies demonstrate that hydroxy D3 and L3 derivatives can function 
as inverse agonists for RORα and RORγ and suggest that these nuclear receptors 
provide an alternative mechanism by which vitamin D3 and its derivatives can mod-
ulate gene expression and cell functions, and possibly various diseases. The anti- 
inflammatory action of vitamin D3 and its role in autoimmune disease risk and 
treatment is well established [17, 136, 142, 177]. Thus, the RORγt antagonistic 
effects of hydroxylated D3 and L3 metabolites and the effects of 1,25(OH)2D3 on 
Th17 and Treg lineages might synergistically reduce inflammatory effects in several 
inflammatory diseases [120, 135, 137](see Fig. 14.4a).
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Fig. 14.4 (a) Hydroxylated vitamin D3 derivatives through either VDR (1,25(OH)2D3) or RORγ 
(e.g., 20(OH)D3, 20,23(OH)2D3, 20(OH)L3) act cooperatively, inhibiting inflammation and 
improving inflammatory disease by reducing Th17 cell generation and function. (b) Structures of 
vitamin D3: 1,25(OH)2D3, 20(OH)D3, 20,23(OH)2D3, and 20(OH)L3
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14.5  Multiple Sclerosis (MS)

MS is an inflammatory autoimmune disease of the central nervous system (CNS). 
IL-17-secreting immune cells play a critical role in this disease [110]. Experimental 
autoimmune encephalomyelitis (EAE) shares multiple features with MS and has 
served as animal model of MS. RORγ-deficient mice exhibit a significantly reduced 
susceptibility to EAE, while RORα deficiency was less protective, and RORγ/RORα 
double knockout mice were completely protected against EAE [75, 178]. Digoxin 
and several of its derivatives, ursolic acid, and SR1001 were among the first RORγt 
inverse agonists shown to effectively suppress the clinical severity of EAE in mice 
[47, 71, 145, 166, 175]. Subsequent studies in administration of other RORγ inverse 
agonists, including GSK805, demonstrated that they could efficiently ameliorate 
the severity of EAE [173]. This protection is likely due to the inhibition of pro- 
inflammatory cytokine synthesis by IL-17-producing cells.

14.6  Psoriasis

Psoriasis is an autoimmune disease that affects the skin and is often associated with 
psoriatic arthritis affecting the joints. Psoriasis vulgaris is the most common form of 
this disease that is characterized by inflammation, hyperproliferation, and aberrant 
differentiation of epidermal keratinocytes, resulting in thickening of the epidermis 
[56]. Keratinocytes and several different immune cells, each producing various 
cytokines, are all involved in the development and progression of psoriasis. Psoriatic 
lesions are characteristically associated with infiltration of lymphocytes, macro-
phages, and neutrophils into the skin. RORγt+ and IL17-producing cells, including 
Th17, ILC3, Tc17, and γδ T cells, play a critical role in this disease. Cytokines, such 
as IL-17 and IL-22 produced by IL-17-producing cells, stimulate epidermal kerati-
nocyte proliferation, while production of IL-23 further stimulates Th17 cells and 
maintains chronic inflammation. Gene expression profiling analysis showed that 
IL-17A induces many changes in gene expression in epidermal keratinocytes, 
including increased cholesterol biosynthetic genes [161]. This increase in choles-
terol biosynthesis promotes RORγt activation and NFκB-mediated activation of 
several chemokines in keratinocytes and stimulates the recruitment of neutrophils. 
The critical role of IL-17 and IL-23 in psoriasis is supported by clinical data show-
ing that monoclonal antibodies against IL-17A, IL23, and the IL17 receptor (e.g., 
secukinumab, brodalumab, and guselkumab) alleviate the severity of psoriasis and 
psoriatic arthritis [11, 101, 111].

RORγ-deficient mice were shown to be resistant to IL-23-induced skin inflam-
mation, suggesting that inhibition of RORγ activity might do the same [156]. 
Several RORγ-selective inverse agonists (e.g., GSK2981278, A213, JNJ-54271074, 
S18-000003, BIO-0554019, Cpd A, Cpd 1, AZD-0284, VTP-938)(see Fig.  14.5) 
have been reported to inhibit the expression of IL-17A/F and IL22 in CD4+ T cells 
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as well as [40, 58, 74, 143, 156, 168, 176]. Cpd A was shown to inhibit the induction 
of IL-17-dependent genes, such as defensin 2, in cultured keratinocytes and human 
skin biopsies [40]. Topical application of GSK2981278 imiquimod-induced mouse 
model of psoriasis inhibits the expression of pro-inflammatory cytokines in skin 
explants obtained from biopsies of psoriatic patients [143]. However, a phase 1 trial 
showed that topical treatment did not result in any improvement of psoriatic lesions 
[89]. Oral treatment with JNJ-54271074 significantly diminished skin inflammation 
in an IL-23 psoriasis-like mouse model [176]. In a separate study, oral administra-
tion of the RORγ antagonist A213 or topical treatment with S18-000003 attenuated 
skin inflammation in two mouse models of psoriasis: K5.Stat3C mice and mice 
injected with IL-23 [74, 156]. This was accompanied with a reduction in IL-17- 
producing Th17, Tc17, and γδ T cells. Similarly, oral treatment with the RORγ 
inverse agonist, BMS-986251, greatly reduced skin thickness and the production of 
IL-17  in IL-23- and imiquimod-induced skin inflammation in mice [27]. 
Intraperitoneal injection of BIO-0554019 reduced blood IL-17 levels in mouse after 
IL-1β/IL-23 challenge and attenuated imiquimod-induced skin inflammation [12], 
while the RORα/γ inverse agonist SR1001 suppressed inflammation in mouse mod-
els of atopic dermatitis, likely by targeting cells important in this disease, 

Fig. 14.5 Chemical structures of several RORγ inverse agonists reported to alleviate autoimmune 
disease in animal models. GSK2981278 [143], A213 [156], JNJ-54271074 [176], S18-000003 
[74], BIO-0554019 [12], VTP-938 [168], Cpd A [40], Cpd 1 [58], AZD-0284 [8], and 
TAK-828F [72]
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particularly Th2 and ILC2 cells as well as Th17 cells [30, 68]. Another study 
reported that Cpd 1 delayed methylated bovine serum albumin (BSA)-induced 
hypersensitivity (DTH) responses in female Lewis rats [58]. However, prolonged 
treatment with Cpd 1 caused accelerated apoptosis in thymocytes and preneoplastic 
thymic hyperplasia.

Together, these studies suggested that RORα/γ inverse agonist might be a useful 
approach in treating skin inflammatory diseases. A number of additional RORγ 
inverse agonists, generated by several pharmaceutical companies, have been or are 
being tested for their clinical efficacy in treating psoriasis and potential side effects 
(for details see [20, 22, 49, 153]). Although several clinical trials with RORγ inverse 
agonists have been abandoned due to toxic side effects, several new inverse agonists 
show promise [8, 50, 148, 153]. For example, a recent phase I clinical trial reported 
that inverse agonist AZD-0284 (see Fig. 14.5) reduced IL-17A and was well-toler-
ated [8]. RORγ-deficient mice and treatment with several RORγ inverse agonists 
have been shown to increase the risk of lymphoma development [58, 103, 160]; 
however, recently, RORγ inverse agonists, including S18-000003, have been identi-
fied that do not show dysregulation of CD4CD8 double-positive thymocytes and not 
to increase cancer risk in topically treated mice, even at a high dose [74]. Currently, 
several RORγ inverse agonists are at different stages in clinical trials (for review 
see [153]).

14.7  Role of RORα in Cardiac Injury and Heart Failure

Little is known about the roles of RORβ and RORγ in the heart; however, recent 
studies have indicated that RORα has an important cardioprotective function. 
RORα-deficient mice developed exaggerated pathological ventricular remodeling 
and heart failure after chronic infusion of angiotensin II (Ang II), a commonly used 
model of neurohormonal induction of heart injury [16]. Compared to WT litter-
mates, the hearts of Ang II-infused RORα-deficient mice exhibited more pathologi-
cal cardiomyocyte hypertrophy, fibrosis, energy depletion, and inflammation. 
Another study reported that RORα protected against heart injury in myocardial 
ischemia/reperfusion and diabetic cardiomyopathy models [62, 174]. The absence 
of functional RORα also facilitated activation of critical pro-inflammatory IL-6 and 
NFκB pathways. RORα protein expression is significantly decreased in failing heart 
tissue [16, 174]. Together, these studies suggest that RORα has a protective role in 
the development of heart failure.

The heart consumes more ATP than any other organ by virtue of the requirement 
for constant cardiomyocyte contraction and relaxation. Much of this ATP is pro-
duced by oxidative respiration in the mitochondrial electron transport chain, using 
fatty acids as substrate, though cardiomyocytes are capable of adaptive switching in 
substrate utilization to favor glucose or ketones [31]. The metabolic profile of the 
failing heart is characterized by progressive decreases in myocardial fatty acid 
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oxidation and mitochondrial respiration, resulting in energy deprivation and oxida-
tive stress [116, 182]. As such, maintenance of a large and optimally functional pool 
of mitochondria through careful orchestration of mitochondrial biogenesis and the 
clearance of dysfunctional mitochondria is critical [124]. RORα-deficient hearts 
contain less ATP and more reactive oxygen species than WT littermates, and in vitro 
knockdown of RORα with lentiviral shRNA in primary neonatal rat ventricular 
myocytes (NRVMs) recapitulates these in vivo findings [16]. Furthermore, lentivi-
ral knockdown of RORα in NRVMs resulted in decreased citrate synthase activity 
and a marked reduction in mitochondrial membrane potential, indicating a reduc-
tion in viable mitochondria [15]. Basal increase in oxidative stress is exacerbated in 
the setting of in vivo heart injury induced by either diabetes or ischemia-reperfusion 
and is accompanied by activation of mitochondria-mediated apoptosis [92, 180]. 
Although the mechanisms underlying the protective function of RORα in heart fail-
ure still need to be determined, regulation of mitochondrial quality via mitophagy 
appears to be part of this process [16, 62, 181].

In addition to mitochondrial dysfunction, myocardial inflammation also plays a 
critical role in heart failure [46, 60]. This includes production of pro-inflammatory 
mediators by cardiomyocytes and activation of various pro-inflammatory immune 
cells, including RORα+ macrophages and RORα+RORγ+ Th17 cells [28, 172]. Thus, 
suppression of cardiac inflammatory responses might play an important role in the 
cardiac protection by RORα (see Fig.  14.6). Data showing NFκB activation and 
markedly elevated IL-6 and STAT3 levels in the hearts of RORα-deficient mice 
exposed to chronic angiotensin II are consistent with this hypothesis [16]. In vitro 
studies using NRVMs revealed that RORα knockdown led to greater IL-6 release 
whereas RORα overexpression suppressed IL-6 release. The expression of Il6 was 
shown to be under direct transcriptional control of RORα. Collectively these find-
ings showed that cardiomyocyte RORα suppresses pro-inflammatory responses 
after cardiac injury and is consistent with a report demonstrating that RORα- 
deficient mice exhibit increased susceptibility to lipopolysaccharide-induced lung 
inflammation [147]. In addition to the critical role of RORα in regulating myocar-
dial inflammation, RORγ might also have a role in myocardial Inflammation by 
regulating Th17 cell differentiation and IL-17 production, which contribute to path-
ological remodeling and heart failure in several contexts. Interestingly, digoxin, 
which is used to treat heart failure but also functions as a RORγ inverse agonist [71], 
is potentially supporting a role for RORγ in the regulation of Th17-mediated cardiac 
inflammation [55].

The protective effect of RORα in the development of heart failure suggested that 
RORα agonists might have a beneficial effect in injured and failing cardiomyocytes. 
This possibility was supported by data demonstrating that the RORα agonist, 
SR1078, promoted autophagy whereas the RORα inverse agonist, SR3335, sup-
pressed autophagy in cardiomyocytes [15]. The expression of classical autophagy 
mediators was increased by SR1078 and decreased by SR3335. Together, these 
findings support a cardioprotective role for RORα (see Fig. 14.6) and suggest that 
RORα agonists might offer a novel strategy for treating heart failure.
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Fig. 14.6 RORα has a protective role in heart failure. RORα inhibits the expression of pro-inflam-
matory genes (e.g., Il6, Tnfa) and upregulates the expression of genes that play a role in mitochon-
dria biogenesis and autophagosome formation. RORα inhibits the production of reactive oxygen 
species (ROS) and maintains the electron transport chain (ETC) function and β fatty acid oxidation 
in mitochondria. RORα agonist, SR1078, stimulates and RORα inverse agonist, SR3335, inhibits 
these functions. RORα appears to protect against heart failure by inhibiting the production of pro-
inflammatory cytokines and damage- associated molecular patterns (DAMPs)

14.8  RORs in Asthma and Acute Respiratory Distress 
Syndrome (ARDS)

Asthma is a complex and heterogeneous allergic respiratory disease that involves 
cooperation of environmental and genetic factors and involves innate and adaptive 
immune responses and various immune cells, including several IL-17-producing 
cells, ILC2, Th2, and neutrophils [66, 85]. Asthma has been divided into several 
subtypes that includes steroid-sensitive and steroid-insensitive allergic lung inflam-
mation. A recent study indicated that RORγt may be an important factor in deter-
mining the subtype of asthmatic airway inflammation [5]. This report revealed that 
inflammation in OVA-sensitized/challenged RORγt-overexpressing mice is a 
steroid- insensitive form of neutrophilic inflammation associated with Th17 cells 
and IL-17. The latter was supported by data showing that anti-IL17 antibodies alle-
viated allergic lung inflammation in these mice, suggesting that targeting the Th17 
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pathway might be useful in the treatment of this pathology. Oral administration of 
the RORγ-selective inverse agonist VTP-938 (see Fig. 14.5) attenuated Th17 devel-
opment in lung draining lymph nodes and production of IL-17 in the airways in a 
house dust extract model of asthma [168]. This was accompanied with a reduction 
in neutrophilic inflammation and airway hyperresponsiveness. These observations 
suggest that RORγ inverse agonists may provide a novel strategy in the management 
of (steroid-insensitive) asthma.

ARDS is a major cause of acute respiratory failure. The expressions of RORγt 
and its coactivator, histone acetyltransferase p300, were found to be elevated in 
peripheral blood mononuclear cells (PBMCs) from patients with ARDS [26]. 
Inhibition of p300 reduced RORγ expression and IL-17 production. 
Lipopolysaccharide-induced acute lung injury in mice significantly increased p300 
and RORγt mRNA expression. Treatment with RORγ inverse agonists might be use-
ful in reducing lung tissue inflammation and lung injury.

RORα also plays a role in lung inflammatory disease. Recent studies reported an 
association between single-nucleotide polymorphisms in RORA and increased 
asthma risk [1, 104]. RORA variants have also been found to be associated with 
chronic obstructive pulmonary disease [179]. RORα-deficient mice were shown to 
exhibit an attenuated allergic airway response, as indicated by reduced induction of 
several inflammatory chemo- and cytokines, suggesting a pro-inflammatory role of 
RORα [78]. This was supported by a study indicating that ILC2-deficient mice, 
obtained by transplantation of RORα-deficient bone marrow, failed to develop lung 
inflammation in response to protease allergens [60]. In contrast, RORα-deficient 
mice were shown to be more susceptible to lipopolysaccharide (LPS)-induced air-
way inflammation, suggesting that RORα has a protective role under these condi-
tions [147]. These studies suggest that RORα (inverse) agonists by targeting RORα+ 
Th2 and ILC2 cells might be useful in the management of inflammatory lung dis-
ease [18, 60, 85, 171].

14.9  Rheumatoid Arthritis

Rheumatoid arthritis is an autoimmune disorder that involves chronic inflammation 
of the joints. The balance between Th17 and Treg cells plays a critical role in this 
pathology. Intraperitoneal injection of the RORγ inverse agonist, SR2111 (see 
Fig. 14.1), diminishes joint swelling in a collagen-induced arthritis mouse model 
[25]. Similarly, oral administration of the inverse agonist, JNJ-54271074 (see 
Fig.  14.5, was shown to decrease arthritic scores in a mouse collagen-induced 
arthritis model and inhibit IL-17A synthesis in PBMCs from rheumatoid arthritis 
patients [176]. The RORγ inhibitors, MRL-248 and MRL-367, were also reported 
to suppress secretion of IL-17A in PBMCs from patients with rheumatoid arthritis 
[32]. Oral treatment with the RORγt inverse agonist, Cpd 1, reduced joint swelling 
in antigen-induced arthritis in rats and caused a decrease in the number of 
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IL-17- producing cells [57]. Oral administration of N-(5-(arylcarbonyl)thiazol-2-yl)
amide RORγt antagonists were described to diminish collagen-induced arthritis in 
mice [165].

14.10  Sjögren’s Syndrome (SS)

Sjögren’s syndrome is a chronic autoimmune disease characterized by IL-17 and 
infiltration of Th17 lymphocytes into the salivary and lacrimal glands and increased 
levels of pro-inflammatory cytokines, including IL-17, IL-23, and IL-6. T-cell- 
specific RORγt-transgenic mice under human CD2 promoter (RORγt-Tg mice) 
developed severe spontaneous inflammation of the salivary glands (SS-like sialad-
enitis) [73]. Oral administration of the RORγ inverse agonist A213 to RORγt-Tg 
mice significantly improved SS-like sialadenitis [118]. In addition, the infiltration 
of inflammatory cells and level of pro-inflammatory cytokines were reduced, while 
salivary volume was increased. A recent study provided evidence that RORα may 
also have a role in SS [167]. These findings suggest that RORγ, and possible RORα, 
inverse agonists might be a useful therapeutic approach for SS.

14.11  Inflammatory Bowel Disease (IBD)

IBD comprises two chronic inflammatory conditions of the gastrointestinal tract: 
Crohn’s disease and colitis. Chronic enteric bacterial infection causes severe intes-
tinal inflammation and fibrosis and serves as a mouse model for Crohn’s disease. 
Mice transplanted with bone marrow derived from RORα-deficient mice are pro-
tected against Salmonella-induced fibrosis [108]. Although RORα is expressed in 
ILC2s, this pathology appears to be driven by IL-17 and IL-22 produced by ILC3s. 
These pro-inflammatory cytokines are reduced in the RORα-deficient mice. The 
authors concluded that RORα preserves ILC3 fate under inflammatory conditions 
[107]. Th17 and IL-17 are critical in IBD pathogenesis. This was supported by a 
report showing that, in contrast to wild-type T cells, transfer of RORγ-deficient T 
cells into RAG1-null mice failed to increase mucosal IL-17 cytokine levels and did 
not induce colitis [99]. Moreover, temporal deletion of RORγt in Th17 cells reduced 
intestinal inflammation in two mouse IBD models [170]. These studies suggested 
that inverse agonists of RORα and/or RORγ might be effective in the treatment of 
IBD. This was supported by studies showing that treatment with RORγ inverse ago-
nists, BMS336, GSK805, Bi119, VPR-254, and TAK-828F (see Figs.  14.2b and 
14.5), diminishes the severity of IBD in several mouse models of IBD as indicated 
by improved histopathology and reduced colonic pro-inflammatory cytokine levels 
[14, 45, 72, 152, 170]. Moreover, RORγ inverse agonists decreased the expression 
of Th17-related genes, such as Il17 and Il22, in microbial-stimulated peripheral 
blood mononuclear cells (PBMCs) and in cultured colon biopsies obtained from 
IBD patients.

14 Retinoic Acid-Related Orphan Receptor (ROR) Inverse Agonists: Potential…



364

14.12  RORβ

RORB generates two isoforms, RORβ1 and RORβ2, that are under the control of 
two different promoters [23, 105, 115, 131]. RORβ1 is expressed in many tissues, 
including several regions of the brain, retina, and testis. Expression of RORβ2 is 
more restricted and primarily expressed in the pineal gland and retina. In the brain, 
RORβ is expressed in several regions that process sensory and circadian informa-
tion, including the suprachiasmatic nuclei (SCN) and pineal gland, both of which 
play a central role in coordinating the regulation of the circadian rhythmicity of 
physiological processes in many tissues.

Study of RORβ-deficient mice revealed that RORβ plays an important role in the 
regulation of many biological processes, including vision, locomotion, osteogene-
sis, male fertility, and circadian behavior [3, 9, 105, 127, 131] . RORβ-deficient 
mice exhibit loss of visual function due to retinal degeneration [3]. It is expressed in 
several retinal subpopulations and plays an essential role in the development of 
amacrine and horizontal cells, the interneurons that integrate the visual information 
transmitted from the photoreceptors to the optic nerve [19, 82, 105, 106].

RORβ regulates cytoarchitectural patterning, the neuronal positioning in several 
regions of the brain, and RORβ-deficient mice exhibit a duck-like gait that has been 
recently linked to dysfunction of dorsal spinal cord inhibitory neurons, which are 
needed to ensure a smooth walking gait. RORβ is expressed in inhibitory neurons 
and selective RORβ knockout in inhibitory PAX2+ and spinal inhibitory neurons 
results in a strong duck gait phenotype. These studies indicated that the RORβ 
mutant locomotor gait deficit is due to reduced presynaptic inhibition and changes 
to sensory- mediated reflexes [3, 33, 90, 169]. RORβ is also expressed in the sensory 
areas of the cerebral cortex (in certain thalamic nuclei and neurons of layer IV), 
important in perception, cognition, and other processes, and in the superior collicu-
lus in the midbrain that is important in orienting behaviors and defense responses 
[21, 77, 105, 117].

RORB mutations and variants have been implicated in a number of neurological 
and psychiatric disorders, including bipolar disorder, epilepsy, autism, and schizo-
phrenia [10, 19, 29, 41, 52, 59, 97, 98, 128, 129, 151, 159]. In addition, variants in 
RORA and RORB have been associated with sleep disorders that may involve altera-
tions in circadian behavior. Abnormal sleep cycle has been linked to increased risk 
of several diseases, including obesity, cancer, and several psychiatric disorders 
[69, 100].

RORβ also plays a critical role in the regulation of osteoblast differentiation [6, 
42, 126, 127]. RORβ is highly expressed in osteoblast precursors and becomes 
downregulated during osteoblast differentiation. The expression of RORβ during 
osteogenesis was found to be controlled by miR-219a-5p [6]. RORβ-deficiency pro-
motes osteogenesis and preserves bone mass during aging and is shown to involve 
β-catenin-dependent activation of the Wnt signaling pathway [42]. In contrast, 
RORβ overexpression in MC3T3-ME cells and increased RORβ expression in the 
bone during aging were associated with reduced osteogenesis [6, 42, 127]. Therefore, 
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the observed bone loss in postmenopausal women might be in part due to the 
increased RORβ expression. Together, these studies indicate that RORβ functions as 
a repressor of osteogenesis and suggest that inhibition of RORβ by inverse agonists 
might potentially provide a therapeutic target to treat age-associated bone loss.

RORβ-deficient mice have further been reported to exhibit a transient male infer-
tility. RORβ was shown to be expressed in Leydig cells, where it might be involved 
in the circadian regulation of gene expression [9]. This may be related to the tran-
sient infertility.

14.13  Therapeutic Potential of RORβ Ligands

X-ray crystallography analyzing the structure of RORβ(LBD) complexed with a 
coactivator peptide provided the first indication that RORβ also functions as a 
ligand-dependent transcription factor. This study found stearate bound to the RORβ 
ligand-binding pocket [149]. A subsequent study identified all-trans-retinoic acid 
and the synthetic analog ALRT 1550 as low-affinity functional inverse agonists 
[150] (Fig. 14.7a). Several N-(5-(arylcarbonyl)thiazol-2-yl)amides that act as potent 
RORγ inverse agonists, were found to exhibit also a high affinity for RORβ, but not 
RORα, suggesting that they function as dual RORβ/RORγ inverse agonists [51, 

Fig. 14.7 Structures of RORβ inverse agonists. (a) All-trans-retinoic acid (at-RA) and RA deriva-
tive ALTR 1550 [150]. (b) Dual RORβ/RORγ inverse agonist [51]. (c) RORβ-selective inverse 
agonists [35, 121]
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121] (see Fig. 14.7b). Subsequently, several aminothiazoles and aminothiophenes 
were identified as effective RORβ-selective inverse agonists [35, 121] (Fig. 14.7c). 
These studies are opening the door for the discovery of additional RORβ-selective 
(inverse) agonists that might be potentially useful in the management of osteoporo-
sis and psychiatric disorders. For example, treatment with RORβ inverse agonists 
might prevent or reverse age-induced osteoporosis. In addition, RORβ-selective 
ligands might potentially provide new strategies in the management of several neu-
rological and psychiatric disorders, including bipolar disorder, epilepsy, autism, and 
schizophrenia.
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Chapter 15
Therapeutic Strategies to Target Activating 
Estrogen Receptor α Mutations

Kristine Donahue and Wei Xu

Abstract Breast cancer is a hormone-dependent disease. Despite great strides, 
estrogen receptor α (ER)-positive breast cancer remains a challenging disease. 
About 60–70% of breast cancers are ER positive, which is predictive of response to 
endocrine therapies, including selective estrogen receptor modulators (SERMs) and 
selective estrogen receptor degraders (SERDs). However, many patients will still 
develop therapeutic resistance. One mechanism of resistance is the development of 
gain-of-function mutations in the ligand-binding domain (LBD) of ER. Mutant ER 
exhibits ligand-independent, pro-metastatic activity, and higher concentrations of 
antiestrogens are required to inhibit its activity. Fulvestrant, currently the only FDA- 
approved SERD, possesses dose-limiting pharmacological properties and promotes 
only partial degradation of ER. New orally bioavailable SERMs and SERDs are 
being developed to overcome the shortcomings of current mainstay treatments but 
are challenging classes of drug to develop. Taking a ligand-binding domain- 
independent approach by modulating molecular chaperones and E3 ligases that con-
trol ER stability could be an alternative approach to circumvent endocrine resistance 
and could also be used to target additional oncogenic drivers in mutant ER tumors.
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15.1  Introduction

In 2019, breast cancer was the most commonly diagnosed cancer in the USA [1]. It 
is a heterogeneous disease and can be subclassified based on expression, or lack of 
expression, of different classes of receptors. About 60–70% of breast cancers are 
luminal tumors, which arise from the luminal cells of the mammary duct. They 
express estrogen receptor α (ERα or ER) and can be subgrouped into luminal A and 
luminal B tumors. Luminal B tumors express high levels of Ki67 and can also 
express human epidermal growth factor receptor 2 (HER2). In luminal A tumors, 
tumor growth is driven primarily by estrogen and ER. Even before the discovery of 
estrogenic hormones produced in the ovary (1923) [2] and ER (1958) [3, 4], as well 
as the cloning of ER (1986) [5, 6], it was recognized that endocrine ablation through 
oophorectomy, first performed in 1895, could lead to regression of some breast 
tumors [7]. The ER is a nuclear receptor and ligand-activated transcription factor 
encoded by ESR1 and is responsible for sensing and mediating the effects of its 
ligand, estrogens. In humans, estrogens are produced throughout life, with 
17β-estradiol (E2) being the most potent and predominant circulating estrogen, par-
ticularly during the reproductive years. Estrogen signaling and ER are important 
regulators of diverse functions, including the normal development of mammary 
glands and reproductive tissues as well as inflammation, bone density, cognitive 
function, and cholesterol homeostasis. As a result, dysregulation can lead to a vari-
ety of disease states.

15.2  ER Structure

Full-length ER α protein is ~66KDa and has several domains. The intrinsically dis-
ordered N-terminal activation functional domain 1 (AF-1) is involved in ligand- 
independent activation (Fig. 15.1) [8, 9]. The structure of AF-1 remained elusive 
until recently due to its flexible and intrinsically disordered nature [10]. 
Phosphorylation in the AF-1 domain represents a major mechanism of ER activa-
tion [11]. Most notably, S118 can be phosphorylated [11] by cyclin-dependent 
kinase 7 (CDK7) in response to E2 stimulation [12] and by mitogen-activated pro-
tein kinase (MAPK) in response to the activation of growth factors [13–15].

The DNA-binding domain (DBD) contains zinc finger motifs, allowing ER to 
bind to estrogen response elements (EREs) within the genes it regulates [16, 17]. 
The hinge region of ER connects the DBD and ligand-binding domain (LBD) and 
contains a nuclear localization signal (NLS) [18] responsible for nuclear transloca-
tion. This region is subjected to a variety of posttranslational modifications. For 
example, lysine residues in the hinge domain can be acetylated, which fine-tunes 
and regulates the hormone and ligand responsiveness [18, 19], as well as sumoylated 
[20]. In addition, K302 and K303 can be polyubiquitinated, which is important for 
regulating receptor stability [21]. The LBD, which resides in activation functional 
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domain 2 (AF-2), is required for the interaction with endogenous estrogens, syn-
thetic ligands, and coactivators [22, 23].

15.3  ER Signaling Pathways

15.3.1  Ligand-Dependent Genomic Functions of ER

The canonical or genomic action of ER as a transcription factor involves the binding 
of endogenous ligand, such as E2, or synthetic ligands, to the LBD. This induces the 
C-terminal helix 12 to change to the agonistic conformation [22], leading to disso-
ciation of ER from the HSP90 chaperone complex [24], dimerization [25], and asso-
ciation with DNA motifs, such as EREs found in the promoter, enhancer, and 
intergenic regions of target genes [26]. Though the ERE consensus sequence is 
5′-GGTCAnnnTGACC-3′ [27], the actual sequence of many EREs can differ, 
resulting in changes to the binding affinity of the receptor to an ERE [28]. Some 
genes regulated by ER do not contain an ERE at all.

Once bound to an ERE, the complex interacts with coregulators, including co- 
repressors and coactivators which interact via their LXXLL motif [29], and epigen-
etic enzymes, to regulate the transcription of estrogen-responsive genes, some of 
which are important in tumor growth and survival. Posttranslational regulation pro-
motes the dissociation of the complex, and finally, ubiquitylation of ER induces its 
degradation by the 26S proteasome and results in either further transcriptional acti-
vation or silencing [30–32]. ER-coregulatory complexes can also be recruited by 
other transcription factors, such as AP-1 [33], SP-1 [34], and NF-kB [35, 36], to 
regulate transcription.

Fig. 15.1 Estrogen receptor protein domains and ESR1 mutations. Schematic of ER’s protein 
domains as well as the relative position of selected ESR1 point mutations found in clinical samples. 
The majority of ESR1 point mutations occur within the ligand-binding domain
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15.3.2  Ligand-Independent Genomic Functions of ER

Ligand-independent activation of ER is also well-documented. One mechanism is 
through receptor tyrosine kinases. Membrane receptor tyrosine kinases, such as 
EGFR, ERBB2 (HER2), and IGF1R, can activate kinase cascades that phosphory-
late serine and tyrosine residues in the AF-1 domain of ER. For example, ERBB2 
can trigger activation of MAP kinase ERK, which can phosphorylate ER at S118, 
resulting in ER transcriptional activation [37, 38].

15.3.3  Non-genomic Functions of ER

Many effects of estrogen that take place within seconds to minutes are too rapid to 
be explained by transcriptional and translational mechanisms, which can take hours 
to days. This rapid signaling can be mediated by membrane-associated ERs, which 
can account for ~5–10% of the total cellular ER [39], depending on the cell type. 
Palmitoylation of serine 522 and cysteine 447 on ER allows for association with 
caveolin 1 and for ER to be transported to the plasma membrane, where ER can 
modulate signaling cascades, including PI3K/AKT and MAPK/ERK [39].

15.4  A Brief History of Breast Cancer Treatment 
and the Discovery of Estrogen Receptor

In 1882, William Halstead began pioneering the radical mastectomy for breast can-
cer patients, which involved removal of cancerous breast tissue as well as the sur-
rounding tissue where cancer may have spread, including the pectoralis major and 
minor and axillary lymph nodes (Fig.  15.2) [40]. This certainly significantly 
improved local recurrence, but was a horribly disfiguring and brutal procedure, and 
ignored estrogen produced by the ovaries, a major contributor to breast cancer 
growth. Endocrine ablation through oophorectomy, first performed by George 
Beatson in 1895, had a significant advantage over radical mastectomy alone as it 
could lead to regression of some breast tumors, even those that were metastatic [7]. 
This is considered one of the earliest forms of endocrine therapy. However, Stanley 
Boyd observed that only one-third of patients responded to ovarian ablation [41], 
indicating that not all breast tumors were equally dependent on an unknown factor 
secreted from ovaries that drive tumor growth. This factor was later identified as 
estrogen [2].

Despite variable responses, oophorectomy was part of the standard of care until 
advances in surgery, radiotherapy, and chemotherapy. It was unclear how estrogens 
functioned and what mediated their effects until Elwood Jensen’s laboratory discov-
ered estrogen receptor in 1958. His lab demonstrated that tritiated estrogen was 
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bound and retained in estrogen-sensitive tissues such as the uterus and vagina in 
immature rats [3, 4]. Along with Elwood Jensen’s lab, Jack Gorski’s lab was also 
working to address this question, and was able to isolate and characterize estrogen 
receptor from rat uterine tissue [42]. These discoveries were particularly notable, 
given that the prevailing hypothesis at the time was that estrogens participated in 
enzymatic reactions to exert their effects [3, 4]. Unlike an enzyme, which funda-
mentally changes its substrates, steroid hormone receptors leave their ligands unal-
tered. It would take another 20 years before ER would be cloned and sequenced by 
Chambon and colleagues [5], Shine and colleagues [43], as well as Waterfield and 
colleagues [6]. Collectively, these discoveries laid the foundation for the idea that if 
some tumors are indeed dependent on estrogen and ER is necessary for estrogen 
stimulated growth, then identification of ER may be predictive of clinical outcome. 
This idea would revolutionize breast cancer treatment.

Jensen and colleagues showed in 1971 that breast cancers expressing high levels 
of ER were more likely to respond to endocrine ablation than those expressing low 
levels of ER [44]. Breast cancer task force data would corroborate this observation, 
showing 60% of ER-positive patients responded to endocrine ablation, whereas 
only 8% of ER-negative patients responded to the same treatment [3]. These find-
ings established ER as a predictive biomarker for response to endocrine therapy. 
However, even then, it was recognized that ER+ breast tumors were very heteroge-
nous, with some cells expressing ER while others did not, as seen by immunocyto-
chemistry [45, 46]. Around this time, Harper and Walpole at Imperial Chemical 
Industries (ICI) were investigating antiestrogens, not as anticancer agents, but rather 
as modulators of the reproductive system [47]. ICI 46,474, now known as tamoxi-
fen, was one of the more notable molecules developed because of its tolerability and 
potent antifertility properties in rats [3, 47]. Walpole encouraged V. Craig Jordan to 
investigate tamoxifen’s anticancer properties because tamoxifen had been shown to 

Fig. 15.2 Timeline of the History of Breast Cancer Treatment. Selected major milestones in the 
history of the treatment of breast cancer
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inhibit binding to tritiated estradiol of mouse and rat estrogen-sensitive tissues [3, 
48]. Jordan and colleagues showed that tamoxifen could not only inhibit the binding 
of tritiated estradiol to rat and mouse tumors [48, 49], and human tumors [50], but 
also inhibit tumor growth, and initiation of DMBA-induced rat mammary carcino-
genesis, establishing tamoxifen not only as an antineoplastic agent, but also as a 
chemopreventative for ER+ breast cancer [51]. This discovery laid the foundation 
for the approval of tamoxifen as a chemopreventative drug for breast cancer by 
the FDA.

15.5  ER-Based Therapy

Because luminal A tumors are highly dependent on the ER for growth, methods that 
either inhibit production of its ligand, such as aromatase inhibitors (AI), or antago-
nize the receptor directly, such as selective ER modulators (SERMs), are highly 
effective in the adjuvant setting (Fig. 15.3). E2, a potent ER agonist, binds ER via 
the LBD. SERMs like tamoxifen often compete with E2 for binding to the LBD, 
forcing ER into an antagonistic conformation and blocking ER-mediated transcrip-
tion [22, 32]. Tamoxifen, the first clinically approved SERM used in the adjuvant 
setting, is now primarily used to treat premenopausal breast cancer patients at low 
risk for recurrence with, or without, interventions to achieve ovarian suppression. 
Though tamoxifen competes with E2 and inhibits LBD-mediated coactivator 
recruitment, it can also promote activation of the AF-1 domain [52–54]. This results 
in weak agonist activity in some tissues (e.g., uterus), increasing the risk for other 
kinds of cancer, and incomplete ablation of ER transcriptional activity. Fulvestrant 
(Faslodex), on the other hand, a selective ER degrader (SERD) and pure antiestro-
gen, also directly antagonizes the ER and can promote degradation of ER through 
the 26S proteasome [55]. Fulvestrant is used as a second-line therapy in the recur-
rent and metastatic setting. Aromatase inhibitors, such as exemestane, anastrozole, 
and letrozole, stop estrogen biosynthesis, thereby preventing ER-mediated tran-
scription. AIs in the adjuvant setting are used as the frontline endocrine therapy in 
postmenopausal patients, or in high-risk premenopausal patients when combined 
with ovarian suppression. Recently, cyclin-dependent kinase (CDK) 4/6 inhibitors, 
such as palbociclib (Ibrance), have been approved for treating metastatic ER+ BC 
in combination with letrozole for advanced or metastatic breast cancer or in combi-
nation with fulvestrant in those previously treated with endocrine therapy [56].

15.6  ESR1 Mutations

ER+ tumors are typically associated with the most favorable prognosis, and the 
expression of ER indicates a more differentiated and luminal state. In addition, the 
expression of ER predicts response to endocrine therapies. However, approximately 
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25% of patients with primary disease, and almost all patients with metastatic dis-
ease, will eventually develop resistance to these therapies [57].

Several mechanisms of resistance have been reported, including loss of ER, 
increases in ER expression, gene fusions, bidirectional cross talk between ER and 
growth factor receptors, as well as aberrant activation of growth factor receptors and 
their downstream signaling cascades [58, 59]. This review will focus on one recently 
established mechanism of resistance in breast cancer patients treated previously 
with endocrine therapies is the development of hotspot missense mutations in the 
LBD of ESR1. These mutations were originally identified in the late 90’s, but 
because they were rarely found in primary tumors, they were largely ignored, until 
recently, when ER mutations were identified by deep sequencing of metastatic 

Fig. 15.3 Summary of the mechanism of action of various ER ligands. Binding of estrogen to the 
ER’s ligand-binding domain releases the ER from its chaperone protein. The ER can then homo- or 
heterodimerize and bind to EREs and recruit coregulators to regulate the transcription of ER target 
genes. Tamoxifen also binds to the ER via the ligand-binding domain. Tamoxifen transcriptionally 
represses the ER and prevents the recruitment of coactivators. Fulvestrant and other SERDs also 
bind to the ligand-binding domain, but slow receptor mobilization, and the ER is eventually 
degraded by the 26S proteasome. PROTACs link a moiety to recruit an E3 ligases as well as an ER 
ligand. When the ER ligand on the PROTAC binds to the ER, it brings the ER into close proximity 
of the recruited E3 ligase. The ER can then be polyubiquitinated and targeted for degradation by 
the 26S proteasome
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tumors [60–64]. These experiments identified “hotspot” ESR1 mutations in the of 
LBD in ~20–50% of metastatic breast cancers following endocrine therapy, depend-
ing on the study, cohort, and sequencing technology used [60–64]. Some hotspot 
mutations found in metastatic sites include the Y537S, Y537N, and D538G muta-
tions [60–64]. For a more detailed breakdown of the frequency of each mutation, 
and the specific methodologies used for each of the cohorts, the author directs read-
ers to other excellent reviews on the topic, Jeselsohn et al. 2015 [57] and Dustin 
et al. 2019 [65].

The D538G mutation has been shown to induce an increased migratory capacity 
in MCF7 cell models in 2D cell culture [60], and the D538G and Y537S mutations 
are associated with increased metastatic potential in vivo [66]. Moreover, the ESR1 
mutations are prognostic of poor outcomes in patients with metastatic disease [67, 
68]. ESR1 LBD mutations result in a constitutively active receptor. In addition, they 
have reduced ligand binding, including to E2 and fulvestrant [69–71]. Therefore, 
higher concentrations of antiestrogens are required to inhibit its activity [5, 7, 8, 
69–71]. For more detailed information on the structural underpinnings, as well as a 
detailed table of Kd measurements for ER and mutant ER to various ligands, see 
Fanning et al. 2016 [69] and Katzenellenbogen et al. 2018 [71]. Interestingly, not all 
LBD mutations are involved in hormone insensitivity. K303R (though technically at 
the interface of the LBD and hinge region) and E380Q result in estrogen hypersen-
sitivity [72, 73], and S432L and V534E are neutral mutations [72]. However, there 
are still many LBD missense mutations that have yet to be functionally character-
ized. Though ER mutations are not the primary drivers of carcinogenesis, under 
selective pressure, such as long-term antiestrogen therapy in a post-menopausal 
breast cancer patient, clonal expansion of rare mutants, or acquisition of de novo 
mutations, can lead to resistance [57].

Phenotypically, the wild type (WT) and mutant ER are distinct, and their struc-
tures help to explain their respective phenotypes. In WT ER-expressing cells, bind-
ing of agonists, such as E2, to ER changes the C-terminal helix 12 to the agonistic 
conformation [36, 74]. However, in ER LBD mutants, the helix 12 is maintained in 
the agonistic conformation, mimicking ER bound to estrogen [63, 69], even in the 
absence of ligand (Fig. 15.4). This may explain the hormone-independent activity 
of mutated receptors, and reduced efficacy of antiestrogens and ER antagonists.

Because of mutant ER’s ligand independent activity, many groups have found 
that coactivator recruitment is constitutive. Gates et al. found coactivators such as 
SRC1, SRC3, AIB1, p300, RNA polymerase II, KMT2C, and KMT2D were 
recruited by mutant ER, even in the absence of hormones [75]. Fanning et al. found 
that SRC3 did not bind to the WT ER α LBD in the absence of hormone [69]. 
However, the ER Y537S and ER D538G bound SRC3 in the absence of E2, albeit 
with reduced affinity as compared to E2-bound WT receptor [69]. Toy et al. found 
that compared to WT ER, the D538G mutant co-immunoprecipitated with a much 
higher amount of AIB1 [61], indicating that, in addition to constitutive coactivator 
recruitment, coactivator recruitment to mutant ER is enhanced compared to WT ER.

Despite structural similarities, the mutant ER does not simply behave like consti-
tutively active ligand-bound WT ER, but instead has its own unique phenotype. 
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Further, not all mutations are equivalent, and each mutation is distinct, and displays 
varying degrees of antiestrogen resistance. Several reports have shown that ER resi-
due Y537 (S and N) mutations are more resistant to antiestrogens than mutations at 
D538 [66, 70] and S463 [72]. This is also evidenced by coregulators with mutant 
selectivity for the Y537S mutant over the D538G mutant, and vice versa [75]. 
Jeselsohn et al. compared the transcriptomes of dox-inducible ER mutants Y537S, 
Y537N, and D538G in the absence of E2 with WT ER cells stimulated with E2 
using RNA-seq [66]. Based on their structural similarities, one would hypothesize 
that there would be large overlaps in their respective transcriptomes. However, only 
18% of the Y537S-induced genes, and 33% of the D538G-induced genes over-
lapped with the E2-induced genes in WT ER cells [66], indicating that many mutant 
ER-regulated genes in hormone-deprived conditions were unique. In addition, each 
mutant exhibits differing degrees of E2 independence. When examining the 

Fig. 15.4 Comparison of wild-type ER and mutant ER transcription. In the presence of E2, the ER 
can homodimerize and bind to chromatin to regulate the expression of estrogen-regulated genes, 
including GREB1, PGR, and MYC, some of which are important for normal development, as well 
as tumor growth and survival. However mutant ER can initiate transcription of estrogen-regulated 
genes, even in the absence of ligand, as well as ER mutant-specific regulated genes, which results 
in drug resistance and metastasis
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E2-regulated genes in the ER mutant cells, only 12 genes were upregulated by E2 in 
the Y537S mutant cells. In the D538G mutant cells, 416 genes were upregulated in 
response to E2, and 64% of these genes overlapped with the E2-induced genes in 
WT ER-expressing cells [66]. Analysis of patient derived xenograft (PDX) RNA- 
seq data and patient RNA-seq data confirmed the relevance of the cell line data, and 
demonstrated high correlation [66]. This indicates several points. The transcrip-
tional activity of these mutants is more E2-independent compared to the WT 
ER. Further, each ER mutant drives a unique transcriptional program, and even ER 
Y537S and ER D538G elicit distinct transcriptional differences [66].

Jeselsohn et al. also found that the mutant cistrome is indeed E2-independent 
using ChIP-seq, with the number of binding sites in the Y537S, Y537N, and D538G 
mutants correlating to the known resistance phenotype of each [66]. The Y537S 
mutant cells had the greatest number of binding sites, and D538G mutant cells had 
the fewest [66]. In addition, the ER binding sites gained in the presence of the muta-
tions occurred at transcriptionally active regions, and >30% of the super enhancers 
detected in the Y537S mutant cells, marked by acetylation of histone 3 lysine 27 
(H3K27ac), overlapped with the mutant gained binding sites [66]. However, no spe-
cific pioneer factors co-occupied these sites [66]. Motif analysis showed that the 
ERE motif was the most significantly enriched of all of the binding sites, indicative 
of direct ER binding among all receptors and treatment conditions [66]. There were 
many enriched motifs common to WT and mutant ER, including FOXA1, AP1, and 
GRHL2 [66]. FOXA1 was the second most enriched motif in the WT ER-selective 
binding sites, whereas ERE motifs were enriched in the Y537S and D538G selective 
motif sites [66]. The FOXA1 motif was not significantly enriched in the mutant- 
selective binding sites, suggesting that FOXA1 may be less essential for mutant- 
specific ER DNA binding [66]. Knockdown of FOXA1 did not significantly affect 
growth of mutant ER-expressing cells in hormone-depleted conditions [66]. Fu 
et al. showed that FOXA1 overexpression in ER+ breast cancer cells drives genome- 
wide enhancer reprogramming to activate pro-metastatic transcriptional programs, 
and, using clinical ER+/HER2− metastatic breast cancer datasets, that the aberrant 
FOXA1/HIF-2α transcriptional axis is largely nonconcurrent with the ESR1 muta-
tions [76], implying different mechanisms are employed to drive endocrine 
resistance.

Using a CRISPR knock-in model, results from Harrod et al. confirm that there 
was a greater magnitude of ER binding in the absence of estrogen in MCF7 Y537S 
cells compared to WT cells [77]. In the mutant ER transcriptome, estrogen- regulated 
gene expression was still a dominant feature. GSEA hallmark gene sets, such as 
estrogen response early and estrogen response late, were among the most upregu-
lated gene sets compared to MCF7 vehicle treatment [77]. However, in the unstimu-
lated Y537S knock-in model, where only one ER allele was mutated, most of the 
peaks found were shared with estrogen-treated Y537S cells, as well as MCF7 WT 
cells [77], which does not agree with Jeselsohn et al. [66] In addition, motif analysis 
showed that the Y537S mutation does not cause ER binding to new unique sites 
[77]. In all conditions, ERE, FOXA1, AP-1, and GATA3 were the most enriched 
binding motifs [77]. To complicate things further, Martin et  al. performed rapid 
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immunoprecipitation with tandem mass spectrometry of endogenous proteins to 
delineate the WT and mutant ER interactomes [78]. These analyses demonstrated 
that, though many of the proteins bound by mutant ER were also bound by WT ER, 
there were increased interactions between ER and transcriptional regulators, like 
GREB1 and FOXA1 [78]. ChIP-Seq analyses also demonstrated a ligand- 
independent enrichment of FOXA1 motifs in mutant ER-expressing cells [78]. 
Targeted knockdown of FOXA1 in WT and mutant cells resulted in a greater growth 
inhibition in mutant ER-expressing cells compared with WT ER-expressing cells, 
suggesting a role for FOXA1 in mutant-specific biology [78], which directly contra-
dicts the results from Jeselsohn et al. [66]

One explanation for the discrepancy between these studies is the differences in 
models used, with one study using an MCF7-inducible overexpression approach 
[66], one using an MCF7 knock-in approach [77], and the last using long-term 
estrogen-deprived SUM44 cells with a naturally occurring ESR1 mutation [78]. 
Indeed, Andreano et al. showed that response to ligands was not dictated simply by 
the presence of a mutant allele but rather by the relative WT ER levels coexpressed 
in cells [79]. Specifically, dysregulated response to antiestrogens was only evident 
in cells in which the mutants were overexpressed relative to the ligand-activated WT 
ER [79]. This underlines the importance of using multiple models as well as paying 
specific attention to “allelism.”

Phosphorylation may also contribute to the constitutive activity of mutant 
ER. Serine 118 (S118) is a major phosphorylation site within the AF-1 domain. 
S118 is phosphorylated in response to many stimuli but most notably by E2 [11, 
80]. S118 phosphorylation (pS118) is important for receptor stability and is required 
for proteasome-dependent degradation of ER, which is often coupled to transactiva-
tion [81]. Mutations in this site were shown to impair ER transactivation [11]. 
Helzer et  al. performed ChIP-seq to define the pS118-ER and ER cistromes in 
MCF-7 cells treated with estrogen and found that pS118 promotes direct DNA bind-
ing at active enhancers, which is associated with increased transcriptional activity 
[80]. In addition, pS118-ER sites were enriched in GRHL2 DNA-binding motifs 
[80]. E2 treatment enhanced GRHL2 recruitment to pS118-ER-occupied sites [80]. 
Interestingly, mutant ER is constitutively phosphorylated at S118 [82]. CDK7 func-
tions as a CDK-activating kinase (CAK) for CDK1, CDK2, CDK4, and CDK6 but 
has also been shown to modulate ER activity through S118 [12]. CRISPR-Cas9 
gRNA-mediated silencing of CDK7 resulted in suppressed proliferation in both WT 
ER cells in full medium and mutant ER cells in estrogen-deprived conditions [66], 
demonstrating CDK7’s importance in regulating WT ER and mutant transcription. 
Normally, WT ER is rapidly phosphorylated within a matter of minutes in response 
to E2 treatment [80]. However, even in cells expressing HA-tagged ER D538G, the 
endogenous WT ER could be phosphorylated in hormone-starved conditions, 
whereas this effect was not seen in the Y537S mutant-expressing cells, perhaps sug-
gesting that the D538G mutant has a greater propensity to heterodimerize with WT 
ER [66]. This may also explain to some of the phenotypic differences observed 
between the two mutants. In addition to phosphorylation of S118, phosphorylation 
on residue Y537 by SRC kinase increases E6AP recruitment and is involved in ER 
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proteolysis and transcriptional activation [83]. When this residue is mutated to a 
residue that cannot be phosphorylated (e.g., Y537F), it fails to undergo ligand- 
dependent proteolysis, stabilizing the receptor [83]. Indeed, Martin et al. discovered 
the naturally occurring ESR1 mutations in SUM44 cells, following long-term estro-
gen deprivation, and showed that ESR1 mutations are sufficient for driving acquired 
resistance [78]. The expression of these mutations has also been shown to be suffi-
cient to drive metastasis. Jeselsohn et al. also demonstrated that the Y537S mutation 
drives metastasis using in vivo orthotopic xenografts with dox-inducible ER Y537S 
and ER D538G cells in ovariectomized mice with no E2 supplementation. These 
metastases were dependent on the expression of mutant ER, as the removal of the 
dox-diet resulted in the regression of the Y537S tumors [66]. Using CRISPR-Cas9-
engineered homozygous knock-in ER Y537S xenograft models, Fuqua et al. also 
reported that the ESR1 Y537S mutation drives spontaneous distant metastasis 
in vivo [84].

15.7  Clinical Significance of Mutant ER

Despite many preclinical studies demonstrating that mutant ER-expressing cells are 
less responsive to fulvestrant treatment, ER-positive metastatic breast cancer 
patients are not currently stratified based on ESR1 mutation status. A recent retro-
spective analysis of the PALOMA-2 clinical trial published by O’Leary et al. showed 
that patients continued to acquire the Y537S ESR1 mutation during fulvestrant 
monotherapy, or fulvestrant and palbociclib treatment [85]. Analysis of the 
BOLERO-2 clinical trial suggested that patients with the Y537S mutant allele may 
have worse outcomes compared with patients whose tumors harbor the D538G 
mutation [67]. Mutant alleles are also associated with shorter progression-free sur-
vival [67, 86, 87]. Even in early-stage local recurrence and metastatic lesions, 
mutant alleles are associated with worse prognosis [88]. ESR1 mutations occur at a 
higher incidence rate in patients previously treated with AI compared to those 
whose treatments did not include AI [88]. Though there is evidence from several 
studies that ESR1 mutations are associated with worse progression-free and overall 
survival [67, 86, 87, 89], the authors of one particular meta-analysis observed that 
when inspecting specific mutations, the D538G, but not the Y537S mutation, was 
associated with a worse prognosis and shorter progression-free survival (PFS), 
regardless of what treatment was administered [87, 89]. Additionally, ESR1 muta-
tions were predictive of aromatase inhibitors resistance, but were not predictive of 
resistance to other endocrine therapies [87, 89], which disagrees with the conclu-
sions and observations of many in vitro and in vivo studies. However, additional 
studies with larger cohorts harboring these ER mutations will be needed to conclu-
sively determine the clinical differences among the various mutant alleles, including 
responses to specific endocrine treatments, and prognosis.

PET imaging with 16α-18F-fluoro-17β-estradiol (18F-FES) is a common imaging 
modality that can be used to measure ER in metastatic sites, optimize endocrine 
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therapies doses, and predict therapeutic response in breast cancer patients [90]. 
Despite reduced binding and responses to endocrine treatments and E2, as well as 
the structural similarities between E2 and 18F-FES, surprisingly, Kumar et al. found 
that tumoral uptake of 18F-FES in MDA-MB-231 cells stably expressing either WT 
ER, ER Y537S, or ER Y537C was not found to be significantly impacted by the 
Y537S or Y537C mutations [91]. This indicates that 18F-FES PET imaging may be 
used for breast cancer patients, regardless of ER mutation status [91].

Frequent metastatic sites for ER+ breast cancer include the bone, liver, lymph 
nodes, and brain. Toy et  al. found that  ESR1 mutations were most frequently 
detected in liver and bone biopsies, and did not find any ESR1 mutations in brain 
biopsies [72]. Zundelevich et al., however, were able to detect one brain metastasis 
in their cohort. Jeselsohn et  al. [66] were able to confirm their findings from 
Merenbakh-Lamin et  al. [60] that the D538G mutant allele has a liver 
organotropism.

15.8  Methods to Target Mutant ER

Because the ER is constitutively active in these tumors, it remains an important 
therapeutic target. Several approaches are being pursued to target the mutant 
ER.  One notable class of drugs being used to directly antagonize mutant ER is 
selective estrogen receptor degraders, or SERDs. Fulvestrant (also called faslodex 
and ICI 182,780) is currently the only FDA-approved SERD and was shown to 
reduce ER Y537S and ER D538G expression to basal levels at very high doses [61, 
63]. Though fulvestrant has been shown to be effective in the metastatic setting, 
fulvestrant possesses dose-limiting pharmacological properties, such as low bio-
availability [124–127]. Further, fulvestrant is administered intramuscularly, and it is 
unclear whether fulvestrant occupies receptor at saturating levels at the current 
clinical dosages [124–127]. Therefore, there is a strong rationale for developing 
more potent, orally bioavailable pure antiestrogens that are insensitive to ESR1 
mutations.

The SERM, lasofoxifene, which was originally developed for the treatment of 
vulvovaginal atrophy and osteoporosis, has been shown to not be impacted by 
mutant ESR1 status [79]. In addition, it has been shown to be efficacious in mam-
mary intraductal mouse models, where MCF7 or MCF7 expressing the Y537S or 
D538G mutations was introduced [92]. It was more effective than fulvestrant 
(250 mg/kg 1/week SQ) at inhibiting primary tumor growth (5 and 10 mg/kg SQ) 
[92]. Lasofoxifene also inhibited both mutants from metastasizing to the lung and 
liver, whereas fulvestrant only inhibited the D538G mutant [92]. It is now in phase 
3 clinical trials for osteoporosis and is being clinically evaluated as a treatment for 
patients with advanced ER-positive breast cancer whose tumors harbor ESR1 muta-
tions (Table 15.1).

Bazedoxifene is a rather unique antiestrogen that possesses both SERM and 
SERD properties. It has been studied extensively and clinically and is approved for 
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use in combination with conjugated equine estrogens for hormone replacement 
therapy in postmenopausal women as well as a single agent for the prevention of 
osteoporosis [94, 128]. It has a strong antagonist and SERD profiles in breast and 
agonist properties in bone and, unlike many SERMs and SERDs, did not stimulate 
endometrial tissue in preclinical studies [94, 129, 130]. In addition, bazedoxifene 
showed good oral bioavailability and improved pharmacokinetics compared with 
fulvestrant [94]. Preclinical studies found that bazedoxifene possesses antitumor 

Table 15.1 Summary of therapies targeting mutant ER and their related publications and clinical 
trials, if applicable

Class Therapy Name Citation Clinical trial

SERM Lasofoxifene Andreano et al. 2020 [79], Laine et al. 
2019 [92]

NCT03781063

SERM/
SERD

Bazedoxifene Fanning et al. 2018 [93], Wardell et al. 
2013 [94], Wardell et al. 2015 [95]

NCT02448771

SERD AZD9496 Toy et al. 2017 [72], Nardone A et al. 
2019 [96], Weir et al. 2016 [97]

NCT02248090, 
NCT03236874

SERD AZD9833 Hamilton et al. 2020 [98] NCT03616587, 
NCT04214288

SERD B-SERDs Lu et al. 2019 [99]
SERD D-0502 Zhang et al. 2019 [100] NCT03471663
SERD G1T48 Andreano et al. 2020 [101] NCT03455270
SERD GDC-9545 Metcalfe et al. 2019 [102] NCT03332797, 

NCT03916744
SERD GDC-0810/

brilacestrant
Guan et al. 2019 [103], Joseph et al. 
2016 [104], Lai et al. 2015 [105]

NCT01823835

SERD GDC-0927 Guan et al. 2019 [103] NCT02316509
SERD LSZ102 Tria GS et al. 2018 [106] NCT202734615
SERD LY3484356 NCT04188548
SERD RAD1901/

elacestrant
Bihani et al. 2017 [107], Patel et al. 
2019 [108], Garner et al.2015 [109], 
Wardell et al. 2015 [110]

NCT02338349, 
NCT03778931

SERD SAR439859 Campone et al. 2020 [111], Shomali 
et al. 2017 [112]

NCT03284957

SERD SHR9549 Bardia et al. 2019 [113] NCT03596658
SERD ZN-c5 NCT03560531
SERCA H3B-5942 Puyang et al. 2018 [114]
SERCA H3B-6545 Hamilton et al. 2019 [115], Rioux et al. 

2018 [116]
NCT03250676, 
NCT04288089

Novel K-07 Zhao et al. [70]
PROTAC AM-A3 Roberts et al. [117]
PROTAC ARV-471 Flanagan et al. 2019 [118] NCT04072952
PROTAC ERD-148 Gonzalez et al.2020 [119]
Novel Diptoindonesin G Zhao et al. 2015 [120], Liu et al. 2016 

[121], Gao et al. 2017 [122], Fan et al. 
2020 [123]
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activity in several models of endocrine resistance, including AI, SERM-resistant 
tumors [94], as well as ER mutants, though the Y537S mutant was found to be rela-
tively resistant to degradation [93]. Bazedoxifene was also found to have antitumor 
activity in multiple ER+ PDX models, including those expressing WT ER, the ER 
Y537S mutation, as well as PI3K mutations [93]. However, some data suggest that 
at low concentrations, bazedoxifene may behave more like a SERM than a SERD, 
with mixed agonist/antagonist activity [93].

New orally bioavailable nonsteroidal SERDs, such as AZD9496, GDC-0810 
(also known as brilacestrant), and GDC-0927, have been evaluated in preclinical 
models and were found to be effective in models of endocrine resistance and mutant 
ER [72, 96, 97, 103–105]. In addition, they all have improved pharmacokinetics, are 
orally bioavailable, and do not exhibit the dose limitations of fulvestrant [72, 96, 97, 
103–105]. Although exhibiting desirable mechanistic features over fulvestrant and 
GDC-0810, GDC-0927 still suffers from suboptimal drug-like properties [103]. In 
addition, both GDC-0810 and GDC-9027 are not pure antiestrogens and showed 
some weak agonistic activity [103]. GDC-0810 and AZD9496, in endometrial cells 
and rat models, both drugs exhibited uterotrophic effects in endometrial cells and rat 
models, raising the concern that these drugs may have agonistic activity in repro-
ductive tissues [97, 104]. Though Genentech is no longer actively investigating 
GDC-0810 and GDC-0927, both have proven to be useful tools in SERD develop-
ment and for understanding ER biology.

GDC-9545 is the replacement molecule for GDC-0927. Though not much has 
been reported on this molecule thus far, an abstract from the SABCS touts major 
improvements over both GDC-0927 and fulvestrant [102]. GDC-9545 has high 
binding potency and an improved DMPK profile when compared to GDC-0927 and 
fulvestrant [102]. GDC-9545’s increased oral bioavailability and reduced metabo-
lism improved oral exposure in multiple species means that the same degree of 
antitumor activity can be achieved but at 100-fold lower doses in the HCI-013 
patient-derived xenograft (PDX) model compared to GDC-0927 [102]. In addition, 
GDC-9545 can achieve full suppression of ER signaling, resulting in robust antip-
roliferative activity, which may indicate lack of detectable agonist activity, as was 
seen in GDC-0810 and GDC-0927 [102, 103]. A study of GDC-9545 alone or in 
combination with palbociclib and/or luteinizing hormone-releasing hormone 
(LHRH) agonist in locally advanced or metastatic ER+ breast cancer is currently 
recruiting patients for a phase I clinical trial (Table 15.1).

Elacestrant (RAD1901), developed by Radius, is currently the only next- 
generation nonsteroidal orally bioavailable SERD in phase III clinical trials [131], 
underlining the difficulty of developing this class of drug. Elacestrant has demon-
strated evidence of single-agent activity, with confirmed partial responses in heavily 
pretreated patients with advanced ER+ breast cancer, including those with ESR1 
mutations [132]. It displayed potent antitumor activity in multiple ER-expressing 
tumor models, including PDX models originating from patients who previously 
received multiple lines of endocrine therapy, those harboring ESR1 mutations, and 
those with de novo or acquired resistance to CDK4/6 inhibitors [107, 108, 110]. 
Elacestrant is also unique in that it can pass the blood-brain barrier [110]. If clinical 
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studies demonstrate significant efficacy, elacestrant would be one of the first clini-
cally approved oral SERDs that may also be useful for patients with ESR1 mutations.

Many new SERDs have improved ER-targeting and drug-like properties com-
pared to fulvestrant but lack the ability to penetrate the blood-brain barrier [99]. One 
recently developed class of SERDs, benzothiophene SERDs, contains a basic amino 
side arm (B-SERDs) [99]. Though its efficacy is comparable to that of fulvestrant in 
models of endocrine resistance, including ESR1 LBD mutants, in vitro and in vivo, 
B-SERDs possess both oral and brain bioavailability, an advantage over acidic 
SERDs and fulvestrant [99]. Currently, there are other numerous new ER modula-
tors under evaluation in the clinic listed in Table 15.1, though relatively little pre-
clinical data was available when this manuscript was being prepared.

One consideration for identifying and characterizing SERDs in vitro moving 
forward suggested by Guan et al. is that ER degradation alone is not sufficient for 
choosing lead molecules that consistently and fully antagonize ER and its transcrip-
tional activity, particularly with a heavy reliance on MCF7 cells [103]. Many ER+ 
models should be used when evaluating new SERDS, as they showed that ER+ 
breast cancer cell lines had variable responses to GDC-0810 and GDC-0927, even 
though GDC-0810 and GDC-0927 demonstrated potent ER degradation in MCF7 
[103]. Sreekumar et  al. showed that though in invasive ductal carcinoma (IDC) 
AZD9496 and fulvestrant behaved equivalently in terms of ER turnover and cell 
growth, in invasive lobular carcinoma (ILC) cell lines, AZD9496 behaved as a par-
tial agonist and was not as potent of an ER degrader [133]. In addition, ER mobility 
should be considered, rather than potency of degradation alone [133]. Fulvestrant 
and other SERDs do not act simply by depleting the receptor, but rather through 
slowing and immobilizing the receptor. Indeed, in 2006, Long et al. recognized this 
and showed that fulvestrant immobilizes ER at the nuclear matrix, followed by 
receptor degradation through the ubiquitin proteasome system (UPS) [55]. This 
immobilization is mediated by cytokeratins 8 and 18, and helix 12 of ER is essential 
for association with cytokeratins 8 and 18 [55]. These cytokeratins are essential for 
fulvestrant’s mechanism of action, as siRNAs targeting cytokeratins 8 and 18 par-
tially blocked fulvestrant’s effects [55]. This suggests that fulvestrant induces ER to 
interact with CK8 and CK18, drawing the receptor into close proximity to nuclear 
matrix-associated proteasomes that facilitate ER turnover [55]. Receptor turnover is 
therefore a result of receptor immobilization, which distinguishes full antagonists 
from partial agonists [55]. While the capacity to degrade ER may be a key feature 
of SERDs, it is not sufficient. This agrees with the previous work by Wardell et al. 
that demonstrated that fulvestrant-mediated degradation of ER indeed varies 
between cell models [134], as found by Guan et al. [103] The efficacy of fulvestrant 
as an inhibitor of ER transcriptional activity under saturating conditions and was 
neither  influenced by the extent of ER degradation, nor by  the expression levels 
of ER [134]. Although fulvestrant binding partially denatures ER, it can be reacti-
vated by competing off bound drug with estradiol [134]. Collectively, competitive 
inhibition of ER, and not degradation, is a more important consideration [134]. One 
way to measure receptor mobility is live-cell imaging, which was performed in 
Guan et al. [103] Live-cell imaging can capture highly dynamic and transient nature 
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of transcription factors and transcription complexes, and could be incorporated into 
drug characterization pipelines to measure receptor mobility and receptor antago-
nism [103], in addition to the typical measurements of ER target gene expression, 
proliferation, tumor growth, as well as ER degradation.

Another consideration for developing and evaluating SERDs in vivo is the dose 
of fulvestrant used as a benchmark. Wardell et al. demonstrated that 25 mg/kg dose 
of fulvestrant is a more accurate and clinically relevant dose of fulvestrant for a 
mouse model [124]. A dose of 25 mg/kg of fulvestrant exhibited antitumor efficacy 
comparable to the historically used 200 mg/kg dose, but at this lower dose, it did not 
result in robust ER downregulation [124]. The antitumor efficacy of the lower dose 
of fulvestrant was comparable to that observed for other oral SERDs currently in 
development [124]. Using clinically unachievable doses of fulvestrant as a bench-
mark may negatively affect SERD development [124]. These studies suggest that 
receptor immobilization and antagonist efficacy, as opposed to ER degrading activ-
ity, are likely to be the primary drivers of clinical response. In the future, using these 
parameters could improve the selection of lead ER antagonists.

In addition to SERDs, other approaches being used to directly antagonize the ER 
include selective estrogen receptor covalent antagonists (SERCAs), specifically 
H3B-5942, that covalently binds the C530 residue of both WT and mutant ER, 
enforcing an irreversible antagonist conformation [114]. This residue is not con-
served among other steroid hormone receptors, rendering SERCAs very specific to 
ER [114]. H3B-5942 demonstrated better antagonistic properties in mutant overex-
pressing models and growth inhibition properties than fulvestrant in vivo using cell 
line-derived xenografts and a PDX model expressing the Y537S mutation [114]. 
Like some SERMs and SERDs, H3B-5942 exhibits uterotrophic activity in imma-
ture rat models [114]. In addition, because of its high dependence on covalent 
engagement specific to residue C530, it is not beyond the realm of possibility that a 
mutation at C530 could be one mechanism of resistance [114]. A related compound, 
H3B-6545 [115, 116], is now in phase I/II clinical trials.

Finally, Zhao et al. developed a series of structurally novel antiestrogens [70]. 
They had demonstrated efficacy in vitro and in vivo against ER D538G and Y537S 
mutant-expressing cells, as well as their respective cell-line derived xenografts, with 
compound K-07 being the most effective against WT, Y537S, and D538G mutant 
tumor growth, and having the best pharmacokinetic profile [70]. K-07 is also orally 
bioavailable [70].

15.9  Additional Targets and Combination Treatments

Though ESR1 mutations are sufficient for driving acquired resistance, other drivers 
can coexist in many of these tumors and justify combination treatment. Toy et al. 
observed that the CTC-174 PDX model that expresses the D538G mutation used in 
their studies was only partially inhibited by AZD9496 treatment, indicating that this 
mutant tumor model is not exclusively dependent on ER signaling for its growth 
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[72]. When this model was sequenced, an activating PIK3CAN345K and two inactivat-
ing ARID1A truncation mutations E1776* and S705fs were found [72].

Tumor genotyping of ESR1 mutant breast cancers also revealed recurrent altera-
tions in the PI3K/AKT pathway, cyclin D1, and FGFR [61]. These alterations likely 
reduce tumor dependence on ER signaling and may benefit from combinations of 
antiestrogens with inhibitors of these pathways [72]. Despite decreased dependence 
on ER signaling, tumors under a single selection agent can restore ER dependence, 
and combinatory antiestrogen treatment still remains important as, interestingly, 
inhibition of growth signals such as PI3K/AKT restored ER signaling activation and 
dependence [135].

Furthermore, a more recent retrospective correlative analysis of the PALMOA-3 
trial evaluated whether early changes in ESR1 or PIK3CA mutations measured 
using ddPCR of ctDNA were predictive of response to therapy [85]. Although total 
ESR1 mutant abundance was shown to decrease in both treatment arms, these 
changes were not predictive of response to fulvestrant [85]. In contrast, PIK3CA 
mutation frequency was lower in the fulvestrant- and palbociclib-treated group and 
was significantly predictive of PFS [85]. This study suggests that truncal mutations, 
such as PIK3CA, may be more useful to predict treatment responses than ESR1 
mutation status [85]. Differences in the predictive value of these two genetic bio-
markers may be due to the clinical resistance of selected ESR1 mutant cells to ful-
vestrant as well as the truncational nature of PIK3CA mutations that are shared by 
all subclones in the metastatic tumor [85]. O’Leary et al. also showed that other 
driver mutations in RB1, growth factor receptors, TP53, and PIK3CA were acquired 
over the course of treatment [85]. The acquisition of these mutations was associated 
with a longer time of treatment, and acquired mutations at the end of treatment cor-
related with shorter PFS [85]. These data support the conclusion that driver muta-
tions may be acquired later in therapy as a consequence of therapeutic pressures but 
perhaps not always in the early treatment setting. These studies also suggest that 
there may be limited clinical utility to stratify patients to treatment based on ESR1 
mutation status alone and that concurrent acquisition of other driver mutations 
should be taken into account when designing therapeutic regimens to overcome 
resistance.

Jeselsohn et al. performed a genome-wide CRISPR-cas9 KO screening to deter-
mine what genes were essential for E2-independent growth of ER mutant- expressing 
breast cancer cells [66]. As these ER mutants are constitutively active, it is not sur-
prising that many of the negatively selected genes, or essential genes, identified in 
the screen are known drivers of ER+ breast cancers, such as GATA3, TFAP2C, 
MTOR, MYC, and ESR1 itself, as well as ER coregulators, such as NCOA3, EP300, 
MED1, and MEN1 [66]. CCND1 and CDK4 remained essential genes in the mutant 
cells also [66], which is consistent with a retrospective clinical study in which 
patients with ER mutations remained sensitive to CDK4/6 inhibitors [136], and 
Jeselsohn et al. confirmed that mutant ER-expressing cells retain sensitivity to pal-
bociclib, a CDK4/6 inhibitor.

Wardell et al. tested the activity of the cyclin-dependent kinase 4/6 (CDK 4/6) 
inhibitor palbociclib administered as both monotherapy and in combination with the 
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SERM bazedoxifene, in PDX models derived from patients with ER+ endocrine- 
resistant BC [95]. Palbociclib monotherapy was effective in a PDX expressing WT 
ESR1, and in a PDX with amplification of ESR1, but was ineffective in a PDX with 
ESR1 D538G mutation [95]. However, this observation may be explained by the 
concurrent loss of RB expression in this model, a well-described mechanism of 
resistance to CDK4/6 inhibitors [95]. Conversely, in an ER Y537S mutant PDX 
model, palbociclib alone or in combination with bazedoxifene similarly inhibited 
tumor growth, but the combination proved more effective in decreasing Ki67 
expression than either agent alone [95]. This further demonstrates that ESR1 status, 
including the specific mutation, is important but is not sufficient for stratifying and 
predicting responses to therapy, and other mutations and alterations should be taken 
into consideration.

As mentioned previously, CDK7 has shown to modulate ER activity through 
S118 phosphorylation [12] as well as contribute to WT and mutant ER-expressing 
cell growth [66]. Therapeutic inhibition of CDK7 using THZ1 resulted in a dose- 
and time-dependent inhibition of Y537S and D538G S118 phosphorylation in vitro 
[66]. THZ treatment of ER Y537S cells resulted in the downregulation of pathways 
enriched in  ER  mutant-expressing cells related to ERBB2, PI3K, and MTOR, 
implying that THZ may be targeting ER mutant transcription as well as other com-
ponents of mutant ER’s transcriptional network [66]. The combination of THZ1 
with fulvestrant showed significant synergism in MCF7 and T47D DOX-inducible 
cell lines expressing WT ER and ER Y537S, as well as the ER  Y537S mutant 
knock-in cell line. Orthotopic xenografts of MCF7 cells expressing the Y537S 
mutant demonstrated that the combination of THZ1 with fulvestrant had improved 
efficacy in inhibiting tumor growth compared with either single agent [66]. These 
results support the potential of this combination as a therapeutic strategy to over-
come endocrine resistance caused by the ER mutants. Harrod et al. also confirmed 
this in  vitro, showing that THZ itself can inhibit MCF7 and MCF7 Y537S cell 
growth and co-treatment of THZ with fulvestrant significantly augmented the 
growth inhibition of MCF7 Y537S cells compared to either agent alone [77]. 
However, the difference in sensitivity to THZ in mutant ER- and WT ER-expressing 
cells was not statistically significant [77].

An additional target shown to be involved in tamoxifen resistance in ESR1 
mutant models by Gelsomino et al. is insulin growth factor 1 receptor (IGF1R) sig-
naling [137]. IGF1R and mutant ER showed enhanced cross talk and co- localization, 
as shown by ER immunoprecipitation and proximity ligation assays [137]. Treatment 
with IGF1R pathway inhibitors sensitized mutant ER-expressing cells to tamoxifen 
[137]. Using similar mutant models, Li et  al. also demonstrated that the IGF1R 
pathway contributes to endocrine resistance [138]. The mutant ER-expressing mod-
els had an enhanced IGF gene signature compared to the WT ER-expressing mod-
els, based on RNA-seq analyses [138]. In addition to an enhanced IGF gene 
signature, mutant ER-expressing cells, tamoxifen resistant cells, and long-term 
estrogen-deprived cells all showed enhanced growth in response to IGF1 stimula-
tion [138], indicating that IGF1R-mediated endocrine resistance may be shared 
among many models of endocrine resistance and is not specific only to mutant 
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ER-expressing models. Using inhibitors or small interfering RNA knockdown to 
target the IGF1R pathway sensitized mutant ER-expressing cells to endocrine ther-
apy [138], confirming the results from Gelsomino et al. [137] Despite promising 
results from these preclinical studies, IGF1R inhibitors do not yet have demon-
strated efficacy in the clinic in the context of metastatic breast cancer.

Though they play a large role in endocrine resistance as a whole, other growth 
factor receptors, including the HER1–3 family members and FGFR, need to be 
evaluated as potential mechanisms of endocrine therapy resistance specifically in 
ESR1 mutant models. It appears that at least at a mutational level, ESR1 mutations 
and growth factor receptor mutations, including those in HER2, FGFR1, FGFR2, 
and FGF3, are mutually exclusive [139, 140].

15.10  Modulating Molecular Chaperones, and E3 Ligases, 
and the Ubiquitin-Proteasome System: New Ways 
to Target Mutant ER

One of the primary strategies for targeting the ER in breast cancer is small- molecule- 
mediated receptor degradation. However, as mentioned previously, degradation can 
be coupled to both transcriptional activation and transcriptional repression and can 
be explained by the ER being regulated by two different ubiquitin proteasome path-
ways, depending on the ligand [141]. As a result, it is important to understand the 
mechanisms that regulate ER stability in order to develop effective ER-targeting 
therapies. ER stability is known to be affected by multiple factors. HSP90 is a 
molecular chaperone that is responsible for the folding, maturation, and activation 
but also stabilization of its over 200 clients [142]. It accounts for 2% of cytosolic 
protein [143]. Many of these clients include steroid hormone receptors [144, 145]. 
It maintains the ER in a ligand-binding conformation and also protects it from pro-
teasomal degradation [146].

HSP90 in cancer behaves very differently from HSP90 in normal cells and pro-
tects overexpressed and mutated oncoproteins, mediating oncoprotein addiction 
[142]. Interestingly, HSP90 inhibitors in general have a higher affinity for HSP90 in 
tumors than in normal cells, and selectively accumulate in tumors [147]. One expla-
nation for this phenomenon is that soluble HSP90 in tumor cells is present in assem-
bled multi-chaperone complexes that are more active than the HSP90  in normal 
cells, which is in an uncomplexed inactive form [147].

HSP90 inhibitors that belong to the benzoquinone antibiotic family, such as gel-
danamycin and its analogs 17AAG and 17-DMAG, bind to the N-terminal ATP 
binding pocket, inhibiting its ATPase activity essential for performing its chaperone 
functions [148, 149]. ATP binding and hydrolysis are coupled to the “opening” and 
“closing” of HSP90 protomers [144, 150, 151], and these structural rearrangements 
regulate the interactions with co-chaperones and client proteins [152]. Inhibition of 
HSP90 results in the inhibition of this chaperoning cycle [144, 150, 151], the 

K. Donahue and W. Xu



399

recruitment of E3 ligases, and the degradation of its client proteins by the 26S pro-
teasome [31, 153].

The UPS is another primary regulator of ER stability and is critical for maintain-
ing protein homeostasis and unfolded protein turnover [80, 154]. There are many 
players involved in the UPS. Three enzymes, ubiquitin-activating enzyme (E1), 
ubiquitin conjugating enzyme (E2), and ubiquitin ligase (E3), catalyze the covalent 
binding of the protein ubiquitin to lysine residues [80, 154]. In humans, though 
there is only one major E1, E3 ligases help impart substrate specificity to E1 and E2, 
and there are estimated to be between 500 and 1000 E3 ligases [155]. Some of the 
most well-known E3 ligases that regulate ER stability include MDM2 [156], 
C-terminus of HSC70-interacting protein (CHIP) [31], BARD1 [157]/ BRCA1 
[158], SKP2 [159], and E6AP [83]. Residues K302 and K303 are essential for ER 
ubiquitination and subsequent degradation by the 26S proteasome [21]. For a more 
comprehensive review of ubiquitylation of nuclear receptors, the author directs 
readers to Helzer et al. 2015. 

Geldanamycin was shown to enhance the CHIP-ER interaction, resulting in 
increased ER degradation [31]. This effect was abrogated by CHIP knockdown 
using siRNAs, indicating that CHIP is required for geldanamycin-mediated ER deg-
radation [31]. Though wild-type ER is known to be chaperoned by HSP90 until 
bound to E2, it is currently unknown if mutant ER depends on molecular chaperone 
proteins. Structural studies indicate that mutant ER is stabilized in the ligand-bound 
conformation [69, 71]. As a result, it is possible that mutant ER does not associate 
with HSP90, because it is already in a ligand-bound conformation. Toy et al. treated 
MCF7 cells transfected with vector expressing HA-tagged wild-type ERα or Y537S 
and D538G mutant ER with SNX2112, an N-terminal ATP binding site-targeting 
drug, at various doses for 3 hours. They found that though levels of WT ER decreased 
in a dose-dependent manner, the Y537S and D538G mutants were unaffected by 
HSP90 inhibition, indicating that HSP90 does not regulate mutant ER stability [61]. 
On the contrary, Yu et al. found that ganetespib (STA9090) had cytotoxic effects not 
only in ex vivo cultured circulating tumor cells (CTCs) expressing ESR1 mutations 
as a single agent, but also in combination with raloxifene and fulvestrant [160]. 
They also found that sensitivity to HSP90 inhibition was associated with mutant 
ESR1 allele frequency [160]. Because the conclusions of these two studies contra-
dict one another, further mechanistic studies are required to determine conclusively 
whether HSP90 associates with mutant ER, and whether this phenomenon holds 
true for other classes of N-terminal as well as C-terminal-targeting HSP90 inhibi-
tors. Establishing whether HSP90 can interact with ESR1 LBD mutants could open 
up a new class of drug for the treatment of mutant ER-expressing tumors, and help 
better understand the biology of ESR1 ligand binding domain mutants.

One way to circumvent HSP90 dependence is to directly modulate E3 ligases to 
target proteins for degradation. There are several molecules that have been reported 
as E3 ligase modulators. The most notorious small-molecule E3 modulator is tha-
lidomide. Despite its teratogenicity, it has since been shown to bind directly to cere-
blon and to be an effective treatment in the refractory multiple myeloma setting 
[161, 162]. Once bound to thalidomide or related compounds, such as lenalidomide 
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and pomalidomide, cereblon can promote degradation of the IKAROS family of 
transcription factors, which results in the downregulation of downstream targets that 
regulate cell death [163]. One study reported the use of novel cereblon modulator 
CC-92480 to treat multiple myeloma in the relapse, refractory, and lenalidomide- 
resistant setting by targeting Aiolos and Ikaros for degradation by the 26S protea-
some [164]. CC-92480 had a superior degradation efficiency and kinetics compared 
to lenalidomide and pomalidomide. CC-92480 is reported to act as a molecular 
glue, allowing cereblon to interact with proteins it would not normally [164]. Further 
experiments would be needed to know if CC-92480 would be useful in the context 
of mutant ER in breast cancer.

Diptoindonesin G (DipG) is another example of a small molecule reported as a 
modulator of the E3 ligase CHIP, and has been studied in the context of breast can-
cer [120, 121], as well as AML [122]. Zhao et al. showed that DipG could not only 
promote degradation of ER α but also reciprocally stabilize ER β, implicating a 
commonly shared E3 ligase, CHIP [120]. When CHIP was knocked down using 
shRNA, DipG-mediated ER degradation was abrogated, indicating that CHIP is 
essential for DipG’s mechanism of action [120]. In addition, the 26S proteasome 
was also essential for DipG-mediated ER degradation, and treatment with MG132 
resulted in stabilization of ER, even in the presence of DipG [120]. However, it 
remains unclear whether CHIP is truly the direct target of DipG or whether DipG 
perhaps modulates another component of the HSP90-ER-CHIP ternary complex, or 
acts as a molecular glue. Regardless, because of this ligand-binding domain- 
independent mechanism of ER degradation, our group has demonstrated that DipG 
is indeed unaffected by ER mutant status, and can indeed promote degradation of 
WT and mutant ER (unpublished observations), and may be a promising molecule 
to overcome endocrine resistance.

A new emerging class of drug, proteolysis targeting chimera technology 
(PROTAC), can link ER ligands to a small molecule that binds an E3 ligase, leading 
to ubiquitination and proteasomal degradation of ER (Fig. 15.3). Arvinas’ PROTAC 
was effective against mutant ER and thus far has shown no agonist activity [118]. 
Preclinical studies showed that the ER PROTAC ARV-471 promoted potent degra-
dation of ER in multiple ER-positive cell line models [118]. Furthermore, ARV-471 
showed robust growth inhibition of WT and mutant ER xenograft models [118]. 
Clinical development of ARV-471 is ongoing and, if successful, will represent a 
novel class of ER protein degraders that can also be used to target other proteins in 
breast and other cancers. Gonzales et al. developed a series of ER-targeting degrad-
ers based on PROTAC, including ERD-148 [119]. Likely because of its ligand- 
dependent mechanism, ER mutants exhibit resistance to ERD-148 to the same 
degree as fulvestrant as measured by cell proliferation and downregulation of 
GREB1 [119]. Though its biological activity in vitro is comparable to that of fulves-
trant, it has the advantage of potentially being orally bioavailable [119]. Roberts 
et al. reported a two-stage strategy to develop PROTACs against ER [117]. A prom-
ising molecule generated, AM-A3, elicits potent ER degradation activity and 
decreased the proliferation of MCF7 [117]. This approach can significantly simplify 
as well as increase the throughput of PROTAC development and could theoretically 
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be expanded to other targets of interest [117]. However, PROTAC is still based on a 
ligand-dependent mechanism, and its large bulky size (~700–1000 Da) may restrict 
cell permeability. In addition, it is unknown how PROTACs may affect the endog-
enous substrates of the E3 ligases they modulate.

15.11  Conclusions

Despite great strides in not only understanding estrogen signaling and the biology 
of breast cancer but also developing breast cancer treatments just the last century, 
ER-positive breast cancer remains a challenging disease. The majority of mortality 
is related to metastatic disease and the development of resistance to mainstay thera-
pies. Endocrine resistance caused by ESR1 hot spot mutations is still an active area 
of research, and good drug candidates specifically for mutant ER-expressing breast 
cancers remain at large. ESR1 mutations have a unique biology and do not simply 
recapitulate the phenotype of WT ER in the agonist conformation, nor are ESR1 
mutations at different residues equivalent. Rather, the ESR1 mutants have their own 
distinct cistromes and transcriptomes and resistance phenotypes. New orally bio-
available SERDs are being developed to overcome the shortcomings of aromatase 
inhibitors, fulvestrant, and tamoxifen. However, SERDs have been a challenging 
class of drug to develop. New SERDs and SERMs still rely on the ligand-binding 
domain for their mechanism of actions; many of them also exhibit tissue-specific 
mixed agonist-antagonist activity. This may explain why many SERDs have failed 
in clinical trials. One way to improve lead molecule selection in the future is con-
sidering receptor mobility in addition to the potency of degradation, downregulation 
of ER target genes, and in vivo efficacy. Currently, elacestrant is the only SERD in 
phase 3 clinical trials. Taking a ligand-binding domain-independent approach by 
modulating molecular chaperones and E3 ligases that control ER stability could be 
a promising approach to circumvent endocrine resistance, and could also be used to 
target additional drivers in mutant ER tumors. However, the efficacy of HSP90 
inhibitors and E3 ligase modulators requires an additional investigation.FundingThis 
work was supported by NIH R01s CA213292 and CA236356, DOD BC190650 to 
W.X. and NIH T32 CA009135 to K. D.
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Chapter 16
Androgen Receptors in the Pathology 
of Disease

Jacky K. Leung, Amy H. Tien, and Marianne D. Sadar

Abstract Androgen receptor (AR) belongs to the steroid hormone receptor group of 
ligand-activated transcription factors in the nuclear receptor superfamily. AR mediates 
the action of physiological and exogenous androgens to regulate the expression of a 
network of genes in target tissues that are essential for the development and mainte-
nance of the male phenotype and reproductive function as well as the function of 
numerous other tissues in both males and females. AR is ubiquitously expressed 
throughout the body. AR is a modular protein that comprises an N-terminal domain 
(NTD) that contains all of its transcriptional activity, a DNA- binding domain, a flex-
ible hinge region, and a C-terminal ligand-binding domain (LBD). All clinically 
approved hormonal therapies target the AR LBD, either directly with antiandrogens 
and selective AR modulators or indirectly by reducing levels of androgens. Pathological 
conditions related to AR dysfunction involve altered levels of androgens and struc-
tural alterations in the AR. These include mutations, polymorphisms in the polygluta-
mine tract of the NTD, and alternative splicing of AR to yield constitutively active 
receptors. From the extensive list of AR-related diseases, herein we describe prostate 
cancer, androgen-insensitivity syndrome, polycystic ovary syndrome, breast cancer, 
and a few more pathological conditions in more detail.

Keywords Androgen receptor · Androgen receptor mutation · Prostate cancer · 
Breast cancer · Androgen insensitivity syndrome · Polycystic ovary syndrome
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ARKO AR knockout
AR-Vs androgen receptor splice variants
CAIS complete androgen insensitivity syndrome
CRPC castration-resistant prostate cancer
CTCs circulating tumor cells
CTE C-terminal extension
DBD DNA-binding domain
DHEA dehydroepiandrosterone
DHT 5α-dihydrotestosterone
E2 17β-estradiol
EMS external masculinization score
ER estrogen receptor
fl-AR full-length AR
GR glucocorticoid receptor
HSP heat-shock protein
KLK3/PSA prostate-specific antigen
LBD ligand-binding domain
LH luteinizing hormone
LH-RH luteinizing hormone-releasing hormone
MAIS mild androgen insensitivity syndrome
NTD N-terminal domain
PAIS partial androgen insensitivity syndrome
PCOS polycystic ovary syndrome
PR progesterone receptor
SARM selective androgen receptor modulator
SBMA spinal-bulbar muscular atrophy
SHBG sex-hormone-binding globulin
TAU transactivation unit
TNBC triple-negative breast cancer

16.1  Androgens

Historically, androgens have been referred to as male sex hormones due to their 
importance in the control of normal development and reproductive function in 
males. The most abundant endogenous androgens are testosterone and its more 
active metabolite 5α-dihydrotestosterone (DHT). For the average adult male, 
3–10 mg of testosterone is produced per day, and approximately 4% of it is con-
verted to DHT by 5α-reductase and 0.2% to 17β-estradiol (E2) by aromatase. The 
Leydig cells in the testis synthesize >95% of the testosterone in circulation from 
cholesterol, through a pathway of enzymes in response to luteinizing hormone (LH) 
signaling. Peripheral tissues including the adrenal glands as well as the ovaries are 
also sources of weaker androgens, which include androstenedione and dehydroepi-
androsterone (DHEA). The normal physiological range of testosterone in healthy 
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men is between 350 and 600 ng/dL (>12 nM), and levels below 300 ng/dL are con-
sidered low testosterone [1]. The upper range of testosterone levels in women is 
between 12 and 58 ng/dL (0.4–2 nM). Chronically elevated levels of testosterone in 
women can be associated with polycystic ovary syndrome (PCOS, 0.34–5.5 nM) or 
congenital adrenal hyperplasia (1.32–5.62 nM). Virilization is observed in women 
with three times above the normal concentrations of testosterone. In the circulation, 
only 2% of testosterone is free, whereas 50% is bound to albumin with low-to- 
moderate affinity, 44% tightly-bound to sex-hormone-binding globulin (SHBG), 
and 4% loosely-bound to corticotropin-binding globulin [2]. Testosterone bound to 
SHBG is not bioavailable, since it restricts cell permeability, and thereby SHBG is 
involved in regulating biological responses to androgens. SHBG levels are down-
regulated by androgens and are decreased in pathological conditions, such as diabe-
tes, obesity, hypothyroidism, and aging. Estrogens, hyperthyroidism, cirrhosis, and 
tamoxifen increase the levels of SHBG [3]. Tissue concentrations of androgens may 
therefore not reflect changes in the concentrations of circulating androgens [4]. The 
biological effects of androgens are mediated by the androgen receptor (AR). 
Pathologies associated with the androgen axis are carried out by AR and may 
involve altered levels of androgens and/or changes in the structure or function of AR.

16.2  Androgen Receptor Structure and Function

16.2.1  Expression of AR

AR is ubiquitously expressed throughout the body, with the possible exception of 
the spleen [5]. The AR has important roles in the reproductive tissues of men and 
women, and it influences cognition, hematopoiesis, coagulation, skin, hair, bone, 
muscle, and some brain malignancies [6–8] (Fig. 16.1). Tissue-specific expression 
of AR cofactors mediates the differential effects measured between different tissues 
[9]. The AR is encoded by a gene (AR; NR3C4) located on the X chromosome 
(locus: Xq11-Xq12). Males carry a single copy of the AR gene, whereas females 
have one functional copy due to X-chromosome inactivation (also known as 
Lyonization) [10]. The regulatory regions of the AR gene lack TATA and CCAAT 
elements and have binding sites for SP1, NF-kB, and c-MYC (for reviews, see [11, 
12]). Androgen autoregulates AR expression to increase as well as decrease levels 
of AR mRNA (for a review, see [12]).

16.2.2  AR Structure

Full-length AR (fl-AR) is a 98.8 kDa protein encoded from eight canonical exons in 
the AR gene and at least seven other cryptic exons (Fig. 16.2). Generally, the wild- 
type full-length protein is described to be 910 to 919 amino acid residues, with 
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deviations predominantly due to polymorphisms in the polyglutamine (CAG) and 
polyglycine (GGC) repeats in the amino-terminal domain (NTD). Posttranslational 
modifications of AR include phosphorylation, SUMOylation, methylation, and 
ubiquitination and can impact AR structure, protein-protein interactions, transcrip-
tional activity, cellular localization, and stability. The amino acid sequence similar-
ity between human AR and related steroid hormone receptors is crucial for 
understanding its specificity for ligands, DNA-binding sites to regulate gene expres-
sion, and drug development. For examples, the AR C-terminal ligand-binding 
domain (LBD) shares 54% sequence similarity with the LBD of progesterone 
receptor (PR), and antiandrogens can inhibit the transcriptional activity of PR [13, 
14]; the AR DNA-binding domain (DBD) is 76% identical to that of the glucocorti-
coid receptor (GR), and they share common regulatory sequences within the same 
loci of chromatin [15, 16]. The specificity of steroid hormone receptors is generally 
believed to be achieved through receptor-specific residues in their ligand-binding 
pockets and tissue-specific expression (for a review, see [17]). Using the prostate as 
an example, benign prostate epithelial cells express AR but do not express GR, 

Fig. 16.1 AR expression in the human body. AR expression is detected in various organs in both 
males and females. Diagram of the human body showing the expression of AR in different organs 
was retrieved from the RNA and Protein Expression Summary in Human Protein Atlas (https://
www.proteinatlas.org/ENSG00000169083- AR/tissue) [7]
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whereas in advanced prostate cancer, both AR and GR are coexpressed following 
castration [18]. Based upon these observations, the GR has been suggested as a 
mechanism of resistance to hormonal therapies for advanced prostate cancer [19].

16.2.3  AR Domains

AR is a modular protein with an intrinsically disordered polymorphic NTD (poly-
morphic, 547 to 556 amino acid residues), a folded DBD (65 amino acid residues), 
a flexible hinge region (49 amino acid residues), and a structured LBD (249 amino 
acid residues).

16.2.3.1  AR NTD

The AR NTD is essential for its transcriptional activity and acts as a hub for interac-
tions with many other proteins. No crystal structure for the AR NTD has been 
resolved due to its limited stable secondary structure. The AR NTD contains all of 
its transcriptional activity with activation function-1 (AF-1) instead of AF-2 in the 
LBD like estrogen receptor (ER). At 547 to 556 amino acid residues, the AR NTD 
is approximately three times longer than the NTDs of ERα and ERβ. AR AF-1 has 

Fig. 16.2 Domains and functional regions of AR. AR gene is located on X chromosome and con-
tains 8 exons that encode for full-length AR.  Domains of AR are shown in the same color as 
respective exons. AF-1 is within NTD whereas AF-2 is in LBD. Tau-1 and tau-5 are located in 
AF-1. Locations of polyglutamine (CAG repeats), polyproline (CCN repeats), and polyglycine 
(GGN repeats) on AR NTD are indicated. P-box and D-box are located in the two zinc fingers 
within DBD. CE, cryptic exon
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approximately 13% helical secondary structure which is increased with binding to 
interacting proteins [20, 21]. There are two transactivation units (tau) within AF-1, 
tau-1 (amino acid residues 101–370) and tau-5 (amino acid residues 360–485), that 
interact with basal transcriptional machinery to mediate the transcriptional activity 
of the AR.

The polymorphic AR NTD contains multiple repeat regions that vary in length 
that include the polyproline tract (average 9 repeats), polyglycine tract (average 16 
repeats), and polyglutamine tract (average 21 CAG repeats) (Fig. 16.2). Variable 
lengths of the polyglutamine tract are the most studied due to its association with 
diseases such as infertility [22], male pattern baldness [23], symptomatic benign 
prostatic hyperplasia [24], spinal-bulbar muscular atrophy (SBMA), PCOS, pros-
tate cancer, breast cancer, and ovarian cancers [25–29]. The length of the polygluta-
mine tract impacts AR solubility and its transcriptional activity. A tract of 9 to 39 is 
considered in the “normal” range [30]. Short polyglutamine tracts have increased 
AR transcriptional activity, whereas a longer tract has less activity. Tracts longer 
than 37 CAG residues can form cytotoxic fibrillar aggregates that are associated 
with SBMA. The propensity for aggregate formation is increased with androgens 
due to the release of heat-shock protein (Hsp) 40 and Hsp70 chaperone proteins 
from the 23FQNLF27 motif in the AR NTD. Shedding of Hsps allows AR NTD inter-
action between the 23FQNLF27 and the AR C-terminal LBD (called N/C interaction) 
that is required to mediate transcriptional activity in response to androgen [31]. N/C 
interactions delay dissociation of androgen from the ligand-binding pocket, stabi-
lize the AR protein, and most importantly provide the main site for binding of 
coregulators to mediate transcriptional activity through AF-1 rather than AF-2 
unlike ER [31–33]. Low-resolution cryoelectron microscopy (cryo-EM) has 
revealed the structure of transcriptionally active fl-AR to be unique from ERα [34] 
(Fig.  16.3). Dimerization of AR is in a head-to-head and tail-to-tail manner 
which allows direct interactions at different sites in the AR NTD with a single mol-
ecule of the cofactors SRC-3 and p300 [34]. These data revealed that the AR dimer 
consists of two different conformations of NTD. One conformation directly inter-
acts with SRC-3 close to its 23FQNLF27 motif [34] that is consistent with coimmu-
noprecipitation studies from two decades ago that showed SRC interacts within 
1–233 amino acid residues of the AR NTD [35]. The p300 molecule interacts with 
both conformations of NTD [34]. Presumably, interactions with CREB-binding 
protein (CBP), which is highly related to p300, may also behave similarly to p300 in 
its mechanism of interaction with the AR NTD. Such direct interactions and stoichi-
ometry for SRC-3 and p300 are unique to AR compared to ERα, which has a strong 
AF-2 function and weak AF-1 function. The AR NTD is also highly modified by 
phosphorylation and SUMOylation and contains multiple sites for the peptidyl- 
prolyl cis/trans isomerase Pin1 [36–38]. These modifications can impact the confor-
mation of a protein to potentially alter protein-protein interactions.

J. K. Leung et al.
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16.2.3.2  AR DBD and Hinge Region

The AR interacts with DNA through its structured three-dimensional DBD that has 
a resolved crystal structure [39]. The AR DBD has three helices consisting of two 
zinc fingers with four cysteine residues that bind a zinc ion plus a C-terminal exten-
sion (CTE). Within AR DBD are the P-box and D-box that are essential for AR 
transcriptional activity. The first zinc finger is the recognition helix that binds AREs 
through the P-box [40]. The second zinc finger contains the D-box required for 
dimerization between monomers of AR [41]. The CTE provides specificity for AR 
to recognize AREs [42]. These AREs are found in enhancers and less so in promoter 
regions of target genes and are arranged as repeats of a hexamer separated by a 
spacer of three base pairs (for a review, see [17]). The hinge region is unstructured 
and links the AR DBD to its LBD. Nuclear translocation is a major function of the 
hinge region, but it has other functions and is regulated by acetylation, methylation, 
phosphorylation, and ubiquitination [43].

16.2.3.3  AR LBD

The effects of androgen are mediated through binding the folded C-terminus 
LBD. To date, there are only crystal structures resolved for the agonist conforma-
tion of AR, which reveals two antiparallel β-sheets and 11 α-helices that encompass 
a ligand-binding pocket [14]. The AR is missing helix 2, and this lack of helix 2 is 
seen in PR, GR, and mineralocorticoid receptor, but not in ER [44]. Androgens 

Fig. 16.3 Structure of transcriptionally active AR. The AR dimer forms when androgen binds to 
LBD.  DNA-bound AR dimer interacts with one molecule of SRC-3 and p300 (CBP) through 
NTD. SRC-3 interacts with a region close to the 23FQNLF27 motif on AR1-233 of one AR mono-
mer. p300 interacts with AF-1 on two AR monomers [34, 35]. CBP is presumed to be similar to 
p300 in its interaction due to their structural similarities. CBP and the RAP74 subunit of TFIIF 
interacts with AR 423–448 [306]. Arrows indicate interactions between molecules. FOXA1 bind-
ing site is shown on DNA. A, androgen; ARE, androgen response element
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cause a shift in conformation to reposition helix 12 over the ligand-binding pocket 
to create the AF-2 surface for N/C interactions [45]. The ligand-binding pocket 
consists of hydrophobic residues that interact with lipophilic testosterone and 
DHT. The AR LBD is the direct or indirect target for all currently FDA-approved 
drugs against the androgen axis. These drugs include those that reduce the levels of 
androgen that bind to the AR LBD such as luteinizing hormone-releasing hormone 
(LH-RH) analogs and CYP17 inhibitors that block steroidogenesis, selective andro-
gen modulators (SARMs), as well steroidal and nonsteroidal antiandrogens. 
Antiandrogens compete with androgens for the AR LBD. Therefore, since DHT has 
a binding affinity in the low nM range for AR LBD, an effective antiandrogen must 
have a very strong affinity to be able to compete with DHT for the ligand-binding 
pocket in the AR LBD. Structural alterations in the AR LBD involved in disease 
include deletion or truncation of LBD that results in constitutively active AR that is 
independent of androgens [46]. Expressions of these constitutively active AR splice 
variants (AR-Vs) lacking the AR LBD have been detected in numerous tissues [47] 
and are a major mechanism of resistance to hormonal therapies for the treatment of 
prostate cancer [48]. Gain-of-function mutations in the AR LBD are also a major 
mechanism for the failure of current hormone therapies [49].

16.2.3.4  Transactivation of AR

Androgens enter into cells from the circulation by passive diffusion. Within the cell, 
testosterone can be converted by 5α-reductase to the more active androgen, 
DHT. Both testosterone and DHT bind with strong affinity within the ligand- binding 
pocket in the LBD of the cytosolic AR. DHT has approximately ten times improved 
affinity for the AR compared to testosterone predominantly due to the small differ-
ence in its chemical structure that impacts its interaction within the ligand-binding 
pocket of the LBD to result in a slower dissociation rate compared to testosterone 
[50]. Here, we focus on genomic signaling of AR and direct readers to a recent 
review on non-genomic signaling of the cytosolic AR [51]. Genomic signaling of 
AR is initiated upon androgen binding to the AR LBD to induce a conformational 
change that decreases AR interactions with chaperones which results in the reduc-
tion of its solubility that enhances its affinity for DNA. The nuclear localization 
signal in the hinge region becomes unmasked, thereby allowing the AR to form 
intramolecular N/C interactions and translocate into the nucleus. Within the nucleus, 
the AR forms an intermediate AR homodimer through intermolecular N/C interac-
tions through their D-boxes [52]. Upon binding to androgen-response elements 
(AREs) within the regulatory regions of androgen-responsive genes, N/C interac-
tions are lost to allow interaction with coactivators and recruitment of the basal 
transcriptional machinery. Over 300 coregulators have been described for nuclear 
receptors that function to stimulate or repress transcription without binding directly 
to DNA. These include proteins that regulate the structure of chromatin and bridge 
components of the basal transcriptional machinery to the site of transcription. 
Coregulators include ATPases and histone modifiers (for reviews, see [53, 54]). The 
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p160 steroid receptor coactivator-1 (SRC-1) and SRC-3 are examples of coactiva-
tors of AR that have histone acetyltransferase (HAT) activity. The bHLH/PAS, S/T, 
and HAT domains of SRC-3 directly interact with region 1–233 amino acid residues 
of the AR NTD [34, 35]. The AR is unique from other steroid hormone receptors in 
that p300, and presumably also CBP, directly interacts with the AR NTD rather than 
indirectly through recruitment to SRC [34]. The AR NTD is the site for interaction 
with the basal transcriptional machinery including recruitment of RNA polymerase 
II which is necessary for transcriptional activity. Other important coactivators of AR 
include the methyltransferases CARM1 and PRMT1 [55, 56]. The requirement of 
tissue-specific pioneer factors that co-localize with the AR on DNA-binding sites 
include FOXA1 with fl-AR as well as HOXB13 with AR-V7 in the prostate [57–
60]. In response to androgens, the AR both induces and represses the expression of 
genes that are involved in development, metabolism, differentiation, proliferation, 
and DNA damage repair [61–65]. Thus, altered transcriptional activity of AR due to 
structural changes and/or variation in the levels of available androgens has a pro-
found impact on human physiology and disease. An important recent discovery is 
the role for AR in modulating the expression of androgen-regulated genes such as 
TMPRSS2 and ACE2 that are required for the entry of the SARS-CoV-2 virus into 
cells to mediate COVID-19 disease [66, 67]. Due to space constraints, in the follow-
ing sections, the roles of AR will be discussed in only a handful of these diseases, 
such as prostate cancer, androgen insensitivity syndrome (AIS), PCOS, breast can-
cer, and a few other AR-associated diseases.

16.3  Prostate Cancer

The prostate is part of the male reproductive system and is an androgen-dependent 
tissue that relies on functional androgen signaling for growth and survival. Castration 
leads to involution of the prostate in the mature male with apoptosis of prostate 
luminal epithelial cells. The androgen dependency of the prostate provided the 
rationale for Dr. Charles Huggins to test if a reduction of circulating levels of testos-
terone could induce tumor regression in prostate cancer patients [68, 69]. The suc-
cess of those studies paved the way for the development of numerous approaches to 
block the androgen axis for the treatment of prostate cancer and other diseases 
driven by the AR. Today, androgen ablation therapy remains the standard of care for 
various stages of prostate cancer and can be combined with antiandrogens that tar-
get the AR LBD or other treatment modalities such as radiation therapy [70, 71]. 
Unfortunately, remissions to first-line androgen ablation for advanced prostate can-
cers are not durable and within 2–3 years the disease returns. These patients’ disease 
will progress to lethal metastatic castration-resistant prostate cancer (CRPC). The 
transition to CRPC is characterized by a gradual rise in serum levels of prostate- 
specific antigen (PSA), the AR-regulated gene KLK3, which signifies a resurgence 
of transcriptionally active AR and biochemical recurrence. Mechanisms of resis-
tance to androgen ablation therapies and antiandrogens implicated in the 
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progression to CRPC include synthesis of intratumoral androgens, amplification or 
overexpression of the AR gene, gain-of-function mutations in AR protein, ligand- 
independent activation by alternate signaling pathways, and expression of constitu-
tively active truncated AR variants [72]. Regardless of androgen deprivation therapy 
and current AR-targeted therapies, genomic profiling shows a disproportional alter-
ation of the AR signaling pathway compared to other pathways, which suggests that 
AR remains a key regulator of prostate cancer and an essential therapeutic target 
[73, 74]. Neuroendocrine prostate cancer is also considered to be a type of CRPC 
and represents about 20% of CRPC cases, but it does not rely on AR for growth and 
survival.

16.3.1  AR Mutations and Alterations in the Progression 
of Prostate Cancer

Amplification of the AR gene is the most common gene alteration and occurs in 
~28% of CRPC tumors and 50% of CRPC metastases compared to less than 1% for 
primary prostate cancer tumors [73, 75, 76]. These frequencies support the notion 
that amplification of the AR gene is an adaptive response to androgen deprivation 
and that CRPC cells remain reliant on AR signaling. Increased sensitivity to a lower 
threshold of androgen is proposed to be a response to the elevated expression of 
AR. Castrate levels of androgen where serum testosterone is less than 50 ng/dL may 
be sufficient to transactivate the AR. Extragonadal sources of androgen including 
steroidogenesis from the tumor [77] or residual androgen biosynthesis from the 
adrenal glands [78] also contribute to AR signaling in spite of castrate serum levels 
of testosterone. Due to these discoveries of androgen still driving the disease, the 
nomenclature of this stage of the disease was changed from “hormone-refractory” 
or “androgen-independent” to “CRPC” [79].

AR mutations have been long suspected to drive the etiology and progression of 
prostate cancer and include the following: (i) point mutations that result in an amino 
acid substitution or premature stop codon, (ii) nucleotide insertions and deletions 
that cause a frameshift, (iii) complete or partial deletion of the AR gene, and (iv) 
intronic mutations that interrupt the processing of AR transcripts. Currently, there 
are more than 150 mutations reported in the Androgen Receptor Gene Mutations 
Database (http://androgendb.mcgill.ca) at the Lady Davis Institute for Medical 
Research [80]. These mutations predominantly occur in the LBD (48%) or NTD 
(39%) and are less commonly found in the DBD (7%) (Fig. 16.4a). Intronic muta-
tions and large deletions that span multiple exons are considered to be rare and 
represent 3% and 2% of all detected mutations, respectively.

Missense mutations in the coding region of exon 8 that encodes the AR LBD are 
the most frequent and can confer ligand promiscuity and activation by antiandro-
gens or alternative steroids (Fig. 16.4b and Table 16.1). These AR LBD mutations 
primarily occur in “hot spots” that impact the structure of the ligand-binding pocket 
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and are associated with therapies blocking the AR signaling axis, such as antiandro-
gens or CYP17 inhibitor abiraterone acetate. AR T877A was the first mutant identi-
fied to confer agonist activity to the antiandrogen flutamide. T877A reduces the 
specificity of the LBD for androgen such that the mutant AR can be activated by 
progesterone, E2, and various antiandrogens (hydroxyflutamide and bicalutamide) 
[81–83]. This mutation is present in the LNCaP human prostate cancer cell line, a 
widely used androgen-sensitive model of prostate cancer. Mutations associated with 
bicalutamide gain-of-function include W741C and W741L [84]. Another notewor-
thy mutation, AR F876L, was discovered in CRPC patients and confers agonist 
activity to second-generation antiandrogens enzalutamide and apalutamide [85, 86]. 
This AR F876L mutation remains sensitive to inhibition by bicalutamide, thereby 
indicating a difference in mechanism between these highly related compounds [87]. 
AR L701H was found in CRPC and is less sensitive to androgen but highly respon-
sive to the glucocorticoids cortisol and cortisone [88]. Mutant AR harboring an 
L701H/T877A double mutation can be found in MDA-PCa cell lines, which were 
originally derived from a prostate cancer bone lesion.

Polymorphisms in the length of the AR NTD may influence the risk for men to 
develop prostate cancer. Most men have on average 21 repeats. Fewer CAG repeats, 
and therefore a shorter NTD, increases AR transcriptional activity in vitro, whereas 
increasing the length of the CAG region reduces transactivation [89, 90]. Several 
studies have shown an increased risk of developing prostate cancer for men with 
shorter (<21) CAG repeats [29, 30], but others have found no association between 
CAG repeat length and prostate cancer risk [91]. Thus, whether CAG repeat length 
of the AR NTD predisposes men to prostate cancer remains somewhat 
controversial.

Fig. 16.4 Summary of AR gene alterations reported in prostate cancer patients. (a) Relative distri-
bution of gene alterations in the AR N-terminal domain (NTD), DNA-binding domain (DBD), or 
ligand-binding domain (LBD), and intronic mutations or large deletions spanning multiple exons. 
(b) The number of cases reported for alterations occurring in the AR NTD, DBD, or LDB is shown, 
based on the type of mutation. Data shown were retrieved from the AR Gene Mutations Database 
(http://androgendb.mcgill.ca)
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Table 16.1 Recurring AR alterations from human prostate cancer

Domain Exon Mutationa Findings References

NTD 1 E43G/V No endocrine treatment Steinkamp et al. (2009) 
[281]

NTD 1 Q58L Treated and untreated Robins (2012) [282]
NTD 1 Q84del Treated and untreated Steinkamp et al. (2009)
NTD 1 S119S Synonymous mutation, bicalutamide- and 

flutamide-treated
Steinkamp et al. (2009)

NTD 1 L192Q Bicalutamide- and flutamide-treated Steinkamp et al. (2009)
NTD 1 E211E Synonymous mutation; bicalutamide- and 

flutamide-treated
Steinkamp et al. (2009)

NTD 1 T227A Treated and untreated patients  Steinkamp et al. (2009)
NTD 1 T227C Bicalutamide- and flutamide-treated Robins (2012)
NTD 1 E250V Adjacent to conserved CHIP E3 ligase 

interaction site, bicalutamide- and 
flutamide-treated

Steinkamp et al. (2009)

NTD 1 A251V Bicalutamide- and flutamide-treated Robins (2012)
NTD 1 E253K Adjacent to conserved CHIP E3 ligase 

interaction site, prolonged protein 
half-life and nuclear localization without 
hormone, bicalutamide- and 
flutamide-treated

Steinkamp et al. (2009)

NTD 1 A356V/T Flutamide-treated Steinkamp et al. (2009)
NTD 1 R360H Treated and untreated Robins (2012)
NTD 1 G414S/D Treated and untreated Steinkamp et al. (2009)
NTD 1 W433C Treated and untreated Steinkamp et al. (2009)
NTD 1 W433L Impact on WxxLF motif, increased 

transactivation function and N/C 
interaction, bicalutamide- and 
flutamide-treated

Steinkamp et al. (2009)

NTD 1 T438P Bicalutamide- and flutamide-treated Robins (2012)
NTD 1 G454S Bicalutamide- and flutamide-treated Steinkamp et al. (2009)
NTD 1 G455D Bicalutamide-treated Robins (2012)
NTD 1 R484C Treated and untreated Robins (2012)
NTD 1 T497I Treated and untreated Robins (2012)
NTD 1 V508L Bicalutamide-treated Robins (2012)
NTD 1 V508L/G Bicalutamide- and flutamide-treated Steinkamp et al. (2009)
DBD 3 C619Y Cannot bind DNA and is transcriptionally 

inactive
Nazareth et al. (1999) 
[283], Marcelli et al. 
(2000) [284]

H 4 E665D Bicalutamide- and flutamide-treated Robins (2012)
LBD 4 L701H Less responsive to androgens, responsive 

to glucocorticoids, partial agonist activity 
with flutamide and bicalutamide

van de Wijngaart et al. 
(2010) [88], Lallous 
et al. (2016) [285]

LBD 4 V715M Responsive to progesterone, partial 
agonist activity with flutamide and 
bicalutamide

Culig et al. (1993) 
[286], Lallous et al. 
(2016)

(continued)
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Table 16.1 (continued)

Domain Exon Mutationa Findings References

LBD 5 R726L Activated by estradiol, germline mutation Elo et al. (1995) 
[287], Mononen et al. 
(2000) [288]

LBD 5 V730M Partial agonist activity with flutamide and 
bicalutamide

Lallous et al. (2016)

LBD 5 W741L Confers agonist activity to bicalutamide Bohl et al. (2005) [289]
LBD 5 W741C Confers agonist activity to bicalutamide Yoshida et al. (2005) 

[82]
LBD 5 R752Q Reduced ligand-binding and N/C 

interaction, differential gene expression, 
reported as a germline mutation in some 
cases of AIS

Robins (2012)

LBD 5 R760R Bicalutamide- and flutamide-treated Steinkamp et al. (2009)
LBD 5 R760K Bicalutamide-treated Robins (2012)
LBD 6 T786* Treated and untreated Steinkamp et al. (2009)
LBD 6 L797P Flutamide-treated Robins (2012)
LBD 7 Q867* Treated and untreated Steinkamp et al. (2009)
LBD 8 L873P Flutamide-treated Robins (2012)
LBD 8 H874Y Responsive to progesterone and estrogen; 

partial agonist activity with bicalutamide, 
enzalutamide, and apalutamide

Taplin et al. (1995) 
[81], Lallous et al. 
(2016)

LBD 8 H874Q Partial agonist activity with flutamide and 
bicalutamide

Lallous et al. (2016)

LBD 8 F876L Partial agonist activity with flutamide, 
enzalutamide, and apalutamide

Korpal et al. (2013) 
[86], Joseph et al. (2013) 
[85]

LBD 8 T877A Responsive to progesterone and estrogen, 
confers agonist activity to flutamide and 
bicalutamide, present in LNCaP cells

Wilding et al. (1989) 
[290], Veldscholte et al. 
(1992) [291]

LBD 8 T877S Responsive to progesterone and estrogen, 
confers agonist activity to bicalutamide

Taplin et al. 
(1995), Lallous et al. 
(2016)

LBD 8 D879E Partial agonist with flutamide and 
bicalutamide

Lallous et al. (2016)

LBD 8 L881I Partial agonist with flutamide and 
bicalutamide

Lallous et al. (2016)

LBD 8 S888G Responsive to progesterone and estrogen, 
confers agonist activity to flutamide and 
bicalutamide

Lallous et al. (2016)

LBD 8 D890H Confers agonist activity to flutamide and 
bicalutamide

Lallous et al. (2016)

LBD 8 E893K Partial agonist with flutamide and 
bicalutamide

Lallous et al. (2016)

LBD 8 M895V Confers agonist activity to bicalutamide, 
partial agonist activity with flutamide

Lallous et al. (2016)

(continued)
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16.3.2  Roles of AR Splice Variants in Prostate Cancer

The expression of some truncated AR splice variants that lack the LBD is now 
established as a major resistance mechanism for CRPC. To date, 22 AR splice vari-
ants have been reported in the literature with available transcript sequences [92]. 
AR-V7 (also known as AR3) is the most extensively studied and the most common 
splice variant expressed in CRPC. AR-V7 is comprised of the NTD, DBD, and a 
unique C-terminus with 16 amino acids encoded by cryptic exon 3 [93, 94]. AR-V7 
is constitutively active and does not encode the LBD, which is the therapeutic target 
all of currently approved therapies for CRPC that target AR. Thus, AR-V7 is con-
sidered a major resistance mechanism for all therapeutic approaches that target the 
AR LBD, including next-generation antiandrogens (enzalutamide, apalutamide, 
and darolutamide) and abiraterone acetate. Clinical evidence for the importance of 
AR-V7 in CRPC has been drawn from studies showing AR-V7 expression is associ-
ated with shorter survival and limited responses to approved AR-targeted therapies 
for CRPC patients [95–97]. Approximately 10%–30% of patients with metastatic 
CRPC have detectable AR-V7 expression, based on clinically validated assays that 
detect nuclear protein or mRNA in circulating tumor cells [98]. Alternative splicing 
of AR-V7 transcripts is induced by androgen deprivation and antiandrogens. Both 
the rate of AR gene transcription and recruitment of RNA splicing factors and 
enhancers (U2AF65 and ASF/SF2) that generate the AR-V7 transcript are upregu-
lated when fl-AR transcriptional activity is suppressed [99, 100]. AR-V7 is almost 
always coexpressed with fl-AR, but V7 transcript levels are usually lower (5%–30%) 
than fl-AR.  AR-V7 is commonly detected in samples that also have AR gene 
amplification.

Proliferation of prostate cancer cells that express mixed populations of fl-AR and 
AR-Vs tends to be androgen-independent and resistant to antiandrogens. This is 
observed in clinical findings, where AR-V7-positive CRPC patients treated with 
enzalutamide or abiraterone had poor responses and lower overall survival than 
patients without detectable AR-V7 [96]. AR-V7-positive patients are associated 
with better PSA responses with taxane chemotherapy compared to treatment with 
enzalutamide or abiraterone, whereas for AR-V7-negative patients, there were no 
obvious differences in efficacy between taxanes and these hormonal therapies [101]. 
Serial analysis of AR-V7 expression in CRPC patients further revealed that 

Table 16.1 (continued)

Domain Exon Mutationa Findings References

LBD 8 M895T Confers agonist activity to 
bicalutamide, partial agonist activity with 
flutamide

Lallous et al. (2016)

LBD 8 E897G Partial agonist activity with flutamide Lallous et al. (2016)
LBD 8 T918S Partial agonist activity with flutamide and 

bicalutamide
Lallous et al. (2016)

Note. adel, deletion; *, stop codon
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inhibition of AR signaling by androgen-deprivation, enzalutamide, or abiraterone 
may exert a selective pressure for promoting the expression AR-V7 [102], confirm-
ing in vitro observations [96, 103]. Reversion to AR-V7-negative status is observed 
in some taxane-treated AR-V7-positive patients; however, this did not occur with all 
taxane-treated patients, and thereby further investigation is warranted to understand 
the mechanism of this phenomenon.

Protein-protein interactions between fl-AR and AR-Vs remain an important area 
of investigation. A study by Xu et al. in 2015 [104] using bimolecular fluorescence 
fusion constructs reported that truncated splice variants, AR-V7 and ARv567es, can 
interact with fl-AR by N/C interactions mediated by AF-2 of fl-AR or by DBD- 
DBD interactions mediated by the D-box motif. These data suggest that constitu-
tively active AR-Vs may promote transactivation of fl-AR in the absence of androgen 
or transactivate target genes without fl-AR by using their D-box to form variant 
homodimers or heterodimers [104]. Analysis of an AR-V gene expression signature 
in CRPC cell lines suggested that AR-V7 and ARv567es can activate some canonical 
fl-AR target genes, in addition to a subset of variant-specific genes that include 
AKT1 and cell cycle genes, such as UBE2C, CDC25B, and CCNA2 [93, 105]. 
Ectopic expression of AR-V7 can increase the expression of ETS2 and EDN2, which 
are otherwise co-repressed by fl-AR and the pioneer factor FOXA1 [106]. Cofactors 
and interacting proteins that uniquely interact with AR-Vs but not fl-AR have also 
been reported. An analysis of AR-V7 cistromes in CRPC cell lines and patient spec-
imens suggested that homeobox protein HOXB13 may interact with AR-V7 as an 
essential coactivator and pioneer factor to open the chromatin for access to DNA- 
binding sites [107]. Genomic profiling of AR-V7 and fl-AR binding sites in 22Rv1 
human prostate cancer cells showed a proportion of sites (2221 out of 17,409) were 
specific to AR-V7 binding [108]. In contrast to the binding sites shared by fl-AR 
and AR-V7, which were enriched in ARE and FOXA1 motifs at enhancer regions, 
these AR-V7-specific binding sites were associated with zinc finger X-chromosomal 
protein (ZFX) and located primarily at promoter regions of MYC-bound genes or 
genes regulating cell cycle progression (SKP2), autophagy (ZNF32), and WNT sig-
naling (FZD6) [108]. ChIP-sequencing analysis supports the notion that fl-AR and 
AR-V7 can heterodimerize to mostly the same genomic foci, but AR-V7 preferen-
tially interacted with transcriptional corepressors (NCOR1 and NCOR2), whereas 
fl-AR was associated with both coactivators and corepressors [109]. These findings 
suggest that AR-V7 may have a significant repressor function in CRPC, which may 
contribute to prostate cancer progression by preventing the expression of tumor sup-
pressor genes [109].

16.3.3  Treatments Targeting AR

The two main therapeutic approaches to inhibit AR signaling are surgical or phar-
maceutical reduction of androgens and the direct inhibition of binding of androgen 
to the AR LBD with competitive antagonists called antiandrogens. Castration by 
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orchiectomy or analogs of LH-RH quickly reduce circulating levels of androgen by 
>90%. Abiraterone acetate is a CYP17 inhibitor that blocks steroid synthesis to 
reduce de novo androgen synthesis. The development of antiandrogens as antago-
nists of the AR commenced approximately 60 years ago first with the development 
of steroidal progestogens such as cyproterone acetate and then later with the devel-
opment of flutamide as a first-in-class nonsteroidal pure antagonist that lacked par-
tial agonist activity (for a review, see [110–112]). Steroidal antiandrogens are used 
today for numerous indications mediated by AR, including prostate cancer, PCOS, 
congenital adrenal hyperplasia, benign prostatic hyperplasia, acne, hirsutism, and 
androgenic alopecia. All nonsteroidal antiandrogens, including flutamide, nilu-
tamide, bicalutamide, enzalutamide, apalutamide, and darolutamide, are competi-
tive AR LBD inhibitors with chemical structures based upon flutamide and 
bicalutamide with the exception of darolutamide. The crystal structure of the folded 
AR LBD has only been resolved for the agonist conformation bound to ligand with 
no antagonist conformation reported. The mechanism of how antiandrogens antago-
nize AR involves blocking N/C interactions required for agonist activity and pre-
venting essential protein-protein interactions with AF-2 in the AR LBD. Differences 
in AR-binding affinity to the chromatin and reduction of AR nuclear localization 
have also been reported for the various nonsteroidal antiandrogens [100, 113].

Enzalutamide is a second-generation antiandrogen developed for CRPC using 
LNCaP human prostate cancer cells engineered to express elevated levels of wild- 
type AR in the background of the LNCaP AR mutation T877A [114]. Enzalutamide 
binds to the AR LBD, with about an eightfold improved affinity compared to bicalu-
tamide, and impairs AR nuclear translocation and chromatin binding [114]. 
Enzalutamide was FDA-approved in 2012 as second-line therapy for metastatic 
CRPC following results of the AFFIRM trial that showed an improvement for over-
all survival by 4.8 months [115]. Enzalutamide was subsequently approved for first- 
line therapy for metastatic CRPC following the PREVAIL study [116] and was later 
approved for nonmetastatic CRPC after results from the PROSPER trial showed a 
71% reduction for the risk of progression for nonmetastatic CRPC patients on 
androgen deprivation therapy [117].

Apalutamide is a second-generation antiandrogen with high chemical similarity 
to enzalutamide. It was discovered using the same screen as used for enzalutamide 
[118]. Apalutamide is the first drug to be approved for the treatment of nonmeta-
static CRPC. The SPARTAN trial for nonmetastatic CRPC patients reported a sig-
nificant improvement to metastasis-free survival by 23.3 months with apalutamide 
compared to a placebo [119]. Apalutamide has comparable properties to enzalu-
tamide including its binding affinity for the AR LBD and reducing AR nuclear 
translocation or DNA binding [118]. Preclinical evaluation of apalutamide demon-
strated that it has a greater in vivo efficacy on human CRPC xenografts compared to 
enzalutamide, such that 30 mg/kg/d of apalutamide had a maximum response that 
was equivalent to 100 mg/kg/d of enzalutamide [118].

Darolutamide is the most recent FDA-approved second-generation antiandrogen 
for nonmetastatic CRPC. Darolutamide and its active metabolite have an eight to 
tenfold improved the binding affinity for AR compared to enzalutamide and 
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apalutamide in ligand competition assays as well as having activity against the AR 
F876L mutant, which is resistant to enzalutamide and apalutamide [120]. 
Darolutamide has also been shown to inhibit other clinically relevant AR LBD point 
mutations, including F876L, H874Y/T877A, F876L/T877A, and T877G [121]. In 
contrast to enzalutamide and apalutamide, darolutamide does not share structural 
similarity to first-generation antiandrogens and has negligible brain penetrance 
[120, 122]. The ARAMIS trial of darolutamide for men with nonmetastatic CRPC 
reported a metastasis- free survival of 40.4 months compared to 18.4 months for the 
placebo group [123]. These results are consistent with the PROSPER and SPARTAN 
studies, where metastasis-free survival was 36.6 and 40.5 months for enzalutamide 
and apalutamide, respectively [117, 119]. Since these second-generation antiandro-
gens all target the AR LBD and appear to provide a similar clinical benefit, their 
differences in cost and improvement on the quality of life are important factors to 
consider.

Abiraterone acetate is a selective inhibitor of CYP17A1 that blocks androgen 
biosynthesis from steroid precursors in the testes, adrenal glands, or any sources 
from the tumor itself [124]. Cytochrome P450 enzymes (CYP11A1 and CYP17A1) 
synthesize the weak adrenal androgens DHEA and androstenedione, which can be 
converted by some prostate cancer cells to testosterone and DHT. Castrate levels of 
serum testosterone following surgical or chemical castration are typically within the 
20–50 ng/dL range. The addition of abiraterone can further reduce serum testoster-
one to a “super-castrate” level of 1–2  ng/dL [125]. Tumor biopsies from CRPC 
patients following abiraterone therapy showed an upregulation of CYP17A1 expres-
sion, which suggests that CRPC cells may remain steroid-dependent [126].

All current FDA-approved hormonal therapies for CRPC target the AR LBD and 
will inevitably fail from de novo or acquired resistance. Targeting solely the AR 
LBD is inadequate to completely block all AR signaling. The AR NTD contains the 
AF-1 region which is required for transcriptional activity, including the activity of 
truncated AR-Vs lacking the LBD. Thus, targeting the AR NTD would potentially 
inhibit fl-AR and all transcriptionally active AR-Vs. Ralaniten acetate is a prodrug 
of ralaniten, which is a first-in-class AR NTD antagonist that specifically binds to 
AF-1. Ralaniten inhibits the growth of prostate cancer in vitro and in vivo and main-
tains AR inhibition despite overexpression of AR coactivators, gain-of-function 
mutations in the AR LBD, or expression of AR-V7 [127–129]. Nuclear magnetic 
resonance studies revealed that ralaniten and its stereoisomers bind to a pocket 
formed by amino acids of 345–448 of tau-5 in AF-1 [130]. Proof of concept for the 
chemical scaffold and efficacy of ralaniten was provided in a phase I clinical trial 
with heavily pretreated CRPC patients who had previously failed enzalutamide or 
abiraterone [131]. Due to the rapid metabolism of ralaniten acetate, there was an 
excessive pill burden that stopped the trial. A second-generation analog, EPI-7386, 
is more potent with an improved pharmacokinetic profile compared to ralaniten, and 
it commenced clinical trials in mid-2020 (NCT04421222).

On-target complications associated with blocking the AR axis are associated 
with anemia, bone and muscle loss, gynecomastia, cognitive impairment, depres-
sion, diabetes, coronary heart disease, and cardiovascular disease [132–134]. 
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Cycling of androgen levels by application of intermittent androgen suppression has 
been proposed as an approach to reduce the incidence of adverse side effects from 
decreased levels of androgen (NCCN Guideline 2020). High levels of androgen 
may also be beneficial in blocking the progression of some prostate cancers [135]. 
Phase 2 clinical trials of bipolar androgen therapy that cycles high and low levels of 
androgen were well-tolerated but did not improve the outcomes for AR-V7-positive 
disease [136]. Thus, stimulating AR activity such as with SARMs or exogenous 
androgen may have beneficial effects for some prostate cancers in addition to other 
diseases, such as for some breast cancer, sarcopenia or cachexia, osteoporosis, 
hypogonadism, Duchenne muscular dystrophy, and AIS [137].

16.4  Androgen Insensitivity Syndrome

Testosterone and DHT both play roles in virilization during embryogenesis, with 
testosterone for the Wolffian structures and DHT for the virilization of the Anlagen, 
which forms the prostate and external genitals (for a review, see [138]). In the 
absence of androgens or functional AR, male sexual differentiation fails to occur. 
Inactivating mutations of the AR gene that cause a partial or complete inability of 
androgen-sensitive cells to respond to androgen is associated with AIS, which is a 
disorder of sex development [139]. The first detailed report of AIS (formerly known 
as testicular feminization) was described by John Morris in 1953, who recognized it 
to be an inherited disorder affecting male sexual differentiation. In general, indi-
viduals affected by complete AIS (CAIS) have developed testes and physiological 
production of testosterone plus its conversion to DHT, but they appear phenotypi-
cally female [140, 141]. Over the decades with the identification of the AR gene and 
an increased understanding of the structure and function of AR and the androgen 
axis, it is now appreciated that this overall feminizing effect arises predominantly 
from the lack of androgen action and an abundance of E2 resulting from the aroma-
tization of testosterone.

Insensitivity to androgen during development of the male fetus prevents the mas-
culinization of external genitalia. Instead, partial female external genitals are formed 
from the urogenital sinus, which in most cases results in a blind-ended vagina. 
Phenotypic variation of the external genitalia in AIS is directly attributed to the 
binding affinity of androgen to a mutant AR and its residual function. Table 16.2 
provides a list of AR mutations. Most individuals impacted by AIS have unde-
scended testes that can be located anywhere along the path of embryonic testicular 
descent, for instance, in the abdomen, inguinal canal, or labia, since androgen sig-
naling regulates testicular descent to the scrotum [142]. Secondary sexual character-
istics that are regulated by androgen actions include the development of axillary and 
pubic hair, and deepening of the voice at puberty, which can be absent or minimal 
in AIS. Breast development occurs at the onset of puberty, which is supported by the 
aromatization of testosterone to E2. AIS is the most common disorder of sex devel-
opment reported in genetic (46,XY) males. The prevalence of CAIS is estimated to 
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vary between 1:20,000 and 1:99,000  in 46,XY live births [80, 143, 144] and is 
identified in 0.8% to 2.4% of phenotypic females with inguinal hernia [145].

16.4.1  Clinical Presentation of AIS

Androgen resistance in AIS may be suspected when serum androgen levels are 
physiological or elevated but clinical effect is lacking or suboptimal. Individuals 
affected by AIS are classified by their clinical phenotype as either CAIS, partial 
(PAIS), or mild (MAIS) [141]. The external masculinization score (EMS) was 
devised as a tool for the initial assessment of ambiguous genitalia in infants (rang-
ing from 0 to 12); however, it should be noted that gender assignment does not 
necessarily depend on the appearance of the external genitalia and gender identity 
may change during or after puberty [146, 147]. For CAIS, there are no clinical indi-
cations of androgen action, and individuals are born with female-appearing external 
genitalia, but structures, such as the clitoris, labia minora, and labia majors, are typi-
cally underdeveloped. CAIS individuals are almost always raised as females, and 
the condition is rarely diagnosed in childhood unless a family history is known. 
CAIS can be suspected prenatally when the karyotype (46,XY) of the fetus is not 
consistent with the developing female phenotype [139]. It is also not uncommon for 
CAIS to be diagnosed during puberty when breast development occurs but pubic 
and axillary hair is lacking and menarche does not occur.

PAIS includes a broad range of external genitalia phenotypes, which may vary 
from female-like to male-appearing depending on the level of residual AR function. 
The management of PAIS is highly complex, since sexual identity and gender 
assignment may be unclear at birth. In milder presentations of PAIS, the external 
genitalia appear morphologically male, but there may be an underdeveloped penis, 
severe hypospadias, and bifid scrotum with or without undescended testes [145]. 
PAIS is thought to be as commonly occurring as CAIS. In the case of MAIS, indi-
viduals have unambiguous male external genitalia, but there may be evidence of 
mild impairment of masculinization, such as decreased terminal body hair or per-
haps isolated micropenis. Impotence is commonly reported as a concern in MAIS, 
and spermatogenesis may be impaired but may be sufficient to preserve fertility 
[148]. MAIS is the least understood type of AIS, since it has the mildest phenotype 
and may not be actively investigated unless there are issues regarding fertility. In 
many cases, male infertility is the only reported symptom in patients with MAIS 
[148]. Other phenotypic characteristics of MAIS include minor gynecomastia, 
sparse terminal body hair, and lack of vocal deepening at puberty [149]. The preva-
lence of MAIS is not known, but it is reported at a lower frequency than CAIS and 
PAIS [141]. Expansion of the AR polyglutamine tract to more than 38 CAG repeats 
is related to a progressive onset of MAIS in the form of gynecomastia and reduced 
fertility in adulthood [150].
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16.4.2  AR Mutations in Patients with AIS

More than 500 unique mutations in the AR gene have been identified from over 900 
AIS patients [80] (Fig. 16.5a). The majority of mutations that cause AIS are inher-
ited with about 30% identified as de novo mutations [151]. Defects in the AR gene 
that result in a loss of AR function are sufficient to be a single causative factor for 
AIS; however, polymorphisms in AR coactivator genes or genes related to steroid 
biosynthesis and metabolism are also important factors that may contribute to the 
AIS phenotype [143, 152]. Mutations in the AR gene are detected in the majority 
(90%–95%) of CAIS cases [153]. According to the AR mutation database (http://
androgendb.mcgill.ca), the majority of AR mutations from CAIS patients affect the 
AR LBD (66%) and are predominantly missense single base-pair substitutions, 
resulting in an amino acid change (Fig. 16.5b–d). AR LBD mutations that cause 
CAIS are clustered in the amino acid regions 688–712, 738–784, and 827–870 [80, 
141]. These mutations are predicted to primarily alter the AR LBD protein structure 
and disrupt the ligand-binding pocket and ligand specificity or render the mutated 
AR to be functionally inactive [14, 141]. Mutations associated with AIS have also 
been found in the AR LBD dimerization interface mediating AR LBD-LBD interac-
tions and may disrupt allosteric regulation and impair AR transcriptional activity 
[154]. Mutations of the AR NTD and DBD have also been reported for CAIS but are 
less common than the LBD, representing 17% and 13% of detected mutations, 
respectively (Fig. 16.5e). Notably, a missense mutation resulting in a substitution of 
valine to methionine (V30M) in the AR NTD was identified from a patient with 
CAIS [155]. Mutations of arginine 615 (R615C, R615H, R615P, R615S) of the 
second zinc finger of AR DBD has been documented in several CAIS cases [156–
159]. Other AR gene alterations identified in CAIS include mutations that impact 
the intron or exon splice sites and large deletions spanning multiple exons, which 
are less frequent and cover less than 5% of all detected AR mutations (Fig. 16.5e).

In contrast to CAIS, AR gene mutations are only identified in 20%–40% of PAIS 
patients [80, 160]. Mutations associated with PAIS are more frequently detected in 
the AR LBD (71%) than in the DBD (19%), NTD (8%), or at intron-exon junctions 
(2%) (Fig. 16.5f). Whether a PAIS patient carries an AR gene mutation is phenotypi-
cally indistinguishable from the external genitalia and the EMS criteria; however, 
birth weight was reported to be significantly lower for the gestational age of PAIS 
infants without an AR mutation [160]. It is noteworthy to mention that identical 
mutations have been associated with different conditions of PAIS [161, 162], such 
that related affected individuals with the same AR mutation may have a different 
phenotype and sex assignment [143, 163]. These cases imply that additional factors 
are accountable for the extent of virilization in PAIS. Other identified genetic causes 
that may promote PAIS in the form of underdeveloped male external genitalia 
include defects in LH receptor and deficiencies in androgen biosynthesis enzymes 
(i.e., 17,20-lyase, P450 oxidoreductase, 17β-hydroxysteroid dehydrogenase, and 
5α-reductase) [164, 165]. Fewer AR mutations are reported in patients with MAIS, 
with 40% identified in the NTD and 47% in the LBD (Fig. 16.5g).
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Fig. 16.5 Summary of AR gene alterations reported from patients with androgen insensitivity 
syndrome. (a) Relative distribution of AIS phenotypes (complete, partial, or mild) associated with 
a mutation in the AR gene. (b-d) The number of cases with a mutation impacting the AR NTD, 
DBD, or LBD is shown, based on the type of mutation. (e-g) Relative distribution of the gene 
alterations occurring in the AR NTD, DBD, or LBD, or introducing a large deletion or intronic 
mutation

J. K. Leung et al.
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The AR NTD has a flexible disordered structure; therefore, mutations in this 
domain have a milder effect on protein structure and are less likely to be detrimental 
to AR function. The pathogenicity of AR NTD mutations may also be difficult to 
prove since transactivation of AR in vitro can vary depending on the promoter of the 
reporter gene or cell line used. Such studies suggest that mutations of the AR NTD 
associated with a MAIS phenotype might impact coactivator binding or impair the 
structural flexibility of the AR NTD rather than cause a significant structural change 
as those observed with mutations in the folded AR LBD [166]. Missense mutations 
located in the AR NTD have been documented in mild to partial states of AIS 
(Table 16.2). G216R is associated with reduced AR transactivation and has been 
reported in multiple patients with PAIS [161, 167]. A474V has been detected in 
several cases of infertile men with MAIS [168] and P390S in mild to partial AIS 
cases [169, 170], but neither the A474V and P390S mutations are associated with a 
significant difference in transcriptional activity in vitro compared to the wild-type 
AR. Interestingly, an R405S mutation in AR from a PAIS patient creates a phos-
phorylation site that inhibits interaction with essential transcriptional coactivators 
such as p300 [171]. Although hyperexpansion of the AR polyglutamine tract is 
associated with SBMA and progressive onset of androgen deficiency in the form of 
MAIS, CAG polymorphisms within the normal range of CAG repeats are not single 
causative factors for AIS [170, 172–174].

16.4.3  Clinical Management of AIS

There is currently no standardized treatment for patients impacted by 
AIS.  Individualized care with a multidisciplinary approach is strongly recom-
mended for the management of a disorder of sex development, such as AIS, from 
pursuing a diagnosis and providing information about the condition appropriately to 
monitoring puberty and considering the need and optimal timing for gonadectomy 
[139]. Gonadectomy is recommended for CAIS due to the increased risk of testicu-
lar malignancy that increases with age which is estimated to be about 3.6% at 
25 years and 33% at 50 years [175]. Continued support for the adult patient is espe-
cially important to promote adequate sexual function and quality of life.

The management of PAIS is far more complex than for CAIS since it encom-
passes a range of ambiguous phenotypes and patient sexual identity may not be 
clear. Gender assignment for PAIS should not only consider the external genitalia 
but also the virilization potential, complexity of genioplasty, likelihood of gaining 
fertility, and projected gender identity in a case-by-case manner. The majority of 
PAIS infants are raised as males and would require surgery to repair hypospadias, 
orchiopexy for the undescended testes, and corrective mammoplasty after puberty. 
Several studies have demonstrated that some PAIS patients respond to high pharma-
cologic doses of androgens to improve virilization and masculine self-identity [149, 
162, 176, 177]. Patients with shorter CAG repeats appear more likely to respond to 
testosterone supplementation, but further investigation is required to completely 
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assess the value of CAG length as a selection marker [178]. PAIS assigned as 
females would require gonadectomy to prevent further virilization and the risk of 
developing gonadal tumors later in life, and they may elect for vaginal reconstruc-
tion procedures to improve sexual function. Most patients affected by AIS are infer-
tile, but since AIS is an X-linked recessive heritable disorder with significant 
consequences, genetic counseling is recommended to affected families.

16.5  Polycystic Ovary Syndrome

An excess of androgen in women can be associated with a hormone disorder known 
as PCOS. The first description of PCOS was reported by Stein and Leventhal in 
1935 [179] from a series of women with enlarged bilateral polycystic ovaries, hir-
sutism, and infrequent or absence menstrual periods. PCOS is a heterogeneous dis-
order that affects 6% to 20% of women of reproductive age [180]. It is the most 
common endocrine condition for childbearing age. According to the Rotterdam cri-
teria, a patient diagnosed with PCOS will have two of the following features: clini-
cal or biochemical androgen excess, infrequent or lack of ovulation, and a 
characteristic polycystic ovarian morphology as observed by ultrasound [181, 182]. 
Approximately 60% of PCOS patients have high levels of circulating androgen 
(hyperandrogenism) in the form of testosterone, androstenedione, and DHEA, and 
possibly also elevated levels of 3β-hydroxysteroid dehydrogenase [183, 184]. In 
PCOS patients, a greater number of follicles are recruited to the preantral and antral 
stage; however, the follicles fail to progress to ovulation. This leads to follicular 
atresia, giving rise to ovaries with the characteristic polycystic appearance. 
Moreover, increased LH pulse frequency by the anterior pituitary stimulates testos-
terone production by theca cells of the follicle to further exacerbate the hyperandro-
genic state and PCOS condition. There is a wide variety of comorbidities with 
PCOS comprising of endocrine, reproductive, and metabolic symptoms [185]. The 
primary endocrine and reproductive features of PCOS include LH excess and hyper-
androgenism, ovulatory perturbations, aberrant follicle development, and reduced 
fertility. Women with PCOS who achieve pregnancy also have an increased risk of 
miscarriage and for developing complications including gestational diabetes, hyper-
tensive disorders, and premature delivery [186]. A metabolic component of PCOS 
is associated with hyperinsulinemia and insulin resistance, increased intra- 
abdominal fat, fatty liver disease, and dyslipidemia, all of which amplify the risk of 
cardiovascular disease and type 2 diabetes [187].
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16.5.1  AR-Mediated Actions in the Ovary and Brain

The phenotype of AR knockout (ARKO) mice has been critical for our understand-
ing of androgen action and how AR maintains ovarian function, primarily in regu-
lating the early stages of folliculogenesis. Although AR is not essential for the 
survival and reproduction of female mice, ARKO females have reduced fertility and 
show a progressive decline in reproductive potential with age. ARKO female mice 
produce fewer offspring and smaller numbers of litters, where fecundity is reduced 
by about 70% compared to wild-type littermates [188, 189]. Ovaries of ARKO 
female mice appear relatively normal at 4 weeks of age, but by 8 weeks, there are 
fewer corpora lutea and more atretic follicles compared to wild-type littermates, and 
the follicles are completed depleted by 40 weeks [189]. Analysis of ARKO mouse 
ovaries suggests that several genes that are involved in folliculogenesis are regu-
lated by AR signaling, including Kitl, Bmp15, Gdf9, and Hgf [189]. Chronic expo-
sure to exogenous androgens is sufficient to induce PCOS-like traits in rodents, 
including disruption of the estrous cycle, the appearance of polycystic atretic folli-
cles, and metabolic symptoms such as increased body fat and glucose intolerance 
[190, 191]. Global ARKO female mice supplemented with excess androgen do not 
develop PCOS, which supports the hypothesis that functional AR is required for the 
development of PCOS phenotypes [192]. Neuron-specific ARKO prevented the 
development of most reproductive and metabolic symptoms induced by androgen 
excess but still had cycle irregularity and partial polycystic ovary morphology [193]. 
A more recent mouse model with double ARKO in the brain and adipocytes showed 
further protection against developing irregular cycles, polycystic ovary morphol-
ogy, and hepatic steatosis in response to androgen excess [194]. Collectively, these 
findings support that AR-driven neuroendocrine actions from the brain are major 
drivers to the onset of reproductive and metabolic PCOS traits induced by hyperan-
drogenism. Other potential tissue targets include adipocytes, liver, and muscle cells, 
which are believed to be involved in the pathogenesis of PCOS and could also 
involve AR.

16.5.2  Regulation of AR Signaling in PCOS

Ovulatory women with an AR that has more than 23 CAG repeats in AR NTD are 
associated with higher aromatase levels and lower intrafollicular testosterone than 
in patients with fewer than 20 CAG repeats [195]. This suggests that CAG length 
may influence hormone levels in the follicular milieu. Studies examining the asso-
ciation between CAG length and hyperandrogenism in PCOS have yielded conflict-
ing results. In cohorts of Australian and Chinese women, longer CAG repeats were 
more frequent in PCOS women [196, 197]. CAG length in a Croatian population 
was reported to be associated with total testosterone in PCOS women, but it was not 
a significant predictor of PCOS or PCOS traits like hirsutism or acne [198]. Although 
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polymorphism in CAG length of AR does not appear to be a major determinant of 
PCOS, there may be an association between CAG length and the variations in 
androgen levels among women with PCOS.

The presence of alternatively spliced AR transcripts has been identified in granu-
losa cells of some patients with PCOS. A study by Wang et al. in 2015 identified two 
AR-Vs, which were found in the granulosa cells of most (62%, 42/68) women with 
PCOS but not from non-PCOS control subjects [199]. One of these variants has a 
69-base-pair insertion in intron 2 in the AR gene, whereas the other has a deletion 
skipping exon 3 [199]. Both of the splice variants are in-frame alterations that only 
affect the second zinc finger of the AR DBD.  The expression of either of these 
AR-Vs was more common in PCOS women that had severe hyperandrogenism 
[199]. Notably, these AR-Vs were shown to attenuate AR nuclear translocation in 
response to androgen and reduce the overall number of DNA sites of AR in ChIP- 
sequencing analyses [199, 200]. Since these AR-Vs appear to primarily suppress the 
transcriptional activity of AR, these findings imply that nongenomic AR functions 
could be involved in hyperandrogenism and PCOS at the ovarian cell level. 
Furthermore, an analysis of AR phosphorylation from marmoset ovaries by immu-
nostaining showed that phosphorylation of AR can occur at serine resides 81, 309, 
and 650 in granulosa and theca cells [201]. Phosphorylation of these serine residues 
was not impacted by hormone manipulation with testosterone or LH-RH antagonist. 
The biological significance of AR phosphorylation in ovarian cells remains to be 
fully elucidated, but posttranslational regulation of AR could potentially have a dis-
tinct function in ovarian cells.

16.5.3  Targeting AR for the Treatment of PCOS

Currently, there is no cure for PCOS, and the management of PCOS relies primarily 
on alleviating symptoms to improve quality of life. There are no therapies approved 
for PCOS specifically, and the majority of treatments for PCOS are used in an off- 
label fashion. Thus, there is a significant need for continuing research to improve 
our understanding of the etiology of PCOS and to develop mechanism-specific 
drugs that are more effective. Therapies targeting the AR signaling axis, including 
antiandrogens (spironolactone, cyproterone acetate, and flutamide) or the 
5α-reductase inhibitor finasteride, have been able to provide some clinical benefit in 
alleviating PCOS symptoms for women [202–207].

16.6  Breast Cancer

Breast cancer is the most commonly diagnosed cancer and the leading cause of 
cancer mortality among women worldwide [208]. Its incidence is approximately 
100 times more common in women than in men [209]. Breast cancer is highly 
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heterogeneous and may be categorized into four major molecular subtypes based on 
the expression of ER, PR, and human epidermal growth factor receptor 2 (HER2). 
The major subtypes include luminal A (ER+, PR+, and HER2−), luminal B (ER+, 
PR+, and HER2+), HER2-expressing (ER− and HER2+), and basal-like, which are 
mostly triple-negative (ER−, PR− and HER2−). Approximately, 75% to 80% of the 
basal-like subgroup is triple-negative breast cancer (TNBC) [210, 211]. TNBC is an 
aggressive disease that is usually associated with higher grade, poor prognosis, and 
an increased rate of mortality [212, 213]. Although TNBC patients respond to che-
motherapy, they commonly develop distant recurrence and metastasis [214]. Lack 
of molecular targets for therapies is a challenge for the treatment of TNBC. In recent 
years, targeting AR for the treatment of TNBC has been a growing interest in trans-
lational research and clinical trials. In addition to TNBC patients, other patients 
with AR-expressing breast cancers may also benefit from AR-targeted therapies. 
AR expression is detected in all stages of breast cancer: ductal carcinoma in situ, 
primary breast cancer, and metastatic disease [215]. From different studies employ-
ing various methodologies that vary in their sensitivity of detection and antibody of 
choice, AR can be detected in 70% to 90% of all breast cancers and 20% to 40% of 
TNBC patients [213, 216, 217].

16.6.1  AR Roles in Different Types of Breast Cancer

AR signaling plays a role in regulating normal breast development as demonstrated 
by ARKO mice [218]. Although female ARKO mice appear healthy in general, they 
display abnormal phenotypes that include decreased ductal branching during prepu-
berty and decreased lobuloalveolar development with fewer milk-producing alveoli 
in the mammary gland in adulthood. Most research has been focused on ERα due to 
its proliferative effects on breast cancer cells; however, AR is more abundantly 
expressed than ERα and PR in mammary epithelial cells [219]. The main active 
androgen in females is testosterone, which is produced by the ovaries. In mammary 
tissues, testosterone and DHT can transactivate the AR, and testosterone can be 
converted to E2 [213, 220]. The levels of circulating androgens are not consistently 
correlated with the risk of developing breast cancer [216, 221]. Some studies have 
shown an increased risk with elevated circulating androgens; however, others have 
shown that increased levels of circulating estrogens, but not androgens, are linked to 
the increased risk. Since testosterone can be converted to E2 by aromatase, both 
androgen and estrogen might be indirectly associated with breast cancer risk [221]. 
Indeed, both AR and ERα signaling pathways appear involved in the development 
and progression of breast cancer.

AR is expressed in approximately 75% of ER-positive breast cancers [222]. 
Depending on the disease stage and ER expression level, AR signaling may have a 
proliferative or antiproliferative effect, depending on the subtype of the breast can-
cer cells. In ARKO mice, abnormal development of the mammary gland is associ-
ated with impaired ERα and MAPK signaling [218]. There are similarities between 
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the AR and ERα in regard to their genomic and non-genomic actions. Studies dem-
onstrating cross talk between AR and ERα signaling have been discussed in many 
reviews [209, 213, 215, 219, 221]. In clinical studies, higher levels of AR are gener-
ally associated with improved outcomes and better survival in patients with ERα- 
positive breast cancer [223, 224]. In these patients, AR behaves as an antiproliferative 
factor to mitigate estrogen-driven proliferation; therefore, AR expression may have 
a prognostic value for predicting patient outcomes [213, 215]. In addition to using 
AR as an independent prognostic biomarker, the ratio of AR to ERα is used as an 
indicator to predict treatment outcomes, although controversial results have been 
reported in different studies [225–227]. These discrepancies may be explained by 
the subtype of breast cancer and the threshold criteria for ratio cutoffs. A more stan-
dardized evaluation of these receptors will be required to have a reliable and consis-
tent outcome prediction. The AR has also been reported to support ER signaling in 
breast cancer growth. D’Amato and colleagues demonstrated that inhibition of AR 
nuclear translocation with enzalutamide could reduce estrogen-mediated growth 
driven by ER in breast cancer cell lines and patient-derived xenografts [228]. 
Furthermore, gene expression analysis of AR-positive circulating tumor cells 
(CTCs) isolated from patients with metastatic breast cancer identified 18 genes 
associated with AR. Six of these 18 genes – XBP1, ERBB2, CELSR2, ESR1, TFF1, 
and CA12 – are also regulated by ERα, which further supports the notion that the 
ERα and AR signaling pathways are connected for certain breast cancers [229]. 
Interestingly, a correlation between the duration of treatment with aromatase inhibi-
tor and AR expression was determined from CTCs derived from breast cancer 
patients with bone metastases [230]. These findings support that increased AR 
expression might enhance tumor cell survival in response to long-term endocrine 
treatment in some breast cancers.

The AR is expressed in approximately 50% of ERα-negative breast cancers and 
may replace ERα as an oncogenic driver [215]. Cells that express the AR but not 
ERα tend to differentiate into apocrine-like cells (molecular apocrine cells). In clin-
ical samples of ERα-negative breast cancer, there is a correlation between AR and 
HER2 expression [209, 213, 215]. Cross talk between AR and HER2 regulates cell 
proliferation and apoptosis in molecular apocrine cell lines. Activation of HER2 
leads to increased AR binding to target genes (such as FOXA1, XBP1, TFF3, and 
KLK3), and AR reciprocally upregulates the expression of the HER2 gene (ERBB2) 
[231, 232]. Despite cross-regulation between AR and HER2 signaling pathways, 
the AR in breast cancer with amplified HER2 has no clear association with overall 
survival [209, 213]. Among ERα-negative breast cancer patients, TNBC patients 
have the worst prognosis. TNBC can be further stratified into molecular subtypes 
based on gene expression profiling: basal-like 1, basal-like 2, mesenchymal, and 
luminal AR (LAR) [233]. Approximately 22% of TNBC is the LAR subtype [234], 
which is associated with a worse clinical outcome [235]. Clinical LAR tumors can 
express high levels of AR and coactivators or downstream targets, such as FKBP5, 
APOD, PIP, DHCR24, ALCAM, FASN, SPDEF, and CLDN8 [214]. The AR has 
proliferative effects in TNBC based upon studies showing that modulation of AR 
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can reduce the growth of some subtypes of TNBC. EGFR and PI3K signaling path-
ways were shown to be involved in AR-mediated proliferation [236–238].

Since AR signaling is involved in breast cancer progression, there has been a 
considerable effort to investigate alterations in AR structure and function. One such 
alteration is the length of the polyglutamine tract in the AR-NTD. Some reports 
reveal no association for patients younger than 40 years of age or in patients that are 
carriers for BRCA1 and BRCA2 mutations [239, 240]. However, an earlier study 
reported that a short polyglutamine track with less than 20 CAG repeats may protect 
against breast cancer [241]. This is contrary to a meta-analysis that revealed a lon-
ger polyglutamine track of more than 22 CAG repeats might be protective [242]. 
Another important AR alteration to consider in breast cancer patients is the expres-
sion of AR-Vs. Transcripts and protein of AR-Vs are detectable in breast cancer cell 
lines as well as in some primary breast cancer specimens from patients without prior 
antiandrogen treatments [243, 244]. High levels of AR-V7 protein were detected in 
a subset of ERα-negative/HER2-enriched breast cancer cells, which were likely to 
be molecular apocrine cells [243]. Moreover, the expression of AR-V7 was detected 
in CTCs from patients with metastatic breast cancer and was associated with bone 
metastasis [230] similar to findings from patients with metastatic CRPC [95]. 
AR-V7 was upregulated in ex vivo primary breast cancer cells treated with enzalu-
tamide [243]. In advanced prostate cancer, AR-V7 upregulates the expression of 
UBE2C, which is involved in cell cycle progression and enhances malignancy 
[105]. AR-V7-regulated genes in the breast cancer cell line MDA-MB-453 were 
found to be involved in immune function and cell movement [243]. The exact roles 
of AR-Vs in breast cancer continues to be an active area of investigation.

16.6.2  Treatments Targeting AR

Historically, androgens were used systemically to treat breast cancer patients and 
provided tumor regression in 15%–30% of patients. Following the advent of anties-
trogen therapies, systemic androgen treatment is no longer used due to the undesir-
able side effects of virilization and the conversion of testosterone to E2 [209, 215, 
220]. With more research on the roles of AR in breast cancer, specific therapeutic 
strategies for targeting AR are actively being tested and developed. The finding of 
LAR subtype in TNBC [214] was embraced with numerous preclinical studies and 
clinical trials to test if existing therapies that target the AR signaling axis by antago-
nizing the AR LBD or by inhibiting steroidogenesis would be effective. 
Antiandrogens (bicalutamide and enzalutamide) and ablation of androgen biosyn-
thesis with abiraterone acetate are being evaluated in clinical trials for breast cancer 
patients. Preclinical studies have shown that bicalutamide could inhibit androgen- 
induced tumor growth in vivo in mice bearing MDA-MB-453 human breast cancer 
xenografts [245]. Moreover, bicalutamide has also been shown to inhibit the growth 
of TNBC xenografts with different subtypes and variable sensitivities [214]. Phase 
2 clinical trial was conducted to evaluate the safety and efficacy of enzalutamide in 
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patients with ≥10% nuclear AR in  locally advanced or metastatic TNBC [246]. 
Patients were dosed daily with 160 mg of enzalutamide until disease progression. 
Results from the trial indicated that enzalutamide was well-tolerated and led to a 
median overall survival of 17.6 months for the evaluable subgroup who met the 
criteria (78 patients) compared to 12.7 months for all 118 enrolled patients [246].

Clinical trials evaluating antiandrogens or an androgen biosynthesis inhibitor 
have shown promising results for AR-positive TNBC patients especially [246–249], 
but these therapeutics rely on targeting the AR LBD and would be expected to have 
limited to no response on the transcriptional activity of truncated AR-Vs. AR-Vs are 
expressed in breast cancer [243, 244]. Clinical resistance to drugs that only target 
the fl-AR may also develop from these agents as already seen for prostate cancer. 
Targeting both fl-AR and AR-Vs by an AR NTD inhibitor, such as ralaniten, may 
yield therapeutic responses in some breast cancer patients. Next-generation and 
more potent ralaniten analogs have been developed and undergone preclinical test-
ing for their activity against AR-Vs [61, 250]. A more potent and metabolically 
stable second-generation ralaniten analog EPI-7386 is in clinical trials for meta-
static CRPC patients (NCT04421222).

16.7  AR in Other Diseases

Discoveries from global ARKO murine models and cell-type-specific and tissue- 
specific ARKO models have vastly expanded our understanding of the pathophysi-
ological roles of AR that were not previously possible by castration and AIS 
experiments in mice [251]. The unique roles for AR in the function of immune cells, 
bone mineralization, muscle, brain, liver, wound healing, metabolism, regulating 
insulin sensitivity, and glucose homeostasis have been described from such murine 
models [251]. In the following, we highlight some key findings on the role of AR in 
hypertension and atherosclerosis in humans as well as some other malignancies.

16.7.1  Role of AR in the Progression of Hypertension 
and Atherosclerosis

The AR is involved in cardiovascular diseases, where its role in hypertension and 
atherosclerosis is the most established. Men with cardiovascular diseases are 
observed to have lower levels of serum testosterone [252, 253]. Notably, men with 
total testosterone levels lower than 241 ng/dL were 40% more likely to die from 
cardiovascular disease compared to those with higher testosterone levels [254]. 
Androgen deprivation therapy for prostate cancer patients is also associated with an 
increased risk for peripheral artery disease [255]. In general, men have a higher 
blood pressure than women, where the difference is gradually diminished after 
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women have gone through menopause and men have decreased testosterone levels 
from the age of 70 years old. Thus, androgen appears to be involved in modulating 
blood pressure. In preclinical models, castration or flutamide could reduce mean 
arterial pressure in spontaneously hypertensive male rats to levels that were compa-
rable females [256]. Interestingly, blocking the conversion of testosterone to DHT 
with a 5α-reductase inhibitor was not able to decrease blood pressure. It is notewor-
thy to mention that having low endogenous testosterone levels is also associated 
with higher blood pressure in male populations [257, 258]. Overall, androgens and 
AR signaling have a role in modulating arterial pressure and may exacerbate the 
progression of hypertension.

Atherosclerosis is a cardiovascular disease that is associated with the chronic 
expansion of arterial intima by a gradual accumulation of lipids, cells, and extracel-
lular matrix, which may lead to occlusion and thrombosis, myocardial infarction, 
sudden cardiac death, or stroke. Males in general have a thicker intima-media dur-
ing early carotid atherosclerosis relative to females. Total testosterone and SHBG 
levels are inversely correlated with atherosclerosis [259], where low androgen lev-
els are strongly linked to the production of triglycerides, total cholesterol, and low- 
density lipoprotein cholesterol [260]. Androgen deprivation therapy for prostate 
cancer can increase the metabolic burden, which may accelerate the progression of 
atherosclerosis [261]. In castrated rabbits, DHT supplement was sufficient to inhibit 
the accumulation of foam cells from oxidized low-density lipoprotein [262]. These 
findings suggest that physiological levels of testosterone could help to prevent the 
formation of atherosclerosis.

16.7.2  AR in Other Types of Cancers

AR signaling is also implicated in the development of other cancer types and may 
be a therapeutic target to influence patient survival such as in salivary duct carci-
noma (reviewed in [263]), glioblastomas [8], bladder (reviewed in [264]), kidney 
[265], endometrial [266], pancreatic [267], and liver cancer [267, 268]. While the 
bladder is not generally considered to be an androgen-responsive organ, AR expres-
sion has been described in the urothelium, submucosa, smooth muscle cells, and 
neurons of the bladder in primates and humans [264]. Males innately have a three to 
four times increase in the risk of developing urinary bladder cancer than females, 
even after accounting for lifestyle and environmental factors that include cigarette 
smoking and occupational exposure to carcinogens [269]. Notably, the oncogenic 
action of N-butyl-N-(4-hydroxybutyl) nitrosamine, a known carcinogen for bladder 
cancer, was identified to act through AR signaling [270]. Miyamoto et al. identified 
that the incidence of urothelial carcinoma was much greater in male mice treated 
with N-butyl-N-(4-hydroxybutyl) nitrosamine compared to female mice (92% vs. 
42%, respectively), where tumors did not develop in ARKO mice. In rodents, andro-
gen deficiency induces a decrease in bladder capacity, smooth muscle bladder mass, 
and autonomic nerve function, whereas testosterone supplementation can reverse 
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these effects [271, 272]. AR signaling may also promote migration, invasion, and 
metastasis of bladder cancer cells by interaction with β-catenin/Wnt signaling and 
its downstream targets c-myc and cyclin D1 [273–275].

In renal cell carcinoma, elevated AR expression is generally associated with bet-
ter patient outcomes [276]. AR expression is negatively correlated with tumor stage, 
tumor grade, and tumor status [277, 278]. In the case of hepatocellular carcinoma, 
the AR was reported to be overexpressed in the nuclei of hepatocellular carcinoma 
cells in approximately one-third of tumors and was associated with advanced dis-
ease and poor survival [279]. It was proposed that co-targeting the AR and the 
mTOR pathway may be a necessary therapeutic approach for hepatocellular carci-
noma, since feedback activation of AKT-mTOR from inhibiting the AR could pro-
mote AR expression and nuclear localization [279]. Others have also demonstrated 
that the AR may have a protective role in suppressing hepatocellular carcinoma 
metastasis, supporting cell adhesion, and increasing tumor cell death by anoikis 
mechanisms [280]. Thus, the AR may have distinct and opposing roles in hepatocel-
lular carcinoma cells, by promoting tumor initiation and inhibiting metastasis.

16.8  Summary

Some common trends in the AR-associated diseases discussed in this chapter 
include mutations in AR, polymorphic variants of AR, and the expression of AR-Vs. 
Although most diseases caused by an imbalance of androgen, deviation from the 
physiological levels of androgen, or alteration of AR transcriptional activity are 
clinically manageable, most are not curable and have severe consequences on qual-
ity of life and may lead to mortality. These tend to be genetic diseases, and therefore 
examining the genetic alterations in AR from patients may be beneficial for select-
ing optimal and effective therapeutic options for personalized medicine. Furthermore, 
standardizing methodologies to detect and to define AR positivity and status, either 
at a genetic or protein level, will be required to identify patients who might benefit 
from AR-targeted therapies. Continued research remains paramount to facilitate 
drug discovery and to develop more specific, efficacious, and cost-effective thera-
peutic strategies to target AR and the androgen axis.
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Chapter 17
Bilirubin: A Ligand of the PPARα Nuclear 
Receptor

Stephen Hong, Darren Gordon, David E. Stec, and Terry D. Hinds Jr

Abstract Bilirubin is the product from red blood cell lysis, which releases heme 
that is reduced to biliverdin by heme oxygenases (HO). Later, the biliverdin is con-
verted to bilirubin by the biliverdin reductase (BVR) enzyme. Studies have revealed 
that bilirubin is significantly lower in obese patients with nonalcoholic fatty liver 
disease (NAFLD). While the mechanisms that reduce plasma bilirubin are unknown, 
it has been shown that increasing plasma bilirubin lowers body fat percentage and 
liver fat content in obese animal models. The bilirubin actions have been attributed 
to a newly revealed function that it is a hormone, which binds directly to the PPARα 
nuclear receptor transcription factor. PPARα regulates fatty acid oxidation (FAO) 
and peroxisomal function to maintain cellular homeostasis and catabolism of fatty 
acids. Here, we discuss the partnership of bilirubin-PPARα, along with the two 
other PPAR isoforms PPARβ/δ and PPARγ, and how they function to control per-
oxisomes and mitochondria that mediates fatty acid β-oxidation and adiposity. 
There may be clinical interest in bilirubin-PPARα functionality to rectify NAFLD 
and insulin resistance in the obese.
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17.1  Introduction

With the growing obesity epidemic, multiple diseases have manifested that affects 
tens of millions of people. Consequentially, nonalcoholic fatty liver disease 
(NAFLD) is on the rise, which plays a role in developing insulin-resistant diabetes 
and cardiovascular diseases. NAFLD progression without corrective measures can 
worsen to nonalcoholic steatohepatitis (NASH), a fatty degeneration that can culmi-
nate into cirrhosis or hepatocellular carcinoma [1]. When examining the pathogen-
esis of NAFLD, the “two-hit” model focuses on the steatosis of the liver (first “hit”) 
and then inflammation that follows (second “hit”) [2]. The liver’s fatty buildup can 
be initiated by hepatic insulin resistance, which increases circulating insulin induc-
ing peripheral tissue to develop glucose intolerance [3]. The circulating glucose is 
collected by the liver to be converted into fat for de novo lipogenesis, leading to 
fatty liver development [4]. This process is exacerbated in patients with hyperinsu-
linemia, as there is an even higher amount of glucose deposition into the liver [4]. 
Consuming high caloric intake causes hepatic fat accumulation by two primary 
methods: (1) hepatic de novo lipid synthesis or (2) peripheral fat content in the body 
is redirected to the liver [5]. Sustained elevated levels of fat in the liver can result in 
pathological sequelae, such as inflammation and oxidative stress, which are natural 
responders against the adverse environment. NAFLD treatments are currently lim-
ited to lifestyle changes and diet modifications, as weight loss is the most effective 
method to reverse NAFLD [6]. However, drugs are being developed to target the fat 
accumulation pathways and inflammation, but these are yet to be approved for clin-
ical use.

To reduce fat, mitochondrial or peroxisomal oxidation can play a vital role and 
serve as primary therapeutic targets for NAFLD. Although most oxidation is medi-
ated through mitochondrial β-oxidation, peroxisomes assist mitochondria in oxidiz-
ing fat [7]. Peroxisomes have the ability to begin the oxidative process of 
very-long-chain fatty acids (VLCFAs) that cannot be oxidized by mitochondria [8]. 
Increasing this activity could be crucial in correcting NAFLD, which can be 
enhanced by activating the peroxisome proliferator-activating receptors (PPARα) 
nuclear receptor transcription factors. The PPARs were initially discovered by 
ligands that were thought to increase cellular peroxisomes directly, hence, peroxi-
some proliferation [9]. However, peroxisomal proliferation is based on the cellular 
response of PPARα activation. PPARβ/δ and PPARγ are two isoforms that were 
classified as PPARs based on their homology to the PPARα gene; however, neither 
induces peroxisome proliferation [10]. PPARα has been mostly studied for its role 
in lipid-lowering effect and, more recently, anti-inflammatory role [11, 12]. All of 
the PPAR isoforms reduce inflammation, which can provide additional protection 
from NAFLD [13]. Recently, bilirubin was shown to be a ligand for PPARα [14–
16], which also significantly reduces hepatic fat accumulation [13, 17, 18]. In 
patients, bilirubin levels are inversely correlated with body weight [19–22]. These 
finds suggest that antioxidants, at least in the case of bilirubin, may reduce adiposity 
and NAFLD via PPARs. Here, we aim to elucidate the protective pathway that 
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PPARs and peroxisomes play against NAFLD with a discussion of the role of 
bilirubin.

17.2  PPARα Protein Structure

The three PPAR isoforms, α, β/δ, and γ, have different tissue expression [9]. They 
all work similarly in that ligand activation induces binding to DNA and heterodi-
merization with the retinoid X receptor (RXR) on PPAR response elements (PPREs), 
eliciting a gene response (Fig. 17.1) [23]. PPARα is a nuclear protein produced in 
response to reduced serum nutrients, such as in the case of fasting. It should be 
noted that after discovering that PPARs bind fatty acids, the mainstream thinking 
was that increased fatty acids during fasting must be inducing PPARα in the liver 
during this time. However, this is no longer the mainstream thinking as there was a 
published paper showing that PPARβ/δ is increased in the liver by free fatty acids 

Fig. 17.1 PPAR Transcriptional Signaling Pathway. The PPARs are a superfamily of nuclear 
receptors, and three isoforms exist: α, β/δ, and γ. All isoforms perform through ligand activation 
that induces binding to DNA on PPAR response elements (PPREs) and heterodimerization with 
the retinoid X receptor (RXR), which controls gene transcription. PPARα binding with its ligands 
(e.g., bilirubin) upregulates transcription of genes that increase metabolism, such as FGF21, 
UCP1, CPT1A, and ADRB3
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and that it serves as the “plasma free fatty acid sensor in liver” [24]. Since this paper, 
others have shown data supporting these findings and have rerouted the thinking of 
free fatty acids for increasing PPARα in the liver during fasting. PPARα being 
increased during fasting most likely occurs by lower circulating insulin levels, but 
this is still inclusive.

The PPARα gene is located on Chromosome 22 in humans and 15 in mice and is 
studied primarily for its role in lipid and glucose regulation in the liver, adipose, and 
other tissues [25, 26]. The PPAR proteins are arranged in similar domains: the 
N-terminal domain that includes the amino-terminal transactivation region (AF-1), 
DNA-binding domain (DBD), the hinge region, and the ligand-binding domain or 
LBD (also known as activation factor-2, AF2) [27]. Investigating the role of these 
domains can enhance our understanding of their significance in cellular metabolic 
pathways and potential impact on metabolic disease. While there are structural sim-
ilarities, the PPARs have different LBDs that lead to diverse functionalities when 
bound to their cognate ligand. PPARα activation can lead to specific coregulator 
(coactivators and corepressors) recruitment that might affect the other PPAR iso-
forms differently. The AF-1 region is critical in recruiting coregulators that lead to 
the control of gene activity by the PPARs [28]. Our lab has previously identified an 
inhibitory PPARα phosphorylation amino acid at serine 73, which is in the AF-1 
region. Serine 73 phosphorylation is lower in mice with elevated bilirubin levels 
[13]. The DBD plays an essential role in the heterodimerization of PPARα with 
RXR, enhancing PPARα functionality [29], and this cooperativity enhances the 
expression of metabolic genes [30, 31]. The DBD also contains phosphorylation 
sites, including the threonine 129 site, which is based on PKC activation and 
enhances PPARα activity [32]. The hinge region of PPARα serves several roles, 
which include coregulator binding [33] and is a target of both phosphorylation (ser-
ine 179) as well as SUMOylation (lysine 185) [32, 34]. Lastly, while there are some 
pan-PPAR agonists [31, 35, 36], structural differences in the LBD/AF2 cause pref-
erential activation of specific PPAR isoforms to regulate gene-specific responses 
[15, 37]. Understanding the structural layout of PPARα is crucial as we explore the 
effects of several ligands and their ability to alter the coregulator recruitment to 
PPARα, which controls gene-pathway specific actions. We have previously shown 
by in silico analysis that bilirubin docks in the LBD of PPARα [15], which we later 
showed by competitive ligand-binding assays that bilirubin and fenofibrate compete 
for the same binding regions in the LBD [16]. We also showed that bilirubin induced 
a specific set of coregulators to PPARα protein (mouse and human) [16]. These 
indicate that bilirubin has a hormonal function by activating PPARα by direct bind-
ing that induces a physiological change.
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17.3  Bilirubin Generation and Excretion

One enzyme that may have a key role in attenuating the detrimental impacts of liver 
pathology is biliverdin reductase (BVR) [13, 38–40]. During red blood cell destruc-
tion, hemoglobin is released into the plasma and is converted into biliverdin via 
heme oxygenase (HO) [41]. Then, through the conversion of a double bond to a 
single bond by BVR, biliverdin is converted to bilirubin [42–45]. The excretory 
process for bilirubin is mediated by the UDP-glucuronosyltransferase 1-1 (UGT1A1) 
enzyme that conjugates bilirubin [46], allowing for excretion into the biliary cana-
liculi and deposition in the intestine [5, 47]. The gut microbiome transforms conju-
gated bilirubin into other forms, such as urobilinogen and stercobilin, which are 
mostly excreted, although some can be reabsorbed [5]. The role of bilirubin metabo-
lism and hepatic function has yet to be elucidated. However, recently, bilirubin 
nanoparticles were shown to improve fatty liver and reduce hepatic biomarkers AST 
and ALT enzymes [17].

The two known isozymes of BVR (BVRA and BVRB) have different structural 
and functional properties, which is further implicated as the genes are located on 
two different chromosomes [20]. BVRB compared to BVRA in zebra fish larvae has 
increased expression in states of oxidative stress [48], and global BVRA knockout 
mouse was subjected to greater oxidative stress [49]. Hepatic BVRA has also been 
implicated in metabolism as it was shown to protect PPARα for GSK3β inhibition 
by phosphorylated PPARα at serine 73 to increase turnover and decrease transactiv-
ity [13, 40]. BVRA may protect against Alzheimer’s disease, which is known to be 
associated with insulin resistance [50–56]. There remain many scientific questions 
on BVRA and BVRB and their involvement with the PPAR isoforms, such as regu-
lating all PPAR isoforms, or do they play an integral role in the use of bilirubin by 
PPARα. Future work on the BVR isozymes and how they signal to the PPAR iso-
forms is needed.

17.4  Bilirubin as a PPARα Ligand

The beneficial effects of elevated bilirubin levels have been observed in humans 
with the Gilbert’s polymorphism. They contain a polymorphism in the UGT1A1 
promoter that lowers its expression, increasing plasma bilirubin. People with 
Gilbert’s have lower rates of ischemic heart disease and higher rates of high-density 
lipoproteins (HDL), also known as “good cholesterol” [57]. A humanized Gilbert’s 
syndrome mouse model has been generated using the human UGT1A1*28 poly-
morphism and has been found to have significantly less fat mass, body fat percent-
age, cholesterol in the liver, liver stenosis, fasted blood glucose levels, and plasma 
insulin levels on a high-fat diet (HFD) compared to control on HFD [58]. In addi-
tion, there was a significant increase in the CYP4A subfamily of enzymes that are 
also activated by PPARα [59]. This same model was later shown to 
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hyperphosphorylate PPARα in white adipose tissue (WAT) and enhanced coactiva-
tor recruitment [16].

Previous research has shown that PPARα ligands, such as WY 14,643 and feno-
fibrate, act as selective PPAR modulators (SPPARM) based on different binding 
affinity or the recruitment of different coregulators [60–62]. Ultimately, the tran-
scriptional differences provide different protective factors as fibrates are better for 
anti-inflammatory processes, while WY 14,643 is more suited for lowering blood 
glucose levels [63]. Based on nonpathogenic increased levels of bilirubin, it may 
influence the positive effects of both fibrates and WY 14,643.

These beneficial outcomes can be seen in experiments with the direct application 
of bilirubin to diseased tissues. Colitis-induced rats were given intragastric gavages 
of unconjugated bilirubin and were shown to have decreased inflammation and a 
faster recovery rate than controls [64]. These anti-inflammatory effects were further 
supported using intravenous administration of polyethylene glycol (PEG)-bound 
bilirubin (bilirubin nanoparticles) to colitis-induced rats. Bilirubin nanoparticles 
preferentially localized to areas of inflamed colon and significantly halted the pro-
cess of inflammation in these areas [65]. However, neither of these studies could 
elucidate the mechanism of how bilirubin was able to reduce inflammation.

To further stress the point of bilirubin activation of PPARα, bilirubin has been 
shown to attenuate inflammatory processes similarly to PPARα [66, 67]. Two differ-
ent studies examined the effect of fenofibrate and bilirubin on the proliferation of 
Th17 differentiation, a T-helper cell associated with autoimmune diseases [68]. 
Chang et al. found that the activation of PPARα via fenofibrate decreased Th17 cell 
differentiation by inhibiting the IL-6/STAT3/RORγt pathway [69]. Congruently, 
Longhi et al. showed that the introduction of bilirubin to mononuclear cells down-
regulated Th17 cells and IFNγ production via ectonucleoside triphosphate diphos-
phohydrolase 1 (ENTPD1 or CD39) [70]. CD39 is essential for autoimmunity as it 
hydrolyzes extracellular ATP down to AMP that is converted to immunosuppressive 
adenosine [71]. In both cases, the downstream effect leads to decreased IL-17, a 
pro-inflammatory cytokine of Th17 cells, and increased Foxp3 expression, the mas-
ter regulator of Treg cells. In addition, multiple sources have found that PPARα can 
upregulate the activity of CD39, showing a more significant correlation between 
bilirubin and its ability to activate PPARα pathways [72, 73]. The similarities of 
these results continue to support the interaction between bilirubin and PPARα.

Recent studies have shown that bilirubin activates the PPARα pathway by 
directly activating the receptor [13, 15]. It had been previously established that acti-
vation of PPARα and its other two isoforms leads to increased heme oxygenase-1 
(HO-1), the rate-limiting enzyme responsible for synthesizing the bilirubin precur-
sor biliverdin [74–80]. This indicates that there is a positive feedback mechanism 
between PPARα and bilirubin. There are also limits on this positive feedback mech-
anism as PPARα has been shown to activate UDP-glucuronosyltransferase 1 family, 
polypeptide A1 (UGT1A1), the enzyme that conjugates bilirubin, its primary clear-
ance mechanism [79, 81]. This correlation between bilirubin and PPARα may be 
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able to explain bilirubin’s protective ability against NAFLD by a peroxisomal 
mechanism.

By establishing the relationship between bilirubin and PPARα, it is possible to 
formulate a mechanism the body naturally forms to protect against the increased 
inflammation and hepatic damage in NAFLD. The process begins with an increase 
in bilirubin levels, a general indicator of liver damage or disease. The activation of 
PPARα ensues, which activates multiple pathways, including the positive and nega-
tive feedback loops, indicated previously. The major pathways important for 
NAFLD protection are the increase in fatty acid oxidation (FAO) to lower the over-
all fat content within the body and the attenuation of inflammation. Although PPARs 
were discovered to increase peroxisome levels [9], it is essential where these cells 
are activated as it can be assumed that more FAO indicates greater protection from 
NAFLD.  Fenofibrate increases PPARα transcription and induces general down-
stream gene expression of enzymes in skeletal muscle [82], including FAO gene 
production in lean and obese patients [83]. This is highly warranted as the sheer 
amount of muscle mass outweighs any other organ that contains high levels of 
PPARα. It can be assumed that bilirubin can have a similar effect in skeletal muscle 
as it can be transported ubiquitously in the body. In addition to just increasing per-
oxisomal content, there is evidence that bilirubin through PPARα activation can 
bolster peroxisomal and mitochondrial FAO through other supportive mechanisms.

17.5  Peroxisomal Protection against NAFLD

Peroxisomes are single-membrane organelles that contain matrix proteins used for 
fatty acid metabolism, sequestration of reactive oxygen species (ROS), and biosyn-
thesis of phospholipids [84]. Peroxisomes have often been characterized as the side-
kick to mitochondria for their ability to break down VLCFAs and eliminate ROS 
generated by mitochondria (Fig. 17.2) [85]. Thus, a known partnership exists among 
the two, which is supported by both organelles’ FAO, following the same process of 
dehydrogenation, hydration, dehydration, and thiolytic cleavage, albeit with differ-
ent enzymes [86]. However, peroxisomal FAO is not limited to very-long-chain 
fatty acids. Recent research found that in mitochondrial fatty acid transport dys-
function or overload, peroxisomes can oxidize medium- and long-chain fatty acids 
[87], making them relevant in reducing NAFLD. The closeness in the relationship 
between peroxisomes and mitochondria is shown in the coordination of peroxisome- 
mitochondria FAO using shared enzymes and the mirroring between transport 
enzymes such as the peroxisome’s ATP-binding cassette subfamily D (ABCD) 
transporters and the mitochondria’s carnitine palmitoyl-transferases (CPT) [88, 89]. 
Furthermore, the main regulator of mitochondrial biosynthesis, peroxisome 
proliferator- activated receptor-gamma coactivator 1-alpha (PGC-1α), utilizes the 
PPAR pathway to increase the expression of peroxisomal enzymes required for 
FAO [11, 90].
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Fig. 17.2 Cross talk of mitochondrial and peroxisomal pathways. Peroxisomes communicate with 
mitochondria by preparing very-long-chain fatty acids (VLCFAs) into long- and medium-chain 
fatty acids (LCFAs and MCFAs) for β-oxidation. The VLCFAs and LCFAs enter the peroxisome 
via ABCD transporters, and, after catabolism, shorter-chain fatty acids are exported via CROT, a 
peroxisomal carnitine O-octanoyltransferase. The oxidizing of reactive oxygen species (ROS) cre-
ated from mitochondria and peroxisomes protects the cell. The mitochondria import medium- 
chain fatty acids via the carnitine palmitoyl-transferase (CPT1) and communicate to CPT2 inside 
the mitochondria to signal for β-oxidation. Upregulation of the peroxisome allows for improved 
metabolic activity
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In addition to FAO, peroxisomes contain both catalase (CAT) and superoxide 
dismutase 1 (SOD1), which are vital in the reduction of ROS generated through 
FAO and other cellular processes [91]. These enzymes represent the main mecha-
nism of ROS removal by converting it into water. It is vital to eliminate these ROS 
as they damage DNA, including mitochondrial DNA [92]. This becomes a central 
issue in NAFLD as Nassir et al. have established the link between mitochondrial 
dysfunction and NAFLD [93], indicating that higher oxidative stress and ROS dam-
age are the root cause of this dysfunction. Peroxisomes act as a significant defensive 
line against ROS-mediated mitochondrial DNA damage to maintain proper tran-
scription and FAO. With the peroxisome’s FAO and ROS sequestration abilities, 
these intracellular organelles’ proliferation and activation may be a key in prevent-
ing and correcting NAFLD.

The biogenesis of peroxisomes is regulated by the transcription of peroxin (PEX) 
genes, which produces a family of proteins necessary for the formation and activity 
of peroxisomes [94]. Knockouts of essential PEX genes, such as Pex11a, showed 
significant increases in fat mass, body weight, blood glucose, hemoglobin A1C, 
insulin, hepatic triacylglycerol (TG), and many other factors [95–99]. This is mir-
rored in PPARα knockout mice, as similar results were found [11, 100, 101]. 
Removal of these integral proteins cause increased blood glucose and lipid deposi-
tion into the liver, which exacerbate NAFLD. Although it is unclear if most peroxi-
somes are formed de novo from the endoplasmic reticulum or the fission of 
preexisting peroxisomes [102, 103], the activation of PPARs directly expands the 
number of peroxisomes in cells [9].

17.6  Peroxisomes, Oxidative Stress, and Antioxidants

Peroxisomes can be both sources and traps for reactive oxygen species (ROS) due 
to the oxidative metabolism of fatty acids and the degradation of H2O2 by catalases. 
Peroxisomes contain a subset of enzymes, including the flavin adenine dinucleotide 
(FAD) and flavin mononucleotide (FMN)-dependent oxidase, which generate H2O2 
[104]. Peroxisomes also contain several H2O2-eliminating enzyme systems, includ-
ing catalase and peroxiredoxins (PRDXs). Catalase is abundant in peroxisomes; 
however, during increased ROS production conditions, the importation of catalase 
into peroxisomes can be reduced to increase the amount of catalase in the cytosol to 
protect against H2O2 damage [105]. PRDX5 reduces peroxynitrite (ONOO−) and a 
variety of lipid peroxides (LOOH) via NADPH-dependent thioredoxin (TXN)/TXN 
reductase (TXNTR) system. They can also transfer oxidizing equivalents from HsOs 
to target proteins through thiol-disulfide reshuffling [106]. PRDX5 and CAT play 
nonoverlapping roles in H2O2 clearance, supported by the distinct kinetic charac-
teristics of both antioxidant enzymes. Catalase scavenges H2O2 in the low milli-
molar range, while PRDXs work in the low micromolar range [107]. Glutathione 
S-transferases and epoxide hydrolases can also contribute to ROS balance in peroxi-
somes [108].
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Peroxisomes play an essential role in a healthy redox balance demonstrated in 
conditions that interfere with normal peroxisomal function and biogenesis. Long- 
term exposure to peroxisomal proliferators, such as dibutyl phthalate and gemfibro-
zil, in rodents has been reported to cause oxidative liver damage, and ROS 
imbalances the induction of ROS-generating peroxisomal enzymes [109]. However, 
this effect of long-term exposure of peroxisomal proliferators on liver function may 
be species dependent. Humans appear to be relatively insensitive or nonresponsive 
at dose levels that produce a marked response in rodents.

17.7  Peroxisomes and Inflammation in NAFLD

The ABCD family of genes, found on the peroxisomal surface, helps import fatty 
acids or fatty acyl-CoAs [110]. Activation of PPARα significantly increases the 
transcription of both ABCD2 and ABCD3 transporters, increasing peroxisomal FAO 
[111–114]. In support of this greater import of fat into peroxisomes, bilirubin 
decreases the levels of the ATP-binding cassette subfamily A member 1 (ABCA1) 
transporters on macrophages [115]. This may seem counterintuitive as ABCA1, 
also known as cholesterol efflux regulatory protein (CERP), pumps cholesterol and 
phospholipids to an extracellular acceptor, apolipoprotein A1, a vital process in the 
formation of HDL [116]. However, this decrease in the ABCA1 export of lipids out 
of macrophages may reduce fat in the body. One of HDL’s major functions is to 
return peripheral fat in the body to the liver to be excreted as bile [117], which is 
unwarranted in NAFLD. To correlate this decreased ABCA1 expression, HO-1 and 
PPARα agonists have been shown to promote M2 macrophage over M1 macro-
phage polarization {Stec, 2019 #25713} [118, 119]. M2 macrophages have anti- 
inflammatory properties and are considered the “repair” macrophages, following 
injury by promoting growth factors such as PDGF and VEGF [120, 121]. Unlike its 
M1 counterpart that uses glycolysis, these macrophages are powered by FAO 
through AMP-activated protein kinase (AMPK). Therefore, it is favorable that mac-
rophages would want to lower the efflux of cholesterol and other fatty acids as they 
are actively degrading them for the activation of PPARα.

To highlight the importance of peroxisomes in glucose regulation, mice that 
lacked the Cpt1b gene, a key enzyme in mitochondrial FAO, exhibited enhanced 
glucose regulation by increasing peroxisomal activity [122]. Furthermore, mice 
with double knockouts of muscle-specific Cpt1b and Pex5 exhibited impaired glu-
cose tolerance due to the lack of peroxisomal compensatory activity [123]. To sup-
port this relationship in an endogenous system, our lab has shown that mice with the 
human UGT1A1 locus with the Gilbert’s polymorphism, a mutation in the gene that 
reduces bilirubin clearance increasing plasma levels, were protected against hepatic 
steatosis alongside improved glucose regulation as compared to control [58]. We 
revealed this is due to a decrease in PPARα phosphorylation in the S73 site, which 
downregulates PPARα activity [58], resulting in an enhanced gene activity.
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Activation of PPARα by WY 14,643 and fenofibrate, both known PPARα ligands, 
increases catalase and SOD1 activity within cells [124, 125]. Whether this is due to 
increasing peroxisomal number or individual peroxisomal ROS removal efficiency 
is unknown. Regardless, this shows that PPARα activation protects the cell from 
ROS damage at least partially by peroxisomal activity [11]. In addition, upregula-
tion of HO-1 and therefore bilirubin’s peroxisomal activation via PPARα have been 
shown to increase catalase and SOD activity [126], which are further supplemented 
with bilirubin acting directly as an antioxidant by reducing ROS [127]. In relation 
to obesity and insulin resistance, why adiposity lowers bilirubin levels and, as a 
result, progresses to NAFLD will benefit millions of patients.

17.8  Extra-Peroxisomal PPARα Pathways Against NAFLD

PPARα produces several other responses that combat NAFLD through extra- 
peroxisomal mechanisms via the upregulation of fatty acid transport proteins 
(FATPs) and solute carrier family 27 members 1, 2, and 4 (Slc27a1, Slc27a2, and 
Slc27a4) [128–130]. Complementary to this, PPARα has also been shown to 
increase adipose differentiation-related protein (ADRP), which stimulates fatty acid 
storage in cytosolic lipid droplets rather than the formation of very-low-density 
lipoproteins (VLDLs) that are released into the bloodstream {Stec, 2019 #25713} 
[131]. The increases in fatty acid transport into the cell and the decrease in VLDLs 
lower plasma TG levels [132]. PPARα is also a mediator for the activation of cyto-
chrome P450 enzymes of 4A subfamily (CYP4A) [11, 133], which is a class of 
enzymes capable of hydroxylating the terminal ω-carbon of saturated and unsatu-
rated fatty acids [134]. Not surprisingly, mice with hyperbilirubinemia have higher 
CYP4A expression [58]. This provides an additional possible mechanism of how 
PPARα lowers the levels of fatty acids.

NAFLD progression increases with inflammation, and PPARα and bilirubin have 
been shown to function in an anti-inflammatory capacity. PPARα activation reduced 
the initiation and progression of several inflammatory diseases, such as Parkinson’s 
disease and autoimmune disorders [69, 135]. The protection against autoimmune 
disorders may be based on the reduced amount of reactive immune cells needed to 
handle infections. Peroxisomes are required for proper phagocytosis and clearance 
of bacteria through oxidative burst [136]. The activation of PPARα increases peroxi-
some concentration in immune cells and their ability to kill bacteria, indicating a 
need for less immune cells for infection clearance and a lowered chance for autoim-
mune disorders to develop. However, this hypothesis has yet to be proven. 
Nevertheless, the activation of PPARα is paramount in attenuating NAFLD as it 
reduces fat content and inflammation seen in the disease progression.
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17.9  PPARγ and PPARβ/δ Effects on Peroxisomes 
and NAFLD

In the case of the other two isoforms of PPARs, not all things were created equally 
in protecting the body against NAFLD. Bilirubin was not shown to interact or acti-
vate the other PPAR isoforms PPARγ or PPARβ/δ [16]. In particular, PPARγ is criti-
cal in lipogenesis and adipocyte differentiation [137–140]. It is important to note 
that peroxisomes are also vital in producing phospholipids and other phospholipid 
derivatives critical for cellular functions, such as neuronal myelin sheaths and the 
formation of the pro-inflammatory precursor, arachidonic acid [89]. This lipid syn-
thesis is typically associated more with PPARγ activation rather than the two other 
isoforms. Thiazolidinediones (TZDs), a well-known PPARγ activator, are used as 
an antidiabetic medication to increase insulin sensitivity without increasing hepatic 
glucose production [140, 141]. This may seem a practical pathway to nullify lipid 
accumulation as insulin sensitivity allows for greater efficiency of carbohydrate 
uptake and less lipid production. However, TZDs have been implicated in weight 
gain as a common side effect, significantly increasing subcutaneous fat compared to 
visceral fat due to a higher concentration of PPARγ receptors in this tissue [142].

PPARβ/δ is the least studied isoform of the three. This isoform may play a role 
similar to PPARα’s protective nature as it has been shown to work with AMP- 
activated protein kinase (AMPK) [143, 144]. AMPK is a master regulator of energy 
metabolism and homeostasis at the cellular and full-body levels by controlling food 
intake [145, 146]. PPARβ/δ activation via exercise with AMPK synergy has been 
shown to increase β-oxidation in skeletal muscle cells [147]. However, with PPARs 
generally associated with anti-inflammatory properties, PPARβ/δ’s role is compli-
cated by conflicting reports [148]. One study has found that PPARβ/δ knockouts 
could not access the anti-inflammatory properties of exercise on vascular inflamma-
tion [149]. Counter to this, patients with psoriasis, an autoimmune condition of the 
skin, had higher PPARβ/δ, and activation of these receptors sustained inflammation 
[150]. Further studies will be required to understand a possible selective transcrip-
tion and modulation of PPARβ/δ.

17.10  Conclusion

The recent discovery that bilirubin is a hormone that interacts with PPARα poten-
tially explains the bilirubin-mediated improvement of several metabolic diseases, 
including obesity and diabetes. Potential mechanisms of how bilirubin is reduced 
during metabolic disease have implications for improving therapeutics. The 
bilirubin-PPARα axis appears to be essential in regulating peroxisomes and mito-
chondria that control fat-burning mechanisms to improve adiposity. Mounting 
experimental evidence has demonstrated a vital role for peroxisomes in protecting 
hepatic lipid accumulation and inflammation. Future studies are needed to precisely 
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determine if bilirubin acting through PPARα can directly stimulate peroxisomal 
fatty acid metabolism as well as peroxisomal proliferation. Further investigation 
into the role of PPARα in peroxisomes is needed to completely understand how 
peroxisomes contribute to the regulation of hepatic function so that novel therapies 
could be developed in the future to treat conditions such as NAFLD.
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Chapter 18
Nuclear Receptor Ligands in Flavivirus 
Infection Control

Salma El Adl and Alaa Badawi

Abstract Flavivirus infectious diseases, such as dengue fever, chikungunya, and 
West Nile and Zika virus, represent a public health concern worldwide. The role of 
nuclear receptor ligands in the prevention and control of the severity of such vector- 
borne diseases is yet to be fully elucidated. This chapter provides systematically 
reviewed information on the role of nuclear receptor ligands in the control of flavi-
virus infections. Furthermore, we aim to assess the effect of modulating the function 
of these receptors in influencing disease severity. We conducted a comprehensive 
search in PubMed, Ovid Medline, Embase, and Embase Classic to extract human 
studies discussing the role of nuclear receptors and their ligands in flavivirus infec-
tions. Seventeen studies were extracted and included in this systematic review. 
Human studies pertaining to peroxisome proliferator-activated receptors (PPARs) 
suggest that antagonizing these receptors increases the susceptibility to viral infec-
tion. On the other hand, liver X receptors (LXRs) that are involved in cholesterol 
homeostasis may play a role in flavivirus infection control. LXR agonists have 
shown to inhibit viral replication via activating cholesterol export from infected 
cells. Studies on vitamin D receptor (VDR) ligands suggest that VDR polymor-
phism is associated with infection severity, e.g., in dengue fever. Vitamin D supple-
mentation was shown to inhibit viral replication. One study focused on the reverse 
strand of erythroblastic leukemia viral oncogene homologue (REV-ERB) receptor 
and concluded that receptor agonists can markedly reduce both viral load and repli-
cation. In conclusion, modulating nuclear receptors can play a role in the control 
and prevention of flavivirus infectious diseases by either influencing the susceptibil-
ity to viral infection, inhibiting its replication, or affecting the disease severity.
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18.1  Introduction

Flaviviridae is a group of enveloped, positive sense single-strand RNA viruses, con-
sisting of four different genera: Flavivirus, Pegivirus, Pestivirus, and Hepacivirus 
[1]. Genus Flavivirus in particular consists of more than 70 species that include the 
West Nile virus (WNV), dengue virus (DENV), tick-borne encephalitis virus (TBE), 
yellow fever virus (YV), Zika virus (ZIKV), and several other viruses, which may 
cause encephalitis, as well as insect-specific flaviviruses (ISFs), such as cell-fusing 
agent virus (CFAV), Palm Creek virus (PCV), and Parramatta River virus (PaRV) 
[1, 2]. Flaviviruses are transmitted to humans through an arthropod vector or a mos-
quito vector from animal reservoirs [2]. Human to human transmission can also 
occur through transfusion of infected blood or infected tissue transplants [3]. 
Climate change, the population dynamics of the intermediate host (i.e., mosquitos), 
population growth, and urbanization can all play a role in the reemergence and wide 
spread of flavivirus infectious diseases, rendering them into a significant public 
health concern [4, 5].

Flavivirus infections can be presented without any clinical symptoms. Some 
individuals, however, can develop severe clinical symptoms that can be varied from 
fever to encephalitis and hemorrhage [6]. Although factors responsible for the mani-
festation of infection are yet to be fully characterized, there are known interindi-
vidual variations that can determine disease [7]. For example, existing chronic 
conditions, such as cardiovascular disease, diabetes, and renal disorders, can con-
tribute to the increasing severity of flavivirus infections [8–10]. With DENV specifi-
cally, the virus undergoes an incubation period of 3–14 days before any clinical 
symptoms start to manifest [11]. These symptoms range from fever, headache, and 
nausea to joint pain and typically last for 3–7 days before recovery [12]. However, 
in some individuals, these symptoms may further progress and develop into vascu-
lar leakage and pleural effusion [12]. At that stage, patients develop dengue hemor-
rhagic fever (DHF) [12]. Dengue shock syndrome (DSS), on the other hand, can 
develop once hypotension starts to emerge, leading to fatal outcome [12]. Therefore, 
it is important to monitor patients during this phase in order to prevent the deteriora-
tion of the vital organs. Similarly, WNV is mainly asymptomatic; however, the dis-
ease may progress in some individuals to neurological conditions, including 
encephalitis, meningitis, and paralysis [10, 13]. Furthermore, ZIKV also has an 
incubation period of 3–14  days before clinical symptoms start to arise [14] and 
manifest to fever, headaches, and edema [15]. More severe outcomes include organ 
failure, thrombocytopenia, meningitis, Guillain-Barré syndrome, and other neuro-
logical disorders [16, 17]. Chikungunya (CHIKV) infection is usually characterized 
by a range of clinical symptoms that vary from fever and maculopapular rash 
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[18–20] to neurological and rheumatologic conditions in severe cases that can per-
sist for a long period of time [15, 21–29]. This apparent interindividual variation in 
response to flavivirus infections is related to a number of host-related factors, 
including the presence of coexisting medical conditions, the competency of the 
immune system, host genetics, and the function of a wide array of cell receptors 
(see below).

Flaviviruses are known to target immune-related cells, including macrophages, 
dendritic cells, and monocytes, by attaching to their surface and entering the cell 
through receptor-mediated endocytosis [30–32]. The viral particle fuses with the 
cell membrane, releasing the viral RNA into the cell. The viral RNA is then able to 
replicate in the endoplasmic reticulum and is transported into the cytoplasm to 
infect neighboring cells [33]. Nuclear receptors play a key role in viral infection and 
consequent inflammatory responses and immune-related homeostasis [34]. These 
functions are mediated by a number of nuclear receptors, such as liver X receptor 
(LXR), peroxisome proliferator-activated receptor (PPAR), vitamin D receptor 
(VDR), and reverse strand of erythroblastic leukemia viral oncogene homologue 
receptor (REV-ERB). LXR plays a role in pro-inflammatory responses, and thus, 
LXR receptor agonists can play a role in controlling viral infection [34]. Furthermore, 
LXR is responsible for the regulation of cholesterol homeostasis through the forma-
tion of heterodimers with retinoid X receptor (RXR). This heterodimerization was 
shown to affect the susceptibility to infection with DENV [35]. PPARs, commonly 
expressed in macrophages [36–38], can negatively regulate macrophage activation 
and reduce oxidative stress and, thereby, were shown to be effective in the therapy 
of viral infection. VDR is another nuclear receptor known to be expressed in mac-
rophages. Genetic variation, i.e., single nucleotide polymorphisms (SNPs), in the 
VDR gene has been increasingly linked to controlling a number of infectious dis-
eases via mediating the host immunity and affecting disease severity [39–41]. REV- 
ERB is a member of the Rev-ErbA family of nuclear receptors and is a transcriptional 
repressor. Agonists of REV-ERB were shown, over the past few years, to be effec-
tive in the treatment of a number of bacterial and viral infections [42–46].

This chapter provides a systematic review of published literature to describe the 
role of a range of nuclear receptor ligands in the control and prevention of flavivirus 
infectious diseases. This will permit exploring the possible contribution of these 
factors in facilitating the development of public health measures and actions to curb 
the increased incidence of flavivirus diseases.

18.2  Methods

18.2.1  Literature Search

The systematic review presented in this chapter was conducted according with the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA; 
see Supplementary Table 1). A search was conducted using PubMed, Ovid Medline, 
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and Embase databases using the following search terms (MeSH): “Flaviviridae,” 
“Flavivirus,” “Zika,” “West Nile virus,” “dengue,” or “chikungunya,” and “LXR,” 
“VDR,” “PPAR,” or “REV-ERB.” The time period of the search was from the incep-
tion of the databases to the end of February 2020. Only English-language articles on 
human subjects were included. Letters to the editor, vaccine trials, case reports, 
animal studies, conference abstracts, and duplicated studies were excluded. Studies 
were included when containing data on the role of nuclear receptors and their 
ligands on the control of flavivirus infections or with information on the association 
between a specific ligand and its effect on disease progression. The reference lists 
of the eligible studies were also reviewed for relevant studies for additional inclu-
sion. Seventeen reports were selected to be systematically reviewed in the present 
chapter (see Table 18.1).

The studies included here were chosen using the population, intervention, com-
parison, outcome, study design, and time (PICOST; see Supplementary Table 2) 
table. We included studies examining human subjects (of any age) who were diag-
nosed with a flavivirus infections (Supplementary Table 3). Infected individuals or 
cells were compared to uninfected controls for the activity of the nuclear receptor 
and the effect of its ligands.

18.2.2  Inter-reviewer Agreement

Two reviewers (SEA and AB) independently reviewed the abstracts yielded from 
the search to determine those eligible for full-article review and inclusion. 
Disagreements regarding study inclusion were resolved by discussion. Percentage 
agreement and Cohen’s Kappa (κ) statistic and 95% confidence interval (95% CI) 
were calculated as previously described [7]. Agreement between reviewers was 
based on the Landis and Koch’s kappa (κ) statistic divisions as poor (<0), slight 
(0.00–0.20), fair (0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80), and 
perfect (0.81–1.0) [47]. The agreement for inclusion between the two reviewers was 
94.7% with a substantial weighted κ of 0.65 (95% CI: 0.36–0.94).

18.2.3  Data Extraction

The data included from the selected studies included the author’s name, year of 
publication, nuclear receptor, ligand, model, objective, and the overall findings 
related to the role of the nuclear receptor ligands in the control of flavivirus infec-
tion control. Upon completion of data extraction, the studies were grouped into 
those reporting a particular nuclear receptor (see below).
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Table 18.1 Characteristics of the selected studies

Study ID 
[Ref.] Year

Nuclear 
receptor Model Overall objective

Hwang et al. 
[60]

2019 LXR Human 
foreskin 
fibroblasts 
(HFFs)

To determine whether LXR-623 (LXR 
agonist) is capable of controlling CHIKV 
infection in human fibroblasts

Sierra et al. 
[35]

2017 LXR Human 
subjects

To conduct a genome-wide association studies 
(GWAS) in South American and African 
populations to determine which gene 
influences individuals’ risk to DENV

Audouze 
et al. [57]

2018 PPAR Human 
subjects

To determine the pathways related to 
microcephaly related to ZIKV infection

Fusco et al. 
[58]

2017 PPAR Human HeLa 
cells

To identify the human gene(s) that suppresses 
DENV through interferon effector genes 
(IEGs)

Devignot 
et al. [59]

2010 PPAR Human blood 
cells

To conduct a GWAS for 48 affected 
Cambodian children to characterize genes 
influencing dengue shock syndrome (DSS)

Zhuang 
et al. [61]

2019 REV- 
ERB

Huh-7 cells 
(human liver 
cell line)

To investigate the role of REV-ERB in the 
replication of DENV and ZIKV

Pereira et al. 
[4]

2017 VDR Human blood 
cells

To analyze the genotypic and allelic 
frequencies of polymorphisms (SNPs) related 
to DENV

Laplana 
et al. [48]

2018 VDR Human 
subjects

To conduct a systematic review to examine the 
role of VDR polymorphisms on infection 
susceptibility to enveloped viruses, 
specifically DENV

Giraldo 
et al. [54]

2017 VDR Human 
peripheral 
blood cells

To determine whether vitamin D 
supplementation has an effect on DENV 
susceptibility and pro-inflammatory cytokine 
production in macrophages

Dettogni 
et al. [50]

2015 VDR Human blood 
cells

To evaluate the relationship between SNPs in 
VDR genes with symptom persistence in 
DENV

Harapan 
et al. [51]

2012 VDR Human 
subjects

To evaluate non-HLA gene polymorphisms 
and their relationship with the susceptibility 
and severity of DENV infection

Alagarasu 
et al. [49]

2012 VDR Human blood 
cells

To investigate whether 3’UTR gene variants 
are associated with DENV in infected patients 
from India

Loke et al. 
[52]

2002 VDR Human blood 
cells

To assess candidate genes related to DENV 
susceptibility and disease severity

Coffey et al. 
[53]

2009 VDR Human 
subjects

To evaluate genetic variants related to DENV 
susceptibility and factors affecting DENV 
infection outcome

(continued)
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Table 18.1 (continued)

Study ID 
[Ref.] Year

Nuclear 
receptor Model Overall objective

Puerta- 
Guardo et al. 
[3]

2012 VDR Human Huh-7 
and U937 cells

To evaluate the effect of vitamin D in DENV 
therapy

Beard et al. 
[55]

2011 VDR Human 
subjects

To investigate the antiviral effect of vitamin D 
against enveloped viruses

Alagarasu 
et al. [56]

2012 VDR Human blood 
cells

To investigate the effect of vitamin D levels 
on DENV infection control

18.3  Results and Discussion

18.3.1  Search Results

From the initial database search, 32 articles met the search criteria. After removing 
ten duplicate reports, the 22 remaining studies were screened through abstract 
review. Of the latter, nine studies were excluded during the abstract review process 
as shown in Fig. 18.1 (one conference abstract, six review studies, and two primary 
studies). Full-text screening was conducted on the remaining 13 studies that were 
selected for inclusion in addition to four studies that were identified through bibli-
ography search (Table 18.1).

18.3.2  Vitamin D Receptor (VDR)

Of the selected studies, 11 reports examined the role of VDR ligands on the suscep-
tibility and control of DENV infections (Table 18.2). These studies evaluated fac-
tors which varied from the effect of the VDR SNPs on the ligand binding to 
subsequently the disease outcome, the effect of the ligands in immune cells, and the 
role of the ligand supplementation on disease risk. For example, significant differ-
ences in susceptibility to DENV infections were noted to be associated with SNPs 
in the VDR gene [4]. FokI polymorphisms of VDR in African, European, Asian, and 
Central and South American populations was linked to varying risk of susceptibility 
to bacterial and viral infections [48], particularly enveloped viruses such as 
DENV. The FokI polymorphism seems to alter the transcriptional activity and sub-
sequently the ligand (vitamin D) binding to VDR, influencing the effect of the 
ligand on the susceptibility to viral infection. Furthermore, studies focused on Taq1 
polymorphisms in VDR were primarily linked to the extent of DENV severity [49, 
50]. TaqI C allele, as compared to the T allele, was shown to offer more protection 
against the severe outcome of DENV infection [49, 50]. This observation was fur-
ther confirmed in cases of sever DHF [51, 52], where VDR polymorphisms were 
shown to regulate the activity of monocytes, B cells, and T cells at the sites of infec-
tion [51, 52]. This was suggested to be due to the role of VDR in controlling the 
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downstream immune response by activating monocytes and inhibiting lymphocyte 
proliferation [53].

Apparently, the level of supplementation with VDR ligand seems to also affect 
the susceptibility to DENV infections [54]. Vitamin D was shown to mediate the 
expression of LL-37, an antimicrobial peptide, which then inhibits the viral replica-
tion at the cell entry phase. Lower levels of vitamin D were shown to be associated 
with decreased LL-37 expression and increased susceptibility to infection [54]. In 
this respect, individuals who receive vitamin D supplementation at 4000  IU/day 
were found to be more resistant to DENV infections and have lower levels of pro- 
inflammatory cytokines [54]. In support, when myelomonocytic cells (U937) and 
human hepatocytes (Huh-7) were infected with DENV and subsequently treated 
with vitamin D, both cell lines exhibited inhibition of DENV replication [3]. This 
substantiates the inhibitory effort of vitamin D in viral infection and proliferation. 
Indeed, when Vietnamese subjects with DENV infection were orally supplemented 
with vitamin D, they exhibited lower disease severity and shorter length of DENV 
symptoms [55].

In contrast to these findings, one study demonstrated that vitamin D serum levels 
are higher in patients diagnosed with DENV compared to healthy individuals [56]. 
This discrepancy was however proposed to be either due to the increased expression 
of Fcγ receptors on monocytes from the DENV patients, which may increase the 

Fig. 18.1 PRISMA flowchart
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Table 18.2 Role of vitamin D receptor (VDR) and VDR ligands (vitamin D) in dengue fever

Study ID Study population and design Findings

Pereira et al. 
[4]

1560 individuals from Brazil The genotypic frequencies for all VDR SNPs did 
not differ between the asymptomatic DENV- 
positive cases and DENV-negative cases

Laplana 
et al. [48]

Systematic review and 
meta-analysis on VDR FokI 
T-allele frequency on DENV 
infection

FokI polymorphism is associated with an 
increased susceptibility to DENV infection

Giraldo 
et al. [54]

Macrophages from 20 healthy 
individuals randomly divided 
into two groups

Healthy donors received high doses of vitamin 
D. Macrophages were more resistant to DENV, 
leading to a decreased number of viral RNAs and 
DENV-infected macrophages
Donors who received low doses of vitamin D had 
a significant increase in the number of DENV- 
infected macrophages and viral RNA copies
Vitamin D supplementation inhibits DENV 
infection and viral replication in a dose- 
dependent manner
Vitamin D binding to VDR increases the 
expression of LL-37 that inhibits DENV 
replication at the level of viral entry into the cell

Dettogni 
et al. [50]

315 adult patients from 
emergency care units in 
Brazil

VDR influences the immunoregulatory function 
of vitamin D (increased differentiation, functions 
of T cells and monocytes, and suppression of IgG 
and B cells)
VDR Taq1 T allele increases the susceptibility to 
DENV
VDR Taq1 C allele is associated with protection 
against severe DENV

Harapan 
et al. [51]

Review findings from 
countries in Southeast Asia 
and South America

There is an association between VDR 
polymorphism and DENV severity
VDR agonists activate B- and T-lymphocyte 
function

Alagarasu 
et al. [49]

DENV patients (n = 112) and 
controls (n = 106) from India

VDR polymorphism affects the ligand’s bindings 
and the outcome of DENV infection

Loke et al. 
[52]

DENV patients (n = 315 
grade III and 37 grade IV) 
and healthy controls (n = 251) 
from Vietnam

The less frequent T allele of a dimorphism at 
position 352 of the VDR gene is associated with 
DENV severity and DHF

Coffey et al. 
[53]

Literature survey Clinical presentation of DENV is affected by 
SNPs in VDR

Puerta- 
Guardo 
et al. [3]

The effect of vitamin D on 
DENV infection in human 
hepatic cells and on viral 
infection

VDR ligand reduced the number of Huh-7 and 
U937 cells infected with DENV in a dose- 
dependent manner

Beard et al. 
[55]

Literature survey The antiviral effect of VDR activation may be 
linked to the ability of vitamin D to upregulate 
the antimicrobial peptides LL-37 and human 
beta-defensin-2

Alagarasu 
et al. [56]

Case-control study (48 DF 
cases, 45 DHF cases, and 20 
healthy controls) from India

Higher concentrations of vitamin D might be 
associated with secondary DHF
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viral load, or due to the elevated levels of the anti-inflammatory interleukin (IL)-10, 
which potentiates the DENV pathogenesis [56]. Overall, the effect of VDR ligands 
on flavivirus infection, e.g., DENV, is suggested to be regulated by the polymor-
phisms in the VDR gene to ultimately influence the cell’s ability to control the viral 
entry and replication and eventually the individual’s overall response to disease 
manifestation, i.e., symptom relief and severity of infection.

18.3.3  Peroxisome Proliferator-Activated Receptors (PPARs)

Only three studies were identified evaluating the effect of PPAR ligands on the con-
trol of flavivirus infectious diseases such as DENV and ZIKV (Table 18.3). Exposure 
to pyriproxyfen (PPF) during ZIKV infection was suggested to activate and differ-
entially modulate PPARs to subsequently lead to elevated levels of maternal inflam-
mation [57]. The latter was found to be associated with the increased risk of 
congenital disorders in the infants from ZIKV-infected mothers [57]. In support, the 
PPAR signaling pathway is known to be expressed in placental development and is 
involved in brain functions and neurodegenerative diseases. Differential modulation 
of this pathway may, therefore, play a role in fetal neurotoxicity and microcephaly 
during ZIKV infection.

Infection with DENV downregulates host production of the antivirus cytokine 
interferon (IFN)-α at early steps of this signal transduction pathway. This down-
regulation allows uncontrolled viral replication, which subsequently triggers the 
synthesis of IFN-α which, again, is downregulated [58]. IFN-α stimulates HELZ2 
(helicase with zinc finger 2) gene. The protein encoded by HELZ2 gene is a tran-
scriptional coactivator for PPARα. In an effort to determine which nuclear receptor 
is the mediator of HELZ2-IFN-α antiviral effects during DENV infection, Fusco 
et al. [58] knocked down PPARα in Huh-7.5.1 hepatoma cells and in HeLa cells to 

Table 18.3 Role of peroxisome proliferated-activated receptors (PPAR) in flavivirus diseases

Study ID Ligand Infection Findings

Audouze 
et al. [57]

Pyriproxyfen ZIKV Exposure to pyriproxyfen during Zika infection 
modulates PPARs
Modulation of PPAR signaling may play a role 
in fetal neurotoxicity and microcephaly

Fusco et al. 
[58]

Fenofibrate DENV PPARα knockdown rescued DENV from the 
effect of IFN in Huh-7.5.1 cells
Treatment with fenofibrate upregulated 
suppressed DENV infection in HeLa cells but 
with cytotoxic effect

Devignot 
et al. [59]

Atherosclerosis drugs 
(proposed)

DENV PPARα and PPARγ genes and their transcripts 
to be present in decreased abundance, 
particularly, in DSS patients
Activation of PPARγ is proposed in the 
systemic vascular dysfunction leading to DSS
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evaluate the effect of this PPARα downregulation on DENV infection. PPARα 
knockdown did rescue DENV from the effect of IFN-α in Huh-7.5.1 cells. In sup-
port, treatment with the PPARα ligand fenofibrate upregulated the mRNA expres-
sion of PPARα in the Huh-7.5.1 cells and suppressed DENV infection in HeLa cells 
but with cytotoxic effect. Although these findings did not support a clear role for 
PPARα as the major nuclear receptor in the HELZ2-IFN-α interaction, it provides 
evidence for the role of PPARα ligands in the protection against DENV infection 
outcome.

In a study aiming to provide an overview of the molecular mechanisms altered 
during dengue shock syndrome (DSS) and how they may interact to lead to final 
vascular homeostasis breakdown, Devignot et al. [59] analyzed the genome-wide 
expression profiles of whole blood cells from 48 matched Cambodian children: 19 
progressed to DSS, while 16 and 13 presented, respectively, classical dengue fever 
(DF) or dengue hemorrhagic fever grades I/II (DHF). The study identified PPARα 
and PPARγ genes and their transcripts to be present in decreased abundance, par-
ticularly, in DSS patients. However, a particular function for the activation of PPARγ 
nuclear lipid receptor was proposed in the systemic vascular dysfunction leading to 
DSS. The authors proposed that drugs used to treat metabolic disorders, such as 
atherosclerosis (i.e., PPAR agonists), should deserve further attention for their role 
in controlling the pro-inflammatory processes in DENV-infected patients. Taken 
together, since PPAR expression was reduced in DENV infection [59] and upregu-
lating this expression was noted in human cells to suppress the infection in human 
cells [58], it can be argued that PPAR ligands may play a critical role in the control 
and treatments of DENV infection. However, further studies are warranted to sub-
stantiate this effect in human population and to employ these molecular targets in 
curbing the increased incidence of DENV and other flavivirus-related diseases.

18.3.4  Liver X Receptor (LXR)

LXR is a member of the nuclear receptor family of transcription factors, is closely 
related to nuclear receptors such as the PPARs, and is an important regulator of 
cholesterol, fatty acid, and glucose homeostasis. Two human studies were focusing 
on the role of LXR ligands in the control of flavivirus infections with CHIKV and 
DENV (Table 18.4). The findings from the two studies suggest that downregulating 
LXRs, either by agonists or modulating their downstream signaling, can protect 
against the viral cell entry as well as its replication, thereby providing a protection 
against the flavivirus infectious diseases.

In a recent study examining whether the LXR agonist LXR-623 is capable of 
modulating CHIKV infection, Hwang et al. [60] have concluded that LXR is a host 
factor that plays a critical role in reducing CHIKV replication, e.g., in physiologi-
cally relevant human fibroblasts. This study also demonstrated that endogenous and 
synthetic activation of INF-stimulated genes synergizes with LXR to protect the 
host cells against the viral effect. However, LXR was found to also possess anti-
inflammatory effects that may be relevant during CHIKV infection. In this regard, 
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inflammatory monocytes, known to be present in joints during the chronic phase of 
CHIKV pathogenesis, were found to be also modulated by LXR agonism. The study 
also presented evidence to suggest that LXR agonist induces the expression of ATP-
binding cassette transporter 1 (ABCA1), a cholesterol efflux regulatory protein 
(CERP), a major regulator of cellular cholesterol and phospholipid homeostasis. 
Upregulating ABCA1 was the primary pathway by which LXR-623 inhibits CHIKV 
replication in primary human fibroblasts. The study concluded that endogenous and 
pharmacological activation of inflammatory signaling pathway (particularly the 
innate immunity related) will synergistically interact with LXR agonism to generate 
antiviral effect.

The oxysterol-binding protein-related protein 10 (OSBPL10) is known to inter-
act with the LXR/RXR activation pathway that integrates lipid metabolism and 
immune functions [35]. OSBPL10 was shown to be a key player in DENV entry 
into cells and its replication. Knockdown of OSBPL10 expression in THP-1 cells 
followed by DENV2 infection led to a significant reduction in DENV replication, 
being a direct functional proof that lower OSBPL10 expression profile plays a role 
in the control of DENV disease. Given the interaction between LXR signaling and 
OSBPL10, the findings of this study provide evidence demonstrating that LXR 
pathway has a central role in DENV protection and support pursuing therapeutic 
techniques involving synthetic ligands of LXR, particularly those that interact with 
proteins involved in lipid metabolism.

18.3.5  Reverse Strand of Erythroblastic Leukemia Viral 
Oncogene Homologue Receptor (REV-ERB)

The cell-autonomous circadian clock directs a network of physiological processes 
that delineate the daily pace of cell proliferation, metabolism, and inflammation. 
The nuclear hormone receptors REV-ERB are regulators of this clock components 

Table 18.4 Role of liver X receptors (LXRs) in flavivirus diseases

Study ID Ligand Infection Findings

Hwang 
et al. [60]

LXR-623 CHIKV LXR agonist (LXR-623) inhibits CHIKV replication 
by upregulating the cholesterol exporter ABCA1
Activation of IFN signaling pathway partners with 
LXR antagonism to have an antiviral effect

Sierra et al. 
[35]

OSBPL10 
knockdown

DENV OSBPL10 interacts with the LXR/RXR activation 
pathway that integrates lipid metabolism and immune 
functions
OSBPL10 is a key player in DENV entry into cells 
and its replication
Lower OSBPL10 expression profile plays a role 
against DENV disease
Knockdown of OSBPL10 expression led to a 
significant reduction in DENV replication
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and control the expression of metabolic genes in a circadian- and tissue-dependent 
manner [61]. Our search resulted in a single study examining the effect of modulat-
ing REV-ERB on flavivirus diseases [61]. This study demonstrated that overexpres-
sion or activation of REV-ERB with synthetic agonists inhibits the replication of 
flaviviruses DENV and ZIKV via perturbation of lipid signaling pathways. The 
study highlighted a role of REV-ERB in restricting RNA virus replication. When 
treating human liver cell lines (Huh-7) with the REV-ERB agonist SR9009, the 
ZIKV and DENV infections were significantly reduced. This pathway involves 
inhibiting Bmal1, which, in turn, reduces viral replication in a dose-dependent man-
ner with a minimal (if any) cytotoxic effects. Overall, that study characterized new 
pathways for the circadian network to impact multiple stages of the DENV and 
ZIKV replication processes, particularly when the viruses rely on host metabolic 
activities to replicate.

18.4  Conclusion

The introduction of the flavivirus infection competent vectors (i.e., mosquitoes) into 
natural environments and urban areas and the changing societal factors (see below) 
all have facilitated the geographical expansion of these diseases into different 
regions of the world [7]. Such incursion of the disease vector into new world regions 
was proposed as a major factor influencing the increased incidence of flavivirus 
diseases and their severity [62, 63]. Indeed, the decreases in mosquito control 
efforts, rapid changes in climate and vector’s demography, dense urbanization, pop-
ulation growth, and globalization with increased transportation and trade activities 
all have contributed to the elevated global burden on flavivirus diseases [64]. 
Additionally, identifying and characterizing host-related factors that play a role in 
the severity of flavivirus infections and defining approaches to modulate the effect 
of such factors can be significant in designing measures that aim to prevent the 
severe outcomes of infection.

Nuclear receptors have been identified to play a key role in flavivirus infection 
and diseases by influencing the viral entry into the host’s cell [54], viral replication 
[3, 61], and the individual’s response to infection [3, 56]. Modulation of nuclear 
receptors either due to gene polymorphism [49, 50] or by treatment with the corre-
sponding ligands [54] was shown to offer protection against the severe outcome of 
flavivirus infection, e.g., with VDR [49, 50]. Furthermore, PPAR ligands were sug-
gested to activate and differentially modulate the receptor-mediated downstream 
signaling pathways to subsequently lead to elevated levels of inflammation and sup-
pression of flavivirus infection, e.g., DENV [57]. Additionally, activation of REV- 
ERB inhibited the replication of flaviviruses DENV and ZIKV via perturbation of 
lipid signaling pathways [61]. On the other hand, downregulating LXRs, either by 
agonists or modulating their downstream signaling, were suggested to protect 
against the viral cell entry as well as its replication to provide a protection against 
diseases such as DENV and CHIKV [35, 60]. Overall, it appears that the effect of 
nuclear receptor ligands on the control of flavivirus infection is receptor specific, 
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where ligands (e.g., of VDR, PPAR, and REV-ERB) or agonists (e.g., of LXR) can 
have significant protection against viral entry, replication, and disease outcome.

Infection with flaviviruses downregulates the host production of a number of 
innate immunity-related antivirus cytokines [30–32]. Modulation of nuclear recep-
tors can similarly affect the inflammatory responses and immune-related homeosta-
sis [34]. Agonizing (VDR, PPAR, and REV-ERB) or antagonizing (LXR) these 
receptors can, therefore, be employed in rectifying the inflammatory signaling path-
ways disrupted by viral infection. In this respect, overproduction of pro- inflammatory 
cytokines, such as ILs, TNF-α, IFN-γ, and TGF-β, is known to occur in severe DENV 
[65], WNV [66], and yellow fever [67], leading to cytokine storm and vasculopathy, 
hemorrhage, tissue damage, and septic shock characteristic of severe flavivirus infec-
tions. Cytokine synthesis shift to Th1 (microbicidal action of pro- inflammatory IFN-
γ) from Th2 (anti-inflammatory IL-4, IL-10, and IL-13) in severe infection can lead 
to endothelial dysfunction and a subsequent range of complications, including 
allergy, vascular leakage, ascites, and pericardial effusion, as observed in DENV 
[68–70]. Such an impairment of the immune system increases the level and duration 
of viremia and facilitates the passage of, for example, neurotropic flavivirus across 
the blood-brain barrier to predispose patients to severe disease outcome, e.g., neuro-
logical complications [71, 72]. Impairment of the innate immune system, which 
mediates the host defense to infection, renders individuals more susceptible to a 
range of infectious diseases and severe illnesses [73]. This may subsequently medi-
ate anti-inflammatory responses and generate a pro- inflammatory state, to exacerbate 
the infectious disorders [73]. Given the effect of nuclear receptors (e.g., VDR, LXR, 
PPAR, and REV-ERB) on inflammation and its related processes (see above), evalu-
ating the modulatory effects of the receptor ligands on flavivirus infection can be 
essential to controlling the infection-induced pro-inflammation. This can conse-
quently play a role in reducing the burden of the disease via guiding approaches for 
improved patient outcome or differential case management.

This chapter provided evidence for a possible role of nuclear receptor ligands in 
flavivirus infection control. The findings presented here, however, are still fragmen-
tary and do not implicate causality between ligand treatment and infection control. 
It simply demonstrates the possibility that this approach can be further investigated 
in disease therapy or intervention. Indeed, the data presented in this chapter simply 
warrants further assessments to identify the nature and extent of effect that can be 
attained by introducing nuclear receptor ligands into flavivirus infection control. 
However, even in the absence of causal inference between ligand treatment and 
disease outcome, it may be justified that ligand treatment may retain the innate 
immunity homeostasis disrupted during early stages of infection.
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 Supplementary Materials

Supplementary Table 1 PRISMA checklist

Section/topic # Checklist item Page #

Title

Title 1 Identify the report as a systematic review, meta- 
analysis, or both

1

Abstract

Structured 
summary

2 Provide a structured summary including the following, 
as applicable: background; objectives; data sources; 
study eligibility criteria, participants, and interventions; 
study appraisal and synthesis methods; results; 
limitations; conclusions and implications of key 
findings; systematic review registration number

1

Introduction

Rationale 3 Describe the rationale for the review in the context of 
what is already known

1–3

Objectives 4 Provide an explicit statement of questions being 
addressed with reference to participants, interventions, 
comparisons, outcomes, and study design (PICOS)

Supplementary 
Table 2

Methods

Protocol and 
registration

5 Indicate if a review protocol exists and where it can be 
accessed (e.g., Web address), and, if available, provide 
registration information including registration number

None

Eligibility 
criteria

6 Specify study characteristics (e.g., PICOS, length of 
follow-up) and report characteristics (e.g., years 
considered, language, publication status) used as 
criteria for eligibility, giving rationale

3

Information 
sources

7 Describe all information sources (e.g., databases with 
dates of coverage, contact with study authors to 
identify additional studies) in the search and date last 
searched

Table 1.1

Search 8 Present full electronic search strategy for at least one 
database, including any limits used, such that it could 
be repeated

3

Study selection 9 State the process for selecting studies (i.e., screening, 
eligibility, included in systematic review, and, if 
applicable, included in the meta-analysis)

Figure 1.1

Data collection 
process

10 Describe method of data extraction from reports (e.g., 
piloted forms, independently, in duplicate) and any 
processes for obtaining and confirming data from 
investigators

4

Data items 11 List and define all variables for which data were sought 
(e.g., PICOS, funding sources) and any assumptions 
and simplifications made

Supplementary 
Tables 

Risk of bias in 
individual 
studies

12 Describe methods used for assessing risk of bias of 
individual studies (including specification of whether 
this was done at the study or outcome level) and how 
this information is to be used in data synthesis

None

(continued)
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Supplementary Table 1 (continued)

Section/topic # Checklist item Page #

Summary 
measures

13 State the principal summary measures (e.g., risk ratio, 
difference in means)

Table 1.1

Synthesis of 
results

14 Describe the methods of handling data and combining 
results of studies, if done, including measures of 
consistency (e.g., I2) for each meta-analysis

None

Risk of bias 
across studies

15 Specify any assessment of risk of bias that may affect 
the cumulative evidence (e.g., publication bias, 
selective reporting within studies)

None

Additional 
analyses

16 Describe methods of additional analyses (e.g., 
sensitivity or subgroup analysis, meta-regression), if 
done, indicating which were prespecified

None

Results

Study selection 17 Give numbers of studies screened, assessed for 
eligibility, and included in the review, with reasons for 
exclusion at each stage, ideally with a flow diagram

Figure 1.1

Study 
characteristics

18 For each study, present characteristics for which data 
were extracted (e.g., study size, PICOS, follow-up 
period) and provide the citations

Table 1.1, 
Figure 1.2

Risk of bias 
within studies

19 Present data on risk of bias of each study and, if 
available, any outcome level assessment (see Item 12)

None

Results of 
individual 
studies

20 For all outcomes considered (benefits or harms), 
present the following for each study: (a) simple 
summary data for each intervention group and (b) 
effect estimates and confidence intervals, ideally with 
forest plot

Tables 1.2–1.5

Synthesis of 
results

21 Present results of each meta-analysis done, including 
confidence intervals and measures of consistency

None

Risk of bias 
across studies

22 Present results of any assessment of risk of bias across 
studies (see Item 15)

None

Additional 
analysis

23 Give results of additional analyses, if done (e.g., 
sensitivity or subgroup analyses, meta-regression [see 
Item 16])

None

Discussion

Summary of 
evidence

24 Summarize the main findings including the strength of 
evidence for each main outcome; consider their 
relevance to key groups (e.g., health-care providers, 
users, and policy makers)

16

Limitations 25 Discuss limitations at study and outcome level (e.g., 
risk of bias) and at review level (e.g., incomplete 
retrieval of identified research, reporting bias)

16

Conclusions 26 Provide a general interpretation of the results in the 
context of other evidence and implications for future 
research

16

Funding

Funding 27 Describe sources of funding for the systematic review 
and other support (e.g., supply of data) and the role of 
funders for the systematic review

16
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Chapter 19
Use of Nanotechnology to Improve  
15d-PGJ2 Immunomodulatory Activities

Marcelo H. Napimoga , Henrique B. Abdalla ,  
and Juliana T. Clemente- Napimoga 

Abstract A growing body of evidence demonstrates that 15-deoxy-Δ12,14- 
prostaglandin J2 (15d-PGJ2) which is an endogenous ligand of peroxisome 
proliferator- activated receptor gamma (PPAR-γ) has multiple physiological proper-
ties. It has been demonstrated the efficacy at low doses even lower when combined 
with nanotechnology, as a promising therapeutic approach as immunoresolvents 
and some of them present long-lasting anti-inflammatory effects. In this chapter, we 
focus on how 15d-PGJ2 is involved in the resolution of inflammatory responses and 
as potential analgesic molecule. Importantly, we will present evidences that nano-
technology (nanocarriers) is a helpful tool to improve its action and bioavailability.

Keywords 15d-PGJ2 · Inflammation · Nanotechnology · PPAR-gamma · PPAR · 
Prostaglandins

19.1  Introduction

Nuclear receptors are ligand-dependent transcription factors that regulate several 
genes related to the control of cell growth, cell differentiation, and homeostasis [67, 
68]. In particular, peroxisome proliferator-activated receptors (PPARs) are a type of 
nuclear receptor, which regulates the transcriptional response [82]. When inacti-
vated, PPARs are constitutively associated with the 9-cis retinoic acid (RXR) recep-
tor as a heterodimer [50]. However, upon activated by natural or synthetic ligands, 
a conformational change occurs in PPARs structure, allowing PPAR complex binds 
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to the peroxisome proliferator response element (PPRE) in the promoter regions of 
target genes [50]. Subsequently, the recruitment of transcriptional coactivators leads 
to an increase of transcriptional responses [77].

The PPAR-gamma (PPAR-γ) was the first transcription factor identified in 1990 
[34]. Since then, surveys on PPARs have increased dramatically, revealing more and 
more intriguing functions in human biology. Three different isoforms of PPARs 
exist—PPAR-α, PPAR-β/δ, and PPAR-γ, which demonstrate diverse functional 
capabilities, including, but not restricted to, the control of inflammatory gene 
expression, lipogenesis, and cell cycle [28]. Nuclear receptors can bind small lyo-
philic ligands that induce their transcriptional activities. However, the identity of 
their endogenous ligands remains largely elusive. Despite that, due to several stud-
ies focused on identifying PPAR-γ ligands, several candidates were found, includ-
ing unsaturated fatty acids and arachidonic acid metabolites [37, 52, 76].

Prostaglandins (PGs) are a family of biologically active lipid compounds derived 
from arachidonic acid with a broad spectrum of functions in our body. PGs have a 
diverse range of actions depending on the PG type and cell target; however, most of 
their activity is specially related to inflammation outcomes. The A and J PGs series 
contain a cyclopentenone ring structure, which is characterized by a chemically 
reactive α,β-unsaturated carbonyl [74], in which includes 15-deoxy-Δ12,14- 
prostaglandin J2 (15d-PGJ2). 15d-PGJ2 is one of the final products of the arachidonic 
acid cascade. This cascade is a fundamental metabolic pathway in the human body 
that synthesizes a wide range of chemical mediators. Its synthesis begins by several 
stimuli (whether physiological, pharmacological, or even pathological), resulting in 
the activation of A2 phospholipase (PLA2) enzyme. Therefore, PLA2 hydrolyzes the 
phospholipid membrane, releasing the arachidonic acid as a substrate for different 
metabolic pathways. The two main enzymatic pathways are cyclooxygenase (COX) 
and lipoxygenase (LOX). Particularly, the arachidonic acid is converted into prosta-
glandin G2, through COX-pathway, and subsequently into prostaglandin D2, which, 
through a dehydration process, becomes 15d-PGJ2 [76]. The 15d-PGJ2 is a cyclo-
pentenone prostaglandin that is formed by dehydration and isomerization of PGJ2 
(a metabolite product of PGD2), that unlike the other PGs exerts antitumor, anti- 
inflammatory, analgesic, and anti-fibrotic effects in a vast range of cellular systems 
[42, 49, 75]. Although 15d-PGJ2 is a putative ligand for PPAR-γ, the production of 
15d-PGJ2 in a pathophysiological setting for biological effects in mammalian sys-
tems was a doubt [8]. To clarify this issue, it was demonstrated that 15d-PGJ2, syn-
thesized in vivo, controls the balance of cytokines and chemokines that regulate 
leukocyte trafficking during acute inflammation as well as the efflux of macrophage 
to draining lymphatics leading to its resolution [66]. Therefore, this chapter will 
address the findings regarding the immunomodulatory effects of 15d- PGJ2, in a 
range of pathological conditions.
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19.2  Analgesic Properties

PGs, in general, induce pain through an indirect mechanism of tough sensitization 
of primary afferent nociceptors by activating prostaglandin (EP1–4) and prostacyclin 
(IP) receptors [78, 85]. In contrast, cyclopentenone prostaglandins, including 15d- 
PGJ2, lead their biologicals actions not mediated by classical EP receptors but rather 
over interacting with other targets, especially PPAR-γ receptors [76]. Napimoga and 
colleagues [58] were the first to describe the antinociceptive properties of 15d-PGJ2. 
It was demonstrated that 15d-PGJ2 induces peripheral antinociceptive effect, and 
interestingly direct administration of 15d-PGJ2 into the dorsal root ganglion (DRG) 
was ineffective in blocking PGE2-induced hypernociception. These findings support 
the concept that 15d-PGJ2 cannot directly block nociceptor sensitization but rather 
prevent the nociceptor sensitization. However, and intriguingly, the blockage of opi-
oids receptors abrogated the analgesic effect induced by 15d-PGJ2. Considering that 
intraganglionar injection of 15d-PGJ2 is ineffective to block pain, it was demon-
strated that endogenous opioids release was involved in this effect released by mac-
rophages [58]. In addition, it was demonstrated that the antinociceptive effect of 
intra-articular injection of 15d-PGJ2 is mediated by activation of PPAR-γ with κ- 
and δ- opioid receptors in primary sensory neurons, that stimulate the intracellular 
activation of L-arginine/NO/cGMP/PKG/KATP channel antinociceptive pathway 
resulting in membrane hyperpolarization [45, 61]. Interestingly, PPAR-γ activated 
by 15d-PGJ2 are located in leukocytes subpopulations of opioid-peptide-containing 
cells, such as macrophages cells [45]. The mechanisms of 15d-PGJ2-induced anti-
nociception is summarized in Fig. 19.1.

Considering these evidences, researchers focused on the resident macrophage 
cells as a target of therapeutic effect of 15d-PGJ2 in the peripheral tissues. 
Macrophages highly express PPAR-γ receptor [12] and could be the source for the 
endogenous opioids released [46, 54]. As imagined, 15d-PGJ2 augmented the 
release of endogenous opioid peptide β-endorphin and dynorphin, the ligands for 
κ- and δ- opioid receptors, respectively [45]. Further it has been raised the hypoth-
esis that, after PPAR-γ activation by 15d-PGJ2, macrophages drove to a phenotypic 
shift from M1-like (macrophages that increases pro-nociceptive mediators) toward 
M2-like (macrophages that have homeostatic and resolutive functions), inducing 
transcriptional response and augmenting the genes related to endogenous opioids 
[31, 32, 45]. Although it is already known that PPAR-γ activation by synthetics [31, 
32, 81] or natural ligands [62, 71] induce macrophage phenotypic shift, it remains 
unknown whether macrophage polarization induced by 15d-PGJ2 is necessary for 
the analgesic effect induced. In this scenario recently, it was demonstrated that 15d- 
PGJ2 counteracts human soluble epoxide hydrolase enzyme (sEH), which is respon-
sible for block bioactive epoxy fatty acids [4]. Resolvins and maresins are also 
important epoxy fatty acids with a crucial role in macrophage’s resolutions actions, 
such as analgesia [22, 26, 63]. Besides the PPAR-γ axis, 15d-PGJ2 showed to regu-
late bioactive lipids compounds, leading to analgesic effects.
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Fig. 19.1 Mechanisms of 15d-PGJ2-induced anti-nociception in the TMJ. The 15d-PGJ2 activates 
PPAR-γ expressed in the resident macrophage of TMJ tissues. Once activated by 15d-PGJ2, PPAR- 
γ forms a heterodimer with the retinoid acid receptor (RXR) that in turn allows the release of 
endogenous opioid peptides activating κ- and δ-opioid receptors (KOR and DOR) in primary sen-
sory neurons. Opioid receptors activated by their ligands induced conformational changes allow-
ing intracellular coupling of heterotrimeric Gi-protein. The subunits of G-protein (β/γ) activated 
the L-arginine/NO/cGMP/K+ATP channel antinociceptive pathway resulting in membrane hyperpo-
larization. Opioid receptors are desensitized following phosphorylation by G-protein receptor 
kinase type 3 (GRK3) and subsequent β-arrestin binding. As a result of opioid receptors activation, 
the membrane hyperpolarization could inhibit signal of inflammatory chemotaxis. Otherwise, 
PPAR-γ activated represses the expression of several pro-inflammatory response genes in activated 
macrophages, including TNF-α – a central mediator of hypernociceptive cascade
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The transient receptor potential A1 (TRPA1) ion channel is involved in painful 
states and has been described as a possible target for the 15d-PGJ2 analgesic effect 
in DRG [5, 83]. The intracerebroventricular injection of 15d-PGJ2 mitigates periph-
eral inflammatory inputs and reduces carrageenan-induced inflammatory pain and 
paw edema [51]. In the neuropathic pain model, 15d-PGJ2 intrathecal administra-
tion reduced mechanical and cold hypersensitivity [15]. Lastly, 15d-PGJ2 loaded 
into nanocapsules demonstrated robust pain killer effects in an arthritic model of 
pain [70]. However, it remains uncertain if 15d-PGJ2 has a direct or indirect action 
on sensory neurons. It is important to highlight that the importance of neuroimmune 
interactome to pain induction and maintenance is a fact [6, 35]. In addition to the 
neuronal events, the literature has been discussing the two networking between neu-
ronal cells and immune system cells present in the peripheral and central nervous 
system, such as glial cells, endothelial cells, T cells, and resident tissues macro-
phages [9, 29, 40, 73]. Immune system cells have been shown to play a role in 
modulating neural transmission involving painful conditions, a process referred to 
as the neuroimmune interface [9, 29]. Thus, it is possible to suggest that the princi-
pal target of therapeutic effects of 15d-PGJ2 is immune system cells and 15d-PGJ2 
may have an indirect action on sensory neurons.

19.3  Anti-inflammatory Properties

The 15d-PGJ2 is well-recognized as a potent anti-inflammatory agent. Considering 
PPAR-γ is highly expressed in endothelial cells, vascular smooth muscle cells, and 
monocytes/macrophages, surveys focus on the impact of 15d-PGJ2 on those targets 
[42]. However, 15d-PGJ2 also demonstrated to regulate lymphocytes (T cells) and 
osteoclast. Thus, in this section, we will address the anti-inflammatory properties of 
15d-PGJ2 in several models.

The first reports on the potential 15d-PGJ2 anti-inflammatory effects were asso-
ciated with its activities in adipocyte cells, as well as its relationship with the 
PPAR-γ receptor [23, 37, 38, 41]. Further, it was observed that 15d-PGJ2 was able 
to upregulate PPAR-γ in macrophages, leading to inhibitory on the signaling of 
activator protein 1 (AP-1), signal transducer and activator of transcription (STATs), 
and factor nuclear kappa B (NF-κB) [68]. These findings aroused great interest in 
15d-PGJ2 as a potential therapeutic target in inflammatory conditions, and since 
then, research exploring the molecular mechanisms has not stopped until today.

In addition to the NF-κB signaling pathway, 15d-PGJ2 shown the ability to abol-
ish the inflammasome activation. The inflammasome is a multiprotein complex 
responsible for the inflammatory response in immune cells [84]. Inflammasome 
cascade initiates by the reaction of the cytosolic pattern recognition receptors 
(PRRs), including the NLRs (nucleotide-binding oligomerization domain and 
leucine- rich repeat-containing receptors) [84]. Subsequently, recruitment of pro- 
caspase- 1 through ASC (the adaptor molecule apoptosis-associated speck-like pro-
tein containing a CARD) triggers the maturation and release of inflammatory 
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cytokines, such as IL-1β and IL-18 [84]. It has been demonstrated that 15d-PGJ2 
inhibits NLRP1 and NLRP3 inflammasome activation in murine anthrax infection 
model and mouse peritonitis model of gout, respectively. Consequently, IL-1β 
release was also inhibited [47]. Also, it has been evidenced that 15d-PGJ2 blocked 
neutrophil migration in an NLRP3-dependent manner in the gout model [47]. At the 
same model of gout, it has been shown that 15d-PGJ2 decreases the expression of 
NLRP3, ASC, pro-caspase1, and also inflammatory cytokines, such as IL-1β, TNF-
α, IL-6, IL-17, and IL-33 [70]. Moreover, it demonstrated an augment of Nrf2/HO-1 
signaling and thereby antioxidant effect [53, 70].

In addition, in ovalbumin (OVA)-induced model of lung inflammation, 15d-PGJ2 
reduced TNF-α, IL-5, IL-13, and IL-17 release, as well as NF-kB phosphorylation. 
The authors also demonstrated a protective role of 15d-PGJ2 by blocking neutro-
phils and eosinophils accumulation, subepithelial fibrosis, and mucus exacerba-
tion [17].

Endothelial cells have high expression of PPAR-γ receptor, and it was demon-
strated that 15d-PGJ2 regulates proteasome in human endothelial cells, by inhibiting 
NF-kB signaling [48]. The systemic administration of 15d-PGJ2 prevents neutrophil 
adhesion and rolling to the inflamed milieu, in a nitric oxide-dependent manner. The 
authors also elucidated a blockage in ICAM-1 (intercellular adhesion molecule 1) 
expression on the microcapillary vessels in mesenteric tissues; however, higher lev-
els of inflammatory cytokines were still founded [59]. Similarly, in a lung injury 
model, 15d-PGJ2 reduced levels of TNF-𝛼 and ICAM-1 through NF- B inhibition 
[43]. On the other hand, when 15d-PGJ2 was locally administered (intra- articular 
injection into temporomandibular joint), ICAM-1 levels were not altered. Instead, 
CD55 (complement decay-accelerating factor) was augmented, and consequently, 
lower neutrophil migration, plasma extravasation, and inflammatory cytokines 
released were observed in the joint [65].

The 15d-PGJ2 has been implicated as therapeutic strategies in the osteoimmunol-
ogy field, particularly in illness with a robust implication of the immune system, 
such as arthritis. It was reported that 15d-PGJ2 induces synoviocyte apoptosis, and 
intraperitoneal treatment suppresses pannus formations and mononuclear cell infil-
tration in an adjuvant-induced model of arthritis [36]. In addition, the inhibition of 
cyclooxygenase (COX-2) and cytosolic phospholipase A2 (cPLA2) by 15d-PGJ2 
mitigated IL-1β synthesis in human rheumatoid synovial fibroblasts [79]. At the 
same line of thought, it was demonstrated in human synovial fibroblasts collected 
from synovial membranes of arthritics patients that the inhibitory effects of 15d- 
PGJ2 in COX-2/IL-1β released partially explained the reduced histone H3 acetyla-
tion at the COX-2 promoter [21]. These effects on the H3 histone is associated with 
an inhibitory mechanism in the recruitment of acetyltransferase (HAT) p300 [21].

In albumin-induced arthritis model in TMJ of rats, intra-articular injection of 
15d-PGJ2 prevents inflammatory hypernociception, by avoiding TNF-α, IL-1β, and 
keratinocyte chemoattractant (KC). Inhibitory effects were also described in the 
expression of the protein kinase (PK) A and PKCε, preventing the lowering of the 
nociceptor threshold and thereby inflammatory pain [64]. The pannus formation in 
the TMJ, as well as the leukocyte migration, was also prevented by 15d-PGJ2 
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treatment. In addition, 15d-PGJ2 reduced the release of IL-6, CINC-1, IL-12, and 
L-18 while increasing the release of IL-10, an important anti- inflammatory cytokine 
capable of driving to resolution process, leading to homeostasis in arthritics condi-
tions [65]. These higher levels of IL-10 were recently attributed to a macrophage 
polarization induced by 15d-PGJ2 from macrophages M1-like towards M2-like, 
where the balance favoring M2-like is one of the keys to the anti-inflammatory fea-
tures of 15d-PGJ2 [2].

In the collagen-induced arthritis (CIA) model, 15d-PGJ2 improves clinical 
scores, such as pain and edema. These effects were associated with the regulatory 
actions on T cells profile, dampening the differentiation of Th17 cells, while induc-
ing Tregs and thereby protecting the joint against arthritics damage [10]. Moreover, 
15d-PGJ2 also exerts an immune-modulatory effect on dendritic cells by promoting 
a rearrangement of membrane-bound costimulatory molecules consisting in a 
reduction in the expression of costimulatory surface molecules (MHC-II, CD80, 
and CD86) and in the secretion of pro-inflammatory cytokines by this cell. 
Interestingly, the glitazone PPAR-𝛾 agonist rosiglitazone showed a lesser modula-
tory effect [20, 39]. Dendritic cells are regarded as professional antigen presenting 
cells and provide an important link between the innate and the adaptive immune 
responses and play a critical role not only in the host defense against pathogens and 
cancer but also in the tolerance and prevention against autoimmunity. Also, human 
synovial fibroblasts from patients previously diagnosed osteoarthritis (OA) were 
treated with 15d-PGJ2 in combination with prednisolone and demonstrated to pre-
vent pro-fibrotic pathways partially by the inhibition of ALK5/Smad2 signaling and 
β-catenin accumulation [80]. Lastly, in a K/BxN serum transfer arthritis model, the 
authors through a lipidomics liquid chromatography analyzed the bioactive lipid 
profile in the spinal cord. Interestingly, levels of 15d-PGJ2 were reduced in the spi-
nal cord compared to control. Moreover, intrathecal injection of 15d-PGJ2 prevents 
mechanical hypersensitivity in the arthritic animals [14].

Overall, 15d-PGJ2 has stood out as a promising therapeutic option to control 
inflammatory sickness, in a vast range of models.

19.4  Nanomedicine and Nanotecnology to Improve 
the Therapeutic Potential of 15d-PGJ2

The nanomaterials could provide a revolution in technology that will soon impact 
the diseases treatment methods through new nanoparticles delivery systems. 
Nanotechnology is shown to bridge the barrier of biological and physical sciences 
by applying nanostructures and nanophases at various fields of science. The use of 
ideal nano-drug delivery system is decided primarily based on the biophysical and 
biochemical properties of the targeted drugs being selected for the treatment [60]. It 
has been shown that around 50% of the 15d-PGJ2 administered exogenously to a 
biological system binds to albumin [66]. Thus, improved bioavailability and 

19 Use of Nanotechnology to Improve 15d-PGJ2 Immunomodulatory Activities



510

efficiency of such compound has been achieved from different strategies to couple 
the 15d-PGJ2 molecule to carrier systems.

Nanoencapsulation has gained great interest in the pharmaceutical field due to 
the ability to modify drug release profile, increasing their bioavailability compared 
to the free drug [69]. Polymeric nanoparticles are defined as solid colloidal parti-
cles, ranging from 5 to 1000  nm, and can be classified as nanospheres (NS) or 
nanocapsules (NC), depending on the technique and materials used [19]. Polymeric 
NC can be prepared using biodegradable components, such as the polyesters poly- 
ε- caprolactone (PCL), poly(lactide) (PLA), or poly(lactide-co-glycolide) (PLGA). 
PLGA is a copolymer well-worn to synthesize nanocapsules able to be loaded with 
drugs and, as an advantage feature, exhibit low or zero toxicity [19].

Several studies have been performed using nanocarriers to encapsulate 15d-PGJ2 
to enhance bioavailability and extend the effect without toxicity and high dosages 
[3]. Nanoencapsulation with poly(D, L-lactide-co-glycolide) nanocapsules (NC) 
improves 15d-PGJ2 efficiency against inflammation in the peritoneum induced by 
endotoxin (LPS), carrageenan (Cg), or mBSA (immune response). 15d-PGJ2-NC 
loaded reduces neutrophils migration into the peritoneal cavity, while free 15d-PGJ2 
does not, and sustained 15d-PGJ2 levels in the serum for up to 24 hours [11]. At the 
same polymer nanostructure system, however, in an inflammatory model in the 
TMJ, 15d-PGJ2-NC loaded in nanocapsule impressively reverse hypernociception 
in picogram levels, while intra-TMJ injection of free 15d-PGJ2 showed no 
effects [16].

Also, in a periodontal disease model, 15d-PGJ2-NC prevents bone loss and 
inflammatory markers for bone osteolysis. The animals treated with 15d-PGJ2-NC 
showed reduced CD4+ T cell infiltration, which may also have contributed to the 
lower RANKL expression, and consequently decreased bone resorption, supporting 
the contribution of inflammatory cells in regulating osteoclastogenesis-related fac-
tors and bone loss. T-regulatory cells (CD4+CD25+FOXP3+) were elevated in the 
infected animals and diminished significantly when treated with 15d-PGJ2-NC. The 
elevated number of Treg in periodontitis is in accordance with previous reports sug-
gesting that Treg infiltration could reflect an attempt to control tissue destruction 
promoted by the chronic inflammatory [57]. Complementary low doses of 15d-PGJ2 
improve the osteoblast activity in a PPAR-γ-independent manner due to, at least in 
part, the elevated expression of Histone Deacetylase 9c [56], which plays a crucial 
role in the acceleration of mesenchymal stem cells osteogenesis and attenuation of 
mesenchymal stem cells adipogenesis through interaction with PPARγ-2, which 
interrupts PPARγ-2 transcriptional activity resulting in attenuation of adipogenesis 
and acceleration of osteogenesis [13].

The subcutaneous injection of 15d-PGJ2-NC increased the levels of 15d-PGJ2 in 
gingival tissue [57], as well as reduced pain and inflammation in an arthritis gout 
model in mice, by modulation of the expression of inflammasome markers [70]. 
Solid lipid nanoparticles (SLN), submicron lipid carriers sized between 50 and 
1000 nm, are composed of biocompatible materials able to incorporate mainly lipo-
philic drugs since they are constituted by an external phase (an emulsifier and water) 
and an inner layer composed of lipid matrix, where the drug is dispersed. Such 
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nanocarriers feature low toxicity and cause no irritation to tissues, hence the grow-
ing interest in their use in the treatment of inflammatory diseases [7]. As demon-
strated, 15d-PGJ2 encapsulation into SLN was highly efficient (>95%), confirming 
the affinity of the drug to the lipid phase of the SLN. It has previously been reported 
that the encapsulation efficiency of PLGA nanocapsules was approximately 77% 
for 15d-PGJ2 [11]. Besides, the SLN system was able to modify drug release profile 
and to maintain cell viability compared to the free drug. 15d-PGJ2 encapsulation 
reduced neutrophil migration in three different inflammatory models due in part to 
a decrease in IL-1β and IL-17 levels as well as an increase in IL-10 [18].

Also, it has been proposed the association between 15d-PGJ2-NC in PLGA poly-
mer with human decellularized amniotic membrane scaffold (AHAS) in the post- 
infarct model [25]. The AHAS presents the advantages of low immunogenicity, 
many growth factors, and easy technique. The major point of scaffold implantation 
in the infarcted myocardium is a prompt settlement of the fibrotic sites with new 
contractile cells to regain the ventricle function [24, 30]. The authors demonstrated 
that the association between AHAS and 15d-PGJ2-NC yields cardioprotection by 
reducing cardiac dysfunction. Specifically, the AHAS +15d-PGJ2-NC group 
increased satisfactorily the ejection fraction when compared with the negative con-
trol. Also, increased collagen type I and cardiomyocytes, along with new blood 
vessels in the myocardial fibrosis sites were observed in the AHAS +15d-PGJ2-NC 
treated group. In agreement, AHAS +15d-PGJ2-NC mitigated cardiac infarcted 
sites. Collectively, authors indicate that acellular amniotic membrane scaffold com-
bined with 15d-PGJ2 loaded prevents myocardial dysfunction [25].

Another approach is when topically applied in combination with a poloxamer 
407 hydrogel, considering that micellar dimensions were reduced at physiological 
temperature, micelles can remain at the site of administration for long periods of 
time and be small enough (<100  nm) to avoid uptake by the reticuloendothelial 
system, favoring the therapeutic efficacy of the drug carrier 15d-PGJ2 ameliorates 
atopic dermatitis by abolishing the expression of ROR-γt and TNF-α, suppressing 
the excessive immune response. Thus, emerging possible new treatment for atopic 
dermatitis could be as effective as the current available with potentially fewer side 
effects and a wider spectrum of action in the mechanism of atopic inflammation 
[55]. Recently, a binary micellar system composed of poloxamer (PL) 407-(PL) 188 
was explored as a carrier system for 15d-PGJ2. The system morphology was a 
spherical and compact shape, with a diameter range of 120–150  nm, indicating 
micelles formation. This PL-15d-PGJ2 system, when intra-articularly injected, sus-
tained the antinociceptive effect for 14 days, in a nanogram scale [3]. Curiously, the 
contralateral treatment with 3 ng of 15d-PGL2 associated with the micellar system 
blocked nociception induced by formalin. This result reflects the ability of the 
micellar system to improve viability, effectiveness, and longevity. Also, plasma 
extravasation, leukocyte migration, and inflammatory cytokines were abrogated in 
the PL-15d-PGJ2-treated group [3].

Over the past decades, transdermal routes have been attractive to researchers in 
the drug delivery field, due to their simple form of use, mostly painless, and possible 
self-applicability. Notably, microneedles (MNs) raise as a promising option to 
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deliver drugs in transdermal settings. The MNs patch consists of micron-scale nee-
dles designed to rupture the stratum corneum layer of the skin, creating micropores 
over the skin, where the contact of the drug with the interstitial fluid results in drug 
absorption [1, 27, 33]. Particularly with 15d-PGJ2, microneedles were applied over 
the skin as a pretreatment before a 15d-PGJ2 cream was applied [44]. The cream 
alone did not evoke antinociceptive effects. On the other hand, the association with 
microneedles improves efficiency and longevity effect for up to 8  hours, while 
directly intra-TMJ injection only evokes antinociception for 2 hours. Also, TNF-α 
and IL-1β, two of the main inflammatory cytokines, were abrogated into baseline 
levels for 8 hours, supporting long-lasting anti-inflammatory activities [44].

Collectively, 15d-PGJ2 proved to be a polyvalent bioactive lipid, with excellent 
ability to solve inflammatory conditions in a vast range of models, in different deliv-
ery systems and routes of application. Nanoparticles and poloxamer hydrogel have 
proven their ability to improve 15d-PGJ2 bioavailability in lower dosages. Moreover, 
effectivity and long-lasting effects were also highlighted in these drug delivery sys-
tems. Therefore, the proven effect of 15d-PGJ2 allied with an adequate delivery 
system paves the way for further improvements in the pharmaceutics field to treat 
inflammatory sickness and others.

19.5  Conclusions and Perspectives

In the past, inflammation was thought to be resolved after a simple dilution of 
inflammatory mediators leading to the reestablishment of tissue function. Nowadays, 
it was recognized that endogenous specialized lipid mediators are produced to block 
leukocytes recruitment and resolve inflammation [72]. The discovery of 15d-PGJ2 
changed the concept of how inflammation ends and opened new perspectives for the 
treatment of inflammatory diseases. Understanding the mechanism by which 15d- 
PGJ2 and its precursor cyclopentenone PGD2 regulate inflammatory responses shed 
light on improved strategies for treatment of inflammatory painful conditions and 
other inflammatory conditions. The 15d-PGJ2 is an immunoresolvent molecule (i.e., 
do not present immunosuppressive effects, one of the undesirable side effects of 
corticosteroids, immunobiological agents, and opioids) and, therefore, harnessing 
the pharmacology of resolution, could provide the basis for reprogramming immune 
cell and neuronal and host response at very low doses, even lower when associated 
with nanotechnology. Therefore, 15d-PGJ2 represents a new class of non- 
immunosuppressive and non-opioid analgesic drugs.
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Chapter 20
Ligand-Independent Coactivation 
of Peroxisome Proliferator-Activated 
Receptor Gamma

Robert G. Bennett

Abstract The peroxisome proliferator-activated receptors (PPARs) are related 
transcription factors in the nuclear hormone receptor family. The regulation of 
PPAR activation by ligand-dependent and ligand-independent mechanisms has 
been intensely studied in efforts to develop new approaches to the treatment of 
pathological states. In particular, PPARγ has been a focus of study due to its impor-
tant roles in insulin sensitivity and adipogenesis. Since its discovery, many regula-
tory coactivator complexes were shown to regulate PPARγ, many of them in the 
absence of ligand binding. This chapter will focus on those coactivator complexes 
shown to activate PPARγ transcriptional activity in a ligand-independent manner.

Keywords Peroxisome proliferator-activated receptor gamma · PPARγ · Ligand- 
independent activation · Mediator complex · p300/CREB binding protein · 
CITED2 · SWI/SNF complex · PGC1α

20.1  Introduction

The peroxisome proliferator-activated receptors (PPARs) are a family of transcrip-
tion factors in the nuclear hormone family [48]. They are active as heterodimers 
with the retinoid-X receptor (RXR) at specific target sequences in gene promoters, 
known as PPAR response elements (PPREs). Three distinct genes have been identi-
fied, including PPARA, PPARD, and PPARG, encoding the protein products PPARα, 
PPARδ (also known as PPARβ/δ), and PPARγ, respectively [48]. There are two 
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protein products from the PPARγ gene, resulting from alternative promoter sites, 
with a shorter, widely expressed form (PPARγ1) and a longer protein with an 
N-terminal extension (PPARγ2), largely restricted to adipocytes, where it plays a 
critical role in adipogenesis [43, 78].

All PPARs contain an N-terminal domain (known as the A/B domain), a DNA- 
binding domain (the C domain), a hinge region (D domain), and a C-terminal ligand 
binding region, known as the E/F domain [23] (Fig. 20.1). The PPARs are regulated 
by ligand binding at the E/F domain, also known as the activation function-2, or 
AF-2 region [55, 84]. In addition, the activity and specificity of the PPARs are regu-
lated by coactivator or cosuppressor protein binding, DNA modifying enzyme com-
plexes, and phosphorylation [78]. Many of these regulatory processes are dependent 
on ligand binding to the AF-2 region of PPARs, but their actual interaction could 
also include the other domains. There is also evidence that some of these coactiva-
tors interact with the A/B region, also known the AF-1 region [83]. While in most 
cases, these interactions are dependent on ligand-binding to alter PPAR activity, 
coactivator association can regulate activity in the absence of ligand binding. This 
chapter will focus on the evidence for ligand-independent activation of PPARγ by 
coactivator proteins.

20.2  The Mediator Complex

The Mediator complex is a large multiprotein assembly that can enhance both 
ligand-dependent and ligand-independent transcriptional activities of several 
nuclear receptors [5, 49]. This effect generally involves interaction between 
Mediator and RNA pol II, facilitated by additional transcriptional regulators, par-
ticularly TFIIB [4]. The complex was first identified in yeast as an activator of RNA 
pol II [40, 75]. The mammalian form was identified as binding to thyroid hormone 
receptor and was named the thyroid receptor-associated protein (TRAP) complex 
[24]. Later, the complex was found to be associated with other transcription factors, 
such as SREBP (ARC complex), vitamin D receptor (DRIP complex), and several 
others [15]. Mediator complexes are present in all eukaryotes and are now known to 
affect transcriptional activity of many nuclear hormone receptors, both as a coacti-
vator and as a cosuppressor [68, 71].

The specificity and function of Mediator complex is controlled by regulatory 
subunit proteins. One such subunit was identified by yeast two-hybrid screening as 
a PPARγ binding protein and was named PPAR binding protein (PBP) [93]. It was 
later found to be the same protein as identified in other studies of Mediator complex 
as binding to thyroid hormone receptors (TRAP220) and vitamin D receptor 
(DRIP205) and is now known as MED1 [15]. The importance of MED1  in the 
PPARγ-regulated gene expression was revealed using Med1-deficient mice in a 
model of atherosclerosis [6]. The loss of Med1 was associated with a shift in polar-
ization of macrophages toward the inflammatory or M1 phenotype. Furthermore, 
overexpression of Med1 led to promotion of the M2 anti-inflammatory phenotype. 
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Fig. 20.1 (a) Overall structure of PPARγ, showing the four major domains. The alternative tran-
scriptional start sites of PPARγ1 and PPARγ2 are indicated near the N-terminus. (b). The PPARγ/
RXR heterodimer relationship at the transcriptional regulatory region of a PPARγ target gene. The 
binding of the DBD to the PPRE region is represented by the DR-1 domains, and the transcrip-
tional start site is labeled by the ATG start codon. (c) Ligand-dependent and ligand-independent 
activation of PPARγ. Binding of corepressor proteins maintain PPARγ in an inactive state. Ligand 
binding induces exchange of corepressor for coactivator proteins at the LBD. Alternatively, in the 
absence of ligand, some exchange of coactivator proteins can occur to induce ligand-independent 
activation. This coactivator binding can occur at either the AF-1 of LBD domains
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The association of PPARγ with M2 gene promoters was reduced in the Med1- 
deficient mice, which was reversed upon restoration of Med1 expression, and the 
binding of both PPARγ and MED1 to target gene promoters was increased by 
interleukin-4.

The binding of MED1 to PPARγ is facilitated by two LXXLL domains, upon 
which the activity of PPARγ is increased (Fig. 20.2). This interaction takes place in 
the hinge or c-terminal regions of PPARγ, as an A/B region deletion mutant of 
PPARγ failed to impair MED1 binding, but a C-terminal mutant abolished binding 
[11, 93]. The binding of MED1 to PPARγ and other nuclear hormone receptors is 
ligand-dependent [53, 88]. However, mutant MED1 lacking both LXXLL domains, 
but incorporated into the complex, still results in association of Mediator with 
PPARγ, suggesting that additional factors may contribute to Mediator-PPARγ inter-
actions. Indeed, the Mediator complex subunit MED14 was found to be such a fac-
tor. MED14 is a central protein in the Mediator complex, linking the head, middle, 
and tail Mediator modules [64]. Grøntved et al. demonstrated ligand-independent 
binding of MED14 to the A/B domain of PPARγ [29]. This binding occurred inde-
pendently of MED1, since pull-down experiments revealed equivalent binding in 
murine embryonic fibroblasts from wild-type and Med1 knockout mice after expres-
sion of Med14 and that unlike MED1, MED14 binds to the PPARγ A/B domain. 
This was accompanied by increased basal and ligand-induced activation of a subset 
PPARγ target genes, particularly those regulating lipid storage, including Fabp4, 
Cd36, Acqp7, and Cidec, and this effect was reversed with siRNA-mediated knock-
down of Med14 [29]. Finally, MED14 was found to be critical for PPARγ-induced 
differentiation of a preadipocyte cell line. In summary, MED14 is a critical hub 
linking the Mediator complex to PPARγ target gene expression and is necessary for 
full basal and ligand-induced of a subset of adipogenic genes.
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Fig. 20.2 (a) MED1 links ligand-dependent binding of Mediator complex to RNA polymerase 
II. (b) MED14 binds to the AF-1 domain in the absence of ligand to link Mediator complex to 
RNA pol II
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20.3  NCoA6/PRIP

A PPAR regulatory protein was identified using PPARγ as bait in a yeast two-hybrid 
system and was named PPAR Interacting Protein (PRIP) [92]. It was found that 
PRIP was identical to proteins identified in other studies as receptor-activating pro-
tein 250 (RAP250), thyroid receptor binding protein (TRBP), activating signal coin-
tegrator 2 (ASC2), and nuclear receptor coactivator (NRC) and is now known as 
nuclear receptor coactivator 6 (NCoA6). NCoA6 had both ligand-dependent and 
independent effects on PPARγ activation [92]. Adipogenic regulation by PPAR was 
dependent on NCoA6 [63]. The mechanism for NCoA6 activation of PPARγ is 
through interaction with its associated protein NCoA6 interacting protein 
(NCoA6IP), a methyltransferase. Together, NCoA6 and NCoA6IP act as bridging 
proteins for Mediator and p300/CBP to affect transcriptional activity [63].

20.4  p300/CBP

The family of lysine histone acetyltransferases (KATs) functions as histone- 
modifying enzymes that relax chromatin structure to facilitate gene transcription. 
Two members of the KAT3 family, p300 and CBP (cAMP response element binding 
protein (CREB) binding protein), have extensive homology and largely overlapping 
physiological functions. They are considered highly promiscuous acetyltransfer-
ases, with hundreds of identified substrates, representing both histone and non- 
histone proteins. In addition, they function as scaffold proteins that participate in 
protein-protein interactions transcriptional complexes.

The first report of an interaction of p300/CBP with PPARγ was a yeast two- 
hybrid study which showed interaction and transcriptional activation of the ligand- 
binding PPARγ domain with CBP [50]. A later study provided evidence of a 
complex interaction between both p300 and CBP and PPARγ [27]. In this study, 
p300/CBP bound to the AF1 domain in a ligand-independent manner and to the AF2 
domain in a ligand-dependent manner (Fig. 20.3). Importantly, the p300/CBP bind-
ing to the AF1, but not AF2 domain, enhanced the PPARγ basal transcriptional 
activation.

The role of p300/CBP in regulating PPARγ target gene expression was elegantly 
explored in a study by Bugge et al. [11]. A truncated PPARγ construct with a dele-
tion of the A/B domains was compared with full-length PPARγ2. Using electropho-
retic mobility shift assays, they observed no differences in PPARγ DNA-binding 
activity between the two constructs. However, when cells expressing the constructs 
were analyzed by microarray for changes in gene expression in response to rosigli-
tazone, of the 257 genes found to be differentially expressed in response to rosigli-
tazone with the full-length PPARγ2, a subgroup of 25 had significantly impaired 
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rosiglitazone response with the A/B domain deletion construct. Most of these genes 
involved lipid storage, such as Cd36, Fabp4, and Plin. This effect appeared to 
require the PPARγ A/B domain, as substitution of the PPARα A/B domain did not 
rescue the rosiglitazone response. The basal activity was also reduced in the A/B- -
deleted mutant construct, and there was no effect of GW9662 on activity of either 
construct in the absence of rosiglitazone, consistent with a modest ligand- 
independent activation dependent on the A/B domain. To determine the transcrip-
tional regulators associated with the PPARγ constructs at target genes, chromatin 
immunoprecipitation assays were performed. These revealed that while PPARγ- 
DNA binding was unaffected, recruitment of RNA polymerase II was impaired in 
cells expressing the A/B mutant at genes with reduced rosiglitazone response. This 
was related to reduced binding of CBP and p300 to the complex at the A/B- -
dependent target genes.

A ligand-independent relationship between p300 and PPARγ has also been 
reported macrophages. In response to various stimuli, macrophages undergo a 
polarization response to adopt a largely inflammatory (M1) phenotype or an anti- 
inflammatory (M2) phenotype. The transition to the M2 phenotype, in response to 
signals such as interleukin-4 (IL-4), requires PPARγ [57]. However, evidence sug-
gested that ligand activation of PPARγ did not result in a full macrophage polariza-
tion transcriptional program. For example, while IL-4 potently activated PPARγ at 
the Arg1 promoter, rosiglitazone alone failed to stimulate activity [57]. These find-
ings were later supported in another study, showing that rosiglitazone was not suf-
ficient to fully activate M2-related genes [73]. Daniel et al. [21] further explored the 
mechanism behind IL-4 activation of PPARγ in macrophages. In response to inter-
leukin- 4, activation of some PPARγ target genes (Arg1, Fabp4, Tgm2, Hbegf) was 
stimulated by IL-4, but not inhibited by GW9662. The ligand-independent response 
to IL-4 involved recruitment of p300, as well as the additional transcriptional regu-
lators STAT6 and RAD21, facilitate chromatin opening and transcriptional activa-
tion. Importantly, these effects were not observed in rosiglitazone-sensitive genes, 
further suggesting separate ligand-dependent and ligand-independent mechanisms 
of PPARγ activation. In addition to the initial response to IL-4, with repeated or 

Fig. 20.3 Ligand-independent activation of PPARγ by p300/CBP. The association of p300/CBP 
with the AF-1 domain of PPARγ allows the lysine acetyltransferase (KAT) to modify histones and 
regulate transcription
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prolonged exposure to IL-4, p300 and RAD21 remained bound to PPARγ to regu-
late transcriptional memory, by bookmarking the chromatin resulting in a stronger 
response with repeated exposure to IL-4. These findings represent strong evidence 
for a physiological role for ligand-independent activation of PPARγ in macrophage 
polarization.

20.5  CITED2

A cytokine-inducible transcriptional coactivator protein was cloned from human 
melanocytes and mouse T-helper cells and named Mrc1 (melanocyte-specific 
gene- 1-related gene 1) [67, 72]. Shortly afterward, Bhattacharya et  al. identified 
p35srj, a p300/CBP binding protein that regulated the activity of hypoxia-induced 
factor-1α (HIF1α), as an alternatively spliced form of Mrc1 [10, 44]. Now known as 
CITED2 (CBP/p300 interacting transactivator with Glu/Asp-rich C-terminal 
domain 2), it plays a role in the response to hypoxia via HIF1α [10], as well as criti-
cal roles in development [7, 8, 87, 90] and cancer [36, 42, 66]. The first study to 
examine the interaction between CITED2 and PPARs was by Tien et al. who showed 
that CITED2 associated with and activated PPARα in a ligand-dependent manner 
[76]. In contrast, when CITED2 and PPARγ were co-expressed in HepG2 cells, the 
basal PPARγ activity was robustly increased, with little additional activation after 
treatment with the PPARγ ligand PGJ2. However, this effect was not seen using a 
Gal4- PPARγ- LBD reporter system in COS-1 cells, suggesting the effect may be 
cell-type specific. Another study showed that in cortical neurons, CITED2 was 
found to associate with PPARγ in neurons subjected to DNA damage and increased 
its basal transcriptional activity in the absence of exogenous PPARγ ligand [28]. 
Other studies found no ligand-independent activation of PPARγ by CITED Hep3B 
hepatoma cells or in RAW-264.7 macrophages, further underscoring the apparent 
cell-type specificity of this interaction [17, 39].

20.6  SWI/SNF Complex

A complex of proteins with ATP-dependent chromatin-modifying activity was orig-
inally identified in yeast and named SWI/SNF (faulty mating-type switching/
sucrose non-fermenting) based on the phenotypes screened [54, 58]. The Drosophila 
homologue of SWI/SNF was identified as the product of the brahma gene (brm) 
[74]. Later, two mammalian proteins were identified as homologues of the SWI/
SNF ATP-dependent catalytic subunits, Brahma (Brm), also known as SMARCA2, 
and brahma/SWI2-related gene-1 (Brg1), also known as SMARCA4 [18, 38, 52]. 
These proteins use ATP hydrolysis to drive chromatin remodeling, including histone 
dimer ejection, nucleosome ejection, or sliding [19]. In addition to these catalytic 
subunits, SWI/SNF activity is regulated by a family of regulatory/binding subunits 
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collectively known as Brg1/Brm-associated factors (BAFs). There are currently 
over 20 distinct BAF proteins that have been identified, and the various combina-
tions of Brm or Brg1 with associated BAFs determine their chromatin remodeling 
properties, as well as their specificity [14, 82]. The SWI/SNF complexes can act as 
either gene activators or repressors, depending on their action on chromatin or on 
the binding of specific transcription factors.

The SWI/SNF complex can interact with PPARγ in a ligand-independent manner 
and increase its transcriptional activity [22]. In this study, a yeast two-hybrid system 
using the PPARγ N-terminal activation and ligand-independent activation domains 
was used as bait for screening a human cDNA library. The SWI/SNF subunit 
BAF60c (also known as SMARCD3) was found to bind to the PPARγ construct in 
a ligand-independent manner and that the associated SWI/SNF complex contained 
Brg1 (Fig. 20.4). Using a series of deletion mutants of PPARγ, it was confirmed that 
that the N-terminal region strongly interacted with BAF60c, and that in HeLa cells, 
the overexpression of either BAF60c1 or BAF60c2 isoforms enhanced the ligand- 
independent and rosiglitazone-stimulated activities of PPARγ. However, neither 
depletion of BAF60c by siRNA, nor overexpression, affected differentiation of 3T3- 
L1 cells to adipocytes. Therefore, the functional relevance of the basal elevation of 
PPARγ activity is unknown.

In a more recent study using brown adipocytes, SWI/SNF binding to PPARγ was 
regulated by Jumonji domain containing 1A (JMJD1A), a histone H3K9 demethyl-
ase which acted as a scaffold protein linking SWI/SNF-PPARγ to RNA polymerase 
II [2]. This interaction was upregulated by β-adrenergic stimulation and involved 
BAF60b, as well as an additional SWI/SNF subunit, ARID1A.  Interestingly, the 
transcriptional activation of PPARγ target genes did not depend on the demethylase 
activity of JMJD1A but rather on long-range enhancer interactions [2]. Later it was 
found that chronic exposure to cold stress caused a different interaction at PPARγ 
target gene promoters, which involved a complex between JMJD1A, PGC1α, and 
PRDM16, and required JMJD1A histone demethylase activity [1]. Adding to the 
complexity, there is evidence that a third protein, BAF60a, can also interact with 
PPARγ, albeit weakly, in a ligand-independent manner [35]. Another study found 
interaction between PPARγ and BAF60a in cold-induced beiging of white adipose 

Fig. 20.4 (a) SWI/SNF is recruited to PPARγ by BAF60c, promoting histone modification via the 
ATPase Brg1. (b) BAF60b links SWI/SNF to RNA polymerase II through the accessory pro-
tein JMJD1A
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cells [47]. However, in each of these cases, the transcriptional activation was not 
determined in the presence of PPARγ ligand-binding inhibitors, and therefore it is 
unknown whether any of these interactions result in ligand-independent activation 
of PPARγ target genes.

Interestingly, the SWI/SNF complex is also required for activation of the 
PPARG2 promoter during adipogenesis of human fibroblast cell lines and murine 
3T3-L1 cells [65]. In this case, SWI/SNF promoted the function of preinitiation 
complex. Furthermore, PPARγ can activate PPARG2 transcription at its promoter 
during adipogenesis, but this relationship is not ligand-independent, since it was 
inhibited by the PPARγ ligand-binding site inhibitor T0070907 [81].

20.7  PGC1α

A yeast two-hybrid screen of brown adipose tissue extract revealed a PPARγ- 
binding protein that was named the PPARγ coactivator-1α (PGC1α, gene name 
PPARGC1A) [62]. PGC1α interacts with PPARγ through one of its two LXXLL 
domains, which increase both its basal and ligand-induced activation [46]. In the 
case of ligand-independent activation, the binding is to the hinge region of PPARγ, 
whereas in the ligand-stimulated state, the binding is to the AF2 region in the 
c- terminus [61, 86]. PGC1α functions at promoter sites by recruiting proteins with 
HAT activity, such as p300/CBP or p160/SRC [59]. The interaction between PGC1α 
has been tied to a number of critical cellular processes, including the cold-induced 
thermogenic response and mitochondrial activity in brown adipose and skeletal 
muscle tissue [60, 62]. The expression of PGC1α in liver and muscle tissue is regu-
lated by the p38-MAPK pathway, as well as in response to cAMP production and 
activation of protein kinase A (PKA) and subsequent phosphorylation of CREB [12, 
20, 30, 33, 34, 85]. Studies in human 293T fibroblasts overexpressing the relaxin 
receptor RXFP1 revealed that the hormone relaxin increased both basal and ligand- 
induced PPARγ activity, but that the basal activation was not inhibited by the ligand- 
binding inhibitor GW9226, suggesting a ligand-independent mechanism [69]. This 
activation was associated with increased expression of the PPARγ target genes 
CD36 and NR1H3 (LXRα) in 293T cells overexpressing the RXFP1, or in the 
human monocyte cell line THP1, which endogenously expresses RXFP1. It was 
later discovered that the mechanism for this effect was via activation of p38 MAPK 
and PKA, leading to CREB phosphorylation and subsequent PGC1α expres-
sion [70].

Cannabinoids can act through activation of PPARγ, by activation of their recep-
tors CB1 and CB2, or by direct binding and activation of PPARγ [56]. In most of 
these cases, the effects were blocked by PPARγ antagonists, indicating a ligand- 
mediated mechanism. Using a diet-induced model of obesity in rats, Youssef et al. 
provided evidence that the dietary cannabinoid β-caryophyllene, though activation 
of CB2, resulted in reduced fasting insulin and glucose levels, lower weight gain, 
and improved behavioral parameters [91]. Expression of both PPARγ and PGC1α 
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was reduced in prefrontal cortex tissue on the obese rats, which was reversed by 
β-caryophyllene. Furthermore, these effects of β-caryophyllene, presumed to be 
mediated through PPARγ, appeared to be ligand-independent, as they were not 
blocked by co-administration of BADGE. However, it must be noted that PPARγ 
transcriptional activity was not measured in this study, only PPARγ gene expres-
sion, and therefore it is not possible to assess how thoroughly BADGE suppressed 
PPARγ ligand-activated activity in the prefrontal cortex, or if other pathways are 
responsible for PPARγ and PGC1α expression. Furthermore, in rodent models of 
colitis and Alzheimer’s disease, β-caryophyllene activation of CB2 also resulted in 
increased PPARγ expression, but this effect was blocked by GW9662, suggesting a 
ligand-mediated effect [9, 16]. Therefore, it is currently unclear whether the failure 
of BADGE to inhibit the CB2 pathway is a tissue-specific effect in the prefron-
tal cortex.

20.8  SDP1/PGC2

A PGC1α-related protein was discovered by using PPARγ as bait in a two-hybrid 
screen of a mouse gene library and was named PGC2 [13]. Similar to PGC1α, 
PGC2 expression increased the transcriptional activity of PPARγ, especially in the 
presence of ligand. Furthermore, forced expression of PGC2 increased adipogenic 
differentiation of preadipocytes. The human orthologue of PGC2 was later found to 
be SCAN-domain containing protein-1 (SDP1), encoded by the SCAND1 gene [3]. 
Both PGC2 and SDP1 interact with the A/B domain of PPARγ [3, 13]. Interestingly, 
while SDP1 increased both ligand-dependent and ligand-independent activation of 
PPARγ, the latter effect was dependent on the cell type, suggesting additional fac-
tors regulating this interaction [3]. To date, little else is known about PGC2/SDP1.

20.9  Tip60/KAT5

Pull-down experiments from osteosarcoma cells overexpressing Tip60 and PPARγ2 
revealed association of the proteins in the absence of PPARγ ligand (rosiglitazone), 
with no increase in binding in the presence of rosiglitazone [79]. Using PPRE 
reporter vectors, expression of Tip60 increased both the basal and rosiglitazone- 
induced transcriptional activity. However, when using a reporter vector driven by 
the Fabp4 promoter, the ligand-independent activation was modest. Mutation stud-
ies revealed that the Tip60 interaction occurred at the A/B domain of PPARγ2 and 
was not mediated by the Tip60 LXXLL motif. Both ligand-independent and ligand- 
dependent activation required the lysine acetyltransferase activity of Tip60. This 
PPARγ-Tip60 interaction had functional relevance, as the interaction of Tip60 with 
PPARγ increased during preadipocyte differentiation to mature adipocytes, and adi-
pogenesis was blocked by Tip60 knockdown by siRNA. Interestingly, this increase 
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in Tip60 was not through altered gene expression but by stabilization of Tip60 pro-
tein. This was later found to be due to deubiquitylation of Tip60 in the early adipo-
genic program [26].

20.10  NCoA4/NRC4/ARA70

A nuclear receptor coactivator protein was first identified from a two-hybrid screen 
that increased the ligand-induced activation of androgen receptor and was named 
androgen receptor-associated protein 70, or ARA70 [89]. It was later found that the 
gene encoding ARA70, now known as NCOA4, is a coactivator associated with 
other steroid receptors, as well as the thyroid hormone and vitamin D receptors [25, 
41, 51, 77]. A mammalian 2-hybrid reporter system in human prostate (DU145) or 
mouse adrenal tumor (Y-1) cell lines was used to determine the relationship between 
NCoA4 and PPARγ [31, 32]. The increased expression of NCoA4 resulted in a 
robust increase in basal (ligand-independent) activation of PPARγ transcriptional 
activity. This activity was associated with a direct interaction of NCoA4 with 
PPARγ, which was eliminated after mutation of the LXXLL motif of NCoA4 [32]. 
Interestingly, this interaction was recently detected in an in vivo model of Clostridium 
difficile infection in mice, in which infection resulted in a loss of NCoA4 levels in 
the spleen and lamina propria, resulting in impaired PPARγ activation, and enhanced 
Th17 immune response [80].

20.11  Ajuba

The LIM domain protein Ajuba functions as a scaffold protein acting as a modulator 
of a variety of signal transduction pathways, including nuclear receptors [37]. Ajuba 
was identified as a binding protein interacting with the ligand-binding domain of 
PPARγ [45]. Interestingly, this is the same PPARγ domain responsible for binding 
of PGC1α. Knockdown of Ajuba expression reduced both the basal and rosiglitazone- 
induced expression of PPARγ target genes in 3T3-L1 adipocytes, such as Fabp4, 
Plin1, and Cd36, but had no effect on Pparg. Conversely, overexpression of Ajuba 
in the same cells resulted in increased expression of the target genes, even in the 
absence of exogenous PPARγ ligand. These findings were supported at the func-
tional level, as Ajuba knockdown impaired adipocyte differentiation, while overex-
pression increased adipogenesis, although it should be noted that rosiglitazone was 
included in the differentiation medium for these experiments. The authors also pro-
vide evidence that Ajuba, through its LIM moiety, binds to the coactivator p300/
CBP to synergistically stimulate PPARγ transcriptional activity. In summary, Ajuba 
was identified as a novel PPARγ binding protein that stimulates transcriptional 
activity in the absence of exogenously applied ligand and enhances the association 
of the coactivator p300/CBP. One caveat associated with this study is that no PPARγ 
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antagonists, such as GW9662, were used to rule out involvement of endogenous 
PPARγ ligands in Ajuba-induced transcriptional activity. Such studies are necessary 
to prove that Ajuba induces ligand-independent activation of PPARγ activity.

20.12  Summary

The factors associated with the control of PPARγ target gene expression are extraor-
dinarily complex and involve ligand binding, DNA modification, histone modifica-
tions, and coactivator/corepressor protein association. The activity of the unliganded 
or basal state of PPARγ can be changed by the combination of proteins and protein 
complexes associated with it. While the majority of current studies are focused on 
the development of selective or partial PPARγ agonists, or dual- or pan-PPAR acti-
vators, few studies have sought to target coactivator complexes to alter the basal 
activity of PPARγ in recent years. It is possible that this may be an alternative or 
complementary approach to the next-generation PPARγ agonists.
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Chapter 21
PPAR Modulation Through 
Posttranslational Modification Control

Natália B. Videira, Marieli M. G. Dias, Maiara F. Terra, Vinícius M. de 
Oliveira, Marta García-Arévalo, Thayná M. Avelino, Felipe R. Torres, 
Fernanda A. H. Batista, and Ana Carolina M. Figueira

Abstract The peroxisome proliferator-activated receptors (PPAR) are transcrip-
tion factors modulated by ligands and members of the nuclear receptor superfamily. 
There are three different human PPAR isotypes: PPARα, PPARδ/β, and PPARγ, 
which regulate the transcription of their target genes involved with energy metabo-
lism, inflammatory process, and cellular differentiation in different human tissues. 
Because of these activities, PPARs are considered important targets for drugs to 
treat metabolic diseases, including diabetes, dyslipidemia, and obesity. Besides 
ligand modulation, PPARs activities can be modulated by posttranslational modifi-
cations (PTM), such as phosphorylation, SUMOylation, ubiquitination, acetylation, 
and O-GlcNAcylation. The understanding of PTMs modulation of PPARs function 
could contribute for the development of metabolic diseases treatment with more 
specificity and fewer side effects. Therefore, in this chapter, we present an overview 
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of PTMs that modulate the activity of each PPAR isotype and strategies to modulate 
these PTMs and thus regulate PPARs action.

Keywords Post translational modification · PPAR modulation · PPAR 
Phosphorylation · PPAR Acetylation · PPAR Sumoylation · PPAR Ubiquitination

21.1  Introduction

Peroxisome proliferator-activated receptor (PPAR) is a transcription factor included 
in the nuclear receptor (NR) superfamily, within are included the receptors for ste-
roid hormones, thyroid hormone, lipophilic vitamins, and cholesterol metabolites 
[10, 179]. All of them have central roles as regulators of energy metabolism, tissue 
development, and cell differentiation, and most of them binds ligands and modu-
lates gene expression in response to them.

The PPAR structure is highly conserved, a characteristic shared with the other 
members of the NR superfamily [274], and is composed of six functional regions, 
named from A to F (Fig. 21.1a). In the N-terminal portion, the A/B region is respon-
sible for transcriptional activity and harbors the activation function 1 (AF-1), a 

Fig. 21.1 PPARs primary structure. (a) The general domain structure of nuclear receptors encom-
passes four domains. The A/B domain at N-terminal, which contains the ligand-independent acti-
vation function 1 (AF-1); the DNA-binding domain (DBD); the hinge region; and the ligand-binding 
domain (LBD), that contains the ligand-dependent activation function 2 (AF-2). (b) The three 
isoforms of PPARs present different domain lengths. PPARα in orange, PPARβ in purple, and 
PPARy in green. The numbers inside each domain correspond to the amino acid sequence identity 
of human PPARβ and PPARγ relative to PPARα
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constitutive activation function independent of ligand binding, which is modulated 
by PTMs. The C region, also called the DNA-binding domain (DBD), is the most 
conserved among NRs and consists of two zinc-finger motifs involved in DNA rec-
ognition and protein-protein interaction [10, 179]. The DBD recognizes the promo-
tor region of target the genes for peroxisome proliferator response elements 
(PPREs), formed by six nucleotide sequences with one nucleotide spacer (Direct 
Repeat 1, AGGTCAnAGGTCA) [179, 274]. The D region is the hinge region, a 
flexible structure that connects DBD with the ligand-binding domain (LBD), region 
E/F, in the C-terminal portion of PPAR.  This last domain is an essential region 
responsible for dimerization, where the ligand binding pocket (LBP) and the activa-
tion function 2 (AF-2) are present [10, 248].

Although less conserved than the DBD, LBD structure is well conserved com-
pared to all the NR members and is composed of 12 α-helices and 1 β-sheet harbor-
ing the LBP [18, 333]. The variation in the LBP residues contributes to the PPARs 
distinct physiological roles and ligand selectivity among PPAR subtypes [177, 
248, 333].

21.1.1  PPAR Isotypes

PPARs are found in three subtypes: PPARα (nuclear receptor subfamily 1, group C, 
member 1, NR1C1, encoded by the PPARA gene), PPARδ/β (NR1C2, encoded by 
the PPARD gene), and PPARγ (NR1C3, encoded by the PPARG gene) (Fig. 21.1b) 
[3, 248]. These three different isotypes mediate the physiological actions of a large 
variety of fatty acids (FAs) and FA-derived molecules. Despite overlapping roles, 
each subtype has a distinct role and owns their expression profiles in different tis-
sues, sensitivities to agonists, and regulation of target genes. They play essential 
roles in energy metabolism; however, they differ in a spectrum of their activity 
[48, 220].

PPARα The primary function of PPARα is to regulate the expression of genes 
related to FA oxidation, an activity that is linked to its presence in different tissues 
[153, 197]. PPARα is highly expressed in high energy requiring tissues, like kidney, 
liver, brown adipose tissue (BAT), heart, and skeletal muscle, tissues with high lev-
els of mitochondrial and peroxisomal FA catabolism [153, 197, 370]. This isotype 
is implicated in the lipid regulation through the lipid metabolism control, and its 
activity is connected to the nutritional (fed and fasted) states [56, 152]. Moreover, 
this receptor activity is related to inflammation, mainly by limiting inflammatory 
responses by inhibiting transcription of vascular cell adhesion molecule-1 
(VCAM-1), which is essential for leukocyte adhesion and entry into the vessel wall. 
PPARα also inhibits the secretion of pro-inflammatory cytokines and the nuclear 
factor kappa B (NF-κβ) signaling pathway [170, 360]. It is important to highlight 
the liver’s PPARα role, where a selective deletion of the receptor was sufficient to 
promote hepatic steatosis, impairing whole-body FA homeostasis [223].
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PPARδ/β This isotype has a broader expression pattern, being found in high levels 
in tissues related to FA metabolism as the skeletal muscle, adipose tissue, heart, and 
in gastrointestinal tract, kidney, and skin [14, 220, 232, 310]. Besides roles on FA 
metabolism, PPARδ/β is involved in suppressing macrophage-derived inflamma-
tion, reducing the expression of inflammatory mediators and adhesion molecules 
[54, 196]. Many studies have already revealed the important role of this receptor on 
the transcriptional regulation of mitochondrial biogenesis in skeletal muscle, mainly 
due to the regulation of peroxisome proliferator-activated receptor gamma coactiva-
tor 1-alpha (PGC1α) expression [131, 282]. In addition, it was reported that 
PPARδ/β is also a key regulator of antioxidant defense and mitochondrial biogene-
sis in adult heart [337]. In summary, PPARδ/β not only regulates plasma lipid levels 
through FA oxidation (FAO) in several tissues but also modulates glucose handling 
in muscle and liver and mitochondrial biogenesis in skeletal muscle and heart [319].

PPARγ The third isotype, PPARγ, is found in two different protein isoforms, 
PPARγ1 and PPARγ2, which differ from each other by amino acid extension: 
PPARγ1 lacks the first 30 amino acids due to alternative splicing in mouse (28 
amino acids in human) [48, 319]. PPARγ1 is expressed in a wide variety of cells, 
including the gut, adipose tissues, immune, and brain cells, while PPARγ2 is highly 
expressed in white adipose tissues (WAT) and BAT [48, 319]. PPARγ is considered 
a master regulator of adipogenesis and lipid storage, controlling FA uptake and 
lipogenesis, especially in WAT and BAT [48, 202, 325]. This NR also has an indis-
pensable role in insulin sensitivity and lipid metabolism by forming different tran-
scription complexes with distinct cofactors depending on the physiological condition 
to regulate a specific set of genes. PPARγ anti-diabetic effects are significantly 
linked with its anti-inflammatory ones, acting as a suppressor of cytokine release by 
macrophages and monocytes [209], also inhibiting endothelial cell migration and 
controlling immune cells differentiation and function [149]. Besides, this NR also 
acts in controlling the balance between browning of white fat and bone marrow 
adipogenesis and bone formation mainly by posttranslational modifications, which 
guides its transcriptional activity to osteogenesis or adipogenesis [202].

21.1.2  Classic Modulation and Activation

To start its activity, all PPAR isotypes form obligate heterodimers with the Retinoic 
X Receptor (RXR), and a ligand binding induces a conformational change in the 
receptor, promoting the closure of the LBP entrance by helix 12 repositioning 
(Fig. 21.2a) [179, 370]. Such change leads to the dissociation of corepressors com-
plexes and the recruitment of coactivators, as CREB binding protein (CBP), steroid 
receptor coactivator (SRC-1), and PGC1α, promoting the transcription of target 
genes by binding to the specific PPRE in each promoter region [172] (Fig. 21.2b).
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In this scenario, coactivators interact with the PPAR-LBD through the LXXLL 
motif (L, leucine; X, any amino acid), recruiting chromatin modifiers, which act 
acetylating the nucleosome histones and improving the access of the polymerase 
machinery to transcript genes [179, 211] (Fig. 21.2b). In contrast, in the absence of 
a ligand, PPAR-RXR forms a complex with corepressors, as nuclear receptor core-
pressor 1 (NCoR) and silencing mediator of retinoic acid and thyroid hormone 
receptor (SMRT), blocking transcription of the target genes and keeping it in basal 
levels [172] (Fig. 21.2b). This mechanism occurs as the corepressors interact with 
PPAR through the LXXXIXXXL/I motif and are capable of maintaining the chro-
matin closed by deacetylating it, inhibiting the transcription of the PPAR gene tar-
gets [136, 169].

Beyond the mechanism described above, i.e., the classic activation of PPAR/
RXR, other action mechanisms have been described for NRs. One example is the 
formation of atypical heterodimers, which are still not well characterized for PPARs 
and are limited to certain types of cells or strict physiological conditions, but which 
can have substantial effects on gene expression [63]. The formation of atypical het-
erodimers is an example of crosstalk and can be formed either by direct or indirect 
interaction. Regarding the direct interaction, it involves physical contact between 
each NR, and one, both, or none of them bind the DNA, involving the participation 
of other transcription factors [63]. In the case of PPARα, a report of direct 

Fig. 21.2 Classical mechanism of action of nuclear receptors. (a) Aligned structures of PPARγ- 
LBD in its agonist (PDB ID: 2prg) and antagonist (PDB ID: 6c5t) conformation; the H12 is high-
lighted in red for agonist and in purple for the antagonist structure. (b) In absence of ligands, the 
receptors are coupled to corepressor proteins (CoR) that repress transcription. In the presence of 
ligands, the receptor undergoes a conformational change, main in H12, that leads to the release of 
corepressors and the recruitment of coactivators (CoA) that activates the transcription of the target 
gene. (Created with BioRender.com)
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interaction with liver X receptor alpha (LXRα) was shown, in which the atypical 
heterodimer binds to two directly adjacent hexameric sequences in overlapping 
PPARα and LXRα response elements, resulting in antagonizing the interaction of 
PPARα:RXRα or RXRα:LXRα with the murine cytochrome P450 family 7 subfam-
ily A member 1 (Cyp7a1) gene promoter [94]. PPARα was also reported to directly 
interact with glucocorticoid receptor alpha (GRα) by cellular immunoprecipitation 
and in vitro assays, interfering in GRα gene regulation [30, 269].

In indirect crosstalk, the NR pair has no physical interaction and can affect each 
other’s activity on chromatin by competing for overlapping DNA binding sites, by 
redistributing common protein partners of the transcriptional machinery, by up- or 
downregulation of shared coregulators, or by acting as a pioneering factor, facilitat-
ing chromatin loosening, and allowing binding of another nuclear receptor [63]. 
One example of indirect crosstalk is the interaction between PPARα and ERR sub-
family members, in which they regulate overlapping pathways [5, 139, 246], and 
there are some reports of ERRα upregulating PPARα [5, 58, 139, 246]. The relation-
ship of PPARα and GRα can also be described in some cases as indirect interaction, 
in which reports of sharing control in various steps of the intermediate metabolism 
and inflammatory pathways signal transduction cascades [184, 264, 302] and of 
GRα regulating PPARα expression [184, 302].

With all this information in mind, it is clear that the knowledge about modulation 
of NR is increasing, which is extremely positive on the development of new ligands, 
which may have a versatile approach by targeting dual receptors and various disor-
ders at the same time [63].

21.1.3  Posttranslational Modulation

Another mechanism of PPAR regulation is mediated by posttranslational modifica-
tions (PTMs). The PTM is a covalent attachment of chemical groups to certain 
amino acids side chains that can lead to a broad spectrum of consequences on the 
properties of target proteins by modulating their functions [116, 322]. Therefore, 
PTMs are important regulators of practically every aspect of protein biology, includ-
ing protein stability, cellular localization, enzyme function, and cofactor interaction 
[116, 322]. Some examples of PTMs that modulates PPAR are phosphorylation, 
SUMOylation, ubiquitination, acetylation, and O-GlcNAcylation [8, 34, 332]. In 
this chapter, we aim to give an overview of research on PTMs present in the PPAR 
isotypes (PPARα, PPARδ/β, and PPARγ) and their functional roles (Fig. 21.3a, b). 
Moreover, here we present several mechanisms of how to modulate PTMs and thus 
regulate PPAR action.
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21.2  PPARs and Their Posttranslational 
Modifications (PTM)

21.2.1  Phosphorylation

Protein phosphorylation is the most frequent PTM, a reversible mechanism that 
occurs through the action of protein kinases, such as cAMP-dependent protein 
kinase (PKA) and cyclin-dependent kinase 5 (CDK5), which add a phosphate group 
(PO4) to the polar group of serine, threonine, and tyrosine. Phosphorylation adds a 
negative charge to the residue, increasing its size, causing conformational changes 
that may affect the protein functions [11]. In the case of PPARs α and γ, phosphory-
lation alters the mechanisms of ligand, DNA, and cofactors binding, affecting their 
action on insulin sensitivity, inflammation, cancer, and osteogenesis, among others 
[35, 265, 300, 350] (Fig. 21.4). Up to now, no phosphorylation sites were identified 
at PPARδ/β.

Fig. 21.3 Representation of reported PPARs PTMs. (a) Primary structure of PPARs with the 
identified PTMS in three PPAR isoforms. PTMs without residue specification, such as polyubiqui-
tination, are not showed. (b) Structures of PPARα in orange (modeled from PDB ID: 3e00) and 
PPARγ (PDB ID: 3e00) in green. Residues involved in PTMs had their side chains highlighted in 
orange for phosphorylation, red for acetylation, green for ubiquitination, blue for SUMOylation, 
and pink for other PTMs. The structure of the A/B domain at N-terminal is not presented here 
because this region is intrinsically disordered
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PPARα Three phosphorylation sites were identified in AF-1 of PPARα: S12/
S21[17, 147] and S73 [127].

Phosphorylation of S12/S21 in PPARα is targeted by mitogen-activated protein 
kinases (MAPKs) [17, 147] or by cyclin-dependent kinase 7 (CDK7) of transcrip-
tion factor II H (DNA-binding domain IIH) complex [55]. These phosphorylations 
could be stimulated by insulin treatment in human hepatocytes [147]. Functionally, 
S12/S21 phosphorylations correlate to increased PPARα basal activation, indepen-
dent of ligand, in rat cardiac myocytes and in human hepatocytes in the presence of 
insulin, possibly due to decreased corepressor interaction with NCoR or increased 
interaction with the coactivator PGC1α [17, 147]. In the presence of PPARα ligand, 
oleic acid, the phosphorylation-promoted activation is even further increased [17, 
147]. Phosphorylation-defective mutants (S12A/S21A) are not responsive to p38 
MAPK in vitro, in the presence or absence of ligands, confirming that these are the 
phosphorylation sites for this enzyme [17].

Inhibition of phosphorylation by phosphorylation-defective mutant (S12A and 
S21A) or by MAPK inhibitor PD98059 decreased the ligand-dependent or insulin-
dependent PPARα activation [147], corroborating the hypothesis that the 

Fig. 21.4 PPARs phosphorylations. (Top) Primary structure with representative phosphorylation 
in PPARs. (Bottom) Table summarizing identified PPARs phosphorylation sites and their effects. 
Residues in PPARγ are numbered after γ2 isoform. There is an asterisk for PTM only described for 
PPARγ1 isoform. Effect on PPAR activation is described as upward arrow for activation and down-
ward arrow for repression
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phosphorylation state modulates PPARα activity. Trichothiodystrophy (TTD) mice, 
a mouse model, carrying a mutation in the CDK7-containing TFIIH complex, 
showed lower levels of S12/S21 phosphorylation [55]. This decreased phosphoryla-
tion resulted in lower PPARα ligand-induced activity in TTD fibroblast cells, with 
downregulation of cytochrome P450 4A1 (Cyp4a1) and peroxisomal acyl- 
CoAthioesterase (Pacoth) expression, and decreased PPARα recruitment on the 
CYP4A1 promoter in TTD liver cells [55]. Phosphomimetics (S12E/S21E) showed 
increased ligand-dependent activation in both native and TDD fibroblasts [55].

Another phosphorylation that regulates PPARα function is at S73 [127], which 
seems to have an opposite effect of S12/S21 phosphorylations. This PTM is medi-
ated by Glycogen synthase kinase 3β (GSK3β) [127] and not p38 MAPK [17]. In 
Cos7 green kidney monkey cells, the PPARα activator WY-14643 increased GSK3β 
concentrations, decreasing PPARα activation, indicating that this phosphorylation 
decreases the receptor activity [127]. Moreover, phosphorylation-defective mutant 
(S73A) increased basal activation, and phosphorylation mimetic mutation (S73D) 
decreased activation in the presence and absence of ligand, corroborating the initial 
observations [127]. Co-expression of PPARα and GSK3 dramatically increased the 
ubiquitination of PPARα in Cos7 cells. This ubiquitination was smaller with the 
phosphorylation-defective mutant, indicating that the receptor’s reduced activity 
after phosphorylation might be due to increased ubiquitination and protein degrada-
tion [127].

Liver-specific Biliverdin reductase A (BVRA) knockout (KO) mice, which does 
not reduce Biliverdin to Bilirubin, had shown increased GSK3β activity and S73 
phosphorylation of PPARα, leading to hepatic steatosis, increased plasma glucose 
and insulin levels, and decreased glycogen storage [127]. In LBVRA-KO, it was 
also observed a reduction in PPARα activity indicated by a decrease in the expres-
sion of several of its target genes in the liver (fibroblast growth factor 21 - Fgf21, 
carnitine palmitoyltransferase I - Cpt1a, and fatty acid translocase - Cd36). In con-
trast, a mouse model of human Gilbert’s syndrome, a genetic condition that results 
in moderate hyperbilirubinemia, showed lower S273 phosphorylation levels, along 
with higher levels of PPARα protein [128]. These animals also showed an improved 
glucose tolerance, a protective effect against hepatic steatosis, and against insulin 
resistance, alongside with increased expression of PPARα target genes and increased 
resistance to metabolic effects of a high-fat diet (HFD) [128]. These two animal 
models contribute to the hypothesis that phosphorylation modulates PPARα activity 
in the liver. Bilirubin was reported to also act as a PPARα agonist, increasing recep-
tor activity in high concentration (>50 μM) and upregulating the Cd36, Cpt1a, and 
Fgf21 in adipocytes and pyruvate dehydrogenase kinase 4 (Pdk4), angiopoietin like 
4 (Angptl4), and Fgf21 in liver cells [300]. Furthermore, bilirubin’s effect on lower-
ing glucose and reducing body fat percentage was absent in PPARα KO mice [300]. 
Treatment with bilirubin seems to agree with the hyperbilirubinemia mouse model, 
where bilirubin’s presence favors PPARα activation. More experiments are neces-
sary to confirm if bilirubin is involved in increasing or allowing S73 
phosphorylation.
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PPARγ Phosphorylations at PPARγ have been reported since 1996, stimulated by 
insulin and 12–0-tetradecanoylphorbol-13-acetate (TPA) treatment [135, 361] . The 
first phosphorylation site identified in PPARγ was S112 (or S84 in PPARγ1) [135] 
which is located at AF-1 domain and is modulated by MAPKs and CDK7 action 
[122, 135], decreasing PPARγ activity. Specifically, PPARγ1 S84 is phosphorylated 
in  vitro by the MAPKs extracellular signal-regulated kinases 2 (ERK2) and Jun 
NH2-terminal kinase (JNK), also decreasing the receptor activity [2, 37], without 
altering its DNA binding activity [37].

Experiments with CDK7 knockdown and PPARγ2 phosphorylation-defective 
mutants S112A showed that inhibition of phosphorylation leads to increased recep-
tor activity in the presence and absence of rosiglitazone, a PPARγ strong agonist 
and member of thiazolidinediones (TZDs) family, increasing adipocyte differentia-
tion in  vitro [122, 135, 287]. Phosphomimetic mutant S112D showed decreased 
activity in rosiglitazone’s presence, reduced interaction with the coactivator SRC-1, 
and increased proteolysis [287]. Inhibition of MAP kinase and ERK kinase/ERK 
(MEK/ERK), reducing S112 phosphorylation, also decreased PPARγ degradation, 
indicating that phosphorylation at this residue may favor protein stability [83]. 
Interestingly, CDK9 was also reported to phosphorylate residue S112; however, 
CDK9-mediated phosphorylation increased PPARγ activity in the presence or 
absence of rosiglitazone [141]. Pharmaceutical inhibition of CDK9, with DRB, 
impaired adipocyte differentiation, indicating that CDK9 activity by phosphorylat-
ing PPARγ has an opposite effect as MAPK and CDK7-mediate phosphoryla-
tion [141].

Concerning the S112 phosphorylation effects (same as PPARγ1 S84), several 
studies using genetic S112A mutant mice aimed to elucidate this phosphorylation’s 
roles in vivo. Blockage of this phosphorylation with S112A mouse preserved insu-
lin sensitivity on HFD-induced obesity, retrieving smaller fat cells, increased serum 
adiponectin, and reduced free fatty acid (FFA) levels without increasing body 
weight [265]. The S112A mice also showed a reduction in bone formation, with 
decreased osteoblastic activity and increased expression of adipocyte markers: 
CCAAT/enhancer-binding protein alpha (Cebpa), fatty acid-binding protein 4 
(Fabp4, also called aP2), Pparg, and adiponectin (Adipoq), revealing its importance 
on controlling bone mass and marrow adiposity, also affecting energy metabolism 
[95]. Phosphorylated S112 PPARγ directly interacts with a circadian clock protein, 
called period circadian protein homolog 2 (PER2), which represses the NR tran-
scriptional activity by blocking its recruiting to target promoters [105]. On the other 
hand, phosphorylation-defective mutant S112A reduced PER2 binding to PPARγ, 
and Per2−/− mice cells showed in vitro increased activation of adipogenic genes 
and brown adipogenic markers [105].

The PPARγ1 S84 phosphorylation was upregulated in a diethylnitrosamine 
(DEN) mouse model of hepatocellular carcinoma (HCC) and in human liver tumors, 
respectively. Inhibition of this phosphorylation through phosphorylation-defective 
mutant S84A or kinase pharmaceutical inhibition (by MEK inhibitor PD0325901) 
decreased proliferation of human tumoral and normal liver cells [293]. The presence 
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of this mutation also downregulated genes related to glycolysis and pro- proliferation 
genes, indicating that S84 phosphorylation may have a role in promoting glycolysis 
and cell proliferation in hepatocellular carcinoma [293]. Moreover, S84 phosphory-
lation was reported in another tumor cell line to increase cell proliferation of human 
fibrosarcoma cells [243]. The PPARγ1/2 (S84 and S112), as well as PPARα (S12/
S21), is significantly less phosphorylated in the adipose tissues and liver from the 
TTD mice model, carrying a mutation in the CDK7-TFIIH complex [55]. Contrary 
to previous S84 phosphorylation and S112 phosphorylation studies, this decreased 
phosphorylation in TTD mice was accompanied by decreased PPARγ1/2 ligand- 
induced activity in TTD fibroblast cells, whereas phosphomimetic mutants (S84E 
and S112E) showed increased ligand-dependent activation in both native and TDD 
fibroblasts [55].

The importance of S112 phosphorylation blockage was observed in W1P1 defi-
cient mice [187]. W1P1 is a serine/threonine phosphatase belonging to the protein 
phosphatase Mg2+/Mn2+ (PPM) family, which plays a critical role in adipogenesis 
and fat accumulation. W1P1-deficient mice showed impaired body weight growth, 
decreased fat mass, triglycerides, and leptin levels on circulation. These phospha-
tase’s pro-adipogenic roles were shown to be due to its interaction with PPARγ and 
dephosphorylation of S112, in vitro and in vivo [187].

Another phosphorylation site, the S273 (or S245 in PPARγ1), was first reported 
in 2010, and it is one of the most studied posttranslational modifications of PPARγ 
[45]. This residue is located at the LBD domain of PPARγ and is preferentially 
phosphorylated by the activated form of CDK5 [45]. However, the MEK/ERK sig-
naling pathway can also be involved in this modification, in which ERK kinase 
promotes S273 phosphorylation [16]. S273 phosphorylation did not change the 
basal activity of PPARγ, but its inhibition, for the mutant phosphorylation-defective 
S273A, increased basal and ligand-dependent activity of this receptor  [66]. 
Moreover, this phosphorylation does not affect DNA binding [45], being the reduced 
activity explained by increased corepressor recruitment, as shown by the phosphor-
ylation-defective mutant S273A, which presented decreased affinity for the core-
pressors SMRT and NCoR [66]. In fact, NCoR seems to have a role as an adaptor 
protein that enhances the ability of CDK5 to associate with and phosphory-
late PPARγ.

The phosphorylation of S273 is increased in obesity and has been associated 
with insulin resistance, occurring mainly in adipose tissues [45]. Studies in vitro 
confirmed that S273 phosphorylation by CDK5 is related to a scenario of obesity- 
induced by the tumor necrosis factor alpha (TNFα), mainly due to CDK5 activation 
through released pro-inflammatory cytokines [45]. It was also shown that reduction 
of S273 phosphorylation is correlated with pro-osteoclastic activity in vitro, increas-
ing bone turnover through Wnt/β-catenin signaling pathway [301].

In vivo, mice on HFD showed an increased level of S273 phosphorylation, 
accompanied by insulin resistance and glucose intolerance [45]. S273 phosphoryla-
tion was also reported to deregulate genes involved with insulin resistance in vivo, 
such as Adipoq, leptin, and complement factor D (Cfd, Adipsin), among others 
[16, 45].
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Phospho-defective (S273A) homozygous PPARγA/A mice showed no differences 
in body weight compared to wild type in chow and HFD [108]. Regarding glucose 
metabolism, on HFD PPARγA/A, mice were as glucose intolerant as wild type; how-
ever, they were less insulin resistant. Hyperinsulinemic-euglycemic clamp experi-
ments confirmed an improvement on insulin sensitivity due to an increase in glucose 
uptake. RNA-seq in epidydimal WAT (eWAT) of PPARγA/A mice revealed a down-
regulation of growth differentiation factor 3 (Gdf3), a secreted protein member of 
transforming growth factor β (TGFβ) family, which was found upregulated in wild- 
type mice under HFD in both eWAT and inguinal WAT (iWAT), as well as skeletal 
muscle. Overexpression of GFD3 in vitro decreased glucose uptake in the presence 
of insulin and in vivo impaired glucose and insulin tolerance tests [108], suggesting 
the importance of S273 phosphorylation for insulin resistance by the influence of 
GDF3 factor.

In another mice model, NCoR-KO mice, it was reported a decreased S273 phos-
phorylation, and PPARγ was found in a constitutive active state, with upregulation 
of its target genes (Fabp4, Cd36, solute carrier family 2 member 4 (Slc2a4, former 
Glut4, Periplin, long-chain acyl-CoA synthetase 1  - Acsl1) in the adipose tissue 
[189]. These NCoR-KO mice showed enhanced insulin sensitivity, indicating that 
modulation of S273 phosphorylation has an essential role in insulin resistance and 
that PPARγ activation, independent of the phosphorylation state, has an adipogenic 
role [189]. NCoR importance on CDK5-mediated phosphorylation may be revealed 
during ligand binding to PPARγ. The association of an agonist or non-agonist at the 
NR LBD may induce conformational changes that dismiss NCoR from the tran-
scriptional complex, decreasing S273 phosphorylation [189]. In addition, it was 
verified that some PPARγ ligands could block S273 phosphorylation in vitro, pro-
moting an improvement in glucose tolerance and improving insulin sensitivity, as it 
will be further discussed later in this chapter.

Moreover, in 2020 it was found a phosphatase of protein phosphatase Mg2+- or 
Mn2+-dependent (PPM) family, called protein phosphatase 1A (PPM1A), that is 
capable of dephosphorylating S273, restoring the expression of most genes dys-
regulated by S273 phosphorylation, as adiponectin and CFD [156]. This activity 
occurs due to the physical interaction of this protein with PPARγ in a phosphorylation- 
independent manner. PPM1A is positively associated with insulin sensitivity since 
in vitro assays showed that its expression is decreased when adipocytes are treated 
with TNFα. In agreement, it was shown that HFD-fed animals have lower expres-
sion of this phosphatase, indicating its negative association with S273 phosphoryla-
tion and its potential role as a target for obesity and metabolic disorders [156].

PPARγ1 Y74 is another site already described for phosphorylation by epidermal 
growth factor receptor (EGFR) kinase. This PTM is related to inhibition of the 
receptor, since Y74 phosphorylation leads to PPARγ1 degradation by murine dou-
ble minute 2 (MDM2), a ubiquitin ligase system, which recognizes the phosphory-
lation, destabilizes the receptor, and signalizes for ubiquitin complex PPARγ 
degradation pathway [350]. This modification occurs more frequently in colonic 
cancer tissues, being related to its progression and metastasis since the inhibition of 
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this phosphorylation using a Y74A mutant decreased tumor-associated gene expres-
sion (c-MYC proto-oncogene, Ciclo-oxygenase-2 - COX2, and interleukin-6 - IL-6) 
and inhibited cell proliferation, colony formation, and antiapoptotic gene expres-
sion in human cell culture. These results revealed the importance of Y74 phosphory-
lation on cell survival and proliferation due to the activation of the EGFR/NF-κβ 
signaling pathway [350]. Moreover, another study showed that pioglitazone, a 
known TZD, can block Y74 phosphorylation and consequently inhibit cancer cell 
chemoresistance by increasing PPARγ protein stability [289].

PPARγ Y78 (Y48 on PPARγ1) was reported as other PPARγ phosphorylation 
site, being phosphorylated by the proto-oncogene tyrosine-protein kinase (c-SRC) 
and dephosphorylated by protein tyrosine phosphatase (PTP-1B) [49]. Tyrosine 
kinase Abelson murine leukemia viral oncogene (c-ABL) was also reported to pro-
mote Y78 phosphorylation, once its physical association with PPARγ2 resulted in 
the receptor phosphorylation on two tyrosine residues (Y78 and Y102) [154]. This 
phosphorylation promotes the activation of PPARγ, increasing its transcriptional 
activity, being involved with the suppression of pro-inflammatory cytokines and 
chemokines expression in adipocytes, also reducing macrophage migration [49]. 
Pharmacological inhibition of c-SRC kinase raised insulin resistance on obese mice, 
increasing fasting insulin levels without altering body weight, suggesting that Y78 
phosphorylation might have positive effects on controlling insulin and obesity. 
PPARγ phosphorylation-defective mutants (Y78F) resulted in an increased expres-
sion of chemokines and cytokines involved in inflammation in vitro [49].

The other two PPARγ1 phosphorylations, on S16 and S21, are located at AF-1 
and are related to the ligand-independent transcriptional activity being the target of 
casein-kinase II (CK-II) activity under control conditions and promoting a decrease 
on PPARγ activity. These effects were confirmed using phosphomimetics (S16E/
S21E) and phosphorylation-defective mutants (S14A/S21A), demonstrating that 
CK-II-dependent phosphorylation of PPARγ1 at S16 and S21 provokes its cytosolic 
localization, impairing this receptor shuttle for the nucleus of the cells, reducing its 
transcriptional activity in vitro. However, the physiological relevance of these modi-
fications remains unclear [331]. Finally, two other PPARγ sites were identified as 
targets for phosphorylation: T296 by CDK5 and S133 by MEK/ERK, but their 
physiological effects are still unknown [16].

21.2.2  Acetylation

Protein acetylation encompasses a transfer of an acetyl group (CH3CO) onto pro-
tein lysine residues. However, acetylations on serine, threonine, and histidine resi-
dues were also reported, and the acetyl addition can change the protein 
hydrophobicity, solubility, and surface properties, leading to alterations in the pro-
tein physiological effects [50]. Regarding PPARs, this PTM occurs only in PPARγ 
(Fig. 21.5) and was firstly identified in 2010, being more frequent on lysine residues 
and promoted by the action of histone acetyltransferases, as CBP and p300 [110, 
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260]. Moreover, this PTM importance was revealed by studies focusing on PPARγ 
deacetylation, reporting beneficial metabolic effects, as browning and insulin sensi-
tization [34].

PPARγ This PPAR isotype was reported to suffer acetylation by acetyltransferase 
CBP [260] and p300 [110] and to be deacetylated by NAD-dependent deacetylase 
sirtuin-1 (SIRT1) [110, 260] and histone deacetylase 3 (HDAC3) [146]. PPARγ 
acetylation levels were increased in differentiated adipocytes, and the acetylated 
state was shown to promote activation of the receptor. Inhibition of deacetylation by 
knockdown or pharmaceutical inhibition of the deacetylase HDAC3 leads to an 
increased expression of the target genes Fabp4 and Adipoq, increased adipocyte 
differentiation, and insulin-induced glucose uptake in 3T3 cells [146]. In vivo, 
HDAC3 inhibitor significantly reduced glucose levels and enhanced insulin sensi-
tivity [146]

Fig. 21.5 PPARs acetylations. (Top) primary structure with representative acetylations in PPARs. 
(Bottom) Table summarizing identified PPARs acetylation sites and their effects. Residues are 
numbered after PPARγ2 isoform. There is an asterisk for PTM only described for y1 isoform. 
Effect on PPAR activation is described as upward arrow for activation and downward arrow for 
repression. In black is described acetylation studies and in red the deacetylation studies
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In 2004, a report of SIRT1 repressing PPARγ activity described that the deacety-
lase promoted fat mobilization in white adipocytes by repressing PPARγ, reducing 
its activity, and reducing fat and triglycerides content during 3T3-L1 differentiation 
[250]. Despite of this clues, the confirmation that SIRT1 deacetylates PPARγ 
emerged later [110, 260]. Deletion of Sirt1 from adipocytes led mice to exacerbated 
insulin resistance, glucose intolerance, and inflammation on short-term HFD feed-
ing. However, these mice fed chronic HFD showed reduced inflammation, improved 
glucose tolerance, and enhanced insulin sensitivity, relative to wild-type mice [210]. 
PPARγ acetylation levels increased through HFD in both groups, indicating that this 
PTM has a role in the metabolic syndrome phenotype [210].

Nine acetylation residues were identified on PPARγ2 by mass spectrometry: 
lysines 98, 107, 218, 268, 289, 293, 386, 462, and 466 [146, 260, 314]. Native 
acetylation levels of PPARγ are very low (1%) [314], and the residues were only 
identified by mass spectroscopy after CBP treatment for acetylation enrichment 
[260] or PPARγ overexpression in 293 cells [146]. It was the case of K268 and 
K293 residues, in the helix 2-helix 2′ region of the ligand-binding pocket, which are 
highly acetylated in obese tissue and were identified after acetylation enrichment 
with CBP in 293 cells [260]. PPARγ acetylated in both residues interacts with core-
pressor NCoR in human cells, favors cell proliferation in 3 T3 fibroblasts, and favors 
lipid storage in adipocytes in vitro and in vivo [260].

K268 and K293 were reported to be deacetylated by SIRT1 [260]. Treatment 
with rosiglitazone or resveratrol (RSV, SIRT1 activator) also promoted the deacety-
lation of K268 and K293 by SIRT1 [260]. Deacetylations mimetics promoted 
expression of “browning” genes (Ucp1, Cidea, Elovl3, Cox7a1, Pgc1a) and 
increased mitochondrial activity in adipocytes under differentiation, whereas acety-
lation mimetic (K293Q) delayed adipocyte differentiation, failed to induce “brown” 
genes, and favored expression of “white” genes in adipocytes [260].

In rosiglitazone’s presence, the browning effect of deacetylated PPARγ could be 
explained by its interaction with the brown adipogenic activator PR domain contain-
ing 16 (PRDM16). This interaction with the PRDM16 occurs mainly by deacety-
lated K293 [260]. PPARγ overexpression and Sirt1 gene deletion in mice liver 
upregulated lipid metabolism pathways as biosynthesis of unsaturated FA, FA 
metabolism, and FAO in a micro-array screening [314]. On the other hand, SIRT1 
gain-of-function in mice promotes “browning” of WAT by deacetylating PPARγ at 
K268 and K293 [260]. Corroborating the previous findings, another report showed 
that mice with constitutive deacetylation mutation (K268R/K293R, 2KR) are pro-
tected from obesity and its associated comorbidities, through increased energy 
expenditure and augmented brown remodeling of WAT [171]. These results com-
bined indicate that control of the PPARγ acetylation state could serve as a metabolic 
switch to regulate lipid metabolism and thermogenesis, where the acetylated recep-
tor increased lipogenesis and the deacetylated receptor favors “browning” of WAT 
and thermogenesis. With this in mind, selective modulation of PPARγ K268/K293 
could have therapeutic importance in obesity and type II diabetes (T2D).
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Among the nine acetylation residues identified by mass spectroscopy analysis, 
K107, a strongly acetylated residue, did not have its acetylation affected by rosigli-
tazone, indicating that SIRT1 does not deacetylate this residue [260]. This residue 
was also reported to suffer SUMOylation [84], which indicates potential crosstalk 
among these two PTM, as will be discussed later in the chapter. Regarding K98, 
K107, K218, K289, K386, K462, and K466, we did not find reports better charac-
terizing these acetylations in PPARγ2.

Nine other lysine residues were later identified as targets of acetylation in 
PPARγ1: K140, K154, K167, K188, K190, K222, K238, and K242  in human 
HEK293 cells [314], of which K188 and K238 correspond to the same site observed 
in PPARγ2 (respectively, K218 and K268 sites) [260]. K154, one of the lysyl targets 
identified by mass spectroscopy, is, together with K155, part of a conserved lysine 
motif (RIHKK) present in PPARγ1 [314]. This motif is present in other evolution-
arily related NRs, and it is located just carboxyl-terminal to the zinc finger DBD 
[314]. Lysines present in this motif were reported to suffer acetylation in estrogen 
receptor alpha (ERα), androgen receptor (AR), progesterone receptor (PR), and glu-
cocorticoid receptor (GR) [62, 88, 163, 336], strongly suggesting that PPARγ1 
K155 could also suffer acetylation. An enzymatic deacetylation assay confirmed 
K155 deacetylation by SIRT1, and K154/K155 acetylations were confirmed by 
labeling assay on human HEK293 cells [314].

PPARγ1 acetylation mimetic mutant (K154R/K155R) was very similar to native 
PPARγ on lipogenic differentiation verified by Oil Red Staining and mRNA expres-
sion of multiple lipogenic genes in microarray analysis in ERbB2-positive breast 
cancer cells [314]. Moreover, acetylation-defective mutants of PPARγ1 showed 
decreased lipogenic differentiation, protein expression of FAPB4, and mRNA 
expression of lipogenic genes in a human lineage of breast cancer cells [314]. 
Besides this, both residues are deacetylated by SIRT1 through enzymatic assay, 
being the deacetylation inhibited in the presence of nicotinamide (NAM, a SIRT1 
inhibitor) [314].

21.2.3  SUMOylation

SUMO (small ubiquitin-related modifier) proteins are <10-kD polypeptides that are 
bound covalently to the ɛ-amino group of lysine residues. This process involves a 
cascade of enzymatic steps that requires an E1 activating enzyme, an E2 conjugat-
ing enzyme, and an E3 SUMO ligase [82, 96]. SUMOylation can affect molecular 
interactions by adding or disguise of surface interactions. In consequence, it can 
alter the activity, localization, and stability of target proteins. SUMOylation of tran-
scription factors such as NRs frequently is related to inhibition of transcription [96]. 
On PPARs, SUMOylation predominantly induces negative regulation of target 
genes (Fig. 21.6).
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PPARα SUMOylation on PPARα is linked to increased repressive activity by 
improving corepressor recruitment. Two lysine residues have been reported under-
going this modification: K185 and K358 [185, 257]. In this way, K185 SUMOylation, 
on the hinge region, downregulates PPARα activity favoring the selective recruit-
ment of the corepressor NCoR [257]. Studies with both COS-7 and HuH-7 cell lines 
reveals that the presence of proteins related to SUMO enzymatic cascades, such as 
SUMO-1, SUMO E3, and protein inhibitor of activated STAT1 (PIAS), decreases 
the transcriptional activity of PPARα and expression of its specific target genes 
[185]. Cellular assays showed that PPARα ligand GW-7647 blocks this 
SUMOylation, suggesting that although it does not occur in the receptor’s LBD 
region, it may be ligand-regulated.

The second identified SUMOylation, at K358, leads to a sex-specific and ligand- 
dependent PPARα repression [185]. K358 SUMOylation in female mice livers 

Fig. 21.6 PPARs SUMOylations. (Top) Primary structure with representative SUMOylation in 
PPARs. (Bottom) Table summarizing identified PPARs SUMOylation sites and their effects. 
Residues are numbered after PPARγ2 isoform. There is an asterisk for PTM only described for y1 
isoform. Effect on PPAR activation is described as upward arrow for activation and downward 
arrow for repression. In black is described SUMOylation studies and in red the deSU-
MOylation studies
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enables PPARα to interact with GA-binding protein (GABP) on the cytochrome 
P450 family 7 subfamily B member 1 (CYP7B1) promoter via the NR-interacting 
motif, LKKLL, also recruiting NCoR, HDACs, DNA, and histone methylases, 
resulting in Cyp7b1 downregulation [185]. Physiologically, CYP7B1 repression 
indirectly results in increased testosterone levels and ER activity reduction, which 
would confer to female mice protection against estrogen-induced toxicity [185]. 
This effect was reproduced in the male liver using PPARα ligand WY-14643, indi-
cating that the ligand-induced repression was SUMOylation dependent and an 
agonist- mediated conformational change of the LBD may be necessary for K358 
SUMOylation [185].

PPARδ/β This PPAR isotype is the least studied PPAR family member, and the 
only SUMOylation reported for this isotype is a constitutive one, at K104, which is 
removed by the SUMO-specific protease 2 (SENP2) [168]. This same protease also 
acts deSUMOylating PPARγ, and together, these modifications promote the expres-
sion of genes involved in FAO, such as carnitinepalmitoyl transferase-1 (CPT1b) 
and ACSL1 in muscle cells [168].

PPARγ PPARγ conjugation with SUMO proteins commonly results in the nega-
tive regulation of its transcriptional activity, either by enhanced transrepression [98, 
245] or decreased activation [84, 237, 353]. SUMO-1/2 modification on K107 resi-
due of PPARγ2 (K77 on PPARγ1) is the most studied PPARγ SUMOylation. 
Through mutational analysis, it was found that inhibited PPARγ K107 SUMOylation 
can increase the transcriptional activity of the target genes [67, 84, 150, 237, 291, 
353]. One possible mechanism that explains this repression is the enhancement of 
corepressor recruitment by providing a novel interaction site to PPARγ sumoylated 
[84, 143, 150, 237, 353]. Another possible explanation is that this modification 
affects PPARγ stability and transcriptional activity, but not its nuclear localiza-
tion [84].

This repressive state related to corepressor recruitment was found to be impor-
tant for the anti-inflammatory response. On macrophages, where PPARγ1 acts in 
the repression of inflammatory responses, K77 (K107 on PPARγ2) SUMOylation 
triggered by apoptotic cells leads to stabilization of the corepressor NCoR, thereby 
blocking activation of NF-κβ [143]. In human renal cells, PPARγ ligand-dependent 
SUMOylation by the PIAS1 inhibits NCoR degradation and NF-κβ activation in 
lipopolysaccharide (LPS)-stimulated HK-2 cells, also presenting downregulation of 
chemokines expression [199]. Another SUMOylation site of PIAS1 was identified 
at residue K365 (K395 on PPARγ2) [245]. In macrophages, this ligand-mediated 
modification results in repression of the inflammatory response by recruiting PPARγ 
monomers to NF-κβ and AP1 DNA-binding sites, promoting increased interaction 
of PPARγ with NCoR and HDAC3, and preventing LPS-induced NCoR degradation 
[245]. PPARγ agonists also block the activity of the proinflammatory NF-κβ, inhib-
iting the inflammatory response in macrophages [245].
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PPARγ K107 SUMOylation by SUMO-1 can regulate insulin resistance [150], 
body weight, and adipogenesis [216, 353]. Studies with SUMO-1-null mice demon-
strated reduced adipogenesis, resistance to rosiglitazone treatment, decreased 
weight gain on HFD, and deregulation of PPARγ signaling pathways in adipose 
tissue [216]. However, SUMOylation-defective (K107R) mutants were able to 
recover the insulin-sensitizing actions of rosiglitazone without increasing body 
weight or adiposity [150], presenting increased transactivation [353].

Several studies have reported that the SUMOylation at K107 is regulated by 
phosphorylation at S112 of PPARγ2. Thus, the lack of phosphorylation at this site 
promotes K107 SUMOylation, increasing the potency of the SUMOylation repres-
sive effects [291, 353]; however, this correlation is still not clear. Fibroblast growth 
factor (FGF21), which is a key mediator of the physiologic and pharmacologic 
actions of PPARγ, was reported to inhibiting the NR SUMOylation at K107 in WAT 
[71]. The FGF21-KO mice had an increase in K107 SUMOylation, but not in S112 
phosphorylation [71]. Additionally, growth differentiation factor 11 (GDF11) can 
promote the SUMOylation of PPARγ, decreasing its transcription activity in mesen-
chymal stem cell (MSCs), and in that, this modification occurs without changes in 
S112 [364]. Interestingly, GDF11 was also reported to induce osteoblastogenesis 
and to inhibit adipogenesis of MSCs, and these events were supposed to occur via 
PPARγ modulation through SUMOylation [364].

Moreover, the deSUMOylating at K107 and K104 of PPARγ and β, respectively, 
were reported to enhance the recruitment of both receptors to the promoter region 
of their target genes. The SENP2 acts on skeletal muscle, where it selectively 
increases the expression of some PPARγ target genes (as fatty-acid-binding protein 
3 – Fabp3, Cd36, Cpt1b and Acsl1) [168]. Another SUMO-related mechanism that 
increases the PPARγ activity is regulated by the E3 ligase PIASxβ/PIAS1 and the 
SUMO-conjugating enzyme UBC9, which are inhibitors of activated signal trans-
ducer and activator of transcription (STAT), leading to the enhancement of the tran-
scriptional activity of PPARγ independent of PPARγ SUMOylation [237].

In addition to the K107, other modification sites can be target by SUMO1 and 
SUMO2  in PPARγ1: residues K33, K64, and K68 (respectively, K63, K94, and 
K98 in PPARγ2), and all of them were reported to repress basal and ligand induced 
PPARγ transactivation when SUMOylated [67]. Besides the K365 (K395  in 
PPARγ2) SUMOylation in macrophages [245], in adipocytes, this PTM has a role 
on isoform-specific regulation between PPARγ1 and y2 [12].

21.2.4  Ubiquitination

Ubiquitination is the covalent coupling of ubiquitin-protein, a 76-amino-acid pep-
tide, to lysine residues in the substrate protein [124, 252]. Through a series of enzy-
matic processes, ubiquitin can be attached to their substrate proteins as a single 
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molecule or as polymeric chains in which successive ubiquitin molecules are con-
nected through specific peptide bonds [167, 251].

The ubiquitin-proteasome system (UPS) is an intracellular protein degradation 
system that regulates the transcriptional activity in different levels [100]; its action 
goes beyond of the proteolytic role, controlling diverse activities as receptor inter-
nalization [312] and ribosome function [297]. The proteasomal degradation of tran-
scription factors is a fundamental step in the fine-tuning regulation of its target 
genes because this process enables the sequential arrangement of protein complexes 
at the gene promoter [228].

PPARs ubiquitination regulates the protein content in cells (Fig. 21.7). In most 
cases, ubiquitination of all isotypes targets them for protein degradation, decreasing 
receptor activity [97, 102, 157, 158]. Otherwise, treatment with their agonists 
increases protein stability by inhibiting proteolysis, thereby increasing the receptor 

Fig. 21.7 PPARs ubiquitination. (Top) Primary structure with representative ubiquitinations in 
PPARs. (Bottom) Table summarizing identified PPARs ubiquitinations and their effects. When 
ubiquitination residues were identified, they are numbered after PPARγ2 isoform. There is an 
asterisk for PTM only described for y1 isoform. Effect on PPAR activation is described as upward 
arrow for activation and downward arrow for repression
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activation [27, 97]. However, some ubiquitin ligases can also increase PPARγ half- 
life through non-proteolytic ubiquitination, promoting adipogenesis [188].

PPARα Ubiquitination in this isotype was firstly observed in HepG2 cells, in 
which it was shown that PPARα is degraded by the ubiquitin-proteasome system in 
a ligand-dependent manner, since the WY-14643 (a PPARα selective agonist) 
increases the half-life of PPARα, thus protecting the receptor against the ubiquitina-
tion [27]. In addition, treatment with MG132, a selective proteasome inhibitor, 
increases the level of ubiquitinated PPARα and inhibits its degradation [27]. This 
mechanism allows rapid responses in tightly regulated processes, such PPARα 
expression in circadian rhythm [183] and acute-phase inflammatory response [20].

MDM2, a ubiquitin ligase, promotes polyubiquitination at the A/B domain of 
PPARα, regulating its transcriptional activity and promoting its degradation [102]. 
Furthermore, this process is ligand-dependent, as the increasing concentrations of 
MDM2, in the presence of WY-14643, leads to decreased PPARα activity.

There is also a report of a mono-ubiquitination of PPARα by the ubiquitin ligase 
Muscle ring finger-1 (MURF1) in rat cardiomyocytes in vitro [278]. This modifica-
tion inhibits FAO by inhibiting this isotype activity in cardiomyocytes in a protea-
some independent manner, as this single ubiquitination targets PPARα export from 
the nucleus to the cytoplasm. Residues K292, K310, and K358, located around a 
newly identified nuclear export signal in the LBD (aa300–308), were identified as 
putative sites for the mono-ubiquitination [278].

PPARδ/β This isotype can undergo a constitutive polyubiquitination and degrada-
tion by 26S proteasome to keep low levels of the receptor in the absence of ligands, 
despite DNA binding [97]. The presence of PPARδ/β-specific agonists such as 
L-165041, GW-501516, and prostaglandin (PGI2) completely inhibits PPARδ/β 
proteolysis, increasing the half-life of the DNA-bound receptor, thus allowing the 
time for transactivation of target genes. This increase in PPARδ/β half-life can also 
be achieved in the presence of proteasome inhibitor, such as PS341 [97].

Another level of modulation was revealed by a study that show, in mouse fibro-
blasts, that the ligand-dependent ubiquitination of PPARδ/β and its subsequent deg-
radation are also influenced by PPARδ/β protein levels [275]. At high PPARδ/β 
expression levels, the agonist GW-501516 strongly inhibits the receptor ubiquitina-
tion and degradation processes, which was not observed at low PPARδ/β levels.

PPARγ The ubiquitination of PPARγ has a role on its stability, as this NR has a 
short half-life (t½ = 2 h) [334] and is regulated by ubiquitin proteasome system. 
The polyubiquitination that marks for degradation usually occurs on AF-2 region 
[157, 158]. However, the PPARγ activation by ligands, as TZDs, was demon-
strated to accelerate the process of ubiquitination and degradation [83, 119]. 
3  T3-F442A cells treated with pioglitazone presented increased ubiquitination 
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levels in a dose- dependent manner and a subsequent decreased in PPARγ2 protein 
expression [119].

PPARγ degradation by polyubiquitination plays diverse roles in different cell 
types. In adipocytes, the E3 ligases makorin RING finger protein 1 (MKRN1) [160] 
and seven in absentia homolog 2 (SIAH2) [157] target PPARγ for proteasomal deg-
radation, determining its physiological effects on adipogenesis. While SIAH2 is 
required on this process [157], overexpression of MKRN1 inhibits adipocyte dif-
ferentiation targeting K184 and K185 [160]. It was observed that PPARγ polyubiq-
uitination and degradation by EGFR/MDM2 regulate cancer progression by 
accumulation of NF-κβ/p65 protein levels and increasing NF-κβ activation [350].

PPARγ polyubiquitination by the ligase complex Von Hippel-Lindau tumor sup-
pressor (pVHL) also leads to the NR proteasomal degradation, being K404 and 
K434 the potential major ubiquitin acceptor residues in this case [234]. PPARγ 
degradation via pVHL resulted in the downregulation of ATP citrate lyase protein 
(ACLY), which is involved on tumor progression and is related to de novo synthesis 
of lipids, promoting cholesterol synthesis [234].

Despite the proteolytic function of ubiquitination, some ubiquitin ligases can 
play a role in prolonging PPARγ half-life [188]. In this case, the ubiquitin ligase 
neural precursor cell-expressed developmentally downregulated 4 (NEDD4) 
lengthen PPARγ half-life, adding ubiquitin in the hinge (K48 PPARγ2) and in the 
LBD, stabilizing PPARγ, and promoting adipogenesis in 3  T3-L1 cells, without 
changing the receptors activity [188]. Another ubiquitin E3 ligase, the tripartite 
motif protein 23 (TRIM23), has a critical role in the switching from early to late 
adipogenic function, stabilizing PPARγ protein by atypical polyubiquitin conjuga-
tion, that leads to reduced proteasomal degradation [342]. In the liver, the smad 
ubiquitin regulatory factor 1 (SMURF1) regulates the lipogenic activity of PPARγ 
attenuating its activity by K63 linked non-proteolytic ubiquitination, leading to 
hepatocytes protection against nonalcoholic fatty liver disease (NAFLD) [369].

Sites for other covalent modifications were also reported to be sites for ubiquiti-
nation. The EGFR-mediated PPARγ Y74 phosphorylation leads to PPARγ ubiquiti-
nation and degradation by MDM2 ubiquitin ligase in HEK293 and SW480 [350]. In 
addition, the targets for acetylation K184/K185 and K268/K293 were reported to 
suffer ubiquitination, making the protein prone to subsequent proteasomal degrada-
tion [69, 160, 260], indicating a possible crosstalk between these PTMs. For exam-
ple, K184 and K185 are targets for MKRN1 ubiquitin addition, decreasing basal 
and ligand-dependent activation and targeting PPARγ for protein degradation [160], 
and K268/K293, for CUL4B-RING E3 ubiquitin ligase (CRL4B), leading to 
reduced PPARγ stability, as well as adipocyte differentiation (Dou 2019). In this last 
case, there is one report of aryl hydrocarbon receptor (AhR), a ligand-activated 
transcription factor, acting as the substrate receptor in CRL4B complex [69]. It was 
observed that after AhR overexpression, PPARγ stability was reduced, as well as 
adipocyte differentiation. On the other hand, AhR stimulated adipocyte differentia-
tion in 3 T3-L1 cells. These results indicate that AhR could mediate PPARγ activity 
through posttranslational modifications [69].
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21.2.5  Other PTMs in PPARs

21.2.5.1  PPARγ S-Nitrosylation and Nitration

Nitrosative stress occurs with an increase in reactive nitrogen species (RNS) and 
reactive oxygen species (ROS) formed from oxidative stress. Proteins can suffer 
two kinds of posttranslational modifications after nitrosative stress: reversible 
S-nitrosylation of thiol groups and irreversible protein tyrosine nitration [286, 306]. 
In the case of PPAR, only the isoform γ was shown to be modified by S-nitrosylation 
and tyrosine nitration (Fig. 21.8).

S-nitrosylation is the reaction of thiols at cysteine residues in the substrate pro-
teins with NO or NO-derived species, resulting in an S-nitrosothiol derivative 
(RSNO), through a -SNO group formation [125, 306]. This reversible modification 
is mediated by nitric oxide synthases (NOS), affecting protein activity, protein- 
protein interactions, and protein location [286, 306]. There are two physiologically 
relevant denitrosylases to remove NO group from S-nitrosylated Cys thiol side 
chains: glutathione/S-nitrosoglutathione reductase (GSH/GSNOR) and the thiore-
doxin/thioredoxin reductase (Trx/TrxR) [125]. PPARγ was first identified to suffer 
S-nitrosylation in 2003, among S-nitrosylated proteins of activated murine mesan-
gial cells treated with NO donors or appropriate controls [175].

PPARγ Pro-inflammatory macrophage negatively regulated the transcriptional 
activity of PPARγ in adipocytes by S-nitrosylation of PPARγ1 at the C168 (C198 in 
isoform γ2), promoted by the release of pro-inflammatory factors like nitric oxide 
(NO) [358]. This PTM reduced PPARγ ligand-dependent activation in HeLa cells, 
downregulated PPARγ target genes (ADIPOQ, FABP4, and periplin) in 3 T3-L1 
adipocytes, and blocked adipogenic differentiation in Rat epididymal preadipocytes 
and mice 3 T3-L1. This downregulation of PPARγ is due to a decreased binding to 
the promoters of its target gene, possibly by protein degradation, as 3 T3-L1 cells 
treated with a NO donor (S-nitrosoglutathione - GSNO) had a decreased level of 
PPARγ protein. Pretreatment with the proteasome inhibitor MG132 partially pre-
vented the decrease of PPARγ levels, suggesting that the proteasome-dependent 
degradation might account for the impaired PPARγ stability [358]. These in vitro 
results agreed with in  vivo results showing that obese diabetic db/db mice have 
severe macrophage infiltration in visceral WAT, while gene expression of NO syn-
thase (iNOS) was increased, and the adiponectin expression was decreased.

A S-nitrosylation in PPARγ2 (C139) was described [38] after observation of the 
effects of NO in bone-marrow-derived MSCs, precursor cells for adipocytes and 
osteoblasts [229]. The S-nitrosylation residue (C139) was suggested by the pre-
dicted acid-based nitrosylation conservative motif [299] and confirmed through 
single point mutations [38]. Treatment of HEK-293 T cells with a GSNO decreased 
PPARγ activity, which was not completely recovered after rosiglitazone treatment. 
Animal model denitrosylases GSNOR deficient (GSNOR−/−) presented decreased 
adipogenesis, with smaller adipocytes, lower body weight, and fat mass, with an 
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increased proportion of lean mass. Moreover, these animals presented increased 
osteoblastic differentiation with augmented osteoclastic effects [38]. S-nitrosylation 
of PPARγ increased 50% in MSCs of GSNOR−/− compared to wild type, suggest-
ing the PPARγ role in the observed effects. In cell culture, GSNOR−/− MSCs 
showed decreased differentiation and expression of PPARγ target genes involved in 
adipocyte differentiation (Cebpb, Fabp4, Cd36), while adiponectin expression 
remained the same as wild type. These effects were also observed in wild-type cells 
treated with GSNOR inhibitor. PPARγ decreased activity observed in reporter gene 
assays was not followed by a decrease in PPARγ mRNA expression, but it was 
observed decreased binding affinity by CHIP assays to FABP4 promoter region [38].

Another modification caused by nitrosative stress is the irreversible nitration of 
tyrosine residues. In this case, the tyrosine amino acid of target proteins reacts with 
the cytotoxic oxidant peroxynitrite (OONO−), generated from NO and superoxide. 
This reaction leads to a covalent addition of a nitro group (-NO2) to one of the two 
equivalent ortho-carbons of the tyrosine residues aromatic ring [286, 306]. This 
covalent modification affects protein function and structure, including a change in 
the proteolytic degradation rate and protein activity loss [286]. Nitrosative stress is 
also present in inflammation; therefore, tyrosine residues’ nitration is considered a 
marker of inflammation [286, 306]. Macrophages are considered key players in 
inflammation and highly express PPARγ, which also plays a role in the control of 
inflammation, particularly modulating the production of inflammatory mediators 
[209]. PPARγ nitration was identified in macrophage-like cell line RAW 264 stimu-
lated by peroxynitrite, LPS, or tumor necrosis factor-K (TNF-K). This nitration 
inhibits ligand-induced translocation into the nucleus, which might change the 
PPARγ function [290]; however, the key tyrosine residues that suffer nitration were 
not identified yet.

21.2.5.2  PPARγ O-GlcNAc

The addition of a single residue of O-linked N-acetylglucosamine (O-GlcNAc) is a 
PTM that occurs in the nuclear and cytosolic compartments of eukaryotic cells [99]. 
In mammals, this modification is dynamically regulated by two highly conserved 
enzymes: the glycosyltransferase, named O-linked N-acetylglucosaminyltransferase 
(GlcNAc transferase, OGT), and the antagonistic enzyme β-N-acetylglucosaminidase 
(O-GlcNAcase, OGA). Analogous to the other PTMs, evidence indicated that 
O-GlcNAc modification of protein could regulate its activity. O-GlcNAc addition 
has been mapped to modify serine/threonine (S/T), which are the same sites for 
phosphorylation addition by kinases, implying that the two modifications might 
compete for the same site [99].

PPARγ O-GlcNAc modifications were reported in 3 T3-L1 adipocytes [145], by 
using immunoprecipitation and western blotting techniques (Fig.  21.8). Both 
PPARγ1 and γ2 were reported to have O-GlcNAc in this cell type, although only 
PPARγ1O-GlcNAc modification was significantly increased in high glucose condi-
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tions. This modification was not identified for PPARα and PPARδ/β isotypes. Since 
O-GlcNAc modification for PPARγ2 was not increased under high glucose condi-
tions, this modification was further investigated for the isoform PPARγ1. Protein 
digestion and single point mutations assays showed that the residue which suffers 
O-GlcNAc-modification PPARγ1 is T54, present in the AF-1 domain. Through a 
reporter gene assay in HeLa cells, using T54A mutant protein and OGA inhibitor, it 
was demonstrated that the presence of O-GlcNAc reduces PPARγ1 activation, 
which is not rescued by rosiglitazone treatment [145]. Regarding physiological con-
ditions, it was previously described that a general increase in O-GlcNAc is observed 
in adipocyte differentiation and that inhibition of this PTM decreases adipogenesis 
[134, 142]. Treatment of 3 T3-L1 adipocytes with OGA inhibitor resulted in more 
O-GlcNAc modifications of PPARγ1 and reduced transcriptional activity in this cell 
type, indicating that, although proteins level of PPARγ1 targets in adipocyte differ-
entiation were not changed, the decrease in adipocyte differentiation might be due 
to the decrease in this receptor activity through O-GlcNAc modification [145].

21.3  Crosstalk of PPARγ PTMs

Reports of crosstalk are usually found between proteins of a signaling cascade; 
however, PTM crosstalk can occur within a single protein [60, 327]. In general, the 
PTM crosstalk can be classified into two forms: positive or negative [327]. In posi-
tive crosstalk, one PTM can signalize for the addition of a second PTM at the same 
site or for recognition by a binding protein that carries out a second modification 

Fig. 21.8 Others PTMs in PPARs. (Top) Primary structure with representative of other PTMs in 
PPARs. (Bottom) Table summarizing identified other PTMs (S-nitrosylation, Nitration, O-GlcNAc) 
sites in PPARs and their effects. Residues are numbered after PPARγ2 isoform. There is an asterisk 
for PTM only described for y1 isoform. Effect on PPAR activation is described as upward arrow 
for activation and downward arrow for repression
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(e.g., phosphorylation-dependent SUMOylation) [304, 357]. In this second case, 
the first PTM can induce conformational changes in the protein that enable access 
for the protein effector of the second PTM. In negative crosstalk, direct competition 
for modifying a single residue in a protein can occur, or indirectly by masking the 
recognition site for a second PTM [327]. An example of direct negative crosstalk is 
the addition of O-GlcNAc mapped to modify serine/threonine (S/T), which are the 
same sites for phosphorylation modifications by kinases [99, 115, 341]. Furthermore, 
lysine residues were reported to suffer not only acetylation but SUMOylation and 
ubiquitination as well, where the latter plays an important role signaling for protein 
degradation by proteasome pathway and the former is important for regulating cel-
lular processes, including cell cycle, apoptosis, DNA repair, and signal transduction 
pathways [120].

In the case of PPARγ, direct negative crosstalk was reported in many sites that 
are a target for different modifications, for example, lysyl residues, which are both 
targets for acetylation and SUMOylation or ubiquitination. Some positive PTM 
crosstalks were also reported, such as acetylation, which may induce phosphoryla-
tion, phosphorylation-mediated SUMOylation, and ubiquitination. These combina-
torial actions of PTMs provide a fine-tuning mechanism in regulating protein 
function. So far, no PTM crosstalk was identified for the other PPAR isotypes.

21.3.1  Negative Crosstalk at PPARγ K184/K185 and K268/
K293 Which Are Shared Residues for Acetylation 
and Ubiquitination

Examples of direct negative crosstalk that might occur at PPARγ2 K184/K185 are 
acetylation and ubiquitination. Acetylation in PPARγ1 K154/K155 (which corre-
sponds to PPARγ2 K184/K185) was described, and its acetylation mimetics mutants 
(K154Q/K155Q) were very similar to wild type in lipogenic differentiation, whereas 
acetylation-defective (K154R/K155R) mutants decreased lipogenic differentiation, 
indicating repression of PPARγ1 activity [314]. MKNR1 ubiquitination of these 
residues in PPARγ2 K184/K185 also reduced basal and ligand-dependent activa-
tion, targeting the receptor for proteasome degradation [160]. These results allow us 
to speculate that the deacetylation of K154/K155 allows for PPARγ1 ubiquitination, 
targeting for proteasome degradation and reducing protein activity; however, this 
hypothesis still needs to be addressed experimentally.

Another pair of acetylated residues, PPARγ2 K268/K293, is upregulated in obe-
sity and was reported to favor lipid storage in adipocytes and cell proliferation, in 
agreement with acetylation mimetics mutants (K268Q/K293Q), increasing expres-
sion of insulin-resistant genes on WAT of HFD-obese mice [260]. Deacetylation of 
K268 and K293 residues led to the browning of WAT and repression of insulin 
resistance and adipogenic genes [260], in agreement with PPARγ1 K154/K155 
deacetylation results of decreased lipogenic differentiation and decreased PPAR 
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activation with consequent protein degradation [160]. Corroborating the hypothesis 
of K268/K293 being shared residues for acetylation and ubiquitination, one report 
of ubiquitin-mediated degradation of AhR transcription factor shows the same 
lysine residues acting as the substrate and receptor for CRL4B E3 ligase.

Taken together, these reports suggest that PPARγ deacetylation in K184/K185 
and K268/K293 pairs both allows ubiquitination and targets for protein degradation, 
reducing lipogenic differentiation.

21.3.2  Negative Crosstalk at PPARγ K107, Which Is a Shared 
Residue for SUMOylation and Acetylation

PPARγ2 K107 is a shared residue for SUMOylation and acetylation. This residue’s 
SUMO modification is the most studied PPAR SUMOylation and strongly represses 
PPARγ, repressing inflammatory genes in macrophages [143]. DeSUMOylating of 
this residue was shown to increase the receptor activity, increasing expression of 
some PPARγ target genes, such as Fabp3 and Cd36, both in the absence and pres-
ence of rosiglitazone, in rat C2C12 myotubes [51]. K107 was strongly acetylated in 
a mass spectrometry analysis of 3 T3-L1; however, no studies were done about its 
physiologic effects [260]. Based on the effects of acetylation in other PPARγ resi-
dues (K154/K155, K268/K293), acetylated mimetics mutants of PPARγ had effects 
very similar to native, whereas deacetylation of these residues was shown to 
decrease lipogenic differentiation, and to promote expression of “browning” genes 
and adiponectin in WAT [260, 314]. Extrapolating to K107 deacetylation, its effect 
could also be of decreased lipogenic differentiation, which would agree with 
SUMOylation effects of PPARγ repression, suggesting that when K107 is deacety-
lated, it could be SUMOylated. Although it is clear that this same residue can suffer 
two types of PTM, the molecular basis of this alternance is not determined yet. It 
will be of interest to determine if there is a reciprocal regulation of acetylation and 
SUMOylation at this site during browning or adipogenesis.

21.3.3  Positive Crosstalk of PPARγ1 T74 and PPARα S73 
Phosphorylation-Dependent Ubiquitination

PPARγ1 T74 and PPARα S73 were reported to be target of phosphorylation- 
dependent ubiquitination, signaling for protein degradation [102, 350]. Y74 phos-
phorylation occurs more frequently in colonic cancer tissues, where PPARγ 
phosphorylation leads to ubiquitination by MDM2, signaling for protein degrada-
tion. Y74 phosphorylation seems important to colonic cancer cell survival and pro-
liferation since Y74A mutants decreased tumor-associated gene expression (c-MYC, 
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COX-2, and IL-6), inhibited cell proliferation, colony formation, and anti-apoptotic 
gene expression [350].

In the case of PPARα S73 phosphorylation, a BVRA-KO mouse model addressed 
this phosphorylation’s effects in the liver. In the BVRA-KO mice, upregulation of 
S73 phosphorylation was observed together with hepatic steatosis and decreased 
expression of PPARα target genes in the liver (Fgf21, Cpt1a, Cd26), suggesting that 
the phosphorylation decreased PPARα activity [127]. Lower levels of ubiquitination 
observed with S73A PPARα indicates that the reduced activity of the receptor after 
phosphorylation might be due to increased ubiquitination and protein degrada-
tion [127].

21.3.4  Positive Crosstalk of PPARγ K268/K293 Acetylations 
and S273 Phosphorylation

In PPARγ, K268/K293 acetylation might be an example of positive crosstalk, 
whereas the presence of a modification induces the occurrence of a second one. 
S273 phosphorylation was reported to correlate with K268 and K293 acetylation 
because this phosphorylation was increased in the presence of K293 acetylation 
mimetic mutant (K293Q) [260]. Both modifications were reported independently to 
have overlapping effects in adipogenesis and browning: deacetylation mimetics 
mutants (K268R/K293R) and S273 phosphorylation-inhibition by rosiglitazone 
increased expression of adipokine and “brown genes” in WAT [45, 236, 260]. 
However, phospho-defective mutation (S273A) alone did not promote upregulation 
of “brown genes”, whereas the combined deacetylation and dephosphorylation 
mimetic (S273A/K268R/K293R) had a similar result as the deacetylation mimetic 
(K268R/K293R) [260]. This upregulation of “brown genes” in both deacetylation 
mimetics was more pronounced together with rosiglitazone treatment, [260], indi-
cating that PPARγ activation and deacetylation have a combined effect increasing 
PPARγ browning activity.

These residues’ structural proximity might explain this positive crosstalk among 
S273 phosphorylation and K268/K293 acetylation. S273 is buried within the 
grooved, lined by K268 and K293, and it was suggested that the acetylation state of 
these two residues could induce conformational changes in the protein structure, 
which affect access to related kinases or phosphatases, to the phosphorylation site 
of S273 [260]. In some cases, deacetylation of proteins was reported to increase 
their phosphorylation [258, 259]; however, in this case, it was suggested that mainly 
K293 acetylation would induce conformational changes allowing S273 phosphory-
lation. This hypothesis is addressed because K293 acetylation mimetic mutant was 
reported to increase S273 phosphorylation and their deacetylated and dephosphory-
lated states were shown to have the same effects inducing browning of WAT and 
decreasing lipogenesis [260].
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Nevertheless, another work showed that deletion of SIRT1 from adipocytes leads 
to increased PPARγ acetylation under short-term (5  weeks) and long-term 
(15  weeks) HFD, but S273 phosphorylation levels, which were higher in the 
SIRT1-KO animals, decreased after long-term HFD compared to wild-type animals 
[210]. These results indicate that more research is necessary to understand the fine- 
tuning modulation of PTM crosstalk regulating PPARγ functions in metabolic 
syndrome.

21.3.5  Positive of Crosstalk of PPARγ S112 
Phosphorylation- Dependent SUMOylation of K107

A phosphorylation-dependent SUMOylation motif (PDSM) ΨKxExxSP has been 
identified in NRs, including PPARγ and thyroid hormone receptor (TRβ) [126]. In 
PPARγ2, S112 phosphorylation promoted a phosphorylation-dependent 
SUMOylation of K107, as demonstrated by decreased SUMOylation in the pres-
ence of phosphorylation defective mimetic S273A [353]. S112 and K107 are close 
in the PDSM, and the proposed model is that S112 phosphorylation induces a con-
formational change in PPARγ that allows for the SUMO-1 SUMOylation of K107 
[323]. Both phosphorylation and SUMOylation at these residues cause a decrease in 
the receptor activity, with impaired coactivator and increased corepressor recruit-
ment, and activation of the adipogenic gene expression pathway [122, 135, 150, 
287, 291, 353]. The blockage of these PTMs resulted in the improvement of insulin 
sensitivity [150, 265].

21.4  Modulation of PPARs PTMs

Modulations of PPAR posttranslational modifications (PTMs) were reported in the 
literature in two major ways. The most common is through the use of a PPAR ligand 
that binds in the LBD and induces conformational changes that allow or decrease 
the occurrence of a PTM. Another way described in the literature for PTM charac-
terization is using an activator or inhibitor of the protein responsible for the PTM 
addition. However, as will be discussed further in this topic, kinases, acetylases, and 
other proteins involved in the addition of a posttranslational modification at PPARs 
are also involved in modulating other pathways. Therefore, pharmaceutical inhibi-
tion or activation of these effectors seems not to be the best strategy for the specific 
modulation of PPARs PTMs.

On the other hand, the use of PPARs LBD ligands to inhibit or promote a specific 
PTM could lead to undesired side effects resulting in receptor activation or inhibi-
tion, for example, the use of rosiglitazone for the inhibition of PPARγ S273 phos-
phorylation. Aiming to block the S273 phosphorylation effect of insulin resistance, 
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the agonist rosiglitazone activates the receptor, leading to adipogenic and osteoclas-
tic effects. This constant activation of PPARγ by rosiglitazone in diabetic patients 
resulted in the side effects of weight gain and bone loss, which resulted in the 
removal of the drug in the treatment of T2D. In this topic, we are going to present 
the molecules that can regulate the addition of PTM in PPARs, either by promoting 
structural changes in the receptor LBD or by activating/inhibiting the effectors pro-
teins of these modifications. Moreover, we are going to discuss the positive and 
negative aspects of each modulation, discoursing about the perspectives of the clini-
cal use of molecules to modulate PPAR function through PTM regulation.

21.4.1  Modulation by PPAR Ligands

In this section, we are going to focus on ligands that bind in the LBP of the PPAR- 
LBD and promote conformational changes, interfering directly or indirectly in the 
PTMs occurrence. The binding site cavity for the three PPAR isotypes is very simi-
lar and is located in their protein cores [75, 254]. The Y-shaped LBP is mainly 
formed by hydrophobic residues and presents a large volume of ~1300 Å3, which 
allows the interaction of single and multiple branched ligands in different confor-
mations [59]. This pocket is flanked by helix (H) 3, 5, 7, and 10 and by an antiparal-
lel beta-sheet. The space between H3 and beta-sheet is the ligand-entry site, whereby 
different ligands can access the PPAR LBP, promoting structural changes 
mostly in H12.

21.4.1.1  PPARα

In PPARα, three PTMs seem to have their presence regulated by PPAR ligand: a 
polyubiquitination enhanced by WY-14643 [102]; a K185 SUMOylation, in the 
hinge domain, reduced in the presence of GW-7647 [257]; and K358 SUMOylation, 
in the LBD, increased in the presence of WY-14643[185]. No sites for the polyubiq-
uitination by MDM2 were identified, but this modification at the A/B domain of 
PPARα decreased its basal activity, promoting its degradation, and this process was 
enhanced by WY-14643 [102].

Both SUMOylations promoted repression of PPARα, as defective mutations of 
K165A and K358A increased the receptor activity compared to the native protein. 
This inhibited activity could be explained by increased recruitment of NCoR in the 
case of K165 and GA-binding proteins and histone deacetylases in K385 [185, 
257]. However, these two SUMOylations differ regarding the effect of PPARα ago-
nists. Treatment with GW-7647 reduced specifically PPARα SUMOylation; how-
ever, it is not clear if ligand binding impairs the SUMOylation of PPARα or promotes 
its deSUMOylation [257]. On the other hand, treatment with WY-14643 increased 
PPARα SUMOylation because the agonist induces conformational changes in the 
LBD, in which K358 is presented at the surface and therefore available for 
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SUMOylation, in contrast to the antagonist-induced conformation, in which case 
K358 is hidden [185]. This agonist-induced conformational change that exposes 
K358 for acetylation might also hide K165, protecting it from SUMOylation.

Regarding the others PPARα PTMs, ligands such as oleic acid and WY-14643 
were reported only to modulate the activity of the receptor bearing phosphoryla-
tions at S12/S21 and S73, and studies analyzing the effects of the ligands in the 
modification per se are still required [17, 147, 300]. S12/S21 phosphorylation 
increased basal PPARα transactivation, which was enhanced in the presence of the 
ligand oleic acid or insulin [17, 147]. Downregulation of these phosphorylations 
was observed in TTD mice, which showed downregulation of Cyp4a1 and Pacoth in 
the liver [55]. On the other hand, phosphorylation of S73 was reported to decrease 
PPARα activation induced by ligand WY-14643 [127]. Downregulation of Cyp4a12 
and Cpt1a was observed in BVRA KO mice bearing increased S73 phosphorylation 
[127]. These results indicate that S12/S21 and S73 phosphorylations have antago-
nist effects in hepatocytes.

However, since S12/S21 and S73 phosphorylations are in the AF-1 domain, an 
activation domain independent of ligand, it might be improbable that ligands bound 
to the LBD could induce conformational changes to inhibit or increase the occur-
rence of phosphorylation on AF-1 domain. On the other hand, conformational mod-
ifications or other allosteric-like effects might happen, but further studies in this 
field are necessary to elucidate these mechanisms.

21.4.1.2  PPARδ/β

Until now, few PTMs are related to the subtype PPARδ/β. Unlike most nuclear 
receptors that are degraded upon ligand binding, PPARδ/β ligands (L-165,041, 
GW501516, and PGl2) were reported to inhibit the ubiquitination of this receptor, 
thereby preventing its degradation [97, 275]. In this case, the ligand-mediated ubiq-
uitination might be influenced by PPARδ/β protein levels, as was observed in mouse 
fibroblasts transfected to overexpress PPARδ/β, where the agonist GW-501516 
strongly inhibits the ubiquitination and degradation of PPARδ/β. However, this 
effect was not observed at moderate protein levels, indicating that the process is not 
influenced by the ligand presence, but by the protein level [275].

21.4.1.3  PPARγ

As mentioned before, the PPARγ is the most studied isotype due to its role and rel-
evance in obesity, diabetes, and other metabolic disorders. Ligand effect on PTM 
modulation was not reported for modifications occurring at AF-1 and DBD (phos-
phorylations at S46, S51, Y74, and Y78 and PPARγ1 acetylations at K154/K155). 
However, the influence of ligands in PTMs that occur in the LBD was extensively 
reported, especially for phosphorylation at S273 [45].
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Rosiglitazone is the PPARγ ligand used for many years for T2D treatment since 
it acts as an insulin sensitizer by blocking phosphorylation at S273, whereas its full 
agonism activates the nuclear receptor and promotes the transcription of genes 
related to adipogenesis. However, its use causes side effects, such as weight gain 
and others related to fluid retention and cardiac hypertrophy. Thus, this molecule 
was removed from the market [45, 93, 339]. Besides this, rosiglitazone is still used 
as a classical ligand for PPARγ function studies, mainly on in vitro and in vivo assays.

The only PPARγ phosphorylation reported to be modulated by rosiglitazone is at 
the residue S273 [45]. Treatment with this and other PPARγ ligands blocks S273 
phosphorylation and results in improving insulin sensitivity, as will be discussed in 
detail in the next topic.

Rosiglitazone treatment also decreased K268/K293 acetylation in a SIRT1- 
dependent manner [260]. Furthermore, acetylation defective animals for both 
K268R/K293R, treated with rosiglitazone, maintained the insulin-sensitizing, 
glucose- lowering response to TZDs, while not showing the TZDs adverse effects on 
fat deposition, bone density, fluid retention, and cardiac hypertrophy [171]. The 
crosstalk among S273 unphosphorylated state and K268/K263 deacetylation indi-
cates that treatment with rosiglitazone promotes insulin sensitivity improvement 
due to inhibition of S273 phosphorylation, with no collateral effects of PPARγ acti-
vation, which may be the resulted of the K268/K293 deacetylated state. Drugs that 
inhibit both S273 phosphorylation and K268/K293 acetylation could be interesting 
to the treatment of T2D and obesity.

Regarding SUMOylations, rosiglitazone was reported to enhance this PTM at 
K395 [12, 245] and to activate PPARγ SUMOylation in HK-2 cells [199]. Ligand- 
dependent increase in K395 SUMOylation might be explained by structural analy-
sis: crystal structures of apo and rosiglitazone-bound forms of PPARγ1 indicate that 
K365 is oriented toward the interior of the LBD in the apo form but is solvent- 
exposed in the rosiglitazone-bound form, allowing for covalent attachment of 
SUMO [245]. However, rosiglitazone and another ligand, GW1929, negatively 
regulate SUMOylation of K395 by intramolecular communication between the 
C-terminal LBD and the N-terminal AF1 domain [67].

Rosiglitazone and other TZD ligands (troglitazone and pioglitazone), although 
increasing PPARγ activity, were reported to enhance the receptor ubiquitination and 
degradation [119, 158], but interestingly pioglitazone was also reported to inhibit 
EGFR/MDM2 signaling-mediated PPARγ degradation, suppressing cancer cell 
chemoresistance [289].

21.4.1.4  Modulation of PPARγ S273 Phosphorylation

Phosphorylation of S273 is one of the most studied PPARγ PTM due to its involve-
ment in insulin resistance in obese and diabetic humans. As mentioned before, rosi-
glitazone is a member of the TZD class, together with pioglitazone and troglitazone, 
acting as PPARγ agonists and binding directly in the LBD of the protein, stabilizing 
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H12, and recruiting coactivators that will promote expression of PPARγ target 
genes. It was also reported that rosiglitazone and pioglitazone were able to block the 
S273 phosphorylation [45], although this effect has not been reported yet to trogli-
tazone. This inhibition, mainly by rosiglitazone, was the cause of the improvement 
of insulin sensitivity, reducing fasting glucose and insulin levels, and rosiglitazone 
was used for many years for the treatment of T2D. However, treatment with this 
drug resulted in several side effects, which are related to the strong PPARγ activa-
tion caused by this molecule, which leads to the expression of genes related to adi-
pogenesis, promoting weight gain, increase on hepatic steatosis, and fluid retention, 
among others side effects [45, 92, 204]. Moreover, phospho-defective (S273A) 
PPARγA/A did not show innately any of the TZD-associated side effects (bone loss, 
fluid retention, and increase in adipocyte size) [108], corroborating the hypothesis 
that these effects are associated with PPARγ full agonism.

It is important to highlight this phosphorylation mechanism, which involves 
strong interaction between the kinase, specifically CDK/p25, and their specific sub-
strate [65, 247]. Two elements guide this mechanism: the first one is the recognition 
of the phosphorylation motif by the catalytic site of the kinase, and the second, 
mainly involved in S273 phosphorylation, is the substrate recruitment, involving an 
increase of encounters between the enzyme and the substrate through distal docking 
sites [65, 311]. In PPARγ there is a noncontiguous recognition site (K261, K263, 
and K265), located at the H2’-H3 loop of the LBD region, being essential for CDK5 
and PPARγ interaction [273]. However, these residues seem not to be involved in 
inhibiting S273 phosphorylation by PPARγ ligands, since these molecules do not 
interact with the H2’-H3 loop [273]. It was described that another residue, I341, 
may be involved in this process, mainly due to a structural shift promoted by ligand 
interaction with the receptor, stabilizing H2′ and part of the H2-H2′ loop and impact-
ing its association with CDK5 [273]. Here it is shown PPARγ LBP ligands that 
promote insulin sensitization, with lower activation and, except for a few cases, 
experimentally confirmed blocking of S273 phosphorylation.

YR4-42 In 2019, a PPARγ agonist was reported to block S273 phosphorylation: 
YR4-42, a tetrahydroisoquinoline derivative [137]. This ligand showed weaker 
affinity and equivalent activation of PPARγ compared to pioglitazone [137]. In 
3 T3-L1 adipocytes, YR4-42 promoted fewer lipids droplets than TZDs, same tri-
glyceride levels as the control group, and blockage of S273 phosphorylation. 
Moreover, through a diet-induced obese (DIO) mouse model, it was shown that 
YR4-42 could control blood glucose and improves insulin sensitivity, with results 
similar to pioglitazone, also decreasing serum triglycerides, total cholesterol, and 
FFA, with lower body weight and an improvement on hepatic steatosis. Regarding 
gene expression, it was observed upregulation in genes involved in glucose metabo-
lism and on thermogenesis, as Cidea and Ucp1 [137].

WSF-7 Another PPARγ agonist was discovered at the end of 2019, called WSF-7 
(5,5,7-trimethyl-3-(p-tolyl)- 3,3a,4,5,6,7-hexahydro- 4,6-methanobenzo[c]isoxazol-
7-ol), which is derived from natural monoterpene α-pinene [365]. This molecule 
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was detected by a screening for PPARγ agonists with the capacity of inhibiting 
S273 phosphorylation. In vitro studies demonstrated its ability of binding to the 
LBD of this receptor and activate it, also promoting adipogenesis, but it is less 
potent than rosiglitazone. Moreover, this ligand upregulated adiponectin expression 
and its oligomerization, increased insulin-stimulated glucose uptake, and SLC2A4 
protein expression. They also confirmed its effects on inhibiting S273 phosphoryla-
tion in 3 T3-L1 cells, indicating WSF-7 as a potential insulin sensitizer and drug for 
T2D treatment [365].

EPA-PC and EPA-PE Sea cucumber phospholipids were also detected as PPARγ 
agonists, mainly the phosphatidylcholine (EPA-PC) and phosphatidylethanolamine 
(EPA-PE) ones, binding to this receptor with high affinity, as well as to PPARα 
[316]. In vitro assays demonstrated that these compounds promoted adipocyte dif-
ferentiation and lipid accumulation, promoting an increased expression of Pparg, 
Fabp4, Fas, and Cebpa. EPA-PC and EPA-PE also activated hepatic fatty acid 
β-oxidation in HepG2 cells. In addition, in vivo experiments revealed that EPA-PC 
and EPA-PE treatment slightly decreased S273 phosphorylation, but increased the 
protein expression of CD36 and FABP4, also suppressing the increase in iWAT and 
eWAT weight, reducing adipocytes size and lipid droplets. These molecules amelio-
rate glucose intolerance and insulin resistance in mice, with a significant reduction 
in triglycerides, cholesterol, and non-esterified fatty acids (NEFA), suggesting its 
role on improving metabolism and as a new therapeutic approach on T2D treat-
ment [316].

In order to avoid the undesirable side effects of PPARγ full activation (adipogen-
esis, bone loss, etc.), other researchers are focusing on molecules that act as S273 
blockers, but not as receptor full activators, acting as partial agonists or non- agonists. 
Some of them are presented here, showing their physiological roles related to this 
PTM inhibition (Fig. 21.9).

nTZDpa In this context, in 2003, 5-Chloro-1-[(4-chlorophenyl)methyl]-
3-(phenylthio)-1H-indole-2-carboxylic acid (nTZDpa) was first described as potent 
and selective PPARγ partial agonist, antagonizing the effects of full agonists [23]. 
On in vitro assays, this molecule treatment reduced the lipid content of fully dif-
ferentiated adipocytes, causing alterations in Fabp4 expression. In a few experi-
ments in vivo with DIO mice, nTZDpa effects on attenuating insulin resistance and 
hyperglycemia, decreasing weight gain, and increasing adiponectin expression were 
also observed [23]. After, in 2010, when S273 phosphorylation was reported, this 
molecule was described as a blocker of PPARγ phosphorylation [45].

2-BABAs After that, in 2004, it was reported another class of molecules, the 
5- substituted 2-benzoylaminobenzoic acids (2-BABAs), which binds to PPARγ 
without direct interaction with H12, although activating the receptor, herein being 
classified as partial agonists [239]. Among them, the compound BVT.13 was evalu-
ated in ob/ob mice, in which, although resulting in a significant reduction in fasting 
plasma glucose, triglycerides, plasma insulin, and FFA, the treatment led to weight 
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Fig. 21.9 PPARγ ligands that prevents S273 phosphorylation and their main effects. Here is listed 
only ligands with retrieved structural information
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gain [239]. This compound was further investigated in  vitro, where the ligand 
showed moderate transcriptional activity and confirmed its lack of interaction with 
H12 [33], also acting as a blocker of S273 phosphorylation [45].

TEL In 2004, an angiotensin II receptor blocker called telmisartan (TEL), was 
reported as a partial agonist of PPARγ [22, 283], and molecular docking analysis 
indicated that TEL interacts with the receptor by H3, H6, and H7, making strong 
hydrophobic interactions, and it does not appear to make contact with AF-2 region 
or histidine adjacent regions [22]. Although in vitro assays showed that TEL pro-
moted adipogenesis in 3 T3-L1 cells, this result was not compared to tosiglitazone’s 
effects on differentiation [22]. In adipocytes, TEL upregulates PPARγ target genes 
related to adipogenesis but in a less extent than rosiglitazone and decreased Cfd 
expression [166, 283]. Cellular assays also demonstrated that TEL upregulates ther-
mogenic genes, did not have anti-osteoblastic activity, and decreased S273 phos-
phorylation levels [166]. In the cellular model of insulin resistance condition 
through TNFα treatment, TEL was able to reduce the TNFα- increased PPARγ S273 
phosphorylation, reverse the decrease on glucose uptake, partially restore expres-
sion levels of Adipoq, Cfd, leptin (Lep), and Slc2a4, and decrease the expression of 
Fabp4 [74].

TEL treatment in three DIO rodent models (C57BL/6 J mice, OLETF rats, and 
Male Sprague-Dawley rats) and one obese diabetic yellow agouti Avy/a mice 
resulted in lower weight gain and decrease in glucose, insulin, and lipids levels [22, 
166, 283, 367]. Besides, in Avy/a mice, TEL did not affect the volume and structure 
of trabecular bone, with no fat accumulation in the marrow, and the combination of 
TEL and rosiglitazone treatments resulted in partial protection against bone loss 
[166]. TEL treatment in diabetic mice also induced the expression of beige markers, 
increased oxygen consumption, and carbon dioxide production, increasing respira-
tion rate and confirming its action on energy expenditure [166]. Moreover, this mol-
ecule also provoked a decrease of pro-inflammatory cytokines and leptin levels, as 
well as an increase in adiponectin and a significant reduction in insulin resistance in 
OLETF rats [367]. Preliminary human studies showed that TEL improved insulin 
resistance in hypertensive and T2D, whereas no significant changes observed in 
adiponectin were upregulated only in high doses of TEL body weight, fasting 
plasma glucose, and plasma lipids levels [224, 321].

MRL24 A benzoyl indole called MRL24 was discovered in 2005 as a poor agonist 
of PPARγ with significant anti-diabetic effects, reducing weight gain, heart weight, 
and glycemia, when compared to rosiglitazone, in db/db mice [1]. This ligand also 
improved insulin sensitivity and glucose tolerance, as well as fasting insulin levels 
on mice fed HFD, mostly due to its action on reducing CDK5-mediated phosphory-
lation [45].

Phloretin In 2007, based on researches focused on the effects of flavonoids and 
chronic diseases, the chalcone phloretin was identified as PPARγ ligand [117]. 
Using 3 T3-L1 cells, it was observed that phloretin treatment resulted in an increase 
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on lipid accumulation, an increase on the triglycerides content, and in adiponectin 
expression and secretion, together with an increase on the expression of adipogenic 
markers, such as Pparγ, Cd36, lipoprotein lipase (Lpl), and Cebpa during the pro-
cess of differentiation, indicating its effects on adipogenesis and suggesting its pos-
sible role on insulin sensitivity [117]. Later on, microarray analysis of phloretin 
treatment on adipocytes identified an upregulation of genes associated with carbo-
hydrate and lipid metabolism, as well as of genes encoding adipokines and tran-
scriptional regulators associated with adipocyte phenotype, confirming the previous 
results [118].

Phloretin also affected the insulin signaling pathway, mainly by increasing 
phosphor- Akt and phosphor-GSK3β, despite no effect on the AMPK pathway, 
revealing its adipogenesis role to the PI3K-AKT signaling pathway [292]. In vivo 
experiments with C57BL BKS-DB mice showed that treatment with phloretin 
increased food consumption with no effect on body weight, decreasing blood glu-
cose and cholesterol levels and improving glucose tolerance. It was also observed 
an increase in PI3K and AKT’s activity on mouse adipose tissue, besides an increase 
in proteins of adipogenic markers, as SLC2A4 (former GLUT4) and CD36 confirm-
ing the in vitro results [292].

Other in vivo experiments were performed to evaluate phloretin’s effects on glu-
cose metabolism, and it was observed that the treatment with this flavonoid protects 
mice from HFD-induced obesity, with no weight gain, loss of fat mass, and smaller 
WAT, suppressing lipid accumulation on this tissue. It was also detected an increase 
in Adipoq expression, decreased fat content on the liver due to a reduction in the 
expression of PPARγ, and a decrease in glycemia and an improvement in insulin 
sensitivity [6]. Molecular docking and molecular dynamics analysis showed that the 
PPAR-phloretin complex was formed by three hydrogen bonds and six hydrophobic 
interactions, suggesting that phloretin was effectively bound to PPARγ [174]. All 
these positive effects of phloretin on glucose homeostasis and insulin sensitivity, as 
well as its binding site in an activated conformation of PPARγ, suggest that this 
ligand decreases S273 phosphorylation [174]; however, more experiments are 
required to confirm the phosphorylation modulation.

MBX-102 Another PPARγ partial-agonist group, MBX-102, was described in 
2009 [104]. This compound belongs to the halofenate compounds family, which are 
a racemic mixture of (−)- and (+)-[2-acetoaminoethyl (4-chlorophenyl) 
(3- trifluoromethylphenoxy) acetate]. These compounds have already been clinically 
tested in the 1970s, revealing its actions as hypolipidemic and hypouricemic agents 
[13]. MBX-102 is an enantiomer of halofenate, a pro-drug ester that is wholly modi-
fied in vivo by nonspecific serum esterases to the mature free form MBX-102 acid, 
which is the circulating form of the molecule. In vitro assays showed its capacity to 
bind to PPARγ and activate it in a dose-dependent manner, but with lower efficiency 
than rosiglitazone, also having the ability to antagonize rosiglitazone-dependent 
PPARγ activation. It was shown that the interaction of MBX-102 with LBD of 
PPARγ occurs distinctly from TZDs. Moreover, this ligand has the capacity of dis-
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placing the corepressors NCoR and SMRT and has a reduced ability to recruit 
coactivators, explaining its partial agonism [104].

Regarding the physiological effects of MBX-102, in vitro studies using 3 T3-L1 
adipocytes revealed its ability to enhance insulin-stimulated glucose membrane 
translocation and a decreased ability to stimulate adipocyte differentiation [104]. In 
vivo studies with three T2D rodent models (ob/ob and db/db mice and Zucker fatty 
diabetic (ZDF) rats) demonstrated that the treatment with this ligand promoted a 
reduction on fasting plasma glucose [41, 104]. ZDF treated with MBX-102 also 
showed reduced plasma insulin levels and increased glucose infusion rate and glu-
cose disposal rate on the hyperinsulinemic-euglycemic clamp, suggesting its role on 
insulin sensitivity. Long-term treatment with MBX-102 revealed an improvement in 
glucose tolerance and an increase in adiponectin levels, with no increase in body 
and heart weight, side effects observed with rosiglitazone treatment [104]. Another 
study using ZDF rats revealed positive effects of MBX-102 on reducing triglycer-
ides, FFA, and cholesterol levels [41].

MBX-102 also reduced osteoblastic differentiation in  vitro and decreased the 
levels of LPS-stimulated pro-inflammatory cytokines (such as monocyte chemoat-
tractant protein-1 (MCP-1) and interleukin 6 (IL-6) in mouse primary peritoneal 
macrophages, revealing its promising therapeutic potential on the treatment of T2D 
[104], also acting as a blocker of S273 phosphorylation [45]. MBX-102 anti- diabetic 
effects were addressed in humans in phase 2 and 3 clinical trials (identifiers 
NCT00814372, NCT00353587), but up to 2020, no results were published yet.

7b In 2010, a potent PPARγ partial agonist, called 7b, was developed after modifi-
cations on TEL structure and showed a high affinity to the NR and binding mode 
that differs from the full agonists [178]. On this molecule, the molecule’s carboxylic 
acid binds at the opposite end of the active site and hydrogen bonds with R288 and 
S342, allowing the amide group to donate and accept hydrogen bonds to S289 and 
Y327, respectively. This compound was used for in  vivo assays with ZDF rats, 
being evaluated as suitable for chronic administration. A reduction in plasma glu-
cose and triglycerides levels was observed with fewer side effects than full agonists, 
but more experiments are necessary to confirm this compound’s efficacy and con-
firm if this molecule may act as a blocker of S273 phosphorylation [178].

GQ-16 Two years later, other PPARγ partial agonist, GQ-16, was reported to 
reverse the impairments on insulin signaling that HFD promotes [7]. GQ-16 treat-
ment increased insulin receptor expression, insulin receptor substrate 1, and protein 
kinase B, among others. In addition, HFD mice showed an improvement in insulin 
sensitivity due to an increase in glucose disappearance rate (KITT) and glucose 
tolerance, with a lower increase in body weight and a decrease in fat mass. It was 
showed that this molecule could block S273 phosphorylation in a concentration- 
dependent manner, binding to PPARγ in an axial orientation, parallel to H3, making 
no contact with residues of H12. This interaction protects the lower half of LBD, 
stabilizing the H11-12 loop, H3, and β-sheet/S273 regions, more efficiently than 
rosiglitazone does [7].
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Mice treated with GQ-16 exhibited a slight decrease in hepatic triglycerides and 
attenuation on adipocyte hypertrophy and a decrease in interscapular BAT, with 
small lipid droplets. Interestingly, this ligand promoted an increase on the expres-
sion of Ucp1, Cidea, and Prdm16 in BAT and epididymal WAT, which are genes 
related to thermogenesis, indicating the potential role of this molecule on the treat-
ment of T2D and obesity [52].

Amorfrutins In 2012, another group of molecules belonging to the family of natu-
ral products, amorfrutins, was described as partial-agonist PPARγ. They were iden-
tified by screening a library containing 8000 pure compounds, which revealed 90 
potential PPARγ ligands. Amorfrutins, a family of isoprenoid-substituted benzoic 
acid derivatives without any stereocenters, were selected as structurally new mole-
cules with a high binding affinity to the NR [343]. It was reported that these com-
pounds induce partial recruitment of coactivators, as CBP, PGC1α, TRAP220/
DRIP, and PRIP/ RAP250, as well as disrupt the recruitment of the corepressor 
NCoR. It was also shown that these molecules interact with PPARγ LBD by contact 
between H3 and the β-sheet, stabilizing these structures [343].

Regarding the physiological effects of amorfrutins, in vitro assays using 3 T3-L1 
adipocytes showed an upregulation of PPARγ target genes, as Fabp4, Slc2a4, and 
LXRα (Nr1h3), but in a lower degree than rosiglitazone. Moreover, it was observed 
a less pronounced adipocyte differentiation and an upregulation of genes involved 
in cholesterol biosynthesis, fatty acid elongation, and oxidation, in contrast to a 
downregulation of inflammatory genes. Besides these results, in vivo studies using 
DIO C57BL/6 mice revealed that the treatment with amorfrutin 1 reduced insulin 
resistance, enhanced glucose tolerance, and decreased plasma triglycerides, FFA, 
insulin, and glucose in the same levels as rosiglitazone did. Although it promoted an 
increase in food intake, body weight gain was significantly reduced, which was 
related to an increase in plasma levels of thyroxine (T4), a marker of increased 
energy expenditure [343].

The anti-diabetic effects of amorfrutin 1 were also evaluated in db/db mice, 
showing no weight gain, with a reduction in plasma insulin levels, as well as glu-
cose, triglycerides, and FFA compared to vehicle. As S273 dephosphorylation was 
described as a mechanism for improvement on insulin sensitivity, this parameter 
was checked, and it was observed a reduction in S273 phosphorylation on WAT of 
DIO mice, increasing the expression of gene related with this PTM, as Nr1d2, 
Selenbp1, Adipoq, and Cfd. In the liver of DIO mice, amorfrutin 1 treatment reduced 
hepatic triglycerides and induced FAO by upregulating Fabp4, Pgc1a, and Cpt1a 
compared to a vehicle with reduced TNFα protein concentration and higher glyco-
gen content. Besides, amorfrutin 1 leads to decreased inflammation and macrophage 
accumulation in the liver and WAT. All these effects could indicate the potential 
action of amorfrutins on glucose metabolism and lipid profile, improving insulin 
sensitivity and acting as a molecule against T2D [343].

p-F11 In 2013, pseudoginsenoside F11 (p-F11), an ocotillol-type ginsenoside iso-
lated from the roots and leaves of Panax quinquefolium L. (American ginseng), was 
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identified in a screening for partial PPARγ agonists. p-F11 was described with mod-
erate adipogenic activity in vitro [347]. In a gene reporter assay, p-F11 was shown 
to dose-dependently increase PPARγ activation, although higher concentrations of 
p-F11 promoted an activation increase smaller than lower concentrations of rosigli-
tazone, corroborating its action as a partial agonist. This ligand increased the mRNA 
expression and protein level of both PPARγ and adiponectin, as well as adiponectin 
oligomerization and secretion in 3 T3-L1 adipocytes, indicating that this adiponec-
tin upregulation is through PPARγ activation during the differentiation of 3 T3-L1 
preadipocytes. Regarding S273 phosphorylation, p-F11 decreased this PTM occur-
rence in 3 T3-L1 adipocytes in the same extent than rosiglitazone [347].

CMHX008 In the following year, other PPARγ partial agonist was discovered 
through docking methods. CMHX008 presents a different binding mode to interact 
with the receptor, forming hydrophobic interactions with L255, I281, M348, and 
I341  in the receptor entrance [219]. Compared to rosiglitazone, this molecule 
showed, in vitro, a decreased activation of PPARγ, reduced adipocyte differentia-
tion and lipid accumulation, and an increase on Adipoq, Slc2a4, and Fabp4 expres-
sion and on adiponectin secretion [219].

To confirm these effects, in  vivo studies were performed using DIO mice, in 
which CMHX008 treatment showed a decrease in body weight, together with a 
reduction in adipocyte size and WAT weight and reduction on triglycerides and 
LDL-cholesterol levels [219]. These animals also improved glucose tolerance with 
reduced glycemia and reduced insulin plasma levels, indicating CMHX008 anti- 
diabetogenic effects. These effects were justified as a result of S273 phosphoryla-
tion blockage and alteration on the ability of PPARγ to interact with coactivators, 
promoting differential recruitment of the receptor to the promoter of its target 
genes [219].

Regarding inflammation, DIO mice treated with CMHX008 showed reduced 
serum IL-6 and TNFα and increased IL-10, a cytokine with anti-inflammatory prop-
erties [219]. CMHX008, as well as with rosiglitazone, switched macrophage polar-
ization from pro-inflammatory M1 to anti-inflammatory M2 dominant [219]. 
Studies to compare the effects of CMHX008 with rosiglitazone, concerning one of 
its well-known side effects, bone mass loss, showed that CMHX008 promoted a 
decrease in trabecular bone, but in a small proportion. Moreover, treatment with this 
molecule displayed a more mineralized matrix during differentiation into osteo-
blasts [132]. Altogether, these results indicate the effects of CMHX008 in glucose, 
lipid, and bone mineral metabolism.

L312 In 2014, another PPARγ partial agonist was described as a potent molecule 
on insulin sensitivity with low side effects. It was called L312 ((S)-2-(4- 
chlorobenzamido)-3-(4-(2-(5- methyl-2-phenyloxazol-4-yl)ethoxy)phenyl) propa-
noic acid), and it had a similar affinity to PPARγ-LBD as pioglitazone with a less 
extent transcriptional activity [349]. In vitro assay demonstrated its effects on the 
recruitment of CBP coactivator and NCoR displacement, besides a weak adipogenic 
activity. Moreover, in vivo experiments revealed that L312 improves insulin resis-
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tance in a dose-dependent manner and improves glucose tolerance, reducing serum 
insulin, fasting glucose, triglycerides, and FFA levels. This molecule also reduced 
adipocyte size and results in a lower increase on body weight when compared to 
pioglitazone. All these effects were related to the inhibition of S273 phosphoryla-
tion in vitro and in vivo, attenuating the expression of several genes regulated by 
this PTM, which makes L312 a potential drug on T2D treatment [349].

Chelerythrine In 2015, a molecule called chelerythrine, which is derived from 
Chelidonium majus (greater celandine) and is already used as a medical therapy 
with antiviral, antitumor, antifungal, and anti-inflammatory activity, was revealed as 
a selective modulator of PPARγ [368]. It was shown that this compound has weak 
activity on PPARγ-LBD but exhibited a high binding potency, promoting the recruit-
ment of coactivators as SRC1 and PGC1α, and displacement of SMRT corepressor 
with less efficiency than rosiglitazone, being considered a partial agonist. In vivo 
experiments demonstrated its effects on improving glucose tolerance and insulin 
sensitivity with no weight gain. In addition, chelerythrine promoted a reduction on 
serum glucose, insulin, and cholesterol levels and a decrease on the expression of 
Cd36, Il1b, interferon gamma (Ifng), and Tnfa. Despite its lower transcriptional 
activity, this molecule exhibited a higher capacity on blocking S273 phosphoryla-
tion when compared to rosiglitazone, which confirms its potential role on the treat-
ment of diabetes and obesity [368].

F12016 Another PPARγ partial agonist and an S273 phosphorylation blocker, 
F12016, was reported in 2015. This benzamide derivate is structurally different 
from TZDs, and it was shown to promote the transcriptional activity of the receptor 
through the binding to its LBD, but with moderate intensity when compared to rosi-
glitazone [193]. This interaction includes binding through two hydrogen bonds, a 
π-π stacking interaction, and several van der Waals forces with surrounding amino 
acids, such as C285, M364, I326, L330, M329, and I281 [193]. F12016 showed 
moderate activation of PPARγ, with impaired coactivator and improved corepressor 
recruitment compared to rosiglitazone, suggesting its partial agonism [193].

The effects of F12016 in vitro using 3 T3-L1 and hepatocytes showed that this 
compound enhanced insulin-stimulated glucose uptake, increasing insulin sensitiv-
ity and promoting glucose transport. Besides, F12016 presented low potency to 
induce the formation of lipid droplets, also reducing triglycerides content inside the 
cells [193]. As expected from partial agonists, F12016 differentially regulates a set 
of genes involved in adipogenesis, decreasing expression of Fabp4 and Cd36, 
among others, and increasing the expression of Adipoq. Still using cell models, 
researchers found that this molecule caused less reduction of bone cells’ calcifica-
tion than rosiglitazone, suggesting F12016 would cause less osteoporosis. Besides 
this, in the KK-Ay murine diabetes model, F12016 promoted a reduction in fasting 
glucose levels and improved glucose tolerance and insulin sensitivity, with no 
weight gain. In conclusion, this ligand demonstrated various advantages as insulin 
sensitizer without showing side effects [193].
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DHM Still, on the PPARγ of partial agonists class, many flavonoids are reported to 
act on glucose and lipid metabolism. One example is dihydromyricetin (DHM), 
described in 2016, that promoted less weight gain than rosiglitazone in ZFD rats 
and significantly reduced fasting blood glucose, improving the insulin/glucagon 
ratio [194]. Moreover, DHM reduced insulin resistance by 50% in comparison to 
rosiglitazone. On lipid profile, it was observed an improvement on serum lipids 
levels compared to control and a significant reduction on visceral and total fat mass, 
reducing adipocytes size more efficiently than rosiglitazone, also promoting an 
increase in adiponectin protein levels in adipose tissue [194]. DHM reduced PPARγ 
phosphorylation in  vivo more potentially than the rosiglitazone [194]. In 
3  T3-adipocytes, DHM also showed a decrease in lipid accumulation and the 
 expression of the adipogenic marker Fabp4, and in combination with dexametha-
sone, DHM increased glucose uptake by 90% in cells, also improving adiponectin 
and FGF21 secretion by adipocytes [195]. In normal adipocytes, DHM treatment 
decreased CDK5 activation and ERK phosphorylation, reducing insulin-resistant 
adipocytes, through the prevention of S273 phosphorylation, further elucidating the 
mechanisms of anti-diabetic properties of DHM [195].

GQ-11 In 2018, the compound GQ-11 was described as a partial agonist of PPARα 
and PPARγ. Using docking studies, it was shown that this molecule interacts with 
the hydrophobic residues F282 and L469 of PPARγ arm I and forms a hydrogen 
bond with S289, also interacting with PPARα [295]. The pharmacological effects of 
this molecule were evaluated in LDL receptor-deficient mice (LDLr−/−) fed on a 
diabetogenic diet, showing positive effects on insulin sensitivity, decreasing fasting 
glucose and insulin levels, and improvement of glucose tolerance compared to con-
trol. Furthermore, GQ-11 treatment resulted in lower body weight and did not mod-
ify adipose mass, differing from pioglitazone [295]. On PPARγ modulation, GQ-11 
is involved in improving adipokines levels, as adiponectin, with a concomitant 
increase on the expression of Slc2a4, followed by a decrease in serum leptin. This 
molecule also affects the animals’ inflammatory state, increasing IL-10 in adipose 
tissue, with a decrease in MCP-1, suggesting its influence on local and systemic 
inflammation. Related to lipid profile, GQ-11 treatment promoted a decrease in 
VLDL cholesterol levels and serum triglycerides, with an increase in HDL- 
cholesterol levels compared to control [295]. GQ-11 was also reported as an anti- 
diabetic compound because it induces the upregulation of anti-inflammatory 
cytokines and growth factors gene involved in tissue repair in db/db and non- diabetic 
mice. This ligand improved wound closure in db/db mice compared to control or 
pioglitazone groups, increasing collagen deposition and decreasing macrophage 
infiltration in this lesion [295].

Another possible approach to modulate PPARγ action would be to prospect mol-
ecules that act as non-agonists of PPARγ. These compounds should bind to the 
receptor but do not promote its transcriptional activity, and some of them were 
reported to block S273 phosphorylation, promoting insulin sensitivity.
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SR1664 In this context, in 2011, after discovering compound 7b, some analogs of 
this molecule were developed, of which the most efficient one was SR1664 [46]. In 
silico docking studies revealed that SR1664 increases the conformational mobility 
of C-terminal end of H11, a helix that abuts H12, which could be explained by the 
interaction of phenyl substituted nitro group of the molecule with hydrophobic side 
chains of H11, such as L452 and L453 of the loop N-terminal to H12 [46]. Following 
this, it was evaluated its capacity to recruit cofactors and DNA binding ability, 
observing that SR1664 did not influence SRC1 recruitment or the occupancy of 
PPARγ [46]. On the first in vitro assays with SR1664, its effects on adipocyte dif-
ferentiation were evaluated, resulting in no changes in lipid accumulation or the fat 
cells’ morphology, with little or no change on fat cell gene expression. It is already 
known that TZDs affect bone formation, and, using MC3T3-E1 cells, it was seen 
that SR1664 did not affect the extent of calcification or the expression of osteoclas-
tic genes [46].

Subsequently, the anti-diabetic properties of SR1664 were analyzed in  vivo 
using DIO mice, and the treatment promoted a decrease in S273 phosphorylation, 
as well as on glucose and fasting insulin levels, with an improvement on insulin 
sensitivity, without changing body weight. These same results were observed in a 
more severe animal model, ob/ob mice, confirming the beneficial effects of SR1664 
on glucose metabolism and insulin sensitivity, with no side effects due to its non- 
agonism characteristics [46].

AM-879 Another PPARγ non-agonist, discovered in 2013 on a study that used a 
structure-based strategy to search for new ligands, was AM-879 [61]. On the initial 
screening, this molecule was selected due to its ability to ensure increased thermal 
stability for the receptor over the unbound one, proving its capacity to bind to the 
PPARγ. After, in vitro transactivation assays presented its capacity to decrease the 
basal transcription of this receptor [61, 272]. Further, this ligand did not favor coact-
ivator recruitment, did not induce corepressor release, and did not induce a signifi-
cant increase in lipid accumulation or adipocyte differentiation in adipogenesis 
assays, decreasing expression levels of Adipoq, Cfd, and Cd36 [272]. Finally, this 
study showed that AM-879 reduced S273 phosphorylation more effectively than 
rosiglitazone, indicating its potential anti-diabetic role and the requirement of fur-
ther studies [272].

UHC1 Another PPARγ non-agonist, described in 2014, was UHC1, which showed 
in vitro assays not to stimulate lipid accumulation and not increase some classical 
adipogenic markers but influencing the expression of genes regulated by S273 phos-
phorylation [47]. In addition, in vivo studies with HFD mice showed that UHC1 
induced an improvement in glucose tolerance and reduced fasting glucose and insu-
lin levels. On lipid profile, UHC1 promoted a reduction in serum triglycerides, cho-
lesterol, and FFA and upregulated the expression adiponectin and adipsin. Regarding 
the inflammation process, UHC1 showed a potential role in the inflammatory pro-
cess, as it inhibited the TNFα-stimulated pro-inflammatory responses in 3 T3-L1 
adipocytes and reduced the mRNA levels of the pro-inflammatory cytokine Il6 and 
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increased the levels of anti-inflammatory markers as Il10 and arginase in HFD mice. 
All these data indicate that UHC1 exerts potent anti-diabetic effects, positively 
influencing inflammation, without causing side effects as TZDs [47].

SB1451 and SB1453 Afterward, in 2016, two new molecules were synthesized 
based on previous compounds that bind to PPARγ and block S273 phosphorylation: 
SB1451 and SB1453 [15]. These ligands contain hydrophilic piperazine moieties 
attached to the other benzene rings to improve their solubility. In vitro assays con-
firmed their ability to block CDK5-mediated S273 phosphorylation. Further, these 
molecules have shown a low activation of the receptor and did not trigger adipogen-
esis in 3 T3-L1 cells. To evaluate the anti-diabetic effects, DIO mice model showed 
that SB1453 was more effective in reducing S273 phosphorylation than SB145, as 
well as altered the expression of 10 out of 17 affected genes by this PTM and 
improvement on glucose tolerance. Possible side effects of SB1453 were studied, 
and no significant changes were seen on the markers for heart failure (natriuretic 
peptide B) and hypertrophy (myosin heavy chain β). Finally, the crystal structure of 
SB1453 with PPARγ-LBD showed that this compound was covalently bound to 
C313 on H3 and occupied the hydrophobic region between H3 and β3-β4 sheets, 
which is closely related to the inhibition of S273 phosphorylation [15].

SR10171 An inverse agonist of PPARγ was also described, binding to the receptor 
as an agonist but promoting an opposite response. SR10171 is considered a partial 
inverse agonist since it partially represses the NR’s basal transcriptional activity 
[301]. This molecule reduces S273 phosphorylation, resulting in induced pro- 
osteoclastic activity, increased osteoclastogenesis, and cortical bone thickness, at 
the same time that it enhances insulin sensitivity in DIO mice [87, 301]. In addition, 
this same ligand promotes preferential recruitment of corepressors than coactiva-
tors, due to its interaction with H12 of the receptor, favoring the antagonist confor-
mation [87].

21.4.2  Modulating the Activity of Enzymes Responsible 
for PTMs

In order to characterize a PPAR PTM, its addition or removal is often modulated by 
an activator or inhibitor of the enzyme responsible for the modification. Although 
useful in isolated systems such as in vitro cell culture or knock-in/knockout ani-
mals, this approach may not correlate well in the clinical trials. Modulation of a 
PPAR PTM occurrence requires a fine-tuning adjustment to avoid unspecific activa-
tion or blockage of other signaling pathways and to avoid undesirable side effects.

In this topic, strategies used in the research laboratories to inhibit or stimulate the 
addition of a PTM in PPAR using PTM enzyme modulators will be presented. 
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Moreover, we are going to discuss the applicability of this strategy in the clinic to 
modulate the PPAR function.

21.4.2.1  Phosphorylation

Phosphorylation in PPARα seems to have antagonistic effects as increased S12/S21 
and decreased S73 phosphorylation lead to increased activity of the receptor, result-
ing in a protective effect for hepatic steatosis [55, 128]. However, the reports with 
kinases and phosphatases activators and inhibitors to modulate these phosphoryla-
tions are rare. In the only report of kinase modulation, S12/S21 phosphorylation is 
inhibited by MAPK inhibitor PD98059, decreasing the receptor activity [147]. In 
order to stimulate the PPARα activation and its protective effect in hepatic steatosis, 
it would be interesting to induce S12/S21 phosphorylation and/or to reduce the one 
at S73. GSK3β phosphorylates the later serine, and the phosphatase that mediates 
this dephosphorylation was not yet described [127].

PPARγ phosphorylations can be increased upon stimulation of the kinases 
MAPK, ERK, and CDK5 pathways with growth factors, such as epidermal growth 
factor (EGF), platelet-derived growth factor (PDGF), TGFβ, insulin, prostaglandin 
F2α (PGF2 α), TNFα, cellular stress (UV, TPA, and anisomycin), IL-6, or FFAs [2, 
37, 45, 135, 270, 361]. PPARγ phosphorylation in the LBD (S273) does not change 
transcriptional activity, but inhibition of this phosphorylation increases insulin sen-
sitivity, whereas PPARγ phosphorylation in AF-1 and DBD decreases the receptor 
activity (S112, Y74, Y78, S16/S21). Therefore, with the objective to revert the insu-
lin resistance mediated by S273 phosphorylation without activating the NR and 
inducing weight gain, hepatic steatosis, and bone loss, a good strategy would be to 
block the kinase or activate the phosphatase responsible to respectively phosphory-
late and dephosphorylate the S273 residue, while promoting the phosphorylation of 
serines and tyrosines present in AF-1 and DBD. However, these residues are phos-
phorylated by different kinases: casein-kinase II (S16/S21 in PPARγ1), c-SRC (Y78 
PPARγ2), EGFR kinase (Y74 PPARγ1), and MAPK, CDK7, CDK9, and ERK for 
S112 in PPARγ2, making this a hard approach.

Some protein kinases, such as WEE1 and MEK, are specific and perhaps phos-
phorylates only one or two distinct protein targets [320]. However, many other pro-
tein kinases have a broader specificity and are likely to phosphorylate hundreds of 
distinct proteins within cells.

Casein-kinase II (CK2), which phosphorylates PPARγ1 S16/S21, is a ubiquitous 
serine/threonine kinase that has over 100 potential physiological targets [192], 
including growth-related proteins, NOPP140, tumor protein p53, Fas-associated 
factor-1 (FAF-1), topoisomerase II and CD5, and potential CK2 regulators such as 
fibroblast growth factor-2 (FGF-2) [9, 28, 29, 80, 144, 186, 263]. Due to its role in 
cell fate determination in cancer cells, there is an increasing interest in the develop-
ment of CK2 modulators for cancer therapies [103, 111, 261].

Y78 phosphorylation can be inhibited with a c-SRC kinase inhibitor, PP2, aggra-
vating insulin resistance in obese mice and dysregulating the gene expression of 
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cytokines and chemokines in adipocytes [49]. However, the non-receptor tyrosine 
kinase c-SRC, the first proto-oncogenic protein ever described [208, 330], is ubiq-
uitously expressed in all cell types, and pharmaceutical modulation of its activity 
can interfere in other pathways which regulate cell growth, differentiation, and cyto-
skeletal regulation [77, 313].

Differently, EGFR is a transmembrane receptor for EGF with a tyrosine kinase 
domain and member of the ErbB family of receptors [362]. The kinase domain of 
EGFR can cross-phosphorylate tyrosine residues of other receptors with which it is 
aggregated, for example, PPARγ 1 Y74 [350], and can be itself activated in 
that manner.

PPARγ S112 was shown to be phosphorylated by several kinases (MAPK, 
CDK7, CDK9, ERK), and treatment with a MEK inhibitor, U1026, reduced phos-
phorylation and the receptor degradation [83].

The best strategy to modulate insulin resistance would be to only block S273 
phosphorylation, with a CDK5 or ERK inhibitor, or to promote its dephosphoryla-
tion with the activation of PPM1A phosphatase. For example, treatment with rosco-
vitine, a selective CDK5 inhibitor, prevents S273 phosphorylation [45]. However, 
CDK5 does not seem to be a simple drug target for specific PPARγ modulation 
because its pharmaceutical activation could deregulate the different pathways coor-
dinated by this kinase, resulting in undesirable side effects.

CDK5, unlike other members of the cyclin-dependent kinases family, is not typi-
cally activated upon binding with cyclin and does not require T-loop phosphoryla-
tion for activation. CDK5 is activated by binding of p35 or its cleaved form p25 [65, 
129, 247]. Additionally, CDK5 has functions in both terminally differentiated and 
proliferating cells [206] and, as others CDKs, is highly expressed in mitotic cells 
[285]. CDK5 plays a vital role in the central nervous system but also has a function 
in the immune system by increased interferon γ-induced programmed death-ligand 
1 (PD-L1) expression, in insulin secretion, in angiogenesis promotion, in cell cycle 
by increasing expression of cyclins and other CDKs, and in cancer progression 
[294]. Due to its biological and clinical relevance in multiple cell types, CDK5 
presents an attractive therapeutic target for treating various conditions such as dia-
betes, cancer, and neurodegeneration. Two CDK5 inhibitors are in clinical trials for 
cancer treatment, dinaciclib and seliciclib, whereas roscovitine, widely experimen-
tally used to inhibit CDK5 activity, is being intensively examined as clinical cancer 
therapeutics [26, 85, 345].

To modulate the phosphate addition without interfering in the other targets of 
CDK5 phosphorylation, a different approach has been proposed: the development 
of ligands or peptides targeting the interface region between PPAR and this kinase 
[273]. Computational and biophysical analysis of PPARγ and CDK5 structures 
resulted in a model of interface interaction, which was validated with single point 
mutations experiments with purified proteins and in cell culture. At PPARγ, the 
CDK5 phosphorylation occurs in a noncontiguous motif, where P0 is S245, P + 1 is 
P246, P + 2 is F247, and K261 structurally occupies P + 3 position [273]. These 
computational analyses identified PPARγ K261, K263, and K265 as anchor 
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residues in the CDK5/p25 interaction, and single point mutations of these lysines 
resulted in decreased interaction with CDK5, decreasing the NR phosphorylation 
[273]. These results suggest that inhibition of CDK5-mediated phosphorylation of 
PPARγ with ligands that bind in the LBP might occur due to conformational changes 
in the receptor H2′ (residues 254 to 259), which loses its flexibility after ligand 
binding, probably blocking CDK5 anchorage to its recognition interface. It was 
hypothesized that peptides targeting the residues in the interaction interface could 
also block PPARγ phosphorylation, being an attractive therapeutic approach to treat 
T2D. This approach could also be expanded to the other PPARs PTMs, with the use 
of computational biology and biophysics experiments being used to propose and 
validate sites for protein anchorage to promote acetylation (and deacetylation), 
SUMOylation, phosphorylation, and other PTMs, which further the development of 
inhibitors of these specific interactions and with specificity to the desired PPAR 
isotype.

21.4.2.2  Acetylation/Deacetylation

In order to map and study PPARγ acetylation, the acetyl addition was promoted by 
treatments with acetyltransferase CBP or with HDAC inhibitors like trichostatin A 
(TSA) and nicotinamide (NAM), which is also a SIRT1 inhibitor [260, 314], sug-
gesting that basal levels of PPARγ acetylations are very low.

The importance of PPARγ acetylation state in the balance between the beneficial 
and adverse effects of TZDs raises scientific interest in targeting this modification 
together with S273 phosphorylation. Deacetylation of PPARγ was promoted with 
purified deacetylase together with deacetylase co-factor nicotinamide adenine dinu-
cleotide (NAD), and in cells with RSV, an activator of the deacetylase SIRT1, 
resulting in decreased expression of adipogenic genes [260, 314]. Consequently, 
inhibition of SIRT1 by NAM treatment prevented PPARγ deacetylation [314].

The modulation of SIRT1 seems an interesting approach to maintain the deacety-
lated state of PPARγ in a research laboratory isolated set up of experiments. 
However, treating obese patients with SIRT1 activator would be seen with caution 
once this deacetylase regulates many other relevant pathways in humans. SIRT1 is 
a member of the sirtuin family and can deacetylate various substrates and is, there-
fore, involved in a broad range of physiological functions, including control of sev-
eral cardiometabolic and aging-related pathways [262, 340]. Besides PPARγ, other 
SIRT1 substrates are the tumor suppressor protein p53, members of the Forkhead 
box factors regulated by insulin/Akt (FoxO) family, hairy and enhancer of split 1 
(HES1), hairy/enhancer-of-split related with YRPW motif 2 (HEY2), COUP-TF- 
interacting protein 2 (CTIP2), p300, PGC1α (PPARγ coactivator), and NF-κβ [106, 
215, 253, 352].

Because of its many substrates, among other effects, SIRT1 is reported to regu-
late energy and lipid homeostasis, hepatic lipid homeostasis [352], DNA damage 
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repair and genome integrity [338], and chronic inflammation [281]. In these last two 
examples, insulin sensitivity and lipid accumulation in adipocytes regulate PPARγ 
activity [249, 250, 305].

SIRT1 has a controversial effect on cancer; it is upregulated and serves as a 
tumor promoter in human prostate cancer [138], acute myeloid leukemia [31], and 
primary colon cancer [191, 201, 303]. However, it is downregulated in other cancer 
types such as glioblastoma, bladder carcinoma, prostate carcinoma, and ovarian 
cancers when compared to the corresponding normal tissues [338], and its overex-
pression, in these cases, reduces tumor development [64, 81, 107].

Because of its involvement in many pathways, SIRT1 does not seem a simple 
drug target for specific PPARγ modulation through deacetylation. However, the use 
of sirtuin modulators has been described to treat diabetes, fatty liver diseases, 
obesity- induced insulin resistance, and inflammation [190, 340].

Promising SIRT1 activator compounds include the natural polyphenol RSV and 
SRT1720 [76, 133, 218, 296]. Due to the RSV low bioavailability, some derivatives 
were developed to improve this characteristic and have already been tested in clini-
cal trials [328]. resVida®, a nutraceutical formulation of RSV, demonstrated benefi-
cial effects in healthy obese men, decreasing intrahepatic lipid content, circulating 
glucose, triglycerides, alanine-aminotransferase, and inflammation markers, and 
mimicking the effects of calorie restriction [317]. However, another nutraceutical 
formulation, Longevinex®, did not modify blood pressure, insulin resistance, lipid 
profile, or inflammatory markers [89]. SRT501, a commercial micronized RSV for-
mulation, enhanced mitochondrial biogenesis, improved metabolic signaling path-
ways, and blunted pro-inflammatory pathways in mice fed a high-calorie diet [296]. 
Moreover, it was shown to lower blood glucose and to improve insulin sensitivity in 
patients with T2D in a Phase IIa trial [133], requiring further clinical studies.

SIRT1 activators structurally unrelated to RSV were also developed, and some of 
them, for example, SRT1720, activate the deacetylase more potently than the former 
[76]. Its therapeutic potential to treat insulin resistance and diabetes was tested in 
three in vivo models of T2D, and it was able to promote insulin sensitization via 
metabolic adaptations simulating low energy levels [76, 218, 296]. Administration 
of SRT1720 reduced fed glucose levels, partially normalizing elevated insulin lev-
els, and reduced fasting blood glucose to near normal levels in mice on HFD, 
strongly protecting mice from DIO and insulin resistance by enhancing oxidative 
metabolism in skeletal muscle, liver, and BAT [76, 218, 296].

Another synthetic SIRT1 activator, SRT2104, was tested in a Phase IIa trial in 
patients with metabolic, inflammatory, and cardiovascular diseases and was shown 
to significantly attenuate LPS-induced IL-6 and interleukin 8 (IL-8) release and 
activation of coagulation [328]. The cardiometabolic effects were also evaluated in 
a clinical trial with T2D, where treatment with SRT2104 resulted in weight loss and 
deterioration in glycemic control [235].

Nevertheless, these compounds’ tissue-specific effects need to be carefully eval-
uated to avoid undesirable side effects due to the broad spectrum of pathways mod-
ulated by SIRT1.
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21.4.2.3  SUMOylation

PPARs SUMOylations decreases the activity of the receptors in all isoforms. For 
PPARβ/δ, SUMOylation physiological effects are not clear yet [168], whereas 
PPARα-reduced activity is related to hepatic steatosis [185, 257] and PPARγ- 
decreased activity is desired in the context of metabolic disorders since its activation 
leads to adipogenesis [216, 353]. Increased deSUMOylation of PPARγ was observed 
in a report describing the receptor ligand modulating deSUMOylation effects by 
targeting a SUMO-specific protease, SENP2. Treatment with saturated FA, like pal-
mitate, led to NF-κβ-mediated increase in the expression of SENP2, resulting in 
increased PPARγ deSUMOylation, and consequently increased PPARγ activity and 
upregulation of some target genes, such as Fabp3 and Cd36 [51].

SUMOylation is a PTM that regulates several biologic processes, including tran-
scription, cell cycle, DNA repair, and innate immunity [24, 284]. This modification 
is involved with the immune system and inflammatory responses, cancer progres-
sion, and Alzheimer’s disease, and the modulation of SUMO addition has been 
described for many therapeutics claims [86, 155, 207, 356].

Inhibition of SUMOylation has been achieved by several natural products, such 
as ginkgolic and anacardic acids, curcumin, α-lipoic acid, and flavone 2-D08 (flavo-
noids) [207]. Ginkgolic acid [90], kerriamycin B [91], davidiin [308], and tannic 
acid [307] are natural products confirmed to inhibit SUMO E1 by blocking forma-
tion of SUMO E1–SUMO intermediate. A SUMO E2 protein, UBC9, is increased 
in many cancers [284], including advanced melanomas, head and neck tumor, lung 
tumor, HCC, colon cancer, breast cancer, and glioblastoma [4, 44, 51, 182, 225, 
226, 318, 346, 354]. UBC9 inhibition is interesting as anticancer therapeutics and 
GSK145A (doi: https://doi.org/10.1089/adt.2012.501), 2-D08 (2′,3′,4′-trihydroxy-
flavone) [162], and spectomycin B1, an antibiotic against gram-positive bacteria 
[298], have been described as UBC9 inhibitors. SUMO-activating enzymes (SAE) 
1/2 inhibitors, such as ML-792, have been shown to potently inhibit SUMOylation 
with a promising application in treating MYC-amplified malignancies [121, 279]. 
PIAS1 is a SUMO E3 which enhances the SUMOylation of many proteins, includ-
ing PPARγ. Although it has a potential drug target for cancer therapy, and perhaps 
obesity-related diabetes, no small-molecule inhibitor has been designed so far for its 
inhibition [356].

Topotecan, a drug with approval of the US Food and Drug Administration (FDA_ 
for the treatment of several cancers (e.g., small cell lung cancer, cervical, ovarian) 
[32, 256], is primarily a DNA topoisomerase I inhibitor; however, it also modulates 
the SUMOylation status of this protein [68, 222].

Another strategy to modulate the SUMOylation state is to inhibit the deSU-
MOylates SENPs. Except by SENP2, which is decreased in bladder cancer [309] 
and HCC [288], other SENP members, such as SENP1, SENP3, and SENP5, are 
upregulated in various cancers, including neuroblastoma, multiple myeloma, gastric 
cancer, oral squamous cell carcinoma, and breast cancer [351, 356, 371]. 
Experimentally, SENP1 inhibitors have exhibited anticancer activities in  vitro, 
including benzodiazepine-based peptidomimetic covalent compounds, 
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SUMO- derived peptide-based covalent inhibitors, noncovalent 2-(4-chlorophenyl)-2- 
oxoethyl 4-benzamidobenzoates, 1-[4-(N-benzylamino) phenyl]-3-phenylureas, 
triptolide, and Momordin Ιc [356], showing that SENP1 could serve as a drug target 
for developing new cancer therapeutics.

SENP2, reported to deSUMOylate PPARδ/β and PPARγ, also regulates 
SUMOylation levels of the tumor suppressor p53 and ERK5 [173], and it could 
serve as a drug target to atherosclerotic plaque formation [123] and hepatocellular 
carcinoma cell growth [288] and cardiac dysfunction [159].

21.4.2.4  Ubiquitination

All PPAR isoforms suffer ubiquitination, and this PTM, in general, regulates the 
protein level and decreases receptor activity by targeting for protein degradation. 
The ubiquitin proteasome system (UPS) is composed by sequential actions of 
ubiquitin- activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiq-
uitin ligases (E3), which promote ubiquitin addition in internal lysine residues or, 
more uncommon, in the N termini of target proteins, directing them to proteasomal 
degradation [363]. There are reports of modulation of this PTM in PPAR by either 
inhibiting the ubiquitin ligases or the proteasome machinery. Starting with the 
beginning of the UPS cascade, inhibition of the E1 by E1-I leads to an inhibition of 
ubiquitination that returns PPARγ protein to control levels even in the presence of 
rosiglitazone, which usually induces ubiquitin-mediated degradation of 
PPARγ [158].

UPS is also involved in regulating proteins involved in several pathways, being 
the dysfunction of its components observed in many pathological disorders, includ-
ing cancers, cardiovascular diseases, viral diseases, neurodegenerative disorders, 
and congestive heart failure [19, 348]. For this reason, selective inhibition of the 
UPS components has significant therapeutic potential. At the beginning of the UPS 
cascade, inhibitors such as E1-I were developed to inhibit E1 Ub activating enzymes. 
PYR-41, an irreversible pyrazone derivative inhibitor, was identified to selectively 
inhibit ubiquitin-like modifier-activating enzyme 1 (UBA1), without affecting E2 
and E3 proteins [355]. PYR-41 also partially inhibits NEDD4 [344]. TAK-243, an 
inhibitor to UBA1, was in 2019 in a clinical trial (phase 1) for advanced solid tumors 
[140, 217]. Although E1 inhibitors have shown efficacy, an obvious drawback of 
such compounds is that they influence generically many proteins/cellular networks, 
which renders their toxicity [348].

The second step of the ubiquitination cascade is controlled by E2 Ub conjugating 
enzymes (~20), which have been linked to head and neck carcinoma [203], lung 
cancer [113], and tumor formation [324]. CC0651 is a highly selective inhibitor of 
the CDC34 E2 enzyme, and its treatment caused accumulation of the cell cycle 
inhibitor p27 and cyclin E in cells and inhibited proliferation of human cancer 
cells [39].

At the last step of ubiquitination, E3 Ub ligases transfer the Ub from E2 to the 
substrate, and there are many kinds of these enzymes since E3 ligases can be divided 
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in N-end rule family E3α, homologous to the E6AP carboxyl terminus (HECT) 
domain family (~30), multi-subunit complex family (e.g., SCF complex and 
anaphase- promoting complex (APC)), and the fascinating new gene (RING) finger 
ligases (~600), which contains MDM2 and CRL4B [73, 348]. These RING ligases 
can be separated into single subunit ligases, which can be targeted by enzymatic 
inhibitors, and into multi-subunit RING finger ligases, which should be targeted in 
their substrate-specific adaptor bound to the catalytic core. This strategy resembles 
the one described to inhibit CDK5 phosphorylation: the use of small molecule 
inhibitors that disrupts the protein-protein interaction between that adaptor and its 
target protein; however, such specificity can be challenging to achieve.

Among several E3 ligases inhibitor, we are going to focus on molecules described 
to inhibit proteins involved in PPAR ubiquitination. Nutlin-2 is an inhibitor that 
disrupts the interaction between MDM2 and p53 by binding directly to the interface 
of MDM2-p53 contact [326]. Therefore, this inhibitor stabilizes p53 and has a sig-
nificant anti-tumor effect and has advanced to clinical trials for solid tumors and 
leukemia [53]. Four MDM2 inhibitors were under clinical trials in 2020: avadomide 
(CC-122) [267], iberdomide (CC-220) [25], APG-115 [266], and CGM097 [130]. 
Inhibitors for other E3 ligases that target PPARs were also described: HS-152 inhib-
itor of SMURF1 [315] and small-molecule covalent inhibitors of NEDD4–1 [151].

Another approach to modulate reversible ubiquitination is to target deubiquiti-
nating enzymes (DUBs) (∼100); such inhibitors have been developed to target 
severe acute respiratory syndrome coronavirus (SARS-CoV), the papain-like prote-
ase DUB PLpro [72, 268], USP1 [43], USP7 [42, 271], and USP14 [180].

In the final steps of the UPS cascade, the use of proteasome inhibitors experi-
mentally prevented PPAR degradation. For example, treatment with MG132, a pro-
teasome inhibitor, has demonstrated to increase the level of ubiquitinated PPARα 
and PPARγ and to inhibit their degradation, therefore increasing their activity [27, 
119, 157, 158]. This treatment also partially prevented the decrease of PPARγ levels 
after C168 S-nitrosylation, suggesting that for this modification, the proteasome- 
dependent degradation might account for the impaired PPARγ stability [358]. 
Moreover, the use of the PS341, a selective proteasome inhibitor, inhibited PPARδ/β 
proteolysis, increasing the half-life of the DNA-bound receptor and therefore 
increasing its activity [97]. The 26S proteasome is a 2.4 MDa multifunctional ATP- 
dependent proteolytic complex, which degrades a large variety of cell proteins and 
is essential for many cellular regulatory mechanisms, that includes cell cycle pro-
gression, by the proteasomal degradation of cyclins and inhibitors of CDKs [165], 
transcriptional regulators (such as c-JUN, E2F-1, and β-catenin) [124], and kinases 
(such as SRC and protein kinase C (PKC)) [114, 200], terminating specific signal 
transduction cascades. Furthermore, the ubiquitin-proteasome pathway also plays 
an essential role in immune surveillance [142], muscle atrophy [221], regulation of 
metabolic pathways [109, 227], acquisition of long-term memory [40], inflamma-
tory response [212, 242], and in the regulation of circadian rhythms [230] and tumor 
progression [124, 240].
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Due to its involvement in several pathways, inhibition of the 26S proteasome 
results in a decrease of overall rates of protein breakdown in cells [57, 276], increas-
ing the levels of ubiquitin-conjugated protein, as well as of misfolded and damaged 
proteins [79, 213, 280, 329]. The long-term exposition to proteasomal inhibitors is 
toxic for most cells and leads to death by apoptosis [70, 198, 214, 277]. Nonetheless, 
these undesirable side effects can have a bright side. For example, the accumulation 
of unfolded polypeptides incites the expression of heat shock proteins, which pro-
tects the cells against toxic conditions, including increased temperature or oxygen 
radicals [181]. Moreover, the ability of some inhibitors to inhibit cell proliferation 
and selectively induce apoptosis in proliferating cells, together with their ability to 
inhibit angiogenesis [70, 238], makes these molecules attractive candidates as anti-
cancer drugs [164]. For example, PS341, a potent selective 26S proteasome inhibi-
tor, was the first drug (generic name Bortezomib) targeting the UPS approved by the 
FDA in 2003, and it is used for patients with multiple myeloma [148]. Two other 
drugs received FDA approval, carfilzomib (PR-171) [161] and ixazomib [176], and 
three others were in clinical trials in 2020: oprozomib, delanzomib, and marizomib 
[36, 176, 255, 348].

21.4.2.5  S-nitrosylation

S-nitrosylation modifications were identified in the AF-1 and DBD of PPARγ and 
were reported to decrease the receptor activity. There is one report about modulation 
of PPARγ denitrosylation by inhibiting the GSNOR with 4-[[2-[[(2-cyanophenyl)
methyl]thio]-4-oxothieno-[3,2d] pyrimidin-3(4H)-yl]methyl]-benzoic acid [38]. 
This blockage of GSNOR led to decreased adipocyte differentiation and a decreased 
expression of PPARγ target genes involved in adipocyte differentiation, indicating 
that the observed effects are due to the maintenance of the S-nitrosylated state 
of C139.

S-nitrosylation is a ubiquitous mediator of nitric oxide (NO) signaling and, 
therefore, is a PTM that occurs in many proteins involved in several physiological 
processes, including neuronal development and survival, blood pressure regulation, 
smooth muscle constriction, G-protein-coupled receptor (GPCR) signaling, and 
endothelial permeability [125, 286, 306]. Dysregulation of this PTM may compro-
mise cell function and cause neurodegenerative diseases, heart failure, and 
dystrophic- like phenotype in the muscle [21, 101, 231].

To modulate the effects of excessive S-nitrosothiols (SNOs) formation and SNO- 
proteins, one therapeutic approach would be pharmacological inhibition of NO syn-
thases (NOS) and/or application of antioxidants. Some NOS inhibitors and 
antioxidant treatments showed limited clinical trial results due to the nonspecificity 
of NOS inhibitors to NOS isoforms and mixed outcomes with antioxidants in neu-
rodegenerative disorders [231]. Another approach would be to regulate protein 
denitrosylation with GSNOR modulators as it was reported that GSNOR inhibitor 
treatment seems to maintain the S-nitrosylated state of PPARγ C139 [38]. However, 
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in the case of PPARγ, S-nitrosylation would be interesting to use as GSNOR activa-
tor to increase denitrosylation and decrease PPARγ adipogenic effects.

However, both approaches have the limitation of being unspecific for the SNO- 
protein target. About 3000 SNO-proteins have been described both under physio-
logical and pathological conditions [112, 241], making it difficult to modulate an 
SNO addition in one specific protein with a modulator of a promiscuous enzyme.

21.4.2.6  O-GlcNAc Addition

Generally, an increase in O-linked beta-N-acetylglucosaminylation (O-GlcNAc) is 
observed during adipocyte differentiation [134, 142], and this differentiation can be 
blocked by a general decrease in intracellular O-GlcNAc modification induced by 
pharmacological inhibition of glutamine by fructose-6-phosphate amidotransferase 
(GFAT) [134, 142]. The compound 6-diazo-5-oxo-L-norleucine (DON) inhibits 
GFAT, and it is commonly used to decrease intracellular O-GlcNAc modification 
level [142]. On the other way of O-GlcNAc PTM modulation, treatment with the 
O-GlcNAcase inhibitor, NButGT, increased O-GlcNAc modifications of PPARγ1 in 
3  T3-L1 adipocytes, reducing the nuclear receptor transcriptional activity [145]. 
However, it must be considered that reduced intracellular levels of O-GlcNAc may 
affect other glycosylation reactions [335, 366], for example, exacerbating the side 
effects of Alzheimer’s disease and frontotemporal dementia and parkinsonism [359].

O-GlcNAc levels work as a nutrient sensor, and glycosylation reactions regulate 
not only PPARγ activity in adipocytes but virtually all functional classes of protein 
since O-GlcNAc addition modulates nearly every cellular process, including signal-
ing, transcription, translation, cytoskeletal functions, and cell division [359]. 
O-GlcNAc levels are critical in chronic diseases of aging, including diabetes, can-
cer, neurodegeneration, and cardiomyopathies [78, 205, 233, 244]. Only two pro-
teins, glycosyltransferase OGT and the antagonistic one OGA, regulate O-GlcNAc 
addition in many proteins in the human body. Their modulation by ligands can 
deregulate the desired protein target and several other proteins that suffer this 
modification.

21.5  Perspectives

PPARα has been reported to be a target of phosphorylation, SUMOylation, and 
ubiquitination. Apart from S12/S21 phosphorylation, all PTMs were reported to 
decrease the activity of the receptor. Modulation of PTMs with PPARα ligands was 
described: WY-14643 enhanced polyubiquitination and K358 SUMOylation in the 
LBD, whereas GW-7647 reduced K185 SUMOylation in the hinge domain.

PPARδ/β is target only of ubiquitination in non-specified residues, signaling for 
degradation, and SUMOylation at K104, where deSUMOylation of this residue was 
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reported to increase the receptor activity. Modulation of ubiquitination was reported 
with PPARδ/β ligands (L-165,041, GW501516, and PGl2), which prevented the 
ubiquitination of this receptor, thereby decreasing its degradation.

Most efforts have been applied in studying PPARγ due to its involvement in adi-
pogenesis, energetic metabolism, and insulin resistance induced by obesity. Until 
now, many residues were identified to suffer PTMs, such as phosphorylation, acety-
lation, SUMOylation, ubiquitination, nitration, S-nitrosylation, and glycosylation. 
PPARγ acetylation mimetics showed the same effects as the native protein, whereas 
its deacetylation decreases lipogenic differentiation and promotes the expression of 
“browning genes” and adiponectin in WAT. SUMOylation, S-nitrosylation, nitra-
tion, and O-GlcNAcylation decrease transcriptional activity and so does PPARγ 
phosphorylation in AF-1 and DBD (S112, Y74, Y78, S16/S21). Although PPARγ 
phosphorylation in the LBD (S273 phosphorylation) does not change transcrip-
tional activity compared to wild type, the occurrence of this modification is associ-
ated with insulin resistance and the recruitment of corepressors. TZDs molecules 
are PPARγ agonists that received FDA approval to treat type 2 diabetes by targeting 
the receptor and blocking phosphorylation of S273. However, adverse cardiometa-
bolic effects were reported after rosiglitazone (trade name Avandia) use, and in 
2010 it was withdrawn from the market in the UK, Spain, Brazil, and India and 
some other countries later. The reports of TZDs side effects were associated with 
full PPARγ activation, and therefore research efforts have been focused on the 
development of a ligand able to block S273 phosphorylation without fully activating 
the receptor. In our knowledge, 21 PPARγ ligands (partial agonists and inverse ago-
nists) were reported experimentally to block this phosphorylation with none or 
reduced side effects compared to TZDs; however, none of them reach and succeed 
in clinical trials.

Other approaches have been explored to modulate PTMs, for example, the use of 
modulators of enzymes responsible for the addition or removal of modifications. 
Nevertheless, as said before, these enzymes target several proteins in many cellular 
pathways, and its general modulation could have the side effect of dysregulating 
other cellular mechanisms instead of a specific protein. Despite this nonspecificity, 
some clinical trials and approved drugs for modulation of SIRT1, CDK5, MDM2, 
and 26S proteasome at the same time, are under studies.

Until this moment, no treatment has been approved to modulate PPARs PTMs, 
besides PPARγ S273 phosphorylation. However, the research and understandings of 
PPARs PTMs and their modulation have primary importance for improving thera-
peutics’ development with more specificity and fewer side effects. For example, it 
is already known that an ideal drug for diabetes targeting PPARγ should inhibit 
S273 phosphorylation without a full activation of the receptor. However, recent 
reports suggest that inhibition of K268/K293 acetylation could prevent the collat-
eral side effects triggered by rosiglitazone activation of PPARγ.

Besides the development of PPAR ligands that inhibit certain PTMs from having 
the desired effect of insulin sensitization, new drugs for this claim can be developed 
approaching to inhibit an addition of a PTM by blocking the protein-protein 
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interface with molecules designed specifically for the desired target. Finally, the 
understanding of PTMS modulation of PPARs is not restricted to the scope of meta-
bolic diseases, as the strategies learned from this receptor can be applied to the 
development of modulators for other proteins that undergo PTM (Fig. 21.10).
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Chapter 22
Developing Inhibitors to the Amino- 
Terminus Domains of Steroid Hormone 
Receptors

Jon K. Obst, Amy H. Tien, and Marianne D. Sadar

Abstract Steroid hormone receptors are ligand-activated transcription factors, act-
ing as master regulators of gene expression. Steroid receptors mediate formation of 
large protein complexes by recruiting coregulatory proteins and transcriptional 
machinery to specific genomic regions. Unlike the structured ligand-binding or 
DNA-binding domains, the N-terminal domain (NTD), where many of these 
protein- protein interactions occur, contains extended regions of intrinsic disorder. 
Interactions in the NTD and allosteric binding elsewhere induce temporary and 
reversible changes in the NTD structure, substantially influencing the repertoire of 
potential binding partners. This structural plasticity is key for the steroid receptors 
to coordinate intra- and intercellular signals into a tissue specific response. Designing 
small molecule inhibitors against intrinsically disordered proteins (IDP) in general 
has proven difficult as structural information is limited. While some progress has 
been made in this area, only recently has any molecule targeting IDPs progressed 
beyond the preclinical stage. Here we summarize the discovery and development of 
sintokamides, niphatenones, and EPI compounds which target the intrinsically dis-
ordered NTD of the androgen receptor. These are the first drugs to target the NTD 
of any steroid receptor, and EPI-506 and EPI-7386 remain the only compounds that 
bind to an IDP to have been tested in clinical trials.
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Abbreviations

AF Activation function
AR Androgen receptor
CRPC Castration-resistant prostate cancer
DBD DNA-binding domain
ER Estrogen receptor
GR Glucocorticoid receptor
IDP Intrinsically disordered protein
LBD Ligand-binding domain
MR Mineralocorticoid receptor
NTD N-terminal domain
PR Progesterone receptor

22.1  Steroid Hormone Receptors Are Modular, 
Ligand- Activated Transcription Factors

The steroid hormone receptors are members of the nuclear receptor superfamily and 
exert control over a large range of critical biological functions. These proteins 
include the androgen receptor (AR), estrogen receptor (ER), progesterone receptor 
(PR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR). All are 
soluble, ligand-activated transcription factors which function as master regulators 
of gene expression [38, 42, 96, 162]. These receptors are modular and consist of 
four major functional domains: the N-terminal domain (NTD or A/B domain), a 
DNA-binding domain (DBD or C domain), a flexible hinge region (D domain), and 
a C-terminal ligand-binding domain (LBD or E/F domain) [31]. Fat-soluble steroid 
hormone ligands which diffuse across the cell membrane bind the LBD of the cog-
nate receptor. Ligand binding induces conformational changes typically releasing 
the receptor from chaperones and mediates the translocation of the receptor to the 
nucleus. There, the DBD recognizes specific genomic regions, and the receptor 
mediates the regulation of target genes through recruitment of transcriptional regu-
latory proteins [11, 31, 38, 89, 96, 162]. This is done primarily through the activity 
of two specialized subregions termed activation functions 1 and 2 (AF-1 and AF-2) 
located in the NTD and LBD, respectfully [22, 34, 66, 85, 107]. These mediate 
transcriptional activity by providing interaction surfaces which recognize and bind 
coregulators and transcriptional machinery.

22.2  Steroid Hormone Receptor: 
The Ligand-Binding Domain

The LBD is a highly structured domain which contains a ligand-binding pocket, a 
dimerization interface for homo- or heterodimerization, and the transcriptional reg-
ulatory region AF-2. This region is ligand-dependent and mediates coregulator 
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interaction with the steroid receptor [15, 91]. The crystal structures of LBDs have 
been resolved for all steroid receptors and are publically available in the Protein 
Data Bank. The LBD shares modest sequence homology across the steroid recep-
tors, although is less conserved compared to the DBD, particularly in the ligand-
binding pocket which allows for ligand specificity. Even the two isoforms of ER, 
ERα and ERβ, show 56% sequence homology in their LBD, whereas they have 97% 
sequence homology in the DBD [91, 165].

Despite differences in sequence homology, the LBDs of steroid receptors share 
similar structural patterns and function. Namely, they are folded similarly in 3 lay-
ers to form an anti-parallel α-helical sandwich containing up to 12 α-helices and 
1–4 short β-strands that may form β-sheets [15, 54, 91, 137, 163]. ER has 12 helices 
(H1-H12), while other steroid receptors lack helix 2 [54]. In general, binding with 
an agonist induces conformational changes such that helix 12 stabilizes and covers 
the ligand-binding pocket, forming a hydrophobic cleft and exposing the AF2 
region. This creates a binding interface to interact with LxxLL motifs of coactiva-
tors such as steroid receptor coactivators (SRCs) [52, 54, 91, 125].

Additionally, the LBD seems to negatively regulate the transcriptional activity of 
the NTD in the absence of ligand. Deletion of the LBD in the PR, GR, and AR 
results in a constitutively active receptor, albeit one with reduced overall transcrip-
tional activity relative to wild-type receptor [6, 22, 57, 65]. Deletion of LBD in ER 
resulted in a 95% decrease of its transcriptional activity relative to wild-type full- 
length ER activity [92], whereas deletion of LBD in AR resulted in only a 25% 
reduction in transcriptional activity [65] demonstrating the heterogeneity with 
which each steroid receptor relies upon the AF-2 for full transcriptional activity. 
Furthermore, the ability of the LBD to influence transcriptional regulation supports 
that agonist binding induces unique allosteric changes not only locally but also in 
distant regions within the receptor as well. This concept will be explored in greater 
detail in the context of intrinsic disorder within the NTD. Taken together with the 
many possible binding partners which exist for the steroid receptors, numerous tran-
scriptional outputs are possible depending on the particular cellular context, allow-
ing for exquisite control over targeted gene expression [80, 84].

22.3  Steroid Hormone Receptors: The DNA-Binding Domain 
and Hinge Region

The DBD is highly conserved among the steroid receptors (56%–79% sequence 
homology) [38] and directs the receptor to specific genomic regions termed hor-
mone response elements contained within the promoter or enhancer regions of tar-
get genes. Like the LBD, the crystal structure of the DBD has been resolved and 
contains three α-helices which form a hydrophobic core. The key feature of this 
domain revolves around two highly conserved zinc finger motifs, which each coor-
dinate binding of a single zinc atom. These structures form the main DNA-binding 
interface and facilitate binding in the major groove [74, 89, 173]. In this way, the 
DBD is split into two interdependent subdomains, each containing a single zinc 
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finger which fold together as a unified globular domain [45]. The amino terminal 
zinc finger and three associated amino acids form a “P-box” which is largely respon-
sible for recognition of specific genomic sequences. This includes both general 
response elements which are recognized by the majority of steroid receptors (AR, 
GR, PR, MR) [144] and receptor-specific response elements [20, 25, 41, 64, 162]. 
The second zinc finger along with associated amino acids forms the “D-box” which 
functions primarily to stabilize the protein-DNA interaction and mediates homo- 
and heterodimerization with other transcription factors [123].

The region between the DBD and LBD is commonly referred to as a hinge 
region. The hinge region contains a nuclear localization sequence (NLS), which is 
sequestered in the absence of ligand binding [116]. The hinge region also contains 
the C-terminal extension (CTE) which is considered part of the DBD as it partici-
pates in DNA-receptor interactions [54]. Largely disordered with little sequence 
homology across steroid receptors, the CTE does share some functional features. 
The CTE interacts with the minor groove of DNA and has been proposed to assist 
in recognition of response elements with weak half-sites, increasing the overall 
number of target genes able to be transcribed [54, 123]. DNA binding also induces 
conformational changes within the CTE, stabilizing intramolecular interactions 
[54] and priming the CTE to serve as a binding site for coregulatory proteins [13, 
119]. A common feature among the steroid receptors is their ability to distort and 
alter DNA conformation following binding. It is postulated that this may assist in 
facilitating the assembly of multi-protein complexes at enhancer or promoter 
regions of target genes [54].

22.4  Steroid Hormone Receptors: The N-Terminal Domain

Despite being the least conserved domain with respect to both amino acid sequence 
(<15%) [6] and length, the NTD shares structural and mechanistic features among 
the steroid receptors. Within the NTD of all steroid receptors lies a major transacti-
vation domain termed AF-1 [83]. Much like its AF-2 counterpart in the LBD, the 
AF-1 provides a binding interface and mediates protein-protein interactions with 
coregulatory proteins and transcriptional machinery [53, 67, 86, 92]. With the 
exception of the ER, the NTD contributes the majority of transcriptional activity, 
and its presence is necessary for full transcriptional activity [6, 22, 57, 66, 85]. 
Nonetheless, while mutational and deletion experiments have shown that each acti-
vation function is capable of acting independently, maximum activity is found when 
both can cooperate in concert [86, 104]. The NTD is characterized by large regions 
of intrinsic disorder which allows it to sample many unique structural conforma-
tions, dramatically increasing the number of potential binding partners [51]. Intrinsic 
disorder is intimately related to the ability of steroid receptors to mediate the coor-
dination and assembly of large protein complexes in a tissue-specific manner under 
a wide range of cellular contexts. While the structure and function of the NTD will 
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be explored in greater detail in later sections, it is necessary to briefly discuss the 
concept of intrinsic disorder and its impact upon cellular signaling networks.

22.5  Properties of Intrinsically Disordered Proteins

Unlike ordered proteins which are restricted to well-defined tertiary structures, 
intrinsically disordered proteins (IDP) and proteins which contain localized regions 
of intrinsic disorder are characterized by their inability to spontaneously form into 
stable globular three-dimensional structures. This is primarily due to an amino acid 
sequence largely made up of charged and polar residues with a low percentage of 
hydrophobic bulky side chains [29, 150, 157]. These features have allowed the exis-
tence of IDPs to be predicted using algorithms such as PONDR or GlobPlot 
[49, 161].

All IDP have significant structural heterogeneity and exist between rapidly 
changing structural conformations [19, 26, 35, 105] allowing them to recognize 
binding partners with high specificity but low affinity. This endows IDPs the ability 
to interact with a plethora of potential binding partners under varying cellular con-
texts [28, 29, 171]. Generally IDPs are thought to undergo a disorder-to-order tran-
sition upon interaction with their binding partner as understood by the induced fit 
model, where folding and binding are coupled [29, 75, 76, 101, 105, 157–159], 
although there are also examples of IDPs remaining disordered despite binding 
[101, 132, 159].

Sites involved in posttranslational modifications are predominantly found in 
regions of disorder as compared to structured domains [5, 23, 60, 172]. IDPs are 
particularly sensitive to electrostatic effects, and modifications such as phosphory-
lation or acetylation can have profound impact on intra- and intermolecular interac-
tions [5]. These often influence local stabilization or destabilization of secondary 
structure (and in some cases determine global conformational changes), protein 
activity, turnover, and binding partner preference, among others [23, 50, 172]. 
Combined with their structural plasticity, IDPs are perfectly positioned to perform 
a variety of vital cellular functions including regulation of transcriptional processes, 
cell cycle, mRNA processing scaffolding, and apoptosis [27, 29, 35, 101, 117, 150, 
157, 168]. Unsurprisingly, IDPs are commonly found functioning as hubs within 
signaling networks, and those proteins which promote supramolecular complexes 
[27, 75, 101, 131, 149, 150, 157]. In following, approximately 70% of transcription 
factors have been estimated to contain extended regions of disorder [100]. Further 
evidence for the importance of IDPs is provided by the fact that they are ubiqui-
tously found throughout nature, with concentration increasing from prokaryotes to 
higher species [117, 160, 168].
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22.6  Intrinsic Disorder in the Steroid Hormone Receptor 
NTD Is Vital for Function

Large regions of the steroid hormone NTDs preferentially exist in a disordered state 
as random coils with limited secondary or tertiary structure (Fig. 22.1). However, 
they are capable of adopting transient stable structures following interaction with 
DNA or other proteins [34, 81, 90, 152, 154]. As a result while the crystal structures 
of the LBD and DBD of many of the steroid receptors have been solved [32, 45, 71, 
106, 128, 129, 138], detailed structural information of the NTD is lacking. 
Nonetheless extensive work has been undertaken to better understand and describe 
intrinsically disordered proteins as a whole and NTD of steroid receptors, 
specifically.

Integral to the capability of the steroid hormone receptors to function as master 
regulators of gene expression in a tissue and a cellular context-specific manner, is 
their ability to interact with a wide array of protein cofactors and participate as hubs 
in complex signaling networks [51, 78, 130]. Mutational and deletion studies have 

Fig. 22.1 Predicted disorder in different domains of the steroid hormone receptor family. Each 
steroid hormone receptor consists of four functional domains: NTD, DBD, hinge, and LBD. The 
disorder disposition was predicted by PONDR-FIT (DisProt)
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identified an AF-1 region within the NTD which contributes a substantial amount of 
transcriptional activity, although the relative “strength” varies between the steroid 
hormone receptors [6, 34, 39, 57, 107, 133] and appears to be related to overall 
sequence length [47, 84]. While the AF-2 contained within the LBD is ligand depen-
dent, the AF-1 appears to be able to retain transcriptional activity despite the absence 
of ligand, including even when the LBD itself is absent [6, 22, 57, 66, 85]. In con-
trast to the AF-2 which has a well-defined LxxLL-binding motif, no equivalent has 
yet been found for AF-1 [88]. This is in agreement with the fact that IDP regions in 
general lack a discrete interaction motif despite interacting with a large number of 
protein partners.

The NTD of steroid receptors have been experimentally shown to undergo a 
disorder-to-order transition, increasing in both secondary and tertiary structure in 
the AF-1 region following treatment of naturally occurring osmolytes such as 
TMAO or trehalose [55, 72, 85, 87]. Osmolytes are produced within the cell to pro-
tect against extreme conditions such as heat shock or excessive osmolarity and func-
tion by inducing structure in proteins which fail to fold spontaneously [14]. 
Allosteric effects elsewhere in steroid hormones may influence NTD structure and 
stability. For instance, deletion studies have shown that two domain constructs con-
sisting exclusively of the NTD and DBD tend to be constitutively active in several 
of the steroid receptors; implying that in the unbound state the LBD has an inhibi-
tory effect [22, 57, 66]. Binding of ligand to LBD relieves this repression, if not 
through a direct conformational change in the NTD, then by facilitating interaction 
with coregulatory proteins.

Interestingly DNA itself has been proposed to act as an allosteric ligand, as DBD 
interaction with genomic response elements has also been shown to induce tertiary 
structure and α-helical content of the NTD/AF-1, and subsequently promote protein- 
protein interaction with cofactors and transcriptional activity [6, 102, 103]. While 
the DBD functions to guide the receptor to specific regions of the genome through 
recognition of consensus sequences, it also serves to prime the NTD for interactions 
with specific coregulatory proteins. Thus it would appear that the genomic sequence 
of a particular response element exerts some influence over the degree of the tran-
scriptional response [55].

NTD-interacting proteins such as TBP [34, 88, 90, 154], CBP [82], RAP74 [82, 
122], and JDP2 [154] have a similar effect on stabilizing the NTD by increasing 
α-helical content, preparing the receptor for further protein interaction. Indeed sim-
ply modifying the concentration of coregulatory proteins has been shown to influ-
ence relative agonist activity and reflects the ability of cofactor binding to modulate 
additional protein-protein interactions [134, 164]. In addition, local structural 
changes in AF-1 may also induce unfolding of adjacent structured regions [113], 
further impacting potential binding partners and allowing the steroid receptors to 
interact with a staggering combination of binding partners [53, 78, 167].

The intrinsically disordered NTD of the steroid receptors is a hotspot for post-
translational modifications which play a major role in cellular and tissue-specific 
activity. The majority of phosphorylation sites are found in the NTDs of all steroid 
hormone receptors, with many of these localized to the AF-1 region [4, 33, 40, 63, 
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73]. Regulation of phosphorylation of the AF-1 region in several of the steroid 
receptors has been experimentally shown to be able to promote a disorder-to-order 
conformational transition, with a subsequent increase in interaction with coregula-
tory proteins and transcriptional activity [4, 37, 40, 73]. However, phosphorylation 
can also have an opposing inhibitory effect on receptor stability by triggering ubiq-
uitination and proteolytic degradation as has been shown in the AR and GR [99, 
156]. In general, the NTD region of the steroid receptors is susceptible to proteoly-
sis due to ease of access by proteolytic enzymes as compared to the structured DBD 
and LBD domains [6, 7, 72]. Studies of NTD-DBD constructs of the AR, GR, and 
PR have shown that increased NTD folding and stability occurs following DNA 
interaction, leading to resistance against proteolytic degradation [6, 7, 81]. Thus, 
modulating NTD structure through local and/or allosteric effects following ligand 
binding in the LBD, DNA binding, interaction with coregulatory proteins, or post-
translational modifications has a large impact on receptor activity, overall stability, 
and receptor turnover.

Collectively, steroid hormone receptors function as major signaling hubs coordi-
nating large numbers of coregulatory proteins and transcriptional machinery. These 
proteins are responsible for the strict regulation of hundreds of gene targets [24] and 
function as master regulators over a host of critical and diverse transcriptional pro-
grams. This ability is largely due to the NTD and the AF-1 region in particular. The 
AF-1 is unique from the AF-2 in that it does not rely upon a core motif or minimal 
sequence for function. Rather, the AF-1 contains multiple regions capable of adopt-
ing temporary stable, yet reversible structures which favor different binding partner 
combinations and can be tailored to a wide variety of cellular cues [85, 154, 155].

Abnormal regulation of steroid receptors is associated with many human dis-
eases including cancer. Therefore, extensive research has delved into the develop-
ment of antagonists which can abrogate transcriptional activity by disrupting 
receptor/DNA and/or receptor/coregulator interactions. Due to both the lack of 
structural information of the NTD, and the high sequence homology of the DBD 
between the steroid receptors, most of this effort was focused on designing drugs 
which compete with ligand binding in the LBD or prevent interaction of cofactors 
with AF-2 [16, 67]. This however has proven to be inadequate as this strategy does 
not wholly inhibit AF-1 transcriptional activity, in part due to its ability to function 
semi-autonomously from AF-2 and ligand stimulation [6, 22, 57, 66, 85]. 
Additionally at least in the case of prostate cancer, AR-splice variants exist which 
lack the LBD entirely, yet retain transcriptional activity and are clinically rele-
vant [3].

The NTD contributes the majority of transcriptional activity for many steroid 
receptors. Coregulators, DNA, and posttranslational modifications have the ability 
to influence transcriptional activity by facilitating allosteric effects upon distant 
regions of the NTD. This raises exciting prospects for the development of small 
molecule antagonists targeting these critical regulatory regions. Developing antago-
nists to the NTD of steroid receptors represents a novel strategy which could have 
wide-ranging implications for a number of human maladies.
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22.7  The Challenge of Targeting Intrinsically 
Disordered Proteins

The expression of IDPs is strictly controlled, owing to their prevalence in mediating 
critical biological functions and regulating signaling pathways [43, 148]. Thus, the 
misprocessing, mismodification, misexpression, or otherwise deregulation of IDPs 
is often associated with pathological disease states. This phenomenon has been 
termed “disorder within disorders” or D2, and IDPs or proteins containing long 
regions of disorder have been associated with several neurodegenerative diseases, 
cardiovascular disease, cystic fibrosis, type II diabetes, AIDS, and various cancers 
[79, 146, 147, 151]. Indeed the majority (~80%) of proteins associated with human 
cancers are predicted to contain continuous regions of disorder spanning 30 or more 
residues [59].

IDPs are thus attractive therapeutic targets; however, developing small molecules 
which target these regions has proven difficult. This is owing primarily to the fact 
that IDPs exist as ensembles of rapidly changing conformations, preventing the 
formation of a stable three-dimensional structure which can be modeled [19, 26, 35, 
105]. Additionally many unique protein-protein interactions are possible and occur 
over relatively large and dynamic interfaces, while small molecule inhibitors typi-
cally interact with only a small portion of the target [101, 157]. Therefore, potential 
candidates are typically discovered through large-scale chemical screens and com-
putational tools, rather than structure-based rational drug design. A n o t h e r 
concern relates to the high degree of conformational flexibility inherent in IDPs 
which allow transient interaction with many binding partners, including small mol-
ecules. This promiscuity does indeed make it easier for high throughput screens to 
identify initial hits; however, drugs must not only show sufficient affinity for the 
target but also not interact with other proteins or alternative IDPs [12]. While numer-
ous compounds have been discovered through high-throughput chemical screens, 
the lack of IDP inhibitors which have advanced to the clinic reflects this challenge 
of reducing off-target effects and drug-related toxicity [12, 30, 115]. Despite these 
challenges, much progress has been recently made in the discovery and develop-
ment of small molecule inhibitors targeting IDPs.

22.8  Examples of Targeting IDPs of Transcriptional 
Regulators in Human Cancers

Transcription factors play pivotal roles as master regulators of gene expression 
capable of both positively and negatively controlling gene  transcription and are 
critically important to the normal function of the cell. These proteins receive a host 
of extra- and intracellular signals, distilling them into a singular and coordinated 
response. This allows the cell to rapidly respond to an ever-changing environment. 
Underpinning their ability to exert such influence lies with extended regions of 
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intrinsic disorder, a hallmark of the vast majority of transcription factors which 
increases with organism complexity [100, 109]. Unsurprisingly, mutations and 
deregulation of transcription factors are associated with many human maladies 
ranging from developmental disorders, to obesity, to infertility, to cancer [98, 
117, 147].

As yet apart from the EPI, sintokamide, and niphatenone compounds discussed 
in detail later on, no inhibitors of any steroid receptor NTD has been published to 
date. The following therefore highlights the recent progress which has been made in 
the discovery and development of inhibitors targeting various IDPs in general. 
Specifically, studies focusing on targeting transcriptional regulators in human can-
cers are briefly discussed. While not exhaustive, the works summarized provide a 
general roadmap for the development of compounds targeting IDPs, as well as serv-
ing to illustrate some of the challenges associated with targeting regions of disorder.

c-Myc is a transcription factor directly involved in the regulation of cellular 
growth and differentiation, apoptosis, and metabolism. Deregulation of c-Myc is 
commonly found in many human cancers [21, 135]; thus, many groups have focused 
on developing small molecule antagonists against it. c-Myc functions through inter-
actions with its binding partner Max via complimentary helix-loop-helix-leucine 
zipper (bHLHLZip) domains. As a monomer, c-Myc exists in an unfolded and dis-
ordered state and only undergoes coupled folding following interaction with Max 
[18, 44, 166, 169]. The resulting structured heterodimer is capable of binding DNA 
and regulating the transcription of target genes.

Some of the first inhibitors to be discovered which target IDPs were against 
c-Myc [12], and several unique strategies to identify potential compounds have 
been employed. These were identified following a large chemical screen of 7000 
compounds using fluorescence resonance energy transfer (FRET) to discover poten-
tial hits by their ability to disrupt heterodimerization of recombinant fluorescent 
c-Myc and Max constructs [12]. Hits were confirmed using ELISA and electropho-
retic mobility shift assay (EMSA). Two compounds identified by the screen, 
IIA4B20 and IIA6B17, were capable of disrupting Myc-induced transformation of 
CEF cells. However IIA6B17 and to a lesser extent IIA4B20 also had activity 
against Jun-induced transformation as well [12]. This proof of principal study con-
firmed the potential for disrupting protein-protein interactions of IDPs, however 
also highlighted the challenge of ensuring on-target specificity using this strategy.

Subsequent studies investigating c-Myc inhibitors have also exploited large- 
scale screens of chemical libraries, identifying candidates using a protein fragment 
complementary assay (~400,000 compounds) [18, 46] and yeast two-hybrid (10,000 
compounds) [44, 166] systems. From the latter, seven small molecules were discov-
ered using circular dichroism (CD) and NMR studies, and three binding sites within 
the bHLHLZip domain were resolved [44]. A follow-up study exploiting the newly 
discovered binding sites used a structure-based approach. In this case, a virtual 
screen was used to identify potential compounds by modeling predefined binding 
sites within typical c-Myc conformations [169]. Two hundred and seventy-three 
potential compounds were identified which were predicted to bind to one of these 
binding sites within the bHLHLZip domain on c-Myc. These were initially tested 
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using CD and confirmed using NMR. Four compounds bound the c-Myc bHLHL-
Zip domain, inhibited c-Myc/Max heterodimerization, and displayed biological 
activity that inhibited cancer cell growth in the micromolar range. Thus, computer- 
aided drug design is feasible for discovering compounds which bind to IDPs; how-
ever, this is reliant upon the prior discovery and characterization of potential binding 
sites [169]. Another strategy involves the design of synthetic peptidomimet-
ics which act as decoy molecules preventing protein-protein interactions. The MLL 
gene is often involved in a reciprocal translocation with AF4 especially in acute 
lymphoblastic leukemia in infants [136]. AF4 has been shown to directly interact 
with AF9, both of which are both intrinsically disordered. A yeast two-hybrid sys-
tem was utilized to map a 10-residue AF9 binding domain located within AF4. The 
PFWT peptide corresponding to the AF9 recognition sequence was shown to com-
pete with AF4 for AF9 binding and impeded AF4-AF9 interaction both in cell-free 
and cellular assays. PFWT was also capable at inhibiting the growth of several 
leukemia cell lines containing MLL rearrangements [136].

Similarly, the EWS-FLI1 fusion product is a common occurrence in Ewing’s 
sarcoma family tumors (ESFT) and promotes tumor formation and maintenance 
through interaction with RNA helicase A (RHA) [30, 145]. EWS-FLI1 is an IDP 
[145], and disruption of EWS-FLI1 binding with RHA using a synthetic peptide 
was sufficient to disrupt ESFT cellular growth [30]. A subsequent large chemical 
screen of 3000 small molecules using surface plasmon resonance (SPR) initially 
identified NSC635437 as a promising candidate. Optimization of NSC635437 
chemistry yielded YK-4-279 which disrupted EWS-FLI1 and recombinant RHA 
interaction, induced apoptosis in several ESFT cell lines expressing the EWS-FLI1 
fusion, and also had antitumor activity in vivo [30]. However, YK-4-279 did show 
toxicity in A673 cells, a line which has low EWS-FLI1 activity possibly indicating 
off-target effects [30].

Many investigations into the discovery of novel compounds targeting IDPs 
exploit the fact that a single, specific binding partner is well-known and that block-
ing this interaction results in loss of biological activity. In these cases, screens using 
a yeast two-hybrid, FRET, PCA, or SPR can be employed to identify candidates, 
and additional techniques such as NMR or CD are used to confirm binding. 
Furthermore structural information following partner binding can be obtained, 
allowing a degree of structure-based rational drug design to be employed to better 
optimize initial hits as was seen with PFWT [30]. This is also exemplified by 
c-MYC/Max [12, 18, 44, 46, 69, 166, 169], EWS-FLI1/RHA [30], and AF4/AF9 
[136] interactions as described above. Other examples exist as well, and compounds 
disrupting NUPR1/MSLI1 (trifluoperazine and ZZW-115) [115, 127], HIF-1α/p300 
(chetomin, gliotoxin, and chaetocin) [93, 121], and p27Kip1/Cdk2 (SJ-710 and 
SJ-403) [61] interactions have been published (Table  22.1). Many of these have 
shown favorable activity in a variety of different cancer cell lines, and several also 
show antitumor activity in vivo [30, 46, 69, 77, 93, 115, 121, 127].

Despite these advances, with the exception of the EPI compounds discussed in 
detail below, no drug that directly binds to an IDP has yet progressed beyond the 
preclinical stage. Still, significant progress has been made in this area. As more light 

22 Developing Inhibitors to the Amino-Terminus Domains of Steroid Hormone…



624

Table 22.1 List of compounds targeting regions of intrinsic disorder in human cancers

Target Compound Structure
Detection 
Method

Disease model (cell 
lines) Refs

AF9 PFWT peptide pen-LWVKIDLDLLSRV RD Leukemia (RS4;11, 
MV4-11, B1)

[136]

AR 
(NTD)

EPI-002 htCLS 
(Luc- 
reporter)

Prostate (LNCaP, 
LN95, VCaP, 
22RV1) – 
NCT02606123

[1, 114, 
118, 164]

I-EPI-002 RD Prostate (LNCaP, 
LN95)

[62]

EPI-7170 RD Prostate (LNCaP, 
LN95, VCap, 
C4-2B)

[8, 56]

SINT1 htCLS 
(Luc- 
reporter)

Prostate (LNCaP, 
LN95)

[10, 126]

Niphatenone B htCLS 
(Luc- 
reporter)

Prostate (LNCaP) [9, 108]

c-MYC 10074-G5 htCLS 
(yeast 
two- 
hybrid)

c-MYC 
overexpression 
(Rat1a-c-Myc)

[12, 166]

10074-A4 htCLS 
(yeast 
two- 
hybrid)

c-MYC 
overexpression 
(Rat1a-c-Myc), 
Leukemia (HL-60)

[12, 44, 
166]

10050-C10 htCLS 
(yeast 
two- 
hybrid)

c-MYC 
overexpression 
(Rat1a-c-Myc)

[12, 166]

c-MYC 10058-F4 htCLS 
(yeast 
two- 
hybrid)

c-MYC 
overexpression 
(Rat1a-c-Myc), 
Leukemia (HL-60, 
Ramos, KG1a), 
NSCLC 
(NCI-H460),

[44, 46, 
166, 169]

10031-B8 htCLS 
(yeast 
two- 
hybrid)

c-MYC 
overexpression 
(Rat1a-c-Myc)

[12, 166]

10075-G5 htCLS 
(yeast 
two- 
hybrid)

c-MYC 
overexpression 
(Rat1a-c-Myc)

[12, 166]

(continued)
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Table 22.1 (continued)

Target Compound Structure
Detection 
Method

Disease model (cell 
lines) Refs

10009-G9 htCLS 
(yeast 
two- 
hybrid)

c-MYC 
overexpression 
(Rat1a-c-Myc)

[12, 166]

IIA4B20 htCLS 
(FRET)

CEF [135]

IIA6B17 htCLS 
(FRET)

CEF [135]

PKUMDL- 
YC-1203

VS Leukemia (HL-60) [44]

PKUMDL- 
YC-1204

VS Leukemia (HL-60) [44]

PKUMDL- 
YC-1205

VS Leukemia (HL-60) [44]

c-MYC sAJM589 htCLS 
(PCA)

Leukemia (HL-60, 
Ramos, KG1a)

[18]

KJ-Pyr-9 htCLS 
(FP)

B Cell Lymphoma 
(P493-6), NSCLC 
(NCI-H460), TNBC 
(MDA-MB-231, 
SUM-159PT)

[46]

4da  
(JKY-2-169)

RD Leukemia (HL-60), 
NSCLC (NCI-H460)

[69]

EWS- 
FLI1

YK-4-279 htCLS 
(SPR)

Prostate (PC3), 
Ewing Sarcoma 
(CHP-100, TC71)

[30]

HIF-1α Chetomin htCLS 
(yeast 
two- 
hybrid)

Hepatocellular 
carcinoma (Hep3B, 
HepG2), Prostate 
(PC3, DU-145), 
Colorectal 
(HCT116)

[93, 121]

Gliotoxin RD Prostate (PC3, 
DU-145), Colorectal 
(HCT116)

[121]

Chaetocin RD Prostate (PC3, 
DU-145), Colorectal 
(HCT116)

[121]

(continued)
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is shed on the interaction between IDPs and specific binding partners, elements of 
rational-based drug design can be applied to design compounds which inhibit these 
interactions [69, 121, 127, 136]. Additionally, initial hits discovered from chemical 
screens have been successfully modified to increase potency and on-target specific-
ity [30, 44, 127, 169], recently culminating in the first clinical trials of any drug to 
target an IDP [17, 110]. While the number of IDP targets and corresponding antago-
nists is currently limited, the rapid development of novel tools capable of probing 
the molecular features of IDPs suggests both will increase dramatically in the 
near future.

22.9  A Rationale for Targeting the AR-NTD 
in Prostate Cancer

The AR is a steroid hormone receptor and has long been recognized as a key driver 
of prostate cancer [58]. As has been described, while the C-terminal LBD is struc-
tured, the NTD is characterized by large regions of intrinsic disorder, and the crystal 
structure has not been resolved [83, 97]. The AR is capable of interacting with ~160 
binding partners, most of which occur through the NTD [51]. Like other steroid 
hormone receptors, the AR-NTD contains the AF-1 motif which contributes the 

Table 22.1 (continued)

Target Compound Structure
Detection 
Method

Disease model (cell 
lines) Refs

NUPR1 Trifluoperazine htCLS 
(FTD)

Pancreatic 
(MiaPaCa-2)

[115]

NUPR1 ZZW-115 RD Pancreatic 
(MiaPaCa-2, LIPC, 
Foie8b, 02-063, 
HN14)

[127]

p27Kip1 SJ-710 htCLS 
(NMR)

n/a [61]

SJ-403 htCLS 
(NMR)

n/a [61]

PTP1B MSI-1436 RD Breast (BT474) [79]

Abbreviations: FP fluorescence polarization, FRET fluorescence resonance energy transfer, FTD 
fluorescence thermal-denaturation, htCLS high throughput chemical library screen, PCA protein- 
fragment complementation assay, RD rational design, SPR surface plasmon resonance, VS vir-
tual screen
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majority of transcriptional activity to the AR through two distinct subregions: tran-
scriptional activation unit 1 (Tau-1) and Tau-5 [65]. Tau-1 comprises amino acid 
residues 101–370, whereas Tau-5 spans residues 360–485. AF-1 mediates AR tran-
scriptional activity both in the presence and absence of androgen ligand, and its 
presence is vital for the AR to properly function [66].

In addition to interacting with coactivators, the AF-1 can interact with the AF-2 
either directly or indirectly through coactivators, although this remains dependent 
upon ligand activation [86, 140]. Moreover, He and colleagues demonstrated that 
this N/C interaction in the AR was required to stabilize helix 12 and slow down the 
dissociation of androgens, allowing for sustained transcriptional activity [48]. The 
N/C interaction is also important for stabilizing dimerization and overall receptor 
stability [137]. Disruption of N/C interaction due to mutations V889M and R752Q 
increased androgen dissociation rate, induced AR instability, and accelerated AR 
degradation [95].

Abnormal regulation of steroid receptors is associated with many human dis-
eases including cancer. Therefore, extensive research has delved into the develop-
ment of antagonists which can abrogate transcriptional activity by disrupting 
receptor/DNA and/or receptor/coregulator interactions. Due to both the lack of 
structural information of the NTD and the high sequence homology of the DBD 
between the steroid receptors, most of this effort was focused on designing drugs 
which compete with ligand binding in the well-defined LBD or prevent interaction 
of cofactors with AF-2 [16, 67]. This however has proven to be inadequate as this 
strategy does not wholly inhibit AF-1 transcriptional activity, in part due to its abil-
ity to function semi-autonomously from AF-2 and ligand stimulation [6, 22, 57, 66, 
85]. In addition, constitutively active AR-splice variants which lack the AR-LBD 
and gain-of-function mutations in the LBD are clinically relevant [2, 3, 68, 139]. 
Small molecules targeting the intrinsically disordered AR-NTD have the potential 
to inhibit both ligand-dependent and ligand-independent AR transcriptional activity 
and could thus overcome multiple resistance pathways to existing therapies for 
lethal castration-resistant prostate cancer (CRPC).

22.10  Decoys and Chemical Libraries

Early studies in the 1990s showed that the transcriptional activity of AR resides 
within the AF-1 contained in the NTD and that deletion of the LBD yielded a con-
stitutively active truncated receptor [65]. Research efforts to discover inhibitors of 
the AR NTD were prompted by these studies together with the finding that androgen- 
independent activation of AR could occur through crosstalk with signaling path-
ways initiated by bone-derived factors, cytokines, and protein kinases which 
converged upon the AR-NTD [124, 142, 143].

Evidence supporting the AR-NTD as a therapeutic target was provided with 
proof-of-principal studies using a decoy molecule corresponding to the AR-NTD 
(AR1–558) [120]. These studies showed that AR1–558 was capable of inhibiting 
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endogenous ARFL signaling presumably by sequestering coregulatory proteins 
required for its transcriptional activity [120]. In spite of the decoy encoding the 
entire AR NTD, there was considerable specificity with little to no inhibitory effects 
on agonist- induced transcriptional activities of GR or ER-α; however, decoy AR1–558 
blocked agonist-induced PRβ transcriptional activity by 90% [120]. Impressive 
in vivo antitumor activity against human CRPC xenografts in castrated hosts was 
measured using viral delivery of the decoy to established tumors and in prostate 
cancer cells engineered to stably express abundant levels decoy [120]. These studies 
provided evidence that protein-protein interactions with AR NTD were essential for 
AR transcriptional activity and growth of CRPC tumors and, if targeted, would 
mediate a therapeutic response [120].

To find a small molecule inhibitor that could duplicate the therapeutic response 
achieved with the decoy, libraries of rationally pre-selected pharmacophores as well 
as extracts of marine sponge were screened in a series of specialized cell-based 
assays [125]. No hits were detected from the 52,000 compounds tested in the 
ChemBridge DIVERSet and NCI Diversity set, whereas there were approximately 
30 hits from unique marine sponge extracts. Of these 30 hits, three different chemi-
cal scaffolds have been published that directly interact within AF-1 of the AR 
NTD. These are the EPI compounds (ralaniten), sintokamides, and niphatenones. 
The remaining active extracts and unique scaffolds continue to be characterized.

22.11  EPI Compounds (Ralaniten)

The EPI molecules are the best described and have generated two clinical candi-
dates thus far. As first-in-class compounds, the USAN council granted a new generic 
stem name “aniten” to distinguish their unique mechanism of action from antian-
drogens with the stem name “lutamides.” EPI-001 is a mixture of four stereoisomers 
(EPI-002 to EPI-005). These compounds directly bind to Tau-5 within AF-1 of 
AR-NTD to prevent essential protein-protein interactions required for both ligand- 
dependent and ligand-independent AR transcriptional activity [1, 111]. EPI-001 is a 
derivative of bisphenol A diglycidyl ether (BADGE) isolated from the marine 
sponge Geodia lindgreni and has a unique chemical structure compared to antian-
drogens. Increasing concentrations of androgen has no effect upon the ability of 
EPI-001 to antagonize ARFL transcriptional activity [114], nor can high concentra-
tions of EPI-001 displace fluoromone ligand from AR-LBD as demonstrated by a 
fluorescence polarization assay [1]. These studies suggested that EPI-001 did not 
inhibit AR transcriptional activity through competition with androgen for the 
ligand-binding pocket in the C-terminus LBD. Instead, EPI-001 has a unique mech-
anism from antiandrogens.

The first data to provide evidence that EPI-001 directly interacted with AF-1 in 
AR NTD was using a cell-free assay employing fluorescence emission spectroscopy 
[1]. These studies exploited the presence of tryptophan and tyrosine residues within 
recombinant AF-1 protein to reveal a change in conformation upon binding of 
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EPI-001 [1]. Additional studies using biotinylated recombinant AF-1 with various 
EPI probes revealed that approximately 1% of the AF-1 population formed irrevers-
ible bonds with EPI thereby allowing application of SDS-PAGE to detect direct 
binding to biotinylated compounds [114]. Due to the potential for an intrinsically 
disordered protein in a cell-free assay to not acquire the structural conformations 
present in vivo, it was important to examine direct binding of EPI to endogenous AR 
in cells with the physiological concentrations and repertoire of interacting proteins. 
These studies employed radiolabeled and biotinylated EPI analogs and probes with 
the endogenous full-length AR in LNCaP cells and transiently transfected frag-
ments of AR [62, 114]. This seminal work was the first to show direct interaction of 
a small molecule to an intrinsically disordered target in living cells. Importantly 
these studies also provided evidence for the specificity of EPI compounds to bind to 
AR with little to no binding to other proteins [62, 114].

No reactivity of the chlorohydrin group within the scaffold of EPI-001 and its 
stereoisomers was detected at physiological pH as indicated with radiolabeled ana-
logs in vitro, in vivo SPECT-imaging, nor in patient samples, and no adduct forma-
tion with glutathione [9, 62, 118, 153]. In 2016, the binding site for EPI-001 was 
mapped by NMR using a fragment of the AF-1 region (AR142–448). EPI-001 was 
shown to preferentially bind residues spanning 354–448 and which are part of the 
Tau-5 region within the AR-NTD58. While three regions (341–371; 391–414; and 
426–446) had large chemical shifts, EPI-001 failed to bind when peptides corre-
sponding to these regions were used independently. This suggests that the specific-
ity of EPI-001 for Tau-5 is dependent upon the simultaneous presence of AR354–448 
and is related to a particular structural conformation of Tau-5 [111]. Thus EPI-001 
does not bind linear amino acid sequences but instead binds within a pocket, sup-
porting the specificity of EPI-001 and its stereoisomers against the AR. The site of 
EPI-001 interaction mapped by NMR was consistent with previous studies showing 
EPI-blocked protein-protein interactions with CBP and RAP74 [1, 164] which both 
interact with Tau-5 shown in Fig. 22.2 [94, 112]. KD binding affinities for TFIIF 
(RAP74) binding to Tau-5 are influenced by phosphorylation within this region 
going from 1749 μM to 702 μM with phosphorylation of S424 [112]. These binding 
affinities in the mM and high μM range highlight important differences in terms of 
drug development between targeting protein-protein interactions within Tau-1 or 
Tau-5 versus developing an inhibitor to AR-LBD such as an antiandrogen. Ralaniten 
with an IC50 of 10 μM was sufficient to mediate in vivo efficacy both in patients and 
in vivo in preclinical models, whereas antiandrogens that target the AR-LBD are 
required to have affinities in the low nanomolar range in order to compete with 
DHT. As expected, ralaniten did not block interaction with the p160 family of SRC 
proteins [164] that interact within residues 1–233 of the AR-NTD [142, 170] that is 
outside of Tau-5 (residues 360–485).

Initial in  vitro experiments describing the mechanism of EPI-001 binding to 
Tau-5 indicate a rapid reversible interaction, followed by a slow covalent binding 
step, requiring the secondary hydroxyl group on C20 [111, 114]. Later a study with 
mass spectrometry determined cysteine residue 404 was the major residue in AF-1 
involved in the slow covalent binding step with EPI-001 [111]. A subsequent study 
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investigating a radiolabeled EPI analog for potential development as an imaging 
agent to identify the presence of AR-splice variants in metastatic lesions, suggested 
that covalent binding may not occur in vivo. Biodistribution data in mice indicated 
a relatively fast turnover of approximately 3 hours, and thus the slow covalent bind-
ing step observed only in closed in vitro systems was likely not permitted [62].

EPI-001 has two chiral carbons (C1 and C20). The stereoisomer EPI-002 
(2R,20S) was given the generic name “ralaniten” and chosen as a lead candidate for 
further study due to its potency and low toxicity profile [114]. Ralaniten demon-
strated on-target activity in a variety of CRPC models [56, 62, 114, 118, 164] and 
importantly retained efficacy against constitutively active AR-splice variants lack-
ing the LBD in vitro and in vivo [8, 62, 70, 164]. Ralaniten is well-tolerated in 
animals and does not inhibit the transcriptional activity of other highly related ste-
roid receptors (ER, GR and PR) [1, 114]. As a result, a phase I/II clinical trial was 
initiated in November 2015 (NCT02606123) to test the efficacy of ralaniten acetate 
(EPI-506, the orally administered prodrug of ralaniten) in patients who had pro-
gressed on abiraterone or enzalutamide. In vivo, ralaniten acetate is converted 
within minutes to the active compound, ralaniten. This clinical trial represented the 
first time that a drug which directly interacts with an IDP had ever advanced to the 
clinic. Ralaniten was well-tolerated and a PSA response, and stable disease were 
reported in some patients. Unfortunately the trial was ultimately terminated due its 
poor pharmacokinetic profile [17, 110].

Despite this setback, analogs of ralaniten have been synthesized with improved 
potency and optimized pharmacokinetic profile as a direct result of the lessons 
learned from the first clinical trial. The primary functional groups responsible for 
the metabolism of ralaniten have been revealed, and modification of these groups 
was sufficient to decrease metabolism [8, 56, 118]. Potency has been improved by 

Fig. 22.2 Binding of ralaniten to AR NTD prevented N/C interaction, reduced the interaction 
between RAP74 (TFIIF) and CBP with AF-1, and decreased AR binding to DNA (red T bars indi-
cate the interrupted interactions). However, ralaniten did not block the interaction between SRC-1 
and AR1–233. Upon ralaniten binding, local conformation may be induced in NTD, leading to 
interrupted interactions
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over tenfold while maintaining specificity with the discovery of the addition of hal-
ogens to the phenyl groups as shown with I-EPI-002 and EPI-7170 [8, 56, 62]. Data 
has been published using the newest EPI analogs and confirms that these com-
pounds inhibit both ARFL and AR-V and show synergistic effect when combined 
with existing antiandrogen or radiotherapies [8, 56]. The newest lead compound, 
EPI-7386, has been tested in several prostate cancer xenograft models and shows 
substantial superiority to EPI-002 in terms of potency, metabolic stability, and phar-
macokinetics. EPI-7386 is currently being tested in a phase I clinical trial 
(NCT04421222) for men with CRPC, which began in June 2020.

22.12  Sintokamides and Niphatenones

Additional antagonists of the AR-NTD have been discovered from natural com-
pound libraries, and work is ongoing to develop and further refine these alternative 
classes of compounds. The sintokamides were first identified as bioactive com-
pounds extracted from the marine sponge Dysidea sp. in 2008. Five sintokamides of 
interest were studied (sintokamide A–E), all members of a family of chlorinated 
peptides [126]. Sintokamide A (SINT1) blocked transactivation of the AR-NTD and 
prevented AR-dependent proliferation in  vitro [126]. The mechanism of action 
involved SINT1 binding to the AF-1 region in the AR-NTD and did not compete 
with androgen binding to LBD similar to ralaniten [10]. SINT1 was specific for 
blocking AR transcriptional activity and did not inhibit other structurally related 
steroid receptors.

Despite also binding to the AF-1 region like ralaniten, differences between these 
two classes of compounds are apparent. Stimulation with IL-6 induces AR tran-
scriptional activity via STAT3-AR interaction through the NTD in a ligand- 
independent manner. The STAT3 binding site has been mapped to a region 
encompassed by amino acids 234–558 [143] which overlaps with the ralaniten bind-
ing site (354–448). Accordingly, ralaniten blocks STAT3 interaction with the 
AR-NTD [1, 10]. However, SINT1 had no effect upon IL-6 stimulation of the AR 
and failed to block STAT3 interaction with AR NTD [10]. Taken together with the 
fact that combination treatment of SINT1 and ralaniten resulted in an additive effect, 
these results suggest that the mechanism of binding is unique for these classes of 
AR-NTD antagonists despite both targeting the AF-1 region.

The binding site of SINT has been mapped between residues 142–485 and is 
likely toward the N-terminus relative to the ralaniten binding site (Fig. 22.3), pos-
sibly within Tau-1 (residues 101–370) [10]. Unlike Tau-5 that contains a core unit 
435WHTLF439, Tau-1 lacks a singular core motif, and its transcriptional activity has 
not been mapped to a discrete region [65]. This means that to inhibit Tau-1, a large 
region would need to be disrupted. When the LBD is deleted, there is a shift from 
the location of transcriptional activity from Tau-1 to Tau-5 [65]. This shift in loca-
tion of transactivation has implications for developing drugs that target AF-1 to 
block full-length AR in response to androgen (employs Tau-1) and also to block 
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constitutively active AR-V that lacks LBD (employs Tau-5). Thus an approach that 
combines a Tau-1 inhibitor with a Tau-5 inhibitor may yield superior therapeutic 
effects. In spite of SINT1 possibly being a Tau-1 inhibitor, it has antitumor activity 
against several models of prostate cancer including LNCaP95 xenografts which are 
driven primarily by the AR-V7 variant that lacks LBD.  While development and 
characterization of the sintokamides is still in the preclinical stage, synthetic ana-
logs have been created [10]. IL-6 plays an important role in metastatic CRPC bone 
lesions and transactiving AR [143], therefore application of sintokamides as a 
monotherapy for this stage of prostate cancer is not recommended due to its mecha-
nism of action of not blocking STAT3 interaction. Instead, sintokamides could be 
used in combinations with other inhibitors of AR-NTD such as ralaniten analogs or 
developed as an imaging agent. Investigations continue with the goal of progressing 
these and other classes of compounds to the clinic.

Extracts from the marine sponge Niphates digitalis has revealed the glycerol 
ethers niphatenones A and B. Like the EPI and sintokamide compounds, the niph-
atenones bind the AR AF-1 region yet are structurally distinct from other AR antag-
onists. Thus, these molecules represent a potential new lead for further development 
of inhibitors of the AR-NTD.  Initial characterization studies focused on niphate-
none B, and its synthetic analogs showed on-target activity and antiproliferative 
effects in prostate cancer cells [108]. Subsequent studies confirmed the ability of 
niphatenone B enantiomers to prevent transactivation of the AR-NTD and were 
capable of inhibiting both ARFL and AR-variant transcriptional activity [9]. However, 

Fig. 22.3 Binding and potential mechanisms of AR NTD inhibitors. AR consists of four func-
tional domains: NTD, DBD, hinge, and LBD. The NTD contains activation function-1 (AF-1) 
region where the majority of transcriptional activity occurs. Transactivation units (Tau) 1 and 5 are 
located in NTD. Ralaniten (EPI) makes direct contact with three small regions (black lines) of a 
pocket within Tau-5, whereas sintokamides (SINT) are proposed to bind within Tau-1. The DBD 
and LBD are both folded domains, and they are separated by a hinge region that contains nuclear 
translocation signal. (RCSB Protein Data Bank: 1E3G for LBD; RCSB Protein Data Bank: 1R4I 
for DBD)
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unlike the sintokamides or EPI compounds, niphatenone B binds to the AF-1 region 
of GR and also forms adducts with glutathione indicating that this compound is a 
reactive alkylating agent [9]. Additionally at higher concentrations, there was evi-
dence that niphatenone B may interfere with ligand binding to the AR, PR, and GR 
again suggesting off-target activity [9]. As a result, the niphatenone class of com-
pounds was deemed to be too reactive with insufficient target specificity to justify 
continued development. These results highlight the challenges of drug discovery 
and development from large-scale screens and the importance of detailed character-
ization studies which must be undertaken.

22.13  Summary

Steroid hormone receptors function as signaling hubs coordinating the formation of 
large protein complexes through intricate protein-protein interactions. A key com-
ponent in their ability to function relates to extended regions of intrinsic disorder in 
their NTD which allows for rapid interactions with a wide range of binding partners, 
occurring with high specificity but low affinity [26, 54, 157]. IDPs are thought to 
undergo induced or coupled binding, adopting local regions of structure upon inter-
action with their binding partner. Protein-protein or protein-DNA interaction, post-
translational modification, and ligand binding all are capable of modulating NTD 
structure through allosteric effects, and by extension, influence binding partner 
preference [6, 7, 53, 78, 81, 167]. As ligand-activated transcription factors, the ste-
roid receptors play vital roles as master regulators of key cellular processes. Thus, 
misregulation or mutation of these proteins is associated with many human diseases 
ranging from cardiovascular disease to developmental and neurological disorders to 
cancer [98, 141]. Due to their overrepresentation in signaling networks and disease, 
much interest has been generated in developing novel inhibitors to steroid receptors 
and to IDPs in general.

The approaches to drug discovery outlined can be divided into two main strate-
gies: (1) utilizing large-scale screens to “fish” for small molecules which are capa-
ble of binding an intrinsically disordered region of a target protein and (2) where 
short regions of the intrinsically disordered protein sequence are known or pre-
dicted, inhibitors are designed to inhibit interaction with a known binding partner. 
Indeed once hits are identified through large-scale screens, further characterization 
studies allow better understanding and modeling of the binding site to permit the 
second strategy to be more effectively applied [56, 111, 118, 169]. With this in 
mind, much of the focus so far has been on inhibiting well-defined protein-protein 
interactions which are essential for activity. This is seen in the case of c-MYC/Max 
[12, 18, 44, 46, 69, 166, 169], EWS-FLI1/RHA [30], AF4/AF9 [136], NUPR1/
MSLI1 [115, 127], HIF-1α/p300 [93, 121], and p27Kip1/Cdk2 [61].

For the discovery of inhibitors specific to the AR-NTD, the first approach was 
required, as a specific and singular protein-protein responsible for the majority of 
transcriptional activity has not been found. Rather a ligand-based approach to 

22 Developing Inhibitors to the Amino-Terminus Domains of Steroid Hormone…



634

identify a general inhibitor of transcriptional activity that bound specifically to the 
AR-NTD was sought. This led to the discovery of the EPI, sintokamide, and niph-
atenone compounds which remain the only inhibitors targeted against the NTD of 
any steroid receptor. The binding site of EPI-001 has been resolved using NMR and 
mapped to the Tau-5 region within the AF-1 [1, 112, 164], and a general model for 
binding has been proposed [112, 114]. Functional studies have also shed insights 
into the structure and activity relationship, thereby allowing for functional groups to 
be altered and optimized [8, 56, 62, 118]. While the clinical trial of ralaniten acetate 
was ultimately unsuccessful due to poor pharmacokinetics, the data from that trial 
has influenced the design of second-generation EPI compounds and led to the gen-
eration of the clinical candidate (EPI-7386) which is currently in clinical trials 
(NCT04421222).

The sintokamide and niphatenone compounds represent alternative leads into 
compounds targeting the AR-NTD, although development of the niphatenones is no 
longer ongoing. SINT1 like the EPI compounds binds the AF-1 region, though in a 
unique binding site and with a different mechanism of action [10]. This is not unsur-
prising as three unique binding sites were discovered in the bHLHLZip domain in 
c-MYC, and substantial differences in structure exist between these various inhibi-
tors [36, 44, 127]. An important consideration is that small molecule inhibitors may 
not necessarily induce global structural changes and induce rather only local 
changes in structure near the binding site of the inhibitor. This was seen with c-Myc 
[36, 44] and p27Kip1 [61] where both of the targeted proteins generally remained 
disordered following binding with inhibitor. As such, the inhibitor may be able to 
restrict a subset of possible protein-protein interactions yet permit others to occur. 
As SINT1 and EPI-002 target different regions and show an additive effect, it is 
likely that a similar trend is occurring in this case as well (rather than inducing wide 
spread structural changes in the AR NTD). Nonetheless, optimization of the EPI 
scaffold has yielded second-generation inhibitors with substantially improved 
potency [8, 56]. Whether these new compounds block an abundance of protein- 
protein interactions, or merely a few key interactions, remains to be determined.
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Chapter 23
Redirecting the Cellular Waste Disposal 
Machinery to Target Transcription

Helen H. Yu and Kathleen M. Sakamoto

Abstract This chapter focuses on the development of therapeutics that work to 
induce the degradation of nuclear receptors. These therapeutics, unlike traditional 
small molecule inhibitors, work by redirecting the cellular waste disposal machin-
ery to remove a therapeutic target. They are advantageous because they work 
through a catalytic mechanism, raising the possibility of drugs with enhanced 
potency. Current work in the field is toward identifying novel molecular “glues,” in 
the hopes of bringing proteolysis targeting chimeras (PROTACs) to the clinic. 
However, translating it from a concept dreamed up in a laboratory to a clinically 
viable tool took almost 20 years of basic research.

Keywords PROTACs · Degradation · Nuclear receptor · Druggable · 
Transcription factor

23.1  Introduction

Redirecting the cellular degradation machinery to remove a therapeutic target is 
currently one of the most promising areas of drug discovery research. Almost every 
major pharmaceutical company has dedicated resources toward developing these 
drugs termed proteolysis targeting chimeras (PROTACs). Drugs that work through 
catalyzing degradation have been shown to be much more potent and effective 
against a much larger scope of targets than traditional small molecule inhibitors and 
hold the promise to make an impact on human health. However, it took almost 
20 years of engineering and basic biochemical research before this therapeutic strat-
egy could be deployed on a mass scale.
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23.2  Overview of the Ubiquitin-Proteasome System

One of the primary pathways to degrade proteins is the ubiquitin proteasome sys-
tem. Unwanted cellular material is removed by the proteasome, which is a 2 mDa 
enzymatic complex that digests proteins by first unfolding them then looping them 
into its central chamber to cleave into smaller peptides (Fig. 23.1e) [1, 2]. The cell 
can selectively direct the enzymatic activity of the proteasome toward unwanted 
proteins, by labeling them with a minimum of four ubiquitin moieties (Fig. 23.1e) 
[3, 4]. Ubiquitin is an 8 kDa protein that is appended onto proteins through an iso-
peptide linkage between the C terminus of ubiquitin and a lysine on the target pro-
tein [5]. Multiple enzymes coordinate the attachment of ubiquitin onto the target 
protein and polymerize it into a chain long enough for the receptors on the protea-
some to recognize for degradation (Fig. 23.1a–d) [6, 7]. Therefore, for this thera-
peutic strategy to be successful, ubiquitin would need to be specifically conjugated 
to the target protein.

Redirecting the specificity of ubiquitination has been the rate-limiting step in the 
development of this therapeutic strategy. Ubiquitin is first converted into a more 
reactive thioester by acylating it onto a cysteine on an E1 ubiquitin-activating 
enzyme (Fig. 23.1a) [4, 8]. The reactive thioester is directed toward specific sub-
strates by E3 ubiquitin ligase enzymes. E2 ubiquitin-conjugating enzymes serve as 
intermediaries that rapidly deliver a reactive thioester to E3s (Fig. 23.1b) [9, 10]. 
Hundreds of E3 ubiquitin ligases target subsets of the proteome, ultimately dictating 
the specificity of the ubiquitin proteasome system (Fig. 23.1c). Although this strat-
egy would only be amenable toward intracellular targets, there was a more obvious 
route to repurpose this pathway to remove a therapeutic target. A drug that aims to 
change the specificity of ubiquitination needs to alter the specificity of an E3 ligases.

Identifying the correct E3 ubiquitin ligase is critical toward development of a 
therapeutic modality. E3 ubiquitin ligases bring the target substrate near thioesteri-
fied ubiquitin. Redirecting them to ubiquitinate a therapeutic target necessitates 
being able to bind to the target in a way that does not disrupt catalysis. One class of 
E3 ubiquitin ligases that are particularly amenable toward having their specificity 
redirected without influencing catalysis are cullin-RING ligases [10]. This is a class 
of multi-subunit E3 ubiquitin ligases that are comprised of an interchangeable sub-
unit that recognizes substrate (substrate receptor) and combine with the catalytic 
core bound to the charged E2 ubiquitin thioester.

A pathway in nature was known to redirect the specificity of an E3 ubiquitin 
ligase with a small molecule. Indole-3-acetic acid regulates growth in plants by 
changing the binding surface of the cognate E3 ubiquitin ligase (SCFTIR1). This 
enables the E3 ligase to bind to substrates that enable it to dynamically respond to 
changing environments [11]. Although it was a promising start, it was unclear if it 
would be amenable to building drugs in a modular fashion that would enable the 
same E3 ligase to be redirected toward catalyzing the degradation of multiple differ-
ent therapeutic targets.
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Fig. 23.1 (a) The C terminal carboxylic acid is first converted to a reactive thioester by an enzyme 
called E1. (b) The ubiquitin thioester is then transthioesterified onto E2, to enable proper orienta-
tion of the reactive thioester. (c) cullin-RING domain E3 ubiquitin ligases bring the lysine on the 
target protein in close proximity to the reactive thioester, by binding to both the substrate and the 
E2 thioester. (d) Since the receptors on the proteasome can only bind to ubiquitin polymers with at 
least 4 monomeric units, the ligase must create a chain long enough for the proteasome to grab 
onto. (e) The ubiquitinated protein is recruited by receptors on the proteasome, before being 
removed en bloc by deubiquitinases on the proteasome. The protein is subsequently unfolded by 
ATPases and digested into smaller peptides
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An alternative mechanism that could be directed toward cellular waste disposal 
is autophagy, which is traditionally considered the most effective way to convert 
biomass into simple macromolecules. The target is enclosed in a double membrane 
bilayer before fusion with the lysosome, which has digestive enzymes to convert it 
into simple macromolecules. Although this would be effective toward both intracel-
lular and extracellular proteins (that become internalized through endocytosis), one 
challenge is finding a way to selectively direct it to the protein of interest without 
triggering autophagy [12]. Additionally, there would be no way to selectively 
remove one subunit of a macromolecular complex or a protein embedded within an 
organelle.

23.3  Advantages of PROTACs Over Other 
Targeted Therapeutics

23.3.1  Small Molecule-Based Approaches

The proteome can be thought of as the metaphorical ship of Theseus, where old 
decayed components are constantly being removed and replaced by a new compo-
nent. Over time, a cell is constructed from completely resynthesized “parts.” This 
analogy is a useful framework for systematically evaluating different therapeutics, 
to highlight the advantages of using a degradation-based therapeutic strategy.

Small molecule inhibitors have been traditionally considered the workhorses of 
the pharmaceutical industry. An example that illustrates the utility as well as some 
of the limitations of small molecule-based therapeutics is a drug like abiraterone 
acetate. Abiraterone acetate has been shown to be useful in a clinical setting because 
it can block the biosynthesis of biological androgens [13, 14]. Although deployment 
of this drug has been shown to be effective in patients with castration-resistant pros-
tate cancer, there are limitations to the efficacy of the tool. Only a third of the 
patients respond to treatment, and patients often end up with a form of cancer that 
is more lethal and more aggressive.

A key limitation is that the efficacy of small molecule inhibitors depends on the 
fractional occupancy of the cognate hormone; only a few mutations in the binding 
site are enough to become resistant to existing treatments. Additionally, because 
first-line inhibitors work because the target contains a well-defined ligand binding 
pocket, this necessarily excludes proteins like transcription factors as therapeutic 
targets (Fig. 23.2b–c). An example of a protein that has been shown to have a lot of 
promise as a therapeutic target is the bromodomain and extra terminal family pro-
tein (BRD4). Although evidence from knockdown studies have indicated that this 
protein would be a promising therapeutic target, the small molecules that have been 
developed against this target do not completely recapitulate all the effects of a 
knockdown due to incomplete suppression from of the reversibility of the binding 
kinetics [15, 16]. Adding a further level of complication, treatment with a small 
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molecule inhibitor results in increased steady-state levels of proteins, illustrating the 
need for new tools that can be deployed clinically [17]. Both examples above illus-
trate that although traditional small molecule inhibitors have had a lot of utility 
within a clinical setting, there are major limitations to the scope of the proteins that 
can be targeted and the potency of the drugs.

23.3.2  Nucleic Acid-Based Approaches

An alternative strategy that would open every single protein in the proteome is 
knockdown through a nucleic acid-based approach. Unfortunately, the realities of 
translating the idea clinically limit its versatility as a treatment option. Small mol-
ecules can readily access the target biochemical machinery, because they can read-
ily diffuse across the lipid bilayer as they tend to be small and hydrophobic. As a 
result, they can target most cell types, and the effects are exerted almost immedi-
ately. Nucleic acids on the other hand rely on a delivery vehicle like liposomes or 
viruses to inject them into cells because they are highly charged [18]. Because some 
cell types (e.g., post-mitotic neurons) have a much lower rate of transduction than 
others, nucleic acid-based technology cannot be assumed to work as broadly as 
small molecule inhibitors. Finally, there are some intrinsic design flaws associated 
with targeting the rate of protein production as a therapeutic strategy. The length of 
time it takes for a protein to reach a new equilibrium depends on the rate of protein 
degradation. Because of the large variability in the rate of degradation that can run 
the gamut from seconds to months, it is a great strategy for proteins that are 

Fig. 23.2 (a) Traditional inhibitors need to compete with the endogenous ligand for binding. (b) 
The types of proteins that can be targeted tend to be enzymes. (c) The key is that these inhibitors 
require a protein with a well-defined binding pocket
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unstable, but not as great of a strategy for proteins with a long half-life, especially 
proteins that exist in multiprotein complexes [19].

23.3.3  Protein Degradation

An alternative chemical strategy for nuclear receptor inhibition is modifying endog-
enous nuclear receptor ligands such that their binding directs the nuclear receptor 
for degradation. As a general design strategy, there are several advantages to cata-
lyzing the rate of decay as a therapeutic strategy. Because the time it takes a protein 
to reach a new equilibrium depends on the rate of decay, it could potentially work 
more rapidly than drugs that normally work through targeting the rate of production 
[10]. Additionally, it would be generalizable toward proteins that have a long 
half-life.

Finally, because this strategy would entail using a small molecule, it would 
bypass the necessity of designing the appropriate delivery vehicle that a nucleic 
acid-based strategy would need. It would also not have the limitations of small mol-
ecule inhibitors primarily since the role of each molecule is to catalyze the degrada-
tion of the target protein, meaning that the potency of the drug would not depend 
upon the fractional occupancy at equilibrium (Fig. 23.3c) [20, 21]. As a result, it 
also means that drugs could be used in lower dosages, minimizing effects from off- 
target toxicity [22]. Finally, the biological effects of these alternative therapeutics 
would be exerted over a longer time frame because its therapeutic window depends 
on the length of time to resynthesize the protein instead of biomolecular dissocia-
tion. Since catalysis is not as dependent on equilibrium kinetics, they also hold the 
potential to become more resistant to binding pocket mutations.

In conclusion, designing a strategy that is focused on catalyzing the removal of 
proteins by redirecting the cellular waste disposal machinery to remove a therapeu-
tic target is a versatile therapeutic strategy where there is a pressing need for 
new tools.

23.3.4  Roadblocks to PROTAC Development

The architecture of E3 ubiquitin ligases created several roadblocks to drug discov-
ery. Since the catalysis is achieved by enhancing the proximity of substrates to ubiq-
uitin thioesters, the active sites of E3 ubiquitin ligases are flat, solvent-exposed 
surfaces [10]. One strategy that had been deployed to target specific enzymes is to 
synthesize a small molecule inhibitor that is a mimic of a reactive intermediate [23]. 
This strategy is not a viable for E3 ubiquitin ligases, because the reactive intermedi-
ate is an E2 ubiquitin thioester. Each E2 can combine with multiple E3 ubiquitin 
ligases. Catalysis is dependent on the proximity of the substrate’s target lysine to the 
reactive intermediate, adding an additional layer of complexity. As a result, the 
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ligands that were identified that were shown to be promising E3 ligase “glues” were 
discovered either through deliberately engineering a small molecule that could 
mimic the binding of an endogenous substrate or serendipity.

An overview of the Herculean engineering challenges that went into fashioning 
the first E3 ligase targeting ligand underscores why it took 20 years before redirect-
ing the waste disposal machinery was ready for prime time. Engineering an E3 
ligase ligand entailed exploiting the differential selectivity that E3 ubiquitin ligases 
have for different substrates (Fig. 23.3a). E3 ubiquitin ligases target an amino acid 
subsequence within a protein, which is referred to as degron [24]. The goal was to 
repurpose the amino acid subsequence to direct an E3 ligase to target a novel pro-
tein, through engineering a chimeric molecule where it was fused to a ligand that 
bound to the protein of interest. There were two key engineering challenges: select-
ing a degron to engineer into a chimeric molecule and identifying a suitable model 
substrate.

Because the interaction between the degron and the E3 ligase needed to be well 
characterized, it artificially restricted the pool of possible pairs to ones that 

Fig. 23.3 PROTACs are a class of drugs that are uniquely poised to revolutionize the small mol-
ecule inhibitors. (a) The modular nature of their assembly makes it easy to repurpose the same E3 
targeting moiety to a number of different targets. (b) The scope of the proteins that can be targeted 
means that proteins that were previously considered undruggable because they contained an 
exposed active site like scaffolding proteins and transcription factors could now be targeted with a 
small molecule. (c) The drug recruits the target protein to an E3 ligase complex, meaning that one 
molecule of the drug can be used multiple times before (d) removal of the target protein by the 
proteasome
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mediated physiological responses. One complex that was known at the time was a 
E3 ligase with a core enzymatic complex comprised of Skp-1, Cul1, and Hrt1 that 
could combine with β-TRCP, the subunit that was shown to recruit IκBα, a protein 
involved in mediating the inflammation response to catalyze its degradation [25]. At 
the time that this work was being done, the Deshaies Lab had just reported which 
components were needed for proteins to be ubiquitinated and degraded by cullin- 
RING ligases [26]. A 10 amino acid subsequence was shown to be phosphorylated, 
enabling the ubiquitination and subsequent degradation of the target protein.

Next, the appropriate target substrate needed to be identified. Ascertaining that 
the source of observed ubiquitination was the engineered chemical and not an 
endogenous source necessitated selecting a protein that showed little to no ubiquiti-
nation and was not a cullin-RING ligase substrate. Additionally, the target protein 
would need to bind with a known ligand that had high enough of affinity to selec-
tively recruit the target protein. A protein that fit this description was MetAP-2, 
which is a protein that was believed to play a role in regulating the progression of 
the cell cycle [27]. MetAP-2 was serendipitously characterized as the target of 
fumagillin and ovalicin [27, 28]. The interaction between MetAP-2 and ovalicin had 
also been shown to be stable enough to enable isolation of a heterodimeric complex 
that would be assembled by the PROTAC, an experiment that would be critical 
toward establishing the core mechanism [29].

The authors were able to demonstrate that this chimeric molecule, where ovali-
cin, a MetAP-2 ligand, was fused to a 10 amino acid ligand, was able to recruit 
MetAP-2 to the E3 ubiquitin ligase complex within a controlled in vitro setting. 
Supplementing the in vitro reaction with E1, E2, and ubiquitin enabled identifica-
tion of the ubiquitinated intermediate, showing that the engineered chimeric mole-
cule could redirect the E3 ubiquitin ligase to catalyze the ubiquitination of a 
neosubstrate. Because peptides do not easily passivate lipid bilayers, demonstrating 
that an engineered small molecule could catalyze the degradation of a target com-
pound with the levels of proteins that would be typical inside of the cell required the 
work to be done within xenopus egg extracts [29].

For PROTACs to be a generalizable drug paradigm that could be deployed across 
different types of diseases, it would be critical to establish that changing the identity 
of the molecule connected to the E3 targeting ligand would enable targeting of the 
E3 ubiquitin ligase receptor to new targets within a live cell. At the time, it was 
known that signaling through a nuclear receptor through steroids like androgen or 
estrogen promoted the growth of cells during prostate cancer because of the avail-
ability of clinically deployed inhibitors that blocked signaling through both path-
ways. Therefore, redirecting an E3 ligase toward the androgen receptor (AR) or 
estrogen receptor (ER) was attractive because of the possibility of crafting a drug 
that could be deployed within a clinical setting.

To demonstrate that this class of drugs could work in a modular fashion, the 
authors synthesized an IκBα phosphopeptide fused with estradiol or dihydrotestos-
terone to target it to the estrogen receptor or androgen receptor, respectively. In the 
in vitro ubiquitination experiments, the authors observed that both peptides were 
able to catalyze the ubiquitination of estrogen receptor and androgen receptor. 
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Additionally, the authors were able to observe the intramolecular “hook effect,” a 
byproduct of forming an intermolecular complex where a bivalent ligand becomes 
autoinhibitory at high concentrations, a key characteristic that has been observed in 
almost every PROTAC that has been synthesized [30].

Ubiquitin can be linked in a variety of different ways. Different linkages can 
result in different outcomes [31]. The next hurdle was to show that the ubiquitinated 
conjugates generated by PROTACs had the correct linkage to enable their identifica-
tion and degradation by the proteasome. An in vitro proteasome degradation reac-
tion where proteasome was added to the ubiquitinated conjugates showed that the 
conjugates were able to catalyze its degradation.

Although this demonstrated that this class of drugs could work in an in vitro set-
ting, it was unclear if this would translate into cells. One of the biggest challenges 
was that a charged phosphopeptide degron was not cell permeable. Therefore, what 
was needed was a delivery mechanism that would enable its delivery across the cell 
surface. Microinjection enabled delivery of heterodimeric peptides into live cells, 
which induce degradation of the target protein, showing that this drug is able to 
redirect the cellular degradation machinery in a live cell.

These pioneering efforts were the first example that demonstrated that it was pos-
sible to engineer a molecule that could redirect an E3 ubiquitin ligase to catalyze the 
degradation of a therapeutic target. Critically, this work also showed that these 
drugs could build modularly, which meant that one E3 ligase could catalyze the 
degradation of almost any protein by changing the identity of the targeting moiety. 
These experiments provided a roadmap that would enable this class of drugs to be 
applicable to any disease. Additionally, these drugs could be redirected toward the 
androgen receptor and the estrogen receptor, providing a roadmap toward utilizing 
these drugs to treat human disease.

A lot of additional work needed to be done to convert the first peptide-based 
PROTAC into an orally available drug. Orally administered drugs need to be small 
enough to efficiently diffuse into the target tissue (<500 Da), which is problematic 
given the high molecular weight of most peptides [32]. Additionally, drugs need to 
have enough hydrogen donors and acceptors for them to be soluble in water, but not 
so many that there would be problems with crossing the lipid bilayer to access the 
target biochemical machinery. Finally, peptides have amide bonds which make 
them susceptible to proteolytic degradation, meaning that the peptide-based drugs 
often have poor pharmacodynamics. Additionally, they cannot be administered 
orally, as they would not survive cleavage by gastrointestinal enzymes [33].

Subsequent work demonstrated that using a peptide that was modeled on a 
HIF-1α degron, an interaction was not reliant upon charged amino acids, was able 
to induce the degradation of androgen receptor or estrogen receptor when fused to 
estradiol or dihydrotestosterone. This work was critical because it showed that 
changing the identity of the degron could change the identity of the E3 ubiquitin 
ligase that was recruited to the target molecule [34]. Almost 10 years of engineering 
by synthetic chemists would have to occur before the proof-of-concept molecules 
were crafted into a small molecule that could be deployed within a clinical setting.
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23.3.5  Crafting an E3 Ligase Targeting Moiety 
from Known Degrons

Engineering an E3 targeting ligand from a known peptide took a feat of synthetic 
organic chemistry. The degron would need to be sourced from an interaction that 
was not dependent upon charged amino acids to maximize the probability of ending 
up with a small hydrophobic molecule (Fig. 23.4a). A famous example in the litera-
ture is hypoxia-inducible factor 1 Subunit – α (HIF-1α). This is a transcription fac-
tor whose protein levels are oxygen dependent, enabling the cell to sense and 
respond to levels of oxygen [35]. Research directed toward uncovering the molecu-
lar mechanisms behind regulating HIF -1α as an area of intense research because 
tumors need to grow to a certain size before they run out of oxygen. Therefore, they 
often adapt by promoting the growth of new blood vessels. The ability to detect 
changes in oxygen levels are critical to this process.

At a critical threshold level of oxygen, Hif-1α is hydroxylated at P564 by a pro-
line hydroxylase, triggering a negative feedback loop that enables HIF-1α to be 
identified and targeted for degradation by the corresponding E3 ubiquitin ligase 
comprised von Hippel-Lindau (VHL), Cullin2 (Cul2), and Elongin BC [34–39]. 
The hydroxylated HIF-1α degron is a particularly promising candidate to be repur-
posed for drug discovery, because it does not contain any charged amino acids, and 
the key interaction is binding to a hydroxylated amino acid, meaning that the entire 
degron could potentially be simplified to a mimetic of that single amino acid.

Initial attempts demonstrated that HIF-1α degron could be made cell permeable 
by hijacking the endogenous mechanism that viruses use to invade the cell. Since 
the cell surface is normally covered with charged lipids and carbohydrates, it would 
be difficult for large macromolecular complexes like viruses to enter the cell through 
passive diffusion. Viruses like HIV get around this complication by using a peptide 
that is comprised of positively charged amino acids, specifically exploiting the 
charged guanidinium head group in arginine [22, 40, 41]. A chimeric molecule 
comprised of both the polyarginine and the PROTAC was engineered and was dem-
onstrated to be able to successfully catalyze the degradation of the androgen recep-
tor at 25 μM [42].

Although it was able to overcome the hurdle of getting a large peptide across the 
cell surface, the resulting molecule was still extremely heavy (~2 kDa) and con-
tained peptide bonds that would make it vulnerable to hydrolysis mediated by extra-
cellular proteases. The crystal structure was published a year after the first SCF-based 
PROTACs were synthesized and revealed that the key interaction was mediated by 
a hydroxylated proline. Crews and coworkers were able to simplify the structure to 
a small molecule using a hydroxylated proline as a chemical handle to develop an 
analog with submicromolar affinity [22, 43]. Subsequent work showed that this 
small molecule could be used to remove estrogen-related receptor alpha (ERRα), an 
a orphan nuclear receptor, in both cell culture and in in vivo mouse models under 
normoxic conditions, indicating that this scaffold would be promising for clinical 
applications [22]. Critically, the authors found that the estrogen receptor was 
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completely degraded after 4 hours, almost a tenfold increase over the known half- 
life of 60 hours. This core observation was critical as it demonstrated that PROTACs 
could potentially induce a much more rapid response than a traditional inhibitor.

Although PROTACs should theoretically be able to operate sub- stoichiometrically, 
it was unknown how metabolism of a small molecule would affect the number of 
times a single molecule could be turned over. The second key experiment from the 
paper measured the number of molecules of protein each PROTAC was able to cata-
lyze the ubiquitination of. The core finding is that each molecule could catalyze the 
degradation of multiple proteins, showing that these PROTACs were catalytic 
(Fig. 23.3c). What this meant is that PROTACs could potentially be drugs that could 

Fig. 23.4 There are multiple different strategies for discovering an E3 targeting ligand. One strat-
egy is to exploit interactions between the E3 ligase receptor and the cognate substrate through (a) 
rationally designing small molecules that recapitulate the key binding interactions or (b) serendipi-
tously discovering a known drug works through targeting the substrate-binding interface. (c) An 
alternative is a higher-throughput approach to target a nucleophilic hotspot outside of the substrate 
binding interface through an activity-based proteomics profiling screen
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be used at lower dosages and have more potent effects. What is needed now is a test 
case that would enable a head-to-head comparison between the small molecule and 
the PROTAC version of the same drug.

23.3.6  Repurposing Known Inhibitors: How PROTACs 
Improve Existing Targeted Therapeutics

Since it was known that a degron could be redirected to catalyze the ubiquitination 
of the androgen receptor and the estrogen receptor by fusing the degron with the 
endogenous ligand, an obvious test case would be comparing the minimized degron 
fused to an inhibitor against the regular inhibitor. A small molecule inhibitor against 
the androgen receptor that was commonly used in the clinic is eluzatanib. Eluzatanib 
relies on high fractional occupancy to be efficacious, which mean that mutations in 
the active site that expand the selectivity of the receptor enable cancer cells to 
bypass inhibition by activation with alternative ligands [44].

Crews and coworkers synthesized a panel of the Hif-1α ligand fused to enzalu-
tamide with different linkers of different lengths [45]. In a head-to-head compari-
son, the most potent PROTAC was more robust to competitive inhibition with high 
concentrations of endogenous androgens and was also effective toward truncated 
isoforms that retained the signaling activity. This finding demonstrated that 
PROTACs could be used in treatment regimens that were resistant to the parental 
inhibitor. Additionally, the most potent compound, ARCC-4, was more effective 
than the parent compound at inducing apoptosis and stopping the growth of cell 
lines, showing that converting existing drugs into a PROTAC could substantially 
enhance their existing efficacy by changing the mechanism of action.

The next question is could PROTACs be used to make proteins that had been 
previously considered undruggable accessible like transcription factors? An exam-
ple of a protein considered undruggable is BRD4, which was known to epigeneti-
cally regulate genes that are directly targeted by the androgen receptor [17]. Because 
BRD4 has a poorly defined ligand-binding site, inhibitors designed against BRD4 
are particularly sensitive to the reversibility of ligand binding, resulting in incom-
plete suppression of the oncogene [15, 16]. Critically, BRD4 inhibitors cannot rep-
licate downstream suppression of an oncogene shown to be critical to its activity 
(c-MYC). The PROTAC version was able to replicate this effect, showing the poten-
tial of PROTACs to redefine the type of drugs that are considered druggable [15, 
46]. Additionally, this work showed that a small molecule inhibitor could have the 
same effect as an siRNA knockdown. A head-to-head comparison with a PROTAC 
showed that it was able to inhibit transcription over a longer window of time.

Even using the optimized E3 targeting domains, many of the PROTACs have a 
molecular weight of 800–1000 Da. In order for a drug to be bioavailable and have a 
good adsorption profile, there are upper limits on the molecular weight [47, 48]. 
One workaround is to split the drug into two halves using biorthogonal chemistry. 
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Astex Pharmaceuticals was able to use tetrazene ligation in order to design a 
PROTAC that rapidly assembled in the cell through click chemistry [49]. These 
technologies indicate the critical role that chemical biologists will play in the future 
of PROTACs.

23.3.7  Identification by Serendipity: Repurposing Existing 
Inhibitors to Redirect the Protein 
Degradation Machinery

Because of the challenges associated with directly engineering an E3 targeting 
ligand, serendipity is an important engine for discovery novel moieties (Fig. 23.4a). 
An example that showcases how powerful serendipity can be is thalidomide. 
Thalidomide is a drug that was originally prescribed as a sedative for morning sick-
ness, which was pulled off the market for its teratogenic effects [50]. Subsequent 
work revitalized interest in the drug, when it was shown to be effective toward the 
treatment of multiple myeloma. However, although it was a commercially success-
ful drug, the mechanism of action was unknown at the time.

All of this changed when a paper in early 2000 when Hiroshi Handa and cowork-
ers serendipitously identified cereblon (CRBN), the substrate recognition subunit of 
an E3 ubiquitin ligase complex, as its key binding partner [51]. This interaction was 
stable enough isolation of the protein complexes by immunoprecipitation with tha-
lidomide, indicating that this drug could be repurposed as an E3 ligase targeting 
ligand. Thalidomide and its derivatives have been repurposed to catalyze the degra-
dation of proteins previously believed to be undruggable like BRD4 [15]. However, 
this example also highlights some of the challenges associated with discovering 
new E3 targeting moieties. Although there are >600 E3 ubiquitin ligases, there have 
only been a couple of ligands that have been shown to be effective for being repur-
posed into PROTACs [52]. The rate of a serendipitous discovery depends in part 
upon the frequency of stochastic collisions between a novel compound and a target 
protein. However, when the pool of potential compounds is restricted to already 
commercially viable compounds, the rate of discovery is artificially deflated from 
under sampling of the possible chemical search space. What is needed is a more 
systematic and higher throughput way to screen interactions between potential E3 
targeting ligands and E3 ligases.

One technology that can open up the bottleneck is activity-based proteomics 
profiling (ABPP) [53]. ABPP maps out nucleophilic sites on target proteins that can 
be exploited for covalent ligand development. Covalent ligands are uniquely suited 
toward engineering an E3 ligase targeting moiety. Because they target a hotspot 
within the target molecule, lack of a well-defined binding pocket does not create the 
same type of issues that are created for traditional small molecule inhibitors. 
Libraries of potential ligands can be screened by competing against reactive probes, 
enabling high throughput screening of potential electrophilic ligands and 
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nucleophilic pairs (Fig. 23.4c). An example that illustrates how this technology has 
significantly accelerated the rate of discovery of novel E3 ligase targeting moieties 
is the discovery of nimbolide, an E3 ubiquitin ligase RNF114 targeting ligand, by 
Dan Nomura and coworkers [54]. Because nimbolide started out as a hydrophobic 
molecule, the length of time it would take to convert nimbolide to an orally available 
drug would be substantially shorter than the 20 years it took to engineer HIF-1α 
ligand into a small hydrophobic molecule. ABPP holds the promise to rapidly accel-
erate the rate of identification of novel E3 ligase targeting moieties, as well as the 
rate of translating a novel discovery in the laboratory to the clinic.

23.4  Using PROTACs with Covalent Inhibitors

23.4.1  Covalent Inhibitors: A Potentially Promising New 
Source of Potent Therapeutics

Covalent ligands have also been shown to be effective toward directly targeting 
“undruggable” proteins. An example of a protein that was previously considered 
undruggable and inaccessible that was successfully targeted with covalent inhibi-
tors is the Kirsten rat sarcoma viral oncogene homolog (KRAS). The KRAS gene is 
known to be mutated in ~20% of human cancers [55]. KRAS’s enzymatic activity is 
regulated through binding to nucleotides: the enzymatically active GTP-bound state 
can induce cellular proliferation downstream [56]. As a consequence, many cancers 
harbor mutations that cause a gain of function type phenotype [57]. A common 
mutation is the G12C mutation that enables accumulation of the active, GTP-bound 
enzyme [58]. Therefore, a drug that could target KRAS would have a lot of clinical 
utility.

Because KRAS has a picomolar affinity for its endogenous ligand, it is difficult 
to target directly with a competitive inhibitor [59]. KRAS also does not have any 
obvious allosteric regulatory sites. However, the common G12C gain-of-function 
mutation creates a chemical handle that enables identification of a covalent ligand 
by a chemoproteomic platform. Shokat and coworkers were able to use this strategy 
to identify compounds that were able to selectively react with a the soft nucleophile 
generated by the mutation, enabling identification of a compound that was able to 
selectively bind to KRAS and shift it to the inactive GDP-bound form [60]. 
Subsequent work by a number of pharmaceutical companies have used this strategy 
to develop an orally available drug [61]. However, KRAS also showcases some of 
the limitations of using a covalent ligand as a drug. Cancer cells can bypass KRAS 
inhibition through either modifying feedback mechanisms or through temporarily 
entering a quiescent state within 24 hours, illustrating the pressing need to develop 
new tools that can increase the therapeutic window [62, 63].

Using a covalent ligand as a PROTAC warhead ameliorates many of the prob-
lems raised by the first generation of covalent ligands. First, covalent ligands are 
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particularly susceptible to mutagenesis, as a single point mutation at the druggable 
hotspot can change the binding mechanism from a covalent bond to reversible bind-
ing. Because PROTACs primarily work as a catalyst, a PROTAC would be more 
robust to this mechanism of resistance. Several challenges can complicate convert-
ing covalent inhibitor into a PROTAC.  The work done by Nathanial Gray and 
coworkers toward designing a KRAS inhibitor highlights some of the problems. 
Although they were able to identify a KRAS PROTAC using a FACS-based assay 
against GFP-KRAS, the lead compound was unable to catalyze the degradation of 
endogenous KRAS [64]. Subsequent experiments showed that the GFP fusion 
changed the subcellular localization of KRAS, highlighting an additional layer of 
complexity when designing a protein degrader. Subsequent work by Craig Crews 
showed that changing the E3 targeting ligand to a VHL ligand enabled degradation 
of KRAS across multiple cell lines [65]. This work highlights the importance of 
identifying additional E3 targeting ligands toward opening the entire proteome for 
druggability.

23.5  Recent Work Improving the Specificity of PROTACs

Although substantial progress has been made toward increasing the accessibility of 
the proteome, substantial work remains to be done to increase the specificity and 
selectivity of PROTACs. A drug that illustrates some of the limitations of the exist-
ing technology is ARV-771. Although the target cell type are prostate cells, because 
both the E3 ubiquitin ligase and the target protein are expressed in the skin, it can 
often result in unwanted and unpleasant side effects [66]. This example highlights 
the pressing need to further sharpen the specificity of a molecular scalpel.

One tool that has been shown to be useful for neuroscientist to manipulate spa-
tially subsets of neurons is light. Light is an ideal tool because of the ease of manip-
ulation of the dosage and timing for when each treatment is dispensed [67]. However, 
to use light as a molecular scalpel, chemists would need to craft a new molecule 
from scratch. One possible route is designing a reaction that exploits the sensitivity 
PROTACs have to the distance between the ligand and the E3-ligase binding moiety 
[22, 68]. Subtle changes in the number of methylene linkers result in dramatic dif-
ferences in reactivity, meaning that a chemical reaction that adjusts the intermolecu-
lar distance can turn a PROTAC on and off. A chemical reaction that could be 
repurposed to adjust the intermolecular distance between the ligand and the E3 
ligase binding moiety is a cis-trans isomerization. The change between the cis and 
the trans isomer changes the intermolecular distance between distal substituents 3-4 
Å for azobenzene, roughly the same effect of eliminating a methylene group on a 
linker [69]. Crews and coworkers showed that they were able to utilize this isomeri-
zation reaction to create a PROTAC that was able to be selectively turned on by 
light, enabling light to trigger ubiquitination of a target molecule [70] .

Although subsequent work by many other groups have since expanded the tool-
kit of possible reactions to choose from, most would have a poor penetration depth 
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based upon the wavelength of light required to trigger the reaction [71, 72]. 
Substantial work still needs to be done to redshift existing photoswitchable 
PROTACs to increase the possible penetration depth to enable access to tissue deep 
within the body [73]. An alternative strategy that would circumvent this problem is 
to use an antibody to target the PROTAC to the cell type of interest. Proteins are 
normally digested into small peptides by the proteasome, which are displaced on the 
cell surface by MHC receptors [74]. Therefore, proteome wide changes in the 
expression level of different proteins would be reflected in the identity of antigens 
displayed on the cell surface, creating a chemical handle that can be exploited by an 
antibody [75].

The antibody would bind to the target antigen, enabling internalization of the 
antibody-drug conjugate through a receptor-mediated endocytosis [76, 77]. Once 
the antibody-drug conjugate is internalized in an endosome, differences in the redox 
potential inside of an endosome are able to reverse the covalent modification, 
enabling the cargo to then be released into the cell [78, 79]. Repurposing this strat-
egy requires the appropriate chemistry to tether to the target antibody and identify-
ing the correct antigen to target. Previous work was able to show that this strategy 
was effective for selectively targeting a BRD4 PROTAC to a HER2-expressing cell 
line [80].

Because PROTACs are catalytic, very few molecules of the drug need to be suc-
cessfully delivered into the cell type for it to be effective, making them the ideal 
cargo for an antibody-drug conjugate. Additionally, because PROTACs have a lower 
intrinsic cytotoxicity than cytotoxic drugs, clinicians do not need to worry as much 
about balancing the bystander effect, where the endocytosed drug can diffuse to 
neighboring cells and wreak havoc [81]. Antibody-drug conjugates, photoactivat-
able PROTACs, hold the promise to design the second generation of cell-type- 
specific PROTACs.

23.6  Translation into Clinics

In 2017, Arvinas, Inc., was able to develop the first bioavailable androgen degrader, 
ARV-110 [82]. In mouse xenograft studies, the authors were able to show that 
ARV-110 outperformed the parent compound eluzatanib and was able to be effec-
tive in an eluzatanib-resistant model. On May 13, 2020, almost 20 years after the 
first PROTAC was synthesized, through a personal communication on Twitter, Craig 
M. Crews announced that PROTACs worked in humans. Two out of eight patients 
showed a response to ARV-110 despite failing prior treatments with conventional 
inhibitors. PROTACs had gone from a concept dreamed up in a laboratory to a drug 
that made an impact on human health.
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23.7  Conclusion

What started out as a peptide and became a drug will make an impact on human 
health for patients across the world. The scope of this technology cannot be under-
stated – it can be applied to almost every target in the proteome. This finding pro-
vides a path for old inhibitors that had fallen out of use to make their way back to 
the clinic.

Designing the first PROTAC would not have been possible without the painstak-
ing work to fundamentally advance underlying biochemistry of the E3 ligase com-
plex. Without fundamental understanding of how the underlying biochemistry 
worked, the first PROTAC could not have been made, and characterization of com-
pounds like thalidomide and sulfonamides as E3 targeting ligands would not have 
been possible.

Without the knowledge gleaned by the pharmaceutical industry in converting a 
small molecule into a drug that could be properly absorbed and excreted, ARV-110 
might never have been discovered. What started out as a drug that was designed to 
target diseases caused by aberrant signaling through the nuclear receptor provided 
the blueprint to change the way every drug is designed.
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