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Abstract. The additive factor model is a widely used tool for analyzing
educational data, yet it is often used as an off-the-shelf solution without
considering implementation details. A common practice is to compare
multiple additive factor models, choose the one with the best predic-
tive accuracy, and interpret the parameters of the model as evidence of
student learning. In this work, we use simulated data to show that in
certain situations, this approach can lead to misleading results. Specif-
ically, we show how student skill distribution affects estimates of other
model parameters.
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1 Introduction

In order to make learning environments adaptive and personalized, we need to
model the knowledge state of students [22]. Student modeling techniques are used
for a variety of purposes. Models like Bayesian Knowledge Tracing or the Elo
rating system are used for updating knowledge estimates after each answer, and
this estimate is used for immediate personalization of the learning environment
(e.g., the choice of the next question or evaluation of mastery criterion). Other
types of student models are used to perform offline learning analytics, obtain
actionable insights, and then use them to perform targeted interventions that
improve the learning environment. This type of analysis is in literature sometimes
described as “closing the loop” studies [6,11,13].

In this work, we focus on the second type of student model applications.
A commonly used model for this purpose is the Additive Factor Model (AFM).
The model’s main aim is to evaluate and refine the domain model, specifically
the mapping of items to concepts (knowledge components), which is often called
Q-matrix. The term item refers to any simple task given to a student, i.e., solving
a simple math problem. The concept refers to a general rule needed to correctly
answer the item, i.e., the addition of natural numbers. The Q-matrix is then
a binary matrix representing which items require which concepts. For each con-
cept, AFM specifies two parameters: easiness and learning rate. Once the model
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is fitted to data, these parameters are interpreted as evidence of learning (or its
absence). Concepts with low learning rates are natural candidates for revision.

AFM is a widely used model and has been used in a variety of previous
studies. Studies [12,13,16,17,19] focus on domain model refinement, [2,15] give
an overview of domain modeling using AFM, and [24] uses AFM to produce
learning curves for further analysis. However, most of these studies do not pay
much attention to methodological details of parameter fitting and model compar-
ison. They often use off-the-shelf solutions like DataShop [10] without discussing
implementation details and interpret the fitted model parameters as evidence of
student learning. Unfortunately, in student modeling, even small methodological
details can have a significant impact on the obtained results [23].

We use simulated data to explore potential problems in model comparison
and interpretation of model parameters. With simulated data, we know the
ground truth, and we can objectively assess the quality of fitted model parame-
ters (which is a luxury we do not have for data coming from real students). We use
our AFM implementation as well as DataShop’s implementation that was used in
many previous studies. We show how the treatment of student skill parameters,
while rarely analyzed, can impact model comparison and values of the fitted
learning rates. Specifically, we provide a concrete setting where a model with
correct parameter values has worse predictive accuracy than other objectively
worse models when the evaluation is done using a commonly used approach.
The results show that using a black-box approach to evaluation, without proper
attention to methodological details, can lead to misleading conclusions.

2 Additive Factor Model

2.1 Model Formulation

Here we formally define the additive factor model following the notation used
in a recent review of the AFM [7] that is very similar across previous work. For
a given group of students I and a group of items J (together with a Q-matrix
mapping items to concepts), the additive factor model predicts the probability
that a student i will answer an item j correctly, taking into account difficulties
of concepts involved in the item j and practice history of the student i. The
probability is described by the following equation:

P (Yij |α, β, γ) = σ (zij) zij =

(
αi +

K∑
k=1

βkqjk +
K∑

k=1

γkqjktik

)
(1)

where:

– i ∈ {1, . . . , I} is an index of a student, j ∈ {1, . . . , J} is an index of an item,
– Yij is a binary response of a student i on an item j,
– σ(x) = 1/(1 + e−x) is a standard logistic function,
– zij is a logit of Yij ,
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– K is a number of concepts,
– Q is a J × K binary matrix where qjk is 1 if an item j uses a skill k and 0

otherwise,
– αi is a proficiency (prior skill) of a student i and α

def= 0 to avoid non-
identifiability problem

– βk is an easiness of a skill k,
– γk is a learning rate for a concept k, and
– tik is a number of times a student i has practiced a skill k (practice opportu-

nities).

2.2 Parameter Estimation

In a typical application of the AFM, the Q-matrix is provided by human experts,
whereas parameter vectors α, β, and γ are fitted by a parameter estimation tech-
nique. For this work, we have implemented our custom parameter estimation
based on descriptions in previous work [5,7,8]. We used the TensorFlow frame-
work to create a computational graph model for Eq. 1. Parameter vectors α, β,
and γ are initially set to zeros and iteratively optimized using gradient descent.
Initializing parameters with zeroes has the benefits of not making any ad-hoc
choices, giving more reproducible results than a random initialization, and hav-
ing a natural interpretation of making all probabilities of correct answers 0.5.
We use a penalized log-likelihood as a cost function to optimize and Adam opti-
mizer for computing gradients. The learning rate is gradually lowered with an
exponential decay to achieve convergence more reliably. An important detail of
our implementation is per concept scaling of opportunity counts into the range
[0, 1] as suggested in [8] to correctly fit γ values. The implementation has an
option not to fit α parameters at all (in that case, they remain zero).

Previous publications often do not provide a detailed description of parameter
fitting procedures used to fit AFM. It seems likely, and some explicitly mention
it, that they use AFM implemented in DataShop [10]. The DataShop’s AFM
implementation is described in detail in [5]. The general idea can be summa-
rized as optimization of Penalized Maximum Likelihood Estimation that penal-
izes high absolute α values. Our implementation is very similar in this aspect.
DataShop provides two implementations in its Tigris Workflow tool: AFM1 and
Python AFM2 Since it has been widely used, we decided to use both DataShop
implementations on our simulated data. Note that DataShop is typically used
to analyze real data, yet we consider this a useful test of a commonly used tool.

2.3 Treatment of Student Parameters

The primary focus of an AFM application is on getting insight into the learning
domain, i.e., on the values of β and γ parameters. Even though the student

1 https://github.com/LearnSphere/WorkflowComponents/tree/dev/AnalysisAfm.
2 https://github.com/LearnSphere/WorkflowComponents/tree/dev/AnalysisPyAfm.

https://github.com/LearnSphere/WorkflowComponents/tree/dev/AnalysisAfm
https://github.com/LearnSphere/WorkflowComponents/tree/dev/AnalysisPyAfm
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parameters (prior skills α) are not necessary for the model application, they
play a crucial role in proper evaluation.

We have reviewed some previous work on AFM to understand the typical
treatment of the student parameters α. The majority of reviewed papers mention
student parameters only in the formal definition of AFM. However, student
parameter fitting details are often omitted, and thus their treatment in model
evaluation and comparison is especially unclear.

The student parameters fitting is described in detail only in [7]; other works
only hint at the general fitting method [2] or mention modeling technique for
student parameters [9]. Most reviewed papers do not discuss any details of
parameter fitting and probably rely on the available AFM implementation from
DataShop, e.g., [12,13,19]. This claim is based on either explicit mentions of
DataShop in these papers or on the visual style of learning curve figures closely
matching figures produced by DataShop. Details of DataShop’s AFM parameter
estimation are discussed in Sect. 2.2. However, the treatment of student param-
eters in DataShop’s model evaluation is unclear.

Commonly used evaluation metrics are Akaike information criterion
(AIC) [1], Bayesian information criterion (BIC) [25], and cross-validated root
mean square error (RMSE) that are used in [2,12–14,16,17,19]. These met-
rics require model predictions and, therefore, estimates of all model parameters,
including the students’ skills. Although it is not always reported on which dataset
AIC and BIC were computed, we assumed it was done on the same data set used
for training. Our experience with DataShop supports this assumption. In cross-
validation, however, part of the dataset is held out during training, and it is
only used later for evaluation. This poses a question, what parameters should
be given to students not seen in the training data?

A straightforward solution is to use α = 0 for unseen students, and this
choice of α also makes sense for the intended use of AFM. AFM is mainly used
in domain modeling (e.g., comparing Q-matrices, analyzing learning curves) and
not for estimating student skills, which is typically done by other models (e.g.,
Bayesian Knowledge Tracing, Performance Factor Analysis). Also, estimated α
parameters should be centered around zero, and so α = 0 represents an average
student. A possible alternative is to estimate α parameter after every attempt
and iteratively refit the model and predict probabilities. Such an approach is, in
principle, possible, but it is non-trivial, and it has not been described in previous
research. For these reasons, we assume α = 0 is used for unseen students, which
is also true for our evaluations.

3 Experiments with Parameter Fitting

3.1 Data and Models

We employ simulated data in our analyses as they provide ground truth (i.e.,
true model parameters), otherwise not accessible for real-world datasets. The
simulated datasets are generated by randomly sampling from Bernoulli distribu-
tion where the probability of a student answering an item correctly is given by
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Table 1. Summary of AFM variants used in this work.

Name Implementation α β γ

AFM ground truth Custom Ground truth Ground truth Ground truth

AFM αβγ Custom Fitted Fitted Fitted

AFM βγ Custom Zeros Fitted Fitted

AFM DataShop DataShop AFM Fitted Fitted Fitted

AFM DataShop P DataShop Python AFM Fitted Fitted Fitted

Eq. 1. Ground truth model parameters are either hand-picked or sampled from
normal distributions. We refer to the simulation setting as a scenario.

In this work, we use three similar scenarios differing in the setting of student
skill distributions. They are intentionally minimalistic to highlight the effects of
student skill distribution on other model parameters estimates. There is only
a single concept to remove any potential effects of concept combinations on the
parameter estimation. There are ten items all practicing this single concept, so
the Q-matrix is only a column of ones. Student parameters α are sampled from
a normal distribution centered around zero with standard deviation σα. The
three scenarios have σα = 1, 2, and 3, respectively. So, for example, scenario
σα = 2 has α ∼ N (0, 22). Parameters β and γ for the single concept are fixed
to values representing a common learning situation: β = −0.5 represents a bit
harder concept, and γ = 0.2 is a moderate learning rate.

In all three scenarios, we let every student attempt every item. While this is
unlikely to happen in the real world, it is the best-case scenario for the model
parameter estimation. With this setting, we avoid potential biases, including
attrition bias [18,20] or item ordering bias [4].

We compare multiple AFMs differing in what parameters the model uses, if
they were estimated, and the actual implementation of parameter estimation. All
models used in this work are summarized in Table 1. Our custom implementation
refers to the TensorFlow implementation discussed in Sect. 2.2. The Item average
model always predicts the mean success rate observed for an item for all students.

3.2 Experimental Setup

In the experiment, we explore simulated data sets generated using scenarios
described in Sect. 3.1. These scenarios give us the least biased data where every
student attempts every item in random order, and the main emphasis is on
student parameters that we wish to explore. Using these scenarios, we have
generated five training sets, each containing simulated answers of 2000 students
and one testing set with simulated answers of 1000 students. Set sizes were chosen
sufficiently large to reduce unwanted noise due to randomness in simulations.
Note that students in the testing set do not appear in training sets. Therefore
trained models have no estimate of their skills. This cross-validation setting
corresponds to the real usage of student models in learning environments.
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Fig. 1. Evaluation of models on training and testing sets using RMSE and negative
log-likelihood. In all cases, a lower value means a better fit to data. Each bar represents
the mean value of the given metric over five instances of the model fitted on five training
sets. Note that y-scales do not start at zero to emphasize the relative ordering of models.
Relative order based on some metric rather than the actual values is typically used in
previous research to select the model that best explains the data.

In the evaluation, we compare AFMs with ground truth parameters and
AFMs fitted on training sets in terms of the predictive ability and the actual
fitted parameters values. We also include the Item average model as a näıve
baseline. All models except the two with ground truth parameters were fitted
five times on five training sets and evaluated on both training and testing sets.
Fitting models multiple times allows us to average out evaluation results and
obtain more representative results.

For the evaluation, we choose RMSE and negative log-likelihood as our met-
rics. Both were used in previous research and are fairly standard [21]. RMSE
is a typical choice in machine learning, and it is better suited for binary data
than mean absolute error. AIC and BIC, used in previous research, are log-
likelihoods with an added term for the model complexity [3]. Since we are not
interested in the model complexities , we ignore the complexity term and use
plain log-likelihood. RMSE is computed both on testing and training sets and
log-likelihood only on training sets. When computing RMSE on the testing set,
we assume all students’ parameters α = 0. The same could be done for log-
likelihood, but it is typically used to measure the fit to the training data.
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Fig. 2. Values of β and γ parameters for a single concept with increasingly wider
student skill distributions. The first model uses true parameter values used in data
generation. The other four models have been fitted five times on different training sets,
and each dot represents an estimate from one training set. There is artificial vertical
jitter to visually separate points with similar x coordinates.

3.3 Results

Figure 1 shows a comparison of models for different scenarios and different met-
rics. The top row of plots shows mean RMSE on the testing set, the bottom left
plot shows mean RMSE on training sets, and the bottom right plot shows mean
negative log-likelihood on training sets.

Predictive performance on the testing set is comparable across most models.
AFMs with fitted parameters have better RMSE than AFM ground truth in all
three scenarios despite their fitted parameters differing from ground truth ones.
The differences in RMSE on the testing set between AFM ground truth and
models with fitted parameters are more pronounced with increasing σα. This
suggests that models are finding a more probable explanation of data than the
actual ground truth model.

AFMs with fitted student parameters also achieve much better performance
on training sets both in terms of RMSE and log-likelihood. Even better than the
actual model AFM ground truth that has been used to generate the data. This
might suggest a slight over-fitting of student parameters.

In Fig. 2, we also examine the fitted concept parameters β and γ and compare
them to ground-truth parameters. We examine three scenarios with increasingly
wider student skill distributions with standard deviations σα = 1, 2, and 3,
respectively. In all three scenarios, estimated values of both β and γ are shifted
towards zero. In other words, the fitted model presents the learning material
as easier and with a smaller impact on learning than it is. This effect becomes
stronger for wider student skill distributions.

The results also show that although there are small differences between
parameters obtained by different AFM implementations, the key aspect (shift
towards zero) is consistent across implementations, i.e., it is not a purely techni-



Better Model, Worse Predictions 507

Fig. 3. An illustration of the logistic function transformation of normally distributed
data and its effect on the distribution’s expected value (mean). The original data follows
N (1, 1). The left figure depicts how the distribution gets transformed, and the right
figure depicts both distributions median aligned. Note that the distributions are scaled
to the same height for better clarity.

cal idiosyncrasy of a specific parameter fitting procedure. The only exception to
the consistency of results is the β parameter of AFM DataShop for the scenario
with σα = 1 that is estimated further from zero. Since this model’s γ parameter
is estimated roughly the same as in AFM DataShop P, this could indicate a prob-
lem in the implementation or data preprocessing. We were unable to pinpoint
the exact source of this behavior.

3.4 Explanation

In Sect. 3.3, we observed fitted models outperforming models with ground truth
parameters and estimated parameter values shifting towards zero. We believe
both of these effects are caused by skewness introduced by applying the logistic
function. To get probabilities of correct answers for a given item and students
after a given amount of practice opportunities, normally distributed student
skills are added together with concept difficulties and learning effect forming
logits that are then projected using the logistic function. While logits still fol-
low symmetric normal distribution only with shifted mean, the distribution of
probabilities after applying logistic function is skewed. The median is no longer
equal to the mean, as shown in Fig. 3.

The skew occurs because the logit values in one direction from the mean
get projected closer together into a narrower range, and the logit values in the
other direction are projected farther apart into a wider range. In Fig. 3, values
to the right of the mean are squashed, and values to the left of the mean are
stretched. In general, values closer to zero where the logistic function is the
steepest get stretched. Values away from zero where the logistic function flattens
are squashed. The skewing effect is more substantial as the mean of logits moves
farther from zero, which happens for easier concepts or high opportunity counts.
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When we use α = 0 for evaluation on the testing set, we are, in effect,
evaluating point estimates of correct answer probabilities (orange distribution
in Fig. 3). The best point estimate with minimal RMSE is the expected value of
the correct answer probability. However, due to skewness, the expected values
are not the same for probabilities and logits. By estimating parameters closer
to zero, models can achieve better RMSE when α is fixed to 0 and yet diverge
from the true parameters simultaneously.

Fig. 4. An illustration of a shifting median when three normal distributions with dif-
ferent standard deviations get transformed by the logistic function and aligned on their
expected values (means). Note that the distributions are scaled to the same height for
better clarity.

The same also applies to log-likelihood if we were to evaluate it on testing
set. However, we are evaluating log-likelihood on training sets with non-zero
estimated α parameters, as does an optimizer during parameter fitting. After
inspecting estimated values of α, we have made two observations. 1) There are
only a few distinct α values, and 2) their distribution is narrower with a smaller
standard deviation. The first observation is the artifact of a simple scenario with
a single concept. All students with the same number of correct answers have
similar estimated skills. The number of correct answers is the most differentiating
factor between a student with high and low prior skill. The second observation
is tied to the normalization of α parameters and explains why β and γ estimates
are closer to zero. If the estimated distribution of α has a smaller standard
deviation, the estimated probabilities of the correct answers are less skewed by
the logistic function. After aligning expected values (means) of estimated and
true probabilities of correct answers to optimize log-likelihood, we arrive at β
and γ estimates closer to zero. Note that model AFM βγ, which keeps α = 0,
is equivalent to estimated distribution having zero standard deviation, i.e., the
point estimate of expected value.

To better illustrate the effect of too strict α normalization, suppose the true
probability of students answering a given item correctly after a given amount
of practice follows logistic function transformed N (1, 1). This situation occurs
when students’ prior skills follow N (0, 1) and concept difficulties with the effect
of learning sum to 1. The goal is to minimize the penalized log-likelihood. In
case of too strict α normalization, the penalized log-likelihood will be optimal
for α estimates with a smaller standard deviation than the true α distribution
has, i.e., the standard deviation of 0.75 instead of 1, as in Fig. 4). To maximize
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the penalized log-likelihood, we must match the expected values of both true
and estimated distributions (alignment on the black dashed line in Fig. 4). Since
a narrower distribution is less skewed by the logistic function, it is necessary
to shift the whole estimated distribution to make the expected values equal.
The shifting of estimated distribution can only be done by changing β and γ
as α parameters are constrained to be centered around zero. Thus, we have to
bring β and γ parameters’ estimates close to zero to maximize the penalized log-
likelihood. The whole problem can be avoided by fine-tuning the penalization
hyper-parameters. However, the true student population is unknown outside of
simulations, making it impossible to properly tune the hyper-parameters without
cross-validation using a proper methodology on the testing set.

4 Discussion

In the previous section, we have described a specific situation where an objec-
tively better model can lead to worse predictions than alternatives. The described
situation is not a single, artificial outlier. Using simulated data, we have detected
similar behavior also in other cases. For example, we simulated the ordering and
mastery attrition biases, which are common in many learning systems [4,18,20],
e.g., when students solve items in order from easier to more difficult and there is
systematic attrition (only a subset of students solves more advanced items).
Under these circumstances, even a simple baseline item average model can
achieve comparable performance (with respect to predictive accuracy) as the
ground truth model. Models with misspecified Q-matrix can beat the model
with ground truth parameters by using the fitted parameters to compensate for
the mastery bias.

These results show that fitted models have to be interpreted carefully. In
our review of previous works using AFM, we have identified a common prac-
tice consisting of four steps. 1) Define several models with different candidate
Q-matrices. These Q-matrices can be either constructed by experts, refined ver-
sions of Q-matrices from previous analyses, or even generated with the help of
machine learning from some base Q-matrix. 2) Fit the models’ parameter val-
ues on training data. Typically the training data is the same real collected data
that is to be analyzed. 3) Compare the performance of the models either on the
training set or the held-out testing set. To maximally utilize all available data,
the evaluation is done on the training set, and k-fold cross-validation is used.
4) Select a model with the best performance and interpret its β and γ param-
eters (easiness and learning rate). The interpretations range from the evidence
of learning to proofs of the existence of new concepts.

Our experiment with simulated data shows how this approach can lead to
misleading conclusions. We showed that the best performing model is not nec-
essarily the correct one. Models with incorrectly estimated parameters beat
model with ground truth parameters due to technical issues with the treat-
ment of the α parameters (student skills). The problem can be avoided by tuning
hyper-parameters of parameter estimation procedure using cross-validation with
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dynamic predictions in evaluation [23], i.e., recomputing α parameters after each
observed attempt in the test set (which is, however, computationally demand-
ing).

Let us make clear that we do not claim that previously reported results are
necessarily misleading. In our experiments, we purposefully use scenarios that
exaggerate a specific aspect of the situation in order to clearly show its effect.
Real data often contain these effects, but probably not in such a clear manner.
However, our results show that more care is needed.
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