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Preface

The 22nd International Conference on Artificial Intelligence in Education (AIED
2021), originally planned for Utrecht, the Netherlands, was held virtually during June
2021. AIED 2021 was the latest in a longstanding series of yearly international con-
ferences for the presentation of high-quality research into ways to enhance student
learning through applications of artificial intelligence, human computer interaction, and
the learning sciences.

The theme for the AIED 2021 conference was “Mind the Gap: AIED for Equity and
Inclusion.” Over the past decades, racial and other bias-driven inequities have persisted
or increased, diversity remains low in many educational and vocational contexts, and
educational gaps have widened. Despite efforts to address these issues, biases based on
factors such as race and gender persist. These issues have come to the forefront with
recent crises around the world. In this conference, we reflected on issues of equity,
diversity, and inclusion in regards to the educational tools and algorithms that we build,
how we assess the efficacy and impact of our applications, theoretical frameworks, and
the AIED society. The use of intelligent educational applications has increased, par-
ticularly within the past few years. As a community, development and assessment
practices mindful of potential (and likely) inequities are necessary. Likewise, planned
diversity, equity, and inclusion practices are necessary within the AIED society and
home institutions and companies.

There were 168 submissions as full papers to AIED 2020, of which 40 were
accepted as full papers (10 pages) with virtual oral presentation at the conference (an
acceptance rate of 23.8%), and 66 were accepted as short papers (4 pages). Of the 41
papers directly submitted as short papers, 12 were accepted. Each submission was
reviewed by at least three Program Committee (PC) members. In addition, submissions
underwent a discussion period (led by a leading reviewer) to ensure that all reviewers’
opinions would be considered and leveraged to generate a group recommendation to
the program chairs. The program chairs checked the reviews and meta-reviews for
quality and, where necessary, requested that reviewers elaborate their review. Final
decisions were made by carefully considering both meta-review scores (weighed more
heavily) and the discussions, as well as by rereading many of the papers. Our goal was
to conduct a fair process and encourage substantive and constructive reviews without
interfering with the reviewers’ judgment.

Beyond paper presentations and keynotes, the conference also included the
following:

– An Industry and Innovation track, intended to support connections between industry
(both for-profit and non-profit) and the research community.

– A series of six workshops across a range of topics, including: empowering edu-
cation with AI technology, intelligent textbooks, challenges related to education in
AI (K-12), and optimizing human learning.



– A Doctoral Consortium track, designed to provide doctoral students with the
opportunity to obtain feedback on their doctoral research from the research
community.

– A Student Forum, funded by the Schmidt Foundation, that supported undergraduate
students in learning about AIED, its past, present, and future challenges, and helped
them make connections within the community. Special thanks go to Springer for
sponsoring the AIED 2020 Best Paper Award. We also wish to acknowledge the
wonderful work of the AIED 2020 Organizing Committee, the PC members, and
the reviewers who made this conference possible. This conference was certainly a
community effort and a testament to the community’s strength.

April 2021 Ido Roll
Danielle McNamara
Sergey Sosnovsky

Rose Luckin
Vania Dimitrova
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RepairNet: Contextual
Sequence-to-Sequence Network
for Automated Program Repair

Kumar Abhinav1, Vijaya Sharvani2, Alpana Dubey1(B), Meenakshi D’Souza2,
Nitish Bhardwaj1, Sakshi Jain1, and Veenu Arora1

1 Accenture Labs, Bangalore, India
{k.a.abhinav,alpana.a.dubey,nitish.a.bhardwaj,

sakshi.c.jain,veenu.arora}@accenture.com
2 IIIT, Bangalore, India

{vijaya.shravani,meenakshi}@iiitb.ac.in

Abstract. Compile-time errors can wreak havoc for programmers – sea-
soned and novice. Often developers spend a lot of time debugging them.
An automated system to repair such errors can be a useful aid to the
developers for their productivity. In this work, we propose a deep gener-
ative model, RepairNet, that automatically repairs programs that fail at
compile time. RepairNet is based on sequence-to-sequence modeling and
uses both code and error messages to repair the program. We evaluated
the effectiveness of our system on 6,971 erroneous submissions for 93
programming tasks. RepairNet outperforms the existing state-of-the-art
technique, MACER, with 17% relative improvement of repair accuracy.
Our approach can fix 66.4% of the erroneous submissions completely and
14.2% partially.

Keywords: Program repair · Sequence modeling · Bug fixing

1 Introduction

The ever-changing computing world has led to continuous advancements in new
programming paradigms. This evolution has created great opportunities for pro-
grammers who keep abreast with the advances. Based on studies done in [35,36],
there is a massive shortage of programmers to meet the industry demand. These
have made programming a promising career choice for many people. The num-
ber of people interested in learning programming has drastically increased [35].
Initiatives such as Udacity and Coursers attempt to meet this demand by provid-
ing Massive Open Online Courses (MOOCs) that are easily accessible to learners
worldwide. While MOOCs have numerous advantages, their main downside is
that they do not replicate an in-person learning environment. With thousands of
learners often enrolled in a single course, it is impossible for faculty and teach-
ing assistants to provide support similar to a classroom environment in a remote
learning setup.
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Some of the courses require learners to work on programming tasks where
one needs to write code for solving a specific problem, compile and run it on
multiple test cases. However, proper syntax and semantics are overlooked during
implementation, leading to compile-time errors. Debugging the errors requires
time and effort even from seasoned programmers [1,22,34]. In a classroom setup,
faculty or teaching assistants usually guide the students in overcoming such
problems but such levels of engagement are not possible in MOOCs mainly due
to lack of physical presence, scale, and learners living in different time zones.
Hence, there is a need for intelligent and automated support to assist students
in their programming tasks during the course.

Compile-time errors are first-level errors and relatively simple to address than
run-time errors; however, we have observed that they can be misleading and may
introduce additional errors for new programmers [22,34]. This gets accentuated
for MOOC learners who are learning the language for the first time. We illustrate
this issue with two examples. Figure 1 shows two erroneous programs with the
error messages (and suggested fix by our approach). The compiler error messages
appearing in these examples are not very informative for a novice programmer
to fix the issues. For example, in Program (a) shown in Fig. 1, the compiler
error message may mislead a new programmer as the fix suggested by the error
message (i.e. expected ‘;’ before ‘&&’ token) will not resolve the error and in
fact, introduce another error. Similarly in Program (b) shown in Fig. 1, applying
the fix suggested by the compiler (i.e. adding ‘;’ before ‘printf(“unlucky”);’)
will not fix the error. The appropriate fixes for such scenarios are identified with
program context and error together by an experienced (human) programmer.

Fig. 1. Programs repaired by RepairNet. Applying fixes suggested by compiler mes-
sages in both the programs (a) and (b) might mislead the novice programmer.

In this paper, we propose a system that uses deep neural networks to pro-
vide program repair recommendations. There has been an increasing interest
in the field of Natural Language Processing (NLP) and related techniques to
solve common programming errors such as the use of incompatible operators
and missing scope delimiters [2,9,14]. We present a learning-based technique
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to automatically generate fixes for erroneous submissions. Our approach uses a
sequence-to-sequence generative model [30] to correct programming errors. We
also propose a novel deep neural architecture, RepairNet, which incorporates
both source code and error messages to repair the program. A key contribution
of our approach is encoding error messages as an additional context within the
model to fix the error.

We apply RepairNet on C programs written by students for 93 different pro-
gramming tasks in an introductory programming course. These programs are
available as part of the Prutor dataset [19]. Each of these tasks is vividly different
and our network generalizes well to programs across these tasks. We evaluated
our approach on the Prutor dataset using “repair accuracy” as a metric and com-
pared it against state-of-the-art technique “MACER” [9]. With our approach,
we have been able to repair 66.4% programs completely and 14.2% partially, a
significant improvement when compared to “MACER”. Our approach was able
to fix the programs by considering source code and error messages, shown in
Fig. 1, which was not possible by just using source code.

The remainder of this paper is structured as follows: Sect. 2 discusses the
related work on automated program repair. In Sect. 3, we describe our approach
for program repair followed by the evaluation methodology and results in Sect. 4.
In Sect. 5, we discuss threats to the validity of our framework. Finally, Sect. 6
concludes with future work.

2 Related Work

There has been a growing interest in learning-based approaches to automatically
repair erroneous programs [4,8]. With the advancement in NLP and Deep Learn-
ing techniques [3,31], there is an increased focus to fix programming errors by
leveraging such techniques [2,14]. Liu et al. [5] developed an automatic program
repair tool, TBar, that systematically attempts to apply the fix patterns to bugs
in a program. Endres et al. [16] proposed a template-based search algorithm,
InFix, that repairs erroneous input data for novice programs. Bader et al. [20]
proposed a tool, Getafix, based on a novel hierarchical agglomerative clustering
algorithm, which summarizes a given set of fix commits into a hierarchy of fix
patterns. Based on this hierarchy and a ranking technique, one can decide which
fix pattern is most appropriate for a new occurrence of a bug category.

Chen et al. [6] developed a tool, SEQUENCER, which uses a sequence-to-
sequence deep learning model that aims at automatically fixing bugs by gener-
ating one-line patches. Vasic et al. [7] proposed an approach that jointly learns
to localize and repair a special class of errors called variable-misuse errors which
are logical errors where programmers use an inappropriate identifier, possibly
because of confusion in identifier names. Mesbah et al. [10] proposed a tech-
nique, DeepDelta, to learn patterns by extracting Abstract Syntax Tree (AST)
changes between the failed and resolved snapshots of the code and provide them
as abstracted features to a deep neural network.
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Gupta et al. [13] proposed a deep reinforcement learning agent, called RLAs-
sist, for syntactic error repair in programs. The policy of the agent is learned
using the Asynchronous Advantage Actor-Critic (A3C) algorithm. Chhatbar et
al. [9] proposed a technique, MACER, for fixing error based on modular seg-
regation of the repair process into repair identification and repair application.
MACER uses discriminative learning techniques such as multi-label classifiers
and rankers to first identify the type of repair required and then apply the sug-
gested repair. Hajipour et al. [14] proposed a deep generative framework, Sam-
pleFix, using variational auto-encoders to automatically correct common pro-
gramming errors by learning the distribution over potential fixes and interacting
with a compiler in an iterative procedure. Gupta et al. [2] proposed a sequence-
to-sequence neural network to fix errors. While prior works in program repair
purely apply sequence-to-sequence models to programs [2,14] or rely on the pro-
gram’s Abstract Syntax Tree (AST) representations [10,12], our approach uses
a modified sequence-to-sequence model that incorporates error messages along
with code tokens to fix the error. We compared some of the directly related work
which leverage same dataset as ours (Prutor dataset [19]), DeepFix [2], RLAssist
[13], SampleFix [14], TRACER [17] and MACER [9], to assess the effectiveness
of our proposed architecture. The comparison of results is provided in Table 2.
Our model, RepairNet, outperforms all these approaches in terms of repair accu-
racy. There has been a focus to consider error messages along with source code
to fix the error by using traditional approaches such as Control Flow Graph [39],
Genetic Programming [40] etc. To the best of our knowledge, ours is the first
approach that uses source code and error messages in Deep Neural Network to
fix the error.

3 Approach

We pose the problem of program repair as a sequence-to-sequence problem.
RepairNet is a sequence-to-sequence generative model that aims at automati-
cally fixing bugs in programs by generating potential fixes. A similar concept
has been applied to Neural Machine Translation where the input is a sequence
of words in one language and output is the same sequence translated to other
language [29,30]. We use a many-to-many sequence model where the input is
a sequence of tokens with a dynamic length, and the output is also a sequence
with dynamic length.

The model architecture of RepairNet is shown in Fig. 2. A sequence-to-
sequence model consists of two main components: (1) an encoder; and (2) a
decoder. Both the encoder and the decoder are a variant of Recurrent Neural
Network (RNN) in which layers are implemented using Long Short-Term Mem-
ory (LSTM) or Gated Recurrent Units (GRU) blocks [27]. The encoder processes
the input sequence into a fixed representation that is fed into the decoder as a
context vector. The decoder then decodes the processed information into an out-
put sequence. Along with the input token sequence, we pass additional context
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information to the decoder by concatenating it with the input context. In Repair-
Net, the additional context is the error message that is generated on compiling
the program. Not all code tokens can be relevant while predicting the correct
tokens to fix errors. The Attention Mechanism provides higher weights to the
tokens which influence the output. The decoder module concatenates the con-
text vector and error information to predict the correct token. The error message
contains vital contextual information about what kind of error is present in the
code. For each step in the target side, hidden units are obtained by combin-
ing the representation produced by the target LSTM at the previous timestep,
the word representations at the current timestep, and the error embedding. The
softmax layer predicts the correct token that will fix the error. We compute the
cross-entropy over the softmax layer outputs at each timestep of the decoder
and sum them over the output sequence to compute the loss function.

We discuss each component of our model separately below.

Fig. 2. RepairNet model architecture

1. Encoder: For an input sequence (x1, x2, · · · , xn), the hidden unit at each
time step ht is given as

ht = f(ht−1, xt) (1)

where f is a non-linear activation function (LSTM in our case).
We use a Bidirectional LSTM (BiLSTM) [25] as Encoder, which has proved
to be effective in several applications such as speech recognition, machine
translation etc. [26,27].

2. Attention Layer: Attention mechanism was introduced to address the limi-
tation of modeling long dependencies and efficient usage of memory for com-
putation [28]. The attention mechanism intervenes as an intermediate layer
between the encoder and the decoder, with the objective of capturing the
information from the sequence of tokens that are relevant to the contents of
the sentence. Unlike the encoder-decoder model that uses the same context
vector for every hidden state of the decoder, the attention mechanism com-
putes a new vector ct for the output word yt at the decoding timestep t. The
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context vector ct is, then, computed as a weighted sum of hidden states

ct =
nx∑

j=1

αtjhj (2)

where hj is the hidden state of the input sequence xj , αtj is the weight of
hj for predicting yt, and nx is the number of hidden sequence. This vector is
also called attention vector.

αij =
exp(eij)∑n
k=1 exp(eik)

(3)

where exp(eij) is a parameterized alignment model which scores how well the
inputs around position ‘j’ and the output at position ‘i’ match.

This context vector ct is used by a learnable function to allow each output
token yt to pay “attention” to different encoder hidden states when predicting
a token.

3. Decoder: The hidden states of the decoder network are initialized with the
final states of the encoder network i.e. context vector ct. The hidden state of
the decoder at timestep t is computed as

ht = g(ht−1, xt) (4)

where g() is a non-linear activation function (LSTM in this case).
We also introduce the error message as one of the inputs to the decoder to

generate the output yt based on the context vector ct and previous timestep
output yt−1. The decoder defines a probability over the output y (py) by decom-
posing the joint probability as follows:

py =
T∏

t=1

p(yt|y1, y2, · · · , yt−1, ct, et) (5)

p(yt|y1, y2, · · · , yt−1, c, et) = q(yt1, ht, ct, et) (6)

where q() is a non-linear activation function (Softmax), ht is the hidden unit
activation and et is the error embedding vector at time step ‘t’.

Repair Strategy: RepairNet considers the program and error message to iter-
atively fix the error (as shown in Fig. 3). The program and error message are
passed through the encoding layer. We treat a program as a sequence of tokens
X and expect our network to produce another sequence Y such that Y is a
repaired version of X. Program text consists of different kinds of tokens such
as types, keywords, special characters (e.g., semicolons), functions, literals, and
variables. These tokens are mapped to unique IDs. A program is broken down
into several lines where each line comprises of a sequence of tokens. Each pro-
gram is represented as (l1, s1, e1), (l2, s2, e2), · · · , (ln, sn, en) where n is the
number of lines in program, li is the line number, si is the tokenized sequence
for line li, and ei is the error message encoding for line li.
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Fig. 3. RepairNet strategy to fix the error

The process of encoding a single line of program is shown in Fig. 4. Here,
‘int temp = 2;’ is encoded as a vector [3, 4, 10, 0, 9]. A similar process is applied
to all the lines of a program (Note: The vocabulary indices shown in the figure
are just for explaining the concept). For each program, the encoding layer also
generates a one-hot encoding vector of the error messages. For the lines having
no error, we pass ‘0’ as an encoded value for the error message. Embeddings
of program token and error message are passed to the model, RepairNet. The
model generates the potential fix ŷ = (li, s

′
i) using softmax probabilities. The fix

is applied to the program by replacing si at li with s
′
i. The updated program is

then passed through the compiler which accepts or rejects the fix. If the potential
fix reduces the number of errors and doesn’t induce any new errors, then the
fix is accepted, else it is rejected. After applying the fix on the input program,
the updated program is passed to the network again to resolve other errors. The
iteration continues until the network fixes all the errors, or the compiler rejects
the fix, or a predefined number of iterations is reached. Our iterative repair
strategy is similar to [2].

Fig. 4. Example of processing a single line of input program and converting it into
vector representation

RepairNet learns error repair strategies from the training data that com-
prises several pairs of programs, where one program in the pair fails to compile
and the other program in the pair is free of compilation errors. RepairNet can
repair programs in which multiple lines require repairs, and such datasets are
included in our experiments. With every such program pair, we also receive the
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error message generated by the compiler. Table 1 shows error messages mapped
to corresponding error types present in our datasets and their occurrences. In
our datasets, we have a total of 67 unique error messages. We have displayed
(in Table 1) the top five error messages along with their frequency of occurrence
listed in decreasing order. Even for the same type of error message, their rep-
resentation in the compiler error message is different because of the inclusion
of program-specific tokens such as identifiers, keywords, etc. in error messages.
For example, errors reported by two different programs “8:9: error: ‘i’ undeclared
(first use in this function) for(i = 0; i < n; i++)” and “error: ‘count’ undeclared
(first use in this function) if(count == 0)” fall in one category itself “variable
not declared before it’s use”. We defined a template for each unique type of error
messages present in our datasets. The mapping of error messages was performed
based on the defined template. For instance, all error messages with ‘variable
declaration’ being mapped to “Use of undeclared identifier ” (Error code - E1)
(shown in Table 1).

4 Model Evaluation

4.1 Dataset

RepairNet recommends error fixes based on the programs submitted by students
across different courses offered in MOOCs. To validate such a system, we use the
publicly available dataset originally developed in the DeepFix [2] work. Below
we describe the steps taken to create a training dataset for RepairNet from these
submissions.

Raw Data Collection. The dataset consists of C programs written by stu-
dents for 93 different programming tasks with 6,971 erroneous programs in an
Introductory C programming course (CS1) at the Indian Institute of Technology
Kanpur (IIT-K). These programs were collected using Prutor [19], a system that
stores intermediate versions of programs written by students in addition to final
submissions. The dataset is available at [38].

Data Preparation. We have two classes of programs in our dataset - programs
that compile and programs that do not compile. A student may submit several
erroneous programs. Among them, we pick a random sample of (Pe, Pc) program
pairs along with the compiler error message Mc for Pe, where Pe is a version
of a student’s program which fails with at least one compiler error, Pc is a
later version of the attempt by the same student which does not produce any
compilation errors and Mc is the error message captured during the compilation
of the program Pe.

4.2 Experiments and Results

In this section, we will discuss the experimental setup of our proposed architec-
ture and evaluate the accuracy of the RepairNet model. We will experimentally
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compare the performance of our model with state-of-the-art approaches. The net-
work consists of four layers of LSTM cells with 300 units in each layer. We apply
the dropout [32] of 0.2 after each layer. The network is trained using the Adam
optimizer [33] with batch size 30, learning rate 0.001, and gradient clipping 1. To
encode the program into the network, we tokenized the programs and converted
them into 50-dimensional vectors using the embedding layer. We also generated
the one-hot encoding of the error message for each program. We applied 5-fold
cross-validation to evaluate the performance of our model. We trained our model
up to 40 epochs and selected the model with the best performance on the test
set. We used PyTorch implementation of the sequence-to-sequence model [37] as
a base setup and modified it’s implementation for our architecture. Experiments
were performed on a system with Intel i7 CPU and Nvidia GTX 1070 GPU.

We used repair accuracy as a metric to evaluate the performance of our
model. Repair accuracy is defined as the fraction of fixes corrected out of all
the errors. We measured repair accuracy for two types of fixes: a) complete
fixes: programs that are completely fixed, and b) partial fixes: programs that are
partially fixed. We compared our results with other state-of-the-art models for
program repair on the Prutor dataset (as shown in Table 2). The experiments
show that our approach, with 66.4% repair accuracy, outperforms the prior works
significantly. We obtain a 17% relative improvement over the state-of-the-art
approach “MACER” [9]. Table 2 captures the accuracy for both complete and
partial program fixes for different models. We believe that the inclusion of error
message as contextual information helped the model to perform significantly well
in comparison with previous approaches. Error messages shown by the compiler
play an important role in modeling the program repair as they can provide more
contextual information about the type of error. We also computed the accuracy
in fixing different types of error messages. Table 1 shows the accuracy of the
top five error messages. We observed that the model performs quite well in
fixing error messages ‘Expected after expression’ (E1) and ‘Use of undeclared
identifier ’ (E2). The result indicates that RepairNet can effectively fix errors
of diverse types.

Table 1. Top five error messages along with their frequency of occurrence and Repair
Accuracy. The symbol is a placeholder for program-specific tokens such as identifiers,
reserved keywords, punctuation marks, etc.

Error code Error messages Error count Repair accuracy

E1 Expected after expression 4999 73.2%

E2 Use of undeclared identifier 4709 82.4%

E3 Expected expression 3818 51.2%

E4 Expected in statement specifier 720 57.6%

E5 Expression is not assignable 538 29.4%
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Table 2. RepairNet results and comparison with prior work on the publicly available
dataset. ‘-’ indicates that results were not reported in the paper

Models Complete fixes Partial fixes

DeepFix [2] 27.0% 19%

RLAssist [13] 26.6% 18.8%

SampleFix [14] 45.3% –

TRACER [17] 43.9% –

MACER [9] 56.6% –

RepairNet (without error message) 44.6% 18%

RepairNet (with error message) 66.4% 14.2%

4.3 Ablation Study on Model Architecture

We modified the sequence-to-sequence model to incorporate error messages to
fix the error. In this section, we evaluate the effectiveness of our modifications to
the model. For that, we built a similar sequence-to-sequence model using a Bidi-
rectional LSTM network with attention mechanism. This network considers only
the program tokens as input (without the error message). Program is represented
as (l1, s1), (l2, s2), · · · , (ln, sn) where n is the number of lines in program, li is
the line number, and si is the tokenized sequence for line li. We used the same
network parameters as discussed in Sect. 4. We observed repair accuracy to be
44.6% for complete fixes and 18% for partial fixes for such a network. RepairNet
introduces the error message along with the code tokens as input to the decoder.
The network architecture for RepairNet is explained in Sect. 3. RepairNet fixes
66.4% of the erroneous submissions completely and 14.2% partially. The results
are captured in Table 2. We observed 49% relative improvement for complete
fixes by incorporating error messages into the network.

5 Threats to Validity

A threat to the external validity of our results is that we have evaluated our
approach only on small programs obtained from an introductory C program-
ming course, which might not be representative of other programming courses
taught in different languages such as Python, Java, etc. However, as we have seen
sequence-to-sequence model-based approaches working pretty well for any natu-
ral language which is less structured and much more ambiguous than program-
ming languages; we believe that it should work on other programming languages
as well. A threat to internal validity is that sometimes there could be multiple
ways to fix the errors. However, our approach does not provide multiple options;
it learns the potential fix from the data it has seen.
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6 Conclusion

In this work, we considered the problem of automatically repairing programs
based on the error messages and program token sequences. We proposed a novel
generative sequence-to-sequence model that considers the error message as con-
textual information to repair the program. Our approach significantly outper-
forms prior approaches of completely fixing programs by 17%. The model also
performed well in fixing individual error types as compared to prior approaches.
RepairNet, with its automated program repair recommendations, can assist pro-
grammers - seasoned or novice, in learning new programming languages more
efficiently. It can also be used by teaching assistants to assess student submissions
even in a physical setting. Moreover, in the future, compilers can be augmented
with such an approach to provide better recommendations to programmers. In
future work, we will consider fixing other types of errors such as run-time errors
and extend it for other programming languages.

References

1. Bhatia, S., Kohli, P., Singh, R.: Neuro-symbolic program corrector for introductory
programming assignments. In: 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), pp. 60–70. IEEE (2018)

2. Gupta, R., Pal, S., Kanade, A., Shevade, S.: DeepFix: fixing common C language
errors by deep learning. In: Thirty-First AAAI Conference on Artificial Intelligence
(2017)

3. Li, J., Galley, M., Brockett, C., Spithourakis, G.P., Gao, J., Dolan, B.: A persona-
based neural conversation model. arXiv preprint arXiv:1603.06155 (2016)

4. Goues, C.L., Pradel, M., Roychoudhury, A.: Automated program repair. Commun.
ACM 62(12), 56–65 (2019)

5. Liu, K., Koyuncu, A., Kim, D., Bissyandé, T.F.: TBar: revisiting template-based
automated program repair. In: Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, pp. 31–42 (2019)

6. Chen, Z., Kommrusch, S.J., Tufano, M., Pouchet, L.N., Poshyvanyk, D., Monper-
rus, M.: Sequencer: sequence-to-sequence learning for end-to-end program repair.
IEEE Trans. Softw. Eng. (2019)

7. Vasic, M., Kanade, A., Maniatis, P., Bieber, D., Singh, R.: Neural program repair
by jointly learning to localize and repair. arXiv preprint arXiv:1904.01720 (2019)

8. Yang, G., Min, K., Lee, B.: Applying deep learning algorithm to automatic bug
localization and repair. In: Proceedings of the 35th Annual ACM Symposium on
Applied Computing, pp. 1634–1641 (2020)

9. Chhatbar, D., Ahmed, U.Z., Kar, P.: MACER: a modular framework for acceler-
ated compilation error repair. arXiv preprint arXiv:2005.14015 (2020)

10. Mesbah, A., Rice, A., Johnston, E., Glorioso, N., Aftandilian, E.: DeepDelta: learn-
ing to repair compilation errors. In: Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 925–936 (2019)

11. Koyuncu, A., et al.: iFixR: bug report driven program repair. In: Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 314–325 (2019)

http://arxiv.org/abs/1603.06155
http://arxiv.org/abs/1904.01720
http://arxiv.org/abs/2005.14015


14 K. Abhinav et al.

12. Tarlow, D., et al.: Learning to fix build errors with Graph2Diff neural networks.
arXiv preprint arXiv:1911.01205 (2019)

13. Gupta, R., Kanade, A., Shevade, S.: Deep reinforcement learning for syntactic error
repair in student programs. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 930–937 (2019)

14. Hajipour, H., Bhattacharya, A., Fritz, M.: SampleFix: learning to correct programs
by sampling diverse fixes. arXiv preprint arXiv:1906.10502 (2019)

15. Gupta, R., Kanade, A., Shevade, S.: Deep learning for bug-localization in student
programs. arXiv preprint arXiv:1905.12454 (2019)

16. Endres, M., Sakkas, G., Cosman, B., Jhala, R., Weimer, W.: InFix: automatically
repairing novice program inputs. In: 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pp. 399–410. IEEE (2019)

17. Ahmed, U.Z., Kumar, P., Karkare, A., Kar, P., Gulwani, S.: Compilation error
repair: for the student programs, from the student programs. In: Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
Education and Training, pp. 78–87 (2018)

18. Lee, J., Song, D., So, S., Oh, H.: Automatic diagnosis and correction of logical
errors for functional programming assignments. In: Proceedings of the ACM on
Programming Languages, vol. 2, no. OOPSLA, pp. 1–30 (2018)

19. Das, R., Ahmed, U.Z., Karkare, A., Gulwani, S.: Prutor: a system for tutoring
CS1 and collecting student programs for analysis. arXiv preprint arXiv:1608.03828
(2016)

20. Bader, J., Scott, A., Pradel, M., Chandra, S.: Getafix: learning to fix bugs auto-
matically. In: Proceedings of the ACM on Programming Languages, vol. 3, no.
OOPSLA, pp. 1–27 (2019)

21. Pu, Y., Narasimhan, K., Solar-Lezama, A., Barzilay, R.: sk p: a neural program
corrector for MOOCs. In: Companion Proceedings of the 2016 ACM SIGPLAN
International Conference on Systems, Programming, Languages and Applications:
Software for Humanity, pp. 39–40 (2016)

22. McCauley, R., et al.: Debugging: a review of the literature from an educational
perspective. Comput. Sci. Educ. 18(2), 67–92 (2008)

23. Seo, H., Sadowski, C., Elbaum, S., Aftandilian, E., Bowdidge, R.: Programmers’
build errors: a case study (at Google). In: Proceedings of the 36th International
Conference on Software Engineering, pp. 724–734 (2014)

24. Monperrus, M.: Automatic software repair: a bibliography. ACM Comput. Surv.
(CSUR) 51(1), 1–24 (2018)

25. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans.
Sig. Process. 45(11), 2673–2681 (1997)

26. Graves, A., Jaitly, N., Mohamed, A.R.: Hybrid speech recognition with deep bidi-
rectional LSTM. In: 2013 IEEE Workshop on Automatic Speech Recognition and
Understanding, pp. 273–278. IEEE (2013)

27. Sundermeyer, M., Alkhouli, T., Wuebker, J., Ney, H.: Translation modeling with
bidirectional recurrent neural networks. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 14–25 (2014)

28. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

29. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

30. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

http://arxiv.org/abs/1911.01205
http://arxiv.org/abs/1906.10502
http://arxiv.org/abs/1905.12454
http://arxiv.org/abs/1608.03828
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1406.1078


Contextual Sequence-to-Sequence Network for Automated Program Repair 15

31. Vinyals, O., Kaiser, �L., Koo, T., Petrov, S., Sutskever, I., Hinton, G.: Grammar
as a foreign language. In: Advances in Neural Information Processing Systems, pp.
2773–2781 (2015)

32. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

33. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

34. Denny, P., Luxton-Reilly, A., Tempero, E.: All syntax errors are not equal. In:
Proceedings of the 17th ACM Annual Conference on Innovation and Technology
in Computer Science Education, pp. 75–80 (2012)

35. Robins, A.V.: Novice programmers and introductory programming. In: Cambridge
Handbooks in Psychology. The Cambridge Handbook of Computing Education
Research, pp. 327–376 (2019)

36. Ottosson, S., Zaslavskyi, V.: Visualize what to be coded before programming. In:
2019 IEEE International Conference on Advanced Trends in Information Theory
(ATIT), pp. 355–358. IEEE (2019)

37. https://github.com/pytorch/tutorials/blob/master/intermediate source/seq2seq
translation tutorial.py

38. https://bitbucket.org/iiscseal/deepfix/src/master/
39. Gopinath, D., Malik, M.Z., Khurshid, S.: Specification-based program repair using

SAT. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp.
173–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-
9 15

40. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method
for automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2011)

http://arxiv.org/abs/1412.6980
https://github.com/pytorch/tutorials/blob/master/intermediate_source/seq2seq_translation_tutorial.py
https://github.com/pytorch/tutorials/blob/master/intermediate_source/seq2seq_translation_tutorial.py
https://bitbucket.org/iiscseal/deepfix/src/master/
https://doi.org/10.1007/978-3-642-19835-9_15
https://doi.org/10.1007/978-3-642-19835-9_15


Seven-Year Longitudinal Implications of Wheel
Spinning and Productive Persistence

Seth A. Adjei1(B), Ryan S. Baker2, and Vedant Bahel3

1 Northern Kentucky University, Highland Heights, KY 41099, USA
adjeis1@nku.edu

2 University of Pennsylvania, Philadelphia, PA 19104, USA
3 G H Raisoni College of Engineering, Nagpur, India

Abstract. Research in learning analytics and educational data mining has some-
times failed to distinguish between wheel-spinning and more productive forms
of persistence, when students are working in online learning system. This work
has, in cases, treated any student who completes more than ten items on a topic
without mastering it as being in need of intervention. By contrast, the broader
fields of education and human development have recognized the value of grit and
persistence for long-term outcomes. In this paper, we compare the longitudinal
impact of wheel-spinning and productive persistence (completing many items but
eventually mastering the topic) in online learning, utilizing a publicly available
data set. We connect behavior during learning in middle school mathematics to
a student’s eventual enrollment (or failure to enroll) in college. We find that pro-
ductive persistence during middle school mathematics is associated with a higher
probability of college enrollment, and that wheel-spinning during middle school
mathematics is not statistically significantly associated with college enrollment in
either direction. The findings around productive persistence remain statistically
significant even when controlling for affect and disengaged behavior.

Keywords: Wheel-spinning · Grit · Productive persistence · College enrollment

1 Introduction

Grit, the combination of persistence and passion, is important to both learning and life
outcomes [11, 12]. The benefits of grit can span across several years [12]. Recent work
has argued that the persistence component of grit is more important to student outcomes
than passion [9]. Ultimately, the ability to work hard towards a goal – and not give up
even in the face of serious challenge – appears to be a key part of life success.

At the level of courses and programs, the learning analytics literature recognizes the
value of persistence. There has been considerable research on studying stopout/ dropout,
quitting a course or program prior to completion. There has also been a proliferation of
research on models that can detect that a learner is at risk of stopping or dropping out
[10, 14, 19], as well as work on understanding the factors that lead students to stop out or
drop out [29, 31, 35]. This work underpins the development of systems used to prevent
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stopout and dropout, which inmany cases have led to better outcomes for learners, where
they persevere to successful completion [2, 21, 33].

Curiously, however, the more micro aspects of the learning analytics literature –
looking at student behavior within a problem set, for instance – have largely treated
perseverance as a problem rather than as a strength. The term “wheel-spinning” has
been applied to this behavior, viewing persistence as being the same thing as making no
progress [4]. The initial definition of wheel-spinning proposed by Beck and Gong [4]
treated any student who completed ten mathematics problems on a single skill without
mastering the skill as wheel-spinning. This has continued as the most common definition
of wheel-spinning (though some work has hand-labeled wheel-spinning – i.e. [20]); the
preponderance of research on wheel-spinning has not differentiated between students
whopersevere but eventually succeed, and studentswhopersevere and never succeed (i.e.
[7, 13, 15]). However, Kai and colleagues [17] have noted that many students continue
to make progress, and obtain mastery, even after completing ten problems. Käser and
her colleagues [18] argue that a student should only be considered wheel-spinning if
they are no longer making progress in terms of a knowledge model.

Following on work by Kai et al. [17], we adopt a different view on persistence during
the learning process, separating persistence that ultimately leads to success (termed
“productive persistence”) from persistence that never does (which we term “wheel-
spinning”, somewhat in contrast to the use in [4]).

2 Research Questions

In this paper, we investigate the relationship between measures of learner persistence in
the ASSISTments system, used in middle school, and a longitudinal outcome, college
enrollment. We measure three indicators of persistence (or the lack thereof):

• Wheel-spinning: The student persists but never succeeds in mastering the skill
• Productive persistence: The student persists and eventually masters the skill
• Quitting: The student does not persist and quits the skill without mastery

We hypothesize that productive persistence will be associated with positive longitu-
dinal outcomes, whereas wheel-spinning and quitting will be associated with negative
longitudinal outcomes, albeit for different reasons.

3 The ASSISTments System

In this study, we examine the effects of learners’ persistence on college enrollmentwithin
the ASSISTments learning system. ASSISTments [16] is a free online learning system
that several thousand middle school teachers in the United States use to assign math
homework to their students. On average, over 35,000 students across the United States
use this system on a daily basis, solving approximately 323,000 questions a day.

The system provides sets of prepackaged questions or problems, called problem sets,
grouped by math topics/skills. Each problem set is made up of a set of problems that
are tagged with at least a single math skill, where the skills are sourced from the United
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States Common Core State Standards for Mathematics. [8] Many of these problem sets,
referred to as “skill builders”, are mastery based, where the system continues giving
the student problems until they demonstrate mastery. The mastery criterion (i.e. specific
number of questions correct in a row required for mastery) is predetermined for each
problem set, although it can be adjusted by the teacher. In general, the mastery criterion
is 3 problems correct in a row. If a student completes ten problems on a skill without
reaching mastery, the system asks them to take a break on the skill until the next day.

Many ASSISTments problems, including all skill builder problems, have features
that allow students to seek help if they experience difficulties as they answer the ques-
tions. Figure 1 shows a sample problem presented in the ASSISTments tutor. The tutor
gives students access to help-seeking features, including hints and scaffolding ques-
tions. Hints are short simple statements or clues about the question that help guide the
student through the solution to the problem, for instance by explaining the knowledge
component(s) required to solve the problem or providing the formula required to solve
the problem. Hints become available in increasing order of specificity, with the final
hints usually providing the answer to the question (referred to as the bottom-out hint.)
Scaffolding questions [26] are created based on the original math problem. The original
problem is broken down into smaller, less difficult steps, designed to be answered in
a linear sequence. The answer to the final scaffold question is the answer to the main
question. Within skill builders, for each main question, students are provided with both
of these help features and can choose either. If a student seeks help on a question, the
system can either (according to the teacher’s preference) mark the question incorrect or
give the student partial credit based on the number of help-seeking steps they sought [23,
30, 32]. Students’ work within ASSISTments is logged, including the problem identi-
fier, the correctness of the student’s response, the type of help the student sought, the
number of hints the student requested, as well as the time (in seconds) the student spent
in answering the question.

Fig. 1. A sample ASSISTments problem displayed in the tutor. The system presents the student
an opportunity to ask for hints and to attempt the question multiple times.

4 Data

4.1 ASSISTments Log

In this paper, we analyze a publicly available ASSISTments dataset, the dataset used in
the ASSISTments Longitudinal Data Challenge [25], selected because of the availability
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of longitudinal outcome data. The overall data set consisted of data from 1,709 students –
we analyze the subset of students who completed skill-builder assignments. This smaller
dataset was comprised of the problem response logs of 236 students who completed
a total of 431 skill-builder assignments in the ASSISTments system. The logs were
collected between the 2004 and 2007 school years. On average each student either
started (and/or completed) 18 skill-builder assignments, generating a total of 25,159
logs across a total of 5,979 problems.

4.2 College Enrollment Data

College enrollment records were collected for the 236 students whose logs we examine
in this paper (and for the rest of the students in the data set as well). Each student’s
enrollment record includes a binary feature that indicates whether they enrolled in col-
lege. This data was collected through the National Student Clearinghouse, a database on
college enrollment, and made available to researchers through the ASSISTments Lon-
gitudinal Data Challenge. A full discussion of the collection of this data is given in [28].
Data was collected for college major and post-college job as well [25], but will not be
analyzed in this paper due to the smaller sample size.

4.3 Affect and Behavior Data

The data set included estimates of students’ affect and behavior as they answer the
complete the mastery-based skill builders in ASSISTments. The affective states for
which the data set had estimates are boredom, engaged concentration, confusion and
frustration. The behavioral estimates are of two forms of students’ disengagement as they
complete the assignment: gaming the system and off-task behavior. These estimateswere
originally generated (see [24]) using a two-step process. In the first step, observers trained
in the BROMP protocol and HART android app [22] recorded observations of student
affect and disengaged behaviors for a small sample of students. In the second step of
the process, the observations were used to create models inferring affect and disengaged
behaviors from only problem logs. Thesemodels were then used to calculate estimates of
students’ affective and behavioral states for the unseenASSISTments problem logs. Each
affect and behavior estimate was scaled from 0 (0% probability) to 1 (100% probability)
by the models.

5 Feature Generation

In order to study how persistence was associated with college enrollment, we created
features from the ASSISTments log data to represent different aspects of persistence.
The following sections describe each of the features in detail.

5.1 Mastery Speed

In the context of ASSISTments, Xiong et al. [34] defined mastery speed as the number
of questions a student answers prior to achieving mastery of a skill. For instance, a
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student who obtains three right in a row on the 7th, 8th, and 9th problems in a mastery-
based assignment will have a mastery speed of 9. (The student will not have achieved
the mastery criterion prior to the 9th question) We calculated this feature for each stu-
dent/assignment pair. A student who already knows a skill will achieve mastery (accord-
ing to the system) by obtaining correct answers on the first 3 problems in a row. However,
students can also be deemed to have mastered the skill if they answer the very first ques-
tion in the assignment correctly without any help (i.e. hints or scaffolds). These students
are deemed to have “tested out” of the assignment. In such cases, the mastery speed for
such a student-assignment pair was counted as 1.

5.2 Wheel-Spinning

In this paper, we adopt a definition of wheel-spinning similar to the definition used
by Kai and colleagues [17]. As ten problems completed (for persistent) and three-in-a-
row correct (formastery)match the operationalizations used in theASSISTments system
itself, we adopt these definitions.We define a student as wheel-spinning if they complete
ten problems without reaching mastery and never reach mastery on that skill. If a student
completes ten problems without reaching mastery but then masters the skill, we define
them instead as a separate category, persistent-mastered. To reiterate, a student is deemed
to be persistent in a skill builder assignment if they are unable to achieve mastery by
the 10th question in the assignment – if their problem count for the given assignment is
at least 10. The ASSISTments system generally stops the student from being presented
with additional questions in an assignment on the same day if they have not mastered
the skill by the 10th question (unless the 10th question is answered correctly after the
9th question was also answered correct). Whether or not they eventually master the skill
determines whether they are treated as persistent-mastered or wheel-spinning.

5.3 Persistence-Related Features

We categorize students in terms of their mastery and persistence in terms of four
behaviors, each of which is expressed in a data feature as the percentage of skills
where the students demonstrated that behavior: Persistent-Mastered, Wheel-Spinning,
Quickly-Mastered, andQuit, shown in Table 1. These features are also described below:

(i) Quickly-Mastered: The percentage of assignments in which the student mastered
the skill in ten or fewer problems.

(ii) Persistent-Mastered: The percentage of assignments inwhich the student attained
mastery of the skill builder after more than ten problems (referred to as “productive
persistence” in Kai et al. [17]).

(iii) Wheel-Spinning: The percentage of assignments in which the student completed
more than ten problems and never attained mastery.

(iv) Quit: The percentage of assignments in which the student neither attained mastery
norwas persistent – they quit working on the problem set prior to the tenth problem.
Also referred to as “early stopout” [6].
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Table 1. The four categories of persistence and success analyzed in this study.

Persistent (> 10 problems) Non-Persistent (≤0 problems)

Mastered Persistent-Mastered Quickly-Mastered

Did not master Wheel-Spinning Quit

5.4 Other Mastery-Related and Performance Features

In addition to the above-mentioned features, we examined the following high-level fea-
tures to understand their interaction with college enrollment and better clarify our find-
ings: the percentage of assignments in which the student was persistent (the student
exceeded ten problems, irrespective of whether they achieved mastery or not), the per-
centage of assignments that the student mastered, and the average percent correct across
all questions they were presented across all assignments.

5.5 Aggregation of Features

As stated earlier, on average each student completed 18 mastery-based assignments. In
order to be able to compare the features across these assignments to college enrollment,
we aggregated all the features described above such that each student record will have a
single average value for each of the affect, behavior and ASSISTments-related features.
For example, instead of using a single mastery speed for an assignment in our models,
we used the average mastery speed across all assignments.

6 Analysis Plan

To research the effects of wheel-spinning on college enrollment, we conducted three
analyses, much as in [28]. In the first analysis, we looked at the relationship between
each of the features discussed above, taken individually, and college enrollment. For
each feature, we conducted a two-sample two-tailed t-test, assuming equal variances,
comparing the value of each feature between students who attended college and students
who did not attend college – for example, was wheel-spinning more frequent among
students who eventually attended college, or students who did not eventually attend
college? Cohen’s D effect sizes were used to assess the magnitude of the differences.
Given that we ran 18 tests, a Benjamini & Hochberg [5] post-hoc control was used.
Benjamini & Hochberg’s procedure, a false discovery rate procedure, attempts to ensure
that the overall rate of Type II false discoveries (non-effects treated as effects; false
positives) remains at the 5% level. In doing so,Benjamini&Hochberg’s procedure avoids
the over-conservatism and inflated Type II error rate that the Bonferroni correction is
known for, while avoiding the inflatedType I error rate that occurswhenmultiple tests are
run and no post-hoc adjustment is used. Within the Benjamini & Hochberg correction,
different tests are assigned different alpha values (which the p value must be below to
reach statistical significance), based on both the overall number of tests run and the
number of tests that have lower p values than the current test.
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In the second analysis, we created a single logistic regressionmodel which attempted
to predict college enrollment using both persistence measures and affect and disengage-
ment variables. We chose to use logistic regression because the outcome measure was
binary (whether or not the student enrolled in college), and logistic regression is a par-
ticularly interpretable algorithm. Several variables came up non-significant (see below).
Therefore, in the third analysis, we took the single logistic regression model from the
second analysis, removed all non-significant variables, and re-ran the analysis. In these
analyses, we again use a Benjamini & Hochberg post-hoc control.

Table 2. Features for Students who attended college (1, n = 136) and didn’t attend college (0, n
= 102)

Features (df = 234) Enrolled in College Mean Std. Dev. t-value Cohen’s D

Mastery Speed 0 8.327 7.916 3.816
(p < 0.001)

0.514

1 13.05 10.320

Persisted 0 0.349 0.341 3.661
(p < 0.001)

0.489

1 0.533 0.407

Percent Mastered 0 0.601 0.345 4.911
(p < 0.001)

0.639

1 0.802 0.278

Quickly Mastered 0 0.458 0.325 −1.831
(p = 0.238)

0.157

1 0.403 0.369

Persistent-Mastered 0 0.143 0.253 5.227
(p < 0.001)

0.715

1 0.398 0.437

Wheel-Spinning 0 0.136 0.274 −1.261
(p = 0.208)

0.166

1 0.092 0.253

Quit 0 0.261 0.277 −5.568
(p < 0.001)

0.706

1 0.105 0.148

Percent Correct 0 0.739 0.165 2.614
(p < 0.001)

0.342

1 0.792 0.143

Boredom 0 0.176 0.087 −5.3811
(p < 0.001)

0.719

1 0.108 0.103

Confusion 0 0.030 0.045 −5.746
(p < 0.001)

0.716

1 0.006 0.016

Concentration 0 0.691 0.078 0.601
(p = 0.547)

0.081

1 0.698 0.011

(continued)
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Table 2. (continued)

Features (df = 234) Enrolled in College Mean Std. Dev. t-value Cohen’s D

Frustration 0 0.151 0.143 −1.346
(p = 0.179)

0.181

1 0.121 0.189

Gaming 0 0.139 0.166 −1.3607
(p = 0.174)

0.178

1 0.111 0.143

Off Task 0 0.227 0.093 −0.812
(p = 0.418)

0.106

1 0.218 0.078

7 Results

7.1 Single-Feature Analyses

As shown in Table 2, eight features were statistically significant predictors of college
enrollment when taken individually, after post-hoc Benjamini & Hochberg correction.
Students who enrolled in college had a higher proportion of being persistent in the
face of difficulty and mastering difficult topics (Persistent Mastered) (M = 0.398) than
students who did not enroll in college (M = 0.143), t(233) = 5.227, p < 0.001, D =
0.715. Students who enrolled in college were less likely to quit problem sets without
reaching mastery (M = 0.261) than students who did not eventually enroll in college
(M = 0.105), t(233) = −5.568, p < 0.001, D = 0.706. However, contrary to our initial
hypothesis, wheel-spinning was not significantly different for students who enrolled in
college than students who did not, t(233) = −1.261, p = 0.208; mastering problem
sets quickly was also not statistically significantly different, t(233) = −1.831. In fact,
students who enrolled in college actually took longer on average to master the problem
sets they mastered (M = 13.05) than students who did not enroll (M = 8.327), t(233) =
3.816, p < 0.001, likely due to the difference in quitting early.

There were affective differences between students who enrolled in college versus
those who did not enroll, broadly similar to the analyses of the super-set of this data set
seen in [28]. Students who enrolled in college were statistically significantly less often
bored and confused than students who did not enroll in college. Unlike that larger data
set, however, students who enrolled in college did not game the system significantly
more or less often than students who did not enroll in college.

7.2 Productive Persistence Models (Full Model)

Table 3 presents a logistic regression model that uses three of the four productive persis-
tence features to predict college enrollment (the fourth, QuicklyMastered, is omitted due
to collinearity), controlling for affect and disengaged behavior. We find that productive
persistence is still a significant predictor of college enrollment, even after accounting
for all the affect and behavior features (p < 0.01). However, quitting was no longer a
significant predictor of enrollment once other features were controlled for. It is possible
that boredom or confusion, both negatively associated with student outcomes, may have
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played a role both in why students quit and why they are less likely to enroll in college.
Engaged concentration was marginally significantly positively associated with enroll-
ment. Gaming the system, on the other hand, became significantly negatively associated
with enrollment once other features were controlled for.

Table 3. Logistic regression model including both persistence features and affect and
disengagement features. Significant features are in boldface, and marginally significant features
are in italics. Alpha values from the Benjamini & Hochberg post-hoc control are included.

Feature Coefficient p-value (alpha value) Odds Ratio Risk Ratio

Persistent Mastered 0.350 0.004 (0.006) 1.420 1.606

Wheel-Spinning 0.308 0.105 (n/a) 1.361 1.678

Quit −0.108 0.546 (n/a) 0.897 0.569

Boredom −0.927 0.020 (0.022) 0.396 0.317

Confusion −2.709 0.006 (0.011) 0.067 <0.001

Engaged Concentration 0.824 0.0279 (0.0278) 2.280 3.829

Frustration 0.164 0.395 (n/a) 1.178 1.390

Gaming −0.771 0.0096 (0.017) 0.463 0.263

Off Task 0.148 0.674 (n/a) 1.159 1.449

Constant −0.009 0.731 (n/a) 1.104 0.265

Table 4. Model for College Enrollment omitting non-significant predictors. Significant features
are in boldface

Feature Coefficient p-value (alpha value) Odds Ratio Risk Ratio

Persistent Mastered 0.323 0.0005 (0.01) 1.382 1.663

Boredom −0.814 0.0224 (0.03) 0.443 0.426

Confusion −2.813 0.0015 (0.02) 0.060 0.000

Engaged Concentration 0.686 0.0453 (0.05) 1.986 3.170

Gaming −0.408 0.0347 (0.04) 0.665 0.472

Constant 0.214 0.415 (n/a) 1.239 0.301

Finally, we removed the non-significant features from themodel presented in Table 3
in order to examine whether the directionality and significance of the previously signif-
icant features remain the same as before. Engaged concentration goes from marginally
significant to significant; the significance and directionality of the other features remains
the same (See Table 4).
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8 Discussion and Conclusions

In this paper, we compared behaviors associated with persistence in online learning, dur-
ing middle school, to the longitudinal outcome of whether a student eventually enrolls in
college: wheel-spinning (completing many items and never mastering the skill), produc-
tive persistence (completingmany items and eventually mastering the skill), and quitting
a skill (without mastery or completing a substantial number of items).

Of these three, only productive persistence is reliably associated with college enroll-
ment after controlling for student affect and disengaged behaviors. Students who are
productively persistent more often are more likely to enroll in college, years later. In
fact, students who enroll in college were productively persistent in middle school math-
ematics almost three times as often, an effect size (Cohen’s D) of 0.715, aligning to other
research showing the importance of persistence for life outcomes [9, 11, 12].

By contrast, wheel-spinning is not statistically significantly associated with even-
tual college enrollment. This finding suggests that though struggling without success is
an emotionally upsetting experience and is associated with lower amounts of positive
engaged concentration [3], it may not be as problematic for students in the long-term as
may have been thought. Students may find another way to learn the material they cannot
succeed on in the learning system, perhaps asking a teacher, a parent, or fellow students,
or perhaps learning it on their own later in the school year.

Quitting without persisting or reaching mastery is associated with statistically sig-
nificantly lower probability of college enrollment, when taken on its own. However,
when controlling for student affect and another form of disengaged behavior, quitting
is no longer a statistically significant predictor. This finding suggests an important role
for affect and/or disengagement in the processes that mediate between giving up on
a problem set and eventual impact on outcomes. It is possible that either boredom or
confusion may lead a student to quit a problem set, and the relationship between those
two affective states and longer-term outcomes may be a more important factor than how
often a student quit a problem set. As with wheel-spinning, students may find another
way to learn this material. Better understanding these relationships will be an important
area for future work.

Beyond this, this paper’s findings suggest several additional directions for future
work. Better understanding the intermediate steps between productive persistence in
middle school online learning, and eventual outcomes, would likely be a valuable area
for further investigation. Is the possible impact of productive persistence due to greater
learning? Or is it because productive persistence in online learning correlates to per-
sistence and grit in other contexts as well? Teasing out the degree to which productive
persistence is important in itself, and the degree towhich it is simply indicative of broader
grit, will be a worthwhile question to answer.

At the same time, it may be worth looking further into the future, as has been done
for affect [1, 27]. It is not feasible with the current data set – although both skill builder
problem sets (needed to assess wheel-spinning and productive persistence according
to our current definitions of each) and later longitudinal measures are available for the
current data set, the overlap between these variables in insufficiently large to support
analysis (i.e. the students who completed skill builders were generally not the same ones
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for whom later longitudinal measures were available). Investigating this issue will need
to wait for another data set.

As a final theme, this paper shows the value of longitudinal data, linked to online
learning data, for a variety of secondary analyses. The ASSISTments longitudinal data
set has now been used in dozens of analyses beyond its initial intended analyses – at
the time that data set was collected, the first paper on wheel-spinning in online learning
had not yet been published. All too often, online learning researchers do not retain the
information needed for longitudinal follow-up. We hope that this paper provides yet
further justification encouraging researchers to retain this information.
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Abstract. Assessment quality and validity is heavily reliant on the qual-
ity of items included in an assessment or test. Difficulty is an essential
factor that can determine items and tests’ overall quality. Therefore, item
difficulty prediction is extremely important in any pedagogical learning
environment. Data-driven approaches to item difficulty prediction are
gaining more and more prominence, as demonstrated by the recent lit-
erature. In this paper, we provide a systematic review of data-driven
approaches to item difficulty prediction. Of the 148 papers that were
identified that cover item difficulty prediction, 38 papers were selected
for the final analysis. A classification of the different approaches used to
predict item difficulty is presented, together with the current practices
for item difficulty prediction with respect to the learning algorithms used,
and the most influential difficulty features that were investigated.

Keywords: Difficulty prediction · Item difficulty · Question difficulty ·
Systematic review · Difficulty modelling · Difficulty estimation

1 Introduction

Student assessments are a fundamental component of any pedagogical learning
environment. Assembling tests that contain items (i.e. questions) which measure
the various types of skills of different levels of learners in a fair way is a chal-
lenging task. Teachers and item writers must ensure the consistent quality of
assessment materials to provide objective and effective evaluation.

Assessment quality and validity is heavily reliant on the quality of items
included in the test; therefore, significant effort and resources have been devoted
to item analysis tasks. For item writers, item analysis is of great importance as
it allows them to improve items’ overall quality by eliminating non-functional
items [30]. Difficulty is an essential factor that can determine the overall quality
of items and tests, whereas item difficulty refers to the estimation of the skill
or knowledge level needed by students to answer an item [13]. Thus, difficulty
calibration is crucial in the assessment construction process; to provide equitable
opportunities to all test takers in any assessment, the item selection process
must be conducted according to the difficulty level of each item [34]. Designing
c© Springer Nature Switzerland AG 2021
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unbalanced tests which contain arbitrary numbers of easy and difficult items can
result in significant disadvantages to test takers who are affected by assessment-
based decisions. For example, assessments that consist of mostly easy items will
result in wrongly qualifying and certifying those less-than-competent test takers.

Traditional methods for obtaining an a priori estimation of difficulty rely on
two methods [10,39]: i) pretesting and ii) experts’ judgement. However, such
approaches are frequently criticised in the literature for being costly, time-
consuming, subjective and difficult to scale [6,20,29]. Therefore, a number of
alternative methods have been considered to overcome these limitations.

In this paper, we will examine the item difficulty prediction literature with
a special focus on data-driven approaches. To the best of our knowledge, there
has been no such review, nor a summary of the empirical evidence established
so far in this emerging research area. More specifically, the following research
questions will be addressed:

RQ1: What AI-based computational models are currently developed to offer a
priori difficulty prediction?

RQ2: What are the most investigated domains and item types?
RQ3: What are the influential features that were found to affect difficulty?

We provide a overview of the research on item difficulty estimation in Sect. 2.
We then present the method by which the systematic review was conducted
(Sect. 3), before discussing research questions and how they fit the literature
within the review (Sect. 4). We then conclude in Sect. 5.

2 Background

The research on item difficulty estimation is extensive and well-established. Psy-
chometricians, educational psychologists and linguists have long been studying
the potential sources of difficulty in educational items. These fields have provided
theoretical frameworks of cognitive processes involved in assessments. Further-
more, statistical methods and manual coding practices have been applied to
extract features and explore the relationship between different variables. More
recently however, AI techniques such as neural networks, natural language pro-
cessing (NLP), expert systems and machine learning algorithms have trans-
formed the field by applying unconventional concepts of non-linear modelling,
linguistic pattern recognition and advanced predictive power. We present a classi-
fication of two opposing approaches to item difficulty prediction based on a com-
prehensive survey of the literature; that of cognitive and systematic approaches
(Fig. 1).

Cognitive approaches include methods that address difficulty on the cognitive
level by examining what cognitive abilities are required to answer an item cor-
rectly. These approaches are qualitative in nature and rely on pre-defined notions
of difficulty, based on educational taxonomies or heuristic methods which define
difficulty according to the perceptions of educators, item writers and/or learn-
ers. In contrast, systematic approaches focus on quantifying the concept of diffi-
culty by employing more objective techniques found in statistical or data-driven
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Fig. 1. Item difficulty prediction approaches

prediction models. Some of the most employed statistical methods are psycho-
metric statistical models that analyse the relationship between difficulty and
examinees’ latent traits. Furthermore, basic statistical models (e.g. regression)
have also been used to examine the relationship between difficulty and various
variables [11,24,32,42]. Despite the fact that, in this approach, researchers were
using data to draw conclusions, it is nonetheless heavily theory driven. Difficulty
variables were either produced by experts or identified from previous theories
in the literature. Moreover, feature extraction processes are typically conducted
manually by domain experts in this type of investigation.

More recently, there has been a focus on employing data-driven approaches
that represent an array of methods and techniques used to quantify and objectify
the process of difficulty prediction. This line of investigation strives to eliminate
or at least reduce any subjectivity caused by human intervention [21], and do not
necessarily require domain experts to label or define difficulty features. Moreover,
pre-testing the items to an appropriate sample will not be needed if automatic
methods prove its validity. Hence, data-driven approaches (which include tech-
niques such as NLP, rule-based and machine learning algorithms) are gaining
more and more prominence [3,5,10,17,20,21,28].

In this paper, we provide a general overview of the broader field of item
difficulty prediction in order to gain a full understanding of the research area.
However, the scope of this review will only include data-driven approaches which
incorporate computational models to model difficulty.

3 Review Method

This review’s protocol is informed by the guidelines provided in [25], and is
illustrated in Fig. 2. The search process was conducted manually using the fol-
lowing paper archives: IEEE1, ACM Digital Library2, ScienceDirect3, Springer4,
1 https://ieeexplore.ieee.org/Xplore/home.jsp.
2 https://dl.acm.org/.
3 https://www.sciencedirect.com/.
4 https://www.springer.com/.

https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://www.sciencedirect.com/
https://www.springer.com/
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Fig. 2. The study selection process

and Elsevier5. Additional papers were included in the search by examining the
‘related work’ and the ‘reference list’ sections of each identified paper. Also, gen-
eral and academic search engines such as Google search and Google Scholar were
included to identify relevant papers. We also considered the citations to certain
papers by using the ‘cited by’ option in Google Scholar to include papers which
were not identified by the previous methods. The search process identified 148
papers which were screened in three stages: 1) title and abstract screening, 2)
full-text screening, and 3) inclusion and exclusion criteria-based filtering. As a
result, 38 papers were included for the final analysis.

Papers focusing on data-driven approaches to item difficulty prediction were
included without constraints on publication year, paper type, domain or item
type. Papers were excluded if they violated one or more of the following criteria:

– The paper is not written in English.
– The full text of the paper is not available.
– The proposed prediction model is not evaluated.
– The difficulty model is not data-driven. We exclude papers that predict dif-

ficulty based on heuristic, statistical or educational taxonomies approaches.
– The paper estimates difficulty after administrating the test. We only focus

on methods which offer a priori prediction of difficulty in order to overcome
limitations of traditional prediction methods.

– The items are not textual (i.e. containing images, graphs or formulas). We
exclude these types of items as they require different analytical techniques
compared to textual items.

5 https://www.elsevier.com/.

https://www.elsevier.com/
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– The paper does not address assessment items. For example, we exclude studies
that predict the difficulty of questions in question answering communities such
as Stack Overflow as this type of question differs completely from assessment
questions with regard to their purpose, style and structure.

– The difficulty features are not extracted from items. We focus on difficulty
features that are derived from items’ structure, hence, we exclude features
which are extracted from other data sources such as eLearning environments
or sensors.

– The paper focuses on item classification based on features other than diffi-
culty. For instance, we exclude papers that classify items based on question
type.

The field of item difficulty estimation is an interdisciplinary one. Relevant fields
such as educational assessment, psychology and computer science use different-
yet synonymous terms to address the same tasks. Therefore, different combina-
tions of search terms were assembled. As a result, the following combinations of
keywords and operators were used:

Item difficulty prediction, Item difficulty estimation, Item difficulty mod-
elling, Difficulty modelling, (item OR question) AND difficulty AND (esti-
mation OR prediction OR modelling)

A specific form was designed for the data extraction process given the objec-
tives of this review, which included: title, year of publication, method/approach,
domain, item type, number of items, data, evaluation, participant, metrics, diffi-
culty feature, results, paper type, publication venue and quality score. Eight qual-
ity assessment criteria were adopted from [50], where reporting quality, rigour
and credibility were the most frequently assessed dimensions in software engineer-
ing systematic reviews. The quality assessment process was conducted after read-
ing the full text and after completing the data extraction with values assigned
as Yes =1, No =0 and Partly = 0.5.

Included Papers: [1–6,8–10,12,14–23,26–29,33,35–38,40,41,43–49]

4 Results and Discussion

4.1 RQ1: Data-Driven Item Difficulty Prediction

In this section, we address the question: What AI-based computational models
are currently developed to offer a priori difficulty prediction? The computational
models used in the prediction process could be discussed under two headings:
machine learning and rule-based modelling. The majority of papers considered
utilise machine learning algorithms such as neural networks and support vec-
tor machine (SVM) [14,19–21,38], with NLP being used to perform automatic
extraction of difficulty features. Neural networks were some of the first data-
driven methods to be implemented in the item difficulty prediction field. In 1995
they were used to predict the difficulty of reading comprehension items taking
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Fig. 3. Number of publications distributed by year

from a TOEFL test [37], with the aim of exploring an unconventional approach
that could outperform statistical approaches. Rule-based algorithms were also
used, but relied on hard-coded instructions which do not follow a pre-defined
algorithm [15,36]. For this type of modelling, difficulty features were manually
identified and extracted by experts, which were represented in the form of rules.

It is clear from Fig. 3, which depicts the number of publications over time,
that publishing in this research area progressed through two different stages.
The first wave of publications started in the mid-1990s by employing neural net-
works which, at the time, represented a novel approach for exploring non-linear
relationships between item parameters and difficulty. Previous research had to
this point only employed statistical approaches, which explains the relationships
in a linear manner [8,9,12,37]. The second wave of studies started in 2010 as
researchers began to explore different data-driven approaches to this problem,
such as rule-based expert systems, support vector machine (SVM) and Näıve
Bayesian models [4,22,35]. A steep increase in publications is noticeable from
2014 to 2020, especially in 2017, 2019 and 2020, suggesting a growing relevance
of machine learning in the item difficulty research community.

In [21], a data-driven approach was employed to predict the difficulty of
30,000 reading comprehension items collected from a standard English test. The
item, options and the reading passages were analysed for each item. Sentence
representations were then extracted from the item components using a CNN-
based architecture. Finally, the difficulty level was determined by aggregating
the semantic representation of all items’ components. In a different study, the
authors investigated whether item difficulty correlates with the semantic similar-
ity between item components [20]. To achieve this, they utilised word embeddings
to construct the semantic space of learning materials and obtained the semantic
vectors of item elements. The semantic similarity scores were used as an input to
a SVM model to predict the difficulty of items collected from Entrance Exams in
the social studies domain. This contrasts with [35], where a difficulty estimation
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approach was presented which attempted to estimate the difficulty of converting
natural language sentences into First Order Logic (FOL) formulae. An expert
system was then employed to estimate the difficulty level of exercises based on
several parameters for measuring the complexity of the conversion process, such
as the connectives of the FOL expressions.

In general, there are four key architectural components that item difficulty
prediction models have in common, which represent four fundamental tasks:

–Observed difficulty measurement: where the ground-truth difficulty is mea-
sured using psychometric models or labeled by experts for later comparison
with the predicted difficulty.

–Pre-processing: where textual data is prepared for use by removing irrelevant
words and producing well-defined pieces of text.

–Feature extraction: this is used to transform text into machine-processable
representations. Various NLP techniques are used in this step such as Bag-
of-Words, Word2vec and TF-IDF.

–Prediction Model: the specified machine learning algorithm is used to analyse
the data.

4.2 RQ2: Domains and Item Types

With respect to the question: What are the most investigated domains and
item types? we found that the majority of papers on data-driven difficulty pre-
diction are domain specific (Fig. 4). Language learning is the most frequently
investigated domain [3,14,21,33], followed by Computer Science [17,35] and
Medicine [18,26,38]. This contrasted with other domains, such as Mathematics
and Social Studies, which appeared in a minority of cases [20,23]. The popu-
larity of the language learning and medical domains could be explained by the
existence of several standardised test-organisations that offer international and
national language proficiency tests (e.g. TOELF or IELTS), and medical licens-
ing examinations which require a massive number of frequently updated items.
Difficulty calibration is considered a fundamental process in these types of tests
as it ensures fairness and comparability of high-stakes exams, which are used to
inform important decisions regarding certification and employment.

Domain-independent (i.e. generic) studies accounted for almost 27% of the
publications that we examined. The main rationale for investigating domain-
independent studies is the possibility of producing difficulty prediction frame-
works that are generalisable, and that could be applied to other domains.

The types of item formats investigated included Multiple Choice Questions
(MCQs), true/false questions, gap-filling, and factual items in addition to other
types (Fig. 5). MCQs represented the majority of item types studied; due to
the ability to explore different sources of difficulty by analysing the relationship
between item components such as item stem, distractor and correct responses.
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4.3 RQ3: Difficulty Features

The third question we investigated poses the question What are the influen-
tial features that were found to affect difficulty? Educational items are natural
language phrases constructed by experts to assess a certain skill. When inves-
tigating the sources of difficulty in textual items, textual complexity plays an
important role. The underlying theory is that more textually complex items
require more advanced language proficiency skills in order to read, comprehend
and correctly answer items. Therefore, linguistic features are considered the most
obvious sources of difficulty when studying textual items. Recent studies on
item difficulty prediction use NLP and text mining techniques to automatically
extract syntactic and semantic features of items [4,6,7,31,40].

Linguistic features provide information regarding two levels of language: syn-
tactic and semantic. The relationship between difficulty and linguistic variables
have previously been extensively studied and focus mainly on syntactic fea-
tures [9,19,35,37]. More recently, researchers have started examining semantic-
related factors by exploring semantic relevance and semantic similarity between
item components (stem, distractor and correct answers) [20,28,38,46].

Before discussing linguistic features in depth, it is worth mentioning a type
of feature that was observed in four other studies [18,22,33,37]. Psycholinguistic
variables were examined to explore the affect of cognitive aspects of language
on item difficulty. Such features are concerned with how words or sentences are
constructed, processed and interpreted by the brain. For example, the Age of
Acquistion (AOA) variable (which refers to the age at which a certain word is
learned) was examined in two studies to evaluate its affect on difficulty. Other
psycholinguistic features included word concreteness and word imageability.

Syntax-Based Features: Structure-level features refer to linguistic compo-
nents that govern the textual structure of an item. This level of language typically
incorporates syntactic, lexical and grammatical components. The main motiva-
tion behind analysing this type of feature is to determine the underlying charac-
teristics which indicate the level of textual complexity and readability. Moreover,
this source of difficulty is estimated by considering word- or sentence- level mea-
sures, achieved by counting words, sentences and syllables and examining the
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relationship between these textual components. Table 1 summarises the most
common syntactic features. For example, [29] noted that the lexical frequency
of the words was the best predictor of difficulty. Another study found that the
part-of-speech (POS) count could accurately predict item difficulty [40]. Word
count is the most common feature investigated; in many studies, it is referred
to as word frequency or word familiarity, as both terms include counting the
number of words to examine the frequency of the word or its familiarity. Word
count can target special words types such as verbs, nouns, negation and named
entities. Furthermore, some studies further examined the frequency of complex
types of words which require advanced cognitive skills; for example, academic,
complex and uncommon words. This is also the case for sentence-level analysis
which utilises measures to count the number of sentences or special types of
sentences (e.g. type of clause) to assess the complexity level of an item.

Table 1. Common syntax-based difficulty features

Syntactic difficulty feature Studies

Word count [2,3,5,6,9,10,12,18,33,37,40]

Frequency of complex words [10,18,29,37]

Word length [3–5,10,12,18,19,29,33]

POS count [3,19,40]

Grammatical forms [2,3,18,33,37]

Negation count [10,18]

Verb variation [3,10]

Sentence length [3,4,18,19,21,33,38,43]

Sentence count [5,10,18,33,37]

Type of clause [10,18,33]

Another proxy of textual complexity is the word/sentence length [16,19]. It is
believed that long words/sentences are more difficult to understand than shorter
ones. Therefore, utilising measures to count the number of characters in a word
or words in a sentence is very common in the literature. Separating content words
from function words is the main purpose for using part of speech (POS) tagging
measures. This distinction is necessary to identify content words which represent
lexical meaning and function words that represent syntactic relations. Further
analysis would incorporate POS counting to count the number of appearances
of each POS tag (e.g. verbs, nouns and pronouns) in order to explore features
like verb variation which increases text complexity.

Semantic-Based Features. The second type of features focus on the relation-
ship between difficulty and semantic properties of an item or its components (see
Table 2). Features that address this level of language were absent in many earlier
studies. However, more recently there has been a recognition of the importance
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of deeper levels of analysis for examining sources of difficulty at the semantic
level. Semantic similarity is the most investigated feature; both for considering
the similarity between words or between item components. The latter includes
the semantic relationship between item stem and distractors, distractors and
correct responses, or between distractors. The intuition behind using such fea-
tures is that highly semantically-related components increase the cognitive load
on examinees when choosing the correct answer, resulting in an increase in dif-
ficulty level. For example, in gap filling items the semantic relatedness between
the gap and its context is a significant factor which affects difficulty [4].

Table 2. Common semantic-based difficulty features

Semantic difficulty feature Studies

Semantic similarity between words [28]

Semantic similarity between options [1,20,27]

Semantic similarity between item stem and options [20,38,43]

Semantic similarity between context (i.e. learning
material or passage) and item elements (stem, options
and answer)

[3,38,49]

It is worth mentioning that recent publications have utilised ontology-based
measures to measure semantic similarity between items’ components [26,27,44–
46]. Ontologies have been increasingly utilised because they provide means to
describe semantic relations of domain knowledge in a formal, structured and
machine-processable format. Therefore, several ontology-based metrics have been
developed in the literature by considering the relationship between concepts,
predicates and individuals in the ontology. For example, word popularity on a
semantic level can be determined by counting the number of object properties
which are linked to an individual from other individuals [46].

5 Conclusion

In this paper, we have provided a systematic literature review on data-driven
item difficulty prediction, and presented a classification which distinguishes
between cognitive and systematic approaches to item difficulty prediction. The
review establishes the data-driven approaches as a recent trend, that has emerged
to overcome limitation of previous methods. The majority of the reviewed papers
were domain- and item-specific. Furthermore research also suggests that linguis-
tic features play a major role in determining items’ difficulty level.

The reviewed papers failed to identify specific data-driven approaches that
are able to provide generic frameworks that can be applicable across multiple
domains and item types. This would have served as a first step towards providing
automatic, reliable and objective evaluation methods to automatically validate
items with regard to difficulty. This is the objective of our future research.
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Abstract. Digital learning technologies that aim to measure and sustain student
engagement typically use supervisedmachine learning approaches for engagement
detection, which requires reliable “ground-truth” engagement annotations. The
present study examined associations between student demographics (age [grade],
gender, and ethnicity) and the reliability of engagement annotations basedonvisual
behaviors.We collected videos of diverse students (N= 60) from grades 1–12who
engaged in one-hour online learning sessionswith grade-appropriate content. Each
student’s data was annotated by three trained coders for behavioral and emotional
engagement.We found that inter-rater reliability (IRR) for behavioral engagement
was higher for older students whereas IRRs for emotional engagement was higher
for younger students. We also found that both rotational head movements and
facial expressivity decreased with age, and critically, rotational head movements
mediated the effects of grade on behavioral IRR; there was no mediation for
emotional IRR. There were no effects of gender or ethnicity on IRR. We discuss
the implications of our findings for annotating engagement in supervised learning
models for diverse students and across grades.

Keywords: Student engagement · Inter-rater Reliability (IRR) · Demographics ·
Expressivity

1 Introduction

The relationship between engagement and learning canbe summarized as: “a studentwho
is engaged is primed to learn; a student who is disengaged is not” [1]. And although there
are different perspectives on defining engagement [2–4], it is generally acknowledged
that engagement is a multi-componential construct [2, 5], consisting of: (1) Behavioral
engagement (learners’ participation during the learning task - e.g., effort, persistence); (2)
emotional engagement (learners’ affective states during the learning task); (3) cognitive
engagement (learners’ cognitive investment in the learning task).
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Given the importance of engagement to learning and the ever-increasing use of
technology in classrooms [6], there has been an increasing research on developing tech-
nologies to promote learner engagement over the last two decades [1]. Such efforts
require reliable measurement of engagement, a challenging endeavor. In contrast to
traditional measurement approaches (e.g., self-reports, experience sampling methods,
observational methods, and academic and behavior records) [1], advanced technologies
leverage machine learning for automated engagement monitoring [7–10]. Such models
are typically trained using a supervised approach where student data are collected and
annotated by trained human-expert coders to obtain ground-truth labels [11, 12]. Due
to the subjective nature of engagement labelling [13], data annotation requires multiple
coders to label the same data. This enables the use of inter-rater reliability as a metric
to evaluate the “subjectivity” of engagement labeling. This metric also provides a con-
straint on model performance in that the models are as good as the labels used to train
them. As reviewed below, whereas there has been an increased interest in population
validity [14] – ensuring that the models yield equitable performance across different
subgroups (demographics) – considerably less research has investigated the influence
of demographics on the reliability of the ground-truth labels used to train the models.
To address this gap, this paper focuses on understanding the reliability of engagement
annotations across different demographics (i.e., age, gender, ethnicity).

1.1 Background and Related Work

There have been several studies investigating variousmachine learningmethods to detect
student engagement in technology-mediated learning environments (see [5] for a review).
Despite of this ever-increasing interest, previous research has mostly focused on pro-
viding results for participant-level validity [5], ensuring that the same participant is not
represented in both the training and test sets.

In the literature, a limited number of studies explored issues related to population
validity (i.e., generalizability to newstudent populations) [14].Most of these explorations
have been around understanding cross-cultural differences: In [15], the researchers stud-
ied engagement with Cognitive Tutor across three Latin American countries and found
out that there are differences in student engagement, collaboration, and needs across dif-
ferent cultures. In [16], the researchers developed machine learningmodels for detecting
student carelessness in Cognitive Tutor and evaluated generalizability of these detectors
between Philippine high school and US middle school and concluded that they were
generalizable. As opposed to [16], researchers in [17] identified that the detectors devel-
oped for help-seeking behavior was not transferable across Costa Rica, the Philippines,
and the US.

In addition to cross-cultural generalizability, there have been some studies focusing
on generalizing over other demographic attributes. For example, in [14] automatic detec-
tors were developed to infer learning-related affective states using log files when the stu-
dents were using the mathematics ASSISTments system. In a case study, the researchers
investigated inter-group differences among urban, suburban, and rural students to eval-
uate whether they could achieve population validity across these three groups. They
concluded that population validity was difficult to accomplish in some cases. In addi-
tion to these relatively small-scale studies investigating generalizability, researchers [18]
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recently trained sensor-free affect detection models with the data from 69,174 students
who used an onlinemathematics platform throughout a school year. Leveraging platform
usage and demographics information (such as grade, gender, ethnicity, lunch status etc.),
the researchers clustered the students to evaluate generalizability of themodel across dif-
ferent clusters. They concluded that the improvement obtainedwith cluster-basedmodels
over the generic ones were limited, and the sensor-free models were generalizable.

1.2 Current Study and Research Questions

As evident from the literature review, the results on generalizability of engagement
models are mixed. Furthermore, all studies focus on the accuracy of the trained models
across subgroups, which makes it difficult to identify causes of a lack of generalizability.
Taking a different approach, we focus on demographic influences on one of the core
ingredients of the models – the reliability of the engagement annotations or ground truth
labels used to train the underlying models.

Towards this end, we collected a gender-balanced multi-modal dataset, covering a
widespan of age groups (grades 1 to 12) and varied ethnicities. Considering how an
expert would assess engagement of a student in real-time and in an unobtrusive manner,
we focused on the two components of engagement that are observable from visual
features: (1) Behavioral engagement addresses student involvement in a learning task
andwas characterized asOn-Task vs. Off-Task; and (2) emotional engagement, assessing
student affect during the learning task as Satisfied [content], Bored, or Confused. We
did not consider cognitive engagement (i.e., investment in the learning process) since it
is more of an internal state (e.g., involving deep processing, focused attention) that is
less well-defined perceptible visual correlates [5].

We focus on three demographics: ethnicity as the socio-cultural context impacting
emotional development of children [19], students’ age since expressive behaviors of
emotions evolve over time as children mature [19], and students’ gender since related
research suggest that gender has an effect on how expressive behaviors are expressed or
inhibited [20]. Our first research question pertained to associations between age, gender,
and ethnicity and the inter-rater reliability (IRR) of coding behavioral and emotional
engagement. For our second research question, we investigated the influence of students’
behavioral expressions (rotational head movements and changes in facial expressions)
on both IRR measures. We also investigated if behavioral expressions mediated the
influence of demographics on the IRR measures.

2 Methods

2.1 Data Collection

We collected data from 60 diverse gender-balanced (50% female) students from different
grade levels (grades 1–12) and ethnicities (30 Asian, 5 Indian, 25 Caucasian) in Canada
(the ethnicities reflect the demographics of the region). Students (in groups of 6–8
individuals) attended learning sessions in a lab setting arranged by the research team.
The lab had a large table around which laptops dedicated to individual students were
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positioned. There was a moderator who provided preliminary instructions to students
on how to use the educational content platform and addressed any questions emerged
during the sessions. The students individually engaged with online educational content
customized for their grades using their assigned laptops. The online content was pre-
selected by an educational researcher to match each grade level. It included instructional
videos on Math topics (e.g., addition, subtraction, solving equations, fractions) and
related assessment exercises on the platform. There was a total of nine learning sessions
with 6–8 participants per session, and each session consisted of two 30-min blocks
with a ten-minute break in between. In total, we collected 60 h of data, with a one-
hour learning session per student. We collected audiovisual data of the student from
the laptop’s webcam and screen capture of the educational content (showing both the
content and the student interactions). These were incorporated into a single video stream
(synchronized and concatenated side-by-side) for engagement annotation.

2.2 Annotation Procedure and Computing Inter-rater Reliability

We employed six coders trained with Human-Expert Labeling Process (HELP) [12] to
annotate the data for engagement. The trained coders were randomly divided into two
groups of three, and the groups were assigned to label either behavioral or the emotional
engagement. Coders could also provide a Can’t Decide label if they could not decide on
a specific behavioral/emotional label; and a Not Available label if the student was not
present or the learning session had not started yet. Each coder was asked to label the
entire dataset (either for behavioral or emotional labels, depending on the assigned group)
using the students’ videos, accompanying audio recordings, and the screen capture. The
coders viewed the videos and identified segments based on observed state changes (e.g.,
student switching from being Confused to being Bored). This was done in lieu of using
pre-defined segments with pre-defined durations, and each segment was defined by
the start and end times of the identified state. Note that we only provided operational
definitions of the engagement states and no additional prescriptive instructions (e.g.,
yawning means boredom) were given to avoid any bias.

After labeling was completed, we processed each set of segment-wise annotations
with varied durations provided by multiple coders. First, instances of fixed length were
defined using a sliding window of 8 s over an entire video with 50% overlaps (window
length and overlap amount are adopted from [21]). Then, instance-wise labels for each
video were assigned per coder, by checking the corresponding segment label provided
by that coder. In case of different labels (i.e., multiple segments) intersecting the span
of an instance, the overlaps between the segments and the instance were calculated and
the label with the longer overlap was assigned as the instance-wise label for that coder.
Converting segment-wise labels into corresponding instance-wise labels enabled us to
obtain time-aligned sequences of labels (provided by multiple coders), which were nec-
essary for inter-rater reliability calculations. In total, 188,967 instances (obtained from
three coders for the entire 60 h of data) were considered in inter-rater reliability anal-
ysis, where reliability was computed per student and the overall measure was obtained
by averaging over students. Due to the presence of highly imbalanced label distributions
(as expected and subsequently confirmed), we utilized Gwet’s First-Order Agreement
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Coefficient (AC1) as the inter-rater reliability metric, considering its robustness with
data imbalance [22].

2.3 Video Analytics

We processed each video using a facial behavior analysis tool called OpenFace [23].
We computed two metrics: (1) Rotational head movement, to measure how much the
head rotates as an indicator of overall motion; and (2) expressivity, to measure how
expressive the face is in an instance. For rotational head movement, we utilized frame-
level rotational pose estimates for three axes provided by OpenFace, computed the
standard deviation (across frames of an entire video) for each axis, and then obtained
the average standard deviation across the three axes. For expressivity, we utilized the
frame-level classification outputs for facial action units (AUs; e.g., brow lowerer), where
the output is 1 if the face is classified as having a specific AU, and 0 otherwise. For each
frame, we first computed a frame-wise expressivity value by averaging the classification
outputs over all AUs (18 in total) per frame and then computing the average over all
frames of the entire video as a general measure of expressivity.

3 Results and Discussion

3.1 Descriptives

Thedistributionof student demographics (i.e., grade, gender, ethnicity) is shown inFig. 1.
The distributions of post-processed engagement annotations collected from multiple
coders (i.e., instance-wise labels pooled over multiple coders) are given in Fig. 2. We
found that students were perceived largely as On-Task (90.6% of the time they were
present) and mostly content (71.5% satisfied) and sometimes bored (16.7%); confusion
was relatively infrequent (4.5%). We did not compare differences in engagement labels
across demographics due to differences in content across grades and because it is not
germane to our main research question on inter-rater reliability.

3.2 Inter-rater Reliability (IRR) Measures

The inter-rater reliability measures for different grade levels and ethnicities are shown
in Fig. 3. IRRs for Behavioral engagement (M = .95, SD= .07) was significantly larger
(paired-samples t(59) = 14.9, p < .001) than the IRR for Emotional engagement (M =
.60, SD = .16). Importantly, behavioral and emotional IRR scores were not correlated
(r = −.09, p = .45).

We regressed behavioral and emotional IRR measures on grade (continuous vari-
able), gender (categorical with female as reference group), and Ethnicity (with Asian
as the reference group). We found (See Table 1) that grade was significantly associated
with higher IRR for behavioral engagement, but lower IRR for emotional engagement.
There were no gender or ethnicity effects.
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Fig. 1. Distribution of students across different grades, ethnicities, and genders (gender: F:
Female, M: Male).

(a) Behavioral Labels

(b) Emotional Labels

Fig. 2. Distribution of all instance-wise labels pooled over multiple coders considering differ-
ent grades (left), gender (middle), and ethnicities (right) for (a) behavioral and (b) emotional
engagement states.
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(a) Behavioral

(b) Emotional

Fig. 3. Inter-rater reliability measures (AC1) among multiple coders considering different grades
(left), gender (middle), and ethnicities (right) for (a) behavioral and (b) emotional engagement
states.

Table 1. Standardized coefficients (beta), confidence intervals (CI), and significance values (p)
for the linear regression model predicting inter-rater reliability measures.

Predictors Behavioral IRR Emotional IRR

Beta 95% CI p Beta 95% CI p

(Intercept) 0.05 −0.32–0.42 <0.001 −0.11 −0.52–0.29 <0.001

Grade 0.57 0.34–0.79 <0.001 −0.45 −0.70–−0.20 0.001

Gender
[Male]

−0.13 −0.56–0.31 0.565 0.31 −0.16–0.79 0.195

Ethnicity
[Indian]

0.48 −0.33–1.29 0.241 0.36 −0.53–1.25 0.416

Ethnicity
[Caucasian]

−0.07 −0.54–0.40 0.762 −0.18 −0.70–0.34 0.491

3.3 Video Analytics

Regression analyses indicated that grade-level was significantly negatively associated
with rotational head movement and expressivity and there were no gender or ethnicity
effects (see Table 2).

We hypothesized that the higher IRRs for behavioral engagement achieved for older
students might be due to the lower rotational head movements for these students. To
test this hypothesis, we conducted a causal mediation analysis (with 1000 bootstrapped
samples) testing whether rotational head movement mediated the relationship between
grade and behavioral IRR. The results are summarized in Fig. 4. We found that grade
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Table 2. Standardized coefficients (beta), confidence intervals (CI), and significance values (p)
for the linear regression models for rotational head movement and expressivity measures.

Predictors Rotational head movement Expressivity

Beta 95% CI p Beta 95% CI p

(Intercept) 0.17 −0.17–0.51 <0.001 0.02 −0.40–0.44 <0.001

Grade −0.66 −0.86–−0.45 <0.001 −0.39 −0.65–0.13 0.004

Gender
[Male]

−0.26 −0.66–0.14 0.199 0.24 −0.26–0.73 0.346

Ethnicity
[Indian]

−0.29 −1.03–0.46 0.442 −0.41 −1.33–0.52 0.481

Ethnicity
[Caucasian]

−0.03 −0.47–0.40 0.884 −0.24 −0.78–0.30 0.375

negatively predicted rotational head movement (β1 = −0.66, p < 0.001), which in
turn, negatively predicted behavioral IRR (β2 = −0.67, p < 0.001). The bootstrapped
unstandardized indirect effect (β1 × β2 = 0.008 with a 95% confidence interval of 0.004
to 0.010) was significant (p < .001), thereby confirming our hypothesis. For emotional
engagement IRR, we hypothesized that the lower IRR for higher grade students could
be due to lower expressivity among these students. However, expressivity was not a
significant (p = 0.200) mediator of the relationship between grade and emotional IRR.

Fig. 4. Standardized regression coefficients for the relationship between grade and Behavioral
inter-rater reliability as mediated by the rotational head movement.

4 General Discussion

Weexplored associations between demographics (i.e., grade, gender, ethnicity) and inter-
rater reliability (IRR) of assessments of behavioral and emotional engagement by trained
coders.We found that behavioral IRRs increasedwith age, but emotional IRRs decreased
with age.We also found that younger students weremore active and expressive than their
older counterparts, which partly explained grade-level differences in behavioral IRRs.
Neither gender nor ethnicity predicted IRRs.
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Like all studies, ours has limitations. Although other demographics information (i.e.,
gender, ethnicity) did not predict IRR, our analysiswas limited to a dataset of 60 students.
Moreover, although the students had different ethnic origin, they were residents of the
same country. Therefore, there is a need to replicate our findings with larger and more
diverse datasets. For such a large-scale study, qualitative methods should be additionally
considered to obtain a deeper understanding of the coders’ perspectives on assessing
engagement, as well as for identifying demographic factors related to expressions of
engagement. We also focused on a 1:1 math learning in a lab setting. The research
should be expanded to take into account different learning contexts (e.g., different topics,
educational games, group work) and in more authentic learning environments (e.g.,
students’ homes).

Our findings suggest that age has a critical role for engagement measurement. One
major implication is that age should be considered when developing engagement detec-
tion models. We hypothesize that models adapted for different target groups (e.g., differ-
ent age cohorts) could automatically focus on group-specific behavioral patterns, which
will in turn improve model accuracies. We expect this improvement to be apparent for
models considering the visual modality based on the significant association between
grade and behavioral patterns (i.e., rotational head movement). Further research needs
to be conducted to evaluate the impact of age on accuracies of engagement models and
to validate the potential improvement of age-informed models.

Acknowledgements. Sidney D’Mello was supported by the Institute of Education Sciences (IES
R305C160004), Intel research, and the National Science Foundation (NSF DRL 2019805). The
opinions expressed are those of the authors and do not represent views of the funding agencies.

References

1. D’Mello, S.K.: Improving Student Engagement in and with Digital Learning Technologies
(in press)

2. Fredricks, J.A., Blumenfeld, P.C., Paris, A.H.: School engagement: potential of the concept,
state of the evidence. Rev. Educ. Res. 74(1), 59–109 (2004)

3. Reeve, J., Tseng, C.-M.: Agency as a fourth aspect of students’ engagement during learning
activities. Contemp. Educ. Psychol. 36(4), 257–267 (2011)

4. Pekrun, R., Linnenbrink-Garcia, L.: Academic emotions and student engagement. In: Chris-
tenson, S., Reschly, A., Wylie, C. (eds.) Handbook of Research on Student Engagement,
pp. 259–282. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-2018-7_12

5. D’Mello, S.,Dieterle, E.,Duckworth,A.:Advanced, analytic, automated (AAA)measurement
of engagement during learning. Educ. Psychol. 52(2), 104–123 (2017)

6. Madden, M., Lenhart, A., Duggan, M., Cortesi, S., Gasser, U.: Teens and technology (2005)
7. Pardos, Z.A., Baker, R.S., San Pedro, M.O., Gowda, S.M., Gowda, S.M.: Affective states and

state tests: investigating how affect throughout the school year predicts end of year learning
outcomes. In: Proceedings of the Third International Conference on Learning Analytics and
Knowledge, pp. 117–124 (2013)

8. Bosch, N., et al.: Automatic detection of learning-centered affective states in the wild. In:
Proceedings of the 20th International Conference on Intelligent User Interfaces, pp. 379–388
(2015)

https://doi.org/10.1007/978-1-4614-2018-7_12


Annotating Student Engagement Across Grades 1–12 51

9. Chen, Y., Bosch, N., D’Mello, S.: Video-Based Affect Detection in Noninteractive Learning
Environments. International Educational Data Mining Society (2015)

10. Salmeron-Majadas, S., et al.: Filtering of spontaneous and low intensity emotions in educa-
tional contexts. In: Conati, C., Heffernan, N., Mitrovic, A., Verdejo, M. (eds.) AIED 2015.
LNCS (LNAI), vol. 9112, pp. 429–438. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-19773-9_43

11. Ocumpaugh, J.: Baker Rodrigo Ocumpaugh monitoring protocol (BROMP) 2.0 technical and
training manual. Technical Report. New York, NY: Teachers College, Columbia University.
Manila, Philippines: Ateneo Laboratory for the Learning Sciences (2015)

12. Aslan, S., et al.: Human expert labeling process (HELP): towards a reliable higher-order user
state labeling process and tool to assess student engagement. Educ. Technol. 57, 53–59 (2017)

13. Siegert, I., Böck, R., Wendemuth, A.: Inter-rater reliability for emotion annotation in human–
computer interaction: comparison and methodological improvements. J. Multimodal User
Interf. 8(1), 17–28 (2013). https://doi.org/10.1007/s12193-013-0129-9

14. Ocumpaugh, J., Baker, R., Gowda, S., Heffernan, N., Heffernan, C.: Population validity for
educational data mining models: a case study in affect detection. Br. J. Educ. Technol. 45(3),
487–501 (2014)

15. Ogan, A., et al.: Collaboration in cognitive tutor use in Latin America: field study and
design recommendations. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 1381–1390 (2012)

16. San Pedro, M.O.C.Z., Baker, R., Rodrigo, M.M.T.: Detecting carelessness through contextual
estimation of slip probabilities among students using an intelligent tutor for mathematics. In:
Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS (LNAI), vol. 6738,
pp. 304–311. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21869-9_40

17. Soriano, J.C.A., et al.: A cross-cultural comparison of effective help-seeking behavior among
students using an ITS for math. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia,
K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 636–637. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-30950-2_98

18. Jensen, E., Hutt, S., D’Mello, S.K.: Generalizability of Sensor-Free Affect Detection Models
in a Longitudinal Dataset of Tens of Thousands of Students. International Educational Data
Mining Society (2019)

19. Saarni, C.: Emotional competence and effective negotiation: the integration of emotion under-
standing, regulation, and communication. In: Aquilar, F., Galluccio, M. (eds.) Psychological
and Political Strategies for Peace Negotiation, pp. 55–74. Springer, New York (2011). https://
doi.org/10.1007/978-1-4419-7430-3_4

20. Brody, L.R.: Gender differences in emotional development: a review of theories and research.
J. Pers. 53(2), 102–149 (1985)

21. Aslan, S., et al.: Investigating the impact of a real-time, multimodal student engagement
analytics technology in authentic classrooms. In: Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, pp. 1–12 (2019)

22. Gwet, K.L.: Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the
Extent of Agreement Among Raters. Advanced Analytics, LLC (2014)

23. Baltrusaitis, T., Zadeh, A., Lim, Y.C., Morency, L.P.: Openface 2.0: facial behavior anal-
ysis toolkit. In: 2018 13th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2018), pp. 59–66 (2018)

https://doi.org/10.1007/978-3-319-19773-9_43
https://doi.org/10.1007/s12193-013-0129-9
https://doi.org/10.1007/978-3-642-21869-9_40
https://doi.org/10.1007/978-3-642-30950-2_98
https://doi.org/10.1007/978-1-4419-7430-3_4


Affect-Targeted Interviews for Understanding
Student Frustration

Ryan S. Baker1(B), Nidhi Nasiar1, Jaclyn L. Ocumpaugh1, Stephen Hutt1,
Juliana M. A. L. Andres1, Stefan Slater1, Matthew Schofield1, Allison Moore2,

Luc Paquette3, Anabil Munshi2, and Gautam Biswas2

1 Graduate School of Education, University of Pennsylvania, Philadelphia, USA
rybaker@upenn.edu

2 Vanderbilt University, Nashville, USA
3 University of Illinois at Urbana-Champaign, Champaign, USA

Abstract. Frustration is a natural part of learning in AIED systems but remains
relatively poorly understood. In particular, it remains unclear how students’ per-
ceptions about the learning activity drive their experience of frustration and their
subsequent choices during learning. In this paper, we adopt a mixed-methods
approach, using automated detectors of affect to signal classroom researchers to
interview a specific student at a specific time. We hand-code the interviews using
grounded theory, then distill particularly common associations between interview
codes and affective patterns. We find common patterns involving student percep-
tions of difficulty, system helpfulness, and strategic behavior, and study them in
greater depth. We find, for instance, that the experience of difficulty produces
shifts from engaged concentration to frustration that lead students to adopt a vari-
ety of problem-solving strategies. We conclude with thoughts on both how this
can influence the future design of AIED systems, and the broader potential uses
of data mining-driven interviews in AIED research and development.

Keywords: Frustration ·Mixed methods · Affect detection · Attitudes ·
Self-regulated learning

1 Introduction

Frustration is a natural part of learning, both in the context of AIED systems and more
broadly, and yet it remains relatively poorly understood. Some articles have argued that
frustration is a negative part of the learning experience, and should be eliminated [1, 2].
Other accounts have argued that frustration is necessary for an appropriate feeling of chal-
lenge and retention of knowledge over time (e.g. [3]). Indeed, the relationship between
frustration and learning is unclear, with studies finding both negative associations [4, 5],
and positive associations [6]. One study’s results suggest that it is frustration’s duration
that matters for learning, not its overall rate of occurrence [7]. Theoretical accounts even
disagree about whether frustration is properly understood as a single, discrete affective
state, with arguments that there are multiple types of frustration -- some even pleasurable
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[8] -- or that frustration can be meaningfully split into whether it is germane or extra-
neous to the learning task [9]. By contrast, other researchers have argued that confusion
and frustration interact with learning in many of the same ways [7]. Hence, it is fair to
say that the field of AIED -- and educational psychology more broadly -- is confused
about frustration. Many of us even appear to be frustrated about frustration.

In particular, it is poorly understood how frustration interacts with the broader ongo-
ing experience of participating in an AIED learning activity. We know that frustration
precedes disengagement and tends to be relieved by disengaged behavior [10]. We know
that frustration precedes help-seeking or on-task conversation with other students and
can be relieved by those behaviors [11]. We know that frustration varies by learning
activity [5] but what we do not know looms large. Researchers have argued that frustra-
tion is associated with the experience of difficulty [12, 13], but can we better understand
how? How does frustration interact with a student’s shifting perspective on whether a
learning system is interesting or helpful (cf. [14])? And finally, there is some evidence
that frustration is tied to self-regulated learning processes and learning strategy [15], but
it is not yet fully clear how.

Although the majority of the past studies on frustration in AIED systems are quan-
titative, some of the attempts to more deeply understand frustration have leveraged
qualitative or even introspective methods [8]. However, it has thus far been challenging
to study frustration qualitatively, as out-of-context retrospective descriptions of a frus-
tration experience may no longer have full access to the context or phenomenological
experience that accompanies frustration (see review of thememory limitations surround-
ing retrospective interviews in Huber and Power [16]). Indeed, meta-analyses suggest
that naturalistic frustration during learning is not always a particularly frequent or lengthy
experience, D’Mello’s [17] meta-analysis finds that frustration is rarer than any other
commonly-studied affective state except surprise, and other research has shown that a
typical occurrence of frustration lasts an average of 8–40 s [18, 19]. Thus, a randomly-
timed set of interviewswould not be expected to capture a particularly large proportion of
frustration experiences. Spontaneous self-report in time diaries [20] can capture the con-
text surrounding a specific experience of frustration, but have limited scope for follow-up
questions and rely heavily on participant initiative. Artificially-induced frustration [21]
may differ from genuine frustration in key fashions – for instance, the stimuli used to
create frustration within this methodology may not be representative of the contexts
where frustration naturally emerges.

To better study frustration, we adopt a novel mixed-methods approach, using affect
detection to drive qualitative research. In this approach, a suite of automated affect
detectors is integrated into a learning system. When an event of interest occurs – in this
case, a transition from a different affective state to frustration, or a student experiencing
sustained frustration over a significant period of time – a message is sent to a qualitative
researcher present in the classroom, who can conduct an immediate, timely interview.
This approach to mixed methods differs from the most common uses of mixed meth-
ods in education, which typically involve using both qualitative and more traditional
quantitative methods (such as survey instruments or tests) to triangulate a research ques-
tion, qualitative methods to explain quantitative findings, or using qualitative analysis to
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identify behaviors for further quantitative study (e.g. [22]). Instead, we use a quantita-
tive method – automated detection of affect – in support of a qualitative method – field
interviews. As such, this method can increase the time-efficiency and cost-efficiency of
using qualitative methods to study relatively rare events.

2 Methods

2.1 Betty’s Brain

Betty’s Brain is an open-ended, computer-based learning system that uses a learning-
by-teaching paradigm to teach complex scientific processes [23]. Betty’s Brain asks
students to teach a virtual agent (Betty) about scientific phenomena (e.g., climate change,
ecosystems, thermoregulation) by constructing conceptmaps that demonstrate the causal
relationships involved (see Fig. 1)

Fig. 1. Screenshot of viewing quiz results and checking the chain of links Betty used to answer
a quiz question

The learning process required by Betty’s Brain necessitates high levels of self-
regulation. As students construct their map, they must navigate through multiple hyper-
media information sources where they can read about a variety of subthemes. They
choose how often to test Betty’s knowledge, and they may elect to interact with a vir-
tual mentor agent (an experienced teacher named Mr. Davis) if they are having trouble
teaching Betty. Because of these design factors, strong self-regulated learning behaviors
are crucial for succeeding within Betty’s Brain.
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These pedagogical agents (Betty and Mr. Davis) provide a social framework for
the gradual internalization of effective learning behaviors, and an emphasis on self-
regulatory feedback that has been demonstrated to improve these behaviors among stu-
dents who use Betty’s Brain [23]. Prior research [24] has explored the relationships
between students’ cognitive and affective experiences in Betty’s Brain and emphasized
how automated affect detector models can be beneficial for providing students with
personalized guidance that respond to their affective-cognitive states during learning.

2.2 Study Design

This study uses data from 93 sixth graders who used Betty’s Brain during the 2016–2017
school year during their science classes in an urban public school in Tennessee. Data
were collected over the course of seven school days. Students and their parents completed
a consent form prior to the study. On the first day of the study, students completed a
30–45-min paper-based pre-test that measured knowledge of scientific concepts and
causal relationships. On day 2, students participated in a 30-min training session that
familiarized them with the learning goals and user interface of the software. Following
the pre-test and training, students used the Betty’s Brain software on days 2 through 6,
for approximately 45–50 min each session, using concept maps to teach Betty about
the causal relationships involved in the process of climate change. On day 7, students
completed a post-test that was identical to the pre-test, in order to assess changes in
knowledge based on working with Betty’s Brain for the week.

As students interacted with Betty’s Brain, automatic detectors of educationally rel-
evant affective states [25] and behavioral sequences [24], already embedded in the soft-
ware, identified key moments in the students’ learning processes, either from specific
affective patterns or theoretically aligned behavioral sequences. This detection was then
used to prompt student interviews. The affect detection used logistic regression or step
regression to recognize affect from behavior patterns, and was normed using classroom
observations [25].

Interviewerswere signaled through afield research app,QuickRedFox (QRF),which
integrates with Betty’s Brain events and allows users to record metadata related to each
event (in this case, timestamps andwhich studentwas being interviewed).Aprioritization
algorithm was used to select which student should be interviewed in instances where
multiple students displayed interesting patterns at roughly the same time. In addition
to prioritizing rarer affective sequences (e.g., sustained frustration), prioritization was
also given to students who had not yet been interviewed (or who had not been recently
interviewed). If interviewers were not comfortable interrupting a student, for any reason,
they could skip the prompt within the app, and receive another recommendation from
QRF.

Interviewers attempted to take a helpful but non-authoritative role when speaking
with students. Interviews were open ended and occurred without a set script; however,
they often asked students what their strategies were (if any) for getting through the sys-
tem.As newpatterns and information emerged in these open-ended interviews, questions
designed to elicit information about intrinsic interest (e.g., “What kinds of books do you
like to read and why?” or “What do you want to be when you grow up?”) were added.
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Overall, however, students were encouraged to provide feedback about their experience
with the software and talk about their choices as they used the software.

2.3 Interview Coding

A total of 358 interviews were conducted and recorded during this study. Audio files
were collated and stored on a secure file management system available only to the
research team members. Three members of the research team manually transcribed the
interviews, having agreed upon formatting and style. Metadata, including timestamps
and recording IDs, were preserved, but student-level information was de-identified (i.e.,
each student was assigned an alphanumeric identifier, used across data streams).

The code development process followed the recursive, iterative process used in [26]
that includes seven stages: conceptualization of codes, generation of codes, refinement
of the first coding system, generation of the first codebook, continued revision and
feedback, coding implementation, and continued revision of the codes [26]. The con-
ceptualization of codes included a review of related literature to capture meaningful
experiences relevant to the study’s research questions. Using grounded theory [27], a
method that is appropriate for the kind of open-ended interviews where students are
being asked to interpret their own experiences, we worked with the lead interviewer (the
3rd author) to identify categories that were (1) relevant to both affective theory (i.e. [28])
and self-regulated learning theory (e.g. [29]) and (2) likely to saliently emerge in the
interviews. A draft lexicon and multiple criteria were generated for a coding system to
help identify these constructs.

This coding scheme was iteratively refined, allowing us to identify relevant subcate-
gories as they emerged from initial analyses, until the entire research team had reached a
shared understanding of the criteria and constructs being examined. Following the pro-
duction of a coding manual, external coders simultaneously coded with the 5th author to
reach acceptable inter-rater reliability before coding all of the transcripts. All codes had
Cohen’s kappa> 0.6, and the average Cohen’s kappa across codes was 0.80 -- see Table
1 for details. Throughout the coding, external coders met and clarified any concerns with
the codebook authors to avoid misinterpretation or miscoding of the data. A total of 12
interview codes were developed from the interview data; however, we prioritized first
coding for experiences involving difficulty (Diff), resource helpfulness (Help), interest-
ingness (Int), and strategic use of resources (Strat) based on the perceived frequency of
these experiences and their relevance to the affective experience of frustration. As these
qualitative codes are not mutually exclusive, a single interview may be coded under
multiple categories.

2.4 Affect Sequence Calculation

Once the interview data from Betty’s Brain was fully labeled, we calculated each affec-
tive pattern’s prevalence within each student’s log files, looking not just at which patterns
triggered a specific interview but all patterns present in the 80 s (four affective transi-
tions) immediately before the interview. For each twenty-second period, we labeled it
with themost likely (highest probability) affective state. Prior to comparing detector out-
puts to determine which affective state was most likely, the offset of each detector was
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mathematically adjusted so that the distribution of the predicted affective states matched
the proportions of each affective state within the data originally used to develop the
detectors. This step was taken to control for biases potentially introduced through the
practice of re-sampling rarer classes, used in the original detector development [25].

Table 1. The coding scheme used for the interviews.

Code N Description, Example

Difficult (Diff) 165 Negative evaluations, confusion, or frustration while interacting
with the platform. Ex. “I am reading the science book again but I
don’t get it.”
κ = .911

Helpfulness (Help) 51 Utility of within-game resources in learning, improvement, and
positive evaluations of the resources. Ex. “I like how you put in the
dictionary all the things that could help you with the – this, ‘cause
I have no idea.”
κ = .643

Interestingness (Int) 11 Interestingness of within-game resources in learning and a
continued desire to use the platform. Ex. “Everything I do [in
Betty’s Brain] interests me, you get one question right or
everything right.”
κ = .726

Strategic Use (Strat) 205 Indicates a plan for interacting with the platform, notes changes in
strategy or interaction with the platform based on experiences. Ex.
“ I’m just doing one section at a time…one section at a time that I
tell Betty to take a test on it…and then I do it in the next section to
see if she gets a 100 or if she gets one question wrong I go back
and see.”
κ = .911

In our analyses, we focus on three types of affect patterns that have been previously
examined in [30]. Each involved a sequence of either three or four 20-s log-file clips. First,
we looked at sequences that mirror the two cycles outlined by D’Mello and Graesser
[28] the ENG-CON-DEL-ENG cycle (a student goes from engaged, to confused, to
delighted, to engaged again) and the ENG-CON-FRU-BOR cycle (going from engaged,
to confusion, to frustration, and boredom). For the purposes of this study, we have limited
the analysis to 80 s (four-clip) versions of these cycles.

Next, we considered transitions between two states. For these analyses, we looked for
a student having at least two consecutive clips with the same affective state predictions
before transitioning to a second state (e.g., ENG-ENG-BOR or CON-CON-FRU). These
durations allowus to explore the potential effect that a longer duration (two ormore steps)
of any given antecedent might have on the subsequent steps in a sequence. Thus, we are
able to explore the possibility that affective states of a longer duration (more than one
successive step) might be influencing the results seen for sequences involving multiple
transitions without testing all possible durations.
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Finally, we consider sustained instances of two affective states that seemed to be
driving the other patterns of statistical significance in this study. These are operational-
ized as 4-clip sequences (BOR-BOR-BOR-BOR and DEL-DEL-DEL-DEL), which we
compare to sustained off-task behavior (OFF-OFF-OFF-OFF).

2.5 Identifying and Studying Relationships

Calculating the relationships between affect sequences and interviewcodeswould ideally
involve statistical significance testing but doing so is infeasible for two reasons. First,
the number of affect sequences and interview codes being studied is sufficiently large
that studying their combination would require a much larger data set than is feasible
for interview data, for even a very liberal false discovery rate post-hoc control. This
could be controlled for by selecting a much smaller number of affective sequences in
advance. However, doing so would miss the opportunity to explore the space of affective
sequences, a still incompletely-understood area. A second limitation, even stronger, is
that many of the interview codes and affective sequences are rare within the data set,
requiring even more data to be able to capture the relationships between them.

Instead, we look for the largest magnitudes of relationship, looking at the relative
differences in frequency of an affective sequence when an interview code is present or
absent. This provides a set of potentially interesting relationships to investigate in further
detail. Having found the largest-magnitude relationships, we examine the transcripts
of the interviews to understand the relationships better, presented below. Pseudonyms
were assigned to participants using http://random-name-generator.info/ which generates
names based on the frequencies within all U.S. census data, ignoring local community
or subgroup variation, and ignoring the actual gender or age of the student.

3 Results

The top five strongest associations between affective sequences and specific interview
codeswere [helpful, sustainedFRU], [helpful,BOR-->FRU], [difficult, ENG-->FRU],
[interesting, BOR-->ENG], [strategic, ENG--> FRU]. Table 2 shows themagnitude of
the relationships between these affective sequences and interview codes. In examining
the interviews in detail, we were able to better understand many of these relationships.

Strategic: ENG- > FRU and Difficulty: ENG- > FRU.

Many of the same interviews that immediately followed ENG-FRU affect transitions
involved reports of both difficulty and strategic behavior.

Several students seemed to transition from engaged to frustrated when they experi-
enced difficulty and did not understand the system’s feedback. For example, Gretchen
said, “I change one thing and then I go back to the clues on those things and then I’m
yeah. My head hurts… He keeps giving me zeros even though I on yesterday I got a
percent when I know this there… I don’t even know what correct is.”

Gretchen responded to her frustration by trying different approaches, such as taking
notes -- “I know it’s very good to take his clues… Sometimes I had trouble with sea ice
so I would go to sea ice now change and thing that was put in the ice and then you see

http://random-name-generator.info/
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Table 2. The five strongest associations between affective sequences and interview codes

Interview
code

Affective
sequence

Pct Code
when
affect

Pct Code
when~affect

Pct affect
when code

Pct affect
when~code

Relative
Diff (by
Code)

Helpful SusFRU 66.7% 13.4% 4.5% 0.4% 12.4x

Helpful BOR-> FRU 50.0% 13.7% 2.3% 0.4% 6.2x

Difficult ENG-> FRU 83.3% 44.8% 3.5% 0.6% 6.0x

Interesting BOR-> ENG 12.5% 2.3% 12.5% 2.3% 5.5x

Strategic ENG-> FRU 83.3% 53.9% 2.9% 0.7% 4.2x

that’s not the thing and then you would have to come in for what he’s…So whatever I
do like I go back to…”, to which the interviewer responded “Yeah that’s that’s one way
to keep a note.”

Willard adopted a different strategy: “So I’m focusing on one subject and taking a
quiz. Sometimes I think I’m not going…”, to which the interviewer responded “But now
you’ve got that. Yeah but things that want to test it. OK. So, you’ll work from this quiz.”
and Willard responded, “Yeah it’s [inaudible], so whatever he doesn’t you know that’s
wrong.”

Another student, Shawn, also adopted a different strategy. Shawn expressed his frus-
tration -- “I keep getting them wrong and I don’t really know what I’m doing [inaudible]
trying to learn a bit more about it” -- but adopted a strategic response to the situation:
“I’ve been trying to fix my links.”

Helpful: Sustained FRU

Two of the three cases where sustained frustration occurred had student reports of the
system being helpful. These students experienced sustained frustration, but then expe-
rienced breakthroughs -- even eureka moments -- after that sustained frustration. The
system’s features were helpful, but the students’ own strategies also played a role.

In one example, Jason tells the interviewer “I haven’t done too well but it helped me
know a lot of things I have wrong and I still have a few areas to [inaudible]. I think I’m
making progress…”.

Jason expresses his frustration -- matching the detector assessment -- “I feel like I
kind of skimmed a little on the science book. And reading it again and it’s like wait,
I don’t remember reading that and then I add it to the concept map… We have like I
have something that like connects something that’s not supposed to even though overall
it should do that. Then it’s like messing me up… I suspect I’m still missing something,
and I need to add something on.”

But later, Jason explains the strategy he is using, and how it helps the system help
him: “I was having trouble finding what was wrong so then I tried to make more specific
quizzes and… it’s helped me understand more. Because I’m pretty sure I fixed this.”
When prompted, by the interviewer, “Yeah? Are you using them more frequently now
or?” Jason responds, “Yes.”



60 R. S. Baker et al.

Helpful: BOR- > FRU
Looking at this relationship shows the limitation of this method. In this case, the fairly
large difference in relative magnitude came down to the very limited number of cases
of BOR- > FRU, only 2, one of which coincided with helpful. The resulting interview
demonstrates boredom, frustration, and helpfulness, but it appears they may coincide
due to the interviewer’s choice of questions rather than a genuine interrelationship.

Early in the interview, Shirley indicates frustration: “Because when I do shortcuts I
get it wrong when I’m pretty sure it was right so I’m trying to fix this shortcut…” -- later
she discusses her lack of interest in the topic -- in response to the interviewer’s question
“Is it the sort of thing that you like to do generally?” the student responds “After school
I usually read… I like to read fanfiction… Anime. A lot of anime.”

She discusses with the interviewer when Mr. Davis is helpful within the system, in
response to a specific question on what is helpful. First, the interviewer asks, “So tutorial
this morning help?”, to which the student responds “Yeah.” Then the interviewer asks
“Yeah okay, is there anything else you figured out the last day or so help?”, and Shirley
responds “I figured out that withmy quiz result, if I get somethingwrong I let [Mr. Davis]
try to figure out why I got it.” -- but these questions and responses are not connected to
the immediate context of the interview.

4 Discussion and Conclusions

In this paper, we have used a novel multi-method approach to better understand the stu-
dent perceptions surrounding the experience of frustration while learning from Betty’s
Brain. In this approach, automated detectors were used to identify affective transitions
involving frustration (and sustained frustration) while using Betty’s Brain, in real-time,
and then field researchers conducted in-the-moment interviews with students experi-
encing those affective patterns. The interviews were coded for experiences of difficulty,
perceptions of helpfulness, perceptions of interestingness, and use of strategic behav-
iors. We then distilled the top five sequences of affect that were most associated with a
difference in the frequency of specific interview codes and analyzed cases where these
affective sequences and interview codes co-occurred.

Through this analysis process, we found patterns that provided insights on the “why”
and “what next” of frustration. Studentswhowent from experiencing engaged concentra-
tion to frustration often reported both experiencing difficulty and using strategic behavior
to resolve it. It may be possible to leverage this pattern, a productive response to experi-
encing difficulty, to better support students. These findings suggest that if a student goes
from engaged to frustrated when encountering difficulty, but does not adopt a strategic
behavior (which can be automatically detected as well [24, 31]), it may be appropriate
for the learning system to offer recommendations of learning strategies. However, the
best strategy may vary from case to case. Gretchen, Willard, and Shawn all adopted
different learning strategies in response to the combination of frustration and difficulty.
Jason’s experience shows that the right system support can help resolve frustration --
even sustained frustration. Therefore, a learning system such as Betty’s Brain may be
able to use an approach such as reinforcement learning [32] to identify which strategy
to recommend to which student, using the qualitative findings presented here to drive
the design of learning strategy supports.
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At the same time, Shirley’s example -- where an affective state and interview code
coincided due to the interviewer’s choice of questions rather than amore useful overlap --
shows that there are still limitations to our method to be worked out. Another limitation
is seen in our method’s speed. Our method successfully focused interviewer time on
key events of interest and facilitated the collection of interviews involving relatively
rare events. However, the coding required afterwards was time-intensive, and is still
ongoing for additional interview codes. It may be possible to improve the method -- to
address both these limitations – by following interviews with an immediate end-of-day
round of interview data coding, while the interview experience is still fresh in the field
researchers’ minds. This would also support the possibility of using this method not just
for research, but for fast-paced iterative design.

Our next steps, therefore, are to use these findings to refine Betty’s Brain. In that
work, we will study the potential of Quick Red Fox -- with some procedural adjustments
-- to enhance our process for rapid iterative design. At the same time, we will continue
to study the rich data set we have obtained for further insights on student affect and
perceptions. Overall, we believe these results demonstrate the potential of integrating
data mining and qualitative research in new ways, facilitating the process of better
understanding learners and improving learning experiences.
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Abstract. This paper contributes to the research on explainable edu-
cational recommendations by investigating explainable recommendations
in the context of personalized practice system for introductory Java pro-
gramming. We present the design of two types of explanations to justify
recommendation of next learning activity to practice. The value of these
explainable recommendations was assessed in a semester-long classroom
study. The paper analyses the observed impact of explainable recommen-
dations on various aspects of student behavior and performance.
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1 Introduction

The popularity of recommender systems in everyday-life activities encouraged
researchers from several areas to explore the applications of recommender tech-
nologies to education [8,20]. Over the years, this stream of research gradually
expanded to cover a variety of recommendation types from recommending a
discussion thread, to suggesting the next problem to solve, to recommending
courses to take [7]. It can be observed, however, that a recent major trend in
the field of recommender systems – explainable recommendations – is currently
underrepresented in educational recommender systems. Our work attempts to
bridge this gap by exploring explainable recommendations specifically adapted
to an educational context, where the main reason to recommend content is the
learner’s knowledge state, rather than taste or interests. We present a design
of knowledge-based recommendations augmented with visual and verbal expla-
nations. These technologies were integrated into an online personalized practice
system and explored a semester-long study in a classroom context. The study
examined how students use recommendations and explanations and assessed the
impact of these technologies on various aspects of the educational process.
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2 Related Work

Over the last decade, explainable recommendations emerged as a major trend in
the area of recommender systems [15]. Tintarev and Masthoff [19] define expla-
nations as “item descriptions that help the user to understand the qualities of
the item well enough to decide whether it is relevant to them or not”. Research
has shown that presenting explanations to users can increase the persuasive-
ness of the recommended items as well as users’ trust and satisfaction with the
recommender system [10,14]. While being popular in domains where recommen-
dations are based on interests and taste such as movies or songs [15], explainable
recommendations remain understudied in the online learning domain.

One of the challenges of transferring explanation approaches accumulated
in the area of traditional recommender systems [10,15] to the area of educa-
tional recommendations is the different nature of these recommendations, which
are typically based on the learner’s knowledge state rather than user interests
or taste. Given this, explanations of educational recommendations have to be
designed afresh rather than re-used from the taste-based domains. At the same
time, the “knowledge-based” nature of educational recommendations offers a new
opportunity. Learner models that are used for generating educational recommen-
dations carry a much higher explanation potential than user profiles applied by
traditional recommender systems [9]. While user profiles are notoriously hard
for users to understand or control [2], the long history of AI-Ed research on open
learner models (OLM) demonstrates that learner models could serve as a means
to understand and control the behavior of adaptive educational systems [4,5].
Moreover, OLMs have shown their effectiveness in facilitating navigation and
supporting metacognitive processes of planning, monitoring, and reflection [5].

We believe that the large body of OLM research offers an excellent starting
ground for the design of explainable educational recommendations. Moreover, as
argued by [6,17] insights learned from OLM research can be used for a broader
goal to improve interpretability in AI-driven educational systems. Yet to com-
plete the task, a layer of visual or verbal explanations should be built on the top
of OLM to produce explainable recommendations. The work in this direction is
at the very beginning and we could cite only a few motivating cases. Putnam
and Conati [16] investigated the value of having explanations for automatically
generated hints in an Intelligent Tutoring System (ITS). Barria-Pineda et al. [3]
and Abdi et al. [1] were the first to explore the effects of using an OLM as
the basis of justifying learning content recommendations. Most recently Zhou et
al.[21] found that explaining the decisions of an ITS to students could improve
the student-system interaction in terms of their engagement and autonomy.

3 Java Personalized Programming Practice System

To explore the value of explainable recommendations in online learning, we
implemented content recommendations for Java Personalized Programming
Practice System (JP3). JP3 is an online personalized system offering students
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in introductory Java programming courses to practice their skills using several
types of interactive learning content. The system is designed as a non-mandatory
practice and self-assessment tool that each student could use for individual needs.
In this section, we present the design of content recommendations in JP3 and
the mechanism for generating recommendations, and their explanations.

3.1 Explainable Recommendations in JP3

JP3 provides access to three types of Java learning content: worked examples,
challenges - faded examples where students have to complete missing parts of
the code [12], and short coding problems [22]. The learning content in JP3 is
grouped into topics (e.g., variables, if-else, etc.) that follow the chronological
order of the course. To start practicing, the student has to select one of the
topics as the current goal. After opening a topic, the student can see the list
of available practice content for this topic along with personalized guidance for
choosing the most appropriate activity (Fig. 1). The personalized guidance is
based on a concept-level overlay model of student’s Java knowledge. The model is
built by observing student behavior in the system and represents the probability
of students knowing each Java concept. To make this learner model “open” to

Fig. 1. Visualization for Strings topic in JP3 with recommended content shown as a
list (left) and with stars. The learner mouses over the top recommendation and JP3

(1) highlights in the OLM the estimated knowledge of concepts linked to this item (see
bar chart) and (2) shows a verbal explanation (see yellow box). (Color figure online)
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the student, it is visualized as a bar chart on the bottom part of the activity
selection interface. Each bar depicts one concept. The height and the color of the
bar indicate the estimated mastery of this concept: the higher and the greener is
the bar, the higher is the mastery estimation; whilst the lower (below the origin)
and the redder is the bar, the lowest is the estimated mastery. Concepts are
arranged along the x-axis following the order of topics where they are introduced.
Concepts introduced in the current topic are emphasized by a dashed rectangle.

The personalized guidance is offered by recommendations and explanations.
Recommendations suggest the three most relevant learning activities in the topic
given the current state of the learner model. Recommendations are provided as
a ranked list on the left and also in navigation support form as stars of different
sizes placed over the recommended activities. As explained in the next section,
the recommendation approach favors activities that combine sufficient levels of
prerequisite knowledge (concepts to be learned in earlier topics) with a good
opportunity to master target knowledge (concepts introduced in the topic).

Explanations are offered in visual and verbal form. Following Tintarev and
Masthoff’s guidelines for explanations of recommendations [18], explanations
attempt to increase the transparency of the recommendation process. Given the
nature of JP3 recommendations, both types of explanations focus on highlighting
the balance between prerequisite and target knowledge associated with an activ-
ity. Visual explanations are provided when student mouses over an activity
cell by highlighting names and bars of concepts that can be practiced through
this activity. The visualization stresses whether the student has sufficient pre-
requisite knowledge to attempt the activity and how much this activity could
improve the target knowledge. As we see in Fig. 1, the top recommended prob-
lem (large star) pointed by the mouse involves five concepts. Two prerequisite
concepts (addition and subtraction) to be learned in the earlier topics are already
mastered making the student ready to attempt the problem. At the same time,
three target concepts (substring, charAt, length) are not yet well-learned making
the problem a good opportunity to improve this knowledge.

Verbal explanations attempt to convey the same idea of readiness and
relevance through natural language (yellow box on the right of Fig. 1). A typical
explanation was composed of two sentences where the first explains the system’s
assessment of the prerequisite knowledge for the examined activity while the
second assesses its learning opportunity. To stress how positive is each part of
the assessment, the focus keyword of each part (e.g., good, fair) is marked by
the green color of different intensity. The darker the green is, the more posi-
tive is the assessment. Our original intention was to make verbal explanations
accessible along with visual explanations on mouse-over, however, we were con-
cerned that it will make it hard to examine the usage of each type separately.
To support our study needs, we implemented two ways to access verbal explana-
tions: explanations on mouse-over (expOnMouseover) where verbal explanations
were presented along with visual by mousing-over the recommended activity in
the grid and explanations on-click (expOnClick) where verbal explanations were
accessed by clicking on why icon next to the recommended activity in the list.
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3.2 The Implementation of Explainable Recommendations

Knowledge Modeling: JP3 uses an ontology of Java concepts as the core for
its knowledge representation. Each learning content item in JP3 is linked to
the ontology concepts automatically using a concept parser [13]. A Bayesian
Network [11] is used to maintain a probabilistic overlay student model for these
concepts. The network was initially trained with data collected through JP3 in
earlier classroom studies. The knowledge estimates are seeded based on students’
performance in the pretest. Every time a student attempted a challenge or a
problem while practicing with JP3, the system updated the probability estimates
related to the concepts linked to that activity. Simply, the probability estimates
increase when the student’s answer was correct and decreased otherwise.

Recommendation Approach: JP3 content recommendation algorithm max-
imizes the balance between the opportunity to improve knowledge of target
concepts and the necessity of sufficient knowledge on prerequisite concepts that
are needed to solve the activity correctly. A concept associated with an activity
is labeled as a prerequisite if it is expected to be mastered in the chronologically
earlier topics and as a target if it is the topic where the concept is first intro-
duced. The recommendation algorithm uses the concept-level knowledge esti-
mates taken from the student model and generates content recommendations
according to the following rules: (1) only non-completed activities are recom-
mended; (2) examples have recommendation priority when they introduce a new
concept that has not been practiced before; (3) for challenges and problems, a
recommendation score is calculated using the Eq. 1,

rec scoreij =
1

NW

(∑
p

wp ∗ θpj +
∑
t

wt ∗ (1 − θtj)
)

(1)

where p represents the prerequisite concepts and t represents the target concepts
associated with activity i. θpj and θtj are the knowledge estimates of student j
for both types of concepts. w denotes the topic-level importance of the concepts
(either p or t) calculated by the tf-idf approach (i.e., the more unique a concept
in a topic, the higher its importance) and W is the sum of the weights for the
associated concepts (both prerequisite and target ones). Finally, N denotes the
total number of concepts associated with activity i. Learning activities are sorted
based on these scores and top-3 items are recommended to the learner.

Verbal Explanations: To generate verbal explanations for recommendations,
we calculate the average proficiency for both the top three prerequisite and target
concepts (θ̄p and θ̄t). Based on these proficiency estimations, we generate short
paragraphs for each part of the verbal explanations. Table 1 presents samples
of verbal explanations for several thresholds. The thresholds and wording were
selected to offer a qualitative explanation of numerical values and were not used
to drive the recommendation process. A recommended example was justified by
stating that “it presents concept(s) that are new to you (e.g. concept name)”.
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Table 1. Rules for generating explanations for educational recommendations

Verbal explanation template for prerequisite concepts θ̄p ≥.6 θ̄p ≥.75 θ̄p ≥.95
It looks like on average, you have a ... understanding in good proficient excellent
the main prerequisite concepts.

Verbal explanation template for target concepts θ̄t ≤.6 θ̄t ≤.4 θ̄t ≤.2
You have a ... opportunity for increasing your knowledge fair good excellent
on key concepts introduced in this topic.

4 Study

To assess the impact of explainable educational recommendations, we performed
a semester-long classroom study. The study was conducted with 86 undergradu-
ate students taking a Java Programming course at a European university. After
taking an online pretest designed to assess their prior knowledge, each student
was given access to the JP3. The use of JP3 was non-mandatory, so there was no
penalty to those who did not use the system. In contrast, to encourage JP3 use,
10% extra credit was added to their final course grade if they viewed at least
80% examples, solved at least 70% of challenges, and 60% of coding problems.
At the end of the term, an online post-test (isomorphic to the pretest) was taken.
Pretest scores show that a high proportion of students had an medium level of
proficiency in Java, given that the median grade in the pretest was 5 out of 10.

Students were randomly assigned to one of two explanatory treatments
described in Sect. 3.1: expOnMouseover (n = 45) or expOnClick (n = 41).
Student actions in JP3 were logged. The logs included content openings, prob-
lem solving attempts, mouse-overs (with duration) on recommended and non-
recommended activities, and access to verbal explanations on-click. As the sum-
mary of activities shows (Table 2), on average, students opened and attempted
a large fraction of available learning activities.

Table 2. Summary of students’ activity in JP3 (Mean(SD))

Number of
mouse-overs

Mouse-overs’
duration (sec)

Explanati-
ons’ clicks

Activities
opened

Activities
attempted

Activities
solved

Coding (n=46) 37.3(27.3) 1.42(.31) 2.98(2.19) 19.5(13.3) 13.7(10.3) 8.1(7.7)
Challenges (n=76) 53.5(37.1) 1.34(.36) 3.18(1.98) 33.2(12.7) 30(11.9) 28.4(11.4)
Examples (n=55) 39.3(30.1) 1.36(.31) 4.86(3.05) 25.4(11.1) 22.3(8.7) 20.5(8.12)

4.1 Value of Recommendations

To assess the impact of recommendations on engagement, we contrasted student
engagement with recommended and non-recommended activities on two levels:
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(1) attempting the learning activity once it is opened (conversion rate) and (2)
keep working on the activity after the first attempt until solving it correctly (per-
sistence rate). To reliably assess the impact of recommendations, we considered
(1) topics with more than 6 activities and (2) students’ actions until more than
3 activities left to be completed in a topic to eliminate cases where students had
no other choice than to select a recommended item.

We fit a series of mixed-linear models to predict conversion and persistence
rates by using the pretest score, the type of learning activity (recommended
or non-recommended) and the interaction (int) between these two variables as
independent variables. We add student ids as a random effect. In this and fol-
lowing analyses we use common notation to report significance levels of variables
within models: p < .05 →*, p < .01 →**, p < .001 →***. We found a significant
model for the conversion rate in coding problems (p < .001), which revealed that
the probability of attempting a problem once it is opened depends on the start-
ing knowledge of the student measured by the pre-test (βint = −.025*). We also
found significant main effects (βpretest = .04***,βrec = .13*). More exactly, low-
pretest learners exhibited significantly higher conversion rates on recommended
items while high-pretest students demonstrated higher chances of attempting
non-recommended ones. On one hand, it indicates that students with lower
domain knowledge relied considerably on system recommendations when select-
ing content to practice. On the other hand, it hints that JP3 underestimated
the knowledge of high-pretest students since a considerable proportion of their
Java learning happened before the course and was not accurately modeled. No
significant model was found for conversion on challenges and examples. Conver-
sion rates were uniformly very high for all students indicating that they were
less picky when selecting low-effort activities.

We found similar results when checking the impact of recommendations
on the success rate of attempted coding problems (i.e., where conversion was
reported). We fit the same model as used for conversion rates, but including
success rate as the dependent variable (p < .05). We found a significant inter-
action between pretest and the presence of recommendation (β = −.016*) . We
also found significant main effects (βpretest = .018*,βrec = .13**). The data shows
that learners with lower pretest exhibited much higher success rates when work-
ing on recommended coding problems while for students with high pretest scores
there was almost no difference. A similar model for challenges (p < .001) failed to
reveal an impact of recommendations. The only factor that affected the success
rate of students was the pretest (β = .03***) – high-pretest students exhibited
higher success rates with challenges.

For persistence rate, only pretest acted as a significant predictor (β = 0.08**)
for the model (p < .001) – the higher the pretest, the more persistent students are
in coding problems, regardless if they were recommended or not. No significant
model was found for explaining persistence on challenges and examples.
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4.2 Value of Explanations

The first step of assessing the value of explanations is to examine whether they
were used or not. As Table 2 shows, on-click explanations were requested for
about 16% of attempted activities, which is a considerable usage. To assess
whether students were “processing” mouse-over explanations for recommended
content as well, we contrasted the duration of mouse-overs on recommended
and non-recommended activities. For this analysis, we excluded “short” mouse-
overs (<1 s), which were likely generated “on passing” and provided too little
time to pay attention to either visual or verbal explanations. We found that
students took on average more time on mousing over recommended items than
non-recommended ones, which suggests that they paid attention to explana-
tions of recommended activities (p < .001). Moreover, we found that this dif-
ference was lower for expOnClick who can only check visual explanations on
mouse-over (Mdiff = .051) and higher for expOnMouseover (Mdiff = .181),
who receive both explanation types on mouse-over. A greater additional time
spent by expOnMouseover students (p = .033) hints that they paid attention to
both verbal and visual explanations.

Next, we checked whether inspection of explanations (measured as the mean
duration of mouse-overs on learning content) was associated with adoption of
either recommended or non-recommended activities. We fit two multiple regres-
sion models: (a) predictors: pretest score and mouse-overs’ duration on recom-
mended items, outcome: percentage of the total items accessed by the learner
which were recommended ones; and (b) predictors: pretest score and mouse-
overs’ duration on non-recommended items, outcome: percentage of the total
items accessed by the learner which were non-recommended ones. For (a), we
found that both pretest score (β =−2.01*) and mean mouse-over duration on
recommended activities (β = 31.8*) were significant predictors of commitment
with these type of items (F (2, 58) = 10.93, adj.R2 = .25, p < .001). Similarly,
for (b) we found that pretest score (β = 2.09*) and average mouse-over dura-
tion on non-recommended activities (β = −37.19*) were correlated with the
adoption of non-recommended content for practicing (F (2, 58) = 6.78, adj.R2 =
.16, p = .002). The data shows that the ability to examine explanations of rec-
ommended problems increases student’s motivation to attempt these problems.
On the other hand, the ability to inspect explanations of non-recommended
problems decreases learner’s chances to attempt those items. These results also
reiterate that low-pretest students chose to work more on recommended con-
tent, in contrast to high-pretest students who decided to perform a self-guided
exploration of the content instead. We did not find any influence of mouse-over
duration on challenges or examples.

To assess if the difference in how to access explanations in the expOnClick
group influenced students’ engagement with the learning activities, we analyzed
if the number of clicks performed by a learner correlated with students’ engage-
ment in working on JP3. We divided students into low and high “explanation
requesters”, according to the median of explanations’ clicks (considering the
three types of learning content). We found that these two different groups sig-
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nificantly differ on the number of attempts on coding problems (p < .01), where
high explanation requesters exhibited a much higher average number of attempts
on coding problems (Med = 33) than low explanation requesters (Med = 20).

4.3 Students’ Work in JP3 and Course Performance

To assess the educational value of practicing with JP3, we examined the corre-
lation between the work of students within JP3 and their performance in the
course throughout the term. In this study, we had access to two classroom test
scores that evaluated students’ performance (Test1 in the first half and Test2
in the second half of the course), and the post-test scores that were not graded.
To prepare data, we counted the number of successful and failed attempts on
learning activities and calculated the average success rate per week. To account
for the regularity of practice performance, we calculated the skewness of the
distribution of weekly success/failure attempts. We repeated the same calcula-
tions for the number of sessions in JP3 per week. Skewness can tell us if the
work/performance of students was concentrated at the start (positive skewness)
or the end (negative skewness) of the course. In our multiple regression mod-
els, we added pretest scores to control for the prior knowledge. We performed
a step-wise feature selection process for each prediction model. While we con-
sidered these metrics for all the types of learning content, only performance on
coding problems added predictive power to the models, while variables related
to work on challenges and examples did not. It is consistent with the fact that,
given the incentives for getting extra-credit and the lower efforts associated with
completing challenges and examples, all learners achieved a uniformly high com-
pletion level at the end of the term.

We first predicted scores in Test1 and found a significant overall model
(F (3, 42) = 6.328, adj.R2 = .26, p < .001) where average success rate
was the only significant predictor (β = .44***). Second, we fitted a model to
predict Test2 scores and results indicated a significant model (F (3, 41) =
5.616, adj.R2 = .24, p = .003) with only pretest-score as a significant pre-
dictor (β = .44) among other predictors. Finally, we predicted post-test scores
(F (3, 52) = 8.018, adj.R2 = .28, p < .001) and found that pretest scores
(β = .36*), skewness of incorrect coding attempts (β = −.58*) and average suc-
cess rate (β = .2*) were significant predictors of post-test scores.

5 Summary and Discussion

In this paper, we presented the design of an online programming practice system
JP3 augmented with explainable recommendations of learning content to prac-
tice. The recommendations were generated by optimizing the balance between
the current level of prerequisite knowledge and the opportunity of practicing
new concepts. As input, the explainable educational recommender module uses
the state of student knowledge of Java concepts estimated by a student model
based on the observable student performance. Explanations were generated in
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two different forms (see Fig. 1): (1) visual explanation through a concept-level
OLM which showed the estimations of the learner’s knowledge on the concepts
associated with each learning item (2) verbal explanation describing the bal-
ance between prerequisites and potential for new knowledge acquisition (only
for recommended content). We also presented a semester-long study where JP3

was used as a learning support tool for an intermediate programming class. Our
goal was to investigate how recommendations and explanations affect different
aspects of student work with the learning content in a free practice mode.

Our data showed that students invested their time to access and inspect
the explanations of the recommendations. The average time spent on mousing
over activities was significantly higher for recommended activities than for non-
recommended ones. Moreover, students in the expOnMouseover group exhibited
longer mouse-overs on recommended items than expOnClick learners, since the
first group was able to observe both visual and verbal explanations when mousing
over recommended activities and needed more time to process it.

By examining the effect of recommendations on student behavior, we
observed that recommendations affected student selection and engagement with
high-effort (coding problems) and low-effort activities (challenges and examples)
differently. While for low-effort activities, learners’ behavior was not influenced
significantly by the recommendations, the conversion for coding problems (mak-
ing at least one attempt on an opened problem) was significantly and positively
influenced by the presence of a recommendation. This effect seems to be medi-
ated by the students’ prior knowledge. As we observed, low-pretest students,
exhibited a higher level of trust in the recommendations and the willingness
to work with recommended problems. Moreover, we found that students with
lower prior knowledge achieved a higher success rate on solving recommended
coding problems than on non-recommended ones. These results indicate a bet-
ter match of recommended problems to student knowledge. In contrast, students
with a higher level of starting knowledge exhibited higher conversion rates on
non-recommended problems. This situation might be explained by the fact that
the learner model was initialized using results of a relatively small 10-problem
pretest that underestimated the knowledge of students with a high level of pro-
ficiency in Java. Given the transparent OLM, these students might have noticed
that the recommendations were generated using an incomplete model and pre-
ferred to select the content to practice themselves. In this sense, the explanations
still achieved their goal to help students in selecting the right content to practice,
in this case, revealing that recommended content is not adequate and helping
them to make their own choice with OLM-based visualization.

On top of the effect of recommendations, we also observed that inspection of
the explanations affected student engagement with learning content. The more
time students spent while mousing over the recommended activities, the more
they were willing to open them. In contrast, the more time student spent on
inspecting visual explanations for non-recommended activities, the less they were
inclined to open them. In this aspect, student behavior was also influenced by
their starting level of knowledge. The students with high pre-test scores exhibited
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lower ratios of engagement with the recommended activities. This behavior is
likely to have the same roots as discussed above for conversion data.

By putting together all these results, we can conclude that explainable rec-
ommendations can support students working with a programming practice sys-
tem, most noticeably affecting the learners who are novices in programming
and have the highest need for help in choosing activities to practice. The
presence of recommendations and explanations could increase student engage-
ment with knowledge-relevant learning content leading to a higher success rate
and an increased opportunity to learn. In turn, it was exactly the success
rate in problem-solving within JP3 that impacted students’ knowledge progress
throughout the term, as it was positively correlated with student performance
on intermediate evaluations and also on the post-test at the end of the class.
Altogether, our explainable recommendation approach has the potential to pos-
itively impact students activity within JP3 by pushing them to practice more,
focusing on the most appropriate high-effort learning materials, and at the same
time providing them with the opportunity for reflecting on the appropriateness
of the content for supporting each step of their learning.

However, this study has several limitations. In particular, we were not able to
reliably track student work with visual and verbal explanations using logs, as we
use only mouse-over time as a proxy of attention. In the future, we need to better
assess the impact of explanations by running studies where visual attention of
students can be captured (e.g. eye-tracking controlled study). Also, more efforts
are needed to define strategies that could make recommendations more relevant
and useful for learners with higher initial levels of knowledge.
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Abstract. The ability to objectively quantify the complexity of a text can be a
useful indicator of how likely learners of a given level will comprehend it. Before
creatingmore complexmodels of assessing text difficulty, the basic building block
of a text consists of words and, inherently, its overall difficulty is greatly influenced
by the complexity of underlying words. One approach is to measure a word’s Age
of Acquisition (AoA), an estimate of the average age at which a speaker of a
language understands the semantics of a specific word. Age of Exposure (AoE)
statistically models the process of word learning, and in turn an estimate of a
given word’s AoA. In this paper, we expand on the model proposed by AoE by
training regressionmodels that learn and generalizeAoAword lists acrossmultiple
languages including English, German, French, and Spanish. Our approach allows
for the estimation of AoA scores for words that are not found in the original
lists, up to the majority of the target language’s vocabulary. Our method can be
uniformly applied across multiple languages though the usage of parallel corpora
and helps bridge the gap in the size of AoA word lists available for non-English
languages. This effort is particularly important for efforts toward extending AI to
languages with fewer resources and benchmarked corpora.

Keywords: Natural language processing · Age of acquisition · Age of
exposure ·Multilingual

1 Introduction

The quantification of textual complexity is a crucial step toward better understanding
the relations between text comprehension, the reader, and the nature of the text. Words
are the fundamental building blocks of texts, and thus analysis of word complexity in
a text can provide insight into the difficulties that readers might have in understanding
certain documents. However, many of the tools used to estimate word complexity are
created specifically for the English language. While simple measures such as number of
characters in syllables can be easily identified regardless of the language, other measures

© Springer Nature Switzerland AG 2021
I. Roll et al. (Eds.): AIED 2021, LNAI 12748, pp. 77–87, 2021.
https://doi.org/10.1007/978-3-030-78292-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78292-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-78292-4_7


78 R.-M. Botarleanu et al.

of word complexity can only bemeasured by examining the relations betweenwords and
how words are used within the context of the language. Creating new tools to measure
word complexity in multiple languages can aid in the crafting of better online instruction
materials and techniques as well as interventions for a broader range of students. This
is an important objective, particularly for under-resourced countries and languages.

Numerous approaches to quantifying word complexity have been proposed. These
range fromsimple surface-levelmeasurements, such as the number of syllables or charac-
ters, to measurements such as a word’s frequency in a corpus or the number of synonyms
for a given word. Previous studies have demonstrated detrimental impacts of complex
words on reading comprehension. People tend to spend more time focusing on ambigu-
ous or infrequent terms [1], which directly impacts reading speed. Certain words are
more easily learned by L2 speakers [2] and various measures of word complexity are
employed in evaluating of the complexity of phrases and texts [3].

“Age of Acquisition” (AoA) is an indicator of a word’s complexity from the perspec-
tive of language learning. AoA is an estimate of the average age an average language
learner acquired a given word. Word lists of AoA scores are typically collected using
adults’ estimates of when they learned the word [4]. The production of AoA lists is
costly, time-consuming, and reflects adults’ memories of word learning, and not the
actual process of word learning. Like AoA, Age of Exposure (AoE) [5] is also an esti-
mate of the average age that an average language learner acquires a givenword. However,
AoE scores are derived from a machine learning model that is trained on increasingly
large corpora of texts, which simulates the process of learning a language to provide an
automated measure of word complexity.

Age of Exposure is an extension of the Word Maturity model created by Landauer
et al. [6]. In the Word Maturity model, Latent Semantic Analysis [7] was used to gen-
erate word vectors on increasingly larger, cumulative, corpora of texts. By performing
Procrustes rotation between the vector spaces given by the LSA word vectors, one is
then able to measure the cosine distance between the representation of a word at a given
step in the trajectory and the final, “adult”, representation. In AoE, Latent Dirichlet Allo-
cation (LDA) [8] is used instead of LSA [6]; LDA affords better estimates of polysemy,
with lower computational costs. In addition, AoE also introduces additional statistical
features extracted from the learning trajectories.

While AoA and AoE scores are related to measures of reading comprehension and
writing skill, the majority of published lists of AoA scores are for English words, and
previous iterations of the AoE model have only been trained on English text corpora
[6]. Thus, the aim of this study is to expand on the AoE models by providing a method
of directly estimating the AoE scores from the learning trajectories, generated using
unsupervised language models of words in English, German, French and Spanish AoA
word lists. We investigate the similarities between these word lists and show that our
method can generalize accurateAoAestimations for different languages, allowing for the
creation of approximate AoA word lists on the entirety of a language’s (known) vocab-
ulary. The differences between the distributions of AoA scores in different languages
are expected to impact the performance of modeled learning trajectories; however, our
method shows that simulated word learning trajectories generated by applying unsu-
pervised language models on multi-lingual corpora can capture similarities as well as
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differences between the word learning processes in those languages. We thus aim to
answer the following research questions: a) Are AoA word lists in different languages
sufficiently similar to afford using the same statisticalmodeling technique? andb)Canwe
estimate, within reasonable error, the AoA scores for words in a language automatically
and how do these models relate in terms of the features used?

2 Method

2.1 Corpora

To perform the iterative model training necessary to estimate learning trajectories, we
required a corpus that was both sufficiently large and also similar between languages. To
this end, selected the “ParaCrawl” [9] dataset which provides documents that are aligned
between various languages (i.e., they are equivalent through translation), extracted from
a large number of webpages. Of these, we used three aligned corpora, English-German
(en-de), English-French (en-fr), and English–Spanish (en-es).

In order for the trainedmodels to estimate learning trajectories for various languages,
the texts in the corpora must present sufficient variety in terms of complexity. Onemeans
of evaluating text complexity, independent of the AoA, is to use an automatic readability
formula such as the Flesch Reading Ease [10], which uses simple surface-statistics of the
structure of an English text to estimate its difficulty. By plotting the distributions of the
Flesch Reading Ease scores across the three corpora we selected, we observed a uniform
distribution of readability on the English documents in the dataset (see Fig. 1). Some of
the documents exceed the 0–100 range that Flesch defined in the original paper; however,
this possibly resulted from the documents being automatically crawled from webpages
resulting in syntax errors (i.e., sentences not terminated properly or whitespaces between
words missing). Nevertheless, the three corpora present relatively uniform distributions
with themajority of texts being located in the 50–75 range. Given that the FleschReading
Ease formula was constructed for English, applying it directly to directly to the other
three languages is not uniformly reliable. We elected, instead, to assume that the aligned
texts had readability levels similar to their English counterparts.

Fig. 1 Flesch Reading Ease distributions for the English dataset

In the AoE paradigm, languagemodels are trained on increasingly larger subsections
of a corpus. This is intended to simulate the way in which humans are exposed to more
texts (or discourse) as they learn to speak, read, and write. In our experiments, we
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elected to split each of the three corpora into 20 different stages. Each stage included
all of the texts in the previous ones, with the final model being trained on the entirety
of the corpus of a language. In Fig. 2, the progression of the size of the three corpora as
language acquisition is simulated has been plotted. All three are large, with the English-
German corpus having 813,223 documents in the first stage and 16,264,448 documents
in the final stage; English–Spanish 1,099,364 in the first and 21,987,267 documents in
the final stage; and English-French 1,568,709 in the first and 31,374,161 documents in
the final stage. Here, a “document”, means a pair of aligned texts in two languages. We
also considered two different orders for the documents: an arbitrary ordering and one
based on Flesch Reading Ease, with the most readable texts being seen first, with the
least readable ones being left for the latter stages.

Our model simulates the manner in which humans are exposed to language, starting
by reading simpler texts and increasing difficulty as their language mastery improves;
nevertheless, this approach does not consider other channels for language learning (e.g.,
dialogue with other people, video and audio entertainment, writing). In the context of
the Word Maturity and AoE models, word acquisition is modeled as the growth of
the simulated vocabulary when the model is presented with increasingly more text.
The simulated learning trajectories take a simplified view of human language learning
because they do not take into account individual differences (e.g., personal interests,
different educational systems) and are intended to model the average level of language
exposure a language speaker might encounter solely by reading texts.

Fig. 2 Number of documents in each of the three corpora

AoE scores are correlated with AoA scores because they are assumed to reflect the
language learning process. Thus, in order to estimate AoE word scores, we trained sta-
tistical regression models that required training and evaluation data – namely AoA word
lists.We selected anAoAword list per language: English [4], French ([11], Spanish [12],
and German ([13]. The three word lists varied in size (English: 30,121; French: 1,493;
Spanish: 7,039: German: 3,200); however, our approach assumed that the model follows
the same learning process for all languages (which is likely incorrect but necessary for
the current analysis). To assess the viability of this assumption, we performed automatic
word-to-word translations and measured the correlations between the English word list
and the others. While not all the words could be automatically matched, the majority
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were, and we were able to confirm their correlation using Spearman Rank Correlations:
English-German r = 0.681, English-French r = 0.594 and English–Spanish r = 0.682.

The distributions for the four AoA lists are provided in Fig. 3. The English word list
scores are the closest to a normal distribution, while the Spanish scores appear almost
bimodal. The ranges of the distributions also differ, with some English word scores
exceeding 20, while the maximum Spanish scores are 11, and the German and French
scores are approximately 15. In addition to their relative sizes, these differences in the
distributions can impact attempts to train regression models to predict AoA scores.

Fig. 3 Distribution plots for the four AoA word lists

2.2 Modeling Learning Trajectories

To model learning trajectories, we trained Word2Vec [14] language models utilizing
the cumulatively increasing corpora, as outlined previously in Sect. 2.1. Of the two
variants ofWord2Vec, we chose to use the skip-gram architecture wherein theWord2vec
model is used to predict context words for a given target term. Our choice of using
Word2Vec instead of LDA as used in the first version of AoE was motivated by the
inherent geometrical properties of the word vectors it produces. Word2Vec maps words
into amulti-dimensional vector space wherein arithmetic operations between the vectors
are used to represent semantic and syntactic relationships between words. As such, this
method was a more a natural fit in the incremental training algorithm used to model
learning trajectories. Specifically, the Word2Vec model could then be evaluated as it
evolved (i.e., as it was exposed to more texts) by comparing intermediate vector spaces
to the mature one.

Specifically, we utilized word embedding vectors of size 300, with a context window
of 5 and trained each model for 50 epochs. Because the models were trained on incre-
mentally increasing portions of each corpus, the final, “mature”, model was assumed to
contain the most accurate word embeddings. With this in mind, the intermediate models
offer snapshots into what Word2Vec was able to model at each “learning” step. Measur-
ing the discrepancy between an intermediate word representation and its final, mature
one can be done using cosine similarity. We trained our models in stages. Hence, there
were 19 intermediate model similarities to the mature representation, which formed the
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learning trajectories. Prior to measuring the cosine similarity, we performed a Procrustes
alignment of the vector space represented by the intermediate word embeddings to the
mature vector space. An illustration of these learning trajectories is provided in Fig. 4,
which shows the cosine similarities of the intermediate models to the mature one for
the English texts of the English to German corpus. Each of the learning trajectories is
colored on a gradient from blue-to-red based on word frequencies in the corpus. These
evolutions are consistent with the ones from the first model of AoE [5], but are more
fine-grained with smoother evolutions.

Fig. 4 Example of learning trajectories for the English to German corpus

Via these illustrations, we observed that some words, such as “tech” and “singulari-
ty”, have noticeably steeper learning trajectories. Others, such as “happy” and “choco-
late”, have relatively good cosine similarities from the earliest stages, suggesting that
the intermediate model’s representations of those terms are closer to the mature model
representation. In terms of AoA, we can consider “happy” as having a low age of acqui-
sition, with “clustering” being acquired later. In comparison to the AoE trajectories, the
ones we generated showed amonotonic increase, which is expected from the fact that the
Word2Vec model trained at a certain stage uses all the documents on which the previous
intermediate stages were trained, in addition to its own portion.

Similarly, we explore the learning trajectories for words in different languages (see
Fig. 5). While some common words, namely “dog” and “red”, appear to have similar
trajectories in the four languages, we can observe differences. Namely, in Spanish, the
word for “class” (i.e., “clase”) seems to be learned far more quickly than in other lan-
guages. Consequentially, the AoA score for the Spanish word “clase” is somewhat lower
(3.84) than its translations in other languages (English “class”: 4.95, French “classe”:
4.92, German: no equivalent in word list). Similarly, the Spanish AoA score for “virus”
is 8.16, while the English word list has it at 9.5 and the German word list at 9.65. The
process of learning words differs from language to language, especially in the case of
specialized terms. These are a few randomly chosen examples; however, the presence of
differences in the trajectories modeled by AoE that are also reflected in AoA word lists
suggests that our trajectories resemble aspects of human word acquisition and capture,
at least partially, differences between word learning in different languages.
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Fig. 5 Learning trajectories for different languages

From these learning trajectories, we extracted several features that described both
the relations between a word and the rest of the vocabulary and the learning process for
that word. These features can be split into two groups:

• Mature Model Features: the cosine similarities between the word embeddings of
a term and other words in the vocabulary. These include the 1st, 2nd and 3rd highest
cosine similarities to words in the vocabulary and their average, as well as the number
of words that have a cosine similarity of at least 0.3 to the term and their average
cosine similarity.

• Learning Trajectory Features: the 19 intermediate model cosine similarities, their
average and its 1-complement, the index of the first intermediate model that achieves
a cosine similarity above a certain threshold (from 0.3 to 0.7 in 0.05 increments) and
the slope of the best fitting line on the plots shown in Fig. 4 and its inverse value.

Through these features, we aimed to capture a combination of vocabulary knowl-
edge and information about the learning trajectories. These features were then used as
predictor variables in order to train regression models to predict AoE word scores.

2.3 Regression Models

For each word, 39 features were generated from the learning trajectories and the mature
word embeddings. Of these features, 9 are continuous (being cosine similarities) and the
remainder are ordinal. Performing a variance inflation factor analysis of multicollinear-
ity, using a threshold of 5 would reduce these features to 6. However, we found that
our models, which are non-linear, perform better when multicollinearity-based prun-
ing of features was not used. For standardizing the input features, we utilized z-score
normalization prior to training the models.
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Given the limited number of features generated, aswell as the relatively small number
of data points (i.e., 1,493 to 30,121 terms), we elected to evaluate the models using
Random Forest Regression and Support Vector Regression (SVR). For Random Forest
Regression, we used 50 estimator trees. For SVR, we found that the best results were
produced using a radial basis function kernel, with ε = 0.2, C = 1, and with γ set to
inverse of the number of features multiplied by the variance of the feature matrix.

3 Results

Wemeasured the performance across 10 cross-validation folds and report both the mean
absolute error and themeanR2 coefficient for the test splits. For each of the three corpora,
namely English-German (en-de), English-French (en-fr), and English–Spanish (en-es),
we performed four experiments: one per language and one per document ordering criteria
(i.e., arbitrary ordering and ordered by their Flesch Reading Ease). These results are
provided in Table 1; consistently throughout all experiments, ordering ensures a more
predictive model than the consideration of texts in a random order.

Table 1 Cross-validation results for predicting AoA scores

Corpus Language Ordering Random Forest Support Vector
Regressor

MAE R2 MAE R2

EN-DE English Arbitrary 1.95 0.34 1.94 0.35

Sorted 1.87 0.39 1.85 0.40

German Arbitrary 1.67 0.27 1.84 0.18

Sorted 1.67 0.28 1.84 0.19

EN-ES English Arbitrary 1.97 0.33 1.97 0.34

Sorted 1.88 0.39 1.87 0.40

Spanish Arbitrary 1.53 0.16 1.56 0.14

Sorted 1.44 0.25 1.41 0.27

EN-FR English Arbitrary 2.02 0.31 2.02 0.31

Sorted 1.90 0.37 1.89 0.38

French Arbitrary 1.82 0.12 1.75 0.14

Sorted 1.67 0.21 1.65 0.24

The first observation is that the ordering the documents by their English Flesch Read-
ability Score seems to bring an improvement of performance in all cases. This strengthens
our hypothesis that the Readability Score as measured on the English document offers a
reasonable proxy for its foreign-language counterpart. Additionally, English results are
consistent between the three corpora and do not appear to be correlated to the size of
each corpus in terms of the number of documents (see Fig. 2).
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The AoA word lists differed in the range of possible AoA scores. Hence, comparing
the results between languages using the mean absolute error does not provide a good
estimate of model performance. The R2 coefficient, on the other hand, shows that the
English models have a much better performance, while the other languages tend yield
results in the 0.24–0.28 range. One immediate explanation for this might be that the
English word list is much larger than the others, which translates into more sample
points for training the regression models. Additionally, the English word list is the most
normally distributed of the four (see Fig. 3), which may also help explain the better
performance of the models trained on the English data. While the German and Spanish
results are similar, the French results are slightly lower. These results may be attributed
to there being words in the French word list and their relatively non-normal distribution.

For the SVR models with radial basis functions, extracting feature importance
directly is not possible because the data is projected into another dimensional space.
For the Random Forest Regressors, feature importance can be extracted by measuring
the impurity (i.e., the Gini importance); however, this method has been shown to be
biased towards features with high cardinalities [15]. Thus, a better alternative for our
case was to use permutation importance.

Whilewe did find variance in terms of the order of the top features, themost important
ones were always those in the “Learning Trajectory Features” category (see Sect. 2.2).
Statistical information about the learning trajectories (i.e., slope, average) or the values
of the points of the learning trajectories (i.e., the cosine similarities between intermediate
models and the mature model) were found to have higher feature importance scores than
the Mature Model Features, across all languages and ordering criteria. This aligned with
our expectations because the learning trajectories were intended to simulate the way in
which humans acquire new words in their vocabulary.

4 Conclusions

This study explores the possibility of estimating AoA scores for multiple languages,
through a simulation of human word acquisition. Statistical features generated from
the learning trajectories were then used to train regressors capable of predicting AoA
scores. Expanding on the work done in the AoE model [5], we applied Word2Vec on
incrementally increasing corpora of texts, and then generated features based on the
resulting learning trajectories. AoA score regressors were trained, achieving reasonable
results, with R2 coefficients ranging from 0.27 to 0.40 on word lists for four languages:
Spanish, German, French and English. The post-training feature importance analyses
confirmed that the generated features from the learning trajectories were rated as being
the most relevant by the regressors. Additionally, empirical observations reveal that
our simulated learning trajectories captured differences in word acquisition between
languages that are also present in AoA word lists, with certain words having lower AoA
scores in one language (e.g., Spanish) than in the others – this corresponds to less steep
learning trajectories for that particular language. Our approach can be uniformly applied
for any language and has strong potential to help bridge the gap in word complexity
research for non-English languages.

Our approach of automatically estimating AoE scores opens up the possibility of
expanding existing word lists. Generalizing from the regression training data (i.e., the
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human-sourced AoA lists) allows us to estimate AoE scores for the entirety of the
English, German, French and Spanish vocabularies that were present in the corpora
during training (i.e., over 40,000 words for each language). Having access to more
complete AoA lists can positively impact research on textual complexity and reading
comprehension. Comparisons between learning trajectories of words in different lan-
guages, as shown in Fig. 5, highlight notable differences in word acquisition that could
form the basis of better L2 learning systems through the creation of curriculums that
take multicultural lingual differences into account.

The principal limitations of our method relate to the distributions of the scores in the
AoAword lists used to train the regressors, as well as the cardinality of theAoA lists. Our
results indicate that the English word list, which is normally distributed and has a large
number of terms, leads to better regression results with higher R2 coefficients. Training
the language models is also a limiting factor because it is a computationally expen-
sive process. For each language, we trained 20 Word2Vec models on up to 31,374,161
documents, for 50 epochs each. A possible avenue of research would be to explore
the possibility of using smaller datasets and to find a criterion for selecting adequate
documents. When choosing the “Para Crawl” dataset, we looked at the distribution of
Flesch Reading Ease scores on the corpora to ensure that a sufficient range of complexity
existed in the texts; however. Other methods might allow for the targeted selection of
documents in order to not use the entire dataset. Another avenue of research would be
to explore the use of different language models. In addition to previously used methods,
namely LSA and LDA, temporal word embedding models [16, 17] can be used to model
diachronic changes in vocabulary and could be applied to the cumulatively increasing
language exposure corpus used to simulate human learning.

This study illustrates the potential of machine learning to inform measures of word
complexity across different languages. The ability to predict word complexity enhances
teachers’ and researchers’ capacity to develop instructional materials for a broader range
of students, and for particular student abilities. For example, research on AoA scores has
demonstrated processing advantages for phrases consisting of low-AoAwords compared
to high-AoAwords [18]. Thus, textsmight bemodifiedby replacingwordswith low-AoA
or high-AoA synonyms (e.g., “the dog ate my homework” versus “the dog devoured my
essay”). Providing students with personalized materials is critical for learning because
the readability of texts is partially influenced by the difficulty of words in relation to
students’ vocabulary, prior knowledge, and reading skills. Mulilingual AoE provides
a potential means to enhance foreign language learning materials by focusing on the
aspects that are either easier or harder to understand by students of different cultures.
Because our method is applied uniformly across languages, it can be readily used in
multilingual textual complexity applications and can help bring research in non-English
languages to parity.
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Abstract. Open-ended learning environments afford students opportunities to
explore, manipulate, and test concepts, and have the potential to provide students
with feedback and support by leveraging the log data generated by them. However,
within open-ended contexts, student log data is often noisy and identifying periods
of meaningful activity is difficult. This paper introduces a new sequence mining
method to overcome this challenge. The Differential Segmentation of Categorical
Sequences (DiSCS) algorithm finds segments within a sequence of actions that are
maximally or near-maximally different from their immediate neighbors. Segments
are then clustered to reveal common periods of student activity. We examine the
performance of this method under a variety of conditions to find how well DiSCS
can identify where different states of simulated activity start and end. We report
that when provided with only the observed actions, DiSCS is able to identify the
hidden states of simulated student activitywith strong and very strong associations.
This strong performance is robust across a variety of contexts including those
where observed actions are noisy or common to multiple states. We discuss the
implications and limitations of thismethod for open-ended learning environments.

Keywords: Sequence mining · Segmentation · Open-ended learning
environments

1 Introduction

Open-ended learning environments use the affordances of technology to create oppor-
tunities for students to explore, manipulate, and test concepts and knowledge [1]. Open-
ended learning environments are designed to engage studentswith ill-structured tasks and
typically involve computer-based games, simulations, visualizations, design, or exper-
imentation tools [2–4]. However, implementing open-ended learning environments in
classrooms presents challenges for teachers [2, 5, 6]. For example, to provide effective
guidance to students using design-based learning environments, teachers need to under-
stand and notice the different design strategies that each student takes [7]. Given that
each student will likely have a unique solution instead of one “right” answer, and their
paths to that solution are likely to differ, noticing these design strategies for each student
can be complex and challenging [8, 9].
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Variousways to document or capture student’s learning behaviors within open-ended
learning environments include think-alouds [10] or reflections [11]. These methods are
typically labor intensive, usually implemented in undergraduate or professional set-
tings [12], and have limited applicability to precollege classroom settings. Given the
computer-based nature of open-ended learning environments, students can be provided
with automated guidance by leveraging log data of students’ actions within the environ-
ment. As a result, various research investigates applying data mining techniques to log
data to provide insight into students’ learning behaviors. Within open-ended learning
environments, microlevel student interaction data [13] from a variety of contexts such
as coding tasks [14], inquiry tasks [15, 16], and iterative design tasks [17, 18] have been
used to identify and support a broad range of constructs including metacognitive states
[19, 20], inquiry or design strategies [15, 16, 18] and problem-solving [17].

However, while there are numerous sequential data mining techniques used to ana-
lyze student interaction data [21], less attention has been given to applying these meth-
ods to open-ended design-based contexts, and especially with real, noisy, open-ended
classroom data. Many challenges with classroom data remain, particularly when seg-
menting sequences into meaningful periods of student activity [13]. To improve this
important area of data mining this paper introduces and describes a new sequential data
mining method for segmenting noisy student activity from open-ended learning envi-
ronments. The Differential Segmentation of Categorical Sequences (DiSCS) algorithm
uses dynamic programming and genetic techniques to find segments within an individ-
ual student’s sequence of actions that are maximally or near-maximally different from
segments that are their immediate neighbors. Clustering techniques then group segments
and reveal common periods of activity within an individual student’s sequence, or across
the sequences of multiple students. This makes it possible to identify different phases of
activity and when they start and stop. To examine the performance of this method, this
paper addresses the following research questions:

1. Towhat degree isDiSCSable to identify optimal segmentationwhenusing classroom
data?

2. What is the strength and robustness of the association between states identified by
DiSCS and simulated hidden states?

2 Sequence Mining

The field of educational data mining is broadly defined as developing and applying
computer algorithms to detect patterns in educational data that would be difficult to
do otherwise [22]. These algorithms can be used at the national, institutional, or class-
room levels, with the latter often referred to as fine-grained or microlevel analysis [13].
Microlevel techniques include a variety of knowledge tracing strategies [23], time-series
analyses [24], or the development of ‘evidence models’ or sensors for the constructs of
interest [25]. To different degrees, these techniques combine deductive expert knowledge
with inductive knowledge found using a variety of data mining methods.

Within educational settings, microlevel (i.e., student interaction level) sequential log
data are commonly analyzed using process or patternmining. This approach looks for the
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presence of specific ordered patterns of interactions or keystrokes within a sequence, or
for the frequency of the most commonly occurring patterns. However, with noisy educa-
tional data, sequential pattern mining algorithms such as the Sequential Pattern Mining
(SPAM) [26] algorithm and the Generalized Sequential Pattern (GSP) [27] mining algo-
rithm often find large numbers of frequent patterns that make it difficult to identify which
patterns are important or meaningful [19]. Furthermore, students are known to use dif-
ferent microlevel pathways to achieve similar goals or performance. While some studies
have identified sequential patterns that characterize high and low achieving students
[28], or found patterns that are different between periods of increasing and decreasing
performance [19], any set of specific patterns identified this way are likely to be incom-
plete and problematic to use for instructional feedback [29]. Therefore, when examining
sequences for phases of inquiry or design behavior, techniques that place less emphasis
on the temporal ordering of microlevel actions and which take a more holistic approach
may be more appropriate.

An alternative approach involves segmenting sequences and examining each seg-
ment holistically. These approaches can overcome some of the problems highlighted
above, however, rules for when to cut a sequence into segments can also create their own
problems. In contexts where students complete a series of small finite tasks or levels,
segmentation has occurred at the start and end of each of these tasks [30]. However, this
approach has limited applicability to open-ended learning contexts given that these set-
tings are inherently less prescriptive. Within open-ended learning settings, segmentation
has been performed by examining concurrent performance data and creating segments
corresponding to periods of increasing and decreasing performance scores [19]. How-
ever, during phases of student activity, performance scores may fluctuate as students
investigate the positive and negative impact of different factors, thus segmenting on a
performance basis has limited applicability. An alternative approach has been to set a
temporal resolution and use the timestamps of the dataset to segment after a fixed time
period (e.g., every minute [18] or every 20-s [31]). However, to avoid slicing distinct
periods of activity into unrepresentative segments this approach requires that the cho-
sen duration is set much shorter than the expected length of periods of activity. Other
heuristics for segmenting sequences, such as using periods of inactivity, risk conflat-
ing meaningful transitions in learning behavior with less meaningful transitions such as
bathroom breaks, the end of class, or an unreliable internet connection.

For data from open-ended learning settings, there is still a need for a method to
segment a sequence of student actions that is based on differences between phases of
those actions. That is, there is not yet a method that determines how best to segment
a sequence by comparing, holistically, the segments themselves. This paper introduces
such a method.

3 Differential Segmentation of Categorical Sequences (DiSCS)

The DiSCS algorithm takes a categorical sequence and splits it into segments so that
each of the segments is as different from its immediate neighbors as possible. In effect, it
finds the most distinct segments within a sequence of categories (see Fig. 1 for a simple
example).
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Fig. 1. In this simple example, DiSCS splits a sequence into five distinct segments separated by
vertical white lines.

3.1 Optimization Function

More specifically, DiSCS splits an individual student’s sequence of L time-ordered,
categorical actions intom non-overlapping, contiguous segments such that the average of
all the differences between neighboring segments is maximized. The difference between
a given pair of neighboring segments is measured by finding the difference between the
proportions of the actions in the neighboring segments. The paired z-scores for each
of the actions is then found and averaged. That is, if A = {a1, a2, . . . ., ak} is the set
of possible categorical actions and S = {s1, s2, . . . , sL}, si ∈ A is the time-ordered
sequence of these actions, the algorithm splits S into m non-overlapping, contiguous
segments {C1,C2, . . . .,Cm}whereC1 = {

s1, s2, . . . , sl1
}
,C2 = {

sl1+1, sl1+2, . . . , sl2
}
,

etc. Given that both the number of segments,m, and the positions at which the segments
end, l1, l2, …, lm−1, can vary, DiSCS adjusts these parameters to maximize the average
of the differences between all the pairs of neighboring segments, i.e., it averages the
difference between Cj and Cj+1 for j from 1 to m − 1.

The difference between a given pair of segments Cj and Cj+1, Zj, is measured by
first finding the proportion of each action for the segments, Pj and Pj+1, where Pj ={
p1j, p2j, . . . ., pkj

}
and pij is the count of action ai in segment Cj divided by nj, the

total number of actions in segment Cj. Then, the paired-sample z-test statistic, zij, is
calculated for each of the k pairs of corresponding proportions, i.e. pij and pi(j+1),

zij = pij − pi(j+1)√
ppooled

(
1 − ppooled

)( 1
nj

+ 1
nj+1

) . (1)

The difference between a given pair of segments Cj and Cj+1, Zj, is calculated by
averaging the absolute values of zij, i.e.,

Zj =
∑k

i=1

∣∣zij
∣∣

k
, (2)

and an overall score for the differences between all the m − 1 pairs of neighboring
segments in the sequence, Z, is calculated by averaging each of the values of Zj, i.e.,

Z =
∑m−1

j=1 Zj

m − 1
. (3)

Given that the optimal number of segments, m, is not known, we evaluate Z for
values of m from 2 (i.e., the smallest possible number of segments) to a value much
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higher than the number of segments expected. While the maximum possible value of m
is equal to the length of the sequence, L, (i.e., when segments consist of only one action
per segment), given the computational burden of testing all these values, it is possible to
use a heuristic for determining this value. For example, as we explain later, in this paper
we test m up to three standard deviations above the expected number of segments, but
other heuristic such as L/3 or L/4 would likely be sufficient.

Therefore, by varying the parameter m between 2 and M (either L or an alternative
heuristic) and the end positions, l1, l2, …, lm−1, of the segments to all their possible
combinations, DiSCS maximizes Z, i.e.,

argmax
2≤m≤M

(

argmax
l1,l2,...,lm−1

(∑m−1
j=1 Zj

m − 1

))

(4)

In this form, our optimization function tends to favor small numbers of long segments.
This is because the initial segmentation tends to capture the largest differences within
a sequence and averaging in subsequent segmentations typically lowers the average. In
order to adjust for this tendency, we introduce a smoothing variable, t, which has the
effect of favoring larger numbers of segments, or smaller grain-size segments of student
actions. The final optimization function can therefore be written as:

argmax
2≤m≤M

(

argmax
l1,l2,...,lm−1

( ∑m−1
j=1 Zj

m − 1 + t

))

. (5)

3.2 Algorithm

While it is possible to find the optimal solution described above using a brute-force
approach, the number of calculations required to test all the possible values of the
parameters m, l1, l2, …, lm−1, with m up to a maximum M, on a sequence of length L,
is proportional to LM . Therefore, DiSCS uses two different optimization techniques (a
genetic and a dynamic programing algorithm) to find solutions more quickly, and takes
the best result from each approach. The code for each of these algorithms is available at
the DiSCS code repository [32]. While this approach has the advantage of differentially
segmenting categorical sequences quickly, it introduces the possibility of finding only
local-maxima and may report non-optimal parameter values which could be particularly
problematic when analyzing noisy classroom data. This potential problem is investigated
in research question 1.

3.3 Clustering

After segmenting a sequence, DiSCS clusters the segments. This step is intended to
help identify similarities in the design behaviors across all students and examine the
proportion of actions that are typical of that cluster. Todo this,weused k-means clustering
with the distancemeasure set to theEuclideandistance between the proportions of actions
within each segment. We repeated the k-means clustering 100 times for every possible
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value of the total number of clusters, each time calculating the average silhouette width
[33] to measure of the quality of the clustering. The clustering with the largest average
silhouette width was selected. Segments that were in the same cluster were then given
the same arbitrary label. For example, the final DiSCS output for the simple example
given in Fig. 1 would create two clusters, one for segments where the observations are
‘red’ and another for segments with ‘green’ and ‘yellow’.

4 Optimality of DiSCS

The first research question that this paper addresses is the degree to which DiSCS is able
to identify optimal segmentation when using noisy classroom data. To do this we com-
pared DiSCS segmentations with brute-force optimal segmentations under conditions
that allow for a timely brute-force result (i.e., when the maximum number of segments
tested, M, is 5).

4.1 Method

Context. The classroom data used for this investigation was obtained from 75 environ-
mental science high school students who worked in 38 small groups (typically pairs)
in their regular classroom setting to complete a design activity over multiple days. The
design activity consisted of a series of scaffolded design challenges related to building a
house that consumed no net energy over a yearwhile still meeting cost, size, and aesthetic
constraints. Students used an open-ended CAD environment called Energy3D [34] that
enabled them to build and test different building designs that incorporate solar panels.
Embedded tools could be used to examine energy gains and losses under various condi-
tions and help students understand concepts such as energy transfer. The high school was
located in the Eastern United States, two of the classes were ‘honors’ classes and three
‘regular’ level classes, and the school demographics were 34% Black, 9% Hispanic, and
45% White students with 45% of students receiving free or reduced lunch.

Data Collection. Student action data was collected while students were engaged with
the design activity. Examples of the types of actions recorded were “edit roof”, “add a
solar panel”, “change the tilt of the solar panel”, and “do annual energy analysis”. For
each of the 38 small groups, one sequence of action data was collected containing all
the actions performed by that group throughout the duration of the design activity. The
sequences were long (mean = 379; standard deviation = 245) and included up to 42
different actions.

Analysis. To assess the degree to which the genetic and the dynamic programing algo-
rithms used by DiSCS were able to find the optimal segmentation, we compared the
maximum optimization function parameter values (see Eq. 5) for these algorithms with
the guaranteed maximum value found by the brute-force algorithm. This analysis was
conducted with the sequence of actions recorded by each group of students.
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4.2 Results

When considered separately, the genetic algorithm reported maxima that were on aver-
age 0.2% smaller than brute-force, and the dynamic programming algorithm reported
maxima that were on average 0.4% smaller. This indicates that both algorithms provide
near optimal solutions. However, this result is improved when following the approach
used by DiSCS and selecting the best performing result from these two algorithms. In
this case, the maxima were on average only 0.03% smaller than the actual maxima found
using the brute-force algorithm. This indicates that while sub-optimal, using an approach
that uses both a genetic algorithm and a dynamic programming algorithm, and takes the
best of the two solutions generated provides very near optimal solutions.

5 Strength and Robustness of DiSCS

The second research question that this paper addresses relates to the strength and robust-
ness of the association between states identified by DiSCS and simulated hidden states.
To do this we examined the strength of the association and considered how well this
strength is maintained under different input conditions.

5.1 Method

To explore the strength and robustness of DiSCS, we conducted a simulation study
where stochastically created sequences were generated, segmented with DiSCS, and the
association between the segment clusters and the hidden states of the original sequence
calculated.

Sequence Generation. We used a hidden Markov model to stochastically generate the
sequences used in the simulation study. The hidden states represent simulated phases of
inquiry or design activity that students may be engaged in and the probability that the
student transitions to a different phase is represented by p. Different hidden states were
modeled to have multiple equally likely observable actions including an action that was
common to all hidden states (see Fig. 2).

Analysis. For each sequence of observable actions generated, we also recorded the
corresponding sequence of hidden states. For example, for the sequence of observations
{a1, a1, a2, b2, b2, b1, a1, a2} we would also record the hidden states {A, A, A, B, B,
B, A, A}. The sequence of observations was segmented and clustered with DiSCS and
the association between the clusters and the hidden states calculated. See Fig. 3 for a
summary of the workflow.

Given that both the labels of the hidden states and the labels of the DiSCS clusters
were nominal categorical values, we used the Cramér’s V statistic [35] to measure the
association between DiSCS output and the hidden states. As with other measures of
association or correlation, 0 ≤ V ≤ 1, with one corresponding to a perfect association,
and zero for no association between the labels.Values forCramér’sV between 0.6 and 0.8
are considered to be strong associations and values between 0.8 and 1.0 are considered
to be very strong [36].
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Fig. 2. A hidden Markov model used to generate simulated sequences of student actions. This
model shows the case when two hidden states (A and B) each have two observable actions (a1 and
a2, b1 and b2) and a common observable action.

Fig. 3. Workflow for the simulation study.

Trials. To understand the robustness of the association, we calculated Cramér’s V under
different input conditions. First, we examined the impact of sequence length, by testing
each of the values, L = {25, 50, 75, 100, 150, 200, 300, 400}. We did this keeping the
number of hidden states = 3, the number of action observations per state = 2, transition
probability, p = 0.1, the probability of a common action observed, pcommon = 0, and the
DiSCS smoothing variable, t = 3. For this and other trails in this study, the maximum
number of segments that DiSCS optimized over was set to three standard deviations
above the expected number of segments i.e., Lp + 3

√
Lp(1 − p). For each value we

repeated the test 20 times and recorded the value of Cramér’s V each time. Second, we
repeated the first trial but changed the number of hidden states from 3 to 2, then to 4.
Third, we repeated the first trial again, but changed the number of action observations
per state from 2 to 4, then 6. The results from these trials are shown in Fig. 4.

The next set of trials examined the impact of adjusting the sequence generation
probabilities p and pcommon. We examined the impact of different transition probabilities
by testing each of the values, p = {0, 0.05, 0.1, 0.15, 0.2, 0.25} while keeping the
sequence length, L = 200, the number of hidden states = 3, the number of action
observations per state = 2, the probability of a common action observed, pcommon = 0,
and the DiSCS smoothing variable, t = 3. Again, for each value we repeated the test 20
times and recorded the value of Cramér’s V each time. Then we repeated this trial, but
instead testing each of the values pcommon = {0, 0.05, 0.1, 0.15, 0.2, 0.25} while keeping
the transition probability, p = 0.1. The results from these trials are shown in Fig. 5.

Lastly, to examine the impact of the DiSCS smoothing variable, we tested each of
the values, t = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30} while keeping the sequence length, L
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= 200, the number of hidden states = 3, the number of action observations per state =
2, the transition probability, p = 0.1, and the probability of a common action observed,
pcommon = 0. Again, for each value we repeated the test 20 times and recorded the value
of Cramér’s V each time. We repeated this trial with the transition probability, p = 0.05.
The results from these trials are shown in Fig. 6.

5.2 Results

When varying the sequence length, L, strong or very strong associations occurred for
most values tested.However, this strength decreased as the sequences became longer. The
lines for different numbers of hidden states are close together indicating that changing
the number of hidden states has little impact on V for all sequence lengths. This is not
the case for the number of actions per state which has a dramatic effect on V, especially
for small L (see Fig. 4).

Fig. 4. The impact on association, V, of sequence length, L, using sequences with 2, 3 and 4
hidden states (left) and 2, 4 and 6 actions per state (right). Loess lines with standard errors are
shown.

When varying the sequence generation probabilities, p and pcommon, strong or very
strong associations also occurred for most values tested. This strength decreased steadily
as these probabilities increased, with larger decreases occurring when the transition
probability, p, increases than when pcommon increases (see Fig. 5).

When varying theDiSCS smoothing variable, t, very strong associations occurred for
all values tested. This strength was most stable for when p= 0.05, and improved slightly
at larger t values when p = 0.1. This indicates that when phases of design activity are
expected to change about every 10 actions, adjusting t to larger values improved DiSCS
performance, but thatwhen phases of design activity are longer, or change less frequently,
adjusting t will have minimal impact on DiSCS performance (see Fig. 6).
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Fig. 5. The impact on association, V, of the sequence generation probabilities, p and pcommon.
Loess lines with standard errors are shown.

Fig. 6. The impact on association, V, of different values of the DiSCS smoothing variable, t, at
two values of the transition probability, p. Loess lines with standard errors are shown.

6 Limitations

Results demonstrate that DiSCS is a strong and robust technique for segmenting
sequences of categorical actions such as those commonly found in open-ended learning
environments. For example, with sequences with up to 4 hidden states, strong or very
strong associations were found. Strong or very strong associates were also found with
up to 4 actions per state, up to very high transition probabilities, (at p = 0.25 transitions
are expected to occur every 4 actions), and when the probability of common actions is
also high. However, our simulation testing indicated important limitations. For example,
as might be expected, it is clear that performance decreases with larger sequences, and
when larger numbers of states and actions make the task more difficult. When sequences
are larger than 400, we recommend that DiSCS results are used with caution unless
transitions are expected to occur less often that once every 20 actions (equivalent to p<
0.05).

7 Implications

DiSCS offers a novel method for educational data mining that can provide insight into
student activity within open-ended learning environments. The algorithm provides an
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efficient and robust method of segmenting categorical sequences of student activity
from recorded log data. DiSCS might be used in combination with other measures (e.g.,
performance, learning gains from pretest to posttest) to determine patterns of actions that
correspond to better student performances or learning [28], or that indicate students need
help or support. By providing a more efficient method of finding meaningful segments
of learning activity, DiSCS works towards being able to provide targeted feedback to
learners in open-ended learning environments [17]. Python functions that performDiSCS
segmentation and clustering with either one or multiple lists of categorical actions are
available at the DiSCS code repository [32].
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Abstract. In introductory programming and other problem-solving
activities, students can create many variants of a solution. For teach-
ers, content developers, or applications in student modeling, it is useful
to find structure in the set of all submitted solutions. We propose a
generic, modular algorithm for the construction of interpretable cluster-
ing of students’ solutions in problem-solving activities. We describe a
specific realization of the algorithm for introductory Python program-
ming and report results of the evaluation on a diverse set of problems.

1 Introduction

Learning environments often provide problem-solving activities, where students
construct solutions that are automatically evaluated for correctness while still
allowing for multiple approaches. We focus on introductory programming in
Python, but similar types of problems are common in computer science edu-
cation (e.g., regular expressions, SQL), mathematics (geometry constructions,
logic proofs), or physics (gravity, electrical circuits).

Even for a simple problem, there may be many solutions; see Fig. 1 for a
specific illustration for introductory programming. All these programs passed
functionality tests, yet they differ significantly in their style and quality. Online
learning environments collect a large number of solutions, and it is not feasible to
analyze all of them manually. It is thus useful to use machine learning techniques
to uncover structure in the solution set, particularly to cluster similar solutions.

Such clustering has several use cases. To teachers, it provides a summary of
students’ approaches, examples of poor style, or inspiration for class discussion
[6]. The understanding of students’ solutions is also valuable for content authors;
the clustering can reveal that a problem is solved in an unexpected way, which is
helpful for guiding revisions and the development of new content [13]. Another
application is automating feedback to students [17,18]. If we are able to find
sufficiently coherent clusters, we can use the same feedback message for the
whole cluster. Clustering can also be used to improve student models since the
cluster into which a solution belongs provides additional information about the
student’s state beyond the commonly used answer correctness and response time.
For example, a solution to a programming problem can contain evidence of a
misconception or insufficient understanding of some programming concepts.
c© Springer Nature Switzerland AG 2021
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Fig. 1. Examples of students’ solutions to the following programming problem: “Write
a function that counts the occurrences of letters ‘a’ and ‘A’ in a text.”

Clustering of students’ solutions has been tackled before, even specifically for
the introductory programming [3,5,21]. Yet, no algorithm was developed that
would lead to a small number of interpretable clusters, as needed for many of the
outlined use cases. Consider, for instance, feedback writing. Having a guarantee
that all solutions in the cluster contain for and if, and do not contain ord can
save you from manually inspecting all the solutions.

Previously proposed algorithms that consider interpretability are based on
some notion of exact matching (e.g., equivalence after canonicalization), which
leads to hundreds of small clusters [6,9,14]. With so many clusters, the complete
clustering is not well-interpretable, even if the individual clusters are. Another
substantial limitation of these previous attempts is that they were evaluated
on just 3 or 4 similar problems, and it is not at all clear how well they would
generalize beyond them.

Outside of the educational domain, several interpretable clustering algo-
rithms have been proposed. They describe clusters using either branches in a
decision tree [2,4,15], frequent patterns [19], or the most relevant features in
matrix decomposition [8]. These algorithms cannot be used off-the-shelf for clus-
tering students’ solutions since they are not designed to utilize varying impor-
tance of solution’s features, e.g., the occurrence of recursion vs. addition.

In this paper, we formulate the problem of interpretable clustering of stu-
dents’ solutions in terms of desirable properties of such clustering. We then
propose a generic algorithm to solve this problem, describe its specific realiza-
tion for introductory programming in Python and report the results it gives for
a diverse set of problems.

2 Interpretable Clustering Problem

The general aim of interpretable clustering of students’ solutions is to com-
pute clusters of solutions that are useful for the intended applications where the
interpretability is indispensable. To facilitate interpretability, the output should
consist of not just the clusters of solutions but also their succinct description.
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An example of such description is “for, if, or, no [i]” for solutions that
use for, if, and or and do not use indexing. Although the utility of a clustering
depends on the specific application, we can formulate three general key proper-
ties of any interpretable clustering: homogeneity, interpretability, and coverage.

Homogeneity. Each cluster should be compact, i.e., the solutions within the
cluster should be similar to each other. In addition, the clusters should be well
separated from each other, i.e., the solutions from different clusters should be
dissimilar. These two requirements apply to non-interpretable clustering as well,
and many metrics to quantify them have already been proposed, e.g., vari-
ance ratio, Xie-Beni index, and Silhouette coefficient [16]. Many of these met-
rics define homogeneity as the ratio between within-cluster compactness and
between-clusters separability. Compactness can be measured, for instance, as
the average distance between two points in the cluster and the separability as
the distance from the cluster centroid to the closest centroid of another cluster.

Interpretability. Each cluster should be accompanied by a succinct descrip-
tion. These descriptions should provide insight into students’ approaches and
facilitate the writing of useful feedback applicable to all solutions in the clus-
ter. Some applications require perfect recall of the descriptions, meaning that
the description applies to all solutions in the cluster. Without perfect recall, the
description could easily mislead the user to write feedback that does not make
sense for some of the solutions. This condition is also referred to as strong inter-
pretability or 1-interpretability [19]. Ideally, the description should apply only to
the solutions in the cluster being described (perfect precision). We may, however,
trade off precision for improvement in other criteria.

Coverage. Each cluster should cover a reasonable portion of the solutions. Con-
sequently, a small number of clusters should be sufficient to cover a vast major-
ity of the solutions. For most applications, we do not need to have complete
coverage—it is sufficient to cover all the typical solutions and report the rest as
atypical. The appropriate number of clusters depends on the application; in our
experience, 4 to 8 clusters are appropriate for writing feedback and providing
insight to authors.

3 Interpretable Clustering Algorithm

In this section, we describe an algorithm that solves the interpretable clustering
problem. The proposed algorithm is flexible—it can be applied to any problem
type just by specifying appropriate features, and it can be adapted to different
use cases by adjusting parameters that determine focus on individual criteria
(homogeneity, interpretability, and coverage). Thus it constitutes a good starting
point against which to compare more complex or specialized approaches.

In the description of the algorithm, we use the following terminology: feature
is a property of a solution (e.g., usage of a concept like if or nested loops),
clause is a single feature with an optional quantifier (e.g., many if, no elif),
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Fig. 2. Overview of the proposed interpretable clustering algorithm.

pattern is a conjunction of multiple clauses, and label is a short, possibly impre-
cise description of the pattern.

The input to the algorithm is a set of students’ solutions to a given problem,
represented in the form of a feature matrix. The features should be interpretable
properties of the solutions, such as recursion. The algorithm describes the
clusters by patterns over these interpretable features. In the final stage, the
patterns are converted to short labels by omitting less important clauses.

The algorithm consists of four stages (Fig. 2), which are to a large degree
independent and can be individually improved—or even approached in a distinc-
tively different way than in our proposal. The four stages are:

1. feature selection: For the given problem, we select a small set of important,
relevant, and distinct features.

2. pattern mining: Combining the selected features, we generate a set of candi-
date patterns that capture a large portion of the solutions, with the preference
for short patterns with important features.

3. pattern selection: We score each candidate pattern with respect to its
homogeneity, interpretability, and coverage. We then select the pattern with
the highest score, remove matching solutions and repeat. We stop once we
have enough patterns, or earlier if there is no pattern with a high score.

4. clustering summarization: We summarize each cluster by a short label
derived from the pattern, together with a few examples of specific solutions
from the given cluster.

A useful tool for understanding, implementing, and improving the algorithm
is the feature matrix visualization with a column for each solution and a row for
each feature (Fig. 3). If we cluster the solutions according to the selected feature
patterns, we can see homogeneity and coverage of individual clusters at a glance.

3.1 Feature Selection

Different problem types need different features. For regular expressions problems,
individual letters might be sufficient, while for programming problems, letters
would be useless. Instead, we can extract keywords and compute statistics such
as the number of variables from the abstract syntax tree of the program [7,17,20].
A completely different set of features can be obtained by similarity analysis, e.g.,
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Fig. 3. Clustered feature matrix for the problem Count A with highlighted solutions
a–f from Fig. 1. Each column corresponds to one solution, each row to one feature.
Color hue denotes presence of features in solutions. Darker colors denote features in
the corresponding pattern. (Color figure online)

edit distances to other solutions [12,21], or dynamic analysis, e.g., variable values
sequences [6,9].

Many of these features might be useful for non-interpretable clustering, but
only the ones that are interpretable by themself are suitable for the interpretable
clustering. The more comprehensive and interpretable features, the better the
output of the clustering algorithm, which is why some authors hand-crafted very
specific features such as shape of the memoization array for dynamic program-
ming problems [14], or whether a given sorting function is in-place [20].

Our algorithm can utilize domain knowledge about importance (interpretabil-
ity) of the features in the form of feature weights. Instead of setting them man-
ually, the weights can also be estimated from the data, e.g., based on the preva-
lence of the feature in the solutions.

If we define the features and their weights for a problem type, then only a
fraction of these features might be relevant for any specific problem. Therefore,
in the first stage, we select a set of useful features for the given problem. We use
a greedy approach: considering one feature at a time, starting with the feature
with the highest weight, we select the feature unless it is either extremely rare,
used in nearly all solutions, or too similar to one of the already selected features.
To measure the similarity between two features, we use the Jaccard coefficient
(ratio of intersection and union) of the sets of solutions containing these features.

To illustrate the feature selection, let us consider the Count A problem
(Fig. 1). The algorithm—assuming thresholds discussed later in Sect. 4.1—selects
15 features that are listed in Fig. 3. It skips 10 rare features, e.g., recursion,
which was used in only 4 out of 240 solutions. It also skips 6 features too similar
to other already selected, e.g., if, which closely coincides with more specific
for-if.

3.2 Pattern Mining

The next step is to generate frequent patterns using the selected features. In
contrast to the well-known apriori algorithm and other general pattern mining
techniques [10], we take into account the interpretability of the patterns by
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preferring fewer clauses and important features (i.e., features with high weights).
Our approach is similar to the depth-first tree projection algorithm for mining
frequent itemsets [1], using feature weights for the ordering of the features.

We generate the candidate patterns recursively, starting from an empty pat-
tern. For each feature and each possible quantifier, we try to extend the parent
pattern by one clause (quantified feature). We then check whether the extended
pattern is sufficiently frequent (i.e., whether there are enough solutions that
match the pattern) while simultaneously not too similar to the parent pattern
(i.e., whether there are enough solutions that match the parent pattern but
not the extended pattern). If both conditions are met, we include the extended
pattern into the candidate set and search for more specific patterns recursively.

The search tree can differ a lot between problems, so it is impossible to
have a single set of universal thresholds. We circumvent this issue by iterative
deepening : we start with tight thresholds, run the search and iteratively loosen
the thresholds until we find a sufficient number of patterns (e.g., 1000).

We introduce two additional modifications that increase the interpretability
of the generated patterns. First, we increase the thresholds on the pattern inclu-
sion in proportion to the length of the pattern, expressing the preference for
shorter patterns. Second, we increase the number of considered features in each
iteration (iterative broadening), expressing the preference for important features.

3.3 Pattern Selection

To select patterns, we use a greedy approach known as sequential covering [11].
In each iteration, we score all candidate patterns, select the best, and remove
matching solutions. This process is repeated until we select a prespecified number
of patterns or until there is no pattern with a score above a prespecified threshold.
Instead of using a constant threshold for the minimum score, we can increase it
in each iteration; this is useful when the problems are diverse: starting with a
low threshold ensures that at least some patterns are selected, while increasing
it after each iteration avoids selecting an excessive number of patterns.

Pattern scoring reflects the desirable properties of homogeneity, interpretabil-
ity, and coverage. We operationalize these properties using scores with a value
between 0 and 1; a higher value is better. In the following discussion, we highlight
the high-level idea and rationale behind each part of the scoring function. We
also briefly mention specific formulas used in our realization of the algorithm.

Homogeneity consists of two aspects—hard and soft—which are averaged.
Hard homogeneity is the degree to which all solutions in the cluster share some
features (or their absence). Hard homogeneity is closely related to interpretabil-
ity and actionability of clusters since exact matches are easy to understand and
act upon (e.g., in feedback). We quantify hard homogeneity as the sum of weights
of the shared features, normalized by the sum of weights of all relevant features
selected for the problem. Soft homogeneity is the degree to which solutions in
the cluster are similar and differentiated from other clusters. Soft homogeneity
also applies to non-interpretable clustering, but the standard measures like Sil-
houette coefficient [16] must be adapted to work with an incomplete clustering.
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We quantify soft homogeneity as max(0, 1 − Din/Dout), where Din is the mean
distance from a solution within the cluster to the centroid, and Dout is the mean
distance from a solution outside the cluster to the centroid.

Interpretability considers four properties of the pattern; the interpretabil-
ity score is the product of the individual criteria. The pattern should be short
(long patterns are harder to interpret) and contain features that are important
and positive (negative clauses are harder to interpret). The fourth aspect is pre-
cision, which expresses the preference to avoid “false positives,” i.e. solutions
matching the pattern that are already assigned to one of the previous patterns.
Specifically, the length score is bL−1, where L is the number of clauses and
b = 0.95; the importance score is the average of the maximum and mean fea-
ture weights, normalized by the maximum weight over all selected features; the
positivity score is 1 − c · (proportion of positive clauses), using c = 0.5; and the
precision is the ratio of the number of solutions in the cluster to the number of
all solutions matching the pattern.

Coverage is based on the size of the cluster. A straightforward approach
would be to make the coverage score equal to the relative size r of the cluster.
However, it is more important to distinguish clusters of the sizes 3% and 6%
than clusters of sizes 53% and 56%, so it is preferable to use a nonlinear scoring
function. We use a simple, one-parametric piecewise linear function. Specifically,
the coverage score is 1−k

k r for r < k and k
1−k r+1− k

1−k for r ≥ k, using k = 0.2.

Overall Score. To combine these three criteria into a single score, we take their
harmonic mean. The harmonic mean is more sensitive to the lowest value than
the arithmetic mean, which better suits the requirement that all three criteria
should be reasonably satisfied—even perfect coverage cannot make up for poor
interpretability. If one of the criteria is more important for the considered use
case, weighted harmonic mean can be used.

3.4 Clustering Summarization

Finally, it is useful to provide a short description of each cluster, as the full pat-
terns are sometimes too long. A basic step is to remove implied features (e.g.,
for-if implies if). We can also simplify patterns by omitting some less impor-
tant clauses. For example, negative clauses like no import are only informative
if the feature appears in many solutions; otherwise, the user is likely to assume
that the feature is not used unless specifically mentioned in the pattern.

4 Application to Python Programming

We have developed a proof-of-concept implementation of the algorithm and
applied it to introductory Python programming data. The data come from an
online learning environment umimeprogramovat.cz, which is used by both high
school and university students. The environment offers quite a standard inter-
face for solving programming problems: students see a problem statement and



108 T. Effenberger and R. Pelánek

a sample testing data, write the code inside the browser, and after each sub-
mission, their solution is evaluated on hidden tests. If the submitted program is
incorrect, the student can improve it and submit again. In this work, we consider
only the correct solutions (i.e., the solutions that passed the tests).

The problems in the environment cover most topics typically included in the
first university programming course (CS1). The simplest problems are one-line
programs, such as writing a logic condition. The most difficult ones can still
be solved with up to 15 lines of code but involve non-trivial concepts like lists
and nested loops and take an average student around 15 min. The number of
collected solutions ranges from 80 to 550 per problem.

4.1 Methodology and Setting

We have developed the algorithm iteratively using 11 problems (2 358 solutions).
We have manually labeled a subset of solutions from these problems to clarify
the desirable output of individual stages and perform experiments to refine the
algorithm and find reasonable values for parameters. After this design phase, we
reached the algorithm as described above. Then, we tested the algorithm on 11
new problems (2 598 solutions) without any change to the algorithm, parameter
values, or feature weights. The number of problems may seem small, but our
dataset is actually much more diverse than the datasets used in previous work
[6,9,14], which contain just 3 or 4 similar problems.

The algorithm requires specification of features relevant for a given problem
type, together with their weights. We automatically extract about 100 features
from the abstract syntax tree. Most features correspond directly to a node in
the abstract syntax tree (e.g., for, if), but a few are derived from relationships
between multiple nodes (e.g., recursion, for-if). In addition, we use features
short and long for programs that are below the first or above the last quartile
in the number of lines for a given problem.

To set the feature weights, we used a semi-automatic approach. We started
with weights estimated by a heuristic based on how soon and how frequently the
feature appears in students’ solutions (considering the ordering of problems in
the learning environment), and then we manually adjusted some of the weights
according to our experience with feedback writing.

To set values for other parameters, we used the training set of 11 problems.
The advantage of the modular approach is that individual stages are largely inde-
pendent, and thus each parameter can be set by analyzing inputs and outputs
of a single stage. Using this approach, we reached the following setting:

– feature selection: max. 20 features, rel. size limit 0.02, min. difference 0.1,
– pattern mining : max. 1000 patterns; 12 + i features and relative size limit

0.09 − 0.01 · i in the i-th iteration (i ∈ 1, 2, . . . , 8),
– pattern scoring : unit weights in the harmonic mean; coverage score function

with k = 0.2, length score base b = 0.95, positivity effect c = 0.5,
– pattern selection: max. 10 patterns, min. score 0.05 · i in the i-th iteration.
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4.2 Results

Figure 4 contains a compact overview of the obtained clusters for the 22 prob-
lems. The problems are displayed in the same order in which they appear in
the learning environment, i.e., approximately from easier to more difficult. The
problems used for training are marked by an asterisk.

Fig. 4. Overview of clusters found by the algorithm, together with a manual rating of
their quality. The gray rectangles correspond to the remaining unclustered solutions.
(Color figure online)

Each rectangle represents one cluster: width corresponds to coverage, color to
computed homogeneity, and the label can be used for basic assessment of cluster
interpretability. For each cluster, we created a detailed report—complete pat-
terns and a sample of solutions belonging to the cluster. Based on these reports,
we manually classified each cluster into one of five categories: good solutions (a
homogeneous set of solutions that do not require feedback), strong feedback (a set
of solutions for which we can provide clear and useful advice that is applicable to
all of them), weak feedback (similar to strong feedback, but the feedback is rather
a hint or a suggestion), slightly non-homogeneous (the cluster makes sense, but is
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not completely homogeneous), and unsuitable cluster (highly non-homogeneous
or hard to interpret).

Overall, the results show that the algorithm can generate useful and inter-
pretable clusters. For many clusters, we can provide strong feedback, e.g., in
the Count A problem, there is a large “for-if,or,[i]” cluster (Fig. 1a) for
which we can provide the following feedback: “This problem can be solved more
elegantly without indexing.” Negative clauses are often indicative of useful feed-
back, especially if the feature in question is important and used by most of the
other solutions. For example, in the Rock Paper Scissors problem, the 3rd cluster
contains long solutions that use many nested ifs. Useful feedback is to show how
the solution to such problem can be greatly simplified using logical operators.
Similarly, students in the 6th cluster write complicated code without elif; they
might even not know this useful construct.

As another example, consider the simplest problem in the dataset: Big
Even (“Write a function that returns True if the larger of the two numbers
is even.”) Students were expected to solve this problem with one line of code.
These compact solutions are in the cluster “no if, and,” which is slightly non-
homogeneous due to presence of a few longer solutions. The output of the algo-
rithm reveals that students solve the problem in other ways than anticipated
and provides useful impulse for system designers (e.g., for the development of
new, scaffolded problems). The three largest clusters also afford clear and useful
feedback.

The algorithm sometimes produces clusters that are not sufficiently homo-
geneous or satisfactory. This is mostly the case of the last clusters. These cases
could be partially resolved by further tinkering with the algorithm parameters,
but partially it is a consequence of the basic greedy strategy used in the algo-
rithm. The problematic cases are distributed relatively uniformly among the
training and test set, i.e., it is not the case that we have overfitted the train-
ing set, but rather a sign that some problems would require a more tuned or
improved algorithm. However, for some cases, it would be challenging to provide
a high-quality interpretable clustering even for a human expert.

5 Discussion

The central aim of this work is to highlight the issue of interpretability in the
context of clustering of students’ solutions in problem-solving activities. For this
purpose, we propose a generic, modular algorithm and demonstrate its appli-
cation to data from introductory Python programming. The algorithm is able
to produce useful, interpretable, and actionable clusters—they provide useful
insight for content authors and allow efficient distribution of feedback to stu-
dents.

The limitation of the presented work is that it is based solely on qualitative
evaluation by the algorithm authors. The algorithm also contains quite a few
choices and parameters. Although our experience suggests that the approach
is reasonably robust and we have not observed any significant degradation of
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performance on the test set, the setting of the algorithm parameters needs fur-
ther exploration. Since the presented algorithm is able to produce reasonable
clusters, it provides a good starting point for a search for improved versions.
These improvements can take the form of better parameter optimization, but
also of non-greedy alternatives to individual stages or even significantly different
approaches. Another important direction for future work is the exploration of the
generalizability of the proposed algorithm to other problem-solving activities.
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Abstract. Scaffolding student engagement is a central challenge in adaptive
learning environments. The ICAP framework defines levels of cognitive engage-
ment with a learning activity in terms of four different engagement modes—Inter-
active, Constructive, Active, and Passive—and it predicts that increased cognitive
engagement will yield improved learning. However, a key open question is how
best to translate the ICAP theory into the design of adaptive scaffolding in adaptive
learning environments. Specifically, should scaffolds be designed to require the
highest levels of cognitive engagement (i.e., Interactive and Constructive modes)
with every instance of feedback or knowledge component? To answer this ques-
tion, in this paper we investigate a data-driven pedagogical modeling framework
based on batch-constrained deep Q-networks, a type of deep reinforcement learn-
ing (RL) method, to induce policies for delivering ICAP-inspired scaffolding in
adaptive learning environments. The policies are trained with log data from 487
learners as they interacted with an adaptive learning environment that provided
ICAP-inspired feedback and remediation. Results suggest that adaptive scaffold-
ing policies induced with batch-constrained deep Q-networks outperform heuris-
tic policies that strictly follow the ICAP model without RL-based tailoring. The
findings demonstrate the utility of deep RL for tailoring scaffolding for learner
cognitive engagement.

Keywords: Deep reinforcement learning · Cognitive engagement · ICAP ·
Adaptive learning environments

1 Introduction

Adaptive learning environments provide scaffolding in the form of hints, feedback and
remediation to improve learning experiences. Scaffolds offer temporary support to stu-
dents as they learn, which is gradually faded as students gain knowledge and achieve
mastery. Designing effective scaffolds is challenging. Determining how and when to
deliver scaffolding in different situations is critical to enabling effective learning expe-
riences [22]. A key factor in adaptive scaffolding is the cognitive engagement of learn-
ers. Chi and Wylie [7] describe cognitive engagement as an “active learning” process
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that involves higher-order thinking (e.g., analyzing, synthesizing, evaluating). Ideally,
adaptive scaffolding is designed to optimize students’ cognitive engagement, and by
extension, enhance learning outcomes.

The ICAP framework provides a taxonomy for categorizing different modes of cog-
nitive engagement: Interactive, Constructive, Active, and Passive [7]. ICAP predicts
that learning activities requiring higher levels of cognitive engagement (e.g., peer dia-
logue, writing a summary) yield improved learning outcomes compared to activities
that involve lower levels of cognitive engagement (e.g., listening passively, highlighting
text). There is strong evidence in support of the ICAP theory, and it has been used to
guide the design of lesson plans [6] and adaptive learning technologies [20], but it is
less clear how to translate ICAP into the design of individual scaffolds. High levels of
cognitive engagement require time and student motivation. A direct translation of ICAP
may not be optimal for every scaffold and knowledge component in an adaptive learning
environment. This raises a natural question: should ICAP be operationalized by adap-
tively scaffolding cognitive engagement, eliciting higher-order thinking at key moments
with the aim of enhancing overall learning outcomes, and, if so, how should we devise
models for adaptively scaffolding cognitive engagement?

Recent years have seen growing interest in using reinforcement learning (RL) to
devise policies for scaffolding student learning in adaptive learning environments [5, 8].
Deep RL, which combines RL and deep neural networks, has shown particular promise
for this task [1–3, 31]. Several studies have shown that deep RL techniques yield effec-
tive pedagogical models in adaptive learning environments [3, 15]. However, previous
work has not systematically investigated methods for adaptively scaffolding cognitive
engagement with deep RL techniques.

In this paper, we introduce a data-driven pedagogical modeling framework based on
batch constrained deep Q-networks, a type of deep RL method, to induce policies for
scaffolding cognitive engagement in adaptive learning environments. The policies drive
ICAP-based feedback and remediation following instructional videos and embedded
assessments in a learning environment for training operational command skills. The
policies are induced using interaction log data from 487 learners as they engaged with
the adaptive learning environment. We compare scaffolding policies induced with batch
constrained deep Q-networks with heuristic policies that strictly follow the ICAP model
without RL-based tailoring.

2 Related Work

RLprovides a natural framework for inducing data-driven scaffoldingmodels to improve
student learning experiences. Wang conducted a study with 30 students learning soft-
ware development concepts in a dialogue-based tutoring system and found that an RL-
based teaching assistant was able to learn from its teaching experience and continuously
improve its teaching strategies online [29]. Georgila and colleagues [10] found that
RL-based models fostered increased confidence among learners through adaptive scaf-
folding to support the development of interpersonal skills. Their results suggest that
the induced policies matched, or outperformed heuristic scaffolding models designed
by human experts. Similar findings have been reported in other studies and learning
environments investigating RL-based pedagogical models [23, 33].



Adaptively Scaffolding Cognitive Engagement 115

Over the past several years, deep RL techniques have shown significant promise
for inducing scaffolding policies in adaptive learning environments. For example, Wang
and colleagues [30] found that adaptively scaffolding student learning in a narrative-
centered learning environment for middle school microbiology using deep RL models
trained with simulated students outperformed baseline methods. Additional work has
investigated offline deep RL methods, where RL models are trained with previously
collected data rather than simulations to induce scaffolding policies. For example, Aziz-
soltani and colleagues [4] found that inferring immediate rewards usingGaussian process
estimation to train offline deep RL-based pedagogical models can significantly improve
learning gains in students. To date, deep RL techniques have not been used to induce
policies for adaptively scaffolding cognitive engagement with ICAP-inspired feedback
and remediation in adaptive learning environments.

The ICAP framework predicts that as students become more actively engaged with
learningmaterials, moving frompassive to active to constructive to interactive behaviors,
their learning will increase. Support for the ICAP framework has been found in a number
of studies [18, 20, 32]. Mitrovic et al. [20] found that using interactive visualization and
prompts to enforce constructive engagement in a video-based learning environment led
to high levels of confidence and lower levels of frustration during the learning episode
compared to students who engaged in passive learning behaviors. Few studies have
investigated how adaptive ICAP-inspired scaffolding applied at a step-based or micro-
loop level in adaptive learning environments supports student learning [26].

3 Dataset

To induce data-driven pedagogical models for delivering ICAP-inspired feedback and
remediation, we utilize log data collected from an online study involving 487 learners
(54% male, 42% female) recruited through Amazon Mechanical Turk who interacted
with an adaptive learning environment for training operational command skills. The
learning environment was built using the Generalized Intelligent Framework for Tutor-
ing (GIFT), an open-source domain-independent framework for designing, deploying,
and evaluating adaptive learning technologies [25]. The learning environment includes
a series of instructional videos that cover core concepts and principles associated with
operational command. Following each video, learners answered a series of multiple-
choice questions. An incorrect response to a question prompted the learning environ-
ment to deliver ICAP-inspired feedback and remediation that required the learner to
either (1) passively re-read a transcription of the video that was just presented in the
lesson video, (2) re-read the transcription of the video and actively highlight the por-
tion of text that answered the recall question that was just missed, or (3) re-read the
video transcription and constructively summarize the answer to the question in their
own words. The learning environment did not have built-in support for the interactive
mode of engaging with feedback and remediation, so that component of ICAP was
omitted. The active and constructive remediation prompts included expert highlight-
ing/summaries that asked students to self-evaluate the accuracy of their responses. The
learning environment also included a “no remediation” prompt that provided learners
with a simple feedback message stating they incorrectly answered the question.
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After completing a remediation exercise, learners were presented again with the pre-
viously attempted question. If they answered the question correctly, then they advanced
to the next question or video lesson. Learners continued to receive remediation, poten-
tially of different types, until they correctly answered the question. The learning envi-
ronment utilized a random policy to determine the type of ICAP-inspired remediation
learners received each time they missed a question (irrespective of their number of
attempts), although a software error caused passive and no remediation instances to be
under-sampled.

In all, learners completed 39 embedded assessments, which were distributed across
four units that typically take 1–2 h in total to complete. The adaptive learning envi-
ronment also included a set of web-based surveys designed to collect demographic
information and a set of pre- and post-test items that measured student learning as a
result of completing the course.

The resulting dataset included a total of 4,998 instances of ICAP-inspired feedback
and remediation. On average, learners received 10 instances of remediation while com-
pleting the course (SD= 12.7;min= 1,max = 113). Table 1 summarizes the distribution
of remediation instances encountered throughout the course. A paired t-test showed that
the pre-test scores (M = 4.18, SD= 2.30,min= 0,max = 11) and the post-test scores (M
= 8.32, SD = 2.96,min = 0,max = 12) were significantly different (p < 0.001), imply-
ing the adaptive learning environment improved knowledge of operational command
concepts and skills among the participants.

Table 1. Distribution of ICAP-based remediation instances.

Remediation Total Chapter 1 Chapter 2 Chapter 3 Chapter 4

None 470 (9.40%) 155 (3.10%) 141 (2.82%) 141 (2.82%) 33 (0.66%)

Passive 445 (8.90%) 145 (2.90%) 136 (2.72%) 127 (2.54%) 37 (0.74%)

Active 2074 (41.50%) 684 (13.65%) 587 (11.74%) 639 (12.79%) 166 (3.32%)

Constructive 2009 (40.20%) 626 (12.53%) 606 (12.12%) 611 (12.22%) 166 (3.32%)

4 Adaptive Scaffolding with Batch Constrained Deep Q-Networks

In this section,we present a deepRL framework for creating policies to scaffold cognitive
engagement in adaptive learning environments. Specifically, we describe our deep RL-
based pedagogical model architecture, our approach to formalizing adaptive scaffolding
as a Markov decision process, and a pair of metrics for evaluating policies for the
delivering ICAP-inspired feedback and remediation.

4.1 Deep RL-Based Pedagogical Model Architecture

Todevise data-driven policies for adaptively scaffolding students’ cognitive engagement,
we used deep Q learning, a type of RL technique that leverages deep neural network-
based function approximation to represent the values of input states [21]. Q-learning is
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a model-free RL algorithm where the goal is to learn an optimal policy π∗ based on the
optimal action-value function Q∗(s, a) estimated from sample data without use of an
explicit model of the task environment [27]. Starting from state s ∈ S and taking action
a ∈ A while getting reward r ∈ R, the Q values are defined as the expected cumulative
reward following a policy π that generates a set of actions at each successive state. To
reduce extrapolation errors often seen in offline RL, we utilized batch constrained deep
Q-networks [9].

Deep Q-networks (DQNs) follow an off-policy learning approach that involves iter-
atively sampling from a finite experience buffer to greedily estimate Q values according
to the Bellman equation. A loss function (Eq. 1) is defined to train a deep neural network
to estimate the model’s Q-values:

Loss(θ) = E[(y − Q(s, a; θ))2] (1)

where θ represents the set of weights in the neural network.
A variant of DQNs is the Double DQN, which uses two separate networks to reduce

overestimation bias in the DQN by separating the action selection and action evaluation
components of the model [11]. This provides improved stabilization and convergence
while the model is trained. In Double DQNs, two neural networks with identical archi-
tectures are used, namely, the target network (θ) and the online network (θ ). The online
network is trained on every iteration while the target network is frozen for a fixed number
of iterations. During training, the online network is used to select the next action a′ ∈ A

based on the next state s′ ∈ S, and the target network is used to evaluate the Q value of
the action:

y = r + γQ(s′, argmaxa′∈AQ
(
s′, a′; θ

); θ) (2)

whereγ ∈ [0, 1] is the discount factor that controls the contribution of future rewards.
DQNs are often used with an experience replay buffer to keep track of a finite set of

recent training observations [21]. During training, transitions are sampled from the buffer
randomly. Prioritized experience replay [24] prioritizes the sampling of transitions based
upon the current temporal difference errors. This additional priority makes the network
more data efficient [12] by ensuring quick convergence. Priority is calculated as follows:

tpriority = ∣∣{r + γQ(s′, argmaxa′∈AQ
(
s′, a′; θ

); θ)
} − {Q(s, a; θ)}∣∣ω (3)

Here, tpriority is the priority of a transition t and ω is a hyperparameter.
In batch RL, also known as offline RL, the experience replay buffer remains fixed.

This approach is often necessary in RL applications in adaptive learning environments,
where a training corpus is collected from students prior to employing RL, and additional
data collection is not feasible during theRLprocess.With limited data,DQNsoften suffer
from divergence issues due to extrapolating Q values outside of the data distribution.
Batch constrained DQNs restrict such extrapolation errors by only allowing actions that
are evident in the available data using a probabilistic sampling technique [9]:

y = r + γQ(s′, argmaxa′|(a′|s′)/maxa
∧πb(a

∧

|s′)>τ
Q

(
s′, a′; θ

); θ) (4)

Here, πb is the policy used to collect the data and τ is a probability threshold.
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Deep neural networks within batch constrained DQNs can be implemented using
different neural architectures. In this work, we implement two commonly used architec-
tures: fully connected (FC) layers and long short-term memory (LSTM) layers. In FC
layers, each neuron is a perceptron that calculates a weighted sum of the input units to
produce an output value through an activation function. All inputs are connected to all
neurons in the first layer, all of the output of the first layer is fully connected to input
neurons of the second layer, and so on until the final output layer.

LSTMs are a specialized version of recurrent neural networks that use long term
temporal dependencies to avoid common issues in neural networks such as the vanishing
and exploding gradient problems [13]. An LSTM unit consists of a memory cell state
and three gates: a forget gate, an input gate, and an output gate. These pieces together
control the flow of information during model training. Notably batch constrained DQNs
with LSTM networks support sequential input representations, which enables them to
keep track of (and forget) previous inputs and hidden states.

4.2 States, Actions and Reward

To formalize the task of inducing a policy for scaffolding cognitive engagement in an
adaptive learning environment, we defined a Markov decision process, which involves
controlling a set of actions A based on some state s ∈ S to optimize the accumulation
of reward r ∈ R. Markov decision process provide a standardized mathematical repre-
sentation for RL tasks. We define the state (S), action (A) and reward (R) components
of the Markov decision process as follows.

State (S). We devise the state representation by extracting 31 features from learners’
log data, which are divided into 3 groups: (1) survey features, (2) video playback fea-
tures, and (3) remediation engagement features. The survey features include gender,
age, education level, content familiarity, domain interest, and pre-test score on a con-
tent knowledge assessment. Four video playback features are extracted: time spent on
the last video, average time spent on videos, whether learners received automated feed-
back about their time spent on the last video, and time spent on the feedback. Twenty
remediation features are extracted: the previous type of remediation delivered, the total
number of remediation instances delivered for each ICAP category, the average time
spent engaged in the remediation activity, the average time spent on all previous reme-
diation activities, and features reflecting how long learners spent answering the recall
questions. We normalize each feature to range between [0,1] to improve stability when
training the DQNs. Batch constrained DQNs require a discrete state space to calculate
the probability of each state-action pair. Therefore, we cluster the set of state-action pairs
into 5 groups using k-means clustering. We visually select the number of clusters using
the distortion elbow method [17]. These clusters are used when sampling for the batch
constrained DQN action probabilities.

Action (A). At each pedagogical decision point (i.e., after a missed question), there
are 4 possible actions (i.e., ICAP-based remediations) that can be selected: constructive
(re-read the video transcription and summarize), active (re-read the video transcript and
highlight relevant section), passive (re-read the video transcript), or no remediation.
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Reward (R). Each participant completed a 12-item pre- and post-test to assess content
knowledge about operational command concepts. We use learners’ pre- and post-test
scores to calculate normalized learning gains (NLG) associated with each sequence of
ICAP-inspired remediation instances [19]. Note that, for each student, we will only have
a single NLG value at the end of their episode, which is the delayed reward [4]. Our
reward value is a real number and ranges between 0 to 100.

4.3 Evaluation Metrics

In batch constrained DQNs, the optimal policy (π∗) usually has a significantly different
distribution of state-action pairs than the behavioral policy (πb) that was used to collect
the training data. Performing RL policy evaluation with data collected under a different
policy is known as off-policy evaluation [28]. We use two evaluation metrics, Expected
Cumulative Reward and Doubly Robust.

Expected cumulative reward (ECR) computes the average expected reward associ-
ated with a particular policy π beginning at the initial state si ∈ S in a given dataset D
of the RL task. Specifically, ECR reports the average Q value over all initial states as
follows:

ECR(D) = 1

N

∑N

i=1
maxa∈AQ(si, a) (5)

where N is the total number of episodes and si is an initial state for the ith episode.
Doubly Robust (DR) evaluation [14] is an alternative technique that combines the

low variance of importance sampling estimation and the low biases of model-based
estimation into a single metric according to the following equation:

DR(D) = 1

N

∑N

i=1

∑∞
t=0

γ t
t∏

l=0

π(al |sl)
πb(al |sl)

(
Ri
t − Q

(
sit, a

i
t

))
+ γ t

∏t−1

l=0

π(al |sl)
πb(al |sl)V (sit)

(6)

The Q function and the value function (V ) are based on a given policy π . Doubly
Robust provides unbiased estimates if a model is accurate and/or provides low variance
estimates if the behavior policy is known.

5 Results and Discussion

To devise deep RL-based policies for adaptively scaffolding cognitive engagement, we
created pedagogical models with batch constrained double DQNs (BCQs) using prior-
itized experience replay buffers. All models and analyses were implemented in Python
using the Scikit-learn and Keras packages with Tensorflow backend.We select τ = 10%
for the batch constrained hyperparameter because the training data contains 8.9%passive
remediations and 9.4% no remediations, resulting in any τ greater than 12% never apply-
ing constrained sampling and any value below 8% always enforcing random sampling.
We use ω = 0.5 as our priority exponent following prior work [12] and use γ = 0.95
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with a minibatch size of 128. We copy the parameters from the online network to the
target network every 100 epochs. All models are trained for 20,000 epochs, repeated 5
times with different random seeds. We do not split our dataset into a training and testing
set for validation as it is not necessary in batch RL [28].

We compare two alternative neural network architectures in the BCQ models: FC
networks and LSTM networks. The FC BCQ models utilize four fully connected layers
with 128 units per layer using ReLU activation functions. The LSTM BCQ models
utilize 3 LSTM layers and a fully connected layer at the end, each with 128 units using
ReLU activation functions. The output layer always uses a linear activation function to
output Q values. For both architectures, a learning rate of 0.001 was utilized with the
Adam optimizer [16] and L2 regularization.

For both BCQ models we explore three types of input: input with only the current
state (FC-1 or LSTM-1), input with the current state and the previous state (FC-2 or
LSTM-2), and input with the current state and previous two states (FC-3 or LSTM-
3). In the FC BCQ models, the input states are concatenated and encoded as a single
observation. In LSTM BCQ, the input states are provided sequentially.

We include three baseline models for the purpose of comparison in our analyses.
All baseline models use a similar architecture as the FC BCQ models, but instead of
following a greedy approach to action selection based upon the Bellman equation during
model training (i.e., select the action with the maximum Q value in the next state), each
baseline model takes a predetermined action while learning the Q functions as follows:

y = r + γQ(s′, abase; θ) (7)

Fig. 1. Comparison between BCQ and
ICAP-inspired baseline models.

Here abase is a constructive remediation for
the constructive baseline model, and abase is
no remediation for the no remediation base-
line model. For the random baseline, abase

involves selecting an ICAP-inspired remedi-
ation according to a random policy. We select
these baselines to serve as heuristic-based
models that strictly follow ICAP without RL-
based tailoring. τ is set to 0 for the baseline
models.

We investigated the learning curves of dif-
ferent models based upon their ECR values.
We found LSTM-2 BCQ performs slightly
better than the LSTM-1 and LSTM-3 mod-
els, whereas little difference was observed
between the three FC BCQ models. Based
upon these findings, we focus our remaining
analyses on FC-1 and LSTM-2.
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As shown in Fig. 1, FC-1 and LSTM-2 both perform better than the three baseline
models that strictly follow ICAP-inspired heuristics. Among the baselines, we observe
that a random policy yields the lowest ECR and a constructive policy yields the highest.

To investigate the models’ behavior after they converge to a stable policy, we exam-
ined their performance during the last 2000 training epochs (10% of the total training).
Results are shown in Fig. 2. We observed that FC-1 and LSTM-2 scored higher than all
other baselines in terms of both the ECR and DR evaluation metrics. Running a pairwise
Tukey HSD test reveals significant differences (p-value < 0.001) between all models
except between FC-1 and LSTM-2 for both the ECR and DRmetrics. These results sug-
gest there are no observed significant differences between the FC-1 BCQ and LSTM-2
BCQ models, but both significantly outperform all of the baselines.

Next, we examined the number of times each type of ICAP-inspired remediation
was selected by the different models. Once again, we use the last 2000 epochs for this
analysis. For FC-1, we find that the most frequently selected action is Constructive (M
= 2195, SD = 573), with Active being the second most frequent (M = 1183, SD = 450)
and Passive being the third (M = 962, SD = 674). (All pairwise comparison p-values
are less than 0.05). For LSTM-2, there are no significant differences observed between
the number of Active (M = 1041, SD = 555), Passive (M = 1041, SD = 618) and
No Remediation (M = 1003, SD = 566) actions. However, both models recommend
Constructive remediation significantly more often than other types of remediation (p =
0.001).

To interpret these results, it is useful to revisit our original research question: should
ICAPbe operationalized by adaptively scaffolding cognitive engagement, and, if so, how
should we devise models for adaptively scaffolding cognitive engagement? In this anal-
ysis, higher ECR and DR values suggest a remediation policy has the potential to yield
increased student normalized learning gains. Our findings indicate that the constructive
heuristic policy performs the same or better than the no remediation and random policies,
respectively (Fig. 1 and Fig. 2). This is consistent with the ICAP model; feedback and
remediation that elicits higher cognitive engagement yields higher learning gains than
policies that elicit lower or randomized cognitive engagement. Upon comparison with
adaptive ICAP-inspired remediation policies (i.e., FC-1 BCQ and LSTM-2 BCQ), we
find that the adaptive policies perform better than the non-adaptive constructive policy
on the ECR and DRmetrics (Fig. 1 and Fig. 2). This suggests that a deep RL-based adap-
tive approach to operationalizing ICAP to design scaffolding policies has promise for
promoting increased learning compared to non-adaptive scaffolding policies. Notably,
we see that the adaptive policies select constructive remediation more frequently than
other types, which is further consistent with ICAP (Fig. 2).

There are limitations of the work. Most notably, the ECR and DR metrics are cal-
culated from our existing dataset, which was collected according to a random policy. It
is possible that the distribution of our data may differ from the true distribution when
deep RL-based remediation policies are implemented in a run-time setting. This high-
lights the importance of future work implementing adaptive ICAP-inspired remediation
policies at run-time and evaluating their impact on student learning outcomes. Despite
these limitations, the results point toward the potential for improving student learning
outcomes by combining ICAP with RL-based tailoring using batch constrained DQNs.
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Fig. 2. Performance comparison between BCQ and baseline models during the last 2,000 training
epochs.

6 Conclusions and Future Work

Scaffolding cognitive engagement is a key challenge in adaptive learning environments.
The ICAP framework predicts that increased cognitive engagement will yield improved
learning, but it is unclear how to best translate the guidance provided by this theory
into the design of scaffolding in adaptive learning environments. We utilized batch con-
strained deep Q-networks to induce policies for presenting learners with ICAP-inspired
scaffolding in an adaptive learning environment. Empirical analysis of converged RL
policies indicates that batch constrained deepQ-networks yield adaptive scaffolding poli-
cies that outperform heuristic-based policies which exclusively select constructive scaf-
folding, no scaffolding, or scaffolding at random.Policies inducedwith batch constrained
deep Q-networks also select constructive scaffolding more frequently than active, pas-
sive, or no scaffolding. These results (1) support the ICAP framework, and (2) suggest
that adaptively scaffolding cognitive engagement using deep RL-induced policies shows
promise for optimizing student learning outcomes.

There are several promising directions for future work. First, future research should
investigate the impact of additional reward and state features in deep RL-based policies
to identify their impact on student learning and engagement. Second, it will be instructive
to examine howmultimodal data such as video-based analysis of student engagement can
be used to augment RL-induced policies for scaffolding student engagement. Finally,
it will be important to evaluate the RL policies by implementing them in a run-time
learning environment and investigating their impact on student learning outcomes.
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Abstract. A common scaffolding approach in computer-supported col-
laborative learning is the assignment of specific roles to the participants
in online asynchronous discussions. Previous work has demonstrated how
this type of scaffolding can result in student contributions of greater
depth and quality. However, since students necessarily experience the
roles in varying orders, it is important to consider whether the order-
ing impacts the outcome. This paper addresses the issue by examining a
scaffolding intervention that was deployed in an asynchronous online dis-
cussion forum, where students were assigned to lead the discussion in one
thread as the ‘expert’ and to participate in other threads by asking ques-
tions. A network analytic approach was used to visualise and quantify
several potential ordering effects within the intervention. The constructs
of cognitive presence and cognitive engagement, from the Community
of Inquiry and the ICAP frameworks, were used together to measure
the depth and quality of the discussion contribution expressed in each
message. The analysis confirmed that the contributions made while the
student was in the ‘expert’ role scored significantly higher for both con-
structs, but found that the order in which students took on each role
had little impact on the quality of their contributions to other threads.
This result contrasts with earlier work on single-duty roles that found
an advantage in being assigned certain roles early in the discussion, and
suggests that instructors should feel confident in rotating more complex
user roles between students.
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1 Introduction

Asynchronous online discussion forums are a common feature in virtual learning
environments. Stand-alone discussion platforms such as Piazza1 are also used
to manage students’ questions, in both online and classroom-based courses. The
discussions that take place in these forums can help to build a sense of com-
munity among learners [6] – particularly important when in-person interaction
was severely restricted due to a global pandemic. Time-stamped transcripts of
the messages that are exchanged can also be used to inform research into how
effective learning takes place through discussion.

Research in computer-supported collaborative learning (CSCL) has shown
that participation in asynchronous discussions can be beneficial to participants,
giving them opportunities to increase the depth of their own cognitive engage-
ment through collaborative knowledge construction [12–14] as well as fostering
social belonging [6]. However, in order to achieve these benefits, it is often nec-
essary to provide explicit guidance in the form of scaffolding [11,15,18]. Prior
work [26] suggests that when students are assigned a role that requires them to
summarise the contributions of others, there is a positive effect on their breadth
of listening while they are ‘in-role’, but the effect is not sustained afterwards.
Other studies [7,21] have suggested that the timing of role assignment can impact
outcomes, with earlier assignment seen as more beneficial for some roles.

The depth and quality of student participation in asynchronous online discus-
sions has been examined and quantified using many different theoretical frame-
works (e.g. Bloom’s Taxonomy [2], the SOLO taxonomy [1], The Community
of Inquiry framework (CoI) [13,14], and the Interactive-Constructive-Active-
Passive (ICAP) framework [3]). Of these, only CoI was designed specifically for
the online context. Most previous studies have focused on a single framework,
while a few have used a combination of two or more in order to provide a richer,
multi-dimensional analysis of the data [8,9,19,22].

The specific type of scaffolding intervention considered in this work is an app-
roach centred on assigning ‘roles’ to discussion participants. The study presented
here investigated how the effect of the role-based scaffolding was moderated by
the order in which participants experienced the different roles. Messages were
classified using both the phases of cognitive presence from CoI and the modes of
cognitive engagement in ICAP.

2 Background

2.1 The Community of Inquiry Framework

The Community of Inquiry (CoI) framework defines three ‘presences’ that sup-
port learning in an online community: social presence, teaching presence, and cog-
nitive presence [14]. Of these, cognitive presence is considered to be the most fun-
damental to educational success. Discussions are expected to progress through

1 https://piazza.com.

https://piazza.com
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its four phases (Triggering Event, Exploration, Integration, and Resolution) over
time (Table 1), and the phases have been used as a measure of the depth and
quality of student participation in asynchronous discussions [8,9]. In the ideal
case, a discussion would start with a Triggering Event that defines the problem,
move through an Exploration phase where new ideas are considered, then bring
some of those ideas together in the Integration phase, and finally achieve con-
sensus on a solution in the Resolution phase. In reality, progression through the
phases is seldom linear. Many discussions do not reach the Resolution phase.

Table 1. The four CoI phases of cognitive presence in ascending order, plus the Other
label, which can be used where a message does not display any cognitive presence.

Short label Phase of cognitive presence Example behaviour

TRIG Triggering Event Asking a question or posing a problem

EXP Exploration Exchanging ideas

INT Integration Integrating ideas and constructing meaning

RES Resolution Reaching consensus or suggesting a new hypothesis

OTH Other Commenting with no sign of cognitive presence

2.2 The ICAP Framework

The ICAP framework [4] has been used widely, in classroom-based studies as well
as online. It defines four modes of cognitive engagement, based on observable
student behaviours: Interactive, Constructive, Active, and Passive. Each mode
represents a qualitatively different type of knowledge growth. Interventions and
activities that targeted the higher modes of cognitive engagement were shown
to achieve greater learning gains. Several recent studies adapted and expanded
the original framework [8,9,25,28] in the context of asynchronous online discus-
sions. The Constructive and Active modes were each subdivided and messages
of Affirmation were treated separately (Table 2).

3 Research Question

Previous studies have shown how external scripts such as assigned roles can help
students to develop skills relating to collaboration and social knowledge con-
struction [7,11,21,24,27]. However, there is some evidence that the effects may
not persist after the intervention has ended [26]. Some roles have been shown
to be particularly beneficial to those who take them on (e.g. ‘summarizer’ [21]).
Other single-duty roles have been shown to be detrimental to learning (e.g.
‘source-searcher’ [7]) when used in isolation. It is therefore seen to be important
to rotate single-duty roles among students and to consider the use of composite
roles that combine several lower-level duties [15,27]. The timing of role assign-
ment has also been seen to impact learning outcomes [7]. There is thus a need
for research into potential ordering effects within role-based interventions, since
participants necessarily experience the roles in varying orders.
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Table 2. The extended set of ICAP modes of cognitive engagement in descending
order, plus the Off-task label, used for messages displaying no cognitive engagement.

Short label Mode of cognitive engagement Example behaviour

I Interactive As for C1, in response to earlier message

content

C1 Constructive Reasoning Displaying explanation or reasoning about

the current topic

C2 Constructive Extending Introducing new content to the discussion

F Affirmation Affirming what was said in an earlier message

A1 Active Targeted Referencing specific previous content

A2 Active General Showing other signs of being engaged with

content

P Passive Reading messages without responding

O Off-task Commenting with no relation to the topic/

course

Earlier studies looked at the effects of role assignments using a single mea-
sure of the quality of knowledge construction [21], sometimes in combination
with final exam scores [7]. Recent work has shown the benefits of integrating
insights from multiple frameworks for analysing aspects of student participation
in asynchronous discussion tasks [8,9,19,22]. The research question addressed in
the present study was therefore:

RQ: How do ordering effects between roles affect the depth and quality of stu-
dent contributions to an asynchronous discussion task, as measured by both the
CoI phases of cognitive presence and the ICAP modes of cognitive engagement?

4 Method

4.1 Description of the Data

The role-based scaffolding intervention examined in this study was deployed in
a credit-bearing distance-learning course in Software Engineering over six course
offerings (2008–2011). The discussion task accounted for 10% of the course grade
and helped students to develop their own research questions. Two complex user
roles were defined, with students expected to take on both roles during the task.

– Research Expert : prepare and upload a presentation about a relevant research
paper of their choice, then lead a discussion on its content on a dedicated
thread in the discussion forum; and

– Practising Researcher : contribute to discussions about other students’ pre-
sentation topics.

Both roles thus incorporated duties defined in earlier work as ‘summarizer’,
‘source searcher’, and ‘theoretician’ [7,21,27]. The Research Expert role addi-
tionally required the student to undertake ‘moderator’ and ‘topic leader’ duties.
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The discussion task ran during weeks 3–6 of each course offering. Every stu-
dent was expected to take on the Research Expert role once and the Practising
Researcher role several times. Approximately one-third of the students took on
the Research Expert role in each of the first three weeks of the task. The dis-
cussions that followed were asynchronous and ranged from 3 days to 27 days
in duration. The median thread duration was 13 days. All discussion threads
remained open until the end of the task. It was thus very common for a student
to contribute to one or more threads as a Practising Researcher at the same
time as they were acting as the Research Expert in their own thread.

In order to examine possible ordering effects in the present study, we con-
sidered two different ways of grouping messages by time, and another metric
derived from those and intended to capture role order more directly (Table 3).

– Thread Week: The week within the discussion task when the message thread
was started – even though the message itself may have been posted later. This
allowed us to assess whether message quality changed when more time was
available to contribute to a thread before the task ended.

– Expert Week: The week within the discussion task when the student who
wrote the message started a discussion thread in the role of Research Expert .
This allowed us to compare messages from students who experienced the
Research Expert role at different times during the course.

– Role Order: The label BeforeExpert , WhileExpert , or AfterExpert , based on
whether the Thread Week for the message was earlier, in the same week, or
in a later week, compared with the Expert Week. This allowed us to assess
the effects of role ordering more directly.

Table 3. Labels assigned to messages in threads where students A, B, C, and D took
on the Research Expert role in the first, second, second, and third week, respectively.

Thread Student Thread Week Expert Week Role Order

Expert-A B 1 2 BeforeExpert

Expert-B C 2 2 WhileExpert

Expert-D A 3 1 AfterExpert

Our analysis focused on the messages sent by students while they were in the
Practising Researcher role, for two reasons: we wanted to distinguish potential
role ordering effects from the large effect of the role assignment intervention
itself [9,15]; and each student was only the Research Expert once. We excluded 9
messages that were sent by participants who never took on the Research Expert
role, leaving 891 messages from 84 threads (Tables 4 and 5).

Each message was assigned one label from each theoretical framework, based
on its textual content. Two expert coders labelled the messages with the CoI
phases of cognitive presence (Table 1), achieving high levels of agreement (98.1%
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Table 4. Counts of unique participants, threads, and messages.

Thread Week Expert Week

Week Threads Messages Participants Messages

1 32 352 26 346

2 30 288 30 312

3 22 251 22 233

Total 84 891 78 891

Table 5. Message counts in the Role Order groups.

BeforeExpert WhileExpert AfterExpert Total

Messages 310 304 277 891

agreement, Cohen’s κ = 0.974). A second pair of independent coders assigned
labels from the extended set of ICAP modes of cognitive engagement (Table 2),
achieving ‘substantial’ inter-annotator agreement (Cohen’s κ = 0.623) [17].

For the purposes of the present study, the Interactive and Constructive
Reasoning labels were combined together and only Constructive Reasoning was
used. The primary difference between them is that a message can only be labelled
as Interactive if it is a direct response to the substantive content of a previ-
ous message (Table 2). While Interactive messages were relatively common for
a Research Expert , there were limited opportunities for a Practising Researcher
to interact in such a way during the discussion task presented in this study.

4.2 Epistemic Network Analysis

Epistemic Network Analysis (ENA) [23] is a network analytic approach that
is designed for analysing the connections between small sets of concepts in a
densely connected network. It allows sub groups to be compared both visually
and statistically, and has been widely used in studies of online discussions [16,29]
in general, and specifically for the constructs of cognitive presence and social
presence in a Community of Inquiry [10,19,20].

Co-occurrences of labels in the data are used to construct a high-dimensional
concept network. The conversation parameter defines which connections are
included in the analysis. The network is projected down onto the two most infor-
mative dimensions, while maintaining the mathematical relationships between
concepts, using singular value decomposition. The relative positions of the con-
cept nodes in the resulting projection space makes the space itself interpretable,
because concepts that share a pattern of connections will tend to be located close
together [23]. A single point in the projection space represents the weighted mean
of the connections in one sub-network, defined by the unit of analysis parameter.
For example, this could be all the messages in a thread.
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In the present study, we set the conversation parameter to be a single mes-
sage. This meant that the only connections included in the network were the pairs
of labels from the two theoretical frameworks: one label from the CoI phases of
cognitive presence and one from the ICAP modes of cognitive engagement. We
first grouped the messages by student and thread, so that all the messages sent
by the same student in a single thread were aggregated together. As we looked
at the order-based groupings in turn, the messages were aggregated further.

To become familiar with the general associations between the individual CoI
phases of cognitive presence and the ICAP modes of cognitive engagement in this
data set, we first explored the overall mean network based on all the messages
sent in both roles. Noting the locations of the nodes in the overall mean network
allowed us to interpret the space in terms of the framework constructs. The same
projection space was subsequently reused for the analyses of messages sent by
Practising Researchers, broken down by each of the different groupings (Thread
Week, Expert Week, and Role Order). The messages were aggregated by student,
thread, and group to create the data points for each network. We used Mann-
Whitney tests to determine whether pairs of groups were significantly different
along either of the two axes of the projection space.

5 Results

Figure 1 shows the average ENA network across all messages. The framework
constructs are shown using their short labels (Tables 1 and 2) to reduce visual
clutter. The X axis accounts for 21.7% of the variance in the data and the Y axis
accounts for 20.2%. The X axis primarily distinguishes between the early phases
(Triggering Event and Exploration) and the later (Integration) phase of cogni-
tive presence, while the Y axis distinguishes linearly between the three highest
ICAP modes of cognitive engagement. The direct effect of the role assignment
intervention is clearly visible. The points representing messages sent by students
in the Research Expert role are all found toward the upper left of the plot, in
the vicinity of the Constructive Reasoning (C1) node. In contrast, the messages
sent by those in the Practising Researcher role are dispersed throughout the
projection space, with the group mean near the centre of the plot.

Figure 2 shows the projection networks comparing messages sent by Prac-
tising Researchers, aggregated by Thread Week, Expert Week, and Role Order.
These networks all use the same projection space as Fig. 1. The axes account for
slightly less of the variance in the data: 21.1% for the X axis, and 20.1% for the
Y axis. In each case, the group means appear close together, indicating that any
differences are small. A series of Mann-Whitney tests showed that there were
no statistically significant differences at the α = 0.05 level between any of the
Thread Week values in Fig. 2(a). In addition, ExpertWeek1 and ExpertWeek2
were not significantly different from each other in Fig. 2(b). The small differ-
ence seen between ExpertWeek2 and ExpertWeek3 along the Y axis was not
considered significant after Bonferroni correction. However, ExpertWeek3 was
significantly different at the α = 0.05 level along the Y axis (V2) from Expert-
Week1 (U = 24809.00, p = 0.0007, r = 0.18). This indicates that students who
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Fig. 1. ENA network constructed by aggregating the label co-occurrences within the
messages sent by each student in each thread across both user roles. The positions of the
black nodes indicate the locations of each framework construct in the two-dimensional
projection space. Edge thickness indicates connection frequency. The pale blue and pale
red points indicate the weighted mean of each student’s messages: blue for Practising
Researchers and red for Research Experts. Group means are shown as squares in darker
blue and red respectively, labelled with the relevant user role. (Color figure online)

were in the last group to take on the Research Expert role tended to contribute
to other threads at a lower level, as measured by the ICAP modes of cognitive
engagement, compared to their counterparts in the first group. The effect size is
small [5]. There was no significant difference along the X axis.

Considering the effect of Role Order in Fig. 2(c), a series of Mann-Whitney
tests confirmed that, after Bonferroni correction, the only statistically significant
difference between the groups was between the AfterExpert group and the the
BeforeExpert group along the Y axis (U = 29967.00, p = 0.0094, r = 0.13).
This indicates a small effect size for Role Order, corresponding to a tendency for
students to demonstrate higher levels of the ICAP modes of cognitive engage-
ment in threads that were started in the week(s) after their own expert thread,
compared with the threads that were started in the week(s) before their own.
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Fig. 2. ENA networks constructed using the messages sent in the Practising Researcher
role, grouped by (a) Thread Week, (b) Expert Week, and (c) Role Order, in addition
to student and thread. The points are coloured according to the relevant group: (a)
the week within the task when the thread started; (b) the week within the task when
the message author started acting as Research Expert ; (c) the Role Order label. In
both (a) and (b), week 1 is shown in red, week 2 in blue, and week 3 in purple. In
(c), BeforeExpert is shown in blue, WhileExpert is in red, and AfterExpert is in purple.
Group means are labelled and shown as squares in the appropriate colour. (Color figure
online)

6 Discussion

The results of this study confirmed the ability of a role-based scaffolding inter-
vention to effect positive change, as seen in previous work [9,15] where messages
sent by students in the Research Expert role achieved greater depth on both the
CoI and ICAP frameworks, compared with those sent by students in the Prac-
tising Researcher role. However, there was little evidence of ordering effects. No
significant differences were found between the message threads that were started
in the first week of the activity compared to those in the final batch, despite the
much longer time available for students to develop a deeper discussion.
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The students in the present study were always assigned to a role, and these
were composite roles that incorporated several of the low-level single-duty roles
investigated in previous work. We noted a small effect where the group of stu-
dents who were last to take on the Research Expert role demonstrated lower
cognitive engagement in their contributions to other threads. One explanation
for this could be that the effort of leading their own thread in the final week,
while also ensuring that they had fulfilled the participation requirements, led to
shallower engagement. Another potential explanation is the timing effect found
in prior work [7], where a cohort that began without roles and had them assigned
later performed worse than a cohort that had roles from the beginning. It is pos-
sible that the group who took on the Research Expert role last did not fully
engage with the Practising Researcher role earlier.

A small effect was also found in the analysis of Role Order. Students in the
Practising Researcher role, contributing to threads that started in the weeks after
their own Research Expert thread started, scored higher on the ICAP modes of
cognitive engagement. This could be because those students had time to devote
to asking deeper questions, having finished with their own presentation. It could
also be because they had learned from the experience of being in the Research
Expert role and used this knowledge in later situations [7].

Since the discussion task in the present study only ran for four weeks, we
were not able to discover any longer-term effects on behaviour. Analysis of dis-
cussions that took place over a longer period could produce different results,
as participants grow in confidence and develop their skills, or perhaps become
disengaged. The nature of the discussion task meant that students were often
managing both roles in parallel: leading their own thread as a Research Expert ,
while at the same time contributing to other threads as a Practising Researcher .
More specific instructions were given to participants in the later course offerings
regarding the minimum contribution expected from students in the Practising
Researcher role. The present study did not distinguish between those cases.

7 Conclusion

In the role-based scaffolding intervention presented in this study, the effects of
role order were found to be small – especially in the context of the large pri-
mary effect of the intervention in improving student contributions according to
two separate measures of depth and quality. This result suggests that instruc-
tors should feel confident in assigning complex roles and rotating them between
students, without being afraid that a particular ordering might lead to disad-
vantage. Since the discussion task in the present study was relatively short in
duration, future work should look at behaviour over the longer term, and in
particular at examples where students repeat a similar style of task over time.
It would also be valuable to directly contrast the use of single-duty roles with
composite roles like those used here.
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Abstract. Knowledge tracing refers to a family of methods that esti-
mate each student’s knowledge component/skill mastery level from their
past responses to questions. One key limitation of most existing knowl-
edge tracing methods is that they can only estimate an overall knowl-
edge level of a student per knowledge component/skill since they analyze
only the (usually binary-valued) correctness of student responses. There-
fore, it is hard to use them to diagnose specific student errors. In this
paper, we extend existing knowledge tracing methods beyond correctness
prediction to the task of predicting the exact option students select in
multiple choice questions. We quantitatively evaluate the performance of
our option tracing methods on two large-scale student response datasets.
We also qualitatively evaluate their ability in identifying common stu-
dent errors in the form of clusters of incorrect options across different
questions that correspond to the same error.

1 Introduction

Knowledge tracing (KT) [9] refers to a family of student modeling methods that
estimate student mastery levels on knowledge components/skills/concepts from
their past responses to questions/items and predict their future performance.
These estimates and predictions can be used to i) provide feedback to students
on their progress, especially in intelligent tutoring systems [44] and ii) drive
personalization, i.e., selecting the action that each learner should take next to
maximize their learning outcomes [10,28,36]. Many different KT methods have
been developed, ranging from hidden Markov model-based Bayesian knowledge
tracing methods [21,33,46], factor analysis-based methods such as learning fac-
tor analysis [5], performance factor analysis [34], and the item Difficulty, student
ability, skill, and student skill practice history (DAS3H) method [7], to deep
learning-based methods [15,31,32,35,45,47]. These methods have enjoyed vari-
ous degrees of success; some of these methods, including most Bayesian knowl-
edge tracing and factor analysis-based methods, exhibit excellent interpretability
while other, deep learning-based methods trade off interpretability for excellent
predictive accuracy on students’ future performance.
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18 ÷ 2 + 2 x 2 = 12 ÷ 2 + 1 x 2 =

A B C D A B C D

3 13 22 12 9 3 14 8

Used from Eedi Used from Eedi

Fig. 1. Some distractor options in well-designed MCQs are potentially capable of cap-
turing typical student errors. Option C in both questions here correspond to the error
of not mastering the order of operations and always working left to right.

However, one key limitation of these KT methods is that they operate exclu-
sively on (usually binary-valued) response data that indicates whether a student
responds to a question correctly or not. Therefore, they can only estimate stu-
dents’ overall mastery level on each knowledge component. However, not all
incorrect responses are equal: there can be numerous incorrect ways to answer
a math question [27], caused by different underlying errors. Studies have shown
that only a fraction of incorrect answers generated by students can be anticipated
and explained by cognitive models integrated into intelligent tutoring systems
[24,36,41], teachers [11], and numerical simulations [11,37]. Typical underly-
ing errors include having a “buggy rule” [4], exhibiting a certain misconception
[12,13,38], or a general lack of knowledge on certain knowledge components [2].
Since it is hard to diagnose such student errors from correctness data alone, we
need to develop KT methods that analyze full student responses.

Some datasets, including the large-scale Eedi1 [43] and EdNet2 [8] datasets,
contain the exact options students select on multiple choice questions (MCQs);
this option data provides us with an opportunity to extend existing KT meth-
ods to analyze specific student option selections rather than their answer cor-
rectness. In an ideal situation, well-designed MCQs should have well-crafted
incorrect distractor options that each corresponds to one or more typical stu-
dent errors; Figure 1 shows an example from the Eedi dataset for two questions
on the subject brackets, indices, division, multiplication, addition, subtraction
(BIDMAS). Option C in both questions correspond to the same error of not
fully mastering “order of operations” and always working left to right. However,
manually identifying these errors is an unscalable and labor-intensive process
since most existing MCQs do not come with consistent labels on the error(s)
underlying each incorrect option. Therefore, it is important to explore whether
we can develop KT methods to identify errors each incorrect option corresponds
to and potentially diagnose student errors automatically. These methods would
then be useful through i) informing teachers to communicate with students to
understand the source of their errors, ii) enabling the development of automated

1 https://eedi.com/projects/neurips-education-challenge.
2 https://github.com/riiid/ednet.

https://eedi.com/projects/neurips-education-challenge
https://github.com/riiid/ednet
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feedback [19], and iii) enabling the design of alternative instructional approaches
such as asking students to criticize erroneous examples [1].

1.1 Contributions

In this paper, we develop option tracing (OT), a KT framework that uses the
exact option each student selects on each question as both input and predicted
output. We extend several existing KT methods to the OT setting, includ-
ing a long short-term memory (LSTM) network-based method, deep knowledge
tracing (DKT) [35], a graph convolutional network-based method, graph-based
interaction model for knowledge tracing (GIKT) [45], and an attention network-
based method, attentive knowledge tracing (AKT) [15]. We emphasize that the
goal of this paper is NOT to compare all KT methods; instead, our goal is to
study how can we generalize them to analyze student option selections in MCQs.
Therefore, we only study some representative methods. We conduct the following
experiments on the Eedi and EdNet datasets: First, we quantitatively evaluate
our OT methods under both the collaborative filtering (CF) setup (introduced
by the NeurIPS 2020 Education Challenge [43]) and the typical KT setup on
the task of option prediction. Second, we qualitatively demonstrate the inter-
pretability exhibited by our OT framework using clustering algorithms to group
incorrect options across multiple questions into clusters of shared underlying
errors. Results show that the learned clusters match up with those manually
identified by a domain expert to some degree. Therefore, OT can potentially
offer a bottom-up approach for error identification by extracting student errors
from actual data instead of the typical top-down approach of anticipating errors
before seeing data. Our implementation will be publicly available at https://
github.com/arghosh/OptionTracing.

2 Related Work

The options students select in MCQs can be regarded as a type of categorical
data, which has previously been studied in both the item response theory (IRT)
and recommender systems research communities. However, in both cases, most
prior works focus on the case where the categories are ordered. In IRT research,
polytomous IRT-based models [25,26,30] are used to model students’ responses
with multiple ordered categories, such as letter grades and partial credits. In rec-
ommender systems research, neural collaborative filtering (NCF)-based methods
are used to model star ratings provided by users on items [20]. There are rela-
tively few models for unordered categorical data such as the nominal response
model (NRM) from the IRT research community, which has been applied to the
analysis of MCQs [40,42].

https://github.com/arghosh/OptionTracing
https://github.com/arghosh/OptionTracing
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3 Data and Problem Setup

The Eedi dataset contains the responses of more than 100,000 students to 27,613
MCQs across 389 labeled subjects, totaling over 15 million responses over the
course of more than a year. Each response corresponds to the exact option a
student selected on each question (among four options, {A,B,C,D}). We will
also use a small subset of the Eedi data where we have access to the exact
question (in the form of images) for quantitative analysis; this dataset contains
the responses of more than 4, 900 students to 948 questions, totaling in over
1.3 million responses. The EdNet dataset contains the responses of more than
700,000 students to 13,169 MCQs across 189 labeled subjects, totaling over 95
million responses over the course of more than two years.

We use two experimental setups for evaluation purposes. First, in the CF
setup, the task is to predict each student’s responses to a subset of questions
that they responded to, given their responses to other questions (possibly in the
future). Popular methods for this setup are neural collaborative filtering (NCF)
[20] and graph convolutional networks (GCN) [3,23]. Second, in the KT setup
for evaluating KT methods, the task is to predict each student’s responses to
future questions based on their entire past response history.

3.1 Problem Setup

Each student’s performance record consists of a sequence of responses to ques-
tions assigned at a series of discrete time steps. For student i at time step t, we
denote the combination of the question that they answered, the set of subjects
this question covers, their binary-valued response correctness, the option they
chose, and the correct option to this question as a tuple, (qi

t, {si
t,j}ni

t
j=1, r

i
t, y

i
t, c

i
t),

where qi
t ∈ N

+ is the question index, si
t,j ∈ N

+ denotes the index of the jth

subject, j ∈ 1, . . . , ni
t since each question can be tagged with multiple subjects,

ri
t ∈ {0, 1} is the response correctness (1 corresponds to a correct response),

yi
t ∈ {A,B,C,D} is the option the student selected, and ci

t ∈ {A,B,C,D}
is the correct option for this question. In the CF setup, we associate a mask
variable mi

t ∈ {0, 1} with each time step, where 1 represents that the timestep
is part of the training set. This variable helps us to mask out responses we
need to predict when we compute the training loss. Given observed responses
{(qi

t, {si
t,j}ni

t
j=1, r

i
t, y

i
t, c

i
t)}t:mi

t=1, the task is to predict the exact options students
select on questions in the test set, i.e., yi′

t′ for (t′, i′) : mi
t = 0. In the KT setup,

we observe each student’s entire history of responses to questions; thus, given
their past history up to time t−1 as {(qi

τ , {si
τ,j}ni

τ
j=1, r

i
τ , yi

τ , ci
τ )}t−1

τ=1, our goal is
to predict yi

t at the current time step, t. Under these notations, existing KT
methods focus on predicting response correctness, ri

t.
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4 Methodology

In this section, we detail our OT methods for both the CF and KT setups.
Before delving into the individual methods, we start with a set of unified modules
that apply to all methods in this paper. The question embedding module Eq :
q → R

d transforms the question index qi
t to a d-dimensional, learnable real-

valued vector in R
d. Similarly, the response embedding module Er : r → R

d

transforms the response correctness ri
t to R

d and the option embedding module
Eo : {A,B,C,D} → R

d transforms the correct option ci
t and the chosen option yi

t

to vectors in R
d. We do not use separate embeddings for every question-option

(q, o) pair since that leads to overfitting in our experiments; instead, the 2d-
dimensional embedding for (q, o) is obtained using [Eq(q)⊕Eo(o)] where ⊕ is the
concatenation operator. The subject embedding module Es : s → R

d transforms
the subject index to R

d. Since each question may be tagged with several subjects,
we define the final subject embedding as Es({si

t,j}ni
t

j=1) =
∑ni

t
j=1 Es(si

t,j). Some
of the methods (such as NCF) use a user embedding module Eu : i → R

d that
transforms the student index to R

d. For simplicity, we use the same d-dimensional
vector for all embedding modules; however, the dimensions of each module can
be different. We train all model parameters, denoted as Θ, which contains the
embeddings listed here and other model parameters specific to each individual
method, by minimizing the negative log-likelihood of the selected options as

minimize
Θ

− ∑|Students|
i=1

∑|Sequencei|
t=1

∑
o∈{A,B,C,D} 1[yi

t = o] log p(o|qi
t;Θ),

where 1 is the indicator function. Since the options are unordered categories,
the resulting loss function corresponds to the common cross-entropy loss [16].

4.1 Option Prediction Under the CF Setup

NCF. NCF is one of the most popular CF methods for user-item interaction
data. In the option prediction task, students correspond to users and questions
corresponds to items. The input for NCF at time step t for student i, xi

t, is

xi
t = [Eq(qi

t) ⊕ Eu(i) ⊕ Es({si
t})].

Predictive probabilities p(yi
t = o) over four options o ∈ {A,B,C,D} are calcu-

lated using the softmax function [16],

zi
t = f(xi

t) ∈ R
4, p(yi

t = o|xi
t) = [softmax(zi

t)]o, ŷi
t = argmax

o∈{A,B,C,D}
[zi

t]o,

where f(·) denotes a feed-forward, fully-connected neural network and []o refers
to the oth entry of a vector. In NCF, the model parameters are the weights and
biases in the feed-forward neural network f(·); this prediction module is shared
by the subsequent methods.
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PO-BiDKT. The main drawback of NCF is that the student embedding is
static and not updated as students answer more questions and their knowledge
states evolve. Recurrent neural networks, and in particular LSTM-type mod-
els are capable of modeling evolving knowledge as hidden states [35]. However,
we cannot directly use methods such as DKT in the CF setup since the stu-
dent’s responses at some time steps in their response sequence are not observed.
Therefore, we use the following method to handle evolving knowledge states
using recurrent networks with missing observations. The input at each time step
is given by

xt = [Eq(qi
t) ⊕ Eo(ci

t) ⊕ Es({si
t}) ⊕ (

Eo(yi
t) � mi

t

) ⊕ (
El(ri

t) � mi
t

)
], (1)

where � denotes the element-wise multiplication between two vectors. We mask
the option embeddings and response correctness embeddings using mi

t for time
steps where we do not observe them but still use the question embedding as
input. We also extend the base LSTM module in DKT to a bi-directional LSTM
(Bi-LSTM) [17]. Here, we compute two latent knowledge states using two sepa-
rate LSTM modules, the forward state

−→
h t that summarizes the student’s past

response history and the backward state
←−
h t that summarizes the student’s future

response history at time step t as

−→
h t+1 = Forward LSTM(

−→
h t,xt),

←−
h t−1 = Backward LSTM(

←−
h t,xt).

The final latent knowledge state is the concatenation of the two states as ht =
[
−→
h t ⊕ ←−

h t]. The parameters include two sets of parameters for the forward and
backward LSTMs in addition to the parameters for the fully connected network
f(·). We call this method partially observed bi-directional DKT, or PO-BiDKT.
The output to the prediction module is computed using

zi
t = f([hi

t ⊕ Eq(qi
t) ⊕ Eo(ci

t) ⊕ Es({si
t})]) ∈ R

4. (2)

GCN-Augmented PO-BiDKT (BiGIKT). In our datasets, each question is
tagged with a few subjects by question designers or domain experts. These sub-
ject tags provide important information on how these questions are related since
we expect questions from the same subject to have some shared features. GCNs
excel at formulating these relations and learning from graph-structured data.
Since we can represent the question-subject association matrix using a bipar-
tite graph, (loosely) following GIKT [45], we connect GCNs with PO-BiDKT to
jointly learn question and subject embeddings using the structure imposed by
the subject tags. In this method, we use hierarchical representations of subjects
and questions: starting with initial subject and question embeddings Es(si

t) and
Eq(qi

t), the first layer GCN embedding for the jth subject and the second layer
GCN embedding for the ith question are computed as

s1j =tanh
(
Ws

sEs(sj)+

∑
i∈Ns

j
Wq

sEq(qi)

|Ns
j |

)
, q2

i =tanh
(
Wq

qEq(qi)+

∑
j∈Nq

i
Ws

qs
1
i

|Nq
i |

)
,
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where Ns
j (Nq

i ) denotes the set of questions (subjects) associated with subject
(question) sj (qi) and Ws

s, W
q
s, W

s
q and Wq

q are learnable parameter matrices.
The hyperbolic tangent (tanh) non-linearity operate entry-wise on vectors. We
replace the subject embeddings Es(si

t) and the question embedding Eq(qi
t) in

the base Bi-LSTM (Eq. 1 and Eq. 2) with these GCN-based embeddings. The
model parameters of this method include the GCN weight parameter matrices
in addition to the Bi-LSTM parameters.

4.2 Option Prediction Under the KT Setup

In the KT setup, we predict future responses using only past responses and
assume that every past student response is observed. We extend several existing
neural network-based KT methods for the option prediction task.

DKT. We apply a simple modification to the DKT method [35] to extend it to
i) predict options instead of response correctness and ii) handle questions that
are tagged with multiple subjects (the original DKT method assumes that each
question is tagged with a single subject). We use

xt = [Eq(qi
t) ⊕ Eo(ci

t) ⊕ Es({si
t}) ⊕ Eo(ai

t) ⊕ El(ri
t)]

as the input to the DKT LSTM input module. The student’s hidden knowl-
edge states are computed using the LSTM model as ht+1 = LSTM(ht,xt). The
predictive probabilities of selecting each option are computed using

zi
t = f([hi

t ⊕ Eq(qi
t) ⊕ Eo(ci

t) ⊕ Es({si
t})]) ∈ R

4, ŷi
t = argmax

o∈{A,B,C,D}
[zi

t]o.

DKVMN. Instead of using LSTMs to model latent knowledge state transitions,
the dynamic key-value memory network (DKVMN) method uses a key-value
memory network to retrieve and update knowledge at every time step using
an external memory module as ht+1 = MemoryModule(ht,xt); refer to [47] for
details. We use the same input and output structure for the DKVMN memory
module as that for DKT.

AKT. We also adapt AKT, an attention network-based, state-of-the-art KT
method for the option prediction task. AKT computes a query, a key, and a
value vector for each time step, and then uses the similarity between the query
and key vectors at different time steps to attend to questions in the past and use
their corresponding value vectors to retrieve acquired knowledge in the past. We
compute the query, key, and value vectors as qt = WQn, kt = WKn, and vt =
WV [El(ri

t)⊕Eq(qi
t)⊕Eo(yi

t)⊕Eo(ci
t)] respectively, where WQ, WK , and WV are

the query, key, and value projection matrices and n = [Eq(qi
t)⊕Es({si

t})⊕Eo(ci
t)].

The retrieved latent knowledge state is then computed as ht = g
(∑

τ<t αt,τvτ

)
,

where g is another feedforward network and αt,τ is the normalized attention score
between the query at the current time step t and the key at a past time step
τ . For AKT, we employ the exponential decay module to compute the attention
scores [15] and then compute the output using the attention-weighted value hi

t

and a fully connected network f(·).
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Table 1. Performance of all methods under the CF (top half) and KT (bottom half)
setups on both datasets. Best results are in bold.

Model Option prediction Correctness prediction

Accuracy Average Macro F1 Score Accuracy

Eedi EdNet Eedi EdNet Eedi EdNet

NCF 64.75 ± 0.02 67.24 ± 0.01 0.2824 ± 0.002 0.2552 ± 0.001 72.6 ± 0.03 71.49 ± 0.01

PO-BiDKT 65.87 ± 0.01 69.42 ± 0.01 0.3283 ± 0.001 0.3260 ± 0.001 75.18 ± 0.01 75.21 ± 0.02

BiGIKT 66.16 ± 0.02 69.29 ± 0.02 0.3261 ± 0.001 0.3168 ± 0.001 75.62 ± 0.02 75.07 ± 0.01

DKT 65.95 ± 0.44 68.03 ± 0.09 0.313 ± 0.008 0.2887 ± 0.005 74.7 ± 0.34 73.19 ± 0.06

DKVMN 66.03 ± 0.49 68.01 ± 0.1 0.3152 ± 0.007 0.2842 ± 0.005 74.75 ± 0.3 73.02 ± 0.06

AKT 65.91 ± 0.47 68.44 ± 0.09 0.3139 ± 0.007 0.3062 ± 0.004 74.65 ± 0.31 73.6 ± 0.06

5 Experiments

Experimental Setup. In addition to the option prediction task, we also evalu-
ate all methods under the standard, binary-valued response correctness predic-
tion task. We do not need to use a separate set of methods; instead, we can simply
replace the final output layer of the option predictor module (f : · → R

4) with
an output layer that consists of a single node (f : · → R

1) for all OT methods;
the resulting loss function corresponds to standard binary cross entropy loss. For
option prediction, we use both accuracy and macro F1 score as evaluation met-
rics. For correctness prediction, we use accuracy as the only evaluation metric
which aligns with the option prediction task. We compute the F1 score for each
question-option pair individually and average across all such pairs. This met-
ric treats every option in every question equally, thus magnifying the impact of
options that are rarely selected. For reference, on the Eedi and EdNet datasets,
the selection probabilities across options for an average question (from most
frequent to least frequent) are 57%, 25%, 11%, 7% and 66%, 20%, 10%, 4%,
respectively. For option prediction, a random classifier has an average macro F1

score and an accuracy score of 0.25 on both of these datasets, while a majority
class classifier has an average macro F1 score (accuracy) of 0.184 (57%) and
0.205 (66%) on the Eedi and EdNet datasets, respectively.

Training and Testing. We perform standard k-fold cross-validation (with k =
5) for all methods on both datasets. Under the CF setup, on average 20% of the
time steps (for each student) are randomly chosen as the held out test set, 20%
of time steps are randomly chosen as the validation set, and the other 60% are
chosen as the training set to train all methods. Under the KT setup, all time
steps for a randomly chosen 20% of students are used as the test set, and the
validation and training sets are constructed similarly.

Network Architectures and Hyper-Parameters. Since the datasets are
large, we do minimal hyper-parameter tuning and set most of the values to their
default values for all the methods; exploratory experiments found that evaluation
results are robust across most parameter values. We set the question, subject,
option, response embedding dimension for all methods to d ∈ {32, 64} for the
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CF setup and d ∈ {64, 128} for the KT setup. We use the Adam optimizer [22]
to train all models with a batch size of 64 students to ensure that an entire
batch can fit into the memory of our machine (equipped with one NVIDIA
Titan X GPU). For all methods, we set the learning rate to 10−4/10−3 for the
Eedi/EdNet dataset and run all the methods for 200 epochs and perform early
stopping based on the loss on the validation set. We set the latent knowledge
state (ht) dimension to 256/512 for all methods under CF/KT setup. For NCF,
we select the user embedding dimension as d = 256.

Results and Discussion. Table 1 lists the performance of all OT methods
for both the CF and KT setups for both the option prediction and correctness
prediction tasks, on both datasets; we report the averages as well as the standard
deviations across the five folds. We observe a significant dropoff (∼ 10%) in
the accuracy metric on the option prediction task compared to the correctness
prediction task, which is as expected since there are four categories to predict
(A,B,C,D) instead of two categories (correct/incorrect). As a result of this
difference, the correctness prediction task can be seen as a sub-task in the option
prediction task by computing the probability a student selects the correct option.
The performance of different methods are also quite consistent across all cases.

We observe that recurrent neural network-based methods such as PO-BiDKT
perform significantly better than NCF in all cases. This observation suggests
that even in a CF setup for model evaluation, methods that take the evolving
nature of student knowledge into account are still more effective than popular CF
methods that do not account for these temporal dynamics. Overall, we observe
that the performance gains on the option prediction task provided by complex
model architectures are marginal. This observation suggests that more work
needs to be done on the option prediction task to understand the dynamics
behind students’ decisions to select a specific incorrect option, which motivates
our exploration in Sect. 5.1. In the KT setup, we observe that DKVMN performs
best on the Eedi dataset while AKT performs best on the EdNet dataset. This
observation suggests that complex neural network architectures such as attention
modules are more beneficial when a large amount of training data is available.

In both setups, we observe that the F1 scores are low for all methods; despite
clearly not simply predicting the most frequent option, the performance of these
methods leaves significant room for improvement due to class imbalance. Possible
approaches to improve prediction accuracy for options that are rarely selected
include oversampling them [6]; however, since a student’s responses to different
questions are not independent data points, how these methods can be applied
to the option tracing task is not immediately clear.

5.1 Clustering Incorrect Options

To qualitatively evaluate our option tracing methods, we attempt to group
incorrect options across multiple questions into clusters and examine whether
question-option pairs in the same cluster correspond to the same underlying
error. To this end, we train a modified version of PO-BiDKT on the Eedi
dataset [43]; we learn an embedding module Eq,o(q, o) : q × o → R

d for
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Table 2. Incorrect option clustering quality for a subset of questions in the Eedi dataset
using errors labeled by a domain expert. 1 in both metrics indicates perfect clustering.

Metric Adjusted rand index Fowlkes-Mallows index

Score 0.372 0.455

each question-option pair. Then, we compute the option selection probabilities
using the latent knowledge state hi

t and the question-option pair embeddings as

p(o|qi
t) = f(hi

t)
T Eq,o(q

i
y,o)

∑
o′ f(hi

t)
T Eq,o(qi

y,o′) . This modification suffers a small drop in predictive
performance but encodes information in the question-option pair embeddings for
us to cluster them and search for common student errors.

We selected all incorrect options (31×3 = 63) in questions on subject 33
(BIDMAS) where question images are released on the smaller subset of the Eedi
dataset; see [43] for details. A domain expert manually labeled each option based
on which error likely resulted in the student selecting it, resulting in a total of 14
high-level errors (errors that cannot be named are excluded), each corresponding
to multiple options across different questions; further splitting them into finer-
grained errors results in clusters that are not meaningful. We perform k-means
clustering [29] on the learned question-option pair embeddings and compare
them to the “ground truth” option clusters provided by the expert.

Due to spatial constraints, we only report quantitative results on clustering
quality using two commonly used metrics: The adjusted Rand index [39] and
the Fowlkes-Mallows index [14]; the former has a range of [−1, 1] while the latter
has a range of [0, 1], with 1 corresponding to perfect clustering.

Table 2 lists these metrics on the learned question-option pair embeddings
based on the ground truth expert labeling. Overall, the clustering performance
is acceptable but not excellent. We observe that some errors such as “sign error
in calculation involving negative numbers” have relatively easy-to-identify corre-
sponding option clusters (5 out of 8 options labeled by the expert as correspond-
ing to that error are put into the same cluster). On the other hand, some options
such as 69D and 293C (the left half of Fig. 1) correspond to the same error but
are not grouped into the same cluster. One possible explanation is that students
may not consistently demonstrate an error, as found in prior research [41]; among
students who selected 69D, only 51% selected 293C while 34% of them selected
the correct option, 293B. Therefore, further work is required to study whether
more robust KT methods and clustering algorithms can identify error clusters
more effectively. Nevertheless, our approach produces a starting point to reduce
the effort for domain experts to manually label errors and provides them a way
to do it under data-driven support.

6 Conclusions and Future Work

Analyzing the exact options students select across multiple choice questions has
the potential to uncover their error modes and help teachers to provide targeted
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feedback to improve learning outcomes. In this paper, we proposed a set of
methods to extend common knowledge tracing methods that analyze only the
correctness of students’ responses to questions to analyze the exact options they
select on multiple choice questions. We validated these methods with quantita-
tive experiments on two large-scale datasets in terms of their ability to predict
the options students select on each question and qualitative experiments in terms
of clustering incorrect options according to underlying errors. There are many
avenues for future work. First, we need to develop methods that are aware of the
evolving nature of student errors. One possible approach is to develop methods
that can explicitly account for the recurrence of past errors, such as using a
neural copy mechanism [18]; these methods may help us track students’ progress
in correcting their errors. Second, low F1 scores for the option prediction task
suggest that it is much more challenging than the typical correctness prediction
task in knowledge tracing literature and thus deserves more attention.
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Abstract. Student perceptions of programming can impact their expe-
riences in introductory computer science (CS) courses. For example, some
students negatively assess their own ability in response to moments that
are natural parts of expert practice, such as using online resources or
getting syntax errors. Systems that automatically detect these moments
from interaction log data could help us study these moments and inter-
vene when the occur. However, while researchers have analyzed program-
ming log data, few systems detect pre-defined moments, particularly
those based on student perceptions. We contribute a new approach and
system for detecting programming moments that students perceive as
important from interaction log data. We conducted retrospective inter-
views with 41 CS students in which they identified moments that can
prompt negative self-assessments. Then we created a qualitative code-
book of the behavioral patterns indicative of each moment, and used
this knowledge to build an expert system. We evaluated our system with
log data collected from an additional 33 CS students. Our results are
promising, with F1 scores ranging from 66% to 98%. We believe that
this approach can be applied in many domains to understand and detect
student perceptions of learning experiences.

Keywords: CS education · Detection systems · Self-assessment

1 Introduction

While programming skills are increasingly important for 21st century learners,
many students struggle in introductory computer science (CS) courses [24,32].
Recent studies suggest that this struggle may be exacerbated by students’ self-
perceptions; students often believe that they do not belong [30,48,54], are not
capable of succeeding [13,19,34], or are performing poorly in CS [21,26,31,32].
In this paper, we focus on one aspect of student self-perceptions: negative self-
assessments. In our previous work, we found that students frequently assess their
own programming ability, using moments that occur during the programming
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process as signals of whether they are performing well [21,22]. However, many
of the moments that students see as negative performance indicators are natural
parts of expert practice; for example, many students believe that spending time
planning and struggling with syntax errors are signs of low ability [28,41,52].
Students who negatively self-assess more frequently also tend to have lower self-
efficacy [22], which can influence persistence and performance in CS [31,37].

While our previous survey studies have established the prevalence of negative
self-assessments in CS [21,22], we have a limited understanding of the program-
ming moments that prompt negative self-assessments. If we could detect these
moments as they arise during the programming process, we would be able to
study them more directly. Furthermore, if such a detection system were auto-
mated, we could study these moments using a significantly larger sample of data,
as manually detecting them is labor-intensive. An automated detection system
would also enable the development of real-time feedback interventions, which
provide messages to students at key moments. This type of intervention has
been shown to be effective in mediating student perceptions in other contexts
[11,39] and can scale to meet the increasing demand in CS.

Interaction log data collected from programming environments may be use-
ful for automatically detecting self-assessment moments, since researchers have
successfully leveraged this type of data to analyze student programming process
[7–9], predict student performance [1,9,23,38,42], and build automated feed-
back interventions [14,35]. However, most of these prior systems use bottom-up
methods to identify behavioral patterns in interaction data, rather than using
top-down approaches to detect pre-defined programming moments like strug-
gling with syntax errors, an example of the self-assessment moments. Systems
that use top-down approaches, such as cognitive tutors [2,3,10], generally require
models of expert practice. However, researchers are not experts in understand-
ing how students perceive the programming process, and thus we would need to
elicit this knowledge from students to create such a model in this domain.

To address these challenges, we contribute an approach called retrospective-
enabled perception recognition for designing systems that detect student percep-
tions of the programming process. In this approach, the designer uses retrospec-
tive interviews [16] to elicit student perceptions of programming moments, and
then builds a qualitative codebook that describes the behavioral patterns indica-
tive of each moment. This codebook is used to inform the design of an expert
system. We used our approach to design an automated detector for eight self-
assessment moments based on retrospective interviews with 41 CS students. We
evaluated the performance of our system using data collected from an additional
33 students, comparing the automatically detected moments to those manually
labelled by the authors. Our results are promising, with F1 scores ranging from
66% to 98%. We also present an analysis of our systems’ incorrect decisions,
enabled by the transparency of the expert system approach. Our detection sys-
tem has the potential to facilitate future studies of self-assessment moments and
support interventions that provide real-time feedback. Our findings also suggest
that the retrospective-enabled perception recognition approach can be used to
design detection systems for student perceptions in other contexts in the future.
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2 Background

2.1 Student Self-perceptions in CS

Computing education researchers have found that students often have negative
perceptions about themselves and their experiences in CS. For example, when
student perceptions of a programming session do not align with their expecta-
tions, students sometimes have negative emotional reactions even after success-
fully solving problems [25]. Additionally, students who have community-oriented
goals often perceive that they can not meet these goals in computing careers [29].
Studies also show that many students perceive that they do not belong in com-
puter science, often because they belong to a group that is underrepresented in
the field [15,18,36,48,53]. These negative perceptions have been shown to cor-
relate with students’ self-efficacy [4,25,26,54], or the belief in one’s ability to
accomplish a task or achieve mastery in a specific domain [5,6,47]. Self-efficacy
has a direct impact on student learning outcomes [45] and often correlates with
student performance in CS courses [33,43,55].

In this paper, we focus on students’ perceptions of programming experiences
that prompt them to negatively assess their ability. CS1 students assess their
programming ability frequently [21,26], and often think they are performing
poorly when they encounter programming moments essential to the program-
ming process [21,22]. Our recent survey study with 214 CS students from three
universities identified 13 programming moments which cause many students to
negatively self-assess, even though the moments are also natural parts of expert
practice [28,41,52]. For example, some students report that they feel like the are
performing poorly when they use online documentation to look up syntax, stop
to think about their solution, and spend time planning [22]. We also found that
students who negatively self-assess in response to more of these moments tend
to have lower self-efficacy. However, we do not know how these moments arise
or when they occur in students’ programming process.

2.2 Analyzing Programming Interaction Log Data

Researchers have explored many methods for interpreting log data collected
from programming environments. This interaction data is used for two primary
purposes: to produce new knowledge from a bottom-up analysis of student inter-
actions, and to perform top-down detection of programming moments.

Many researchers take data-driven approaches to study the student pro-
gramming process [7,8,20,51] and to evaluate or predict student performance
[1,9,23,38,42,55]. Initially, most of this work analyzed compilation logs [23,51],
but more recently, researchers have leveraged machine learning techniques to
identify patterns in interaction log data. For example, Blikstein et al. clustered
students based on their problem-solving pathways to study how they progressed
through programming assignments [9]. Berland et al. also used clustering tech-
niques to study tinkering and how programming behaviors change across stages
of the problem [7]. These studies used a bottom-up approach, analyzing data



An Approach for Detecting Student Perceptions of Programming 153

to find patterns organically rather than building hand-architected models to
identify preconceived moments of interest.

Some researchers have used interaction log data and expert knowledge of
the programming process to identify pre-defined moments through top-down
approaches. Expert systems, a common technique, reason about student inter-
actions based on models of expert decision-making processes. For example, cog-
nitive tutors like the LISP tutor [44] use expert systems to provide relevant
feedback. Marwan et al. used a similar approach to analyze program states to
identify milestones in student progress while solving problems [35]. Koskal et al.,
however, demonstrated how challenging it can be to build systems that detect
pre-defined programming moments [27]. The authors set out to develop a system
to automatically detect the stages in the design recipe [17], a scaffolded process
for solving programming problems. However, they found that the fuzzy design
recipe stages were hard to automatically detect from low-level log data due to
the wide variation in student behaviors during each stage [27].

While previous studies show promise in deriving indicators of student behav-
ior and process from low-level data, existing approaches do not yet explore how
to use log data to automatically detect moments based on student perceptions.
Expert systems are designed to model expert knowledge, but researchers are not
experts in understanding how students perceive the programming process. As
a result, we need an approach for eliciting this knowledge from students. We
contribute a new approach for designing systems that use interaction log data
to detect programming moments that students perceive as meaningful.

3 Retrospective-Enabled Perception Recognition

The main contribution of this paper is our approach for detecting student percep-
tions of the programming experience from interaction log data. In this section,
we describe our new approach and present the methods we used to build a system
to detect moments when students may negatively self-assess while programming.

To enable our system, we designed extensions to collect interaction log data
from two programs: jGRASP [12] (an IDE often used in introductory Java
courses) and Chrome (a commonly used web browser). We chose these two pro-
grams because they account for a large portion of student interactions with
the computer while programming. Each extension collects time-series data in a
JSON format for a number of user actions and events, which allows us to keep
track of student behavior and the state of the IDE. Our jGRASP extension, built
in collaboration with the jGRASP development team, captures all keystrokes,
cursor movements, console messages, and interactions with buttons and win-
dows. Our Chrome tool captures all navigation on websites, including the URLs
and scrolling behavior while viewing a page. During the data collection process,
we iterated on the events and actions collected by the extensions as we learned
more about the behaviors associated with each moment. For example, after look-
ing at the data, we realized that student scrolling patterns revealed important
information about their behavior, so we added this to our extensions.
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3.1 Phase 1: Retrospective Interviews

We conducted retrospective interviews during Phase 1 to capture student percep-
tions of the programming experience. We recruited 41 participants from a large
public university in the United States. At the time of the study, all participants
enrolled in a second-semester introductory CS course (CS2), a requirement for
CS majors, were eligible to participate. We recruited students with emails sent
by the professor of the course. The study took place virtually through Zoom.
Students provided consent to participate and were compensated for their time.

The goal of the interview was to gather examples of self-assessment moments
naturally occurring during programming sessions, along with participants’ per-
ceptions of those moments. When a participant joined the Zoom call, the
researcher installed the Chrome and jGRASP extensions on the student’s com-
puter. Then the researcher provided a short review of how to use jGRASP to
ensure a baseline level of familiarity with the development environment. We
asked the student to work on one of three similar programming problems while
sharing their screen, and told them to work on the problem like they would a
homework assignment. During this part of the interview, the researcher turned
the student’s video and microphone off and did not interrupt them to reduce the
effect of the lab environment on their behavior as much as possible.

After 30 min of programming, we conducted a retrospective interview [16]. We
gave the student a list describing a subset of the self-assessment moments from
Gorson & O’Rourke [22] (see examples in Table 1). We chose to only include the
moments that occur during the programming process, like changing approaches,
and not general reflections, like spending a long time on a problem, because we
were more likely to be able to determine when they will happen. Finally, the
student and researcher watched a screen recording of the programming session
and the student identified each time one of those moments occurred. Below in
Fig. 1, we provide an example of the self-assessment moments that were labelled
in the retrospective interview for one participant.

Table 1. Negative self-assessment moments detected by our expert system.

Moments and detailed descriptions

Using resources to look up syntax from the web or other sources
Using resources to research an approach from the web or other sources
Changing approaches to try a new approach for solving the programming problem
Writing a plan in the comments or notes to outline future programming steps
Getting simple errors are usually compiler errors due to oversights or typos
Getting Java errors are usually runtime errors due to conceptual mistakes
Struggling with errors while trying to fix or debug the errors
Stopping to think while implementing a solution

Fig. 1. The self-assessment moments that occured in one participant interview.
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3.2 Phase 2: Qualitative Analysis

The goal of Phase 2 was to develop a qualitative codebook that the researchers
could use to identify negative self-assessment moments independently, without
additional knowledge of student perceptions. Identifying moments such as using
resources may appear straightforward, however students’ perceptions of these
moments are quite nuanced. For example, in our prior work students reported
different reactions when using resources to look up syntax versus using resources
to research how to solve the problem [21,22]. While it is relatively easy to deter-
mine when a student is viewing a website or a course resource, determining the
purpose of its use is more difficult. In addition, it is critical to identify each use
of a resource, because a student who references the same resource multiple times
will have a different experience than a student who uses multiple resources for
different purposes. We therefore use a detailed qualitative codebook to capture
the nuances discovered through the retrospective interview process.

To develop this codebook, we qualitatively analyzed the retrospective inter-
views. After conducting the first 20 interviews, we compiled a list of all student-
labeled moments. From that list, we distilled a set of representative behaviors for
each moment and wrote an initial draft of the codebook. The codebook includes
a high-level definition of each moment and a set of heuristics that describe the
behavioral patterns indicative of each moment. We then re-watched the first
twenty interviews and iterated on the behavioral descriptions for each moment
until two researchers could accurately and consistently label all of the moments.

As an example, we describe how we identify struggling with errors using
our codebook. We defined three levels of behavioral indicators for this moment:
strong, medium, and weak. If a student exhibits a strong indicator, such as
running code in an attempt to fix a bug three times in a row without succeeding,
we would label this as struggling with errors. If there is no strong indicator, but
there are two medium indicators, such as using resources after getting an error,
we would also label this as struggling with errors. Finally, while weak indicators,
such as a slower pace of typing, are not enough to label the moment on their
own, the researchers use them to strengthen their confidence in the decisions.

3.3 Phase 3: Codebook Verification

In Phase 3, we first tested the codebook using data from an additional 21 inter-
views. After each new interview, two authors watched the screen recording of
the programming session and used the codebook to label the self-assessment
moments. Then, the researchers compared their decisions to the participant’s
labels in the retrospective interview as member-checks of the labelling scheme
[49]. When there were misalignments between a participant’s labels and the
researchers’ labels that could not be explained by the participant misusing or
missing a label, the researchers adjusted the description of that moment to incor-
porate the newly observed behavior. This iterative process continued until the
researchers did not need to make changes for five consecutive interviews in which
the moment was present. At that point, we considered the codebook for that
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moment to have reached saturation [40,46]. Of the 12 moments that we asked
student to label during the retrospective interview, we were able to reach satu-
ration for eight (see Table 1). Most of the moments for which we did not reach
saturation occurred at the beginning of the programming session, such as writing
a plan before implementation. At this point, students generally interact less with
the computer, making it more difficult to identify these moments.

3.4 Phase 4: Implementation of the Detection System

In Phase 4, we built an expert system to detect self-assessment moments using
the heuristics in our qualitative codebook. Our system has two stages: data
transformation and decision-making. In the data transformation stage, we parse
through each event captured in the interaction log data, recreating the program-
ming session and recording around 100 human-authored metrics into a knowledge
base. Together the metrics provide a comprehensive snapshot of the state of the
programming process. For example, one metric captures the number of lines that
a student pastes from a resource into their code. In the decision-making stage, we
analyze the metrics at each log event to determine if any of the self-assessment
moments occurred. We use two different styles of heuristic algorithms, either
if-then rules when there is less ambiguity in the decision-making process (e.g.
getting simple errors), or fuzzy logic [56] when many metrics need to be con-
sidered in parallel (e.g. using resources to look up syntax ). For example, we use
fuzzy logic to increase our confidence that a student is using a resource to look
up syntax if they paste either one or two lines of code from the resource.

As a concrete example, consider the strong indicator for the struggling with
errors moment, when a student runs the code in an attempt to fix a bug three
times in a row. One metric for this indicator calculates whether the student is
working on the same error across multiple compilations. This metric keeps track
of the number of the errors in the console and the names of the errors. After
each compile, we use this information (along with some additional details about
code edits) to evaluate if the student is still working on the same bug.

We chose an expert system because retrospective data is time-intensive to col-
lect. It is impractical to collect enough student-labeled data to serve as ground-
truth for machine learning algorithms. Additionally, data-driven approaches
often produce features that are not human-interpretable, making it difficult to
understand their decisions and limitations. With an expert system, we can trace
the decision process and ensure that the system is making logical choices.

4 Evaluation of the System

4.1 Methods

We evaluated our system by comparing the automatically detected moments to
those manually labelled by the authors. While researchers can make mistakes in
labeling, this data is the most reliable item of comparison, as participant-labelled
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data is often inconsistent due to differing interpretations of the moments and
participant attention spans. We collected data from programming sessions with
33 additional students from the same university and CS2 course as our initial
interviews. The setting and procedure were the same, with the exception of the
retrospective interview, which was excluded. To establish the reliability of the
researcher-assigned labels, two authors independently labelled the same seven
interviews, or 21% of this data set, achieving 82% agreement. Those authors
then authors independently labelled the remainder of the data.

One challenge in evaluating this system is establishing a way to compare
moment timing between the researchers and the machine. When manually
labelling the moments, the researchers picked a timeslot from non-overlapping
ten-second windows (e.g., 0–10, 10–20). When comparing the system’s results to
the researcher-labelled set, we used an additional fifteen-second buffer on both
sides of the ten-second window because the start time of a moment can be dif-
ficult to determine and might fall on the border of a window. We marked a
machine detection as correct if the timestamp assigned to a label was within
this forty-second window. We used a slightly larger buffer to more accurately
represent two of the moments. For changing approaches, we used a two-minute
buffer instead of a fifteen-second buffer because this moment often takes places
over a few minutes, and we did not have a way to consistently identify matching
start times. For struggling with errors, the researchers identified the start and
end time for the error cycle in which the participant struggled. We deemed a
system-identified label as correct if the system chose any time within the error-
cycle boundaries. While both of these windows are larger, they reflect the context
of these moments and the system’s ability to identify these moments accurately.

After running our system on the log data from our evaluation data set, we
further analyzed its performance by looking at each false positive and false neg-
ative result. The authors reviewed each case and categorized the reason for the
false detection by watching the screen recording of the moment and consulting
the codebook. During this process, we identified a number of instances when the
researchers mislabeled moments, and also noted the limitations of our system.

4.2 Findings

Our results in Table 2 show that we had very high F1 scores for some moments,
such as getting simple errors, and lower but still reasonable F1 scores for oth-
ers, such as writing a plan. While precision and recall are both important, high
precision matters most for interventions to ensure that real-time messages are
delivered in response to true moments, and recall is most important for studies
to ensure that relevant moments are not missed. The data also shows that the
moments arise at varying levels of frequency; getting simple errors and stopping
to think were most frequent, while writing a plan and using resources to research
an approach only occurred occasionally. Our system tended to perform worse for
less frequent moments, likely because our codebook and system were developed
using fewer observations. However, the frequency of a moment does not nec-
essarily indicate its importance. While we do not yet know how each moment
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Table 2. Results from our evaluation of the detection system

Moment Precision Recall F1 score Count Human errors

Using resources to look up syntax 82.0% 86.1% 84.0% 128 2

Using resources to research approach 66.7% 66.7% 66.7% 21 1

Changing approaches 73.1% 73.1% 73.1% 26 8

Writing a plan 60.0% 75.0% 66.7% 15 0

Getting simple errors 99.1% 97.7% 98.4% 213 13

Getting Java errors 90.3% 90.3% 90.3% 31 2

Struggling with errors 69.2% 90.0% 78.3% 26 5

Stopping to think 79.1% 75.3% 77.2% 159 15

influences student self-efficacy, some of the less frequent moments may have a
stronger impact on student experiences than the more frequent ones.

One benefit of our approach is that our system’s decisions are transparent
and can be assessed using our qualitative codebook. This enabled us to conduct
an analysis on our system’s false positives and false negatives. First, our analysis
revealed many human errors in labeling, showing how challenging it is for humans
to accurately label this type of data and highlighting the value of an automated
system. Our analysis also revealed trends that provide direction for improving
the system. For example, 10% of the system’s incorrect decisions occured because
the researcher and system disagreed about the timing of a moment. When we
designed the codebook, we focused on describing the heuristics to determine
whether a moment occurred, rather than the exact start time for every moment.
As a result, our system had less information to help it choose start times. Many of
these moments occur over a period of multiple minutes, and therefore detection
within a wider range of times could be acceptable. In the future, we would suggest
either developing heuristics for determining start times during the qualitative
analysis or changing the evaluation to allow the system to select any time point
during the moment, as we did for struggling with errors.

Our analysis of the system’s incorrect decisions also revealed that particular
metrics were difficult to encode. For example, our system was not always able
to determine when a student had resolved a particular error, which is crucial to
detecting the struggling with errors moment. This can be quite complex, as stu-
dents exhibit a wide variety of behaviors when debugging. Another challenge we
encountered is that our system does not always have enough information to deter-
mine the student’s purpose for using resources when it knows a using resources
moment occurred, resulting in a lower recall for using resources to research an
approach. Even though our metrics generally provided enough guidance for the
researcher, without human intuition or contextual understanding, the system
was less accurate in interpreting the variety of ways that students use resources.
With more development time, we could increase the accuracy of detection for
both of these moments, but it would require significant effort to fully model all
potential behaviors. While it is likely not possible to fully capture the variance
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in student behavior in our models, our relatively high detection accuracy and
our concrete ideas for improvement show that this is a viable approach.

5 Conclusions

In this paper, we present a new approach for designing systems that detect stu-
dent perceptions of the programming process, called retrospective-enabled percep-
tion recognition. We apply this approach to develop an expert system to detect
programming moments that prompt students to negatively self-assess, building
on expertise gained through retrospective interviews with 41 CS2 students. We
evaluated our system with programming session data collected from an addi-
tional 33 CS2 students, finding that our system achieve F1 scores ranging from
66% to 98% for the eight self-assessment moments.

While we are encouraged by our system’s performance, this work has a num-
ber of limitations. First, our evaluation relies on researcher-assigned labels. While
we verified the labeling process through a formal qualitative analysis, researcher
labels may not perfectly represent student perceptions. Additionally, while we
believe the retrospective-enabled perception recognition approach can be applied
to other problems, more research is needed to understand how our expert sys-
tem generalizes. We developed and tested our system with students from just
one course and university, and our observations of student programming ses-
sions occurred in a lab setting. Furthermore, students worked on a limited set of
problems in one programming language. As a result, additional work is needed
to understand whether our system will generalize to a more naturalistic setting,
more diverse problems, and other programming languages.

While our results are promising, our models could likely be improved with
additional techniques for interpreting interaction log data. For example, nat-
ural language processing could help our system understand the semantics of
comments and web-page content, which the researchers used when labelling the
moments. Additionally, the success of this expert system suggests that this prob-
lem may be a good fit for machine teaching, an approach that empowers experts
to guide machines in learning to make decisions [50]. Future work should explore
whether the knowledge of student perceptions derived from the retrospective
interviews can inform a machine teaching algorithm and increase our ability to
detect student perceptions accurately.

Through retrospective-enabled perception recognition, we contribute a new
approach for combining qualitative methods and expert system design to detect
learning moments that students perceive as meaningful, which could generalize
to a number of problems and contexts. Furthermore, our system for detecting
negative self-assessment moments has the potential to enable new studies and
interventions that were not previously possible. In future work, we hope to use
this system to study the relationship between student behaviors, perceptions of
the programming process, and self-assessments. We also hope to develop real-
time feedback interventions to help students re-frame self-assessment moments
and improve self-efficacy.
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Abstract. Many important forms of collaborative learning are co-
creative in nature. AI systems to support co-creativity in learning are
highly underinvestigated, and very little is known about the dialogue
mechanisms that support learning during collaborative co-creativity. To
address this need, we analyzed the structure of collaborative dialogue
between pairs of high school students who co-created music by writing
code. We used hidden Markov models to analyze 68 co-creative dialogues
consisting of 3,305 total utterances. The results distinguish seven hidden
states: three of the hidden states are characterized by conversation, such
as social, aesthetic, or technical dialogue. The remaining four hidden
states are characterized by task actions including code editing, access-
ing the curriculum, running the code successfully, and receiving an error
when running the code. The model reveals that immediately after the
pairs ran their code successfully, they often transitioned into the aesthetic
or technical dialogue state. However, when facing code errors, learners
were unlikely to transition into a conversation state. In the few cases
where they did transition to a conversation state, this transition was
almost always to the technical dialogue state. These findings reveal pro-
cesses of human co-creativity and can inform the design of intelligent
co-creative agents that support human collaboration and learning.

Keywords: Collaborative learning · Dialogue · Co-creativity

1 Introduction

There is growing interest in using artificial intelligence (AI) to support collabo-
rative learning. AI companions have the potential to improve learners’ collabo-
rative skills by, for example, encouraging “deep thinking” and initiative taking
[10]. AIs have been developed for applications ranging from emotional learning
companions that support elementary school children learning to code [14] to
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discussing Jane Austen books with lifelong learners [16]. AIs to support collab-
orative learning are underinvestigated, even though collaborative learning has
been shown to increase learner interest in solving problems during online tutor-
ing [2], decrease learner boredom [2], and improve critical thinking skills [8].
Researchers have begun to uncover features of strong collaboration, including
gaze synchronization [22], the importance of proximity [4], and semantic similar-
ity [21]. Substantial work has investigated collaborative processes with a variety
of data sources including eye tracking [5,22], motion sensors [4,5,18], dialogue
analysis [3,21], and speech features [24].

Research on the dialogue of collaboration has focused on detecting when
students are off-task [3], supporting inquiry learning by analyzing the role of
questions in collaborative computational modeling [23], and predicting problem-
solving modes to support adaptive tutoring [19]. Research on collaborative learn-
ing within groups has used conversational agents to facilitate productive conver-
sations [6] and dialogue features to identify trouble during collaboration [9].

Most research on virtual agents in collaborative learning has involved agents
in a tutor or support role, but some work with agents as partners to human
learners has demonstrated benefits including significantly higher levels of shared
understanding, progress monitoring, and feedback [20]. Research on agents as
partners has also investigated support for human-computer co-creation, a type
of collaborative creativity in which responsibility for an artifact is shared between
the human and computer [11]. To move toward systems that support collabo-
rative co-creation during learning, we need to build an understanding of the
dialogue mechanisms that characterize this process.

To address this need, this work makes a step toward characterizing the dia-
logue modes learners tend to enter as they engage in co-creative dialogue. We
examined dialogue and system interactions between pairs of high school stu-
dents learning to code through remixing musical samples. Using a hidden Markov
model, we distinguished seven states, three characterized by conversation and
four characterized by task actions. The model suggests that learners engaged
in two types of discourse—aesthetic and technical—during this co-creative pro-
cess. The aesthetic discourse pertains to musical style, taste, and expression,
while the technical discourse pertains to writing code and task objectives. By
modeling co-creative dialogue, we can move toward intelligent support of human
collaboration and toward intelligent co-creative agents that support learning.

2 Methods

This work analyzes a corpus of textual student-student dialogue collected
between November 2019 and March 2020 during computer science classes from
eight public high schools in two districts in the southern United States, consisting
of a total of 140 participants. More than half of the schools had a student pop-
ulation of majority (>50%) Caucasian students; one school was majority Black;
two schools had a substantial (>25%–35%) Latinx population; one school had
a substantial Asian population. All students were in grades 10–12 (15–18 years
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old). Teachers placed the students into dyads, and students were placed at a
distance in separate rooms or different areas of the same room to facilitate their
communication through the textual chat interface (Fig. 1). Students collaborated
synchronously for an average of 48 min to remix musical samples and create an
original song or ringtone. Some participants, 9 pairs, split their work across two
class days. We included only the first day’s dialogue for these pairs because con-
catenating two separate dialogues would change the natural beginning, middle,
and end of the sequences; whereas including both dialogues for a pair would
unevenly weight their patterns while training the hidden Markov models.

2.1 Learning Environment for Computational Music Remixing

This study was conducted in the EarSketch learning environment, an online
interface for developing computational music (Fig. 1). In prior studies, students
that used EarSketch had significant positive results related to content knowl-
edge and attitudes towards computing, especially in currently underrepresented
groups in computing [13]. The EarSketch interface includes a code editor for
Python or JavaScript and a digital audio workstation that allows users to access
the music they have written [7]. The interface also features a content manager
with samples (sound clips) that can be used to create music, as well as a curricu-
lum tab that provides helpful resources associated with the class. Both students
had access to all of the tools allowing both to contribute to the code simultane-
ously. In this study, the interface included a chat box to communicate with their
partner. We logged all students’ textual dialogue, all changes made in the code
editor, all items accessed in the curriculum tab, and the results of the students
running their scripts (such as successes or errors).

2.2 Dialogue Tagging

In cleaning the dataset, we removed two sessions that contained exclusively off-
task, joking, offensive, or gibberish content. The remaining textual dialogue cor-
pus includes 68 sessions (136 students) and 3305 utterances, with a mean of 48
utterances per session (SD =35, Min =4, and Max =214). We developed and
applied a dialogue act taxonomy that included 16 labels, which three indepen-
dent annotators applied with a kappa of 0.76, substantial, agreement [12]. Among
the 16 original labels, 10 occurred with greater than 5% probability in the hid-
den states within the HMM reported here, and one more label appeared in an
example excerpt in this paper’s discussion section. These 11 relevant dialogue
act labels are shown in Table 1.

2.3 Analyses

After compiling the lists of sequential observation symbols that represent the
collaborative interactions, we implemented an HMM to analyze the learners’
interactions and model the co-creative sequences [17]. We chose this method
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Fig. 1. The modified EarSketch environment with chat window used during the study.

because we were interested in the hidden discourse states. In an HMM, observable
events such as textual messages and coding actions are represented by sequences
of observation symbols. Influences upon those observation sequences are referred
to as hidden states, and in an HMM each hidden state is characterized by its
emission distribution, a probability distribution over observation symbols. Once
the model is learned, every observation is modeled as having been “generated”
by a hidden state, and each hidden state has a set of transition probabilities that
indicates how likely the model is to either continue in that state or transition to
another state.

The observation symbols are the labeled dialogue and task actions in this
model. There are 23 distinct possible observation symbols—19 dialogue act tags,
of which 16 are represented in Table 1, and the following actions:

– curriculum - The student accessed the curriculum or moved between lessons.
– edit - Any consecutive insertion or removal of characters in the code editor.
– success - Each time the script was run successfully.
– error - Each time the script was run and any type of error was received.

We represented each of the 68 collaborative dialogues as a sequence of these
observation symbols and trained an HMM on these sequences. We did not model
time between actions, nor did we model which of the two students performed
each action.
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Table 1. Taxonomy of co-creative dialogue act labels. Tags that occurred with less than
5% probably in all hidden states and that do not appear in the examples presented in
this paper are not included in this table.

Dialogue act label Relative
frequency
in Corpus

Description Examples

Statement (Stmnt) 17.14% Utterance of info or
explanation, or something
that exists in the coding
workspace

well we also have to make
a loop

Social (Soc) 14.11% A general salutation,
off-task comment, or
display of remorse. Plays
some social function not
captured in the other tags

how are you?

Proposal (P) 12.32% An assertion of creativity,
related to code or music,
for the partner to consider.

we should do some beats
in the background

Directive (Dir) 11.55% An utterance used to set
task responsibilities for
each or a single partner

We should focus on the
custom function first

Confusion (Con) 10.41% Seeking help, expressing
confusion, lack of
knowledge, or uncertainty

What are those variables
for?

Acknowledgement
(Ack)

6.35% Accepting the content of
the previous utterance or
series of utterances

yeah

Passing Responsibility
(PR)

6.17% Passing creative or
technical choice to partner

Do you know what sounds
you would like to use?

Proposal Acceptance
(ProposalAccept)

5.67% Accepting a partner’s
addition or assertion to
the co-creative mental
model shared by both
partners

yeah jazzand dubstep
sounds fine

Positive Feedback
(PosFdbk)

5.29% Positive response relating
to something the partner
accomplished within the
scope of the task

I liked the piano thing you
did

Directive Acceptance
(DirAccept)

3.97% Response to a partner
accepting the dictation of
flow or direction of project

ok i will figure out a
makebeat

Non-positive Feedback
(NPosFdbk)

2.29% Non-positive response
relating to something
incorrectly done by the
partner within the scope
of the task

it doesnt sound as good as
i thought it would
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3 Results

To select the best number of hidden states, we used leave-one-out cross validation
and compared the average Akaike information criterion (AIC) score for each
number of hidden states [1]. We compared models using 4–9 states, finding that
the best AIC scores were consistently found for six and seven states. We then
trained ten models for both six and seven states and compared the best models
using log likelihood. The best models from each were nearly identical. One of
the dialogue states for the six-state model split to become two dialogue states in
the seven-state model, with the rest of the states remaining the same. We opted
to move forward with the 7-state HMM.

The HMM analysis revealed that collaborative sessions contained the follow-
ing seven hidden states (see Fig. 2) which we interpreted as follows:

– Social Dialogue: In the this state, observation symbols are heavily (79%)
social dialogue acts. Around 90% of sessions begin in this state.

– Aesthetic Dialogue: In the Aesthetic Dialogue state, proposal and proposal
acceptance dialogue acts, which involve assertions and acceptances of creativ-
ity, constitute (51%) of observation symbols. The dialogue that belongs to
this state usually involves discussing some aspect of the music.

– Curriculum: The observation symbols from this state were almost exclu-
sively (91%) from students accessing the curriculum.

– Code Editing: The observation symbols from this state are almost entirely
(99%) code editing.

– Technical Dialogue: The dialogue acts that characterized this state
involved statement, directive, confusion, acknowledgement, and directive
acceptance. The dialogue that belongs to this state usually involves discussion
of code features or task requirements.

– Code Runs Successfully: Mostly characterized by students running the
code successfully, this state involves some positive feedback (6%) and state-
ment (5%) dialogue acts.

– Runs Code with Error: Mostly characterized by students receiving an
error when running the code, this state involves some confusion (8%), state-
ment(5%), and directive(5%) dialogue acts.

This model revealed three distinct states of conversation that occur in these
co-creative interactions: Social Dialogue, Aesthetic Dialogue, and Technical Dia-
logue. The Social Dialogue state usually occurs at the beginning of the interac-
tion, but can occur throughout and usually includes some rapport building and
off-task discussions. Utterances in the Aesthetic Dialogue state usually involved
discussing different aspects of the music such as instruments, tempo, genre, and
even what artist to emulate. Utterances in the Technical Dialogue state were typ-
ically about task requirements and code. This model also revealed four hidden
states focused on coding: Curriculum, Code Editing, Code Runs Successfully, and
Runs Code with Error. The sessions never begin in the Curriculum state, and
no other states consistently lead to it. Every state, excluding the Social Dialogue
state, has a significant chance to lead to the Code Editing state, and 21.3%
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Fig. 2. The co-creative dialogue states’ emission and transition probabilities.

of the actions occur in this state. This percent does not represent how much
elapsed time learners spent editing the code, because we combined sequences of
consecutive edits into a single edit observation symbol. Code Editing transitions
to a Success or an Error state 98.53% of the time. The states the Successful
Code Run state is likely to transition to are Code Editing (42.72%), Technical
Dialogue (9.89%), and Aesthetic Dialogue (6.17%). The other state Code Runs
with Error is most likely to transition to is Code Editing (68.84%), and the only
other state is Technical Dialogue (3.60%).

4 Discussion

4.1 Dialogue States

These results revealed ways in which co-creative dyads moved among collab-
orative dialogue states characterized by conversation and task actions. Of the
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Table 2. Excerpt 1: Learner conversation transitioning from Aesthetic (State 1) to
Technical (State 4) Dialogue State. Each dialogue state was determined automatically
using the HMM presented in this work.

State Action User Text

1 PR Student 1 what you want to do

1 P Student 2 lets do dubstep cause its fire

1 PA Student 1 i feel you

4 C Student 1 what did she say how many variables

4 STMNT Student 2 3

4 D Student 1 ok lets do this

4 C Student 2 ngl im kinda lost already so im sorry

4 C Student 1 i dont know what to do

4 C Student 2 me either ima ask for help

seven hidden states identified by the HMM, three were composed primarily of
dialogue acts. Social Dialogue was the most likely state for students to start in,
primarily composed of greetings and off-task dialogue. This is a typical feature of
collaborative dialogue, prefacing discussion with periods of rapport building in
which the partners become more familiar with each other [15]. After leaving this
initial Social Dialogue state, we found that the conversation was nearly twice as
likely to move directly to the Aesthetic Dialogue state (60%) as to the Techni-
cal Dialogue state (31%). In the Aesthetic Dialogue state, students brainstorm
and exchange dialogue related to the musical piece they are constructing. The
Technical Dialogue is where students begin planning how to accomplish their
creative goals. In the excerpt in Table 2, the students set their goal of creating
a dubstep song and then debate how they would accomplish that in their code.
While the transitions can move from either the Technical Dialogue state to the
Aesthetic Dialogue state or vice versa, the transitions from Aesthetic Dialogue
to Technical Dialogue were much more likely, 12.95% versus 6.02%, than the
reverse. This observation suggests most pairs tend to decide on what they want
to make before they move on to making it.

4.2 The Debugging Process and the Conversation It Inspires

The remaining four states are mostly focused on actions in the interface: read-
ing the curriculum and tutorials on code constructs (state 2), editing the code
(state 3), encountering coding errors (state 6), and successfully compiling code
(state 5). The transitions between states 3, 5, and 6 demonstrate the movement
between collaborative states that occur during debugging, and they offer insights
about how co-creative conversations unfold. The editing state (state 3) primar-
ily transitioned to the compile states (Error or Success), with no transitions to
any of the dialogue states. After entering the success state, students were most
likely to go back to the editing state, but they also sometimes transitioned back
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Table 3. Excerpt 2: Learners’ successful code compilation (state 5) leading to Tech-
nical (state 4) and Aesthetic Dialogue (state 1). Each dialogue state was determined
automatically using the HMM presented in this work

State Action User Text

5 success Student 1

4 ACK Student 2 oh

4 STMNT Student 1 ohh its because they are 2 second each

4 STMNT Student 2 each measure isnt exactly 2 s

4 STMNT Student 2 its a little longer i think

4 STMNT Student 1 but when another is added to the 30 it becomes exactly 2 s longer

4 STMNT Student 2 measure 15 is at 28.5 s

4 success Student 2

1 P Student 1 we can use a combination of sounds

1 P Student 2 we should just leave it at 31

1 P Student 2 i think that will be fine

1 PA Student 1 yeah

... ... ...

5 success Student 2

1 edit Student 1 \n
1 P Student 2 we should put like a synth or something to that effect

1 P Student 2 add some like futuristic noises or airhorns or something

into the Technical Dialogue or Aesthetic Dialogue states. Table 3 illustrates this
transition.

The Success state seems to be an inflection point in the co-creative process,
in which the group may start to renegotiate some of the creative aspects of their
code. In contrast, the Error state only transitions to Editing or Technical Dia-
logue suggesting partners who encounter errors focus on resolving their problems
rather than discussing new ideas (Aesthetic Dialogue).

4.3 Implications for Co-creative Agents in Education

The findings of this research provide insights for modeling co-creative dis-
course, which can inform the design of AI to support learning based on human
co-creative interactions. For example, after the initial rapport-building phase,
human pairs in our study usually moved on to establish aesthetic details, such
as what kind of artifact they wanted to create or what elements to use, before
they transitioned to discussing the technical implementation of how to create the
artifact, as seen in the excerpt in Table 2. Additionally, certain milestones, such
as completing a subtask or running the code successfully if it is a coding artifact,
can be an opportunity to renegotiate or confirm aesthetic or technical decisions,
as shown in the excerpt in Table 3. In contrast, when students encountered an
issue, they usually continued with task-based actions, and any dialogue that
occurred after was usually technical in nature and directly addressed the prob-
lem, as shown in the excerpt in Table 4. This finding suggests that a co-creative
AI or collaboration support system should address the need for immediate focus
on debugging before attempting to resume any aesthetic conversation. On the
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Table 4. Excerpt 3: Learners having a compilation error (state 6) and transitioning to
Technical Dialogue (state 4). Each dialogue state was determined automatically using
the HMM presented in this work

State Action User Text

6 error Student 1 Unknown Identifier

3 edit Student 1 ;

6 error Student 1 Unknown Identifier

4 NPosFdbk Student 1 bruh

4 C Student 1 whats the error

4 error Student 2 Unknown Identifier

4 STMNT Student 2 vairable or function not defined makes sense

4 STMNT Student 2 variable*

3 edit Student 2 \n
6 D Student 1 try fixing it idk what to do

6 error Student 1 Unknown Identifier

6 DA Student 2 okay

other hand, because dialogue can be such a powerful mechanism for identify-
ing and resolving errors, an intelligent collaboration support system could foster
productive dialogue in these instances where our data suggest learners may not
engage in dialogue without scaffolding. This work could improve the design of
AIED systems by identifying distinct phases of co-creative collaboration and
identifying productive and unproductive patterns co-creative dialogues. These
findings may inform co-creative agents inspired by human co-creativity that can
support the different phases of collaboration.

5 Conclusion and Future Work

Co-creativity is important for many collaborative learning contexts, and under-
standing dialogue around these processes is important for supporting collabora-
tive learning. In a study with 136 high school learners in 68 pairs co-creating
music through programming, we analyzed learners’ dialogue moves and contex-
tual actions with a hidden Markov model. We uncovered three distinct dialogue
states that included social, aesthetic, and technical dialogue. When the students
successfully ran their script, they transitioned into either aesthetic or techni-
cal dialogue, suggesting a renegotiation or planning phase. When the students
encountered a coding error, they almost always returned to the code editing
state and rarely transitioned to a conversational state. When they did transition
to a conversational state, they only transitioned to Technical Dialogue. These
findings revealed insights into co-creativity during learning and provide initial
direction for developing co-creative agents for education.
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The results point to several important directions for future work. For exam-
ple, it is important not only to investigate what humans do during co-creativity,
but how those actions are associated with outcomes. Such a research direction
will identify not only what strategies are natural, but which strategies are most
effective. Another direction for continuing this research is to examine the hidden
states from the perspective of each student. Understanding these states from the
perspective of each partner can inform the creation of agents as partners. Mov-
ing forward, we need to add co-creative AI to the ranks of pedagogical agents
and other adaptive supports that are supporting learners in increasingly com-
plex domains. These technologies have the potential to support engagement and
learning for diverse students learning challenging material.
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Abstract. While using online learning software, students demonstrate
many reactions, various levels of engagement, and emotions (e.g. con-
fusion, excitement, frustration). Having such information automatically
accessible to teachers (or digital tutors) can aid in understanding how
students progress and suggest when and who needs further assistance. We
developed the Affective Teacher Tools, a report card and dashboard that
present teachers measures of students’ engagement and affective states
as they use an online tutoring system, MathSpring.org, which supports
students as they practice mathematics problem-solving at the middle
school level. We conducted two development and research studies – one
that assesses teachers perception of the affective report card and a sec-
ond study that assesses a live affective dashboard, which senses students’
affect and performance in a live class that is using MathSpring. We use
computer vision techniques to measure students’ engagement and affec-
tive states from their facial expressions while they use the tutoring sys-
tem. In this paper, we summarize both the report card and affective
dashboard, the research studies and results, and we also discuss implica-
tions, and future planned experiments for the next phase of this research.

Keywords: Teaching · Affect · Engagement · Design · Intelligent
tutoring systems

1 Introduction

As students engage with online learning technologies, they often demonstrate
a wide variety of reactions, dependent on a combination of their motivation,
mood, and background knowledge. Students experience various levels of engage-
ment and might express emotions such as confusion, excitement, frustration,
anxiety, and many more. Engagement and different affective states of students
can be tightly correlated with their learning gains on many learning tasks, such
as math problem solving and concept understanding [2,7]. Having such engage-
ment and affective information accessible to teachers (or digital tutors) can aid
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Fig. 1. The MathSpring tutoring system. Multimedia hints are available from the
“Hints” button on the left, as well as Worked-out examples and Tutorials. Jane (right)
is an affective agent who emphasizes the importance of putting in effort.

in understanding students’ progress, and suggest when and who needs further
assistance, which eventually improves students’ learning outcomes.

MathSpring.org (Fig. 1) is a web-based online tutoring system designed to aid
students’ learning of mathematical problem-solving strategies [1], aligned to the
Common Core Standards, the national mathematics curricula in the USA. How-
ever, just like with many other teaching tools, students’ success and advancement
also depends on teachers’ effective lesson plans, and teacher’s ability to support
students during and after they use MathSpring. This is the main reason why we
created MathSpring’s Teacher Tools, a portal where students can log in to config-
ure the material that students will receive the next time they log in, and inspect
students’ performance on math Problems and curricular areas. Teachers need
to understand and gain insights of their students’ progress, in order to obtain
valuable information that they could feed back to their teaching strategies. One
challenge is that today’s curriculum of test scores and assignments do not gen-
erally translate to real-time understanding of students’ progress. Even further,
it hypothesized it would be ideal if teachers could have a snapshot of students
affective profiles. We consequently developed the Affective Teacher Tools to sup-
port teachers with two main goals: a) to collect students’ “just-in-time” affective
and engagement states as they solve mathematical problems in MathSpring and
b) to provide teachers with real-time information to understand the progress of
their students over time. Ultimately, teachers would gain insights into their stu-
dents’ motivation, interests, attention and effort, in addition to their cognitive
progress towards mastering mathematics concepts. By monitoring and capturing
students’ affective and engagement states, these constructs could help teachers
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realize whether their lesson plans are helping the students grow and strengthen
their engagement, whether they need to re-teach or reinforce certain concepts.

Using an iterative design approach, we conducted two studies to understand
how to design and implement Affective Teacher Tools that would benefit teach-
ers and in turn students of MathSpring. First, we present the Affective Report
Card of the Teacher tools, a series of asynchronous reports that summarize each
students’ effort and emotions reported and expressed within MathSpring, as a
complement to their performance in mathematical problem solving. We present
a final analysis of ten (10) teachers’ perceptions of these tools after three rounds
of iterative feedback from senior mathematics teachers and an interface designer,
which led to a final improved design. Second, we present a Facial Expression-
Augmented Teacher Dashboard, an addition to MathSpring’s Teacher Tools to
identify students’ affective states and provide nuanced information to teachers,
in real-time, as students are using MathSpring. We present results from a usabil-
ity study with four (4) math teachers, which revealed promising results about
its usefulness. Finally, we discuss our planned experiments for the next phase of
this research.

2 Related Work

2.1 Affect-Aware Intelligent Tutoring System

A growing body of literature has analyzed user affect and expressions while
interacting with online learning systems [2,4,5,8,14–17]. Student affect is mea-
sured and modeled using techniques such as self-reports of how they are feeling
[15], human ratings [2], log data [5], facial expression recognition [17], and a
combination of them [8]. As facial expression recognition advances as part of
computer vision and machine learning research efforts, a subset of literature has
analyzed student affect within learning environments, using various facial expres-
sion analysis techniques [4,6,8,14]. For example, Bosch et al. [4] analyzed videos
of students interacting with an educational physics game and used computer
vision techniques to detect students’ affect from facial expressions and body
movements. Whitehill et al. [14] developed machine-learning based detectors of
engagement from students’ facial expressions. While various studies have been
conducted on estimating students’ knowledge and affect, not enough research
has been done to transform this collected (raw) data into meaningful informa-
tion that is more relatable to teachers, parents and other stakeholders. We con-
ducted research that captures student performance and detects students’ facial
expressions to generate a live dashboard for teachers to use in the classroom
while their students are using the MathSpring.org tutoring system.

2.2 Affective Learning Analytics

A variety of research has analyzed how dashboards and digital gradebooks can
support teachers. Bienkowski, Feng and Means [3] discussed how student data
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are important for educators to plan and apply actionable teaching strategies.
Understanding this data and relationships within the data would help educators
to make faster decisions to support their students, and serve as a form of feedback
to inform teachers how effective their lesson plans have been. However, teachers
are often overwhelmed and do not have the time to analyze any collected student
data. Hence, teachers need ease of understanding of complex relationships within
the data without the need of performing any data analysis, for instance at the
item level, such as Heffernan et al. [10], who created a dashboard for teachers to
receive feedback about their students’ performance in math problems, so that
teachers can identify students who need additional help, or material that needs
to be re-taught. Innovative efforts by Holstein and colleagues [11] consisted of
wearable glasses that provide teachers with live information about how their
students are behaving and performing during class time. Other dashboards have
provided teachers with information about collaborating students interacting via
chat or alike, as they use learning technologies [13]. All of these efforts have
proved to be effective at providing teachers information about their students. Our
main research question though regarded understanding both the feasibility and
interest of teachers in obtaining affective information about their students both
in an asynchronous way (report card) and in a synchronous way (live dashboard),
supporting teachers in their ability to understand students’ affective states.

3 Affective Report Card

Menon [12] designed an initial prototype of a Cognitive and Affective Report
Card in MathSpring. The prototype consists of multiple functions and capabili-
ties to allow teachers to: 1) visualize individual students’ performance and affect
and 2) analyze group performance to spot strengths and weaknesses at the class
level, 3) to spot engagement styles and profiles of their students that go beyond
the mere correctness of answers. Using an iterative design approach, Menon went
through three phases of development.

3.1 Method to Develop the Affective Report Card

An initial prototype was designed using best practices and researcher’s expertise,
providing information about problem solving and estimations of student ability
in Common Core Math Skill areas. The MathSpring team learned a few lessons
after an informal evaluation with mathematics teachers (N = 4). One of the key
lessons learned was that teachers wanted to see how their students had been
doing over time so that they could track their evolving knowledge (mastery), so
that teachers may realize how well their lesson plans are working.

The team further took the lessons learned from those teachers and applied
them to improve the user interface and visualization of the Affective Report
Card. A new set of teachers (N = 10) participated in a 3-day MathSpring Pro-
fessional Development workshop during the summer of 2018 to evaluate the
improvement, which allowed teachers to learn which students might be falling
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Fig. 2. Students performance in math problems, aggregated across all students in the
class. Highlighted lines show Common Core Areas that are troublesome for students
in the class. Opening the accordion reveals all problems seen by students for the Com-
mon Core Cluster, the percent correct responses, and much more. Clicking on the last
column gives an effort chart (GIVEUP, SOF, etc.) for all students in the class who
have encountered that math problem. Hovering over items reveals more information,
e.g. an image of the problem.

behind and how students might be progressing over time. Teachers were able to
see where and how their students might have fallen short as a class, both at the
class level and broken down by Math Common Core Areas (e.g., most frequently
incorrect answer of specific mathematical questions) Fig. 2, and also at the tra-
ditional per problem, per student level. The importance of realizing these details
was to enable teachers to pinpoint which students needed additional remediation
or identify which lesson plans needed improvement.

With the help of a HCI designer and a senior math teacher, the MathSpring
team implemented a final design. An important attribute debuted was the “Emo-
tion Chart.” This chart is a visualization of students’ subjective self-reports of
their frustration, excitement, interest, and confidence while they were solving
mathematical problems in MathSpring. Students are asked to report this infor-
mation every 5 problems or 8min, whichever comes first, as they are working in
MathSpring, in between math problems (their work is not interrupted for this).
Students are also invited to report for their reasons why they feel a certain way.
Importantly, students can dismiss the emotion report window if they are not
willing to report how they are feeling. From the Teacher Tools perspective, an
“Emotion Chart” design makes this information available to teachers, as it arrives
into the MathSpring servers. When chosen by the teacher, the asynchronous “Per
Student” report shows the four different emotions in four separate bar graphs
(see two emotions reported in Fig. 3), in addition to math performance infor-
mation and engagement “effort” information. The result of a survey to teachers
was that 91% of the N=10 interviewed teacher participants found the affective
information in the bar graphs as somewhat or very useful. One of the participat-
ing teachers commented that the emotional aspects of the students are essential
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Fig. 3. Reported emotions for an individual student, in the per student report.

because seeing merely the accuracy of their answers “... doesn’t always give us a
good picture of a student’s understanding.”

Another feature was considered as useful, was the so-called “effort chart”
visualization. Represented as stacked bar visualization, it was used to depict the
effort excerpted by students on math problems, and their associated emotional
states (Fig. 4). This effort stacked bar allows the teacher to see important details
about how individual students are engaging with the material, including: 1) the
percentage of problems answered correctly the first attempt (SOF), 2) percentage
of problems that were skipped (SKIP), 3) the percentage of problems where the
student gave up (GIVEUP), and 4) the percentage of problems where the student
quick-guessed the answer of the problem (GUESS), among others. One teacher
commented that the usefulness of the effort stacked bar is not just insight, but
that teachers “... could use this information for conferencing with students.” That
specific teacher went ahead to run a small research project with his class about
the benefit of conferencing with students about their behavior in MathSpring,
using these visualizations (unpublished).

This same chart is presented at the class level, see the last “Collective Effort
Per Problem” column of Fig. 2. All 10 teachers in the study considered this
specific feature to be somewhat or very useful also, as it allows to understand how
all students in the class have engaged with a specific math problem. All teachers
perceived one feature called “Similar Problems” as very useful, which would allow
them to find math problems that were “similar” to the current question that
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Fig. 4. Effort for an individual student, in the per student report.

students might be having difficulty with. Open ended responses revealed that
the “Similar Problems” button, consisting of a hyper-link to problems related
to the same standard in the Massachusetts Comprehensive Assessment System
Web Portal (MCAS), was very useful to them, because it provides teachers with
other math problems they could provide their students, after identifying that
they were weak in a specific area. This would provide additional opportunities
to practice and boost their confidence in that CC standard area.

4 Teacher Dashboard to Inform Teachers

The second effort is a Facial Expression-Augmented Teacher Dashboard. It seeks
to enhance information provided to the teachers through MathSpring’s Teacher
Tools while students are using MathSpring. The dashboard captures student
performance and detects students’ facial expressions (smiles, nose wrinkles and
frowns), which highlight students’ emotion and engagement, using a deep learn-
ing model for facial expression detection. Instead of the intelligent tutor perform-
ing an intervention (e.g., have the character talk to the student) this information
is shown to teachers in order to support them to understand what is going on,
juxtaposing the state of knowledge and corresponding affect of students. This
helps teachers understand students’ states of mind, as they are using Math-
Spring. This information is presented back to the teachers so they might act,
altering their instruction or interaction with each student in a personalized way.
Figure 6 shows the Teacher Dashboard highlighting students’ facial action units
gestures (AU4, AU9, and AU12 or facial expression, Frown, Nose wrinkle, and
Smile) during the student’s live session. When clicking on a student tile in Fig. 6,
further detail on the student is presented, as shown in Fig. 7.
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Fig. 5. Evolution of facial expressions of students using MathSpring (left). The facial
expression detection pipeline (right)

4.1 Method to Develop the Teacher Dashboard

Gupta [9] developed a pipeline to build a model for recognizing facial expres-
sions (Fig. 5). Specifically, multiple convolutional neural networks were trained
to detect the presence and intensity of three action units for smile, nose wrinkle
and frown (AU4, AU9, and AU12, respectively).

Face detection is first performed using a pre-trained Single Shot Multibox
Detector (SSD) based on the MobileNetV1. Essentially, each image goes through
the SSD in which a bounding box of a potential face is computed. Next, after
a foreground face has been identified, features representing facial landmarks of
eyebrows, eyes, nose, and mouth are extracted. Particularly, the face extraction
model was trained using a dataset of 35K face images labeled with 68 face
landmark points. The open-source libraries face-api.js and Tensorflow.js were
used for the detection and extraction. In the facial expression prediction phase,
a fully connected neural network was trained using the features identified from
the extraction model. The input of the model is a [24× 1] vector containing the
attributes corresponding to the facial landmarks of eyebrows, eyes, nose, and
mouth. The output contains a [3× 1] vector containing the prediction of the
confidence of the 3 facial action units.

The accuracy of the detector under cross-validation, testing over 20% of the
data, was high (82%, 79% and 70% for smile, nose wrinkle and frown, respec-
tively) with AUCs of 0.8, 0.76 and 0.69. The final AU detector was deployed in
the front-end of MathSpring (Fig. 6). As teachers click on a student card, they
can see further detail (Fig. 7). The student effort pie chart provides the concen-
tration for the different efforts observed by the students on various mathematics
problems. It provides an analysis of the students’ performance during each ses-
sion. Along with it, the student detail page also provides the last 5 mastery and
efforts depicting the student’s performance during the last 5 problems (Fig. 7).
It also provides teachers with information about topics on which students have
currently worked.
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Fig. 6. The Teachers’ Dashboard provides a snapshot of the class, with student expres-
sions, recent topics visited, recent effort on problems (e.g. GIVEUP means a student
has moved on without answering a problem, SOF means the student has correctly
solved a question on the first attempt, and “mastery” is the probability that the stu-
dent knows/masters the topic.

4.2 Usability Study for the Teacher Dashboard

A live video of the dashboard, as it was being used by MathSpring students as
part of a class, was shown to four (N = 4) senior math teachers who are users
of MathSpring, and had experience with its use in the classroom (without the
Dashboard). They completed a qualitative/quantitative 11-question survey that
captured teachers’ critical views, suggestions regarding the new development,
and perceptions of usefulness, after seeing a captured video of the Dashboard
change and update, while a class of actual students was using MathSpring. The
survey contains questions that capture teachers’ view about various aspect of
the dashboard, the facial gestures component in particular, and the impact of it
in their understanding of students’ current states while they solve problems on
MathSpring platform. For instance, the two first questions were: “Do you think
this dashboard could be useful for you as a teacher in the classroom, as students
use MathSpring?” and “Does the facial expression in the dashboard seem to
provide useful information or not? Please explain.” The 11-questions asked for
perceptions and feedback about every detail in the dashboard.

The usability study showed promising results from teachers, who rated the
information as very useful in general, with a majority of positive answers for all
questions. Most teachers found the detailed information on the students infor-
mative and meaningful. When asked about how valuable they thought it is on a
scale of zero to five(zero being least valuable and 5 being most valuable), they
responded with three and above(3+). One of the teachers mentioned that the live
dashboard seems to be a “great way to monitor students when not having direct
access to them” during distance learning. The tile representation of simplified
faces of the live students together in one place was appreciated by all teachers
(Fig. 6). Another teacher mentioned that the new facial expression depiction on
the live dashboard was a “nice and quick” way of understanding the students’
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Fig. 7. When clicking on a student tile in Fig. 6, further detail on the student comes
up. The left charts show that this student has smiled very frequently (appears relaxed).
The charts to the right show student performance on math problems. The pie chart
shows the frequency of recent behaviors on problems by students (this student recently
solved 65% of problems correctly on first attempt (SOF), and solved incorrectly but
self-corrected 35% of the time (ATT).

comfort level while they solved problems. Participant teachers also described it
as a useful tool to detect students who “express a lack of confidence” so that
they can focus on them further.

5 Summary and Future Work

In summary, we showed that teachers believe they would benefit from the Affec-
tive Report Card and Affective Dashboard. Teachers found the abilities to drill-
down into the details of their students’ recent progress and affective states as
important in order to identify what leads to students’ progress or hindrance.
Such drill-down serves as a form of feedback to teacher’s strategies, lesson plans,
and which students to focus on further. In general, the feedback received from
teachers was encouraging, as they perceived these Affective Teacher Tools, which
supplement affective and cognitive data from students, could help them under-
stand students further and personalize their response to students as well.

Using an iterative design approach, we built multiple improved prototypes
that involved teachers feedback. Another round of improvements will be car-
ried out, taking into account teachers’ feedback, including an important sugges-
tion from teachers to combine the information currently present in the Affective
Report Card and show it in combination with the Dashboard. This would allow
juxtaposing facial expressions with students recent reports of how they feel and



188 A. Gupta et al.

why, which should provide very valuable information for teachers to assess the
situation of each student. Another major component of the next phase of this
research is a larger scale study with more teachers, using the Affective Teacher
Tools, in full, with their own students.
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Abstract. Advances in AI and Visual Recognition have paved the path-
way for cutting edge research in Gesture Recognition. While automated
feedback is able to open doors for newer opportunities in gesture based
learning and practice, the effectiveness of these feedback as compared to
manual feedback remains as a question in the minds of the users. For
learners of American Sign Language (ASL), automated feedback gener-
ated by an application often causes a sense of apprehension because: a)
learners are unaware of the automated feedback generation process, and
b) learners fear that they can not trust the automated feedback as it may
not be as good as the manual feedback. We use an ASL learning appli-
cation that provides fine grained explainable feedback and follow a two
step process to present a comparison between the automated feedback
and the manual feedback provided by experts.

Keywords: Automated feedback · Gesture based learning · Inclusion

1 Introduction

Appropriate feedback is known to enhance learning outcomes and much research
has been conducted in support of this theory. In recent years ample research has
been done as well to support enhancement in computer aided learning with the
help of automated feedback. In a pandemic situation like Covid-19, computer
aided learning can become most beneficial. Automated feedback-based applica-
tions can also help in regular times as they take away the perils of scheduling con-
flicts and can provide users with self-paced learning opportunities at their con-
venience. However, for a less conventional learning modality, like gesture based
learning, there is not enough research done to provide such help. Automated
feedback in gesture based learning applications can enhance learning opportuni-
ties in the field of assistive technologies [1,22], combat training [13,24], medical
surgery [14], performance coaching [21] or applications facilitating Deaf and Hard
of Hearing (DHH) education [17,18].
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Real time immediate feedback is known to enhance learning by providing bet-
ter engagement with learners, as is seen in a classroom environment with teach-
ers. Applications with automated feedback, are essentially designed to mimic
the prompt feedback provided by teachers in a classroom. Advances in AI [2,10]
has enabled these feedbacks to be fine grained and detailed. However, there is a
distrust and confusion, in the minds of the users [11], about the generation and
effectiveness of these automated feedbacks [19]. Even with pre-set rubrics and
lack of objectivity, manual feedback remains the gold standard in learning since
we associate learning with classrooms and human teachers [4].

In this paper, we engender trust by employing a second level expert who eval-
uates the quality of the feedback unaware of whether the feedback was automated
or manual. We present the second level expert with two feedback choices and
record the percentage of manual vs automated feedback chosen by the expert.

1.1 Related Work and Motivation

A review of the related work has motivated us to undertake this comparison
based research. We discuss them in the following sub-sections.

Evaluation of Automated Feedback of an ASL Learning Application.
Formative assessment has been a heavily researched area for a very long time.
Formative assessment allows learners to know about their mistakes that can build
towards their overall understanding of the topic. This manual fine grained feed-
back mechanism is what has built a long standing trust on the manual feedback
by a teacher. Hence, in recent years, this learning theory has been implemented
in automated feedback research [8,23,27]. Realtime formative automated feed-
back offers finer details about evaluation. Automated feedback should instruct
learners as to how the application has arrived at the result of the evaluation [26].
Research has shown that the explainability of feedback increases their acceptabil-
ity [17]. Much research has also been done on the learners’ preferences between
automated and manual feedback [12,19]. However, very few research work has
attempted to evaluate the automated formative feedback on the basis of expert
evaluation. To increase user trust in automated feedback, this experiment uti-
lizes the concept level feedback generated by ASLHelp and compares it with the
formative manual feedback, based on expert evaluation. Using ASLHelp, novice
ASL learners can view ASL gestures executed by experts, learn and practice
them. The application as a part of CSAVE framework [6], is deployed at the
author’s university and is being used by novice ASL learners.

Potential Extendibility of Automated Gesture Based Feedback.
Research on automated feedback in the field of gesture based applications is
still in its infancy. Most research efforts that have been made, focus on the
application of the methods of gesture recognition in different areas of learning
and practice [3]. This underexplored field of research remains underserved by
lesser participation from users like Deaf and Hard of Hearing (DHH) individu-
als, mostly due to lack of trust. Australian researchers have explored design space
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for visual-spatial learning system with feedback, but they were for Auslan sign
users and mainly focused on the feedback on location of the sign being executed
[5] and only studied learners’ preferences for the presentation of the automated
feedback [20]. Some research in ASL has shown promise in the field by introduc-
ing lexical details [7] and explainability in feedback generation [17,18] to enhance
learning and build trust. Unlike traditional learning applications, gesture based
applications are multimodal. Hence, errors that are present in an execution need
to be tied directly to the specific component involved in the execution. There
were very few research attempts to compare automated feedback on gesture
execution with manual feedback from experts. For ASL Learners research has
shown that students prefer visual feedback on their gesture execution [7], but no
such research attempts were made to compare feedbacks in the field of physio-
therapy, combat training or dance performance. There were no research attempt
to compare gesture based automated feedbacks with manual feedbacks on the
basis of studied expert opinion. In this experiment, we use ASLHelp, that gen-
erates explainable automated feedback based on the correctness of the location,
movement and handshape in an ASL gesture. We use the same components as
rubric for manual expert feedback and present a comparison between the two
feedbacks based on expert opinion. The feedback generation in ASLHelp is mod-
eled based on the expert execution of the gestures. This experiment will allow
for designing automated feedback comparable to manual feedback and extend its
usage to other gesture based training, e.g. robot assisted military combat [13,24],
rehabilitation therapy for diseases like Parkinson’s or Alzheimer’s [1,22], heavy
equipment operators [9], or for applications in coaching in performance arts [21].
Comparable automated feedback can not only help learning while social distanc-
ing but will also help individuals who are affected by a long period of inactivity
and isolation with the required training that they would need to get back to
their field of work.

1.2 Challenges

Challenge 1: Subjectivity. For a fair comparison between manual and auto-
mated feedback, we need to ensure that manual feedback follow the same struc-
ture as the automated feedback. Solution: In order to reduce subjectivity, we
express an ASL gesture as a grammar based combination of concepts. This
allows the generation of concept level formative feedback for a erroneous ges-
ture execution.

Fig. 1. Concepts in ASL Fig. 2. Novice Learner Execution
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Concept Level Formative Feedback : ASLHelp provides formative feedback
for an “incorrect” response utilizing a context free grammar based representa-
tion of ASL gestures in terms of location, handshape and movement concepts
as shown in Fig. 1. This allows learners to understand what they are evaluated
on and attempts to build trust between the user and the machine [8,23,27].
For example, if the signer uses the correct handshapes for both hands and the
location of the hands are also correct, but the movement of the right hand is
incorrect, ASLHelp will generate a feedback like- “Location is correct, Hand-
shape is correct, Movement of the right hand is incorrect”. For our experiment,
we ensured that the expert evaluators follow the same structure of evaluation to
give feedback based on the location, movement and handshape. A preset struc-
ture or rubric reduces subjectivity and allows for a fair comparison.

Challenge 2: Method of Comparison. In order to compare expert manual
with automated feedback, the evaluation of both feedback techniques has to be
performed by another ASL expert unaware of the source of feedback and the
purpose of the experiment. Solution: We utilize a two step evaluation method.
The first step involves three experts who review the recorded gesture executions
of the novice learners and provide manual feedback. Automated feedback is also
generated for the same videos using ASLHelp. Both manual and automated
feedback are compared for each video. All feedback are recorded for use in the
second step, as shown in Fig. 3.

In the second step, we use a fourth expert who is unaware of the previous
step and the purpose of the experiment. The expert is presented with two feed-
back choices for each gesture (from the pool of recorded automated and manual
feedback) for that video and is asked to choose a feedback that is appropriate
for the corresponding video, as shown in the inset of Fig. 3.

Fig. 3. Two step comparison of automated feedback with manual feedback

2 Method of Experiment

To implement the solutions discussed in Sect. 1, we collected recorded video
data from experts and novice learners, collected feedback on the novice learners’
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videos from experts and ASLHelp to perform the two step evaluation process.
Details of these steps are discussed in the following subsections:

2.1 Data

We have collected data sets from two different sources: Expert Data sets from
SignSavvy website [15] and a novice learner data set with video recordings from
first time ASL Learners. The novice data set consists of gesture videos from first
time ASL learners using ASLHelp. Students learned the ASL gestures by watch-
ing expert videos on SignSavvy. The videos were recorded by users themselves
while using the application in practice mode. Videos were collected from 26
learners, each performing 6 generic ASL terms. There were no restrictions on
the light conditions, distance to the camera or on the position of the user while
recording (standing or sitting down) as shown in Fig. 2. We recognize that while
expert videos are recorded in ideal conditions with proper lighting and position-
ing, self recorded videos from students are not recorded in ideal condition with
different items in their background and heterogenous camera use.

2.2 ASLHelp Feedback

ASLHelp is a self paced American Sign Language learning application. It pro-
vides context based explainable feedback to faciliate higher learning outcomes.
It was deployed and used by novice ASL learners at the author’s university.
Users are able to perform two activities using ASLHelp: 1) learn ASL gestures
(performed by experts) for everyday words, 2) test their knowledge by perform-
ing gestures of a given word that they have learnt. It compares expert gesture
execution with learner’s self recorded video and checks them for correctness. The
process of comparison has the following components:

Grammar Expression of Gesture: ASLHelp uses the three modalities of ASL
proposed by Stokoe: location of the sign, movement, and handshape [25] as
shown in Fig. 1. Each gesture in ASL starts with an initial handshape, initial
location of the palm and ends with a final handshape and final location of
the palm. In between the initial handshape, location and final handshape and
location, there is also a unique movement of the palm. These three components
are unique concepts of a gesture since each of the handshapes, locations and
movements have a specific meaning that make these gestures meaningful to
ASL speakers. Recognition in ASLHelp is designed based on these three unique
modalities of ASL gestures. We define gesture expressions in terms of these
concepts (handshape, location and movement) and represent them using context
free grammar.

We consider the Concept Set, Γ , where Γ = ΓH

⋃
ΓL

⋃
ΓM . Here, ΓH is

the set of handshapes, ΓL is the set of locations and Γm is the set of movements.
So, regular expression GE:
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Handshapes(H) → ΓH (1)
Locations(L) → ΓL

Movements(M) → ΓM

GE → GELeftGERight

GEx → H|∅, where, x ∈ Right, Left

GEx → HL

GEx → HLMHL

ASL learners are able to get automated feedback based on the correctness
of these components. The correctness is determined by comparing learner’s exe-
cution to the execution of an expert. To compare, keypoints are obtained from
both the expert execution and learner execution. Keypoints are the body parts
that are tracked frame by frame throughout the video. Keypoint estimation is
necessary to identify the location, movement and handshape of the gesture exe-
cution. Keypoints for eys, nose, shoulder, elbows and wrists are collected using
PoseNet [16].

Location Recognition: ASLHelp considers start and end locations of the hand
position for pose estimation using the PoseNet model. This model identifies wrist
joint positions frame by frame from a video of ASL gesture execution in a 2D
space for key points. The two axes namely X-axis (the line that connects the
two shoulder joints) and Y -axis (perpendicular to the x-axis) are drawn based on
the shoulders of the learner as a fixed reference. We divide the video canvas into
6 different sub-sections called buckets. Then, as the learner executes any given
sign, the location of both the wrist joints is tracked for each bucket resulting in
a vector of length 6. This same procedure is followed for the expert executions,
and a cosine based comparison is done between the two vectors.

Movement Recognition: The hand movement type is considered by capturing
the movement of the hands with respect to time from its start to the end of
the sign which is required for making comparisons. The Dynamic Time Warping
technique is used for extracting frame by frame distance matrices with synchro-
nization for the difference in speed or delayed start/stop times of the learner.
This uses Z-normalization on the time-series for the difference in the size of the
frame, distance of the learner from the camera and size of the learner relative to
the tutor to some extent. DTW tries to get an optimal match for every data point
in the sequence with any data point of the corresponding sequence. If segmental
DTW distance between a learner’s recording and a tutorial was higher than the
threshold for each arm section, then a movement-based feedback is provided.

Handshape Recognition: ASL signs differ semantically only by the shape or orien-
tation of the hands. To ensure focused hand shape comparisons and recognitions
a tight crop of each of the hands is required. In ASLHelp this is done using
the wrist position for different videos: a) Depending upon the orientation of the
hands, the size of the crop was made very large relative to the learner’s body
and, b) The distance of the learner from the camera for the quality of the crop
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depending on the learner either being closer to or farther from the camera. The
wrist location obtained, is used as a guide to auto-crop these hand-shape images.
During recognition time, hand-shape images from each hand are extracted auto-
matically from a learner’s recording. Then 6 images for each hand are passed
separately through the CNN and the softmax layer is obtained and are concate-
nated together. Similar processing is done on the expert video to obtain a vector
of the same length. Then a cosine similarity is calculated on the resultant vector.

Fig. 4. Feedback generation process of ASLHelp

Automated Feedback : Based on the similarities between the recognized gesture
components of experts and learners, ASLHelp provides appropriate feedback as
shown in the inset og Fig. 4. This similarity is determined based on a threshold
τ , pre-decided (based on expert opinion) for each of the components: τL for
location, τM for movement and τH for handshape. For example, using a distance
matrix, D, for location comparison, if learner’s execution is completely dissimilar
to the execution of the expert, we would get a value of 1 and if it is exactly like
the expert’s, we would get a value of 0. τL is pre-decided based on an acceptable
range of dissimilarity with the expert execution, that would deem the learner’s
execution correct. If D < τL, the feedback on location would be correct and if
D > τL, the feedback on location would be incorrect. Similar process is used to
pre-decide τH and τM to generate appropriate feedback (Fig. 4).

2.3 Expert Manual Feedback

As mentioned in Sect. 1 to reduce the subjectivity of the manual feedback, we
used a pre-set rubric for the feedbacks from the experts. We use the similar struc-
ture used in ASLHelp as the concepts used in evaluation make these feedback
formative and also explanatory to the learner. An expert feedback also consists of
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evaluation based on the location of the sign, movement and handshape. Experts
use their knowledge of the gesture to evaluate the learners execution as correct
or incorrect. If the location of the sign is far off, the feedback for location is
incorrect, whereas if the movement in the same execution is correct, the feed-
back on movement would be correct (inset of Fig. 4). Feedback based on the
incorrect movement and handshape of the right or left-hand is also provided.

2.4 Two Step Evaluation

As a solution to the Method of Comparison, as mentioned in Sect. 1, we follow a
two step evaluation process by the experts. First step is to perform a one to one
comparison with automated feedback and the critical second step with choice
options from the pool of recorded feedbacks from the first step.

First Step: The first step is to compare ASLHelp and expert feedback for the
same videos. The feedbacks are compared to check whether the feedbacks match
Fig. 3. Based on the comparison, there can be six combinations:

CA & CE , IA & CE , CA & IE , IA & IE with FA ∩ FE = FA or FE , IA &
IE with FA ∩ FE = FM , IA & IE with FA ∩ FE = ∅

where for ASLHelp, Correct feedback is CA and incorrect is IA. For experts,
correct feedback is CE and incorrect is IE . FA represents ASLHelp feedback,
FE is expert feedback and FM is one or more matched feedback. All feedback is
analyzed and recorded to be used in the second step.

Second Step: Another expert is brought in, who is unaware of the first step and
the comparison process and second level of evaluation is performed using the
same videos. The expert is provided with two feedback choices and asked to
choose which is correct for the video. The feedback choices are provided from
recorded feedback from ASLHelp and experts in the first step. Second level
expert choice is then recorded and analyzed.

3 Results and Analysis

We show the execution results of the two step expert opinion based evaluation
process to compare automated and manual expert feedback. The first step is a
one to one comparison between automated and manual feedback for 154 novice
learner videos. The second step utilizes expert opinion to evaluate the appropri-
ateness of the feedbacks from the first step.

3.1 First Step: Automated vs. Manual

We collected 3 componential 154 feedbacks each from ASLHelp and expert
Evaluators. As mentioned in the previous section, correct feedback for all 3
components from ASLHelp is labeled CA, from experts as CE . Feedback with
any incorrect component was labeled I; IA for ASLHelp and IE for expert.
Results from CA & CE and IA & IE with FA ∩ FE = FA or FE are most
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interesting to us, because these two combinations present the results when both
feedback match exactly (100% match), regardless of the videos being labeled
correct or incorrect.

Table 1. Combinations of feedback matching with results

Feedback matching Total Percent

100% match (CA & CE and IA & IE with FA ∩ FE = FA or FE) 57 36.25%

≥66% match (IA & CE and CA & IE) 123 78.87%

≥33% match (IA & IE with FA ∩ FE = FM ) 152 98.70%

no match (IA & IE with FA ∩ FE = ∅) 2 1.29%

For the 3 componential feedback the categories for matching would be 100%,
66%, 33% or no match. Table 1 shows that for 57 of the videos there was a
100% feedback match. A 66% match represents only 1 mismatch between the
feedbacks in the detailed feedback category. We find that 78.87% of the times
the feedbacks have only one mismatch, 98.70% of the times they agree on atleast
one component of the feedback and only 1.29% of the times there is no match
between them as shown in Table 1. Figure 5 shows that while the automated
and manual feedbacks for location and movement match each other respectively
79.22% and 76.62% of the times, there are more disagreements for handshape,
(59.74% match). Figure 6 shows that automated feedback is identifying gestures
to be correct on all three components 58.44% of the times while manual feedback
is identifying the same gestures to be correct on all components 76.62% of the
times. We further isolated the results for matched feedbacks for each of the
gestures, by three components, two components and one component matching
(as shown in the Figs. 7, 8, 9).

Fig. 5. Feedback on individual con-
cepts

Fig. 6. Feedback on all three concepts
combined
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Fig. 7. All three com-
ponents matching by
gestures

Fig. 8. Only two compo-
nents matching by gestures

Fig. 9. Only one compo-
nent matching by gestures

3.2 Second Step: Second Level Expert

Fig. 10. Second Level Expert

In this step, automated and manual feed-
back from first step are evaluated based
on an expert opinion. Figure 10 shows
that 59.09% of the times the expert agreed
with the manual feedback and 40.91% of
the times they agreed with the ASLHelp.

3.3 Analysis of the Results

The results in the first step reflect that
automated and manual feedback matches
about 1/3 of the time. The matching is
brought down significantly by the mis-
matched feedbacks for handshape. Auto-
mated and manual feedback matches most of the time on the location and
movement components. The disparity in the handshape feedback could be the
result of two very different conditions that novice and expert videos are recorded
in, and applications ability to identify finer details in a handshape execution.
Given the imperfect conditions, heterogeneous modes of recording and back-
grounds with various objects in the videos of novice learners, handshape of the
gesture may not be as clear as the handshape in expert videos that are recorded
in near perfect condition with no obstructive objects. This result is indicative of
a required improvement in the handshape recognition mechanism of ASLHelp.
In second step, expert has agreed with the manual feedback more times than
with automated feedback. This agrees with the findings in the first step and
is reflective of the fact that manual evaluation is less sensitive than ASLHelp.
However, expert has also chosen the automated feedback 40.91% of the times
over the manual feedback reflecting that nearly half of the time ASLHelp feed-
back was more appropriate. The comparison between feedbacks for all three
components being identified as correct (Fig. 6) also shows that ASLHelp is able
to pick up on finer details in the videos than experts and hence can contribute
to better performance in execution of the gesture; which we believe would add
value to the extendibility of such automated feedback to various other gesture
based learning applications in different fields.
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4 Lessons Learned on Feedback

Through the findings of this experiment, we learn that more than half of the
times expert opinion favors manual feedback over automated feedback on appro-
priateness. This can be the result of more forgiving nature of manual evaluation
considering “approaches to be correct” as “correct”, where as ASLHelp only
considers which is precisely as correct. However, the findings are also indica-
tive of higher levels of recognition mechanism that is required. For automated
feedback to be comparable with manual feedback, a sound recognition of finer
details is required- specially in the field of gesture based learning. We posit that
ensuring finer recognition combined with adaptability for expert modulation of
margin of error, can advance automated feedback to a comparable level of man-
ual feedback.

5 Conclusion and Future Work

For computer based learning applications in all modalities to be considered use-
ful, the reliability of the feedback generated by an application is of great impor-
tance. We know from numerous research in the field that automated feedback
should provide feedback that is not only explanatory to the learner, but also
instructive enough so that it can help improve learner’s performance, just as a
physiotherapist, a combat trainer, a performance coach or an interpreter would
do. Through this experiment, we have demonstrated a two step evaluation pro-
cess that can be applied successfully to compare automated feedback with expert
manual feedback based on expert opinion. Analyzing the results from this exper-
iment, we have seen that some gestures were easier to reproduce for learners than
others, similarly automated and manual feedbacks for those gestures matched
more times than others. Further research into this to calibrate the recognition
and feedback process to match the difficulty level of the gesture may lead to
interesting new insights.
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Abstract. Code tracing involves stepping through a program in order
to predict its output. In the present study (N = 45 ), we used the
think-aloud protocol to gain insight into students’ cognitive processes
as they used a computer tutor to study code-tracing examples and work
on code-tracing problems, using either a high-scaffolding or a reduced-
scaffolding tutor interface. For the cognitive processes, we included both
self-explanation and reading behaviors, relying on a qualitative coding
to analyze the transcripts. Our results shed light on how different lev-
els of assistance provided by a computer tutor impact student reasoning
during code-tracing activities.

Keywords: Code tracing · Verbal protocols · Qualitative analysis ·
Programming education

1 Introduction

Programming involves writing instructions using a programming language that
tell a computer how to accomplish a specific task. Learning to program presents
a variety of challenges [21] because students must master not only the syntax and
semantics of a programming language, but also a new way to think and problem
solve [30]. Thus, support for this process is needed. To date, work has focused
on program generation, for instance by providing feedback on solution attempts
[29], assistance through hints [20] and worked examples of similar programs
[27], gamification [24], and adaptive activity selection [10]. However, program
generation is only one of four key skills students must master [32]. We focus on
designing support for the foundational skill of code tracing.

Code tracing involves predicting the output of a program by simulating the
high-level steps a computer would take while executing the program and how
values of program variables change as a result [8]. Code tracing improves stu-
dents’ ability to write programs [1] and debug them (i.e., find errors in pro-
grams). Moreover, code tracing is hypothesized to support the development of
appropriate mental models [1]. A mental model is an internal representation of
how something works – typically this representation is highly abstracted. In the
context of programming, a relevant mental model is the notional machine, an
abstraction of a computer that helps students predict how the computer will
c© Springer Nature Switzerland AG 2021
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execute their program [3]. Students have various misconceptions related to the
notional machine [22]; one broad one is that the computer can reason about
the intentions of the programmer and adapt accordingly [18]. In general, novices
have difficulty reasoning about the logical flow of a program [15], tracing pro-
grams to predict their output [25], and building correct mental models [11], to
name a few examples. Many students fail to code trace at all [8].

Given the importance of the code-tracing skill, some work has investigated
how to foster it with animation tools showing the execution of a program, sim-
ilar to a debugging tool. For instance, Hosseini et al. [12] provided students
with visualizations of code traces, including plain-English explanations of pro-
gram segments. The animations showed a visual trace of the program as well
as the stack frame with values of variables. As a second example, Sorva et al.
[23] designed a visual animation system capable of code tracing. To evaluate the
system, they interviewed 11 students to gain insight into their perceptions of
the visual animations. PL-Tutor [17] is another system that uses visual anima-
tions to illustrate the process of code tracing. The tutor provided a visualization
of program execution and Python namespaces, stacks and frames, encouraging
students to be constructive by entering variable values into the interface.

As described above, one approach to help students learn to code trace involves
animation tools. An alternative approach is more basic, by placing the responsi-
bility on the student to produce the code trace (typically with some scaffolding
for the process). To illustrate, Baymen and Mayer [1] reported that providing
basic written examples of worked-out code traces significantly improved students’
performance on a code generation task compared to a control group that was
not provided with the examples. More recently, Cunningham et al. [8] recorded
how students code-traced short programs using paper-and-pencil. Their qualita-
tive analysis identified methods that successful students used (e.g., keeping track
of variables using an adhoc table). However, many students did not code trace
effectively (e.g., traced incorrect variables, only partially traced), indicating that
scaffolding for the process is needed.

In summary, there are a number of approaches available for assisting code-
tracing activities. We adopted the basic, non-animation approach in the present
work. Our target population corresponds to students who are not computer
science majors and who are enrolled in a programming class. This scenario is
becoming increasingly more common as the broad value of programming is rec-
ognized and so programming classes are required for all students regardless of
their major, as is the case in our department. Given our target population, we
wanted to abstract away technical terms like namespaces and frames that are
not required for understanding code tracing. Our goal was to design a tutor that
mimicked what successful students did when they code traced on paper because
that activity had potential to be more familiar than a debugging-type interface.
These considerations were inspired by our experiences in the classroom, which
highlighted that students were not comfortable having to learn an additional
technology (a visual debugger) but were willing to try and code trace on paper.
Thus, we created an initial prototype of a code-tracing tutor that aimed to mimic
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Fig. 1. Code-tracing problem interface for (a) high-scaffolding (HS) tutor and (b) frag-
ment of the reduced-scaffolding (RS) tutor (not shown is the program, which is the
same as the one shown in the left panel of (a))

paper and pencil activities. The tutor is not an intelligent tutoring system yet,
as we wanted to evaluate what works and what doesn’t before adding more
complex functionality. Given that prior research involving code-tracing tutors
has focused on outcomes from code-tracing activities, work is needed to gain
insight into student reasoning during code tracing with a tutor and how tutor
design choices impact that reasoning. To address this gap, we collected and ana-
lyzed data on how students reason with two different versions of our code-tracing
tutor: a reduced and high-scaffolding interface. Before describing the study, we
describe the tutor and these interfaces.

1.1 Code-Tracing Tutor and Prior Results

The code-tracing tutor we developed provides both code-tracing examples for
students to study and code-tracing problems to solve (problems and examples are
shown on separate screens) [14]; the programming language is Python. Following
the precedent set by prior work [26], the tutor does not provide instruction on
Python basics or the code-tracing procedure because the expectation is that
students had previously received a lesson on these elements. The design of the
example interface was based on work investigating students’ code tracing on
paper [8], where a popular method successful code tracers used corresponded
to tracking variables as a program executes using a table format. We used this
format in the design of the example interface (not shown here due to space
limitations but the table format in the example was based on the one shown
in Fig. 1(a), except the table cells were filled in). The example also included a
high-level explanation of the program in plain English, motivated by prior work
showing such explanations are associated with learning [16].

For the problem-solving interface, students were asked to predict the output
of a program by code tracing it. We designed two alternative interfaces: high
scaffolding (HS) and reduced scaffolding (RS). Both versions showed the Python
program (Fig. 1a, left) and asked participants to predict what the program
printed in the last line (Fig. 1a and 1b, bottom right). Both versions also provided
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immediate feedback on that final entry, by coloring the entry green or red, for
correct vs. incorrect, respectively. However, in the HS interface, students had
to input the intermediate solution steps into the code-tracing table, row by row
(see Fig. 1(a); they received feedback for correctness on these entries and could
not move on to the next row until the solutions for the current row were correct.
In contrast, for the RS interface, students were provided with a free-form text
box (see Fig. 1(b), middle), that they could use in any way they wished to track
their code traces for the intermediate steps.

We evaluated the two versions of the problem-solving interface in a prior
study [14]. Our original hypothesis was that students would learn more from
the HS interface, as previous work suggested students did not code trace effec-
tively without guidance [8]. However, the results showed that students learned
less from the HS interface than the RS interface, which was unexpected. We
hypothesized that the RS group might be self-explaining more (i.e., produc-
ing inferences beyond the instructional materials), because they had to produce
code traces with less guidance than the HS condition. In other domains, self-
explanation has been shown to be highly beneficial for learning [5] and so if
we had evidence of it occurring we could substantiate that hypothesis. In our
prior work, however, we did not collect students’ reasoning to explain how they
learned with each version of the tutor. To address this limitation, we conducted
the present study.

2 Present Study

The high-level goal of the present study was to obtain data on students’ reasoning
patterns during code-tracing activities involving problems and examples. We
therefore used a think-aloud methodology from prior work [7,9,13], and asked
participants to verbalize their thoughts as they worked with their assigned tutor.
We subsequently transcribed and analyzed the verbalizations (details below).
This approach has the advantage of providing process data on how students are
reasoning and thus insight into their code-tracing approaches.

We focused on two types of reasoning in our analysis: reading and self-
explanation. Reading in our study corresponded to verbalizing the text in the
interface (e.g., program, its explanation) with little or no changes. In contrast,
self-explanation involves generating inferences that go beyond the instructional
materials. While both reading and self-explanation are needed during instruc-
tional activities, self-explanation is particularly beneficial for learning [5]. We
had the following research question:

Does the level of assistance (i.e., scaffolding) in the tutor interface influence
patterns of self-explanation, reading, and comprehension?

To address this question, we used a between-subjects design1, where some
students interacted with the HS tutor and others with the RS tutor. Given prior
results that students learned less from the HS interface [14], we hypothesized
1 A between-subjects design was used because the high potential for order effects

rendered a within-subject design not suitable.
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that its design inadvertently reduced self-explanation. Due to the novelty of our
context (code tracing), we did not have specific predictions related to reading
behaviours within the tutor and comprehension.

2.1 Participants and Procedure

The participants were university students (N = 45) recruited using SONA (an
online participant recruitment tool) and social media. Participants were com-
pensated either with course credit or $20. As the tutor is designed for novice
programmers, to be eligible, participants must not have taken more than one
university programming class.

All sessions were conducted individually over Zoom; each session lasted no
more than 1.5 h. After providing consent, participants studied an online Power-
Point presentation that provided key foundations on variables, conditionals and
loops, as well as two brief videos on code tracing. Participants could go through
the presentation at their own pace. They then filled in a questionnaire (not ana-
lyzed here and so not described) and were given a warm-up think-aloud exercise
to prepare them for the main phase of the study. Participants were shown a
screen shot of the tutor interface they would be using and were walked through
its functionality by the experimenter. Participants then worked with one of the
two versions of the tutor (reduced or high scaffolding) to solve two code-tracing
problems; each problem was preceded by one example displayed on a separate
screen, that showed a similar problem and its step-by-step solution. As partic-
ipants studied the examples and worked on the problems, they were asked to
verbalize their thoughts and these verbalizations were audio recorded.

2.2 Qualitative Coding: Method

Recordings of participants’ verbalizations were transcribed, segmented, and ana-
lyzed using the procedure in [4]. An initial coding scheme was developed that con-
tained the target themes, including self-explanation of code-tracing constructs,
as well as reading and comprehension. The protocols were segmented at the con-
struct level and a single code was applied to each segment (i.e., codes did not
overlap). Two researchers independently coded an initial subset of the proto-
cols, meeting to discuss disagreements after each protocol was coded and com-
pared; the coding scheme was updated based on these discussions to clarify and
expand the target concepts. After using this process for six protocols, saturation
was reached (i.e., coding scheme stabilized). The finalized coding scheme (see
Table 1) included the original constructs related to self-explanation, reading,
and comprehension, but refined to make their definitions clear.

The two researchers then independently coded 20% of the remaining proto-
cols. Inter-rater agreement was very good as assessed by Cohen’s kappa (.89,
p < .001; pure agreement calculated by percentage of ratings in agreement was
equal to 90%); disagreements were discussed but did not require further adjust-
ments to the coding scheme. Given the high agreement, the primary author
coded the remaining protocols (this approach is standard).
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Table 1. The target constructs coded for in the transcripts (SE = self-explanation).

SE: general Other self-explanations that go over and beyond the
instructional materials

SE: flow of execution Verbalizations about the flow of control in a program
(e.g., ‘now it goes back to the top of the loop’ )

SE: updating variable Verbalizations related to substituting and/or updating
variables by their values (e.g., ‘so count is count plus
one, so 2 plus 1 is 3’ )

Unevidenced variable
substitution (UVS)

Verbalization of the value a variable has without
rationale for how it was generated

Reading: program Reading of the program without adding anything new
content or explaining

Reading: CT Table Reading the code-tracing (CT) table

Reading: explanation Reading the code-tracing explanation provided in the
two examples, without adding new content

Reading: other Reading any other part of the interface

Comprehension:
confusion

Statements expressing confusion about the material

Comprehension: ‘I got it’ Statements relating to understanding something

Other Other verbalizations (e.g., ‘I’m looking at the program’)

3 Results

To answer our research question, we used the results from the qualitative cod-
ing (see Table 1), namely self-explanation instances (flow of execution, variable
substitution, general), reading instances (program, explanation, CT table), unev-
idenced variable substitution (UVS), and comprehension instances (confusion,
‘I got it’ ) - see Table 1 for a description of each construct. For each participant,
we extracted the total count of each instance (i.e., construct), for each exam-
ple (E1 and E2) and problem (P1 and P2). Since all participants saw the same
two examples and two problems, referred to as activities below, in the same
sequence (E1-P1-E2-P2), we could analyze trends across activities for the target
constructs, as well as interactions between instructional activity and condition.
All but two participants finished the four activities (two participants did not
start problem 2).

The mean number of each construct for each of the four activities are shown in
Figs. 2 and 3. These figures highlight that patterns of self-explanation, reading,
and comprehension did change over time and were affected by condition (high-
scaffolding, HS vs. reduced scaffolding, RS ). To analyze this further, we con-
ducted a series of mixed ANOVAs for each dependent variable, with two factors:
condition (a two level between-subjects factor corresponding to the level of assis-
tance, HS and RS) and instructional activity (a within-subjects factor; unless
stated otherwise, this factor had four levels, corresponding to the four activities,
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Fig. 2. Mean number of self-explanation (SE) instances in each condition, including
SE: general, SE: flow, and SE: updating variable, as well as Unevidenced Variable Sub-
stitution (UVS); solid line = Reduced Scaffolding (RS), dashed line = High Scaffolding
(HS), legend shown top-left panel; E1 and E2 = examples; P1 and P2 = problems

E1, P1, E2, P2). Sphericity violations were corrected using Greenhouse-Geisser.
Of primary interest is the interaction between condition and instructional activ-
ity, as it informs on whether students’ reasoning patterns for the target construct
were affected by condition. Intuitively, if this were the case, the shape of the line
graph would be different in the two conditions.

To analyze this formally, we followed up significant and marginal interactions
with trend analyses - we report the highest significant polynomial related to the
interaction. Note that a significant result in this context indicates that the form
of the pattern across the four activities depends on the condition.

Self-Explanation (SE)-Related Results: We begin with the results for the
three self-explanation constructs (see Fig. 2). The interaction between condition
and instructional activity was significant or marginal for each of the three con-
structs (SE: general: F (3, 123) = 2.9, p = .04, η2

p = .07; SE: flow: F (3, 123)
= 2.9, p = .038, η2

p = .07 SE: updating variable: F (2.1, 86.8) = 2.3, p = .10, η2
p

= .05). We now present the follow up trend analyses and results.
For SE: general, follow-up polynomial contrasts indicated a significant lin-

ear trend for the condition × instructional activity interaction (p = .02). As
illustrated in Fig. 2, participants in the RS condition exhibited more of these
self-explanations for the first example than the HS condition and in general
these explanations followed a linear downward trend. In contrast, the HS condi-
tion produced few such explanations for the first example, then increased that
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Fig. 3. Mean number of reading instances in each condition, including reading pro-
gram, reading explanation, and reading code-tracing (CT) table; solid line = Reduced
Scaffolding (RS), dashed line = High Scaffolding (HS), legend shown top-left panel; E1
and E2 = examples; P1 and P2 = problems

number while solving the first problem, and plateaued for the last example and
problem.

The follow-up polynomial contrasts for the other two types of explanations
(SE: flow and SE: updating variable) indicated a significant cubic trend for the
interaction term (p = .02 and p = .04, respectively). For flow explanations,
participants in the HS condition exhibited a generally consistent linear trend
(≈ 4.5 explanations throughout) as compared to the RS condition (who varied
from approximately 2.5 explanations for the examples to 4.5 in the problems).
For updating variable values, the cubic trend was more pronounced for the RS
group, see Fig. 2, bottom left.

While studying examples and solving problems, participants sometimes ver-
balized variable values without providing an explicit explanation, and that was
captured by the unevidenced variable substitution construct (UVS). As shown
in Fig. 2, bottom right, the pattern of this construct is different between the
conditions over the course of the instructional activities (condition × instruc-
tional activity: F (1.4, 55.9) = 2.4, p = .08, η2

p = .06; the follow-up trend analysis
reported a significant quadratic trend for the condition × instructional activity
interaction (p < .01). While the number of UVS instances stayed fairly constant
for the HS condition (.6 to .7), in the RS condition the pattern was different (i.e.,
in problem 1 the total was higher and although the mean decreased slightly in
example 2 and problem 2, it stayed higher than the HS condition).

Reading-Related Results: We next analyzed if condition and instructional
activity influenced reading behaviors (see Fig. 3). We begin with the reading
program construct that corresponded to participants reading the Python pro-
gram. There was a marginal interaction between condition and instructional
activity, F (3, 123) = 2.4, p = .07, η2

p = .06. As illustrated in Fig. 3 (left), read-
ing behavior for the HS group did not change much across the four activities. In
contrast, the RS group read the program more in the first problem than partic-
ipants in the HS condition. This interpretation is supported by the significant
cubic trend for the condition × instructional activity interaction, p = .02.
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The other two reading constructs (reading explanation and reading CT table)
were only relevant in the context of the two examples and so the within-subject
variable in the analysis includes two levels (example 1, example 2). (Note that
trend analysis in this case is not applicable as there are only two levels). As
shown in Fig. 3 (middle), there was a marginal interaction between condition and
activity for explanation reading, F (1, 43) = 2.7, p = .10, η2

p = .06. Specifically,
the RS group read the explanation more than the HS group for example 1, but
for example 2, both conditions had a similar mean number of explanation reads.
Also as shown in Fig. 3 (right), there was little difference between the conditions
for the read: CT table construct, F (1, 43) = .2, p = .64, η2

p < .01.

Comprehension-Related Results: There were few instances of comprehen-
sion monitoring (confusion, ‘I got it’ - one or fewer), and differences between
conditions were minimal and not significant. In general, there was more compre-
hension monitoring verbalizations, such as, ‘That makes sense’ for the examples
than in the problems and these decreased from 1.1 verbalizations in example 1
to 0.5 in problem 2; confusion exhibited a similar pattern.

4 Discussion

The target activity in the present work was code tracing. To date, work on
how students reason during this activity is lacking, making it challenging to
design assistance for it. Our work takes a step in filling this gap by investigating
students’ reasoning during code tracing through qualitative analysis of think-
aloud transcripts. Thus, we take a process-based approach: we focus on the
behaviours during the activities rather than the outcomes, because we wanted
to obtain data on how tutor design impacted student reasoning behaviours.

One of the constructs we extracted from the transcripts was self-explanation
(adapted to the present code-tracing domain), because work in various domains
has shown it to be highly beneficial to learning [2,6,19,28,31]. Our prior eval-
uation of the two code-tracing tutor interfaces used here showed that the HS
interface produced less learning compared to the RS interface [14] but in that
study we did not collect data on how students were reasoning. We tentatively
predicted that we would find more self-explanation in the RS interface; this
hypothesis was also based on the fact that this interface provided less guidance
and so could be a catalyst for self-explanation. The results from the study pre-
sented here, however, presented a more complex narrative. Broadly speaking,
there was more variability between instructional activities (examples and prob-
lems) and assistance level in a given interface than anticipated, in terms of the
frequency of explanations related to the flow of execution and updating variable
values in the RS condition, as compared to the HS condition; this was partic-
ularly evident for the flow of execution explanations. While the HS condition
remained fairly stable in terms of the number of flow of execution explanations
regardless of context (example vs. problem), the RS condition produced fewer
explanations when studying the examples but a similar number when solving the
problem. Since the RS group had to do more independent problem solving as
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they had less guidance, they may have learned the flow principles and so did not
need to produce explanations for them during example studying as frequently.

One of the self-explanations we analyzed corresponded to updating variable
values. A related construct that we also extracted from the transcripts was unev-
idenced variable substitution (UVS), where participants would verbalize a value
for a variable without articulating where the value came from. Prior to running
the present study, we considered the possibility that we would see more of this
construct in the HS interface, due to students guessing values to enter into the
CT table (since the interface provided immediate feedback for correctness, and
since the values tended to be in a limited range, guessing was possible). We did
indeed see this behavior, but in general this guessing behavior was not common.
What we did see in the transcripts and log files was evidence of students typing
their code traces into the interface textboxes and then verbalizing only parts of
them. This was particularly the case for the RS group, who had a textbox in
their interface to keep track of code traces. The UVS pattern for this group fol-
lowed a quadratic trend (as compared to a more linear one in the HS group); this
quadratic trend for the RS group was driven by the higher number of the UVS
construct during problem 1 solution generation, potentially reflecting greater
effort invested in solving the problem because less assistance was available for it
as compared to the HS group.

As far as the reading construct, the trend analysis identified a difference in
reading patterns, highlighting that participants in the RS condition had higher
program-reading frequency when solving the first problem. Note that this did
not mean they read more of the program, because the segmentation was done
at the construct level (so a participant could, for instance, read a line from a
program, write a line in their code-tracing work area, self-explain, return to the
program and read another line, and so on). Anecdotally, this switching between
salient areas was common, and so this finding may be reflecting that partici-
pants referred to the program more in the RS condition when doing their code
tracing. Code tracing without reference to the program is not possible (unless
the program is memorized, but that was unlikely here) and so this finding points
to a limitation in the HS interface that could explain why in the prior study
it was not as effective as the RS interface [14]. In particular, the HS interface
may have inadvertently encouraged a formulaic approach to calculating variable
values that did not involve reference to the program.

To summarize, our work provides insight into students’ self-explanation and
reading behaviors recorded while students worked with a code-tracing tutor to
study examples and solve problems. One implication of our work is that interface
scaffolding resulted in more consistent self-explanation patterns. What is not yet
clear, however, is how this translates to learning, a question we plan to tackle
next. We also plan to apply sequence mining to analyze if condition impacts
sequences of actions in each version of the tutor (e.g., is there more switching
between the code tracing table and program areas?) and to investigate what
types of traces participants produced in the RS interface textbox. We also plan
to continue working on the design of the code-tracing tutor, including how to
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improve it so that all students benefit from interacting with it. While space
limitations prevented us from describing this here, there was a lot of individual
variability in terms of how students used the tutor (e.g., high standard devia-
tions for many of the dependent variables). This points to the need for adaptive
support to tailor assistance to students needs - another future avenue we plan
to explore.
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Abstract. Reinforcement Learning (RL) is learning what action to take
next by mapping situations to actions so as to maximize cumulative
rewards. In recent years RL has achieved great success in inducing effec-
tive pedagogical policies for various interactive e-learning environments.
However, it is often prohibitive to identify the critical pedagogical deci-
sions that actually contribute to desirable learning outcomes. In this
work, by utilizing the RL framework we defined critical decisions to be
those states in which the agent has to take the optimal actions, and
subsequently, the Critical policy as carrying out optimal actions in the
critical states while acting randomly in others. We proposed a general
Critical-RL framework for identifying critical decisions and inducing a
Critical policy. The effectiveness of our Critical-RL framework is empiri-
cally evaluated from two perspectives: whether optimal actions must be
carried out in critical states (the necessary hypothesis) and whether only
carrying out optimal actions in critical states is as effective as a fully-
executed RL policy (the sufficient hypothesis). Our results confirmed
both hypotheses.

Keywords: Critical decisions · Reinforcement learning · ITS

1 Introduction

Intelligent Tutoring Systems (ITSs) have been shown to be effective for improv-
ing student learning. Most ITSs are adaptive instructional systems in that tutor
decides what to do next. For example, the tutor can elicit the solution to the
next step from the students with prompting and support or without. At each
step, the ITS records its success or failure and may give feedback (e.g. cor-
rect/incorrect signals) and hints (suggestions for what to do next) automatically
or on-demand. Alternatively, the tutor can choose to tell students the solution
to the next step directly. Each of these tutor decisions will affect the students’
subsequent actions and performance, and some may be more impactful than oth-
ers. Pedagogical policies are used for the agent (tutor) to decide what action to
take next in the face of alternatives.

Reinforcement Learning (RL) offers one of the most promising approaches
to data-driven decision-making. RL algorithms are designed to induce effective
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policies that determine the best action for an agent to take in any given situation
to maximize a cumulative reward. In recent years, RL, especially Deep RL, has
achieved superhuman performance in several complex games [1,31,32]. However,
different from the classic game-play situations where the ultimate goal is to make
the agent effective, in human-centric tasks such as ITSs, the ultimate goal is for
the agent to make the student-system interactions more productive and fruitful.
Several researchers have studied the application of existing RL algorithms to
improve the effectiveness of interactive e-learning environments such as ITSs
[7,10,22,25–28,30,33,40,43]. While promising, relatively little work has been
done to analyze, interpret, explain, or generalize RL-induced policies. While
traditional hypothesis-driven, cause-and-effect approaches offer clear conceptual
and causal insights that can be evaluated and interpreted, RL-induced policies
especially Deep RL-induced ones, are often referred to as black-box models. This
raises a major open question: How can we identify the critical system pedagogical
decisions that are linked to student learning outcomes?

In this work, by utilizing the RL framework, we defined critical decisions to be
those states in which the agent has to take the optimal actions and subsequently
defined Critical policy as carrying out optimal actions in the critical states while
acting randomly in others. We proposed a general Critical-RL framework for
identifying critical decisions and inducing a Critical policy. In our prior work, we
evaluated the effectiveness of our Critical-RL framework using simulations and
our results showed that by carrying out critical decisions only, our Critical policy
can be as effective as a fully executed RL policy. In this work, we empirically
evaluate the Critical-RL framework in a classroom setting. To confirm whether
the identified critical decisions are indeed critical, we argue that our identified
critical decisions and induced Critical policy should satisfy two conditions.

First, they should satisfy the Necessary Hypothesis stating that it is necessary
to carry out optimal actions in critical states otherwise the performance would
suffer. To validate it, we compared two policies: Critical-optimal (Criticalopt) vs.
Critical-suboptimal (Criticalsub). Both policies would carry out random actions
in non-critical states and the only difference is that in critical states, Criticalopt
takes optimal actions while Criticalsub takes suboptimal actions. As expected,
our results showed that the former was indeed significantly more effective than
the latter. Second, our induced Critical policy should satisfy the Sufficient
Hypothesis stating that carrying out optimal actions in the critical states is
sufficient. In other words, only carrying out optimal actions in critical states
is as effective as a fully-executed RL policy. To validate it, we compared the
Criticalopt policy with a Full RL policy which takes optimal actions in every
state. Our results showed that no significant difference was found between them.

In this work, we focus on pedagogical decisions at two levels of granularity:
problem and step. More specifically, our tutor will first make a problem-level
decision and then make step-level decisions based on the problem-level decision.
For the former, our tutor first decides whether the next problem should be a
worked example (WE), problem solving (PS), or a faded worked example (FWE).
In WEs, students observe how the tutor solves a problem; in PSs students solve
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the problem themselves; in FWEs, the students and the tutor co-construct the
solution. Based on the problem-level decision, the tutor then makes step-level
decisions on whether to elicit the next solution step from the student or to show
it to the student directly. We refer to such decisions as elicit/tell decisions. If
WE is selected, an all-tell step policy will be carried out; if PS is selected, an
all-elicit policy will be executed; finally, if FWE is selected, the tutor will decide
whether to elicit or tell a step based on the corresponding induced step-level
policy. While much of the prior work has relied on hand-coded or RL-induced
pedagogical policies on these decisions, there is no well-established theory or
widely accepted consensus on how WE vs. PS. vs. FWE can be best used and
how they may impact students’ learning. As far as we know, no prior research
has investigated when it is critical to give WE vs. PS vs. FWE. In this work, by
empirically confirming that our identified critical decisions and Critical policy
satisfy the two hypotheses, we argue that the proposed Critical-RL framework
sheds some light on identifying the moments that offering WE, PS, or FWE can
make a difference.

2 Related Work

2.1 Applying RL to ITSs

Prior work has shown that RL can induce effective pedagogical policies for
Intelligent Tutoring Systems [2,3,6,11,14,21,38]. For example, Shen et al. [29]
applied an offline RL approach, value iteration, to induce a pedagogical policy
with the goal of improving students’ learning performance. Empirical evaluation
results suggested that the RL policy can improve certain learners’ performance
as compared to a random policy. Mandel et al. [14] applied a partially observable
Markov decision process (POMDP) to induce a pedagogical policy that aims to
maximize students’ learning gain. The effectiveness of the POMDP policy was
evaluated by comparing it with an expert policy, and a random policy, on both
simulated students and real students. Results showed that the POMDP policy
significantly outperformed the other two. Wang et al. [38] applied a variety of
Deep RL (DRL) approach to induce pedagogical policies aims at improving stu-
dents’ normalized learning gain in an educational game. Simulation evaluation
results suggested that the DRL policies were more effective than a linear model-
based RL policy. Finally, Zhou et al. [41] applied Hierarchical Reinforcement
Learning (HRL) to induce a pedagogical policy to improve students’ normalized
learning gain. The HRL policy makes decisions first at the problem level and
then at the step level. In a classroom study, the HRL policy was compared with
two step level policies: DQN and random. Results showed that the HRL policy
was significantly more effective than the other two.

In sum, prior work suggests that employing RL-induced pedagogical policies
can improve the effectiveness of ITSs. However, despite this effectiveness, RL
policies often make a lot of fine-grained decisions in training. For example, the
HRL policy induced by Zhou et al. [41] can make over 400 decisions in 12 training



218 S. Ju et al.

problems. Therefore, it can be difficult to identify and study the origin of this
fine-grained decision-making style of RL policies.

2.2 Identifying Critical Decisions

Recent advances in computational neuroscience have enabled researchers to sim-
ulate and study the decision-making mechanisms of humans and animals through
computational approaches [13,15,19,24,34]. A number of works showed that
RL-like learning and decision-making processes exist in humans/animals and we
humans use immediate reward and Q-value to make decisions [13,15]. In RL,
the Q-value is defined as the expected cumulative reward for taking an action a
at state s and following the policy until the end of the episode. Therefore, the
difference of Q-values between two actions reflects the magnitude of difference in
the final outcomes. Motivated by research in human and animal behaviors, a lot
of RL work has applied Q-value difference to measure the importance of a state
and decide when to give advice in a simulated environment called the “Student-
Teacher” framework [8,9,36,44]. In this framework, a “student” agent learns
from the interaction with the environment, while a “teacher” agent provides
action suggestions to accelerate the learning process. Their research question
is not what to advise but when to advise, especially with a limited budget of
advice. Results showed that the Q-value difference approach is significantly bet-
ter than baseline strategies such as random advising and early advising. Overall,
prior studies explored the problem of when to give advice in simulated environ-
ments. They showed that Q-value difference is an accurate heuristic function
to estimate the importance of a state. However, they have not considered the
immediate rewards and have not validated their findings on human students.

2.3 WE, PS and FWE

A variety of studies have explored the effectiveness of WE, PS, FWE, and their
various combinations [16,17,20,23,37,39,42]. For example, Mclaren et al. com-
pared WE-PS pairs with PS-only in a study [17] and WE-only, PS-only and
WE-PS pairs in another study [16]. Overall, results suggested that studying WE
can be as effective as doing PS, but students spend less time on WE. For FWE-
involved studies, Renkl et al. [23] compared WE-FWE-PS with WE-PS pairs.
Results showed that the WE-FWE-PS condition significantly outperformed the
WE-PS condition, and there is no significant time-on-task difference between
them. Similarly, Najar et al. [20] compared adaptive WE/FWE/PS with WE-
PS pairs and found the former is significantly more effective than the latter. In
summary, prior studies have demonstrated that adaptively alternating amongst
WE, PS, and FWE is more effective than hand-coded expert rules in terms of
improving student learning. However, it is still not clear which alternating is
critical to the student learning outcome.
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3 Method

3.1 Critical Deep Q-Network

To determine whether a state is critical, our Critical-RL framework considers
both short-term reward (immediate reward) and long-term reward (Q-value dif-
ference). For the former, we consider the amount of the immediate rewards over
all possible actions to determine the criticalness of a state. One of the primary
challenges is that on most ITSs we only have delayed rewards, and immediate
rewards are often not available. The most appropriate rewards to use in ITSs are
student learning performance, which is typically delayed until the entire trajec-
tory is complete. This is due to the complex nature of learning, which makes it
difficult to assess students’ knowledge level moment by moment, and more impor-
tantly, many instructional interventions that boost short-term performance may
not be effective over the long term. To tackle this issue, we apply a Deep Neural
Network-based approach called InferNet [4] to infer the immediate rewards from
delayed rewards. Prior work has evaluated the effectiveness of inferred rewards,
and results showed that inferred immediate rewards can be as effective as real
immediate rewards in our application. Therefore, we think the inferred imme-
diate rewards from InferNet are reliable to be considered as short-term rewards
in our Critical-RL framework. More specifically, we apply the elbow method on
the distribution of the inferred immediate rewards to determine two thresholds:
one is a positive reward threshold above which the agent should pursue and the
other is a negative reward threshold below which the agent should avoid. If any
action on a state can lead to an inferred immediate reward either higher than
the positive threshold or lower than the negative one, it should be critical.

To get the long-term rewards, our Critical-RL framework used Deep Q-
Network (DQN). In recent years, DQN has shown a strong ability to handle
complicated tasks, such as robot control and video game playing [18]. DQN
approximates the Q-value function using deep neural networks following the
Bellman equation. In the original DQN, the Q-values are calculated based on
the assumption that the agent takes the optimal action in every state. How-
ever, in our Critical-RL framework, the Critical policy takes optimal actions
only in the critical states, and takes random action in the non-critical states. To
accommodate this difference, we modify the original Bellman equation:

Q(s, a) =

{
r + γmaxQ(s′, a′) s′ is critical
r + γmeanQ(s′, a′) s′ is non-critical.

(1)

In Eq. 1, when the state s′ is critical, its value function is the max Q-value of the
optimal action while when it is non-critical, its value function is the mean Q-value
over all the available actions. To induce the Critical-DQN policy, during each
iteration in training, our algorithm first calculates the Q-value difference Δ(Q)
for all states in the training dataset, where Δ(Q) = maxa Q(s, a)−mina Q(s, a).
Then the median of the differences is defined as a threshold. If the Δ(Q) of a
state is greater than the threshold, it is critical; otherwise, it is non-critical. After
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the critical states have been determined, the algorithm follows Eq. 1 to update
the Q-values. Then in the next iteration, the updated Q-values are applied to
determine a new median threshold to update the critical states recursively. This
process will repeat until convergence. Once the Critical-RL policy is induced,
for any given state we calculate its Q-value difference and compare it with the
corresponding median threshold. If the Q-value difference is larger than the
threshold, the state is critical.

3.2 Hierarchical RL Policy Induction

Our tutor can make both problem-level decisions (WE/PS/FWE) and step-level
decisions (elicit/tell). With the two levels of granularity, we extended the existing
flat-RL algorithm to Hierarchical RL (HRL), which aims to induce an optimal
policy to make decisions at different levels. Most HRL algorithms are based
upon an extension of Markov Decision Processes (MDPs) called Discrete Semi-
Markov Decision Processes (SMDPs). Different from MDPs, SMDPs have an
additional set of complex activities [5] or options [35], each of which can invoke
other activities recursively, thus allowing the hierarchical policy to function.
The complex activities are distinct from the primitive actions in that a complex
activity may contain multiple primitive actions. In our applications, WE, PS,
and FWE are complex activities while elicit and tell are primitive actions. For
HRL, learning occurs at multiple levels. A global learning generates a policy
for the complex level decisions and local learning generates a policy for the
primitive level decisions in each complex activity. More importantly, the goal
of local learning is not inducing the optimal policy for the overall task, but
the optimal policy for the corresponding complex activity. Therefore, our HRL
approach learns a global problem level policy to make decisions on WE/PS/FWE
and learns a local step level policy for each problem to choose between elicit/tell.
More specifically, both problem and step level policies were learned by recursively
using DQN or Critical-DQN to update the Q-value function until convergence.

4 Policy Induction

Training Corpus: Our training dataset contains a total of 1,148 students’
interaction logs collected over six semesters’ classroom studies (16 Fall to 19
Spring). During the studies, all students used the same tutor, followed the same
general procedure, studied the same training materials, and worked through the
same training problems. The components for RL induction are defined as follows:

State: From the student-system interaction logs, 142 features were extracted to
represent the student learning state, which can be categorized into five groups:
Autonomy(10) features describe the amount of work done by the student; Tem-
poral(29) features are the time-related information during tutoring; Problem
Solving(35) features indicate the context of the problem itself; Performance(57)
features denote student’s performance, and Student Action(11) features record
the student behavior information. Action: Our tutor can make both problem
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and step-level decisions. There are two actions (elicit/tell) at the step level and
three actions (WE/PS/FWE) at the problem level. Reward: There’s no imme-
diate reward during tutoring and the delayed reward is the students’ Normalized
Learning Gain (NLG), which measures their learning gain irrespective of their
incoming competence. NLG is defined as posttest−pretest√

1−pretest
, where 1 is maximum

score for both pre- and post-test.

Three Policies: We induced a standard DQN policy as the Full policy to carry
out optimal actions in all states. Note that our prior work showed that the
Full policy significantly outperformed the expert-designed policy on improving
students’ learning performance [12]. In this work, we induced a Critical-DQN
policy to identify critical states. The Criticalopt policy would carry out optimal
actions in critical states but the Criticalsub policy would take sub-optimal actions
with minimum Q-value. In non-critical states, both of them acted randomly.

5 Empirical Experiment

Participants: This study was given to students as a homework assignment in an
undergraduate Computer Science class in the Spring of 2020. Students were told
to complete the study in one week and they will be graded based on demonstrated
effort rather than learning performance. 164 students were randomly assigned
into three conditions: N = 58 for Criticalopt, N = 55 for Criticalsub and N =
51 for Full. Due to preparation for final exams and the length of study, 129
students completed the study. In addition, 14 students were excluded from our
subsequent statistical analysis in which 8 students performed perfectly in the
pre-test and 6 students worked in groups. The final group sizes were N = 37 for
Criticalopt, N = 39 for Criticalsub and N = 39 for Full. A Chi-square test on
the relationship between students’ condition and their completion rate found no
significant difference among the conditions: χ2 (2) = 0.167, p = 0.92.

Pyrenees Tutor: Our tutor is a web-based ITS teaching probability. It covers
ten major principles of probability, such as the Additional Theorem, De Mor-
gan’s Theorem, and Bayes Rule. The Pyrenees tutor provides step-by-step adap-
tive instructions, immediate feedback, and on-demand hints to prompt students’
learning. More specifically, help in Pyrenees tutor is provided via a sequence of
increasingly specific hints, in which the last hint tells the student exactly what
to do next.

Procedure and Grading: In the classroom study, students were required to
complete 4 phases: 1) pre-training, 2) pre-test, 3) training on Pyrenees tutor, and
4) post-test. During the pre-training phase, all students studied the domain
principles through a probability textbook, reviewed some examples, and solved
certain training problems. Students then took a pre-test which contained 14
probability problems. The textbook was not available at this phase and students
were not given feedback on their answers, nor were they allowed to go back to
earlier questions. This was also true for the post-test. During training, students
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in all three conditions received the same 12 problems in the same order on Pyre-
nees tutor. The minimal number of steps needed to solve each problem ranged
from 20 to 50, which included defining variables, applying principles, and solving
equations. Each domain principle was applied at least twice in the 12 problems,
and all of the students could access the textbook during this phase. Finally, all of
the students completed a post-test with 20 problems: 14 of the problems were
isomorphic to the pre-test, and the remaining six were non-isomorphic compli-
cated problems. The pre- and post-test were graded in a double-blind manner
by experienced graders. All scores are normalized in the range of 0 to 1.

6 Results

We will report our results based on the two hypotheses. For the Necessary
Hypothesis, we compare Criticalopt vs. Criticalsub conditions and for the Suf-
ficient Hypothesis, we compare Criticalopt vs. Full conditions.

6.1 Necessary Hypothesis (Criticalopt vs. Criticalsub)

Table 1 shows the comparisons between Criticalopt (in gray) vs. Criticalsub. The
left four columns show the mean and standard deviation (SD) of their learning
performance, percentage of critical states and tutor decisions with the corre-
sponding pairwise t-test results. No significant difference was found between the
two conditions on pre-test: t(112) = 0.56, p = .57, d = 0.13. The result suggests
that the two conditions are balanced in terms of incoming competence.

Table 1. Results of necessary hypothesis: Criticalopt vs. Criticalsub

Learning performance

Criticalopt Criticalsub Pairwise T-test result Full

Pre 0.75 (0.18) 0.72 (0.20) t(112) = 0.56, p = .570, d = 0.13 0.70(0.19)

Iso Post 0.89 (0.16) 0.86 (0.16) t(112) = 0.81, p = .420, d = 0.18 0.84(0.20)

Full Post 0.82 (0.19) 0.78 (0.19) t(112) = 0.99, p = .320, d = 0.23 0.75(0.20)

Iso NLG 0.70 (0.36) 0.40 (0.85) t(112) = 2.27, p = .025∗, d = 0.52 0.56(0.40)

Full NLG 0.41 (0.39) 0.01 (1.25) t(112) = 2.18, p = .031∗, d = 0.49 0.18(0.55)

Time 94.5 (35.1) 78.1 (26.7) t(112) = 2.30, p = .023∗, d = 0.52 91.5(31.7)

Percentage of critical states

Prob-Level 46.9 (23.4) 31.5 (17.6) t(112) = 3.69, p <.001∗, d = 0.84 38.4(12.4)

Step-Level 60.2 (20.1) 45.3 (26.0) t(112) = 2.42, p = .017∗, d = 0.55 62.1(34.0)

Tutor decisions

PS 3.56 (1.85) 2.38 (1.41) t(112) = 3.60, p <.001∗, d = 0.81 3.32(0.81)

WE 2.54 (1.87) 5.13 (1.51) t(112) = -7.27, p <.001∗, d = 1.65 5.24(1.19)

FWE 3.90 (2.00) 2.49 (1.34) t(112) = 4.01, p <.001∗, d = 0.91 1.43(1.10)

Elicit 83.3 (49.2) 44.0 (30.6) t(112) = 4.37, p <.001∗, d = 0.99 33.2(35.1)

Tell 82.9 (50.3) 55.4 (35.2) t(112) = 3.06, p = .003∗, d = 0.69 29.8(28.3)
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Improvement Through Training: To measure the improvement students
gained through the ITS training, we compared their pre-test and isomorphic
post-test scores. A repeated measures analysis showed that both conditions
scored significantly higher in the post-test than in the pre-test: F (1, 38) = 13.68,
p = .0004, η = 0.392 for Criticalopt and F (1, 38) = 11.5, p = .0011, η = 0.362
for Criticalsub. It suggests that our ITS indeed helps students learning regardless
of the pedagogical policies deployed.

Learning Performance: To investigate students’ learning performance
between the two conditions, we compared their isomorphic NLG (calculated
based on Pre- and Iso Post-test) and full NLG (based on Pre- and Full Post-
test). The full post-test contains six additional multiple-principle problems. Pair-
wise t-tests showed that Criticalopt scored significantly higher than Criticalsub
on both the isomorphic NLG: t(112) = 2.27, p = .025, d = 0.52 and the full
NLG: t(112) = 2.18, p = .031, d = 0.49. The results showed that the Criticalopt
policy is more effective than the Criticalsub policy. It supports our hypothesis
that different actions in the critical states can make a significant difference, so
optimal actions must be made in critical states.

Time on Task and Percentage of Critical States: A pairwise t-test anal-
ysis revealed that Criticalopt spend significantly more time (measured in min-
utes) than Criticalsub in the training phase: t(112) = 2.30, p = .023, d = 0.52.
The middle section in Table 1 presents the percentage of critical states (both
problem and step level) each condition experienced. Pairwise t-test showed that
Criticalopt experienced significantly more critical states than Criticalsub on both
problem level: t(112) = 3.69, p < .001, d = 0.84 and step level: t(112) = 2.42,
p = .017, d = 0.55. This suggests that the Criticalopt policy is more likely to
lead students to the critical intersections that make a difference.

Tutor Decisions: We investigated the number of different types of actions
students received during training, as shown in the lower section of the Table 1.
Note that for step level decisions, we only considered the elicits and tells in
the FWEs. For the problem level, Criticalopt received significantly more PS:
t(112) = 3.60, p < .001, d = 0.81, more FWE: t(112) = 4.01, p < .001, d = 0.91
and fewer WE: t(112) = −7.27, p < .001, d = 1.65 than Criticalsub. For the step
level, the former also received significantly more elicit: t(112) = 4.37, p < .001,
d = 0.99 and more tell: t(112) = 3.06, p = .003, d = 0.69 than Criticalsub.
The results indicate that the Criticalsub policy prefers WEs while the Criticalopt
policy prefers PSs and FWEs.

6.2 Sufficient Hypothesis (Criticalopt vs. Full)

In the Sufficient Hypothesis, we expect no significant difference in learning per-
formance between the Criticalopt and Full conditions. To align the analysis, we
still focus on the three aspects as above (learning performance, critical states,
tutor decisions). To save space, the statistics of the Full condition were shown in
the rightmost column in Table 1. A pairwise t-test showed that there is no signif-
icant difference between Criticalopt (2nd column in gray) vs. Full (last column)
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on the pre-test score: t(112) = 1.18, p = .24, d = 0.27. This suggests again that
our random assignment indeed balanced students’ incoming competence.

Improvement Through Training: A repeated measures analysis using test-
type (pre-test and isomorphic post-test) as factors and test score as dependent
measure showed that similar to Criticalopt, Full scored significantly higher in
isomorphic post-test than in pre-test: F (1, 36) = 11.0, p = .0015, η = 0.363.

Learning Performance: The pairwise t-tests showed that there is no significant
difference between the Criticalopt and Full conditions on the two learning metrics,
isomorphic NLG: t(112) = 1.00, p = .32, d = 0.23, full NLG: t(112) = 1.24,
p = .217, d = 0.29. It implied that only carrying out optimal actions in critical
states can be as effective as a fully-executed policy.

Furthermore, to determine whether these null results are significant, that is,
the Criticalopt is indeed perform as effective as Full, we calculated the effect size
on all the comparisons and we found that they are all not statistically significant
in that β < 0.8. On the other hand, across all the comparisons, Criticalopt
was slightly better than the Full. This result suggests that if we have enough
population samples, the former can outperform the latter.

Time on Task and Percentage of Critical States: A pairwise t-test analysis
revealed that the Criticalopt condition spend a similar amount of time as the Full
condition in the training phase: t(112) = 0.42, p = .678, d = 0.10. Pairwise t-
tests showed that the Criticalopt condition has significantly more critical states
than the Full condition in the problem level: t(112) = 2.02, p = .046, d = 0.46
but no difference in the step level: t(112) = −0.29, p = .769, d = 0.07. The
result suggests that the optimal actions in the non-critical states could reduce
the chance of entering critical states.

Tutor Decisions: For the problem level, the Criticalopt condition received
significantly more FWE: t(112) = 6.91, p < .001, d = 1.59, fewer WE:
t(112) = −7.50, p < .001, d = 1.72 decisions than the Full condition, but
no difference on PS: t(112) = 0.72, p = .472, d = 0.17. For the step level, the
Criticalopt condition received significantly more elicit: t(112) = 5.50, p < .001,
d = 1.26 and more tell: t(112) = 5.83, p = .003, d = 1.34 than the Full con-
dition. The results suggest that the random actions in non-critical states could
lead the RL policy to give more FWE and fewer WE in critical states.

7 Conclusion

In this study, we evaluated the effectiveness of the Critical-RL framework in
identifying critical decisions through an empirical classroom study. Specifically,
we compared the Criticalopt policy with two baseline policies: a Criticalsub policy
and a Full policy. The comparisons are based upon two hypotheses: 1) optimal
actions must be carried out in critical states (the Necessary Hypothesis), 2)
only carrying out optimal actions in critical states can be as effective as the
fully-executed policy (the Sufficient Hypothesis). The result shows that in terms
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of students’ learning performance, 1) the Criticalopt condition significantly out-
performs the Criticalsub condition; 2) more importantly, the former performs
as effective as the Full condition. It suggests that our Critical-RL framework
indeed identifies the critical decisions and satisfies the two hypotheses that 1)
taking optimal actions in the identified critical states is significantly more effec-
tive than taking suboptimal actions; 2) only taking optimal actions during the
critical moments can be as effective as taking optimal actions in every moment.
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Penstein Rosé, C., et al. (eds.) AIED 2018. LNCS (LNAI), vol. 10948, pp. 327–331.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93846-2 61

31. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

https://doi.org/10.1007/978-3-642-21869-9_30
https://doi.org/10.1007/978-3-642-21869-9_30
https://doi.org/10.1007/978-3-319-08786-3_15
https://doi.org/10.1007/978-3-319-08786-3_15
http://arxiv.org/abs/1506.08941
https://doi.org/10.1007/978-3-319-19773-9_42
https://doi.org/10.1007/978-3-319-19773-9_42
https://doi.org/10.1007/978-3-319-93846-2_61


Evaluating Critical Reinforcement Learning Framework in the Field 227

32. Silver, D., Hubert, T., Schrittwieser, J., et al.: A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science 362(6419),
1140–1144 (2018)

33. Stamper, J.C., Eagle, M., Barnes, T., Croy, M.: Experimental evaluation of auto-
matic hint generation for a logic tutor. In: Biswas, G., Bull, S., Kay, J., Mitrovic,
A. (eds.) AIED 2011. LNCS (LNAI), vol. 6738, pp. 345–352. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21869-9 45

34. Sul, J.H., Jo, S., Lee, D., Jung, M.W.: Role of rodent secondary motor cortex in
value-based action selection. Nat. Neurosci. 14(9), 1202–1208 (2011)

35. Sutton, R.S., Precup, D., Singh, S.: Between MDPs and semi-MDPs: a framework
for temporal abstraction in reinforcement learning. Artif. Intell. 112(1–2), 181–211
(1999)

36. Torrey, L., Taylor, M.E.: Teaching on a budget: agents advising agents in rein-
forcement learning. In: International conference on Autonomous Agents and Multi-
Agent Systems, AAMAS 2013, pp. 1053–1060 (2013)

37. Van Gog, T., Kester, L., Paas, F.: Effects of worked examples, example-problem,
and problem-example pairs on novices’ learning. Contemp. Educ. Psychol. 36(3),
212–218 (2011)

38. Wang, P., Rowe, J., Min, W., Mott, B., Lester, J.: Interactive narrative person-
alization with deep reinforcement learning. In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence (2017)

39. Zhou, G.: Big, little, or both? Exploring the impact of granularity on learning for
students with different incoming competence. In: CogSci (2019)

40. Zhou, G., et al.: Towards closing the loop: bridging machine-induced pedagogical
policies to learning theories. In: EDM (2017)

41. Zhou, G., Azizsoltani, H., Ausin, M.S., Barnes, T., Chi, M.: Hierarchical reinforce-
ment learning for pedagogical policy induction. In: Isotani, S., Millán, E., Ogan,
A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol.
11625, pp. 544–556. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
23204-7 45

42. Zhou, G., Price, T.W., Lynch, C., Barnes, T., Chi, M.: The impact of granularity
on worked examples and problem solving. In: CogSci, pp. 2817–2822 (2015)

43. Zhou, G., Yang, X., Azizsoltani, H., Barnes, T., Chi, M.: Improving student-tutor
interaction through data-driven explanation of hierarchical reinforcement induced
pedagogical policies. In: UMAP. ACM (2020)

44. Zimmer, M., Viappiani, P., Weng, P.: Teacher-student framework: a reinforcement
learning approach. In: AAMAS Workshop Autonomous Robots and Multirobot
Systems (2013)

https://doi.org/10.1007/978-3-642-21869-9_45
https://doi.org/10.1007/978-3-030-23204-7_45
https://doi.org/10.1007/978-3-030-23204-7_45


Machine Learning Models and Their
Development Process as Learning Affordances

for Humans

Carmel Kent1(B), Muhammad Ali Chaudhry2, Mutlu Cukurova2, Ibrahim Bashir1,
Hannah Pickard3, Chris Jenkins3, Benedict du Boulay4, Anissa Moeini1,

and Rosemary Luckin2

1 EDUCATE Ventures, London, UK
2 UCL Knowledge Lab, University College London, London, UK

3 ZISHI, OSTC Group, London, UK
4 University of Sussex, Brighton, UK

Abstract. This paper explores the relationship between unsupervised machine
learning models, and the mental models of those who develop or use them. In
particular, we consider unsupervised models, as well as the ‘organisational co-
learning process’ that creates them, as learning affordances. The co-learning pro-
cess involves inputs originating both from the human participants’ shared seman-
tics, as well as from the data. By combining these, the process as well as the
resulting computational models afford a newly shaped mental model, which is
potentially more resistant to the biases of human mental models. We illustrate this
organisational co-learning process with a case study involving unsupervised mod-
elling via commonly used methods such as dimension reduction and clustering.
Our case study describes how a trading and training company engaged in the co-
learning process, and how its mental models of trading behavior were shaped (and
afforded) by the resulting unsupervisedmachine learningmodel. The paper argues
that this kind of co-learning process can play a significant role in human learning,
by shaping and safeguarding participants’ mental models, precisely because the
models are unsupervised, and thus potentially lead to learning from unexpected
or inexplicit patterns.

Keywords: Learners’ mental models · Unsupervised machine learning ·
Co-learning process

1 Introduction

It is well established in the learning literature that presenting learners with a simplified
model of whatever is to be understood is a helpful step in learning [1]. One example of
these simplified models is the use of “notional machines” in teaching about programs,
computers and programming [2]. The programming teacher offers analogies such as “a
variable is like a box” or possibly draws a simplified diagram of how a loop in a program
works. Of course, learners’ consequent mental models will not normally exactly match
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the simplified model that was presented, but they are normally influenced by it, and
such simplified models also help towards a better understanding of the more complex
truth from which the simplified model has been derived. The use of simplified models
can assist organisations as well as individuals in learning new material, as well as about
themselves. In the case of managers engaging in self-understanding of their organisation
[3], machine learning (ML) techniques applied to organisational data can act as a mirror
back to them and thus to the organisation [4]. In this respect, unsupervised learning
methods play a particular role as they are more likely to reveal factors that the managers
were not explicitly aware of. This paper extends on a preliminary work [5], and its main
contribution is not in the modelling itself, but rather in the theoretical postulation that
ML models, generated by unsupervised methods, can be used as learning affordances to
support the development of the mental models of the managers in an organisation. For
clarity in what follows, we are not concerned here with how themanagers’ changedmen-
tal models diffused through the organisation, but with the fact that something changed
in the mental models of those managers.

The ZISHI/OSTC company trades in “futures”1 and is a training company largely
for university graduates, who join the company to learn the art of trading. The senior
training managers who were leading this work in ZISHI, and were also interviewed
in this study, are interchangeably referred to throughout this paper as either managers,
trainers or experts. In order for them to support their learners (during and after two
months of formal training), and to design mentoring/training tools for them, they needed
first to understand what did trading actually look like in their own context, after years
of nurturing tacit mental models. The trainers certainly had a strong sense that different
traders traded in differentways andhad developed a partial typology of trading behaviors:
for example, some traders preferred to work in volatile markets, others in more stable
markets. Based on this implicit mental model, trainers might suggest different markets to
individual traders based on this preference. However, the typology had not been reified
within the company and had remained largely tacit.

In an attempt to define ‘learning’, [6] (adapted from [7]) states that learning is “a
process that leads to change, which occurs as a result of experience and increases the
potential for improved performance and future learning” (p. 3). Therefore, in order
to help the company better understand its traders’ behavior and maintain a culture of
learning and change [8], we used unsupervised ML methods to arrive at four multidi-
mensional profiles of trading behavior. In parallel, we asked the company to generate
its own, till then largely tacit [9], trading behavior profiles into written descriptions. We
were then able to compare these data-driven profiles with the company’s self-generated
profiling. After comparison and validation, the data-driven profiles (being validated as a
refinement of the original mental profiling model) were used as the basis of a predictive
decision support tools for hiring and mentoring, both tools are out of the scope of this
paper.

We term the process of crafting the four behavioral profiles using ML methods a
‘co-learning process’, since this is a process combined of human ‘supervision’ in some
of its stages, where the experts’ semantics guides the analysis, and is unsupervised in

1 Futures are derivative financial contracts that obligate the parties to transact an asset at a
predetermined future date and price.
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other stages, where the modeling is being guided purely by the data patterns. In that
sense, it embodies some of the notions of connectivism [10] or extended minds [11],
where learning is not considered as residing within a single learner, but rather stems
from the continuous interactions between learners, their organisation, and artefacts such
as data.

This paper is organised into five sections. The next section focuses on the distinction
between unsupervised ML models and mental models. Section 3 describes the ways in
which unsupervised MLmethods were used as potential learning affordances. Section 4
compares the resulting ML model with the company’s original mental model. Section 5
concludes and summarises our findings.

2 Unsupervised ML Models and Mental Models

Raw data are not independent, contextless, self-sufficient repositories of meaning [12].
Contextualised modeling of data, using statistical methods and, particularly, ML, cre-
ates possibilities for assigning existing semantics to the models, as well as for creating
new semantics, which in turn, can be used as “learning affordances”. The concept of
affordance describes the complementary relationship between an environment and what
it offers or provides to the actors within it [13]. The process of data modeling, which we
refer to here as a “learning affordance”, can start from a phase of feature engineering, in
which the existing semantics can be attached to the rawdata to shape it in a contextualised
way. Later the process can generate (or rather bring to the surface) new hidden or implicit
meanings, using methods such as unsupervised ML. In the unsupervised learning phase,
hidden statistical relationships, or other statistical constructs (such as distributions) will
emerge, to be interpreted via the stakeholders’ original mental models (which are based
on expectations, projections, cognitive biases, and emotions), as well as generating new
inferences and new assumptions. This can be an iterative process, in which the unsu-
pervised model will be reviewed, new hypotheses raised, and the model tweaked and
refined to serve an augmented purpose. Its purpose, as we will suggest in this paper,
can be to support individual or organisational learning, by externalising and simplifying
existing mental models of the world they are learning about.

This paper argues that the model generated by unsupervised methods provides a
learning affordance, not just because it simplifies, corrects and highlights different
aspects of an existing mental model, but also because it can enable the creation of a
new semantics and a new language to revise that mental model. The MLmodel is gener-
ated by a process, which by itself can be considered as a learning affordance in the sense
that it offers a useful dialogical entity between knowledge existing in human minds, and
the patterns arising from the data, and by means of that – might cancel out mutual biases,
and open new opportunities for learning.

In many senses, supervised ML and reinforcement algorithms inherently include in
them the aspiration to mimic some specific human behavior and to optimise on the basis
of human observations. Unsupervised learning, on the other hand, can reveal factors
and behaviors that human guidance might have been preventing us from seeing. In an
analogy to human learning, a child might learn purely from observing (even if the scene
is to some extent orchestrated by an adult human), and not always by following an adult
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deliberately pointing out (i.e., supervising), rewarding or punishing (i.e., reinforcing)
to guide her. Unsupervised ML algorithms, such as clustering, dimension reduction or
association techniques, are designed without a top-down supervision component, and
in many respects, the only human intervention will be expressed prior to the algorithm
itself, in the form of feature engineering. Thus, unsupervised algorithms are more about
identification than recognition, are freer to observe the data, and are freer to learn [14].
For an example about the usage of unsupervised learning to learn and reveal see [15].

2.1 Mental Models

In order for us humans to make best use of the redundant sensory observations that
we collect to build up our own mental models [16], our cognitive systems must make
those models accessible to our future everyday perception. Mental models are perceived
as internal representations of the environment that provide a conceptual framework for
describing, explaining, and predicting future system states. These models should be
“simple” (the parsimony principle for mental models, for example [17]), so that we will
be able to use them to efficiently and quickly detect any new associations involved in
learning. The mainstream cognitive psychology literature stresses that our brain is doing
a profoundly difficult job in doing so [16]. It should deduce probabilistic links about
our world and detect suspicious outliers, all by accessing and linking prior knowledge
structures and schemas [18]. In this paper, we present a case study through which the
process of creating the unsupervised ML models, as well as the models themselves are
used to form, externalise and then articulate knowledge and, via that, making the learning
more effective [19, 20].

An organisation is typically a complex entity with many communicative channels
connecting between the learning processes of its individuals and its whole culture [21]. A
MLmodel, whether developed through supervised or unsupervisedmethods, will always
be a simplification from a particular point of view on this complexity. This simplification
and loss of detail is also a strength that enables new insights; and even more so when
the “point of view” on the complexity is less determined by prior expectations, such as
occurs with unsupervised methods.

The word ‘model’ is used in this paper to refer to different concepts interchangeably
(sometimes deliberately). A ‘mental model’ is “produced through cognition by individu-
als to create a representation or structure of a phenomenon or solution to a problem” [16,
22]. ‘Tomodel’ is a verb describing the process that individuals undertakewhen they cre-
ate, or retrieve existing mental models in order to solve problems [22]. A ‘computational
model’ in this paper refers to unsupervised ML models, and the ‘co-learning’ process
refers to a collaborative and connectivist process of developing the computational model.

Mental models help us explain and predict how learners interact with the world, and
how they explain, understand, solve anticipated events, and communicate (see Fig. 1
below from [22]). While mental models are internal structures [16], they can be exte-
riorised [23] when triggered by interaction with a domain system [24] such as robotics
[22]. Our suggestion here is that unsupervised computational models can also offer an
externalisation trigger. This allows for an observable effect of the initial internalisation
of a mental model by the learners. By that, it can serve as a learning affordance, and the
learning outcome can be observed through a change in learners’ language (for example
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by used concepts), and their ability to explain, predict and diagnose, as emphasised in
[22] ‘transitory mental model’ (see the Fig. 1 below), and as we will show in the results
section.

Fig. 1. Mental model mode: diagram of functionality [22]

One of the atomic units of mental models are concepts, along with their role in
language and communication [17]. Effective learning is strongly associated with devel-
oping a clear definition of concepts, including the meaningful relations between them
[25]. Human reasoning and decision making are further based on this initial storage of
concepts, which is one kind of mental representation. In an effective process of learning,
the mental model will be stored [26] in the long-term memory of an individual, serv-
ing later as a schema [27], or a script [28]. Once the model has been created, it exists
independently of its sources [29]. Visualisations, images and text can serve as mental
affordances [30] or as we term them – learning affordances – by assisting with the func-
tionality of short-term memory [31], reducing cognitive load, and therefore assisting
learning. Our proposition is that unsupervised ML models can do that too, for example,
by simplifying and reducing the number of the used dimensions.

One characteristic of mental models is that they are not immutable entities that
remain invariant across (or even within) students [22]. Since they are subjective, they
can lead to misconceptions [32, 33]. They are channeled and processed through human
long-term memory, which is essentially faulty, and thus they are not immune to biases
and changes over time. Computational models, on the other hand, are more robust in
that sense, as they are anchored on observed evidence and are externalised by statistical
statements. In their work defining ‘mental affordances’, [30] specifies the three criteria
for ‘something’ to be a mental affordance: (1) mental affordances are opportunities
for mental action; (2) mental affordances are perceptible; and (3) the perception of a
mental affordance involves the potentiation of the mental action that is afforded [30].
We raise the suggestion that unsupervised ML models can serve as a special kind of a
mental affordance: a learning affordance. In Sect. 3 belowwe show how an unsupervised
computational model serves as an opportunity for learning, how it is perceptible and that
its perception involves the potentiation of learning.
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2.2 Some Criticisms of ML

Criticisms are continually raised about the role of ML in the context of its focus on
prediction rather than explanation [34]. Many have argued that the use of ML in the
learning sciences often lacks a theoretical basis [35, 36] and that it is often undertaken
with “one eye closed to the peculiarities of the data” [37]. The latter is specifically chal-
lenging in the learning sciences domain, as many central constructs (such as ‘learning’
and ‘collaboration’) are often ambiguous in their operationalisation, which makes it a
hard pre-requisite for supervised ML algorithm to work effectively. Many scholars have
strongly argued that modeling should start with certain educational goals in mind (e.g.,
student learning outcomes), that are measurable [38, 39]. Here we show how the unsu-
pervised approach help learning in a more open-ended manner by helping a learning
organisation to make tacit into explicit and to adjust their long-held beliefs.

3 The Co-learning Process: Learning About Trading Behavior

Thenext subsections list the stages inwhich the unsupervisedmodelwas producedwithin
our case study. This is essentially a very typical data mining process, but it illustrates
the various ways in which the organisational co-learning process serves as a learning
affordance. In particular, how it opens opportunities for mental action in a tangible way
[30]. In being a ‘co-learning’ process, where the company’s expert trainers were engaged
as designing partners and experts of their domain, each phase afforded them a different
interaction with the data, and subsequently - learning opportunities, as described below.
Figure 2 below summarises the main stages, showing where human semantics (of the
experts) is playing an active role, when it is being guided by the data, and how new
semantics is produced at the end of the pipeline. This dialogical interchange confronts
the two (potentially differently biased) sources of knowledge, and by that potentially
minimise the risks of a biased decision making (which by itself affords a new learning
opportunity). Nevertheless, other mechanisms (out of the scope of this paper) such as
ethical auditing, should also take place to minimise this risk further.

During thefirst phases, inputs such as experience anddata guide the process,while the
last two phases are unsupervised. The result is a parsimonious model, which affords new
learning opportunities, that would potentially shape themental model of the organisation
(i.e., act as a learning affordance).

Knowledge Elicitation. During the knowledge elicitation phase, we triangulated evi-
dence from the behavioral finance literature (to use empirical evidence about poten-
tial indicators for successful trading behaviors) with the domain experts’ tacit seman-
tics. This has ‘supervised’ our feature engineering and resulted in the domain experts’
externalisation of their existing mental model of the traders types (see Table 2 below).

Data Integration. The complexity, inconsistencies and time associated with problem
solving typically grow with the number of modalities or sources of information that
need to be considered [40]. The resulting integrated data, while revealing an integrated
semantics, is certainly one way in which computational models can be used as an affor-
dance. In our case study, we used data from several data sources, such as clickstream
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Fig. 2. A typical data mining process, resulting in an unsupervised model. The Blue rectangles
represent the phases of the computing process. The light blue rectangles are semantic inputs going
into the process. The Orange rectangles are outputs that go back to the organisation and potentially
act as learning affordances. (Color figure online)

from a trading software, various market characteristics, and internal reports for 2017–
2018. As technically challenging and subject to the subjectivity of data sources the data
integration phase is, its serendipitous nature opens new opportunities for learning.

Feature Engineering. A typical feature engineering process is yet another opportunity
for the human semantics to inflict itself and ‘supervise’ the modeling, while still allow-
ing the set of statistical relationships to orchestrate a model without obvious human
interference. At the end of this phase, we were left with a list of 35 features of traders’
behavior. Some features were as simple as the number of specific types of action that a
trader makes in a typical month, such as the number of amendments and cancellations
of orders. Other features were more ‘engineered’, such as the proportion of their trading
in larger markets, and the proportion of the market they covered.

Dimension Reduction. The parsimonious representation of a mental model makes it
more accessible to short term memory retrieval, while also making it more vulnera-
ble to flawed heuristics [17]. Dimension reduction is one way in which unsupervised
ML offers some economy, and therefore removes some of the cognitive load related
to high-dimensioned models. From the computational side as well, the ‘curse of high
dimensionality’ is a term used to describe the challenges introduced by the presence of a
vast number of variables, resulting in a performance degradation [41]. In our case study,
we used principal component analysis (PCA) on our 35 behavioral features and 480
traders’ data, after log-transforming the variables to make the distributions near-normal,
and making sure that none of the variables were highly correlated with others. The PCA
resulted in four main factors accounting for 83.37% of the total variance, which were
then reviewed with the domain experts. The strongest factor was shown to cover ele-
ments of how active the trader is (quantifying the number of actions they initiated), the
second was related to trading style (specifically, whether traders show the tendency to
focus narrowly on a small number of markets, or whether they tend to widen their focus
to cover a large number of markets, with less focus on each). The third factor covered the
types of products they were typically traded (in terms of a product’s properties such as
liquidity and volatility), and the fourth factor was focused on the overall volume of their
trading. As will be shown in Sect. 4, the introduction of these four dimensions into the
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organisational culture offered parsimony and a higher level of abstraction in the evolved
mental model of trading behavior.

Clustering. Cluster analysis is a technique used to identify naturally occurring groups
in a dataset, here used to profile trading behavior. In our case, the clustering was carried
out to challenge the existing profilingmental model of traders, that the company has been
using in order to design a tailored training and mentoring programs. We deliberately did
not add to the clustered features any feature having a direct relationship to performance
measures (such as profit). The purpose was to make salient data patterns that were
purely behavioral, to support formative feedback from mentors. The technical details of
the carried K-means cluster analysis are detailed in the appendix.

4 Results: Mental Models of Trading Behavior

To validate our hypothesis that the unsupervised model had affected the mental model
of the training managers in the organisation, we interviewed two of the most senior
ones. The interview questions, as well as the themes we followed in the analysis were
based on the ‘transitory mental model’ [22] dimensions, such as the models’ effects on
language, prediction, diagnosis and supporting learners. Below are the main findings. In
the interview the managers were asked to compare the mental model created within the
company prior to our analysis, with the computational model created by that analysis
(see Tables 2 and 3 respectively in the appendix).

The Main Differences Between the Two Models: The main difference noted was
that the first model was “subjective”, in the sense that it had been derived from long
experience of being traders and trainers, whereas the second model was “objective”,
in the sense that it had emerged from the trading data. A related difference was in the
number of profiles. The managers felt that they could have composed their mental model
with more than the five profiles that they did, but chose not to so, as they had no easy
way to determine what would be a sufficient set to cover the field. By contrast, arriving at
four profiles rather than some other number was driven by the usual needs for parsimony
vs. coverage of the data in unsupervised ML. Another important difference was that the
second model more clearly articulated “how engaged a trader is” compared to the first
model as it brought to the fore issues around order activity and diversity. This highlighted
the fact that there were few tools available to managers to measure engagement with the
data available to them.

The Main Commonalities Between the Two Models: One managers suggested that
“both models very much focus on the markets [and] the types of markets, and the
characteristics of the markets in terms of what the individuals seem to prefer and pay
particular attention to volatility and product diversity”. An indirect issue is that neither
model in itself indicates how best to train a particular type of trader, but the insight that
training and mentoring could, in principle, be adapted in such a way indicated a shift in
perception.
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The ML Model’s Effect on the Managers’ Views on Trading and Training: On
the positive side, it was noted that the ML model was able to show up similarities and
differences between mixes of trader behavior in the various company offices across
the world. It was also noted that the co-learning process had demonstrated the value
of the company’s data. One manager noted the value of the ML model in supporting
both recruitment and mentoring, in a way that was not really possible with the initial
model. In terms of recruiting, the ML model opened up the possibility of consciously
improving the diversity of trading styles within the company as part of its overall risk
management strategy. On the negative side, “One disadvantage would be the potential
for assumptions and first impressions to be derived from cluster categorisation before a
mentor has really… had a chance to work closely with and get to know a trader” and
might also have a similar downside in recruitment. An interesting observation was made
about the possibility that the ML profiles might become too rigid and constraining, and
the need to update it when markets change.

The ML Model’s Effect on the Managers’s Language: Several ideas emerged with
regard to language and concepts. From one manager, “the key thing for me… was about
behaviors, and how traders’ behaviors [our emphasis] with the markets”. This contrasts
with the former focus on performance, typically profit and loss. For the other manager,
“the most obvious change is recognition that traders can be grouped by certain factors,
other than their start date, and that they don’t have to be considered as individual
entities at all time[s].” This manager also pointed out the consequence of the objectivity
of the data, “Due to the mentality of traders and analysts, and generally all departments
within ZISHI/OSTC, I think there is a stronger propensity for people to acknowledge
and factor in advice when it originates from a data led approach.”. The ML model has
resulted in greater clarity, “Both models, but certainly the newer one, separate volume
and position size as separate factors. I think evidencing this is important as a common
incorrect assumption is that a bigger position equates to higher volume. This teamed
with the concept of complexity really broadens the criteria on which a traders’ activity
is ‘judged’.” Note that the term “complexity” itself, which is now used routinely within
the company, derived from the unsupervised modeling process.

The ML model also helped to extend the manager’s thinking about the evolution of
a trader’s behavior with experience, “The concept and likelihood of a trader gravitating
from one cluster to another over time, which has been mentioned in the analysis, but
perhaps not in the new model cluster descriptions is one aspect I think mentors and
decision makers internally either need to accept as a possibility or on the other scale
accept isn’t as straightforward as they assume.”

The ML Model’s Effect on the Managers’ Ability to ‘Diagnose’ or ‘Predict’: One
manager anticipated that, “having a data fed model gives a mentor more confidence to
forward plan, anticipate and react quicker to the obstacles and barriers that each trader
may face when progressing. It also adds greater weight to your case when presenting why
you think a trader needs more time/resources to develop than a higher-level decision-
making body may invoke. It also has the ability to make communicating and justifying
a mentor’s approach and ‘diagnosis’ to others easier. This could even be as simple as
having the reassurance that the same language and concepts are being used.”
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Are There Any Other Changes, Not Already Noted, the Managers Have Noticed
in Themselves and in Their Colleagues: One manager explained that, “This type of
insight, … does open our eyes to who we have as a workforce and who traders are
and how you can really look at performance.” The other pointed out that: “there is a
growing recognition that pairing the right mentor and mentee could be an important part
of getting it right – although still somewhat in its infancy. From my own perspective I’m
certainly more conscious of the fact that certain characteristics, or even whole clusters,
that are considered to result in less profitable performance within ZISHI/OSTC might
actually suit alternative trading environments which work under different parameters….
I certainly think it’s made me consider if dependent on cluster characteristics, and very
much linked to this is product mix, if risk parameters need to be adapted for the different
clusters, even at a very junior stage of a career.”

In summary, the main affordance for the training managers and trainees is that the
profiles derived by unsupervised ML created a handy, bias-fencing shorthand to encap-
sulate a large number of low-level behavioral variables. These behavioral variables are
usually not directly observable by the managers themselves before the modelling, and
developing a mental model would typically take significant cognitive effort and time. In
addition, the fact that those models were unsupervised has afforded the trainers a sense
of validation, as well as of standardisation across the company’s different international
locations. The unsupervised model and the concepts arising from the modeling changed
the language within the company. New concepts such as “complexity”, “cluster”, and
“trading style” were introduced and diffused across the company. Lastly, the new model
opened up new dialogues about the shift of focus from performance onto behavior, about
helping traders mobilise between profiles as part of their progress. It also opened up the
possibility for more targeted recruitment and mentoring, as well as for potentially better
matching traders to types of markets or mentors. Themanagers also identified a potential
risk of trainers using the clusters as too simplified or rigid, and mentioned the need for
awareness, and re-modeling.

5 Conclusions

Themain rationale for using unsupervisedMLmodels is that they can expose unexpected
patterns, and therefore adds data-driven semantics to the existing semantics of human
experts. Of course, that does not come without challenges and dangers. In this paper,
we have used a case study of a trading and training company managers which reflected
on the comparison between their own mental model, and a computational model pro-
duced by a co-learning process. We suggest that unsupervised models can be referred
to as learning affordances, as they have the potential of reducing the complexity of a
highly-dimensional behavior, floating inexplicit or unexpected patterns, introducing new
concepts to the company’s language and generally affecting its learning. For example,
the company’s training managers were now able to discuss how traders can be encour-
aged to move between different clusters of behavior and how their behavior might relate
to performance. The model was an outcome of a collaborative modeling process, which
suggests that it was itself a learning affordance. In our case it has enabled a space and
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time for a continuous interaction between the experts’ tacit knowledge, their own var-
ious mental models and data modeling. The method used in this case study should be
generalisable to other unsupervised methods and to organisations that have accumulated
a large amount of untapped behavioral data.

Appendix A: Technical Details of the Cluster Analysis

Can be found at https://tinyurl.com/336dje9n.
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Abstract. Emotions in Intelligent Tutoring Systems (ITS) are often modeled as
single affective states, however there is evidence that emotions co-occur during
learning, with implications for affect-aware ITS that need to have a comprehensive
understanding of a student’s affective state to react accordingly. In this paper we
broaden the evidence that emotions co-occur in an educational context, and present
a first attempt to predict these co-occurrences from data, using the MetaTutor ITS
as a test-bed. We show that boredom+frustration, as well as curiosity+anxiety,
frequently co-occur in MetaTutor, and that we can predict when these emotions
co-occur significantly better than a baseline using eye-tracking and interaction
data. These findings provide a first step toward building affect-aware ITS that can
adapt to these complex co-occurring affective states.

Keywords: Co-occurring emotions · Eye-tracking · Logs · Classification

1 Introduction

There is extensive evidence that emotions can influence how well students learn from
Intelligent Tutoring Systems (ITS), e.g., [1, 2], driving extensive efforts to design affect-
aware ITS that can adapt to students’ emotions, with results showing that such adaptation
can increase learning [3, 4]. Delivering affect-aware adaptation requires detecting the
student’s emotional state at some level, and there is extensive evidence on the feasibility
of predicting affective valence [5, 6] or single emotions [3, 7–12] assuming that one
emotion is relevant at a time. There is also preliminary work showing that several pairs of
emotions can co-occur simultaneously [13–17], suggesting that affect-aware adaptation
in ITS could be further refined by being able to detect when students are experiencing
multiple emotions. This existing work, however, has looked at different sets of emotions
in different ITS, making it difficult to draw generalizable conclusions and calling for
further research in this direction.

In this work, we contribute to this research in three ways. First, we provide further
evidence on the presence of co-occurring emotions during learning. Specifically, we look
at the same emotions investigated by [14] in a MOOC, in the context of a different ITS,
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MetaTutor [18], and found different co-occurring emotions, suggesting that emotion
co-occurrence depends in part on the target learning environments.

Second, we show the feasibility of predicting when emotions co-occur inMetaTutor,
as a first step toward building affect-aware ITS that can more comprehensively capture
students’ affective states during learning. To the best of our knowledge, this is the first
attempt to predict multiple emotions in ITS, as well in affective computing at large.

Third, our predictive models leverage both interaction and eye-tracking data. These
twodata sources have shownpromising results for affect detectionwhenused in isolation,
but they have never been compared and/or combined, thus our results provide novel
insights of the value of these data sources for affect detection.

2 Related Work

Different affective frameworks have been leveraged to study the role of emotions in ITS
[19]. One is the 6Ekman’s universal emotions [20] (joy, sadness, surprise, disgust, anger,
fear) that can be identified from distinctive facial expressions. The Ekman’s emotions
however do not capture the more subtle emotions that students typically experience in
learning situations. To overcome this issue, Pekrun [21, 22] identified several “academic
emotions” that he showed can influence learning outcomes. These retain joy, sadness,
surprise, anger from the Ekman, and add pride, hope, gratitude, enjoyment, relief ,
curiosity, anxiety, boredom, frustration, confusion, shame, hopelessness. Baker et al. [23]
proposed a smaller set of 5 academic emotions in their BROMP framework in order to
make it easier to code these emotions in learning situations, whereas identifying all of
the Pekrun’s emotions can be challenging. The BROMP set retains curiosity, boredom,
frustration and confusion from Pekrun, and add engagement.

Several studies have provided evidence for the value of delivering affect-aware per-
sonalization based on academic emotions in an ITS (see overview in [24]). While in
these studies the affective interventions were driven by the detection of a single emo-
tion at a time, there is also evidence that students experience co-occurring emotions in
ITS. Some work provides evidence [1, 16, 25], without further details on which these
emotions are. Four studies have focused on identifying which specific pairs of emo-
tions co-occur together. Two of these studies [15, 17] examined the same ITS that we
target in this paper, MetaTutor. Harley et al. [15] examined the co-occurrences of the
Ekman’s emotions, where the emotions were detected via off-the-shelf software based
on videos of students’ faces collected during the study that generated the data we use
in this paper. They found no pair of emotions that co-occur in more than 3% of the
face measurements, likely because the Ekman’s emotions are fairly uncommon in learn-
ing situations. Sinclair et al. [17] looked at a small subset of the Pekrun’s emotions
with MetaTutor (only enjoyment, curiosity, pride, frustration, boredom), and showed
that boredom+frustration co-occur. We extend this work by considering all Pekrun’s
emotions to gain a more comprehensive understanding of which emotions co-occur in
MetaTutor. Dillon et al. [14] studied Pekrun’s emotions in a Statistics MOOC. Like
Sinclair [17], they found that boredom+frustration co-occur, and they identified several
other pairs of co-occurring negative emotions, indicating that it is worthwhile to look at
the full Pekrun set. Bosch et al. [13] investigated the BROMP emotions in a Python tutor
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and found, like Dillon et al. [14], that confusion+frustration co-occur. They found none
of the other pairs of negative emotions identified in [14], even when they fully over-
lapped with the BROMP emotions (e.g., confusion+boredom). In contrast, they found a
pair of co-occurring positive emotions, curiosity+engagement which other work could
not identify because engagement only appears in the BROMP set. These results show
overall that while some emotion co-occurrences may generalize across ITS, most pairs
identified so far depend on the target ITS, calling for further analysis to better understand
the mechanisms at play.

Extensive work has been done in ITS to predict student emotions, but only focused
on predicting one emotion at a time, rather than co-occurring emotions (see overview in
[19]). It should be noted that, while some of these works predict several emotions, they
do not predict when they co-occur together, as we do here.

We focus on interaction data and eye-tracking data to detect multiple emotions
because there is initial evidence that each source in isolation can help detect individ-
ual emotions in a non-intrusive way. Namely, interaction data is one of the most used
sources for affective user modeling in ITS due to the simplicity of its collection. For
example interaction data was used to predict the five BROMP emotions in several ITS
fostering science inquiry [8], medical training [26], and algebra [10]. Other work pre-
dicted subsets of the Pekrun’s academic emotions in an ITS for microbiology [9] and
algebra [11]. Eye-tracking has been used less extensively than interaction data for affect
detection in ITS, but with encouraging results. Namely, eye-tracking has been leveraged
in MetaTutor to predict emotion valence [5], as well as separate occurrences of boredom
and curiosity [7]. In non-educational settings eye-tracking has also been used to predict
boredom [27] and confusion [28].

We extend this work by examining the value of combining both interaction and eye-
tracking data to predict co-occurring emotions.While there has been work on combining
other data sources for affect prediction [26, 29], to the best of our knowledge the only
other attempt to combine eye-tracking and interaction datawas done in a non-educational
setting, to predict confusion in a visualization interface [28]. Eye-tracking and interaction
data were also used to predict other non-affective states such as mind wandering [30]
and learning gains [31].

3 MetaTutor and User Study

MetaTutor [18], shown in Fig. 1, is an ITS that delivers content about the circulatory
system via a hypermedia of text (Fig. 1D) and diagrams (Fig. 1E) and includes mech-
anisms to support Self-Regulated Learning (SRL). Students are given the overall goal
of learning about the human circulatory system (Fig. 1A), and they can set subsequent
learning subgoals (Fig. 1B) as they proceed through the material. 12 SRL processes fully
described in [18] (e.g., setting subgoals, taking notes) are supported via the SLR palette
(Fig. 1G), which students can access on their own initiative or when stimulated by one of
4 pedagogical agents (Fig. 1F). Students can also go in full-screen mode to focus solely
on the text and diagram (Fig. 1D+E) and hide the rest of the interface.

The data used in this paper derives from a study designed to investigate the SRL
processes used by students while working with MetaTutor [18]. The study involved
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79 university students who were given 90 min to learn as much as possible about the
circulatory system using MetaTutor. The participant’s gaze was tracked with a Tobii
T60 eye tracker. At regular intervals of about 14 min during learning with MetaTutor,
students were prompted to report if they currently felt any of the Pekrun’s emotions, by
completing an Emotions and Value (EV) Questionnaire [18, 32], which listed an item
of the form “Right now I feel X” for each emotion (e.g., “Right now I feel bored”).
Both the instructions and the items clearly asked the students to report the emotions that
they were actually feeling at the time of the EV report. Each item is rated on a 5-point
Likert scale ranging from 1 (“strongly disagree”) to 5 (“strongly agree”), capturing the
student’s self-perceived confidence in feeling or not feeling that emotion. We use the
EVs generated from this study to investigate emotion co-occurrence in MetaTutor.

Fig. 1. Screenshot of the MetaTutor interface and its main interactive areas.

4 Evidence for Co-occurring Emotions

The study generated 395 EVs. We consider that an emotion occurs at the time of a given
EV if the student self-reports a high confidence in feeling it, namely gives a rating of 4 or
5 to the corresponding EV item. 2.2% of the EVs were removed as outliers because they
included a number of occurring emotions beyond 2 st. dev. (i.e., more than 5 emotions).
Figure 2 shows the distribution over the remaining 386 EVs for the number of emotions
that co-occurred in each report (M = 2.1, SD = 1.6). Overall two or more emotions
co-occurred in more than 80% of the EV reports. To understand which specific emotions
co-occur the most, we compute the lift score [33] of each pair of emotions E1, E2,
which captures the likelihood that the emotions co-occur together over the likelihood
that they each occur individually. A Lift score above 1 indicates that the pair of emotions
co-occur more frequently than expected by chance [33], thus we use this threshold to
identify co-occurring pairs (as in [13]), and found the following outcomes.

(i) Themost commonly occurring pairs (Lift scores ranging from 1.4 to 2.3) consist of
positive emotions (pride+hope, pride+enjoyment, curiosity+enjoyement, curios-
ity+hope, and curiosity+pride) which appear in between 16% and 28% of all EV
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reports. Interestingly, none of these pairs, nor other pairs of positive emotions, were
found by Dillon et al. [14] who analyzed the Pekrun emotions in a MOOC. On
the other hand, Bosch and D’Mello [13] investigated only two positive emotions
(curiosity and engagement) in an ITS for Python, and found that they co-occur.
Together, these results suggest that the presence of positive pairs depends on the
target learning environments.

(ii) There is one pair withmixed valence, anxiety+curiosity occurring in 12% of all EV
(Lift = 1.26). No other work in the literature has found pairs with mixed valence,
including [14] that did collect both anxiety and curiosity in a MOOC. This shows
that while mixed valence pairs are not common, they can occur depending on the
target ITS, possibly indicating a conflicting emotional state that can be the target
of specific adaptive interventions (see Sect. 4).

(iii) There is one pair with negative valence, boredom+frustration, occurring in 15%
of all EV (Lift = 1.85). This pair was also found by Sinclair et al. [17] when
they looked at a subset of the Pekrun’s emotions (including boredom, frustra-
tion and 3 positive ones) using our same dataset and clustering of EVs to detect
co-occurrences. The pair was also found by [14] in a different learning environ-
ment, thus these results together provide evidence that this is a relevant combina-
tion of negative emotions in learning, which might warrant specific pedagogical
interventions, as discussed next.
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Fig. 2. Distribution (in %) of the number of
occurring emotions per EV report.

Implications for Personalization. Positive
affective states can be used to make per-
sonalized pedagogical decisions such as to
detect what a student appreciates or provide
empathic feedback [4, 34, 35]. However, this
personalization could be delivered regardless
of whether the student experiences one or
several positive emotions. This is not the case
for the negative and mixed valence pairs we
found, for which their co-occurrence could
drive very different personalization than single occurrences, as follows.

Boredom+frustration (Bo+Fr): Students who are just bored typically could benefit
from immediate support geared toward reducing boredom (e.g. shifting to a new activity)
since previouswork has shown that boredomhinders learning, and that students generally
do not overcome boredom on their own in learning situations [2, 36]. In contrast, students
who are just frustrated may not need any personalized help yet, as previous work has
shown that overcoming frustration on one’s own can increase learning [2, 37]. However,
the co-occurrence of frustration and boredom may indicate that the student is failing
to overcome their frustration and is getting bored instead, with the persistence of these
two states hindering learning [38]. This would indicate that now is the right time for
personalized support that reduces the source of frustration.

Anxiety+Curiosity (An+Cu): Students who are anxious may benefit from support that
has been proposed in educational psychology, such as self-calming or anxiety-reducing
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techniques [39, 40]. Students who are just curious do not require any dedicated support.
Experiencing both emotions is less concerning that solely being anxious, as curiosity
toward the learning content is already very positive, and the student may just be anxious
about his capacity to master it. In that case simple encouraging feedback meant to build
up the student confidence may be sufficient to reduce the anxiety.

In the next section, we will examine the feasibility of predicting the occurrence of
both Bo+Fr and An+Cu, so as to drive the aforementioned forms of personalization.

5 Machine Learning Setup

We define the prediction of each pair of co-occurring emotions (Bo+Fr and An+Cu) as
a separate 4-class classification task, with classes: None (no emotion occurred), either
one of the emotions occurs without the other, the two emotions co-occurred (Both). As
stated in the introduction, we use interaction and eye-tracking data for this prediction
task. Due to software errors or tracking/calibration issues, we obtained valid data for
325 EV for the interaction dataset, and for 270 EV for the eye-tracking dataset. Table 1
shows the class distribution in each dataset for each of the co-occurrence pairs.

Table 1. Size (in %) of the classification classes in the interaction and the eye-tracking dataset.

Class Bo+Fr An+Cu

None Bo Fr Both None An Cu Both

Interaction 40.13 22.46 14.15 23.08 21.85 14.15 36.00 28.00

Eye-Tracking 39.26 24.44 13.70 22.59 22.59 15.19 34.07 28.15

As described in Sect. 4, EVs were generated at regular intervals (~14 min). To
predict whether our target pairs of emotion co-occur in a given EV r, we leverage all
data collected between the appearance of r and the submission of the previous EV (or
the start of the session for the first EV). For each of these time intervals we compute a
battery of eye-tracking features and interaction features.

Eye-Tracking Features. The Tobii eye tracker provides data on user gaze patterns
(Gaze from now on) and on the distance of the user’s head from the screen (Head
Distance from now on). We use EMDAT [41], an eye tracking data analysis toolkit,
to derive from this data the features listed in Table 2, which were previously used to
detect emotion valence [5], and curiosity and boredom in isolation during interaction
with MetaTutor [7], and thus are good candidates for our classification task.

For gaze, EMDAT generates features based on various summary statistics (e.g., rate,
mean) on user fixations (gazemaintained at one point on the screen), and saccades (quick
eye movement between two fixations), both over the whole interface (Table 2a), as well
as over specific areas of interest (AOI) defined over the nine regions of the MetaTutor
interface shown in Fig. 1 (Table 2b). For Head Distance, EMDAT generates a set of
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summary statistics suitable for describing fluctuations of this measure over the course
of the interaction with MetaTutor, namely min, max, mean, and std. dev., as well as the
distance at the beginning and end of the time interval (Table 2c).

Interaction Features. We leverage features that have been previously used to predict
student learning and engagement withMetaTutor [42], and examine whether they can be
predictive of co-occurring emotions as well. These features capture students’ interaction
with the learning content (shown in Table 3a), and their engagement with the 12 SRL
strategies supported by MetaTutor (Table 3b). The content features in Table 3a aim to
summarize how students allocated their time on the available pages of content, qualified
based on whether they are relevant or not to the current active goal, as well as whether
they are in standard or fullscreen mode. The SRL features summarize how many times
the students use each of the SRL strategies, to capture to what extent the students self-
regulated their learning (first 2 rows in Table 3b). The last 2 rows are specific to usage
of the most used SRL strategies, note taking and subgoal planning.

Table 2. Set of eye-tracking features considered for classification.

a) Overall Gaze Features (19) - Fixation rate, Mean & Std. deviation of fixation
duration
- Mean, Std. dev. of saccade length and saccade
duration & Longest saccade
- Mean, Std. deviation, Min & Max of saccade
speed
- Mean, Rate & Std. deviation of relative & relative
saccade angles
- Ratio between total fixation duration and total
saccade duration

b) AOI Gaze Features for each AOI (135) - Fixation rate, Longest fixation, Time to first &
last fixation in AOI
- Proportion of time, Proportion of fixations in AOI
- Prop. of transitions from this AOI to every AOI

c) Head Distance Features (6) - Mean, Std. dev., Max., Min. of head distance,
- Head distance at the first and last fixation in the
time intervals

To investigate the value of the feature sets described above for our classification
task, we tested 3 standard machine learning algorithms available in the sklearn Python
library [43]: Logistic regression (LR),RandomForest (RF), andSupport-VectorMachine
(SVM). We chose these classifiers because they have been extensively used for affect
detection on datasets similar to ours in terms of size (i.e., small), without concluding
evidence as for which one is the best (see [19, 44]). As a baseline, we use a probabilistic
stratified classification algorithm (the sklearn’s ‘stratified’DummyClassifier) thatmakes
predictions simply based on the distribution it sees in the training set.
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Table 3. Set of interaction features considered for classification

a) Content Features
(17)

- Total time spent on all pages, and on pages relevant/irrelevant for
the active subgoals
- Total time spent on pages in default/fullscreen mode, on
all/relevant/irrelevant pages
- Total time spent on pages with no active subgoal
- Proportion of relevant/irrelevant pages accessed overall, and for the
active subgoals
- Number of opened images

b) SRL Features (25) - Number of SRL strategy usage (per SRL strategy)
- Total, Mean number of SRL strategies used on pages relevant to
active subgoals
- Total time spent taking/reading notes, Number of notes
taken/read/changed
- Time spent adding/changing subgoals, Number of subgoals
set/changed/completed

We trained classifiers on each of the eye-tracking and interaction feature sets, as well
as over the combination of all features, resulting in a total of 4 (algorithms)× 3 (feature
sets) = 12 classifiers. All classifiers were trained and evaluated with 10-runs-8-folds
stratified nested cross-validation (CV) over students, meaning that all data for a given
student are either in the training or in the test set. Stratification ensures that the class
distribution in the folds is similar to that in the whole dataset. Due to the high number
of features in our dataset, we used a PCA procedure (using sklearn’s IncrementalPCA)
with a batch size of 120 to reduce our feature dimensions by 80%.We apply the SMOTE
algorithm [45] to oversample all minority classes so as to obtain a balanced training set.
We performed hyper-parameter tuning through grid search with predefined parameter
ranges via sklearn’s GridSearchCV. The PCA, SMOTE and grid-search were all applied
only on the train data, at the inner loop of the nested CV, to prevent data contamination.
The trained classifiers were then tested on the test set at the outer loop of nested CV,
and the performance of each classifier was averaged across the 8 folds, and then over
the 10 runs. We report prediction performance in terms of: overall accuracy (number of
correct predictions/number of datapoints) and class accuracy (for each class: number
of correctly identified data points/number of datapoints in this class). These metrics
provide an intuitive way to assess the practical usefulness of the models, and we dully
compare them against the baseline in Sect. 6 to account for the skewed datasets. The
code is available at https://github.com/rohit49plus2/AIED21/.

https://github.com/rohit49plus2/AIED21/
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6 Classification Results

To identify which classifiers yield the best predictive performance, we ran a MANOVA
for each pair of emotions (Bo + Fr and An + Cu) with:

• All accuracy metrics averaged over the 10 runs of CV as the dependent variables;
• Algorithms (4 levels, incl. the baseline) and feature sets (3 levels) as the factors.

For each emotion pair, the correspondingMANOVA reveals a significant main effect
of algorithms (F9,2317 = 73, p < .0000 for Bo + Fr, F9,2317 = 69, p < .0000 for An +
Cu) and of feature sets (F6,1904 = 42, p < .0000 for Bo + Fr, F6,1904 = 25, p < .0000
for An + Cu).

Main Effect of Algorithms. Post-hoc univariate ANOVAs show a main effect of algo-
rithms on all accuracy metrics for both Bo+ Fr and An+ Cu. T-tests pairwise compar-
isons ran for each main effect, with Holm adjustments for multiple comparisons [46],
indicate that SVM generally does not perform better than the baseline, therefore we do
not discuss it further. The accuracy metrics of RF, LR, and the baseline averaged over
feature sets is shown in Fig. 3, with a (*) indicating accuracy statistically significantly
better than baseline.

RF significantly outperforms the baseline for both pairs of emotions in terms of over-
all accuracy, however RF and LR alternate in achieving the best predictions on individual
class accuracies. LR is the winning classifier on 5 of the 8 class accuracy metrics, but
clearly underperforms for Acc_None (for Bo + Fr) and for Acc_Curiosity, where RF
outperforms the baseline instead. Therefore, these results suggest that combining both
RF and LR in an Ensemble fashion might be valuable to maximize all class accuracies.

Fig. 3. All accuracy metrics for RF, LR and the baseline, for Bo + Fr (left) and An + Cu (right)

Interestingly, the only class that we could not predict is Acc_Frustration, in contrast
with previous work showing that frustration can be predicted from interaction data [9,
10, 26]. This could be because frustration is the minority class in our dataset, accounting
for only ~14% of the datapoints (Table 1). Thus even if we attempted to overcome this
class imbalance with SMOTE, we might just need more data to detect frustration.
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Fig. 4. All accuracy metrics across the feature sets, for Bo + Fr (left) and An + Cu (right)

Main Effect of Feature Sets. Post-hoc univariate ANOVAs show a main effect of fea-
ture sets on all dependent measures except Acc_Frustration, and Acc_Both for Bo+ Fr,
where all feature sets perform equally well. For the accuracy metrics with a main effect,
we performed Holm-adjusted t-test pairwise comparisons, resulting in the statistically
significant differences with the baseline indicated a star (*) in Fig. 4.

Figure 4 shows that Interaction and Eye-Tracking alternate as the best feature sets.
In particular, Interaction generates substantially higher class accuracy for Acc_Boredom
and Acc_Anxiety, showing that action patterns can capture useful signals when these
emotions occur in isolation. Eye-Tracking on the other hand is the best at detecting when
no emotion occurs (Acc_None for both pairs), as well as in terms of Acc_Curiosity and
Acc_Both for An+Cu.

Although the above findings indicate that Eye-tracking and Interaction complement
each other to reach the best class accuracies, the Combined feature sets never improves
the prediction performance over the single feature sets. This suggests that there could be
ways to take advantage of both feature sets by combining them in a different way thanwe
did in this paper, for instance by using Ensembling approaches to fuse the Eye-Tracking
and Interaction classifiers.

As a summary, Table 4 shows the peak accuracy obtained by the best combination
of algorithm and feature set. Accuracies are mostly in the 25–50% range, with the
exception of the very high 81.1% for Acc_Boredom. Albeit low, our levels of accuracy is
not unusual even for binary classification tasks with single emotions [7, 9, 11]. It should
also be noted that due to the small size of our datasets, we did not extensively fine-tune
our classifiers or leverage more elaborated ML techniques. Thus our results provide a
proof of concept that 4-class classification of co-occurring emotion pairs is possible,
albeit a difficult task in general, and they should be considered lower bounds of what
could be achieved with more data and more research on classifiers for these predictions.
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Table 4. Peak accuracy obtained by the best combination of classifiers and feature set.

Bo+Fr Classifier Feature set Peak
acc

An+Cu Classifier Feature set Peak
acc

Acc_Overall RF Interaction 33.7 Acc_Overall LR Eye 27.1

Acc_None RF Interaction 46.4 Acc_None LR Eye 48.1

Acc_Bo LR Interaction 81.1 Acc_An LR Interaction 51.7

Acc_Fr RF Interaction 25.7 Acc_Cu RF Eye 39.5

Acc_Both LR Eye 49.51 Acc_Both LR Eye 35.8

7 Conclusion

This paper investigates the co-occurrences of students’ emotions in MetaTutor, an
ITS that scaffolds self-regulated learning, and the feasibility of predicting these co-
occurrences from eye-tracking and interaction data. This research is driven by findings
showing the value of tailoring pedagogical interventions to student emotions and by the
lack of work on tailoring these interventions to co-occurring emotions, despite existing
evidence that they do arise in ITS.

We extend this evidence by showing that emotions co-occur very frequently in
MetaTutor, and make two contributions by examining these co-occurrences. First, we
found several pairs of positive emotions, as well as a pair of mixed valence emotions,
that were not identified in previous work looking at the same emotions in different ITS.
This shows that it is important to further examine when and why emotions co-occur,
depending on the target ITS. Second, we discuss how detecting two specific pairs of co-
occurring emotions, boredom+frustration and curiosity+anxiety, can drive more precise
affect-aware support in ITS than if these emotions were modelled as single states.

We show that both eye-tracking and interaction data used in isolation can predict the
co-occurrence of the two emotion pairs significantly better than a baseline, and that they
complemented each other depending on the target class, without one being better than the
other. However, feature fusion of these two data sources does not improve performance
over the individual sources, calling for further investigation on how to leverage both
data sources together. To the best of our knowledge, our results are the first to target the
prediction of co-occurring emotions in ITS, and to combine eye-tracking and integration
data for affect prediction.

Altogether, our work is a first step toward building affect-aware ITS that can pro-
vide pedagogical interventions targeting co-occurring emotions Future work should be
focused on investigating ways to improve the performance of our classifiers, either by
collecting larger dataset, by using other ML techniques (including deep learning models
which could be enabled by a larger dataset), and by using ensemble modelling to fuse
eye-tracking and interaction predictors. Future work should also investigate the value of
tailoring pedagogical interventions to single versus co-occurring emotions in ITS.

Acknowledgements. This paper is based upon work funded by the National Science Foundation
(#DRL-1431552) and the Natural Sciences and Engineering Research Council (#22R01881).
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Abstract. Automated Essay Scoring (AES) can reliably grade essays at
scale and reduce human effort in both classroom and commercial settings.
There are currently three dominant supervised learning paradigms for
building AES models: feature-based, neural, and hybrid. While feature-
based models are more explainable, neural network models often out-
perform feature-based models in terms of prediction accuracy. To create
models that are accurate and explainable, hybrid approaches combin-
ing neural network and feature-based models are of increasing interest.
We compare these three types of AES models with respect to a different
evaluation dimension, namely algorithmic fairness. We apply three defini-
tions of AES fairness to an essay corpus scored by different types of AES
systems with respect to upper elementary students’ use of text evidence.
Our results indicate that different AES models exhibit different types of
biases, spanning students’ gender, race, and socioeconomic status. We
conclude with a step towards mitigating AES bias once detected.

Keywords: Automated essay scoring · Fairness · Argumentation

1 Introduction

With the deployment of automated essay scoring (AES) systems in both summa-
tive and formative scenarios (e.g., high-stakes testing and classroom instruction,
respectively), it is important that a student’s membership in a demographic
group does not impact AES accuracy. While the study of AES fairness/bias has
been of increasing interest, prior work has often focused on simulated rather than
actual student data [22]. Also, an open question is whether AES fairness results
generalize across different AI methods commonly used to build AES systems.
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Table 1. RTA source article, writing prompt, and an essay (evidence score of 3).

Source Excerpt: Today, Yala Sub-District Hospital has medicine, free of charge, for all

of the most common diseases. Water is connected to the hospital, which also has a

generator for electricity. Bed nets are used in every sleeping site in Sauri

Essay Prompt: The author provided one specific example of how the quality of life can be

improved by the Millennium Villages Project in Sauri, Kenya. Based on the article, did the

author provide a convincing argument that winning the fight against poverty is achievable in

our lifetime? Explain why or why not with 3–4 examples from the text to support your answer

Essay: In my opinion I think that they will achieve it in lifetime. During the years threw

2004 and 2008 they made progress. People didn’t have the money to buy the stuff in 2004.

The hospital was packed with patients and they didn’t have a lot of treatment in 2004. In

2008 it changed the hospital had medicine, free of charge, and for all the common

diseases. Water was connected to the hospital and has a generator for electricity.

Everybody has net in their site. The hunger crisis has been addressed with fertilizer

and seeds, as well as the tools needed to maintain the food. The school has no fees and

they serve lunch. To me that’s sounds like it is going achieve it in the lifetime

Currently three supervised learning methods dominate the AES field.
Feature-based models require hand-crafted features for essay representation and
off-the-shelf learning algorithms for model training [1,10,24,26]. While feature-
based models are typically explainable and can be tightly tied to a scoring rubric,
neural network models are increasingly popular as they often outperform feature-
based models in terms of scoring accuracy and furthermore do not require any
human feature engineering [9,11,23,32,37]. To create models that are both accu-
rate and transparent, hybrid models combining neural network and feature-based
models are also being developed [8,17,33].

In this paper, we compare these AES model types with respect to a differ-
ent evaluation dimension than scoring accuracy or model transparency, namely
algorithmic fairness. We apply three fairness measures tailored to AES [19] that
have previously been used to analyze whether native language [19] or wearing
face masks [18] introduces bias when English speaking proficiency is scored in an
ETS testing context. We instead use these measures to analyze whether gender,
socioeconomic status, and race introduce bias when essays produced by upper
elementary school students are automatically scored for text evidence usage in a
classroom context. Our results indicate that when evaluated using the same fair-
ness measure, the feature-based, neural, and hybrid AES models exhibit different
types of biases. We conclude with a simple example illustrating how certain AES
models make it easier to mitigate AES bias once detected.

2 Essay Corpus

All AES models are trained using 2970 essays written by students in upper
elementary school classrooms, using the response-to-text assessment (RTA) pro-
tocol [6]. After reading an article from Time for Kids about a United Nations
effort to end poverty in a Kenyan village, students wrote an essay in response
to a prompt encouraging them to use evidence from the article to support their
claims. Table 1 shows a source article excerpt, the RTA prompt, and a student
essay. After collection, essays were manually scored on a scale of 1 to 4 (low to
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Table 2. Student Demographics (left)/Essay Scores (right) as “count (%)” (n=818).

Male Black Free/Reduced Score= 1 Score=2 Score=3 Score=4

389 (47.6) 556 (68.0) 451 (55.1) 242 (29.6) 315 (38.5) 165 (20.2) 96 (11.7)

high) on five dimensions1. In particular, a team of undergraduates independently
scored randomly ordered student essays from the corpus after extensive training
by experts and guided by a rubric [21,30]. Here we focus only on the evidence
dimension (inter-rater reliability ICC =0.656, n= 735 essays [7]). The evidence
dimension evaluates students’ ability to find and use evidence from the source
article (e.g., bolded phrases in the table) to support their ideas.

For our fairness evaluation, we report test results using only the sample of
818 student essays from the full corpus where we have information on student
demographic characteristics (collected from the school district) in addition to
the evidence scores. We focus specifically on whether the AES models might dis-
advantage particular groups, specifically African Americans, males, and students
receiving free or reduced-price lunch. Table 2 shows the distributions of the stu-
dent demographic characteristics to be investigated and the evidence scores for
this sample.2 Note that the demographics of students in our sample are roughly
similar to that of the larger school district, where about 80% of students identi-
fied as Black and about 56% received free or reduced-price lunch.

3 AES Models

To score the essays in our corpus for text-based evidence usage, we use three
different approaches to AES: 1) a feature-based supervised learning approach,
which we refer to as AESrubric, 2) a neural network approach, which we refer
to as AESneural, and 3) a hybrid approach combining a neural network and
hand-crafted features, which we refer to as AEShybrid.

AESrubric uses traditional supervised machine learning (a random forest
classification algorithm with max-depth = 5, implemented in Weka) with fea-
tures hand-designed to align with the RTA evidence grading rubric. As detailed
in [29,36], the features are automatically computed using natural language pro-
cessing:

Number of Pieces of Evidence: the number of topics in the source article
that are (semantically) mentioned in the essay.

Concentration: whether an essay elaborates on the source article topics.
Specificity: for each article topic, the number of specific examples (semanti-

cally) mentioned in the essay.
Word Count: the number of words in the essay.

1 Analysis, Evidence, Organization, Style, Mechanics/Usage/Grammar/Spelling.
2 Students in our sample also identified as Hispanic (22.0%), Native American (11.5%),

Asian (4.3%), Hawaiian (2.0%) and White (12.1%). These categories are not mutu-
ally exclusive. We focus on African American students in our study as this was the
only subgroup that was large enough (had sufficient data) for our analyses.
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Fig. 1. Architecture of AESneural, a co-attention based neural network [37].

Although the hand-crafted features of AESrubric provide useful information
for generating formative feedback in an accompanying automated writing eval-
uation (AWE) system [38], in order to improve stand-alone AES performance, a
neural approach requiring no manual feature engineering and not restricted to
the RTA was later developed [37]. As shown in Fig. 1, this model (AESneural)
uses a hierarchical neural network with a self-attention mechanism (in the dashed
rounded box, originally designed for holistic scoring [9]), and adds a co-attention
mechanism to support source-based scoring [37].3

To achieve high scoring performance yet provide some model transparency,
in this paper we introduce AEShybrid,4 a variant of AESneural that enables
the combination of hand-crafted features on any level of the hierarchical self-
attention model. AEShybrid offers the neural network the ability to model the
features, and also no longer requires a source article. Figure 2 shows the combina-
tion of a hand-crafted feature at the word-level of the neural hierarchy. Since the
released code computes hand-crafted linguistic features applicable to many AES
tasks [13], we use feature selection to pick the following subset of 4 features:5

3 https://github.com/Rokeer/co-attention.
4 https://github.com/Rokeer/hybrid.
5 We select one subset of features (from the set computed by the code release) that

works for general AES purposes. Specifically, we introduce data from more prompts,
including a second RTA prompt and eight prompts from the ASAP dataset (https://
www.kaggle.com/c/asap-aes/). Then, we train models with only one combined hand-
crafted feature for each prompt. Last, we select features that significantly improve
the base neural model on the development set for at least 6 (out of 10) prompts. The
intuition is that we want to select multiple features and combine each into the best
level of the model hierarchy to create a version of AEShybrid that is robust, while
still preserving a reasonable number of features for our experiment.

https://github.com/Rokeer/co-attention
https://github.com/Rokeer/hybrid
https://www.kaggle.com/c/asap-aes/
https://www.kaggle.com/c/asap-aes/
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Fig. 2. Architecture of AEShybrid, a self-attention based neural network that can be
combined with hand-crafted features.

Discourse Connectives: Word categories rather than words are often used
to reduce feature space dimensionality. This feature labels each word as to
whether it belongs to a PDTB discourse connective category [28].

Readability: This feature computes an essay’s readability using the Flesch
Reading Ease Test [14].

Essay and Sentence Word Counts: These features count words at both the
essay level (as in AESrubric) and at the sentence level.

4 AES Fairness Measures

While a variety of measures can be used to examine algorithmic fairness in educa-
tion [15], the measures chosen for our evaluation are recommended for automated
scoring systems [19]. In particular, Loukina et al. [19] advocate for evaluating
AES fairness along multiple dimensions, arguing that total algorithmic fairness
may not be achievable and that addressing fairness problems may require dif-
ferent mitigation strategies for different fairness dimensions. They propose three
measures – overall score accuracy (OSA), overall score difference (OSD), and
conditional score difference (CSD) – to capture different fairness dimensions
applicable to AES. We will use these three measures to compare the fairness of
our three AES models.6

6 Comparing to the broader fairness literature, Loukine et al. [19] state that OSA
is similar in spirit to predictive accuracy [31], OSD to standardized mean differ-
ence [34] and treatment equality [3], and CSD to conditional procedure equality [3]
and differential feature functioning [39].
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Overall score accuracy (OSA) measures whether AES scores are equally
accurate across student groups compared to human scores. First, the difference
in squared error between human (H) and AES (S) scores are computed: (S−H)2.
Fairness is evaluated by fitting a linear regression with the squared error as the
dependent variable and student demographic (e.g., male) as the independent
variable. The regression R2 is used as the OSA fairness value, with statistical
significance suggesting AES bias. Further, a larger R2 indicates more impact of
student group membership on score accuracy and thus less fairness/more bias.

Overall score difference (OSD) measures whether AES and human scores
are consistently different across student groups. In order to maintain the sign of
the difference, this computation uses the absolute (rather than squared) error:
S −H. The absolute difference is now the dependent variable in the regression,
with student group again the independent variable. This regression model’s R2

is the OSD fairness value, with larger R2 again indicating less AES fairness.
Conditional score difference (CSD) is similar to OSD, but first controls

for student proficiency which is approximated using the human score H. This
measure is computed by fitting a regression model with absolute difference S−H
as the dependent variable, first with only H as the independent variable, then
with both H and student group. If the difference in R2 between the two models
is statistically significant, then student group membership is having an impact
on AES accuracy beyond student proficiency.

5 Evaluating AESrubric, AESneural, and AEShybrid

We first evaluate scoring performance. Based on Sects. 1 and 3, we hypothesize
(H1) that AESrubric, which is purely feature-based, will be outperformed by the
other two models involving neural networks. We then evaluate the same models
for fairness. Based on Sect. 4, we hypothesize (H2a) that for each AES model, dif-
ferent fairness measures will expose different biases. We in addition hypothesize
(H2b) that using the same fairness measure, different biases for each type of AES
algorithm will be identified. Next, we evaluate a simple method for mitigating
detected bias in models involving hand-crafted features, and hypothesize (H3)
that while mitigation can indeed improve fairness, there is a scoring tradeoff.
Finally, we discuss the implications of our evaluations.

Evaluating Scoring Performance. We evaluate performance using QWK
(Quadratic Weighted Kappa), a standard AES evaluation measure. All reported
results are obtained by training each AES model on the full corpus of 2970 essays
using a 5-fold cross-validation experimental setting. While AESrubric uses 4 folds
for training and 1 fold for testing in each round, both AESneural and AEShybrid

use 3 folds for training, 1 fold for development and 1 fold for testing. All neural
network models are built with TensorFlow 2.2.0, and trained on an RTX 5000
GPU. Table 3 shows the neural network hyper-parameters for both AESneural

and AEShybrid, which are based on the original self-attention model [9].
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Table 3. Hyper-parameters for neural training.

Layer Parameter Value Layer Parameter Value

Embedding Embedding dimension 50 Dropout Dropout rate 0.5

Sent-LSTM Hidden units 100 Modeling Hidden units 100

Others Epochs 50 Word-CNN Kernel size 5

Batch size 16 Number of filters 100

Initial learning rate 0.001

Momentum 0.9

Table 4. Quadratic weighted Kappa between AES and human gold-standard scores.

AESrubric AESneural AEShybrid

Full corpus (n =2970) 0.653 0.697 0.692

Demographic sample (n =818) 0.665 0.719 0.718

Table 4 shows that the results for all AES models support hypothesis H1,
whether reporting test results using all essays or only those where we have
associated demographics. AESneural outperforms AESrubric, while AEShybrid is
able to maintain AESneural’s QWK while increasing model transparency. Model
transparency will be exploited for bias mitigation as discussed below.

Evaluating Fairness. Table 5 shows the fairness results. Support for hypothesis
H2a can be seen by comparing the 3 columns under each AES model, while keep-
ing the row constant. For example, for AESrubric, CSD significantly identifies
(and OSD more weakly suggests) a bias in scoring males. While OSA is unable
to detect any gender bias, it is instead the only measure to (weakly) identify a
problem with AESrubric and socioeconomic status (free/reduced in Table 5). For
AESneural, only OSA suggests a problem with scoring males, while only CSD
suggests a problem with scoring students based on the other types of demograph-
ics. Finally, for AEShybrid, OSA is the only fairness measure to identify any bias,
here for males. In addition to the R2 values shown in the table, the sign of the
coefficients in each regression (not in the table) further indicate the direction
of the bias. The male and free/reduced variables all have negative coefficients,
while the black variable has a positive coefficient. This means, for example, that
for OSD and CSD, the results suggest lower overall AES scores for male and
free/reduced lunch students compared to the human scores. Our results support
the need to evaluate a given AES model for a given demographic of interest
using multiple dimensions of fairness, as each yields different insights [19].

Support for hypothesis H2b can be seen by comparing the 3 columns rep-
resenting the same fairness measure across the three AES models. For exam-
ple, evaluations along the single dimension measured by CSD show that while
AEShybrid is fair, the error of AESrubric is impacted by a student’s gender, while
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Table 5. Fairness evaluation for each AES model, using the three measures represent-
ing different fairness dimensions. Cells for OSA and OSD contain adjusted R2 values,
while CSD cells contain Δ R2 values. The values in each row show the percentage of
variance for each AES model attributed to the membership of a student in the row’s
demographic (e.g. Male or Not). Larger values correspond to a greater impact of the
demographic on scoring error. Cells marked ‘ns’ mean that the effect of the student
demographic is not significant at p < .05. Cells with values in parentheses mean that
while not significant, the demographic effect is a trend at p < .1.

AESrubric AESneural AEShybrid

OSA OSD CSD OSA OSD CSD OSA OSD CSD

Male ns (.002) .009 (.003) ns ns .009 ns ns

Black ns ns ns ns ns .004 ns ns ns

Free/Reduced (.002) ns ns ns ns .005 ns ns ns

the error in AESneural is instead impacted by the two other demographics. Over-
all, our results show that while all three AES models exhibit some dimension of
bias, which fairness measures detect a bias, and for which student demographic
varies for each model. AEShybrid seems to be our fairest AES model, with only
1 of its nine cells suggesting a problem. This is also interesting since AEShybrid

evaluates best with respect to balancing QWK and model explainability.

Mitigating Detected Bias. Since Table 5 suggests that gender is the most
significant bias issue for our models (in terms of number of cells as well as their
values), we attempt to mitigate gender bias in our models, then examine the
impact of this mitigation on both the scoring and fairness measures.

One source of model bias is often a very unequal demographic distribution
in the training data. While this can potentially be mitigated by resampling
to create more balance, Table 2 shows that imbalance is not the case for our
gender demographic. Training demographic-specific models is another approach
to handling bias, but we do not have a large enough training dataset to support
splitting the data in half to train two separate models.

As an alternative to resampling training data or training demographic-
specific models, Loukina et al. [19] also propose manipulating the feature repre-
sentation of the data, by creating a ‘fairer’ feature subset. To be included in this
subset, a feature’s values should not differ across demographics of interest, even
for the same proficiency level. Such features can be identified using the CSD
computation from Sect. 4, but with the feature as the regression’s dependent
variable. We use this method to attempt to mitigate the gender biases detected
above, by creating fairer feature subsets for AESrubric and AEShybrid. Note that
we can not apply this mitigation to AESneural, as no hand-crafted features are
involved.

To create our ‘fairer’ feature subsets, we remove all features based on word
counts. Although word count is often highly positively correlated with essay
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Table 6. Effect of a simple gender bias mitigation on scoring (QWK) and fairness
(OSD, CSD, OSA) for AES models allowing feature removal (n= 818).

AESrubric AEShybrid AESrubric AESrubric AEShybrid

(QWK) (QWK) (OSD) (CSD) (OSA)

Original 0.665 0.718 (.002) .009 .009

Mitigated 0.663 0.704 ns .006 .008

quality and thus used by many feature-based AES systems [2,5,25,27,35], in
our corpus, word count is not a ‘fair’ feature. In particular, essay word count
is significantly smaller for students who are male (141.2) versus not (175.9),
even after controlling for proficiency (145.2 vs 172.3). Essay word count is thus
removed from both the AESrubric and AEShybrid feature sets; sentence word
count (only used in the AEShybrid feature set) is similarly removed.

After removing the word count features, we retrain the two models that use
them, with the results shown in Table 6. As hypothesized (H3), although a simple
mitigation method based on using a fairer feature subset indeed slightly reduces
the previously detected gender bias across AES models and fairness measures,
the use of fewer features also reduces each model’s scoring performance.

6 Discussion

While the identified biases in Table 5 are small (although significant), they are
similar in size to those found by Loukina et al. [19]. Specifically, the percent-
age of variance in AES error attributed to our investigated demographics is
roughly similar to the percentage of variance in automated speech scoring error
attributed to native language (with OSA, OSD, and CSD values of .002, .017,
and .062, respectively [19]). Aligned in some respects to our research, other stud-
ies also have identified small, but significant algorithmic bias with respect to race
and gender. As described in Bridgeman [4], for example, African American men
tended to receive slightly lower scores from e-rater than from human raters.

While any level of algorithmic bias is concerning and undesirable, when a
detected bias is large enough to warrant mitigation is an open question, partic-
ularly if there are tradeoffs. For example, one tradeoff could be between fairness
and other evaluation dimensions such as AES reliability and validity (e.g., as in
our work where increasing fairness reduced reliability). A different tradeoff could
be between model interpretability (transparency) and fairness. If the purpose for
using AES is to generate formative feedback to improve teaching and learning,
then understanding how a score was derived is critical. In this case, the more
transparent rubric-based scoring model would have an advantage over the neural
net model. Similar explorations of model selection have been conducted outside
of AES. For example, Kung and Yu [16] examined tradeoffs between accuracy,
interpretability, and fairness when using different (non-neural) machine learn-
ing models to predict college success. While they did not find that their more
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interpretable models compromised accuracy or fairness, like us, they did find
some (small) level of bias against student groups in even the fairest models. We
emphasize that if AES is used for summative evaluation purpose, for example,
to assign a course grade or make a more generalized inference about a student’s
skill and knowledge, then it would be important to include other measures, such
as human evaluation, as a check to ensure that students in a particular group
whose scores might show bias are evaluated fairly [4].

The ‘fairer’ feature approach to bias mitigation highlights the potentially lim-
ited utility of a given mitigation method across AES paradigms. For AESrubric

and AEShybrid, some features might have high construct validity. For example,
each of the AESrubric features ‘number of pieces of evidence’, ‘concentration’,
and ‘specificity’ capture scoring rubric criteria. ’Specificity’ is in fact identified as
unfair, but is undesirable to remove due to its construct validity; reconstituting
the algorithm or mitigating some underlying component used to operationalize
‘specificity’ may be possible, but this suggests a more nuanced approach than
removing the feature altogether. In contrast, the unfair features based on word
counts that we did remove do not correspond to any explicit rubric criteria.
Finally, for AESneural, creating a fairer feature subset is not even applicable as
the essay representation is learned rather than based on hand-crafted features.

7 Summary and Future Work

Our main contribution is to use a multi-dimensional approach to evaluating AES
fairness as the basis of a systematic fairness comparison across three prominent
machine learning-based AES methods. A secondary contribution is the introduc-
tion of new hybrid model architecture for AES. Our AES methods vary both with
respect to whether they use hand-crafted features (AESnubric, AEShybrid) or not
(AESneural), and when features are used, whether the features primarily encode
rubric-specific (AESrubric) or more general linguistic (AEShybrid) constructs.
Comparing results across AES models demonstrates that 1) all three AES mod-
els suffer from a small but significant bias on at least one fairness dimension with
respect to at least one demographic, 2) when evaluated along a single fairness
dimension, the biases vary across the AES models, and 3) the utility of a fairer
feature strategy for bias mitigation also varies across the AES models. Also, by
comparing results within a single AES model while varying fairness measures, we
generalize prior findings (namely, that multiple fairness dimensions are needed
as they provide different insights) from speech scoring in a testing context [19]
to the very different context of evidence scoring in elementary school classrooms.

As with similar studies of algorithmic fairness, our bias conceptualization
assumed that human scores represent the gold standard by which to compare
AES models. We note, however, that human ratings are not necessarily bias free
and may also warrant investigation. Past research, for example, has noted that
trained raters react differently to the linguistic features in the essays of African
American, English learners, and standard American English writers and to stu-
dent characteristics such as gender and socioeconomic background (e.g., [12,20]).
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An interesting future direction would be to flip the conceptualization, by explor-
ing whether differences with a consistent and replicable AES might be a useful
method for identifying bias in human scores.
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Abstract. Adaptive and intelligent collaborative learning support sys-
tems are effective for supporting learning and building strong collabora-
tive skills. This potential has not yet been realized within noisy classroom
environments, where automated speech recognition (ASR) is very diffi-
cult. A key challenge is to differentiate each learner’s speech from the
background noise, which includes the teachers’ speech as well as other
groups’ speech. In this paper, we explore a multimodal method to identify
speakers by using visual and acoustic features from ten video recordings
of children pairs collaborating in an elementary school classroom. The
results indicate that the visual modality was better for identifying the
speaker when in-group speech was detected, while the acoustic modality
was better for differentiating in-group speech from background speech.
Our analysis also revealed that recurrent neural network (RNN)-based
models outperformed convolutional neural network (CNN)-based models
with higher speaker detection F-1 scores. This work represents a critical
step toward the classroom deployment of intelligent systems that support
collaborative learning.

Keywords: Adaptive and intelligent collaborative learning support ·
Classroom environment · Speaker detection · Multimodal learning

1 Introduction

Adaptive and intelligent collaborative learning support (AICLS) systems [25]
provide personalized feedback [45] to individual students working in pairs or
groups. An AICLS system not only analyzes the group interaction [27] and pro-
vides tailored supports during the problem-solving process [36], but also adapts
its content presentation or navigation support according to the learners’ collab-
oration activity. This technology has been shown to be effective for improving
students’ learning outcomes [1], increasing their engagement in learning [46] and
helping students build strong collaboration skills [26]. Early results have shown
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that adaptive supports are better than non-adaptive supports for providing flex-
ible guidance [17] and improving learning outcomes [21].

Despite this promise, AICLS cannot currently support real-time collabora-
tion between children speaking together in noisy classrooms. Instead, most cur-
rent AICLS systems are designed for remote/distributed collaboration settings
where an individual’s speech and actions can easily be isolated [31,41] and where
students’ individual learning activities are often identified through analyzing stu-
dents’ log actions [37] or the group discourse through textual chat [41,44,45].
This is in part because classrooms are noisy: they feature multiple overlap-
ping audio sources, and deploying ASR in these environments is difficult due
to the challenges of handling background noise and detecting/isolating speech
and speakers [3]. This problem could be mitigated with students wearing their
own microphone with noise cancelling capabilities; however, most schools are
unable to afford deploying these devices en masse. In addition, headsets detract
from the fluid interplay of individual, small group, and whole class discourse.

To address these challenges and move toward AICLS systems that are viable
for use in noisy classrooms, one task that must be addressed is detecting which
child from a collaborating pair is speaking at a given moment. This paper reports
on a novel speaker detection method that uses visual and acoustic features from
video recordings of learners collaborating, with the goal of identifying which child
is speaking. The proposed approach analyzes a single mixed audio source from
two students in the group, which does not require their audios to be recorded
into separate channels. In addition, the approach utilizes visual features detected
from two children’s faces, which could act as supplementary indicators to acoustic
features. To the best of our knowledge, this paper presents the first empirical
evaluation combining visual and acoustic features on the challenging task of
identifying the speaker within student pairs in noisy classroom contexts.

2 Related Work

Recently, AICLS systems have been deployed for various learning domains, such
as computer science learning [47], medical training [9], and music learning [24]. In
this section we focus on AICLS systems within the context of computer science
education. Current systems have used a variety of methods to identify each
student’s activity during collaboration. SIENA [29] tracked individual’s learning
progress by calculating the learner’s posterior knowledge after he/she answered a
question. NUCLEO [37] built an adaptation model for each learner based on the
individual score obtained among team partners and the system-user interaction
process, such as number of files created and answered messages. SCEPPSys
[41] and Peer Tutor [45] analyzed group discourse from students’ textual chat
history. CycleTalk Chat [21] identified individuals by assigning each student an
audio-based chat client and collecting their dialogues separately.

The aforementioned systems were all designed for remote/distributed collab-
oration where students were not co-located. There have been very few systems
that analyze student dialogues while they are working collaboratively in person.
Harsley et al. [12] designed Collab-ChiQat for analyzing student activity during
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collaboration; yet, the system required students to self-report who authored each
line of code. Yett et al. [47] analyzed individual log actions of co-located stu-
dents participating in a collaborative programming environment. The authors
suggested that future work should combine log-based analysis and discourse anal-
ysis, which relies on the accurate differentiation of speech between individuals
within the group. In another classroom study, Celepkolu et al. [5] designed a
visualization tool to help individual students reflect on their collaborative dia-
logues. Even though the tool automatically analyzed the dialogue and generated
the visualizations based on the transcriptions, it still required the dialogue to
be manually transcribed. Blanchard et al. [3] tested and compared five ASR
engines such as Google Speech and Bing Speech with audio data collected in
middle school classrooms, but their focus was on teachers who wore individual
wireless microphones. Li et al. [22] designed a Siamese neural network to detect
dialogues for teachers and students in both online and offline classroom audio
recordings. Although a promising level of speaker detection was achieved, the
authors suggested that future work should combine both audio and video data.

Our study differs from these studies in three ways: First, our dataset con-
sisted of pairs of students sitting next to each other, sharing the computer, with
background noise from other students and the teacher. Such a research context
makes distinguishing the speakers much more challenging. Second, we identify
speakers by using video recordings (audio and video images) of the students’
collaborative interaction process collected from the built-in computer webcam
(without any headsets). Third, we applied recent machine learning techniques
and compared the performance between CNN-based models and RNN-based
models. Prior work by Hu et al. [15] has shown promise using CNN-based mod-
els to localize and identify each speaking character in a TV/movie/live show
video, but did not consider the natural temporal connections within the sequen-
tial data. In contrast, RNN-based models represent a novel approach to solving
this problem and have been used by Soleymani et al. [39] to analyze a speaker’s
verbal and nonverbal behaviors associated with self-disclosure with multimodal
features extracted from video, audio and text data.

3 Data

3.1 Collection and Preprocessing

Our dataset was collected from 20 children (10 pairs) in 4th/5th grade classrooms
in an elementary school in the southeastern United States in 2019. Among the
children, 9 identified themselves as females and 11 as males. The students col-
laborated on a series of coding activities, in which they learned fundamental CS
concepts such as variables, conditionals, and loops using Netsblox [30], a block-
based learning environment. Each group’s collaboration process was videotaped
by the front-facing camera of their computer; meanwhile, the audio was recorded
by the computer microphone without any additive noise cancellation equipment.
The corpus contained a total of 7 h and 22 min of video recordings; raw audio
recordings were then extracted from video recordings using FFmpeg [10], an
open-source video converter.
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Since noise sensitivity is a significant challenge for speech-related tasks, we
approximated the quality of our audio recordings by following the method used
by Tan et al. [40] to compute the posterior signal-to-noise ratio (SNR), the
logarithmic ratio of the energy of the noisy speech to the energy of the noise.
The average estimated SNR over ten recordings was +2.20 dB (as shown in
Table 1), indicating a fair audio quality. Howard et al. [14] reported that the
typical classroom SNRs range from −7 dB to +5 dB, while an SNR of +15 dB
or above indicates good speech quality.

3.2 Annotation

We used ELAN [7] to synchronize video and audio clips and annotate them.
The data was tagged at a one-second granularity, a time window previously
used in similar acoustic classification tasks [42]. We tagged each one-second clip
in one of three ways: Left Child (the child sitting in the left of the video was
speaking), Right Child (the child sitting on the right was speaking), and Silence
(neither Left Child nor Right Child was speaking). No children switched position
during the activity. When the clip contained overlapping speech, we tagged the
clip based on which child’s speech was more audible. Table 1 shows the details
of the corpus. The first author annotated the first four of ten videos, and the
remaining six videos were annotated by three other annotators. To measure the
labeling reliability, the first author then independently tagged 10% continuous
video excerpts from the data tagged by other annotators. The Cohen’s kappa
scores between the first author and each of our three annotators were 0.8521,
0.7109, 0.7526 respectively, indicating substantial inner-annotator agreement [4].

Table 1. Details of the collected classroom recording corpus

Video ID Duration
(second)

Left child
(second)

Right child
(second)

Silence
(second)a

SNR (dB)

1 2574 569 386 1619 +2.60

2 2199 394 498 1307 +1.24

3 2550 397 605 1548 +1.57

4 2693 416 485 1792 +3.17

5 3019 617 314 2088 +3.35

6 2665 165 302 2198 +2.67

7 2940 311 426 2203 +2.48

8 2804 526 275 2003 +2.12

9 2350 344 509 1497 +1.40

10 2673 377 604 1692 +1.39

In total 26467 4116 (15.55%) 4404 (16.64%) 17947 (67.81%) +2.20

a Silence class also includes the clips in which the in-group children were silent but
background speech was detected from the teacher and other children in the classroom.
Background speech was irrelevant to in-group interaction and should not be taken into
consideration for further in-group interaction analysis by the AICLS system
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4 Features

4.1 Visual Feature: Dense Optical Flow

Facial movements, especially around the lip area, are critical to detect speakers
[8,35]. In this paper, we extracted visual features using the dense optical flow
[38] from children’s faces in each pair (see Fig. 1). Dense optical flow uses the
variation of pixels to calculate the object motion gradient along time. To compute
the dense optical flows for two children in the video, we first extracted their
faces using the deep learning-based face detector [33] from OpenCV [32] (a real-
time computer vision library). Then, we re-scaled all faces into the same image
size and used the cv2.calcOpticalFlowFarneback() [34] function from OpenCV
to calculated one dense optical flow on their faces for each second. We applied
dense optical flow on the whole face instead of the mouth region because whole-
face optical flows were more robust to instances in which the child was not
directly facing the camera, or in the case of low-resolution recording. Dense
optical flow images were generated in grey-scale because the color in dense optical
flow denotes the movement direction, which was not needed to identify speakers.

f t

f t - δ
Dense Optical Flow

O t - δ, t

Fig. 1. Left : two sample frames (ft−δ and ft) from a one-second video clip when the
left child was not speaking and the right child was speaking. Right : dense optical flow
Ot−δ,t, which represents the motion detected between the two frames. In this case,
more motion was detected from the right child’s face: the intensity in the dense optical
flow denotes movement speed.

4.2 Acoustic Feature: Mel Spectrogram

We converted each one-second audio clip into one mel spectrogram, an image rep-
resentation that describes an audio’s time-frequency distribution where the fre-
quencies are converted in the mel scale—a perceptual scale of pitches judged by
human listeners. One advantage of the mel spectrogram over traditional acous-
tic features [19] (pitch, energy, mfcc coefficients, etc.) is it shows the variance of
acoustic frequency and energy over time, which is useful for analyzing sequential
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data. In an mel spectrogram, the x-axis represents time and the y-axis represents
frequency. We generated mel spectrograms using librosa [28], a python library for
audio analysis. Figure 2 shows four mel spectrograms generated from 4 different
audio clips.

Fig. 2. Four mel spectrograms: (a): The target child spoke over the whole audio clip;
(b): The speech from the target child only presented in the first 0.6 s of the audio clip;
(c): Silence, the target children were silent but background speech from the teacher
or other children was audible; (d): Silence, none speech detected over the whole audio
clip

5 Methods: Speaker Detection

In this study, we conducted two experiments. First, to analyze the performance
of different feature combinations, we compared the results of uni-modality (only
visual or only acoustic features) with multi-modality (visual and acoustic fea-
tures). Second, to compare the performance of different model architectures, we
tested our dataset with two types of commonly used models (CNN-based and
RNN-based).

Experiment 1: Comparing Uni-modality with Multi-modality. Figure 3
shows the high-level structure of the multimodal learning model, which was
divided into three parallel streams (one visual stream for the left child, one
visual stream for the right child, and one acoustic stream for both children).
The model consisted of two parts: a modality encoding network and a sequence-
based recurrent network. Since the visual and acoustic feature representations
are both images, we used CNN-based models in the modality encoding net-
work. We used ResNet-50 [13], a pre-trained CNN-based model that achieved
the highest image classification accuracy on ImageNet [16], to map each image
representation into a feature embedding. In the second sequence-based recurrent
network, we used Bi-directional Long Short-Term Memory (Bi-LSTM) to learn
temporal dependencies between sequential feature representations. We tested
different time steps of the Bi-LSTM from 2 to 5. Each output of the Bi-LSTM
is a feature embedding followed by a softmax layer [23] to calculate the class
scores. Finally, we combined the class scores from three separate streams by
averaging fusion [38]. The model (Code available on GitHub1) was implemented
in Python with the Keras [18] API. Two visual streams were used for evaluating
1 https://github.com/yingbo-ma/The-Challenge-of-Noisy-Classrooms-AIED2021.

https://github.com/yingbo-ma/The-Challenge-of-Noisy-Classrooms-AIED2021
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the performance of the visual modality, and one acoustic stream was used for
evaluating the performance of the acoustic modality.

Visual Stream
Dense optical flows

from left child 

Acoustic Stream
Mel Spectrograms

for audio clips

ResNet ResNet ResNet ResNet ResNet ResNet ResNet ResNet ResNet

Feature
Embeddings

LSTM

LSTM

Forward
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Visual Stream
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Fig. 3. Multimodal learning model

Experiment 2: Comparing CNN-Based Models with RNN-Based
Models. We selected two types of commonly used models (CNN-based and
RNN-based) that were proposed in the recent literature. Hu et al. [15] pro-
posed a two-stream CNN-based learning framework for localizing and identify-
ing each speaking character in a TV/movie/live show video. The model used
convolutional layers as face feature extractors, then learned a unified multi-
modal classifier with fusion features combined from visual and acoustic features.
Soleymani et al. [39] proposed a ResNet + GRU (gated recurrent unit)-based
method to analyze a speaker’s verbal and nonverbal behaviors associated with
self-disclosure. The model built three separate classifiers based on the visual fea-
tures extracted with ResNet, the acoustic features extracted with VGGish [43]
(a pre-trained acoustic feature extractor trained on audio spectrograms), and
the language features extracted with BERT [6] (a pre-trained language model
that can map the spoken utterances to feature representations). The model then
performed late fusion by simply averaging the output from all modalities. Since
the feature fusion strategy was not the focus of this work, we implemented the
above-mentioned models followed by the description of the model architecture
in the two papers, and still used late averaging fusion. The CNN model [15] con-
sisted of three stacked convolution + pooling layers followed by a fully connected
layer. The RNN model [39] consisted of the pre-trained ResNet-50 [13] followed
by a single GRU layer with 128 hidden units.

During the model training process across the two experiments, we conducted
experiments on each video recording and used ten-fold cross-validation to train
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and evaluate the model. The network updated weights with an Adam optimizer
[20] with the learning rate of 0.0001. We evaluated the trained model with the F-
1 score [11] combined from precision and recall for each one of the three classes.
Although F-1 score can be used as a general measurement of model performance,
including precision and recall provides additional information. The context of
collaborative dialogue may shift the cost of false negatives versus false positives,
so these additional scores allows us to weigh each case.

6 Results

Results for Experiment 1. Figure 4 shows the performance of uni-modality
and multi-modality. In Fig. 4-Left, the acoustic modality outperformed the visual
modality and the combined modality when identifying the Silent class. In Fig. 4-
Middle and Fig. 4-Right, the visual modality outperformed the acoustic modality
and the combined modality when identifying one of the speech classes. Table 2
compares the different modalities with averaged precision, recall and F-1 score
for each class. Table 3 displays results for the multimodal learning model’s per-
formance with different time steps. The time step of 3 performed the best for
classifying the Silence class and the time step of 3 and 4 both performed similarly
well at classifying the Left and Right Child class.

Results for Experiment 2. Table 4 shows the performance of different mod-
els on our corpus. The CNN architecture [15] performed the best at classify-
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Fig. 4. F-1 score for three classes across corpus using different modalities. Left : Silence
class—acoustic modality outperformed visual modality; Middle: Left Child class—
visual modality outperformed acoustic modality; Right : Right Child class—visual
modality outperformed acoustic modality

Table 2. Performance for each class under different modalities

Silence Left child Right child

Precision Recall F-1 score Precision Recall F-1 score Precision Recall F-1 score

Visual modality 0.55 0.49 0.52 0.59 0.69 0.64 0.59 0.68 0.63

Acoustic modality 0.68 0.89 0.78 0.68 0.50 0.56 0.68 0.49 0.55

Combined modality 0.73 0.79 0.76 0.66 0.61 0.63 0.66 0.60 0.62
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Table 3. Performance of the multimodal learning model with different time steps in
Bi-LSTM

Time
step

2 3 4 5
Precision Recall F-1 score Precision Recall F-1 Score Precision Recall F-1 score Precision Recall F-1 score

Silence 0.72 0.84 0.76 0.72 0.84 0.77 0.72 0.84 0.77 0.71 0.83 0.76

Left
child

0.63 0.58 0.60 0.66 0.60 0.63 0.66 0.59 0.62 0.64 0.58 0.61

Right
child

0.64 0.59 0.61 0.66 0.60 0.62 0.67 0.60 0.63 0.67 0.60 0.63

ing Silence; Both the ResNet + GRU model [39] and the ResNet + Bi-LSTM
model in our paper performed similarly, with better classification performance
on Left Child and Right Child than the CNN architecture. ResNet + Uni-LSTM
performed comparably with ResNet + Bi-LSTM, potentially indicating that
whether a child intends to speak has stronger connection with his/her prior
dialogues than latter dialogues.

Table 4. Performance of different models

Model Class Precision Recall F-1 score

CNN [15] Silence 0.70 0.87 0.78

Left child 0.65 0.53 0.58

Right child 0.65 0.53 0.58

ResNet + GRU [39] Silence 0.72 0.81 0.76

Left child 0.67 0.58 0.62

Right child 0.66 0.58 0.62

ResNet + Uni-directional LSTM Silence 0.72 0.83 0.77

Left child 0.66 0.60 0.63

Right child 0.65 0.60 0.62

ResNet + Bi-directional LSTM Silence 0.72 0.84 0.77

Left child 0.66 0.60 0.63

Right child 0.66 0.61 0.62

7 Discussion

This work evaluated several unimodal and multimodal learning frameworks’ per-
formance on identifying the speaker within pairs of children in a noisy elementary
school classroom. Our results show the effectiveness of using visual optical flow
and acoustic mel spectrogram for this task, and achieved averaged F-1 scores of
0.76 for Silence, 0.63 for Left Child, and 0.62 for Right Child.

These results have several implications for developing AICLS systems that
can be utilized for personalized supports during collaborative learning in noisy
classrooms. In the experiment investigating the contribution of each modality,
the results showed that only using the visual modality yielded a higher F-1
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score on detecting speakers compared to using the combined visual and acous-
tic modality. However, only using the visual modality has potential drawbacks
due to lower Precision and higher Recall, meaning the model falsely reported
more irrelevant background speech samples as in-group speech samples. This
could potentially be misleading for an AICLS system. For example, the system
might provide support when students are listening to teacher’s lecture because
the system would falsely classify the teacher’s dialogues as the students’ dia-
logues. Therefore, the feature modality should be carefully selected based on the
noise level of a classroom. If the classroom is relatively quiet, using the visual
modality may provide better speaker detection performance and report more
true in-group speech samples. However, if a classroom is noisy and the in-group
speech is overwhelmed by the background speech, the results suggest using the
combined visual and acoustic modality may help. The experiment of comparing
CNN-based models and RNN-based models showed that the CNN-based model
performed better in differentiating in-group speech from background noise, and
RNN-based models performed better for distinguishing between in-group speak-
ers. Compared to silence, speech tends to have a more temporal connection,
which was better modeled by the sequential neural network of the RNN. There-
fore, CNN-based models would be better to use when the proportion of speech
is much lower than the proportion of silence in students’ dialogues, and RNN-
based models would be more appropriate to use when in-group children interact
with partners more frequently.

There are important limitations of the present approach. First, although our
framework achieved promising results, the generalizability of the model has not
been shown. Each learned model depends on the unique audio characteristics of
children in the training set. In addition, the effectiveness of visual features largely
relies on the correct setup of the video data collection process. The speaker detec-
tion performance on videos 6 and 8 was much lower than the averaged results
across because in both videos, the front-facing camera was not positioned cor-
rectly. On the other hand, the effectiveness of acoustic feature depends on the
group members’ voices and the audio quality. If the frequency range of two chil-
dren’s voices is narrow (this often happens when two children in the group are of
the same gender), the performance of using acoustic features would deteriorate.

8 Conclusions and Future Work

AI to support collaborative learning in classrooms holds great promise, but the
tasks of identifying who is speaking, and what they are saying, present great
challenges. This paper investigated the task of speaker detection. By utilizing
features from the visual modality and the acoustic modality, our RNN-based
model achieved encouraging speaker detection performance. The results indi-
cated that the acoustic modality performed better at differentiating in-group
speech and background noise; and the visual modality performed better in iden-
tifying in-group speakers. We also compared the performance of different models
on this task and found that RNN-based models outperformed CNN-based models
in modeling the temporal connection within the speech.
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These results highlight several directions for future work. First, while the
features used in this paper were promising, other features should be investigated
(e.g., lip motion tracking, linguistic features). In addition, performance of cloud-
based ASR services needs to be tested as well as the use of other popular face
detection toolkits (e.g., Openface 2.0 [2]), and the results of learning models
with different fusion strategies (feature versus class score fusion) needs further
analysis. The work reported in this paper was a first step toward building an
intelligent collaboration support system that can detect interactions between a
pair of children and provide adaptive supports during learning within the noisy
classroom environment. As we move toward this goal, we will be able to build
and investigate systems that can significantly improve children’s collaborative
learning experience in classrooms.
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Abstract. Feedback mechanisms for academic courses have been widely
used to measure students opinions and satisfaction towards different com-
ponents of a course; concurrently, open-text detailed impressions enable
professors to continually improve their course. However, the process of
reading through hundreds of student feedback responses across multiple
subjects, followed by the extraction of important ideas is very time con-
suming. In this work, we propose an automated feedback summarizer to
extract the main ideas expressed by all students on various components
for each course, based on a pipeline integrating state-of-the-art Natu-
ral Language Processing techniques. Our method involves the usage of
BERT language models to extract keywords for each course, identify rel-
evant contexts for recurring keywords, and cluster similar contexts. We
validate our tool on 8,201 feedback responses for 168 distinct courses from
the Computer Science Department of University Politehnica of Bucharest
for the 2019–2020 academic year. Our approach achieves a size reduction
of 59% on the overall volume of text, while only increasing the mean aver-
age error when predicting course ratings from student open-text feedback
by an absolute value of 0.06.

Keywords: Extraction of main ideas · Open-text student feedback ·
Natural Language Processing · Language models

1 Introduction

Student feedback is widely used as a tool of continual improvement in the
teaching process, by directly and anonymously connecting the teacher with the
students’ opinions [1,2]. Feedback from students is, or should be, a key point
in evaluating all course related aspects (e.g., curriculum, teaching capabilities,
homework difficulty), both from the teacher’s perspective and from an admin-
istrative point of view [3,4]. Student feedback is always acted upon, whether it
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involves small changes, like focusing more on a particular topic, or even for sig-
nificant changes. As an extreme showcase presented later on in detail, a lecturer
of a course in our university was changed in the 2020–2021 academic year when
the collected feedback used in our work, alongside additional other evidences,
were indicative of poor performance and improper attitude towards students.
Moreover, student feedback can be used to identify mismatches between faculty
perceptions and student expectations [5], with the strive for better alignment on
the longer run.

Nevertheless, reading and understanding student feedback expressed as
detailed text is a time consuming and tedious task for courses involving more
than a few students. An automated method of analysing feedback becomes
invaluable for all parties involved in the process: teaching staff, administrative
staff, and students.

Our objective is to create an automated pipeline for summarizing and aggre-
gating student feedback, while relying on state-of-the-art Natural Language Pro-
cessing (NLP) techniques. Moreover, we propose an evaluation methodology that
does not require any human annotation by assessing the prediction performance
of the summaries versus the full responses in terms of course ratings. As such,
our system allows both teaching and administrative staff to more easily read and
interpret student viewpoints, by significantly reducing the overall feedback size.

The paper is structured as follows. The next section introduces related work,
mostly centered on summarizing student open-text feedback, followed by details
on our method. The fourth section introduces qualitative and quantitative eval-
uations of our model. The last section presents conclusions and directions of
future work.

2 Related Work

Text summarization is a well studied problem in Natural Language Process-
ing that can be broadly categorized in two large classes, namely extractive or
abstractive summarization. The former is limited to words, sentences of phrases
from the given text that are selected as the most relevant fragments. In con-
trast, abstractive summarization is more akin to human summarization in the
sense that it has the ability to abstract and reason about key concepts in a
text. Our method represents an extractive method of summarization, as we lack
enough data (both in terms of sheer size and in terms of annotations) to tackle
an abstractive approach.

Nevertheless, feedback summarization is a slightly different task, since the
original content that needs to be summarized is composed of individual frag-
ments of text. Luo et al. [6] propose a phrase-based highlighting scheme that
is partially akin to keyword extraction, followed by the grouping of candidate
phrases. Similarly, Unankard and Nadee [7] propose the usage of Latent Dirich-
let Allocation (LDA) [8] for detecting and visualizing topics in online course
feedback.
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Luo and Litman [9] also propose to summarize student feedback by extracting
phrases, instead of full sentences, to ease reading and visualization. Their app-
roach is based on three steps, namely a) candidate phrase extraction, b) phrase
clustering, and c) phrase ranking. In their subsequent work, Luo et al. [10] explore
the usage of an integer linear programming framework to solve the summariza-
tion problem. Student feedback represents a great source of lexical variety, in the
sense that there exists a high number of different expressions that represent the
same meaning. Handling this challenge is done by allowing different sentences to
share the same co-occurrence matrix, even though the sentences might not have
the same author.

When considering state-of-the-art language models, Miller [11] proposes the
usage of BERT [12] models to automatically generate a lecture summary to sup-
port student understanding. All paragraphs of a given lecture are passed through
a BERT model, followed by a K-Means clustering algorithm on the paragraph
embeddings. In our work, we use a similar mechanism, but at a different level
of granularity, as applying clustering on entire feedback responses is not the
best idea when considering that feedback usually contains more than one impor-
tant aspect. Thus, our approach applies clustering on local contexts centered on
specific keywords in order to group certain related aspects of the course.

One key difference to previous summarization work is the new paradigm we
propose for evaluation that considers the overall aggregation of feedback. While
previous methods used a labeled dataset and compared the original text with
the summarized version using text overlap metrics (i.e., ROUGE [13]), we decide
to steer away from this approach. The main reason is that our aim consists of
selecting representative phrases for each considered feedback; as such, we want
to measure the predictive power of our phrases in terms of the overall course
rating given by the students.

3 Method

3.1 Corpus

The corpus used for the following experiments consists of student feedback in
Romanian for all courses of the Computer Science Department from University
Politehnica of Bucharest for the 2019–2020 academic year. After selecting only
courses with more than ten feedback responses from students, we are left with a
total of 8,201 responses on 168 distinct courses. Out of the considered courses, we
set aside 33 courses (accounting for about 20% of courses) solely for the purpose
of evaluating our approach.

The 8,201 feedback open-text responses consist of a total of 345,503 words,
leading to an average of 42 words per feedback. The average rating given by stu-
dents is 3.74, while the median rating is 3.94. The median value of responses per
course is 39, while the average is 48.8. The histograms for all relevant statistics
are presented in Fig. 1.
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Fig. 1. Histograms for the average course rating (a) and for the number of feedback
responses per course (b).

3.2 Automated Feedback Processing Pipeline

Figure 2 introduces the overall workflow of our proposed method. First, the text
is preprocessed; second, keywords relevant for the current course are detected,
followed by the extraction of contexts where the keywords occurred. Fourth, an
additional clustering step is performed to separate the different ideas related to
that keyword, if too many contexts are extracted for the same keyword.

Fig. 2. Conceptual diagram of our method.

Feedback Preprocessing. From each student feedback, three key components
were extracted: the general evaluation of the course (as given by the student) in
the form of a rating from 0 to 5, the student responses to the open-text question
“What are the positive aspects of this course?” and to the open-text question
“What should be improved in this course?”. In the following experiments, the
responses to the first question are referred as positive feedback, while negative
feedback relates to the second question. Before running the keyword extraction,
a diacritics restoration model based on RoBERT introduced by Masala et al. [14]
is applied on all student responses.

Keyword Extraction. KeyBERT [15] is used for keyword extraction, includ-
ing a Romanian BERT model – RoBERT model [14] – to compute key-
word/document representations. The most relevant keywords are identified by
comparing the representation of all candidate keywords with the document rep-
resentation. For each course, the most relevant 10 keywords are extracted from
the set of all nouns present in the respective student feedback responses. The
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Maximal Marginal Relevance method [16] is used to ensure the diversity of the
selected keywords. For this step, two KeyBERT approaches were considered: a
simple pre-trained RoBERT-base and a finetuned RoBERT-base (more details
about the process of finetuning are presented in Sect. 4).

Context Extraction. After keywords are extracted from student feedback
for each individual course, the next step is to extract the contexts relevant for
each keyword. For this, two methods for extracting the contexts were used:
a) picking the sentence in which the keyword appears, and b) traversing the
dependency tree of each sentence to extract only the information related to the
keyword. The second method was implemented because sentences may contain
information on more than one aspect; however, separating different aspects is
not trivial. Our tree search approach started from the keyword and considered
only a predefined list of universal dependency tags (i.e., “nsubj”, “nmod”, “det”,
“amod”, “cop”, “advmod”, “case”, “aux”, “acl”, “obl”, “aux:pass”, “mark” and
“cc”). Conjunctions were only taken into account when going down in the tree,
and rules were used to exclude tags that introduce subordinate clauses in specific
cases. Examples are presented in the results section. The dependency tree is built
with the “ro core news lg” model1 from the spaCy framework2.

Clustering. The number of contexts can be very high for frequent topics (e.g.,
keywords can have over 80 contexts). As our goal is to ease reading, understand-
ing, and acting upon student feedback, a clustering algorithm was applied for
keywords with more than five contexts. The clustering was performed in the
embedding space generated by BERT (i.e., the same model from the keyword
extraction step), using the K-Means algorithm with five clusters; this value for
k was empirically set as more clusters for a given keyword would have been dif-
ficult to follow. For each cluster, we select the point closest to the centroid as
the representative context.

4 Evaluation

This section contains a qualitative assessment exemplifying all steps in the Nat-
ural Language Processing pipeline, followed by quantitative results for different
configurations of the proposed method.

The RoBERT-base model was fine-tuned with a feedback text and its polar-
ity (whether it originated as a positive or negative aspect of the course; this
information was readily available from the preprocessing step) as input, and the
given rating as target. After removing the added layers needed for fine-tuning,
we are left with a classic RoBERT-base architecture with tweaked weights. This
“fine-tuned” model is further used in the keyword extraction and classification
steps, where applicable (see Table 4).
1 https://spacy.io/models/ro#ro core news lg. Retrieved April 15, 2021.
2 https://spacy.io/. Retrieved April 15, 2021.

https://spacy.io/models/ro#ro_core_news_lg
https://spacy.io/
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4.1 Qualitative Assessment

Given our task, a qualitative analysis provides valuable insights to understand
the value of the presented method. This subsection is centered on real examples
for each major step from the pipeline: keyword extraction, context extraction,
and clustering steps.

Keyword Extraction. The following examples were extracted from three
courses selected to be as representative as possible. One of the lowest ranked
courses was picked, with an average rating of 1.21 and 290 feedback responses
(highest number of responses out of all considered courses). The course was cen-
tered on project management (PM), outside of the core Computer Science cur-
riculum, but mandatory for all students. After picking the worst rated course, the
next selected one was highly rated, with a decent number of feedback responses
– a freshman course centered on introducing logic circuits design (LC), with an
average rating of 4.75 and 78 responses. Finally, a fundamental course for the
Computer Science domain focused on algorithms (ALG) was selected, with a
decent number of responses (42) and an average rating of 2.86. Extracted key-
words for the three mentioned courses are presented in Table 1. We note that,
for brevity, all keywords were manually translated to their English counterparts.

Table 1. Qualitative examples for keyword extraction.

Course Keywords

PM professor, seminar, attitude, situation, half, him,
clarification, requirement, teaching, students

LC professor, curriculum, work, seminar, circuit,
laboratory, application, exercise, book, example

ALG algorithm, seminar, exercise, subject, solution,
complexity, test, student, attendance, Wednesday

The list of extracted keywords triggers tell-tale signs. For the low rated
course (PM), the most relevant keywords are not directly related to the cur-
riculum. This already hints that, for this course, there are very strong opinions
(either good or bad) about aspects regarding mostly the teaching staff. For the
other two courses, we can observe keywords directly related to the curriculum
(e.g., “circuit”, “algorithm”, or “complexity”) and general keywords related to a
course (e.g., “professor”, “laboratory”, “seminar”, “test”, or “attendance”). Also
notable are rather odd keywords, such as “half”, “Wednesday”, or “him”. Some
of these keywords stem from limitations of the current POS tagging model, espe-
cially for a low resource language such as Romanian. While it certainly seems
that “Wednesday” is a poor choice for a keyword as it is highly specific, after
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a closer inspection, it turns out that it is a highly recurrent concept as the
half-semester test took place on a Wednesday and this event generated a lot of
discussions on the corresponding schedule. Extracting and clustering context for
keywords becomes even more important for these seemingly odd appearances.

Context Extraction. We introduce only examples that use the dependency
tree for context extraction, since the first method of selecting entire sentences is
trivial. Here, the context and its dependency tree were kept in Romanian with
corresponding translations in the visual representations (i.e., the dependency
trees from Fig. 3 and 4 where the keyword is marked with a red bounding box
and the extracted context in black), whereas the original and extracted contexts
were manually translated to English in Table 2. For brevity, spelling errors were
also manually corrected and irrelevant parts were omitted (marked by “[...]”).

Fig. 3. Example of a simple context extraction.

Fig. 4. Example of a complex context extraction.

Clustering. Table 3 introduces three examples of clusters (one feedback per
line) in which the clustering step manages to group similar contexts; the feedback
picked to represent the centroid of the cluster is marked with bold). We note
that the first cluster is extracted from the problematic course mentioned in the
Introduction. In addition to the representative context for each cluster, a critical
piece of information is the size of such cluster - for example, having only three
negative feedback responses is different to having over 10 such responses.
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Table 2. Qualitative examples for context extraction.

Keyword Feedback Extracted context

Seminar Interactive and interesting course,
good explanations both at course
and at seminar

Good explanations both at
course and at seminar

Seminar Not enough learning resources and
the fact that the last part of the
course is not taught in seminar is a
problem of thoroughly
understanding the curriculum the
laboratory is [...]

Not enough learning
resources and the fact that
the last part of the course is
not taught in seminar

Complexity I learned important aspects about
algorithm complexity and analysis
by better understanding both
aspects

I learned important aspects
about algorithm complexity
and analysis

4.2 Quantitative Analysis

The proposed method was evaluated on a holdout dataset containing 33 courses.
As our goal is to automatically summarize feedback texts, it was important to
measure how much information is retained after extracting the main ideas. The
corresponding train and test datasets were built for each summarization method,
while enforcing a static assignment (i.e., all train datasets consistently contain
the same courses; all test datasets consistently contain the same courses). Each
BERT-based model is trained using 4-fold cross-validation and grid search for
hyper-parameters (i.e., batch size, number of epochs, dropout values). At evalu-
ation time, the trained model was run on all feedback responses corresponding
to a given course from the holdout dataset, and averaged across predictions to
obtain the predicted average rating of a course.

The validation consists of measuring the predictive power of the summa-
rized feedback in determining the general rating of a given course. Therefore, a
Mean Course Average Error (MCAE) is computed as the average absolute error
between the real average rating of each course and the average predicted ratings
based on all feedback (see Formula 1).

MCAE =
∑

c∈C

|realc − 1
|Fc| ∗

∑

f∈Fc

predf | (1)

where C is the set of considered courses, realc is the real average course
rating for course c, Fc is the set of feedback responses associated with course c,
and predf is our models prediction for feedback response.

Table 4 reports the summarization performance, both in term of size reduc-
tion and summary relevance. A lower value is better for MCAE, whereas a
higher value is better for word reduction. The baseline is represented by training
a RoBERT-base model on the original feedback responses with no extraction of
main ideas (first line of Table 4). As expected, a significant size reduction (both
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Table 3. Qualitative examples for clustering.

Cluster

The attitude of the supervisor [...]
The professor had an aggressive attitude towards the students especially [...]
The attitude towards the students and course and seminar attendance
but his attitude is totally inappropriate
Their attitude was more than excessive at the multiple choice test
Mocking attitude and
He had a defiant attitude
Teaching staff attitude is not appropriate

Resource for the laboratory should be improved
Resources from the laboratory are not functional
The wires and PCBs are a little faulty [...]
Laboratory resources and better laboratory explanations

Ease of understanding
Relaxed teaching style that is very useful for understanding
The professor is very thoughtful, answers all questions asked [...]
The professor is interested and involved
The course is hard but well taught

in terms of number of responses and in terms of total number of words) can
be observed after clustering similar feedback responses. The same phenomenon
can be observed when comparing the dependency tree method of extracting con-
texts with using the entire sentence as context, in favor of the former. In case
of dependencies, the overall word count can be slightly higher than the initial
count, as responses are divided into multiple contexts that can overlap.

In terms of size reduction, the best configurations manage to reduce the
number of words by 85%, while only increasing MCAE by about 0.17. Even
though the performance decrease is slightly high at 44%, we believe this is still
a very strong result. If more predictive power is needed, the best performing
model has only a 16% MCAE decrease (absolute value difference of only 0.06),
while reducing the size of feedback by 59%.

Table 4. Results on the test set.

Keywords Context Clusters # Feedback # Words MCAE

Full feedback – – 8,201 345,503 0.397

Base Sentence – 7,542 (−8%) 214,364 (−38%) 0.516 (+0.119)

Base Sentence 5 4,935 (−40%) 139,604 (−60%) 0.529 (+0.132)

Base Dependencies – 8,297 (+1%) 87,547 (−75%) 0.627 (+0.230)

Base Dependencies 5 5,027 (−39%) 53,104 (−85%) 0.572 (+0.130)

Fine-tuned Sentence – 7,818 (−5%) 224,152 (−32%) 0.501 (+0.104)

Fine-tuned Sentence 5 4,974 (−39%) 142,027 (−59%) 0.457 (+0.060)

Fine-tuned Dependencies – 8,639 (+5%) 90,542 (−78%) 0.566 (+0.169)

Fine-tuned Dependencies 5 5,065 (−38%) 52,873 (−85%) 0.565 (+0.168)
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A smart size reduction scheme also increases the predictive power of the
remaining feedback responses. In almost all cases, clustering increases perfor-
mance (i.e., the MCAE metric is lower for the clustered contexts), while greatly
reducing feedback size. The dependency tree method performs worse than the
method that extracts the entire sentence as context. This is somehow expected
because the former method is not infallible, as extracted contexts can be either
too short or miss important aspects. Finally, the methods using the finetuned
RoBERT model in the keyword extraction and clustering phase consistently
outperform their counterparts that use RoBERT-base.

5 Conclusions and Future Research Directions

A fully automated method is introduced to extract and aggregate main ideas
from student feedback responses in order to ease the reading and understanding
of key aspects regarding academic courses. It is important to note that this app-
roach requires no human intervention or annotation, and its results are readily
available for each individual course. Our method was evaluated indirectly by
estimating the amount of information kept in the generated summaries - i.e.,
the extent to which keyword contexts are predictive of the course rating. Our
approach obtains an MCAE increase of only .06, while reducing the size of the
feedback responses by 59%.

If more data becomes available, sentiment analysis tools can be considered
to predict the polarity of each context. This information can be also integrated
in the clustering step, separating positive and negative aspects for a specific
keyword. Additionally, we envision creating 2D visualizations of the feedback
embeddings with corresponding clusters using Tensorboard3 and t-SNE [17]. The
extension of the dataset to multi-year feedback responses will enable additional
analyses to be performed, like extracting emerging keywords and topics over
time using BERTopic [18].
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Abstract. Team communication modeling offers great potential for adaptive
learning environments for team training. However, the complex dynamics of team
communication pose significant challenges for team communication modeling.
To address these challenges, we present a hybrid framework integrating deep
learning and probabilistic graphical models that analyzes team communication
utterances with respect to the intent of the utterance and the directional flow of
communication within the team. The hybrid framework utilizes conditional ran-
dom fields (CRFs) that use deep learning-based contextual, distributed language
representations extracted from team members’ utterances. An evaluation with
communication data collected from six teams during a live training exercise indi-
cate that linear-chain CRFs utilizing ELMo utterance embeddings (1) outperform
both multi-task and single-task variants of stacked bidirectional long short-term
memory networks using the same distributed representations of the utterances,
(2) outperform a hybrid approach that uses non-contextual utterance representa-
tions for the dialogue classification tasks, and (3) demonstrate promising domain-
transfer capabilities. The findings suggest that the hybrid multidimensional team
communication analysis framework can accurately recognize speaker intent and
model the directional flow of team communication to guide adaptivity in team
training environments.

Keywords: Team communication analytics · Probabilistic graphical models ·
Deep learning · Distributed language representations · Natural language
processing

1 Introduction

There is broad recognition that team training can improve team effectiveness across a
wide range of domains [1]. It can improve team knowledge, team coordination, and
team leadership behaviors, which can in turn minimize errors, enhance productivity, and
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help ensure teams are successful. Adaptive team training holds significant potential for
providing effective learning experiences by delivering tailored remediation and feedback
that support the development of teamwork and taskwork skills and dynamically address
a team’s training needs [2, 3].

A key challenge posed by team training is developing approaches to reliably assess-
ing and diagnosing team processes in real time. Team training theory and research shows
team communication provides a rich source of evidence about team processes that can
support team training experiences [3–5]. Teammembers communicate with one another
to develop a shared understanding of goals, tasks, and responsibilities [4], to coordinate
actions [6], and to regulate social and cognitive processes associated with team per-
formance [1, 7]. Accurate analyses of team communication can therefore provide deep
insight into team cognition, collaboration, and coordination, which can ultimately be
used to adaptively support team training needs.

Work on team communication modeling has explored a variety of methods. For
instance, latent semantic analysis (LSA) has been used to devise team communication
analysismodels and assess teamdiscourse using teamcommunication content, sequence,
and structure [8]. However, LSA does not adequately account for the dynamically chang-
ing dialogue context and semantics of the utterances that could be used for in-depth
team discourse analysis. More recently, approaches based on deep neural networks [9]
and probabilistic graphical models [10] have demonstrated significant potential for per-
forming fine-grained dialogue analyses using multi-level language data (e.g., characters,
words, paragraphs, documents), as well as other discourse and context features (e.g., dia-
logue sequence, turn taking, task sequences, environmental events). These techniques
offer considerable promise for producing more accurate representations of team com-
munication. Thus, a key question is how we can most effectively leverage these recent
advances to accurately analyze teamdiscourse, assess team communication, predict team
performance and, ultimately, provide adaptive training experiences for learners.

In this paper, we present a hybrid, multidimensional team communication analy-
sis framework supporting adaptive team training (Fig. 1). The framework leverages
conditional random fields’ structured prediction and deep neural networks’ contextual
language representation learning capabilities to classify team communication data with
respect to the intent of utterances (i.e., speech acts [11]) and how information is con-
veyed to a team (i.e., team development categories). We investigate the hybrid team
communication framework on transcripts of spoken utterances captured from six U.S.
Army squads during a live capstone training exercise [12]. We evaluate the predictive
performance of the hybrid framework optimized through cross-validation on a held-out
test set and compare them to bidirectional long short-term memory networks, which are
optimized through multiple configurations of multi-task learning and fusion methods,
across the two classification tasks.

2 Related Work

Natural language processing techniques have been used in a wide range of learning ana-
lytics tasks to assess student knowledge and competencies, analyze student and teacher
dialogue, and provide individualized feedback [13, 14]. Previous work has investigated
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automated essay scoring [15], short answer grading [16], discourse analysis in class-
rooms for both students [17] and teachers [18], text difficulty classification [19], and
tutorial dialogues [20]. More recently, deep learning-based natural language processing
has been explored for learning analytics tasks [e.g., 15, 16, 21], taking advantages of deep
neural networks’ capabilities on distributed linguistic representation learning [22, 23]
and highly accurate modeling in an end-to-end trainablemanner [24, 25]. Closely related
to team training and performance, deep learning-based methods have been investigated
for computer-supported collaborative learning (CSCL). In CSCL environments, group
members work collaboratively towards a shared goal and solve problems as they learn
[26], and deep neural network-based methods have been used in CSCL environments
for detecting disruptive talk [27] and off-task behavior [28] with the goal of engaging in
dialogues that are most conducive to learning.

Fig. 1. Team communication analysis modeling for team training environments.

While the majority of previous work on natural language processing in learning
analytics has focused on tasks centered on individual learners, analyzing team dialogue
could offer significant value to support adaptive team training experience and improve
team performance. Team communication provides a window into how teams collabo-
rate, coordinate, and distribute information in order to achieve a shared goal during team
training and improve team performance [3, 29]. Consequently, many approaches have
been investigated for analyzing team dialogue to obtain insight into teamwork, team
performance, coordination processes, and training needs, including a growing body of
work on computational approaches to team communication analysis [30]. For instance,
LSA has been used to detect socio-cognitive roles in multiparty interactions [31] and
team communication content analysis [8]. Researchers have also successfully utilized
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Markov models [32] and support vector machines utilizing multi-party dialogue embed-
dings [33] to analyze temporal patterns of team communication, as well as hierarchical
regression models to investigate relationships between linguistic entrainment and team
social outcomes [34].

Our work focuses on computational modeling of sequential communication patterns
in actual team dialogue data collected from a set of live capstone training exercises.
The hybrid, multidimensional team communication analysis framework shows consid-
erable potential to support creating effective team training environments that adaptively
facilitate teamwork and improve team performance.

3 Dataset

We investigate the hybrid team communication framework with transcribed audio logs
captured from six U.S. Army squads as they each completed a 45-min live training
scenario (Fig. 1) [12]. The training scenario included a scripted set of training objectives
and events (e.g., contacting key local leaders, providing combat casualty care) that were
designed to elicit team development behaviors among squad members. Throughout the
mission, squad members were required to develop a baseline of advanced situation
awareness, identify and report tactical threats, and accomplish mission objectives. Each
squad consisted of 10 team members wearing individual microphones, and each team
member assumed a designated role and communicated with other key role players to
collectively complete the mission.

The audio logs were transcribed and annotated using a coding scheme of 27 speech
acts, 18 teamdevelopment labels, and the speaker’s role by domain experts, where speech
acts represented the basic purpose of a given utterance, such as requesting information or
stating an action being taken, team development labels reflected how different forms of
information were being transferred up and down the chain of command in a squad, and
speaker roles indicated the role of the teammember speaking (six speaker roles including
one squad leader and two sub-team leaders).While every utterancewas assigned a speech
act label, utterances were only assigned team development label when applicable.

Balancing the granularity of dialogue labels, their impact on the predictive accuracy
of the models, and the potential utility of their predictions for training, we developed a
mapping to reduce the number of speech acts from 27 down to 9 distinct labels consist-
ing of acknowledgement,action request,action statement, command,atten-
tion,greeting, provide information,request information, andother statements.
Teamdevelopmentcommunicationbehavior labelsconsistedof19 labels (e.g.,command
coming fromthe squad leader, provide informationup the chain of command,
request information fromdownthechainofcommand), including one extra label
(“N/A”) to account for the utterances whose team development labels are not applicable.
Overall, the dataset included4,315 taggedutterancesmadeby the teammembers from the
six squads (Table 1). Frequency analyses showed provide information (n=1,109)was
the most prevalent speech act in the dataset, followed by command (n= 805). For team
development labels, themost frequent labels were N/A (n= 1,978) followed by provide
information up the chain of command (n= 550) and command coming from the
squad leader (n= 362).
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Pearson correlation analyses of the dataset found that squads who provided infor-
mation statements (r = .862, p = .027) and issued acknowledgement statements (r =
.864, p = .027) more frequently received higher ratings of team performance during
the training event [35]. Results also showed that ratings of team performance were pos-
itively correlated with the number of commands that squad leaders issued during the
training event (r = .848, p= .033). Given the critical role communication plays in team
effectiveness, being able to accurately classify team communication content in terms of
speech act and team development labels could provide significant value for assessing
team performance and developing adaptive training environments for teams.

Table 1. Example utterances and their speech act (SA) and team development (TD) labels.

Speaker Example utterances SA TD

Team leader Where are we moving? request information request information
from up the chain
of command

Team leader Hey, we’re getting ready
to move.

provide information pass information
down the chain of
command

Squad leader Six four be advised we’re
going to make contact
with Romanov.

action statement provide information
up the chain of
command

Squad leader Hey two alpha, hold right
there at those trees.

command command coming
from the squad
leader

4 Multidimensional Team Communication Analysis Framework

We first devise linear-chain conditional random fields (CRFs) and deep neural network
(DNN)-based predictive models that could classify team communication utterances into
speech acts and team development labels. CRFs are discriminative models for structured
prediction and sequence modeling [36]. CRFs utilize the probabilistic graphical model-
ing for multivariate data classifications and have been found to be particularly effective
for modeling interdependencies in predictive features (e.g., pixels in an image, words
in a sentence) along with the class labels associated with the features. While they have
proven useful for a variety of tasks, recent work has produced significant advances by
incorporating CRFs with deep learning techniques for dialogue act classification [37]
and sentiment analysis [38]. These approaches suggest that higher-level features, such
as team communication metrics, could be modeled accurately with CRFs.

To effectively model dialogue interactions that have a sequential structure, we inves-
tigate linear-chain CRFs (Fig. 2). As shown in Eq. 1, the posterior probability of a
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Fig. 2. A factor graph representation of a linear-chain CRF utilizing ELMo contextual utterance
embeddings (CRF-ELMo). The gray shaded nodes denote input features (x) that are a concate-
nation of k-dimensional utterance features and 6 one-hot encoded speaker role features within a
time step (t). The white nodes denote a target variable (y) such as speech act. The black shaded
boxes indicate factor nodes.

sequence of classes (y) given a sequence of input feature vectors (x) from time 1 to T is
computed using a weighted sum of K feature functions (f ) that are parameterized with y
at times t and t-1, and x at time t, where Z is an instance-specific normalization function
[39]. To train the model, we sub-sampled sequences using a sliding window of length
100 (i.e., each subsequence with 100 utterances) from each team’s communication data,
considering both the context to capture from the dialogue sequence and potential data
sparsity issues. In this way, we create a set of sub-sampled sequences equal to the num-
ber of utterances in each team’s communication (for the sequences shorter than 100,
we applied zero padding). The outputs y, which are the labels associated with the given
input sequence, are generated for both training and testing. We use a block-coordinate
Frank-Wolfe optimization technique [40] to train linear-chain CRFs with the maximum
iteration number of 100.

p(y|x) = 1

Z(x)

∏T

t=1
exp

{∑K

k=1
θk fk(yt, yt−1, xt)

}
(1)

To represent the speaker utterance, we employ a DNN-based contextual, distributed
representation method using an ELMo language model [23]. In contrast to static, dis-
tributed representation methods such as GloVe [41], which provide fixed dictionary-
based embeddings, contextual embedding approaches support inducing dynamic repre-
sentations of text by utilizing a language model that takes as input a sequence of words.
Consequently, ELMo-based approaches might be able to generate more accurate repre-
sentations of utterances included in dialogues. In this work, we use a pre-trained ELMo
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model to generate utterance-level embeddings with 1,024-dimensional vectors through
a mean pooling of all contextualized word representations. This ELMo model was built
with stacked bidirectional LSTMs trained on the 1 Billion Word Benchmark, approxi-
mately 800M tokens of news crawl data fromWMT 2011. Since the 1,024-dimensional
vector representation per utterance is prohibitive formodels to be effectively trained con-
sidering the dataset size examined in this work, we apply principal component analysis
(PCA) to reduce the 1,024 dimensions down to one of 32, 64, or 128 dimensions, identi-
fying the optimal reduced dimension through cross-validation. In summary, this hybrid
model, referred to as CRF-ELMo, takes advantage of CRF’s strong structure prediction
capacity as well as ELMo’s contextual language representation capability.

To identify the best performing CRF-ELMo, we examined two hyperparameters,
including the regularization parameter from {0.1, 0.5, 1} and the optimizer conver-
gence tolerance from {0.01, 0.001}.We used PyStruct [42], a Python-based off-the-shelf
CRF modeling library, to train the models, while the optimal set of hyperparameters is
identified through a cross-validation process.

We also construct bidirectional long short-term memory networks (BLSTMs) [43],
deep learning-based sequence model baselines, that use the same ELMo contextual lan-
guage embeddings (BLSTM-ELMo). Specifically, we adopt a two-layer BLSTM archi-
tecture, as we anticipated both forward and backward propagations of hidden repre-
sentations of the input streams would more effectively capture bidirectional, sequential
patterns in the streams of speaker role changes and utterances and thus more accurately
model dynamics characterized in team communication behaviors. A preliminary anal-
ysis conducted with the training set indicated that the stacked BLSTM architecture’s
speech act classification approach outperformed both single-layer standard LSTMs and
two-layer standard LSTMs.

Multi-task neural models offer distinct advantages over single-task variants when
performing multiple classification tasks [44]. First, multi-task neural models are more
cost-effective for training than single-task models because they use one network archi-
tecture with multiple output layers accounting for different classification tasks instead
of training multiple models. Second, when multiple tasks are correlated, multi-task
models can potentially improve their generalization performance through effective reg-
ularization, especially when training data is limited. For this reason, we investigate both
multi-task and single-task versions of BLSTM-ELMos in this work.

We also explore two fusionmethods, early fusion and late fusion, in terms of the input
feature sets (utterance-based feature set and speaker role-based feature set) for optimal
BLSTM-ELMo modeling. For early fusion, the PCA-applied, ELMo representations of
the speaker utterance and the corresponding speaker role passed through an embedding
layer are concatenated into a vector, which is fed into the BLSTM layer. For late fusion,
two BLSTMs are created to deal with two input feature sets separately, and the two
BLSTM outputs are concatenated to perform classifications in a softmax layer. In both
cases, we explore the same set of reduced dimensions (i.e., 32, 64, or 128) by PCA for
the utterances as done in the CRF-ELMo.

For the speaker role, we use a trainable embedding layer with the embedding size
of 4 to represent the speaker role in a continuous vector space. We use 32 hidden units
for the two BLSTM layers with a dropout rate of 0.25 for regularization of the trained
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models, the softmax activation function for the output layers, and the Adam optimizer
[45]. Similar to CRF-ELMo, we set the maximum input sequence length to 100 and the
maximum training epochs to 100. Also, we train the models with the same sub-sampled
sequential dialogue data and adopt early stoppingwith the patience duration of 10 epochs
using the validation loss computed with 10% of the training set for effective training.

5 Evaluation

To evaluate the hybrid team communication framework, we split the team communi-
cation dataset into two sets: one contained data from 5 squads for performing cross-
validation and the other data from 1 squad for held-out testing. First, we performed
5-fold cross-validation using data from 1 squad as a test set and data from 4 squads
as a training set for each fold. The optimal set of model hyperparameters was iden-
tified through cross-validation by choosing the one that achieved the highest average
cross-validation accuracy rate. It should be noted that the held-out test data was com-
pletely unseen from the cross-validation and its hyperparameter optimization process
for fair generalization evaluation across models. The majority class baselines for the 9
speech acts and 19 team development labels were 25.7% and 45.8%, respectively. Table
2 shows the cross-validation results of the speech acts and team development labels.
CRF-ELMo uses the format of hyperparameters, {optimizer regularization parameter,
optimizer convergence tolerance, reduced PCA dimensions}, and BLSTM-ELMo uses
the format of {task modeling type, fusion mode, reduced PCA dimensions}.

Table 2. Averaged cross-validation accuracy rates (%) for CRF-ELMo and BLSTM-ELMo. The
highest predictive accuracy rates for speech act (SA) and team development labels (TD) per
modeling technique are marked in bold.

CRF-ELMo SA TD BLSTM-ELMo SA TD

{0.1, 0.001, 32} 68.80 58.38 {Multi-task, Early, 32} 61.44 55.79

{0.1, 0.001, 64} 67.88 56.16 {Multi-task, Early, 64} 62.07 53.88

{0.1, 0.001, 128} 64.85 52.67 {Multi-task, Early, 128} 61.97 53.43

{0.1, 0.01, 32} 68.88 58.31 {Multi-task, Late, 32} 60.22 53.96

{0.1, 0.01, 64} 67.87 56.20 {Multi-task, Late, 64} 60.19 54.51

{0.1, 0.01, 128} 64.87 52.62 {Multi-task, Late, 128} 59.77 53.22

{1.0, 0.001, 32} 68.76 58.84 {Single-task, Early, 32} 62.04 55.13

{1.0, 0.001, 64} 67.45 56.03 {Single-task, Early, 64} 61.16 54.47

{1.0, 0.001, 128} 65.72 53.36 {Single-task, Early, 128} 61.84 53.93

{1.0, 0.01, 32} 68.83 58.77 {Single-task, Late, 32} 61.48 52.64

{1.0, 0.01, 64} 67.45 55.93 {Single-task, Late, 64} 60.53 53.54

{1.0, 0.01, 128} 65.62 53.29 {Single-task, Late, 128} 61.96 50.98
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Overall, the CRF-ELMo model achieved higher predictive accuracy compared to
BLSTM-ELMomodel based on cross-validation results. Both CRF-ELMo andBLSTM-
ELMogenerally showedhigher accuracywhen adopting the smallest number of language
features (32 dimensions), which could be attributed to model overfitting issues. For
BLSTM-ELMo, the early fusion method often outperformed late fusion. Further results
showed multi-task learning and single-task learning were competitive, with the highest
cross-validation results for both the classification tasks being attained by multi-task
learning.

Next, we chose the best performing model hyperparameter configurations for the
speech act and team development communication behavior predictions for the CRF-
ELMo and BLSTM-ELMo models (marked in bold in Table 2), re-trained the models
with the hyperparameters using all available training data (i.e., 5 squad training data), and
evaluated the trained models’ predictive performance using the held-out test set, which
involved a separate squad’s communication data. Table 3 reports model test performance
across the re-trained models using the best performing hyperparameter configurations
identified by cross-validation.

Table 3. Test accuracy rates (%) for best performing CRF-ELMo and BLSTM-ELMo models.

SA TD SA TD

CRF-ELMo 69.42 64.92 BLSTM-ELMo 64.61 61.88

The held-out test set-based evaluation results in Table 3 suggest that the hybrid CRF-
ELMo approach outperformed the BLSTM-ELMo method with sizable differences for
both the classification tasks, as seen in the cross-validation evaluation (Table 2). It is
notable that the test accuracy rates are slightly higher than the average cross-validation
accuracy rates. The five-fold cross-validation accuracy rates for the best performing
CRF-ELMo models vary from 67.24% to 72.41% across the folds for speech act classi-
fication (average: 68.88%) and from 56.40% to 64.26% for team development classifi-
cation (average: 58.84%), and these indicate that the held-out test set evaluation results
are in a similar range. Both CRF-ELMo and BLSTM-ELMo models trained with the
entire training data (i.e., 5 squad communication data rather than 4 in cross-validation)
could help capture the test set data distribution thereby exhibiting high generalization
performance.

We also trained alternating CRF models using a bag-of-words (BoW)-based static
representation for utterances (CRF-BoW). To train the models, we first transformed all
of the words that appeared in the training set to lower case and created a dictionary only
using the top 80% of the most frequently observed words included in the training set,
while treating the remaining 20% of the least commonly occurring words as unseen (a
special token). This decision was made to effectively deal with an out-of-vocabulary
problem (e.g., idiosyncratic words, typographical errors) in the test set. To create a BoW
representation for each utterance, we created a vector with the dimension of 1,089, which
is the size of the dictionary + 1 (the unseen special token), and set the word bit to 1 for
the words included in the utterance, while setting the unseen special token bit to 1 for any
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undefined words. A CRF-BoWmodel is trained using the same model architecture used
for the best performing CRF-ELMo. This CRF-BoW achieves 59.37% and 56.54% for
speech act classification and team development, respectively, for the test set evaluation.

The results indicate that combining CRF’s sequence modeling capabilities with
ELMo, which uses a deep learning-based contextual, distributed utterance represen-
tation learning technique, achieves considerably higher predictive performance for both
of the teamcommunicationmodeling tasks. Together, these results suggest the following:
(1) CRF can serve as a high-fidelity, sequence modeling technique for team communica-
tion, even with a corpus that is perhaps too small to effectively train LSTMs; and (2) the
ELMo deep learning-based contextual language model trained with a large, general nat-
ural language dataset can effectively extract context and semantics from team dialogue
and improve the predictive accuracy of the CRF models.

To build on these results, we next evaluated the team communication framework’s
domain-transfer capabilities. To facilitate this analysis, we explored how well the mod-
els trained with the mission data examined in this work (Morg) could classify squad
communication that was collected during another training mission (Mnew) [12]. Results
showed that the best performing CRF-ELMo model trained with Morg achieved 67.35%
predictive accuracy on speech act classification for utterances from Mnew. These results
show promise for developing scalable NLP-based models that can effectively transfer
its predictive capacity to data collected from a related training exercise.

6 Conclusion

Adaptive team training is critical for effectively developing teamwork skills, facilitating
team processes, and improving team performance. A key challenge posed by creat-
ing adaptive training environments is reliably analyzing team communication, which
is a crucial source of evidence about team interaction. To address this challenge, we
have introduced a hybrid, multidimensional team communication analysis framework
incorporating CRF-ELMo, which integrates a high-fidelity, hybrid model that utilizes a
probabilistic graphical model with a deep learning-based contextual language represen-
tation model. Evaluations conducted with cross-validation followed by a held-out test
set showed that CRF-ELMo team communication analysis models achieved the high-
est predictive accuracy with respect to both speech acts and team development labels
by effectively dealing with noisy team communication data captured from a live train-
ing exercise, and they significantly outperformed stacked, bidirectional long short-term
memory network classifiers as well as majority class baselines. This hybrid approach
was also found to have shown promising domain-transfer capabilities when applied to a
different training event.

Future research in team communication analytics should investigate other contextual
embedding approaches, model architectures, and model optimization and regularization
techniques that can support generalizability and further improve the classification accu-
racy of team communication. Accurately classifying team communication utterances
would allow team training researchers to identify if teams are pushing and pulling infor-
mation at optimal rates and identify if critical pieces of information are being passed to
relevant team members. In addition, future research should also conduct error analysis
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on misclassified instances and investigate the sequential patterns of team communica-
tion to facilitate team cognition and team performance. Finally, it will be important
for future work to investigate the relationships between team communication and team
performance and explore dialogue dynamics that can serve as key team performance
indicators with the ultimate goal of creating adaptive team training environments.
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Abstract. Children’s speech recognition is a challenging task because of
the inherent speech production characteristics of children’s articulatory
structure as well as their linguistic usage. In the context of developing
automated reading companions, the problem is compounded by lack of
training data. Most of the available data is recorded under clean and
controlled conditions leading to a performance degradation in presence
of uncontrolled and realistic acoustic environments. In this study, we
address these challenges by leveraging a publicly available large unlabeled
read speech corpus to learn generalized audio representations. These
learned representations are then employed to augment the features used
for training the acoustic model of limited in-domain children’s speech.
The representations are learned via a deep convolutional architecture
optimized on a noise contrastive binary classification task to distinguish
a true future audio sample from negatives. We obtain upto 24.87% rel-
ative improvement in the Word Error Rate (WER) of our speech recog-
nition system using these generalized audio embeddings and show the
effectiveness of using a pre-trained model when training data is limited.

Keywords: Speech recognition · Low resource speech recognition ·
Children’s speech recognition · Unsupervised pre-training · Reading
companion

1 Introduction

Artificial Intelligence (AI) systems including those in education, usually require
training data. This can lead to a chicken-and-egg problem when building and
deploying a new application: user data is necessary to train AI models but AI
models are necessary to put together even a minimally functional prototype
that the users can interact with. Furthermore, the initial amount of training
data collected in pilot studies and beta releases is likely to be relatively small
for training modern AI systems. In this paper, we show how representational
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learning [3] can be used to address this problem in the context of training an
automated speech recognition system for an interactive reading application.

The most recent National Assessment of Educational Progress (NAEP) read-
ing assessment of U.S. fourth graders show that 34% of students read even
below the basic level1. It has been shown that one-on-one tutoring can pro-
vide significant improvement in raising reading fluency levels as compared to
the one-to-many classroom instruction [30]. However, human tutoring is expen-
sive and speech technology can be used to provide an impactful and cost-effective
solution.

Many existing commercial and research applications already use automated
speech recognition (ASR) and other speech processing technologies to assess oral
reading fluency and assist with its development. Reviews of earlier systems can
be found in [12,35] among many others; [6] provides an overview of some of
more recent developments in the area of technology-based literacy instruction.
VersaReader [2] and Project LISTEN [18] are two of the most mature systems
in this area, while Moby.Read [5] is the latest addition to the list. All these
systems rely on ASR to process children’s speech and then use the hypothesis to
compute various oral fluency measures and report promising results in terms of
agreement with human ratings. Since the reliability of speech technology based
measurements in education is closely related to the audio quality of the recording,
most of these systems are tailored to support reading in a controlled acoustic
environment. Moby.Read requires its readers to be in a quiet environment while
Flora [4] recommends to use noise-canceling microphones. In most of the previous
studies, students were instructed to be in a quiet area and were supervised by
trained facilitators monitoring the session [2,19]. Although this ensures good
quality audio recordings, it restricts the usage of these systems to specialized
scenarios.

In this study, we attempt to build an interactive reading companion that
can be used in naturalistic acoustic environments to provide a sustained reading
experience with continuous and unobtrusive measurement of oral reading flu-
ency. Unlike most of the systems mentioned in the previous paragraph which are
tailored to support reading in a controlled acoustic environment, our application
needs to support speech recorded in the presence of background noise, using poor
recording equipment and containing mumbling or unclear speech. Furthermore,
automatic recognition of children’s speech is a particularly challenging task due
to its different spectral and temporal characteristics as compared to adult speech
[7,24].

These requirements make it difficult to find an existing data set that could
be used to train the models necessary for automated speech recognition. There is
not much publicly available acoustic data to train models for children’s speech.
Collecting data from minors is not as straightforward as collecting adult speech
data. In fact, to the best of our knowledge, there is no children’s speech data
available that is collected for estimating reading fluency in naturalistic scenarios.

1 https://nces.ed.gov/nationsreportcard/reading/.

https://nces.ed.gov/nationsreportcard/reading/
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In this paper, we show how representational learning can be used to lever-
age publicly available datasets along with a relatively small amount of data
collected through our application to achieve an improvement in performance of
automated speech recognition. We also show that representational learning is
particularly useful when the amount of in-domain training data is very small, a
likely situation during early deployment of educational applications.

The remainder of this paper is organized as follows: Sect. 2 provides an
overview of ASR for children; Sect. 3 describes the representational learning
method used to improve the performance of limited data ASR; Sect. 4 provides
details about the interactive reading app we built for supporting the develop-
ment of oral reading fluency; Sect. 5 presents the data and experimental set-up
used in our study; Sect. 6 presents and analyzes the results of our study; Sect. 7
concludes the paper and discusses future work.

2 ASR for Children

ASR aims to convert raw audio into a sequence of corresponding words [21,34].
It consists of a complex interplay of acoustic modeling [14], pronunciation dictio-
nary and language modeling [31]. Acoustic modeling maps an audio signal into
linguistic units that make up speech (such as syllables or phonemes). A pronun-
ciation dictionary converts words to these linguistic units and a language model
assigns probability estimate to word sequences. A speech recognition engine sim-
ply generates a word sequence that is most likely to be produced given the
acoustic model, dictionary and language model.

Children’s speech has different spectral characteristics compared to adult
speech. Due to their smaller vocal tracts, children have higher fundamental and
formant frequencies [7,29]. In addition, children tend to speak at a more variable
rate and modify their vocal effort considerably during the duration of their
speech [24]. All these factors make children’s speech recognition a challenging
problem. Training children-specific acoustic models has been proven to be highly
beneficial [24]. In [7], authors show that training language models on children’s
speech also provides improvement over using adult speech language models. This
is mainly because of different grammatical constructs used by children. However,
for the application of reading assessment, children are constrained to read a pre-
determined passage and hence, obtaining children’s language model is at a lower
priority than obtaining children’s acoustic data. There is not much publicly
available acoustic data to train models for children’s speech. In this paper, we
have attempted to collect such data and then use representational learning to
boost the performance of acoustic models trained on such limited data.

3 Unsupervised Pre-training

In fields such as Computer Vision (CV) and Natural Language Processing (NLP),
representational learning has proven to be very helpful in reaching state-of-the-
art results on a variety of tasks. For example, in CV, representations learned
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Fig. 1. A block diagram representing unsupervised pre-training used in our system.
Each zi corresponds to 30 ms of children’s speech and zi...zr correspond to a receptive
field of 210 ms. A context vector ci encompassing this receptive field is produced for
every 10 ms of Children’s speech. These context vectors are used to train the children’s
speech acoustic model. In other words, these context vectors are the representations of
children’s speech learned with the help of the pre-trained model and thereby improving
the performance of children’s ASR.

from ImageNet [9] have provided significant improvements in several tasks such
as object detection, captioning or video recognition. In NLP, pre-trained lan-
guage models like Bidirectional Encoder Representations from Transformers
(BERT) [10], XLNet [33] or Robustly Optimized BERT Pretraining Approach
(RoBERTa) [16] have been shown to capture important facets of language useful
in most of the language understanding tasks that are part of the General Lan-
guage Understanding Evaluation (GLUE) benchmark [32]. Speech processing is
yet to witness such a widespread use of representations learned from pre-trained
models. In [20], authors explore representational learning to classify phonemes
and speakers in Librispeech dataset [22]. In [15], the authors learn represen-
tations from English to recognize German speech. In [27], the authors show
improvement on a speech recognition task by replacing the log-mel filterbanks
by pre-trained embeddings. In this study, we extend the work done by authors
in [27] by exploring its usefulness in recognizing children’s speech for assessing
reading fluency.

The basic idea behind training an unsupervised universal model is to extract
useful representations from it that are less specialized towards solving a single
speech task such as ASR, but rather contains underlying information of the signal
that is shared amongst other speech tasks as well such as voice biometrics, lan-
guage recognition or emotion recognition. One of the biggest advantages of such
unsupervised pre-training is that it can be applied to domains where training
data is small and annotations are not available. For example, in our application,
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there is limited availability of labeled training data and consequently the Deep
Neural Network (DNN) based acoustic model does not have enough examples
to learn all the relevant speech signal characteristics. Furthermore, presence of
background noise and reverberation corrupts the speech signal and some rel-
evant signal characteristics might be lost altogether. By doing unsupervised
pre-training on a large and readily available dataset, we expect to learn rep-
resentations that encode basic speech signal features common across all speech
tasks. These representations could then be used to augment speech features in
any downstream task. In this paper, we have used 960 h of Librispeech data that
consists of adult read speech. It is expected that the representations learned
from Librispeech would provide some prior knowledge to the DNN based acous-
tic model and thereby help it in recognizing read children’s speech. Since the
model is pre-trained using unsupervised learning, there is no need to transcribe
the Librispeech dataset.

Most of the unsupervised learning strategies have been based on predicting
missing, future or contextual information [10,11]. In speech processing, correla-
tion between consecutive samples has been widely utilized in applications such as
speech coding. [1,28]. Hence, it follows naturally to exploit this inter-dependence
between samples and learn some generalized features about speech signal.

Similar to [27], we first take the raw audio signal and project it onto a
latent embedding space using a five layer convolutional encoder network. The
latent vector z represents a lower dimensional compact embedding space that we
assume is shared between the correlated samples of the speech signal. We obtain
a latent representation zi for every 10 ms and each representation encodes around
30 ms of speech. Next, a context network consisting of nine convolutional layers
combines all the latent vectors within 210 ms of speech into a single context vec-
tor ci. The context network can be thought of as an autoregressive model that
produces a context representation by summarizing the encoded latent represen-
tations. We assume 210 ms is enough to capture most of the relevant context
from the past.

Both the encoder and context networks are jointly trained to optimize a loss
function based on Noise Contrastive Estimation (NCE) [13]. This essentially
means that the model is trained to learn to distinguish between true data and a
set of distractor or negative samples. Let zi+k be a sample that is k steps ahead
from the distractor samples z

′
drawn from the same audio file and conforming

to a uniform distribution p such that p(z) = 1/l, where l is the sequence length.
The model learns to distinguish zi+k from the distractor samples by minimizing
the following loss function for each step k:

Lk = −
l−k∑

i=1

(logσ(zti+k(Wkci + bk)) + λ E
z′∈p

[logσ(−z
′t(Wkci + bk))]) (1)

where, l is the sequence length and (Wkci + bk) is the linear transformation used
for the prediction. σ stands for sigmoid function and λ is set equal to the number
of distractor samples. It was observed that choosing distractor samples from a
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different audio file degrades the overall performance. The final loss is optimized
by summing over all the different step sizes as:

L =
K∑

k=1

Lk (2)

All this training is done using a large publicly available dataset known as the
Librispeech corpus [22]. Once the training is complete, children’s speech is input
to this model to obtain the context vector ci for every 10ms of the audio file.
Figure 1 shows the block diagram representing the system used in this study.

4 App Design

Fig. 2. A screenshot of the iOS version of Relay Reader.

We developed a reading and listening app called Relay ReaderTM that is designed
to help developing readers improve their reading fluency while enjoying a good
story. Figure 2 shows a screenshot of the iOS version of the app.2 Figure 3 shows
an example of how children used our app in a fairly laid back and informal
2 The app is freely available at relayreader.org as well as in Google Play and App

Stores.

https://relayreader.org/
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Fig. 3. Children reading a book using our app.

atmosphere. The user takes turns reading out loud from a long book with a
pre-recorded model narrator (audiobook). Each reading turn is approximately
70 to 200 words long; the turn length can be configured by the user. The user’s
reading turns are recorded and processed, as described in the next section. The
app also includes comprehension questions to further support the reading experi-
ence, as well as functionality to re-record the user’s turn to promote self-teaching.
Currently, the app does not provide the user any feedback based on their oral
reading. The goal of the work described in this paper is to further develop the
speech recognition technology that would support such feedback in later versions
of the app. For more information about the app, see [17]. To alleviate any pri-
vacy and ethical concerns regarding data collection and usage, we followed our
institutions’s privacy policy3 and Institutional Review Board (IRB) guidelines.

5 Experiments

5.1 Data

We use the audio recordings collected through the app to train and evaluate the
system. The majority of the recordings were collected from US elementary school
children belonging to grades 3–5. Most of them read with the app either during
summer camp or as part of the school instruction. In addition, a small subset of
data comes from adults and children who took part in pilot studies. The students
read one of two books: “Harry Potter and the Sorcerer’s Stone” by J.K. Rowling
(HP1) or “The Adventures of Pinocchio” by Carlo Collodi, translation by Carol
Della Chiesa (“Pinocchio”).

The fact that recordings were collected in natural educational settings where
children read on their own with minimal teacher involvement, means that the
data contains a lot of behavioral and acoustic noise. Some of the previously iden-
tified issues include students not attempting to read during their turn; recordings

3 ETS privacy policy can be found here: https://www.ets.org/legal/privacy.

https://www.ets.org/legal/privacy
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with almost no audible speech due to high background noise; silent reading; or a
student being distracted by other activities while their speech is being recorded.

The test set contains 645 recordings (14.6 h) collected from 33 children read-
ing as part of the school programming. The reading was conducted entirely
under teacher supervision and monitored remotely by the project staff through
the analysis of the app logs. Children read in their regular classroom, with some
care taken to disperse them as much as possible in the classroom; in some cases,
teachers also sent some students to read in the corridor adjacent to the classroom.
The children used consumer-grade in-ear headphones with built-in microphone.
All recordings in the test set were transcribed by a professional transcription
agency. The transcribers were provided with the text of the passage and were
asked to indicate any deletions, substitutions, and insertions as well as provide
timestamps for the beginning and end of on-task speech. All children read HP1.

The training set includes 6,545 recordings (133.3 h). Of these, 6,201 record-
ings (125 h) are from 129 children who read as part of summer camp program-
ming.

The reading was done in regular classrooms and monitored by the teachers or
camp instructors. The children used the app on tablets with consumer-grade in-
ear headphones. In addition, a small set of recordings were collected during pilot
studies conducted in quieter office environments: these include 158 recordings
(4.4 h) from 43 kids as well as 186 recordings (3.9 h) from 12 adults (6 teachers
and 6 adult literacy students). Pilot study users used either tablets or laptops
and professional-grade headphones with built-in mics. Of the recordings in the
training set, 111 h (83%) are from users reading HP1, same book as used for the
test set, and 22 h from users reading Pinocchio. Only a small subset of recordings
in the training set is transcribed: 764 responses, all from users reading HP1.

5.2 Experimental Set-Up

We train an acoustic model consisting of both Time Delay Neural Network
(TDNN) and Long Short Term Memory (LSTM) layers using Kaldi toolkit [25].
The network consists of interleaving TDNN and LSTM layers, thereby combin-
ing the advantages of temporal convolution with recurrence [23]. This is done
since both convolution as well as LSTM networks have shown improvement over
DNNs for a wide variety of speech recognition tasks, and since both of them are
complementary in their modeling capabilities, we wanted to take advantage of
both through a unified architecture. Bi-directional LSTM (Bi-LSTM) networks
and simple TDNN networks with fifteen layers did provide similar performance,
however, that was at the expense of high latency and risk of overfitting respec-
tively. There are seven TDNN and three LSTM layers containing 1024 neurons
each in our architecture. Lattice-Free Maximum Mutual Information (LF-MMI)
criterion is used for training along with reduced output frame rate, which helps
in decreasing the latency [26]. Reducing the overall latency is important for an
interactive system that seeks to provide live feedback to children.

Since we did not have transcriptions for most of the recordings in the train-
ing set, a 3-gram language model is trained mostly on the book passages that
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were read by the children. For a small number of cases when transcriptions are
available (764 files), the language model is trained on transcriptions instead of
the book passages. A baseline ASR system is developed using 13-dimensional
Mel-Frequency Cepstral Coefficients (MFCCs) extracted from children’s speech.
A 100 dimensional i-vector [8] is added to each MFCC feature that provides use-
ful information to the network to perform some form of feature normalization.
Table 1 shows the performance of our baseline system.

The unsupervised model with encoder and context networks as discussed in
Sect. 3, is trained using 960 h of Librispeech corpus. This choice was motivated by
the fact that it is the largest publicly available English read speech corpus derived
from audiobooks. After the model is trained, we input children’s speech to the
trained encoder network. The output of the encoder network is summarized by
the context network that produces a 512 dimensional representation every 10
ms of the audio file. These representations are fed to the TDNN-LSTM acoustic
model in four different ways: i) replace the MFCCs and i-vectors by context
vectors; ii) replace only the MFCCs and add context vectors to the i-vectors;
iii) replace the i-vectors and add context vectors to the MFCCs; iv) add context
vectors to MFCCs and i-vectors.

6 Results

Table 1 shows the performance of the ASR system with all the four configura-
tions according to which the representations from the context network were fed
to the system. It can be observed that although there is a general trend of Word
Error Rate (WER) reduction due to the addition of context vector, maximum
improvement is obtained in the case of the context vector being added to the
i-vector. Simply replacing the traditional MFCC features by the context vector
does not provide any significant improvement. Augmenting the feature space by
combining context vector and i-vector provides 7.13% relative improvement in
WER. This might indicate that i-vectors and context vectors contain comple-
mentary information that together enhances the overall performance.

Next, we reduced the amount of children’s data by randomly sampling 50%
and 25% of the responses in the original training set to evaluate low resource
scenarios where enough audio recordings are not present. It was observed that as
the training data size decreases, the improvement obtained using context vectors
over traditional features increases. Table 2 shows that when the training data
is only 25% of its original size, the WER for the baseline model increased from
10.24% to 17.89%, while the WER for context model trained on this smaller data
set was 13.44%, leading to a 24.89% relative improvement from using context
representations. Hence, pre-training is really useful when in-domain training data
is difficult to obtain which is usually the case while deploying an AI application.
Having a model that is trained on a large publicly available dataset can be very
helpful in such cases in providing a good starting point to any application.
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Table 1. Effect of unsupervised pre-training on children’s speech recognition

System configuration WER (%)

MFCC + i-vector (baseline) 10.24

context vector 10.03

context vector + MFCC 10.08

context vector + i-vector + MFCC 10.09

context vector + i-vector 9.51

Table 2. Relationship between ASR WER (%) and size of children’s data used to
train the acoustic model. The less data is available for training, the more relative
improvement is obtained using context representations over MFCC + i-vector features.

% Training
Data used

MFCC +
i-vector

context vector
+ i-vector

Relative
Improvement (%)

100% 10.24 9.51 7.13

50% 13.30 11.03 17.07

25% 17.89 13.44 24.87

7 Conclusions

In this study, we conducted a systematic analysis of using unsupervised pre-
training to enhance acoustic modeling of children’s speech. We showed that using
a pre-trained model can significantly boost the performance of an ASR system
that doesn’t have enough training data. We conducted experiments and observed
that simply replacing the traditional features by representations learned from a
universal model does not provide any substantial improvement. The maximum
improvement was obtained by combining representations learned from a Lib-
rispeech trained universal model and i-vectors trained on in-domain children’s
speech. The improvement was even greater under low resource scenarios where
limited amount of in-domain training data is available. In the context of deploy-
ing a real-life reading companion, collecting sufficient in-domain training data is
one of the primary bottlenecks for training accurate models and providing users
with useful speech-based feedback. Our proposed method offers a feasible solu-
tion in this regard by providing substantial gains over the baseline model that
was trained with limited train data. This allows our reading companion applica-
tion to provide more accurate feedback sooner after deployment. In future, we
intend to further improve our app’s speech recognition by exploring pre-training
for language modeling. We plan to release a new version of our app in the summer
of 2021 that will contain new books to provide more reading choices to readers.
Employing pre-trained models become even more important in such scenarios as
it is likely that a newly added book would not have reading samples available
for training a book-specific acoustic model.
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Abstract. In informal learning scenarios the popularity of multimedia
content, such as video tutorials or lectures, has significantly increased.
Yet, the users’ interactions, navigation behavior, and consequently learn-
ing outcome, have not been researched extensively. Related work in this
field, also called search as learning, has focused on behavioral or text
resource features to predict learning outcome and knowledge gain. In
this paper, we investigate whether we can exploit features representing
multimedia resource consumption to predict the knowledge gain (KG)
during Web search from in-session data, that is without prior knowledge
about the learner. For this purpose, we suggest a set of multimedia fea-
tures related to image and video consumption. Our feature extraction is
evaluated in a lab study with 113 participants where we collected data
for a given search as learning task on the formation of thunderstorms
and lightning. We automatically analyze the monitored log data and uti-
lize state-of-the-art computer vision methods to extract features about
the seen multimedia resources. Experimental results demonstrate that
multimedia features can improve KG prediction. Finally, we provide an
analysis on feature importance (text and multimedia) for KG prediction.
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1 Introduction

The research field search as learning (SAL) focuses on Web searches with an
informational intent, as opposed to transactional or informational [4], and
explores how they can be supported by information retrieval (IR) systems [5,21].
This entails, for example, the detection of a user’s learning intent, the prediction
of knowledge state and knowledge gain during search, as well as the adaption of
search results according to the learning goals. Thereby, search as learning goes
clearly beyond relevance scoring of documents.

Previous work has studied the relationship between learning progress and
text content or behavioral features collected from search sessions. For instance,
Collins-Thompson et al. [6] studied the influence of distinct query types on
knowledge gain, and found that intrinsically diverse queries are correlated with
knowledge gain. On the other hand, Syed and Collins-Thompson [24] explored
a range of text and resource-based features and their impact on short-term and
long-term learning outcome, but did not investigate multimedia content. Moraes
et al.’s [19] work compared the learning outcome of instructor-designed learn-
ing videos against three instances of search (“single-user”, “search as support
tool”, “collaborative search”) to find the most efficient approach for their learn-
ing scenario. Other work investigated the learning outcomes associated with the
consumption of multimedia resources [20,23]. Pardi et al. [20] found that the time
users spent on text-dominated websites associates with better learning outcomes
compared to videos. Vakkari [25] provided a structured survey of features indi-
cating learning needs as well as users’ knowledge and knowledge gain throughout
the search process. Gadiraju et al. [9] described the use of knowledge tests to
measure the knowledge of users before and after the search sessions, and inves-
tigated the impact of search intent and search behavior on the knowledge gain
of users. In follow-up work, Yu et al. [26] utilized interaction features to predict
users’ knowledge gain in search sessions using supervised machine learning.

In this paper, we investigate the impact of multimedia features on users’
knowledge gain in a SAL scenario, but on a larger scale and with an extended
set of behavioral and resource features. We conducted a user study that recorded
the pre- and post-knowledge states of the participants through multiple-choice
questionnaires. After the search session, we analyzed all visited Web pages to
gather a set of features regarding consumed multimedia content, e.g., document
layout, image size and type. This novel feature set allows us to investigate the role
of multimedia features for knowledge prediction in this SAL scenario. Therefore,
we train a supervised learning model (random forest) to predict knowledge gain
based on text and multimedia features. Experimental results demonstrate the
feasibility of the approach. A feature importance analysis shows that features
related to image and video content slightly improve knowledge gain prediction
compared to textual and behavioral features in terms of overall accuracy.

The remainder of the paper is structured as follows: Sect. 2 introduces the
setup of our user study, while Sect. 3 presents our methodology for multimedia
feature extraction. Section 4 reports the results for knowledge gain prediction.
Section 5 concludes the paper and outlines areas for future research.
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2 User Study and Data Collection

The participants (N = 113, 22.86 ± 2.92 years old, 96 females) of our lab study
were asked to solve a realistic learning task: understand the principles of thunder-
storms and lightning. This topic has been used in many studies that investigated
learning with multimedia (e.g., [17,22]). This topic is related to natural sciences
and has been chosen since it requires learners to gain knowledge about different
physical and meteorological concepts and their interplay. The learning task itself
can be classified as a causal task [10] in which learners need to learn about the
causal chains of events. Therefore, they need to acquire declarative as well as pro-
cedural knowledge [2] about different concepts to gain comprehensive knowledge.
We believe that this task is a suitable representative for a class of various and
similar tasks. For example, comparable causal tasks would be learning about the
greenhouse effect or photosynthesis. The acquisition of information about causal
tasks can be accomplished through studying different representation formats like
text, pictures, videos, or their combined presentation on Web pages.

Technical Setup: All search and learning activities of participants were con-
ducted within a two-layer tracking framework. The SMI (SensoMotoric Instru-
ments) ExperimentCenter (3.7) software enabled us to track participants’ activ-
ities during Web search through screen recordings and navigation log files. We
implemented a second tracking layer in the browser using plugins. These plugins
saved all visited HTML files and tracked additionally navigation and interaction
data (e.g., mouse movements) in local log files. The local and external tracking
was realized through JavaScript code integrated into the plugin “Greasemonkey”
(3.11) running in the browser. To track HTML files, we used the plugin “Scrap-
Book” (1.5.14) to automatically and simultaneously save all visited HTML pages
(HTML files and folders) seen by the participants.

Knowledge Test: Based on previous work [22] we developed a 10-item multiple-
choice knowledge test on the formation of thunderstorm and lightning. To mea-
sure participants’ pre-knowledge state (pre-KS), the same test had to be com-
pleted at two different points in time: First, two days before the Web search
task, and second time after the Web search task to measure the post-knowledge
state (post-KS). Pre- and post-knowledge states were represented by the score
of correct answers (out of 10). Knowledge gain (KG) is the difference between
the two scores. Further information on the experimental setup are described in
previous work [14].

3 Multimedia Feature Extraction

In this section, we outline how we generated the multimedia features based on
text, but mainly for image and video content that serve as input for knowledge
gain prediction. The output of the data logging per user is the input for our
feature extraction process. The data logging output consists of a screen recording
(MPEG-4 video format (*.mp4)), a timeline of visited Web pages, as well as
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HTML and CSS files of every visited Web page. In a first step, Web pages are
segmented into regions of headlines, (normal) text, images, etc. using a state-
of-art method for document layout analysis (Sect. 3.1). The image regions are
further processed through image type classification to infer the kind of seen
content (Sect. 3.2). In Sect. 3.3 we describe the feature extraction process for
text content. Both feature types are then utilized to predict knowledge gain using
a random forest classifier.
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Fig. 1. Our multimedia feature extraction pipeline: The only manual inputs are the
list of blacklisted websites and the set of image classes. The multimedia features per
user (red boxes) as well as textual information described in Sect. 3.3 are the input for
our knowledge gain predictor (Sect. 4). (Color figure online)

To reconstruct the visited Web pages, we exploit the screen recordings and
segment them according to the timeline of the search session. The timeline should
reflect the order of Web pages getting into focus, rather than the points in time
URLs were opened in their respective browser tabs. In this way, we circumvent
the problem of participants opening multiple links from the search result page
at once in new tabs, leading to a flawed timeline. An overview of the framework
is displayed in Fig. 1. As shown in Fig. 1, the first step separates the total
number of F video frames into L learning relevant and N navigation-related
frames, with N + L = F . We extract a frame every second of the video (|F | =
173 787), but only keep those where the participant spent time on Web pages
related to learning (and not navigating the browser or procrastinating). Thus,
we excluded (study-specific) URLs containing Google, TripAdvisor and adblock.
This procedure resulted in a total of 119 164 (average: 1268 frames per session)
learning relevant frames which have to be segmented into pictorial, textual, and
background information as described in the next section.

3.1 Document Layout Analysis

The goal of this step is to derive features on document layout by automatically
dividing each frame l ∈ L into coherent regions that represent the structure
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of the page. Additionally, the regions should be classified according to their
content, e.g., image, text, menu, etc. This procedure is crucial for the image
content analysis later but also challenging since the layout and design of the
Web pages vary heavily. To address this challenge, we utilize the Mask R-CNN [1]
network architecture, originally implemented for instance (object) segmentation,
and fine-tune the provided pre-trained weights of the network. We annotated 300
randomly chosen frames from our user study using the browser-based “VGG
Image Annotator”. Six region classes are distinguished:

1. Heading: any headlines or titles that divide the page into sections;
2. Menu bar: buttons or lists of buttons displayed for navigational purposes;
3. Content list: enumerations like table of contents or bullet point lists;
4. Text: any coherent text block that is not part of headlines or button labels;
5. Images/Frames: All types of images (no size constraints) from small thumb-

nails to fullscreen video frames;
6. Background: everything that does not fit into the five other classes.

These classes are supposed to reflect the core parts of a Web page. The
JSON (JavaScript Object Notation) style output of the manual annotations was
then split into 90% training and 10% test data, which we used to fine-tune the
fully-connected layers after the pre-trained bounding box detector (i.e., network
heads) for 30 epochs with a learning rate of lr = 0.001. This option is predefined
(by the Mask R-CNN authors) by creating the model with parameter layers =
“heads” and subsequently only retrains the region proposal network (RPN),
the classifier, and the mask heads. The resulting network is able to segment
our screen recording frames appropriately. An example output is depicted in
Fig. 2 that also includes a picture-in-picture effect with two overlapping bounding
boxes. This was resolved by computing pairwise Intersection over Union (IoU)
and discarding the smaller bounding boxes if the overlap was above 80%.

(a) Good example. (b) Example with image-in-image effect.

Fig. 2. Two example outputs of the Document Layout Analysis.

In addition to our six classes we also compute the average image size per
frame since we want to differentiate if a Web page with 20% visual content con-
tained five small images or a single large one. Another merit of this feature is its
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ability to also indirectly measure the viewing time of videos since it is difficult
to measure this feature directly with satisfactory accuracy. For instance, embed-
ded videos on Web pages other than YouTube cannot always be captured. Our
document layout features per frame i are represented as a vector di containing
six percentages (summing up to 100%) and a scalar.

di = (headi,menui, conlisti, texti, imgi, bgi, imgsizei),∀i ∈ L. (1)

Lastly, the results per frame in Eq. 1 are summed up for all seen learning frames
i ∈ L and divided by |L| yielding seven features per participant p.

dp = (
|L|∑

i=0

headi

|L| ,

|L|∑

i=0

menui

|L| , ...,

|L|∑

i=0

imgsizei

|L| ) (2)

We identified a total of 755 756 bounding boxes that belonged to the
“Images/Frames” class, which has around five samples per frame on average.
This appears to be a lot at first, but has a simple explanation. Every (Web
page) frame that is recorded when watching a (non-maximized) YouTube video
contains 10 thumbnails of other recommended videos. In order to not skew
the results heavily towards this large number of irrelevant images, we filtered
them out if their height or width is below 100 pixels (full image resolution was
1280 × 800). The remaining samples will be further examined regarding their
shown content.

3.2 Image Type Classification

This section briefly outlines how the images detected in the document layout
analysis are examined regarding their content. We aim to predict the given type
of an image. To the best of our knowledge, there is no comprehensive and task-
specific taxonomy of image types that can be directly applied to the learning
task of our study. Therefore, we focused on covering all topic-relevant categories
to learn which type of images a learner saw when searching for the formation of
thunderstorms. As a result, our set of image type classes consists of Infograph-
ics, Indoor Photo, Maps, Outdoor Photo, Technical Drawings, and Information
Visualization. The class Information Visualization has a specific role. Images
that are composites or hybrids of common visualization types are hard to assign
to a unique class. For this reason, we merge all forms of Information Visualiza-
tions into one class and use it as a fallback class to gather all frames that are
otherwise hard to assign.

The implementation was done in Keras, using a MobileNet [13] architecture
with default parameters. We utilized a Google image crawler to gather 18 773
unique training samples which we split into 90% training and 10% test data.
Three volunteers manually labeled the test data and achieved an intercoder
agreement of α = 0.85 (across all annotators, samples, and classes) according to
Krippendorff’s alpha [16]. Finally, the classifier achieved an accuracy of 87.15%
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on this human-verified test set. The accuracy is sufficient for our task of knowl-
edge gain prediction, as it is confirmed by the experimental results in Sect. 4.

The features do not represent the number of images seen per class, because a
consequence of our frame-wise extraction is that the same image gets extracted
multiple times. Instead we analyse the image in every frame again and report
the fraction of the image types as a percentage. The idea is to weight the content
according to the duration the images have been seen by the learner. The feature
vector vp representing the image types seen by participant p is defined as follows:

vp = (
|L|∑

l=0

Nl∑

n=0

p(Info. − V is.), ... ,
|L|∑

l=0

Nl∑

n=0

p(Techn.Draw.)) (3)

Feature vector for the six image types seen per participant. p(< class >) is
the pseudo-probability given by the softmax layer. Nl is the number of images
detected in frame l.

3.3 Text Features

In total, we used a set of 110 features to represent textual information1, taking
into account document complexity, HTML structure, and linguistic aspects.

Document Complexity Features. Based on the assumption that the docu-
ment complexity is correlated with the user’s knowledge state on a topic, we
have extracted several features related to document complexity. Motivated by
previous work [8] and our investigation of the data, we extracted the number of
words (c word), length of words (c char), and length of sentences (c sentence) as
features. Related work [11] suggests that the syntactic structure of a document,
which can be represented by the ratio of the number of nouns, verbs, adjectives,
or other words to the total number of words (c {noun, verb, adj, oth}) is likely
to imply the complexity of its content.

There are several widely used metrics for assessing the readability or com-
plexity of a textual document, which have been studied to be correlated with
user’s knowledge level [12]. We used Gunning Fog Grade2(c gi), SMOG [18]
(c smog) and Flesch-Kincaid Grade [15] (c fk) as features.

HTML Structural Features. A possible explanation of the finding, that there
is a negative association between the number of hyperlinks embedded in a Web
page and users’ KG [7], is that people may not focus on the content in the
presence of too many embedded links. Hence, we extract the feature h link by
quantifying the number of outbound links (i.e., the < a > elements in our case).
Furthermore, we extract features that might indicate the readability of a Web
page based on HTML tags, namely, the average length of each paragraph (h p),
the < ul > elements embedded (h oth ul), and the number of scripts (h script).

1 Full feature list at: Dropbox-Link.
2 http://gunning-fog-index.com/.

https://www.dropbox.com/s/l8zy4kn79c1ytc3/textual_information_based_features.pdf?dl=0
http://gunning-fog-index.com/
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Linguistic Features. Related work [12] suggests that the number of words
on Web pages that are correlated with different psychological processes and
basic sentiment can influence a learner’s cognitive state. The writing style could
also affect the readability of a learning resource and the engagement of readers.
Motivated by the above observations, we used the 2015 Linguistic Inquiry and
Word Count (LIWC) dictionaries3 to compute linguistic features that reflect the
psychological processes, sentiment, and the writing style of Web page content.
The features of this type are prefixed with l in the remainder of the paper.

4 Experimental Results for Knowledge Gain Predcition

In this section, we report experimental results for the task of knowledge gain
prediction utilizing the features from Sect. 3. Our experimental dataset consists
of 113 search sessions. On average, users have issued 11.1 queries and browsed
25.4 Web pages in each session. There was a significant increase in learners’
knowledge on average (KG = 2.15 ± 1.84 for a full score of 10) after the search
phase. The effect size for knowledge gain was large (Cohen’s d = 1.29). The
average pre-knowledge score was 5.22 ± 1.76 and post-knowledge was 7.37 ± 1.6.

4.1 Experimental Setup

The goal of our study is to predict knowledge gain in informal search sessions and
to investigate the impact of text and multimedia resource features. We model
KG prediction as a classification task and use random forest as a supervised
learning approach. We aim for a fair comparison with the state of the art in users’
knowledge gain prediction in Web search. Thus, we follow the same experimental
setup as used by Yu et al. [26], in particular for the assignment of labels, the
applied classifier, and its parameter tuning, unless other settings are denoted.

Ground Truth Data: We group a search session into one of three KG classes
according to the measured knowledge gain X based on the Standard Deviation
(σ) Classification approach. The classes are defined as follows: 1.) Low KG, if
X < X − σ

2 ; 2.) Moderate KG, if X − σ
2 < X < X + σ

2 ; and 3.) High KG,
if X > X + σ

2 . According to this approach, our dataset consists of 44 low, 42
moderate, and 27 high knowledge gain sessions.

Classifier: Random forest has shown to be the most effective classifier for knowl-
edge gain prediction [26] and it allows for the analysis of feature importance.
Hence, we adopt a random forest classifier and tune the hyperparameters for
accuracy using grid search. For our experiments, we used the scikit-learn library
for Python (https://scikit-learn.org/).

Metrics: After tuning the hyper-parameters of each classifier, we run 10 repe-
titions of 10-fold cross-validation (90% train, 10% test) and evaluate the classi-
fication results of each classifier according to the following metrics:
3 http://liwc.wpengine.com/compare-dictionaries/.

https://scikit-learn.org/
http://liwc.wpengine.com/compare-dictionaries/
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– Accuracy (Accu) across all classes: percentage of search sessions that
were classified with the correct class label.

– Precision (P ), Recall (R), F1 (F1) score of class i: the standard preci-
sion, recall and F1 score on the prediction result of each class i.

– Macro average of precision (P ), recall (R), and F1 (F1): the average
of the corresponding scores across three classes.

Classification Results. The performance of the random forest classifier using
textual features (TI), multimedia features (MI), as well as their combination
is shown in Table 1. We also present the performance of the random forest
classifier using behavioral features (the approach used by [26]) on our ground
truth dataset in Table 1 for reference. We extract a subset of the user behavior
features for all categories as described in the original paper, namely, session
(e.g., session duration), query (e.g., number of queries), search engine result page
(SERP, e.g., time spend on SERP), browsing (e.g., ratio of revisited pages), and
partially, mouse (e.g., total scroll distance in session). The features regarding
click behavior on the search results pages were not recorded. We adapt this
approach as baseline as it is the state-of-the-art approach for the same task, and
it is possible to compute the features used by their model based on our dataset.
The results for all four test feature types are in a comparable range. When
using only textual features (TI) or multimedia features (MI), results are slightly
worse than the state-of-the-art approach [26], which uses behavioral features.
Our approach utilizing features from both categories (MI&TI) has achieved the
best performance concerning overall accuracy, indicating that the combination
of textual and multimedia features has the potential to improve knowledge gain
prediction. Comparing the performance for the different classes, the classifier
performs better on low and moderate knowledge gain classes when using features
from both categories. A potential reason for this result is that the high knowledge
gain class has the least amount of training data in our ground truth dataset.

Please note that we have achieved comparable performance to the state of
the art [26] with less training data (113 sessions versus 468 sessions) and more
unbalanced classes. As shown in Table 1 the combination of multimedia and
textual information (MI&TI) is able to outperform using behavior features at
85% confidence level in terms of accuracy. Since we focus on understanding the
influence of textual and multimedia resource content on users’ knowledge gain
during the search, the classification model and the analysis of user behavior
features are out of the scope of this work. We list the results of the classifier
trained on user behavior features as evidence that our classification has reached
satisfying performance.
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Table 1. Results of knowledge gain prediction (in %) using text (TI) and multimedia
features (MI), and comparing them with the state of the art [26].

Features Low Moderate High Macro average All

P R F1 P R F1 P R F1 P R F1 Accu

MI& TI 41.5 52.0 46.1 39.1 40.0 39.5 28.4 14.8 19.1 36.4 35.6 34.9 38.7

TI 39.9 52.0 45.0 36.6 33.8 35.0 28.9 17.4 21.5 35.1 34.4 33.8 37.0

MI 38.0 38.0 37.9 38.0 38.1 38.0 30.8 31.1 30.8 35.6 35.7 35.6 36.4

[26] 39.7 47.0 43.0 37.4 39.5 38.4 34.9 21.1 26.0 37.3 35.9 35.8 38.1

Feature Importance. To analyze the usefulness of individual features, we
make use of the Mean Decrease in Impurity (MDI) metric based on the random
forest model. The metric MDI is defined as the total decrease in node impurity
(weighted by the probability of reaching that node) averaged over all trees of
the ensemble [3]. Due to the space limitation, we only list and discuss the 20
features (Table 2) having the highest and lowest MDI values in the paper.

We observe that six out of 10 features with the highest importance are textual
features. This is to be expected because, first, there are more textual features
(110) than multimedia features (13), and, second, with recent advances in nat-
ural language processing techniques, we were able to design more sophisticated
textual features such as the complexity of language and sentiment behind words.
In contrast, it is still more challenging to analyze the semantics of multimedia
data. Nevertheless, results indicate that the 13 multimedia features have shown
promising importance for the classification, with Heading, imgsize, Menu Bar,
Infographic, Technical Drawing and Outdoor rank at 4, 5, 8, 9, 13, 15, respec-
tively, among the 123 features in total. None of the multimedia features falls into
the 10 least important features according to MDI. Among the six textual fea-
tures with the highest importance, five are linguistic-based, while the remaining
one is related to document complexity (SMOG Readability).

Table 2. Features with highest and lowest MDI importance scores.

Rank Highest Lowest

Feature MDI Feature MDI

1 l home 0.039 l affect 0.004

2 l relig 0.030 l Tone 0.004

3 l certain 0.018 l power 0.004

4 Heading 0.018 l AllPunc 0.003

5 imgsize 0.016 h vid 0.003

6 c smog 0.015 l filler 0.003

7 l focuspresent 0.015 l sad 0.003

8 Menubar 0.015 h aud 0.003

9 Infographic 0.014 l Authentic 0.002

10 l netspeak 0.014 h obj 0.001
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5 Conclusions

In this paper, we have investigated whether features describing multimedia
resource content can help predict users’ knowledge gain in a SAL task. Our
results are based on a large lab study with N = 113 participants, where we
recorded the individuals’ behavior and the accessed Web resources. We extracted
the textual and multimedia features to classify the knowledge gain of the par-
ticipants. Finally, we provided a comprehensive analysis of feature importance.

It was shown that the combination of our feature categories can serve for
knowledge gain prediction based on viewed resource content, which potentially
can help improve a learning-oriented search result ranking (if content features
are used accordingly). Although the classification accuracy is on a moderate level
in terms of recall and precision, they suggest that knowledge gain is predictable.
Particularly image and video features improved the classification notably when
used jointly with text-based features.

To the best of our knowledge, that was the first study that analyzed the
importance of multimedia features in a SAL scenario. Although the number of
participants in our study is already higher than in the majority of previous stud-
ies in controlled lab settings, our current dataset is limited by the fact that only
one learning task has been studied. In the future, we aim to conduct additional
studies on diverse learning topics, to receive further insights into the relationship
between features of learning resources used and knowledge gain.
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Abstract. Knowledge tracing is the task of dynamically tracking a
student’s mastery of skills based on their assessment performances
and learning-related information (e.g., time spent answering a partic-
ular question). Traditional approaches (e.g., Bayesian knowledge tracing
[BKT] and performance factors analysis [PFA]), are easy to interpret.
Modern approaches (e.g., deep knowledge tracing [DKT] and dynamic
key-value memory networks [DKVMN]) usually produce superior perfor-
mance on certain datasets, but their model complexity causes difficulty
in scaling and linking them to existing educational measurement studies.
In this paper, we present a simple but effective model, deep performance
factors analysis (DPFA) (Source code is available at https://github.
com/scott-pu-pennstate/dpfa), to resolve this problem. DPFA consis-
tently outperforms PFA and DKT and has results comparable to those
of DKVMN when tested on widely used public datasets. In addition,
DPFA’s light weight in parameters makes it easy to scale. Finally, we
demonstrate a straightforward approach to enhance the base DPFA by
incorporating features from the educational measurement literature. The
enhanced DPFA showed superior performance than DKVMN.

Keywords: Deep knowledge tracing · Knowledge tracing ·
Performance factors analysis

1 Introduction

Knowledge tracing plays a central role in many personalized education strategies,
particularly in an online learning environment. The task is to dynamically assess
a target student’s mastery of skills so that downstream algorithms can optimize
learning materials for that student. For example, after a student answers the
item “1 + 2 = 3”, a knowledge-tracing model is used to assess how likely it
is that the student has mastered the “addition skill.” This probability is then
used by a downstream algorithm to determine whether the student should move
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on to the next math skill or review the addition skill. In this paper, we use
the term “item” to refer to a question or exercise that a student completes via a
learning platform, and “item response” or “item correctness” to indicate whether
an item is correctly or incorrectly answered. We use the term “skill” to refer to
the concept or knowledge component associated with an item.

A knowledge-tracing model is learned from a student’s past item responses,
and its performance is evaluated based on how well it can predict a student’s
future responses. Two well-established models of knowledge tracing are Bayesian
knowledge tracing (BKT) [3] and performance factors analysis (PFA) [11]. BKT
models a student’s mastery of a particular skill as a hidden dichotomous variable
that is either learned or unlearned. The model assumes a student will correctly
answer the next question if they have either mastered the corresponding skill
and applied it successfully, or if the student makes a lucky guess. PFA models a
student’s probability of correctly answering a future item as a logistic regression
based on the student’s frequency of success and failure on previous items that
required the same skill.

Both BKT and PFA assume a student’s performance on an item is affected by
the student’s mastery of the corresponding skill. This assumption hinders each
model from utilizing the student’s item responses that are associated with other
skills. However, in reality, a student’s mastery of Skill A may be correlated to
their mastery of Skill B. Figure 1 visualizes the correlation between different skill
masteries in a real-world dataset. As shown in the graph, if a student correctly
answers an item associated with the “area” skill, then they are also likely to
correctly answer an item associated with the “equation-solving” skill.

Moreover, BKT and PFA use the frequency of success or failure on past skills
to predict the probability of a student’s correctly answering the next question.
However, using skills as input units prohibits the models from utilizing item-
specific information. For example, when items have different levels of difficulty,
success on a difficult item may be a stronger indicator of future success than
success on an easy item.

Building on modern developments in deep learning, recent work on knowledge
tracing tackle this task as a sequence-to-sequence problem. Piech et al. [12] used a
recurrent neural network (RNN) to predict the probability of a student’s answer-
ing the next question correctly. The model, referred as deep knowledge tracing
(DKT), demonstrated some advantage over more traditional (e.g., BKT, PFA)
methods, even after controlling data processing errors [19]. Zhang et al. [20] used
a modified memory augmented neural network (MANN) [5] for knowledge trac-
ing. Their model, dynamic key-value memory networks (DKVMN), moves away
from RNNs entirely and instead opts for external memory to capture long-term
dependencies. This yields a increase in accuracy across both real and simulated
datasets.

A group of recent models explored novel ways of incorporating attention into
knowledge tracing. Some early works used attention as a mechanism to find the
past items that are most relevant to the next question [6,15]. Their intuition was
that performance on similar items holds more predictive power for future items
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Fig. 1. Heat map visualizing the average likelihood that a student will answer an item
related to Skill B correctly or incorrectly when the student answers an item related to
Skill A correctly or incorrectly. Data are from the ASSISTments math tutoring system.
Only the 10 most common skills were used.

than performance on dissimilar items. Others assumed an item’s embedding is
affected by its context (other items answered by the student) and experimented
with the self-attention approach [10]. More recent studies have combined next
item to past item attention and past item self-attentions [2,4,13]. These studies
typically have reported improved model performance compared to DKT and
DKVMN.

Compared to traditional methods, deep learning models for knowledge trac-
ing take an end-to-end approach and rely on the flexibility of neural networks to
extract meaningful features from inputs. This allows the models to use all past
skill and item information to predict the correctness of a future item response.
As a result, deep learning models for knowledge tracing often have better per-
formance than traditional models.

However, deep learning models for knowledge tracing shed little light on
which features are extracted from the inputs and how these features contribute
to the models’ performances. This creates obstacles for researchers who seek to
understand and improve these models. To this end, we introduce deep perfor-
mance factors analysis (DPFA), which combines the simple, interpretable nature
of PFA with the strength of learning complex representations from deep learning
models. DPFA can be summarized as a logistic regression based on the affinity
of previous items and future items. This design allows DPFA to draw evidence
directly from interdependence on item performance. Our experiments show that
when tested on widely used public datasets, this simple architecture performs
better than either PFA or DKT and is comparable to DKVMN. Furthermore,
we demonstrate that DPFA can be straightforwardly enhanced by incorporat-
ing features from the existing literature. Lastly, DPFA has considerable fewer
parameters than DKVMN, making it easier to train and deploy.

2 Model Description

We formally describe the knowledge-tracing problem. Given a sequence of stu-
dent item responses xt = (qt, ct), 1 ≤ t ≤ T , where qt represents an item
answered at step t and ct ∈ {0, 1} represents an incorrect or correct response,
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Fig. 2. Probability of correctly or incorrectly answering an item given a previous same-
skill item response. Data are from ASSISTments 2017 and limited to a sample of the
most common item pairs.

we aim to infer ct+1 from the previous interactions. In other words, we wish to
approximate P (ct+1 = 1|q1, c1, ..., qt, ct, qt+1).

2.1 Performance Factors Analysis

In the simplest case where each item is associated with a single skill, PFA models
a student’s probability of correctly answering a question as

pt+1 = σ(βk + γksk + ρkfk) (1)

where σ is the sigmoid function and k is the skill associated with the next
item qt+1. βk is a skill bias, sk records the number of previous successes with
respect to skill k, and fk records the number of previous failures with respect to
skill k. More specifically,

sk =
∑

i<=t

I(ci = 1)I(qi ∈ k) and fk =
∑

i<=t

I(ci = 0)I(qi ∈ k) (2)

where I(x) is the indicator function that equals 1 when x is true and equals
0 otherwise. PFA is a logistic regression in which the evidence supporting or
against pt+1 = 1 is drawn from previous successes or failures associated with
qt+1’s corresponding skill.

PFA has three obvious shortcomings. First, it only draws evidence from same-
skill items. As shown in Fig. 1, a student’s success or failure in one skill is often
correlated with their success or failure in other skills. This is likely to be the
case if the skills have shared subcomponents or if they are siblings in a hierar-
chical skill tree. Second, PFA treats an item correctness as the corresponding
skill correctness. However, as shown in Fig. 2, the influence between items varies
dramatically within a skill. Given that items usually have different levels of dif-
ficulty, success on a difficult item should provide more evidence of skill mastery
than success on an easy item. Third, PFA considers recent and less recent item
responses equally. Because individuals learn and forget, recent item responses
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should be assigned more weight than less recent item responses. Using DPFA,
we are able to overcome the first two shortcomings by drawing direct evidence
of success and failure on all previous items. To solve the last problem, we give
higher weight to recent evidence than we do to older evidence.

2.2 Deep Performance Factors Analysis

DPFA assumes each item has its own specific skill components; thereby, each
item should have its own representation. For example, though both “13 + 29”
and “13 + 26” may be tagged as addition problems in a learning system, the
former item requires a student to understand the skill of carrying while the latter
does not. Models [12] that use labeled skills to represent items lack this nuance.
DPFA uses a h dimensional embedding vector ei to represent an item qi. The
embedding vectors ei are trainable.

When predicting whether a student can correctly answer the next item,
DPFA draws evidence from the student’s past item interactions and gives more
weight to items that are similar to the next item and are more recent. The
similarity between two items is modeled by the attention function:

Ai,t+1 = e�
i et+1 (3)

ei is the aforementioned h-dimensional embedding of item qi. The similarity
between the two items could be interpreted as the overlap of their underlying
skills. Previous studies [2,10,13] have used asymmetric attentions to model the
similarity between item interactions. For example, a popular choice is to set
attention logits equal to (Kei)

TQej√
h

where K and Q are two h × h matrices. The
asymmetric attentions allow the similarity between the two items to depend
on their answering order. We find this property counterintuitive for knowledge
tracing: since the similarity between items represents the overlap of their under-
lying skills, the answering order should not affect the similarity. Furthermore,
the extra parameters make a larger sample size necessary. As a result, we choose
to use the dot product attention that ignores the answering order of items.

We use positional distance to model the recency of a past item:

di,t+1 = −a(t − i + 1) + b (4)

t − i + 1 is the positional difference between item response xi and the next item
response xt+1, and a and b are trainable parameters.

The relevance, or weight, of a past item is jointly determined by its similarity
to the next item and its recency:

wi = softmax(Ai,t+1 + di,t+1) (5)

DPFA models the mastery of skills demonstrated after a item interaction (qi, ci)
with a two-dimensional vector:

vi =

{
v0
i ∈ R, if ci = 0

v1
i ∈ R, if ci = 1,

(6)
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v0
i could be interpreted as the expected mastery of skill for item i if it is

answered incorrectly, and v1
i could be interpreted as the expected mastery of

skill for item i if it is answered correctly.
Now we present the entire DPFA model:

pt+1 = σ(βt+1 +
∑

ci=0

wiv
0
i +

∑

ci=1

wiv
1
i ) ∀i ≤ t (7)

In this model, σ is the sigmoid function and βt+1 ∈ R is item-level bias.
Similar to PFA, DPFA can be understood as a logistic regression in which the
logit is the next item’s difficulty plus all the evidence of mastery of skills gathered
from past item responses. Since DPFA draws direct evidence from past items,
it does not need the item-skill association to be provided in the data as PFA
does.

∑
wiv

1
i in DPFA replaces γksk in PFA to provide evidence supporting

pt+1.
∑

wiv
0
i in DPFA replaces ρkfk to provide evidence against pt+1.

To train the model, we use the binary cross-entropy loss function:

L = −
T−1∑

t=0

ct+1 log(pt+1) + (1 − ct+1) log(1 − pt+1) (8)

3 Experiments

We first compare DPFA with common benchmark models in knowledge tracing
by testing the various models on four widely used public datasets. For each
dataset, we evaluate a model with student-stratified five-fold cross validation
and use the average test area under the curve (AUC) as the evaluation metric.
We utilize 10% of the training data as the validation data for tuning hyper-
parameters. Then we compare the comeplexity of different models and show a
general approach for enhancing DPFA.

3.1 Data

All datasets used in this study are publicly available. Table 1 records the descrip-
tive statistics for each dataset. In each case, we only keep a student’s first attempt
at an item.

Synthetic-51. This simulated dataset was created by Piech et al. [12]. There are
4,000 synthetic students that answer the same 50 exercises in the same order.

NeurIPS 2020 Education Challenge2. This real-world dataset is comprised
of K-12 students’ answers to math questions using an online learning platform.
Items in this dataset have a hierarchical skill structure so we use the leaf (most
specific) skill for models that take skills as inputs. If an item is associated with
multiple leaf skills, we treat the combination as a new skill.
1 https://github.com/chrispiech/DeepKnowledgeTracing/tree/master/data/synthetic.
2 https://competitions.codalab.org/competitions/25449#.

https://github.com/chrispiech/DeepKnowledgeTracing/tree/master/data/synthetic
https://competitions.codalab.org/competitions/25449#
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Table 1. Data statistics and average test AUC on all datasets.

Datasets Statistics Average Test AUC

Attempts Stu Items Skills BKT PFA DKT DKVMN DPFA

Syn-5 20k 4,000 50 5 N/A N/A 0.8239 0.8267 0.8348

NeurIPS 15.8M 119K 27K 1078 0.6890 0.7249 0.7771 0.7973 0.7965

ASSIST 392.8K 1,709 4,117 102 0.7091 0.6624 0.7317 0.7958 0.7964

STAT 135.3K 316 987 279 0.7298 0.7435 0.7928 0.8046 0.8061

Table 2. Number of model parameters for different hidden sizes. For DKVMN, we set
the memory key and value size to 10 and set the summary vector size to 50.

Models Synthetic-5 NeurIPS 2020 Assist 2017 Stat F2011

h:16 32 64 h:16 32 64 h: 16 32 64 h: 16 32 64

DKT 8.3K 19K 45K 0.2M 0.3M 0.6M 16K 34K 75K 0.1M 0.3M 0.6M

DKVMN 5K 11K 26K 1.3M 2.6M 5.3M 0.2M 0.4M 0.8M 50K 101K 0.2M

DPFA 1K 1.8K 3.4K 0.5M 1.0M 1.8M 78K 0.1M 0.3M 19K 35K 66K

ASSISTments 20173. This real-world dataset tracks middle and high school
students’ answers to math problems on the ASSISTments tutoring system. It is
available through the 2017 ASSISTments Datamining Competition.

STATICS 20114. This real-world dataset is from a college engineering course
offered during fall 2011. The data include student attempts in tutor mode and
assessment mode. All of a student’s timestamps in the assessment mode are
identical so we cannot properly order the attempts. We thus follow [16] to exclude
the assessment mode from our experiments, which results in the elimination of
29.08% of student attempts. We follow [20]’s processing step to concatenate a
problem name and a problem step as an item and use a problem name as a skill.

3.2 Settings

The input sequences in all datasets except Synthetic-5 have different lengths. We
set the maximum length of the response sequence to be 200. Student response
sequences shorter than 200 are padded with 0 to the left, and sequences longer
than 200 are folded. We keep the original sequence length of 50 in Synthetic-5.

We implement DPFA in Tensorflow [1] and train the models with the Adam
optimizer [7]. The initial learning rate is set to 0.001. We set the batch size to
256, and the model is trained for 100 epochs. During cross-validation, we use
10% of the training data to tune the learning decay rate, drop-out rate, and
hidden size h ∈ {16, 32, 64}. For DKT (the long short-term memory version)
and DKVMN, we use the optimal hyper-parameters reported in the literature
when available. Otherwise, we tune the hyper-parameters as described above.
3 https://sites.google.com/view/assistmentsdatamining.
4 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507.

https://sites.google.com/view/assistmentsdatamining
https://pslcdatashop.web.cmu.edu/ DatasetInfo?datasetId=507
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Table 3. Enhancing DPFA by adding the item response time. The results for Syn-5
and NeurIPS2020 are not available due to a lack of item response time.

Synthetic-5 NeurIPS 2020 Assist 2017 Stat 2011

DPFA Base 0.8348 0.7965 0.7964 0.8061

DPFA + Item Response Duration N/A N/A 0.7991 0.8095

4 Results

Model Performance. Table 1 compares the performance of DPFA with the
performances of the traditional and deep learning methods. Since both BKT and
PFA require skills as inputs, they are not relevant to the Synthetic-5 dataset. In
all situations, DPFA outperforms traditional knowledge-tracing models; namely,
BKT and PFA. DPFA also significantly outperforms DKT on the ASSISTments
2017 datasets. The gaps, however, are narrower for the other dataset compar-
isons. In all datasets, DPFA and DKVMN yield comparable performances.

Note that the performance of DKVMN on STAT 2011 is worse than the
reported 0.828 in the original paper [20]. We believe this is due to data processing
difference: we only include the “tutor” mode while the original paper include
both “tutor” and “assessment” mode.

Model Complexity. Table 2 compares the complexity of DKT, DKVMN,
and DPFA under different hidden size configurations. In all configurations and
datasets, DPFA is significantly smaller than DKVMN. The size advantage of
DPFA increases with the hidden size: when h = 16, the size of DPFA is around
20%–38% of DKVMN, and when h = 64, the size of DPFA decreases to 13%–33%
of DKVMN. Since we have shown that DPFA and DKVMN have comparable
performances across multiple datasets, we can conclude that DPFA is preferable
to DKVMN. DPFA’s size advantage makes DPFA less demanding in terms of
memory and thus faster to train and less expensive to deploy than DKVMN.

DPFA is smaller than DKT in the Synthetic-5 and Stat F2011 datasets,
but it is considerably larger than DKT in the NeurIPS 2020 and ASSISTments
2017 datasets. However, this increased complexity helps DPFA to perform better
than DKT on these two datasets: when it comes to the NeurIPS 2020 and the
ASSISTments 2017 datasets, respectively, DPFA has 2.49% and 8.84% higher
AUCs than DKT. It is thus necessary to consider the use case before deciding
which one is more suitable.

Enhancing DPFA. The simplicity of the DPFA model makes it easy to
enhance by utilizing past findings in the educational measurement literature.
For example, previous studies [17,18] have shown that item response time are
correlated with student mastery of skills. DPFA can easily incorporate these past
findings by extending the value function in Equation 6 to
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Fig. 3. A student’s knowledge state in Synthetic-5 dataset. Each skill (concept) is
marked with its own color on the left. After 50 questions, the student has shown
mastery of Skills 1 and 4 but has failed to master Skills 2, 3, and 5.

Fig. 4. Clustering of items in Synthetic-5 dataset using t-SNE. Each node represents
an item, and each color represents a ground-true skill. Items associated with the same
skill are perfectly clustered together.

vi =

{
f0(v0

i , ti), if ci = 0
f1(v1

i , ti) if ci = 1,
(9)

where vi ∈ R is interpreted as the expected mastery of a skill for an item
response (qi, ci, ti) and [v0

i , v
1
i ] is the two-dimensional value embedding for each

item qi, as shown in Eq. 6. ti ∈ R is the item response time. f0 and f1 are two
3-layer neural networks. More specifically,

f∗ = W2(tanh(W1[v∗
i ⊕ ti] + b1)) + b2 (10)

Table 3 shows that the extended DPFA has a slightly better performance than
the base DPFA. More importantly, this approach allows us to readily incorporate
more useful features into DPFA by replacing [v∗

i ⊕ ti] with [v∗
i ⊕ featuresi].

Tracking a Student’s Knowledge State. We approximate a student’s knowl-
edge state according to their average probability of correctly answering all items
associated with a given skill.

Skt =
1
nk

∑

qi∈k

p(ct = 1|q1, c1, ..., qt) (11)

Skt ∈ [0, 1] represents a student’s mastery of skill k at timestep t. nk rep-
resents the number of items associated with skill k. Each probability p(ct =
1|q1, c1, ..., qt) is estimated with the DPFA model.
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Figure 3 visualizes a student’s knowledge state in the Synthetic-5 dataset
using the aforementioned approach. After a student answers an item correctly
(or incorrectly), the corresponding skill’s mastery level increases (or decreases).
Note that the contribution of each item response to a student’s mastery of a
particular skill is different and proportional to the item’s difficulty. Therefore,
sometimes we observe a sharp change in skill mastery level after an item response.
At other times, the change is only mild.

Visualization of Item Embeddings. DPFA models the similarity between
two items as the dot product of their embedding vectors. This design implies
that items associated with the same skills are “close” to each other. We use
t-SNE [9] to reduce the embedding vectors to a two-dimensional space. Figure 4
presents the learned item embedding from the Synthetic-5 dataset after dimen-
sion reduction. Since we know how the data are simulated, we use different colors
to annotate the true skill labels associated with the various items. It is evident
that items associated with the same skills are perfectly clustered together. This
proves that DPFA is capable of learning the similarity between items.

5 Conclusion

In this paper, we presented a simple but effective model, DPFA, for knowledge
tracing. Our model consistently outperformed traditional models and achieved
results comparable with those of state-of-the-art deep learning models on public
available datasets. Moreover, while DPFA performed on par with DKVMN on
multiple datasets, it has only 13% to 33% of DKVMN’s parameters. The advan-
tage in size makes DPFA easier to train, experiment, and deploy than DKVMN.

We also demonstrated a general approach for enhancing DPFA: incorporating
features that have been battle-tested in the psychometric literature through
the value function. We showed that when item response time was added to
DPFA using this approach, the enhanced model outperformed the base DPFA.
Last but not least, we showed that DPFA is capable of learning a meaningful
representation of a student’s knowledge state and the similarities between items.

In future work, we plan to dive more deeply into the representation of items. A
few studies have shown that text [14,15] and skill [8,16] informed item embedding
works better than random item embedding learned from scratch for knowledge
tracing. We are eager to see how this line of work can further enrich DPFA.
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Abstract. Digital learning games are thought to support learning by increasing
enjoyment and promoting deeper engagement with the content, but few studies
have empirically tested hypothesized pathways betweendigital learning games and
learning outcomes. Decimal Point, a digital learning game that teaches decimal
operations and concepts to middle school students, has been shown in previous
studies to support better learning outcomes than a non-game, computer-based
instructional system covering the same content. To investigate the underlying
causes for Decimal Point’s learning benefits, we developed log-based detectors
using labels from text replay coding of the data from an earlier study. We focused
on gaming the system, a form of behavioral disengagement that is frequently
associated with worse learning outcomes, and confrustion, an affective state that
combines confusion and frustration that has shown mixed results related to learn-
ing outcomes. Results indicated that students in the non-game condition engaged
in gaming the system at nearly twice the level of students in the game condition,
and gaming the system fully mediated the relation between learning condition and
learning outcomes. Students in the game condition demonstrated higher levels of
confrustion during the self-explanation phase of the game, and while confrustion
was not related to learning outcomes in the game condition, it was associated
with better learning outcomes in the non-game condition. These results provide
evidence that digital learning games may support learning by reducing behav-
ioral disengagement, and that the effects of confusion and frustration may vary
depending on digital learning context.

Keywords: Digital learning games · Affect detector · Ed. data mining

1 Introduction

1.1 Digital Learning Games and Learning Outcomes

Most American children play digital games. The Common Sense Census [18] found that
66% of U.S. tweens and 56% of teens report playing digital games on any given day,
with an average time of two or more hours per day among those who play. Recognizing
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this enthusiasm for games, more than half of U.S. teachers ask their students to use
digital learning games in class at least once a week [22, 25]. Although data are still
emerging on howdigital learning gameuse has changed during theCOVID-19 pandemic,
Internet search intensity for online learning resources doubled in the early months of
the pandemic [4] and interactive learning environment usage has increased [10]. The
increased reliance on digital learning tools is not likely to abate even when face-to-face
instruction can consistently be resumed, and the importance of digital learning games
in educational settings seems likely to continue to grow in the future.

A number of studies have found improved learning outcomes for digital learning
games compared to non-game learning conditions [16, 58]. Several meta-analyses have
also revealed motivational benefits of digital learning games, including benefits to self-
efficacy and attitudinal outcomes compared tomore traditional instruction [54, 59]. Prior
research has shown learning and engagement benefits from digital learning games in a
variety of academic domains, including mathematics [27, 47, 53], science [13, 14], and
language learning [57, 62]. However, designing games that teach academic topics is still
a challenging task that is not always successful, and the educational effectiveness of
digital learning games varies depending on a number of circumstances [19, 33, 37, 60].
For instance, educational benefits are more likely to occur when games are specifically
designed based on cognitive theories of learning [44].

In particular, there has been limited empirical evidence about what is effective for
mathematics games, with a recent reviewfinding only sixmethodologically sound exper-
iments that compared learning mathematical material in a game versus more conven-
tionalmedia [37]. Of those six experiments, four produced positive results favoring game
playing. In this paper, we focus on one of those games, Decimal Point [23, 38], which
was designed in consultation with a mathematics education expert and based on theory
and evidence about common student misconceptions regarding decimal mathematics
[26, 31, 56]. Like many digital learning games, Decimal Point was designed to support
students’ learning after initial instruction on the relevant topics by providing engaging
opportunities for additional practice. In a study involvingmore than 150 5th and 6th grade
students, Decimal Point led to significantly more learning and was rated by students as
significantly more engaging than a more conventional but still effective computer-based
tutoring approach [38].

Experimental comparisons between digital learning games and conventional learn-
ing technology can establish digital learning games as effective (or not) at producing
desired learning outcomes, but thesemethods do not get at the underlying reasons for the
effects. Very few studies have tested specific cognitive or affective processes as poten-
tial mediators of learning from games compared to non-games. There is a general lack
of understanding about how digital learning games support learning, and digital game
designers often must work without empirical guidance for how to make learning games
more effective. In some cases, this results in uninformed adoption of extrinsic rewards
such as points, badges, and competition, which often do not foster productive learning
processes [40, 41, 51]. Understanding how digital learning games support learning is
essential for informing better digital learning game design. Additionally, teachers have
limited class time available, and greater evidence of when and how students learn from
digital learning games—and especially how they might learn differently from games
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compared to non-games—will help inform teachers’ choices aboutwhich digital learning
games to incorporate into their teaching and how to enhance their students’ learning.

This suggests a need to take a more detailed look at the underlying cognitive and
affective mechanisms that lead to learning with games. The field of learning analytics
provides tools to help in identifying the cognitive and affective processes that educational
technology supports [6, 24, 28, 52, 55]. In the current study, we use behavioral data and
learning analytics to examine the cognitive and affective pathways through which digital
learning games operate to support learning outcomes. Specifically, we reanalyze an
existing dataset [38] to assess two potential paths—gaming the system and confrustion—
that might explain differences in learning processes and outcomes.

1.2 Gaming the System and Confrustion

The last few decades have seen a surge in scholarship around student behaviors and
emotions or affect while learning [6, 11, 42, 61]. Gaming the system—attempting to
succeed in an interactive learning environment by exploiting properties of the system
rather than by learning the material—has been a behavior of particular interest within
computer-based game and tutoring contexts due to its negative relation with learning
outcomes [5, 7, 17, 39]. Gaming the system has both an immediate and long-term
impact on learning and academic performance. One study investigating the effects of
gaming using log data from a middle-school Cognitive Tutor mathematics curriculum
found that gaming the system was associated with immediate poorer learning and an
aggregate negative impact on learning [7]. In addition, students who game the system in
middle school mathematics are less likely to enroll in higher education [49] or to take a
STEM job after college [3].

Several studies have also found evidence that differences in learner emotions or affect
are associated with learning outcomes in both the short term [46] and long term [49].
Two affective states that have been of interest in affective computing research are confu-
sion and frustration, which have both been found to be associated with student learning.
Some studies have found strong positive correlations between confusion or frustration
and learning [20, 35], while others have found strong negative correlations to learning
[48, 50]. Whether confusion and frustration support or hinder learning may be related
to whether the student has support or metacognitive skills to resolve their confusion and
frustration [21, 36]. Learning context may also affect the relation between confusion
or frustration and learning outcomes. Previous research that identified positive relations
between confusion or frustration and learning was conducted in non-game digital learn-
ing environments [20, 35]. Fewer studies have examined the relation between affect and
learning in the context of digital learning games, where confusion and frustration may
be more disruptive to game play, but at least one recent study usingDecimal Point found
a negative relation [39]. Confusion and frustration are often difficult to distinguish when
judging only based on students’ interactions with educational technology. Due to this
and to their similar relation with learning, a number of previous studies have investigated
a combination of the two states instead, called “confrustion” [36, 39, 45].
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2 Method

We obtained interaction and outcome data collected through Decimal Point in an exper-
iment first reported in [38]. We developed log-based detectors using labels from text
replay coding of the data [8, 34]. We briefly describe the methods of the previous study;
for a more detailed description of both the game and study, see [23] and [38].

2.1 Participants

Students participated in the study as part of their normal math instruction at two middle
schools in a northeastern major metropolitan area. A total of 213 students participated in
the study, but 39 students (19 in the game condition and 20 in the non-game condition)
were dropped from analyses for failing to complete the pretest, posttest, or delayed
posttest. Of the remaining 174 students (97 female students, 76 male students, and 1
missing gender information), 81 students were assigned to play Decimal Point, while
93 students completed a non-game, computer-based instructional system covering the
same content.

2.2 Materials and Procedure

Decimal Point is a single-player game with an amusement park metaphor targeting
5th and 6th grade students learning about decimal numbers. Decimal Point runs on
the web, within a standard browser, and was developed using HTML/JavaScript and
the Cognitive Tutor Authoring Tools, or CTAT [2]. The materials are deployed on the
web-based learning management system TutorShop [1], which logs all student actions.
Decimal Point is composed of a series of 24 “mini-games” within a larger amusement
park map. Forty-eight decimal problems (two problems for each of the 24 mini-games)
were implemented for the game.

Decimal Point presents students with five types of mini-game problems: (1) ordering
decimals; (2) number line placement; (3) decimal sequences; (4) sorting decimals into
less-than and greater-than “buckets”; and (5) adding decimals (Fig. 1). After solving
each problem, students are prompted to self-explain their answer by selecting from a
multiple-choice list of possible explanations. For example, after an ordering problem, the
student might see the following: “To order these decimals from smallest to largest, start
by finding: a) the longest decimal; b) the decimal with the smallest tenths place value; c)
the shortest decimal; or d) the decimal with the smallest hundredths place value.” This
employs a well-established learning science principle that can promote deeper learning
[15, 32]. To develop the game problem types, the developers surveyed problems students
currently encounter in popularmath curricula and designedmini-games and tests to probe
for decimal misconceptions [56].

Decimal Point has six characters that serve as guides and cheerleaders for the player
throughout the game. These game elements provide fantasy [9], as well as giving the
player a narrative context forwhy they are performing various problem-solving activities.
The interface and feedback design presents students with problem-solving activities
embedded playfully in the mini-game context. Students are prompted by the characters
to correct mistakes after an initial attempt.
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Fig. 1. & 2. Decimal Point “Whac-A-Gopher” (left), an example of an ordering mini-game, and
the non-game equivalent (right).

The non-game control condition (Fig. 2) presented the same mathematical content,
includingbothproblem-solving and self-explanation elements,without the game features
or narrative. Problems were presented on a plain background in a manner consistent with
many intelligent tutoring systems. As with Decimal Point, students had to complete all
problems in a predetermined sequence. In both the game andnon-gameversions, students
were told immediately if their answers on the problem-solving and self-explanation
questions were incorrect, and they could not advance to the next problem until they
correctly answered the current problem.

Students completed three isomorphic versions of a test on decimal number operations
and concepts. Tests were administered before students completed the materials (pretest),
immediately after completion (posttest), and a week after completion (delayed posttest).
Versions of the test were counterbalanced across time points to control for any unin-
tended variations in the tests. Each test contained 24 problems, including some problems
with similar decimal number content to what was presented in the game and non-game
systems and other problems that targeted underlying concepts related to decimal num-
ber operations but not explicitly taught within the game and non-game. Students could
earn multiple points on some problems, with a total of 61 points possible for correctly
answering all questions on the test.

2.3 Detector Construction

Text replay coding has been used to identify learner behaviors and affect [8, 34]. In this
method, coders base their affect coding on log data gathered on the students’ interaction
with the learning environment. Text replay coding involves breaking down the existing
data set into text replays, or clips, each either spanning a specific amount of time, a
specific number of transactions, or delineated by start or end events.

Whereas our previous detectors were built using problem-level labels, the current
study broke each problem or game level down into their two steps during the labeling
process: problem solving and self-explanation. As such, text replay coding had to be
conducted in four iterations: once each for gaming and confrustion in the problem-
solving step; and once each again for gaming and confrustion in the self-explanation step.
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In each iteration, text replay codingwas conducted in three phases. In phase 1, two human
coders coded a set of clips together in order to establish a labeling rubric. In phase 2, both
coders coded another set of clips separately, in order to assess inter-rater reliability. If the
coders attained acceptable reliability, the coders moved on to phase 3. If not, the coders
discussed the differences in their labeling, and then did another round of phase 2 coding,
repeating this process until they attained acceptable reliability. Two rounds of phase 2
coding were conducted for confrustion in the problem-solving clips, and one round of
phase 2 codingwas conducted for the other three detectors. For the problem-solving clips,
the inter-rater reliability (IRR) kappa was 0.74 for both confrustion and gaming. Kappa
was 0.62 and 0.88 for confrustion and gaming, respectively, in the self-explanation clips.
Once in phase 3, the two coders divided the remaining clips and coded them separately.
Since less confrustion was observed in the self-explanation clips, almost twice as many
self-explanation clips as problem-solving clips needed to be coded to have enough data
to build the model. In total, 800 problem-solving clips and 1,500 self-explanation clips
were coded and used to construct the automated affect detectors. Furthermore, clips were
stratified to equally represent schools, problem type, and experiment condition.

Table 1. Detector performance for gaming and confrustion detectors in the problem-solving and
self-explanation steps.

Problem Solving Self-Explanation
Gaming AUC=0.889, k=0.504 AUC=0.999, k=0.952

Confrustion AUC=0.915, k=0.565 AUC=0.956, k=0.645

The labeled data were input into machine learning algorithms to emulate the coders’
judgments, based on prior studies that showed it was feasible to detect gaming [43]
and confrustion [34] using this approach. The gaming and confrustion detectors were
all built using the Extreme Gradient Boosting (XGBoost) classifier [12]. The classifier
uses an ensemble technique that trains an initial, weak decision tree and calculates
its prediction errors. It then iteratively trains subsequent decision trees to predict the
error of the previous decision tree, with the final prediction representing the sum of the
predictions of all the trees in the set. Four automated detectors were built in total, i.e.,
gaming in the problem-solving step, confrustion in the problem-solving step, gaming
in the self-explanation step, and confrustion in the self-explanation step. Based on 10-
fold student-level cross-validation, we determined that the models could reliably predict
the two constructs in both the problem-solving and self-explanation steps. Detector
performance can be found in Table 1. The detectors were then applied to predict gaming
and confrustion in the rest of the data set.

3 Results

Results were previously reported regarding the effect of the game compared to the
non-game on posttest and delayed posttest performance [38]. Specifically, analyses of
covariance (ANCOVAs) revealed that students in the game condition outperformed.
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Table 2. Average probabilities of gaming the system and confrustion by condition for problem-
solving (PS) and self-explanation (SE) activities.

Gaming (PS)
M (SD)

Gaming (SE)
M (SD)

Confrustion (PS)
M (SD)

Confrustion (SE)
M (SD)

Game .14 (.099) .22 (.11) .18 (.086) .041 (.035)
Non-game .27 (.12) .30 (.14) .15 (.056) .066 (.055)

students in the non-game condition on posttest, F(1,172) = 11.50, p = .001, ηp
2 =

.063, and delayed posttest performance, F(1, 172) = 11.86, p = .001, ηp
2 = .065.

To understand the effect of the game on students’ cognitive and affective processes,
we compared predicted rates of gaming the system and confrustion among students play-
ing the game against those completing the non-game version. We examined rates during
problem solving and rates while completing the self-explanation questions separately
(Table 2). Students using the non-game demonstrated almost double the levels of gam-
ing the system while problem solving as students playing the game, and this difference
was significant, F(1, 173)= 57.64, p < .001, ηp

2 = .25. On self-explanation questions,
students in the non-game also showed significantly higher levels of gaming the system,
F(1, 173) = 17.87, p < .001, ηp

2 = .09, and confrustion, F(1, 173) = 12.40, p = .001,
ηp

2 = .07. In contrast, students using the non-game condition show significantly lower
levels of confrustion during the problem-solving portion, F(1, 173) = 5.77, p = .017,
ηp

2 = .03.
To understand how these cognitive and affective processes related to posttest perfor-

mance, we assessed a regression model predicting posttest scores with pretest scores,
gaming probabilities for problem solving and self-explanation, and confrustion prob-
abilities for problem solving and self-explanation (Table 3). The resulting model pre-
dicted 68.9 percent of the variance. Within the model, pretest scores, gaming the system
for problem-solving questions, and gaming the system for self-explanation questions
were all significant predictors of posttest scores. We assessed the same model predict-
ing delayed posttest scores. The resulting model predicted 66.1 percent of the vari-
ance and, within the model, pretest scores and gaming the system on problem-solving
were again significant predictors of delayed posttest scores; additionally, confrustion on
self-explanation emerged as a significant predictor.

Finally, we wanted to understand whether differences in cognitive or affective pro-
cesses explained the effect of the game on learning outcomes. Given that gaming the sys-
tem on problem-solving questions predicted learning outcomes at posttest and delayed
posttest and that levels of gaming differed across conditions, we examined gaming the
system on problem-solving questions as a mediator between condition and each test
(posttest and delayed posttest; Fig. 3). We used the PROCESS macro for SPSS statisti-
cal software [30], which applies 5000 bootstrap estimates to create confidence intervals,
to test the indirect effect of condition (game= 0, non-game= 1) on posttest and delayed
posttest with gaming the system on problem-solving questions as the mediator. Pretest
scores were included as a covariate. Results indicated that students in the non-game
condition had significantly greater probabilities of gaming the system, a = .70, p <
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Table 3. Regression models predicting posttest and delayed posttest scores with pretest scores,
gaming probabilities, and confrustion probabilities.

Posttest Delayed posttest
Overall model R2 =.70, F(5,168)=77.60, p < .001 R2 =.67, F(5,168)=68.54, p < .001

Pretest β = .48, p < .001 β = .45, p < .001

Gaming (PS) β = -.30, p < .001 β = -.42, p < .001

Gaming (SE) β = -.16, p = .005 β = -.077, p = .19

Confrustion (PS) β = -.017, p = .77 β = .062, p = .20

Confrustion (SE) β = .042, p = .36 β = .12, p = .012

.001. Gaming the system was negatively associated with performance on the posttest
regardless of condition, b = −.37, p < .001, and there was no direct effect of condition
on posttest performance when controlling for gaming the system, c = −.07, p = .48.
Consistent with our mediation prediction, the indirect effect of condition on posttest
through gaming the system was significantly different than zero, ab = −.26, 95% CI
[−.12, −.064]. Similar results were found for the delayed posttest: gaming the system
was negatively associated with performance on the delayed posttest, b = −.42, p <

.001, and there was no direct effect of condition on delayed posttest performance when
controlling for gaming the system, c=−.062, p= .56. Again, the indirect effect of con-
dition on delayed posttest through gaming the system was significantly different than
zero, ab = −.29, 95% CI [−.44, −.18].

Given the mixed results regarding confrustion in prior literature and in our findings,
we examinedwhether the relation between confrustion and learningmight differ between
the game and non-game contexts. To do this, we tested game condition as a moderator
of the relation between confrustion and each test (posttest and delayed posttest) while
controlling for pretest. Moderation analyses in PROCESS showed no significant interac-
tion between confrustion on problem-solving questions and condition when predicting
posttest, b=−15.70, p= .26, 95%CI [−43.24, 11.84], or delayed posttest, b=−22.29,
p = .13, 95% CI [−51.44, 6.85]. However, there was a significant interaction between
confrustion on self-explanation questions and condition when predicting posttest, b =
69.66, p= .003, 95% CI [23.73, 115.58], and inclusion of the interaction term explained
significantly more variance in themodel,�R2 = .018,F(1, 169)= 8.97, p= .003.While
confrustion was not related to posttest performance in the game condition (b=−18.90,
p = .34), it was positively related to posttest performance in the non-game condition (b
= 50.76, p < .001; Fig. 4). There was a similar interaction predicting delayed posttest,
b = 47.63, p = .049, 95% CI [.32, 94.94], and inclusion of the interaction term again
explained significantly more variance in the model, �R2 = .009, F(1, 169)= 3.95, p=
.049. As with the posttest, confrustion was not related to delayed posttest performance in
the game condition (b= 10.16, p= .62), but it was positively related to delayed posttest
performance in the non-game condition (b = 57.79, p < .001; Fig. 5).
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Fig. 3. The mediation model showing path standardized coefficients for a mediation analysis of
learning condition on posttest through gaming the system on problem-solving questions.
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Fig. 4. & 5. Interaction of confrustion (SE) items and condition predicting posttest (left) and
delayed posttest score (right). Scores were calculated using the regression equation for low (16th
percentile), medium (50th percentile), and high (84th percentile) values of confrustion.

4 Discussion and Conclusion

Although digital learning games continue to grow in use, relatively few studies have
empirically assessed differences in cognitive and affective processes between games
and non-game, computer-based systems covering the same content. This paper presents
a promising approach using educational data mining to build log-based detectors that
can capture such differences. Results showed that the positive effect of learning with the
game was fully mediated by students’ lower levels of gaming the system when playing
the game. Gaming the system has been consistently associated with negative short-term
and long-term outcomes, ranging from lower achievement in the task where gaming is
measured to reduced likelihood of enrolling in college or choosing a STEM-related job
[3, 7, 49]. While it is not surprising that gaming the system was associated with worse
performance inDecimal Point, it is an important and novel finding that the game reduced
students’ tendencies to game the system compared to the non-game version and that this
reduction in gaming explained differences in learning outcomes. Gaming the system is
considered a form of behavioral disengagement, and digital learning games are thought
to increase students’ engagement through game features such as fantasy and narrative
context. Results appear to support the idea that introducing engaging features can reduce
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students’ disengaged behaviors and thereby enhance learning, though causality cannot
be inferred from these data.

Confrustion did not consistently predict learning outcomes, but these results are sim-
ilar to prior research finding conflicting relations between confusion or frustration and
learning. We found that confrustion on self-explanation questions played a different role
in learning depending on whether students were working in the game or non-game con-
text. In the game, confrustion did not predict learning outcomes, while in the non-game,
greater levels of confrustion on self-explanation questions were associated with better
learning outcomes. When students experience confusion or frustration while learning, it
can trigger productive cognitive and metacognitive processes such as trying a different
strategy and monitoring progress [21]. Students experiencing confrustion in the non-
game may have engaged in these productive strategies to resolve their confrustion and
ultimately gain more from the self-explanation process. On the other hand, confrustion
may be less beneficial in a game setting because it feels disruptive to the engaging,
playful interactions students expect from a game.

This work suggests several fruitful avenues for further advancing researchers’ and
developers’ understanding of how digital learning games support learning. While our
results suggest that differences in gaming the system could explain many of the benefits
of games, there are a variety of other cognitive and affective processes that might also
play a role. Developing additional detectors for constructs such as boredom, delight,
engaged concentration, and carelessness could identify additional pathways that mediate
the effect of digital learning games on learning. These detectors should also be applied
to log data from other digital learning games and, ideally, non-game, computer-based
controls. Given the large number of game features present across the diversity of digital
learning games [9], it is important to explore whether gaming the system is reduced by
a variety of games or if this mechanism is related to specific game features present in
Decimal Point. Future research could explore how manipulating other game features,
such as agency,might influence students’ behavioral interactions and affective states [29].
Ultimately, understanding the connection between specific game features, cognitive and
affective learning processes, and learning outcomes will provide digital learning game
designers and teachers with a much more robust set of tools for determining when and
how to implement digital learning games to best support students’ learning. For example,
if particular game features are especially effective at reducing problematic behaviors and
affect (e.g., gaming, anxiety), a game with those features could be deployed when the
context or content is likely to elicit those behaviors and affective states.
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Abstract. Intelligent Tutoring Systems (ITS) provide a powerful tool
for students to learn in an adaptive, personalized, and goal-oriented man-
ner. In recent years, Reinforcement Learning (RL) has shown to be capa-
ble of leveraging previous student data to induce effective pedagogical
policies for future students. One of the most desirable goals of these poli-
cies is to maximize student learning gains while minimizing the training
time. However, this metric is often not available until a student has com-
pleted the entire tutor. For this reason, the reinforcement signal of the
effectiveness of the tutor is delayed. Assigning credit for each intermedi-
ate action based on a delayed reward is a challenging problem denoted
the temporal Credit Assignment Problem (CAP). The CAP makes it
difficult for most RL algorithms to assign credit to each action. In this
work, we develop a general Neural Network-based algorithm that tack-
les the CAP by inferring immediate rewards from delayed rewards. We
perform two empirical classroom studies, and the results show that this
algorithm, in combination with a Deep RL agent, can improve student
learning performance while reducing training time.

Keywords: Pedagogical agent · Credit assignment problem · Deep
reinforcement learning

1 Introduction

Recent advances in Machine Learning have enabled the creation of algorithms
that allow us to optimize certain desired metrics, for a large and diverse pool
of users. Reinforcement Learning (RL), in particular, has shown great promise
in the last few years, due to its effectiveness in inducing a policy to maximize a
reward function while interacting with a non-stationary environment. In recent
years, the combination of RL with deep neural networks has enabled solving
very complex tasks. Deep RL (DRL) has achieved notable successes in a variety
of complex tasks such as robotic control [2] and the game of Go [31]. Despite
DRL’s great success, there are still many challenges preventing DRL from being
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applied more broadly in practice, including applying it to educational systems
such as Intelligent Tutoring Systems (ITSs).

ITSs and other educational software tools have gained popularity in recent
years. These systems allow educators to provide a personalized learning process
to each student, without needing to personally supervise the process. These
e-learning environments often rely on pedagogical policies to decide how each
problem or each part of the system is going to be displayed for a given user. The
sequential decision-making nature of DRL, combined with its ability to learn
from a reward function, makes it a perfect fit to induce pedagogical policies for
ITSs and optimize the learning process for each student individually. However,
most ITSs have a delayed reward function by design. These systems need to assess
the overall learning process of each student, and they generally follow a standard
structure of pre-test, training on the ITS, and post-test, where the learning
improvement is measured. In this situation, discovering which of the tutor’s
actions are responsible for the delayed outcome can present a challenge. Because
of this, the ability of DRL to be broadly effective in real-world applications is
still unproven. In such delayed reinforcement tasks, a reward rt obtained at time
t, may have been affected by all the actions leading to that time-step: a0, a1,
..., at−1, and at. Assigning credit or blame for each of those actions individually
is known as the (temporal) Credit Assignment Problem (CAP) [19]. The
CAP is particularly relevant for real-world tasks, where we need to learn effective
policies from small, limited training datasets. In prior work, one way to mitigate
the impact of the CAP is to use model-based RL [6,32] or simulations, which
allow collecting vast amounts of data. However, in many real-life domains such as
healthcare and education, building accurate simulations is especially challenging
because disease progression and student learning are rather complex processes.

The most appropriate rewards to use in education are the student learn-
ing outcomes, which are typically unobservable until the entire training process
or trajectory is complete. This is because, in human learning progressions, it
is difficult to assess student knowledge moment by moment, and more impor-
tantly, many instructional interventions that boost short-term performance may
not be effective over the long term. To address the CAP, we present a gen-
eral neural network-based algorithm to infer the immediate rewards from the
delayed reward, and then use those inferred immediate rewards for pedagogi-
cal policy induction. In this work, we used an ITS that is designed to teach
students how to solve logic proofs. We applied DRL to induce a pedagogical
policy on one of the most widely studied types of tutorial decisions: whether
to present a problem as a Problem Solving (PS) or a Worked Example
(WE) [12,13,16,21,23,24,26,27,29,30,34,39].

In this work, we compared two DRL-based pedagogical policies against an
Expert baseline policy and a PS-only policy, in two empirical classroom studies
with college students. During the Spring 2019 semester, the DRL pedagogical
policy first inferred the immediate rewards from the delayed rewards using a
Gaussian Processes approach introduced by Azizsoltani et al. [5], and then a
DQN agent [20] used those rewards to induce a pedagogical policy, referred to
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as InferGP in the future. InferGP is compared against an Expert-crafted policy
that alternates between PS and WE. Next, during the Spring 2020 semester, we
inferred the immediate rewards using InferNet, the algorithm we present in this
paper, and then trained a Dueling-DQN agent [38] to induce a policy; InferNet
is compared against a PS-only policy because most conventional ITSs are PS
only. As the two DQN-based policies used different scores as reward functions for
training, they cannot be directly compared with one another. Rather, we compare
each of those RL-induced policies to the two control groups: Expert and PS-
only. Our results show that while no significant difference was found between
InferGP, Expert and PS-only in terms of learning gains or learning efficiency,
InferNet outperforms the Expert group in terms of learning performance, and
InferNet also outperforms the PS-only group in terms of learning efficiency. In
short, our proposed InferNet in conjunction with a Dueling-DQN policy results
in better and more efficient learning than traditional pedagogical strategies such
as Expert-crafted policies or PS-only policies.

2 Background and Related Work

Prior research has applied both online RL and offline RL to induce data-driven
pedagogical policies. In online RL, the agent learns a policy while interacting
with either real or simulated student data, while offline RL approaches “use
previously collected samples, and generally provide robust convergence guaran-
tees” [25] and thus, the success of these offline RL approaches depends heavily
on the quality of the training data. Furthermore, prior work can be divided
into traditional RL vs. DRL approaches. In the former, for instance, Iglesias
et al. applied Q-learning to induce policies for efficient learning [10,11]. More
recently, Rafferty et al. applied an online partially observable Markov decision
process (POMDP) to induce policies for faster learning [22]. Shen et al. employed
offline value iteration and least square policy iteration to induce a pedagogical
policy that improved student learning [28,29]. Chi et al. applied offline policy
iteration to induce a pedagogical policy aimed at improving students’ learning
gain [7]. Mandel et al. [15] used an offline POMDP to induce a policy which
aims to improve student performance in an educational game. All the models
described above were evaluated in classroom studies and were found to yield
certain improved student learning or performance relative to a baseline policy.

The DRL approaches have been motivated by the recent growth in using Deep
Neural Networks as function approximation. For instance, the Deep Q-Network
(DQN) algorithm [20] takes advantage of convolutional neural networks to learn
to play Atari games observing the pixels directly. Since then, DRL has achieved
success in various complex tasks such as the games of Go [31], Chess/Shogi [32],
Starcraft II [36], and robotic control [2]. One major challenge of these methods is
sample inefficiency, where RL policies need large sample sizes to learn optimal,
generalizable policies. DRL has also been applied to ITSs. Wang et al. applied
an online DRL approach to induce a policy for adaptive narrative generation in
an educational game using simulations [37]; the resulting DRL-induced policies
were evaluated via simulations only. Sanz Ausin et al. used offline DRL to induce
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Algorithm 1. InferNet + DRL Offline
1: Input: Training dataset D, Number of training steps K
2: for step ← 1 to K do
3: Sample mini-batch of episodes B ∼ D with Delayed Rewards Rdel

4: Train InferNet on B: L(θ) = (Rdel − ∑T−1
t=0 f(st, at)|θ))2

5: end for
6: for ep ← 1 to |D| do
7: Use the trained InferNet to infer immediate rewards for episode ep
8: Replace original rewards with the new InferNet rewards
9: end for

10: Train DRL agent

pedagogical policies and showed that they can improve student learning, and
can be more effective than expert-designed baseline policies [3,4]. Much prior
work has induced a pedagogical policy by using DRL directly, while this work
combines a mechanism that tackles the CAP, and a DRL algorithm to induce
more effective policies.

3 InferNet

The ultimate goal of InferNet is to tackle the temporal CAP by inferring the
immediate rewards from the delayed rewards. We model the environment as a
standard Markov Decision Process. At time-step t, the environment is in some
state st, the agent takes an action at, and receives a scalar reward rt, which in
the case of delayed rewards is zero unless it is the last reward in the episode,
i.e., at the end of the entire trajectory (the delayed reward). We denote the
immediate rewards as r and the delayed rewards as Rdel.

The idea behind InferNet is rather straightforward. It uses a deep neural
network to predict the immediate reward at each time-step, for an episode
that contains T steps. At each time step t, InferNet receives a state st and
its corresponding action at as inputs, and it outputs the predicted scalar reward
rt for that time-step: rt = f(st, at|θ), where θ indicates the neural network
parameters (weights and biases). To train the neural network, InferNet dis-
tributes the final delayed reward among all the states in the episode. More
precisely, the neural network is trained to predict the immediate rewards from
the delayed reward with a constraint: the sum of all the predicted immediate
rewards in each episode must be equal to the delayed reward of that episode:
Rdel = f(s0, a0|θ) + f(s1, a1|θ) + ... + f(sT−1, aT−1|θ). By doing so, the net-
work is tasked with modeling the reward function, conditioned on the state and
actions that were passed as inputs. InferNet is trained by minimizing the loss
between the sum of predicted rewards and the delayed reward.

For the implementation, the TimeDistributed layer available on TensorFlow
Keras [1,8] was employed. This layer allows repeating the same neural network
operation across multiple time-steps, sharing weights across time, and we use
it to pass the entire episode at once to the neural network, as a sequence of
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states and action pairs. It should be noted that there is no internal state in
InferNet, despite sharing weights across time as in a recurrent neural network.
Each predicted reward is only dependent on the state and action passed as inputs
at that timestep. The loss function that is used to train InferNet is shown in Eq. 1.
Algorithm 1 shows the pseudo-code for training InferNet offline in conjunction
with a DRL algorithm.

Loss(θ) = (Rdel −
T−1∑

t=0

f(st, at|θ))2 (1)

4 GridWorld with Delayed Reinforcement

The effectiveness of InferNet is investigated on a simple GridWorld task where
the immediate rewards are known. This allows us to compare the predicted
inferred rewards to the true immediate rewards, and measure the error. This
environment consists of a 14× 7 grid, with five positive rewards (+1) and four
negative rewards (−1), located randomly, but always in the same locations. All
other states have a reward of zero. The initial state is located at the bottom-
right corner of the grid, and the agent’s goal is to reach the terminal state,
located at the top-left corner while collecting the positive rewards and avoiding
the negative ones. The three available actions are to move up, left, and down.
The highest total return that can be collected is +5, while the lowest one is −4.

We compare four reward settings: 1) Immediate rewards: when available,
they are the gold standard. 2) Delayed rewards: these rewards are used as a
baseline; here all the intermediate rewards will be zero and the delayed reward
that indicates how good or bad the intermediate actions are is provided at the
end of the episode. In other words, we simulate the delayed rewards by “hiding”
the immediate rewards and providing the sum of all the immediate rewards at
the end of the episode. 3) InferGP rewards: the inferred immediate rewards using
the GP algorithm proposed in [5]. 4) InferNet rewards: the inferred immediate
rewards through InferNet.

In this experiment, we compared different reward settings using both online
and offline RL. InferNet can be trained online and offline, while InferGP can
only be applied for offline RL. For online RL, we used an online RL algorithm
known for being capable of solving the CAP, the TD(λ) algorithm; while for
offline RL, we used Q-learning, which is one of the best known RL approaches.

Online TD(λ): TD(λ) is known to be one of the strongest methods to solve the
CAP [33] in that it takes advantage of the benefits of Temporal Difference (TD)
learning methods, and includes eligibility traces, which allows the agent to look
at all the future rewards to estimate the value of each state. Here we compared
InferNet against the delayed and immediate rewards because InferGP cannot
be applied for online RL. Figure 1(Left) shows that by minimizing the training
error in Eq. 1 (the difference between the delayed reward and the sum of inferred
immediate rewards) (red line), InferNet minimizes the true error (the difference
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Fig. 1. Online Training. Left: Training InferNet online. Right: Performance of a TD(λ)
agent on the GridWorld environment. (Color figure online)

Fig. 2. Offline Training. Left: Performance of Q-Learning agents as a function of the
number of training episodes. Right: Empirical time complexity comparison between
InferNet and InferGP.

between the inferred immediate rewards and the true immediate rewards) (blue
line) when trained online. This shows that our method can effectively approxi-
mate the true immediate rewards from the delayed reward.

Figure 1(Right) shows that when the rewards are delayed, TD(λ) is not able
to learn as effectively as the agent with the true immediate rewards. However, by
applying InferNet first on the delayed rewards, the InferNet agent achieves the
same performance as using the immediate rewards; both converge to the optimal
policy. Each experiment is repeated five times with different random seeds, and
Figure 1(Right) shows the mean and standard deviation of those runs.

Offline Q-Learning: In this experiment, we compared all four reward settings.
We first generate random gameplay data with immediate rewards from the Grid-
World; then sum the immediate rewards in each episode to get its corresponding
delayed reward; and finally, apply InferGP and InferNet to infer the correspond-
ing rewards from the delayed reward. To compare the four reward settings, we
train a tabular Q-learning agent offline for 5000 iterations on the dataset corre-
sponding to each reward setting. For each of the four reward settings, once its
corresponding RL policy is induced, its effectiveness is evaluated by interacting
with the GridWorld environment directly for 50 episodes. Figure 2 (left) shows
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the mean and standard deviation of the performance of the agent, as a function
of the number of episodes available in the training dataset. It shows that, as
expected, the delayed policy performs poorly, while the Immediate policy can
converge to the optimal policy after only 10 episodes of data; additionally, Infer-
Net and InferGP are comparable and both can converge to the optimal policy
but they need more training data (around 150 episodes) than the Immediate
policy.

Time Complexity: Despite the fact that the performance of InferNet and
InferGP is comparable for offline RL, Fig. 2(Right) shows that the training time
of InferGP increases cubically O(n3) as the training data increases, while Infer-
Net has a time complexity of O(n), where n is the amount of training data. This
is because InferNet only needs to be trained for a constant number of epochs.
Furthermore, InferGP has an asymptotic space complexity of O(n2), while Infer-
Net has a space complexity of O(f ∗ l), where f is the number of features in the
state and action that are passed as inputs, and l is the length of the episode that
is passed as input.

In short, InferNet is equivalent to InferGP in performance (as shown by the
results in the GridWorld), but its time and space complexity are much better
than those of InferGP. InferNet can be applied for both offline and online RL,
which makes it much more effective and general, and RL algorithms can benefit
greatly from using it to tackle the CAP.

5 Pedagogical Policy Induction

Next we describe how we use InferNet to induce pedagogical policies for an
intelligent tutor. We focus on training a pedagogical policy to decide how to show
a problem in one of two ways: Problem-Solving (PS) vs. Worked Example (WE).
If PS is chosen, students are shown a problem, which they need to complete.
In WE, the students are provided with an expert, step-by-step solution to the
problem. A great deal of prior research has investigated the effectiveness of PS
vs. WE as educational interventions [16–18,21,23,24,26,34]. In general, evidence
indicates that showing WEs can significantly reduce the total time on task while
not hurting the learning performance too much [16–18]. On the other hand,
alternating between PS and WE can be more effective than PS only [16,21,23,
24,26,34]. Despite all the prior studies, there is no clear consensus about how or
when these two interventions should be combined to optimize student learning.
As a result, most existing ITSs always choose PS [14,35].

Training Corpus: Our training dataset contains 786 student trajectories, col-
lected over five different semesters. Students spend around 2–3 h on the ITS com-
pleting problems. To represent the state of the learning environment, 142 features
from five categories are extracted. We have 10 Autonomy features describing the
amount of work done by the student; 29 Temporal features including total time
spent, time spent on PS, time spent on WE, and so on; 35 Problem-Solving
features describing the difficulty of the problem, the number of easy and diffi-
cult problems solved, and so on; 57 Performance features such as the number of
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incorrect steps; and 11 Hint-related features including the total number of hints
requested, among others.

Reward Functions: Our goal is to create an RL-induced pedagogical policy
to improve student Learning Gain while minimizing the training time. In other
words, we want to maximize learning efficiency. In our empirical studies with
students, we used two different reward functions and both rewards are only cal-
culated for the post-test problems. The first one, which we will denote as S19
(due to the semester and year when it was used, Spring 2019), uses the number
of incorrect rule applications made by the students, as well as the speed, mea-
sured by the time spent on the post-test problems. The second reward function,
denoted S20, uses the solution length (number of logic statements in the solu-
tion), the solution accuracy (proportion of correct rule applications), and the
speed. In this work, we applied InferGP to infer the immediate rewards from the
delayed rewards using the S19 scoring metric; and InferNet to infer the imme-
diate rewards from the delayed rewards using the S20 scoring metric. Once the
inferred immediate rewards are inferred, we train a DQN-based agent [20] to
induce the corresponding policies.

Deep Q-Network (DQN): [20] is a version of Q-Learning which uses neural
networks for function approximation. DQN uses two neural networks with iden-
tical architectures. The main network (represented by the weights θ) is used to
estimate the Q-values of the current state s; while the target network (repre-
sented by the weights θ−) is used to estimate the Q-values of the next state s′

in the Bellman Equation: Q(s, a|θ) = r + γ maxa′ Q(s′, a′|θ−).

Dueling-DQN: [38] is an improved version of DQN that splits the Q-value
estimation into a value function and an advantage function, and then sums both
of them to get the final Q-values. The relation between the value V (s), advantage
A(s, a) and Q-value Q(s, a) is defined as A(s, a) = Q(s, a) - V(s). We combined
the Dueling-DQN algorithm with a Long Short-Term Memory (LSTM) [9] neural
network, which is suitable for tasks with long temporal dependencies.

6 Empirical Experiments

Our ITS teaches how to solve logic proofs. It is used as a graded homework assign-
ment in the undergraduate Discrete Mathematics class at NC State University.
To complete a problem, students must iteratively apply rules to logic statement
nodes in order to derive the conclusion node. The system automatically checks
the correctness of each step and provides immediate feedback on any rule that is
applied incorrectly. The ITS consists of a pre-test section, a training phase, and
a post-test. The pre-test is used to evaluate the incoming knowledge of the stu-
dents, and it contains four problems. The pedagogical policy does not take any
decisions here. The training phase contains five levels, with four problems per
level. The pedagogical policy decides whether to show PS or WE to each student
during this phase. However, the policy must follow some constraints determined
by the course instructor, who is a professor with over 15 years of experience in
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the field, to guarantee that every student sees at least one PS and one WE per
level. Finally, the post-test consists of six problems, which are used to evaluate
the improvement in each student’s performance, after undergoing the training
stage. The post-test is designed to evaluate the skills of each student, following
the requirements of the course. In the end, a score is assigned to each student
using one of the two reward functions described in Sect. 5.

We performed two empirical experiments with college students, one in Spring
of 2019 (S19) and the other one in Spring of 2020 (S20). For the S19 study,
our pedagogical policy was determined by a DQN agent, and the immediate
rewards in the training dataset were inferred using InferGP. In the S20 study, we
used a Dueling-DQN agent, with immediate rewards inferred using the InferNet
algorithm. Both agents used the exact same neural network architecture and
hyper-parameters. It is important to note that the reward functions of S19 and
S20 are not directly comparable to each other and thus the induced InferGP and
InferNet policies cannot be directly compared to each other, because they were
trained to maximize different metrics.

In the S19 study, we denote our groups as InferGP, and Expert (for the
expert-designed policy that alternates between PS and WE); 64 students were
randomly assigned to the two groups and 53 students completed the tutor, with
N = 30 for InferGP and N = 23 for Expert. For the S20 study, we denote our
groups as InferNet, and PS-only (for the policy that always provides PS). 84
students were randomly assigned to the two groups and 74 students completed
the tutor, with N = 36 for InferNet and N = 38 for PS-only. A χ2 test showed no
significant difference between the completion rates of the four different groups:
χ2 (3,N = 148) = 0.598, p = 0.896.

7 Results

We analyzed two key metrics that allow us to evaluate the performance of the stu-
dents and measure their learning: post-test performance and learning efficiency.
Post-test performance evaluates how much the students have learned after using
the ITS during the training phase. The learning efficiency also accounts for the
time spent in the training phase; it divides the post-test score by the training
time, which results in a measurement of how much time they needed to reach a
certain knowledge level. We want our policies to help the students learn as much
as possible in as little training time as needed.

InferGP: In this analysis, we compared the performance of the InferGP policy
against the Expert and the PS-only policies using the S19 scoring metric. A one-
way ANOVA test showed no significant difference in the pre-test scores among
the three groups: F (2, 88) = 0.202, p = 0.650. That is, our pre-test analysis
shows that all three groups were balanced in incoming competence.

Next, we analyzed the post-test score performance. A one-way ANCOVA
test using the group as a factor and the pre-test score as a covariate showed no
significant difference in the post-test scores: F (2, 87) = 0.019, p = 0.889. When
analyzing the learning efficiency, a one-way ANCOVA test using the group as a



Tackling the CAP in RL-Induced Pedagogical Policies 365

Table 1. Results by group for the InferNet study.

Pre-test score Post-test score Learning efficiency

InferNet 0.73 (0.27) 0.72 (0.09) 0.34 (0.27)

PS-only 0.67 (0.25) 0.70 (0.12) 0.18 (0.16)

Expert 0.67 (0.27) 0.51 (0.10) 0.23 (0.17)

factor and the pre-test score as a covariate, also showed no significant difference
in the post-test learning efficiency: F (2, 87) = 2.017, p = 0.159. In short, our
analysis found no significant differences between the students in the InferGP
group and the PS-only and Expert groups.

InferNet: Table 1 shows the mean and SD of the performance of the InferNet
policy against the Expert and the PS-only policies using the S20 scoring metric.
A one-way ANOVA test showed no significant difference in the pre-test scores
among the three groups: F (2, 93) = 1.099, p = 0.297. Again, our pre-test analysis
shows that all three groups were balanced in incoming competence.

We analyzed the post-test score performance. A one-way ANCOVA test using
the group as a factor and the pre-test score as a covariate showed a marginal
difference in the post-test scores: F (2, 92) = 3.182, p = 0.077. Subsequent pair-
wise one-way ANCOVA tests showed a significant difference between the PS-
only and the Expert groups (F (1, 57) = 42.336, p < 0.001, d = 1.720) as well
as between the InferNet group and the Expert group (F (1, 55) = 58.200, p <
0.001, d = 2.207); no significant difference was found between InferNet and
PS-only (F (1, 69) = 0.331, p = 0.567). Finally, we analyze the learning effi-
ciency. A one-way ANCOVA test using the group as a factor and the pre-test
score as a covariate showed a significant difference in the post-test learning effi-
ciency: F (1, 92) = 8.839, p = 0.003. Subsequent pairwise one-way ANCOVA tests
showed a significant difference in the learning efficiency between the InferNet and
PS-only groups (F (1, 69) = 7.910, p = 0.006, d = 0.721) and no significant dif-
ference was found between InferNet and Expert (F (1, 55) = 2.340, p = 0.132) or
between PS-only and Expert (F (1, 57) = 1.489, p = 0.227).

To summarize, our results show that the students in the InferNet group
achieved a significantly superior post-test score performance than the students
in the Expert group, and they were also significantly more efficient than the
students in the PS-Only group. This means that they learned more than the
students in the Expert group, and they learned more in less time than the
students in the PS-only group.

8 Conclusion

In this work, we developed a new method, InferNet, to solve the temporal CAP
and help RL agents learn more effectively in delayed reinforcement tasks. We
compared our method to immediate and delayed rewards, as well a previous
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method denoted InferGP, in a simulated GridWorld task, both online and offline,
and showed that InferNet can effectively infer the true immediate rewards from
the delayed rewards. We also showed that the InferNet rewards can be more
effective than the delayed rewards in all cases. Furthermore, we evaluated the
effectiveness of the InferNet rewards in two empirical classroom studies with real
students, and the results showed that when combining a Deep RL agent with
InferNet, the students in the InferNet group achieved a significantly superior
post-test score performance than the students in the Expert group, and they
were also significantly more efficient than the students in the PS-Only group.
These empirical results indicate that our method is effective at helping students
learn more in less time. Our method provides a robust and general way to induce
a pedagogical policy that can improve student learning.
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from Transcriptions and Audio
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Abstract. Classroom observation methods are fundamental tools for
improving the quality of education and students’ academic achievement.
However, they traditionally require participation of trained observers,
making them expensive, prone to rater bias and time consuming. Hence,
to address these challenges we present a cost-effective and non-intrusive
method that automatically detects different teaching practices. In partic-
ular, we extracted acoustic features and transcriptions from teachers’ talk
recordings to train a multimodal learning model called Teacher Activ-
ity Recognizer from Transcriptions and Audio (TARTA), which detects
three categories derived from the Classroom Observation Protocol for
Undergraduate STEM (COPUS), namely Presenting, Administration,
and Guiding. We found that by combining acoustic features and tran-
scriptions, our model outperforms separate acoustic- and transcription-
based models at the task of predicting teachers’ activities along the
lessons. In fact, TARTA can predict with high accuracy and discrimina-
tive power the presence of these teaching practices, achieving over 88%
of accuracy and 92% AUC for all three categories. Our work presents
improvements with respect to previous studies since (1) we focus on
classifying what teachers do according to a validated protocol instead of
discerning whether they or their students are speaking and (2) our model
does not rely on expensive or third party equipment, making it easier to
scale to large volumes of lessons. This approach represents a useful tool
for stakeholders and researchers who intend to analyze teaching practices
on a large scale, but also for teachers to receive effective and continuous
feedback.

Keywords: Multimodal learning · Teaching practices detection ·
BERT · Spectral audio features

1 Introduction

Classroom observation is a primary tool for improving the quality of education
in several ways. First, it allows us to measure how improvement efforts regarding
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teachers’ practices affect their behaviors [13]. Second, through observation it is
possible to capture aspects of teaching that cannot be measured by surveys or
test scores [10]. Third, it is a very useful tool for developing research about the
quality of teaching due to the vast amount of information that it can retrieve
[9]. However, many traditional tools used for teacher evaluation are designed to
qualify teachers with respect to general domains such as planning, instruction,
or assessment. This has generated a need for new instruments which are able to
account for particular teaching practices like posing active learning instances or
generating a positive classroom climate [17].

Regarding the observation of Science, Technology, Engineering, and Mathe-
matics (STEM) lessons, one widely used instrument is the Classroom Observa-
tion Protocol for Undergraduate STEM (COPUS) [22]. COPUS aims to fulfill
three objectives: characterizing the general state of teaching, providing feedback
to instructors who desire information about how they and their students spend
class time, and identify faculty professional development needs. Although this
tool was developed for observing undergraduate STEM lessons, it has also been
proven to be suitable for analyzing teaching practices in middle and high school
[2]. Besides, since COPUS only focuses on teachers and students’ plain actions
without judging the cognitive level of the activities, and because these actions
are also present in elementary school environments [23], we deemed it sufficient
for our classification purposes. Moreover, one of the advantages of this tool is
the minimal amount of training time that observers needs to ensure high values
of Inter Rater Reliability when classifying teacher and student actions, which is
around 1.5 h of training [22].

Nonetheless, despite the advantages of COPUS, the observation procedure
presents several detriments. First, the observer effect affects teachers’ develop-
ment of a lesson, making the observation procedure biased [20], [18]. Second,
since observers need to watch the whole lesson, potentially multiple times, to
annotate it, this procedure becomes heavily time consuming. In addition, even
when using validated instruments, multiple observers are required to achieve
high reliability for a single lesson [3]. Third, the observers need to go through a
training period before using this tool, which on top makes the procedure inher-
ently expensive. These considerations make traditional classroom observation
unfeasible for analyzing large volumes of lessons or providing teachers timely
and continuous feedback.

The observation procedure is usually accompanied with video or audio record-
ings. Considering this, many researchers have tried to automate the analysis of
teachers’ talk using machine learning approaches and features extracted from
these recordings. For example, [25] used the Learning Environment Analysis
(LENA) system [8] and a Random Forest (RF) model to classify elementary
school recordings as teacher lecturing, whole-class discussion, and student group
work. [7] used linguistic, acoustic, and prosodic features in combination with
multiple supervised models to automate the detection of teacher questions. [19]
developed an automated model for decibel analysis using decision trees and iden-
tified different teaching patterns related to active learning situations by analyzing
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the mean volume and its standard deviation along the lessons. [5] used log Mel
filterbanks along with the signal energy to train several Neural Networks for the
task of labelling segments of the lessons as single voice, multiple voice, no voice
or noise. Later, [16] proposed a multimodal attention mechanism for recognizing
speaker roles (either teacher or student) in classrooms that combines speech and
language information.

These studies have shown the potential of Machine Learning methods to
automate the detection of different aspects of teaching. However, many of these
approaches do not classify classroom practices according to a validated proto-
col, or they just focus on discerning whether teachers or students are speaking.
Additionally, most of previous work relies on expensive equipment, which makes
scaling these approaches to a large population of teachers, while giving them
continuous feedback, more difficult. These considerations give rise to our main
research question:

RQ: To what extent can we infer important characteristics of teachers’ prac-
tices using a non-intrusive and scalable multimodal approach?

To answer this question, we studied how to effectively combine separately
proposed acoustic-based and transcription-based approaches to improve their
accuracy and discriminative power, while maintaining their scalability and cost-
effectiveness. The acoustic-based approach consisted on a Random Forest (RF)
model that used the mean and standard deviation of spectral representations
from recordings to classify the three collapsed COPUS categories (Presenting,
Guiding, and Administration) which are derived from the teacher section of
COPUS [23]. On the other hand, the transcription-based method consisted of a
deep network that is able to extract latent features from lesson transcriptions to
recognize teacher activities.

To combine these approaches, we developed the multimodal learning model
Teacher Activity Recognizer from Transcriptions and Audio (TARTA), a multi-
modal approach that detects the three COPUS collapsed categories. TARTA has
a deep network architecture which is able to obtain latent features from tran-
scriptions, while incorporating descriptive statistics of spectral representations
from audio in an early fusion fashion to detect teacher’s activities. We compared
the performance of TARTA against different baselines including the acoustic-
and text-only approaches, and a late fusion multimodal model of these two.
We applied our methodology to 41 mathematics lessons from 18 fourth grade
teachers. Our results reveal that TARTA outperforms models trained on each
separate source and their late fusion. Moreover, we found that using this app-
roach it is also possible to detect the underrepresented Administration category
in our dataset, while other models systematically reject it. This way, TARTA is
able to automatically capture different teaching practices derived from COPUS
in a cost-effective way. Thus, we expect that our work can be useful for teachers
and stakeholders, as our model is capable of analyzing multiple lessons in short
periods of time in a non-intrusive and effortless way with high accuracy and
discriminative power.
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2 Methodology

2.1 Dataset

Our dataset consists of 41 fourth grade mathematics lessons from low Socio-
Economic Status schools in Chile. The implementation involved a total of 18
teachers, where the number of recordings per teacher varied from one to 11,
while their length ranged from 18 to 77 min. Audio was recorded using Rode
SmartLav+ microphones connected to teachers’ smartphones at a bit rate of
44.1 kHz. Additionally, a smartphone application developed for helping observers
register classroom observations [15] was used by them to annotate teachers’
activities along the lessons according to COPUS protocol in a continuous way.
The observers had a training session on both the app usage and protocol and each
lesson was annotated by one observer. Afterward, each observation was tagged
with the ID of the corresponding recording, its code of the COPUS protocol,
and the timestamps for the beginning and the end, both with respect to the
start of the observation. Later, the original 12 COPUS codes related to teaching
practices were compiled into the four categories proposed by [23]: Presenting,
Guiding/Feedback, Administration, and Other (see Table 2 in [23] for details).
Thus, the initial dataset consisted of 41 recordings corresponding to 34 h of
audio with their respective and synchronized COPUS observations. Due to the
lack of representation of Other (2.3%) in the dataset and because 10 (out of the
12) COPUS codes related to teaching practices were covered by the other three
categories, we decided to drop this category from the following analyses.

2.2 Preprocessing and Feature Engineering

To prepare the data, the 41 lesson recordings were chunked into 15-second seg-
ments, obtaining a total of 8107. Subsequently, text and acoustic features were
extracted for each segment from transcriptions and recordings, respectively.

Text Features. First, to obtain the text features of each segment these were
automatically transcribed using the Google Speech API [1] and synchronized
with the observations. Next, in order to provide the models contextualized infor-
mation, each transcribed segment is concatenated with the 3 previous and 3 next
transcribed segments of the lesson. In the cases where some of the segments in
the context window do not exist (e.g.: at the beginning or end of the lesson)
the context window is filled with the last available one. In this way, the models
were provided a longer input sequence with previous and future context that we
denote XT . This sequence was later tokenized using the BERT tokenizer from
HuggingFace’s [26] Spanish BERT model [4], and padded to a maximum of 120
tokens. Additionally, for each segment in our data set we calculated the number
of words nwords and its relative position r across the transcription.

Acoustic Features. To represent the audio, we calculated two widely used
spectral representations for each segment, which have been considered the state-
of-the-art for several audio processing tasks: a 64-band Mel-scaled spectrogram
and the first 13 components of the Mel Frequency Cepstral Coefficients (MFCC).
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Next, several descriptive statistic are computed along each band of the Mel
spectrogram and each component of the MFCC. Related approaches have been
proven to achieve good performance in similar audio processing tasks [12,19,21].
The statistics include minima and maxima along every band/component; first,
second, and third quartiles; mean and standard deviation; and a vectorization
of the covariance matrix across the different bands/components. Finally, we add
context by concatenating these same features calculated for the previous and
next segments. We denote the set of acoustic features as XA.

Table 1. COPUS categories and examples in our dataset of segments transcriptions
belonging to each category, obtained through Google Speech API.

Category Segment transcription example (translated)

Presenting “Mixed number is made up of a whole number plus a proper
fraction these numbers allow us to express quantities greater
than an integer How it was”

Guiding “Ready you saw that it was easy someone still has doubts
Mat́ıas What happened”

Administration “They have to go for lunch it is 11 o’clock with 2 min that you
have to give away please”

Fig. 1. Mel spectrograms of the segment examples presented in Table 1.

Once the features were calculated, each segment was tagged with boolean
labels corresponding to the COPUS categories by synchronizing the timestamps
of the observations and the recordings at a 15-second resolution. It is important
to mention that one segment can belong simultaneously to more than one cate-
gory, or not belong to any of them. Moreover, the segments that presented none
of the categories were not considered for the models as those should have at least
been marked as Other instances. Therefore, we could not trust these as true neg-
ative samples for any category. Thus, the final dataset consisted of 7682 samples
with positive sample ratios of 30.1%, 63.4%, and 10.7% for Presenting, Guiding,
and Administration. Table 1 and Fig. 1 show examples of transcribed segments
and their respective Mel spectrograms that were classified by the observers as
Presenting, Guiding, and Administration; respectively.
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2.3 Framework

In this work we explored two different techniques for combining multimodal
information: early and late fusion. Since the compiled categories are not disjoint
along the lessons, we formulate this problem as a binary classification problem
for each category: Presenting, Guiding and Administration. Both techniques,
together with unimodal baseline models, are explained with more detail below:

Early Fusion Model. In this approach acoustic (XA) and text features (XT )
are used as inputs for a classification model. Mathematically, an early fusion
model corresponds to a function f̂ such that:

f̂(XA,XT ) = yE (1)

where yE is, again, a score estimating the presence of the COPUS category in the
respective segment. In this work we proposed to model f̂ through a deep network
model to which we refer as Teacher Activity Recognizer from Transcriptions and
Audio (TARTA). TARTA possesses an embedding, encoding and attention layer
that automatically obtain latent futures from the text input features XT , which
are later combined with the acoustic features XA to recognize categories from
the segments. Figure 2 summarizes the procedure for developing and assessing
TARTA’s performance. We give a brief explanation of its layers below:

1. Embedding Layer: This layer maps each token of the tokens sequence
obtained from XT into a high dimensional embedding vector. We initial-
ized this layer with the word embeddings given by Spanish BERT’s [4] first
embedding layer weights (of dimension 768). We set this layer’s weights to be
non-trainable to reduce the number of parameters of the model.

2. Encoder Layer: This encoder reduces the embedding vectors’ dimensionality
from 768 to 10 by applying a linear function modeled by a Single Layer
Perceptron (SLP) with output dimension 10 and linear activation to each of
the previous word embeddings.

3. Attention Layer: This layer performs a soft-selection of the relevant vectors
in the sequence by applying SLP with output dimension 1 and linear acti-
vation to each of output vectors of the encoder layer, and thus obtaining a
sequence unidimensional weights. A softmax layer is applied to this sequence
to obtain a probability distribution, which can be interpreted as the atten-
tion probability of each token of the original text input sequence XT . Later,
a weighted sum of the encoded vectors is performed, where the weight of each
vector corresponds to the respective attention probability. The result is then
a single vector of dimension 10, noted as hT .

4. Batch Normalization Layer: after the action of previous layers, the last
vector is concatenated with the acoustic features XA. Moreover, the respective
number of words nwords and relative position r features are also added at this
point, resulting into the vector [hT ,XA, nwords, r]. Subsequently, this vector
is fed into a Batch Normalization (BN) layer that aims to regularize the model
by re-centering and re-scaling the features [11].
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5. Fully Connected Layers: Once the last vector is passed through the BN,
the output is fed into a Feed Forward Neural Network (FFNN) consisting
of one fully connected layer with 64 neurons, ReLu activation function and
dropout regularization [24] with 0.2 rate, followed by an output layer with
sigmoid activation function. The output corresponds to the score (yE) that
the model gives to an input for belonging to the COPUS category in question.

Lesson
Recordings Segmentation

15-seconds
Segments

Observation
Timestamps

Sychronization Sychronized
Categories

Acoustic
Feature

Extraction

Text Feature
Extraction

Acoustic
Features

Text Features

Model
Training TARTA

Model
Evaluation

Benchmarking
Results

Visualization

Input/OutputProcess
Intermediate
input/output

Fig. 2. Pipeline explaining the procedure for developing TARTA.

Unimodal Baselines. In order to compare the results of our early fusion
model, separate acoustic- and transcription-based baselines were used. A pre-
vious acoustic-based model presented in [21] based on acoustic features and a
RF to which we refer in this work as AUDIO+RF was used for this purpose.
Additionally, a deep network that follows the same architecture of TARTA with
the exception of the acoustic features was also considered. More explicitly, this
model only uses XT , nwords and r as inputs, and differs from TARTA at the BN
layer, in which it concatenates hT only with nwords and r.

We accordingly named this model as Teacher Activity Recognizer from Tran-
scriptions (TART). Furthermore, we used a BERT model [6] fine tuned for text
classification with input XT and BOW+LR, a bag-of-words and Logistic Regres-
sion (LR) approach with input XT as unimodal transcription-based baselines.

Late Fusion Model. This approach consists in using score outputs from an
acoustic- and a transcription-based models as features for predicting the presence
of COPUS categories. More precisely, let yA and yT be the score outputs of
previously trained acoustic- and transcription-based models respectively, for a
particular segment and COPUS category. A late fusion model corresponds to a
function f such that:

f(yA, yT ) = yL (2)

where yL is another score estimating the presence of the COPUS category in the
respective segment. In this work we used AUDIO+RF [21] to obtain the acoustic-
based score outputs yA, and TART for obtaining the transcription-based score
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outputs yT , as well as a LR for modeling f . We called this late fusion model
Late-LR and we used it as a multimodal baseline.

3 Results

3.1 Benchmarking of the Different Models

To train and evaluate our models, we partitioned our data set in three sections:
training, validation and test sets, selecting the target values according to the
COPUS category we aim to predict. As the test set, we selected two teachers,
one male and one female, each one with only one recording in our dataset. This
way no other lecture of these teachers is present in the training or validation
set. We made this to avoid biasing the models on a particular teacher’s behav-
ior and evaluating the models’ generalization power on unseen teachers. For the
validation set we randomly selected one of the remaining lectures, while for the
training set we used all the rest. In total, the training set consisted in 7185
instances, while the validation and test sets in 153 and 344 instances respec-
tively. Next, we trained TARTA with binary cross-entropy as a loss function. In
addition, we used an early stopping regularization method, monitoring the loss
on the validation set during the training process. On the other hand, the late
fusion model was trained using training and validation sets through a 10-fold
stratified cross-validation for hyper-parameter tuning [14]. Finally, we looked for
a threshold level t so that any instance with a predicted score above this level
(yscore ≥ t) will be considered as a positive prediction, whereas all instances
with a lower predicted score (yscore < t) will be considered negative predictions.
Using the model’s scores over the training and validation set, we determined an
optimal threshold topt which maximizes the accuracy over these sets through
a grid search. This same threshold level was used for the test set predictions
to obtain the accuracy, precision and recall metrics for each COPUS category.
Table 2 shows the performance metrics of these models over the test set. Results
show that TARTA outperforms all other models in AUC and accuracy across the
three categories, while obtaining relatively high precision and recall values. Par-
ticularly, for the underrepresented Administration category, TARTA achieved
high AUC, precision and recall values, while most of other models are not able
to effectively recognize this category (see Fig. 3 for a graphical intuition).

3.2 Prediction Score Curves

Figure 3 illustrates the scores of TARTA for the first lesson in our test set, as well
as the scores of AUDIO+RF, TART, and Late-LR. In particular, Fig. 3c shows
that TARTA’s scores for Administration presents peaks at the beginning and at
the end of the lesson, where this category was observed. In contrast, other models
predict nearly constant scores along the lesson. This illustrates the high AUC of
TARTA (0.95) compared to other models. Moreover, Fig. 3a represents how the
multimodal approaches (TARTA and Late-LR) outperform separate acoustic-
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Table 2. Performance metrics (AUC: Area Under Curve, Acc: accuracy, P: Precision,
R: Recall) for each category over the test set.

Model Presenting Guiding Administration

AUC Acc P R AUC Acc P R AUC Acc P R

TARTA 0.93 0.88 0.64 0.86 0.92 0.88 0.93 0.90 0.95 0.96 0.50 0.60

Late-LR 0.92 0.88 0.69 0.77 0.90 0.83 0.97 0.81 0.69 0.96 0.00 0.00

TART 0.88 0.81 0.52 0.78 0.90 0.78 0.97 0.73 0.64 0.96 0.00 0.00

BERT 0.81 0.78 0.47 0.70 0.83 0.69 0.94 0.64 0.66 0.94 0.00 0.00

BOW+LR 0.68 0.74 0.40 0.57 0.68 0.70 0.87 0.71 0.55 0.94 0.18 0.13

AUDIO+RF 0.88 0.86 0.52 0.78 0.81 0.83 0.87 0.91 0.61 0.96 0.00 0.00

and transcription-based models in Presenting. In fact, TARTA’s and Late-LR’s
scores are generally higher than those of TART and AUDIO+RF during the
observed blocks of the category, while being relatively lower after minute 30,
where Presenting was not observed. Again, this is reflected on the high AUC
scores of multimodal models (over 0.92) compared to the rest.

4 Discussion

In summary, we have presented the development and assessment of TARTA, a
multimodal model that combines acoustic features and teachers’ talk transcrip-
tions to classify their activities into three collapsed categories (Presenting, Guid-
ing and Administration) from the COPUS protocol. In particular, we have shown
that our model is able detect these categories with high accuracy and discrimi-
native power (over 0.88 of accuracy and 0.92 of AUC), outperforming acoustic-
and text-only models. TARTA can also recognize an underrepresented category
(Administration), while other models systematically reject it. In addition, we
have shown that a simple late fusion approach, such as Late-LR, also achieves
better performance than separate acoustic- and transcription-based models.

Nonetheless, our approach is not exempt of limitations. One important caveat
we found it was the limited amount of annotated data available to build a Deep
Network model like TARTA, which makes it difficult to accurately estimate its
generalization potential as in [19] or [5]. However, we carefully selected a test set
to estimate the potential of TARTA to classify unseen teachers. Furthermore, we
think on applying the presented method to other educational levels and STEM
subjects as future research. In addition, we seek to explore other multimodal
approaches for teacher activity recognition, such as attention mechanisms, as
they have been shown to achieve high performance in a coarser task [16].

Finally, our work sets forth two key contributions. First, our models are
trained using annotations from a validated protocol, which allows us to classify
different teacher activities instead of detecting only their voices or their students’.
Secondly, our approach only relies on inexpensive lavalier microphones connected
to teachers’ smartphones, which makes it cost-effective and feasible for large
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Fig. 3. Prediction scores of our models for each category in the first lesson of the test
set. Blue segments indicate the presence of the category according to the observer.
The red line indicates the evolution of TARTA’s score along the lesson, while dashlines
correspond to other models. (Color figure online)

scale studies and processing large amounts of data. We expect this work can
serve in the future as a tool for teachers to get timely and continuous feedback
regarding their time management during the lessons, but also to a variety of
stakeholders and researchers who would like a quick general view about how
teachers distribute time according to particular practices.
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Abstract. Automatic classifiers of educational forum posts are essen-
tial in helping instructors effectively implement their teaching practices
and thus have been widely investigated. However, existing studies mostly
stressed the accuracy of a classifier, while the fairness of the classifier
remains largely unexplored, i.e., whether the posts generated by a group
of students are more likely to be correctly labeled than those generated
by other groups of students. Undoubtedly, any unfairness based on stu-
dent performance, sex, or other subjective views can have a detrimen-
tal effect on a student’s learning experience and performance. There-
fore, this study aimed to assess the algorithmic fairness of six popu-
lar models used in building automatic classifiers of educational forum
posts. Here, we measured the algorithmic fairness displayed (i) between
students of different sex (female vs. male) and (ii) between students of
different first languages (English-as-first-language speakers vs. English-
as-second-language speakers). Besides, we investigated whether a classi-
fier’s fairness could be enhanced by applying data sampling techniques.
Our results demonstrated that: 1) traditional Machine Learning models
slightly outperformed up-to-date Deep Learning models in delivering fair
predictions; 2) students of different first languages faced more unfair pre-
dictions than students of different sex, and most of the classifiers tended
to favor English-as-first-language students; and 3) with equal numbers
of posts generated by different groups of students in the training data,
the fairness of a classifier could be greatly enhanced.
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1 Introduction

Students in online courses are afforded opportunities to earn university cre-
dentials while learning remotely in a self-directed manner. Unlike traditional
in-person classes, regular communication between course instructors and indi-
vidual students in online courses is often sparse [26,27], despite the documented
benefits of instructor’s presence [23]. For this reason, many students in online
classes feel deprived of necessary guidance and support [22]. This often hinders
students’ satisfaction and learning performance in an online course [24]. Com-
munication among students themselves in an online learning environment has
been considered a remedy for an instructor’s absence [47,49]. A sense of com-
munity that students build in online discussion forums boosts their engagement
and satisfaction in a course [36,43,49]. Importantly, productive forum discus-
sions that unfold throughout a semester have been shown to benefit learning
gains [44]. It is, therefore, critical for online students to create course-relevant
discussion posts. To this end, educators need to continuously monitor discussion
boards, identify posts that require instructors’ urgent attention (e.g., posts ask-
ing questions related to the course learning content) and provide timely support
to students. This is, however, a time-consuming task in many online courses,
given an abundant number of posts typically created on discussion boards.

To address this challenge, educational researchers have developed a number
of classifiers to automatically identify content-relevant and content-irrelevant
discussion posts (whether the post content is related to knowledge taught in
a course). To our knowledge, both traditional Machine Learning (ML) models,
e.g., Random Forests, and up-to-date Deep Learning (DL) models, e.g., Long
Short-Term Memory Neural Network (LSTM), have been exploited for this clas-
sification task [2,6,9,13,17,18,21,42,50,52,54]). While many of these models
have demonstrated attractive classification accuracy, none of them has reported
classification performance evaluated relative to different demographic groups in
the student sample. Given the raising concerns about algorithmic unfairness of
predictive models in educational research [19] and widely documented discrep-
ancies in retention between female and male students, particularly in STEM
courses [16,40], and cognitive and social barriers that many English-as-second-
language speakers face when communicating about topics taught in English
[20,32,34,39], we posit that the development of more inclusive educational tech-
nologies grounded in fair classification models that perform equally well across
all groups of students, including their sex and first-language backgrounds, should
be an important next step in the educational research agenda.

With this in mind, this study set out to assess not only the accuracy but
also the fairness of popular models used to construct automatic classifiers of
educational forum posts, including four ML models and two DL models. In par-
ticular, the fairness of these models was measured by distinguishing students of
different sex and first-language backgrounds. Through extensive evaluations, we
demonstrated that classifiers of educational forum posts were prone to algorith-
mic unfairness in classifying posts created by students of different sex and first
languages. To address model unfairness, we explored the viability of equal sam-
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pling of the observed demographic groups in the model training process. Our
results indicated that most of the models improved their fairness, suggesting
that equal sampling can be an important step in the future development of fair
classifiers of educational forum posts.

2 Related Work

Educational Forum Post Classification. Research efforts in predictive mod-
eling for educational forum posts have generally relied upon traditional ML or DL
models. Among traditional ML models, researchers have frequently used Random
Forests [2,5,18,30,35,37], Support Vector Machine (SVM) [5,13,17,28,35,38,42,
53], Logistic Regression [1,2,35,52,56,58], and Näıve Bayes [4,5,35]. It should
be noted that these models were often based on features engineered by experts.
For instance, when applying Random Forests to classify forum posts by levels of
cognitive presence, researchers in [18] designed 87 different features as proxies
for cognitive presence, e.g., the length of a post, the semantic similarity between
posts, number of replies a post received, and frequency of words indicative of dif-
ferent psychological processes. All together, these features enabled the Random
Forest classifier to achieve a Cohen’s κ score of 0.72. As another example, Cui et
al. [13] engineered post features including unigrams and bigrams of a post text,
the number of views and votes a post attracted, part-of-speech tags; they used
these features to create an SVM classifier to distinguish content-relevant posts
from content-irrelevant ones to assist instructors to identify posts that require
urgent attention in MOOC discussion forums. With the SVM classifier, about
86% of forum posts were accurately identified.

In recent years, driven by the great success achieved by DL models in tack-
ling various prediction tasks, a growing number of researchers has opted for DL
models to classify educational forum posts [3,9,11,12,21,50,54]. Compared to
traditional ML models, DL models do not require domain experts to carefully
design features as input. Instead, DL models can take the raw text of a post
as input and make use of the powerful affordances of deep neural networks to
implicitly capture features that are important to correctly classify a post. For
example, one of the pioneering studies that applied DL models was reported
in [50]. Specifically, the authors in [50] developed ConvL, a DL classifier that
identifies different levels of urgency, confusion, and sentiment in educational
forum posts. The classifier development involved two important steps. Firstly,
the researchers applied CNN to derive contextual features related to a post and,
secondly, used LSTM to capture sequential relationships between these features
for classification. Evaluated on the dataset with more than 30 thousand edu-
cational forum posts, ConvL achieved accuracy between 81% and 87%. Other
relevant studies that applied DL models for post classifications tasks, typically,
relied on CNN, LSTM, or variants of these two models [54]. Moreover, a recent
study reported in [12] demonstrated that, even when the size of annotated data
is insufficient to support the training of DL models, pre-trained language models,



384 L. Sha et al.

e.g., BERT [14], could be exploited to empower those DL models for post clas-
sification. Specifically, the researchers in [12] showed that, by simply coupling
only one classification neural network layer on top of the output of BERT, the
classification accuracy could be boosted up to to 92%. Though researchers have
achieved great advances in constructing accurate classifiers of educational forum
posts, it remains largely unknown whether these classifiers generate equally accu-
rate predictions to different groups of students. To our knowledge, our study is
the first to investigate the problem of fairness in constructing post classifiers. To
this end, we assessed the capability of a total of six different models in generating
both accurate and fair classification results for different groups of students, which
were created as per their sex (female and male) and first-language background
(English-as-first-language vs English-as-second-language speakers).

Fairness-Aware Machine Learning Models in Education. As witnessed
by the establishment of the ACM Conference on Fairness, Accountability, and
Transparency in 2018, one of the recent foci in the broader ML community is
to assess algorithmic unfairness of different intelligent systems and investigate
approaches for alleviating the negative impacts brought by such algorithmic
unfairness. In the educational research field, a few studies have been carried out
to investigate the fairness of existing predictive modeling techniques used to sup-
port educational practices [15,19,48,55]. Typically, these studies have focused on
evaluating the fairness of predictive models that modeled student performance
[19,25,31]. For example, Gardner et al. [19] proposed the Absolute Between-ROC
Area (ABROCA) metric to measure the unfairness of a predictive model as its
differential prediction accuracy between different groups of students. Compared
to other group fairness metrics (e.g., a demographic parity measure), ABROCA
was designed based on equalized odds which ensures equal false and true posi-
tive rates among baseline and comparison classes, and therefore avoids individual
unfair outcomes in the group fairness measure. By applying ABROCA, Gard-
ner et al. [19] evaluated the unfairness of five mainstream models developed to
predict the likelihood of a student to complete a Massive Open Online Course
(MOOC). In addition to MOOC education, a group of similar studies has been
conducted in other educational settings like higher education [25,29,31,57] and
virtual learning environments [41]. In a different vein, Doroudi and Brunskill
[15] investigated whether the existing models used for knowledge tracing gener-
ate inequitable results for different groups of students and found that the additive
factor model was superior to the Bayesian knowledge tracing algorithm and the
N-Consecutive Correct Responses heuristic algorithm in delivering fair predic-
tions. Besides, Loukina et al. [32] first discussed different types of fairness that
could be applied to evaluate ML models used in educational research, and then
utilised both simulated and real datasets to depict how models used for auto-
mated scoring of English language proficiency tests might disadvantage students
whose first language was not English.
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3 Method

3.1 Dataset

The dataset used in this study comprised 3,703 randomly-selected discussion
posts created by students in the Learning Management System Moodle at
Monash University. The topics covered by these posts included arts, design,
business, economics, computer science, and mechanical engineering. Here, we
differentiated posts as content-relevant (e.g., “What is poly-nominal regres-
sion?”) and content-irrelevant (e.g., “When is the due date to submit the sec-
ond assignment?”). All posts were first manually labeled by a junior teaching
staff and then reviewed by two senior teaching staff to ensure the reliability
of the derived labels. The dataset contains 2,339 (63%) content-relevant posts
and 1,364 (37%) content-irrelevant posts. Additionally, we obtained for each
post a student’s demographic information, i.e., sex (female or male) and first
language (any language). Inspired by [32], which demonstrated that English-as-
second-language speakers could be disadvantaged by algorithms used for assess-
ing their learning performance, we transformed the first language categorical
variable to a binary form, i.e., English-as-first-language speakers vs. English-as-
second-language speakers. The descriptive statistics of the dataset are given in
Table 1, based on which we can observe that female students tended to generate
more elaborated posts than male students and, similarly, the posts generated by
English-as-first-language students were likely to compose more words than those
generated by English-as-second-language students.

Table 1. The descriptive statistics of the dataset used in this study. The columns
Male, Female, First language, and Second language show the number of forum
posts generated by students who are male, female, English-as-first-language speakers,
and English-as-second-language speakers, respectively.

All Male Female First
language

Second
language

# Posts 3,703 1,478 2,225 1,585 2,112

# Words 485,737 171,768 308,087 230,806 254,931

# Avg. words/post 131.39 116.77 138.90 145.62 120.71

# Unique words 268,824 97,004 170,171 125,297 143,527

# Avg. unique words/post 72.71 65.94 76.72 79.05 67.96

3.2 Model Selection

As summarized in Sect. 2, both traditional ML models and up-to-date DL models
have been exploited to construct automatic classifiers of educational forum posts.
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Therefore, to enable a comprehensive evaluation, we selected the representative
models from both of the two categories in this study.

Traditional ML Models. Four traditional ML models were evaluated in this
study, namely Näıve Bayes, SVM, Random Forests, and Logistic regression.
These models have been widely applied in the context of educational forum
classification in previous studies [2,10,18,33,53]. Relying upon an extensive fea-
ture engineering, these models achieved high classification accuracy. To ensure
the ML models in our study were comparable with models reported in previous
studies, we replicated the feature engineering process used in previous models,
including (i) the top-1000 most frequent unigrams and bigrams contained in the
discussion posts [2,13,38,46,51,52,58]; (ii) the length of a post [35,42,53,58]; (iii)
the TF-IDF (term frequency-inverse document frequency) score related to each
selected unigram [2,5]; (iv) the frequency of words indicating different psycho-
logical processes along with each post (e.g., affects and cognitive process), which
were extracted with the aid of LIWC [2,10,18,30,33,37,53]; (v) scores extracted
by applying Coh-Metrix to indicate text coherence, linguistic complexity, text
readability, and lexical category [30,37], and (vi) the LSA score indicating the
average sentence similarity within a post [30]. In total, 3180 features were engi-
neered as input to the four traditional ML models.

DL Models. Existing studies based on DL models typically made use of two
types of deep neural networks, i.e., Bi-directional LSTM (Bi-LSTM) [9,21,54]
and CNN-LSTM [21,50,54]. However, it should be noted that the training of
these complex neural networks often requires a large amount of annotated data
(tens of thousands at least). In recent years, the development of pre-trained lan-
guage models (e.g., BERT [14]) enabled researchers to exploit the power of these
complex neural networks even when there is only a small amount of annotated
data available. In more details, a widely-adopted method is to couple a task
model (e.g., Bi-LSTM and CNN-LSTM in our case) on top of the output layer
of BERT and then use the annotated data to co-train BERT and the task model
as a whole to produce the classification results. Given the limited number of
annotated posts in our dataset, we also used BERT to empower Bi-LSTM and
CNN-LSTM for our classification task.

3.3 Evaluation Metrics

Accuracy Metrics. In line with previous studies on constructing automatic
classifiers of educational forum posts, we adopted the following four metrics to
measure the prediction accuracy of a classifier: Accuracy, Cohen’s κ, AUC, and
F1 score.

Fairness Metrics. To our knowledge, [19] was the first study which attempted
to investigate appropriate metrics to evaluate the fairness of predictive models in
the field of educational research. Specifically, a metric called Absolute Between-
ROC Area (ABROCA) was presented in [19] to measure the prediction unfairness
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of a predictive model against different demographic groups, which is calculated
by finding the definite integral between the ROC curves of the two observed
groups. Noticeably, ABROCA has two advantages: 1) ABROCA accounts for
performance difference across the entire range of thresholds, which is superior
over other fixed-threshold approaches; and 2) ABROCA can be easily computed
from prediction results with no need for collecting additional data or computing
additional metrics. Therefore, we also used this metric in our study. Notice here,
the lower an ABROCA value is, the less algorithmic unfairness a predictive
model has.

3.4 Study Setup

Text Pre-Processing. We pre-process the text contained in a post by perform-
ing the following steps: 1) removing invalid characters; 2) removing stopwords;
and 3) applying word stemming with the help of the Python package NLTK [8].

Model Implementation. We used the Python package scikit-learn to imple-
ment the traditional ML models. To develop DL models, we first generated text
embeddings by using the tool Bert-as-service1. Next, we implemented CNN-
LSTM and Bi-LSTM by replicating model parameters reported in previous stud-
ies [9,21,50,54]. In CNN-LSTM, we used 128 convolution filters with the width
of 5. For both CNN-LSTM and Bi-LSTM, (i) we set the number of hidden units
used in the final classification layer to 1 and L2 regularization lambda to 0.001,
and utilised sigmoid as the activation function; (ii) the LSTM layer was set to
have 128 hidden states and 128 cell states; (iii) we set the batch size to 32 and
the maximum input text to 512; (iv) we applied the one cycle policy for training
and set the maximum learning rate to 2e-05; (v) the dropout probability was
set to 0.5; and (vi) we opted for 50 maximum training epochs with shuffling
performed at the end of each epoch together with early stopping mechanism.

Model Training. Prior to training a model, we first randomly selected 20%
of the available posts as the testing data, and then prepared the training data
from the remaining posts. It is worth noting that, as reported in Table 1, the
number of posts generated by female and male students are unequal (same for
those generated by students with English as first/second language). Previous
studies (e.g., [55]) suggested that the algorithmic unfairness of a predictive model
may be partially attributed to the unequal amount of training data related to
different demographic groups. Therefore, we trained the six classifiers with two
different training data samples, namely (i) original training sample, i.e., all of
the remaining posts (after selecting the testing data) were used as the training
data; and (ii) equal training sample, i.e., an equal number of posts for each
demographic group were randomly selected from the remaining posts and then
combined as the training data. It should be pointed out that the same testing
data was used to evaluate classification performance in the two training data
samples, and thus the results were comparable. While training the models, 10%
1 https://github.com/hanxiao/bert-as-service.

https://github.com/hanxiao/bert-as-service
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of the training data was randomly selected as the validation data and the best
model was selected based on the error reported in the validation data.

4 Results

Results on Original Training Sample. Table 2 presents the performance of
the six classifiers when using original training sample. Based on Table 2, we
can have several important observations. When measuring the accuracy of the
classification results, DL models were universally superior to traditional ML
models, which was in line with the findings presented in previous works [11,54].
However, when scrutinizing the fairness of these models, traditional ML models
tended to slightly outperform DL models. For instance, SVM displayed lowest
level of unfairness to students of different sex and Logistic Regression achieved
the best level of fairness towards students of different first-language backgrounds.
These findings suggested that prediction accuracy should not be the only cri-
terion when selecting a predictive model, and more importantly, the fairness of
the model should also be evaluated and taken into account. Overall, CNN-LSTM
achieved the best prediction accuracy (ranked 1st in both AUC and Cohen’s κ)
while maintaining acceptable level of fairness to different demographic groups
of students (ranked 3rd in both ABROCA (Sex) and ABROCA (Language)). In
fact, this implied that a strict accuracy-for-fairness trade-off was not evident in
our study. Due to the limited space, the results of Accuracy and F1 score are
omitted here, though similar findings can be drawn on those results.

Table 2. Results on original training sample. The top 3 best results are in bold.

Models AUC Cohen’s κ ABROCA (Sex) ABROCA (Language)

Random Forests 0.763 0.525 0.038 0.033

Näıve Bayes 0.752 0.502 0.062 0.084

Logistic Regression 0.758 0.516 0.014 0.032

SVM 0.786 0.577 0.007 0.069

CNN-LSTM 0.795 0.584 0.014 0.063

Bi-LSTM 0.786 0.565 0.010 0.068

As showed before, there was no indication that DL models produced fairer
results than the traditional ML models did. This was not expected given that fea-
ture engineering in traditional ML models involved more manual work than the
automatic embedding generation in DL models, and therefore might be more sus-
ceptible to bias. This indicates that feature engineering may be only marginally
related to the unfairness in classification models. However, we also note that
in this study we utilised the features extensively engineered in previous stud-
ies to address the same classification task, which may have reduced bias. We
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also observe that the mean ABROCA value for sex (0.024) is only about a half
of the mean ABROCA value for language (0.058), which means that the lan-
guage group (English-as-first-language vs. English-as-second-language speakers)
had far more unfair prediction than the sex group. This indicates that linguistic
difference of different demographic groups of students may play an important
role in improving model fairness. In Fig. 1, we also note that, except for Näıve
Bayes, all other models provided better classification performance (measured
by ROC) to English-as-first-language students. One possible explanation is that
these models relied heavily on students’ English proficiency to make accurate pre-
diction and therefore posed strong unfairness to students whose first language
was not English. Also, this may be partially due to the fact that popular feature
and embedding extraction tools were typically trained by using standard English
corpus (e.g., LIWC and BERT). Therefore, it may be worthy allocating further
research efforts to scrutinize whether there exist any algorithmic unfairness in
these tools and further improve these tools.

Original training sample vs. equal training sample. In Table 3, we sum-
marized the results of using equal training sample. While the prediction accuracy
remained comparable to those of using the original training sample, most of the
classifiers (except for Logistic Regression) became fairer in both of the Sex and
Language groups after including an equal number of posts related to each demo-
graphic group in the training data. In particular, Näıve Bayes had over 61%
reduction in ABROCA between male and female, which shows a non-trivial role
of data sampling in reducing the algorithmic unfairness of classification models.
Therefore, we note that future model training should take demographic balanc-
ing into account to encourage fairer classification.

Table 3. Results on equal training sample. The top 3 best results are in bold.

Models Sex Language

AUC Kappa ABROCA AUC Kappa ABROCA

Random Forests 0.760 0.518 0.030 0.773 0.545 0.023

Näıve Bayes 0.763 0.531 0.024 0.766 0.537 0.052

Logistic Regression 0.783 0.568 0.003 0.775 0.547 0.043

SVM 0.788 0.581 0.004 0.772 0.548 0.012

CNN-LSTM 0.792 0.579 0.009 0.802 0.601 0.062

Bi-LSTM 0.791 0.575 0.007 0.784 0.559 0.066

5 Discussion and Conclusion

This paper investigated both the accuracy and fairness of six popular auto-
matic classifiers of educational forum posts. For each classifier, we evaluated the
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(a) Näıve Bayes (b) SVM (c) Logistic Regression

(d) Random Forests (e) CNN-LSTM (f) Bi-LSTM

Fig. 1. ROC plots by first-language backgrounds (i.e., English-as-first-language vs.
English-as-second-language speakers) on original training sample.

algorithmic fairness between students of different sex and first languages. Our
results showed that while classification accuracy varied slightly, the difference of
the model unfairness (measured by ABROCA) was more evident. Besides, we
observed that, compared to the posts generated by English-as-second-language
students, posts generated by English-as-first-language students were overwhelm-
ingly predicted with higher accuracy by most of the classifiers (except for Näıve
Bayes). Our results indicated that existing classifiers and feature engineering
approaches, originally developed to process standard English, might be prone to
discrimination against English-as-second-language students. This finding sup-
ported the recent initiatives in the NLP research community to expand the
language varieties in the training text corpora to mitigate biases that emerged
when researchers designed a prediction model in one context (e.g., texts written
by English-as-first-language users) and applied it in another context [7,45]. As
an attempt to address model unfairness, we applied equal sampling to model
training. The results were promising with most of the models showing improved
fairness. Since it did not require a complex alternation to existing model training,
equal sampling can be incorporated with a minimal cost in the future versions
of educational forum post classifiers.

Implications. Our findings suggested that a strict performance-for-fairness
trade-off is not evident, and by utilising techniques such as equal sampling,
researchers can help alleviate the problem of model unfairness without sacrific-
ing classification performance. Moreover, existing model evaluation should take
fairness metrics into consideration and avoid models that display a high level
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of unfairness. We also note that limited work has been done to evaluate bias in
feature engineering and embedding extraction in educational research. Future
work thus can investigate the possibility of extracting fairer features and evalu-
ating feature fairness before evaluating model fairness, to prevent models from
receiving discriminating input, particularly as this information is usually hard
to detect later in the model implementation. Additionally, pre-trained language
models such as BERT should incorporate a variety of base textual data into their
training sets, rather than just using standard English corpus (e.g., Wikipedia).

Limitations. We acknowledged the following limitations of our study. First, the
analysis involved only one prediction task, i.e., classifying content-relevant and
content-irrelevant forum posts. To further increase the generalizability of our
findings, additional prediction tasks using different datasets need to be investi-
gated. Second, the analysis reported in this paper focused only on two types of
demographic groups of students. In future studies, we will investigate the algo-
rithmic fairness of different models with respect to other demographic groups,
e.g., students of different educational backgrounds and minority students.
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Kloos, C.D.: Sentiment analysis in MOOCs: a case study. In: 2018 IEEE Global
Engineering Education Conference (EDUCON), pp. 1489–1496. IEEE (2018)

36. Morris, L.V., Finnegan, C., Wu, S.S.: Tracking student behavior, persistence, and
achievement in online courses. Internet High. Educ. 8(3), 221–231 (2005)

37. Neto, V., Rolim, V., Ferreira, R., Kovanović, V., Gašević, D., Dueire Lins, R., Lins,
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Abstract. Students learn by teaching others as tutors. Advancement in the theory
of learning by teaching has given rise to many pedagogical agents. In this paper,
we exploit a known cognitive theory that states if a tutee asks deep questions
in a peer tutoring environment, a tutor benefits from it. Little is known about a
computational model of such deep questions. This paper aims to formalize the
deep tutee questions and proposes a generalized model of inquiry-based dialogue,
called the constructive tutee inquiry, to ask follow-up questions to have tutors
reflect their current knowledge (aka knowledge-building activity). We conducted
a Wizard of Oz study to evaluate the proposed constructive tutee inquiry. The
results showed that the constructive tutee inquiry was particularly effective for the
low prior knowledge students to learn conceptual knowledge.

Keywords: Learning by teaching · Deep questions · Teachable agents · Tutor
learning · Knowledge-building ·Wizard of Oz

1 Introduction

Students often learn by teaching others. This type of learning is called tutor learning [1–
10]. Although learning by teaching is impactful for the tutors, some researchers argue
about the consistency and effect size of the tutor learning [3]. Roscoe [11] sought to
understand how the tutors learn in the learning by teaching environment to leverage
the benefits of tutoring more consistently. In one study, Roscoe et al. [12] found that
tutor learning happens when students (who are tutors) engage in instructional activities
like reflecting on their understanding [13], revisiting the concepts, providing correct
and complete explanations to make sense of solution steps [14, 15], and recovering
from their misconceptions or knowledge gaps [15] while tutoring. These instructional
activities are called knowledge-building activities. When students perform knowledge-
building activities to answer a question, those answers are known as knowledge-building
responses that elicit learning [12]. One of our motivations for the current study is to
evaluate the impact of knowledge-building responses on tutor learning in an Intelligent
Tutoring System (ITS) setting.

Students infrequently engage in knowledge-building activitieswhen they act as tutors
in a peer-tutoring environment. Instead of developing their knowledge, students seem
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more inclined to deliver what they already know or directly dictate solution steps with
little elaboration to their tutees [11, 16, 17]. Researchers found that deep tutee ques-
tions made tutors generate more knowledge-building responses while tutoring [16–23].
Although different types of deep tutee questions have been observed, they all agreed that
not all tutee questions are equally helpful for tutor learning. Despite the advancement
in developing effective teachable agents [24–29], a computational model of deep tutee
questions beneficial for tutor learning is yet to be developed.

In the current study, we develop a synthetic tutee that asks questions to promote
tutors’ knowledge-building responses. We hypothesize that letting the synthetic tutee
ask follow-up questions to remind the tutor to provide knowledge-building responses
facilitates tutor learning. For example, the synthetic tutee may ask tutors to elaborate
their shallow response. We shall call this kind of question asking the Constructive Tutee
Inquiry (CTI). We propose a model of CTI for a tutee to ask follow-up questions. This
is the first attempt to model a synthetic tutee’s follow-up questions to facilitate tutor
learning to the best of our knowledge. As an initial step, we evaluate the effectiveness of
CTI through a Wizard of Oz study (WoZ). In the study, a synthetic tutee embedded into
an artificial peer learning environment called APLUS was controlled by a researcher
who manually typed the tutee questions as if a machine generated them. The study
participants were told that the synthetic tutee was artificial intelligence.

In the traditional APLUS (which does not have CTI), students interactively teach
a synthetic tutee named SimStudent [30] to solve linear algebraic equations. In WoZ,
an extended version of the traditional APLUS, called AskMore APLUS, was used.
In AskMore APLUS, a synthetic tutee named Gabby instantiated follow-up questions
according to the CTI. The result showed that the proposed CTI model helped the low
prior students generate more knowledge-building responses, facilitating their learning of
conceptual knowledge. Our contributions are summarized as follows: (1) We propose a
domain-independent Constructive Tutee Inquiry model that encourages tutors to provide
more knowledge-building responses. (2)We present rigorous analysis to understand how
and why Constructive Tutee Inquiry facilitates tutor learning.

2 Related Work

Many researchers have tested the effectiveness of varying tutee prompts in facilitating
tutor learning. Prior studies revealed a controversial impact of explanation prompt on
tutor learning. While some studies found asking for explanation effective [31, 32], some
studies showed that asking a tutor to explain at all times has a detrimental effect on tutor
learning [23, 33, 34]. In another study, Rittle-Johnson et al. [22] argued that despite the
general effectiveness of explanationprompt for improved learning, explanatoryquestions
divide tutors’ attention to different types of information, negatively impacting tutor
learning. These studies highlight that deep tutee questions are more than just asking for
explanations from the tutor.

More recently, Baker et al. [35] found a positive impact of asking contrasting prompts
to draw tutors’ attention towards identifying similarities or dissimilarities between con-
tradictory scenarios on tutor learning. On the contrary, Sidney et al. [36] claimed that
contrasting questions alone on their own was not beneficial for tutor learning; instead, it
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was both the explanation and contrasting prompts that together facilitated tutor learning
[36]. This analysis indicates that any question type alone is insufficient for tutor learning.

Looi et al. [37] investigated the design of the synthetic tutee’s question prompts
to engage the tutors in knowledge-building activities on an online learning environ-
ment named Betty’s Brain. These questions were one-sided questions with no follow-up
regime in case of failure to engage tutors in knowledge-building activities. We hypoth-
esize that deep questions are not just a single one-sided question; rather, it is an accu-
mulation of subsequent follow-up questions on a certain topic. On the other hand, their
proposed method requires the synthetic tutee to be equipped with a complete expert
model, making it a domain-dependent question generation model. Our proposed model
is domain-independent because no path of the CTI algorithm requires specific knowl-
edge about the domain to generate the subsequent follow-up questions. Our model also
does not assume that the synthetic tutee needs to bemore knowledgeable than the tutor to
engage them in knowledge-building activities. Therefore, our model arguably captures
the naturalistic scenarios for tutee inquiries in a classroom setting.

3 The Traditional APLUS with SimStudent

Our study extends the SimStudent project [38], which we call traditional APLUS. Tra-
ditional APLUS is an intelligent learning environment where students (who are tutors)
teach SimStudent how to solve linear algebraic equations. SimStudent learns through
demonstration. When the tutor teaches a step, SimStudent learns generalized production
rules that look like, “if [preconditions], perform [transformation]”. In APLUS, trans-
formation allows four basic math operations: add, subtract, divide, and multiply by a
number. SimStudent keeps adding or modifying the production rules in its knowledge
base according to the tutor’s feedback. Besides demonstrating solution steps, tutors can
interact with SimStudent and give textual explanations using the chat panel. In traditional
APLUS, SimStudent only asks why questions in some particular scenarios. For example,
“Why did you perform [transformation] here?” or “I performed this [transformation]
due to a previously taught production rule. Why do you think I am wrong?”. SimStudent
never follow-up after the tutor’s response to the why questions. Additionally, tutors can
quiz SimStudent anytime they want to check its knowledge status. Quiz topics include
equations with one-step, two-steps, variables on both sides, and a final challenge con-
taining variables on both sides. Traditional APLUS also has resource tabs like problem
bank, unit overview, and worked-out examples for tutors to review at any time.

4 Overview of the Constructive Tutee Inquiry

4.1 Motivation

Prior studies have highlighted that tutors learn most effectively when they engage in
knowledge-building activities [12, 16, 39]. In this paper, we call the tutors’ responses to
the tutee’s questions that required them to engage in knowledge-building activities the
knowledge-building responses (KBR). As an example, suppose the tutee asked, “Why
do we perform a transformation on both sides?”. Tutor’s reply, “An equation is like a
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balanced weight scale. You do the same thing on both sides to keep it balanced at all
times,” is KBR because the tutor provided a complete and correct explanation to make
sense of a solution step, which is a knowledge-building activity.

Roscoe et al. [12] grouped KBR broadly into two categories: elaboration and sense-
making (Table 1). The elaboration response provides extended explanations or novel
examples to clarify a concept of interest. For example, the tutor’s answer “one needs
to undo all the operations performed on the variable term to solve an equation” when
asked how to know an equation is solved is KBR because the tutor provides an extended
explanation to clarify the concept of equation solving. On the other hand, the sense-
making response reflects that the tutor realized their errors or realized new inferences
based on their prior knowledge. For example, the tutor may mention that he has just
learned that “subtracting a positive number is the same as adding a negative number.”

Table 1. A summary of knowledge-building response category and its sub-categories. The types
of prompt Gabby uses as follow-up tutee inquiry is also shown.

KBR category KBR Sub-category Follow-up Tutee Inquiry prompts

Elaboration Providing extended clarification for a
concept of interest

Explanation prompt [Pumping]
“Can you elaborate?”

Providing more examples for
clarification

Example prompt [Pumping]
“I know little about [x], tell me
more?”

Sense-making Realizing own errors or
misconceptions

Error realization prompt [Splicing]
“I acted according to the rule I have
learnt from you. Why am I wrong?”

Realizing new inferences based on
prior knowledge

Inference prompt [Pumping]
“How to convert the unfamiliar form
to the familiar one you’ve taught me
before?”

We hypothesize that when a tutee’s inquiry did not induce the tutors’ KBR, having
the tutee ask a follow-up question will increase the tutors’ chance of committing KBR.
We, therefore, propose Constructive Tutee Inquiry (CTI) as a sequence of follow-up
inquiries to guide the tutor to KBR. CTI consists of an initial tutee inquiry followed by
a chain of follow-up inquiries based on tutors’ responses to the previous inquiry. The
initial inquiries are the same as the ones that SimStudent asks in traditional APLUS.

4.2 Mechanism of the Follow-Up Tutee Inquiry

A follow-up tutee inquiry can be one of the following prompts: (1) explanation, (2)
example, (3) error realization, and (4) inference, as shown in Table 1.

The mechanism of the follow-up tutee inquiry is inspired by how the teacher and
students jointly improve the quality of an answer in the classroom proposed by Graesser
et al. [10]. Teachers follow pumping, splicing and, summarization techniques introduced
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in [10] to improve the quality of their students’ answers. Teacher asking for more infor-
mationwhen students’ answer is not informative or vague is pumping. If students’ answer
is error-ridden, a teacher may split the answer into correct and incorrect parts and ask
for information about the incorrect part, called splicing. Finally, a teacher summarizes
the gathered information to the students, called summarization.

CTI implements pumping, splicing and, summarization to operate the follow-up
tutee inquiries. The follow-up tutee inquiry starts after tutors’ response to an initial tutee
inquiry and ends with the tutee’s summarization. The following algorithm operates the
subsequent follow-up tutee inquiries:

IF [tutor’s response is vague] THEN [use the explanation prompt (which is pump)]
ELSE IF [tutor’s response contradicts with already perceived knowledge] THEN [use
the error realization prompt (which is splice)]
ELSE IF [tutor’s response agreeswith alreadyperceivedknowledge]THEN[use example
generation prompt (which is pump)]
ELSE IF [tutor’s response reveals tutor is stuck] THEN [use the inference generation
prompt (which is pump)]
ELSE [summarize and move to the next scenario]

Figure 1 shows an example ofCTI. It startswith an initial tutee inquiry, like traditional
APLUS. Since the tutor provided a vague answer to the initial tutee inquiry,Gabbypumps
using the explanation prompt. Gabby ends the follow-up tutee inquiry by summarizing
because tutor’s response to the explanation prompt was not vague and did not contradict
any perceived knowledge.

Fig. 1. An example of Constructive Tutee Inquiry

5 Method

This paper explores the following research questions: (1) Does Constructive Tutee
Inquiry (CTI) inspire tutors to generate more knowledge-building responses while
tutoring? (2) If so, do increased knowledge-building responses facilitate tutor learning?

We conducted a Wizard of Oz experiment (WoZ) to gather early-stage evidence of
our proposed Constructive Tutee Inquiry (CTI) effectiveness as a randomized controlled
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trial with two conditions: AskMore APLUS as the experimental and Traditional APLUS
as the control condition. In WoZ, a human researcher controlled Gabby in AskMore
APLUS and manually typed questions according to the CTI model as if a machine
generated them. To save the cost of system implementation, AskMore APLUS was
built as a chat app running on a standard Web browser by mimicking the appearance
of traditional APLUS. We used the same interface to simulate traditional APLUS to
avoid any confounding issue due to the difference in the appearance of the interface
and system interaction. When participants were using simulated traditional APLUS, the
human researcher controlled SimStudent and manually typed questions the same way
SimStudent would ask in traditional APLUS. Participants were redirected to another
screen containing traditional APLUS whenever they clicked the quiz tab in the chat
application. A sessionmanager fed all the tutor demonstrated steps to traditional APLUS
to ensure that the quiz reflects the synthetic tutee’s knowledge status.

5.1 Structure of the Study

30 middle school students (11 male and 19 female) of 6th–8th grade from various middle
schools participated in the study. Participants visited our lab individually and received
$15/h as monetary compensation for their participation.

Participants took a pre-test for 15 min before the intervention. Then they were ran-
domly assigned to one of the conditions ensuring an equal balance of the average pre-test
scores between two conditions. 16 participants were assigned to AskMore and 14 to the
Traditional APLUS condition. A two-tailed unpaired t-test on the pre-test score con-
firmed no condition difference between the mean pre-test scores;MAskMore = 9.9 ± 5.4
vs. MTraditional = 10.6 ± 4.1; t(28) = −0.44, p = 0.66. Participants watched a 10-min
video tutorial on the given intervention before using the assigned app. In the video,
participants were informed that their goal was to have SimStudent / Gabby pass the
quiz. A single intervention session took about 90 min, depending on how quickly the
participants achieved their goals. Most of our participants (23 out of 30) came in for the
second-day intervention session. Only 18 out of 30 participants met the goal of having
their synthetic tutee pass the quiz: 10 for AskMore and 8 for Traditional APLUS. Our
data analysis considered all 30 participants irrespective of their synthetic tutee pass the
overall quiz. Upon completion of the intervention, participants took 15min post-test. The
tutoring sessions were audio and video recorded, and students were asked to think aloud
in both conditions. All interface actions taken by participants and the tutee inquiries and
participant responses were logged.

5.2 Measures

The pre- and post-test questions were isomorphic. Both pre- and post-tests consist of
2 tests: (1) The Conceptual Knowledge Test (CKT) contains 9 questions - 2 multiple
choice questions and 7 single-choice questions that address various misconceptions of
linear algebraic equation solving. An example of a single-choice question that addresses
the misconception of zero while solving equations is “The equation 7x + 14 = 0 is
same as 7x = 14 because the RHS is 0” with Agree/Neutral/Disagree as options. (2)
The Procedural Skill Test (PST) contains 10 questions – solving one-step (1 question),
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two steps (3 questions), and with variables on both sides (6 questions) equations. An
example of two steps equation is “Solve for x: 4x + 15 = 3”. The answers were scored
as either 1 for overall correctness or 0 for incorrect or incomplete answers. The highest
score any participants could achieve in CKT is, therefore, 9 and in PST is 10.

The participants entered a total of 4605 responses while tutoring the synthetic tutee.
Two human coders categorized those responses into “knowledge-building” and “non-
knowledge-building” responses. Based on Cohen’s Kappa coefficient, the inter-coder
reliability for this coding showed κ = 0.81.

6 Results

6.1 Test Scores

Table 2 shows a summary of average test scores—overall, procedural skill test (PST),
and conceptual knowledge test (CKT)—both for Traditional and AskMore APLUS.

We ran a mixed design analysis for both CKT and PST with test-time (pre vs post)
as within subject variable and condition (AskMore vs Traditional) as a between subject
variable. There was no condition difference for post-test scores in CKT (MAskMore = 5.9
± 1.8, MTraditional = 6.0 ± 2.0, F(1,28) = 0.30, p = 0.60) and PST (MAskMore = 6.3 ±
3.8, MTraditional = 7.0 ± 2.2, F(1, 28) = 0.14, p = 0.71). However, test-time (pre vs.
post) was a main effect for both CKT (MPre = 4.7 ± 2.1, MPost = 6.0 ± 2.0, F(1,28)
= 9.56, p < 0.01) and PST (MPre = 5.5 ± 3.3, MPost = 6.6 ± 3.1, F(1, 28) = 5.53, p
< 0.05). Tutors in both conditions showed an equal amount of learning from pre to post
tests on both CKT and PST.

Table 2. Average pre- and post-test scores in AskMore and Traditional APLUS condition.

Condition Overall
(pre)

Overall
(post)

PST
(pre)

PST
(post)

CKT
(pre)

CKT
(post)

AskMore 9.9 ± 5.4 12.2 ± 5.3 5.4 ± 3.7 6.3 ± 3.8 4.4 ± 2.2 5.9 ± 1.8

Traditional 10.6 ± 4.1 13.0 ± 3.5 5.6 ± 3.0 7.0 ± 2.2 5.1 ± 2.0 6.0 ± 2.0

An aptitude treatment interaction (ATI) found for the conceptual knowledge test
(CKT). Figure 2 shows a scattered plot with the centered conceptual pre-test score on
the x-axis and conceptual post-test score on the y-axis. In the plot, among those who
scored below average on the pre-test, AskMore tutors outperformed Traditional tutors on
the post-test. We ran a two-way ANOVA with the conceptual post-test as the dependent
variable, conceptual pre-test and condition (AskMore vs. Traditional APLUS) as the
independent variables. The interaction between conceptual pre-test and condition was
statistically significant; F(1, 26) = 5.70, p < 0.05. However, an ATI was not observed
for the procedural skill test. The same two-way ANOVA, as shown above, did not show
a statistically significant interaction term among the procedural pre-test score and con-
dition; F(1, 26) = 0.05, p = 0.83. Tutors with lower prior competency (below-average
pre-test score) learned more conceptual knowledge when using AskMore APLUS than
Traditional APLUS.
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16 datapoints in triangle 
represent AskMore APLUS 
tutors and 14 datapoints in 
circle represent Traditional 
APLUS tutors. There are many 
overlapping datapoints due to 
more than one tutors achieving
the same test scores.
For tutors with the below-
average pre-test score (left on 
the dotted vertical line), 
AskMore tutors outperformed 
Traditional tutors on the post-
test.

Fig. 2. Centered pre- vs. post-test score for CKT between AskMore vs. Traditional tutors.

6.2 Effect of Responding to the Follow-Up Tutee Inquiries

We hypothesized that simply answering more tutee inquiries (regardless it induced
knowledge-building responses or not) facilitated conceptual learning. A simple regres-
sion model with the normalized learning gain on CKT, i.e., (posttest – pretest)/(1 –
pretest), as a dependent variable and the number of inquiries tutor answered as an inde-
pendent variable did not reveal the number of inquiries answered as a reliable predictor
for the learning gain on CKT; F(1,14) = 0.21, p = 0.66. Simply answering more tutee
inquiries did not predict conceptual learning.

6.3 Learning to Generate Knowledge-Building Responses

We investigated if generating more KBR promoted conceptual learning. A regression
analysis fitting the conceptual post-test with the conceptual pre-test and normalized
KBR count confirmed that normalized KBR is a reliable predictor; F(1, 27) = 14.11, p
< 0.01. The regression model suggests that if tutors committed one more knowledge-
building response than the average, they would have ended up with a 1.0% increase in
their conceptual post-test score. However, the equivalent regression analysis suggests
that committing to more knowledge-building responses did not help procedural learning;
F(1, 27) = 1.55, p = 0.22.

Fig. 3. Boxplot of average % knowledge-building responses generated by tutors due to initial
tutee inquiries and follow-up tutee inquiries in both conditions.
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We also found a significant positive correlation between the number of follow-up
tutee inquiries asked and KBR generated by tutors; r = 0.51, p < 0.01. About 24% of
the follow-up tutee inquiries yielded knowledge-building responses.

To further understand the process of generating KBR between the conditions, we
divided total tutee inquiries into twoparts (1) initial tutee inquiries (ITI) and (2) follow-up
tutee inquiries (FTI). ITI was available in both conditions where FTI was only available
in AskMore APLUS. We tagged the KBR generated by AskMore APLUS tutors into
two categories (1) KBR due to initial tutee inquiries (KBR-ITI) and (2) KBR due to
follow-up tutee inquiries (KBR-FTI).

The boxplot in Fig. 3 shows that 12% of the total responses by the AskMore tutors
were KBR, whereas, for the Traditional tutors, it is only 4%. A t-test confirmed that
AskMore tutors had a higher ratio of generating KBR than the Traditional tutors; t(21)
= −4.89, p < .01. The boxplot also revealed that the percentage of KBR-ITI was fairly
equal in both conditions. A t-test confirmed that there was no difference between the
average percent KBR (MAskMore = .04, MTraditional = .04) due to initial tutee inquiry
between conditions t(28) = .09, p = .93.

The above observations suggest that the follow-up tutee inquiry resulted in increased
knowledge-building responses (i.e., KBR-FTI) generated by AskMore tutors, which
further facilitated conceptual learning.

Table 3 shows that the AskMore low prior tutors were asked 26 initial tutee inquiries
on average, whereas Traditional low prior tutors were asked 25. A t-test revealed low
prior tutors in both conditions (MAskMore = 2,MTraditional = 3) generated equal number
of KBR-ITI on average; t(9)= 1.60, p= 0.14. However, AskMore low prior tutors were
additionally asked 49 follow-up tutee inquiries on average that resulted in an additional
5 more KBR (i.e., KBR-FTI) during the entire tutoring session.

Table 3. Average number of initial tutee inquiries (ITI) and follow-up tutee inquiry (FTI); and
the average number of resultant KBR due to ITI (KBG-ITI) and KBR due to FTI (KBR-FTI)

Total inquiries Total KBR

Prior Condition ITI FTI KBR-ITI KBR-FTI

Low AskMore 26 49 2 5

Traditional 25 – 3 –

High AskMore 21 30 2 4

Traditional 28 – 2 –

In sum, it was the follow-up tutee inquiries in AskMore APLUS that assisted the low
prior tutors to generate more knowledge-building responses, which in turn facilitated
their conceptual learning.

However, the same finding does not apply to the high prior tutors even though they
generated 6KBRon averagewhile tutoring.We hypothesized that different types ofKBR
(Table 1) affect tutor learning differently. However, the current study was not designed
to collect data to test this hypothesis. A future investigation is needed.
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6.4 Learning to Review Resources

Our study revealed that reviewing the resources positively impacts conceptual learning
regardless of the condition. A regression analysis with conceptual gain as the dependent
variable and resource usage as the independent predictor confirmed that resource usage
is a reliable predictor; F(1, 28) = 4.39, p < 0.05.

Did follow-up tutee inquiries inspire the lowprior tutors to review the resourcesmore,
and did more frequent resource reviews result in better conceptual learning? Follow-up
tutee inquiries inspired the AskMore low prior tutors to review the resource tabs 11.9
times, whereas Traditional low prior tutors reviewed the resources 8.8 times on average
while tutoring. However, the t-test revealed no condition difference in resource review
count; t(13) = −1.01, p = .33. A qualitative analysis of dialog data disclosed that
the low prior tutors in AskMore APLUS tended to review the resources more often
to better answer Gabby’s inquiries. Figure 4 shows an example conversation in which
an AskMore low prior tutor reviewed the resources while answering follow-up tutee
inquiries. The tutor reviewedUNITOVERVIEW, one of the resources available for tutors
in APLUS. Although UNIT OVERVIEW does not contain a direct answer to Gabby’s
inquiry, it contains information like “To solve an equation you need to do mathematical
transformations until at the end you have “x = a number” The tutor elaborated on this
information to come up with a better answer to Gabby’s inquiry.

7 Discussion

Our current data showed an interesting ATI—generating more knowledge-building
responses (KBR) in AskMore APLUS facilitated learning conceptual knowledge only
for the low prior tutors. Our hypothesis that CTI encouraged low prior tutors to generate
more KBR was supported. About 24% of the follow-up tutee inquiries (asked by Gabby)
yielded knowledge-building responses (by the tutors).

Our data also revealed that conceptual learning is highly correlated with reviewing
the resources in the application. We further hypothesized that CTI inspired the low
prior tutors to review the resources more often, which is another reason for the ATI we
found. This hypothesis was not supported. However, conversational data showed low
prior tutors frequently reviewed the resources to come up with a better answer to the
follow-up tutee inquiry.

All these findings apply to the low prior tutors only. The number of KBR did not
have a notable impact on the high prior tutors’ learning. We hypothesize that different
types of KBR (Table 1) have different contributions to learning. The current data do not
allow us to conduct rigorous analysis on this hypothesis due to the limited number of
participants. We aim to investigate this hypothesis at length in our future work.

8 Conclusion

We found that Constructive Tutee Inquiry (CTI) helped low prior students provide more
knowledge-building responses (KBR) by prompting them to elaborate the confusing
explanations and motivating them to commit sense-making reflections. The data also
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Fig. 4. Example of reviewing resources after follow-up tutee inquiries

showed that the KBR further facilitated learning conceptual knowledge. Understanding
how CTI could assist in procedural skills learning is within the scope of our future work.
Our focus of interest also goes to the high prior students who did not get the advantage
of CTI as effectively as the low prior students. We believe that learning by teaching,
with the advanced teachable agent technology, can offer rich learning opportunities to
diverse students. Understanding how KBR types affect tutor learning differently would
allow us to investigate how to make the CTI more effective.
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Abstract. Educational content labeled with proper knowledge compo-
nents (KCs) are particularly useful to teachers or content organizers.
However, manually labeling educational content is labor intensive and
error-prone. To address this challenge, prior research proposed machine
learning based solutions to auto-label educational content with limited
success. In this work, we significantly improve prior research by (1)
expanding the input types to include KC descriptions, instructional video
titles, and problem descriptions (i.e., three types of prediction task), (2)
doubling the granularity of the prediction from 198 to 385 KC labels
(i.e., more practical setting but much harder multinomial classification
problem), (3) improving the prediction accuracies by 0.5–2.3% using
Task-adaptive Pre-trained BERT, outperforming six baselines, and (4)
proposing a simple evaluation measure by which we can recover 56–73%
of mispredicted KC labels. All codes and data sets in the experiments
are available at: https://github.com/tbs17/TAPT-BERT

Keywords: BERT · Knowledge component · Text classification · NLP

1 Introduction

In the math education community, teachers, Intelligent Tutoring Systems (ITSs)
and Learning Management Systems (LMSs) have long focused on bringing learn-
ers to the target mastery over a set of skills, also known as Knowledge Com-
ponents (KCs). Common Core State Standards (CCSS)1 is one of the most
common categorizations of knowledge components skills in mathematics from
kindergarten to high school in the United States with a full set of 385 KCs. For
example, in the CCSS code 7.NS.A.1, 7 stands for 7-th grade, NS stands for
the domain Number system, A.1 stands for the standard number of the code [5].
1 www.corestandards.org.
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Table 1. Examples of three data types, all having the KC label “8.EE.A.1”

Data Type Text

Description Text Know and apply the properties of integer
exponents to generate equivalent numerical expressions

Video Title Apply properties of integer exponents to generate
equivalent numerical expressions

Problem Text Simplify the expression: (z2)2 *Put parentheses around
the power if next to coefficient, for example: 3 × 2=3(x2),
x5=x5

In the process of using KCs, the aforementioned stakeholders often encounter
the challenges in three scenarios: (1) teachers need to know what KCs a stu-
dent is unable to master by describing the code content (S1), (2) ITSs need to
tag instructional videos with KCs for better content management (S2), and (3)
LMSs need to know what KCs a problem is associated with in recommending
instructional videos to aid problem solving (S3).

The solutions to these scenarios typically framed the problem as the multi-
nominal classification–i.e., given the input text, predicts one most relevant KC
label out of many KCs: I(nput) �→ text and O(utput) �→ KC. Prior research
solutions included SVM-based [12], Non-negative Matrix Factorization (NMF)
[6], Skip-gram Representation [17], Neural Network [18] or even cognitively-based
knowledge representation [20]. Existing solutions, however, used relatively small
number of labels (e.g., 39 or 198) from CCSS with the input of problem text
only (similar to Table 1-Row 3) [12,17,18].

Toward this challenge, in this work, we significantly improve existing meth-
ods in auto-labeling educational content. First, based on three scenarios of S1,
S2, and S3, we consider three types of input, including KC descriptions, instruc-
tional video titles, and problem text (as shown in Table 1). Second, we solve the
multinomial classification problem with 385 KC labels (instead of 198). Note
that the problem becomes much harder. Third, we adopt the Task-adpative Pre-
trained (TAPT) BERT [9] in solving the multinomial classification problem.
Our solution outperforms six baselines, including three classical machine learn-
ing (ML) methods and two prior approaches, improving the prediction accuracies
by 0.5–2.3% for the tasks of S1, S2, and S3, respectively. Finally, we propose a
new evaluation measure, TEXSTR, that enables 56–69% more KC labels to be
correctly predicted than using the classical measure of accuracy.

2 Related Work

KC Models. Rose et al. [20] is one of the earliest work predicting knowledge
components, which took a cognitively-based knowledge representation approach.
The scale of KCs it examined was small with only 39 KCs. Later research
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extended the scale of KCs using a variety of techniques. For example, Desmariais
[6] used non-negative matrix factorization to induce Q-matrix [3] from simulated
data and obtained an accuracy of 75%. The approach did not hold when applying
to real data and only got an accuracy of 35%. The two aforementioned studies
shared the same drawback: not using the texts from the problems. Karlovcec et
al. [12] used problem text data from the ASSISTments platform [10] and created
a 106-KC model using 5-fold cross validation via ML approach SVM, achieving
top 1 accuracy of 62.1% and top 5 accuracy of 84.2%. Pardos et al. [17] predicted
for 198 labels and achieved 90% accuracy via Skip-gram word embeddings of
problem id per user (no problem text used). However, Patikorn et al. [18] did
a generalizability study of Pardos et al. [17]’s work and only achieved 13.67%
accuracy on a new dataset. They found that was because Pardos et al. [17]’s
model was over-fitting due to memorizing the question templates and HTML
formatting as opposed to encoding the real features of the data. Hence, Patikorn
et al. [18] removed all the templates and HTML formatting and proposed a new
model using Multi-Layer-Perceptron algorithm, which achieved 63.80% testing
accuracy and 22.47% on a new dataset. The model of Patikon et al. [18] became
the highest performance for the type of problem text. The preceding research is
only focused on problem related content (ID or texts) whereas our work uses not
only the problem text but also the KC descriptions and video title data covering
a broad range of data.

Pre-Trained BERT Models. The state-of-the-art language model BERT
(Bidirectional Encoder Representations From Transformer) [7] is a pre-trained
language representation model that was trained on 16 GB of unlabeled texts
including Books Corpus and Wikipedia with a total of 3.3 billion words and a
vocabulary size of 30,522. Its advantage over other pre-trained language mod-
els such as ELMo [19] and ULMFiT [11] is its bidirectional structure by using
the masked language model (MLM) pre-training objective. The MLM randomly
masks 15% of the tokens from the input to predict the original vocabulary id of
the masked word based on its context from both directions [7]. The pre-trained
model then can be used to train from new data for tasks such as text classifica-
tion, next sentence prediction.

Users can also further pre-train BERT model with their own data and then
fine-tune. This combining process has become popular in the past two years as it
can usually achieve better results than fine-tuning only strategy. Sun et al. [21]
proposed a detailed process on how to further pre-train new texts and fine-tune
for classification task, achieving a new record accuracy. Models such as FinBERT
[16], ClinicalBERT [1], BioBERT [15], SCIBERT [2], and E-BERT [23] that were
further pre-trained on huge domain corpora (e.g.billions of news articles, clinical
texts or PMC Full-text and abstracts) were referred as Domain-adaptive Pre-
trained (DAPT) BERT and models further pre-trained on task-specific data are
referred as Task-adaptive Pre-trained (TAPT) BERT by Gururangan et al. [9]
such as MelBERT [4] (Methaphor Detection BERT). Although DAPT models
usually achieve better performance (1–8% higher), TAPT models also demon-
strated competitive and sometimes even higher performance (2% higher) accord-
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Fig. 1. An illustration of training and fine-tuning process of BASE vs. TAPT

ing to Gururangan et al. [9]. In Liu et al. [16], FinBERT-task was 0.04% higher
than domain FinBERT in accuracy. In addition, TAPT requires less time and
resource to train. In light of this finding, we use the task-specific data to further
pre-train the BERT model.

3 The Proposed Approach

To improve upon existing solutions to the problem of auto-labeling educational
content, we propose to exploit recent advancements by BERT language models.
Since BERT can encode both linguistic structures and semantic contexts in
texts well, we hypothesize its effectiveness in solving the KC labeling problem.
By effectively labeling the KCs, we expect to solve the challenges incurred from
three scenarios in Sect. 1.

3.1 Task-Adpative Pre-Trained (TAPT) BERT

In particular, we propose to adopt the Task-adaptive Pre-trained (TAPT) BERT
and fine-tune it for three types of data. The “pre-training” process is unsu-
pervised such that unlabeled task-specific texts get trained for MLM objective
whereas the “fine-tuning” process is supervised such that labeled task-specific
texts get trained for classification (see Fig. 1). We call a BERT model that only
has a fine-tuning process as BASE. For TAPT, we first initialize the weights from
the original BERT (i.e., BERT-base-uncased model). Then, we further pre-train
the weights using the unlabeled task-specific texts as well as the combined task
texts (see detail in Sect. 4.1) for MLM objective, a process of randomly masking
off 15% of the tokens and predict their original vocabulary IDs. The pre-training
performance is measured by the accuracy of MLM. Once TAPT is trained, we
fine-tune TAPT with the task-specific labeled texts by splitting them into train-
ing, validation and testing datasets and feed them into the last softmax layer for
classification. We measure the performance of fine-tuning via the testing data
accuracy. For BASE, we do not further train it after initializing the weights but
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directly fine-tune it with the task-specific data for classification (see Fig. 1). To
show the effectiveness of the TAPT BERT approach, we compare it against six
baselines including BASE BERT for three tasks:

– Td: to predict K-12 KCs using dataset Dd (description text) based on S1

– Tt: to predict K-12 KCs using dataset Dt (video title text) based on S2

– Tp: to predict K-12 KCs using dataset Dp (problem text) based on S3.

3.2 Evaluating KC Labeling Problem Better: TEXSTR

In the regular setting of multinomial classification to predict KC labels, the
evaluation is done as binary–i.e., exact-match or non-match. For instance, if
a method predicts a KC label to be 7.G.B.6, but its ground truth is 7.G.A.5,
7.G.B.6 is considered to be a non-match. However, the incorrectly predicted label
of 7.G.B.6 could be closely related to 7.G.A.5 and thus still be useful to teachers
or content organizers. For example, in Fig. 2, the input to the classification prob-
lem is a video title “Sal explains how to find the volume of a rectangular prism
fish tank that has fractional side lengths.” Its ground truth label is 7.G.B.6 (7-th
grade geometry KC), described as “Solve real world problem involving ... volume
... composed of ... prisms.” When one looks at three non-match labels, however,
their descriptions do not seem to be so different (see in Fig. 2). That is, all of the
three non-match labels (6.G.A.2, 5.MD.C.5, and 5.MD.C.3 ) mention “volume
solving” through “fine/relate/recognize with operations and concepts,” which is
quite similar to the KC description of the ground truth. However, due to the
nature of exact-match based evaluation, these three labels are considered wrong
predictions. Further, domain experts explain that some skills are prerequisites
to other skills, or that some problems have more than one applicable skills (thus
multiple labels) and they could all be correct.

Therefore, we argue that using a strict exact-matching based method in eval-
uating the quality of the predicted KC labels might be insufficient in practical
settings. We then propose a method that considers both semantic and structural
similarities among KC labels and their descriptions to be an additional measure
to evaluate the usability of the predicted labels.

– Semantic Similarity (Ct): We adopt the Doc2Vec algorithm [14] to capture the
similarity between KC labels. Doc2Vec, derived from word-vector algorithm,
generates similarity scores between documents instead of words and is proved
to have lower error rate (7.7–16%) than the word vector approach [14].

– Structural Similarity (Cs): We exploit prerequisite relationships among skills
(KC labels) and capture such as edges and KC labels as nodes in a graph.
The prerequisite relationships are extracted from a K-G8 math coherence
map by Jason Zimba [24] and a high school (G9-G12) coherence map by
UnboundEd Standard Institue [22]. Then, we adopt Node2Vec algorithm [8]
that is efficient and flexible in exploring nodes similarity and achieved a new
record performance in network classification problem [8].
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Fig. 2. An illustration of multiple possibilities of a correct label for a given video title
text

In the end, we craft a new evaluation measure, named as TEXSTR (Λ), by
combining both Ct and Cs as follows: Λ = α · Ct + (1 − α) · Cs, where α controls
the weight between Ct and Cs as an oscillating parameter.

4 Empirical Validation

4.1 Datasets and Evaluation Measure

Table 2 summarizes the details of the datasets for pre-training and fine-tuning
processes. Dd contains 6,384 description texts (84,017 tokens) and 385 math
KCs (an example shown in Fig. 1-a). Part of Dd are extracted from Common
Core Standards website2 and part are provided by k12.com3, an education man-
agement organization that provides online education to American students from
kindergarten to Grade 12. Dt contains 6,748 video title texts (62,135 tokens) and
272 math KCs (an example shown in Fig. 1-b) Part of Dt are extracted from
Youtube.com (via youtube DataAPI4) and part are provided by k12.com. Dp

contains 13,722 texts (589,549 tokens) and 213 math KCs provided by ASSIST-
ments5 (an example shown in Fig. 1-c). Further, Dd+t, Dd+p, Dt+p, and Dall are
different combinations of the unlabeled texts from Dd, Dt, and Dp. They are
only used in the TAPT pre-training process. We pre-process all aforementioned
texts by removing all the templates and HTML markups to avoid over-fitting,
suggested by the prior highest accuracy method [18]. In the TAPT pre-training
process, 100% of the unlabeled texts from the aforementioned datasets are used

2 http://www.corestandards.org/math.
3 http://www.k12.com.
4 http://developers.google.com/youtube/v3.
5 http://www.assistments.org/.

http://www.corestandards.org/math
http://www.k12.com
http://developers.google.com/youtube/v3
http://www.assistments.org/
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for pre-training. In fine-tuning process for both TAPT and BASE , only Dd, Dt,
and Dp are used and 72% of their texts and labels are used for training, 8% are
for validation and 20% are for testing (see in Table 2 Row 1–3 and Col. 6–8).

As an evaluation measure, following prior research [6,12,17,18,20] for direct
comparison, we use Accuracy@k as (TP + TN)/(TP + TN + FP + FN), when
a method predicts top-k KC labels. Further, we evaluate our method using the
proposed TEXSTR measure.

Table 2. A summary statistics of datasets.

Name # Labels # Texts # Tokens Fine-tuning partition

Training (72%) Validation (8%) Testing (20%)

Dd 385 6,384 84,017 4,596 511 1,277

Dt 272 6,748 62,135 4,858 540 1,350

Dp 213 13,722 589,549 9,879 1,098 2,745

Dd+t / 13,132 146,152 / / /

Dd+p / 20,106 673,566 / / /

Dt+p / 20,470 651,684 / / /

Dall / 26,854 735,701 / / /

4.2 Pre-training and Fine-Tuning Details

To further pre-train, we follow the same pre-training process of original BERT
with the same network architecture (12 layers, 768 hidden dimensions, 12
heads, 110M parameters) but on our own unlabeled task-specific texts (see
Col. 4 in Table 2). With an 8-core v3 TPU, we further train all our mod-
els with 100k steps, achieving MLM accuracy of above 97% that lasts about
1–4 hours. We experiment hyper-parameters such as learning rate (lr) ∈
{1e − 5, 2e − 5, 4e − 5, 5e − 5, 2e − 4}, batch size (bs) ∈ {8, 16, 32}, and max-
sequence length (max-seq-len) ∈ {128, 256, 512}. The highest MLM accuracy
was achieved when lr ← 2e-5, bs ← 32, and max-seq-len ← 128 (for Dd and Dt)
and max-seq-len ← 512 with the same lr and bs (for Dp, Dd+p, Dt+p, Dall). To
fine-tune, we also follow the original BERT script by splitting Dd, Dt, Dp into
72% for training, 8% for validation and 20% for testing per task. We experi-
ment ep ∈ {5, 10, 25} due to the small size of the data size and retain the same
hyper-parameter search for lr, bs, max-seq-len. We find that the best testing
accuracy is obtained when ep ← 25, lr ← 2e-5, bs ← 32, and max-seq-len ←
128 for Dd, Dt whereas the best testing accuracy for Dp is obtained when ep ←
25, lr ← 2e-5, bs ← 32, and max-seq-len ← 512. We find that after ep ← 25, it
is difficult to gain significant increase on the testing accuracy. Hence, the opti-
mal hyper-parameters while task-dependent seem to have very minimal change
across tasks. This finding is consistent with SCIBERT reported [2].
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4.3 Result #1: TAPT BERT vs. Other Approaches

Table 3 summarizes the experimental results of six baseline approaches and
TAPT for each task. For baseline methods, we group them into categories (see
in Table 3) (1) classical ML, (2) prior work, and (3) BASE BERT. By including
popular ML methods such as Random Forest and XGBoost, we aim to compare
its performance to the one from prior ML work (SVM) proposed by Karlovec et
al. [12] in the literature review. As to comparing to the prior highest accuracy
method [18], we applied the same 5-fold cross-validation on our own problem
texts and obtain Acu@1 and Acu@3. Overall, we see that TAPT models out-
perform all other methods at both Acu@1 and Acu@3 across three tasks. Note
TAPT models here are simply trained on the unlabeled texts from Dd, Dt, and
Dp. Compared to the best method in baseline, TAPT has an increase of 0.70%,
1.72%, 0.07% at Acu@1 and 0.51%, 2.28%, 1.52% at Acu@3 across three tasks.
Compared to BASE, TAPT shows an increase of 2.30%, 1.72%, 0.70% at Acu@1
and 0.51%, 2.28%, 1.52% at Acu@3 across three tasks. Acu@1 and Acu@3 from
both TAPT and BASE models are the average performance over five random
seeds with significant difference (see last row in Table 3). BERT variants such
as FinBERT [16], SCIBERT [2], BioBERT [15] and E-BERT [23] were able to
achieve a 1–4% increase when further trained on much larger domain knowledge
corpus (i.e. 2–14 billion tokens). Our corpus although comparatively small with
Dd (84,017 tokens), Dt (62,135 tokens), and Dp (589,549 tokens) still result in
a decent improvement of 0.51–2.30%.

Table 3. Accuracy comparison (best and 2nd best accuracy in blue bold and under-
lined, respectively, BL† for baseline best, and * for statistical significance with p-value
< 0.001)

Approach Type Algorithm Dd Dt Dp

Acu@1 Acu@3 Acu@1 Acu@3 Acu@1 Acu@3

Classical ML SVM [12] 44.87 70.40 48.15 70.30 78.07 87.69

XGBoost 43.07 71.34 45.33 66.15 77.63 87.94

Random Forest 49.26 78.78 49.33 74.37 78.03 88.23

Prior Work Skip-Gram NN [17] 34.07 34.15 43.00 43.52 76.88 77.06

Sklearn MLP [18] 50.53 74.41 48.22 57.95 80.70 81.13

BERT BASE 48.30 76.40 50.99 76.55 81.73 90.99

TAPT 50.60 79.29 52.71 78.83 82.43 92.51

Improvement |TAPT − BL†| 0.07 0.51 1.72 2.28 0.70 1.52

|TAPT − BASE| 2.30∗ 0.51∗ 1.72∗ 2.28∗ 0.70∗ 1.52∗

4.4 Result #2: Augmented TAPT and TAPT Generalizability

In addition to the simply trained TAPTs (referred as simple TAPT) in Table 3,
we augment the pre-training data and form another four TAPTs (TAPTd+t,
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TAPTd+p, TAPTt+p and TAPTall). We call them augmented TAPT. Table 4
showcases the differences in Acu@3 between simple and augmented TAPT.
For Dd, augmented TAPTd+p outperforms all simple TAPT models (Acu@3
= 79.56%) and augmented TAPTd+t achieves the second best Acu@3 (79.40%).
For Dt, all the augmented TAPT models only outperform simple TAPTp. For
Dp, augmented TAPTt+p outperforms all simple TAPTs with Acu@3 of 92.64%.
To sum up, augmenting the pre-training data for TAPT seems to help increase
the accuracy further.

Table 4. Acu@3: BASE vs. TAPT. (best and 2nd best per row in bold and underlined,
and subscripts indicate outperformance over BASE)

Data BASE Simple Augmented

TAPTd TAPTt TAPTp TAPTd+t TAPTd+p TAPTt+p TAPTall

Dd 76.40 79.292.89 78.782.38 77.841.44 79.403.00 79.563.16 79.012.61 79.012.61

Dt 76.55 77.851.30 78.832.28 76.30−0.25 77.561.01 77.561.01 77.701.15 77.781.23

Dp 90.99 91.220.23 91.440.45 92.511.52 92.061.07 92.501.51 92.641.65 92.351.36

Furthermore, we compare the generalizability of TAPT to BASE over differ-
ent datasets. We define the generalizability as task accuracy (specifically Acu@3)
that a model can obtain when applied to a different dataset. Both BASE and
TAPT are pre-trained models and obtain task accuracy via fine-tuning on a
different task data. The subscripts in Table 4 present the difference in Acu@3
between TAPT and BASE, showcasing who has stronger generalizability (− sign
indicates weak generalizability). For Dd, all simple and augmented TAPT mod-
els generalize better than BASE, especially augmented TAPTs have an average
of about 3% increase. For Dt, all TAPT models have better generalizability than
BASE with over 1% average increase except for TAPTp. For Dp, we also see all
the TAPTs generalize better than BASE model with the augmented TAPTt+p

having the best generalizability.

4.5 Result #3: TEXSTR Based Evaluation

Following the definition of TEXSTR (=Λ) in Sect. 3.2, we vary the values of
α by {0, 0.5, 1} and generate three variations of Λ for top-3 predictions. We
then decide the percentage of miss-predictions to be reconsidered based on Λ
value by three cut-off thresholds {0.5, 0.75, 0.9}. Before that, we make sure that
the predicted labels are not subsequent to the ground truth, i.e., if the ground
truth is 7.G.A.2, a predicted label such as 8.G.A.3 shall not be reconsidered
as correct because it is the skill to be learned subsequently “after” 7.G.A.2. In
such a case, we exclude predicted labels that have subsequent relations to the
ground truth and calculate Λ. Table 5 presents the percentage of miss-predictions
after removing the subsequent-relation labels by three Λ thresholds when α ∈
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{0, 0.5, 1}. Across three values of α and datasets, note that 56–73% of miss-
predictions could be reconsidered as correct if Λ > 0.5, 5–53% of them could be
reconsidered if Λ > 0.75, and 0–32% could be reconsidered if Λ > 0.9. The wide
percentage range for Λ ∈ {0.75, 0.9} infers that higher thresholds of Λ are more
sensitive to the change of α.

To further ensure the TEXSTR measure to be useful in practice, we conduct
an empirical study where eight experienced K-12 math teachers rate each pair
of top-3 KC labels and the corresponding text (e.g., description, video title, or
problem text) on a scale of 1 to 5. The Fleiss’ kappa value to assess the multi-
rater agreement among eight teachers is 0.436, which is considered as moderate
agreement by Landis et al. [13]. We ensure that none of top-3 miss-predicted
KCs are subsequent to ground truths and have Λ score at least 0.5. Then, we
quantify the relevance (Υ ) score as either Λ score (when α = 0.5) or teachers’
rating of [1,5] range divided by 5 (to be on the same scale as TEXSTR’s [0,1]).
Table 6 summarizes three varying relevance scores (Υ ∈ {0.5, 0.75, 0.9}) on the
pair of top-3 predictions and the texts. For Top-1 predictions, TEXSTR considers
all of them to have Υ > 0.5 (due to the pre-selection) and 37.93% of all have
Υ > 0.75 and 3.45% have Υ > 0.9. Teachers, on the other hand, think that
only 54.31% of the texts have Υ > 0.5 (↓ 45.69% from Λ) but 43.53% have
Υ > 0.75 (↑ 5.6% from Λ) and 31.03% have Υ > 0.9 (↑ 27.58% from Λ). We
also find a similar pattern for Top-2 and Top-3 predictions where teachers find
6.47–6.89% more cases than TEXSTR that have Υ > 0.75 and 9.48–13.79% more
cases than TEXSTR that have Υ > 0.9. This indicates that TEXSTR is more
conservative than teachers in judging the relevance of KC labels to texts when
Υ ∈ {0.75, 0.9}, suggesting TEXSTR is effective in reassessing miss-predictions
and “recover” them as correct labels in practice.

Table 5. % of miss-predictions recovered by TEXSTR (Λ)

Data # Miss-
predictions

Λ > 0.5 Λ > 0.75 Λ > 0.9

α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1

Dd 248 70.16 68.95 72.98 52.82 24.19 8.87 32.26 2.42 0.81

Dt 240 58.33 55.83 57.5 37.92 17.08 6.67 17.08 0 1.25

Dp 166 60.84 56.63 58.43 38.55 16.27 5.42 18.67 1.2 1.2

Table 6. % of top-3 predictions by relevance (Υ ) level when α = 0.5

Υ Top 1 Top 2 Top 3

Λ Teachers Δ Λ Teachers Δ Λ Teachers Δ

>0.5 100 54.31 –45.69 100 40.95 –59.05 100 21.98 –78.02

>0.75 37.93 43.53 5.60 20.69 27.16 6.47 6.9 13.79 6.89

>0.9 3.45 31.03 27.58 0 13.79 13.79 0 9.48 9.48
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5 Conclusion

The paper classified 385 math knowledge components from kindergarten to 12th
grade using three data sources (e.g., KC descriptions, video titles, and prob-
lem texts) via the Task-adaptive Pre-trained (TAPT) BERT model. TAPT has
achieved a new record by outperforming six baselines by up to 2% at Acu@1 and
up to 2.3% at Acu@3. We also compared TAPT to BASE and found the accu-
racy of TAPT increased by 0.5–2.3% with a significant p-value. Furthermore,
the paper discovered that TAPT trained on the augmented data by combining
different task-specific texts had better Acu@3 than TAPT simply trained on the
individual datasets. In general, TAPT has better generalizability than BASE by
up to 3% at Acu@3 across different tasks. Finally, the paper proposed a new eval-
uation measure TEXSTR to reassess the predicted KCs by taking into account
semantic and structural similarity. TEXSTR was able to reconsider 56–73% of
miss-predictions as correct for practical use.
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Abstract. When human raters grade student writing assignments, writ-
ing assessment often involves the use of a scoring rubric consisting of mul-
tiple evaluation items in order to increase the objectivity of evaluation.
However, even when using a rubric, assigned scores are known to be influ-
enced by the characteristics of both the rubric’s evaluation items and the
raters, thus decreasing the reliability of student assessment. To resolve
this problem, these characteristic effects have been considered in many
recently proposed item response theory (IRT) models for estimating stu-
dent ability. Such IRT models assume unidimensionality, meaning that
a rubric measures one latent ability; in practice, however, this assump-
tion might not be satisfied because a rubric’s evaluation items are often
designed to measure multiple sub-abilities that constitute a targeted abil-
ity. To address this issue, this study proposes a multidimensional exten-
sion of such an IRT model for rubric-based writing assessment. The pro-
posed model improves the assessment reliability. Furthermore, the model
is useful for objective and detailed analysis of rubric quality and its con-
struct validity. This study demonstrates the effectiveness of the proposed
model through simulation experiments and application to real data.

Keywords: Educational/psychological measurement · Writing
assessment · Analytic rubrics · Test theory · Statistical/probabilistic
model

1 Introduction

In various assessment fields, writing assessment has attracted much attention
as a way to measure practical and higher-order abilities, such as logical think-
ing, critical reasoning, and creative thinking [1,2,13,20,32,34,42]. In writing
assessments, human raters often use a scoring rubric that consists of multi-
ple evaluation items when grading student writing assignments to increase the
objectivity of evaluation. However, even when using a rubric, assigned scores
are known to depend on the characteristics of both the rubric’s evaluation items
and the raters, which decreases the reliability of the assessment of student abil-
ity [6,12,25,27,30,41,44]. Therefore, to improve measurement accuracy, ability
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Fig. 1. Outline of an application of the proposed model.

estimation that considers the effects of the abovementioned characteristics is
required.

For this reason, item response theory (IRT) models have been proposed that
can estimate student abilities while considering the characteristics of both the
rubric’s evaluation items and the raters [15,18,35,44,48]. One representative
model is the many-facet Rasch model (MFRM) [18], which has been used in var-
ious performance assessments, including writing assessments [5,6,12,16,19,39].
The MFRM, however, makes strong assumptions that rarely hold in prac-
tice [15,25,28,36,46]. Thus, several extensions of the MFRM that relax these
assumptions have been recently proposed [15,35,44,46]. These IRT models are
known to measure abilities with higher accuracy than that of simple scoring
methods based on point totals or averages [43,46].

Such IRT models assume unidimensionality, meaning that a rubric measures
one latent ability. However, this assumption might not hold in practice because
evaluation items in a rubric are often designed so that multiple sub-abilities that
comprise a targeted ability are measured. Applying unidimensional IRT models
to data with multidimensional ability scales deteriorates model fitting and ability
measurement accuracy [14].

IRT models that can estimate multidimensional ability scales have been pro-
posed for traditional objective testing scenarios [31]. Such multidimensional IRT
models, however, have no rater parameters, which prevents not only estimation
of student ability while considering the effects of rater characteristics, but also
direct application to rubric-based writing assessment data.

To resolve the abovementioned problems, the present study proposes a new
multidimensional IRT model that incorporates parameters for the characteristics
of both the rubric’s evaluation items and the raters. The outline of an application
of the proposed model to rubric-based writing assessment data is shown in Fig. 1.
The use of the proposed model has the following advantages.
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1. The proposed model allows for estimation of student abilities while consider-
ing the effects of the rubric’s evaluation items and the raters simultaneously,
which improves the model fitting and ability measurement accuracy.

2. Student abilities can be assessed on an appropriate multidimensional ability
scale that is assumed under the rubric’s evaluation items.

3. The model provides the characteristic parameters for the rubric’s evaluation
items while removing the effects of the raters and students. According to
the parameters, we can conduct an objective and detailed analysis of the
rubric’s characteristics and its construct validity, and therefore obtain useful
information to evaluate the rubric’s quality and to develop a better rubric.

This study demonstrates the effectiveness of the proposed model through
simulation experiments and application to actual data.

2 Rating Data from Rubric-Based Writing Assessment

In this study, we assume situations where each student’s writing assignment
is graded by multiple raters who use a scoring rubric consisting of multiple
evaluation items. Obtained rating data are defined as X = {xijr|xijr ∈ K ∪
{−1}, i ∈ I, j ∈ J , r ∈ R}, where xijr is a rating assigned to a writing outcome
of student j ∈ J = {1, 2, · · · , J} by rater r ∈ R = {1, 2, · · · , R} based on
the rubric’s evaluation item i ∈ I = {1, 2, · · · , I}. Here, K = {1, 2, · · · ,K}
represents rating categories, and xijr = −1 represents missing data. This study
aims to estimate student ability from rating data X using IRT.

3 Item Response Theory

IRT [21] is a test theory based on mathematical models and has been widely
used in various educational assessments. IRT represents the probability of a
student response to a test item as a function of latent student ability and item
characteristics such as difficulty and discrimination. Traditional IRT models are
applicable to two-way data (students × test items), consisting of student test
item scores. Well-known IRT models that are applicable to ordered-categorical
data, such as writing assessment data, include the generalized partial credit
model (GPCM) [24] and the graded response model [33]. Such traditional models,
however, cannot be directly applied to rubric-based writing assessment data
comprising students × raters × evaluation items. To address this problem, IRT
models that can consider the characteristics of both the rubric’s evaluation items
and the raters have been proposed [15,18,35,44,48]. Note that some such IRT
models originally consider characteristics of test items and raters assuming three-
way data consisting of students × raters × test items. However, we apply such
IRT models by regarding the facet of test items as the rubric’s evaluation items.
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3.1 IRT Models in Writing Assessment

The most widely used IRT model with characteristic parameters of a rubric’s
evaluation items and raters is the MFRM [18]. However, the MFRM makes strong
assumptions that all raters are consistent in how they rate, and that the discrim-
inatory power of all evaluation items is the same, even though these assump-
tions do not hold in practice [15,25,28,36,46]. To relax these assumptions, vari-
ous extensions of the MFRM have recently been proposed [7,15,35,44,46]. The
present study introduces the generalized MFRM [45,46], which is one of the lat-
est MFRM extensions that relaxes these assumptions. This model provides the
probability that xijr = k as

Pijrk =
exp

∑k
m=1 [1.7αrαi(θj − βi − βr − drm)]

∑K
l=1 exp

∑l
m=1 [1.7αrαi(θj − βi − βr − drm)]

, (1)

where θj is the latent ability of student j, αi is a discrimination parameter for
evaluation item i, αr is the consistency of rater r, βi is a difficulty in evaluation
item i, βr is the severity of rater r, and drm is a step parameter denoting the
severity of rater r in transition from evaluation category m−1 to m. The constant
1.7 is used to make the model similar to the normal ogive function. For model
identification,

∏I
i=1 αi = 0,

∑I
i=1 βi = 0, dr1 = 0,

∑K
m=2 drm = 0, and a normal

prior for ability θj are assumed.
The model parameters can be estimated from the rating data X. IRT models,

such as the model described above, are known to measure student abilities with
higher accuracy than simple scoring, such as point averages, because the abilities
can be estimated while removing bias effects [43,46]. However, as described in
Sect. 1, conventional models assume unidimensionality, which might not hold in
practice. Applying unidimensional models to data with multidimensional ability
scales deteriorates model fitting and ability measurement accuracy [14].

3.2 Multidimensional IRT Models

In objective testing contexts, multidimensional IRT models that can measure
student ability in multidimensional space have widely been used [31]. A repre-
sentative multidimensional IRT model for ordered-categorical data is the non-
compensatory multidimensional GPCM [50]. When test item parameters are
regarded as evaluation item parameters, the model gives the probability that
student j obtains score k for evaluation item i as

Pijk =
exp

∑k
m=1

[
1.7

(∑L
l=1 αilθjl − βi − dim

)]

∑K
l=1 exp

∑l
m=1

[
1.7

(∑L
l=1 αilθjl − βi − dim

)] , (2)

where L indicates the number of assumed ability dimensions, θjl is the ability
of student j for dimension l ∈ L = {1, · · · , L}, αil indicates the discriminatory
power of evaluation item i for the l-th ability dimension, and dim is a step
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parameter denoting difficulty in transition between scores m − 1 and m for
evaluation item i. In model identification, di1 = 0,

∑K
m=2 dim = 0, and a normal

prior for the ability of each dimension θjl are assumed.
Such conventional multidimensional IRT models, however, have no rater

parameters, which prevents not only estimation of student ability while con-
sidering the effects of rater characteristics, but also direct application to rubric-
based writing assessment data. To address this limitation, this study proposes a
new multidimensional IRT model that considers the characteristics of both the
rubric’s evaluation items and the raters.

4 Proposed Model

The proposed model is formulated as an extension of the non-compensatory
GPCM. Specifically, this model gives the probability that xijr = k ∈ K as

Pijrk =
exp

∑k
m=1

[
1.7αr

(∑L
l=1 αilθjl − βi − βr − dim

)]

∑K
l=1 exp

∑l
m=1

[
1.7αr

(∑L
l=1 αilθjl − βi − βr − dim

)] . (3)

In model identification, this study implements the restrictions
∏R

r=1 αr = 0,
∑R

r=1 βr = 0, di1 = 0, and
∑K

k=2 dik = 0, and assumes the standard normal
prior for the ability of each dimension θjl.

Application of the proposed model to the rubric-based writing assessment
data provides the various characteristics of each evaluation item and rater, which
helps in interpreting the quality of the evaluation items and the raters. Also, the
evaluation item’s discrimination parameters αil offers information for interpret-
ing what each ability dimension measures, which makes an objective analysis of
rubric construct validity possible. The model, thus, can be viewed as an artificial
intelligence model that extracts a latent structure in rating data. We show an
example of such analysis in the actual data experiment section.

Furthermore, the proposed model can estimate student ability on a multi-
dimensional scale while considering the characteristics of both the evaluation
items and the raters, although the conventional models cannot consider rater
characteristics nor estimate ability on a multidimensional scale. Thus, the pro-
posed model is expected to provide better model fitting and appropriate ability
measurement compared with the conventional models.

To estimate the proposed model parameters, we use an expected a posteri-
ori (EAP) estimation, which is a type of Bayesian estimation, using the No-U-
Turn (NUT) sampler-based Markov chain Monte Carlo (MCMC) algorithm [11].
The EAP is known to provide more robust estimations than a maximum likeli-
hood estimation [8,43] and the NUT sampler is highly efficient compared with
the Metropolis-Hastings-within-Gibbs sampling method [29], which is a common
MCMC algorithm for IRT models [3]. The estimation program was implemented
in RStan [4,37]. We used the standard normal distribution N(0.0, 1.0) as a prior
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distribution for θjl, logαil, logαr, βi, βr, and dik. The EAP estimates were
calculated using parameter samples obtained from 2,000 to 4,000 periods.

In the proposed model, the number of ability dimensions, L, is a hand-
tuned parameter. In IRT studies, the optimal number of dimensions is gen-
erally explored based on principal component analysis. However, this analysis
method is not applicable to the three-way data assumed in the present study.
Dimensionality selection, which is well-known in machine learning, can also be
considered as a model selection task. The model selection is typically conducted
using information criteria. This study uses the widely applicable information cri-
terion (WAIC) [47] because it can be used with Bayesian estimation based on a
MCMC method and is applicable regardless of the true distribution. Specifically,
we select the number of dimensions that minimizes the WAIC.

5 Simulation Experiments

5.1 Parameter Recovery Experiment

In this subsection, we describe a parameter recovery experiment for the pro-
posed model through simulations. Specifically, the following experiments were
conducted while the number of students J , evaluation items I, raters R, and
ability dimensions L were varied (where the number of categories K was fixed
at 4 to match the condition of the actual data used in a later section).

1) Generate true model parameters randomly for θjl, logαil, logαr, βi, βr,
and dim from the standard normal distribution. To maintain the identifiability
of the dimensions, we set skewed discrimination values to the first L evaluation
items i ∈ {1, . . . , L} according to related experiments that used conventional
multidimensional IRT models [22]. 2) Given the true parameters, sample rating
data from the proposed model randomly. 3) Estimate the model parameters
using the data by the MCMC algorithm. 4) Calculate the root mean square
error (RMSE) between the estimated and true parameters. 5) Repeat the above
procedure 30 times, then calculate the average values of the RMSEs.

The RMSE column in Table 1 shows the results, which confirm the following
tendencies: 1) The RMSEs for ability values tend to decrease as the number of
evaluation items and/or raters increases. Similarly, the RMSEs for raters and
evaluation item parameters tend to decrease as the number of students increases.
These tendencies are caused by the increase in the amount of data per parameter,
which is consistent with previous studies [43,44]. 2) An increase in the number
of dimensions tends to lead to an increase in the RMSEs because the ability and
discrimination parameters increase without an increase in the amount of data.
This tendency is also consistent with previous research [17,22,38].

We also confirmed the bias and the Gelman–Rubin statistic R̂ [9,10], which is
a well-known convergence diagnostic index. The average bias was nearly zero in
all cases, indicating no overestimation or underestimation of parameters. The R̂
statistic was less than 1.1 in all cases, indicating that the MCMC runs converged.

From the above, we conclude that the parameter estimation for the proposed
model can be appropriately conducted through use of the MCMC algorithm.
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Table 1. Results of simulation experiments.

J I R L RMSE Average rank
θjl αil αr βi βr dim Le=1 Le=2 Le=3

100 5 5 1 0.22 0.11 0.09 0.07 0.06 0.13 1.57 2.07 2.37
2 0.32 0.16 0.08 0.10 0.05 0.15 2.93 1.77 1.30
3 0.36 0.16 0.09 0.12 0.07 0.16 3.00 2.00 1.00

15 1 0.13 0.08 0.09 0.04 0.06 0.08 1.30 1.93 2.77
2 0.22 0.10 0.09 0.07 0.05 0.09 3.00 1.33 1.67
3 0.25 0.12 0.08 0.09 0.06 0.09 3.00 1.93 1.07

15 5 1 0.13 0.09 0.04 0.06 0.03 0.15 1.20 1.90 2.90
2 0.24 0.11 0.05 0.09 0.03 0.16 3.00 1.20 1.80
3 0.29 0.12 0.04 0.10 0.03 0.16 3.00 2.00 1.00

15 1 0.09 0.06 0.04 0.04 0.03 0.10 1.17 1.87 2.97
2 0.17 0.09 0.05 0.07 0.03 0.10 3.00 1.13 1.87
3 0.20 0.09 0.05 0.09 0.03 0.09 3.00 2.00 1.00

50 15 15 1 0.11 0.10 0.07 0.06 0.04 0.12 1.13 1.97 2.90
2 0.20 0.12 0.08 0.10 0.04 0.13 3.00 1.07 1.93
3 0.22 0.13 0.08 0.10 0.05 0.14 3.00 2.00 1.00

5.2 Validity of Dimensionality Selection

In this subsection, we describe a simulation experiment that evaluates the appro-
priateness of the dimensionality selection using the WAIC as an information cri-
terion. The following experiments were conducted while the number of students
J , evaluation items I, raters R, and ability dimensions L were varied.

1) Generate rating data from the proposed model given randomly generated
true model parameters. 2) Estimate the parameters for the proposed models
assuming Le ∈ {1, 2, 3} number of dimensions using the data by the MCMC
algorithm. 3) Rank the WAIC values for each Le, such that the Le with the
lowest WAIC value is ranked first place. 4) Repeat the above procedure 30 times,
then calculate the average rank.

The Average rank column in Table 1 displays the results, with the highest
ranks shown in bold. The results show that the true dimensionality was selected
in all cases except when the number of evaluation items and raters was small.
These results verify the appropriateness of using the WAIC to select the optimal
number of dimensions.

6 Actual Data Experiments

In this section, we describe the performance of the proposed model in experi-
ments based on actual data. In the experiment, we collected actual rubric-based
writing assessment data according to the following procedure: 1) We gathered
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134 Japanese university students majoring in various STEM fields. 2) The stu-
dents were asked to complete an essay-writing task. 3) The written essays were
evaluated by 18 raters who used a rubric consisting of nine evaluation items
divided into four rating categories. We assigned four raters to each essay based
on a systematic links design [35,40,49] to decrease the raters’ assessment work-
load. The Evaluation items column in Table 2 lists the abstracts of the evaluation
items.

Table 2. Evaluation items and their characteristic parameters.

Evaluation items α̂i1 α̂i2 β̂i d̂i2 d̂i3 d̂i4

1. Appropriateness of problem setting 0.203 0.381 –0.631 –0.920 –0.250 1.170
2. Consistency between claims and conclusions 0.222 0.473 –0.629 –0.731 –0.291 1.022
3. Presentation of evidence 0.137 0.451 –0.595 –1.472 0.219 1.254
4. Consideration of opposing viewpoints 0.111 0.274 –0.297 –0.399 –0.246 0.645
5. Appropriateness of logical structure 0.296 0.495 –0.795 –0.901 –0.212 1.113
6. Consideration of readers 0.314 0.442 –0.673 –0.651 –0.460 1.112
7. Typographical accuracy 0.517 0.109 –1.345 –0.814 –0.380 1.194
8. Stylistic consistency 0.421 0.177 –0.815 –0.659 –0.247 0.907
9. Usage of conjunctions 0.449 0.243 –1.250 –0.762 –0.282 1.044

6.1 Model Comparison Using Information Criteria

As explained above, the proposed model can estimate student ability on a mul-
tidimensional scale while considering the characteristics of both the raters and
the rubric’s evaluation items. To evaluate the effectiveness of the considera-
tion of the multidimensionality and rater characteristics, we conducted a model
fitting evaluation based on information criteria. Specifically, we calculated the
WAIC for the proposed model using the actual data for each dimensionality
L ∈ {1, · · · , 5}. We conducted the same procedure for the proposed model with-
out rater parameters, which is the model constrained αr = 1 and βr = 0 for
all r. We designated the model without rater parameters as the conventional
model because it is consistent with the equation of the multidimensional GPCM
defined in Eq. (2).

Table 3. Model comparison using actual data.

# of dimensions L

1 2 3 4 5

Proposed model 11741.78 11642.76 11652.29 11654.60 11661.45
Conventional model 12279.44 12201.60 12206.06 12220.16 12226.76
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Fig. 2. Score distributions for two evaluation items with different step difficulty.

Table 3 shows the results. The table indicates that the WAIC is minimized
when L = 2 in both the proposed model and the conventional model. This means
that the unidimensionality assumption is not satisfied in the data, suggesting
the requirement of the multidimensional models. Furthermore, comparison of
the two models shows that the proposed model provides a better fitting than
the conventional model in all cases. The results suggest that consideration of
rater characteristics is effective in improving model fitting, which verifies the
effectiveness of the proposed model.

6.2 Characteristic Interpretation of the Rubric’s Evaluation Items

In this subsection, we show the interpretation of the characteristics of the eval-
uation items. Table 2 shows the parameters of the evaluation items, which were
estimated by the proposed model under L = 2. Here, L = 2 was used because it
provided the highest model fitting, as shown in the experiment describe above.

According to Table 2, the evaluation items reveal different patterns of dis-
crimination parameters. For example, evaluation items 1–6 have larger discrimi-
nation values in the second dimension, whereas evaluation items 7–9 have larger
discrimination values in the first dimension. Moreover, evaluation item 4 has rel-
atively low discrimination values in both dimensions, meaning that it might not
be suitable for distinguishing student ability. In contrast, evaluation item 6 has
moderate discrimination values in both dimensions, meaning that it measures
two-dimensional ability concurrently.

The discrimination parameters of each evaluation item enable us to interpret
what is mainly measured by each ability dimension. Specifically, as described
above, Table 2 shows that evaluation items 1–6 have larger discrimination values
in the second dimension, and evaluation items 7–9 have larger values in the first
dimension. These results suggest that the first ability dimension reflects a com-
mon ability underlying evaluation items 7–9, and the second dimension reflects
a common ability underlying evaluation items 1–6. According to the contents of
the evaluation items, we can see that evaluation items 7–9 relate to stylistic skills
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Fig. 3. Rater parameters Fig. 4. Ability estimates

(such as typological errors and word choice), whereas evaluation items 1–6 relate
to logical skills (such as augmentation and organization). Indeed, the rubric was
designed such that evaluation items 1–6 mainly measure argumentative skills,
and evaluation items 7–9 measure stylistic skills [23,26]. These results suggest
that the rubric developer’s expectation is supported by the analysis based on
the proposed model.

Furthermore, Table 2 shows that the level of difficulty differs among the eval-
uation items. For example, evaluation item 4 is the most difficult, and evaluation
item 7 is the easiest. These are reasonable judgments because evaluation item 4
requires sufficient discussion about opposing opinions, whereas evaluation item
7 requires only superficial typological correctness.

The step difficulty parameters, dim, also show different patterns, meaning
that the score distribution differs among the evaluation items. As examples,
Fig. 2 depicts the score distribution (plot of Pijrk) for evaluation items 3 and
4, which have different step difficulty parameter patterns as well as relatively
similar discrimination and difficulty. The figure shows that a score of 2 tends to
be avoided in evaluation item 4. See [7,44,46] for further details on interpretation
of step difficulty parameters.

6.3 Raters Parameter Estimates and Ability Estimates

To confirm whether rater characteristics differed, we plotted characteristic
parameters for each rater, as shown in Fig. 3. In that figure, each plot represents
a rater, and horizontal and vertical axes respectively show the rater consistency
αr and severity βr values. According to Table 2, severity and consistency differed
among the raters. This is the reason why the proposed model provided a higher
model fitting than the conventional multidimensional GPCM model.

Moreover, Fig. 4 shows the two-dimensional ability estimates for each student.
The horizontal axis indicates the first-dimensional ability value θj1; the vertical
axis indicates the second-dimensional ability value θj2; and each dot represents
a student. The figure shows that the students have different ability patterns.
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Such multidimensional ability measurement cannot be realized by conventional
unidimensional IRT models.

7 Conclusion

This study proposes a new multidimensional IRT model with characteristic
parameters of raters and a rubric’s evaluation items for rubric-based writing
assessment. Through simulation experiments and actual real data application, we
demonstrated the effectiveness of the proposed model. The proposed model not
only improves assessment reliability, but also is useful for objective and detailed
analysis of rubric characteristics and its construct validity. In the educational
domain, a scoring rubric is widely used in various performance assessment sce-
narios. In such situations, the proposed method is helpful to evaluate the rubric’s
quality and to develop a better rubric. We plan to evaluate the effectiveness of
the proposed method using various and more massive datasets in future studies.
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Abstract. In this work, we explore weakly supervised machine learn-
ing for classifying questions into distinct Bloom’s Taxonomy levels.
Bloom’s levels provide important information that guides teachers and
adaptive learning algorithms in selecting appropriate questions for their
students. However, manually providing Bloom labels is expensive and
labor-intensive, which motivates a machine learning approach. Current
automated Bloom’s level classification methods employ supervised learn-
ing that relies on large labeled datasets that are difficult and costly
to construct. In this paper, we propose a weakly supervised learning
method that performs binary Bloom’s level labeling without any a priori
known Bloom’s taxonomy labels. The key idea behind BLACBOARD (for
Bloom’s Level clAssifiCation Based On weAkly supeRviseD learning) is
to appropriately incorporate human domain knowledge into the model-
ing process to produce a weakly labeled dataset on which discriminative
models can then be trained. We compare BLACBOARD to fully super-
vised learning methods and show that it achieves little to no performance
compromise while using entirely unlabeled data.

Keywords: Bloom’s level classification · Weakly supervised learning

1 Introduction

Educational assessments, e.g., homework and quiz questions, are important ped-
agogical instruments that help assess students’ knowledge retention and foster
higher-order cognitive processing such as thinking and reasoning [1]. To effec-
tively use such questions to improve learning, it is important to know which
ones are appropriate for which students and maximize the alignment between
the course content and assessments [2]. To this end, teachers often utilize the
Bloom’s Taxonomy of educational objectives [3,4] as a framework to catego-
rize questions based on the specific cognitive functions that they exercise. This
framework provides practical guidelines on how to characterize existing questions
such that they facilitate specific cognitive processes and how to author new ques-
tions. However, teachers often do not assign Bloom’s labels when authoring new
c© Springer Nature Switzerland AG 2021
I. Roll et al. (Eds.): AIED 2021, LNAI 12748, pp. 433–445, 2021.
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questions, making it difficult for other teachers to reuse them. The reason is that
manually assigning Bloom’s level labels is incredibly time-consuming, expensive,
and error prone [5,6].

To reduce the cost of manually labeling questions with Bloom’s levels,
researchers have developed various automatic labeling methods that almost uni-
versally formulate the task as a supervised learning classification problem [6–15].
The resulting models must learn using supervised training data, i.e., a large col-
lection of questions already labeled with Bloom’s levels, in order to accurately
predict Bloom’s levels [6]. Gathering such data involves the expensive and prob-
lematic process of manually collecting Bloom’s level labels outlined above. Likely
due to the high cost of collecting labeled data, previous works have used very
small labeled datasets, which raises concerns about their robustness and gener-
alizability [6]. In contrast, it is straightforward to collect questions that do not
have Bloom’s level labels. The abundance of unlabeled data and the high cost of
collecting labeled data calls for methods other than supervised ones for Bloom’s
level classification.

1.1 Contributions

In this paper, we develop a new framework for Bloom’s level classification
based on weakly supervised learning (WSL) that accurately classifies questions
into Bloom’s levels without requiring labeled training data. The fundamental
idea behind BLACBOARD (for Bloom’s Level clAssifiCation Based On weAkly
supeRviseD learning) is to codify experts’ domain knowledge in Bloom’s Taxon-
omy into a set of labeling functions (LFs) and then programmatically generate
Bloom’s level labels using these functions to form a weakly labeled dataset. In
this way, we create a labeled dataset using entirely unlabeled data and human
experts’ domain knowledge.

Our framework consists of three main components. The first component is
a novel set of LFs carefully crafted from domain experts’ knowledge of Bloom’s
Taxonomy, which generates a set of (noisy) Bloom’s level labels for each question.
The second component is a probabilistic graphical model that infers the most
appropriate (weak) Bloom’s level label for each question from the set of (noisy)
labels. The third and last component is a supervised classifier that we train on the
inferred weakly labeled dataset and use for the final Bloom’s level assignment.
We experimentally evaluate our framework on a large, real-world question bank
spanning a variety of subjects such as calculus, physics, sociology, and history.
Preliminary results on a binary Bloom’s level classification task demonstrate that
our proposed WSL framework achieves competitive classification performances
compared to fully supervised learning methods. Notably, our framework obtains
such results without any a priori known labels.



Towards Blooms Taxonomy Classification Without Labels 435

2 Preliminaries and Related Work

Fig. 1. Illustration of the Bloom’s Taxonomy levels from level 1 (bottom) to level 6
(top), with an example question corresponding to each level from a biology textbook.

Bloom’s Levels and Classification. The Bloom’s Taxonomy [4] that we use
in this work consists of 6 levels, each aiming to evaluate cognitive processes that
increase in difficulty. Figure 1 illustrates each Bloom’s level. The 6 Bloom’s levels
have in several instances been re-categorized into two levels to reflect lower-order
cognitive skills (LOCS) and higher-order cognitive skills (HOCS) [1,3,16–18],
where higher-order cognitive skills refers to cognitive processes that require more
than merely retrieving information [19,20]. Aligned with this perspective, in this
work we consider this LOCS and HOCS binary Bloom’s level categorization,
where LOCS contains Bloom’s level 1 and HOCS contains Blooms level 2 – 6.

Existing research has developed methods for Bloom’s level classification
based on supervised learning. Most of the prior work is based on support vector
machines (SVMs) [7,8,12,13] with a few others using näıve Bayes [14] and ensem-
ble methods [6,9]. Other work explores text representation methods such as aug-
menting the TF-IDF representation [10] or integrating linguistic features [11,15].
However, as mentioned earlier, all of the above rely on fully labeled datasets,
which are difficult and expensive to obtain in practice. Indeed, most of the above
works use very small datasets of only a few hundred or fewer questions, which
severely limits their practical and research impacts.

Weakly Supervised Learning. Weakly supervised learning (WSL) [21] is
an emerging machine learning paradigm that enables one to solve classification
problems without using any labeled data. We refer readers interested in WSL
to [21] for a thorough introduction and focus on its notable features here. Com-
pared to traditional supervised learning, WSL requires no a priori known labels;
the labels are created during the modeling process. This overcomes supervised
learning methods’ reliance on labeled data, which is often limited in quantity
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Fig. 2. An illustration of BLACBOARD, our proposed weakly supervised learning
framework for Bloom’s level classification of questions.

and difficult to collect. Thus, WSL makes it possible to solve classification prob-
lems using only unlabeled data, which in some applications is massive and cheap
to collect. WSL also has rigorous theoretical foundations [21–24] and has had
promising empirical success in a wide range of real-world, high-stakes applica-
tions. For example, in medical applications, WSL has contributed to medical
entity recognition [25], MRI image classification [26], medical device surveil-
lance [27], and genomic information compilation [28]. WSL has not yet been
applied in education except for one work that proposes a weak supervision-based
conversational agent for teacher education [29] (Fig. 2).

3 Methodology

We now describe our BLACBOARD framework. We introduce our novel LFs,
explain how to incorporate LFs into a graphical model to infer the weak Bloom’s
level label for each question, and finally show how to combine the weakly labeled
questions dataset with a supervised classifier. As mentioned in Sect. 2, in this
work we tackle the binary Bloom’s level classification problem, where one class
LOCS includes Bloom’s level 1 and the other class HOCS includes Bloom’s level
2–6. Extension to all 6 Bloom’s levels is left for future work.

3.1 Human Expert-Inspired Labeling Functions (LFs)

An LF fj(xi) : RD → |y| ∪ {∅} assigns a Bloom’s level label to each question.
xi ∈ R

D is the D-th dimensional vector representation of question i. y = {yi}N
i=1

is the set of labels and yi ∈ {0, 1} is the label for each of the N question. We
assume LOCS and HOCS are class 0 and 1, respectively. j ∈ {1, . . . , L} indexes
the LFs. | · | is the cardinality of y , which in our case is 2 because y is binary.
We include the empty set as a potential output of an LF, because an LF can
abstain, i.e., give no label to a question.

To effectively design these critical LFs, we conducted semi-structured inter-
views of 3 education experts investigating how they utilize Bloom’s taxonomy
in their general pedagogy while creating tests, authoring questions, and label-
ing existing questions. We used the findings from these interviews to design
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Table 1. Description of labeling functions (LFs). “Bloom 1 – 6 kw” collapses 6 similar
LFs.

LF Description Output

Short Check the number of words in
the question

LOCS if # characters less than
75, ∅ otherwise

Why Check whether the word “why”
is in the question

HOCS if the word “why” is in
question, ∅ otherwise

Bloom 1–6 kw Each checks whether keywords
(kw) specific to each Bloom’s
level is in the question

LOCS if the keyword is in
question, ∅ otherwise

Glossary Check whether glossary terms is
in the question

HOCS if the more than 3 terms
are in question, ∅ otherwise

Readability Computes a question’s Flesch
readability score

HOCS if the score < 50, ∅
otherwise

11 simple labeling functions that represent Bloom’s level characteristics and
domain knowledge, which we believe to be useful for determining the appropri-
ate Bloom’s level for a given question. Table 1 describes all of our LFs, which we
categorize into 3 groups. The first group (“short”, “why”, “readability”) focuses
on question properties. Our intuition is that HOCS questions tend to be longer,
less readable, and ask more “why” questions. The second group (“Bloom 1 – 6
kw”) looks for keywords (kw) indicative of each Bloom’s level. We collect these
keywords from teachers’ rubrics and instructions for writing questions at a spe-
cific Bloom’s level. The third group (“glossary”) looks for keywords specific to
subject domains, i.e., biology. Our intuition is that HOCS questions tend to con-
tain more subject domain keywords, which potentially reflects increased question
complexity and demands higher level skills. We collect these keywords from the
textbooks’ glossaries.

3.2 Graphical Model for Weak Label Inference

With the LFs, each data point now has a set of noisy labels. However, to train a
classifier, each data point must have a label. Therefore, we must learn the most
likely (weak) label given a set of labels for each data point. To do so, we lever-
age a generative model following [21], which we include here for completeness.
Concretely, let y ∈ R

N be the ground-truth labels and Υ ∈ (y∪{∅})N×M be the
weak label matrix obtained from the LFs where N is the number of data points
and L is the number of LFs. Then, we model the joint distribution of the weak
and the true labels for all data points using the following generative model:

pθ(Υ,y) = A−1
θ exp

(
M∑
i=1

θ�fi(Υ, yi)

)
,
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where Aθ is a normalizing constant. fi(·) is a function that combines three LF
properties including labeling propensity fpro, accuracy facc and correlation f cor:

fpro
i,j (Υ,y) = 1{Υi,j �= ∅} , (1)

facc
i,j (Υ,y) = 1{Υi,j = yi} , (2)

f cor
i,j,k(Υ,y) = 1{Υi,j = Υj,k} , (3)

where θ is the model parameters and 1{·} is an indicator function. These
three properties are important for understanding LFs’ effectiveness and thus
are incorporated into the generative model. Notably, computing LF properties
using Eqs. 1 and 3 do not require any ground-truth data. We will leverage these
unsupervised LF analytics in Sect. 4.3 and validate LF effectiveness. Because we
assume ground-truth labels y are unavailable in our setting, we optimize the
model and learn the model parameters θ̂ using the marginal log likelihood which
eliminates y. Concretely, the optimization objective is

θ̂ = arg min
θ

− log
∑
y

pθ(Υ,y).

More details on labeling correlation computation and model optimization are
available in [21].

3.3 Bloom’s Level Classifier

To obtain the final Bloom classification results, we leverage a classifier trained
on the weakly labeled dataset in which each data point has a label inferred by
the generative model using our LFs. Note that we may simply use the inferred
labels as the final Bloom taxonomy label for each question without training a
supervised classifier. However, a classifier brings more modeling capability and
is beneficial for classification performance. In Sect. 4.2, we empirically confirm
the advantage of additionally training a classifier on the weak labels.

4 Experiments

We now empirically show the power of BLACBOARD that uses questions with-
out any Bloom’s level labels for Bloom’s level classification.1 We first compare
BLACBOARD with the selected LFs to supervised learning methods that use
fully labeled data. We then present LF analytics that our framework enables and
that help us understand the effectiveness of each LF. Notably, this LF evaluation
step is unsupervised, i.e., without access to the ground-truth labels.

1 A demonstration and associated code of BLACBOARD are available at https://
github.com/manningkyle304/edu-research-demo.

https://github.com/manningkyle304/edu-research-demo
https://github.com/manningkyle304/edu-research-demo
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Fig. 3. Quantitative Bloom’s level classification results comparing BLACBOARD to
fully supervised methods. We see that for all classifiers used, BLACBOARD achieves
classification accuracies very close to supervised methods using fully unlabeled data.

4.1 Dataset

We use a new, closed-source, large-scale, real-world dataset from OpenStax2

of 17,719 multiple-choice questions that are actively used in practice and have
expert-tagged Bloom’s levels ranging from level 1 to 6. The dataset includes
questions from multiple subjects, including natural sciences (biology, physics)
and social sciences (economics, history, sociology), and is representative of high-
school and college-level courses. These properties make our dataset the largest
and most diverse one to be used for Bloom’s level classification to our knowledge.
For our binary Bloom’s level classification problem, we reassign the Bloom labels,
resulting in 11,190 LOCS questions and 6,529 HOCS questions. A näıve majority
classifier gives a classification accuracy of 63.15%, which serves as one of our
baselines. We encode each question into a numeric feature vector using TF-IDF
that is commonly used in text mining and information retrieval [30].3

4.2 Comparing BLACBOARD to Fully Supervised Methods

In this experiment, we compare BLACBOARD, which uses entirely unlabeled
data, against supervised learning methods that use fully labeled data. This exper-
iment will demonstrate the capability of WSL in effectively performing classifica-
tion tasks in the absence of human-provided ground-truth labels. We randomly
split the data into 80% training and 20% test sets. For BLACBOARD, we learn
the weak labels for all questions in the training set and then train a classifier on
the weakly labeled training set. For supervised learning, we simply train a classi-
fier on the training set with ground-truth labels. To verify the results in different
settings, we use a variety of classifiers for both BLACBOARD and supervised
learning, including linear support vector machine (SVM), radial Basis function

2 https://openstax.org.
3 We also experimented with other featurization methods, but the results were similar

to TF-IDF. We thus use TF-IDF for all experiments in this paper.

https://openstax.org
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Table 2. Labeling function (LF) analysis. We can identify 2 weak LFs, because of low
coverage (“why” LF) and low overlap (“Bloom 5 kw” LF).

Labeling functions Coverage Overlap Conflict

Short 0.435 0.326 0.111

Why 0.007 0.006 0.003

Bloom 1 kw 0.321 0.308 0.133

Bloom 2 kw 0.218 0.211 0.163

Bloom 3 kw 0.286 0.250 0.185

Bloom 4 kw 0.166 0.163 0.101

Bloom 5 kw 0.142 0.006 0.003

Bloom 6 kw 0.142 0.142 0.091

Glossary 0.104 0.085 0.053

Readability 0.329 0.271 0.197

(RBF) SVM, random forest, adaboost, and decision trees [31,32]. We perform
each experiment 5 times and report the average accuracies on the test set.

Figure 3 visualizes the average test accuracies (with standard deviation) com-
paring BLACBOARD to fully supervised learning methods for each classifier. We
observe that BLACBOARD achieves classification performance close to fully
supervised methods. In particular, for linear SVM, BLACBOARD achieves sta-
tistically the same performance as its fully supervised counterpart. This result
showcases that, with entirely unlabeled data and by creatively incorporating
domain expertise, BLACBOARD approaches the performance of supervised
learning methods using fully labeled data with minimal performance degrada-
tion. We also see that removing the classifier in BLACBOARD leads to lower
accuracy, implying that a classifier trained on weak labels can improve perfor-
mance.

4.3 Unsupervised Labeling Function Analysis

In this experiment, we show how we can perform LF analysis in an unsuper-
vised manner, i.e., without the ground-truth labels. This analysis reveals insights
about the effectiveness of each LF and helps us retain or discard certain LFs.

Metrics. Recall that the generative model in BLACBOARD leverages three
LF properties including propensity, accuracy, and correlation. We now leverage
these properties to define 3 types of statistics for each LF. The first statistic
is coverage, which computes the number of questions that an LF assigns a
label, i.e., Υij �= ∅ for LF fj . The second statistic is overlap, which computes the
portion of questions with at least 2 weak labels. The third statistic is conflict,
which computes a portion of questions for which at least 1 other LF yields a
label different from the LF under examination.
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Fig. 4. Post-hoc leave-one-LF-out analysis results. We show the average and density
of the accuracies for the experiment with each excluded LF. The horizontal line is the
best accuracy with all LFs. We can see that none of the LFs, if removed, statistically
improve the labeling accuracy, suggesting that each individual LF contributes to the
labeling inferring capability and all should be kept.

Results, Interpretation and Significance. Table 2 reports the analysis
results, averaged over 5 random runs. We first see that the conflict scores are low
for all LFs. This is an encouraging signal because each LF agrees with the other
LFs in general. The opposite situation, in which LFs tend to give contrasting
labels, would cause much trouble for the graphical model to infer the most likely
weak label. Therefore, having a sizable number of LFs that do not conflict much
suggests that all LFs are reasonable. However, some LFs have low coverage (e.g.,
“why” LF) and low overlap (e.g., “why” and “Bloom 5 kw” LFs). An LF with
low coverage and overlap suggests that this LF influences only a very small frac-
tion of all data points and contributes little to improving the modeling capacity.
For example, for the “why” LF (indexed by j), its corresponding row in the weak
label matrix Υj would have mostly −1 representing abstain (e.g., no label). This
row thus has limited influence for the graphical model inference.

In this work, we choose to keep all LFs because conflicts are low. Even for
the LFs with low coverage and overlap, they have lower conflicts and thus do not
appear to cause negative effects on the weak label inference process. Through
these analyses, we show that by examining the LF statistics in an unsupervised
manner (e.g., without using any ground-truth labels), we can verify the validity
of our LFs and identify LFs that have limited contribution to the weak label
inference process.

Post-hoc Analysis with Ground-truth Labels. To illustrate the conclusions
from our unsupervised LF analysis using coverage, overlap, and conflict statistics,
we additionally perform a post-hoc, leave-one-LF-out experiment. Specifically,
we remove one LF and use the remaining LFs to train the generative model in
BLACBOARD. We perform this training step for every LF using the training
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data (again without ground-truth labels) and report the labeling accuracy on the
test set. This accuracy is computed using BLACBOARD’s inferred labels and the
ground-truth labels and is thus a post-hoc analysis because we assume ground-
truth labels are not available in practice. Nevertheless, this post-hoc analysis
reveals the effectiveness of each individual LF. Specifically, if the test accuracy
improves without a particular LF, then this LF does not contribute to improving
BLACBOARD’s label inferring capability and thus should be removed. If the
opposite situation happens, then this LF is useful and should be retained.

Figure 4 shows the post-hoc analysis results for each LF, averaged over 5 runs
with different train-test splits. The horizontal line is the best labeling accuracy
with all LFs. We can see that most of the LFs, if removed, significantly decrease
the accuracy, suggesting that these are important LFs and should be kept. Some
LFs, such as the “knowledge keywords” (Bloom 1 kw), sometimes improve per-
formance if removed. However, the improvement is not statistically significant;
in most of the 5 runs, the accuracy decreases when these LFs are removed. Thus,
all LFs are useful in BLACBOARD and none should be removed. This result is
consistent with and confirms the conclusion in the preceding unsupervised LF
analysis.

5 Conclusions and Future Work

In this paper, we have introduced BLACBOARD, a WSL framework for Bloom’s
level classification. To the best of our knowledge, this is the first work to
investigate WSL for Bloom’s level classification. Our framework, unlike existing
supervised methods for Bloom’s level classification, requires no labeled dataset.
Instead, it incorporates instructional and domain expertise into modeling to cre-
ate weak labels for classification. We report promising preliminary results on
a large, real-world question dataset, demonstrating that, compared to conven-
tional fully supervised methods, BLACBOARD suffers little to no decline in
performance.

The modular framework of our weak supervision approach coupled with our
new procedures to perform unsupervised model diagnostics enables iterative and
intuitive adjustments for improvements. In the future, we intend to extend our
framework from binary to full 6-level Bloom’s level labeling. One promising
avenue of research is to investigate more sophisticated LFs based on linguis-
tic and heuristic characteristics of Bloom’s levels. More advanced models that
leverage recently developed deep probabilistic methods can also contribute to
improving the weak label inference capability. The essential value of a WSL app-
roach is that it does not rely on massive, high-quality, labeled data, therefore
resulting in a scalable solution to a previously unscalable problem. Our present
work forecasts the exciting promise of transferring the WSL approach for solving
a wide range of problems in Artificial Intelligence in Education beyond Bloom’s
level classification including question generation [33], educational conversational
agents [34], forum posts sentiment analysis [35], and knowledge graph construc-
tion [36].
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Inferring generative model structure with static analysis. Adv. Neural. Inf. Process.
Syst. 30, 240–250 (2017)
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Abstract. Task requirements (TRs) writing is an important question
type in Key English Test and Preliminary English Test. A TR writ-
ing question may include multiple requirements and a high-quality essay
must respond to each requirement thoroughly and accurately. However,
the limited teacher resources prevent students from getting detailed grad-
ing instantly. The majority of existing automatic essay scoring systems
focus on giving a holistic score but rarely provide reasons to support it. In
this paper, we proposed an end-to-end framework based on machine read-
ing comprehension (MRC) to address this problem to some extent. The
framework not only detects whether an essay responds to a requirement
question, but clearly marks where the essay answers the question. Our
framework consists of three modules: question normalization module,
ELECTRA based MRC module and response locating module. We exten-
sively explore state-of-the-art MRC methods. Our approach achieves 0.93
accuracy score and 0.85 F1 score on a real-world educational dataset. To
encourage reproducible results, we make our code publicly available at
https://github.com/aied2021TRMRC/AIED 2021 TRMRC code.

Keywords: Task requirements writing · Machine reading
comprehension · Pre-training language model · Neural networks

1 Introduction

Key English Test1 (KET) and Preliminary English Test2 (PET) are examina-
tions to assess the communication ability of the test taker in practical situations.
In PET and KET, there are a variety of question types, including speaking, read-
ing, listening, and writing. In writing questions, examinees are not only required
to write an essay precisely and correctly but need to make responses to the Task
Requirements (TRs). According to official scoring instructions, an essay with
poor task achievements should be assigned a low grade. Some examples of TR
writing questions are shown in Table 1.
1 https://www.cambridgeenglish.org/exams-and-tests/key.
2 https://www.cambridgeenglish.org/exams-and-tests/preliminary.
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Table 1. Examples of TR writing questions in PET.

1 A TV company came to your school yesterday to make film.
Write an email to your English friend Alice. In your email, you should
* Explain why the TV company chose your school
* Tell her who or what they filmed
* Say when the programme will be shown on television.

2 You arranged to meet your English friend Sally next Tuesday,
but you have to change the time.
Write an email to Sally. In your email, you should
* Suggest a new time to meet on Tuesday
* Explain why you need to change the time
* Remind Sally where you arranged to meet

1 Lines begin with * are task requirement questions.

Timely and accurate evaluation on the performance of test-takers, especially
informing them of TR achievements of their essays, is essential to improve their
writing and communication skills. Such evaluation usually takes experienced
teachers a large amount of time as each essay needs to be graded carefully.
However, due to the limitation of teacher resources, most English learners cannot
get timely assessments on the quality of their essays. Although many researchers
studied how to automatically score an essay, most of the current approaches can
only provide total scores without enriched supports [6,26,29]. This is not really
helpful for students to improve their writing skills.

In natural language processing field, machine reading comprehension (MRC)
has been studied for a long time and can be employed to provide details in
terms of how well TRs have been achieved in students’ essays. In MRC field, the
second version of Stanford Question Answering Dataset (SQuAD 2.0) is the most
widely used benchmark dataset to evaluate model performance [22]. However,
our experiments prove that even a model that achieves the best performance
on SQuAD 2.0 cannot be directly used on educational scenarios, as there is
a significant performance degradation. The main reason is that SQuAD 2.0 is
a general-purpose open-source dataset, but there is a huge difference between
educational and general-purpose corpora.

To alleviate these problems, we construct a real-world educational dataset
and propose an end-to-end framework based on MRC approach, which uses
ELECTRA as a backbone, to detect whether students respond to TRs in their
essays [3]. Our framework can clearly and accurately locate sentences in student
essays that respond to the requirements. Experiments on an educational dataset
show that the proposed framework achieves 0.93 accuracy score and 0.85 F1
score, outperforming many existing approaches. We believe that this research
can help automatic essay scoring system provide interpretable grading results,
thereby helping students improve their writing skills.
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2 Related Work

2.1 Automated Writing Evaluation

Automated writing evaluation (AWE) has been studied for a long time in both
industry and academia [1,13,20,30]. Since Page and Ellis B published their works
in 1996, plenty of automated scoring products and applications, e.g., E-rater,
have emerged. Based on AWE, lots of works on automatic essay scoring (AES)
have been published [6,20,26,29]. However, these works mainly focused on giv-
ing a holistic score, which measures the overall quality of an essay. Taghipour
explored several neural network models for AWE and outperformed strong base-
lines without requiring any feature engineering [26]. Dong proposed a reinforce-
ment learning framework that incorporates quadratic weighted kappa as guid-
ance to optimize the scoring system [6]. In recent years, a variety of researches
focused on fine-grained essay evaluation [2,12,21]. In Persing’s work, they pre-
sented a feature-rich approach to score prompt adherence of essays [21]. In Ke’s
work, they not only predicted a score of thesis strength but also provided more
reasons [12]. Nevertheless, none of these works address the problem of detecting
TR achievements in AES systems.

2.2 Machine Reading Comprehension

At document level, finding students’ response to a TR is similar to extractive
and abstractive MRC task in which given several reading materials, the model is
expected to answer related questions based on the materials. The MRC models
are expected to understand both the context and the question and be able to
perform reasoning. In TR writing, we could regard student’s essays as reading
materials, and the model is supposed to find answers to TRs. If no answer is
found, it indicates that the essay does not respond to the requirement.

The early trend of MRC used long short-term memory or convolutional
neural network as an encoder of questions and contexts and blended a vari-
ety of attention mechanisms, e.g., attention sum, gated attention [5,8,11,19].
Approaches mimicking the process of how humans do reading comprehension
were also proposed, such as multi-hop reasoning [16,24,25]. Recently, pre-trained
language models, e.g., BERT, RoBERTa, ALBERT, BART, ELECTRA, became
prevalent encoder architectures in MRC and achieved state-of-the-art perfor-
mance [3,4,14,15,17]. Besides these improvements and optimizations on the
encoder module, research about the decoder in the MRC model also starts
to draw attention. Zhang al et. proposed an answer verification method and
achieved state-of-the-art single model performance on SQUAD 2.0 benchmark
with ELECTRA encoder module [22,23,31].

Another line of research on MRC is how to construct high-quality datasets
and lots of works have been done [7,10,18,23,27]. Among them, SQuAD is
one of the most widely-used reading comprehension benchmarks [23]. However,
Rajpurkar et al. showed that the success on SQuAD does not ensure robust-
ness to distracting sentences [9,22]. One reason is that SQuAD focuses on ques-
tions for which a correct answer is guaranteed to exist in the context document.
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Therefore, models only need to select the span that seems most related to the
question, instead of checking that the answer is actually entailed by the text.
Based on SQuAD, Rajpurkar et al. proposed SQuAD 2.0. To do well on SQuAD
2.0, systems must not only answer questions when possible but determine when
no answer is supported by the paragraph and abstain from answering [22].

Comparing with previous AWE works, to the best of our knowledge, we
are the first to use a MRC approach to detect TR achievements in educational
domain. We also construct a Student Essay Dataset (SED) which can be deemed
as SQuAD 2.0 in the educational field and we explore the usage of a combination
of SQuAD 2.0 and SED.

3 Problem Statement

In the TRs writing evaluation task, let Q denote a collection of task requirement
questions and q denote a single question in Q. Let tiq denotes the i-th token
in the question q such that q = (t1q, t

2
q, t

3
q, · · · , tmq ). E = (t1e, t

2
e, t

3
e, · · · , tne ) is an

essay written by a student where tje denotes the j-th token in the essay E. Then
the problem is defined as for each requirement q, is there a sequential text span
S = (tje, t

j+1
e , · · · , tj+s

e ) in E that responds to the requirement q? If such span S
exists, q is achieved and S needs to be extracted from the essay E, if not, q is
not achieved by E.

4 Method

4.1 The Overall Workflow

The overview of our proposed framework is displayed in Fig. 1. Our approach
is mainly composed of three principal modules, question normalization (QN)
module, MRC module, and response locating (RL) module.

4.2 Question Normalization Module

Task requirement questions are proposed from the perspective of examiners, but
essays are from examinees’ perspective. This perspective gap brings difficulties to
the MRC model. To eliminate the difference, we normalize texts of task require-
ments with two rule-based methods: switching personal pronouns and deleting
redundant words.

Switch Personal Pronouns. We use pre-defined rules to replace personal
pronouns in the sentence. For example, a question “What will you do in the
summer vacation ?” may receive a student’s answer “I will travel to Japan”.
If we change personal pronouns “you” in the question, it will be normalized
as “What will I do in the summer vacation ?”. The normalized question will
decrease the difficulties of this task for the models.
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Normalized Task Requirement:What 
will I do in the summer vacation

QN

Task Requirement:What will you
do in the summer vacation

MRC  RL

Essay : My name is Jim. My 
favorite sport is playing 
basketball. In this summer 
vacation, I would like to 
travel to Japan with my 
parents. I love that country 
and I have been there twice.

Essay : My name is Jim. My 
favorite sport is playing basketball. 
In this summer vacation,  I would 
like to travel to Japan with my 
parents. I love that country and I 
have been there twice.

Fig. 1. The workflow of TRs evaluation framework.

Delete Redundant Words. We define question words such as “what”, “how”,
etc., and then delete redundant words that appear before them. One example of
deleting unnecessary words is that we omit the word “explain” in the question
“explain why you need to change the time” and change it to “why you need to
change the time”. Another instance is that we delete the words “remind Sally” in
“remind Sally where you arranged to meet” and acquire the normalized question
“Where I arranged to meet”.

4.3 Machine Reading Comprehension Module

In MRC module, normalized task requirement question q and the whole essay
E are concatenated with a special symbol [SEP ]. The entire input sequence to
MRC model can be described as T = ([CLS], t1q , t

2
q, t

3
q, · · · , tiq, · · · , tmq , [SEP ],

t1e, t
2
e, t

3
e, · · · , tje, · · · , tne ), where the full length of T is τ = m + n + 2.

ELECTRA Encoder. We use the discriminator module of ELECTRA to
encode each token in T into a dense vector. The max length of T is 512 and
tokens exceeding the max length will be truncated at the end. We use hL

u to
represent the final layer outputs of ELECTRA at position u which corresponds
to the u-th token in T . We use HL = (hL

1 , ..., hL
τ ) to denote the last-layer hidden

states of the input sequence, where HL ∈ R
τ×768. ELECTRA model is based on

a multi-layer bidirectional Transformer encoder, and multi-head attention net-
work [28]. Therefore, hL

u is able to capture the context of the u-th token from
q and E. The attention function in ELECTRA and the output of layer l are
showed in Eq. (1). In layer l, inputs Q,K, V are computed by H l−1Wq , H l−1Wk

, H l−1Wv respectively, where H l−1 denotes the output of the previous layer
and Wq ∈ R

768×dk , Wk ∈ R
768×dk , Wv ∈ R

768×dk . Thus Q,K, V have the same
dimensions R

τ×dk where dk is the dimension of vectors in K.

Attention(Q,K, V ) = softmax(
QT K√

dk

)V

H l = max(0, Attention(Q,K, V )W1 + b1)W2 + b2

(1)
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ELECTRA

Start Position FFN   End Position FFN

Softmax Softmax  

E-FV TAV

RV

Responded or not

Encoder

Span 
Prediction

Answerable 

Fig. 2. The architecture of MRC model

Span Prediction. We employ a fully connected layer with softmax operation
which takes HL as input and outputs start and end probabilities of each token
in T , as shown in Eq. (2). Let pi

start and pi
end represent the start and end prob-

abilities of i-th token in T respectively, thus Probstart = pi
start,i ∈ [1, τ ] is the

start probability vector for all tokens in T and Probend = pi
end,i ∈ [1, τ ] is the

end probability vector for all tokens in T .

Probstart = softmax(HL ∗ Wstart + bstart)

Probend = softmax(HL ∗ Wend + bend)
(2)

Answerable Verification. Motivated by Zhang’s work, we introduce the same
answerable verification step to determine whether an essay responds to a task
requirement [31].

We feed hL
1 which is the representation vector of [CLS] token encoded by

ELECTRA into external front verification (E-FV) module. E-FV uses a fully
connected layer followed by softmax operation to calculate classification logits
ŷi = (logitans, logitna) where logitans is a scalar to indicate the answered logits
and logitna is a scalar to indicate no-answer logits. We calculate the difference
as the external verification score with Eq. 3a.

Threshold-based answerable verification (TAV) takes start and end probabili-
ties as input and outputs the no-answer score scorediff computed with Eq. 3b, 3c
and 3d. p1start and p1end in Eq. 3c represents the start and end probabilities of the
[CLS] token in T .

Rear verification (RV) combines scorediff and scoreext to obtain the final
answerable score scorefinal as shown in Eq. 3e, where β1 and β2 are weights.
MRC model predicts that question q is answered by E if scorefinal > ζ, and not
answered otherwise, where ζ is a hyper parameter.
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scoreext = logitna − logitans (3a)

scorehas = max(pk
start + pl

end) k, l ∈ (1, τ ] and k ≤ l (3b)

scorenull = p1start + p1end (3c)
scorediff = scorenull − scorehas (3d)

scorefinal = β1scorediff + β2scoreext, (3e)

4.4 Response Locating Module

In RL module, it takes start probabilities Probstart, end probabilities Probend

and answerable score scorefinal as input, and decides the start and end positions
according to these inputs. A naive path to achieve this goal is that positions
that obtains the highest start and end probabilities are chosen as start and end
positions respectively. All tokens between these two positions are extracted as
the student’s response to the task requirement. If the start or the end position is
less than m+1, in which case a span of question is marked, or their positions are
contradictory, e.g., start position greater than end position, the module decides
that the question is not responded. Finally, the framework outputs both the
binary label indicating whether the student’s essay does respond to the task
requirement and the location of the responsive span if it is available.

5 Experiments

5.1 Datasets

SQuAD 2.0. SQuAD 2.0 is the most widely used benchmark in machine read-
ing comprehension literature. It combines the first version of SQuAD with over
50,000 unanswerable questions written adversarially by crowd workers to look
similar to answerable ones [23]. It contains 130,319 training examples from 442
Wikipedia articles and 11,873 development examples from 78 Wikipedia articles,
where each example is made of a question and an article. This dataset requires
that a model should not only answer the question when it is possible but also
abstain from answering when there is no answer in the reading materials.

SED. This is a real-world student essay dataset that we collect from a third-
party K-12 online learning platform. It consists of 9,450 examples in the training
set and 3,357 examples in the test set, where each example contains an essay and
a requirement question. There are 3,367 different essays and 593 different task
requirement questions in the training set. In the test set, the number of essays
and requirement questions are 1,655 and 185 respectively. In order to obtain
labels, annotators need to firstly decide whether an essay does respond to the
question and label it positive or negative accordingly. Secondly, for all positive
essay examples, annotators need to mark the start and end positions of the span
in the essay that responds to the question.
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Despite that SQuAD 2.0 and SED share similarities in terms of task and
structure, there are many differences between them. First of all, SED is in the
educational domain and SQuAD 2.0 is from Wikipedia. Secondly, answers in
SED are much longer than answers in SQuAD 2.0. Fig. 3 illustrates that most
answers in SQuAD 2.0 are between 5 to 20 characters, while answers in SED are
between 25 to 100 characters. The average length of answers in SQuAD 2.0 is
18.0 while the average length of answers in SED is 103.4. The last difference is
that there are more grammatical errors in SED because essays in SED are written
by second language learners. So a model that achieves the best performance on
SQuAD 2.0 may not be directly deployed on educational scenarios.

5.2 Experimental Setting

In this section, we describe three sets of experiments as follows.

– Set 1. This set aims to prove that existing SOTA models on SQuAD 2.0
cannot be directly deployed on educational scenarios. In Set 1, all models are
trained on SQuAD 2.0 but evaluated on the test set of SED. SAN was trained
50 epochs with learning rate 2e−3 on SQuAD 2.0 [16]. Pre-trained language
models such as BERT, RoBERTa, ALBERT, and BART, were acquired from
hugging face3. Our ELECTRA-based approach was trained 2 epochs with
default parameters in this work [31].

– Set 2. This set is to prove that MRC approaches are effective solutions to
TRs writing evaluation when trained on the educational corpus. The training
parameters of the models are consistent with those in Set 1. The difference is
that models are all trained on SED.

– Set 3. This set explores how can we utilize SQuAD 2.0 and further improve
model performance on SED. Following the idea that models pre-trained on
massive data can be a good warm-up for subsequent finetuning, we first train
MRC models on SQuAD 2.0 so as to acquire basic models, and then finetune
them on SED for optimal performance.

Fig. 3. Distributions of answer length (char level) in SED and SQuAD 2.0.

3 https://huggingface.co.

https://huggingface.co
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Accuracy =
Ncorrect

Ntotal

precision =
Numoverlap

Numpredict

recall =
Numoverlap

Numgold

F1 =
2 ∗ precision ∗ recall

precision+ recall

(4)

In all experiments, we use two evaluation indicators. One is Accuracy (Acc.)
which measures the performance of the model on the binary classification task
of predicting whether the essay answers the TR. Another is Answer Overlap F1
score (F1) which measures the performance of the model to predict the location
of the answer span. Accuracy and F1 metrics can be calculated by Eq. 4.

In Eq. 4, Ntotal indicates the number of examples in the test set, and Ncorrect

is the number of examples that are correctly predicted by the framework.
Numoverlap represents the number of identical tokens in both the predicted
span and the gold span. Numpredict is the total number of tokens in predicted
span and Numgold is the total number of tokens in the gold span.

5.3 Results and Evaluation

Results of Set 1. Table 2 shows that existing SOTA models on SQuAD 2.0 are
suffered a significant performance degradation on SED. All models in Table 2 are
well finetuned on SQuAD 2.0 and their F1 scores on SQuAD 2.0 dev set are all
over 0.66. However, when evaluating them on SED test set, performances drop
dramatically. For example, RoBERTa and our method achieve F1 score of 0.83
and 0.89 on SQuAD 2.0 dev set, but both drop to F1 score of 0.49 on SED test
set.

Result of Sets 2&3. Table 3 shows results of Set 2 and Set 3. From the results
of Set 2, we conclude that the MRC approaches can solve the TRs writing

Table 2. Performances of models trained on SQuAD 2.0

Training dataset Methods SQuAD 2.0 dev SED test

ACC. F1 ACC. F1

SQuAD 2.0 (set 1) SAN 0.70 0.66 0.57 0.31

BERT 0.78 0.73 0.65 0.37

ALBERT 0.85 0.81 0.58 0.37

RoBERTa 0.86 0.83 0.69 0.49

BART 0.87 0.81 0.62 0.42

Ours 0.92 0.89 0.68 0.49
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evaluation problem. Comparing with models trained on SQuAD 2.0 (Set 1),
models trained on SED achieve significantly better results on SED test set. Our
framework in Set 2 achieves the best F1 score of 0.84 and the best accuracy of
0.91, outperforms our framework in Set 1 by 23% Accuracy and 35% F1 score.

If we compare results in Set 2 and Set 3, we find that optimal performance
can be obtained by firstly training models on SQuAD 2.0 and then finetuning
on SED. Specifically, F1 score of SAN increases by 11%, and F1 score of BERT
increases by 8%. Similarly, the accuracy also increases significantly in Set 3.

Table 3. Performances of models trained on SED and SQuAD 2.0&SED

Training dataset Methods SED test

Acc. F1

SED (set 2) SAN 0.67 0.58

BERT 0.79 0.68

ALBERT 0.84 0.77

RoBERTa 0.81 0.71

BART 0.82 0.73

Ours 0.91 0.84

SQuAD 2.0& SED (set 3) SAN 0.79 (+0.12) 0.69 (+0.11)

BERT 0.84 (+0.05) 0.76 (+0.08)

ALBERT 0.86 (+0.02) 0.80 (+0.03)

RoBERTa 0.88 (+0.07) 0.80 (+0.09)

BART 0.89 (+0.07) 0.82 (+0.09)

Ours 0.93 (+0.02) 0.85 (+0.01)

Comparing with Set 2, the accuracy of BART and our framework increase
by 7% and 2% respectively. Furthermore, our approach achieves the best per-
formance in each of the three sets of experiments, and outperforms a variety of
SOTA approaches.

6 Conclusion

In this paper, we proposed a MRC based approach which cannot only detect if
an essay responds to a requirement question but find where the essay answers the
question. From our experiments and analysis, we demonstrate that SQUAD 2.0 is
very different from our educational dataset, so existing SOTA models on SQuAD
2.0 cannot be directly deployed on educational scenarios. Instead, we propose to
firstly train a basic model on SQuAD 2.0 and then finetune the basic model on
educational data for optimal performance. We believe this proposed framework
is able to help automatic essay scoring systems provide detailed grading results,
thereby helping students improve their writing skills.
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Abstract. Procrastination, as an act of voluntarily delaying tasks, is
particularly pronounced among students. Recent research has proposed
several solutions to modeling student behaviors with the goal of procras-
tination modeling. Particularly, temporal and sequential models, such as
Hawkes processes, have proven to be successful in capturing students’
behavioral dynamics as a representation of procrastination. However,
these discovered dynamics are yet to be validated with psychological
measures of procrastination through student self-reports and surveys. In
this work, we fill this gap by discovering associations between temporal
procrastination modeling in students with students’ chronic and aca-
demic procrastination levels and their goal achievement. Our analysis
reveals meaningful relationships between the learning dynamics discov-
ered by Hawkes processes with student procrastination and goal achieve-
ment based on student self-reported data. Most importantly, it shows
that students who exhibit inconsistent and less regular learning activi-
ties, driven by the goal to outperform or perform not worse than other
students, also reported a higher degree of procrastination.

Keywords: Hawkes process · Procrastination · Student modeling

1 Introduction

Student academic procrastination has been shown to be associated with negative
consequential outcomes such as on academic performance [15], well-being [25],
and emotions [22]. Consequently, it is important to model and understand the
underlying dynamics of this behavior to be able to detect and manage procrasti-
nation in students. Since time-management and self-regulation skills are shown to
be important factors in procrastination [27,33], many models try to use students’
dilatory studying behaviors over time as a proxy for procrastination [1,4,21,29].

We divide these attempts into two main categories: static procrastination
models and the temporal ones. Static procrastination models describe student
behaviors using point estimates on time-related features such as students’ aver-
age delays in starting coursework, average time spent on assignments, and
c© Springer Nature Switzerland AG 2021
I. Roll et al. (Eds.): AIED 2021, LNAI 12748, pp. 459–471, 2021.
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average pace of studying [1,2,4,6,14]. On the other hand, temporal models
describe student activity history via sequential model such as association pat-
tern mining [17], Markov models [10,12], mixture Poisson [21], and Hawkes pro-
cesses [11,16,29,30]. Such temporal models have become increasingly popular
as, unlike the point estimates in static procrastination models, they can describe
students’ continuous behaviors within the studying time period.

Although successful in detecting dynamic behavioral patterns and clusters
in students, such temporal procrastination models have not been validated by
measures endorsed by procrastination theories [7,23,26]. In other words, these
models can only infer students’ learning patterns by using their interaction log
data collected from online courses and do not consider students’ self-reported
data such as the ones collected using self-report surveys. Namely, the behavioral
dynamics discovered by temporal models may not always be associated with
chronic or academic procrastination in students, but with other reasons. For
example, a student may delay in submitting an assignment because of having
commitments to other concurrent tasks. As a result, the literature on temporal
procrastination models lack experiments to show if the discovered patterns are
actually associated with theory-supported procrastination measures. One of the
potential reasons for this gap, can be the challenge of obtaining self-reported
and survey data from students in massive online classes in which the temporal
models are experimented on.

In this paper, we bridge this gap by studying the associations between the
patterns discovered by temporal procrastination models and self-reported pro-
crastination in students. We collect studying behaviors and survey responses
from a study time management application Proccoli that provides a unique
opportunity to access both sequential and self-report data from students. Due
to the success of Hawkes processes in modeling students’ behavioral dynamics
in massive online courses [29,30] we apply this model on student learning activ-
ities in smaller university courses captured by Proccoli. Also, given the poten-
tial association between procrastination and goal-orientation in students [3,25],
we evaluate the patterns discovered in relation to these two phenomena. In
summary, we seek to answer the following research questions: Q1. Are Hawkes
processes fit to characterize students’ learning behavior dynamics captured in
university courses? (Sect. 4.1) RQ2. Can Hawkes processes discover significant
patterns among students’ learning dynamics in university courses? (Sect. 4.2)
RQ3. Are there associations between students’ learning dynamics and their self-
reported goal orientations? (Sect. 4.3) RQ4. Are there associations between stu-
dents’ learning dynamics and their self-reported procrastination? (Sect. 4.4)

Our findings show significant relations between Hawkes process procrasti-
nation model and students’ goal orientation and noteworthy connections with
student procrastination.

2 Dataset

The data in this paper is collected from Proccoli, a time management applica-
tion for students, over Spring and Fall semesters 2020. In Proccoli, a student can
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create a study goal (e.g. studying for the final exam) and optionally decompose
it into smaller subgoals (e.g. reviewing the first lecture for the exam). For each
goal, a student can log their study sessions by setting and using a count-down
timer (e.g. a 25-min study session) or by reporting their past study start and end
time in the app. During study, the student can pause the timer anytime for a
break and resume it later. Also, the timer can be manually stopped if the student
wishes to finish the study session early. The following activities and their cor-
responding unix timestamps are collected: GoalCreatedTime: time when a goal
is created, SubGoalCreatedTime: time when a subgoal is created, TimerStar-
tAt : start time of the timer, TimerBreakTime: time when the timer is paused
for a break, TimerResumeTime: resume time of the timer, FinishTime: time
when the timer automatically runs out, TimerStopTime: time when the timer is
manually stopped by the student, ReportedStartTime: reported start time of the
study session, ReportedFinishTime: reported stop time of the study session, and
ReportTime: time when a self-report is submitted. We include “active” students,
who have more than five activities in the app, in our analysis. In total, the data
includes 3339 activities with timestamps over 383 goals created by 47 students.

Besides student activities, this dataset contains three self-report surveys
that measure students’ goal orientations (Achievement Goal Questionnaire-
Revised (AGQ-R)[7]), chronic procrastination (General Procrastination Scale
(GPS-9) [24]), and academic procrastination (Academic Procrastination State
Inventory (APSI) [23]). Each questionnaire is on a Likert 1–5 scale, with 1 rep-
resenting strongly disagree and 5 representing strongly agree. AGQ-R, measures
students’ aim in terms of 4 groups of items, i.e. mastery-approach (e.g. learn
as much as possible), mastery-avoidance (e.g. avoid learning less than possi-
ble), performance-approach (e.g. perform better than others), and performance-
avoidance (e.g. to not perform worse than others). In GPS-9, students’ trait-like
chronic procrastination is measured by the average score of the nine question-
naire items. Finally, in APSI, the average score of 13 items is used to describe
students’ academic procrastination [23]. In both procrastination questionnaires,
a higher score corresponds to a higher degree of procrastination.

3 Hawkes Processes for Student Behavioral Dynamics

Recently, several Hawkes process models have been proposed and customized
for modeling student learning activities in large online courses to represent pro-
crastination. These models have shown to be successful in effectively capturing
the learning dynamics of students [29], finding clusters of student behaviors [30],
and capturing various studying stimuli in student sequences [31]. In this section,
we briefly introduce Hawkes process [13], and explain how we adopt it to model
student activities in our dataset.

To apply Hawkes processes, the main assumption to adopt is the time-
dependency assumption. According to this assumption, students’ learning activ-
ities can be driven by two types of stimuli: (1) external stimuli such as student’s
studying routines or deadlines (e.g. a student habitually starts a study session
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every morning), and (2) internal stimuli, i.e. historical activities that have trig-
gering effects on other activities (e.g. setting a goal on the App may consequently
trigger the student to start a study session logged by the timer). To formulate
procrastination modeling as Hawkes processes, suppose we are given a collection
of N student sequences, denoted as S := {S1, ..., SN}. Suppose each sequence
contains Ki activities (as described in Sect. 2), represented as Si := {x1

i , ..., x
Ki
i },

where xτ
i is the timestamp of the τ -th activity in Si. According to the formu-

lation of Hawkes processes, we parameterize each student sequence Si by the
following intensity function, which models the number of activities that take
place as a function of time:

λ(t|Si) = μi +
∑

xτ
i <t

αiβie
−βi(t−xτ

i ). (1)

In this equation, μ (called base rate) represents the expected number of
activities that are triggered by external stimuli; α (self-excitement rate) describes
the number of activities that are self-excited by the previous activities, i.e. from
internal stimuli; and β (decay rate) parameterizes the exponential function which
captures the decaying influence of self-excitement with respect to time. A larger
μ describes a higher activity rate triggered by external stimuli. A larger α value
means a higher influence of historical activities on the future ones. Finally, a
larger β value describes a faster decay of self-excitement, which means past
activities have an influence on activities at current time t for a shorter period of
time.

4 Experiments and Analyses

4.1 Testing the Goodness-of-Fit (RQ1)

As mentioned in Sect. 1, current Hawkes-based models for describing student
procrastination are designed for Massive Open Online Courses (MOOCs). In
addition to a large number of students, these courses need more self-regulation
and time management from students. As a result, we need to re-analyze the
fitness of Hawkes processes and their assumptions for our dataset, which includes
a small number of students studying in a more structured university setting.

To address RQ1, we first apply Hawkes processes to our data as explained
in Sect. 3 and then apply the Point Process Residual Theorem [20] to evaluate
the fitness of external and internal stimuli assumptions of Hawkes processes. To
fit Hawkes process on our data, we use stochastic gradient descent (SGD) to
optimize a loss function built upon Eq. 1. Specifically, the loss is set to be the
negative likelihood of observing all historical activities by T , i.e. {x1

i , ...x
Ki
i }. To

set a proper time-interval unit for activity intensities, we perform grid search
on one-second, one-minute, five-minute and ten-minute intervals. Five-minute
results in the smallest loss on our data. For the decay rate β, we follow the
convention of traditional Hawkes process optimization [5,28,32] and perform a
grid search between 1 and 120 (5 min to 2 h) with a step size of one. The β that
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gives the smallest negative likelihood within this range for each student sequence
is used as the optimal β 1.

Next, we apply the Point Process Residual Theorem which aims to test if
the defined intensity function λ(t) fits the observed activity sequences well [20].
Particularly, Kolmogorov-Smirnov (KS) test is used in this theorem with the
null hypothesis that a transformed sequence computed via Eq. 1 is drawn from
exp(1). According to the theorem, the goodness-of-fit can be validated by not
being able to reject this null hypothesis. As a result of this test, the averaged
p-values of this test on all student sequences is 0.74. It demonstrates that the
Hawkes model defined in Eq. 1 represents students’ learning dynamics well.

4.2 Discovering Behavior Patterns Using Hawkes Processes (RQ2)

To answer RQ2 and study the presence of significant patterns among students’
learning dynamics discovered by Hawkes processes, we first use the discovered
three Hawkes parameters (base rate μ, self-excitement rate α, and decay rate β)
to describe the learning dynamic of each student sequence. Then, we cluster the
students according to these parameters to examine significant differences that
can be discovered using these parameters. In this context, base rate μ can be
viewed as the frequency of activities that a student plans to do that are driven
by external stimuli, such as their reactions to deadlines. On the other hand,
internally triggered activities characterized by self-excitement rate α and decay
rate β can be interpreted as activities a student spontaneously initiates as a
timely reaction to their recent activities. To this end, we represent all students
as Sd = {Sd

1 , ...., Sd
N}, where Sd

i = (μi, αi, βi).
Next, we apply K-means on Sd

1 , ..., Sd
N to identify possible clusters of learning

dynamics. We then compute the center of each cluster and test if the clusters have
significant differences among them. To decide the optimal cluster number, we
use the elbow method [18], where the distortion, i.e. the mean of the Euclidean
distances from the cluster centers is compared against the cluster number k.
Trying k ∈ {1, . . . , 10} we found that two clusters is optimal in our data. The
two cluster centers parameterized by mean μ, α, and β are presented in Table 1.
26 students are grouped into cluster 1 and 21 are in cluster 2.

Table 1. Centers of the clusters identified by K-means.

Cluster Base rate μ Self-excitement rate α Decay rate β Cluster size

1 0.059 0.43 17.88 26

2 0.021 0.25 64.76 21

We first observe that the learning dynamics characterized by Hawkes param-
eters are very different across the clusters. To validate that this difference is
1 The implementation can be found in https://github.com/persai-lab/AIED2021

Hawkes.

https://github.com/persai-lab/AIED2021_Hawkes
https://github.com/persai-lab/AIED2021_Hawkes
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significant, we run a two-sample Kolmogorov–Smirnov (KS) test on each of the
parameters from the two clusters, with the null hypothesis that the two sam-
ples are drawn from the same distribution. The p-values of KS test on base
rate μ, self-excitement rate α, and decay rate β are all significantly <0.001 ,
which reject the null hypotheses. This observation validates the significance of
statistical differences between the two clusters in terms of learning dynamics. It
means that students grouped into these two clusters using Hawkes parameters
have significantly different learning behavior dynamics.

To better compare the learning dynamics of the two clusters, we sample and
visualize a sequence to represent each of the clusters. For the sampling, we use
Ogata Thinning Algorithm [19], while setting the base rate μ, self-excitement
rate α, and decay rate β to the centers of these two clusters. These two sampled
sequences are shown in Fig. 1, where the x-axis is time t in hours and y-axis is the
intensities of the sampled sequences computed via Eq. 1. We observe two very
different learning dynamics, described as follows: In cluster 1, student sequences
have more frequent and consistent learning activities (higher base rate μ), while
at the same time, their historical activities have stronger internal triggering
effects (higher self-excitement α) for a longer period (smaller decay rate β). On
the other hand, students in cluster 2 have almost the opposite learning dynamics:
a smaller studying frequency is driven by external stimuli (i.e. lower base rate μ)
and less effect of previous activities, suggested by smaller self-excitement rate α
and much higher β. In other words students in cluster 2 have less tendency to
initiate follow-up activities and study less intensely.

Fig. 1. Learning dynamics of the cluster centers depict by Hawkes.

In sum, students in cluster 1 are more driven by both external and internal
stimuli which leads to more consistent and regular studying towards the goals.
Whereas in cluster 2, students are relatively less sensitive to external and internal
stimuli. Furthermore, contrary to cluster 1’s frequent and consistent learning
pace, higher irregular intensity peaks within short time intervals are usually
presented in cluster 2. This shows that Hawkes processes can discover significant
patterns in students’ learning dynamics for our dataset.
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4.3 Learning Dynamics Associating with Goal Orientation (RQ3)

To answer RQ3, which is the association between the discovered students’ learn-
ing dynamics and their goal orientation, we run two experiments: a correlation
analysis and a cluster analysis.

Correlation Analysis. Here, we compute the Pearson correlation between
each of the Hawkes parameters and each group of items of AGQ-R. The results
are shown in Table 2. We first look at performance-approach and performance-
avoidance measures, where students are asked if their goal is to respectively
outperform or not perform worse than other students. We observe strong nega-
tive correlations between the base rate μ and both of these item groups. On the
other hand, a positive correlation between the decay rate β and each of these
item groups is observed. Combining these two observations shows that students
who focus more on performance comparison with others study less regularly
and less consistently using Proccoli and the influence from their past activities
on current activities wears off faster. Altogether it suggests less sensitivity to
both external and internal stimuli for these students2. This finding is in accor-
dance with the literature that points to the relation between low motivation and
performance attainment to the pursuit of performance-based goals [7,8].

Table 2. Correlation between each pair of a Hawkes parameter and AGQ-R item group
that describes students’ goal orientation. The significance level is denoted as follows:
p < 0.01***, p < 0.05**, p < 0.1*.

Base rate μ Self-excitement rate α Decay rate β

Performance-Approach −0.540** 0.219 0.329*

Performance-Avoidance −0.681*** 0.145 0.285*

Mastery-Approach 0.256 0.198 −0.036

Mastery-Avoidance −0.391** 0.267 0.061

Next, we see that there is a significant negative correlation between the fre-
quency and regularity of students’ studying (i.e. base rate μ) and their goal to
avoid learning less than needed (i.e. mastery avoidance). Similarly, this is consis-
tent with the finding that reveals the association of low self determination and
disorganized study with a high emphasis on mastery-avoidance [7].

Cluster Analysis. Next, we examine if the clusters identified by the Hawkes
Process are associated with students’ goal orientation in the clusters. To do so,
we check if there exists any difference between these clusters in terms of AGQ-R
item groups. For each AGQ-R item group, we use the two-sample KS test on the
two clusters. The null hypothesis is that students’ scores on each AGQ-R item
group from the two clusters follow the same distribution. So, a small p-value sug-
gests a highly significant difference between students’ goal achievement in the

2 Please note that these are based on correlation, and are not causal effects.
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two clusters. Checking performance-approach and performance-avoidance item
scores, we observe that they are statistically significant differences in the two
clusters, with p-values respectively to be 0.007 and 0.026. To have a better rep-
resentation, we visualize the distributions of these two item groups in each of the
two clusters in Fig. 2. This observation suggests that students in cluster 2 have a
stronger focus on the performance comparison with their peers. Remember that
these students studied less regularly with Proccoli (small base μ) and had less
frequent and fewer spontaneous follow-up activities (high self-excitement α and
decay β). For example in performance-avoidance, where a score of 5 shows that
they strongly agree that their goal is to not perform worse than others, students
in cluster 2 scored an average of 4.42 (between agree to strongly agree). Whereas
in cluster 1, students scored an average of 3.4, suggesting an average response
of neutral to agree. A similar observation can be made in performance-approach
responses.

Fig. 2. Density distributions of performance approach (a) and performance avoidance
(b) in two clusters.

On the other hand, KS test reveals little significant difference between the
clusters in mastery-approach, with an average score of 4.08 and 4.14 in cluster 1
and cluster 2 respectively. Similarly, in mastery-avoidance (i.e. to avoid learning
less than needed), students in cluster 1 have an average of 3.67 vs. 3.97 in cluster
2, with the difference shown to be not statistically significant across the two
clusters. To this end, we find that in both clusters students have acknowledged
their aim of task mastery (mastery-approach and mastery-avoidance) to the
same degree. But, students in cluster 2 have a higher pursuit of performance
comparison compared to cluster 1. Connecting the findings in this analysis to
the observations made in correlation analysis, there might be factors that inhibit
students in cluster 2 from being more driven by internal and external stimuli,
such as low motivation that has been associated with the pursuit of performance-
based goals in the literature [7]. To explore this topic further, in the following
section, we examine students’ chronic and academic procrastination scores and
their possible association to the aforementioned differences.
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4.4 Learning Dynamics Associating with Procrastination (RQ4)

To answer RQ4, which is on the association between learning dynamics and
students’ procrastination, we follow an analysis similar to the previous section,
between learning dynamics characterized by Hawkes and students’ self-reported
procrastination described by GPS-9 and APSI.

Table 3. Correlation between each pair of a Hawkes parameter and students’ chronic
or academic procrastination. The significance level is denoted as follows: p < 0.01***,
p < 0.05**, p < 0.1*.

Base rate μ Self-excitement rate α Decay rate β

Chronic procrastination −0.401* 0.208 −0.627*

Academic procrastination −0.271 0.312 −0.327*

Correlation Analysis. As shown in Table 3, students’ chronic procrastination
is shown to have a significant negative correlation with the base rate μ. This
suggests that students with less regular and less frequent studying sessions on
Proccoli (smaller base rate μ), also report a higher degree of trait-like chronic
procrastination. Furthermore, we also find that both chronic and academic pro-
crastination are significantly negatively correlated with decay rate β, which may
be caused by chunks of intensive studying activities close to the deadline [9].
By comparing chronic procrastination with academic procrastination, we see
that both procrastination types are shown to have the same correlation coef-
ficient signs with Hawkes parameters (negative for μ and β, and positive for
α). However, the correlations in chronic procrastination are stronger and more
significant, compared to the academic one. A possible reason is that chronic pro-
crastination describes students’ general procrastinatory behaviors (i.e. the extent
of trait-like procrastination in daily life) similarly as Hawkes process, especially
the base rate μ, describes students’ overall learning regularity (i.e. via constant
learned parameters per student). As a result, the correlation between chronic
procrastination and Hawkes parameters tend to be more significant. However,
in the academic procrastination questionnaire, factors related to academic tasks
such as task difficulty are evaluated. For example, one question from APSI asks:
“Gave up when studying was not going well”. Students’ answers to these kinds
of task-specific questions may be associated with the academic nature of the
task, rather than their general studying habits and regularity. This may lead
to a less significant correlation between academic procrastination and the base
study rate μ.

Cluster Analysis. To further examine the possible differences in terms of stu-
dent procrastination between the two clusters discovered by Hawkes, similar
to the previous section, we use two-sample KS tests on student procrastina-
tion scores across the clusters. We find that students in cluster 2 reported an
average of 3.31 on chronic procrastination, which is significantly higher than
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Fig. 3. Density distributions of (a) chronic procrastination measured by GPS-9 and
(b) academic Procrastination measured by APSI in two clusters.

chronic procrastination of students in cluster 1, suggested by a p-value of 0.047
in the KS test. Figure 3 (a) shows the density distribution comparison of the
clusters in terms of chronic procrastination. Similar significant difference can
be observed in students’ academic procrastination presented in Fig. 3 (b), sup-
ported by a p-value of 0.091. This finding suggests that the characteristic learning
behaviors presented in cluster 2 (i.e. less frequent and less consistent studying
towards goals, higher peaks within short time intervals) are highly associated
with a higher degree of both chronic and academic procrastination reported by
the students. Connecting this finding to the study of students’ goal orientation
(Sect. 4.3), possibly a higher degree of procrastination presented in cluster 2
inhibits students from having more regular and consistent studying activities,
and the motivations of outperforming or at least not doing worse than peers
are not strong enough to offset the effect of procrastination, which may be one
reason that could explain the different learning dynamics exhibited in cluster 2
comparing with cluster 1.

5 Conclusions

In this paper we presented and evaluated four research questions in associat-
ing Hawkes process procrastination models, based on students’ logged behav-
ioral data, with the students’ self-reported data. In summary, we concluded that
Hawkes processes present a good fit for modeling students’ procrastination-like
behavioral dynamics, collected from study time management app Proccoli, even
in small university courses (RQ1). We also discovered two significantly different
behavioral clusters using the learned Hawkes parameters: cluster 1 with students
who study more consistently and frequently and are triggered to study more as a
result of their past studies with a lingering effect, and cluster 2 with an opposite
behavior (RQ2). By finding significant relations between students’ goal orien-
tation and model results (RQ3), we discovered that, in correspondence with
previous literature, performance-related goal orientations were associated with
procrastination-like behaviors explained by model parameters and presented in
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cluster 2 students. Interestingly, mastery-related goal orientations did not show
such a strong significant relation. Our analysis of procrastination questionnaires
with model results (RQ4) showed that both academic and chronic procrastina-
tion are associated with behavioral dynamics presented in cluster 2 of students.
However, we noted another unique observation: that chronic procrastination is
more significantly related to lower regular study habits, compared to academic
procrastination. In sum, a higher degree of procrastination was found in students
of Hawkes-discovered cluster 2 with performance-oriented motivations that were
not strong enough to offset the procrastination effect.
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Abstract. Remote meetings have become the norm for most students learning
synchronously at a distance during the ongoing coronavirus pandemic. This has
motivated the use of artificial intelligence in education (AIED) solutions to sup-
port the teaching and learning practice in these settings. However, the use of such
solutions requires new research particularly with regards to the human factors that
ultimately shape the future design and implementations. In this paper, we build on
the emerging literature on human-centredAIED and explore students’ experiences
after interacting with a tool that monitors their collaboration in remote meetings
(i.e., using Zoom) during 10 weeks. Using the social translucence framework, we
probed into the feedback provided by twenty students regarding the design and
implementation requirements of the system after their exposure to the tool in their
course. The results revealed valuable insights in terms of visibility (what should
be made visible to students via the system), awareness (how can this information
increase students’ understanding of collaboration performance), and accountabil-
ity (to what extent students take responsibility of changing their behaviours based
on the system’s feedback); as well as the ethical and privacy aspects related to
the use of collaboration analytics tools in remote meetings. This study provides
key suggestions for the future design and implementations of AIED systems for
remote meetings in educational settings.

Keywords: Human-centred AI · Remote meetings · Collaboration analytics ·
Ethics

1 Introduction and Background

There is an increasing amount of research that shows the positive impact of using Arti-
ficial Intelligence (AI) applications to support students’ academic performance [1, 2],
their affective engagement [3–5], and metacognitive development [6–8]. In the design
of effective AI in Education (AIED) tools, most available research highlights the sig-
nificance of robust technical approaches and the use of learning sciences principles [9,
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10]. However, a range of other human factors related to AIED tools are often neglected,
including students’ preferences, why and how the tools will be used [11], the social con-
texts in which the tools will be used, and ethical [12] and societal implications related to
fairness, accountability and transparency [13]. Understanding how human factors (i.e.
the characteristics of students, educators, other relevant stakeholder and the environ-
ment) can shape the use of AIED tools is key for their successful adoption and the field’s
wider impact on Education. The value of research in human factors in the design and
implementation of AI, in general, has now been established and is addressed in specific
tracks of influential conferences including the ACM SIGCHI Conference on Human
Factors in Computing Systems (CHI) [14] and the Association for the Advancement
of Artificial Intelligence (AAAI) Conference on AI [15]. Yet, there is limited previous
work addressing concerns with regards to the human factors of AIED.

Aiming to address such a gap, in a series of studies, Holstein et al., [16–19] inves-
tigated the iterative co-design of augmented reality glasses for an intelligent tutoring
system (ITS) with K-12 teachers and students. The studies provided valuable insights
into teachers’ experiences and challenges in using an ITS in their classroom settings
[18]. For instance, although teachers often preferred the automation of certain tasks to
ease their teaching workload, over-automation of tasks in teaching environments was
considered as a threat to their flexibility to choose and implement their own pedagogical
goals. Similarly, Van Leeuwen and Rummel [20] documented the teachers’ experiences
after using three different AIED interfaces (aimed at mirroring, alerting and advising)
and identified significant differences in the way teachers can use each of them [21].
Dillenbourg et al., also investigated teachers’ experiences while orchestrating ITSs in
collaborative learning contexts [22] and co-designed a series of multimodal analytics
prototypes with educators [23]. Just a few studies have focused on the potential role
that students may play in the design of a data-intensive educational tool. For instance,
Prieto-Alvarez et al. [24] encouraged students to co-create a learner-data journey based
on their particular needs and Chen and Zhu [25] investigated students’ experience with
a visualisation tool that analysed their engagement and interactions with others through
social network analysis. Similarly, Chaleer [26] studied students’ experience and per-
ceived awareness and usefulness with an ambient group awareness tool. However, the
tool was evaluated in a single class, so the students’ exposure to it was very limited.

These studies have provided significant contributions to our understanding of teach-
ers and students’ experiences with AIED tools in real-world contexts, which then can be
used to shape the design and implementation of AIED tools. However, prior work has
focused on limited types of AIED tools (i.e., ITSs), limited instructional approaches and
goals (i.e., monitoring student activities in classrooms), and mainly focused on the expe-
riences of teachers rather than those of students. In this paper, we build on the emerging
literature exploring students’ experience of AIED implementations in real-world con-
texts. We contribute to this literature through the analysis of students’ experiences with
an AIED tool that monitors their collaboration in remote meetings (using Zoom) as part
of a ten-week postgraduate course. The contribution of the paper is two-folded. First,
the themes that emerged from the analysis of students’ experiences can contribute to
and shape the design features of similar systems and their further automation with AI.
Second, since it focuses on a novel context for AIED systems -collaboration analytics in
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synchronous remote meetings using Zoom-, the findings of this study have significant
implications for future pedagogical interventions. Remote meetings have become the
norm for students studying synchronously at a distance during the coronavirus pandemic,
which highlights the timeliness of these contributions.

1.1 Collaboration Analytics and AIED in Remote Meetings

The study presented in this paper was conducted in the context of the use of a col-
laboration analytics tool. The term Collaboration Analytics refers to AI and Analytics
solutions aimed at scrutinising interaction group data to extract insights for support-
ing sense-making processes and the development of effective collaboration skills [27].
There are plenty of research studies in the literature that are explicitly or implicitly cat-
egorized under this umbrella. Some significant examples include but are not limited to
AI assistants for scheduling group meetings [28], personal assistants for providing help
in collaborative problem-solving [29], real-time gaze feedback with metacognitive sup-
ports from a pedagogical agent for dyads [30], utterance analytics of chats and discussion
forums to support students’ awareness in their involvement [31], feedback provision to
groups of students based on their interaction patterns [32], external help-seeking support
in collaboration contexts for students [33], and tools to provide summary information
of student groups based on certain indicators to support teachers’ class monitoring and
control [21].Most available studies describe the design of collaboration analytics in asyn-
chronous online (e.g., [34]) or classroom settings (e.g., [35]).Whilst the virtual meetings
have become crucial for remote education due to the need for synchronous collabora-
tion, more work is needed to understand how AI innovations can support reflection and
students’ learning in such settings. For instance, Cornide-Reyes et al. [36] recently devel-
oped the NAIRA system, a real-time multimodal learning analytics tool that inspects
students’ level of participation within the remote meetings through an influence graph,
a speech time distribution, and a silence bar. However, the study did not investigate the
students’ real-world experiences with the tool in detail.

2 The Context of the Study

The study was conducted in the context of a post-graduate course (covering the design
and use of educational technology) that lasted ten weeks. A total of forty-four students
completed the course. Students were divided into ten groups, ensuring each group was
interdisciplinary (education, design, and technology graduate members) and mixed in
terms of gender. Group sizes ranged from three to five. At the beginning of the course,
each group was asked to identify an educational challenge. Then, they had to carry out
an educational technology design case to solve the challenge and submit a design case
solution in Week 10. Analytics generated from online group meetings were used to
provide formative feedback on groups’ behaviours.

Groups used Zoom during their regular classes to conduct their planning and design
meetings. The ZoomSense system’s “sensor” appeared as a participant in the Zoom
meetings, recorded the verbal utterances of each student in Zoom, and stored them in
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Fig. 1. (a) A pie chart represents the total speech time per student including the relative fraction
of time a group has been silent. Each portion represents the relative speaking time of each student.
(b) Turn-taking network represents conversational flows between students.

a cloud database. The actual content of the meetings was not recorded. Verbal utter-
ances data were then used to model two constructs i) students’ total speech time, ii)
students turn-taking behaviours. Figure 1(a) presents the total speech time visualisa-
tion for group 8 in Week 3. This chart also includes the total silence time and relative
speaking time of each student (i.e. the most verbally active group member spoke for 15
min). Figure 1(b) shows the turn-taking behaviours of students. This was presented as
a network/sociogram, where the direction of the edges depicts the conversational flows
from one student to another during the discussions. The thickness of the edges represents
the mutuality of the conversation. After every remote meeting, these two visualisations
and a written report were sent to each group separately via email. The report served to
provide written feedback (a sample of email feedback) to students indicting how they
could improve group interactions. In the later versions of the tool, the written feedback
was also automatically provided via the Zoom chat to scaffold students’ collaboration
in real-time. In this study, the feedback was sent by teaching assistants every week after
group meetings.

3 Methodology

In this paper, we addressed three research questions. i What are the specific needs of stu-
dents’ that can impact the design features of collaboration analytics in remote meetings?
ii. What are the specific needs of students’ that can impact the educational implementa-
tion of collaboration analytics in remote meetings? iii. What are the ethical and privacy
concerns of students with regards to being monitored during remote meetings?

To address the research questions, we theoretically framed the student probes accord-
ing to the components of the Social Translucence (ST) framework: Visibility, Awareness,
and Accountability [37]. This framework was proposed to help investigate users’ design
needs for the particular purpose of computer-mediated, online group activities [23].
Based on ST, a total of twelve open-ended interview questions were used in retrospec-
tive semi-structured interviews at the end of the module. Interview questions covering
the Visibility dimension (4 questions) focused on the significant aspects of students’
online synchronous meetings and what features of their collaboration should be made
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visible to them. Awareness dimension’s questions (3 questions) aimed at exploring to
what extent the information provided by the analytics create a well-informed under-
standing of students’ own and others’ performance. Accountability questions focused
on understanding to what extent the feedback provided by the analytics can help students
take responsibility for improving their performance (2 questions). In addition to the ST
framework, we added 3 questions to particularly explore privacy and ethics concerns of
students with regards to the use of AIED tools in remote meetings.

In total twenty students (four male and sixteen female -representative of the cohorts’
gender ratio) volunteered to participate in the interviews. At least one student from all
ten groups was included in the sample. None of the participants had any experience of
using collaboration analytics or similar AIED tools in the past. The study has received
full ethics approval from the host institute of the lead author. All participants were clearly
informed and signed consent forms accordingly.

The data analysis was conducted using Braun and Clarke’s six phases of thematic
analysis [38]. First, the data was transcribed verbatim. Initial thematic codes were gener-
atedby two independent researchers individually.After that, themes from two researchers
were compared, discussed, and revised to make sure that emerging themes covered all
the collected data and that they are auditable. This process led to an agreed final coding
scheme. After this process was completed, the final coding scheme was applied to all
transcriptions from scratch to ensure consistency.

4 Results

The thematic coding analysis described in the previous section led to the emergence
of ten themes from the transcription data. The themes were then categorised into four
dimensions: visibility (4.1), awareness (4.2), accountability (4.3), and the ethics (4.4).

4.1 Visibility

Comprehensibility of Collaboration Analytics. Thirteen participants responded pos-
itively with regards to the easiness to comprehend information and straightforward inter-
pretation of the visualisations shown in Fig. 1. For example, P11 reacted positively as
follows: “This is the first time that I have seen such a straightforward way to show the
interactions during our collaborative learning.” On the contrary, five participants par-
tially agreed on this (P4, 10, 12, 14, 20), one firmly replied ‘no’ (P17) and one reported
uncertainty to answer the question (P6). Overall, they pointed out that the definition
of effective contribution was not clear to them and the analytics only covered partial
contributions in speech time and turn-taking.

Accuracy of the Analytics Information. Fifteen participants reported that the graphs
are accurate and “similar to their feelings” (P8, 15). P5 elaborated: “I think it clearly
shows the volume of contribution. So those who are talking the most, [what] it is showing
is quite accurate in terms of calculating who was the person that was talking the most
and … [with whom he was having] conversations with.” However, four participants
(P3, 6, 11, 19) reported differences between the analytics presented and their actual
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experiences. Notably, P3 and P6 thought their participation was higher than depicted,
while P19 argued s/he contributed to the discussion less. There was also a report from
P11 that there was always a higher amount of silence presented in the analytics than they
experienced as a group.

Lack of Quality Evaluations and Partially Represented Contribution. However, all
participants expressed concerns over the lack of quality evaluations of student contribu-
tions. Seven participants specifically raised concerns that their contributions were only
quantitatively represented through speech time and turn-taking but it did not show the
quality of their contributions which could be “total rubbish” (P1), “off-topic” (P12) or
“not useful” (P16). Therefore, higher speech time did not always mean more actual
contribution (P5, 11, 12, 13, 15, 17, 18, 20). On the contrary, lower speech time could
also represent a key contribution to the further progress of their work (P5, 6, 13, 17).
Generally, participants argued that the contributions in a group task are more about the
quality of the content than its quantity (P1, 4, 5, 6, 10, 15). Similarly, the turn-taking lines
shown in the collaboration analytics, which show conversational flows between group
members, were argued to provide potentially misleading information as explained by
P14, as follows: “sometimes someone spoke after me but what he said was not related
to what I have said. I think he diverted the topic and I could not reply to him.”

At the same time, six participants raised concerns over the limitation of unimodal
data collection since the information represented with the analytics was only captured
from the students’ Zoom meetings. Students might be “recorded” as silent in the col-
laboration analytics, but they might have been focusing on completing their co-design
tasks on another collaboration tool beyond what is captured by the system. Furthermore,
participants also mentioned various group activities that were crucial to their group work
but were excluded from the analytics including their chats via instant messaging plat-
forms such as WhatsApp (P19), additional meetings of sub-groups or group as a whole
(P16) that took place out of themodule, the final presentation preparations (19) and other
forms of preparation before the discussion (P12). To illustrate: “During the meeting, we
might express these points [prepared ideas] with a few sentences in a short time but we
might have spent a significant amount of time and energy on preparing them. The speech
time cannot represent these pre-meeting preparations.” – P12.

4.2 Awareness

The Value of Seeing One’s Own Performance. Participants mutually agreed upon the
value of the tool to make them aware of their performance (19 participants), yet their
reasons varied. Some reported, thanks to analytics, they ensured a high level of participa-
tion (P10) or maintained continuous participation in their meetings (P14). Importantly,
the tool appeared to prompt students to reflect on their performance. As P13 reported, “I
asked myself, why was I the person who spoke the least?” On the other hand, P11, who
was a regular high contributor, reported that “sometimes I would ask myself: Did I speak
such a lot?” In general, collaboration analytics were considered as external objective
measures that can help students be less “biased” from their own experience when evalu-
ating their performance in the group activities. As P5 pointed out: “Obviously about the
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whole thing about eyewitness testimony, it can be distorted by events that happen post
the experience. So, what the graph does, it really helps you to have a clear data point to
say, Okay, this is what happened in the group.”

The Value of Seeing Others’ Performance. Not only the tool was considered as an
enabler for students to reflect on their performance, but it was also considered as an
enabler to reflect on others’ performance. The majority of the participants (17) acknowl-
edged that collaboration analytics can make them aware of their group members’ con-
tributions, and determine who is struggling or need help. P20 explained this as follows:
“[the analytics] can help you know others’ contribution better or help you find their
problem. We had a new member. He rarely participated in the group work in the last few
weeks and he muted himself during the meeting.” This potential was also recognised by
P1, 4 and 9. Surprisingly, such awareness of a struggling member was not that evident
without the weekly reports sent to students, as P1 pointed out: “I didn’t know that one of
our group members didn’t spend a lot of time speaking. I mean, it took him about seven
weeks before he told us ‘I struggle with your accents’.”

4.3 Accountability

Collaboration Analytics to Foster Group Discussions. The collaboration analytics
were considered as a medium for triggering discussions by almost half of the partici-
pants (9). While some groups reported having a specific discussion about the analytics
occasionally (P3, 4, 5, 9, 13, 14, 19), some reported that constant discussions were going
on in their weekly meetings about the previous weeks’ feedback (P2, 7). For example,
P5 explained that “It did work because one week our meeting started when we were dis-
cussing the graphs. The persons who were showing to be contributing less, were talking
about why they felt they were doing that. And one highlighted an issue where somebody
felt that they didn’t understand the material enough to contribute that week.”

Self-regulation and Socially Shared Regulation of Behaviours. At the individual
level, nineteen participants tried to regulate their behaviours and adapt their level of
interaction according to the collaboration analytics (i.e., if they had a high level of
participation and dominated the discussion in one meeting, they tended to speak less in
consecutive meetings). This was indicated by P1, as follows: “…[after seeing analytics
on their group behaviours] I shut up. I didn’t talk for about half an hour.” Similar
incidents were reported by P15. In contrast, if they had a low level of participation, they
tried to speak more. As P13 described “once I was detected to have less speech time, I
would speakmore in the next time. I would try my best to catch upwithmy teammates and
have more interactions with them.” Some students also reflected on how their activity
or lack of preparation outside of the meeting reflected their levels of interaction during
the meeting. For instance, seven participants (P7, 8, 13, 16, 18, 19, 20) attributed their
low level of interaction to lack of preparation for the meeting and hence, tried to prepare
more in future meetings. To illustrate this, P19 explained that she could not contribute
much if she did not finish the weekly readings. As a result, she aimed to finish the weekly
readings, check the weekly tasks, and prepare contributions for the group discussions in
advance.
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Regulation of student behaviours appeared to occur also at a social level. Twelve
participants reported various strategies they used to regulate their behaviours based on
their understanding of others’ needs. For instance, they were encouraging the less active
speakers to speak more (P2,9,11,14,18); helping others diagnose their problems (P4);
providing a further explanation and inviting strugglingmembers to contribute (P19); and
developing group strategies such as assigning a weekly host for the group discussions
(P12). Someparticipantswere also able tomake informed strategic changes as P5 argued:
“for myself and another person in the group, we could see that we were talking back
and forth quite a lot. So, one week, we made a pact to not keep responding to each
other’s points yet to open up the floor for others in the group to respond to questions.”
However, whether regulated behaviours were beneficial for learning or not was not clear.
For instance, P4 reported that the analytics directed her towards responding to people,
not about discussing the contents: “I was very much concerned with making sure I had
good airtime and decent thick lines between the various people. And so, it became more
about a response, less thinking about what that person said.”

Gaming the System. ‘Gaming the system’ refers to a situation where students attempt
to accomplish a task within the system by not truthfully working on the tasks as intended
but rather taking advantage from the gap within the system [39]. There were four reports
of ‘gaming the system’ (P3, 12, 14, 17). P14 acknowledged that for the least active
speakers to have more interaction, s/he performed the following action: “[another mem-
ber] discussed something not related to our tasks but easy for [the least active speaker]
to talk in the meeting.” The same approach was followed in the group of P3, as she
described: “because we wanted to give space [to members spotted as less active] so that
it would be more equal, we would end up letting someone talk about completely random
subjects, just that they had enough time.”

Swinging Back to “Normal”, the Tentative Nature of the Changes. Notably, the
changes to the group discussions dynamics informed by the tool were not long-lasting.
Seven participants reported swinging back their “normal” after a short while, whereas
six participants noticed the tentative nature of the changes of othermembers’ behaviours.
Multiple reasons for the short-term nature of the changes were provided: including the
lack of control during the heat of the discussions (P10, 11), the restriction on their
speech-time giving unspontaneous flows of conversation (P3, 6), the lack of summative
evaluations of their collaboration (P2, 7, 11, 12, 1316). Overall, one-third of participants
argued for the value of integrating the tool and the assessment motives. As P7 elaborated:
“I am a behaviourist sort of thing. I feel like I don’t really contribute much because I
don’t really focus there because I know this will not affect my final mark. Where if I was
thinking maybe that is a 5% or 2% of our final marks will be affected. I think people
would contribute more.”

4.4 Privacy and Ethics Concerns

Half of the participants reported that they did not have any concerns and claimed they
ignored the fact of being monitored in their group meetings, with P5 explaining: “I’d say
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we completely forgot the sensors were there, aside from them just appearing in the panel,
and we were like presenting our screens anyway.” P3 reasoned that this comfort in being
monitored might be due to the course’s subject area. As she explained: “We came on
this course to learn about educational technology. So, in that sense to do that, it wasn’t
shocking, you know?Not like if I’d come,maybe on a different course, maybe then I’d find
it really weird.” P12 also reported no concerns due to her interest in AIED. Moreover,
two participants (P15, 18) argued their comfort was due to the formative use of the
tool, as it was not for summative assessment: “If they [the analytics] were only there for
feedback but not assessment, I think that’s alright to be monitored” (P15). By contrast,
one-quarter of participants said their concerns were rather fleeting and the other quarter
added that they were significantly concerned. Four participants (P1, 2, 3, 15) asked to
confirm whether the tool recorded their voices as P2 described their group concerns that
“there is one thing that we always discuss about… are you [the lecturers] listening to
everything that we are talking about?… some information even though it’s supposed to
be private, it is not really private.”Additionally, five participants revealed uncomfortable
feelings upon being monitored, such as feeling “uncomfortable” (P3), “strange” (P4),
“super-concerned” (P6), “nervous” (P15), and “being spied on” (P4, 15). Interestingly,
these concerns were particularly observed from students with low contributions. As P6
stated: “It was really, really challenging. So, knowing that something is monitoring how
much time I speak, I had the pressure to do it and it went out of hand. The second week,
I was under pressure. I think I spoke like two minutes or so.” P3 reported that her group
was more spontaneous when not being monitored: “We had some sessions outside of the
bots. And yeah, then we did not worry about that[being observed] anymore. Whoever
needed to say something said it. If we wanted to have a chat, we had a chat….Personally,
I was a bit different and I felt we were more spontaneous.” This aligned with reports
from P6, 7, 9, 15, 20 that they would have acted more openly if they were not being
observed.

On the contrary, P4, 5, 7, 8, 14, 17 asserted that the being monitored helped them to
act productively as their groupwas “supervised” indirectly through the tool. P4 explained
that “this small thing that sits in your head is echoed publicly, in some way is represen-
tative of who you are, and your teachers are seeing this, and you don’t want to look bad
to your professors.” P17 reported that: “To be honest, I have stayed here [the university]
for three years. I had my undergraduate here, acted as an invisible man. I don’t have
confidence so I rarely express my opinions in the class. Since this year we had the [tool],
I forced myself to express more about my opinions.”

5 Discussion and Conclusion

The results presented above have significant implications for the design and implemen-
tation of AI tools for collaboration in educational remote meetings. With regards to our
first research question on the design implications, results show that the collaboration
analytics in remote meetings have the potential to make students aware of their own as
well as their group members’ collaborative behaviours. However, students argued that
the tool only represented a small part of their actual contribution and so they did not
always perceive the tool as significant for their success in the course. The main critiques
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were the lack of content analysis and unimodal nature of the tool. Due to these design
drawbacks, students struggled tomake connections betweenwhat the tool represents and
what really ‘mattered’ for their learning. It was argued that content analysis of the dis-
cussion that would provide proxies on the quality of the contributions by groupmembers
-in addition to the quantity of contribution- is essential for the uptake of the tool. There-
fore, we suggest that future designs of similar AIED tools should consider involving the
content analysis and multiple modalities in their collaboration analytics. For instance,
detection of off-topic discussions and introduction of data from writing analytics from
chats as a second modality can increase the value of collaboration analytics in remote
meetings. Similarly, perhaps at a more practical level, future iterations that involve data
analysis from multiple platforms (i.e. collaborative docs, chats, presentation platforms)
can lead to more holistic representations of student contributions in remote meeting
settings. In turn, such representations are more likely to lead to a stronger relationship
between students’ awareness of their performance and to what extent they change their
behaviours accordingly [23, 40, 41].

Results also indicated that the reflections driven through awareness can lead students
to change their behaviours in remote meetings. As discussed in self-regulated learning
(SRL) literature [42, 43], by providing means to students to support evaluation not
only of the overall progress of the group but rather to make an accurate attribution of
personal contribution to the group progress (reflection phase), students can plan their
future learning and correct their expectations (forethought phase) [42]. Therefore, the
awareness provided by the tool has the potential to improve students’ learning in remote
meetings. However, such changes in student behaviours were argued to be temporary
andmany students returned to their “normal” behaviours in remote meeting interactions.
This is alignedwith research investigating the effects of digital tools on behaviour change
persistency in general [44].Multiple reasons were presented by students for the observed
phenomenon of “regressing to business as usual”. This phenomenon is partly related to
the incomplete representation of students’ contributions which we have discussed above.
Moreover, students reported that this “back to normal” may be caused by the lack of
intervention. Since the tool did not provide guidance or suggestions to the students
during the meeting, it is challenging for students to make a change on time. Therefore,
the future design of collaboration analytics tools should not only focus on providing
visualisations but should also include real-time automated feedback on what actionable
steps they can take to improve their collaboration behaviours. On the other hand, the
guidance may also be structured into the implementation of the collaboration analytics
tool which is explored in the second research question.

Our second question investigated the suggestions for educational implementation
of AIED tools with collaboration analytics in remote meetings. Firstly, students would
benefit from instructions that would scaffold them on what sort of actions they could
potentially take based on their reflections of the collaboration analytics. As some stu-
dents noted, although they realised that they needed to change certain behaviours, they
did not know exactly how to do this. This may be due to the feedback sent regarding
students’ participation which did not have strong elements on how students’ can regulate
their actions. Therefore, they struggled to adapt and change their behaviours accordingly
[45]. Future implementations should involve clear instructions on what further actions
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can be taken to address the tool’s suggestions. Secondly, the learning context inwhich the
tool was implemented significantly affected to what extent students engaged with it. For
instance, in this study, the analytics were not considered as part of the summative assess-
ment, so some students were not motivated to take long-lasting actions based on them.
This leads to the suggestion that teachers and AIED designers should carefully align
the collaboration analytics and the learning design including assessment [46]. Thirdly,
better instructions on what kind of analytics outcomes are expected for different group
tasks were deemed as important. Some students regulated their behaviours to equalise
the contribution in their group discussions, others purposely made no effort in this regard
as they considered some of the group meetings as peer learning opportunities rather than
collaboration. They wanted to learn from the students who have more experiences and
knowledge. This may indicate that students have varied definitions of collaboration for
different group tasks. Therefore, an alignment of group tasks’ learning design, its col-
laboration analytics, and their consequent visualisations should ideally be shared with
students in advance. As discussed in the literature, there are distinctions between collab-
orative learning, cooperative learning and peer learning [47] which may require students
to present different behaviours [48].

Regarding our third research question, we explored students’ privacy concerns about
being monitored by the collaboration analytics tools. Most students did not report neg-
ative emotions towards being monitored and some reported motivational value in being
observed. One possible reason may be that the analytics were not part of the summative
assessment. It was also argued that students were behaving more comfortably as they
knew the system could not record the content of their discussions. This highlights the
importance of informing students about what the AIED tool can and cannot do and how
it will be implemented. Yet, this also leads to a significant dilemma. On the one hand,
students asked for more detailed investigations of their collaborative behaviours (i.e.,
content analysis) and argued that the tool would make them more accountable if the
analytics involved summative assessments. On the other hand, students argued that they
would have more significant privacy concerns had this has been the case.

5.1 Limitations and Future Research

Since the participants were postgraduate students and the course was in educational
technology, it is challenging to generalise the results. Similar studies in diverse contexts
are called for drawing a better picture of student experiences. Moreover, although there
were indications about the value of the tool to help students regulate their behaviours,
future work is needed to delineate to what extent the tool supports self-regulation (SRL)
(“regulate oneself”), co-regulation (“supporting each other”) or socially shared regula-
tion (SSRL) (“regulating together”) [43]. Based on the findings, a future version of the
system may include the generation of fully automated real-time prompts, to be sent to
students via the Zoom chat, to scaffold students’ collaboration based on the discussion
dynamics, including SRL (e.g., ask the student who demonstrated no verbal activity in
the last 5 min to verbally summarise the current state of discussion) and SSRL (e.g.,
advice to the most active students to involve less active students). However, further co-
design evaluations of prompts are needed before any potential AI-driven automation to
understand what exact behaviours need to be prompted, when exactly, and how.
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Abstract. Machine Learning (ML) is a powerful tool to unveil hidden
patterns in data, unearth new insights and promote scientific discovery
(SD). However, expertise is usually required to actualize the potential
of ML fully. Very little has been done to begin instructing the youth of
society in ML, nor utilize ML as an SD tool for the K-12 age range. This
research proposes SmileyDiscovery, an ML-empowered learning environ-
ment that facilitates SD for K-12 students and teachers. We conducted a
2-session preliminary study with 18K-12 STEM teachers. Findings con-
firm the effectiveness of SmileyDiscovery in supporting teachers to (1)
carry out ML-empowered SD, (2) design their own curriculum-aligned
SD lesson plans, and (3) simultaneously obtain a rapid understanding of
k-means clustering. Design implications distilled from our study can be
applied to foster more effective learning support in future systems.

Keywords: K-12 Education · Machine learning · Scientific discovery
learning · Technology-enhanced learning

1 Introduction

Scientific discovery (SD) learning plays a critical role in K-12 STEM education
by mimicking how scientists study the world through data collection, experi-
mental operations, and pattern interpretation [9,10]. SD naturally connects with
Machine Learning (ML) which accelerates data analysis by systematically search-
ing hypotheses and revealing complex patterns in big data [16]. With ML becom-
ing increasingly fundamental in generating new findings in astronomy, biology,
chemistry [21], and other STEM domains, it is essential to provide opportunities
for K-12 students and teachers to apply ML as a new discovery tool.

Imagine a high-school biology teacher encouraging students to discover new
knowledge about dynamic ecosystems. The teacher first introduces a dataset
containing over 10 ecological attributes collected from hundreds of ecological field
sites. By exploring a few field sites, students may raise questions/hypotheses on
c© Springer Nature Switzerland AG 2021
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interactions between ecological attributes. Then students can begin probing these
initial ideas using pattern recognition with the help of ML. This may, in turn,
lead to a cycle of further inquiries with new hypotheses. Such processes would
largely promote science practices required by national standards. These practices
include asking questions, planning and carrying out investigations, analyzing and
interpreting data, engaging in evidence-based argumentation, and so forth [46].

Despite those promising benefits, little effort has been made to understand
ML as a data-driven discovery tool for K-12 science learning. One challenge is
balancing the support in learning ML and applying ML for novice learners [2,52].
The other is the lack of curriculum-aligned learning activities for K-12 teachers
to engage students in ML-empowered SD [29,48].

To address these challenges, we developed a learning environment, SmileyDis-
covery, to support low-barrier ML-empowered SD without extra ML training for
K-12 teachers and students. SmileyDiscovery integrates three major components
aligned with SD learning phases [33]: (1) orientation & initial conceptualization
with Smiley-Data mapping, (2) initial investigation with pairwise comparison
and manual clustering, (3) further investigation & conceptualization with auto-
matic clustering. Then we evaluated SmileyDiscovery with K-12 teachers due
to their essential roles in integrating innovative technology for pedagogy [25].
Our research questions are: RQ1. Can SmileyDiscovery support K-12 teach-
ers to carry out ML-empowered SD? RQ2. Can SmileyDiscovery support K-12
teachers to design SD learning activities? RQ3. Can SmileyDiscovery support
learning ML? Our main contributions include:

1. SmileyDiscovery facilitating ML-empowered SD for K-12 STEM learning;
2. A set of ML-SD connections for K-12 teachers to design ML-empowered SD

learning activities aligned with STEM curriculum;
3. Design implications for technology designers without SD background.

2 ML-Empowered SD and K-12 STEM Learning

Research shows that ML approaches empower data-driven discovery by enabling
hypothesis generation, iterative experimentation with different parameters, and
pattern recognition by gradually revealing more refined parameters [30,31]. Var-
ious ML techniques have been proposed to automate SD [27]. For example,
k-means clustering, an unsupervised ML algorithm, is used to discover laws by
grouping similar objects [13,14], identify dependencies of attributes [44], and
form taxonomies [51]. Such methods, however, are applied in science at a pro-
fessional level [16,21] and thus are inappropriate for K-12 teachers and students
with limited CS/ML backgrounds. This points out a demand for designing an
ML-empowered SD learning environment in K-12 contexts.

There are emerging research efforts to explore the opportunities of making
ML concepts and methods accessible for K-12 students [14,28,49,53]. One study
shows that data visualization supports students with limited computing knowl-
edge to gain a basic understanding of cluster analysis [49]. Further, it indicates
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the potentials of applying ML methods for data interpretation by pattern gen-
eration. Another study facilitates youth to train and test ML models of their
athletic activities [53]. It shows that ML enhances science learning by aligning
ML modeling with modeling scientific phenomena, an essential practice of sci-
ence recommended in curriculum standards [46]. Informed by these, our work
aims to design a learning environment connecting ML components with SD prac-
tices. We incorporate design guidelines from existing research about introducing
ML in K-12 STEM contexts, such as unveiling complex ML concepts step by
step [14,28] and visualizing ML models for explainability [13,49,53].

3 The Design of SmileyDiscovery

Fig. 1. SmileyDiscovery components: (a) orientation & initial conceptualization by
Smiley-Data mapping; (b) initial investigation by pairwise comparison and manual
clustering; (c) further investigation & conceptualization by automatic clustering.

We adopted K-means clustering to support SD due to its wide application
in STEM domains [3,26,35,39]. Compared to supervised learning, unsuper-
vised ML (e.g., clustering) more naturally connects with exploration leading
to deeper learning in SD [43], and inductive reasoning through accumulative
evidence [15,38], an accessible cognitive skill for young learners [30,40,42]. To
make cluster analysis accessible for K-12 students, we used Smiley visualiza-
tion [49], translating each data attribute to a facial feature, to take advantage
of people’s high processing capacity to human faces [6] and facilitate similarity
computation with superposition comparative visualization [17].

SmileyDiscovery enables SD learning stages modified from well-established
frameworks [1,5,33], including orientation & initial conceptualization,
where learners get familiar with the topic and generate hypotheses based on prior
knowledge; initial investigation, where learners explore dataset for preliminary
analysis; further investigation & conceptualization, where learners iterate
experiments and derive findings. Three components (Fig. 1) support scaffolding
for SD [37] to instruct toward higher complexity [24]. This includes introduc-
ing from basic (e.g., pairwise comparison) to advanced ML components (e.g.,
automatic clustering) and from a small subset to the entire dataset. Further, we
designed typing boxes to record the generation and refinement of hypotheses.
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We collaborated with an experienced science educator and designed three
ML-empowered SD learning activities: ecosystems [32], wine chemistry [8], and
breast cancer diagnosis [11]. Two ML experts checked the appropriateness of
applying k-means clustering in those SD activities. Below we present how Smi-
leyDiscovery supports SD learning across stages with the ecosystem activity.

3.1 Orientation and Initial Conceptualization

First, learners are introduced to multidimensional data about ecological field
sites (Fig. 2(a)). Second, they propose initial hypotheses and drag attributes of
interest onto facial features (Fig. 2(b)). Such an active construction of Smiley can
better engage learners [41]. Third, they manipulate sliders to understand how
data attribute values influence corresponding Smiley facial features (e.g., a lower
latitude of a field site leads to a smaller mouth). To reduce the cognitive load of
memorizing mapping relationships through SD, learners can view Smiley-data
mapping in real-time by hovering the cursor over facial features (Fig. 2(d)).

Fig. 2. SmileyDiscovery component supporting orientation & initial conceptualization.

3.2 Initial Investigation

First, learners use pairwise comparison to identify intriguing patterns between
two pre-selected field sites representing two distinct ecosystem clusters. This
design is informed by contrastive explanation [7] stimulating abductive reason-
ing [15,40]. E.g., the distinctions between two Smileys (Fig. 3(a)) may trigger
learners to wonder if lower latitudes relate to higher temperatures, precipita-
tion, canopy, beetle richness. Second, learners click on Smileys to overlay them
on the representative field sites (Fig. 3(b)) to select similar ones. This trial-
and-error process supports deeper reasoning [18,20,34] about (dis)similarities
unveiled (e.g., some field sites share low latitudes and high canopy & beetle
richness, while some share high latitudes and low canopy & beetle richness).

3.3 Further Investigation and Conceptualization

First, learners select a value of k (Fig. 3(c)). Second, learners conduct inductive
cluster analysis by investigating (1) shared features within clusters (intra-cluster
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pattern) via visual inspection of the stack of Smileys belonging to the same group
(Fig. 3(d)); (2) differentiating features between clusters (inter-cluster pattern)
by overlaying the two average Smileys (centroid) (Fig. 3(e)). To still consider
intra-cluster variations while using a centroid representing each cluster, learners
can click on each cluster to switch the view between a stack (Fig. 3(d)) and
a centroid (Fig. 3(e)). With variations and patterns introduced by the entire
dataset, learners are expected to concentrate on fewer ecological attributes than
initial investigation. Third, learners synthesize accumulative evidence from intra-
&inter-cluster patterns for further conceptualization (Fig. 3(f)). E.g., the first
two clusters show that a high canopy may lead to high beetle richness, and field
sites with similar latitudes have similar precipitations and temperatures.

The components above naturally open up the black-box of ML by asking
students to gradually apply similarity computation, centroid, evaluating values
of k with intra-&inter-cluster patterns. The algorithmic process of the k-means
clustering is also implicitly embedded in the scaffolding for manual clustering.

Fig. 3. SmileyDiscovery components supporting the initial investigation and further
investigation & conceptualization.

4 Methods

4.1 Study Design

Eighteen in-service K-12 STEM teachers without CS/ML backgrounds were
recruited from a teacher education course, Integrating Technology with STEM

Table 1. Participant information for each group.

Group Teaching grades Subjects

1 Elementary (N= 3), Middle school (N=1) Science (N =2), Math (N=2)

2 Middle school (N =4) Science (N =3), Math (N=1)

3 High school (N =4), Middle school (N =1) Science (N =1), Math (N=4)

4 High school (N =5) Science (N =5)
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Teaching, at a research-based university. They were divided into four groups
based on their teaching experience (grades & subjects) (Table 1) and participated
in the study via an online meeting platform, Zoom. The study contains two ses-
sions in two consecutive weeks. In the Teacher-as-Learner (TaL) session, teach-
ers watched a tutorial video about completing an ML-empowered SD activity in
SmileyDiscovery and performed another one with in-time help from researchers.
In Teacher-as-Designer (TaD), teachers collaboratively designed ML-empowered
SD lesson plans via an online design canvas by specifying each instruction step
and selecting SmileyDiscovery components to facilitate corresponding steps.

4.2 Data Collection and Analysis

RQ1. Can SmileyDiscovery Support K-12 Teachers to Carry Out ML-empowered
SD? We collected log data of how teachers went through the example activity
in TaL, including text input and clicking behaviors (Table 2). We measured suc-
cessful completions with text input by examining (1) if all questions are answered
based on proper ecological attributes, (2) if further conceptualization involves
meaningful findings emerging from the data; we then counted clicking behav-
iors to see if teachers interacted elaborately with ML components. We measured
patterns in successful completions by examining hypothesis development and
comparing differences in clicking behaviors between successful and unsuccessful
completions. Four participants who encountered technical issues were excluded.

Table 2. Log data (text input & clicking behaviors) collected for each SD stage.

Orientation & Initial conceptualization Text input: hypothesis of
ecological interactions based on prior knowledge

Initial investigation Clicking behavior: (1) select field sites similar to
the two representative field sites for manual clustering; (2) remove less
similar field sites from a cluster. Text input: (3) interpretation of shared
patterns identified manually; (4) interpretation of differentiating patterns
between ecological field site subsets

Further investigation & conceptualization Clicking behavior: (1)
conduct automatic clustering with different values of k; (2) switch
between Smiley stacks and centroids; (3) compare centroids of ecosystem
clusters. Text input: (4) interpretation of shared & differentiating
patterns in ecosystem clusters; (5) findings of dynamic interactions
between ecological attributes

RQ2. Can SmileyDiscovery Support K-12 Teachers to Design SD Learning Activ-
ities? We explored the pedagogical potentials of SmileyDiscovery by asking
teachers to (1) post SmileyDiscovery-supported teaching ideas before TaD; (2)
collaboratively design ML-empowered lesson plans in TaD; (3) reflect on applying
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SmileyDiscovery in teaching in journals after TaD. First, we measured the diver-
sity of teaching ideas. Two researchers independently assessed each teaching idea
on whether it includes multidimensional datasets and applies cluster analysis to
solve problems, then independently categorized teaching ideas into NGSS disci-
plinary core ideas [46]. Both achieve near-perfect agreement (Cohen’s Kappas:
0.87, 0.91). Second, to measure teachers’ fulfillment of ML-SD connections, we
identified ML components selected to support each SD phase in teacher-designed
lesson plans and counted each connection. Third, we measured teachers’ percep-
tions toward ML-empowered STEM teaching. Two researchers independently
coded teachers’ reflection journals using thematic analysis, meeting regularly to
address disagreements and refine codes.

RQ3. Can SmileyDiscovery Support Learning ML? We administered pre-post
tests before and after the TaL to assess teachers’ understanding of k-means
clustering. Two researchers independently rated the tests, achieving near-perfect
agreement with Cohen’s Kappas of 0.85 (pre) and 0.83 (post). We measured
learning gains by paired t-test as the data satisfies normal distribution. Then
we measured the remaining misconceptions by thematic analysis on teachers’
answers from post-tests. Two raters coded each incorrect answer independently,
reaching near-perfect agreement (Cohen’s Kappas above 0.86 for all items).

5 Results

5.1 RQ1. Can SmileyDiscovery Support K-12 Teachers to Carry
Out ML-empowered SD?

Completion of ML-empowered SD Learning. 10 out of 14 teachers successfully
completed all SD questions and generated meaningful findings of dynamic inter-
actions between ecological attributes through cluster analysis. Two teachers
needed to further articulate relationships identified, while the rest two didn’t
answer the last question for further conceptualization.

The numbers of ecological attributes involved in the investigation show that
teachers naturally started with a more exploratory style by looking out attributes
as much as possible. Then they reduced the scope as more evidence emerged from
the entire dataset. During the initial investigation, 10 out of 14 teachers ended
up with clusters sharing high similarity for more than four out of six ecological
attributes. After automatic clustering, 10 out of 14 learners narrowed down to
fewer attributes most strongly supported by data.

The numbers of different clicking behaviors show that teachers went through
all ML components, with more frequent interactions for some of them than
others. Specifically, teachers spent much time on manual clustering for initial
investigation. On average, they selected 17.43 (SD =10.21) field sites to compare
with two representative field sites, removed 9.07 (SD =10.54) field sites that
are not similar enough, and reserved 8.36 (SD = 2.34) field sites for pattern
interpretation. In comparison, teachers roughly played with different values of
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k for automatic clustering. They tried less than one new k-value (M = 0.71,
SD =0.99) in addition to the two rounds required by the instruction.

Patterns in Successful Completions. We identified two patterns in hypothesis
development. (1) Iterated initial hypotheses (N = 7): Hypotheses became more
specific or more inclusive from initial to further conceptualization. E.g., one
teacher initially hypothesized that “latitude and mean temperature are related”.
In the end, she collected evidence for “different latitudes influence the rest of
the ecological attributes a lot”. (2) Generating new findings (N = 3): Original
hypotheses were rejected, and new ones were proposed through investigation.

Teachers who successfully completed interacted more with manual clus-
tering (selection: M =17.70, removal: M=8.70) than those who didn’t (selec-
tion: M= 4.06, removal: M = 3.56). In further investigation & conceptualization,
teachers who successfully completed switched between Smiley stacks and cen-
troids (M= 9.5) more than those who didn’t (M= 4) and compared centroids
(M= 5.2) more than those who didn’t (M = 1.5). These indicate the importance
of an extensive engagement with similarity computation and sufficient pattern
interpretation for generating meaningful findings.

5.2 RQ2. Can SmileyDiscovery Support K-12 Teachers to Design
SD Learning Activities?

Diversity of Teaching Ideas. 37 out of 46 teaching ideas were identified as quali-
fied, across science (N =31), mathematics (N =4), and social studies (N = 2). For
science subjects, we identified 11 out of 13 NGSS [45] core disciplinary ideas, such
as biological evolution and engineering design. Three primary learning objectives
are identified from the teaching ideas: (1) categorize complex phenomena into
groups and describe the patterns (e.g., discover biological patterns in different
organisms); (2) understand interactions between different attributes within a
system (e.g., investigate relationships between temperatures, humidity, surface
types, and bacteria found in different locations); (3) identify the factors most
relevant to cause the change/development of a system (e.g., investigate organism
traits in different environments and find out which are more critical for survival).
These results suggest SmileyDiscovery’s pedagogical potential to fulfill a variety
of K-12 STEM learning objectives aligned with the curriculum.

Teachers’ Fulfillment of ML-SD Connections. Topics of teacher-designed lesson
plans are (1) construction materials for flood resistance, (2) biological character-
istics & evolution, (3) influential factors to income, and (4) risk factors for heart
disease. Two researchers applied the EQuIP rubric [45] and confirmed each lesson
plan’s alignment with NGSS standards [46]. Patterns in the ML-SD connections
applied by teachers are analyzed (Fig. 4). First, similarity computation is used
for conceptualization, different from example SD activities. Teachers preferred
hypothesis generation through abduction based on a small amount of data rather
than prior knowledge. E.g., group 4 asked students to generate initial hypotheses
by observing factors’ puzzling impacts on heart disease risk. However, acceler-
ating hypothesis generation by ML-revealed patterns is missing from teachers’
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design. Second, automatic clustering is frequently used for investigation. Two
groups designed iterative investigation from small to large datasets. Group 3
proposed to run clustering with different sets of attributes, then compare results
from each trial to refine hypotheses of what factors influence a person’s income
the most [4,51]. Moreover, all groups added a new design for prediction, such as
predicting heart disease risk to evaluate the refined hypothesis.

Fig. 4. ML-SD connections identified in four teacher-designed lesson plans.

Teachers’ Perceptions Toward ML-empowered STEM Teaching. Teachers appre-
ciated SmileyDiscovery’s novelty as a teaching tool as it makes the large data
accessible for K-12 students for pattern exploration and interpretation (N =14),
offers a playful learning experience to engage students (N =10), low barrier
to entry (N = 12), and can be applied in various STEM subjects (N =13).
After designing an SD learning activity on what factors influence a person’s
income, one teacher expressed her wish to conduct the learning activity with the
Advancement Via Individual Determination (AVID) program she is teaching: “If
we do create it for real, I can do it with AVID!” Nevertheless, teachers expected
to gain a deeper understanding of ML methods (N =5) and ML-empowered
instruction design (N = 7) before implementing it in actual classrooms.

5.3 RQ3. Can SmileyDiscovery Support Learning ML?

The mean differences of all questions between pre- and post-tests were normally
distributed at an alpha level of 0.05. A paired-sample t-test showed significant
increases (Table 3) from pre- to post-test for four k-means clustering concepts:
similarity computation, centroid, clustering process, evaluating values of k with
intra-&inter-cluster pattern interpretation. This suggested that SmileyDiscov-
ery successfully supported teachers to gain a rapid understanding of k-means
clustering while applying it for SD. The answers indicate some misconceptions.
For similarity computation, five teachers only addressed the subjectivity that
the decision-making changes based on different criteria. For evaluating values of
k, nine teachers didn’t demonstrate comprehensive procedures, such as using a
centroid to represent a cluster without considering intra-cluster variations.
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Table 3. Paired t-test results for pre- and post-tests (N =18)

Questions (Scores range 0–3) Pre-test Post-test t-test p

M SD M SD

What makes two multidimensional
datapoints similar or dissimilar?

0.31 0.49 1.50 1.23 −4.26 0.001

What is the centroid of a cluster of
data points?

0.89 1.08 1.75 1.19 −2.67 0.031

Order the major steps for the
K-means clustering algorithm

0.97 0.60 1.56 0.78 −3.58 0.002

How to decide which value of k gives
better clustering results?

0.25 0.49 1.14 1.04 −4.05 0.001

6 Discussion and Future Work

SmileyDiscovery aims to bridge the gaps in ML-enhanced & curriculum-aligned
STEM learning [29,48] for K-12 students and teachers with limited computing
backgrounds [2,52]. Results show that K-12 teachers applied ML to discover
meaningful scientific findings and simultaneously understood related ML con-
cepts and methods. Teaching ideas and lesson plans show SmileyDiscovery’s
pedagogical potential in diverse K-12 STEM subjects. Teachers also reported
that SmileyDiscovery is an innovative and playful way with a low entry barrier
to “explore data and draw connections with visualization”.

Informed by the study findings, we identified three key design implications for
more effective ML-empowered SD. First, it’s critical to design efficient scaffold-
ing for ML visual analytics [12,36], as teachers novice to ML tended to carry out
less sufficient investigation and synthesis of ML-generated patterns. For exam-
ple, immediate feedback [23] can be designed to address common challenges
in analyzing ML-generated results, such as outlier interpretation and consid-
ering intra-cluster variations while interpreting inter-cluster patterns. Second,
advanced design to support converting visual representation (e.g., Smiley) to
data is needed to support efficient sense-making in the context of subject matter,
as teachers reported that the frequent manual Smiley-data translation was over-
whelming when interpreting the ML-generated patterns. The advanced design
may involve automating such non-salient & routine tasks [37] to reduce cog-
nitive load for SD, which already requires high working memory [22]. Third,
trial-and-error should be encouraged by a more inviting design for exploratory
ML-enhanced investigation [20], as teachers with better SD performance experi-
mented with more Smileys for similarity computation during manual clustering.

In the teacher-designed learning activities, no teacher applied automatic clus-
tering for conceptualization, indicating certain biases introduced by example SD
activities. A customizable authoring system can be designed to provide person-
alized recommendations of a list of potential ML-SD connections for teachers
to select from based on their teaching objectives. Besides, teachers’ after-study
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reflection shows a need to reveal more advanced mathematical knowledge about
ML methods: “While I can conceptualize the process, the mathematical compu-
tations in the analytic is a bit abstract to me.” Technical tutorials, such as an
interactive workbook [47], can be embedded as supplementary supports.

Limitations and Future Work. As a preliminary study to explore an innova-
tive system [19], our work has several limitations. First, COVID-19 interruption
and remote participation constrained data collection and undermined teachers’
engagement. Second, the study didn’t include a control condition. Thus, our next
step is to evaluate the educational effectiveness of an improved SmileyDiscovery
on students’ learning of scientific knowledge and skills, compared to traditional
computer-supported SD learning environments. For more effective and accurate
science learning, a component to review the main takeaways can be added at
the end of an ML-empowered SD learning activity. Besides, we plan to extend
SmileyDiscovery with other similarity-based and supervised ML algorithms [50],
engaging learners to derive evaluable scientific laws through SD.
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Abstract. The additive factor model is a widely used tool for analyzing
educational data, yet it is often used as an off-the-shelf solution without
considering implementation details. A common practice is to compare
multiple additive factor models, choose the one with the best predic-
tive accuracy, and interpret the parameters of the model as evidence of
student learning. In this work, we use simulated data to show that in
certain situations, this approach can lead to misleading results. Specif-
ically, we show how student skill distribution affects estimates of other
model parameters.

Keywords: Additive factor model · Student modeling · Simulation ·
Model comparison

1 Introduction

In order to make learning environments adaptive and personalized, we need to
model the knowledge state of students [22]. Student modeling techniques are used
for a variety of purposes. Models like Bayesian Knowledge Tracing or the Elo
rating system are used for updating knowledge estimates after each answer, and
this estimate is used for immediate personalization of the learning environment
(e.g., the choice of the next question or evaluation of mastery criterion). Other
types of student models are used to perform offline learning analytics, obtain
actionable insights, and then use them to perform targeted interventions that
improve the learning environment. This type of analysis is in literature sometimes
described as “closing the loop” studies [6,11,13].

In this work, we focus on the second type of student model applications.
A commonly used model for this purpose is the Additive Factor Model (AFM).
The model’s main aim is to evaluate and refine the domain model, specifically
the mapping of items to concepts (knowledge components), which is often called
Q-matrix. The term item refers to any simple task given to a student, i.e., solving
a simple math problem. The concept refers to a general rule needed to correctly
answer the item, i.e., the addition of natural numbers. The Q-matrix is then
a binary matrix representing which items require which concepts. For each con-
cept, AFM specifies two parameters: easiness and learning rate. Once the model
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is fitted to data, these parameters are interpreted as evidence of learning (or its
absence). Concepts with low learning rates are natural candidates for revision.

AFM is a widely used model and has been used in a variety of previous
studies. Studies [12,13,16,17,19] focus on domain model refinement, [2,15] give
an overview of domain modeling using AFM, and [24] uses AFM to produce
learning curves for further analysis. However, most of these studies do not pay
much attention to methodological details of parameter fitting and model compar-
ison. They often use off-the-shelf solutions like DataShop [10] without discussing
implementation details and interpret the fitted model parameters as evidence of
student learning. Unfortunately, in student modeling, even small methodological
details can have a significant impact on the obtained results [23].

We use simulated data to explore potential problems in model comparison
and interpretation of model parameters. With simulated data, we know the
ground truth, and we can objectively assess the quality of fitted model parame-
ters (which is a luxury we do not have for data coming from real students). We use
our AFM implementation as well as DataShop’s implementation that was used in
many previous studies. We show how the treatment of student skill parameters,
while rarely analyzed, can impact model comparison and values of the fitted
learning rates. Specifically, we provide a concrete setting where a model with
correct parameter values has worse predictive accuracy than other objectively
worse models when the evaluation is done using a commonly used approach.
The results show that using a black-box approach to evaluation, without proper
attention to methodological details, can lead to misleading conclusions.

2 Additive Factor Model

2.1 Model Formulation

Here we formally define the additive factor model following the notation used
in a recent review of the AFM [7] that is very similar across previous work. For
a given group of students I and a group of items J (together with a Q-matrix
mapping items to concepts), the additive factor model predicts the probability
that a student i will answer an item j correctly, taking into account difficulties
of concepts involved in the item j and practice history of the student i. The
probability is described by the following equation:

P (Yij |α, β, γ) = σ (zij) zij =

(
αi +

K∑
k=1

βkqjk +
K∑

k=1

γkqjktik

)
(1)

where:

– i ∈ {1, . . . , I} is an index of a student, j ∈ {1, . . . , J} is an index of an item,
– Yij is a binary response of a student i on an item j,
– σ(x) = 1/(1 + e−x) is a standard logistic function,
– zij is a logit of Yij ,
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– K is a number of concepts,
– Q is a J × K binary matrix where qjk is 1 if an item j uses a skill k and 0

otherwise,
– αi is a proficiency (prior skill) of a student i and α

def= 0 to avoid non-
identifiability problem

– βk is an easiness of a skill k,
– γk is a learning rate for a concept k, and
– tik is a number of times a student i has practiced a skill k (practice opportu-

nities).

2.2 Parameter Estimation

In a typical application of the AFM, the Q-matrix is provided by human experts,
whereas parameter vectors α, β, and γ are fitted by a parameter estimation tech-
nique. For this work, we have implemented our custom parameter estimation
based on descriptions in previous work [5,7,8]. We used the TensorFlow frame-
work to create a computational graph model for Eq. 1. Parameter vectors α, β,
and γ are initially set to zeros and iteratively optimized using gradient descent.
Initializing parameters with zeroes has the benefits of not making any ad-hoc
choices, giving more reproducible results than a random initialization, and hav-
ing a natural interpretation of making all probabilities of correct answers 0.5.
We use a penalized log-likelihood as a cost function to optimize and Adam opti-
mizer for computing gradients. The learning rate is gradually lowered with an
exponential decay to achieve convergence more reliably. An important detail of
our implementation is per concept scaling of opportunity counts into the range
[0, 1] as suggested in [8] to correctly fit γ values. The implementation has an
option not to fit α parameters at all (in that case, they remain zero).

Previous publications often do not provide a detailed description of parameter
fitting procedures used to fit AFM. It seems likely, and some explicitly mention
it, that they use AFM implemented in DataShop [10]. The DataShop’s AFM
implementation is described in detail in [5]. The general idea can be summa-
rized as optimization of Penalized Maximum Likelihood Estimation that penal-
izes high absolute α values. Our implementation is very similar in this aspect.
DataShop provides two implementations in its Tigris Workflow tool: AFM1 and
Python AFM2 Since it has been widely used, we decided to use both DataShop
implementations on our simulated data. Note that DataShop is typically used
to analyze real data, yet we consider this a useful test of a commonly used tool.

2.3 Treatment of Student Parameters

The primary focus of an AFM application is on getting insight into the learning
domain, i.e., on the values of β and γ parameters. Even though the student

1 https://github.com/LearnSphere/WorkflowComponents/tree/dev/AnalysisAfm.
2 https://github.com/LearnSphere/WorkflowComponents/tree/dev/AnalysisPyAfm.

https://github.com/LearnSphere/WorkflowComponents/tree/dev/AnalysisAfm
https://github.com/LearnSphere/WorkflowComponents/tree/dev/AnalysisPyAfm


Better Model, Worse Predictions 503

parameters (prior skills α) are not necessary for the model application, they
play a crucial role in proper evaluation.

We have reviewed some previous work on AFM to understand the typical
treatment of the student parameters α. The majority of reviewed papers mention
student parameters only in the formal definition of AFM. However, student
parameter fitting details are often omitted, and thus their treatment in model
evaluation and comparison is especially unclear.

The student parameters fitting is described in detail only in [7]; other works
only hint at the general fitting method [2] or mention modeling technique for
student parameters [9]. Most reviewed papers do not discuss any details of
parameter fitting and probably rely on the available AFM implementation from
DataShop, e.g., [12,13,19]. This claim is based on either explicit mentions of
DataShop in these papers or on the visual style of learning curve figures closely
matching figures produced by DataShop. Details of DataShop’s AFM parameter
estimation are discussed in Sect. 2.2. However, the treatment of student param-
eters in DataShop’s model evaluation is unclear.

Commonly used evaluation metrics are Akaike information criterion
(AIC) [1], Bayesian information criterion (BIC) [25], and cross-validated root
mean square error (RMSE) that are used in [2,12–14,16,17,19]. These met-
rics require model predictions and, therefore, estimates of all model parameters,
including the students’ skills. Although it is not always reported on which dataset
AIC and BIC were computed, we assumed it was done on the same data set used
for training. Our experience with DataShop supports this assumption. In cross-
validation, however, part of the dataset is held out during training, and it is
only used later for evaluation. This poses a question, what parameters should
be given to students not seen in the training data?

A straightforward solution is to use α = 0 for unseen students, and this
choice of α also makes sense for the intended use of AFM. AFM is mainly used
in domain modeling (e.g., comparing Q-matrices, analyzing learning curves) and
not for estimating student skills, which is typically done by other models (e.g.,
Bayesian Knowledge Tracing, Performance Factor Analysis). Also, estimated α
parameters should be centered around zero, and so α = 0 represents an average
student. A possible alternative is to estimate α parameter after every attempt
and iteratively refit the model and predict probabilities. Such an approach is, in
principle, possible, but it is non-trivial, and it has not been described in previous
research. For these reasons, we assume α = 0 is used for unseen students, which
is also true for our evaluations.

3 Experiments with Parameter Fitting

3.1 Data and Models

We employ simulated data in our analyses as they provide ground truth (i.e.,
true model parameters), otherwise not accessible for real-world datasets. The
simulated datasets are generated by randomly sampling from Bernoulli distribu-
tion where the probability of a student answering an item correctly is given by
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Table 1. Summary of AFM variants used in this work.

Name Implementation α β γ

AFM ground truth Custom Ground truth Ground truth Ground truth

AFM αβγ Custom Fitted Fitted Fitted

AFM βγ Custom Zeros Fitted Fitted

AFM DataShop DataShop AFM Fitted Fitted Fitted

AFM DataShop P DataShop Python AFM Fitted Fitted Fitted

Eq. 1. Ground truth model parameters are either hand-picked or sampled from
normal distributions. We refer to the simulation setting as a scenario.

In this work, we use three similar scenarios differing in the setting of student
skill distributions. They are intentionally minimalistic to highlight the effects of
student skill distribution on other model parameters estimates. There is only
a single concept to remove any potential effects of concept combinations on the
parameter estimation. There are ten items all practicing this single concept, so
the Q-matrix is only a column of ones. Student parameters α are sampled from
a normal distribution centered around zero with standard deviation σα. The
three scenarios have σα = 1, 2, and 3, respectively. So, for example, scenario
σα = 2 has α ∼ N (0, 22). Parameters β and γ for the single concept are fixed
to values representing a common learning situation: β = −0.5 represents a bit
harder concept, and γ = 0.2 is a moderate learning rate.

In all three scenarios, we let every student attempt every item. While this is
unlikely to happen in the real world, it is the best-case scenario for the model
parameter estimation. With this setting, we avoid potential biases, including
attrition bias [18,20] or item ordering bias [4].

We compare multiple AFMs differing in what parameters the model uses, if
they were estimated, and the actual implementation of parameter estimation. All
models used in this work are summarized in Table 1. Our custom implementation
refers to the TensorFlow implementation discussed in Sect. 2.2. The Item average
model always predicts the mean success rate observed for an item for all students.

3.2 Experimental Setup

In the experiment, we explore simulated data sets generated using scenarios
described in Sect. 3.1. These scenarios give us the least biased data where every
student attempts every item in random order, and the main emphasis is on
student parameters that we wish to explore. Using these scenarios, we have
generated five training sets, each containing simulated answers of 2000 students
and one testing set with simulated answers of 1000 students. Set sizes were chosen
sufficiently large to reduce unwanted noise due to randomness in simulations.
Note that students in the testing set do not appear in training sets. Therefore
trained models have no estimate of their skills. This cross-validation setting
corresponds to the real usage of student models in learning environments.



Better Model, Worse Predictions 505

Fig. 1. Evaluation of models on training and testing sets using RMSE and negative
log-likelihood. In all cases, a lower value means a better fit to data. Each bar represents
the mean value of the given metric over five instances of the model fitted on five training
sets. Note that y-scales do not start at zero to emphasize the relative ordering of models.
Relative order based on some metric rather than the actual values is typically used in
previous research to select the model that best explains the data.

In the evaluation, we compare AFMs with ground truth parameters and
AFMs fitted on training sets in terms of the predictive ability and the actual
fitted parameters values. We also include the Item average model as a näıve
baseline. All models except the two with ground truth parameters were fitted
five times on five training sets and evaluated on both training and testing sets.
Fitting models multiple times allows us to average out evaluation results and
obtain more representative results.

For the evaluation, we choose RMSE and negative log-likelihood as our met-
rics. Both were used in previous research and are fairly standard [21]. RMSE
is a typical choice in machine learning, and it is better suited for binary data
than mean absolute error. AIC and BIC, used in previous research, are log-
likelihoods with an added term for the model complexity [3]. Since we are not
interested in the model complexities , we ignore the complexity term and use
plain log-likelihood. RMSE is computed both on testing and training sets and
log-likelihood only on training sets. When computing RMSE on the testing set,
we assume all students’ parameters α = 0. The same could be done for log-
likelihood, but it is typically used to measure the fit to the training data.
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Fig. 2. Values of β and γ parameters for a single concept with increasingly wider
student skill distributions. The first model uses true parameter values used in data
generation. The other four models have been fitted five times on different training sets,
and each dot represents an estimate from one training set. There is artificial vertical
jitter to visually separate points with similar x coordinates.

3.3 Results

Figure 1 shows a comparison of models for different scenarios and different met-
rics. The top row of plots shows mean RMSE on the testing set, the bottom left
plot shows mean RMSE on training sets, and the bottom right plot shows mean
negative log-likelihood on training sets.

Predictive performance on the testing set is comparable across most models.
AFMs with fitted parameters have better RMSE than AFM ground truth in all
three scenarios despite their fitted parameters differing from ground truth ones.
The differences in RMSE on the testing set between AFM ground truth and
models with fitted parameters are more pronounced with increasing σα. This
suggests that models are finding a more probable explanation of data than the
actual ground truth model.

AFMs with fitted student parameters also achieve much better performance
on training sets both in terms of RMSE and log-likelihood. Even better than the
actual model AFM ground truth that has been used to generate the data. This
might suggest a slight over-fitting of student parameters.

In Fig. 2, we also examine the fitted concept parameters β and γ and compare
them to ground-truth parameters. We examine three scenarios with increasingly
wider student skill distributions with standard deviations σα = 1, 2, and 3,
respectively. In all three scenarios, estimated values of both β and γ are shifted
towards zero. In other words, the fitted model presents the learning material
as easier and with a smaller impact on learning than it is. This effect becomes
stronger for wider student skill distributions.

The results also show that although there are small differences between
parameters obtained by different AFM implementations, the key aspect (shift
towards zero) is consistent across implementations, i.e., it is not a purely techni-
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Fig. 3. An illustration of the logistic function transformation of normally distributed
data and its effect on the distribution’s expected value (mean). The original data follows
N (1, 1). The left figure depicts how the distribution gets transformed, and the right
figure depicts both distributions median aligned. Note that the distributions are scaled
to the same height for better clarity.

cal idiosyncrasy of a specific parameter fitting procedure. The only exception to
the consistency of results is the β parameter of AFM DataShop for the scenario
with σα = 1 that is estimated further from zero. Since this model’s γ parameter
is estimated roughly the same as in AFM DataShop P, this could indicate a prob-
lem in the implementation or data preprocessing. We were unable to pinpoint
the exact source of this behavior.

3.4 Explanation

In Sect. 3.3, we observed fitted models outperforming models with ground truth
parameters and estimated parameter values shifting towards zero. We believe
both of these effects are caused by skewness introduced by applying the logistic
function. To get probabilities of correct answers for a given item and students
after a given amount of practice opportunities, normally distributed student
skills are added together with concept difficulties and learning effect forming
logits that are then projected using the logistic function. While logits still fol-
low symmetric normal distribution only with shifted mean, the distribution of
probabilities after applying logistic function is skewed. The median is no longer
equal to the mean, as shown in Fig. 3.

The skew occurs because the logit values in one direction from the mean
get projected closer together into a narrower range, and the logit values in the
other direction are projected farther apart into a wider range. In Fig. 3, values
to the right of the mean are squashed, and values to the left of the mean are
stretched. In general, values closer to zero where the logistic function is the
steepest get stretched. Values away from zero where the logistic function flattens
are squashed. The skewing effect is more substantial as the mean of logits moves
farther from zero, which happens for easier concepts or high opportunity counts.
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When we use α = 0 for evaluation on the testing set, we are, in effect,
evaluating point estimates of correct answer probabilities (orange distribution
in Fig. 3). The best point estimate with minimal RMSE is the expected value of
the correct answer probability. However, due to skewness, the expected values
are not the same for probabilities and logits. By estimating parameters closer
to zero, models can achieve better RMSE when α is fixed to 0 and yet diverge
from the true parameters simultaneously.

Fig. 4. An illustration of a shifting median when three normal distributions with dif-
ferent standard deviations get transformed by the logistic function and aligned on their
expected values (means). Note that the distributions are scaled to the same height for
better clarity.

The same also applies to log-likelihood if we were to evaluate it on testing
set. However, we are evaluating log-likelihood on training sets with non-zero
estimated α parameters, as does an optimizer during parameter fitting. After
inspecting estimated values of α, we have made two observations. 1) There are
only a few distinct α values, and 2) their distribution is narrower with a smaller
standard deviation. The first observation is the artifact of a simple scenario with
a single concept. All students with the same number of correct answers have
similar estimated skills. The number of correct answers is the most differentiating
factor between a student with high and low prior skill. The second observation
is tied to the normalization of α parameters and explains why β and γ estimates
are closer to zero. If the estimated distribution of α has a smaller standard
deviation, the estimated probabilities of the correct answers are less skewed by
the logistic function. After aligning expected values (means) of estimated and
true probabilities of correct answers to optimize log-likelihood, we arrive at β
and γ estimates closer to zero. Note that model AFM βγ, which keeps α = 0,
is equivalent to estimated distribution having zero standard deviation, i.e., the
point estimate of expected value.

To better illustrate the effect of too strict α normalization, suppose the true
probability of students answering a given item correctly after a given amount
of practice follows logistic function transformed N (1, 1). This situation occurs
when students’ prior skills follow N (0, 1) and concept difficulties with the effect
of learning sum to 1. The goal is to minimize the penalized log-likelihood. In
case of too strict α normalization, the penalized log-likelihood will be optimal
for α estimates with a smaller standard deviation than the true α distribution
has, i.e., the standard deviation of 0.75 instead of 1, as in Fig. 4). To maximize
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the penalized log-likelihood, we must match the expected values of both true
and estimated distributions (alignment on the black dashed line in Fig. 4). Since
a narrower distribution is less skewed by the logistic function, it is necessary
to shift the whole estimated distribution to make the expected values equal.
The shifting of estimated distribution can only be done by changing β and γ
as α parameters are constrained to be centered around zero. Thus, we have to
bring β and γ parameters’ estimates close to zero to maximize the penalized log-
likelihood. The whole problem can be avoided by fine-tuning the penalization
hyper-parameters. However, the true student population is unknown outside of
simulations, making it impossible to properly tune the hyper-parameters without
cross-validation using a proper methodology on the testing set.

4 Discussion

In the previous section, we have described a specific situation where an objec-
tively better model can lead to worse predictions than alternatives. The described
situation is not a single, artificial outlier. Using simulated data, we have detected
similar behavior also in other cases. For example, we simulated the ordering and
mastery attrition biases, which are common in many learning systems [4,18,20],
e.g., when students solve items in order from easier to more difficult and there is
systematic attrition (only a subset of students solves more advanced items).
Under these circumstances, even a simple baseline item average model can
achieve comparable performance (with respect to predictive accuracy) as the
ground truth model. Models with misspecified Q-matrix can beat the model
with ground truth parameters by using the fitted parameters to compensate for
the mastery bias.

These results show that fitted models have to be interpreted carefully. In
our review of previous works using AFM, we have identified a common prac-
tice consisting of four steps. 1) Define several models with different candidate
Q-matrices. These Q-matrices can be either constructed by experts, refined ver-
sions of Q-matrices from previous analyses, or even generated with the help of
machine learning from some base Q-matrix. 2) Fit the models’ parameter val-
ues on training data. Typically the training data is the same real collected data
that is to be analyzed. 3) Compare the performance of the models either on the
training set or the held-out testing set. To maximally utilize all available data,
the evaluation is done on the training set, and k-fold cross-validation is used.
4) Select a model with the best performance and interpret its β and γ param-
eters (easiness and learning rate). The interpretations range from the evidence
of learning to proofs of the existence of new concepts.

Our experiment with simulated data shows how this approach can lead to
misleading conclusions. We showed that the best performing model is not nec-
essarily the correct one. Models with incorrectly estimated parameters beat
model with ground truth parameters due to technical issues with the treat-
ment of the α parameters (student skills). The problem can be avoided by tuning
hyper-parameters of parameter estimation procedure using cross-validation with
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dynamic predictions in evaluation [23], i.e., recomputing α parameters after each
observed attempt in the test set (which is, however, computationally demand-
ing).

Let us make clear that we do not claim that previously reported results are
necessarily misleading. In our experiments, we purposefully use scenarios that
exaggerate a specific aspect of the situation in order to clearly show its effect.
Real data often contain these effects, but probably not in such a clear manner.
However, our results show that more care is needed.
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