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Abstract. Intelligence in manufacturing enables the optimization and configu-
ration of processes, and a goal of future smart manufacturing is to enable pro-
cesses to configure themselves – called self-configuration. This paper describes
a framework for utilising data to make decisions for the self-configuration of a
production system device in a smart production environment. A data pipeline is
proposed that connects the production system via a gateway to a cloud comput-
ing platform for machine learning and data analytics. Agent technology is used
to implement the framework for this data pipeline. This is illustrated by a data
oriented self-configuration solution for an industrial use-case based on a device
used at a testing station in a production system. This research presents possible
direction towards realising self-configuration in production systems.

Keywords: Data analytics · Smart manufacturing · Agent technology ·
Configuration

1 Introduction

Dynamic manufacturing solutions are required to satisfy the demands of part customi-
sation, facility optimisation and equipment efficiency. A newer direction being explored
in this domain is intelligent production systems [1]. The majority of research that tar-
gets intelligent systems has dealt with the study and modelling of whole systems and
oftenmakes assumptions about the constituent elements of the system (machines, instru-
ments, and components) including assumptions on machine integration, capabilities and
performance.

Different types of products with differing features and characteristics may require
operations with different configuration settings in a production system. These changes
in configuration may be due to changes in physical parameters or calibrations, or due to
system settings like data logging, or communication settings. The configuration change
may also be due to a change in physical infrastructure, therefore there can be different
configurations on the same machine. Significant work has been done that deals with
change in configuration at the infrastructure level [2–4]. In contrast, the self-management
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of the internal configuration of the machine by the machine itself is explored in fields
like computer science and telecommunications, but there remain significant gaps in
manufacturing.

The research outlined in this paper aims to close this gap in knowledge. It presents
a framework with data models that establish a self-configuration mechanism for exist-
ing manufacturing equipment. Initially, the research focuses on an industrial use-case
production system device and equipment used in testing processes in a manufacturing
setup, that later could be used to address self-configuration in all production systems
in the setup. In the remainder of the paper Sect. 2 gives a short literature review on the
topic followed by an introduction to the developed framework for self-configuration in
Sect. 3. Section 4 discusses a use-case implementation and Sect. 5 concludes the paper.

Research Question: Can artificial intelligence be used for internal configuration
of a production system, allowing it to be managed by the production system itself
(self-configuration)? What are the data model and technologies for it?

2 Literature Review

2.1 Artificial Intelligence for Smart Production Systems

Industry 4.0 is a shift towards smart digital manufacturing utilising concepts such as
internet of things (IoT), cloud computing and cyber physical systems [1] to enhance
manufacturing productivity. Conceptually, a smart manufacturing system should be
able to gather information, parameters, and perceptions about itself for production and
monitoring purposes and use it to make intelligent decisions.

Meyer et al. [5] described intelligence in procurement, manufacturing and transport
as a way for the systems to influence operations. The criteria for an intelligent production
system is based on five base characteristics: a component that can uniquely identify itself,
communicate with other devices, retain data, deploy language to display features and is
capable of participating in or making decisions [6].

Zhong et al. [7] defines intelligent production systems as technologies that embed
and utilise informatics and advanced manufacturing techniques to address the dynamic
and customised nature of products by achieving flexibility, re-configurability and scala-
bility. Artificial Intelligence (AI) is a means to introduce such aspects of intelligence in
production systems [5, 7, 9].

2.2 Self-concept in Manufacturing

The UK Government presented its new data strategy policy that addresses the move
towards establishing a ‘data-ecosystem’ along with the potential use of data driven tech-
nologies in industry [8]. In manufacturing environments, there exists a general lack of
homogeneity between different platforms and sources, which inhibits the implemen-
tation of smart production systems [9]. This heterogeneity necessitates a collaborative
framework for device interaction. The collaborative framework must address the envi-
ronment in a multi-level format. For the manufacturing environment these levels are
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Table 1. Value extraction levels for intelligent systems [10]

Level Description Consideration

Level I – smart connection
level

The effective acquisition of
data from a source. Includes a
platform that accepts data
from a source and
communication protocol for
data transfer

This level relies heavily on
data transparency and
accessibility [11]

Level II – data-to-information
level

Converting data to
information. Capability
should be present for data
accumulation from multiple
sources [12]

Data should be consistent and
structured [13]

Level III – cyber level Extracting meaning from
gathered information for
smart decision making

The gathered information may
follow a trend in values [14].
This helps in developing
knowledge base for smart
decisions

Level IV – cognition level Algorithms that are used to
make approximations for
objective functions

The possible solutions
developed by this level should
complement the goals of
process/system [10]

Level V – configuration level This level deals with acting
on cognitive inferences

This level should make the
system robust and resilient
against loss and capable of
making smart decision by
itself

the smart connection-level, data-to-information level, cyber level, cognition level and
configuration level [10] (see Table 1).

The Configuration level (V) deals with developing systems where each machine has
the capability to decide its own parameters and operations, hence acting on ‘cognition’
- the generation of insight by AI algorithms based on useful information extracted from
data. This is a new domain witnessing significant growth, where applications are capable
of automatically adjusting and adapting themselves to varying scalability, complexity,
and insight needs. The properties which make a system capable of such adaptability are
referred to as self-* properties [15] and include self-management [3], self-stabilisation
[2], self-healing, self-organisation [16], self-protection [17], self-optimisation, self-
configuration, self-scaling, self-awareness, self-immunity and self-containment. For the
purpose of this research, the concept of self-configuration is defined as:

– The property that deals with response. It is the ability of system to change its con-
figuration (i.e., the connection between different system modules, parameters, and
calibration) in order to improve or restore system functionality in response to actions.



74 H. Ur Rehman et al.

2.3 Enabling Technologies for Self-configuration

Manufacturing is being transformed by data acquisition technologies (like smart sen-
sors), data management systems, data processing techniques (such as cloud computing,
big data, artificial intelligence and machine learning), information and communication
management methods, and digital twins. Embedding and utilising these technologies
on manufacturing objects (like machines, tools, and products) bridges the gap between
physical and cyber, enabling smart equipment [18].

Technologies such as multi-agent systems, grid computing, control theory (dis-
tributed resources connected through information technology network [16]) and
component-based development show promise towards enabling the self-configuration
objective. The dominant approaches that are currently being researched to address the
issue are multi-agent systems [4] and component-based development [19]. Multi-agent
system approach will be taken for this implementation of self-configuration capability
in production system. It will be deployed on an industrial use-case and validated for
readiness in introducing self-capabilities for industrial adoption.

3 Framework for Self-configuration in Production Systems

In general, a production system comprises numerous pieces of equipment and processing
stations or stages. Initially, this concept of a framework for self-configuration is limited to
a single (configurable) device or stage, and is presented here in the context of a production
testing process. Current approaches require expert knowledge for configuration, and
show clear need for self-configuration processes.

Table 2. Agent description in the context of a testing system

Agent Description

Geometrical Agent (GA) Agent responsible for part feature identification and feature
comparison with cloud-based feature libraries. Based on features
identified it also identifies the part that is being tested

Criterion Agent (CA) Searches and implements potential testing configurations that
satisfy the testing criteria. Interacts with the Function Agent (FA) to
select the best configuration possible during iteration loops

Function Agent (FA) Responsible for functionality execution and comparison with
objective function. It interacts with CA to select best possible
configuration during iteration loops. It is also responsible for
communicating the selected configuration to the user

The framework involves seven actors; the user, the testing production system device,
Geometric Agents (GA), Criterion Agents (CA), Function Agents (FA) (see Table 2), a
database/Machine Learning (ML) pipeline, and a cloud platform. The cloud platform is
a group of services hosted in a cloud environment that forms the part of data pipeline for



A Framework for Self-configuration in Manufacturing Production Systems 75

self-configuration. The services along with formation of a general data pipeline for self-
configuration is elaborated in the next subsection. The developed framework is outlined
in Fig. 1. The self-configuration framework and the sequence of operations is explained
in Fig. 2.

Fig. 1. Architecture of the framework for self-configured production system

3.1 Sequence of Proposed Self-configuration Strategy

The process parameters, communication/connectivity settings, and calibration data are
the main constituents of a configuration in production testing systems. The movement
of data in the operation loop is managed by agent technology that oversees, monitors,
initiates, and terminates the operations happening during execution as needed. These
agents interact and communicate with the equipment in conjunction with the cloud plat-
form to perform self-configuration. The chain of interactions between agents, systems,
and users is shown in the sequence diagram (Fig. 2).

– Part Introduction: The sequence commences with the user introducing the part to
the system device (e.g., the production test equipment). This event triggers a response
from the Geometric Agent (GA) that extracts information about features from the
system device and sends them for a look-up to the cloud platform. The cloud platform
is aided by ML pipelines that refer to features stored in a database. The ML pipeline
looks up the features and confirms to the cloud platform of features recognised. The
set of the features are compared with known parts having those features. The part that
has maximum feature mapping is recognised as the part submitted for testing by the
user. This information is sent to the system device to be displayed to the user by the
GA.
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Fig. 2. Sequence diagram of proposed self-configuration framework

– Look for Configuration: The next step for the system is to look for a suitable config-
uration. The system uses the Criterion Agent (CA) to accomplish this. The CA sends
an inquiry to the cloud platform that utilises the help of the database to look for a
previous or a similar configuration for the part or similar parts. The database returns
the testing configuration as a standard schema to the system device through the CA.
Any limitations specified by the user is incorporated in the configuration file at this
stage.

– Operation Execution: The device executes the configuration guided by the Function
Agent (FA). The FA logs the execution start and confirms the finish. The results
obtained from the operation are sent to the cloud platform by the FA.

– Result Analysis andComparison: The cloud platform uses aML pipeline to provide
a comparison between the result and a suitable objective function. The objective
function selected depends on the operation being performed, outcome desired and
operation specifics. The comparison is returned by the cloud platform and relevant
statistics displayed to the user. If there is no unacceptable deviations from the threshold
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then the initial configuration is selected as the final configuration and displayed to user.
This deviation in testing is the effectiveness of the pass/fail criteria based on current
parameters and calibration settings in system configuration.

– Reiteration of Operation: If significant deviation is present then the process is
repeated by the system. The function agent (FA) requests the criterion agent (CA)
for a new/changed configuration. The CA forwards this request to cloud platformML
pipeline and database for changed configuration values. This lookup to new values is
dependent on the instruction obtained from the system device for change in configu-
ration as per objective function deviation. The changed configuration is sent back to
the FA from CA and through FA to the system device. Execution of the operation is
carried out.

– Operation Loop: The results are again compared to objective function. The statistics
are displayed to the user by the system as required. If the deviation is acceptably low
then this becomes the final configuration else the process is looped till an optimum or
a maximum iteration limit is reached.

4 Implementation and Deployment to an Industrial Use-Case

Validation of the framework can be carried out by demonstrating the data pipeline con-
nected to a physical production device through a gateway to the cloud platform services
(Fig. 3). The gateway device interfaces with the production equipment, sends the data
to the cloud platform, and hosts the agents. Data transferred to storage is retrieved and
loaded into a data warehouse service where the table and schema are defined. For the
purpose of analysis, data is retrieved from the data warehouse into the coded ML model
in the ML supported service on the cloud platform. The insights generated by the ML
model is sent back to the warehouse service (to structure the data) and then to storage
hosted in the cloud. The cloud storage sends the data to the gateway device from where
the agents control the working of the equipment.

Fig. 3. Data pipeline deployment for self-configuration in production systems

Pipeline automation is achieved by an event-based service called a trigger function. In
the cloud, single purpose functions are attached to events that happen in real-time. These
functions are triggered as events being observed are executed. The gateway device that
connects the systemdevice to the IoT services via a communicationmessage protocol can
have regular set of events logged, and these events could trigger functions that co-ordinate
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the components of data pipeline for self-configuration. An Application Programming
Interface (API) is also needed between the testing production system and the gateway
device that makes the functionality of the testing system accessible to the rest of the
pipeline.

A data pipeline (Fig. 4) was set up connecting an industrial (TQC Ltd.) leak testing
rig TAMI (Test bench for leakage identification on aircraft fluidmechanical installations)
and dry-air leak testing deviceMALT (MicroApplication Leak Test) with a Raspberry Pi
(the gateway device) through the API. The physical hardware was connected to Google
Cloud Platform through MQTT Pub/Sub Protocols and an IoT gateway. The future
work on self-configuration of production systems will involve this pipeline to optimise
parameters (stabilisation time, test pressures and differential pressures) for pneumatic
leak testing. Based on this setup the self-configuration framework is deployed and will
be validated for testing applications.

Fig. 4. Complete pipeline deployed for the use-case with API: an initial pipeline for self-
configuration research

5 Conclusion and Future Work

The research presents a framework for self-configuration in production systems. This
approach is beneficial in saving expert worker’s time, costs and reducing management
overheads for common testing scenarios. A cloud-based data pipeline is integrated with
multi-agent system to support a machine learning process for self-configuring and exe-
cuting testing processes. Future work involves the full implementation of this framework
with state transitionmanagement under real-time constraints. The solutionwill be gener-
alised with a common ontology and semantics developed to enable broader application.
The industrial use-case will continue to be used as validation platform for the research,
the solution will be iteratively developed and deployed on it.

Currently, this approach is limited to a single device or stage and is tailored for
testing applications. It is envisaged that with further research it can encompass multiple
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interconnected devices and the production system as a whole and abstracted to other
production applications. Another limitation observed in the research is related to inter-
operability and adaptation requirements of the production system. Enforcement of the
necessary self-configuration capability is subject to a production system’s interface with
agents via gateway devices, and to maintain effective data transmission across the cloud
pipeline.
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