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Abstract. The authors of the paper present the high-frequency voltage injection-
based sensorless vector control method, where the test signals are injected in the
estimated common coordinate system. During the modeling process a custom
designed permanent magnet synchronous machine is used and its parameters are
calculated using measurements combined with finite element method (FEM). The
authors present an enhanced PLL-based estimator, and detail the limitations of
the sensorless algorithm using the FEM results. Simulation results will be pre-
sented, where the sensorless method is combined with an incremental encoder,
demonstrating the low-frequency region performance of the proposed algorithm.

Keywords: High-frequency voltage injection · FEM · Sensorless vector
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1 Introduction

The injection-based vector control techniques can provide good performance in low-
frequency regions, where many of the sensorless methods fail [1, 2]. Since most of the
controlled electric drives involve a voltage source inverter, therefore voltage injection is
an obvious choice. Based on the place of injection rotating and synchronous methods
can be distinguished. The first solution adds test signals to the terminal voltages in the
stationary reference frame [3, 4], while the latter one adds test signals in the estimated
common coordinate system [5, 6].

In case of an actuator a usual speed-torque profile starts from standstill no-load
condition, followed by a light-load speed up region and the cycle ends with a low-speed
or standstill operationwith high load. This common cycle covers wide range of rotational
speed with various load condition. Assuming a permanent magnet synchronous machine
as the rotating machine of the actuator, the implementation of a vector control algorithm
requires good dynamic and precise tracking of the rotor position.

This can be achieved with a high-bandwidth and high-resolution encoder, but this
could increase the system’s cost. Another solution can be a cheaper encoder with addi-
tional algorithms to fulfill the requirements. The combination of high-frequency injection
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methods with lower cost encoders could be a reasonable alternative. In such systems in
the low-frequency region the common coordinate system’s angle is estimated based on
the injectionmethod, but in higher frequencies the estimation is overtaken by the physical
encoder’s processed signal. The design of the injectionmethod and also the vector control
algorithms require the machine parameters, which can be obtained through the combi-
nation of measurement evaluation and finite element analysis. Nevertheless, the system
performance can be improved, if these methods involve the saturation characteristics of
the machine, but not the static parameters.

The authors present the finite element method analysis of the used permanent syn-
chronous motor, combined with measurement result evaluations in Sect. 2. This inves-
tigation’s target is to obtain the machine parameters that are required for the high-
frequency voltage injection method and the conventional vector control algorithm.
Section 3 details the high-frequency voltage injection method including a dynamic
model, used in the angle estimation. Section 4 gives an overview of the vector-controlled
system with the combination of high-frequency injection and incremental encoder,
including simulation results.

2 Analysis of PMSM

2.1 Finite Element Method Analysis

The presented rotating machine analysis is the combination of measurement data eval-
uation and finite element method (FEM). The measurements were the standard no-load
and short circuit measurements at different mechanical speeds. The first one is used to
calculate the pole flux Ψp, while the second one is used to validate the torque profile
with the FEM results. Table 1 summarizes the motor parameters priory to the FEM.

Table 1. Permanent magnet synchronous machine parameters

Parameter Value Source

Pn 2 kW Design parameter

Un 330V Design parameter

In 3.5ARMS Nominal load measurement

nn 3000RPM Design parameter

R 2.71� RLC measurement

Ψp 0.335Vs No-load measurement

p 2 Design parameter

J 0.0036 kgm2 Design parameter

F 0.0011Nms Design parameter



228 G. Szabó and K. Veszprémi

2.2 Finite Element Method Analysis

The inputs of this analysis are the knownmotor topology including the appliedmaterials.
In the first step they used to calculate d−q axes fluxes, which are the functions of direct-
axis id and quadrature-axis iq currents [7]. During the analysis the d axis was bound to
the rotor’s circumferential flux density distribution’s positive peak.

In the first setup, the rotor is set into αelec = 0◦ position, as shown in Fig. 1(a),
to calculate the d axis flux Ψ d

(
id, iq

)
. In the second setup the rotor is positioned in

αelec = 90◦ direction, as shown in Fig. 1(b), in order to calculate progression of q axis
flux�q

(
id, iq

)
. For both cases all the possible ī = id + jiq. combinations were examined

on the [−2I
∧

n 2I
∧

n] current interval with Δi = 0.4A resolution, and the result are shown
in Fig. 2(a) and (b) for the selected machine.

(a) (b)

Fig. 1. Flux and inductance calculation in (a) αelec = 0◦ direction alignment, (b) αelec = 90◦
direction alignment

With the known progression of Ψd
(
id , iq

)
and Ψq

(
id , iq

)
fluxes the self- and cross-

coupling inductances can be calculated with partial derivative or their approximation for
numerical approaches as follows,

Ld
(
id , iq

) = ∂�d
(
id , iq

)

∂id
≈ ��d

(
id , iq

)

�id

∣∣
∣∣∣
iq=const.

, (1)

Ldq
(
id , iq

) = ∂�d
(
id , iq

)

∂iq
≈ ��d

(
id , iq

)

�iq

∣
∣∣∣∣
id=const.

, (2)

Lq
(
id , iq

) = ∂�q
(
id , iq

)

∂iq
≈ ��q

(
id , iq

)

�iq

∣
∣∣∣∣
id=const.

, (3)
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2. Progression of fluxes and inductances
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Lqd
(
id , iq

) = ∂�q
(
id , iq

)

∂id
≈ ��q

(
id , iq

)

�id

∣∣∣∣
∣
iq=const.

. (4)

where Ld is the direct axis self-inductance, Ldq is the quadrature-to-direct axis cross-
coupling inductance, Lq is the quadrature axis self-inductance and Lqd is the direct-to-
quadrature axis cross-coupling inductance. Based on these calculations the nominal
values of Ld and Lq are 15.06mH and 36.23mH respectively.

2.3 Mathematical Model of PMSM

Apermanent magnet synchronousmachine in d−q reference frame, bound to the rotor’s
circumferential flux density distribution’s positive peak, can be modeled as shown in
Fig. 3 and with the system of differential equations in Eqs. 5–8.

Fig. 3. Equivalent circuit of a permanent magnet synchronous machine

ud = Rid + Ld
did
dt

+ Ldq
diq
dt

− ωψp

(
Lqd id + Lqiq

)
, (5)

uq = Riq + Lq
diq
dt

+ Lqd
did
dt

+ ωψp

(
Ld id + Ldqiq + �p

)
, (6)

m = 3

2
p
((
Ld − Lq

)
id iq + �piq + Ldqi

2
q − Lqd i

2
d

)
, (7)

(m − ml − Fω) = J
dω

dt
, (8)

where ud is the d axis voltage which is the real part of ū, R is the stator resistance, id is
the d axis current which is the real part of ī, ωψp is the pole flux’s angular speed and in

Fig. 3
=
L=

[
Ld Ldq
Lqd Lq

]
and its elements are described in Eqs. 1–4, iq is the q axis current

which is the imaginary part of ī, uq is the q axis voltage which is the imaginary part of ū,
�p is the magnitude of the pole flux, m is the electromagnetic torque, J is the moment
of inertia, ω is the rotor’s angular speed, F is the friction loss factor, p is the number of
pole pairs.
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(a)

(b)

Fig. 4. (a) FEM and (b) lumped-parameter model calculated torque profiles

Themachine’s torque profile was calculated over one pole pitch on the [0 I
∧

n] interval
with Δi = 1A and Δαelec = 1◦ resolutions and its results are shown in Fig. 4(a). These
curves were used to validate the saturating lumped-element model, by comparing the
torques of each calculationmethods. For I

∧

= 5A stator current vector Fig. 4(b) shows the
differences between the FEM and lumped-element model’s torque. Themain differences
between the two calculation methods, that the latter one does not include the cogging
torque, but it provides reasonable accuracy and fast results.

3 High-Frequency Synchronous Injection

3.1 Mathematical Model

In case of synchronous injection, high-frequency voltage signals are injected in the
estimated d

∧

− q
∧

frame, which is illustrated in Fig. 5.
Figure 5 also gives the angle error’s definition used during the modeling process as

follows,

αe = α�p − α
∧

�p . (9)

The mathematical modeling of the method was carried out using complex phasors,
where complex rotating vector is bound to the sine wave. Equation 10 shows the time
signals and also the corresponding complex components.

[
u
∧

dh

u
∧

qh

]
=

[
uhsin(ωht)

−uhcos(ωht)

]
⇐⇒

[
u
∧

dh

u
∧

qh

]
=

[
uh

−juh

]
, (10)



232 G. Szabó and K. Veszprémi

Fig. 5. Angle relations of the real d and estimated (d
∧

) coordinate systems

where u
∧

dh and u
∧

qh are the injected voltages in the estimated d
∧

− q
∧

frame, uh is the
amplitude of the injected voltages, ωh = 2π fh, where fh is the frequency of the injected
voltages, j is the imaginary unit.

Using previous definition of the angle displacement, the projections of the injected
voltages on the real d − q axes can be calculated as follows,

[
udh
uqh

]
==
R (αe)

[
u
∧

dh

u
∧

qh

]
, (11)

where
=
R is the rotation operator, and it can be expressed as

=
R (α) =

[
cos(α) sin(α)

−sin(α) cos(α)

]
. (12)

This method requires the high-frequency current components in the stationary x− y
reference frame, since in a real system this is the only point where measurements can
be performed. Thus, using applied voltage components, Ohm’s law can be used in the
form as shown in Eq. 13.

[
udh
uqh

]
= =

Zh

[
idh
iqh

]
= =

Zh
=
R

(
α�p

)[ ixh
iyh

]
, (13)

where idh and iqh are the high-frequency current components in the d − q reference

frame,
=
Zh is the high-frequency impedance matrix that can be derived from Eqs. 5–8 at

the injection frequency as

=
Zh =

[
R + jωhLd − ω�pLqd jωhLdq − ω�pLq

jωhLqd + ω�p

(
Ld + �p

id

)
R + jωhLq + ω�pLdq

]

≈
[
R + jωhLd 0

0 R + jωhLq

]
=

[
Zh11 0
0 Z̄h22

]
. (14)

Equation 14 shows that some simplifications can be performed, because the anti-
diagonal elements and also the ω�pLqd and ω�pLdq terms in the main-diagonal can be
neglected, since their contribution to the output is much smaller than the other elements’.
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Reorganizing Eq. 13, the high-frequency current components in the x− y frame can
be expressed as follows,

[
ixh
iyh

]
= =

R
−1(

α�p

)=
Z

−1

h

=
R (αe)

[
u
∧

dh

u
∧

qh

]
. (15)

3.2 Mathematical Model

The common coordinate system’s angle can be estimatedwith a phase-locked loop (PLL)
structure, as shown in Fig. 6.

Fig. 6. Phase-locked loop

The stationary reference frame currents are transformed into the estimated common
coordinate system, resulting i

∧

d and i
∧

q components. Thereafter, they are filtered using a

band-pass filter BPF to obtain the high-frequency components i
∧

dh, i
∧

qh and they can be
modeled as

i
∧

dh =
(
cos2(αe)

1

Z̄h11
+ sin2(αe)

1

Z̄h22

)
u
∧

dh

+ sin(αe)cos(αe)

(
1

Z̄h11
− 1

Z̄h22

)
u
∧

qh, (16)

i
∧

qh =sin(αe)cos(αe)

(
1

Z̄h11
− 1

Z̄h22

)
u
∧

dh

+
(
sin2(αe)

1

Z̄h11
+ cos2(αe)

1

Z̄h22

)
u
∧

qh. (17)

Equations 16–17 offer three solutions for the synchronous injection. In the first one
both u

∧

dh and u
∧

qh voltages are used, often called as synchronous rotating injection. The
other two solutions use only one of the available voltages, but in most of the cases
u
∧

dh voltage is used. In this case, which method is used in the further modeling, we are
interested only in i

∧

qh, which can be reduced to the following expression,

i
∧

qh = sin(αe)cos(αe)

(
1

Z̄h11
− 1

Z̄h22

)
u
∧

dh (18)
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and its time domain equivalent is

i
∧

qh(t) = uhsin(αe)cos(αe)
∣∣Ȳ ∗∣∣sin

(
ωht + arc

(
Ȳ ∗)), (19)

where Ȳ ∗ = 1
Z̄h11

− 1
Z̄h22

.

In the next step i
∧

qh(t) is fed into the phase detector part of the PLL and it is multiplied
with a cosine function having the same frequency as the injected voltages and amplitude
u∗, resulting i

∧

qh
∗
. Thereafter a low-pass filer LPF is applied on i

∧

qh
∗
and its output is

i
∧

qhf
∗
which is shown in Eq. 20.

i
∧

qhf (t) = 1

2
u∗uhsin(αe)cos(αe)

∣∣Ȳ ∗∣∣sin
(
arc

(
Ȳ ∗)). (20)

In the last step, i
∧

qhf (t) is fed into a PI controller with zero reference, that provides an
estimation for the common coordinate system’s angular speed and angle. The inspection
of Eq. 20 describes four possible scenarios, when the PI controller’s feedback signal
takes zero value, which are the following:

• uh or u∗ equals zero,
• ∣∣Ȳ ∗∣∣ becomes zero, in which case the machine is fully symmetrical in magnetic point
of view,

• arc
(
Ȳ ∗) becomes zero, which is analogue to the case before,

• sin(αe)cos(αe) becomes zero, because the angular displacement between the real and
estimated coordinate systems disappears.

The second and third cases point out the limitations of the injection method, which
is magnetic symmetry, when the d and q axes impedances are equal. This symmetry can
be the result of the machine’s topology, for which a good example is a surface mounted
permanent magnet synchronous machine, where these impedances are equal or very
close to each other even in saturated cases. On the other hand,

∣∣Ȳ ∗∣∣ and arc
(
Ȳ ∗) could

become zero due to saturation effects at some combination of id , iq currents.
Taking into account sensing and signal-to-noise considerations, in case of the

machine-under-test the id , iq combinations where the Ld/Lq ratio falls below 1.5 are
considered as prohibited current pairs, where high-frequency injection cannot be applied.
This region is illustrated in Fig. 7 which should be taken into account in current refer-
ence calculation. One affected algorithm is the field weakening current reference calcu-
lation, but the injection-based sensorless method is meant to operate in low-frequency
regions, not in the working points above the nominal speed. Another affected algorithm
is the maximum torque-per-ampere (MTPA), which is worth to implement to utilize the
machine’s saliency [8].

The tuning of the PLL’s PI controller can be performed using the proposed dynamic
model by authors in [9] and its reduced form is shown in Fig. 8.

The components of this block diagram are the following:

• GPI (s) is the PI controller and its transfer function is

GPI (s) = Ap

(
1 + 1

sTi

)
, (21)
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Fig. 7. Prohibited current combinations, where Ld /Lq < 1.5

Fig. 8. Dynamic model of the PLL structure

where Ap is the proportional gain, Ti is the integral time,
• Gp(s) is process’ block and its transfer function can be modeled as

Gp(s) = p1s2 + p2s + p3
(s − λd )

(
s − λq

) , (22)

where p1, p2, p3 parameters are the function of the machine parameters, λd , λq are
the eigenvalues of the d − and q− axes impedances,

• Gf (s) is a low-pass filter and its transfer function is

Gf (s) = 1

sTf + 1
, (23)

where Tf is the filter’s time constant.

This dynamic model offers two solutions for the PI controller’s tuning. In the first
approach the nominal Ld ,Lq values are used and the controller is tuned to have high
phase margin considering the prohibited current regions. This results a stable control in
the low-frequency region, but its performance will be limited, so high dynamic changes
in the common coordinate system’s angle cannot be tracked. The other approach takes
into account the saturation effects in the direct and quadrature axes, and constantly
updates the proposedGp(s) process model. This is more complex algorithm, but it could
provide better dynamics in the target application.
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4 Drive Simulation

Figure 9 illustrates the simulated system. The PMSM block represents the saturating,
lumped-parameter machine and it was parameterized with the FEM results.

The rotor’s angular position is sensed in two ways, with an incremental encoder and
with the presented high-frequency signal injection method. The final angle, α

∧

�p used
for the coordinate transformations is obtained by the linear combination of processed
incremental encoder’s angle α

∧

�p,inc[10], and the high-frequency injection’s α
∧

�,HF esti-
mation. The latter one dominates the low-frequency region, which is below 15Hz elec-
trical frequency in the simulations, while the encoder’s signal overtakes the estimation
in high-frequency region.

Fig. 9. Cascade control loop with the estimator

This combination of angle estimations combines both solution’s advantages. In the
low-frequency region with the voltage injection method rotor initial electrical position
tracking and good resolution angle estimation can be achieved. On the other hand, at
higher frequencies the encoder’s angle provides good dynamic and precise estimation,
when the high-frequency injection fails due to bad signal-to-noise ratio.

In the presented control loop all of the controllers, Cid ,Ciq and Cω are PI type
controllers as shown in Eq. 8. Table 2 summarizes the controller parameters [11].

Table 2. Controller parameters.

Controller Ap Ti

d-axis current 7.89 2.13 ms

q-axis current 24.39 4.83 ms

Angular speed 0.17 79.51 ms

HF PLL 9375 28.4 ms

These parameters were obtained assuming the nominal motor parameters, and they
were modified online based on the estimated saturation of the machine.
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(a) 

(b) 

(c)

(d)

Fig. 10. Simulation results

The test cycle includes all the four quadrants with applied load torque during the
motoring states as shown in Fig. 10. At the end of the cycle, zero frequency performance
is examined with active load torque in both directions. Figures 10(a)–(b) show the actual
id , iq currents and their estimations i

∧

d and i
∧

q. Figure 10(c) shows the mechanical speed
reference ωref and the actual ωact shaft angular speed.

These first three figures clearly show, that this angle estimation method can be used
for vector control, and stable speed-current cascade control can be achieved. At low-
speed region the estimation depends on the injection method, therefore in that frequency
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range current ripples can be observed. As the electric speed increases, the vector control
is executed using the encoder’s angle, meanwhile the high-frequency signal’s amplitude
reaches zero.

Figure 10(d) shows the machine’s torque, which is denoted as mact , and the load
torque, which is denoted as ml .

5 Conclusion

In this paper high-frequency synchronous voltage injection was presented, and it was
combined with an incremental encoder to achieve good dynamic vector control on the
whole frequency range.

The machine parameters were calculated using finite element method and mea-
surement results evaluation. The analytical results and mathematical description of the
injection method were presented, based on the comprehensive FEM analysis, a novel
prohibited range is defined for the high-frequency injectionmethod. The angle estimation
was performed with a PLL structure, for which new dynamic structure was proposed,
which can be used for its PI controller tuning. The FEM results can also be involved in
this dynamic model, since it depends on the machine parameters.
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