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Abstract. This study aims to explore and improve ways of handling a continuous
variable dataset, in order to predict student dropout in MOOCs, by implementing
various models, including the ones most successful across various domains, such
as recurrent neural network (RNN), and tree-based algorithms. Unlike existing
studies, we arguably fairly compare each algorithm with the dataset that it can
perform best with, thus ‘like for like’. I.e., we use a time-series dataset ‘as is’
with algorithms suited for time-series, as well as a conversion of the time-series
into a discrete-variables dataset, through feature engineering, with algorithms
handling well discrete variables. We show that these much lighter discrete models
outperform the time-series models. Our work additionally shows the importance
of handing the uncertainty in the data, via these ‘compressed’ models.
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1 Introduction

Over the years, an undeniable challenge in online learning became to find ways to
reduce and predict students’ dropout rates, which fall roughly at 77%–87% [3, 4]. The
majority of the studies such as [3, 4], use the same dataset and variables to implement
predictive models, without taking into consideration the type of variables each model
uses for maximising its performance. For example, Tang et al. [3] trained a time-series
Long Short-Term Memory (LSTM) model using the same dataset that was used to train
other non-time series machine learning models, including Logistic Regression, Random
Forest, and Gradient Boosting Decision Tree (GBDT) models. The results show that
time-series models (LSTM) outperform other machine learning models (i.e., Linear
Regression, Decision Tree), and achieve higher accuracy, precision and recall when
they are compared to their natural environment (continuous/time-series variables). We
argue, however, that previous methods do not take into account the target on which the
algorithms are performing best. We thus aim to provide benchmarks for predicting the
completers and non-completers and examine the following research question:
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Is it a good practice to use sequential time-series as-is, or first convert the dataset
into a discrete-variables one, for obtaining enhanced metrics (precision, recall,
accuracy) on predicting students’ dropout with the appropriately tuned method?

2 Related Work

Many studies focused on classifying students into completers and non-completers. Some
of them, such as [5, 6] use statistics, or traditional machine learning algorithms (e.g.,
Decision Trees, Logistic Regression, Random Forest, Support Vector Machines) [7–10],
while others, such as [11, 12], used more advanced algorithms (e.g. Deep Learning ),
or even visualisation [13]. There are also a few studies [3, 4], that used both traditional
machine learning algorithms and more advanced. However, they [3, 4] used the same
dataset to train both Neural Networks and machine learning models (time-series), show-
ing that NN outperformed the other machine learning techniques. In our case, we convert
the time-series dataset through feature engineering into discrete variables and train each
model on the type of dataset it can process best. For example, [14] indicates that if
our aim were to train a Neural Network, it is better to use a time-series dataset, while
[15] suggests that we should use discrete variables when we aim to train a tree-based
algorithm (either categorical or continuous variables).

Interestingly, some papers [12, 13] show that Artificial Recurrent Neural Networks
(RNN) with memory, such as Long-Short-Term-Memory (LSTM), are generally consid-
ered as superior models to solve time-series tasks, because of their nature – the way they
operate and handle data. On the other hand, [18, 19] indicate that traditional machine
learning algorithms, such as Logistic Regression, Random Forest and GBDT produce
better results with discrete-variable data.

3 Method

The dataset used in this study is comprising 300,000 interactions and 2,000 unique
registered students, extracted from XuetangX (launched in October 2013, one of the
largest MOOC platforms in China). We converted the time-series dataset, which our
LSTM model was trained on, into a discrete-variables dataset, which our tree-based
models were trained on. For the construction of the discrete-variables dataset, we used
the time-series dataset and we have counted for each student the number of unique
actions. In total, there are 14 different types of unique actions and thus we engineered
14 features for 14 input variables for our predictive models. Considering the LSTM
model’s feature engineering in preparation of the dataset, the actions of each student
were sequentially grouped together, according to the time they were performed. Thus,
the essence of the time-series was preserved, while still considering the unique action
performed. Afterwards, the actions were translated into a sequence of binary numbers,
to retain the categorical nature of the actions. Here, we examined the effectiveness
of converting a time-series dataset into a discrete dataset through feature engineering.
We trained the predictive models with the initial raw datasets, aiming to produce a
benchmark for future work. We implemented an LSTM model and several tree-based
machine learning models, including Decision Tree, Random Forest, and BART.
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For all the above models we used the basic parameters, including the basic split of
the data into 70% train and 30% test sets. Moreover, to evaluate the machine learning
models, we used the k-fold cross-validation technique, and we did not perform any
hyperparameter optimisation. The purpose of this setting is to find a benchmark and
compare the two datasets on their primitive forms, without any data pre-processing
(sequential time-series and discrete). To evaluate our predictive model’s performance,
we utilised the following standard, comprehensive metrics:

• Precision: the proportion of positive identifications which was actually correct;
• Recall: the proportion of actual positives that were identified correctly;
• F1 score: the weighted average of Precision and Recall;
• Accuracy: the ratio of correctly predicted observations over the total observations.

4 Results and Discussions

Table 1 presents the result comprising three tree-based models (Decision Tree, Random
Forest, BART) and an LSTM model. From the results, we can clearly determine the
difference between the two types of datasets and draw some useful conclusions. BART
outperforms the other models – achieving a very high accuracy of 90% for identifying
students who might drop out from an online course. The Decision Tree and Random
Forest models achieved relatively high accuracy of 83% and 89%, respectively. The
LSTM model achieved the lowest accuracy of 77%. Table 1 especially showcases the
performance of theBARTmodel and its improved learning ability in comparisonwith the
other models. From the four figures (Figs. 1, 2, 3 and 4), and the AUC scores, we observe
that BART (Fig. 3) has an improved ability to discriminate the test values in comparison
with the other models (Decision Tree, Random Forest, LSTM). Furthermore, we can
identify the improved trained ability of the tree-based models, when the discrete dataset
was used, by the recall metric, which shows a clear ability to select the most relevant
items on the classification task with the highest percentage of 96% produced by BART.
In comparison with the tree-based models, the LSTM model did not perform as well as
the other models. That is partially because LSTMs are known to require a large amount
of data, in order to be efficiently trained.

Table 1. Performance comparisons between the predictive models

Metric DT RF BART LSTM

Precision
Recall
F1
Accuracy

0.83
0.83
0.83
0.82

0.88
0.88
0.87
0.89

0.89
0.96
0.92
0.90

0.77
0.76
0.75
0.77

Our results suggest that, whenever possible, it could be beneficial to convert the
time-series dataset into a discrete variable dataset, as it is highly probable to produce
better performance, especially when the time-series datasets are not populated enough.
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Fig. 1. Decision Tree ROC curve. Fig. 2. Random Forest ROC curve.

Fig. 3. BART ROC curve Fig. 4. LSTM ROC curve.

5 Conclusions

In summary, this paper presents the results of a study aiming to discover whether it is
efficient to convert a time-series dataset into discrete variables dataset, to train predictive
models with better performance, in terms of predicting students’ dropout. The research
results have clearly indicated that we should convert a dataset into different forms when
this is feasible. It has shown that this process assists different types of predictive models
to obtain higher performance and enhance their learning ability. We have proven that it
would be useful to manipulate the dataset for a variety of models first, thus enhancing
the final results. We have also shown that BART, which includes a representation of
uncertainty, outperforms all other tree-based methods.

Future work might include tuning the models’ parameters and investigating the
dataset further through data pre-processing and more sophisticated feature engineering
techniques (i.e., Frequency count, Frequency Encoding) to achieve better performance.
Also, it would be interesting to perform hyperparameter optimisation so that we can find
out the optimal learning efficiency of the predictive models. In addition to improving
the algorithms, more data could refine the results of this study.
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