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Abstract. Combinatorial optimization has found applications in
numerous fields, from transportation to scheduling and planning. The
goal is to find an optimal solution among a finite set of possibilities.
Most exact approaches use relaxations to derive bounds on the objective
function, which are embedded within a branch-and-bound algorithm.
Decision diagrams provide a new approach for obtaining bounds that,
in some cases, can be significantly better than those obtained with a
standard linear programming relaxation. However, it is known that the
quality of the bounds achieved through this bounding method depends on
the ordering of variables considered for building the diagram. Recently, a
deep reinforcement learning approach was proposed to compute a high-
quality variable ordering. The bounds obtained exhibited improvements,
but the mechanism proposed was not embedded in a branch-and-bound
solver. This paper proposes to integrate learned optimization bounds
inside a branch-and-bound solver, through the combination of reinforce-
ment learning and decision diagrams. The results obtained show that the
bounds can reduce the tree search size by a factor of at least three on
the maximum independent set problem.

Keywords: Decision diagrams · Branch-and-bound · Reinforcement
learning.

1 Introduction

Historically introduced for encoding Boolean functions and used for circuit
design and verification [10,21], Decision Diagrams (DDs) have recently been
reapplied in the field of combinatorial optimization [2,8,17], for example to
sequencing problems [13] or the multidimensional bin packing problem [18].
Assuming a maximization objective, the optimal solution can be obtained in
polynomial time in respect to the size of the decision diagram by following the
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longest path from the root to the terminal node of an exact DD. However, the
size of exact DDs grows exponentially with the number of variables, which make
them unsuitable for solving large problems. Recently, decision diagrams pro-
vided new means of obtaining bounds for combinatorial optimization problems
that can be significantly better than those obtained via a traditional linear pro-
gramming relaxation [6]. Bergman et al. [9] proposed to use DDs to encode a
parametrizable and tractable approximation of the solution set. Such structures
are referred to as approximate DDs.

The performance of this procedure highly depends on the ordering of the
variables used to create the DDs. Better ordering can lead to tighter optimization
bounds, which results in fewer nodes explored during the BnB search and an
expected solution time reduction. Nevertheless, finding an ordering that yields
the best bound is NP-hard and difficult to model. Typically heuristics have been
considered for defining variable ordering [5] and only a few limited studies have
proposed exact approaches for specific problem classes (see, e.g. [4]). Recently,
Cappart et al. [12] proposed a deep reinforcement learning (DRL) [3,20] approach
for computing the variable ordering. The idea is to train an agent to build a
DD, with the incentive (i.e., the reward) to obtain bounds as tight as possible.
However, this procedure has not been integrated in a BnB algorithm.

The contribution this paper makes is to illustrate the benefits and challenges
of using both primal and dual bounds obtained with DRL-guided DDs within a
BnB procedure. As a first experiment we apply this algorithm to the maximum
independent set problem (MISP). Our preliminary results show that the proposed
approach is able to prove optimality with significantly fewer nodes explored,
due to the better bounds obtained. However, it is done at the expense of a
significant increase in the execution time, as a deep neural network has to be
called multiple times at each BnB node. An improved algorithm which uses
caching and restricts the use of the DRL agent is also presented, and proves
efficient on larger problems.

This paper introduces some preliminaries for DDs and reinforcement learning
before presenting the BnB algorithm, followed by experimental results. Finally,
the limitations of the current approach and directions for future research are
discussed.

2 Learning Bounds Inside Branch-and-Bound

2.1 Decision Diagram-Based Branch-and-Bound

The DDs used in this work are Binary Decision Diagrams (BDDs), although
the generalization to multi-valued decision diagrams is immediate. A BDD B =
(U,A, d) is a directed acyclic multi-graph in which the node set U is partitioned
into layers L1, . . . , Ln+1. The set of solutions for a problem can be represented by
a BDD in which each path from the root node r to the terminal node t encodes a
feasible solution: each arc along the path gives the value of the variable associated
with the layer the arc starts from, and a longest path in the diagram gives an
optimal solution to the problem. Conversely, each feasible solution can be found
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in the BDD. Each layer L1, . . . , Ln is associated with a unique variable xk of the
problem with k ∈ {1, . . . , n}. Each arc a ∈ A goes from one layer to the next and
has label d(a) ∈ {0, 1} that encodes the values of the layer’s associated binary
variable.

For larger problems in combinatorial optimization, BnB algorithms are
widely used to generate a search tree of manageable size using optimization
bounds. Such bounds can be obtained via feasible solutions and linear relax-
ation, and we focus here on how approximated DDs provide a simple alter-
native for computing bounds. An exact DD can be relaxed by merging nodes
of a layer to narrow the diagram without removing any solutions, but adding
unfeasible solutions [9]. A relaxed DD provides a dual bound when solved, the
quality of which depends on the amount of merging operations done. Likewise, a
restricted DD can be created by removing nodes of an exact DD; some solutions
are deleted but none are created, yielding a subset of solutions that can pro-
vide a primal bound. A branching process can also be conducted on DD nodes,
which provides a complete BnB scheme based on DDs as an alternative to the
classic linear programming-based BnB. A DD-based BnB algorithm is described
in Algorithm 2. Detailed information is proposed by Bergman et al. [5].

2.2 Variable Ordering and Reinforcement Learning

Recently, a machine learning approach has been proposed to address the NP-
hard problem of variable ordering for DDs [12] using reinforcement learning
(RL) [24]. The goal of a RL agent is to maximize the expected sum of rewards
obtained by learning a behavior policy. In the case of DD construction, the
agent incrementally builds an approximated DD and observes the bound given
by the partially built diagram. The rewards given as feedback are defined by the
evolution of the bound obtained (a reduction of an upper bound is encouraged,
whereas an increase is penalized and vice versa for a lower bound). The state
observed by the agent is a function of the problem instances and of the variables
already added in the current DD. An action consists in selecting a new variable
to add to the next layer of the DD. Finding a policy maximizing the action-value
function for all states and actions is hard and a practical solution is to compute
an approximation of Q using a Q-learning algorithm [25] applied to a graph
neural network. The exact procedure can be found in can be found in [12].

2.3 The Branch-and-Bound Algorithm with a RL Agent

This section presents the main contribution of the paper: how to implement a
BnB algorithm using DDs together with RL. The process is as follows. At each
node explored during a DD-based BnB algorithm, a relaxed and a restricted DD
are built and an ordering for the variables left at this stage of the search has to
be determined for each DD. Currently, heuristics that try to greedily limit the
width of the DD are used, and perform much better than simple lexicographic
or random orderings.
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We propose to work on the ordering of the approximate DDs by using a RL
agent on a graph embedding rather than handcrafted heuristics. Two steps are to
be considered for building this agent: (1) a training phase, consisting of learning
a good policy for the problem at hand, and (2) a solving phase, corresponding
to the execution of the BnB algorithm.

Vectorized Representation. A graph neural network (GNN) [11,19] is used
to obtain a vectorized representation of a graph by computing node embeddings.
The vectorization is built as follows: (1) the problem instance is represented as
a graph (e.g., a MISP instance), (2) each vertex/edge of the nodes are decorated
with relevant features (e.g. the weight of each vertex), (3) A GNN is used to
obtain an d-dimensional embedding for each vertex of the graph, and (4) the
embedding is given as input to a fully-connected neural network in order to
obtain the final Q-values that are used for the prediction, indicating the quality
of each vertex to be inserted in the current embedding.

Training Phase. The training is based on neural fitted Q-learning with a set
of randomly generated graphs, and returns the weights w for the approximated
action-value function Q̂. The Q-value approximation is obtained with the use of
a GNN with the library structureToVec [14]. The standard Q-learning algo-
rithm can be enriched in several classic ways, among which are mini-batches to
guarantee a better gradient descent based on several examples instead of one,
reward scaling for a better handling of large reward quantities and an adaptive
ε-greedy policy to move away from a local optimum, balancing exploration and
exploitation. Details on the learning phase can be found in [12]. As the training
uses the bound obtained via the partially built DD, the RL agent is dependent
on the type of bound used. Therefore we consider two agents, one trained for
relaxed DDs for which a low value upper bound is desired, and the other for
restricted DDs for which the highest possible lower bound is desired. Once the
parameters w for the Q-value have been learned, a simple policy can be derived
as described below.

Solving Phase. The solver uses a trained RL agent each time a DD is devel-
oped. Algorithm 1 describes how an ordering is obtained by calling the agent
several times, and Algorithm 2 describes the BnB algorithm using the DDs con-
structed with the RL agents. New variable orderings are computed at each node
of the BnB to build the restricted and relaxed DDs. The RL agent is designed
to obtain high-quality bounds, which then allows to update the lower bound or
prune the node if applicable. Let But be the DD induced by all nodes and paths
going from u to t (which gives in particular Brt = B). If But is an exact DD,
B′

ut designates a restriction and But a relaxation of But. If a restricted DD B′
ut

is exact, no restriction was needed and thus no branching is performed. The
variable orderings are obtained as described below.

In Algorithm 1, the state of the problem is given to the agent that responds
with the Q-values for each variable. The variable u that maximizes the Q-value
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Algorithm 1. DD construction with RL agent
1: B = ({L1, . . . , Ln}, A, d) an empty DD, to be built with the variables V
2: for j ∈ {1, n} do
3: u = argmaxa∈V Q̂(s, a,w)
4: build layer Lj with the variable u
5: V ← V \{u}, bu = 1
6: end for
7: return B

learned by the GNN is chosen and added to the partially built DD. A feature
bu for each u ∈ V indicates if a variable has already been selected for the
DD construction. After the selection of the variable u, the feature is updated.
This modifies the state of the problem, so the Q-values are computed again to
select the next variable. The process continues until all the variables have been
considered and the DD is complete.

Algorithm 2. DD based branch-and-bound, 2 RL agents
1: zopt = −∞, Q = {r}
2: while Q �= ∅ do
3: select node u ∈ Q
4: create restricted DD B′

ut with Algorithm 1
5: if v∗(B′

ut) > zopt then zopt = v∗(B′
ut) end if

6: if B′
ut non exact then

7: create relaxed DD But with Algorithm 1
8: if not pruned, select exact cutset to add to Q
9: end if

10: end while

Complexity. Obtaining a variable ordering by calling a GNN is expensive
because of the nature of the steps involved. The node embeddings are created by
a message passing algorithm and fed to a fully connected neural network. This
has to be done for each variable in the ordering, resulting in a time complexity
of O(|E| × n2). In the next section, Algorithm 1 for variable ordering is com-
pared against a classic heuristic called MinState, which has a time complexity
of O(w × n); with w the width of the DD. The additional complexity brought
by the GNN should thus have to be justified with an efficient node reduction
during the BnB.

3 Experimental Results

The goal of the first set of experiments is to show that a significant reduction of
nodes explored in the tree search is possible with a well trained GNN. However,
it is done at the expense of the computation time. The second experiment shows
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how this issue can be mitigated using a caching mechanism, and a hybrid heuris-
tic. Similar to previous works [7,12], the case study considered is the maximum
independent set problem (MISP). The solver is written in C++ and is imple-
mented upon the code of Cappart et al. [12] for the RL agent part and Bergman
et al. [5] for the DD-based BnB. The learning and the solving were ran on a
Dell XPS 15 9570 with a Intel i7-8750H 2.20 GHz CPU. The training time was
limited to eight hours. All instances considered have been randomly generated
using a Barabasi-Albert scheme with the density parameter ν = 4 [1].

Definition 1 (Maximum Independent Set Problem). An independent set
I in a weighted graph G = (V,E) is a subset I ⊆ V in which 2 vertices
cannot be adjacent. The problem consists of finding an independent set of
maximum weight, i.e. maximizing the function f(x) =

∑|V |
k=1 wkxk such that

∀(i, j) ∈ E, xi + xj ≤ 1 with xk indicating whether the vertex k is selected or
not, and wk being the weight associated to this vertex.

3.1 Performances of the Learned Variable Ordering

We plot in Fig. 1 the number of nodes explored during the DD-based BnB over
100 random instances. For the variable orderings, the GNN algorithm uses a
GNN trained for relaxation over random graphs with the same distribution.
Restriction is still done with a MinState ordering. The GNN consists of 4 iter-
ations of belief propagation and a neural network with 2 layers of size 64. The
heuristic algorithm uses MinState for relaxation and restriction. The results can
be found in Table 1, with the average time in seconds. We can see that even
if the number of nodes is drastically reduced, the execution time remains an
important concern compared to MinState. Figure 1 shows the percentage of the
graphs solved under a given number of nodes in performance profile [22]: the
higher the curve, the better. Overall, the number of nodes needed to solve all
the MISP instances is typically reduced by a factor of three to four with the RL
agent for graphs over 100 nodes, noting that 90% of the instances were solved
in fewer nodes.

Table 1. Average time and nodes explored for 100 MISP instances of size n

Algorithm n = 80 n = 100 n = 120

Nodes Time Nodes Time Nodes Time

GNN 1416 16.70 4628 79.90 34434 878.10

GNN+ 2131 2.40 13152 10.00 81015 41.10

MinState 2802 0.32 22680 5.30 100822 40.40

3.2 Caching to Save Computation Time

To avoid calling the agent too often and speed-up the resolution, the GNN-
computed orderings are stored and re-used for subsequent DDs that might have
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(a) n = 80 (b) n = 100

Fig. 1. Performance profile of a GNN agent and MinState for variable ordering over
100 instances of the MISP

a similar structure. To re-use an ordering, the number of variables for the current
DD has to be close to the number of variables of the stored ordering and be
included in it. When the number of variable differs too much, the stored ordering
can be quite poor for the current DD (similar to a random ordering). This
sacrifices some precision in favor of computational efficiency. Furthermore, the
computation time bottleneck is expressed the most when it is needed the least,
which is at the end of the BnB tree for small DDs. Bound improvements there
are small and do not have major consequences, and small DDs are very fast to
build with little need for a GNN. We experiment on the use of the RL agent
before a given threshold for the number of nodes (here, 100 BnB nodes), and the
use of the MinState heuristic after this threshold to close the search faster. Those
improvements are natural given the cost of a GNN feed-forward operation, and
we observe in Table 1 and in Fig. 2 with the algorithm GNN+ that the average
number of nodes explored during a search can in fact be effectively reduced while
keeping a competitive solving time for large problems.

3.3 Discussion

As highlighted in the experiment, the learned bounds can be successfully lever-
aged in the solver in order to reduce the number of nodes explored. However,
the execution time is an important bottleneck, which makes the hybridization
challenging to design, and additional mechanisms should be considered in order
to improve the efficiency. Caching is one of them but is still not enough. We
made other attempts to get improvements, such as (1) using the same agent for
the restriction and the relaxation, (2) using a fixed ordering during the com-
plete BnB process instead of dynamically recomputing it, (3) calling the GNN
only every n steps or at random intervals, but without much success. We believe
that finding other ways to improve is a promising research direction. A simi-
lar question has been addressed by Gupta et al. [16] for standard MIP solvers.
They show that expressive and costly GNNs can be combined with inexpressive
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but cheap fully connected neural networks in order to obtain a better trade-off
between prediction quality and computational efficiency.

)s(emit,021=n)b(sedon,021=n)a(

Fig. 2. Performance profile of an improved GNN agent and MinState for variable order-
ing over 100 instances of the MISP

4 Conclusion

DDs provide a new flexible and general methodology for generating tight bounds
for optimization problems, and DD-based BnB algorithms are often competitive
with recent integer programming solvers. This paper presents a method that
takes advantages of the flexibility of DDs for bound generation in BnB through
machine learning. The reduction of the number of nodes indicates that this is
a promising research direction, but subject to important challenges (e.g. the
execution time). The generic nature of DD construction and BnB solving for
discrete optimization problems makes for an interesting combination, with pos-
sible application to other problem classes like the maximum cut problem [6], the
set covering problem [9] and the traveling salesperson problem [15,23].

The next step to better bridge the gap between machine learning and opti-
mization would involve a general framework that takes advantage of the graph
structure and recursive formulation of a problem by learning to construct DDs
with high quality bounds for the problem, and solving it with an efficient BnB
algorithm. Data generation for the training step would remain a challenge.

The use of machine learning to generate both lower and upper bounds for
combinatorial optimization proved efficient and opens the door to multiple pos-
sibilities for future research on the integration of these disciplines. Applying
deep learning tools to optimization faces practical bottlenecks that have to be
overcome for practical applications and broad adoption in exact optimization
solvers.
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