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Abstract. Recent research has shown how Deep Neural Networks
trained on historical solution pools can tackle CSPs to some degree,
with potential applications in problems with implicit soft and hard con-
straints. In this paper, we consider a setup where one has offline access
to symbolic, incomplete, problem knowledge, which cannot however be
employed at search time. We show how such knowledge can be generally
treated as a propagator, we devise an approach to distill it in the weights
of a network, and we define a simple procedure to extensively exploit
even small solution pools. Rather than tackling a real-world application
directly, we perform experiments in a controlled setting, i.e. the classical
Partial Latin Square completion problem, aimed at identifying patterns,
potential advantages, and challenges. Our analysis shows that injecting
knowledge at training time can be very beneficial with small solution
pools, but may have less reliable effects with large solution pools. Scala-
bility appears as the greatest challenge, as it affects the reliability of the
incomplete knowledge and necessitates larger solution pools.

1 Introduction

Given enough data, Deep Neural Networks (DNNs) are capable of learning com-
plex input-output relations with high accuracy. Recent work has shown how
this applies also to the solution process of Constraint Satisfaction Problems,
at least to some degree: examples include the approach from [26], relying on a
pool of solutions, or Reinforcement Learning approaches inspired by [2], relying
on solution checkers/evaluators. This class of approaches, while still not close
to the state of the art in combinatorial decision making, may have advantages
in terms of robustness and when implicit soft or hard constraints are present.
For example, course timetables often need to take into account both explicit
constraints (e.g. preferences, capacities) and informal agreements or manually
enforced rules. A second, less explored, area of application concerns problems
with well-defined sources of symbolic knowledge, which cannot however be easily
exploited at search time. Examples include simulators, complex nonlinear equa-
tions, or particularly expensive (e.g. NP-hard) propagators. In this context, a
Deep Learning approach may learn to satisfy such constraints without the need
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for a propagator at search time. In this paper, we focus on the latter use case
and investigate methods for injecting offline information into DNNs designed to
tackle combinatorial problems. Specifically, we will consider training a network
for identifying variable-value assignments that are likely to be feasible. We will
assume the availability of both implicit knowledge (from data), and explicit sym-
bolic knowledge that can be accessed prior to the search process. Rather than
tackling a real-world problem directly, we perform experiments in a controlled
setting, with the aim to gauge the potential of the approach and identify the key
challenges. The idea, in the spirit of [6], is to test the ground before starting the
complex and time-consuming endeavor of applying such methods in a real-world
use case.

In detail, we use as a benchmark the Partial Latin Square (PLS) completion
problem, which requires to complete a partially filled n × n square with values
in {1..n}, such that no value appears twice on any row or column. Despite its
simplicity, the PLS is NP-hard, unless we start from an empty square, it has
practical applications (e.g. in optical fiber routing), and serves as the basis for
more complex problems (e.g. timetabling). We focus on the only PLS due to its
clear structure, availability of multiple solutions that can be easily generated, and
its single defining parameter (size). Using a classical constrained problem as a
case study grants access to domain knowledge (the declarative formulation), and
facilitates the generation of empirical data (problem solutions). This combination
enables controlled experiments that are impossible to perform on real-world
datasets.

As a baseline, we train on a pool of solutions a problem-agnostic, data-driven,
approach. We devise a simple method to extract multiple training examples from
a finite set of solutions, and we define a technique, building over Semantic Based
Regularization [9] to inject at training time domain knowledge coming from con-
straint propagators. We then adjust the amount of initial data (empirical knowl-
edge) and of injected constraints (domain knowledge) and assess the ability of
the approach to identify feasible assignments. Our results show that even very
small solution pools, provided they are coupled with offline knowledge injection,
are enough for the DNN to identify feasible assignments with reliability com-
parable to a propagator at search time. When training solutions are plentiful,
conversely, injecting offline knowledge has a less pronounced (or even deleterious)
effect. Scalability appears as the greatest challenge, as it affects the reliability of
the incomplete knowledge and necessitates larger solution pools.

The paper is organized as follows: Sect. 2 briefly surveys the related literature
and motivates the choice of our baseline techniques; Sect. 3 discusses the details
of the problem and methods we use; Sect. 4 presents the results of our analysis,
while Sect. 5 provides concluding remarks.

2 Related Works and Baseline Choice

The analysis that we aim to perform requires 1) a data-driven technique that
can solve a constrained problem, with no access to its structure; moreover, we
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need 2) methodologies for injecting domain knowledge in such a system. In this
section, we briefly survey methods available in the literature for such tasks and
we motivate our selection of techniques.

Neural Networks for Solving Constrained Problems. The integration of Machine
Learning methods for the solution of constrained problems is an active research
topic, recently surveyed in [3]. Many such approaches consider how ML can
improve specific steps of the solution process: here, however, we are inter-
ested in methods that use learning to replace (entirely or in part) the mod-
eling activity itself. These include Constraint Acquisition techniques (e.g. [4]),
which attempt to learn a declarative problem description from feasible/infeasible
variable assignments. These approaches may however have trouble dealing with
implicit knowledge (e.g. preferences) that cannot be easily stated in a well-
defined constraint language. Techniques for encoding Machine Learning models
in constrained problems (e.g. [11,16,20,25]) are capable of integrating empirical
and domain knowledge, but not at training time; additionally, they require to
know a-priori which variables are involved in the constraints to be learned.

Some approaches (e.g. [1,5]) rely on carefully structured Hopfield Networks
to solve constrained problems, but designing these networks (or their training
algorithms) requires full problem knowledge. Recently, Reinforcement Learning
and Pointer Networks [2] or Attention [14] have been used for solving specific
classes of constrained problems, with some measure of success. These approaches
also require a high degree of problem knowledge to generate the reward signal,
and to some degree for the network design. The method from [26] applies Neural
Networks to predict the feasibility of a binary CSP, with a very high degree
of accuracy; the prediction is however based on a representation of the allowed
variable-value pairs, and hence requires explicit information about the problem.

In the approach from [12], from some of the authors of this paper, a Neural
Network is used to learn how to extend a partial variable assignment so as to
retain feasibility. Despite its limited practical effectiveness, this method shares
the best properties of Constraint Acquisition (no explicit problem information),
without being restricted to constraints expressed in a classical declarative lan-
guage. This last approach was chosen as our baseline, since it represents (to
the best of our knowledge) the data driven method for constraint problems that
requires the least amount of problem knowledge. In particular, it requires neither
information about the problem constraints (like e.g. [26]), nor a fully known (or
at least evaluable) problem model like all Reinforcement Learning approaches.

Domain Knowledge in Neural Networks. There are several approaches for incor-
porating external knowledge in Neural Networks, none of which has been applied
so far on constrained decision problems. One method to take into account domain
knowledge at training time is Semantic Based Regularization (SBR) [8], which
is based on the idea of converting (logical) constraints into regularizing terms
in the loss function used by a gradient-descent algorithm. Differentiability is
achieved by means of fuzzy logic. In a similar way, [27] describes a semantic loss
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function that quantifies how much the network is satisfying constraints defined
as sentences of propositional logic.

The approach can be pushed to an extreme by entirely replacing the loss
function with a logical formula (again in fuzzy form), such as in Logic Tensor
Networks (LTNs) [23]. LTNs are connected to Differentiable Reasoning [24],
which uses relational background knowledge to benefit from unlabeled data.

Domain knowledge has also been introduced in differentiable Machine Learn-
ing (mainly Deep Networks) by adjusting their structure, rather than the loss
function: examples include Deep Structured Models, e.g. [15] and [17], the latter
integrating deep learning with Conditional Random Fields. The authors of [7]
have developed a method to inject the domain knowledge encoded as First Order
Logic formulas in Neural Networks generating an additional final layer that modi-
fies the predictions according to the knowledge. Integration of external knowledge
in Neural Networks after training is considered for example in DeepProbLog [18],
where DNNs with probabilistic output (classifiers in particular) are treated as
predicates. Markov Logic Networks achieve similar results via the use of Markov
Fields defined over First Order Logic formulas [21], which may be defined via
probabilistic ML models. [22] presents a Neural Theorem Prover using differen-
tiable predicates and the Prolog backward chaining algorithm.

Some works attempt to both learn symbolic knowledge and enable reasoning
with predicates represented by ML models. The method in [19] are similar in
spirit to SBR or LTN, but they enable learning the weights of constraint terms
(based on compatibility with the data), rather than having them fixed by an
expert. This connects the approach to Differentiable Inductive Logic Program-
ming, which attempts to learn (soft) logic problem from noisy data [10], by
building over Inductive Logic Programming ideas.

We use a method loosely based on SBR for injecting knowledge at train-
ing time, as it offers a good compromise between flexibility and simplicity. In
addition, since we regularize the propagator output rather than the constraint
itself, our predicates are unary and hence we have no relational terms, making
approaches like [7,23] and [27] extremely similar to SBR in our setup.

3 Basic Methods

We reimplemented the approach from [12] and extended it via a number of
techniques, described in this section together with our evaluation procedure.

Neural Network for the Data Driven Approach. The baseline approach is based
on training a Neural Network to extend a partial assignment (also called a partial
solution) by making one additional assignment, so as to preserve feasibility.
Formally, the network is a function:

f : {0, 1}m → [0, 1]m (1)

whose input and output are m dimensional vectors. Each element in the vectors
is associated to a variable-value pair 〈zj , vj〉, where zj is the associated variable
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Algorithm 1. deconstruct(x)
D = ∅
while ‖x‖1 > 0 do

Let y = 0 # zero vector
Select a random index i s.t. xi = 1
Set xi = 0, set yi = 1
Add the pair 〈x, y〉 to D

return D

and vj is the associated value. We refer to the network’s input as x, assuming
that xj = 1 iff zj = vj . Each component fj(x) of the output is proportional
to the probability that pair 〈zj , vj〉 is chosen for the next assignment. This is
achieved in practice by using an output layer with m neurons with a sigmoid
activation function. The setup makes no assumptions on the constraint structure
but requires a fixed problem size and variables with finite domains.

Dataset Generation Process. The input of each training example corresponds to
a partial solution x, and the output to a single variable value assignment (repre-
sented as a vector y using a one-hot encoding). The training set is constructed by
repeatedly calling the randomized deconstruction procedure of Algorithm1 on
an initial set of full solutions (referred to as solution pool). Each call generates
a number of examples that are used to populate a dataset. At the end of the
process, we discard multiple copies of identical examples. Two examples may
have the same input, but different output, since a single partial assignment may
have multiple viable completions.

Unlike [12], here we sometimes perform multiple calls to Algorithm1 for the
same starting solution. This simple approach enables to investigate indepen-
dently the effect of the training set size and of the actual amount of empirical
knowledge (the size of the solution pool).

Training and Knowledge Injection. The basic training for the NN is the same
as for neural classifiers. Since the network output can be assimilated to a class,
we process the network output through a softmax operator, and then we use as
a loss function the categorical cross-entropy H. Additionally, we inject domain
knowledge at training time via an approach that combines ideas of Semantic
Based Regularization (SBR) and Constraint Programming.

Without loss of generality, we assimilate domain knowledge to a constraint
propagator, in the sense that it can be used to flag specific variable-value pairs
as either feasible or infeasible. In our experimentation, we indeed use a classical
propagator (Forward Checking) as the source of domain knowledge.

Formally, given a constraint (or a collection of constraints) C, here we will
treat its associated propagator as a multivariate function such that Cj(x) = 1
iff assignment zj = vj has not been marked as infeasible by the propagator,
while Cj(x) = 0 otherwise. Given that, we formulate three different approaches
to augment the loss function with an SBR inspired term.
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The first one relies on the usual assumption that pruned values are supposed
to be provably infeasible. Given an example 〈x, y〉, we have:

Lnegative
sbr (x) =

m−1∑

j=0

((1 − Cj(x)) · fj(x)) (2)

i.e. increasing the output of a neuron corresponding to a pair flagged as infeasible
incurs in a penalty that grows with fj(x).

For the other two methods, we just acknowledge that the domain knowledge
may be incomplete, discouraging provably infeasible pairs, and encouraging the
remaining ones. The only difference is in the cost function. In one instance the
cost function is the binary cross-entropy, since for each partial solution there
may exist many global viable completions, and the SBR inspired term is:

Lbce
sbr (x) =

m−1∑

j=0

(Cj(x) · log(fj(x)) + (1 − Cj(x)) · log(1 − fj(x)) (3)

In the other case instead we employ the mean squared error as cost function for
the SBR inspired regularization:

Lmse
sbr (x) =

m−1∑

j=0

(Cj(x) − fj(x))2 (4)

Our full loss is hence given by:

L(x, y) = H

(
1
Z

f(x), y
)

+ λLsbr (x) (5)

where Z is the partition function and the scalar λ controls the balance between
the cross-entropy term H and the SBR term, i.e. the amount of trust we
put in the incomplete domain knowledge. Since we assume the domain knowl-
edge/propagator to be incomplete, there is a risk of injecting incorrect informa-
tion into the model. In practice, this is balanced by the presence of the categorical
cross-entropy term in the loss: only the single pair that comes from the decon-
struction of a full solution will be associated with a non-null component, and
this pair is guaranteed to be globally feasible.

The method can be applied for all known propagators with discrete, finite
domain, variables. By adapting the structure of the SBR term, it can be made
to work for important classes of numerical propagators (e.g. those that enforce
Bound Consistency).

Evaluation and Knowledge Injection. We evaluate the approach via a constraint
solver, a classical PLS model, and a randomized search strategy. Formally, we
assume access to a function solve(x, C, h), where x is the starting partial
assignment, C is the considered (sub)set of problem constraints, and h is a



272 M. Silvestri et al.

Algorithm 2. feastest(X, C, h)
J∗ = arg max{hj(x) | Cj(x) = 1} # Most likely assignments
Pick j∗ uniformly at random from J∗

Set xj∗ = 1
if solve(x, Cpls , hrnd) �= ⊥ then

return 1 # Globally feasible
else

return 0 # Globally infeasible

probability estimator for variable-value pairs (e.g. our trained NN). The func-
tion runs a Depth First Search using the Google or-tools constraint solver: the
variable-value pair for the left branch is chosen at random with probabilities
proportional to h(x′), where x′ is the current state of assignments. The solve
function returns either a solution, or ⊥ in case of infeasibility.

Our main evaluation method tests the ability of the NN to identify indi-
vidual assignments that are globally feasible, i.e. that can be extended into full
solutions. This is done via Algorithm 2, which 1) starts from a given partial solu-
tion; 2) relies on a constraint propagator C (if supplied) to discard some of the
provably infeasible assignments; 3) uses the NN to make a (deterministic) single
assignment; 4) attempts to complete it into a full solution (taking into account
all problem constraints, i.e. Cpls). Replacing the NN with a uniform probability
estimator provides an uninformed search strategy. We repeat the process on all
partial solutions from a test set and collect statistics. This approach is identical
to one of those in [12], with one major difference, i.e. the ability to use a con-
straint propagator for “correcting” the output of the probability estimator. This
enables us to assess the impact of using the offline knowledge directly during the
search, something that is allowed in our controlled setting, but that would be
impossible (e.g.) with an actual simulator.

Unlike in typical Machine Learning evaluations, accuracy is not a meaningful
metric in our case, as it is tied to the (practically irrelevant) ability to replicate
the same sequence of assignments observed at training time. Incidentally, accu-
racy is very low when measured in the traditional way in all our experiments.

4 Empirical Analysis

In this section we discuss our experimental analysis, which is designed around
three key questions:

Q1: Does injecting knowledge at training time improve the network’s ability to
identify feasible assignments?

Q2: What is the effect of adjusting the amount of available empirical knowledge?
Q3: Can knowledge injection improve the ability to satisfy constraints in a soft

fashion, i.e. in terms of the number of violations?
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Fig. 1. Effect of the injection of the all constraints at training time comparing the
regularization methods for different λ values, on the PLS-12. The dataset is generated
from a 10,000 solutions pool.

While Q1 and Q2 focus on the feasibility of individual assignments, Q3 assumes
that some degree of infeasibility can be tolerated. We present a series of experi-
ments in our controlled use case that investigate such research directions. Details
about the rationale and the setup of each experiment are reported in dedicated
sections, but some common configurations can be immediately described.

We perform different experiments on 7×7, 10×10 and 12×12 PLS instances,
resulting respectively in input and output vectors with 343, 1000 and 1728 ele-
ments. For all the experiments, we use a feed-forward, fully-connected Neural
Network with three hidden layers, each with 512 units having ReLU activation
function. This setup is considerably simpler than the one we used in [12], but
manages to reach very similar results. We employ the Adam optimizer from
Keras-TensorFlow 2.0, with default parameters. We use a batch size of 2048 for
experiments on the PLS-7, whereas we adopt a batch size of 50,000 for the ones
on PLS-10 and PLS-12.

4.1 Regularization Methods Comparison and λ-tuning

As a first step to evaluate the impact of knowledge injection at training time,
we compare the regularization methods and evaluate how the λ value affects
the performance of each of them. We focus on the PLS-12, which is the great-
est dimension among the ones examined in this work so that advantages and
limitations for each method can easily emerge. We refer as negative, bce and
mse to the methods which respectively employ the SBR inspired loss functions
described in Eq. (2), eq. (3) and Eq. (4).
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Fig. 2. Effect of the injection of the only rows constraints at training time compar-
ing the regularization methods for different λ values, on the PLS-12. The dataset is
generated from 10,000 solutions pool.

The evaluation concerns whether injecting domain knowledge at training time
may help the NN in the identification of feasible assignments, assuming the same
knowledge is not available at search time. We also assume in this instance that
a large number of historical solutions is available.

This experimentation is motivated by practical situations in which: 1) a
domain expert has only partial information about the problem structure, but
a pool of historical solutions is available; 2) some constraints (e.g. from differen-
tial equations or discrete event simulation) cannot be enforced at search time.
In detail, the training set is generated using the deconstruction approach from
Sect. 3, starting from a set of 10,000 PLS solutions, 75% of which are used for
training and the remaining ones for testing. Each solution is then deconstructed
exactly once, yielding a training set of 1,000,000 examples. An additional valida-
tion set of 5,000 partial solutions is adopted to assess the improvements during
training via the feastest procedure, using the network as the heuristic h and
an empty set of constraints as C (no propagation when choosing the assign-
ment to be checked). Since this computation is really expensive, we perform the
assessment every 10 epochs. If for 10 successive checks the best global feasibility
ratio found so far is not improved then we stop the training.

For each regularization approach, we train two neural networks: one trained
with knowledge about row constraints and another trained with knowledge about
row and column constraints. For the first network, we use the SBR-inspired
methods (and a Forward Checking propagator) to inject knowledge that both
assigning a variable twice and assigning a value twice on the same row is for-
bidden. For the second one, we do the same, applying the Forward Checking
propagator also to column constraints (i.e. no value can appear twice on the
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Fig. 3. Full constraints injection at training time on different problem dimensions.

same column). Due to the use of an incomplete propagator, both the networks
make use of incomplete knowledge.

In addition, we train a model-agnostic neural network that lacks even the
basic knowledge that a variable cannot be assigned twice, since this is not
enforced by our input/output encoding, and must infer that from data.

We evaluate the resulting approaches via the feastest procedure, using the
separated test set as X, the trained networks as h, and an empty set of con-
straints (i.e. no propagation at test time). We compare them with methods that
randomly choose an assignment with an uniform probability distribution but that
can rely on a set of constraints C during the evaluation. We consider the two
scenarios in which C is the set of the row constraints (rnd-rows) and the one
in which C is the set of column and row constraints (rnd-full). These methods
are representative of the behavior (at each search node) of a Constraint Pro-
gramming solver having access to either only row constraints or the full problem
definition. It allows us to gauge the ideal effect of the offline symbolic knowledge.
Finally, we consider a very pessimistic baseline, referred to as rnd, which again
randomly chooses an assignment with an uniform probability distribution but
does not rely on the propagation of any constraints (i.e. C is the empty set). We
then produce “feasibility plots” that report on the x-axis the number of assigned
variables (filled cells) in the considered partial solutions and on the y-axis the
ratio of suggested assignments that are globally feasible. Since rnd-rows and
rnd-full methods are the only ones that can rely on online constraints propa-
gation, we have highlighted them using solid lines. In Fig. 1, we show results when
all the constraints are employed by the Forward Checking constraints propaga-
tor, whereas in Fig. 2 we do not propagate the columns constraints. The balance
between learning the constraints from empirical data and the Forward Checking
propagator is tuned by λ: reducing its value means giving more emphasis on the
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Fig. 4. Full constraints injection at training time when the dataset is reduced to the
10% of its initial size.

global feasible assignments obtained by deconstruction of the complete solutions
rather than on the incomplete knowledge. We report results for λ equal to 10, 1
and 0.1

For all the λ values, the negative approach’s behavior is hardly distinguish-
able from rnd. A reasonable explanation is that it encourages the network to
keep the output the lowest as possible instead of discouraging the network to
make provably infeasible assignments. Since this approach is not effective at all,
we do not consider it for further analysis.

We choose the best λ parameters for the bce and mse regularization meth-
ods with the aim of distilling the constraints propagator in the neural network’s
weights, finding a tradeoff between learning from correct knowledge and the
incomplete one. Considering the overall performance, the mse regularization
method provides better results with λ = 1, so this value is chosen for the suc-
cessive analysis. The bce approach provides the best performance with λ = 10.
Despite in Fig. 2 lower values of λ provide better feasibility ratios, these results
are not preferable since they make the regularization not effective, i.e. the meth-
ods collapse to agn. The bce method provides a little improvement over the
mse one but, as we will see when answering question 2, it is not robust when
only a limited amount of empirical knowledge is available.

4.2 Domain Knowledge at Training Time for Different Problem
Dimensions

Unlike the previous section, here we extend the analysis to the PLS of dimensions
7 and 10, considering the only mse and bce regularization methods together
with their best λ values. The datasets are generated as described in the previous



Knowledge Injection in DNN 277

Fig. 5. Rows constraints injection at training time when the dataset is reduced to the
10% of its initial size.

section, yielding training sets of size 350, 000 and 700, 000 for respectively the
PLS-7 and PLS-10.

In Fig. 3, we show results when all the constraints are employed by the
forward checking constraints propagator. As long as the problem size is small
enough, agn performs considerably better than rnd-full, even if no propaga-
tion is employed at evaluation time: this is symptomatic of the network actually
managing to learn the problem constraints from the available data, which (unlike
the propagator output) is guaranteed feasible. As the problem size grows, the
gap decreases, until it almost disappears for PLS-12.

For PLS-7, injecting incomplete symbolic knowledge appears to have an
adverse effect, as it biases the network toward trusting too much the incom-
plete propagator. With a large problem dimension (i.e. PLS-12) the benefits
introduced by knowledge injection become more visible, especially when using
the bce regularization method. The decreasing performance of the data driven
methods is likely a consequence of the training set size staying constant, in the
face of a search space that becomes increasingly large. In all cases, the feasibility
ratio is high for almost empty and almost full squares, with a noticeable drop
when ∼60% of the square is filled. The trend may be connected to a known
phase transition in the complexity of this problem [13].

4.3 Training Set Size and Empirical Information

Next, we proceed to tackle Question 2, by acting on the training set generation
process. In classical Machine Learning approaches, the amount of available infor-
mation is usually measured via the training set size: this is a reasonable approach
since the number of training examples has a strong impact on the ability of an
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Fig. 6. Effect of reducing the solution pool size from 10,000 to 100.

ML method to learn and generalize. We performed experiments to probe the
effect of the training set size on the performance of the data-driven approaches:
the training sets are reduced to the 10% of the initial size, i.e. 35, 000, 70, 000
and 100, 000 for respectively PLS of size 7, 10 and 12. In Fig. 4 and Fig. 5, we
show results when respectively all the constraints and the only rows constraints
are injected via the regularization methods. In this case, knowledge injection at
training time has a dramatic effect : the agn approach is very sensitive to the
available number of examples and it has a great drop in performance. Despite
being less pronounced, the bce method has a major drop in performance too.
Instead, the mse approach provides much more robust results.

In our setup, we have also the possibility to apply the deconstruction process
multiple times, so that the number of different examples that can be obtained
from a single solution grows with the number of possible permutations of the
variable indices (i.e. O(n2!) for the PLS). The approach opens up the possibility
to generate large training sets from very few starting solutions. This is scientifi-
cally interesting since the “actual” empirical information depends on how many
solutions are available; it is also very useful in practice since in many practical
applications only a relatively small number of historical solutions exists.

The results of this evaluation are shown in Fig. 6 for a solution pool of 100 ele-
ments, rather than the original 10,000. Due to the bad results provided with the
reduced datasets, we do not further investigate the bce regularization approach
but we examine the only mse method. For this analysis, we collapse the feasibil-
ity results of the neural network trained with full knowledge injection (referred to
as mse-full) and of the network trained without the columns constraints knowl-
edge injection (mse-rows) in a single plot. The size of the generated training
set is comparable to the original. Despite the dramatically reduced number of
training solutions, the mse-rows and mse-full methods perform really close



Knowledge Injection in DNN 279

to respectively rnd-rows and rnd-full, i.e. they behave similarly to what the
propagator would if employed at search time. Instead, the performance of the
agn drops dramatically, stressing again its sensitivity to the available empirical
information.

From a practical point of view, it seems that injecting constraints during
training can be a very effective strategy when only a small number of training
solutions is available. Constraint injection tends to be redundant if the same
type of propagation can be performed at search time, but can be very useful in
cases when this is not possible.

4.4 Constraint Violation Assessment

In the last set of our experiments, we investigate the effectiveness of the trained
NNs at guiding a search process toward solutions that are close to being feasible,
but not necessarily so. This is equivalent to treating constraints as soft and
may be of practical relevance on overconstrained problems (e.g. many real-world
timetabling applications). This setup tends to be more challenging for the ML
models, since chains of variable-value assignments may lead to partial solutions
that are remarkably different from those observed at training time.

In detail, we used each trained neural network as a value selection heuristic
in Depth First Search, once again for PLS of sizes 7, 10 and 12; we used for
this experiment a fixed variable ordering. As a baseline for the comparison, we
consider (uniformly) random value selection referred to as rnd, while for the
NNs we select a random value with probability proportional to the network
output. We generate a fixed number of solutions (500) from an empty square,
rather than starting from partially filled ones. When generating the solutions,
we never propagate the entirety of the PLS constraints: this setup serves as a
controlled experiment for use cases where some constraints are either unknown
or cannot be enforced at search time. We measure the degree of feasibility of
the generated solutions by quantifying the violations for the constraints that
were not propagated at search time. For this purpose, we measure violations by
counting how many times a value is not appearing exactly once in the same row
or column, depending on which constraint is being considered.

We train two model-agnostic neural networks: one on the dataset obtained
by random deconstruction of 10,000 solutions (referred to as agn-10k) and the
other one on the dataset obtained by multiple random deconstructions of 100
solutions (referred to as agn-100). Similarly, we train two neural networks with
knowledge injection at training time of all the constraints by means of the mean
squared error version of the SBR-inspired method and the Forward Checking
propagator (referred to as sbr-10k and sbr-100). Neither row nor column con-
straints are propagated during the search, and therefore we count the violations
of both in the final solutions. Results are shown in Table 1: the SBR-inspired
approach allows to significantly reduce the number of violations, and it achieves
very similar results even when only a small amount of empirical knowledge is
available. The agn approach performs considerably better than rnd, as long as
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Table 1. Number of soft constraints violations per generated solution.

Rnd Agn-10k Sbr-10k Agn-100 Sbr-100

Rows Cols Rows Cols Rows Cols Rows Cols Rows Cols

PLS-7 29 29 11 9 4 3 20 20 4 4

PLS-10 61 61 28 25 8 7 52 53 7 7

PLS-12 88 88 56 53 22 30 70 76 17 20

a large pool of solutions is available, but the gap narrows when trained on exam-
ples generated from 100 solutions. It is interesting to see how, when constraints
are interpreted in a soft fashion, injecting full problem knowledge at training
time has a much more robust effect compared to the analysis in Sect. 4.2.

5 Conclusion

We considered injecting domain knowledge in Deep Neural Networks to account
for domain knowledge that cannot be easily enforced at search time. We chose
the PLS as a case study and extended an existing NN approach to enable knowl-
edge injection. We performed controlled experiments to investigate three main
questions, drawing the following conclusions:

Q1: As long as enough empirical data is available w.r.t. the problem size, an
agnostic data-driven approach can be better at identifying feasible assign-
ments than random choice supported by propagation at search time. How-
ever, the performance gap narrows quickly as the problem size grows. Inject-
ing incomplete domain problem knowledge at training time does not appear
to provide reliable advantages.

Q2: A pure data-driven approach is very sensitive to the available empiri-
cal information. Injecting knowledge at training time significantly improves
robustness: if both row and column constraints are considered, only a limited
performance drop is observed with as few as 100 historical solutions.

Q3: If constraints are relaxed and treated as soft, injecting domain knowledge
can be very effective.

As a side product of our analysis, we have formulated and tested different regular-
ization approaches to develop an SBR-inspired method to constraint propagators
into a source of training-time information, plus a technique to extract multiple
training examples from a few historical solutions. An open question and future
research direction is the experimentation with different problem types to make
sure that our results hold in general.
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