
Peter J. Stuckey (Ed.)
LN

CS
 1

27
35

Integration of Constraint Programming,
Artificial Intelligence,
and Operations Research
18th International Conference, CPAIOR 2021
Vienna, Austria, July 5–8, 2021
Proceedings

Lecture Notes in Computer Science 12735

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.palgrave.com/gp/series/7407

http://www.palgrave.com/gp/series/seriesid

Peter J. Stuckey (Ed.)

Integration of Constraint Programming,
Artificial Intelligence,
and Operations Research

18th International Conference, CPAIOR 2021
Vienna, Austria, July 5–8, 2021
Proceedings

123

Editor
Peter J. Stuckey
Monash University
Melbourne, VIC, Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-78229-0 ISBN 978-3-030-78230-6 (eBook)
https://doi.org/10.1007/978-3-030-78230-6

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-78230-6

Preface

This volume contains the papers that were presented at the 18th International Con-
ference on the Integration of Constraint Programming, Artificial Intelligence, and
Operations Research (CPAIOR 2021), held in Vienna, Austria as a hybrid
physical/virtual conference in response to the COVID-19 pandemic.

The conference received a total of 87 submissions, including 75 regular paper and
12 extended abstract submissions. The regular papers reflect original unpublished
work, whereas the extended abstracts contain either original unpublished work or a
summary of work that was published elsewhere. Each regular paper was reviewed by at
least three Program Committee members. The reviewing phase was followed by an
author response period and a general discussion by the Program Committee. The
extended abstracts were reviewed for appropriateness for the conference. At the end
of the review period, 30 regular papers were accepted for presentation during the
conference and publication in this volume, and 6 abstracts were accepted for short
presentation at the conference. Among the 30 regular papers, two were published
directly in the journal Constraints via a fast-track review process. The abstracts of these
papers can be found in this volume.

In addition to the regular papers and extended abstracts, three invited talks, whose
abstracts and/or articles can be found in this volume, were given by Maya Gupta
(Didero, USA), Adam Elmachtoub (Columbia University, USA), and Nikolaj Bjørner
(Microsoft Research, USA).

The conference program included a Master Class on the topic “Explanation and
Verification of Machine Learning Models” organized by Alexey Ignatiev and Nina
Narodytska with invited talks by Alessio Lomuscio (Imperial College London, UK),
Gagandeep Singh (University of Illinois Urbana-Champaign, USA), Guy Katz
(Hebrew University of Jerusalem, Israel), Guy Van den Broeck (University of
California, Los Angeles, USA), João Marques-Silva (CRNS, France), and Sameer
Singh (University of California, Irvine, USA).

Of the regular papers accepted to the conference a committee comprising of myself,
Helmut Simonis, and Louis-Martin Rousseau selected for the Best Paper Award the
paper “Between Steps: Intermediate Relaxations between big-M and Convex Hull
Formulations” by Jan Kronqvist, Ruth Misener, and Calvin Tsay and selected for the
Best Student Paper Award the paper “Improving the filtering of Branch-and-Bound
MDD Solver” by Xavier Gillard, Vianney Coppé, Pierre Schaus, and André Augusto
Cire.

We acknowledge the generous support of our sponsors including, at the time of
writing, the Vienna Center for Logic and Algorithms (VCLA), Artificial Intelligence
Journal (AIJ), Springer, and TU Wien.

July 2021 Peter J. Stuckey

Organization

Program Chair

Peter J. Stuckey Monash University, Australia

Conference Chair

Nysret Musliu TU Wien, Austria

Master Class Chairs

Alexey Ignatiev Monash University, Australia
Nina Narodytska VMWare Research, USA

Program Committee

Fahiem Bacchus University of Toronto, Canada
Chris Beck University of Toronto, Canada
Nicolas Beldiceanu LS2N, IMT Atlantique, France
Jeremias Berg University of Helsinki, Finland
Armin Biere Johannes Kepler University Linz, Austria
Mats Carlsson RISE Research Institutes of Sweden, Sweden
Andre Augusto Cire University of Toronto, Canada
Carleton Coffrin Los Alamos National Laboratory, USA
Emir Demirović Delft University of Technology, the Netherlands
Bistra Dilkina University of Southern California, USA
Ambros Gleixner HTW Berlin and Zuse Institute Berlin, Germany
Tias Guns KU Leuven, Belgium
Emmanuel Hebrard LAAS, CNRS, France
Philip Kilby Data61 and the Australian National University,

Australia
Joris Kinable Amazon, USA
Zeynep Kiziltan University of Bologna, Italy
Lars Kotthoff University of Wyoming, USA
T. K. Satish Kumar University of Southern California. USA
Jimmy Lee The Chinese University of Hong Kong, Hong Kong
Michele Lombardi University of Bologna, Italy
João Marques-Silva IRIT, CNRS, France
Ian Miguel University of St Andrews, Scotland
Nysret Musliu TU Wien, Austria
Nina Narodytska VMware Research, USA

Jakob Nordström University of Copenhagen, Denmark,
and Lund University, Sweden

Barry O'Sullivan University College Cork, Ireland
Justin Pearson Uppsala University, Sweden
Laurent Perron Google, France
Claude-Guy Quimper Université Laval, Canada
Louis-Martin Rousseau Polytechnique Montréal, Canada
Domenico Salvagnin University of Padova, Italy
Scott Sanner University of Toronto, Canada
Pierre Schaus UCLouvain, Belgium
Thomas Schiex INRAE, France
Laurent Simon LaBRI, Bordeaux Institute of Technology, France
Helmut Simonis University College Cork, Ireland
Guido Tack Monash University, Australia
Charlotte Truchet LS2N, Université de Nantes, France
Pascal Van Hentenryck Georgia Institute of Technology, USA
Petr Vilím IBM, Czech Republic
Mark Wallace Monash University, Australia
Roland Yap National University of Singapore, Singapore

Additional Reviewers

Aghaei, Sina
Akgün, Özgür
Antuori, Valentin
Artigues, Christian
Belov, Gleb
Besançon, Mathieu
Blais, Nicolas
Boudreault, Raphaël
Cappart, Quentin
Eifler, Leon
Espasa Arxer, Joan
Geibinger, Tobias
Gent, Ian
Hendel, Gregor
Hoffmann, Ruth
Hojny, Christopher
Hu, Xinyi
Huang, Isaac
Huguet, Marie-José
Jefferson, Christopher
Jeong, Jihwan

Karahalios, Anthony
Katsirelos, George
Kletzander, Lucas
Le Bodic, Pierre
Leo, Kevin
Maher, Stephen
Meel, Kuldeep S.
Mischek, Florian
Nagarajan, Harsha
Portoleau, Tom
Prestwich, Steve
Pulatov, Damir
Siu, Charles
Spiegel, Christoph
Van Hoeve, Willem-Jan
Vavrille, Mathieu
Wang, Ruiwei
Winter, Felix
Yang, Hojin
Zhang, Han
Zhuowei, Zhong

viii Organization

Extended Abstracts

The following extended abstracts were accepted for presentation at the conference:

• Marleen Balvert. IRELAND: an MILP-based algorithm for learning interpretable
input-output relationships from large binary classification data.

• Nick Doudchenko, Miles Lubin, Aditya Paliwal, Pawel Lichocki, and Ross
Anderson. MipConfigBench: A dataset for learning in the space of Mixed-Integer
Programming algorithms.

• Eleftherios Manousakis, Grigoris Kasapidis, Chris Kiranoudis, and Emmanouil
Zachariadis. A matheuristic for the Production Routing Problem: Infeasibility Space
Search and Mixed Integer Programming.

• Thibault Prunet, Nabil Absi, Valeria Borodin, and Diego Cattaruzza. Storage
Location Assignment Problem in Fast Pick Areas: A novel formulation and
decomposition method.

• Jana Koehler, Josef Bürgler, Urs Fontana, Etienne Fux, Florian Herzog, Marc
Pouly, Sophia Saller, Anastasia Salyaeva, Peter Scheiblechner, and Kai Waelti.
Cable Tree Wiring - Benchmarking Solvers on a Real-World Scheduling Problem
with a Variety of Precedence Constraints.

• Mathijs de Weerdt, Robert Baart, and Lei He. Single-Machine Scheduling with
Release Times, Deadlines, Setup Times, and Rejection.

Organization ix

Abstracts

Why You Should Constrain Your Machine
Learned Models

Maya Gupta

Didero, USA
founders@didero.com

Abstract. Common use of machine learning is to gather what training examples
one can, train a flexible model with some smoothness regularizers, test it on a
held-out set of random examples, and *hope* it works well in practice. But we
will show that by adding constraints, we can prepare our models better for their
futures, and be more certain of their performance. Based on 8 years of experi-
ence at Google researching, designing, training, and launching hundreds of
machine-learned models, I will discuss dozens of ways that we found one can
constrain ML models to produce more robust, fairer, safer, more accurate
models that are easier to debug and that when they fail, do so more predictably
and reasonably. This talk will focus on two classes of model constraints: shape
constraints, and rate constraints. The most common shape constraint is mono-
tonicity, and it has long been known how to learn monotonic functions over one
input using isotonic regression. We will discuss new R&D about 6 different
practically useful shape constraints, and how to impose them on flexible,
mulit-layer models. The second class of constraints, rate constraints, refers to
constraints on a classifiers' output statistics, and is commonly used to make
classifiers act responsibly for different groups. For example, we may constrain a
classifier used globally to be at least 80% accurate on training examples from
India or China, as well as minimizing classification errors on average. We will
point listeners to Google's open-source Tensor Flow libraries to impose these
constraints, and papers with more technical detail.

https://orcid.org/0000-0002-4925-5632

Contextual Optimization: Bridging Machine
Learning and Operations

Adam Elmachtoub

Columbia University, New York, USA
adam@ieor.columbia.edu

Abstract. Many operations problems are associated with some form of a pre-
diction problem. For instance, one cannot solve a supply chain problem without
predicting demand. One cannot solve a shortest path problem without predicting
travel times. One cannot solve a personalized pricing problem without pre-
dicting consumer valuations. In each of these problems, each instance is char-
acterized by a context (or features). For instance, demand depends on prices and
trends, travel times depend on weather and holidays, and consumer valuations
depend on user demographics and click history. In this talk, we review recent
results on how to solve such contextual optimization problems, with a particular
emphasis on techniques that blend the prediction and decision tasks together.

https://orcid.org/0000-0003-0729-4999

Complete Symmetry Breaking Constraints
for the Class of Uniquely Hamiltonian Graphs

Avraham Itzhakov and Michael Codish

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, Israel
{itzhakoa,mcodish}@cs.bgu.ac.il

Abstract. Graph search problems are fundamental in graph theory. Such
problems include: existence problems, where the goal is to determine whether a
simple graph with certain graph properties exists, enumeration problems, which
are about finding all solutions modulo graph isomorphism, and extremal prob-
lems, where we seek the smallest/largest solution with respect to some target
such as the number of edges or vertices in a solution. Solving graph search
problems is typically hard due to the enormous search space and the large
number of symmetries.

One common approach to break symmetries in constraint programming is to
add symmetry breaking constraints which are satisfied by at least one member of
each isomorphism class. A symmetry breaking constraint is called complete if it
is satisfied by exactly one member of each isomorphism class and partial
otherwise. A universal measure for the size of a symmetry breaking constraint is
the size of its representation in propositional logic. All known techniques to
define complete symmetry breaking constraints for graph search problems are
based on predicates which are exponential in size. There is no known polyno-
mial size complete symmetry breaking constraint for graph search problems.

This paper introduces, for the first time, a complete symmetry breaking
constraint of polynomial size for a significant class of graphs: the class of
uniquely Hamiltonian graphs. This is the class of graphs that contain exactly one
Hamiltonian cycle. We introduce a canonical form for uniquely Hamiltonian
graphs and prove that testing whether a given uniquely Hamiltonian graph is
canonical can be performed efficiently. Based on this canonicity test, we con-
struct a complete symmetry breaking constraint of polynomial size which is
satisfied only by uniquely Hamiltonian graphs which are canonical. We apply
the proposed symmetry breaking constraint to determine the, previously
unknown, smallest orders for which uniquely Hamiltonian graphs of minimum
degree 3 and girths 3 and 4 exist.

Given that it is unknown if there exist polynomial sized complete symmetry
breaking constraints for graphs, this paper makes a first step in the direction of
identifying specific classes of graphs for which such constraints do exist.

Supported by the Israel Science Foundation, grant 625/17.

Variable Ordering for Decision Diagrams:
A Portfolio Approacho

Anthony Karahalios and Willem-Jan van Hoeve

Carnegie Mellon University, Pittsburgh PA 15213, USA
{akarahal,vanhoeve}@andrew.cmu.edu

Abstract. Relaxed decision diagrams have recently been successfully applied
within a range of solution methodologies for discrete optimization, including
constraint programming, integer linear programming, integer nonlinear pro-
gramming, and combinatorial optimization. The variable ordering is often of
crucial importance for their effectiveness. For example, Bergman et al. [1, 2]
demonstrate that a variable ordering that yields a small exact diagram typically
also provides stronger dual bounds from the relaxed diagram. When decision
diagrams are built from a single top-to-bottom compilation, dynamic variable
orderings can be very effective. For example, a recent work by Cappart et al. [3]
deploys deep reinforcement learning to dynamically select the next variable
during compilation. Dynamic variable orderings are less applicable, however, to
compilation via iterative refinement, in which case the ordering must be spec-
ified in advance. In this work, we consider variable ordering strategies for the
latter case.

Oftentimes there is no single variable ordering strategy that dominates all
others for a given set of problem instances. Selecting the best ordering, or more
generally the best algorithm, from a set of alternatives is a well-studied problem
in artificial intelligence, in the context of algorithm portfolios. There are several
ways to construct an algorithm portfolio: using static or dynamic features,
formulating predictive models at the algorithm or portfolio level, predicting one
algorithm to run per instance or creating a schedule of algorithms to run, using a
fixed portfolio or updating it online [4]. We consider several different portfolio
mechanisms: an offline predictive model of the single best algorithm using
classifiers, an online low-knowledge algorithm selection, a static uniform
time-sharing portfolio, and a dynamic online time allocator.

As a case study, we consider the graph coloring problem, for which a
decision diagram approach was recently introduced [5, 6]. It uses an iterative
refinement procedure much like Benders decomposition or lazy-clause genera-
tion, by repeatedly refining conflicts in the diagram until the solution is conflict
free. Our experimental results show that predictive methods using classification
models or exploration phases can lead to more instances solved optimally.
However, these methods may lead to delayed optimality results on problem
instances that are easy to solve. Another insight is that a mixed portfolio can
outperform a clairvoyant selection of the best individual ordering for each

Partially supported by Office of Naval Research Grant No. N00014-18-1-2129 and National Science
Foundation Award #1918102.

instance, by yielding a solution with a unique best upper bound from one
ordering and a unique best lower bound from a different ordering.

References

1. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Variable ordering for the appli-
cation of BDDs to the maximum independent set problem. In: Beldiceanu, N., Jussien, N.,
Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 34–49. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29828-8_3

2. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J. N.: Optimization bounds from binary
decision diagrams. Inform. J. Comput. 26(2), 253–268 (2014)

3. Cappart, Q., Goutierre, E., Bergman, D., Rousseau, L.-M.: Improving optimization bounds
using machine learning: decision diagrams meet deep reinforcement learning. In: Proceedings
of AAAI, pp. 1443–1451. AAAI Press (2019)

4. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. In: Bessiere,
C., De Raedt, L., Kotthoff, L., Nijssen, S., O’Sullivan, B., Pedreschi, D. (eds). Data Mining
and Constraint Programming. LNCS, vol. 10101, pp. 149–190. Springer, Cham (2016).https://
doi.org/10.1007/978-3-319-50137-6_7

5. van Hoeve, W.-J.: Graph Coloring with Decision Diagrams. Under review.http://www.
optimization-online.org/DB_HTML/2021/01/8215.html

6. van Hoeve, W.-J.: Graph coloring lower bounds from decision diagrams. In: Bienstock, D.,
Zambelli, G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 405–419. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45771-6_31

Variable Ordering for Decision Diagrams: A Portfolio Approach xvii

https://doi.org/10.1007/978-3-642-29828-8_3
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1007/978-3-319-50137-6_7
http://www.optimization-online.org/DB_HTML/2021/01/8215.html
http://www.optimization-online.org/DB_HTML/2021/01/8215.html
https://doi.org/10.1007/978-3-030-45771-6_31

Contents

Supercharging Plant Configurations Using Z3. 1
Nikolaj Bjørner, Maxwell Levatich, Nuno P. Lopes,
Andrey Rybalchenko, and Chandrasekar Vuppalapati

A Computational Study of Constraint Programming Approaches
for Resource-Constrained Project Scheduling with Autonomous
Learning Effects . 26

Alessandro Hill, Jordan Ticktin, and Thomas W. M. Vossen

Strengthening of Feasibility Cuts in Logic-Based Benders Decomposition . . . 45
Emil Karlsson and Elina Rönnberg

Learning Variable Activity Initialisation for Lazy Clause
Generation Solvers . 62

Ronald van Driel, Emir Demirović, and Neil Yorke-Smith

A�-Based Compilation of Relaxed Decision Diagrams for the Longest
Common Subsequence Problem . 72

Matthias Horn and Günther R. Raidl

Partitioning Students into Cohorts During COVID-19 89
Richard Hoshino and Irene Fabris

A Two-Stage Exact Algorithm for Optimization of Neural
Network Ensemble . 106

Keliang Wang, Leonardo Lozano, David Bergman,
and Carlos Cardonha

Heavy-Tails and Randomized Restarting Beam Search in Goal-Oriented
Neural Sequence Decoding. 115

Eldan Cohen and J. Christopher Beck

Combining Constraint Programming and Temporal Decomposition
Approaches - Scheduling of an Industrial Formulation Plant 133

Christian Klanke, Dominik R. Bleidorn, Vassilios Yfantis,
and Sebastian Engell

The Traveling Social Golfer Problem: The Case of the Volleyball
Nations League. 149

Roel Lambers, Laurent Rothuizen, and Frits C. R. Spieksma

Towards a Compact SAT-Based Encoding of Itemset Mining Tasks 163
Ikram Nekkache, Said Jabbour, Lakhdar Sais, and Nadjet Kamel

A Pipe Routing Hybrid Approach Based on A-Star Search
and Linear Programming . 179

Marvin Stanczak, Cédric Pralet, Vincent Vidal, and Vincent Baudoui

MDDs Boost Equation Solving on Discrete Dynamical Systems 196
Enrico Formenti, Jean-Charles Régin, and Sara Riva

Two Deadline Reduction Algorithms for Scheduling Dependent Tasks
on Parallel Processors . 214

Claire Hanen, Alix Munier Kordon, and Theo Pedersen

Improving the Filtering of Branch-and-Bound MDD Solver 231
Xavier Gillard, Vianney Coppé, Pierre Schaus, and André Augusto Cire

On the Usefulness of Linear Modular Arithmetic
in Constraint Programming. 248

Gilles Pesant, Kuldeep S. Meel, and Mahshid Mohammadalitajrishi

Injecting Domain Knowledge in Neural Networks: A Controlled
Experiment on a Constrained Problem . 266

Mattia Silvestri, Michele Lombardi, and Michela Milano

Learning Surrogate Functions for the Short-Horizon Planning in Same-Day
Delivery Problems. 283

Adrian Bracher, Nikolaus Frohner, and Günther R. Raidl

Between Steps: Intermediate Relaxations Between Big-M and Convex
Hull Formulations . 299

Jan Kronqvist, Ruth Misener, and Calvin Tsay

Logic-Based Benders Decomposition for an Inter-modal Transportation
Problem . 315

Ioannis Avgerinos, Ioannis Mourtos, and Georgios Zois

Checking Constraint Satisfaction . 332
Victor Jung and Jean-Charles Régin

Finding Subgraphs with Side Constraints . 348
Özgür Akgün, Jessica Enright, Christopher Jefferson, Ciaran McCreesh,
Patrick Prosser, and Steffen Zschaler

Short-Term Scheduling of Production Fleets in Underground Mines Using
CP-Based LNS . 365

Max Åstrand, Mikael Johansson, and Hamid Reza Feyzmahdavian

Learning to Reduce State-Expanded Networks for Multi-activity
Shift Scheduling . 383

Till Porrmann and Michael Römer

xx Contents

SeaPearl: A Constraint Programming Solver Guided
by Reinforcement Learning . 392

Félix Chalumeau, Ilan Coulon, Quentin Cappart,
and Louis-Martin Rousseau

Learning to Sparsify Travelling Salesman Problem Instances 410
James Fitzpatrick, Deepak Ajwani, and Paula Carroll

Optimized Item Selection to Boost Exploration for Recommender Systems . . . 427
Serdar Kadıoğlu, Bernard Kleynhans, and Xin Wang

Improving Branch-and-Bound Using Decision Diagrams
and Reinforcement Learning . 446

Augustin Parjadis, Quentin Cappart, Louis-Martin Rousseau,
and David Bergman

Physician Scheduling During a Pandemic. 456
Tobias Geibinger, Lucas Kletzander, Matthias Krainz, Florian Mischek,
Nysret Musliu, and Felix Winter

Author Index . 467

Contents xxi

Supercharging Plant Configurations
Using Z3

Nikolaj Bjørner1(B), Maxwell Levatich2, Nuno P. Lopes3,
Andrey Rybalchenko3, and Chandrasekar Vuppalapati4

1 Microsoft, Redmond, WA, USA
nbjorner@microsoft.com

2 Columbia University, New York City, NY, USA
3 Microsoft, Cambridge, UK

4 Microsoft, Sunnyvale, CA, USA

Abstract. We describe our experiences using Z3 for synthesizing and
optimizing next generation plant configurations for a car manufacturing
company (The views expressed in this writing are our own. They make no
representation on behalf of others). Our approach leverages unique capa-
bilities of Z3: a combination of specialized solvers for finite domain bit-
vectors and uninterpreted functions, and a programmable extension that
we call constraints as code. To optimize plant configurations using Z3,
we identify useful formalisms from Satisfiability Modulo Theories solvers
and integrate solving capabilities for the resulting non-trivial optimiza-
tion problems.

1 Introduction

The digital transformation is widely recognized as an ongoing seismic shift
in today’s industries. It encompasses an integration of software technologies in
every aspect of a business. AI advances, overwhelmingly dominated by deep
machine learning, are widely hailed as pivotal to this shift. Meanwhile, advances
in symbolic reasoning, exemplified by Microsoft’s Z3 symbolic solver for auto-
mated reasoning, have powered automated programming and analysis engines in
the past decade. They have been transforming software engineering life cycles by
enabling tools for ensuring strong provable guarantees and automatically syn-
thesizing code and configurations. Likewise, digital transformations in the car
industry are powering driving experiences. With new models and factories being
churned out at a brisk pace, there is an urgent need for automating and optimiz-
ing production plants to increase the pace of production while reducing costs and
resource requirements. The organization of production assembly lines involves a
combination of hundreds of assembly stations and thousands of operators com-
pleting tens of thousands tasks with tens of thousands different tools available.
Some tasks must be completed in sequential order, some stations may not be
able to service tasks with conflicting requirements, only a subset of available

M. Levatich—Work performed while an intern at Microsoft.
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 1–25, 2021.
https://doi.org/10.1007/978-3-030-78230-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_1

2 N. Bjørner et al.

operators may be able to work on a given task, and all tasks are packed into
stringent timing bounds on each station.

Planning large scale production lines is thus becoming a complex inhuman
puzzle, that at best takes weeks for an extensively trained expert to solve man-
ually. A manual assignment of tasks comes with no automatic assurance of opti-
mality and with no easy way to explore alternatives. Our experiences with Z3 are
primarily based on software analysis, verification and synthesis. Z3 is a default
tool when it comes to applications around translation validation, symbolic exe-
cution, and program verification. It has taken inhuman tasks out of network
verification in Azure’s operations [21], invoking O(1B) (small) Z3 queries a day,
verifying compiler optimizations [23,24], and finding or preventing security vul-
nerabilities in complex systems code [6,17].

Are techniques that have been tested in the area of software analysis usable
for production line scheduling? We have some partial answers that indicate the
underlying technologies in Z3 can be put to good use in combinatorial domains.
The Dynamics product configurator tool [25] ships using Z3 for solving product
configuration tasks. It uses Z3 to enumerate consequences: when an operator
fixes a fabric of a sofa, the color choices narrow and Z3 integrates a custom opti-
mized consequence finding module built tightly with it’s Conflict Driven Clause
Learning, CDCL [34], engine. The production plant design scenario is very dif-
ferent from the Dynamics use case, though. The model is complex and does
not fit within a commoditized environment. It involves solving multi-knapsack
problems with complex side-constraints. We describe our experiences using Z3
for automating next generation production plant designs of a car manufacturing
company. Our journey so far involves a combination of deep cleaning, thus the
activities involved with formalizing a complex model and in the process identi-
fying and fixing data-entry bugs; and deep solving, that is, the combination of
solver capabilities used to optimize virtual plant configurations. Within the scope
of our experiences we pose and test a hypothesis that solving constraints using
uninterpreted functions, a base theory of SMT solvers, together with solving for
bit-vectors (that capture finite domains), presents a compelling target for multi-
knapsack problems with complex side constraints. We argue that uninterpreted
functions can be used effectively to encode assignment constraints. Furthermore,
solving for these constraints using decision procedures for uninterpreted func-
tions may have a substantial advantage solving MIP or SAT based formulations.
To handle multi-knapsack constraints we were compelled to extend Z3 with an
interface for user theories: encoding these constraints as code appeared readily
more viable than supporting custom global constraints.

1.1 Complexity Without Perplexity

The complexity and difficulty of the problem we are tackling can be character-
ized along two dimensions: the complexity inherent in capturing production line
models and complexity based on the size of production lines that are solved for.
In our case, the production line model requires a few dozen different types of
data points. Each type is represented as a database table, and each data-point

Supercharging Plant Configurations Using Z3 3

requires at least three and sometimes more than twenty attributes, where each
attribute is represented as a database column. The second dimension of com-
plexity can be measured by the size of database instances that are required to
capture production line models. In our case, the order of magnitude along main
tables are as follows:

– Stations: O(100). A production line is a sequence of stations. Each station is
a collection of around 10 operator positions, of which a subset can be used.

– Operator positions: O(1K).
– Processes: O(1K), each process is a collection of tasks.
– Tasks: O(10K), assigned among the processes.
– Tools: O(1K) are assigned to tasks.

The real killer for straight-forward approaches, though, is that production line
constraints involve joining several large tables.

We approach the first dimension through the lens of software engineering
methodologies: we are creating a formal model of a production plant and synthe-
sizing optimized configurations. We address the second dimension by describing
the technological features we found useful for (efficiently) solving the production
line automation.

1.2 Domain Engineering - Deep Cleaning

Our approach to production line modeling is very much influenced by concepts
and methodologies honed and developed in the software engineering and most
specifically formal methods communities. Thus, a starting point is to describe
using logical notation a set of domains, functions over the domains, and con-
straints over the signature. At this stage we seek to delay lower level decisions
on how constraints are encoded into a solver. Domain engineering produces a
mathematically unambiguous and machine checkable account for production line
modeling. We also claim our case is distinguished by some level of complexity:
it integrates a combination of many rules and constraints that apply only for
special cases. Our experiences with domain engineering falls into two categories.
Domain invariants are global properties of well-formed production line models.
A production line model that violates domain invariants does not correspond
to a physical production line. Domain constraints capture the solution space
of virtual plants. They can take advantage of domain invariants by assuming
they have been checked and they don’t have to be re-enforced in the constraint
encoding.

To summarize, we distinguish between the two categories:

1.2.1 Domain Invariants
They describe well-formedness conditions of virtual plant configurations, such
as:

– Dependencies between processes are acyclic.
– Stations are connected in a rooted tree comprising of sub-lines.

4 N. Bjørner et al.

Fig. 1. SAT, MIP, CP and SMT

– Sub-lines may be labeled to force processes within bounds, the same label
(called monuments) cannot be used on different branches.

We found that graph visualization tools, in particular MSAGL [26], provided a
highly effective way to both communicate assumptions about domain invariants
and to uncover violations.

1.2.2 Domain Constraints
They encode constraints on valid solutions, and should be:

– Sufficient to capture the solution space of virtual plants.
• Every solution to hard constraints is a virtual plant solution.
• Every virtual plant solution has a solution to hard constraints.

– Usable to map constraint violations back into a root cause analysis for data-
entry errors.

1.3 Solver Engineering - Deep Solving

As the main tool used so far for solving for production lines is Z3, we are going
to mainly describe the approach taken relative to Z3 and SMT technologies.
Figure 1 suggests a classification of main techniques pursued in the CPAIOR
community.

The way to understand the expressiveness/efficiency trad-off is that expres-
siveness comes with the benefit of handling increasingly succinct ways of cap-
turing constraints, their propositional encoded counter-parts being impractical
for SAT solvers. The lower efficiency means that the more expressive solvers use
relatively more overhead per succinct constraint than a SAT solver per clause.

Supercharging Plant Configurations Using Z3 5

Each class of domain is labeled by distinguishing features of their mainstream
state-of-art solvers. Modern SAT solvers are mainly based on a CDCL architec-
ture that alternates a search for a solution to propositional variables with res-
olution inferences when a search dead-ends. These inferences rely on a limited
set of premises. Garbage collection of unused derived clauses is a central ingre-
dient to make CDCL scalable. MIP solvers use interior point methods, primal
and dual simplex algorithms. Simplex pivoting performs a Gauss-Jordan elim-
ination, which amounts to globally solving for a selected variable with respect
to all constraints. CP solvers have perfected the art of efficient propagators for
global constraints. Effective propagators narrow the solution space maximally
with minimal overhead.

While we have shamelessly positioned SMT solving as reasonable efficient
while exceedingly expressive relative to peers, the main message of the illustra-
tion is that SMT technologies have been developed, especially since the 2000s,
with an emphasis on software applications and borrowing and stealing techniques
that have otherwise been perfected by peer technologies. This is exemplified by
the fact that Z3’s main solver is based on a SAT solver CDCL architecture; it
uses dual simplex and related global in-processing techniques from SAT solv-
ing to take advantage of global inferences; and finally, our use case illustrates
incorporating global propagators. A well-recognized competing foundation for
integration of solvers is to leverage a MIP solver instead of a CDCL core. This
foundation benefits from global inferences and having strong MIP. Lookahead
solvers, developed in the SAT community in the 90s [19] and revitalized for cube
and conquer solving in the past decade [20], share some of the same traits as
global MIP inferences and are promising methods for partitioning harder prob-
lems for a setting with distributed solving.

The solution to virtual plant configurations we are going to describe relies
on SMT techniques. In particular, we are going to leverage mostly propositional
SAT solving, coupled with a core SMT theory, the theory of uninterpreted func-
tions, and augmented with a CP-inspired plugin for propagating global con-
straints.

2 Virtual Plant Configurations

In the following we describe virtual plant configurations in sufficient detail to
appreciate problem characteristics and the nuances involved. The plant config-
urations are virtual ; several points in a design space are explored for planning
final physical configurations. We do omit several details that don’t introduce
crucial different concepts. For example, our full model contains a notion of sub-
line, which are line segments. It contains constraints that limit how processes
can be assigned to common sub-lines. Otherwise, our presentation is purpose-
fully somewhat low level to convey an idea of the number and nature of concepts
required for domain engineering. We use the following main domains to describe
production lines:

Station, Line, Monument, Process, Task, Zone, Operator

6 N. Bjørner et al.

Fig. 2. Elements of a production line

Production lines are specific instantiations of these domains. The set Task is
instantiated with O(10K) different tasks and Station comprises of hundreds of
stations (Fig. 2).

The virtual plant optimization problem is, in a nutshell, to assign each Task
to a station and operator on the selected station. Thus, we are synthesizing two
functions:

station: Task → Station
operator : Task → Operator

The assignment is subject to timing, capacity, and precedence constraints, and
optimization objectives to minimize operator use, minimize station utilization,
minimize tool utilization, and minimize height incompatibilities between tasks
assigned to the same station.

Let us first describe the relevant domains and then give an idea of the hard
constraints and optimization objectives.

2.1 Domains

2.1.1 Stations and Monuments
Each station supports a subset of viable operators and has an associated time-
out. Tasks assigned to the same operator on a station must be completed within
the station timeout. The optional monument attribute is used to impose order-
ing between processes and stations. The reader can think of a monument as a

Supercharging Plant Configurations Using Z3 7

donebegin

Fig. 3. A fishbone assembly line. Each circle represents a station. Partially completed
artifacts move between stations. The main line (in the center) carries partial cars where
parts are attached to, while sub-lines flowing to the main line assemble smaller parts
into smaller ones so that they reach the main line as a single part. For example, doors
can be assembled in a sub-line and attached to the car in the main line. Each station
has a different set of tools and machines.

coloring, and ordering constraints can be imposed on a set of stations with the
same color. Stations are indexed by unique keys.

Station = 〈
key : Id
monument : [Monument] Optional monument tag
next : [Station] Next station in line
timeout : Numeral Station time bound
line : Line Sub − line where station resides
operators : Operator -set Viable operators on a station

〉

Stations are organized in a tree structure, also referred to as a fish-bone struc-
ture. Figure 3 illustrates an abstract production line. The next attribute points
to the successor station closer to the root of the tree. It is null if the station is
last on the line.
For the purpose of this paper, monuments and lines are identified by a unique
key.

Monument = 〈key : Id 〉
Line = 〈key : Id 〉
With each monument, m, the set of stations tagged by m is given by:

stations(m) := {s ∈ Station | s.monument = m ∧ m �= null}

2.1.2 Processes, Tasks, Zones, and Operators
A process encapsulates a set of related tasks. Processes may be constrained in
three ways: The before and after attributes are used to constrain processes to be
assigned to stations before/after stations labeled by the given monuments. The

8 N. Bjørner et al.

predecessor attribute imposes an ordering between processes and the parallel
attribute identifies sibling processes that must be assigned to the same stations
(e.g., one cannot fill coolant without also filling brake fluids). Processes may
furthermore be labeled as under/over body exclusive when they can’t be assigned
to a station that contains both under and over-body work. Thus, we have:

Process = 〈
key : Id
ubx : Bool
before : [Monument] Monument to precede
after : [Monument] Monument to succeed
predecessor : [Process] Process to succeed
parallel : Process-set Processes to co − assign

〉

Tasks are associated with a host process and characterized by a completion
time, the height where the task is completed, a set of viable operators that
are capable of servicing the task, and a flag ub, indicating whether the task is
completed below the car.

Task = 〈
key : Id
process : Process Process where task belongs
time : Numeral task execution time
height : Numeral work height
zone : Zone area where task takes place

〉

Zone = 〈
key : Id
operators : Operator -set viable operators for zone
ub : Bool is the zone upper or lower body

〉

The set of tasks associated with a process p is therefore given by:

tasks(p) := {t ∈ Task | t.process = p}
Finally, there is a finite small set of possible operators per station.

Operator = {Op1, . . . Op10}

2.2 A Formalization of Domain Constraints

In the following we will describe a representative set of domain constraints. They
capture hard constraints that must be met by physical or policy requirements,

Supercharging Plant Configurations Using Z3 9

such as, one cannot attach a steering wheel before the dashboard is in place. The
formalization comes close to the working model, but leaves out a few details to
preserve space. Precedence constraints capture ordering requirements between
processes and between stations and processes. Operator constraints capture how
tasks can be assigned to operators on assigned stations. Finally, cycle-time con-
straints bound the number and duration of tasks assignable to a station. To
formulate the precedence constraints we will need a predicate that captures the
partial order on stations.

2.2.1 Station Precedence Encoding
The relation

�: Station × Station → Bool

defines a partial (tree) order on stations. The ordering on stations can be encoded
by introducing two sequence numbers: The first sequence number leftOrd is
obtained by assigning sequence numbers following a depth-first, left-to-right
order tree traversal, the other, rightOrd from a depth-first, right-to-left traversal.
In other words, the traversal starts with the last station in the line, walks back
and either branches to the left-most sub-line whenever two lines join or branches
to the right-most sub-line. Then � is defined as:

s2 � s1 := leftOrd(s1) ≤ leftOrd(s2) ∧ rightOrd(s1) ≤ rightOrd(s2)

2.2.2 Process Precedence Constraints
For every task t we have the monument ordering constraints that confine tasks
between monuments:

min stations(t.process.after) � station(t) � max stations(t.process.before)

In words: a monument m may be associated with a set of stations S. A process
p := t.process that has m as the before monument, should be assigned to a
station that is before, or including, the last station in S. A process p that has
m as the after monument should take place after, or including, the first station
in S. We conveniently assume min ∅ = −∞ and max ∅ = +∞ to deal with the
cases where the before or after monument attributes are null.

The astute reader will note that it is also possible to have monument
attributes, such as t.process.before, that are untethered. That is, there is no
station tagged with the monument. For these monuments, the rule is that all
processes associated with the same untethered monument reside on the same
line, so we impose equations of the form

station(t1).line = station(t2).line

for cases such as t1.process.before = t2.process.before �= null with the require-
ment that stations(t1.process.before) = ∅.

Similarly, a precedence relation is imposed by predecessor processes:

t1.process = t2.process.predecessor ⇒ station(t1) � station(t2)

10 N. Bjørner et al.

Parallel tasks have to be assigned the same stations:

t1.process ∈ t2.process.parallel ⇒ station(t1) = station(t2)

Tasks belonging to the same process are assigned to the same or at most two
neighboring stations:

t1.process = t2.process ⇒ station(t1) ∈ {station(t2), station(t2).next}
∨ station(t2) ∈ {station(t1), station(t1).next}

2.2.3 Operator Constraints
Tasks may only be assigned to stations that supports one of the assignable
operators:

operator(t) ∈ t.zone.operators ∩ station(t).operators

Tasks assigned the same zone on a station must use the same operator.

(t1.zone = t2.zone ∧ station(t1) = station(t2))
⇒ operator(t1) = operator(t2)

Tasks that are marked as under-body exclusive cannot be assigned to a station
with tasks having conflicting zones:

(t1.process.ubx ∧ station(t1) = station(t2))
⇒ t1.zone.ub ⇔ t2.zone.ub

At most 6 operators (preferably at least 2) can be assigned to a station:

2 ≤ |{operator(t) | t ∈ Tasks, station(t) = s}| ≤ 6

The difference between the max and min height used at a station s is bounded
(by 200mm):

StationHeights(s) := {t.height | t ∈ Tasks, station(t) = s}
maxStationHeights(s) − minStationHeights(s) ≤ 200

2.2.4 Cycle-Time Constraints
The time taken by tasks assigned in each operator zone on a station cannot
exceed the station completion-time. To formulate this constraint, define the
opT ime of operator op on stations s as:

opTime(s, op) :=
∑{t .time | t ∈ Task , station(t) = s, operator(t) = op}

Then the cycle time constraints are, for every station s and op ∈ s.operators:

opTime(s, op) ≤ s.timeout

Supercharging Plant Configurations Using Z3 11

2.3 Objectives

There is no single objective that governs as a metric for the quality of a produc-
tion line. Instead there is a collection of objectives that are desirable. They are
derived from reducing the cost and maximizing throughput of a production line.
Costs are determined by the number of operators and the number of physical
assets, stations, and tools; the main cost reduction objectives are therefore:

– Minimize overall number of operators used in a production line.
– Minimize overall number of utilized stations, that is, stations with a non-zero

number of operators.
– Minimize overall number of different tools used for the production line.

Other auxiliary objectives are indirectly related to cost. For instance, avoiding
lifting and lowering tools and cars between stations, contributes to a smoother
operation with reduced risks for accidents.

– Minimize operator congestion on stations. A station is congested if it uses
more than four operators.

– Minimize process fragmentation, that is minimize the number of processes
that are split.

– Minimize the height differences of tasks within each station and between
adjacent stations.

– Minimize operators that are used, but under-utilized on a station, i.e., the
operator’s assigned tasks can be completed in a small fraction of the station’s
overall timeout.

2.4 Solvable Formalizations

The formalization we just presented fully describes a set of admissible config-
urations. It is, however impractical to work with and a much more compact
encoding is possible by taking advantage of characteristics of the model and by
using specialized code to enforce constraints instead of creating large formulas.

2.4.1 Processes Instead of Tasks
An intrinsic property of the model is that tasks are naturally grouped by pro-
cesses. The grouping is reflected in the admissible assignments: tasks belonging
to the same process can only be assigned to at most two adjacent stations. The
number of tasks is furthermore an order of magnitude larger than the number of
processes. Thus, by formulating constraints by referring to processes instead of
tasks saves roughly an order of magnitude constraints. So instead of solving for
assigning tasks to stations we solve for assigning processes to stations, and inde-
pendently determine whether processes are split. In the modified formulation we
are therefore synthesizing the functions:

station : Process → Station
operator : Process × Zone → Operator

12 N. Bjørner et al.

Operator assignment takes a work zone as argument to account for that different
tasks within a process are allowed to be assigned different zones.

For processes where all tasks are assigned the same station, all properties of
tasks are preserved. But for processes whose tasks are split between stations,
the reformulation to processes reduces the solution space from the solver. For
splittable processes we partition process tasks into two partitions p.preTasks and
p.postTasks, such that p.preTasks∪ p.postTasks = tasks(p) and p.preTasks∩
p.postTasks = ∅.

Committing early on for whether processes can be split is a potential source
of fragmentation: a solution may not be able to fully utilize station resources
because processes are split while they can still utilize some station time. Char-
acteristics of the production plant models come to the rescue, though. The vast
majority of processes are relatively short running compared to station timeouts
and any internal fragmentation resulting from restricting how they may be split
is a smaller fraction of station timeouts.

To describe the process-based encoding we introduce a predicate:

isSplit : Process → Bool Is process split between stations

and require that split processes reside on the same line:

isSplit(p) ⇒ station(p).line = station(p).next .line
Constraints that are originally formulated using station(t), where t is a task, are
now reformulated using processes, using station(p) for process p containing task
t. Converting the encoding to use processes is relatively straight-forward, thus
we omit it.

2.4.2 Uninterpreted Functions to the Rescue
One approach to encode height constraints is to introduce two functions:

minHeight : Station → Nat Minimal height of tasks on a station
maxHeight : Station → Nat Maximal height of tasks on a station

and then impose

minHeight(station(t)) ≤ t .height ≤ maxHeight(station(t)) ∀t ∈ Task
maxHeight(s) − minHeight(s) ≤ 200 ∀s ∈ Station

If we did not have functions to our disposal, and instead used two variables
s.minHeight , s.maxHeight per station s, we would have to formulate the bounds
on s.minHeight and s.maxHeight using |Task|×|Station| constraints of the form:

station(t) = s ⇒ s.minHeight ≤ t .height ≤ s.maxHeight ,

for each task t and station s.

Supercharging Plant Configurations Using Z3 13

By using uninterpreted functions we only assert |Task| constraints to enforce
each min-height bound. With hundreds of stations, this saves two orders of
magnitudes in the encoding. Furthermore, as we are also only indirectly encod-
ing station(t) by instead using an assignment of stations on processes, we save
another order of magnitude in terms of number of constraints. The process-based
encoding, thus takes the form:

¬isSplit(p) ⇒ minHeight(station(p)) ≤ min{t .height | t ∈ tasks(p)}
isSplit(p) ⇒ minHeight(station(p)) ≤ min{t .height | t ∈ p.preTasks}
isSplit(p) ⇒ minHeight(station(p).next) ≤ min{t .height | t ∈ p.postTasks}
and symmetrically for maxHeight .

2.4.3 Avoiding Pairwise Constraints
Modeling with uninterpreted functions comes with some useful tricks of the
trade. For example, if we wish to enforce that a function f is injective, it can be
encoded by requiring for every pair of argument combination x, y:

f (x) = f (y) ⇒ x = y

But a much more succinct encoding uses an auxiliary partial inverse function g
with constraints

g(f (x)) = x

for every x. This can have a dramatic effect if the domain of f is large; say
the number of tasks is O(10K), then the pairwise encoding requires O(100M)
constraints. A phenomenon related to injectivity surfaces when encoding zone
assignments and under-body mutual exclusion. Recall the requirements
(t1.zone = t2.zone) ∧ (station(t1) = station(t2)) ⇒ operator(t1) = operator(t2)
t1.process.ubx ∧ (station(t1) = station(t2)) ⇒ (t1.zone.ub ⇔ t2.zone.ub)

They consider all pairs of tasks. The first requirement can be captured more
succinctly by introducing a predicate that tracks which work zones are used on
a station and a function wz2op that assigns operators to work zones on stations.
The second can be handled using a similar idea that uses a predicate that tracks
whether a station is assigned an under-body exclusive task.

Thus, for each process p:

¬isSplit(p) ⇒ wzUsed(station(p), z) ∀z ∈ {t .zone | t ∈ tasks(p)}
isSplit(p) ⇒ wzUsed(station(p), z) ∀z ∈ {t .zone | t ∈ p.preTasks}
isSplit(p) ⇒ wzUsed(station(p).next , z) ∀z ∈ {t .zone | t ∈ p.postTasks}

If the process has p.ubx set to true, we add also:

¬isSplit(p) ⇒ wzUbx (station(p), z) ∀z ∈ {t .zone | t ∈ tasks(p)}
isSplit(p) ⇒ wzUbx (station(p), z) ∀z ∈ {t .zone | t ∈ p.preTasks}
isSplit(p) ⇒ wzUbx (station(p).next , z) ∀z ∈ {t .zone | t ∈ p.postTasks}

14 N. Bjørner et al.

Note that since practically all tasks associated with each process share the same
zone, there are in the common case only three constraints per process for wzUsed ,
and for wzUbx, respectively.

For station s and each work zone z

wzUsed(s, z) ⇒ wz2op(s, z) ∈ z .operators ∩ s.operators
∧ wzUbx (s, z) ⇒ (ubUsed(s) ⇔ z .ub)

Note how the predicate ubUsed(s) gets constrained to be true if z.ub is true and
wzUbx(s, z) is implied based on some task occupying the workzone z on station
s.

2.4.4 Cycle Time Constraints as Code
Finally, we omit encoding cycle time constraints entirely in our formulation. A
major issue with fully expanding cycle time constraints is that it requires in the
worst case to include the possibility that each task is assigned to every possible
station and operator zone. Thus, it requires |Station| × |Operators| constraints
each adding up |Task| terms. Section 4.4 describes our encoding of cycle time
constraints as a custom propagator using an API of Z3 that allows encoding
constraints as code.

3 Experiences with Domain Engineering

Section 2 described a formalization of virtual plant configurations. Let us describe
how the formalization was used to debug virtual plan configurations. Instances
of virtual plant configurations are stored in SQL tables. Enforcing the domain
constraints is well outside the scope of domain-agnostic database consistency
guarantees, but we can take a software-inspired view and treat configurations as
code and check invariants as if we are checking assertions of software.

3.1 Model Visualization

The value of model visualization is very well recognized in the CP and
model-based development communities [33]. The MSAGL tool [26] was initially
developed to support model-based software development using abstract state
machines [3], but has since been used broadly, such as in Visual Studio [30]. In
our case, graph visualization proved to be an effective way to communicate how
a virtual plant model in a database is interpreted in a formal model.

3.2 Checking Global Model Invariants

Initial experiments with visualization suggested that the virtual plant repre-
sentation in the database did not contain sufficient information to reproduce

Supercharging Plant Configurations Using Z3 15

donebegin

OOB transport

Fig. 4. Out-of-band transportation of parts between the main line and sub-lines. We
cannot have a precendence relation between the producer and consumer of these parts
as these processes run in parallel lines.

a physically connected production plant. Omitted data-entries or data-entry
errors would render product sub-lines disconnected. Similarly, precedence rela-
tions between processes could end up being cyclic as a result of data-entry errors.
The situation is analogous to software development: a type checker can catch a
large class of unsafety bugs cheaply.

A common type of bugs we encountered was in the processes’ precedence
relations. We found several cases where a process preceding another process
was supposed to run in a parallel sub-line. This is not possible as stations in
parallel sub-lines have no precedence relation between them (ordering of stations
is partial). This was caused by a confusion when the data was entered. These
processes effectively run one before the other in a deployed production line if we
consider the sub-lines side-by-side. However, there was no process precedence; it
was just an artifact of the current solution.

Another kind of precedence bugs we found was related with processes that
are not explicitly modeled. For example, some parts are removed from the chassis
of the car in one station. Then they are transported on the side to a subsequent
station where they get re-attached (Fig. 4). The transportation of these parts is
not modeled because we know it can be done in a timely fashion and does not
happen in the main conveyor belt, which is what we model. However, initially the
processes that receive the removed parts had precedence on the processes that
remove these parts, even when the receiving processes were in stations what were
not successors of the removing stations. The fix was to remove the precedence
relation and consider it on paper only (i.e., the process engineers have to ensure
the out-of-band transportation can be done in a timely fashion).

3.3 Root-Cause Analysis Using Unsatisfiable Cores

Global invariants only ensure that solutions to satisfiable constraint encodings
correspond to feasible plant configurations. They don’t ensure that constraints
are feasible. Infeasible constraints are as inevitable as software bugs: they orig-
inate from manual data-entry errors that are difficult to avoid because consis-
tency is a global property involving thousands of entries. Bug localization using
unsatisfiable cores and program repair using correction sets is already well rec-
ognized [22,31,36]. In Fig. 5 we show an example of an unsatisfiable core that
was encountered in one of our runs. It involves chaining several equalities and
arriving at the equality 1 = 3.

16 N. Bjørner et al.

Fig. 5. Unsatisfiable core from Z3

Fig. 6. Explanation from unsat core

To make the inconsistency palatable in terms of concepts used in the data-
model, we tracked each assertion by originator information and used this to
produce an error report that could be digested at the level of the model, as
opposed to the raw encoding. Figure 6 illustrates the same unsatisfiable core,
but rendered from the perspective of the database.

Z3 uses MiniSAT’s approach [16] by using tracking literals to extract unsat-
isfiable cores. Cores are optionally minimized using a greedy core minimization
algorithm that forms the basis of SAT-based MUS extraction tools [4].

4 Experiences with Solver Engineering

We will be describing the elements used in our current solver. It finds feasible
solutions to production lines within a couple of minutes and then yields optimized
solutions in a steady stream as the solver explores Pareto fronts. The journey
to our current approach took several iterations. During initial iterations, finding
just one feasible solution was elusive.

Supercharging Plant Configurations Using Z3 17

We tried three conceptually different approaches, prior to the eventual
solution we describe next. These approaches were differentiated by how they
attempted to address the special complexity of cycle-time constraints.

– A first approach created an encoding of all domain constraints, except cycle-
time constraints. Then the solver would assign a small batch of processes by
adding cycle-time constraints at a time. The approach scaled to less than a
dozen processes per batch and it took around 20 h to solve for 10% of all
processes.

– In a second experiment we added cycle-time constraints for processes one
by one, and greedily assigned them to stations. The experiment relied on
auxiliary static analysis to narrow the range of possible station assignments
for every process and we would prioritize processes with the narrowest range
of feasible stations. With this approach we could assign 80% of processes
using 10 h CPU processor time.

– A third experiment aimed to build a CP engine on top of Z3 by augmenting
the greedy approach with backtracking so that it could assign all processes.
The idea was that the external CP engine would make branching decisions on
how to assign processes and also manage backtracking. While engineering this
approach was too complex to fully realize, it served as a guide for the approach
we arrived at with constraints as code. Here, branching decisions remain inside
of Z3, but conflict detection and theory propagation is programmed by a CP
module for cycle-time constraints.

4.1 SMT Theories and Solvers

Z3 supports a rich collection of formalisms that go well beyond the features used
in this work. It supports theories of bit-vectors, uninterpreted functions, arrays,
algebraic datatypes, floating points, strings, regular expressions, sequences,
bounded recursive function unfolding and partially ordered relations. To support
the many formalisms and different classes of formulas Z3 contains a plethora of
powerful engines. A CDCL(T) core glues together most supported theories in a
combined reasoning engine. The core also integrates with quantifier instantiation
engines. Other reasoning cores can be invoked in stand-alone ways, including a
core for non-linear real Tarskian arithmetic, decidable quantified theories, and
a Horn clause solver [12]. The work described in this paper draws on only a few
of the available formalisms and engines: bit-vectors and uninterpreted functions.
Central to the art of solver engineering is choosing the best theories and encoding
for a particular problem.

4.2 Uninterpreted Functions

We already mentioned that we use the theory of uninterpreted functions, also
known as EUF. It is basic to first-order logic and treated as a base theory for SMT
solvers. EUF admits efficient saturation using congruence closure algorithms [14].
Uninterpreted functions are well recognized in SMT applications as useful for

18 N. Bjørner et al.

abstracting data [13] and in model checking of hardware designs [2]. Congruence
closure consumes a set of equalities over terms with uninterpreted functions and
infers all implied equalities over the terms used in the equalities. Consider for
example, the two equalities

x = f (g(f (x))), x = g(f (x))

We can use the second equality to simplify the first one: by replacing the sub-
term g(f(x)) in f(g(f(x))) by x, the first equality reduces to x = f(x). This new
equality can be used to simplify the second equality by replacing the sub-term
f(x) in g(f(x)) by x. The resulting equality is x = g(x). Congruence closure algo-
rithms perform such inferences efficiently, without literally substituting terms in
equations.

Using EUF instead of encoding directly into SAT is not necessarily with-
out a cost. By default, SMT solvers allow only inferences over EUF that do
not introduce new terms. This prevents the solvers from producing short reso-
lution proofs in some cases, but has the benefit of avoiding bloating the search
space with needless terms. Efficient solvers seek a middle-ground by introduc-
ing transitive chaining of equalities and Ackerman reductions on demand [9,15].
For the use case described in this paper, even these on-demand reductions turn
out to be harmful and slow down search. They are disabled for this applica-
tion. Furthermore, we found it useful to delay restarts to give the solver time to
perform model-repair in contrast to producing resolvents. Precisely how to tune
SAT solvers for satisfiable instances is a topic [7,27,29] where new insights are
currently developed.

4.3 Bit-Vectors

The first few encoding attempts used the theory of arithmetic and integers to rep-
resent all domains. While not exclusively responsible for inferior performance, we
noticed an order of magnitude speedup on the same formulations when switching
to bit-vectors. Finite domains can be encoded directly using bounded integers.
The usual ordering ≤ on integers can then be used whenever requiring precedence
relations or comparing heights. Except for cycle-time constraints that we deal
with separately, there is however very little or practically no arithmetic involved
with the constraints. By using bit-vectors instead of integer data-types we can
force Z3 to use bit-vector reasoning for finite domains. The theory of bit-vectors
is used to capture machine arithmetic, with noteworthy applications for anal-
ysis of binary code or compiler intermediary languages, thus two-complements
arithmetical operations over 32-bit or 64-bit arithmetic found in machine code.
Comparison, ≤ is defined for both signed and unsigned interpretations of bit-
vectors. These operations are used extensively for modeling operator precedence
and height constraints. The bit-vector representation and reasoning was order of
magnitudes more efficient than using encoding relying on arithmetic. It conforms
to common experiences where using arithmetic for finite domain combinatorial
problems is rarely an advantage. Mainstream SMT solvers solve bit-vectors by a

Supercharging Plant Configurations Using Z3 19

reduction to propositional SAT. It works well for this domain, in contrast to con-
straints involving multiplication of large bit-vectors. Handling larger bit-widths
is a long standing open challenge for SMT solvers.

4.4 Constraints as Code

Early experiments suggested that adding Pseudo-Boolean inequalities corre-
sponding to cycle-time constraints would be a show-stopper. It is an instance
where existing built-in features do not allow for a succinct encoding. These con-
straints highlighted a need for exposing a flexible approach for extending Z3
with ad-hoc, external, theory solvers. Z3 exposed a way for encoding external
solvers more than a decade ago [8]. External theories were subsequently removed
from Z3 because not all capabilities of internal theory solvers could be well sup-
ported for external solvers. Moreover, with Z3 being open source, the path was
prepared for external contributions, such as Z3Str3 [5]. But we found that the
cycle-time constraints are not easily amenable to a new theory; the conditions
for when they propagate consequences or identify conflicts depend on proper-
ties that are highly specific to this particular model. It is thus much easier to
represent propagation and conflict detection in code than in constraints.

We will illustrate the user propagator by a simple example borrowed
from [10]. It illustrates a Pseudo-Boolean constraint that requires a quadratic
size encoding. In contrast, the user propagator does not suffer from this encoding
overhead. The example constraint is:

3 |{(i , j) | i < j ∧ xi + xj = 42 ∧ (xi > 30 ∨ xj > 30)}|
+ |{(i , j) | i < j ∧ xi + xj = 42 ∧ xi ≤ 30 ∧ xj ≤ 30}| ≤ 100

For illustration, we instantiate the example with 8 bit-vectors each with 10 bits
over Python:

from z3 import *

xs = BitVecs(["x%d" % i for i in range(8)], 10)

Then a user-propagator can be initialized by sub-classing to the UserPro
pagateBase class that implements the main interface to Z3’s user propagation
functionality.

class UserPropagate(UserPropagateBase):
def __init__(self, s):

super(self.__class__, self).__init__(s)
self.add_fixed(self.myfix)
self.add_final(self.myfinal)
self.xvalues = {}

20 N. Bjørner et al.

self.id2x = {self.add(x) : x for x in xs}
self.x2id = {self.id2x[id] : id for id in self.id2x}
self.trail = []
self.lim = []
self.sum = 0

The map xvalues tracks the values of assigned variables and id2x and x2id
maps tracks the identifiers that Z3 uses for variables with the original variables.
The sum maintains the running sum of according to our unusual constraint.

The class must implement methods for pushing and popping backtrackable
scopes. We use a trail to record closures that are invoked to restore the previous
state and lim to maintain the the size of the trail for the current scope.

overrides a base class method
def push(self):

self.lim.append(len(self.trail))

overrides a base class method
def pop(self, num_scopes):

lim_sz = len(self.lim)-num_scopes
trail_sz = self.lim[lim_sz]
while len(self.trail) > trail_sz:

fn = self.trail.pop()
fn()

self.lim = self.lim[0:lim_sz]

We can then define the main callback used when a variable tracked by identifier
id is fixed to a value e. The identifier is returned by the solver when calling
the function self.add(x) on term x. It uses this identifier to communicate the
state of the term x. When terms range over bit-vectors and Booleans (but not
integers or other types), the client can register a callback with self.add_fixed
to pick up a state where the variable is given a full assignment. For our example,
the value is going to be a bit-vector constant, from which we can extract an
unsigned integer into v. The trail is augmented with a restore point to the old
state and the summation is then updated and the Pseudo-Boolean inequalities
are then enforced.

def myfix(self, id, e):
x = self.id2x[id]
v = e.as_long()
old_sum = self.sum
self.trail.append(lambda : self.undo(old_sum, x))
for w in self.xvalues.values():

if v + w == 42:
if v > 30 or w > 30:

Supercharging Plant Configurations Using Z3 21

self.sum += 3
else:

self.sum += 1
self.xvalues[x] = v
if self.sum > 100:

self.conflict([self.x2id[x] for x in self.xvalues])
elif self.sum < 10 and len(self.xvalues) > len(xs)/2:

self.conflict([self.x2id[x] for x in self.xvalues])

It remains to define the last auxiliary methods for backtracking and testing.

def undo(self, s, x):
self.sum = s
del self.xvalues[x]

def myfinal(self):
print(self.xvalues)

s = SimpleSolver()
for x in xs:

s.add(x % 2 == 1)
p = UserPropagate(s)
s.check()
print(s.model())

4.5 Solving for Multiple Objectives

Z3 supports optimization modulo theories out of the box [11], including weighted
MaxSAT and optimization of linear objectives. It can also be instructed to enu-
merate Pareto fronts or combine objectives through a lexicographic combination.
In our case we are not, at present, using these features for optimizing objec-
tives. Instead, we built a custom Pareto optimization mechanism on top of the
user propagator. It is inspired by the branch-and-bound method for MaxSAT
from [28]. The idea is that each objective function is registered with an indepen-
dent constraint handler. Each handler maintains a current cost. The current cost
is incremented when a variable gets fixed in a way that adds to the running cost.
For example, when a task is assigned a station, the tool used by the task is added
to the pool of tools used, unless the tool is already used at the station. When
then number of used tools exceeds the current running best bound for tools, the
handler registers a conflict. Handlers may also cause unit propagation when the
current bound is reached. This approach has the benefit from producing partial
results as soon as they are available. Several improvements are possible over this
scheme, such as neighborhood search around current solutions. We leave this

22 N. Bjørner et al.

for future explorations, as the current approach is sufficient within the generous
time budget for the plant configuration domain.

5 Experiences with MiniZinc

We also developed a plant model in MiniZinc. Following MiniZinc best prac-
tices, we used so-called global constraints that deal with functions/relations as
first-class values, hence avoiding quantified constraints over individual elements.
First, we used a channel constraint to connect a function that assigns a station to
a process with its inverse (given that the inverse is used for various aggregations
over station’s processes). This channel dramatically improved the solving per-
formance, compared to its equivalent formulation using universal quantification.
Furthermore we used a bin packing constaint to ensure fit of processes into a sta-
tion. Finally, we had to address the shortcoming of global constraints that they
cannot be driven by decision variables and hence require an eager case distinc-
tion as a work-around. To reduce the ranges of decision variables participating
the bin packing constraint, i.e., to avoid assuming that any process could be
placed in any station, we developed an abstract-interpretation style approxima-
tion of the set of stations for a given process. Technically, this approximation is
computed iteratively as the least-fixpoint of the propagation operator manually
derived from the constraints.

We observed that the resulting performance with the Gecode solver backend
is comparable with the Z3. We left it for future work to automate the construction
of approximation operators.

6 Perspective

We described our experiences with using SMT and CP techniques for solving
virtual plant configurations for production plants. The domain shares character-
istics of job-shop scheduling and constrained knapsack problems. The scenario
integrates a plethora of side constraints. Our perspective in tackling this domain
is heavily influenced by methods adapted in the software-engineering, and par-
ticularly model-driven engineering and formal methods communities. Several
synergies with configuration domains and advances in software engineering com-
munities seem ripe to be explored: Automated software synthesis has gained
considerable traction in the software engineering community [1]. SMT and SAT
solvers are some of the popular options for handling software synthesis and pro-
gram sketching problems. Super-compilation can be recast as a quantifier instan-
tiation problem and template-based methods use a template space defined by
abstract grammars to define a search space for synthesis problems. CVC4 [32]
builds in grammar based synthesis as an extension of its quantifier instantiation
engine; efficient, custom, synthesis tools such as Prose [18], Rosette [37], and for
program sketching [35], integrate specialized procedures.

Our SMT solution is based on Z3 with uninterpreted functions, bit-vectors
and user-programmed constraint propagators. The virtual plant configuration

Supercharging Plant Configurations Using Z3 23

solver is currently actively used for planning next generation production facili-
ties. There are still many exciting avenues to pursue for super-charging virtual
plant configurations, or network cloud configurations and policies for that mat-
ter: methodologies and tools developed for programming languages have sub-
stantial potential to transform configuration management; configurations can be
improved using feedback measurements from deployments; and symbolic solving
have a central role in checking integrity constraints, and synthesizing solutions
while exploring a design space.

References

1. Alur, R., et al.: Syntax-guided synthesis. In: Dependable Software Systems Engi-
neering. NATO Science for Peace and Security Series, D: Information and Com-
munication Security, vol. 40, pp. 1–25. IOS Press (2015). https://doi.org/10.3233/
978-1-61499-495-4-1

2. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Reveal: a formal verification tool for
Verilog designs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 343–352. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1_25

3. Barnett, M., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes,
M.: Towards a tool environment for model-based testing with AsmL. In: Petrenko,
A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 252–266. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24617-6_18

4. Belov, A., Marques-Silva, J.: Muser2: an efficient MUS extractor. J. Satisf. Boolean
Model. Comput. 8(3/4), 123–128 (2012). https://doi.org/10.3233/sat190094

5. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: FMCAD (2017). https://doi.org/10.23919/FMCAD.2017.8102241

6. Bhargavan, K., et al.: Everest: towards a verified, drop-in replacement of HTTPS.
In: SNAPL. LIPIcs, vol. 71, pp. 1:1–1:12 (2017). https://doi.org/10.4230/LIPIcs.
SNAPL.2017.1

7. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT competition 2020. In: Proceedings
of SAT Competition 2020 - Solver and Benchmark Descriptions. Department of
Computer Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki
(2020)

8. Bjørner, N.: Engineering theories with Z3. In: Yang, H. (ed.) APLAS 2011. LNCS,
vol. 7078, pp. 4–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25318-8_3

9. Bjørner, N., de Moura, L.M.: Tractability and modern satisfiability modulo theories
solvers. In: Tractability: Practical Approaches to Hard Problems, pp. 350–377.
Cambridge University Press (2014). https://doi.org/10.1017/CBO9781139177801.
014

10. Bjørner, N., Nachmanson, L.: Navigating the universe of Z3 theory solvers. In:
Carvalho, G., Stolz, V. (eds.) SBMF 2020. LNCS, vol. 12475, pp. 8–24. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-63882-5_2

11. Bjørner, N., Phan, A.-D.: νZ - maximal satisfaction with Z3. In: SCSS. EPiC
Series in Computing, vol. 30 pp. 1–9. EasyChair (2014). https://easychair.org/
publications/paper/xbn

https://doi.org/10.3233/978-1-61499-495-4-1
https://doi.org/10.3233/978-1-61499-495-4-1
https://doi.org/10.1007/978-3-540-89439-1_25
https://doi.org/10.1007/978-3-540-89439-1_25
https://doi.org/10.1007/978-3-540-24617-6_18
https://doi.org/10.3233/sat190094
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
https://doi.org/10.1007/978-3-642-25318-8_3
https://doi.org/10.1007/978-3-642-25318-8_3
https://doi.org/10.1017/CBO9781139177801.014
https://doi.org/10.1017/CBO9781139177801.014
https://doi.org/10.1007/978-3-030-63882-5_2
https://easychair.org/publications/paper/xbn
https://easychair.org/publications/paper/xbn

24 N. Bjørner et al.

12. Bjørner, N., de Moura, L., Nachmanson, L., Wintersteiger, C.M.: Programming
Z3. In: Bowen, J.P., Liu, Z., Zhang, Z. (eds.) SETSS 2018. LNCS, vol. 11430, pp.
148–201. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17601-3_4

13. Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessor control.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58179-0_44

14. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression
problem. J. ACM 27(4), 758–771 (1980). https://doi.org/10.1145/322217.322228

15. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9_49

16. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

17. Godefroid, P., Levin, M.Y., Molnar, D.A.: SAGE: whitebox fuzzing for security
testing. Commun. ACM 55(3), 40–44 (2012). https://doi.org/10.1145/2093548.
2093564

18. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends Program.
Lang. 4(1–2), 1–119 (2017). https://doi.org/10.1561/2500000010

19. Heule, M., van Maaren, H.: Look-ahead based SAT solvers. In: Handbook of Sat-
isfiability, vol. 185, pp. 155–184. IOS Press (2009). https://doi.org/10.3233/978-1-
58603-929-5-155

20. Heule, M.J.H., Kullmann, O.: The science of brute force. Commun. ACM 60(8),
70–79 (2017). https://doi.org/10.1145/3107239

21. Jayaraman, K., et al.: Validating datacenters at scale. In: SIGCOMM (2019).
https://doi.org/10.1145/3341302.3342094

22. Jose, M., Majumdar, R.: Bug-assist: assisting fault localization in ANSI-C pro-
grams. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
504–509. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_40

23. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct peep-
hole optimizations with Alive. In: PLDI (2015). https://doi.org/10.1145/2737924.
2737965

24. Lopes, N.P., Lee, J., Hur, C.-K., Liu, Z., Regehr, J.: Alive2: bounded translation
validation for LLVM. In: PLDI (2021). https://doi.org/10.1145/3453483.3454030

25. Microsoft. Microsoft dynamics (2021). https://dynamics.microsoft.com
26. Nachmanson, L.: Microsoft automated graph layout tool (2021). https://github.

com/microsoft/automatic-graph-layout
27. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Winter-

steiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8_7

28. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814948_18

29. Oh, C.: Between SAT and UNSAT: the fundamental difference in CDCL SAT. In:
Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 307–323. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_23

30. Pupyrev, S., Nachmanson, L., Bereg, S., Holroyd, A.E.: Edge routing with ordered
bundles. Comput. Geom. 52, 18–33 (2016). https://doi.org/10.1016/j.comgeo.
2015.10.005

https://doi.org/10.1007/978-3-030-17601-3_4
https://doi.org/10.1007/3-540-58179-0_44
https://doi.org/10.1145/322217.322228
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1561/2500000010
https://doi.org/10.3233/978-1-58603-929-5-155
https://doi.org/10.3233/978-1-58603-929-5-155
https://doi.org/10.1145/3107239
https://doi.org/10.1145/3341302.3342094
https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/3453483.3454030
https://dynamics.microsoft.com
https://github.com/microsoft/automatic-graph-layout
https://github.com/microsoft/automatic-graph-layout
https://doi.org/10.1007/978-3-319-94144-8_7
https://doi.org/10.1007/11814948_18
https://doi.org/10.1007/978-3-319-24318-4_23
https://doi.org/10.1016/j.comgeo.2015.10.005
https://doi.org/10.1016/j.comgeo.2015.10.005

Supercharging Plant Configurations Using Z3 25

31. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987). https://doi.org/10.1016/0004-3702(87)90062-2

32. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C.W., Tinelli, C.: CVC4SY for
sygus-comp 2019. CoRR, abs/1907.10175 (2019). http://arxiv.org/abs/1907.10175

33. Sander, G., Vasiliu, A.: The ILOG JViews graph layout module. In: Mutzel, P.,
Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 438–439. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_35

34. Marques Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999). https://doi.org/10.
1109/12.769433

35. Solar-Lezama, A.: Program sketching. Int. J. Softw. Tools Technol. Transfer 475–
495 (2012). https://doi.org/10.1007/s10009-012-0249-7

36. Sülflow, A., Fey, G., Bloem, R., Drechsler, R.: Using unsatisfiable cores to debug
multiple design errors. In: VLSI (2008). https://doi.org/10.1145/1366110.1366131

37. Torlak, E., Bodík, R.: Growing solver-aided languages with rosette. In: SPLASH
(2013). https://doi.org/10.1145/2509578.2509586

https://doi.org/10.1016/0004-3702(87)90062-2
http://arxiv.org/abs/1907.10175
https://doi.org/10.1007/3-540-45848-4_35
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/1366110.1366131
https://doi.org/10.1145/2509578.2509586

A Computational Study of Constraint
Programming Approaches

for Resource-Constrained Project
Scheduling with Autonomous Learning

Effects

Alessandro Hill1(B), Jordan Ticktin1, and Thomas W. M. Vossen2

1 Industrial and Manufacturing Engineering, California Polytechnic State University,
San Luis Obispo, USA

{ahill29,jticktin}@calpoly.edu
2 Leeds School of Business, University of Colorado, Boulder, USA

vossen@colorado.edu

Abstract. It is well-known that experience can lead to increased effi-
ciency, yet this is largely unaccounted for in project scheduling. We con-
sider project scheduling problems where the duration of activities can be
reduced when scheduled after certain other activities that allow for learn-
ing relevant skills. Since per-period availabilities of renewable resources
are limited and precedence requirements have to be respected, the result-
ing optimization problems generalize the resource-constrained project
scheduling problem. We introduce four constraint programming formu-
lations that incorporate the alternative learning-based job durations via
logical constraints, dynamic interval lengths, multiple job modes, and a
bi-objective reformulation, respectively. To provide tight optimality gaps
for larger problem instances, we further develop five lower bounding tech-
niques based on model relaxations. We also devise a destructive lower
bounding method. We perform an extensive computational study across
thousands of instances based on the PSPlib to quantify the impact of
project size, potential learning occurrences, and learning effects on the
optimal project duration. In addition, we compare formulation strength
and quality of the obtained lower bounds using a state-of-the-art con-
straint programming solver.

Keywords: Resource-constrained project scheduling · Autonomous
learning · Constraint programming

1 Introduction

On-the-job learning occurs in most projects that involve human workforce.
However, its impact is rarely taken into account during the project planning
stage, and has received relatively little attention in the literature. In this paper,

c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 26–44, 2021.
https://doi.org/10.1007/978-3-030-78230-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_2

A Computational Study of CP Approaches for the RCPSP+L 27

we explore the impact of autonomous learning [5], which relies on the well-
established phenomenon that repeatedly performing similar jobs results in a
performance increase that follows the learning curve of the executing person-
nel. Specifically, we consider a setting where selected pairs of similar project
tasks provide a potential for learning. Executing these tasks sequentially leads
to increased efficiency in that the succeeding task can be completed faster than
when processing the tasks in parallel or inverse order. We assume that the tasks
are performed by exogenous personnel that has access to efficient knowledge
transfer. In practice, it can be difficult to identify learning relations and quan-
tify their corresponding learning potential. Therefore, we consider the case in
which each task can learn from at most one other task. This leads to a more
manageable identification strategy for project managers: (I) For each task, find a
task that if completed beforehand would be most beneficial if such a task exists.
(II) Estimate the corresponding learning effects and quantify the potential time
savings. Note, however, that we do allow multiple tasks to benefit from a com-
mon predecessor. Moreover, if training on a task helps with a potential successor,
then learning is likely to happen in the converse direction in practice.

Related Work. A comprehensive survey of the resource-constrained project
scheduling problem (RCPSP), model variants, and corresponding algorithmic
approaches is given in [14] and [37]. Mathematical programming formulations
have been studied since [32], and time-indexed RCPSP formulations [1] the-
oretically and computationally outperform less common event-based formula-
tions [21]. Successful implementations incorporate cutting planes and efficient
separation algorithms (e.g., [8,42]).

Over the last decade however, Constraint programming (CP) approaches
have emerged as the dominant exact solution methods for the RCPSP. The
efficient incorporation of lazy clause generation [10] and the cumulative resource
constraint [36], followed by several hybrid acceleration techniques (e.g., see [25])
has made CP solvers the state-of-the-art when solving small to medium sized
instances. The study of different CP formulations proved CP-based approaches to
also be prevailing for different RCPSP variants (e.g., [22,35]). Recently, CP has
also shown to produce near-optimal schedules at very large scale when hybridized
with mathematical optimization techniques [16].

In [31], learning effects are incorporated in form of both reduced resource uti-
lization and altered job duration by considering the discrete time/cost trade-off
problem (DTCTP). The DTCTP is restricted to a single non-renewable resource
which is commonly limited by worker availability or budget. Each job is allowed
to be executed in one of multiple possible predefined modes. The DTCTP is a
special case of the multi-mode RCPSP but neither reduces to the RCPSP nor
generalizes it. The setup in [31] uses the alternative modes to represent the exe-
cution of a job consuming increased amounts of resources at augmented speed.
The relation between resource consumption and duration of the different modes
of a job is follows an underlying (resource) learning curve. The authors devise
a genetic algorithm, compare its performance to existing approaches for the
non-learning case, and conclude that learning effects notably affect the obtained

28 A. Hill et al.

project schedules. A bi-objective variant of the multi-skill RCPSP with project
costs and learning benefits that stem from increased resource utilization is con-
sidered in [18].

Learning effects have been studied in scheduling problems without resource
considerations, such as single-machine scheduling problems [3,27,33]. An
overview of scheduling problems that incorporate learning is given in [2,5]. Dete-
rioration is a related concept that also considers dynamic job durations [13],
while more general job start time-dependent durations are studied in [40]. For
an overview of applications of learning in production and operations manage-
ment we refer to [11]. In [28], a corresponding review with respect to human
factors is provided.

To the best of our knowledge, there is little research that considers the impact
of learning in resource-constrained scheduling. In [38], learning effects are incor-
porated in form of both reduced resource utilization and altered job duration by
considering the discrete time/cost trade-off problem (DTCTP). The DTCTP is
closely related to the RCPSP but is restricted to a single non-renewable resource
which is commonly limited by a worker availability or a budget, and each job
can be executed in one of multiple possible predefined modes. The DTCTP is a
special case of the multi-mode RCPSP but neither reduces to nor generalizes the
RCPSP. The setup in [38] uses the alternative modes to represent the execution
of a job consuming increased amounts of resources at augmented speed. The
relation between resource consumption and duration of the different job modes
follows an underlying (resource) learning curve. For a review on related time/cost
trade-off models we refer to [39]. Alternative job durations representing learning
effects are related to job crashing in resource-constrained project scheduling [9],
and can be interpreted as a rapid variant of plateauing for learning curves [41].

Contribution. There has been considerable research that evaluates the strength
and lower bounds of different IP formulation alternatives. However, comparisons
of alternative approaches to formulating CPs have received substantially less
attention, and we believe this is an important aspect of our work. In addition,
we carefully quantify the remarkable lower bounding capabilities of state-of-the-
art CP solvers for RCPSPs which are largely underexplored. Overall, our main
contributions are as follows.

• We define a novel RCPSP variant that incorporates autonomous learning;
• We propose problem reduction techniques for the resulting problem;
• We introduce four CP formulations, and provide an empirical comparison of

their scheduling and lower bounding performance;
• We consider various lower bounding techniques based on model relaxations

and destructive lower bounding, and empirically evaluate their strengths;
• We quantify the potential benefits of learning, and perform an extensive com-

putational study based on a comprehensive set of PSPlib-based instances
using a broad set of parameters.

The remainder of this paper is organized as follows. In Sect. 2, we formally define
and illustrate the learning-enhanced optimization model. Different CP formula-
tions are introduced in Sect. 3, and Sect. 4 suggests various model relaxations as

A Computational Study of CP Approaches for the RCPSP+L 29

well as a destructive lower bounding method. A comprehensive computational
analysis for both the model and the developed approaches is conducted in Sect. 5,
followed by our conclusion in Sect. 6.

2 Optimization Model

In the following, we formally define the resource-constrained project scheduling
problem with learning, which we refer to as RCPSP+L. Let T = {0, ..., z} be a
discrete time horizon. We are given a set of non-preemptive jobs J = {1, . . . , n}
and each job j ∈ J has a duration dj ∈ Z

+
0 . A set of renewable resources is

denoted by R and each resource r ∈ R has a per-period availability of qr. Each
job j ∈ J consumes uj,r ∈ Z

+
0 units of resource r ∈ R in each period that

it is processed (uj,r ≤ qr). Let A ⊂ J × J be a set describing a precedence
relation between pairs of jobs. For (i, j) ∈ A, i is called the predecessor and j
the successor. We presume that the precedence digraph (J,A) is acyclic, and
that job 1 (n) has duration zero, no resource utilization, and is the only job
without predecessors (successors).

Furthermore, we are given a learning relation L ⊆ J ×J , and learning poten-
tials li,j ∈ {0, . . . , dj −1} for (i, j) ∈ L. We assume that the node in-degree in the
learning digraph (J, L) is at most one. The latter will translate to the property
that a job can benefit from the experience gained by the execution of at most
one preceding job.

A schedule S is an assignment of start and end times in T to the jobs in J .
Let s(j, S) denote the start time, e(j, S) the end time, and d(j, S) = e(j, S) −
s(j, S) the duration of j ∈ J in S. Then a feasible schedule, or solution, for the
RCPSP+L is a schedule S such that

• the total consumption of resource r in each period does not exceed the cor-
responding resource availability qr for r ∈ R,

• job j does not start before job i ends for (i, j) ∈ A, and
• the duration of job j equals dj − li,j if job i precedes j, and dj , otherwise.

The RCPSP+L asks for a feasible schedule S of minimal makespan; i.e., the
latest job end time, maxj∈J e(j, S), is minimized. In the following, we denote the
alternative duration dj − li,j of job j as d′

j and assume that li,j = 0 if (i, j) /∈ L.
Note that the RCPSP+L reduces to the RCPSP in the case that L = ∅, or
li,j = 0 ∀(i, j) ∈ L. Accordingly, the RCPSP+L is strongly NP-hard as the
RCPSP is strongly NP-hard [6]. Moreover, the relation L is neither transitive
nor symmetric. We define the learning frequency φ for a problem instance as
the relative number of jobs with a learning potential; i.e., φ = |L|/|J |. The
learning intensity λ is defined as the average of the learning potentials; i.e.,
λ =

∑
(i,j)∈L li,j/|L|. Let i ≺ j denote that there exists a directed path from i

to j in (J,A) for i 	= j ∈ J .

Example. To illustrate the impact of learning, consider an instance of the
RCPSP+L with J = {1, . . . , 8} and R = {1, 2}. Let the precedence digraph

30 A. Hill et al.

Fig. 1. Precedences with job durations (left, upper), learning digraph with learning
potentials (left, lower), and resource details (right), for an example RCPSP+L instance.

Fig. 2. An optimal solution with makespan 12 for an RCPSP instance (left) and
an optimal solution with makespan 9 for the learning-enhanced RCPSP+L instance
(right).

with job durations, the learning digraph with learning potentials, and the
resource requirements and availabilities be as depicted in Fig. 1. An opti-
mal schedule for the corresponding RCPSP instance (i.e., when L = ∅) with
makespan 12 is illustrated in Fig. 2 (left). However, the integration of learn-
ing in the RCPSP+L allows an optimal schedule S′ with makespan 9 (Fig. 2,
right). It can be seen that job 5 and job 6 benefit from shortened durations
(d(5, S′) = d(6, S′) = 2) since they are scheduled after job 4 and job 7, respec-
tively (l4,5 = 2, l7,6 = 3). Note that the duration of job 3 remains unchanged
since job 7 is not finished before job 3 starts.

To conclude this section, we describe two techniques that focus on prepro-
cessing of learning relations in an RCPSP+L instance.

Precedence-Induced Learning Effects. A learning effect might be implied
by the presence of a corresponding (in-)direct precedence requirement. In this
case the following implication holds for every feasible schedule S.

(
(i, j) ∈ L ∧ i ≺ j

)
=⇒ (

d(j, S) = dj − li,j
) ∀i 	= j ∈ J

A Computational Study of CP Approaches for the RCPSP+L 31

Consequently, we can set dj := d′
j and L := L\{(i, j)}. The test can be performed

efficiently via depth-first-search in (J,A) for each (i, j) in O(|L|(V + E)).

Directed Cycle Elimination. In both the RCPSP and the RCPSP+L, it is
assumed that A is acyclic since circular precedences cannot be implemented in
any feasible schedule. Therefore, an arc (i, j) ∈ L can be removed in an instance
of the RCPSP+L if (J,A∪{(i, j)}) contains a directed cycle. To efficiently check
for these directed cycles, it is sufficient to check whether j is a direct or indirect
predecessor of i in A using depth first search. Formally, we obtain:

(
(i, j) ∈ L ∧ j ≺ i

)
=⇒ (

d(j, S) = dj
) ∀i 	= j ∈ J.

3 Constraint Programming Formulations

In this section, we propose four CP formulations for the RCPSP+L that extend
an efficient formulation for the RCPSP. Our objective is twofold. First, we
demonstrate that using existing constraints with their propagators can lead to
notable resolution performance variation. Second, we empirically identify an effi-
cient formulation that can be implemented with minimal effort. Even though we
use the term formulation, it is important to emphasize that we are considering
constraint programs. As pointed out in [29], the latter generally describes a com-
puter program rather than a mathematical description of the problem as it is
done in integer programming (IP). For an in-depth comparison of CP and IP,
we refer to [15,29,34].

We consider a well-known and efficient CP formulation [23,25] for the RCPSP
that uses an interval variable yj to represent each job j ∈ J . We access its start
time, end time, and duration by start(yj), end(yj), and length(yj).

(F0) Min max
j∈J

(
end(yj)

)
(1)

subject to cumulative function
(
(y1, q1,r), . . . , (yn, qn,r)

) ≤ qr ∀r ∈ R, (2)

end before start(yi, yj) ∀(i, j) ∈ A, (3)

yj interval variable in [0, z] of length dj ∀j ∈ J. (4)

The objective (1) minimizes the latest job end time. Inequalities (2) ensure that
the per-period capacity is not exceeded for any resource using a cumulative
function which represents the total resource usage by all jobs in each period.
The efficient propagation of resource consumption is a key for solver scheduling
performance [36]. The end-start precedence relation given in A is enforced by
the precedence constraints (3). We assume that the interval variables introduced
in (4) have start and end times in T and fixed durations.

Logical Formulation. We first present a logic-based incorporation of learning
into formulation (F0). Then the RCPSP+L can be formulated as follows.

(F1) Min max
j∈J

(
end(yj)

)
(5)

32 A. Hill et al.

subject to (2), (3), (6)
(
end(yi) ≤ start(yj)

)
=⇒ (

length(yj) = d′
j

) ∀(i, j) ∈ L, (7)
(
end(yi) > start(yj)

)
=⇒ (

length(yj) = dj
) ∀(i, j) ∈ L, (8)

yj interval variable in [0, z] of length [d′
j , dj] ∀j ∈ J. (9)

Implications in constraints (7) and (8) enforce that the alternative duration
is used if the precedence requirement is met; otherwise, the original duration is
imposed. The duration of interval variables introduced in (9) is between the job’s
alternative duration and the original duration. The following RCPSP+L formu-
lations reduce to formulation (F0) if L = ∅.

Dynamic Duration Formulation. Instead of using the logical constraints (7)
and (8) to implement learning effects, we can dynamically subtract the learning-
based reduction from the job durations. This yields the following formulation.

(F2) Min max
j∈J

(
end(yj)

)
(10)

subject to (2), (3), (9), (11)

length(yj) = dj − li,j ∗ [
end(yi) ≤ start(yj)

] ∀(i, j) ∈ L. (12)

The length of an interval variable (Eq. (12)) is set to the original job duration
minus the learning potential if a learning precedence requirement is met.

Multi-mode Formulation. The two different durations in case of a learning
potential can be interpreted as two modes in which the job can be processed.
The multi-mode resource-constrained project scheduling problem (MM-RCPSP)
is a well-known generalization of the RCPSP that allows such multiple modes.
In addition to the broad applicability of the MM-RCPSP itself, it was shown
that MM-RCPSP reformulations of optimization problems yield computation-
ally efficient approaches (e.g., [17]). We formulate the RCPSP+L using multiple
modes by introducing two optional interval variables zj and z′

j for each job j to
represent the two modes.

(F3) Min max
j∈J

(
end(yj)

)
(13)

subject to (2), (3), (9), (14)

alternative(yj , [zi, zj]) ∀(i, j) ∈ L, (15)

presence of(z′
j) =

(
end(yi) ≤ start(yj)

) ∀(i, j) ∈ L, (16)

zj , z
′
j optional interval vars in [0, z] of length dj , d

′
j ∀(i, j) ∈ L. (17)

The alternative constraint (15) effects that exactly one of the two variables zj
and z′

j is present, and that its length equals the length of yj . The left-hand side
of Eq. (16) consists of a presence of expression which returns true if variable

A Computational Study of CP Approaches for the RCPSP+L 33

z′
j is present in a solution and false, otherwise. The latter is equated with the

logical precedence expression used in the right-hand side of Eq. (12).

Bi-objective Reformulation. Motivated by providing additional guidance to
the CP solver, we reformulate the RCPSP+L as a bi-objective optimization prob-
lem that also maximizes the learning utilization. We apply an a priori method
that ranks the makespan objective over the secondary objective by modifying
formulation (F2) as follows.

(F4) Min max
j∈J

(
end(yj)

) − l

|J | + 1
(18)

subject to (2), (3), (9), (12), (19)

int l =
∑

j∈J

[
length(yj) < dj

]
. (20)

The integer variable l (Eq. (20)) measures the number of active learning effects.
In objective function (18), the minimization of the project makespan dominates
the maximization of l. However, incrementing the number of learning effects
ameliorates the objective function by 1/(|J | + 1).

4 Relaxations, Restrictions and Lower Bounding

In this section, we introduce various relaxations for the RCPSP+L, and describe
a destructive lower bounding method. We also suggest an approach to obtain
upper bounds based on imposing a problem restriction. For an overview of lower
bounding techniques for the RCPSP and their use, we refer to [7,30,37]. Relax-
ations strengthened by Lagrangian dualization for the related net present value
RCPSP are studied in [12]. The subsequent bounding techniques are imple-
mented as standalone methods and their individual results are analyzed in
Sect. 5.

4.1 CP-Based Lower Bounding

State-of-the-art CP solvers store and dynamically update lower bounds in order
to prune effectively. Besides lower bounds that are raised during the core branch-
and-bound method and through inference, strong bounds are derived via the
efficient solution of relaxations (e.g., [24]). Recent developments have led to
significant, albeit CP solver and model-dependent, performance improvements.
Currently, this strength appears to be largely unknown. We will provide quan-
titative evidence for the quality of this bound, and use these bounds as an
optimality guarantee for unsolved instances.

4.2 Relaxations

Let opt(P) be the optimal objective function value for problem instance P , and
lb(P) (ub(P)) describe a valid lower (upper) bound for opt(P). Let us begin with

34 A. Hill et al.

a note on the minimal project makespan for an RCPSP+L instance P . Certainly,
every job that is shortened due to a learning effect is preceded by an activity that
facilitates the learning. Therefore, at least one job has to be executed with its
original duration; or, in other words, not all jobs in a schedule can benefit from
learning. Assuming that dj > 0, this yields a lower bound: opt(P) ≥ minj∈J dj .

An RCPSP Relaxation. Let RCPSP−(P) denote the RCPSP obtained from
an RCPSP+L instance P after dropping the learning effects and setting the
static job durations to be the reduced ones (i.e., L := ∅ and dj := d′

j ∀(i, j) ∈
L). Since the optimal makespan for P never exceeds the optimal makespan for
RCPSP−(P), every lower bound for the RCPSP− is a valid lower bound for
RCPSP+L: For an RCPSP+L instance P, it holds that lb(RCPSP−(P)) ≤
opt(P). Consequently, every lower bounding technique for the RCPSP can be
applied to derive a lower bound for the RCPSP+L.

A Project Scheduling Relaxation. A classical relaxation for the RCPSP
is obtained by the removal of the resources, leading to the well-known project
scheduling problem (PSP). In our setting, the obtained lower bound is only
valid for an RCPSP+L instance P, if derived from RCPSP−(P). We denote the
corresponding PSP obtained for P by PSP−(P). For an RCPSP+L instance P ,
it holds that opt(PSP−(P)) ≤ opt(P). It is well known that the PSP can be
solved efficiently via topological sorting [26] of the acyclic digraph (J,A).

A Learning Project Scheduling Relaxation. Let PSP+L(P) define
the project scheduling problem with learning effects derived from an
RCPSP+L instance P that does not consider resources; i.e., R = ∅. Note that this
model incorporates our learning concepts into the classical project scheduling
problem. For an RCPSP+L instance P , it holds that lb(PSP +L(P)) ≤ opt(P).

A Resource-Constrained Scheduling Problem Relaxation. We con-
sider the scheduling problem with learning effects RCSP+L(P) obtained from
RCPSP+L instance P after dropping the precedences (i.e., A := ∅). This
relaxation is related to multi-dimensional packing problems when considering
every resource in P and the project duration as spatial dimensions. For an
RCPSP+L instance P , it holds that lb(RCSP +L(P)) ≤ opt(P). The RCSP+L
is NP-hard since the RCSP (without learning) generalizes the two-dimensional
strip-packing problem which is known to be strongly NP-hard [4].

Algorithm 1: Destructive Lower Bounding for the RCPSP+L
Input: P (RCPSP+L instance), tmax (destruction time limit)
Output: lb (valid lower bound for P)

1 lb ← 0;
2 while

(
infeasible(P,MS ≤ lb, tmax) = true

)
do

3 lb ← lb + 1;

4 return lb;

A Computational Study of CP Approaches for the RCPSP+L 35

4.3 Destructive Lower Bounding

Destructive lower bounding (DLB) [19] is known to produce strong lower bounds
on the optimal makespan for the RCPSP. DLB is an iterative procedure. For a
given valid lower bound lb, the basic idea is to prove that no schedule with
makespan lb exists. If this can be done efficiently, we can increment the cur-
rent lower bound (lb := lb + 1), and argue that the initial value for lb was
destructed. Algorithm 1 describes the method. Procedure infeasible(P,MS ≤
lb, tmax) returns true if infeasibility can be proven within tmax seconds for the
RCPSP+L instance P with the additional side constraint that the makespan
must not exceed lb; false otherwise. In line 1, lb can be initialized by any valid
lower bound on the makespan. In practice, an efficiently computable bound, such
as from Sect. 4.2, can be used to accelerate the method. We use formulation (F2)
to detect infeasibility (line 2). Note that Algorithm 1 may be modified to return
an optimal schedule when replacing the latter procedure by a black-box solver
that is capable of finding an optimal solution. If such an optimal solution is
found, then the current lb-value is returned and equals the optimal objective
function value.

4.4 A Restriction-Based Upper Bound

Let RCPSP+(P) be the RCPSP derived from an RCPSP+L instance P by
dropping the learning relations. Then every schedule S that is feasible for
RCPSP+(P) yields a valid upper bound for P, since allowing learning would lead
to a makespan that is as least as good as the one of S. For an RCPSP+L instance
P , it holds that opt(P) ≤ ub(RCPSP+(P)). The obtained optimization problem
is NP-hard. However, we may use efficient methods that have been developed for
the RCPSP. Furthermore, the described upper bounding method can be used to
obtain a feasible schedule for P when computed in a constructive fashion. More
detailed, every solution that is found for RCPSP+(P) can be transformed to a
solution for P by applying learning effects that may occur. This could be followed
by a compacting step which aims at further reducing the current makespan.

5 Computational Study

We present the results of an extensive experimental study to better understand
the possible impact of learning and the effectiveness of the scheduling and lower-
bounding methods.

Since the RCPSP+L is a new problem, no real-world instances are available
literature. We derive RCPSP+L test instances from 480 RCPSP instances with
30 jobs and 600 RCPSP instances with 120 jobs from the well-known PSPlib [20].
For each RCPSP base instance, we randomly choose jobs in an iterative fashion
from J for frequency φ ∈ {0, 0.1, . . . , 1} (φ ∈ {0.25, 0.5, 0.75} for |J | = 120)
and intensity λ ∈ {0.1, 0.3, . . . , 0.9} (λ ∈ {0.1, 0.5, 0.9} for |J | = 120) until
|L| = �φ|J |�. For such a learning successor job j, we randomly draw a learning

36 A. Hill et al.

Fig. 3. The relative number of RCPSP+L instances with 120 jobs solved by each
CP formulation in 60 s (left), the average run time for the optimally solved instances
(center), and the corresponding optimality gaps for the unsolved instances (right).

predecessor i such that i is no (indirect) predecessor of j in A. The learning
potential is set to li,j = min{�λdj�,max{dj − 1, 1}} and the arc (i, j) is added
to L if li,j > 0. We do this for three different random seeds, resulting in a
set of 79,200 RCPSP+L instances (L30) for 30-job RCPSP instances, and a
set of 21,600 RCPSP+L instances (L120) for 120-job RCPSP instances (100,800
instances in total). We include the non-learning case (RCPSP) in our study for
30-job instances (φ = 0). Moreover, the target number of arcs in L may not be
met in which case we stop the procedure but include the instance. This instance
generation scheme ensures that no redundancies with respect to the reduction
techniques occur. Computations are conducted on an Intel i5-2320, 3 GHz, 8 GB
machine. We use IBM ILOG CP Optimizer 12.9.0 as CP solver, using 4 workers.

5.1 CP Formulation Comparison

We first compare formulations (F1), (F2), (F3) and (F4) computationally with
respect to test set L120. We limit the per-instance computation time to 60 s.
Figure 3 shows the percentage of instances that could be solved to optimality by
each formulation (left), the average solve time (center) and the optimality gaps
obtained for the remaining unsolved instances (right). Formulation (F2) solves
the largest number of test instances to optimality (47.6%). Formulations (F3)
and (F4) perform almost as well (47.0%, 46.0%) whereas formulation (F1) pro-
duces notably less optimal schedules (40.7%). Regarding the average running

Table 1. Comparison of relative (engine) formulation size, initial #solutions, and
optimality gaps from lower bounds w.r.t. formulation (F2) for 120-job instances.

Formulation Variables (Δ%) Constraints (Δ%) #Sols(Δ%) Gap(Δ%)

Formulation Engine Formulation Engine

F1 0.0 −15.7 20.8 49.7 −0.4 217.6

F3 200 115.0 35.5 −22.1 −8.0 286.1

F4 0.0 144.6 0.0 289.5 215.2 0.0

A Computational Study of CP Approaches for the RCPSP+L 37

time to solve instances to optimality, formulation (F2) outperforms formula-
tion (F3) (4.4 s < 5.3 s), formulation (F4) (9.5 s), and formulation (F1) (11.5 s).
For 316 instances (1.5%), formulation (F1) could not find a feasible schedule
at all, which never happened for the other formulations. However, formulation
(F1) found optimal schedules for 60 instances that could not be solved by the
others. Although formulation (F2) and formulation (F3) seem comparable, the
superior performance of formulation (F2) is further observed when considering
the achieved optimality gaps for the unsolved instances in Fig. 3 (right). The
average optimality gap is 15.2% compared to 22.0%. Similarly, formulation (F2)
outperforms (F4) in terms of average optimal solution times (4.4 s < 9.5 s), as
depicted in Fig. 3 (center). As mentioned in Sect. 3, constraint programs differ
from integer programs and they are typically not compared with respect to their
theoretical strength. A variety of solver-dependent reduction (preprocessing),
extraction (internal model representation), inference (constraint propagation)
and branching strategies (no-good learning) are responsible for how efficiently
they can be solved. Nevertheless, we provide some empirical insights into the
solver’s internal behavior. In Table 1, we show the average relative differences
(Δ%) of formulation/engine variables, formulation/engine constraints, solutions
found, and optimality gap (w.r.t. the best upper bound) derived from the initial
lower bound for between formulation (F2) and (F1)/(F3)/(F4). Note that the
engine variables (constraints) are the variables (constraints) that are internally
used by the solver after extracting the formulation. For example, formulation
(F3) has three times more formulation variables than (F2), whereas formula-
tions (F1) and (F4) use identical variables sets. The solver uses a reduced number
(−15.7%) of engine variables for (F1), but more than twice as many variables
are used in the other formulations. Note that (F4) produces a larger number of
solutions within the time limit because schedule perturbations that do not affect
the makespan may still lead to alternative solutions of different objective func-
tion value due to a change in the secondary objective value. The most significant
difference between formulation (F2) and the inferior formulations (F1) and (F3)
is the quality of the initial lower bound on the makespan. The former leads to
an optimality gap that is more than three times smaller than for the others.

5.2 Lower Bounding Performance

In order to better understand the efficacy of our algorithmic approaches, we
apply both lower and upper bounding techniques from Sect. 4 to the large
instances in L120. First, we illustrate how effectively the bounding models can
be solved using CP in Fig. 4. We use a time limit of 60 s per instance and model.
It can be seen that problems PSP and PSP+L can be solved to optimality for
all instances. Models RCPSP− and RCPSP+ can be solved in 52.3% and 45.3%,
respectively, of the cases, which is close to the RCPSP+L optimality rate (47.9%)
obtained by formulation (F2). This indicates that our best RCPSP+L formu-
lations find optimal solutions efficiently. Note that formulations (F1) and (F4)
solve a slightly lower number of instances to optimality (40.2% and 44.6%). Our
CP approach has notable difficulties with the RCSP+L model for which only

38 A. Hill et al.

Fig. 4. The relative number of 120-job instances for which the different
RCPSP+L relaxations, and formulations (F1), (F2) and (F4), can be solved to opti-
mality by CP.

Fig. 5. The distribution of the optimality gaps achieved by the different lower bounding
methods with respect to the best upper bounds for unsolved instances in L120.

10.6% of the instances can be solved. The average optimality gap for the latter
model is 7.0%. We also analyze the strength of the obtained lower bounds for the
13118 (60.7%) instances that could not be solved to optimality by formulation
(F1). Figure 5 depicts the achieved optimality gap distributions relative to the
best upper bound. Note that the time limit in the DLB method is 60 s per bound
destruction which allocates more computation time (88 s) to the overall method.
Typically, all DLB subproblems can be solved efficiently except for the last one
in which either a feasible schedule is found or infeasibility cannot be proven. The
best non-DLB lower bound is always achieved by a RCPSP+L CP formulation.
However, in 9338 cases (71%), DLB produces an even stronger bound. For (28%)
of the instances, it returns the same bound, and for only 114 instances (<1%)
the computed lower bound is inferior. We note that, presumably for even larger
instances, model PSP+L can be used to compute initial lower bounds very effi-
ciently. Moreover, the makespan computed by RCPSP+L can be improved by
RCPSP+ for nine instances.

5.3 Scheduling and Upper Bounding Efficacy

We compute upper bounds using CP for RCPSP+, formulation (F1), formula-
tion (F2), and formulation (F4). Figure 6 depicts the achieved optimality gap
distributions relative to the best lower bound. Formulation (F4) performs simi-
lar to formulation (F2) in terms of average gap (both 13.8%). However, neither

A Computational Study of CP Approaches for the RCPSP+L 39

one strictly dominates the other. Formulation (F2) produces a strictly better
schedule than formulation (F4) for 35.3% of the unsolved instances, and 28.4%
vice versa. Based on these observations, we suggest using formulation (F2) since
objective function values directly represent the schedules’ makespans.

Fig. 6. The distribution of the optimality gaps achieved by the different upper bound-
ing methods with respect to the best lower bounds for unsolved instances in L120.

5.4 Overall Performance

We summarize the achievements of our CP-based approaches in comparison to
the initial formulation (F1) in Fig. 7. It shows the distribution of the optimality
gaps for formulation (F1) versus the best gaps (left), for the 120-job instances
that cannot be solved by formulation (F1). Our intention is to highlight the
benefits of investigating alternative formulations, beyond formulation (F1). We
observe an 86.4% average gap reduction (96.6%→13.1%). In some cases the
lower bound from formulation (F1) is extremely poor (363 times ≤ 5), causing a
high average gap. We also analyzed the optimality gap reduction for all initially
open 120-job instances after applying our lower and upper bounding techniques
(right). The average gap reduction is 86.2% (58.1%→8.0%). We tighten gaps
for almost all the open instances (99.1%). Finally, we are able to optimally
solve 8.3% of initially unsolved instances. For comparison, about 49% of the
optimal solutions for 120-job RCPSP base instances are known. The average
optimality gap for open instances is 5.7%. The 30-job RCPSP instances are
known to be all solved. For 120-job projects, we improve the lower bound for 13
instances (see Appendix A). The optimality gap is reduced by 30% on average.
When increasing the time limit to 600 s we could improve another lower bound
(instance j1208 6). Note that the focus of this work is on the RCPSP+L and
comprehensive computational scenario studies; but in related studies on smaller
instance sets, a significantly higher time limit leads to improved results when
using CP (see, for instance, [35]).

40 A. Hill et al.

Fig. 7. The distribution of optimality gaps obtained by formulation (F1) versus
best optimality gaps from our lower bounding methods and formulations for 120-job
instances; Left: instances not solved to optimality by (F1); Right: All instances.

5.5 Learning Potential and Benefit

We perform an optimization-based computational model analysis using the cases
in L30. Our goal is to obtain insight into how pre-solving parameterization relates
to actual makespan benefits. As in [31], we consider a very-large instance set to
carefully capture the model behavior. All instances in L30 can be solved to
optimality by formulation (F2) in under 600 s. The average solve time is 0.85 s,
and for 71094 (89.8%) instances, optimality can be proven within under 1 s.
Therefore, we are able to accurately examine the impact of the model parameters
on actual learning effects and best possible makespan for these instances. Figure 8
(left) shows the average relative makespan reductions for different values of φ
and λ. It can be seen that the maximally achievable average makespan reduction
(by 49%) is obtained at a learning frequency of φ = 1 and a learning intensity
λ = 0.9. When reducing the intensity to λ = 0.1 the optimal makespan is reduced
by only 7% on average. For increasing φ, we observe that the average makespan
reduction can be approximated by a linear function. Note that when φ ≥ 0.8,
then the number of instances differs from other scenarios because the target
number of arcs in L cannot not always be generated while asserting instance
feasibility. To better comprehend the utilization of learning potentials in optimal
schedules, the relative numbers of jobs that are actually performed in reduced
time (with respect to all the jobs with learning potential) are shown in Fig. 8
(right). Again, we observe an almost linear growth of actual learning effects when
augmenting φ. The average learning utilization ranges from 35.5% to 52.2% for
the different values of λ. However, the maximal utilization over all the individual
instances is 83.3%. In the scenario φ = 1 and λ = 0.9 the lowest value is 23.3%.
In both charts we observe an irregular jump between λ = 0.5 and λ = 0.7.

A Computational Study of CP Approaches for the RCPSP+L 41

Fig. 8. Average relative optimal makespan (left), and relative #jobs that benefit from
learning (right) w.r.t. instance learning frequency and intensity (30-job instances).

5.6 Parameter Performance Impact

In the following, we analyze the impact of learning frequency φ and learning
intensity λ on the efficacy of our techniques. We use the best upper and lower
bounds obtained by all methods. Figure 9 (left) shows the percentage of instances
that we solve to optimality with respect to the various learning parameter com-
binations. It can be seen that more instances can be solved when considering
λ = 0.9. The contrast to the λ ∈ {0.1, 0.5} cases increases when augmenting the
learning frequency φ. As illustrated in Fig. 9 (right), we achieve the best opti-
mality gaps for instances with a low learning frequency (φ = 0.25). The hardest
instances for our approaches are the ones with λ = 0.5 and φ = 1. In this case
(1,800 instances), the average optimality gap is 12.0%, and even reaches 82.7%
in the worst case.

Fig. 9. The relative number of solved instances in L120 for the different learning param-
eters (left), and the corresponding average optimality gaps (right).

6 Conclusion

We introduced and studied a novel variant of the resource-constrained project
scheduling problem that incorporates autonomous learning capabilities. We pre-

42 A. Hill et al.

sented reduction techniques and four constraint programming formulations. Var-
ious lower bounding techniques were developed that require the resolution of
model relaxations, as well as a destructive lower bounding approach. After
conducting computational tests on more than 100,000 literature-derived test
instances, we identified the most efficient formulation using a state-of-the-art
constraint programming solver. Hence, we were able to optimally solve all 30-
job instances, most of them in under one minute. Furthermore, we solved about
half of the 120-job instances to optimality, leaving an average optimality gap of
13.1% for instances that could not be solved to optimality. We empirically ana-
lyzed the efficiency and effectiveness of the individual lower bounding methods
for the unsolved problems.

Our study shows that projects can dramatically benefit from considering
learning opportunities. Significant makespan reductions (≤ 50%) can be achieved
with ample opportunities for learning. The parameter-makespan dependency can
be described as near-linear. In sum, we observe that the integration of learning
potentials into resource-constrained scheduling leads to problems that can be
solved by CP - when properly formulated - as efficiently as the RCPSP itself.

The resulting model represents a first step towards a new direction of research
in project scheduling. We see research potential in the exploration of further CP
formulations (e.g., using sequence variables) and alternative CP solvers. Fur-
thermore, the analysis of alternative or extended learning concepts, such as for
example multi-predecessor learning, could be of interest. Moreover, the develop-
ment of IP-based approaches could help to better understand the challenges and
opportunities of integrated learning benefits in project scheduling.

Appendix A

The improved lower bounds that we obtain with the destructive lover bounding
approach described in Subsect. 4.3 are as follows (instance/lb(old)/lb(new)).
Lower bounds marked with an asterisk (*) are proven optimal upper
bounds. j1201 1/104/105*, j1207 9/84/85, j1208 6/84/85*, j12012 7/115/116,
j12012 8/110/111, j12013 10/85/87, j12014 8/108/109, j12019 4/99/101,
j12032 7/117/118, j12032 9/123/124, j12033 3/100/101, j12034 5/100/101,
j12047 7/111/112, j12059 9/116/117.

References

1. Artigues, C.: On the strength of time-indexed formulations for the resource-
constrained project scheduling problem. Oper. Res. Lett. 45(2), 154–159 (2017)

2. Azzouz, A., Ennigrou, M., Ben Said, L.: Scheduling problems under learning effects:
classification and cartography. Int. J. Prod. Res. 56(4), 1642–1661 (2018)

3. Bai, D., Tang, M., Zhang, Z.H., Santibanez-Gonzalez, E.D.: Flow shop learning
effect scheduling problem with release dates. Omega 78, 21–38 (2018)

4. Baker, B.S., Coffman Jr., E.G., Rivest, R.L.: Orthogonal packings in two dimen-
sions. SIAM J. Comput. 9(4), 846–855 (1980)

A Computational Study of CP Approaches for the RCPSP+L 43

5. Biskup, D.: A state-of-the-art review on scheduling with learning effects. Eur. J.
Oper. Res. 188(2), 315–329 (2008)

6. Blazewicz, J., Lenstra, J., Kan, A.: Scheduling subject to resource constraints:
classification and complexity. Discret. Appl. Math. 5(1), 11–24 (1983)

7. Brucker, P., Knust, S.: Lower bounds for resource-constrained project scheduling
problems. Eur. J. Oper. Res. 149(2), 302–313 (2003)

8. Demassey, S., Artigues, C., Michelon, P.: Constraint-propagation-based cutting
planes: an application to the resource-constrained project scheduling problem.
INFORMS J. Comput. 17(1), 52–65 (2005)

9. Dodin, B., Elimam, A.: Integrated project scheduling and material planning with
variable activity duration and rewards. IIE Trans. 33(11), 1005–1018 (2001)

10. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-04244-7 29

11. Glock, C.H., Grosse, E.H., Jaber, M.Y., Smunt, T.L.: Applications of learning
curves in production and operations management: a systematic literature review.
Comput. Ind. Eng. 131, 422–441 (2019)

12. Gu, H., Stuckey, P.J., Wallace, M.G.: Maximising the net present value of large
resource-constrained projects. In: Milano, M. (ed.) CP 2012. LNCS, pp. 767–781.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7 55

13. Gupta, J.N., Gupta, S.K.: Single facility scheduling with nonlinear processing
times. Comput. Ind. Eng. 14(4), 387–393 (1988)

14. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-
constrained project scheduling problem. Eur. J. Oper. Res. 207(1), 1–14 (2010)

15. Heipcke, S.: Comparing constraint programming and mathematical programming
approaches to discrete optimisation-the change problem. J. Oper. Res. Soc. 50(6),
581–595 (1999)

16. Hill, A., Brickey, A., Newman, A., Goycoolea, M.: Hybrid optimization strategies
for resource constrained project scheduling problems in underground mining (2019,
manuscript)

17. Hill, A., Lalla-Ruiz, E., Voß, S., Goycoolea, M.: A multi-mode resource-constrained
project scheduling reformulation for the waterway ship scheduling problem. J.
Sched. 22(2), 173–182 (2019)

18. Hosseinian, A.H., Baradaran, V., Bashiri, M.: Modeling of the time-dependent
multi-skilled RCPSP considering learning effect. J. Model. Manag. 14(2), 521–558
(2019)

19. Klein, R., Scholl, A.: Computing lower bounds by destructive improvement: an
application to resource-constrained project scheduling. Eur. J. Oper. Res. 112(2),
322–346 (1999)

20. Kolisch, R., Sprecher, A.: PSPLIB-A project scheduling problem library: OR
software-ORSEP operations research software exchange program. Eur. J. Oper.
Res. 96(1), 205–216 (1997)

21. Koné, O., Artigues, C., Lopez, P., Mongeau, M.: Event-based MILP models for
resource-constrained project scheduling problems. Comput. Oper. Res. 38(1), 3–
13 (2011)

22. Kreter, S., Schutt, A., Stuckey, P.J.: Using constraint programming for solving
RCPSP/max-cal. Constraints 22(3), 432–462 (2017)

23. Laborie, P.: IBM ILOG CP optimizer for detailed scheduling illustrated on three
problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol.
5547, pp. 148–162. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-01929-6 12

https://doi.org/10.1007/978-3-642-04244-7_29
https://doi.org/10.1007/978-3-642-04244-7_29
https://doi.org/10.1007/978-3-642-33558-7_55
https://doi.org/10.1007/978-3-642-01929-6_12
https://doi.org/10.1007/978-3-642-01929-6_12

44 A. Hill et al.

24. Laborie, P., Rogerie, J.: Temporal linear relaxation in IBM ILOG CP optimizer.
J. Sched. 19(4), 391–400 (2016)

25. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: IBM ILOG CP optimizer for schedul-
ing. Constraints Int. J. 23(2), 210–250 (2018)

26. Lasser, D.J.: Topological ordering of a list of randomly-numbered elements of a
network. Commun. ACM 4(4), 167–168 (1961)

27. Lee, W.C., Wu, C.C., Hsu, P.H.: A single-machine learning effect scheduling prob-
lem with release times. Omega 38(1–2), 3–11 (2010)

28. Lodree, E.J., Geiger, C.D., Jiang, X.: Taxonomy for integrating scheduling theory
and human factors: review and research opportunities. Int. J. Ind. Ergon. 39(1),
39–51 (2009)

29. Lustig, I.J., Puget, J.F.: Program does not equal program: constraint programming
and its relationship to mathematical programming. Interfaces 31(6), 29–53 (2001)

30. Néron, E., et al.: Lower bounds for resource constrained project scheduling prob-
lem. In: Józefowska, J., Weglarz, J. (eds.) Perspectives in Modern Project Schedul-
ing. ISOR, vol. 92, pp. 167–204. Springer, Heidelberg (2006). https://doi.org/10.
1007/978-0-387-33768-5 7

31. Peteghem, V.V., Vanhoucke, M.: Influence of learning in resource-constrained
project scheduling. Comput. Ind. Eng. 87, 569–579 (2015)

32. Pritsker, A.A.B., Waiters, L.J., Wolfe, P.M.: Multiproject scheduling with limited
resources: a zero-one programming approach. Manag. Sci. 16(1), 93–108 (1969)

33. Qian, J., Steiner, G.: Fast algorithms for scheduling with learning effects and time-
dependent processing times on a single machine. Eur. J. Oper. Res. 225(3), 547–551
(2013)

34. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier
(2006)

35. Schutt, A., Chu, G., Stuckey, P.J., Wallace, M.G.: Maximising the net present value
for resource-constrained project scheduling. In: Beldiceanu, N., Jussien, N., Pinson,
É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 362–378. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29828-8 24

36. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative
propagator. Constraints 16(3), 250–282 (2011)

37. Schwindt, C., Zimmermann, J., et al.: Handbook on Project Management and
Scheduling. Springer, Heidelberg (2015)

38. Van Peteghem, V., Vanhoucke, M.: Influence of learning in resource-constrained
project scheduling. Comput. Ind. Eng. 87, 569–579 (2015)

39. Vanhoucke, M., Debels, D.: The discrete time/cost trade-off problem: extensions
and heuristic procedures. J. Sched. 10(4–5), 311–326 (2007)

40. Wei, C.M., Wang, J.B., Ji, P.: Single-machine scheduling with time-and-resource-
dependent processing times. Appl. Math. Model. 36(2), 792–798 (2012)

41. Yelle, L.E.: The learning curve: historical review and comprehensive survey. Decis.
Sci. 10(2), 302–328 (1979)

42. Zhu, G., Bard, J.F., Yu, G.: A branch-and-cut procedure for the multimode
resource-constrained project-scheduling problem. INFORMS J. Comput. 18(3),
377–390 (2006)

https://doi.org/10.1007/978-0-387-33768-5_7
https://doi.org/10.1007/978-0-387-33768-5_7
https://doi.org/10.1007/978-3-642-29828-8_24

Strengthening of Feasibility Cuts
in Logic-Based Benders Decomposition

Emil Karlsson1,2 and Elina Rönnberg1(B)

1 Department of Mathematics, Linköping University, 581 83 Linköping, Sweden
elina.ronnberg@liu.se

2 Saab AB, 581 88 Linköping, Sweden

Abstract. As for any decomposition method, the computational perfor-
mance of a logic-based Benders decomposition (LBBD) scheme relies on
the quality of the feedback information. Therefore, an important accel-
eration technique in LBBD is to strengthen feasibility cuts by reducing
their sizes. This is typically done by solving additional subproblems to
evaluate potential cuts. In this paper, we study three cut-strengthening
algorithms that differ in the computational efforts made to find stronger
cuts and in the guarantees with respect to the strengths of the cuts. We
give a unified description of these algorithms and present a computa-
tional evaluation of their impact on the efficiency of a LBBD scheme.
This evaluation is made for three different problem formulations, using
over 2000 instances from five different applications. Our results show that
it is usually beneficial to invest the time needed to obtain irreducible cuts.
In particular, the use of the depth-first binary search cut-strengthening
algorithm gives a good performance. Another observation is that when
the subproblem can be separated into small independent problems, the
impact of cut strengthening is dominated by that of the separation, which
has an automatic strengthening effect.

Keywords: Logic-based Benders decomposition · Cut strengthening ·
Feasibility cuts · Irreducible infeasible subset of constraints

1 Introduction

Logic-based Benders decomposition (LBBD) [9,12] is an extension of Benders
decomposition [2,8] in the sense that it allows for a more general type of optimisa-
tion problem as a subproblem. In the classical Benders decomposition scheme [2],
developed for mixed integer programs (MIPs), the subproblem obtained after
fixing master problem variables is a linear program (LP). The dual of this sub-
problem is solved to find Benders cuts in terms of the master problem variables.
The master problem is then resolved, and the procedure is repeated until an opti-
mal solution to the original problem is found. In LBBD, an inference dual of the
subproblem is used to find Benders cuts. With an LP subproblem, the inference
dual of LBBD reduces to the LP dual as in classical Benders decomposition.
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 45–61, 2021.
https://doi.org/10.1007/978-3-030-78230-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_3&domain=pdf
http://orcid.org/0000-0002-9498-1924
http://orcid.org/0000-0002-2081-2888
https://doi.org/10.1007/978-3-030-78230-6_3

46 E. Karlsson and E. Rönnberg

The relation to generalized Benders decomposition is that the inference dual
of LBBD reduces to the nonlinear convex dual under the conditions described
in [8]. In other cases, however, the inference dual and the corresponding Benders
cuts must be derived and tailored to the problem structure.

LBBD has since its introduction been applied to a variety of discrete opti-
misation problems [11]. One reason for the success of LBBD is the possibility to
create exact hybrid algorithms that use techniques from both mathematical pro-
gramming and constraint programming (CP), exploiting the respective strengths
of these techniques. A common type of hybrid is to apply a MIP solver to an
assignment-type master problem and a CP-based solver to a feasibility-check
type of subproblem [7,10,17]. This paper addresses only this particular type of
hybrid, even if we recognise that feasibility checks also occur in more general
schemes where both feasibility and optimality cuts are generated.

The contributions of this paper are a unified description and overview of
three cut-strengthening algorithms for feasibility cuts in the context of LBBD
together with a computational evaluation of the algorithms. This evaluation is
made for three different problem formulations with instances from five different
applications. These problem formulations are chosen because LBBD has been
applied to them in previous work, which indicate that they are good candidates
for this type of decomposition. The computational evaluation is preliminary in
the sense that it only reports the impact that the different algorithms have on
the computational time. A detailed evaluation to fully compare the trade-off
between the computational effort to strengthen the cuts and the impact these
cuts have on the progress of LBBD schemes is left for future work.

The next section gives a literature overview on strengthening of feasibility
cuts in LBBD. Section 3 gives a brief introduction to LBBD and presents the
cut-strengthening algorithms evaluated in this paper. Section 4 introduces the
three problem formulations and their decomposition. Computational results are
presented in Sect. 5 and concluding comments are given in Sect. 6.

2 Literature Background

The quality of the cuts is an important aspect to consider when deriving a LBBD
scheme and the application of some method to strengthen the cuts is a commonly
used acceleration technique [20]. Already in a seminal work on LBBD [9], the
aspect of finding minimal no-goods (feasibility cuts) was described in a chapter
on search strategies. Finding such feasibility cuts in the context of LBBD can
be considered as the problem of finding a minimal set of variables from the
master problem whose current values cause an infeasibility in a subproblem. This
problem is strongly related to that of finding an irreducible infeasible subset of
constraints (IIS) in a mathematical program. Therefore, many algorithms that
finds an infeasible subset of constraints can be adapted to strengthen feasibility
cuts in LBBD. When choosing what algorithm to use within a particular LBBD
scheme, there is a computational trade-off between the quality of cuts and the
time spent to obtain this quality.

Strengthening of Feasibility Cuts in Logic-Based Benders Decomposition 47

In the literature on LBBD, there are two extremes in how to deal with feasi-
bility cuts and cut strengthening. One of them is to do no cut strengthening and
the other is to find an irreducible set of master problem variables that causes the
infeasibility. Between the two extremes, there are greedy approaches that aim at
reducing the set of master problem variables, but they give no guarantees that
the set is irreducible. When viewing this from the perspective of an infeasibility
analysis, both greedy cut strengthening and irreducible cut strengthening can
be seen as finding an infeasible subset of constraints, but only irreducible cut
strengthening corresponds to finding an IIS.

In [5], the authors use the infeasibility conflict analyser QuickXplain for
CP [14] to find feasibility cuts. First, QuickXplain is used to find an irreducible
set of constraints causing the infeasibility and then this set is used to construct
the feasibility cut. The problem studied in their paper is a task-allocation prob-
lem, where tasks are assigned to processors in a master problem. The subproblem
checks feasibility with respect to communication and task constraints. A draw-
back of using QuickXplain to find feasibility cuts is that it identifies constraints
rather than variables. If a global constraint (such as Disjunctive) is the cause
of the infeasibility, all variables connected to this constraint are included in the
cut, which may result in an unnecessarily large and less efficient cut.

A more problem-agnostic approach to strengthening of feasibility cuts is
taken in [3], where the authors solve a series of subproblems to strengthen the
cuts. The authors propose an algorithm that greedily strengthens the feasibility
cut. They also briefly mention (and implement) an extended cut-strengthening
algorithm that embeds their greedy algorithm within the iterative conflict detec-
tion algorithm implemented in QuickXplain (described in [14]) to find irre-
ducible feasibility cuts. The problem studied in [3] is a task-to-core allocation
problem handled in a multi-stage LBBD algorithm. Their master problem assigns
tasks to cores and the two subproblems check feasibility with respect to memory
allocation and scheduling constraints, respectively. The computational results
indicate that the cut-strengthening algorithm that finds irreducible feasibility
cuts performs better than their greedy algorithm.

The strategy of solving a series of subproblems to strengthen feasibility cuts is
also used in [7] and [10], where LBBD is applied to scheduling problems. In [10],
they derive a LBBD scheme for a facility allocation and scheduling problem
with the objective to minimise either the cost of assigning tasks to facilities, the
makespan or the total tardiness. In [7], they address a single facility scheduling
problem, both with and without a segmented timeline. They study the feasibil-
ity version, minimisation of makespan, and minimisation of total tardiness. In
both [7] and [10], any obtained feasibility cut is greedily strengthened by remov-
ing one task (corresponds to one master problem variable) in each iteration until
the subproblem becomes feasible. The master problem variables corresponding
to the smallest number of tasks causing an infeasibility are then used in the
cut. In their cut-strengthening algorithm, they evaluate tasks in an order that
exploits knowledge of the problem, but without any guarantees that the resulting
feasibility cut is irreducible.

48 E. Karlsson and E. Rönnberg

In the hybrid branch-and-check-type LBBD solver Nutmeg [17], they also
take a problem-agnostic approach to strengthening of feasibility cuts. In each
iteration of their cut-strengthening algorithm, they try to remove one variable of
the original feasibility cut and then they evaluate the feasibility of a subproblem
where the variables of this reduced feasibility cut are fixed. If the subproblem
is feasible without this variable, they add it back. This algorithm produces an
irreducible feasibility cut and can be viewed as an application of the deletion
filter for finding an IIS, see [6] for early work in the context of linear programs.
Results from applying this solver to a variety of problems, including facility
allocation and scheduling, vehicle routing with location congestion, and satellite
scheduling, are presented in [17].

3 Logic-Based Benders Scheme and Cut Strengthening

This section gives an overview of the LBBD scheme used in this paper and
presents the algorithms used to strengthen feasibility cuts.

3.1 Logic-Based Benders Decomposition

The decomposition is applied to a problem given on the form

[P] min f(x),
s. t. C(x),

C(y),

xi → Ci(y), i ∈ I,

xi ∈ {0, 1}, i ∈ I,

y ∈ Dy,

where the binary variables x are chosen as master problem variables and the
variables y, that belong to the domain Dy, are chosen as subproblem variables.
The objective function f(x) only depends on the master variables x since the
applications included in our computational evaluation have a subproblem of
feasibility type. The constraints that depend only on x and y, respectively, are
referred to as C(x) and C(y). The applications included in the study have an
assignment-type master problem where each decision xi = 1 imposes a restriction
on y that does not depend on the other decisions xj = 1, j ∈ I\{i}. Therefore, the
connection between x and y is formulated such that xi = 1 implies a restriction
on y by the constraints Ci(y), i ∈ I. The use of such formulation facilitates a
direct application of the cut-strengthening algorithms to be presented.

Strengthening of Feasibility Cuts in Logic-Based Benders Decomposition 49

Below, we describe the LBBD scheme along with some additional notation.
The master problem in iteration k is

[MPk] min f(x),
s. t. C(x),

Bk(x),
[Subproblem relaxation],
xi ∈ {0, 1}, i ∈ I,

where Bk(x) is the set of feasibility cuts generated in previous iterations. At
the first iteration, k = 1, B1(x) = ∅. By [Subproblem relaxation], we highlight
the possibility to strengthen the master problem with a subproblem relaxation
component, which can include additional variables and constraints.

Denote a solution to MPk by x̄k. The subproblem for iteration k is obtained
from Problem [P] by the restriction x = x̄k, and is given as

[SP(x̄k)] min 0,
s. t. C(y),

Ci(y), i ∈ I(x̄k),
y ∈ Dy,

where I(x̄k) = {i ∈ I : x̄k
i = 1}. If SP(x̄k) is feasible and has the solution

ȳk, we have obtained an optimal solution (x̄k, ȳk) to Problem [P]. If SP(x̄k) is
infeasible, a feasibility cut B(x̄k) is added to the master problem by the update
Bk+1(x) = Bk(x) ∪ B(x̄k), where

B(x̄k) =
∑

i∈I(x̄k)

(1 − xi) ≥ 1. (1)

To obtain convergence of the LBBD scheme, a feasibility cut must be chosen
such that x̄k becomes infeasible in MPk+1, which will always hold if the added
cut is B(x̄k). However, if a subset I(x̄) ⊆ I(x̄k) for which SP(x̄) is infeasible is
found, this gives a possibly stronger cut B(x̄) that can replace B(x̄k). This is
the property that is explored in the cut-strengthening algorithms presented in
the next section.

3.2 Cut-Strengthening Algorithms

The cut-strengthening algorithms presented in this section attempt to strengthen
a feasibility cut by reducing the number of variables included in the constraint.
This is accomplished by solving the subproblem SP(x) for different values of x.

To categorise cuts, we use the following definition.

Definition 1. A feasibility cut B(x̄) is irreducible if subproblem SP(x̄) is infea-
sible and if subproblem SP(x̃) is feasible for each x̃ such that I(x̃) ⊂ I(x̄) holds.

50 E. Karlsson and E. Rönnberg

Note that the number of variables in an irreducible cut does not need to be
minimal and that it can be possible to derive more than one irreducible cut
from one feasibility cut.

In the following sections, we present three algorithms to strengthen cuts.
These algorithms differ both in how they search over different subsets of variables
to include in the cut and with respect to the guarantees of the strengths of
the resulting cuts. The deletion filter and the depth-first binary search (DFBS)
algorithm will ensure that the strengthened feasibility cut is irreducible, while
the greedy algorithm will not. Note that most cut-strengthening algorithms can
be tailored to a specific problem by selecting in what order to evaluate different
variables. To keep a generality in our comparison, we do however not exploit this
possibility and rely on using a random order.

Greedy. The greedy cut-strengthening algorithm attempts to strengthen a fea-
sibility cut B(x̄) by, in each iteration, selecting an index i ∈ I(x̄), making the
assignment x̄i = 0, and solving the subproblem to evaluate the feasibility. This is
repeated until the subproblem becomes feasible, and then infeasibility is restored
by the assignment x̄i = 1 for the last selected index i. Thereafter, the resulting
cut, which is not guaranteed to be irreducible, is returned. The pseudo-code is
given in Algorithm 1. Cut-strengthening algorithms similar to this greedy algo-
rithm are used in [7] and [10].

Data: A feasibility cut B(x̄)
Result: An (improved) feasibility cut B(x̄)

1 while True do
2 Select an index i ∈ I(x̄);
3 x̄i ← 0;
4 if SP(x̄) is feasible then
5 x̄i ← 1;
6 return B(x̄);

7 end

8 end
Algorithm 1: Pseudo-code of the greedy cut-strengthening algorithm

Deletion Filter. The deletion filter cut-strengthening algorithm is based on
the deletion filter for finding an IIS [6]. There is one iteration for each i ∈ I(x̄)
where the feasibility of a subproblem with the assignment x̄i = 0 is evaluated.
If the subproblem is infeasible, the assignment x̄i = 0 is made permanent in
the remaining iterations and in the final cut. If the subproblem is feasible, the
assignment is permanently changed to x̄i = 1, both in the remaining iterations
and in the final cut. The deletion filter algorithm finds an irreducible feasibil-
ity cut and its pseudo-code is given in Algorithm2. The algorithm is used to
strengthen feasibility cuts in [17].

Strengthening of Feasibility Cuts in Logic-Based Benders Decomposition 51

Data: A feasibility cut B(x̄)
Result: An irreducible feasibility cut B(x̄)

1 for i ∈ I(x̄) do
2 x̄i ← 0;
3 if SP(x̄) is feasible then
4 x̄i ← 1;
5 end

6 end
7 return B(x̄);
Algorithm 2: Pseudo-code of the deletion filter cut-strengthening algorithm

Data: A feasibility cut B(x̄)
Result: An irreducible feasibility cut B(x̄)

1 T ← I(x̄);S ← ∅; x̄i ← 0, i ∈ I;
2 while True do
3 if |T | ≤ 1 then
4 x̄i ← 1, i ∈ T ;
5 if SP(x̄) is infeasible then
6 return B(x̄);
7 end
8 T ← S;S ← ∅;
9 if |T | ≥ 2 then

10 go to Line 3;
11 end
12 T2 ← T ;T1 ← ∅
13 else
14 Split T into T1 and T2;
15 end
16 x̄i ← 1, i ∈ S ∪ T1;
17 if SP(x̄) is feasible then
18 S ← S + T1; T ← T2;
19 else
20 T ← T1;
21 end
22 x̄i ← 0, i ∈ S ∪ T1;

23 end
Algorithm 3: Pseudo-code of the DFBS cut-strengthening algorithm

Depth-First Binary Search. The DFBS cut-strengthening algorithm is sim-
ilar to the deletion filter algorithm, but instead of evaluating only a single index
at a time, subsets of indices are evaluated. In each major iteration, the algorithm
evaluates subproblems to iteratively reduce a subset of indices into a single index
i, for which the permanent assignment x̄i = 1 is made and used in the final cut.
Each time a permanent assignment is made, a subproblem is solved with the
assignment x̄i = 0 for all i for which there is no permanent assignment. If this
subproblem is infeasible, no more variable needs to be included in the cut. If the
subproblem is feasible, the complete procedure is repeated and an additional

52 E. Karlsson and E. Rönnberg

variable to include in the final cut is found by exploring a new subset of indices.
As for the deletion filter algorithm, the final cut will be irreducible. The dif-
ference is that, by not only exploring one individual index at a time there is a
possibility to decrease the number of subproblems that needs to be solved. The
pseudo-code for this algorithm is given in Algorithm3 and it is based on the
presentation in [1] for finding an IIS for a mathematical program. This type of
algorithm is one of the components of the infeasibility analyser QuickXplain,
described in [15], which is used to strengthen cuts in [5].

4 Problems and Modelling

In this section, the problems that we apply LBBD on to evaluate the cut-
strengthening algorithms are presented. For each problem, we give a brief prob-
lem statement, present a mathematical model and its decomposition, and relate
this formulation to the general problem formulation [P].

4.1 Cumulative Facility Scheduling with Fixed Costs

A LBBD scheme for cumulative facility scheduling with fixed costs was intro-
duced in [10]. Computational results for this problem were later also given for
the branch-and-check-type LBBD solver Nutmeg [17].

The problem formulation includes a set of facilities F and a set of tasks I.
Each task i ∈ I must be assigned to a facility f ∈ F , where it is to be performed
for the duration of its processing time pif , using a resource at the rate cif per
time unit. The maximum total rate of resource consumption on facility f ∈ F is
limited to Cf per time unit. Each task i ∈ I must be scheduled in the interval
between its release time ri and deadline di. To assign task i ∈ I to facility f ∈ F
incurs the cost Fif , and the objective is to minimise the cost of assigning each
task to a facility.

The master problem variables xif are binary and indicate if task i ∈ I is
assigned to facility f ∈ F or not. The subproblem checks feasibility with respect
to the scheduling of each facility, where the continuous variable yif ≥ 0 equals
the start time of task i ∈ I on facility f ∈ F .

A formulation of this problem, given on the same form as [P], is

min
∑

i∈I

∑

f∈F
Fifxif , (2)

s. t.
∑

f∈F
xif = 1, i ∈ I, (3)

Cumulative((yif |i ∈ I), (pif |i ∈ I), (cif |i ∈ I), Cf), f ∈ F , (4)
xif → ri ≤ yif ≤ di − pif , i ∈ I, f ∈ F , (5)
[Energy relaxation]. (6)

The objective (2) is to minimise the cost for assigning tasks to facilities. Con-
straints (3) assign each task to a facility and correspond to constraints C(x)

Strengthening of Feasibility Cuts in Logic-Based Benders Decomposition 53

in [P]. The cumulative constraints (4) sequence the tasks while respecting the
available number of resources. The corresponding constraints in [P] are C(y).
Constraints (5) make tasks respect their release times and deadlines if they are
assigned to a facility. Thereby they connect the master problem decisions with
which constraints to include in the subproblem, and these connections corre-
spond to xif → Ci(y), i ∈ I, in [P]. The [Energy relaxation], introduced in [10],
is a relaxation of constraints (3)–(5) and it is used to strengthen the master
problem. It can be written as

1
Cf

∑

i∈I(t1,t2)

pifcifxif ≤ t2 − t1, (t1, t2) ∈ T, (7)

where T = {(ri, di′) : (i, i′) ∈ I × I, di′ > ri} is the set of release time and dead-
line pairs for which the energy relaxation is used. Further, the set I(t1, t2) =
{i ∈ I : t1 ≤ ri, di ≤ t2} gives the tasks that have a time window that starts after
t1 and ends before t2.

4.2 Single Machine Scheduling with Sequence-Dependent Setup
Times and Multiple Time Windows

In [7], a LBBD scheme was proposed for solving the feasibility version of a single
machine scheduling problem with a segmented timeline. In this paper we study a
somewhat more general problem formulation which we refer to as single machine
scheduling with sequence-dependent setup times and multiple time windows.
For this formulation, it is assumed that there can be more tasks than can be
feasible scheduled, and the objective is to maximise the sum of prizes obtained
for scheduling tasks. The model we use is in essence taken from [13]. It is a
generalisation of the model used in [7] since it allows for unique time-windows
for each task and because it includes sequence-dependent setup times. To solve
the feasibility version from [7], the prize-collecting objective is used to determine
the maximum number of tasks that can be feasibly scheduled.

The given set of tasks is I and a prize qi is collected if task i ∈ I is sched-
uled in the interval between the release time riq and deadline diq of one of its
time-windows q ∈ Qi. Each scheduled task i ∈ I must be given exclusive unin-
terrupted access to the machine for the duration of its processing time pi. If task
i is performed before task j, there is a minimum setup time sij between the end
of task i and the start of task j, i, j ∈ I : i
= j.

The master problem variables xiq are binary and indicate if task i ∈ I is
scheduled in time window q ∈ Qi or not. The subproblem checks if the selected
tasks can be scheduled within their assigned time windows. In the subproblem,
the continuous variable yi ≥ 0 equals the start time of task i ∈ I.

54 E. Karlsson and E. Rönnberg

A formulation of this problem, given on the same form as [P], is

min
∑

i∈I

∑

q∈Qi

qixiq, (8)

s. t.
∑

q∈Qi

xiq ≤ 1, i ∈ I, (9)

Disjunctive((yi|i ∈ I), (pi|i ∈ I), (sij |i, j ∈ I)), (10)
xiq → riq ≤ yi ≤ diq − pi, q ∈ Qi, i ∈ I, (11)
[Segment relaxtion]. (12)

The objective (8) is to maximise the total prize collected by assigning tasks to
time-windows. Constraints (9) make sure that each task is scheduled in at most
one of its time windows and they correspond to constraints C(x) in [P]. The dis-
junctive constraint (10) ensures that no tasks overlap and that the tasks respect
their sequence-dependent setup times. The corresponding constraints in [P] are
C(y). Constraints (11) ensure that if a task is assigned to a time-window, the
task is performed within this time window. Thereby they connect the master
problem decisions with which constraints to include in the subproblem, and
these connections correspond to xif → Ci(y), i ∈ I, in [P]. To strengthen the
master problem, we use the [Segment relaxation] described in [16]. The [Segment
relaxation] is derived from constraints (9)–(11) and formulated as

∑

i∈I

∑

q∈Qi(t1,t2)

pixiq ≤ t2 − t1, (t1, t2) ∈ T, (13)

where T = {(riq, di′q′) : (q, q′) ∈ Qi × Qi′ , (i, i′) ∈ I × I, di′q′ > riq} is the set of
release time and deadline pairs for which the segment relaxation is used. Further,
the set Qi(t1, t2) = {q ∈ Qi : t1 ≤ riq, diq ≤ t2} gives the time windows for task
i ∈ I that that starts after t1 and ends before t2.

4.3 Vehicle Routing with Location Congestion

The vehicle routing problem with location congestion was introduced in [18] and
a LBBD scheme for solving it was derived in [17]. In this problem, vehicles that
originate from a depot are to deliver goods, referred to as requests, at different
locations. For this purpose, routes that has a minimal total transportation cost
are to be constructed such that all requests are delivered while respecting vehicle
capacity and location congestion constraints. The set of requests and locations
are denoted by R and L, respectively. Each request i ∈ R is associated with a
specific location li ∈ L and the set Rl = {i ∈ R : li = l} includes all requests at
location l ∈ L. When a vehicle arrives at request i ∈ R, it requires a processing
time pi to deliver the goods. At each location l ∈ L, a maximum of Cl vehicles
can deliver goods at a given time.

To represent the routing aspect of the problem, a graph G = (N,A) is defined
with a set of nodes N = R∪{0−, 0+} and a set of arcs A = {(i, j) ∈ N ×N : i
=

Strengthening of Feasibility Cuts in Logic-Based Benders Decomposition 55

j}, where 0− and 0+ correspond to artificial start and end nodes at the depot. A
vehicle must arrive to each node i ∈ N between a release time ri and a deadline
di, and all vehicles must return to the depot before the time T . If a node i ∈ N
is visited by a vehicle, a weight qi is added to the vehicle at the depot. For each
route the maximum added weight for a vehicle is Q. For the artificial nodes 0−

and 0+ the release times are 0, the deadlines are T and the weights are 0. The
cost for transportation on arc (i, j) ∈ A is denoted by cij . There is no cost for
using a vehicle and there is no upper bound on the number of used vehicles.

The master problem variables xij are binary and indicate if arc (i, j) ∈ A is
used in a route or not. The subproblem checks the feasibility of the suggested
routes with respect to location congestion, vehicle weight, and time windows.
In the subproblem, the continuous variables ystarti ∈ [ri, di] and yweight

i ∈ [qi, Q]
equal, for each node i ∈ N , the time a vehicle arrives and its total accumulated
weight, respectively.

A formulation of this problem, given on the same form as [P], is

min
∑

(i,j)∈A

cijxij , (14)

s. t.
∑

i:(i,j)∈A

xij = 1, j ∈ R, (15)

∑

j:(i,j)∈A

xij = 1, i ∈ R, (16)

Cumulative((ystarti |i ∈ Rl), (pi|i ∈ Rl), (1|i ∈ Rl), Cl), l ∈ L, (17)

xij → yweight
i + qj ≤ yweight

j , (i, j) ∈ A, (18)

xij → ystarti + pi + cij ≤ ystartj , (i, j) ∈ A, (19)

[Weight and time relaxation]. (20)

The objective (14) is to minimise the total transportation cost. Constraints (15)–
(16) ensure that exactly one vehicle enters and leaves each request and corre-
spond to C(x) in [P]. The cumulative constraints (17) make sure that, at each
point in time and for each location, the number of vehicles delivering goods
does not exceed the maximum limit. Constraints (17) correspond to C(y) in [P].
Constraints (18) and (19) keep track of the vehicle weights and arrival times,
respectively, at each node. Constraints (18)–(19) connect the master problem
decisions with which constraints to include in the subproblem, and these con-
nections correspond to xif → Ci(y), i ∈ I, in [P]. Note that the number of
vehicles used in a solution is given by the number of used arcs from (or to) the
depot. Also, because the vehicles are identical and all requests have exactly one
incoming and outgoing arc, there is no need to explicitly represent the vehicles
in the model, but only which arcs that are used. The master problem is strength-
ened by the [Weight and time relaxation] component that contains the variables
ystarti , yweight

i , i ∈ N , and the constraints (18)–(19).

56 E. Karlsson and E. Rönnberg

5 Computational Evaluation

This section provides results from applying the presented cut-strengthening algo-
rithms and compare these to not using cut strengthening. Below, the different
approaches are, for short, referred to as DFBS, deletion filter, greedy, and none
(no cut strengthening), respectively. In the case when the subproblem can be
separated into small independent problems, we also make a comparison between
solving these small problems individually and solving them together as one large
problem; referred to as solving with or without subproblem separation. Note that
subproblem separation has an automatic strengthening effect since it results in
a cut being generated for each infeasible separated subproblem.

The LBBD scheme was implemented in Python 3.8, and the MIP and CP
models were solved using Gurobi Optimizer version 9.0.3 and IBM ILOG CP
Optimizer version 12.10, respectively. All tests were carried out on a computer
with two Intel Xeon Gold 6130 processors (16 cores, 2.1 GHz each) and 96 GB
RAM. Each instance was given a total time of 20 min and the MIP-gaps were
set to 0 for the master problems.

5.1 Instances

The instances are either taken from previous work or generated in line with
descriptions in previous work, but with new parameter settings. All instances
can be accessed, either directly or via reference, from our repository1. For cumu-
lative facility scheduling with fixed costs, referred to as Problem 4.1, we use 336
instances from [10]. For vehicle routing with location congestion, referred to as
Problem 4.3, we use 450 instances from [17].

For the single machine scheduling problem with sequence-dependent setup
times and multiple time windows, referred to as Problem 4.2, we use instances
from two different sources. Instance set I contains 480 instances that we have
generated based on the description in [7]. We did, however, change a few param-
eter settings to make the instances harder, since those generated according to
the parameter settings in [7] were solved within seconds and did not facilitate an
interesting comparison. Instance set II contains 900 instances introduced in [13];
they originate from two different applications, namely avionics scheduling [4]
and particle therapy patient scheduling [19].

For two of the instance sets, it is possible to apply subproblem separation.
For Problem 4.1, there is one subproblem for each facility, and for Instance set I
of Problem 4.2, there is one subproblem for each time segment.

5.2 Percentage of Solved Instances

The results of our computational evaluation are presented in Fig. 1. In each sub-
plot, the horisontal axis gives the time and the vertical axis gives the percentage

1 https://gitlab.liu.se/eliro15/lbbd instances.

https://gitlab.liu.se/eliro15/lbbd_instances

Strengthening of Feasibility Cuts in Logic-Based Benders Decomposition 57

of solved instances. We begin with describing the results for the instances that
do not have an inherent subproblem separation structure.

Figure 1a and Fig. 1b give the results for Instance set II for Problem 4.2 and
Problem 4.3, respectively. For the former, the algorithms that find irreducible
cuts give the best performance. With DFBS, 75.3% of the instances are solved
to optimality and with the deletion filter, 72.4% of the instances are solved to
optimality. The corresponding percentages for greedy and none are 53.7% and
26.4%, respectively.

For Problem 4.3, using DFBS gives the best performance with 100.0% of the
instances solved to optimality. Using the deletion filter also gives a good per-
formance with 91.1% of the instances solved to optimality. The corresponding
percentages for greedy and none are 66.0% and 55.1%, respectively. A peculiar-
ity of the instances for Problem 4.3 is that many of them are infeasible. This is
detected for many of these instances already in the first LBBD iteration, irrespec-
tive of the cut-strengthening approach used. The infeasibility is detected either
because the master problem is infeasible without any feasibility cuts or because
the subproblem is infeasible even without a restriction on x (such a test is imple-
mented as part of the initialisation of our LBBD scheme). All instances solved
without cut strengthening belong to this category. For the remaining instances,
feasibility cuts must be generated to prove optimality or infeasibility. A few of
these instances are solved using greedy, but the results from using greedy are
still weak in comparison with using deletion filter or DFBS.

Results from solving Problem 4.1 with and without subproblem separation
are given in Fig. 1c and Fig. 1d, respectively. In the case without subproblem sep-
aration, the use of DFBS gives the best performance with 56.8% of the instances
solved to optimality. The corresponding percentages for deletion filter, greedy,
and none are 54.8%, 51.2%, and 46.4%, respectively. When subproblem separa-
tion is applied, the impact of cut strengthening is small and the percentages of
solved instances range between 76.5% and 78.9% for all approaches. Note that
the results when applying subproblem separation are consistently and signifi-
cantly better than those when subproblem separation is not applied.

Instance set I for Problem 4.2 can be solved both with and without subprob-
lem separation. The results for solving with separation and without separation
are given in Fig. 1e and Fig. 1f, respectively. When subproblem separation is not
applied, the use of DFBS gives the best performance with 54.2% of the instances
solved to optimality. The corresponding percentages for deletion filter, none, and
greedy are 40.8%, 37.7%, and 31.5%, respectively. With subproblem separation,
the percentages of solved instances when applying deletion filter, DFBS, greedy,
and none are 73.1%, 72.9%, 70.8%, and 63.1%, respectively. Again, subproblem
separation has a significant impact on the number of solved instances. Also, it is
clear in this case that using some cut-strengthening algorithm is beneficial both
with and without separation.

When summarising the results, the following can be observed. In the view
of all instance sets and different types of problems, the best performance is
obtained when DFBS is applied for cut strengthening. This suggests that DFBS

58 E. Karlsson and E. Rönnberg

0 500 1000
0

20

40

60

80

100

Time [s]

So
lv
ed

in
st
an

ce
s
[%

]

a): Problem 4.2 - Instance set II
no separation

0 500 1000
0

20

40

60

80

100

Time [s]
So

lv
ed

in
st
an

ce
s
[%

]

b): Problem 4.3
no separation

0 500 1000
0

20

40

60

80

100

Time [s]

So
lv
ed

in
st
an

ce
s
[%

]

c): Problem 4.1
separation

0 500 1000
0

20

40

60

80

100

Time [s]

So
lv
ed

in
st
an

ce
s
[%

]
d): Problem 4.1

no separation

0 500 1000
0

20

40

60

80

100

Time [s]

So
lv
ed

in
st
an

ce
s
[%

]

e): Problem 4.2 - Instance set I
separation

0 500 1000
0

20

40

60

80

100

Time [s]

So
lv
ed

in
st
an

ce
s
[%

]

f): Problem 4.2 - Instance set I
no separation

Greedy Deletion filter DFBS None

Fig. 1. Percentage of solved instances for different cut-strengthening algorithms

Strengthening of Feasibility Cuts in Logic-Based Benders Decomposition 59

is a good candidate when choosing an algorithm for strengthening of feasibility
cuts in a general LBBD scheme. As expected, exploiting problem structure and
applying subproblem separation is very beneficial, and this effect dominates that
of applying cut strengthening in the cases when separation is possible. We believe
that the reason for this is two-fold. Firstly, the separation itself strengthens
the cuts, since cuts are generated for each subproblem. Secondly, solving the
separated subproblem is easier than solving one large subproblem.

6 Concluding Remarks

This paper presents how different algorithms for strengthening of feasibility cuts
can be applied in a LBBD scheme and provides results that illustrate the differ-
ent algorithms’ impact on the computational performance of the LBBD scheme.
To make the comparison generic, the cut strengthening is made without exploit-
ing knowledge about problem structure when deciding in which order to evaluate
variables to include in a cut. The computational evaluation is based on three dif-
ferent problem formulations, using over 2000 instances from five different appli-
cations. For some of these instances, there is an inherent structure that makes
is possible to separate the subproblem into smaller independent problems. For
such instances, the benefits from this separation dominates that of applying cut
strengthening where no problem structure is exploited.

The general conclusion is that for the tested instances, using the DFBS cut-
strengthening algorithm gives the best computational performance. To gain a
deeper understanding of our results, we suggest further work that includes the
following considerations. Firstly, both the sizes of the cuts and the total number
of LBBD iterations can be compared to the number of subproblems solved dur-
ing the cut strengthening. These quantities can then be analysed in the light of
how computationally challenging the subproblem is in comparison with the mas-
ter problem. Secondly, the difference in performance between DFBS and deletion
filter can be further analysed. Both algorithms find irreducible cuts, but they dif-
fer in their search for finding them. Do the computational results differ because
they tend to find different cuts or because of their different efficiencies in finding
what is most often the same cut? Lastly, it would be relevant to investigate the
impact of exploiting problem structure, especially variable sorting, and integrate
this with the considered cut-strengthening algorithms. In the case when subprob-
lem separation can be applied, it is interesting to understand how much of the
computational gain from the separation that follows from sorting it implies.

Acknowledgement. Emil Karlsson is funded by the Research School in Interdisci-
plinary Mathematics at Linköping University. The work is also partly funded by the
Center for Industrial Information Technology (CENIIT), Project-ID 16.05. Compu-
tational experiments were performed on resources provided by the Swedish National
Infrastructure for Computing (SNIC) at National Supercomputer Centre (NSC).

60 E. Karlsson and E. Rönnberg

References

1. Atlihan, M.K., Schrage, L.: Generalized filtering algorithms for infeasibility analy-
sis. Comput. Oper. Res. 35, 1446–1464 (2008). https://doi.org/10.1016/j.cor.2006.
08.005

2. Benders, J.F.: Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik 4, 238–252 (1962). https://doi.org/10.1007/
BF01386316

3. Benini, L., Lombardi, M., Mantovani, M., Milano, M., Ruggiero, M.: Multi-stage
benders decomposition for optimizing multicore architectures. In: Perron, L., Trick,
M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 36–50. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-68155-7 6

4. Blikstad, M., Karlsson, E., Lööw, T., Rönnberg, E.: An optimisation approach
for pre-runtime scheduling of tasks and communication in an integrated modu-
lar avionic system. Optim. Eng. 19(4), 977–1004 (2018). https://doi.org/10.1007/
s11081-018-9385-6

5. Cambazard, H., Hladik, P.-E., Déplanche, A.-M., Jussien, N., Trinquet, Y.: Decom-
position and learning for a hard real time task allocation problem. In: Wallace, M.
(ed.) CP 2004. LNCS, vol. 3258, pp. 153–167. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30201-8 14

6. Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in
linear programs. ORSA J. Comput. 3, 157–168 (1991). https://doi.org/10.1287/
ijoc.3.2.157

7. Coban, E., Hooker, J.N.: Single-facility scheduling by logic-based Benders decom-
position. Ann. Oper. Res. 210, 245–272 (2013). https://doi.org/10.1007/s10479-
011-1031-z

8. Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theory Appl. 10,
237–260 (1972). https://doi.org/10.1007/BF00934810

9. Hooker, J.N.: Logic-Based Methods for Optimization: Combining Optimization
and Constraint Satisfaction. Wiley, Hoboken (2000). https://doi.org/10.1002/
9781118033036

10. Hooker, J.N.: Planning and scheduling by logic-based Benders decomposition.
Oper. Res. 55, 588–602 (2007). https://doi.org/10.1287/opre.1060.0371

11. Hooker, J.N.: Logic-based benders decomposition for large-scale optimization. In:
Velásquez-Bermúdez, J.M., Khakifirooz, M., Fathi, M. (eds.) Large Scale Opti-
mization in Supply Chains and Smart Manufacturing. SOIA, vol. 149, pp. 1–26.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22788-3 1

12. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Math. Program.
96, 33–60 (2003). https://doi.org/10.1007/s10107-003-0375-9

13. Horn, M., Raidl, G.R., Rönnberg, E.: A* search for prize-collecting job sequenc-
ing with one common and multiple secondary resources. Ann. Oper. Res. (2020).
https://doi.org/10.1007/s10479-020-03550-7

14. Junker, U.: QuickXPlain: conflict detection for arbitrary constraint propagation
algorithms. In: IJCAI01 Workshop on Modeling and Solving Problems with Con-
straints (CONS-1) (2001)

15. Junker, U.: QuickXPlain: preferred explanations and relaxations for over-
constrained problems. In: Proceedings of AAAI 2004, pp. 167–172 (2004)

16. Karlsson, E., Rönnberg, E., Stenberg, A., Uppman, H.: A matheuristic approach
to large-scale avionic scheduling. Ann. Oper. Res. (2020). https://doi.org/10.1007/
s10479-020-03608-6

https://doi.org/10.1016/j.cor.2006.08.005
https://doi.org/10.1016/j.cor.2006.08.005
https://doi.org/10.1007/BF01386316
https://doi.org/10.1007/BF01386316
https://doi.org/10.1007/978-3-540-68155-7_6
https://doi.org/10.1007/s11081-018-9385-6
https://doi.org/10.1007/s11081-018-9385-6
https://doi.org/10.1007/978-3-540-30201-8_14
https://doi.org/10.1007/978-3-540-30201-8_14
https://doi.org/10.1287/ijoc.3.2.157
https://doi.org/10.1287/ijoc.3.2.157
https://doi.org/10.1007/s10479-011-1031-z
https://doi.org/10.1007/s10479-011-1031-z
https://doi.org/10.1007/BF00934810
https://doi.org/10.1002/9781118033036
https://doi.org/10.1002/9781118033036
https://doi.org/10.1287/opre.1060.0371
https://doi.org/10.1007/978-3-030-22788-3_1
https://doi.org/10.1007/s10107-003-0375-9
https://doi.org/10.1007/s10479-020-03550-7
https://doi.org/10.1007/s10479-020-03608-6
https://doi.org/10.1007/s10479-020-03608-6

Strengthening of Feasibility Cuts in Logic-Based Benders Decomposition 61

17. Lam, E., Gange, G., Stuckey, P.J., Van Hentenryck, P., Dekker, J.J.: Nutmeg:
a MIP and CP hybrid solver using branch-and-check. SN Oper. Res. Forum 1,
22:1–22:27 (2020). https://doi.org/10.1007/s43069-020-00023-2

18. Lam, E., Van Hentenryck, P.: A branch-and-price-and-check model for the vehicle
routing problem with location congestion. Constraints 21, 394–412 (2016). https://
doi.org/10.1007/s10601-016-9241-2

19. Maschler, J., Riedler, M., Stock, M., Raidl, G.R.: Particle therapy patient schedul-
ing: first heuristic approaches. In: Proceedings of the 11th International Conference
of the Practice and Theory of Automated Timetabling, PATAT 2016, pp. 223–244
(2016)

20. Rahmaniani, R., Crainic, T.G., Gendreau, M., Rei, W.: The Benders decomposition
algorithm: a literature review. Eur. J. Oper. Res. 259, 801–817 (2017). https://
doi.org/10.1016/j.ejor.2016.12.005

https://doi.org/10.1007/s43069-020-00023-2
https://doi.org/10.1007/s10601-016-9241-2
https://doi.org/10.1007/s10601-016-9241-2
https://doi.org/10.1016/j.ejor.2016.12.005
https://doi.org/10.1016/j.ejor.2016.12.005

Learning Variable Activity Initialisation
for Lazy Clause Generation Solvers

Ronald van Driel, Emir Demirović , and Neil Yorke-Smith(B)

Algorithmics, Delft University of Technology, Delft, Netherlands
R.A.vanDriel@student.tudelft.nl, {e.demirovic,n.yorke-smith}@tudelft.nl

Abstract. Contemporary research explores the possibilities of integrat-
ing machine learning (ML) approaches with traditional combinatorial
optimisation solvers. Since optimisation hybrid solvers, which combine
propositional satisfiability (SAT) and constraint programming (CP),
dominate recent benchmarks, it is surprising that the literature has paid
limited attention to machine learning approaches for hybrid CP–SAT
solvers. We identify the technique of minimal unsatisfiable subsets as
promising to improve the performance of the hybrid CP–SAT lazy clause
generation solver Chuffed. We leverage a graph convolutional network
(GCN) model, trained on an adapted version of the MiniZinc benchmark
suite. The GCN predicts which variables belong to an unsatisfiable subset
on CP instances; these predictions are used to initialise the activity score
of Chuffed’s Variable-State Independent Decaying Sum (VSIDS) heuris-
tic. We benchmark the ML-aided Chuffed on the MiniZinc benchmark
suite and find a robust 2.5% gain over baseline Chuffed on MRCPSP
instances. This paper thus presents the first, to our knowledge, success-
ful application of machine learning to improve hybrid CP–SAT solvers,
a step towards improved automatic solving of CP models.

1 Introduction

Neuro-symbolic approaches to combinatorial optimisation problems include
improving optimisation solver performance or robustness by incorporating
machine learning (ML). This trend shows successful promise in integer pro-
gramming [2,10,14,26], propositional satisfiability (SAT) [22,25] as well as con-
straint programming (CP) [1,9,24]. Hybrid CP–SAT solvers are the state of
the art for CP according to recent MiniZinc Challenge competitions [19]. Such
solvers, labelled as Lazy Clause Generation (LCG) solvers [21], combine the con-
flict learning ability from SAT solvers with finite domain propagation from CP
solvers.

However to the best of our knowledge there have not been research to date
on combining machine learning to improve the performance of hybrid CP–SAT
solvers. For example, Song et al. [24] show that machine learning can be used
to automatically learn variable ordering heuristics for traditional constraint sat-
isfaction solving. Portfolio approaches have shown excellent performance [1,13],
but such methods select one of the solving strategies in a portfolio rather than
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 62–71, 2021.
https://doi.org/10.1007/978-3-030-78230-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_4&domain=pdf
http://orcid.org/0000-0003-1587-5582
http://orcid.org/0000-0002-1814-3515
https://doi.org/10.1007/978-3-030-78230-6_4

Learning Variable Activity Initialisation 63

directly modify a LCG solver. Similarly, applications that combine machine
learning and constraint programming have been studied (e.g., [5]), but the
machine learning part does not influence the internal hybrid CP–SAT algorithm.

We aim to utilise machine learning to improve a single component of hybrid
CP–SAT solvers, namely the activity-based variable selection heuristic (VSIDS).
Our approach is motivated by Neurocore [23], a method that uses ML to influ-
ence the variable selection of SAT solvers. Given that LCG solvers use SAT
solvers in their inner-workings, a natural question to ask is whether an approach
such as Neurocore can be employed in constraint programming. While related
ideas may be exploited, a direct application of Neurocore in CP is not possible.
Neurocore trains its learned model on clauses derived from the proof of unsatis-
fiability. However, unsatisfiability proofs are not an established concept in CP.
Current SAT techniques are not easily extendable, as CP considers optimisation
problems, possibly using integer variables, and complex constraints that may
require an exponential number of clauses when encoding into SAT. There has
been progress in this direction using cutting planes reasoning, but only for spe-
cific problems or constraints [7,11,12]. For similar reasons, the machine learning
features used in SAT may not directly translate to (LCG-based) CP.

This paper provides a first demonstration of the value of using ML within
the LCG solver Chuffed [4]. We develop a modified version of Neurocore for con-
straint programming and employ it to learn initialisation values for the activi-
ties used in the variable-selection heuristic. We benchmark our ML-aided app-
roach on problems from the MiniZinc benchmark suite and find a statistically-
significant 2.5% average gain over the baseline Chuffed on MRCPSP instances.

2 Background

The Satisfiability problem (SAT) is concerned with deciding whether or not there
exists an assignment of truth values to variables such that a given propositional
logic formula is satisfied. A SAT solver is an algorithm that explores the space
of possible assignments with the aim of either finding a satisfying assignment
or proving that the formula is unsatisfiable. For the purposes of this paper, the
search may be viewed as a backtracking algorithm over the variable assignments.

The Variable-State Independent Decaying Sum (VSIDS) [17,20], originally
developed as a variable selection heuristic for SAT solver Chaff, is commonly
used in LCG solvers. When using VSIDS in a SAT solver during search, variables
are selected according to their activity. Intuitively, the activity score indicates
the likelihood that the variable will quickly lead to a conflict, and selecting
such variables early in the search is beneficial. Initially, the activity value of
each variable is initialised to zero. Once the solver encounters a conflict, i.e., it is
detected that the current partial assignment is infeasible, analysis is performed to
determine the reason for the conflict. The reason is recorded as a learned clause,
which consists of a subset of the variables from the partial assignment. Each
time a variable is involved in a conflict, its activity is increased. To emphasise
recent conflicts, the activity scores of all variables are periodically non-linearly

64 R. van Driel et al.

decreased. As a result, variables recently involved in conflicts have the highest
scores. LCG solvers make use of VSIDS in their internal SAT solver.

SAT solvers, upon concluding that a problem is unsatisfiable, may provide a
certificate of unsatisfiability. Intuitively, the certificate consists of a set of clauses
and a sequence of logic derivation steps result that in the empty clause, i.e.,
unsatisfiability. A related concept in CP is a minimal unsatisfiable subset, which
is a set of constraints that unsatisfiable together, but are not unsatisfiable if any
constraint is removed from the set. Conceptually, SAT solvers operate on the low-
level of propositional logic, whereas CP solvers consider a more expressive CP
setting, e.g., complex constraints over integer variables. Hybrid CP–SAT solvers
[21] maintain a dual view of the problem: in addition to the CP view, a portion
of the problem is converted into propositional logic. An internal SAT solver
is invoked on the propositional logic formula, augmented with CP propagators
to infer variable assignments based on the current partial assignment. Once
a conflict is encountered, the conflict analysis procedure from SAT operates as
usual, with the exception that variables set by propagators are queried to provide
the reason for their propagation in the form of a clause. Since all reasons are
clausal, this allows the solver to use the SAT conflict analysis procedure while
still retaining the benefit of CP. In this way, hybrid CP–SAT solvers combine
SAT and CP solving techniques.

The Neurocore [23] approach uses machine learning to influence the variable
selection heuristic of a SAT solver. Since a SAT solver may make thousands of
decisions per second using VSIDS, a possible replacement of variable selection
is expected to run with a tight time budget. Hence Neurocore does not directly
use ML to replace the variable selection heuristic, but instead indirectly influ-
ences the selection procedure by periodically modifying the activity values of the
variables. The ML model, represented as a graph convolutional network (GCN),
is trained to assign a confidence value between zero and one for each variable
depending on its features. The estimate represents the probability that the vari-
able is part of an unsatisfiable core. The first assumption is that variables that
are used in the proof of unsatisfiability are likely to quickly lead to conflicts dur-
ing search, and therefore the solver should aim to select these variables as soon as
possible. The second assumption is that, even though unsatisfiable cores do not
exist in satisfiable instances, the GCN predictions will nevertheless be valuable
even for satisfiable instances to identify highly conflict-inducing variables.

3 Approach

Recall our goal is to predict the initial values of variable activity for a CSP
instance. Since it is difficult to formulate directly learning VSIDS initialisations
as a feasible learning problem (as discussed later), instead we leverage the anal-
ogous precedent in SAT solving discussed above [23].

By default, the activity values in LCG solvers are set to zero or to random
values at the start of the search. The scores do not provide any meaningful
information to the solver in the beginning but they gradually become more

Learning Variable Activity Initialisation 65

useful as search proceeds. By providing useful initial values we posit that the
solver performance can be improved; improvements at the start of search are
particularly valuable. In the absence of meaningful VSIDS values, Chuffed [4], the
LCG solver used in this work, typically uses (user-specified) search annotations
if provided, before switching to VSIDS for making branching decisions.

Our approach is to train a graph convolutional network model on unsatisfiable
instances, to make a prediction on which variables belong to an unsatisfiable
subset. The trained model is then used as part of the LCG solver to classify
the variables of input instances at the start of the search. The classification is
done by assigning a value between zero and one for each variable, which may
be interpreted as the probability that the variable is in an unsatisfiable subset.
These values are used to initialise the activity values for VSIDS.

Whereas training is done on unsatisfiable instances, the target instances used
afterwards do not necessarily need to be unsatisfiable, e.g., it is expected the
instances represent optimisation problems for which a feasible solution exists.
Note that for satisfiable instances, no unsatisfaible subset exists, but the predic-
tions made by the network are still valuable since, intuitively, higher predicted
values indicate variables that are more likely to engage in a conflict.

It is important to note that, similar to the approach proposed by Selsam
and Bjørner [23] – and with works in the predict-and-optimise paradigm [6,8]
– our ambition is not to achieve the best possible ML predictions. The reason
for this is that more accurate predictions do not necessarily imply that they
are more useful for the solver; rather the metric to optimise is the runtime
of the solver. The hypothesis is that, even though satisfiable instances do not
have unsatisfiable cores, the confidence of classifying a variable to be part of an
unsatisfiable set correlates with the effectiveness of branching on that variable.
This can be seen as a surrogate for the runtime. The true metric that directly
optimises the runtime remains an open question.

An alternative could be to learn based on the final VSIDS scores. However
such scores are biased towards the last few conflicts before termination even
though many other conflicts were needed to prove optimality. On a related note,
in core-boosted MAxSAT [3], after the core-guided (lower bounding) phase, it
was beneficial to nullify the VSIDS scores before switching to the linear search
(upper bounding) phase, as opposed to keeping the final VSIDS scores of the
lower bounding method, indicating that VSIDS scores that are good for one
phase of the search may not be good for another phase.

3.1 Machine Learning Model

We adopt the Graph Convolution Network (GCN) model of Kipf and Welling
[15].1 A GCN learns a function of the features on a graph: in our case the
constraint graph. The features we choose pertain to the variables: 1. Categorical
features indicating if a variable is declared as a Boolean, integer, float or set.
2. Minimum value within the variable domain. 3. Maximum value within the

1 Code available at https://github.com/tkipf/gcn; we use their default settings.

https://github.com/tkipf/gcn

66 R. van Driel et al.

variable domain. 4. The range of the variable domain. 5. A set of identifiers of
variables which co-occur in some constraint. Then the input of the GCN is:

1. A feature matrix of size N×D. Here N represents the number of variables
and D the number of selected features.

2. An adjacency matrix of size N×N . In this matrix variables are considered
adjacent if they co-occur in a constraint.

3. The labels in an N × C matrix. Here C represents the number of out-
put classes, in our case two: one for variables which are part of a minimal
unsatisfiable subset (MUS) and the other for variables which are not.

The output of the model is a N × C matrix, the softmax outputs – which can
be interpreted as the probability for each variable to belonging to each class.
Because we consider two classes only, it is possible to express the output of
the ML predictions with a single value, which is the prediction confidence of a
variable belonging to a MUS.

4 Empirical Study

We now examine experimentally the effectiveness of the proposed approach.
We compiled from source three different versions of Chuffed: Chuffed0 OG,
Chuffed1 Ex and Chuffed1 Inc. All three versions were configured to switch
to VSIDS as soon as 100 conflicts have been encountered.2 While all three ver-
sions have an identical configuration, they are different in the way the ML was
integrated. Chuffed0 OG was otherwise left completely unmodified, and serves
as a baseline. Chuffed1 Ex was modified to have the VSIDS scores initialised
with the predictions obtained after being trained on a training set which con-
tained only instances from other problem types. Similarly, Chuffed1 Inc was
modified to initialise the VSIDS scores with predictions after being trained on
all training instances, including from the same problem type.

4.1 Data Sets

We require two different datasets containing CP instances. One of these datasets
should only contain unsatisfiable instances to train on; the other should contain
satisfiable instances to solve for evaluation. The MiniZinc benchmark suite [18]
supplies over 13,000 satsifiable instances for evaluation. Since we found no public
CP dataset contained sufficiently many unsatisfiable instances for training a ML
model, the constraint optimisation problem (COP) instances from the MiniZinc
benchmark suite were modified to become unsatisfiable. This was done by first
solving them for their optimal value; then the original instance was modified by
bounded the objective variable to be strictly better than the optimal value.

Using this procedure allows the creation both the satisfiable datset as well as
the unsatisfiable dataset. For the unsatisfiable dataset the labels were generated

2 This is lower than the Chuffed default, in order to ensure that VSIDS is used.

Learning Variable Activity Initialisation 67

Table 1. Experiments on MRCPSP benchmarks

Instances Chuffed0 OG Chuffed1 Ex Chuffed1 Inc

Avg. runtime (s) Avg. runtime (s) Avg. runtime (s)

mrcpsp10900 4.507 4.356 4.461

mrcpsp36 2.399 2.428 2.410

mrcpsp4425 311.565 296.139 302.595

mrcpsp4777 5274.736 5153.284 5155.367

mrcpsp4871 892.922 865.954 865.404

mrcpsp4960 32.713 32.241 32.099

mrcpsp7051 16.091 15.884 16.028

mrcpsp896 0.152 0.155 0.189

mrcpsp9880 0.236 0.241 0.240

mrcpsp9994 0.033 0.034 0.035

Total(s) 6535.354 6370.715 6378.829

Standard Deviation 282.493 273.983 271.103

Relative(%) 100.0% 97.5% 97.6%

using MiniZinc’s findMUS command [16]. Note findMUS often returns multiple
different MUS combinations and a variable is deemed being part of a MUS
if it is in any one of them. The datasets contained 13,667 problem instances
for which features were available and 8,057 instances for which labels could be
extracted. These latter instances contain 1,532,444 variables, of which 623,293
(40.7%) are part of at least one MUS. The dataset is dominated by a single
problem type, namely the Multi-mode Resource-Constrained Project Scheduling
Problem (MRCPSP): over 90% of total instances. Additionally, over 80% of the
instances in the dataset could be solved in less than 0.1 s. These non-challenging
instances were excluded as being of limited use for training and testing.

4.2 Experimental Configuration and Results

In training the two learning Chuffed variants, the parameters of the GCN model
were set as follows, based on initial trial runs: Learning rate: 0.3; Number of
epochs: 200; Number of units in the first hidden layer: 16; Dropout rate: 0.1;
Weight decay: 5e−4; Tolerance for early stopping: 10; Prediction accuracy at the
point of early stopping was between 0.7 and 0.8.

The three Chuffed versions were used to solve test-sets containing instances
respectively from the four largest problem types: MRCPSP, bin-packing, price-
collecting and fastfood. The experiments were run on a Linux machine with a
16-core 2.50 GHz Xeon Gold 6248 CPU and 32 GB RAM. The code and datasets
are available at doi.org/10.4121/14259635.

The box-plot in Fig. 1 shows the resulting distribution of the the total run-
times of all instances from the each of the four largest problem types, averaged

http://doi.org/10.4121/14259635

68 R. van Driel et al.

(a) MRCPSP (b) bin-packing

(c) price-collecting (d) fastfood

Fig. 1. Box-plots of total runtime of all test instances averaged over 100 runs.

over a total of 100 runs. A more detailed summary of the results is presented for
the two larger domains in Tables 1 and 2, which show the average runtime over
100 runs for each of the instances from the test-set as well as statistics on the
total runtime. Table 3 reports the outcome of two-tailed t-tests.

The t-test analysis shows that the machine learning enhanced version signif-
icantly outperform the unmodified version for both MRCPSP and bin-packing
instances. The gain is about 2.5% for MRCPSP and 1–2% for bin-packing.
There is no sufficient statistical evidence to conclude any significant differ-
ence between the results obtained with Chuffed1 Inc and Chuffed1 Ex for
MRCPSP. However, for bin-packing, there is a statistically significant difference
between Chuffed1 Ex and Chuffed1 Inc, of about 1%. This may indicate
that bin-packing shares less ‘learn-able’ concepts with other problem types than
MRCPSP. For price-collecting and fastfood there is insufficient evidence to con-
clude statistically-significant differences between any of the different Chuffed
versions. The most likely explanation is not about the dis-similarity of these
instances to other problem types, but because the tested instances were not
sufficiently large.

Learning Variable Activity Initialisation 69

Table 2. Experiments on bin-packing benchmarks

Instances Chuffed0 OG Chuffed1 Ex Chuffed1 Inc

Avg. runtime (s) Avg. runtime (s) Avg. runtime (s)

2DLevelPacking238 171.700 151.000 152.580

2DLevelPacking23 1563.956 1499.611 1512.328

2DLevelPacking492 1221.866 1275.854 1237.965

2DPacking13 5065.462 5037.534 5025.021

2DPacking165 683.933 708.044 641.285

2DPacking168 2511.413 2430.075 2431.017

2DPacking62 58.744 57.180 57.587

Total(s) 11277.074 11159.298 11057.783

Standard Deviation 381.016 359.230 347.639

Relative(%) 100.0% 99.0% 98.1%

Table 3. Pairwise t-test analysis

MRCPSP t-stat p-value

Chuffed0 OG – Chuffed1 Ex 4.163 4.693e-5

Chuffed0 OG – Chuffed1 Inc 3.978 9.761e-5

Chuffed1 Ex – Chuffed1 Inc -0.209 0.834

bin-packing t-stat p-value

Chuffed0 OG – Chuffed1 Ex 2.238 0.026

Chuffed0 OG – Chuffed1 Inc 4.230 3.577e-5

Chuffed1 Ex – Chuffed1 Inc -2.020 0.045

price-collecting t-stat p-value

Chuffed0 OG – Chuffed1 Ex -0.226 0.821

Chuffed0 OG – Chuffed1 Inc -1.506 0.134

Chuffed1 Ex – Chuffed1 Inc -1.390 0.166

fastfood t-stat p-value

Chuffed0 OG – Chuffed1 Ex -1.316 0.190

Chuffed0 OG – Chuffed1 Inc -1.907 0.058

Chuffed1 Ex – Chuffed1 Inc -0.648 0.518

5 Conclusion

This paper shows that it is possible to use machine learning approaches designed
for solving SAT instances to improve lazy clause generation solving techniques.
Specifically, we have shown how to use unsatisfiable core learning in its CP
flavour as minimal unsatisfiable subsets, to improve the performance of the LCG
solver Chuffed. We do this by learning the probability a variable is involved
in a MUS, as a proxy for initial values of Chuffed’s VSIDS scores. With CP–
SAT approaches dominating recent MiniZinc benchmarks it is noteworthy that
the proposed approach is able to consistently achieve an improved performance
on sizeable instances. Although the relative margin of improvement is small
(up to 2.5% on MRCPSP scheduling benchmarks), it is statistically significant
in the largest two tested problem domains. This suggests that the similarity of a
variable with variables from MUSs seen during training is a proxy for determining
the conflicting nature of a variable.

Our work demonstrates the first, to our knowledge, successful application of
machine learning to aid a CP–SAT optimisation solver. This paper thus opens
the door to further research. For instance, integrating the classification part

70 R. van Driel et al.

directly into the solver can be investigated; this would require embedding the
feature extraction part directly into the solver together with additional computa-
tional resources, e.g., a GPU as in the Neurocore approach. Moreover, one could
consider alternative surrogates other than MUS membership to learn important
variables for branching in CP–SAT solvers.

Acknowledgement. We thank the anonymous reviewers of CPAIOR. Thanks to
S. van der Laan, K. Leo and P. J. Stuckey. This research was partially supported by
TAILOR, a project funded by EU Horizon 2020 research and innovation programme
under grant number 952215.

References

1. Amadini, R., Gabbrielli, M., Mauro, J.: SUNNY-CP: a sequential CP portfolio
solver. In: Proceedings of the 30th ACM Symposium on Applied Computing, pp.
1861–1867 (2015)

2. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’Horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

3. Berg, J., Demirović, E., Stuckey, P.J.: Core-boosted linear search for incom-
plete MaxSAT. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS,
vol. 11494, pp. 39–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19212-9 3

4. Chu, G., Stuckey, P.J., Schutt, A., Ehlers, T., Gange, G., Francis, K.: Chuffed, a
lazy clause generation solver (2018). https://github.com/chuffed/chuffed

5. De Uña, D., Rümmele, N., Gange, G., Schachte, P., Stuckey, P.J.: Machine learn-
ing and constraint programming for relational-to-ontology schema mapping. In:
Proceedings of IJCAI 2018, pp. 1277–1283 (2018)

6. Demirović, E., et al.: An investigation into prediction + optimisation for the Knap-
sack problem. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol.
11494, pp. 241–257. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19212-9 16

7. Elffers, J., Gocht, S., McCreesh, C., et al.: Justifying all differences using pseudo-
boolean reasoning. In: Proceedings of AAAI 2020, pp. 1486–1494 (2020)

8. Elmachtoub, A.N., Grigas, P.: Smart ‘predict, then optimize’. CoRR
abs/1710.08005 (2017). http://arxiv.org/abs/1710.08005

9. Galassi, A., Lombardi, M., Mello, P., Milano, M.: Model agnostic solution of CSPs
via deep learning: a preliminary study. In: van Hoeve, W.-J. (ed.) CPAIOR 2018.
LNCS, vol. 10848, pp. 254–262. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-93031-2 18

10. Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial
optimization with graph convolutional neural networks. In: Proceedings of NeurIPS
2019, pp. 15554–15566 (2019)

11. Gocht, S., McBride, R., McCreesh, C., Nordström, J., Prosser, P., Trimble, J.: Cer-
tifying solvers for clique and maximum common (connected) subgraph problems.
In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 338–357. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58475-7 20

12. Gocht, S., McCreesh, C., Nordström, J.: Subgraph isomorphism meets cutting
planes: solving with certified solutions. In: Proceedings of IJCAI 2020, pp. 1134–
1140 (2020)

https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1007/978-3-030-19212-9_3
https://github.com/chuffed/chuffed
https://doi.org/10.1007/978-3-030-19212-9_16
https://doi.org/10.1007/978-3-030-19212-9_16
http://arxiv.org/abs/1710.08005
https://doi.org/10.1007/978-3-319-93031-2_18
https://doi.org/10.1007/978-3-319-93031-2_18
https://doi.org/10.1007/978-3-030-58475-7_20

Learning Variable Activity Initialisation 71

13. Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio
selection. In: Proceedings of ECAI 2004, pp. 475–479 (2004)

14. Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch
in mixed integer programming. In: Proceedings of AAAI 2016, pp. 724–731 (2016)

15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. CoRR abs/1609.02907 (2016). http://arxiv.org/abs/1609.02907

16. Leo, K., Tack, G.: Debugging unsatisfiable constraint models. In: Salvagnin, D.,
Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 77–93. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59776-8 7

17. Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K.: Understand-
ing VSIDS branching heuristics in conflict-driven clause-learning SAT solvers. In:
Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 225–241. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-26287-1 14

18. MiniZinc: The MiniZinc benchmark suite (2016). https://github.com/MiniZinc/
minizinc-benchmarks

19. MiniZinc: Minizinc challenge 2020 (2020). https://www.minizinc.org/
challenge2020/results2020.html

20. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of 38th Annual Design Automation
Conference, pp. 530–535 (2001)

21. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

22. Selsam, D., Bjørner, N.: Guiding high-performance SAT solvers with unsat-core
predictions. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 336–
353. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 24

23. Selsam, D., Bjørner, N.: Neurocore: guiding high-performance SAT solvers with
unsat-core predictions. CoRR abs/1903.04671 (2019). http://arxiv.org/abs/1903.
04671

24. Song, W., Cao, Z., Zhang, J., Lim, A.: Learning variable ordering heuristics for solv-
ing constraint satisfaction problems. CoRR abs/1912.10762 (2019). http://arxiv.
org/abs/1912.10762

25. Soos, M., Kulkarni, R., Meel, K.S.: CrystalBall: gazing in the black box of SAT
solving. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 371–387.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 26

26. Yilmaz, K., Yorke-Smith, N.: A study of learning search approximation in mixed
integer branch and bound: node selection in SCIP. AI 2(2), 150–178 (2021).
https://doi.org/10.3390/ai2020010

http://arxiv.org/abs/1609.02907
https://doi.org/10.1007/978-3-319-59776-8_7
https://doi.org/10.1007/978-3-319-26287-1_14
https://github.com/MiniZinc/minizinc-benchmarks
https://github.com/MiniZinc/minizinc-benchmarks
https://www.minizinc.org/challenge2020/results2020.html
https://www.minizinc.org/challenge2020/results2020.html
https://doi.org/10.1007/978-3-030-24258-9_24
http://arxiv.org/abs/1903.04671
http://arxiv.org/abs/1903.04671
http://arxiv.org/abs/1912.10762
http://arxiv.org/abs/1912.10762
https://doi.org/10.1007/978-3-030-24258-9_26
https://doi.org/10.3390/ai2020010

A∗-Based Compilation of Relaxed
Decision Diagrams for the Longest
Common Subsequence Problem

Matthias Horn(B) and Günther R. Raidl

Institute of Logic and Computation, TU Wien, Vienna, Austria
{horn,raidl}@ac.tuwien.ac.at

Abstract. We consider the longest common subsequence (LCS) prob-
lem and propose a new method for obtaining tight upper bounds on the
solution length. Our method relies on the compilation of a relaxed multi-
valued decision diagram (MDD) in a special way that is based on the
principles of A∗ search. An extensive experimental evaluation on several
standard LCS benchmark instance sets shows that the novel construc-
tion algorithm clearly outperforms a traditional top-down construction
(TDC) of MDDs. We are able to obtain stronger and at the same time
more compact relaxed MDDs than TDC and this in shorter time. For
several groups of benchmark instances new best known upper bounds
are obtained. In comparison to existing simple upper bound procedures,
the obtained bounds are on average 14.8% better.

Keywords: Longest common subsequence problem · Multi-valued
decision diagram · A∗ search

1 Introduction

In the last 10–15 years decision diagrams (DDs) have shown to be a powerful
tool in combinatorial optimization with which for a wide range of problems new
state-of-the-art approaches could be obtained [1,4,14]. This includes prominent
problems such as minimum independent set, set covering, maximum cut, maxi-
mum 2-satisfiability [3,5] as well as variants of the traveling salesman problem
and other sequencing and scheduling problems [14,24]. In particular can DD-
based methods be superior where traditional mixed integer linear programming
(MIP) or constraint programming (CP) approaches suffer, e.g., from weak dual
bounds?

In essence, DDs are data structures that provide graphical representations of
the solution space of a combinatorial optimization problem. Restricted DDs rep-
resent a subset of feasible solutions and can be used to obtain heuristic solutions

This project is partially funded by the Doctoral Program “Vienna Graduate School
on Computational Optimization”, Austrian Science Foundation (FWF) Project
No. W1260-N35.

c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 72–88, 2021.
https://doi.org/10.1007/978-3-030-78230-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_5

A∗-Based Compilation of Relaxed Decision Diagrams 73

and primal bounds [3,6] whereas relaxed DDs represent a superset of all feasible
solutions in a compact way and can therefore be seen as a discrete relaxation of
the problem. Relaxed DDs can be used to obtain dual bounds and provide, for
instance, promising new branching schemes [3]. The more general form of a DD
in which a node may have more than two outgoing arcs to successor nodes is
called multi-valued DD (MDD), and MDDs have proven particularly useful for
sequencing and scheduling problems.

Recently, a new A∗-based construction (A∗C) scheme was presented to com-
pile relaxed MDDs [21]. The authors demonstrate on a prize-collecting scheduling
problem that with A∗C it is possible to compile in shorter running times relaxed
MDDs that provide stronger bounds and are at the same time smaller than
relaxed MDDs constructed by traditional top-down or incremental refinement
methods. As the name A∗C suggests, this method is inspired by A∗ search [20]
and utilizes some fast but not necessarily that strong problem-specific bound-
ing procedure during the construction. However, the prize-collecting scheduling
problem from [21] is rather new. The goal of the current work therefore is to inves-
tigate the applicability of A∗C on the prominent longest common subsequence
(LCS) problem in order to see if this construction method has the potential to
lead to superior results also on this already deeply investigated kind of problem.
In our experimental evaluation we will compare the A∗C approach for the LCS
problem not only to a top-down MDD construction but also to several upper
bounding procedures for the LCS from the literature.

The goal of the LCS problem [27] is to find the longest string which is a
common subsequence of a set of m input strings S = {s1, s2, . . . , sm} over an
alphabet Σ. We denote the length of a string s by |s|, and let n be the maximum
length of the input strings, i.e., n = maxi=1,...,m |si|. A subsequence is a string
that can be derived from another string by deleting zero or more characters. A
common subsequence can be derived from all input strings. For instance, for the
input strings ABCDBA and ACBDBA, an LCS is ABDBA. Determining the length of
an LCS is a way to measure the similarity of strings and has a wide range of
applications, for example in computational biology where strings often represent
segments of RNA or DNA [23,30]. Other applications can be found in text edit-
ing, file comparison, data compression, and the production of circuits in field
programmable gate arrays, to just name a few [2,12,25]. If m is fixed then the
LCS problem can be solved by dynamic programming (DP) based algorithms in
polynomial time O(nm) [19]. For an arbitrary number of input strings, however,
the problem is known to be NP-hard [27].

In the literature plenty of exact approaches have been proposed for solving
the LCS problem. Besides the already mentioned DP based approaches, Blum
and Festa [10] investigated a MIP model, which is however not competitive and
cannot be practically applied to any of the commonly used benchmark sets in
the literature due to its excessive size. Further exact methods are for instance
based on dominant point approaches and/or parallelization [13,26,28,31] or on
a transformation to the max clique problem [9], but they are still not applicable
to practical instances with a large number of long input strings. Solving LCS

74 M. Horn and G. R. Raidl

instances of practical relevance to proven optimality is still a challenging task
in terms of computation time and memory consumption. Therefore, heuristic
approaches are used for larger m and n. Fast construction heuristics are, e.g.,
the expansion algorithm [11] or the best next heuristic [18,22]. Among the more
advanced search strategies, in particular beam search (BS) based approaches
have been frequently proposed differing in various details such as the heuris-
tic guidance and filtering. This culminated in a general BS-based framework
by Djukanovic at el. [15] which can express essentially all heuristic state-of-the-
art approaches from the literature by respective configuration settings. They
authors proposed also a novel heuristic guidance function, which approximates
the expected length of a LCS for random strings. The BS framework in com-
bination with this novel guidance dominates the other existing approaches on
most of the available benchmark instances. The same authors further described
novel A∗ based anytime algorithms by interleaving A∗ search with BS or anytime
column search, respectively [16]. Thereby the novel search guidance from before
plays again a crucial role.

Before we proceed let us define further notation. We denote the character
at position j in a string s by s[j], and s[j, j′], j ≤ j′, refers to the continuous
subsequence of s starting at position j and ending at position j′. For j > j′,
substring s[j, j′] is the empty string denoted by ε. Last but not least, let |s|a be
the number of occurrences of character a ∈ Σ in string s.

The next section gives a formal definition of MDDs for the LCS problem.
Section 3 reviews two known procedures to obtain upper bounds for the length
of an LCS and presents a new one that extends one of those. Section 4 explains
how relaxed MDDs are compiled for the LCS problem with A∗C. Results of
computational experiments are discussed in Sect. 5. Finally, Sect. 6 concludes
this work.

2 Multi-valued Decision Diagrams for the LCS Problem

In the context of the LCS problem a MDD is a directed acyclic multi-graph
M = (V,A) with one root node r. For classical layer-based MDDs, all nodes
are partitioned into at most n + 1 layers L1, . . . , Ln+1, where L1 is a singleton
containing only r and Li, i > 0 contains only nodes that are reachable from r
over exactly i − 1 arcs. An arc α = (u, v) ∈ A(M) in such a MDD is always
directed from a source node u in some layer Li to a target node v in a subsequent
layer Li+1. In this work we will also construct MDDs that do not follow this layer
structure. In all cases, each arc α is associated with a character c(α) ∈ Σ s.t.
any directed path originating from r identifies a sequence of characters and thus
a (partial) solution. The length of a path is defined as the number of its arcs
and corresponds to the number of characters of the represented sequence. For
non-layered MDDs, there is only one node that has no further outgoing arcs
which we denote by t.

An exact MDD encodes precisely the set of all feasible solutions, i.e., the
set of all feasible common subsequences, and a longest path encodes a longest

A∗-Based Compilation of Relaxed Decision Diagrams 75

common subsequence. Due to the NP-hardness of the LCS problem such exact
MDDs will in general have exponential size. Therefore we consider more compact
relaxed MDDs which encode supersets of all feasible solutions. In such a relaxed
MDD nodes of an exact MDD are superimposed (merged) s.t. new paths may
emerge representing sequences that are no feasible common subsequences. The
length of a longest path then represents an upper bound on the LCS length.
In contrast, restricted MDDs approximate exact MDDs by removing nodes and
arcs from the exact one s.t. a longest path represents a heuristic solution and its
length a lower bound on the LCS length. We remark that compiling a restricted
MDD to obtain a heuristic solution essentially corresponds to the well-known
beam search, and the leading heuristics for the LCS problem are diverse beam
search variants as already pointed out in the previous section.

Each node u ∈ V (M) is associated with a state which is a position vector
p(u), with pi(u) ∈ {1, . . . , |si|}, i = 1, . . . ,m. On the basis of this position vector
it is possible to define a subproblem S[p(u)] of S by considering the substrings
si[pi(u), |si|], i, . . . ,m. Thus, S[p(u)] consists of the right part of each string
from S starting from the position indicated in position vector p(u). The root
state represents the original problem S, indicated by S[p(r) = (1, . . . , 1)]. An
arc α = (u, v) ∈ A(M) represents the transition from state p(u) to state p(v) by
appending character c(α) to the sequences of characters encoded by the paths
from r to u. The transition function to obtain successor state p(v) by considering
character c(α) is defined as

τ(p(u), c(α)) =

{
(p1,c(α)(u) + 1, . . . , pm,c(α)(u) + 1) if c(α) ∈ Σnd(u)
(n + 1, . . . , n + 1) else ,

(1)

where pi,a(u), i = 1, . . . , m denotes for each character a ∈ Σ the position of the
first occurrence of a in si[pi(u), |si|] and set Σnd(u) ⊆ Σ contains all letters that
can be feasibly appended at state p(u), thus letters that occur at least once in
each string in S[p(u)], and are non-dominated. A character a ∈ Σ dominates
character b ∈ Σ iff pi,a(u) ≤ pi,b(u) for all i = 1, . . . ,m, and therefore it never
can be better to append a dominated letter next. States that have no further
feasible transition, i.e., where Σnd = ∅, are mapped to state (n + 1, . . . , n + 1)
of target node t.

To create relaxed MDDs we have to define a state merger which computes
the state of merged nodes. Let U be a set of nodes that should be merged. An
appropriate state merger is

⊕ (U) =
(

min
u∈U

pi(u)
)

i=1,...,m

. (2)

Since we take always the minimum of each position, each feasible solution of any
subproblem S[p(u)], u ∈ U , will also be a feasible solution of the subproblem
S[p(⊕(U))]. Hence, no feasible solution will be lost in the relaxed MDD, but
new paths corresponding to infeasible solutions may emerge.

76 M. Horn and G. R. Raidl

3 Independent Upper Bounds

To compile MDDs based on A∗ search we need a fast-to-calculate independent
upper bound on the solution length of LCS subproblems to guide the construc-
tion mechanism. We use two well known upper bounds from the literature as
well as a third bound which is an adaption of one of the former. The first upper
bound from Fraser [18] was tightened by Blum et al. [8] and is based on the num-
ber of occurrences of each character. Given a node u and the associated position
vector p(u), this bound calculates the sum of the minimal number of occurrences
of each character over all the strings of the corresponding subproblem S[p(u)],
i.e.,

UB1(u) = UB1(p(u)) =
∑
a∈Σ

min
i=1,...,m

|si [pi(u), |si|]|a . (3)

By using a suitable data structure prepared in pre-processing, UB1 can be effi-
ciently computed in O(m |Σ|) time.

The second upper bound is based on DP and was introduced by Wang et
al. [31]. Since the LCS for two input strings can be efficiently computed, for each
pair {si, si+1} ⊆ S, i = 1, . . . , m − 1 a so-called scoring matrix M2

i is computed,
where an entry M2

i [p, q] with p = 1, . . . , |si| and q = 1, . . . , |si+1|, stores the
length of the LCS of strings si[p, |si|] and si+1[q, |si+1|]. The scoring matrices
are determined in a pre-processing step. Then

UB2(u) = UB2(p(u)) = min
i=1,...,m−1

M2
i [pi(u), pi+1(u)] (4)

is an upper bound for the subproblem S[p(u)] of a given node u and the associ-
ated position vector p(u).

The third upper bound we consider adapts the above one as follows. For UB2,
m−1 scoring matrices are computed, one for each pair of input strings {si, si+1},
i = 1, . . . ,m − 1. However, the pairs of input strings are just chosen according
to their natural order given by the instance specification. We are aiming now
to choose pairs of input strings in a more controlled and more promising way
by utilizing as guidance the version of the first upper bound function for two
strings, i.e., UB1(si, si′) = Σa∈Σ min(|si|a, |si′ |a), si, si′ ∈ S, si �= si′ . Pairs of
strings for which this value is small can be expected to typically also have shorter
LCSs, possibly leading to an overall tighter bound. The subset of pairs of input
strings for which we will compute corresponding scoring matrices, denoted by
P , is determined as follows. We iterate over all pairs of input strings {(si, si′) ∈
S × S | i < i′} sorted according to UB1(·, ·) in non-decreasing order and add
each string pair for which not both strings already appear in some string pair
earlier added to P . In this way it is ensured that each input string is used at
least once and |P | = O(m). The upper bound of a given node u is then

UB3(u) = UB3(p(u)) = min
(si,si′)∈P

M3
si,si′ [pi(u), pi′(u)], (5)

where M3
i,i′ is the scoring matrix for string pair (si, si′) ∈ P .

Finally, let UB(u) = min{UB1(u),UB2(u),UB3(u)} be the strongest upper
bound we can obtain.

A∗-Based Compilation of Relaxed Decision Diagrams 77

4 A∗-Based Construction of MDDs

To construct relaxed MDDs we essentially follow the A*C approach from [21]
using the principles of A∗ search. We maintain an open list Q of nodes that need
to be (re-)expanded. This list is sorted according to a priority function

f(u) = Z lp(u) + UB(u), (6)

where Z lp(u) denotes the length of the so far best path from the root node r
to node u and UB(u) is the upper bound described in Sect. 3. To break ties, we
prefer the node with higher Z lp-value. Initially, Q contains the root node. At
each step, A∗ search and consequently A*C always take a node u ∈ Q from the
open list that maximizes f(u) and expands u by considering all feasible successor
states using transition function τ from Eq. (1). Newly created nodes are inserted
into Q; nodes that are reached in better ways via the expanded node are updated
and reinserted into Q. If Q finally gets empty then A∗C has compiled a com-
plete exact MDD, since all encountered nodes and arcs corresponding to feasible
transitions are stored. However, since UB never underestimates the length of the
LCS, the classical A∗ optimality condition can be applied by terminating early
as soon as the target node t gets selected for expansion the first time. In this
case we get in general an incomplete MDD, but due to the optimality condition
of A∗ search at least one optimal path is contained in the MDD.

4.1 Relaxed MDDs

To create a relaxed MDD we limit the size of Q by some threshold value φ. As
soon as the size of the open list |Q| exceeds φ the algorithm starts to merge
nodes from Q. If the MDD construction process is carried out until the open
list becomes empty a complete relaxed MDD is obtained. Alternatively, we may
again terminate as soon as t is the first time selected for expansion. Then we
obtain in general an incomplete relaxed MDDs where not all feasible solutions
may be contained, however, due to the optimality condition of A∗ search the
length of the longest path from r to t—that is Z lp(t)—is a valid upper bound
to the length of the LCS. We denote this upper bound by Zub

min. Note that this
bound cannot further be improved by continuing the MDD construction.

Merging. If |Q| exceeds φ then nodes are selected in a pairwise fashion for
merging. This must be done carefully since we have to ensure that no cycles
emerge and that the open list gets empty after a finite number of expansions.
Furthermore we do not merge nodes which are already expanded since this would
require to update all successor states from the expanded node onward. Note
that, since nodes are selected from Q for merging, this approach is able to merge
nodes across layers, by introducing so called “long arcs” that skip certain layers.
Moreover, to compile relaxed MDDs with A∗C the recursive problem formulation
does not necessarily have to be based on layers at all.

78 M. Horn and G. R. Raidl

To do the selection for pairing, we label each node u ∈ V (M) by a labeling
function L(u) that maps the state p(u) to a simpler label of a restricted finite
domain DL. The idea is that nodes with the same label are considered similar
s.t. the merged state is still a reasonable representative for both nodes. Hence,
we only merge nodes with the same label. Moreover, labels are chosen in such
way that no cycles will emerge through merging and the open list gets empty in
a finite number of steps.

To efficiently select partner nodes for merging we use a global set of so-called
collector nodes V c which is realized as a dictionary indexed by the labels and
is initially empty. As long as Q is too large, nodes that are not yet expanded
are selected from it in increasing Z lp-order. If for a selected node already a
collector node V c with the same label exists then the two nodes get merged s.t.
all incoming arcs from the two nodes will be redirected to the new merged node.
The two original nodes are removed from Q and V c and the new merged node is
integrated into V (M) and becomes a new collector node in V c. Note that during
the whole construction process we never allow multiple nodes for the same state.
For more details we refer to [21].

Static Labeling Function. For the LCS problem we label all nodes u ∈ Q by

L1(u) = (pilcs1(u), pilcs2(u)) (7)

where ilcs1, ilcs2 are two specific indexes that refer to a pair of input strings
{silcs1 , silcs2} ∈ S with smallest M3

si,si′ [0, 0] over all (si, si′) ∈ P . Hence, we
merge only nodes whose states have the same positions in strings silcs1 and silcs2

and thus partially represent the same subproblems. Consequently, the longest
path in the relaxed MDD will never be worse than the upper bound obtained
from the corresponding scoring matrix and each path originating from r will be
a feasible common subsequence w.r.t. input strings {silcs1 , silcs2} ⊆ S. Since any
merged node will have the same values for pilcs1 and pilcs2 as the original nodes,
and each transition from a state to a corresponding successor state increases the
values from pilcs1 and pilcs2 , the values pilcs1 and pilcs2 strictly increase along each
path in the relaxed MDD. Consequently, no cycles can occur and the open list
gets empty within an finite number of iterations.

Dynamic Labeling Function. To derive stronger relaxed MDDs we investigate
further the static labeling function

L2(u) = (pilcs1(u), pilcs2(u), pilcs3(u), pilcs4(u)) (8)

where {silcs3 , silcs4} ∈ S is the additional pair of input strings with smallest
M3

si,si′ [0, 0] over all (si, si′) ∈ P \{(ilcs1, ilcs2)}. Note that the convergence speed
of A∗C depends on the size of the domain |DL| of the used labeling function L.
If the domain size is large then nodes can be grouped into many subgroups
and it may be harder to keep the open list size under the desired threshold
value φ since there are fewer possibilities to merge nodes. If the domain size is
small then nodes are merged more aggressively, which makes it easier to keep

A∗-Based Compilation of Relaxed Decision Diagrams 79

the open list size under φ. However, the finally compiled relaxed MDD will in
general be weaker than a relaxed MDD compiled with a labeling function of
a larger domain size. For L1 the domain size is |DL1 | =

∑
a∈Σ |silcs1 |a |silcs2 |a.

Preliminary results showed that the domain size of L2 is already too large to
let A∗C finish in reasonable time on our benchmark instances, but the obtained
relaxed MDDs have the potential to be stronger than relaxed MDDs compiled
with L1. Therefore we follow a different strategy: Instead of using a labeling
function that is static over the whole compilation process we use a function
that adapts its domain size depending on the current situation. We propose the
labeling function

L2,Δ(u) = (pilcs1(u), pilcs2(u), �pilcs3(u)/Δ	, �pilcs4(u)/Δ) (9)

which discretizes the values for pilcs3 and pilcs4 by discretization factor Δ. A*C
starts with Δ = 1 and doubles this parameter after every k consecutive failures
of reducing the open list size below φ. If the open list size could be reduced to
size φ then Δ is reset to one. Each time Δ is adapted, the set of collector nodes
V c is cleared.

4.2 Further Details

Similar to [21], in we merge an already expanded node u ∈ V (M) and a not yet
expanded node v ∈ Q if p(v) ⊕p(u) = p(u), Z lp(v) ≤ Z lp(u), and L1(u) = L1(v)
holds since we do not need to update the state of node u. This is efficiently
done by indexing each expanded node by labeling function L1 and checking the
condition after each node expansion for each newly created node.

5 Experimental Results

To test our approaches we use six benchmark sets from the literature.

BL instance set from [10]: 450 instances grouped by different values for m,
n, and |Σ|. For each combination there are ten uniform random instances.

Rat, Virus, and Random instance set from [29]: Three benchmark sets
consisting of 20 instances each. The Rat and Virus benchmark sets have a
biological background whereas instances of the Random benchmark sets are
randomly generated.

ES instance set from [17]: 600 instances grouped by different values for m, n
and |Σ|, where each group includes 50 instances.

BB instance set from [7]: 800 instances that were artificially generated in a
way s.t. input strings have a large similarity to each other. There are ten
instances for each combination of m and |Σ|.

We used all of these instances for the experimental evaluation but report here
only some due to the lack of space. In particular, the main results table to come
in Sect. 5.3 omits data for sets Virus and Random since they are similar to those

80 M. Horn and G. R. Raidl

obtained for Rat, and from set BL only instances with n = 100 are considered
as also done in [16]. However, all instances from all mentioned benchmark sets
are considered in all the boxplots to come. Complete results over all bench-
mark instances are available from https://www.ac.tuwien.ac.at/files/resources/
results/LCS/cpaior21 mdds.zip. The algorithms were implemented using GNU
C++ 7.5.0, and all experiments were performed on a single core of an Intel Xeon
E5649 with 2.53 GHz and 32 GB RAM.

To evaluate the A∗C algorithm we use the standard top-down construction
(TDC) as baseline, which compiles a relaxed MDD layer by layer starting with
the root node r. All nodes of the current layer Li, i = 1, . . . , n, are expanded and
the newly created nodes are inserted into layer Li+1. The layer size is limited
by parameter β. If the size of Li+1 exceeds β then Li+1 is reduced, after all
nodes of Li are expanded, by sorting the nodes according to priority function f
in non-increasing order and replacing the last nodes with smallest f -values from
position β onward into a single merged node. Note that TDC in general yields an
MDD with be multiple target nodes at different layers. In this case the notation
Z lp(t) refers to the length of the longest path from r to any target node.

5.1 Comparison of Independent Upper Bounds

Fig. 1. Relative differences of upper bounds
UB2(r) and UB3(r).

We start with a comparison of the
upper bounds UB2(r) and UB3(r)
from Sect. 3. Figure 1 shows box-
plots for the relative differences 1 −
UB3(r)/UB2(r) over the different
benchmark sets. Over all instances,
tighter upper bounds can be obtained
from UB3(r) than from UB2(r) in
62.2% of the cases, and in these the
relative difference is on average 1.6%.
Both upper bounds are equal in 17.6%
of all instances. Overall, upper bound

UB3(r) has on average a relative difference to UB2(r) of 0.9%. However, differ-
ences vary significantly with the type of benchmarks as the figure shows. The
largest relative differences could be observed on benchmark sets Rat and Virus.
For randomly generated instances, the relative differences seems to be smaller in
general. Overall, we conclude that UB3 provides in general slightly tighter upper
bounds than UB2 but does not dominate it. As both bounding procedures are
relatively fast, we conclude that their joint application makes sense.

5.2 Impact of Parameters φ and β

Next we investigate the impact of parameter φ as well as the choice of the label-
ing function on the quality of the obtained relaxed MDDs. For this purpose we
compile MDDs for middle size instances from benchmark set BB with m = 100,
n = 1000, and |Σ| = 8. Figure 2 depicts aggregated characteristics of the relaxed

https://www.ac.tuwien.ac.at/files/resources/results/LCS/cpaior21_mdds.zip
https://www.ac.tuwien.ac.at/files/resources/results/LCS/cpaior21_mdds.zip

A∗-Based Compilation of Relaxed Decision Diagrams 81

Fig. 2. Relaxed MDDs obtained by A∗C and TDC for different settings of φ and β for
benchmark set BB, n = 1000, m = 100, |Σ| = 8

MDDs created by A∗C and TDC, respectively. The diagram to the left shows
obtained upper bounds, i.e., average lengths of longest r-t paths, for different
values of φ and β in the range of 1 to 104. The different solid lines represent
different choices of labeling functions for A∗C as well as results obtained from
TDC. The small tubes around the lines indicate corresponding standard devia-
tions. For A∗C we generally report the upper bound values Zub

min obtained when t
was selected the first time for expansion, and in case of labeling function L1 addi-
tionally the longest path lengths in the complete relaxed MDDs. The dashed line
indicates the combined bound UB(r) from Sect. 3. The diagrams in the middle
and to the right report the corresponding average computation times in seconds
and average numbers of nodes of the relaxed MDDs, respectively.

In general we can observe that tighter upper bounds can be obtained when
choosing larger values for φ or β. Naturally, this comes at the cost of larger
compilation times and lager relaxed MDDs. In comparison to TDC, A∗C pro-
vides consistently much better results in terms of tightness of obtained upper
bounds and for larger values of φ and β also in terms of compilation time and
compactness of obtained relaxed MDDs. A∗C with the dynamic labeling func-
tion L2,Δ yields stronger bounds than with L1, requires, however, more time
than L1. This is not surprising since domain DL2,Δ

is larger than DL1 and thus
leads less frequently to merges. The tightest upper bounds can be obtained with
function L2,Δ where the discretization factor Δ is doubled after every k = 104

consecutive failures of reducing Q below φ. Again this can be explained due to
less merges than with other parameter settings. For the same reason these set-
tings need in general more computation time and produce larger relaxed MDDs.
Note also that, even for small values of φ, upper bounds obtained from A∗C are
substantially smaller than UB(r).

82 M. Horn and G. R. Raidl

Fig. 3. Lower and upper bounds, respective compilation times, and sizes of obtained
relaxed MDDs for selected benchmark sets.

5.3 Main Comparison of A∗C and TDC

We start with a graphical comparison for a selected subset of instance classes
in Fig. 3. Shown are upper bounds obtained from relaxed MDDs compiled with
A∗C and TDC, respectively, corresponding compilation times, and the sizes of
the obtained MDDs. Each group of bars corresponds to a specific instance class
and shows average results, except for instance class Rat which contains only
one instance per instance class. The first two bars from the left to right always
correspond to relaxed MDDs obtained from A∗C with parameters {L1, φ = 1}
and {L2,Δ, φ = 5000, k = 103}, respectively. The first parameter setting is
the case where A∗C merges nodes most aggressively whereas the latter setting

A∗-Based Compilation of Relaxed Decision Diagrams 83

lets A∗C select nodes for merging more carefully, but still with a reasonable
total compilation time. The third bar corresponds to relaxed MDDs obtained
from TDC with β = 5000. The brighter parts of the bars indicate the results
for the in general incomplete relaxed MDDs obtained when A∗C terminates as
soon as t is selected for expansion whereas the darker parts show the results
for the completed relaxed MDDs. For instance, the brighter part of the bars
in the diagrams on the left side show average Zub

min values. Diamond markers
indicate the average lengths of the best known LCSs from the literature obtained
from [16]. The black dashed lines show the independent upper bounds UB(r).

We can see that if A∗C terminates as soon as t is selected for expansion then
we obtain in all considered cases MDDs yielding significantly tighter bounds than
the MDDs obtained from TDC. Moreover, compilation times are shorter and the
obtained MDDs are smaller in case of A∗C. Note that although these relaxed
MDDs are incomplete in the sense that not all feasible solutions are covered, they
can still be further used, e.g., for the DD-based branch-and-bound approach as
described by Bergman et al. [3]. It is still possible to derive an exact cut set
of nodes to branch on by considering nodes that are not expanded yet, too. If
we consider complete relaxed MDDs from A∗C then the obtained upper bounds
are still tighter or equal than those from relaxed MDDs obtained from TDC,
however the compilation with A∗C is not faster anymore. Note that TDC was
not able to compile relaxed MDDs with β = 5000 within the time limit of three
hours for instances from set ES with n = 5000. Also the A∗C approach could
not compile a complete relaxed MDD for instances of set Rat with m = 200,
|Σ| = 20, and n = 600 within the three hours time limit. However, with the
stopping condition of selecting t for expansion, A∗C terminated much earlier.
As the length of the longest path of the incomplete relaxed MDD when A∗C
aborts after three hours is also a feasible upper bound, we show these values in
these cases, too.

Finally, Table 1 presents more detailed main results of our computational
experiments. Here, A∗C is always terminated when t is selected for expansion.
Each row contains aggregated results of one instance class. The characteristics of
the instance classes can be seen in the first four columns whereas column UB(r)
shows the average independent upper bound. The next eight columns belong to
results obtained from relaxed MDDs compiled with A∗C and TDC, respectively.
Hereby, columns Zub

min and Z lp(t) state the average lengths of the longest paths
obtained from the compiled MDDs. Columns σ(·) report corresponding standard
deviations. Average compilation times in seconds are listed in columns t. Finally,
columns gap report the remaining optimality gaps (ub−obj)/ub·100% in relation
to the objective values of so far best known solutions obtained from [16] and listed
in column obj; value ub refers to the upper bound obtained from the considered
approach, i.e., Zub

min or Z lp. We remark that [16] shows experimental results
for two parameter settings, one tailored to obtain as good as possible heuristic
solutions, and one targeted towards smallest possible remaining optimality gaps.
While we use the better objective values from the former results, the gaps listed
in our table for [16] are those of the latter.

84 M. Horn and G. R. Raidl

Table 1. Main results for A∗C and TDC and comparison to the anytime A∗ search
from [16].

A∗C TDC lit. best [16]

n |Σ| m UB(r) Zub
min σ(Zub

min) t[s] gap[%] Zlp(t) σ(Zlp(t)) t[s] gap[%] obj gap[%]

B
B

1
0
0
0

2
10 807.4 781.6 9.1 8.9 13.4 882.7 4.4 18.7 23.3 676.7 16.2

100 792.7 767.3 4.5 43.2 26.5 871.8 4.3 74.2 35.4 563.6 30.6

4
10 796.5 759.5 6.7 6.4 28.2 879.5 4.1 27.7 38.0 545.5 29.4

100 779.0 739.4 8.2 22.5 47.2 868.2 4.7 181.3 55.1 390.2 50.9

8
10 794.8 732.8 11.3 7.7 36.9 874.9 5.7 45.5 47.1 462.7 38.0

100 772.3 708.2 5.3 23.1 61.4 857.6 3.3 386.4 68.1 273.4 65.0

24
10 786.1 689.1 14.5 12.5 44.0 846.9 3.5 131.8 54.5 385.6 40.5

100 768.4 669.8 9.9 42.0 77.7 818.3 1.8 1261.4 81.7 149.5 79.5

R
a
t

6
0
0

4

10 345.0 319.0 – 4.8 35.4 570.0 – 27.7 63.9 206.0 38.0

15 347.0 331.0 – 5.2 42.9 564.0 – 20.6 66.5 189.0 44.5

20 293.0 277.0 – 9.4 37.2 494.0 – 34.4 64.8 174.0 39.5

25 344.0 327.0 – 5.4 47.1 557.0 – 44.1 68.9 173.0 47.4

40 315.0 300.0 – 10.6 48.7 455.0 – 26.2 66.2 154.0 48.1

60 343.0 323.0 – 5.1 52.3 548.0 – 62.5 71.9 154.0 53.1

80 281.0 261.0 – 12.6 44.8 466.0 – 36.6 69.1 144.0 47.6

100 279.0 263.0 – 5.5 47.1 497.0 – 118.5 72.0 139.0 49.6

150 222.0 222.0 – 13.2 41.0 443.0 – 142.3 70.4 131.0 40.2

200 231.0 228.0 – 40.3 44.7 436.0 – 223.7 71.1 126.0 44.9

20

10 191.0 167.0 – 19.6 56.9 493.0 – 101.3 85.4 72.0 58.7

15 198.0 169.0 – 45.1 62.7 467.0 – 268.2 86.5 63.0 62.9

20 190.0 159.0 – 101.7 65.4 456.0 – 278.2 87.9 55.0 65.2

25 173.0 145.0 – 18.5 64.1 417.0 – 158.6 87.5 52.0 68.1

40 176.0 143.0 – 53.0 65.0 421.0 – 379.6 88.1 50.0 70.3

60 195.0 161.0 – 439.7 70.8 431.0 – 284.2 89.1 47.0 70.3

80 180.0 145.0 – 518.7 69.7 376.0 – 269.5 88.3 44.0 69.1

100 173.0 138.0 – 103.5 71.0 359.0 – 545.3 88.9 40.0 71.8

150 172.0 145.0 – 128.0 73.8 323.0 – 609.6 88.2 38.0 71.5

200 170.0 133.0 – 195.7 73.7 324.0 – 897.6 89.2 35.0 70.2

E
S

1
0
0
0

2

10 795.3 783.6 4.3 5.6 21.0 987.5 1.3 19.7 37.3 618.9 21.2

50 791.0 779.4 3.0 12.8 30.6 982.7 1.2 40.8 45.0 540.9 30.6

100 788.7 777.3 3.0 18.4 32.8 980.8 0.9 77.6 46.8 522.1 32.9

10

10 477.6 462.2 2.9 4.9 55.6 951.8 2.7 138.4 78.5 205.0 54.9

50 473.7 455.7 1.8 15.4 69.8 928.7 2.1 339.4 85.2 137.5 69.1

100 472.2 454.0 2.0 28.9 72.7 919.5 2.1 591.8 86.5 124.1 71.9

2
5
0
0

25

10 820.1 800.1 2.4 11.5 70.4 2389.2 4.3 1453.7 90.1 236.6 70.1

50 816.5 791.0 1.7 39.1 82.3 2332.4 4.5 4367.0 94.0 140.4 81.9

100 814.4 788.3 1.4 74.2 84.3 2309.5 3.6 7514.3 94.7 123.4 84.0

5
0
0
0

100

10 888.3 853.9 2.6 62.7 82.9 – – – – 145.7 82.9

50 883.5 835.9 1.7 152.1 91.4 – – – – 72.0 91.3

100 882.3 829.5 1.6 373.3 92.7 – – – – 60.8 92.6

B
L

1
0
0

4

10 58.8 47.5 1.6 0.5 28.2 75.6 2.0 3.0 54.9 34.1 10.8

50 56.2 41.7 1.4 2.1 42.0 65.0 1.2 6.1 62.8 24.2 18.7

100 54.7 40.6 1.1 3.2 45.8 61.0 1.8 9.6 63.9 22.0 20.4

150 53.8 38.7 1.2 3.9 46.8 58.0 1.4 11.6 64.5 20.6 18.1

200 53.0 38.3 0.8 5.0 47.8 56.8 1.8 15.9 64.8 20.0 20.2

12

10 37.4 21.2 1.7 0.2 40.1 36.3 4.1 3.7 65.0 12.7 0.0

50 34.4 8.7 2.1 0.2 20.7 9.6 3.0 0.3 28.1 6.9 0.0

100 28.8 5.2 0.4 <0.1 0.0 5.2 0.4 <0.1 0.0 5.2 0.0

150 23.8 4.7 0.5 <0.1 0.0 4.7 0.5 <0.1 0.0 4.7 0.0

200 22.8 4.1 0.3 <0.1 0.0 4.1 0.3 <0.1 0.0 4.1 0.0

20

10 29.2 9.5 1.0 <0.1 16.8 10.5 2.2 0.3 24.8 7.9 0.0

50 17.5 3.0 0.0 <0.1 0.0 3.0 0.0 <0.1 0.0 3.0 0.0

100 12.1 2.1 0.3 <0.1 0.0 2.1 0.3 <0.1 0.0 2.1 0.0

150 7.2 1.9 0.3 <0.1 0.0 1.9 0.3 <0.1 0.0 1.9 0.0

200 6.8 1.1 0.3 <0.1 0.0 1.1 0.3 <0.1 0.0 1.1 0.0

A∗-Based Compilation of Relaxed Decision Diagrams 85

Fig. 4. Relative differences of upper bounds between Zub
min and UB(r) as well as between

Zub
min and Z lp(t).

For the compilation of MDDs we set β = 5000 for TDC and φ = 5000 for A∗C
with labeling function L2,Δ and k = 104 for all instance except for benchmark
set ES where k is set to 103.

We observe that in all considered cases the obtained upper bounds Zub
min are

tighter than UB(r) as well as the upper bounds obtained from relaxed MDDs
compiled with TDC. Only in one single case, for benchmark set Rat with |Σ| = 4,
m = 150, n = 600, the upper bound UB(r) is equal to Zub

min. We notice an average
relative difference between Zub

min and UB(r) of 14.8% over all instances. Consider-
ing Zub

min and Z lp(t) from relaxed MDDs compiled with TDC we get an average
relative difference of 43.7%. The boxplots shown in Fig. 4 give deeper insight
on the relative differences between Zub

min and UB(r) as well as the differences
between Zub

min and Z lp(t). The largest relative difference between upper bounds
obtained from relaxed MDDs compiled by A∗C and TDC occurs for instance
sets Rat, Virus, Random, and ES. For these benchmark sets the median of the
obtained relative differences is about 50%. Regarding instances of the BB bench-
mark set, substantially smaller relative differences are obtained. The fact that
BB instances are created in a way s.t. input strings have a large similarity to
each other seems to be an explanation for this discrepancy. The median of the
relative differences between upper bounds Zub

min and UB(r) is about 10% for all
benchmark sets. Only results from benchmark set ES exhibit a median relative
difference of about 4%, which can be explained by the longer input strings of
ES instances, e.g., n = 5000. Finally, BL instances exhibit some outliers, e.g.,
instances with a relative difference between Zub

min and UB(r) of 80% and dif-
ferences between Zub

min and Z lp(t) (TDC) of 0%. This is not surprising, since
benchmark set BL contains small instances that could be solved to proven opti-
mality by exact methods, and both construction methods, A∗C as well as TDC,
are able to compile relaxed MDDs that yield the optimal solution values as upper
bounds. This is also documented in Table 1 for instance classes of set BL with
n = 100 and |Σ| ∈ {12, 20} where the average optimality gap is 0%. In compar-
ison to [16], we can observe that A∗C is able to obtain even smaller optimality
gaps in 315 cases and equal optimality gaps in 73 cases. Most of the gaps from

86 M. Horn and G. R. Raidl

[16] were only obtained after a time limit of 15 min, while A∗C created the MDDs
in much shorter time.

6 Conclusions

In this work we compiled relaxed MDDs for the LCS problem to obtain upper
bounds. The proposed construction algorithm A∗C is not layer-oriented such as
TDC and utilizes fast independent upper bounds on subproblems for guidance in
the spirit of A∗ search. As independent upper bound we suggested using a com-
bination of two fast-to-calculate bounds from the literature and the new variant
UB3 that is approximately equally fast to compute but occasionally stronger
than the former bounds. To control the size of the relaxed MDD, A∗C merges
nodes when the list of open nodes exceeds a certain size. To determine suit-
able partner nodes for merging, we investigated different LCS-specific labeling
functions. The better performing dynamic labeling function adapts the domain
dynamically during the compilation process s.t. depending on the current situ-
ation nodes are merged more or less aggressively. When rigorously comparing
A∗C with a classical TDC on several benchmark instance sets from the literature,
we observed that A∗C is able to provide more compact relaxed MDDs that are
significantly stronger than relaxed MDDs obtained from TDC in shorter time.
For several instance classes relaxed MDDs compiled with A∗C yielded stronger
bounds than the best known upper bounds from the literature.

For future work it seems promising to embed the compilation of relaxed
MDDs into a branch-and-bound approach that branches over exact nodes of
the relaxed MDD, as already done in the literature for other kinds of problems,
where, however, the classical TDC was used instead of A∗C to compile relaxed
MDDs. To obtain also high quality heuristic solutions for subproblems within
such a branch-and-bound approach, ideas from the leading beam search methods
can further be adopted. Further interesting research directions will be to inves-
tigate different strategies for the novel dynamic labeling functions mechanism
and to perform more detailed analysis of the ability of A∗C to reduce the size
of relaxed MDDs, e.g. comparing for small instances the size of exact reduced
MDDs with relaxed MDDs compiled with A∗C.

References

1. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol.
4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74970-7 11

2. Beal, R., Afrin, T., Farheen, A., Adjeroh, D.: A new algorithm for “the LCS prob-
lem” with application in compressing genome resequencing data. BMC Genom.
17(4), 544 (2016). https://doi.org/10.1186/s12864-016-2793-0

3. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization
with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016)

https://doi.org/10.1007/978-3-540-74970-7_11
https://doi.org/10.1007/978-3-540-74970-7_11
https://doi.org/10.1186/s12864-016-2793-0

A∗-Based Compilation of Relaxed Decision Diagrams 87

4. Bergman, D., Cire, A.A., von Hoeve, W.J., Hooker, J.N.: Optimization bounds
from binary decision diagrams. INFORMS J. Comput. 26(2), 253–268 (2014)

5. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Decision Diagrams
for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-42849-9

6. Bergman, D., Cire, A.A., van Hoeve, W.-J., Yunes, T.: BDD-based heuristics for
binary optimization. J. Heuristics 20(2), 211–234 (2014). https://doi.org/10.1007/
s10732-014-9238-1

7. Blum, C., Blesa, M.J.: Probabilistic beam search for the longest common subse-
quence problem. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) SLS 2007. LNCS,
vol. 4638, pp. 150–161. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74446-7 11

8. Blum, C., Blesa, M.J., López-Ibáñez, M.: Beam search for the longest common
subsequence problem. Comput. Oper. Res. 36(12), 3178–3186 (2009)

9. Blum, C., et al.: Solving longest common subsequence problems via a transforma-
tion to the maximum clique problem. Comput. Oper. Res. 125, 105089 (2021).
https://doi.org/10.1016/j.cor.2020.105089

10. Blum, C., Festa, P.: Longest common subsequence problems. In: Metaheuristics
for String Problems in Bioinformatics, chap. 3, pp. 45–60. Wiley (2016)

11. Bonizzoni, P., Della Vedova, G., Mauri, G.: Experimenting an approximation algo-
rithm for the LCS. Discret. Appl. Math. 110(1), 13–24 (2001)

12. Brisk, P., Kaplan, A., Sarrafzadeh, M.: Area-efficient instruction set synthesis for
reconfigurable system-on-chip designs. In: Proceedings of DAC 2004 - the 41st
Annual Design Automation Conference, pp. 395–400. IEEE Press (2004)

13. Chan, H.T., Yang, C.B., Peng, Y.H.: The generalized definitions of the two-
dimensional largest common substructure problems. In: Proceedings of the 33rd
Workshop on Combinatorial Mathematics and Computation Theory, pp. 1–12.
National Taiwan University (2016)

14. Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing prob-
lems. Oper. Res. 61(6), 1411–1428 (2013)

15. Djukanovic, M., Raidl, G.R., Blum, C.: A beam search for the longest common
subsequence problem guided by a novel approximate expected length calculation.
In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds.) LOD
2019. LNCS, vol. 11943, pp. 154–167. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-37599-7 14

16. Djukanovic, M., Raidl, G.R., Blum, C.: Finding longest common subsequences:
new anytime A* search results. Appl. Soft Comput. 95, 106499 (2020). https://
doi.org/10.1016/j.asoc.2020.106499

17. Easton, T., Singireddy, A.: A large neighborhood search heuristic for the longest
common subsequence problem. J. Heuristics 14(3), 271–283 (2008). https://doi.
org/10.1007/s10732-007-9038-y

18. Fraser, C.B.: Subsequences and supersequences of strings. Ph.D. thesis, University
of Glasgow, UK (1995)

19. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

20. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

21. Horn, M., Maschler, J., Raidl, G.R., Rönnberg, E.: A*-based construction of deci-
sion diagrams for a prize-collecting scheduling problem. Comput. Oper. Res. 126,
105125 (2021). https://doi.org/10.1016/j.cor.2020.105125

https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1007/s10732-014-9238-1
https://doi.org/10.1007/s10732-014-9238-1
https://doi.org/10.1007/978-3-540-74446-7_11
https://doi.org/10.1007/978-3-540-74446-7_11
https://doi.org/10.1016/j.cor.2020.105089
https://doi.org/10.1007/978-3-030-37599-7_14
https://doi.org/10.1007/978-3-030-37599-7_14
https://doi.org/10.1016/j.asoc.2020.106499
https://doi.org/10.1016/j.asoc.2020.106499
https://doi.org/10.1007/s10732-007-9038-y
https://doi.org/10.1007/s10732-007-9038-y
https://doi.org/10.1016/j.cor.2020.105125

88 M. Horn and G. R. Raidl

22. Huang, K., Yang, C., Tseng, K.: Fast algorithms for finding the common subse-
quences of multiple sequences. In: Proceedings of the IEEE International Computer
Symposium, pp. 1006–1011. IEEE Press (2004)

23. Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA struc-
tures. J. Comput. Biol. 9(2), 371–388 (2002)

24. Kinable, J., Cire, A.A., van Hoeve, W.J.: Hybrid optimization methods for time-
dependent sequencing problems. Eur. J. Oper. Res. 259(3), 887–897 (2017)

25. Kruskal, J.B.: An overview of sequence comparison: time warps, string edits, and
macromolecules. SIAM Rev. 25(2), 201–237 (1983)

26. Li, Y., Wang, Y., Zhang, Z., Wang, Y., Ma, D., Huang, J.: A novel fast and memory
efficient parallel mlcs algorithm for long and large-scale sequences alignments. In:
2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 1170–
1181. IEEE Press (2016)

27. Maier, D.: The complexity of some problems on subsequences and supersequences.
J. ACM 25(2), 322–336 (1978)

28. Peng, Z., Wang, Y.: A novel efficient graph model for the multiple longest common
subsequences (MLCS) problem. Front. Genet. 8, 104 (2017)

29. Shyu, S.J., Tsai, C.Y.: Finding the longest common subsequence for multiple bio-
logical sequences by ant colony optimization. Comput. Oper. Res. 36(1), 73–91
(2009)

30. Smith, T., Waterman, M.: Identification of common molecular subsequences. J.
Mol. Biol. 147(1), 195–197 (1981)

31. Wang, Q., Korkin, D., Shang, Y.: A fast multiple longest common subsequence
(MLCS) algorithm. IEEE Trans. Knowl. Data Eng. 23(3), 321–334 (2011)

Partitioning Students into Cohorts
During COVID-19

Richard Hoshino1(B) and Irene Fabris2

1 Northeastern University, Vancouver, BC, Canada
r.hoshino@northeastern.edu

2 Quest University Canada, Squamish, BC, Canada
irene.fabris@questu.ca

Abstract. The COVID-19 pandemic has forced educational institutions
to make significant changes to safeguard the health and safety of their
students and teachers. One of the most effective measures to reduce virus
transmission is partitioning students into discrete cohorts.

In primary and middle schools, it is easy to create these cohorts (also
known as “learning groups”), since students in each grade take the same
set of required courses. However, in high schools, where there is much
diversity in course preferences among individual students, it is extremely
challenging to optimally partition students into cohorts to ensure that
every section of a course only contains students from a single cohort.

In this paper, we define the Student Cohort Partitioning Problem,
where our goal is to optimally assign cohorts to students and course
sections, to maximize students being enrolled in their desired courses.
We solve this problem by modeling it as an integer linear program, and
apply our model to generate the Master Timetable for a Canadian all-
boys high school, successfully enrolling students in 87% of their desired
courses, including 100% of their required courses. We conclude the paper
by explaining how our model can benefit all educational institutions
that need to create optimal student cohorts when designing their annual
timetable.

Keywords: School timetabling · Integer programming · Optimization

1 Introduction

The COVID-19 virus has led to the worst global pandemic in over a hundred
years. Since the first case was identified in December 2019, the disease has spread
worldwide, leading to 131 million cases and 2.8 million deaths as of April 1, 2021
[13]. In addition to destabilizing world economies, the pandemic has also had a
profound impact on education, with nearly 87% of the world’s students, i.e.,
1.5 billion learners in over 170 countries, affected by school closures [23]. The
switch to Remote Learning has been overwhelming for many students who live
in conditions that are not suitable for home study, and has further exacerbated
social inequalities such as access to technology [14,20].
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 89–105, 2021.
https://doi.org/10.1007/978-3-030-78230-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_6

90 R. Hoshino and I. Fabris

In many countries, governments and school boards have invested considerable
resources to safely bring students back to school. There are numerous measures to
mitigate COVID-19 transmission in schools and the Center for Disease Control
[8] divides these mitigation measures into three categories: personal controls
(e.g. hand hygiene, masks, and physical distancing), engineering controls (e.g.
air ventilation systems, plexiglass barriers), and administrative controls (e.g.
scheduling breaks and meals at different times).

According to the CDC, the most important administrative control is to ensure
that the same group of students learn together each day, avoiding interactions
with other student groups. These learning groups, also known as cohorts, are
already in place at many primary schools, since the same group of students stay
together for the entire year, learning from a single teacher. Creating cohorts is
straightforward for students in many middle schools and junior high schools,
since every student in each grade takes the same set of required courses.

However, creating cohorts is far more complex for students in senior high
school (usually 16- and 17-year-olds), since these students have a much larger
set of course options available. While some schools allow students to self-select
into a particular stream (e.g. Arts, Sciences) where they only take courses with
students from that stream, many schools encourage or require students to take
courses from all disciplines, with each discipline having numerous options.

To illustrate the challenge of partitioning students into cohorts, consider a
scenario where each of 9 students (S1 to S9) wishes to enroll in four courses
chosen among 12 course offerings (C1 to C12).

Suppose we have the following set of desired courses.

Student Desired courses

S1 C1, C4, C7, C10

S2 C1, C5, C8, C11

S3 C1, C6, C9, C12

S4 C2, C4, C9, C11

S5 C2, C5, C7, C12

S6 C2, C6, C8, C10

S7 C3, C4, C8, C12

S8 C3, C5, C9, C10

S9 C3, C6, C7, C11

We can construct a timetable that grants each of the 9 students all four of
their requests, with each course taking place in one time slot.

Partitioning Students into Cohorts During COVID-19 91

Course Enrolled students Time slot Course Enrolled students Time slot

C1 S1, S2, S3 1 C7 S1, S5, S9 3

C2 S4, S5, S6 1 C8 S2, S6, S7 3

C3 S7, S8, S9 1 C9 S3, S4, S8 3

C4 S1, S4, S7 2 C10 S1, S6, S8 4

C5 S2, S5, S8 2 C11 S2, S4, S9 4

C6 S3, S6, S9 2 C12 S3, S5, S7 4

For example, student S1’s timetable is C1, C4, C7, C10. If we give a score of 1
point whenever a student is enrolled in a desired course, we see that the above
timetable achieves the best possible score of 9 × 4 = 36.

Now suppose we need to split the 9 students and 12 courses into 3 cohorts.
Suppose we partition our students and courses into these cohorts of equal size:

Cohort Students Courses

1 S1, S2, S6 C1, C4, C8, C10

2 S4, S5, S9 C2, C5, C7, C11

3 S3, S7, S8 C3, C6, C9, C12

Since each course is only available to students from that cohort, we can no
longer enroll students in all of their desired courses. For example, student S1 is
enrolled in three desired courses (C1, C4, C10) but not in C7 because this course
is only offered to students in Cohort 2, and S1 is assigned to Cohort 1. We can
show that the above cohort partition yields a timetable scoring 21 total points.

Assuming that each of the three cohorts must contain 3 students and 4
courses, we can show that 21 points is optimal. Thus, the best possible cohort
partition produces a 41.7% reduction from the maximum score of 36.

This simple example illustrates the challenge of cohort partitioning. At large
high schools, where there are thousands of students with heterogeneous course
preferences, school administrators are pressured to ensure that their students can
enroll in their desired courses. Due to COVID-19, the additional requirement of
student cohorts makes timetabling even harder.

In the Canadian province of British Columbia, where both authors reside,
the government mandated cohorts of size at most 120, for every high school in
the province. Thus, a small high school with 400 students (100 students for each
of Grades 9, 10, 11, 12) could treat each grade as a single cohort, and would
only need to forbid students from taking courses outside of their cohort (e.g. a
Grade 11 student taking Grade 12 math). However, for a large high school with
2000 or more students, creating these cohorts is incredibly challenging.

The provincial government announced the 120-student cohort limit on July
29, 2020, as the centerpiece of their Back to School plan [1]. Thus, schools had

92 R. Hoshino and I. Fabris

just over a month to implement this policy, to ensure their students and staff
could return in September under the new guidelines. Numerous solutions were
reported: restricting student choice by eliminating courses, scheduling certain
courses outside of school hours by making them virtual, and hiring more teach-
ers to teach additional “sections” of a course (e.g. one section of Calculus per
cohort). Canadian High Schools usually define a course section as an offering
distinguished from other course sections by time slot, classroom, and teacher
(e.g. offering multiple sections of AP Calculus on different days and times).

Some schools simply ignored the cohort policy, as they would have been forced
to re-design their Master Timetable. For example, at one high school, several
sections of a course have students from six different cohorts, with the students
in each cohort required to sit together in the same part of the classroom [21].

One school hired the authors of this paper to apply Linear Programming
techniques to maximize the students’ ability to take their desired courses while
ensuring that each section of every course only consists of students from a single
cohort. We recently developed an algorithm for optimizing student course pref-
erences in school timetabling [12], and in this paper, we expand upon this work
by introducing and solving the Student Cohort Partitioning Problem (SCPP).

This paper proceeds as follows. In Sects. 2 and 3, we define the SCPP and pro-
vide a brief literature review on related work that involves partitioning students
into cohorts. In Sect. 4, we describe our solution to the SCPP by formulating it as
an integer linear program. In Sect. 5, we apply our model (with over 1.5 million
binary decision variables) to generate the Master Timetable for a Canadian high
school, partitioning 328 students and 196 course sections into three cohorts. In
Sect. 6, we discuss the limitations of cohort-based timetabling on student choice,
and in Sect. 7, we conclude the paper with questions and directions for future
research.

2 Problem Definition

To avoid confusion in how we label our sets, we now rename timeslots as blocks
and cohorts as learning groups. Let I be the set of individual students, T be the
set of teachers, C be the set of courses, S be the set of sections, B be the set of
blocks, and L be the set of learning groups.

Each course has one or more sections, and each course section is represented
by the pair (c, s), where c ∈ C and s ∈ S.

In the School Timetabling Problem (STP), our goal is to find a feasible assign-
ment of course sections to teachers and blocks. The more general version of the
STP is a combinatorial optimization problem, which asks for the best assign-
ment satisfying all of the hard constraints while maximizing the satisfaction of
the teachers being assigned their desired courses in specific blocks.

The Post-Enrollment Course Timetabling Problem (PECTP) was introduced
just over a decade ago [17], as part of the second International Timetabling
Competition. In the PECTP, points are awarded for enrolling students in any
section of a desired course. In addition to all of the constraints in the STP (e.g. no
teacher can be assigned to two courses in the same block), the PECTP involves

Partitioning Students into Cohorts During COVID-19 93

additional student-related hard constraints, such as ensuring that no student is
enrolled in multiple sections of the same course.

In this paper, we define the Student Cohort Partitioning Problem (SCPP)
to be identical to the PECTP, with these three additional requirements:

(i) Each student i ∈ I is assigned a learning group l ∈ L.
(ii) Each course section (c, s) ∈ C × S is assigned a learning group l ∈ L.
(iii) Student i can be enrolled in section s of course c only if both i and (c, s)

are assigned to the same learning group l.

The SCPP can be modeled as a 0-1 integer linear program, where the binary
variable Xt,s,c,b,l (Yi,s,c,b,l) equals 1 if teacher t (student i) is assigned to section
s of course c in block b and learning group l, and is equal to 0 otherwise.

In our earlier example with 9 students and 12 cohorts, our optimal solution
placed student 8 in learning group 3, assigning this student to courses 3, 6, 9, 12,
which are offered in blocks 1, 2, 3, 4, respectively. Since each of these courses has
a single section (s = 1), we have Y8,1,3,1,3 = Y8,1,6,2,3 = Y8,1,9,3,3 = Y8,1,12,4,3 = 1.

Let Dt,c,b be the desirability of teacher t being assigned to course c in block
b. This coefficient will be a function of teacher t’s ability and willingness to teach
course c, combined with their availability in block b. Let Pi,c,b be the preference
of student i being enrolled in course c in block b. (We assume that the coefficients
Dt,c,b and Pi,c,b are independent of the section s and learning group l.)

Then, subject to all of the hard constraints, our integer linear program aims
to maximize the following objective function:

∑

t∈T

∑

s∈S

∑

c∈C

∑

b∈B

∑

l∈L

Dt,c,b · Xt,s,c,b,l +
∑

i∈I

∑

s∈S

∑

c∈C

∑

b∈B

∑

l∈L

Pi,c,b · Yi,s,c,b,l.

In Sect. 4, we present the hard constraints for this timetabling optimization
problem. But first, we present a brief summary of related work.

3 Related Work

Partitioning students into learning groups is a complex challenge faced by school
administrators. This explains why scholars in Operations Research have devised
innovative techniques to create these student partitions, and apply them to real-
life timetabling instances to serve educational institutions all over the world.

Computer Science students at Boston University are optimally matched with
peers to form learning groups that increase collective student learning [2] [3].
The practice of creating these cohorts, known as team formation, is an NP-Hard
combinatorial optimization problem that has been tackled in the last two decades
using techniques such as simulated annealing [5], branch and cut [9], and genetic
algorithms [24].

Researchers have applied resolvable complete block designs to pre-assign stu-
dents to groups, ensuring that no pair of students works together on more than
one group assignment. This is an application of the Social Golfer Problem [22] to
education. For example, Baker et al. [4] deploy both linearized IP and Constraint

94 R. Hoshino and I. Fabris

Logic Programming (CLP) models to maximize exposure of MBA students to
each other at Dartmouth College’s Tuck School of Business.

As we do in our paper, many educational institutions want to section stu-
dents, i.e. they want to partition students into non-overlapping groups while
maximizing the percentage of students being enrolled in their requested courses.
A comprehensive introduction to student sectioning is found in Kristiansen et
al. [15], which presents the High School Student Sectioning (HSSS) problem,
formulating it as an integer program, and solving fifteen real-life instances at
Danish Schools using Gurobi, a state-of-the-art MIP solver [16].

Over the last decade, there have been two main approaches to solve instances
of the Student Sectioning problem: sectioning during course timetabling and
batch sectioning after a complete timetable is developed [18].

In the first approach, students who request similar combinations of courses
are grouped into the same course sections to minimize potential student conflicts.
Thus, the initial sectioning phase precedes the assignment of course sections
to time slots. In this sense, sectioning becomes a pre-processing stage prior to
timetabling. Two examples of this practice are Carter’s homogeneous sectioning
[7] and Schindl’s regular sub-division of the students using a conflict graph [19].

In the second approach, the task of assigning course sections to time slots is
performed first, and only after are students assigned to sections of their desired
courses. For example, Müller et al. [18] solve a batch sectioning problem for
Purdue University using a heuristic based on an iterative forward search, which
progressively searches different neighborhoods of the solution space finding fea-
sible yet incomplete solutions which are optimized in subsequent iterations.

Our Student Cohort Partitioning Problem (SCPP) most closely resembles
the batch sectioning formulation, specifically the work by Goebbels et al. [10]
which models a batch sectioning problem at Niederrhein University as an IP and
finds an optimal solution using IBM’s ILOG CPLEX 12.80 solver. To construct
the solution, they first optimally partition students into groups of homogeneous
sizes and then match these groups to courses previously assigned to time slots.

Despite some similarities, the SCPP differs from the literature in two impor-
tant ways. First, we partition both students and courses into learning groups.
Second, each student’s timetable comprises of a personalized set of requested
courses, rather than the same set of courses as everyone else in their cohort.

In the next two sections, we present the key results of this paper. First, we
model the SCPP, an extension of the Post-Enrollment Course Timetabling Prob-
lem that was made necessary by the COVID-19 pandemic. Second, we introduce
a multi-stage heuristic that finds a close-to-optimal solution of the SCPP, and
apply it to generate the Master Timetable for a Canadian high school, partition-
ing 328 students and 196 course sections into 3 learning groups.

4 Mathematical Model

Let I be the set of individual students, T be the set of teachers, C be the set
of courses, S be the set of sections, B be the set of blocks, and L be the set of
learning groups.

Partitioning Students into Cohorts During COVID-19 95

Our integer linear program (ILP) aims to maximize
∑

t∈T

∑

s∈S

∑

c∈C

∑

b∈B

∑

l∈L

Dt,c,b · Xt,s,c,b,l +
∑

i∈I

∑

s∈S

∑

c∈C

∑

b∈B

∑

l∈L

Pi,c,b · Yi,s,c,b,l,

where Dt,c,b is the desirability coefficient of teacher t being assigned to course c
in block b, and Pi,c,b is the preference coefficient of student i being assigned to
course c in block b.

We define the following four binary variables, two of which appear in our
objective function.

(i) For each t ∈ T, s ∈ S, c ∈ C, b ∈ B, and l ∈ L, let Xt,s,c,b,l equal 1 if teacher
t is assigned to section s of course c in block b and learning group l, and is
equal to 0 otherwise.

(ii) For each i ∈ I, s ∈ S, c ∈ C, b ∈ B, and l ∈ L, let Yi,s,c,b,l equal 1 if student
i is assigned to section s of course c in block b and learning group l, and is
equal to 0 otherwise.

(iii) For each s ∈ S, c ∈ C, and l ∈ L, let X̂s,c,l equal 1 if section s of course c
is assigned to learning group l, and is equal to 0 otherwise.

(iv) For each i ∈ I and l ∈ L, let Ŷi,l equal 1 if student i is assigned to learning
group l, and is equal to 0 otherwise.

We now present the hard constraints.
Each section of a course can belong to at most one learning group.

∑

l∈L

X̂s,c,l ≤ 1 ∀ s ∈ S, c ∈ C (1)

For every learning group, each section of a course is assigned to exactly one
teacher and is scheduled in exactly one block.

∑

t∈T

∑

b∈B

Xt,s,c,b,l = X̂s,c,l ∀ s ∈ S, c ∈ C, l ∈ L (2)

No teacher can be assigned to two different courses in the same block.
∑

s∈S

∑

c∈C

∑

l∈L

Xt,s,c,b,l ≤ 1 ∀ t ∈ T, b ∈ B (3)

Course c must be timetabled exactly Oc times, where Oc is the number of
sections of course c that will be offered.

∑

t∈T

∑

s∈S

∑

b∈B

∑

l∈L

Xt,s,c,b,l = Oc ∀ c ∈ C (4)

Each student must belong to exactly one learning group. (Note that teachers
may belong to multiple learning groups.)

∑

l∈L

Ŷi,l = 1 ∀ i ∈ I (5)

96 R. Hoshino and I. Fabris

No learning group can contain more than Ml students, where Ml is the
maximum size of a learning group.

∑

i∈I

Ŷi,l ≤ Ml ∀ l ∈ L (6)

If a student is enrolled in a course section in learning group l, then both the
student and the course section must belong to learning group l.

Yi,s,c,b,l ≤ Ŷi,l ∀ i ∈ I, s ∈ S, c ∈ C, b ∈ B, l ∈ L (7)

Yi,s,c,b,l ≤ X̂s,c,l ∀ i ∈ I, s ∈ S, c ∈ C, b ∈ B, l ∈ L (8)

No student can be enrolled in more than one course in the same block.
∑

s∈S

∑

c∈C

∑

l∈L

Yi,s,c,b,l ≤ 1 ∀ i ∈ I, b ∈ B (9)

No student can be enrolled in multiple sections of the same course.
∑

s∈S

∑

b∈B

∑

l∈L

Yi,s,c,b,l ≤ 1 ∀ i ∈ I, c ∈ C (10)

Section s of course c can have at most Ms,c students, where Ms,c is the
maximum enrollment for this course section.

∑

i∈I

∑

l∈L

Yi,s,c,b,l ≤ Ms,c ∀ s ∈ S, c ∈ C, b ∈ B (11)

This is our model for the Student Cohort Partitioning Problem (SCPP).
Our solution is found by maximizing the objective function of this integer linear
program subject to these eleven constraints.

In practice, the large majority of these variables Xt,s,c,b,l and Yi,s,c,b,l will
be pre-set to 0, since teachers are qualified to only teach a small subset of the
offered courses, and students will only want to enroll in a small subset of these
courses. By fixing these variables to be 0, we can solve the SCPP whenever our
sets |T |, |I|, |S|, |C|, |B|, |L| are of reasonable size.

While our ILP model is guaranteed to output an optimal solution, the com-
puting time grows exponentially as the problem size increases. Thus, for a large
school with hundreds of students and course offerings, we might not be able to
solve the ILP. This motivates the need for approximation algorithms.

We conclude this section of the paper by proposing two heuristics: a multi-
step approach called “Progressive Assignment” that orders the courses by the
preference coefficient Pi,c,b, and a Large Neighbourhood Search (LNS). Both
heuristics are inspired by the principle that when tackling an NP-complete prob-
lem, it is good practice to reduce the initial intractable problem to a series of
simpler tractable subproblems [6].

Partitioning Students into Cohorts During COVID-19 97

In our first heuristic, we divide the course sections into k different groups,
sorted by course priority. In other words, courses with the highest preference
coefficients Pi,c,b are partitioned first. We solve the SCPP on this smaller subset
of courses in C, and lock in the assignments X̂s,c,l found in the optimal solution.
We then include these assignments as hard constraints in the following step,
where we solve the SCPP on the next subset of courses in C.

Thus, we build the timetable progressively, assigning only a subset of the
course sections at a time. While the X̂s,c,l variables stay fixed throughout our
Progressive Assignment algorithm, the values of Ŷi,l and Yi,s,c,b,l change in each
of the k steps.

We allow this because once the X̂s,c,l assignments are set, our ILP quickly
finds the best possible assignment of students to learning groups, and students
to course sections, to generate the optimal solution at each step. This ensures
that the final solution produced by the Progressive Assignment is close (although
most certainly not equal) to the optimal solution for the original SCPP.

In our second heuristic, we employ a Large Neighbourhood Search to itera-
tively improve our solution. Given any solution to the SCPP (e.g. the solution
found in our Progressive Assignment), we lock in all but h of the variables X̂s,c,l,
set them as hard constraints, and then re-calculate the SCPP to generate a new
solution where some of these h course sections may be re-assigned to differ-
ent learning groups. Since our initial solution was produced by one of the |L|h
assignments of learning groups to these h course sections, our new SCPP solution
cannot be worse than our input solution. Thus, our LNS is analogous to “hill
climbing” because it performs iterative and incremental changes on an arbitrary
initial solution to find a better solution.

We may stop the search at any time, either after a fixed time limit or when
the algorithm appears to have converged. This heuristic, like all local search
algorithms, may get stuck in a local minimum, especially if the value of h is
small. However, when h is sufficiently large, the results of the LNS get better at
each step, until a close-to-optimal solution is found.

When these two algorithms are combined, we can rapidly generate a nearly-
optimal (or possibly optimal) solution to complex SCPP problems. We now apply
these algorithms on a real-world instance, an all-boys high school in Canada.

5 Application

St. George’s School (SGS) is located in Vancouver, the most populous city in
the Canadian province of British Columbia. SGS is one of Canada’s leading
independent schools, with an enrollment of 1200 students. Founded in 1930, the
school’s mission is to “inspire their students to become fine young men who will
shape positive futures for their families and the global community”.

For the SGS administration, the biggest challenge is creating the timetable
for the students in Grades 11 and 12. In 2020–2021 this represented 328 students,
with 165 juniors and 163 seniors at this all-boys high school. Unlike students in
the lower grades who take mostly required (core) courses, there are numerous

98 R. Hoshino and I. Fabris

elective courses in the final two years, and each student wants to enroll in a
different combination of courses from the over one hundred options available.

The majority of these course options are offered to students in both Grades 11
and 12, and traditionally the school has viewed students from these two grades
as a single cohort. Due to the government’s mandate of a 120-person cohort
limit, these 328 students needed to be partitioned into |L| = 3 learning groups.

The |I| = 328 individual students requested a total of 2303 courses, which
is fewer than the maximum total of |I| × |B| = 328 × 8 = 2624. This occurred
because the students could take a “self-study period”, i.e., a spare block.

Certain courses were canceled due to low enrollment. Based on the student
requests, the school decided to offer |C| = 89 different courses, of which 41 were
single-section courses. Of the 48 multi-section courses, many had two or three
sections, though one course (Social Studies 11) had |S| = 8 sections, since this
course was mandatory for all of the Grade 11 students. In all, there were 196
total course sections.

The SGS timetable has |B| = 8 blocks, and each of the 196 course sections
needed to be scheduled in one of these 8 blocks.

Each school day consists of four 70-minute class periods and one lunch break,
with a four-day “tumbling timetable”. Students alternate between their four
blocks (A, B, C, D) on Days 1 and 3 and their four blocks (E, F, G, H) on Days
2 and 4, repeating this pattern for the entire academic year.

Class Day 1 Day 2 Day 3 Day 4

Period 1 A E C G

Period 2 B F D H

Lunch Lunch Lunch Lunch Lunch

Period 3 C G A E

Period 4 D H B F

Since the assignment of blocks to days and time slots is fixed by the school
administration, creating the optimal timetable is equivalent to optimally assign-
ing course sections to blocks.

The school leadership team also pre-assigned each of the 196 course sections
to one of the |T | = 50 teachers at the senior school. Pre-assigning teachers
to course sections reduces our ILP’s objective function to maximizing student
preferences.

Mathematically this is equivalent to setting the desirability coefficient Dt,c,b

to 0 if teacher t is assigned to at least one section of course c in some block b, and
ensuring a hard constraint of Xt,s,c,b,l = 0 whenever teacher t is not assigned to
section s of course c. The pre-assignment of course sections to teachers reduced
the problem size from (|T | + |I|) · |S| · |C| · |B| · |L| to a smaller problem with
|I| · |S| · |C| · |B| · |L| = 328 × 196 × 8 × 3 = 1542912 total binary variables.

Partitioning Students into Cohorts During COVID-19 99

The school set the following weights for the preference coefficients Pi,c,b:

5 points if c is a high-priority elective course
3 points if c is a medium-priority elective course
1 point if c is a low-priority elective course

Of the 196 course sections, 149 were elective courses while the remaining 47
represented required courses – i.e., a student desiring a required course had to
be registered in at least one section of that course.

We modeled high-priority courses as soft constraints assigning them a large
weight in our student course preference matrix, whereas required courses were
treated as hard constraints which we hard coded in our ILP.

For their entire history, St. George’s School has created their timetable man-
ually. Given the challenges of solving a combinatorial optimization by hand, the
school has always pre-assigned each course section to one of the eight blocks
before creating each student’s timetable.

While this pre-assignment ensures that the educators know their exact teach-
ing schedule before they go on their summer holidays, this of course has a signif-
icant impact on the Objective Function, since each course section is locked into
a block rather than optimized to maximize students getting into their desired
courses. (The school has hired us to create their 2021–2022 timetable, which will
not include teacher pre-assignments or block pre-assignments.)

Our optimization program, written in Python, inputs an Excel sheet consist-
ing of all the course data and the individual student requests. For the actual
optimization, we use COIN-OR Branch and Cut (CBC), an open-source MIP
solver, with the Google OR-Tools linear solver wrapper [11].

We first generated the optimal timetable for just |L| = 1 learning group,
which was trivial since course sections were pre-assigned to blocks. Using the
model described in Sect. 4, our ILP computed the solution in just 8.5 s on an 8
GB Lenovo laptop running Windows 10 with a 2.1 GHz processor. The Python
code and input files deployed to design the optimal timetable are found in a
repository at https://github.com/ifabrisarabellapark/CPAIOR2021.

The results are presented below, grouped by course priority.

Priority type Total requested Total enrolled

Required 807 807

High 541 533

Medium 166 155

Low 789 727

TOTAL 2303 2222

When there is only one learning group (i.e., Pre-COVID), the objective func-
tion of our optimal timetable has value 533 × 5 + 155 × 3 + 727 × 1 = 3857, with
students being enrolled in 2222/2303 = 96% of their desired courses.

https://github.com/ifabrisarabellapark/CPAIOR2021

100 R. Hoshino and I. Fabris

In the 2303−2222 = 81 instances where a student was not assigned a section
of a desired course, the majority of them were due to over-capacity, including
all 8 + 11 = 19 of the unassigned High and Medium Priority requests.

Fortunately, all 19 of these requests had a reasonable alternative – for exam-
ple, the five students not getting into AP Chemistry 12 could instead take Chem-
istry 12, which was offered in the same block and had plenty of available seats.

We then applied our ILP model to partition the students and course sec-
tions, to find a solution to our Student Cohort Partitioning Problem (SCPP).
By definition, we knew that we could not exceed a success rate of 96%.

Since SGS requested learning groups to be evenly balanced, we set Ml = 110
as the maximum cohort size since we had |I| = 328 students and |L| = 3 learning
groups. As expected, our Python program could not solve the ILP within our
pre-set limit of 12 h, and so we applied our approximation algorithms.

We first solved the ILP for just the Required courses, and locked in the
learning groups for these 47 course sections. We then performed our Progressive
Assignment for the remaining course sections in order of priority: High, then
Medium, then Low. This entire process took less than five minutes, giving us
an initial assignment of course sections to learning groups (X̂s,c,l), students to
learning groups (Ŷi,l) and students to course sections (Yi,s,c,b,l).

We then applied the Large Neighbourhood Search (LNS), which locked in
the learning groups for 196 − h course sections, while allowing the remaining h
course sections to be re-assigned by our ILP. We found that reshuffling h = 30
was ideal for our problem size, so that each step of the search computed in an
average time of 60 seconds. Our local search algorithm converged to the same
solution within two hours for every single trial we ran.

This solution scores 518× 5+147× 3+525× 1 = 3556 points, with students
getting into 1997/2303 = 87% of their desired courses, including 100% of their
required courses. The results are presented below.

Priority type Total requested Progressive assignment LNS

Required 807 807 807

High 541 514 518

Medium 166 144 147

Low 789 524 525

TOTAL 2303 1989 1997

Our Master Timetable, with students being enrolled in 87% of their desired
courses, was delivered to SGS on August 20, 2020, less than two weeks after the
authors were introduced to this project. This gave plenty of time for the school
administrators to announce the learning groups of each student and each course
section, and set up each student’s on-campus activities (co-curriculars, lunch,
entrance times, and exit times) to occur exclusively within their learning group.

Partitioning Students into Cohorts During COVID-19 101

Each student was given a coloured ID card (Orange, Pink, Grey) correspond-
ing to their learning group, in addition to their 8-block timetable. In the 13% of
cases where the students were not given a desired course, the Registrar’s Office
made simple adjustments, such as enrolling students in a similar course (e.g. AP
Chem 12 to Chem 12), and inviting students to register for a different elective
course. Within a few days, each student had a satisfactory timetable.

St. George’s School has hired the authors to build the 2021–2022 Master
Timetable and has decided to no longer pre-assign course sections to teachers and
blocks. By doing this, the students will be able to get into a higher percentage of
their desired courses, regardless of whether the number of learning groups stays
at 3, or returns to 1 in a post-COVID world.

6 Discussion

Our final model for the Student Cohort Partitioning Problem (SCPP) has a
total of |I||S||C||B||L| = 328×196×8×3 = 1542912 total binary variables. The
size of this model prevented us from confirming that our solution was optimal.
Naturally, we wondered how close our implemented solution, with an 87% success
rate and an objective value of 518 × 5 + 147 × 3 + 525 × 1 = 3556 points, was to
the optimal solution for |L| = 3 learning groups.

To answer this question, we considered the easier problem of |L| = 2 learning
groups with at most Ml = 220 students in a cohort. If we restrict the set of
elective courses to just one priority class (High, Medium, Low) at a time, then
we can solve each of these three separate ILPs, each in just a few minutes.

Any solution to the SCPP with |L| = 3 and Ml = 110 is automatically a
solution to the easier SCPP with |L| = 2 and Ml = 110 + 110 = 220. Therefore,
our results for |L| = 2 and Ml = 220, marked in bold, provide a theoretical
upper bound to our optimization problem for St. George’s School with |L| = 3.

Priority type Total requested |L| = 2,Ml = 220 |L| = 3,Ml = 110

Required 807 807 807

High 541 518 518

Medium 166 155 147

Low 789 682 525

Total assignments 2303 2162 1997

Objective value 3992 3737 3556

The implemented solution scoring 3556 points is less than 5% below the
theoretical upper bound which scored 518×5+155×3+682×1 = 3737 points. Our
solution is provably optimal for the set of Required and High priority courses.

We presume that the actual optimal solution is much closer to 3556, since our
model mandates we enroll students in all of the elective courses simultaneously,

102 R. Hoshino and I. Fabris

rather than treating each priority class separately, as we did when computing the
upper bound. Thus, our construction is an overestimate of the actual optimal
solution for our problem with |L| = 3 and Ml = 110.

We were fortunate to find a solution satisfying 87% of student course requests,
since partitioning students into groups could have led to a terrible outcome for
the school, had the students selected a more heterogeneous set of courses.

To illustrate this point, consider a small school with |I| = 32 students, where
each student is required to select five courses, one from each of the five sets:
{A1, A2}, {B1, B2}, {C1, C2}, {D1,D2}, and {E1, E2}. Furthermore, suppose
that each of the 25 = 32 students selects a different set of 5 courses.

Assume each classroom can hold at most 16 students. Since there are 16
students who request each course, there is only the need to offer one section of
each course. If learning groups do not exist (i.e., |L| = 1), then it is trivial to
enroll all 32 students into all 5 of their courses. We simply assign each pair of
courses (e.g. A1 and A2) to be taught in the same time slot, which guarantees a
timetable where all 32 × 5 = 160 course requests are satisfied.

Now suppose |L| = 2, and we need to partition the |I| = 32 students and
|C| = 10 courses into two learning groups. It is straightforward to see that each
course partition is identical, by symmetry. For example, if we assign courses
{A1, B1, C1,D1, E1} to the first learning group and courses {A2, B2, C2,D2, E2}
to the second learning group, then each student is simply assigned to the learning
group that gives them the most number of desired courses. For example, the
student who wants {A2, B1, C2,D1, E2} is assigned to the second learning group
since this student would prefer a timetable with 3 desired courses instead of 2.

We can show that 2 students get into all five courses, 10 students get into four
courses, and 20 students get into three courses. Assuming each desired course
assignment has a score of 1 point, the objective value is 2×5+10×4+20×3 = 110,
resulting in a success rate of 110

160 = 0.6875. By making the small switch from
|L| = 1 learning groups to |L| = 2, our success rate drops from 100% to 68.75%.

This construction generalizes, from 25 students and 10 courses to 2n students
and 2n courses, showing that when there are |L| = 2 learning groups, it is possible
for the students to select their courses so that the optimal solution to the SCPP
results in a success rate that converges to 1

2 = 50% as n → ∞.
For all |L| > 2, we conjecture that a similar construction with |L|n students

and |L| learning groups results in the optimal SCPP solution having a success
rate converging to 1

|L| . We have verified this result for |L| = 3 and |L| = 4 using
Python. In other words, creating learning groups has a significant impact on
students being assigned their desired courses, especially when there are many
single-section courses and the students have heterogeneous course preferences.

We were fortunate that the |I| = 328 students at St. George’s School selected
their courses in such a way that enabled us to enroll them in 87% of their desired
courses (1997 out of 2303). This success percentage is notable given that our
theoretical upper bound shows that at most 2162 of these 2303 course requests
can be fulfilled, even with |L| = 2 learning groups.

Partitioning Students into Cohorts During COVID-19 103

7 Conclusion

In this paper, we defined the Student Cohort Partitioning Problem (SCPP) and
modeled it using an integer linear program. We then applied our model on a
real-world problem instance at a Canadian high school, partitioning |I| = 328
students into |L| = 3 learning groups while enrolling these students in 87% of
their desired courses, including 100% of their required courses.

Our collaboration with St. George’s School was a success, and the implemen-
tation of the learning groups was done smoothly and effectively. This is part of
the reason why the school has reported zero COVID-19 cases among the students
and staff of the Senior School thus far in the 2020–2021 academic year.

We recognize that our research on the SCPP has only begun, and further
research will need to be conducted to assess the scalability of our work to larger
data sets. A natural first step is to take the set of benchmark instances for the
Post-Enrollment Course Timetabling Problem (PECTP) and amend them with
two or more learning groups, to create benchmark instances for the SCPP.

The authors have signed contracts with five different high schools in British
Columbia, to build each school’s 2021–2022 Master Timetable. Here are the
questions we will be asking ourselves as we proceed with our work in the coming
months:

(a) Could SCPP solutions be improved by adding a few more sections of certain
courses? And if so, what would be the cost to the school? If the school had
enough money to add X extra sections, which sections should be added to
maximize the number of students being assigned their desired courses?

(b) How will our SCPP model handle additional requirements, such as requiring
teachers to belong to a single learning group? Should our model assign a
penalty whenever a teacher is assigned to multiple learning groups, and
include this penalty in the objective function?

(c) Given rising COVID-19 numbers in Canada (especially with new variants),
some schools may decide to restrict the number of days that each learn-
ing group attends the school. How would this policy change affect our
timetabling solutions?

(d) What are the best techniques to find fast nearly-optimal solutions to larger
SCPP instances? For example, would Constraint Programming techniques
and/or Benders decomposition outperform the methods presented in this
paper?

In British Columbia, schools will not “return to normal” until they reach
the final phase of the provincial Back to School plan, which is conditional on
wide vaccination and immunity among the population. As a result, schools in
our province, as well as in other areas of Canada and the world, will likely need
to design their 2021–2022 timetables to include multiple Learning Groups.

While the global pandemic continues, our SCPP formulation is extremely
applicable for educational institutions, as our model enables schools to create
cohorts to maximize students being able to take their desired courses, while
simultaneously reducing the spread of COVID-19 through optimal partitioning.

104 R. Hoshino and I. Fabris

Acknowledgments. The authors thank the reviewers for their insightful comments
that significantly improved the presentation of this paper. The authors also thank the
administrators at St. George’s School for making this collaboration possible. Specif-
ically, we acknowledge Sarah Coates (Associate Principal of Academics), Andrew
Shirkoff (Director of Risk Management), Jan Chavarie (Head of Applications Support),
and Jessie Bahia (Registrar).

References

1. B.C’.s Back to School Plan. https://www2.gov.bc.ca/gov/content/education-
training/k-12/covid-19-return-to-school#learning-group. Accessed 12 Apr 2021

2. Bahargam, S., Erdos, D., Bestavros, A., Terzi, E.: Personalized education; solving a
group formation and scheduling problem for educational content. In: Proceedings
of the 8th International Conference on Educational Data Mining, pp. 488–492.
International Educational Data Mining Society, Madrid (2015)

3. Bahargam, S., Erdos, D., Bestavros, A., Terzi, E.: Team formation for scheduling
educational material in massive online classes. arXiv preprint arXiv:1703.08762
(2017)

4. Baker, K.R., Magazine, M.J., Polak, G.G.: Optimal block design models for course
timetabling. Oper. Res. Lett. 30(1), 1–8 (2002)

5. Baykasoglu, A., Dereli, T., Das, S.: Project team selection using fuzzy optimization
approach. Cybern. Syst.: Int. J. 38(2), 155–185 (2007)

6. Bessiere, C., Carbonnel, C., Hebrard, E., Katsirelos, G., Walsh, T.: Detecting and
exploiting subproblem tractability. In: IJCAI International Joint Conference on
Artificial Intelligence, pp. 468–474. AAAI Press, California (2013)

7. Carter, M.W.: A comprehensive course timetabling and student scheduling system
at the University of Waterloo. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS,
vol. 2079, pp. 64–82. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44629-X 5

8. CDC Operational Considerations for Schools. https://www.cdc.gov/coronavirus/
2019-ncov/global-covid-19/schools.html. Accessed 12 Apr 2021

9. Chen, S.J., Lin, L.: Modeling team member characteristics for the formation of a
multifunctional team in concurrent engineering. IEEE Trans. Eng. Manag. 51(2),
111–124 (2004)

10. Goebbels, S., Pfeiffer, T.: Optimal student sectioning at Niederrhein University of
Applied Sciences. In: Neufeld, J.S., Buscher, U., Lasch, R., Möst, D., Schönberger,
J. (eds.) Operations Research Proceedings 2019. ORP, pp. 167–173. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-48439-2 20

11. Google OR-Tools: fast and portable software for combinatorial optimization.
https://developers.google.com/optimization. Accessed 12 Apr 2021

12. Hoshino, R., Fabris, I.: Optimizing student course preferences in school timetabling.
In: Hebrard, E., Musliu, N. (eds.) CPAIOR 2020. LNCS, vol. 12296, pp. 283–299.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58942-4 19

13. Johns Hopkins University & Medicine. https://coronavirus.jhu.edu/map.html.
Accessed 12 Apr 2021

14. Khlaif, Z.N., Salha, S.: The unanticipated educational challenges of developing
countries in Covid-19 crisis: a brief report. Interdisc. J. Virtual Learn. Med. Sci.
11(2), 130–134 (2020)

https://www2.gov.bc.ca/gov/content/education-training/k-12/covid-19-return-to-school#learning-group
https://www2.gov.bc.ca/gov/content/education-training/k-12/covid-19-return-to-school#learning-group
http://arxiv.org/abs/1703.08762
https://doi.org/10.1007/3-540-44629-X_5
https://doi.org/10.1007/3-540-44629-X_5
https://www.cdc.gov/coronavirus/2019-ncov/global-covid-19/schools.html
https://www.cdc.gov/coronavirus/2019-ncov/global-covid-19/schools.html
https://doi.org/10.1007/978-3-030-48439-2_20
https://developers.google.com/optimization
https://doi.org/10.1007/978-3-030-58942-4_19
https://coronavirus.jhu.edu/map.html

Partitioning Students into Cohorts During COVID-19 105

15. Kristiansen, S., Sørensen, M., Stidsen, T.R.: Student sectioning at high schools
in Denmark. In: 6th Multidisciplinary International Conference on Scheduling:
Theory and Applications, pp. 628–632. Springer, Belgium (2013)

16. Kristiansen, S., Sørensen, M., Stidsen, T.R.: Integer programming for the gener-
alized high school timetabling problem. J. Sched. 18(4), 377–392 (2014). https://
doi.org/10.1007/s10951-014-0405-x

17. Lewis, R., Paechter, B., McCollum, B.: Post enrolment based course timetabling:
a description of the problem model used for track two of the second international
timetabling competition (2007)

18. Müller, T., Murray, K.: Comprehensive approach to student sectioning. Ann. Oper.
Res. 181(1), 249–269 (2010). https://doi.org/10.1007/s10479-010-0735-9

19. Schindl, D.: Student sectioning for minimizing potential conflicts on multi-section
courses. In: Proceedings of the 11th International Conference of the Practice and
Theory of Automated Timetabling (PATAT 2016), pp. 327–337. Springer, Udine
(2016)

20. The Hill: Coronavirus shining light on internet disparities in rural America.
https://thehill.com/blogs/congress-blog/technology/488848-coronavirus-outbrea
k-shining-an-even-brighter-light-on. Accessed 12 Apr 2021

21. The Squamish Chief: concern about mixed-cohort classrooms. https://www.
squamishchief.com/news/local-news/amid-covid-19-worries-concern-emerges-abo
ut-mixed-cohort-classrooms-1.24199269. Accessed 12 Apr 2021

22. Triska, M., Musliu, N.: Solving the social golfer problem with a GRASP. In: Pro-
ceedings of the 7th International Conference on the Practice and Theory of Auto-
mated Timetabling, (PATAT 2008). Springer, Montréal (2008)

23. UNESCO: COVID-19 impact on education. https://en.unesco.org/covid19/
educationresponse. Accessed 12 Apr 2021

24. Wi, H., Oh, S., Mun, J., Jung, M.: A team formation model based on knowledge
and collaboration. Expert Syst. Appl. 36(5), 9121–9134 (2009)

https://doi.org/10.1007/s10951-014-0405-x
https://doi.org/10.1007/s10951-014-0405-x
https://doi.org/10.1007/s10479-010-0735-9
https://thehill.com/blogs/congress-blog/technology/488848-coronavirus-outbreak-shining-an-even-brighter-light-on
https://thehill.com/blogs/congress-blog/technology/488848-coronavirus-outbreak-shining-an-even-brighter-light-on
https://www.squamishchief.com/news/local-news/amid-covid-19-worries-concern-emerges-about-mixed-cohort-classrooms-1.24199269
https://www.squamishchief.com/news/local-news/amid-covid-19-worries-concern-emerges-about-mixed-cohort-classrooms-1.24199269
https://www.squamishchief.com/news/local-news/amid-covid-19-worries-concern-emerges-about-mixed-cohort-classrooms-1.24199269
https://en.unesco.org/covid19/educationresponse
https://en.unesco.org/covid19/educationresponse

A Two-Stage Exact Algorithm
for Optimization of Neural Network

Ensemble

Keliang Wang1(B), Leonardo Lozano2(B), David Bergman1(B),
and Carlos Cardonha1(B)

1 Department of Operations and Information Management,
University of Connecticut, Mansfield, USA

{keliang.wang,david.bergman,carlos.cardonha}@uconn.edu
2 Operations, Business Analytics and Information Systems,

University of Cincinnati, Cincinnati, USA
leolozano@ucmail.uc.edu

Abstract. We study optimization problems where the objective func-
tion is modeled through feedforward neural networks. Recent literature
has explored the use of a single neural network to model either uncer-
tain or complex elements within an objective function. However, it is
well known that ensembles can produce more accurate and more stable
predictions than single neural network. We therefore study how neural
network ensemble can be incorporated within an objective function, and
propose a two-stage optimization algorithm for solving the ensuing opti-
mization problem. Preliminary computational results applied to a global
optimization problem and a real-world data set show that the two-stage
model greatly outperforms a standard adaptation of previously proposed
MIP formulations of single neural network embedded optimization mod-
els.

Keywords: Ensemble learning · Two-stage optimization · Neural
network · Surrogate model · Embedded predictive models

1 Introduction

Neural networks (NNs) are particularly useful as surrogate models for functions
that are either unknown (i.e., functions that rely on the outcome of non-trivial
simulation models) or that cannot be easily represented by simple (linear) expres-
sions. Namely, given a function f with domain Ω ∈ R

n, a surrogate NN model N
of f produces estimates N (x) of f(x) for every x in Ω. NNs have attracted consid-
erable attention recently in the optimization community, and several techniques
to represent and optimize NNs as linear programs have been proposed in the
literature (see e.g., [1,9,17]). Our work is placed in this stream of research.

NNs typically do not deliver exact representations of their associated func-
tions, i.e., it is not necessarily true that f(x) = N (x); actually, it is not even true
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 106–114, 2021.
https://doi.org/10.1007/978-3-030-78230-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_7

Optimization of Neural Network Ensemble 107

that f(x) ≥ f(x′) ⇐⇒ N (x) ≥ N (x′) for every x, x′ ∈ Ω. As a consequence,
optimizing f over a surrogate neural network may be problematic, as imprecise
representations may lead to solutions that are far from optimal.

One alternative approach to mitigate this issue consists of employing ensem-
bles of neural networks. The idea is that several different neural network rep-
resentations typically make different mistakes (e.g., in different regions of the
search space), so a solution that is optimal for an ensemble is more likely to
be robust, i.e., closer to solutions that are indeed optimal for f . The machine
learning literature has shown that ensemble models typically perform very well
in practice [14]. Similar results have been shown for neural networks, i.e., ensem-
bles of neural networks frequently provide better predictions than a single large
neural network [11,23].

Given f , let Ef = {N 1,N 2, . . . ,N e} be an ensemble of e neural networks
representing f . An estimate of f for any point x in Ω produced by Ef is given
by the average of the individual estimates of each neural network in Ef , that is,

Ef (x) =
1
e

e∑

i=1

N i(x).

We study the following problem:

max
x∈Ω

Ef (x) (1)

In this work, we adapt existing big-M integer programming formulation and
propose a two-stage optimization algorithm to solve Problem1. We assess the
performance of our algorithms using two benchmark instances: the peaks func-
tion, which has been traditionally used by the global optimization community,
and the concrete data set, which is introduced by [21] and has also been used in
the optimization literature [14]. The results exhibit a superiority of our two-stage
algorithm over benchmark model in terms of computational performance.

The manuscript is organized as follows. After providing a literature
review (Sect. 2), we introduce the notation and a baseline model for Problem1
in Sect. 3. The two-stage optimization algorithm is introduced in Sect. 4. We
present the results of our experiments in Sect. 5 and conclude with directions for
future work (Sect. 6).

2 Literature Review

The ensemble learning method combines predictions of multiple base estimators
in order to improve generalization ability and prediction performance over a
single estimator [7,11,22]. Dietterich [7] provides statistical, computational and
representational arguments to show that an ensemble is always able to outper-
form each of its individual base estimators. Ensembles of neural networks were
introduced by Hanse and Salamon [11] and have gained substantial development
over the last years. As a result, recent work has shown that ensembles of neural

108 K. Wang et al.

networks are being adopted in many scenarios of practical relevance, such as
financial decision applications [20] and time series forecasting [12].

Over the last few years, the interplay of neural networks and optimization
started to attract the interest of the scientific community. Bartolini et al. [3] train
neural networks to approximate the behavior of thermal controllers in a multi-
core CPU and embed the estimator into a Constrained Programming model
through Neural Constraints [2]. Schweidtmann et al. [16] embed neural network
into a deterministic global optimization problem using McCormick relaxations
in a reduced space which employs convex and concave envelopes of the nonlinear
activation function.

Recent works in the area have focused on the representation of neural net-
work with rectified linear unit (ReLU) activation functions into mixed-integer
programming (MIP) formulation [9]. Anderson et al. [1] propose a generic frame-
work that constructs sharp or ideal MIP formulation for ReLU neural network.
Bergman et al. [4] devise a modeling framework that integrates the training
process of neural networks with MIP formulation leveraging the resulting esti-
mator. In the machine learning community, MIP formulations have been used
to study the properties of neural networks [6,8,18,19]. To the best of our knowl-
edge, optimization over neural network ensemble has not been studied in the
literature.

3 Notation and Baseline Formulation

A feedforward neural network N is a weighted acyclic directed graph composed
by a set of nodes (or neurons) V (N), a set of arcs A(N), and a weight function
W : A(N) → R; if N is clear from the context, we refer to these elements simply
as V , A, and W , respectively.

Set V contains a subset V0 of n0 neurons without incoming arcs, which are
referred to as input neurons; input neurons are associated with the features (or
simply input) of f . The distance (in number of arcs) from nodes in V to the
nodes in V0 induce the partition V = V0 ∪ V1 ∪ . . . ∪ VL, where Vl contains all
the nl neurons reached from some input neuron after the traversal of exactly l
arcs, l ∈ {0} ∪ [L], where [n] represents the set {1, 2, . . . , n} for n in N. Each Vl

can be interpreted as the l-th layer of N ; V0 is the input layer, whereas VL is the
output layer. We assume that nL = |VL| = 1, i.e., there is only one neuron in
the output layer. We use vector (n0, n1, . . . , nL) in order to succinctly represent
the architecture of N .

Each arc a = (u, v) in A(N) is directed from a neuron in Vi to another in Vi+1,
0 ≤ i < L. There is an arc a = (u, v) for each pair (u, v) ∈ Vi × Vi+1, 0 ≤ i < L.
For each l ∈ {1, 2, . . . , L}, we let W l ∈ R

nl×nl−1 denote the sub-matrix of W
containing the weights of all arcs directed from Vl−1 to Vl.

Let x ∈ R
n0 be an input for function f . In order to use N to evaluate f on x,

we define output vectors yl ∈ R
nl and bias vectors bl ∈ R

nl for each layer l in
{0, 1, . . . , L}, with elements yl

j and bl
j being associated with the j-th neuron in

layer l. Note that this definition requires orderings for each set Vl; we assume

Optimization of Neural Network Ensemble 109

that the neurons in V0 are ordered in a way that the j-th neuron is associated
with the j-th feature of f .

The values of yl for each layer l are defined as follows. First, we set vector
y0 = x, i.e., y0 contains the input of f . The values of yl

j for l ∈ {1, 2, . . . , L − 1}
and j ∈ {1, 2, . . . , nl} is given by

yl
j = ReLU((W l

j)
′yl−1 + bl

j),

where ReLU : R → R
+ is the Rectified Linear Unit (ReLU) activation func-

tion, defined as ReLU(x) := max(0, x). More succinctly, we can just write yl =
ReLU(W lyl−1+bl) for l = 1, . . . , L−1. Finally, the value yL

1 of the single neuron
in VL is the affine combination of previous layer’s output without applying the
ReLU function, i.e., yL

1 = WLyL−1 + bL. The value delivered by N given some
input x is denoted by N (x).

Let E = {N 1,N 2, . . . ,N e} be an ensemble of neural networks representing f .
We assume that the architecture and the weights of the neural networks used in
the formulations below are given as input (i.e., the models do not compute or
readjust the structure of the networks). Below we propose E-NN, a mixed-integer
programming formulation that solves Problem1 given E .

max
x

1
e

e∑

i=1

yi,Li

1 (2a)

s.t. yi,0 = x i ∈ [e] (2b)

yi,Li

1 = hi,Li
nLi

i ∈ [e] (2c)

hi,l
j = (W i,l

j)′yi,l−1 + bi,l
j i ∈ [e], l ∈ [Li], j ∈ [nl] (2d)

hi,l
j ≤ yi,l

j ≤ hi,l
j + M(1 − zi,l

j) i ∈ [e], l ∈ [Li − 1], j ∈ [nl] (2e)

0 ≤ yi,l
j ≤ Mzi,l

j i ∈ [e], l ∈ [Li − 1], j ∈ [nl] (2f)

zi,l
j ∈ {0, 1} i ∈ [e], l ∈ [Li − 1], j ∈ [nl] (2g)

hi,l
j , yi,l

j ∈ R i ∈ [e], l ∈ [L], j ∈ [nl] (2h)

x ∈ Ω. (2i)

Variable x represents the input vector in R
n0 ; x is restricted to elements of Ω

by a set of problem-dependent constraints, which are represented succinctly in
the model above in (2i). In order to evaluate N i(x), the model employs a binary
variable zi,l

j and continuous variables hi,l
j and yi,l

j for the j-th neuron in V (N i)l,
l = 1, . . . , Li − 1. With a slight abuse of notation we use variables yi,l

j with the
same meaning as before, i.e., yi,l

j = ReLU((W i,l
j)′yi,l−1 + bi,l

j).
Each variable hi,l

j contains the parameter of the ReLU function used in the
estimation of yi,l

j , i.e., hi,l
j = (W i,l

j)′yi,l−1 + bi,l
j ; the value of hi,l

j is computed
in constraint (2d). The value of the variables zi,l

j depend on the signal of hi,l
j ;

110 K. Wang et al.

if hi,l
j < 0, then zi,l

j = 0 and yi,l
j must be set to 0; conversely, if hi,l

j ≥ 0, then
zi,l
j = 1 and yi,l

j = hi,l
j . These two scenarios are modeled by constraints (2e) and

(2f). Finally, constraint (2b) ensures that the values of the neurons composing
the input layers are equal to the input feature described by x, and constraint
(2c) set yi,Li

1 to hi,Li
nLi

for all the NNs in the ensemble (recall that the ReLU
function is not applied to the last layer).

4 Two-Stage Optimization Algorithm

We propose a two-stage optimization algorithm for Problem1. The first stage
solves a relaxation of E-NN to obtain upper bounds on yi,Li

1 for all N i in E . The
second stage solves a strengthened version of E-NN, which includes the bounds
from the first stage. Let Ψ be the space defined by constraints (2c)–(2h) and
consider the following reformulation of E-NN, which includes e copies of the x-
variables:

max
x

1
e

e∑

i=1

yi,Li

1 (3a)

s.t. x1 = x2 = . . . = xe (3b)

yi,0 = xi i = 1, . . . , e (3c)

xi ∈ Ω i ∈ [e] (3d)
(h, y, z) ∈ Ψ. (3e)

Constraints (3b) ensure that all the copies of the x-variables are equal and are
often referred to as non-anticipativity constraints. Following a similar approach
to [5] in the context of two-stage stochastic programming, we relax constraints
(3b) to obtain a relaxation of E-NN. Moreover, after removing constraints (3b)
our relaxation displays a block-diagonal structure which allows us to decompose
it into the following simpler problems, one for each neural network N i in E ,
denoted by R-E-NN(i):

max
x ∈ Ω

yi,Li

1 (4a)

s.t. yi,0 = xi (4b)

xi ∈ Ω (4c)

(hi, yi, zi) ∈ Ψ i, (4d)

where Ψ i is the space defined by the subset of constraints (2c)–(2h) corresponding
to N i ∈ E . Let ui denote the optimal objective value of R-E-NN(i), and note
that yi,Li

1 ≤ ui for all N i in E . Algorithm 1 presents our proposed two-stage
approach. In the first stage we solve relaxations R-E-NN(i) for all the networks in
the ensemble. In the second stage we solve E-NN strengthened by the constraints
yi,Li

1 ≤ ui for every neural network in the ensemble.

Optimization of Neural Network Ensemble 111

Algorithm 1 . Two-stage optimization algorithm for an ensemble of neural
networks
1: Solve relaxation R-E-NN(i) for all i = 1, . . . , e and obtain each optimal value ui.
2: Solve E-NN with the additional constraints yi,Li

1 ≤ ui, ∀i = 1, . . . , e.

5 Computational Study

We evaluate the computational performance of Algorithm1 against E-NN, a direct
big-M formulation of Problem1. We train the neural networks in Python 3.7
and scikit-learn 0.23.2 [15] and use a 2.6 GHz 6-Core Intel i7-9750H CPU with
32 GB of RAM for training. All the algorithms are implemented in Java, and
we use Gurobi 9.0.0 to solve the integer programming formulations [10]. The
experiments are executed on an Intel Xeon E5–1650 CPU (six cores) running at
3.60 GHz with 32 GB of RAM on Windows 10. Each execution is restricted to a
time limit of 600 s.

5.1 Instances

We use two instances in our computational study. One is a traditional global
optimization benchmark functions, for which the optimal solutions are known.
Additionally, we use a real-world problem for which regression models have been
proposed in the literature [14]; for this problem, the original goal is to predict a
target value given a set of input features, and there is no global optimal solution.

Peaks : The peaks function z : [−3, 3]2 → R is defined in (5) and the global
minimum for z is -6.551, which is attained at x = 0.228 and y = −1.626.

z(x, y) := 3(1−x2)2e−x2−(y+1)2 −10
(x

5
− x3 − y5

)
e−x2−y2 − e−(x+1)2−y2

3
. (5)

Concrete : This data set contains a list with different types of concrete, described
by eight input features. The data set is introduced and first studied by [21],
who use neural networks trained on this data to predict compressive strength.
The optimization problem in this case consists of the identification of an “ideal
concrete”, with maximum predicted compressive strength.

For our experiments, we first train neural network ensemble that work as
regression models for these problems, and then we use our algorithms to find an
optimal solution. In order to generate training data sets, we sample 1000 data
points for peaks and obtain a data set containing 1030 records for concrete via
the AppliedPredictiveModeling package in R ([13]). We apply min-max normal-
ization to scale each input feature into range [−1, 1].

The configuration of an ensemble model is determined by the number of neu-
ral networks and the topology of each of its individual estimators. We investigate
ensembles with 5, 10, 15 and 20 neural networks. Each individual neural network
has one hidden layer, containing from 20 to 200 neurons, in a 20 step size. We

112 K. Wang et al.

generate 5 instances for each configuration, so there are 200 instances for each
problem.

5.2 Results and Analysis

We first present a scatter plot comparing the execution time of the algorithms
for both problems in Fig. 1. Each dot represents an instance, whose coordinates
x and y indicate the execution time of the algorithms (two-stage Algorithm 1
and E-NN formulation, respectively), and the size and the color correspond to
the number of neurons in the hidden layer and the number of neural networks,
respectively. The results show that the Algorithm1 outperforms the E-NN for-
mulation in virtually all cases for both problems, especially for large-sized con-
figurations.

Fig. 1. Solution time comparison between Algorithm1 and E-NN.

In Fig. 2 we report the execution times and the optimality gaps using cumula-
tive frequency distribution plots. In the left half of each plot, the y-axis represents
the number of instances solved within the time indicated by x-axis; the right half
shows the number of instances solved within the optimality gap given in the x-
axis after 600 s. Figures 2a and 2b show that Algorithm1 solves more instances
than E-NN after any amount of time with much smaller gaps at time limit for
both problems. The advantage of the two-stage algorithm is highlighted for the
concrete problem, where all instances are solved to optimality within 300 s.

Optimization of Neural Network Ensemble 113

Fig. 2. Cumulative distribution plots comparing Algorithm 1 and E-NN.

6 Conclusion and Future Work

In this paper we presented a novel algorithmic approach to optimize over ensem-
ble of single-layered neural networks. Our experiments show that the proposed
approach reduces the solution times of similar problems relying on the optimiza-
tion over E-NN by orders of magnitude. Ensemble methods have been show in
the machine learning literature to provide more robust results than single esti-
mators, so this work provides a first probe into integrating an ensemble of neural
networks as part of an optimization problem.

At the moment, the interaction between mixed-integer programming and neu-
ral network is a fast-moving field and there are many interesting open research
questions. For example, we do not employ any techniques to compress the neu-
ral networks (such as those presented by [17,19]), and it is not clear whether
the application of such techniques could lead to computational improvements
(especially because the time spent with compression techniques may be non-
negligible). Nevertheless, this is an interesting direction for future research.

References

1. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong
mixed-integer programming formulations for trained neural networks. Math. Pro-
gram. 183, 3–39 (2020). https://doi.org/10.1007/s10107-020-01474-5

2. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model
complex real-world problems. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 115–
129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7 11

3. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Optimization and controlled
systems: a case study on thermal aware workload dispatching. In: AAAI (2012).
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5042

https://doi.org/10.1007/s10107-020-01474-5
https://doi.org/10.1007/978-3-642-23786-7_11
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5042

114 K. Wang et al.

4. Bergman, D., Huang, T., Brooks, P., Lodi, A., Raghunathan, A.U.: JANOS: an
integrated predictive and prescriptive modeling framework (2019)

5. Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer programming.
Oper. Res. Lett. 24(1–2), 37–45 (1999)

6. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 251–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 18

7. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F.
(eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45014-9 1

8. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5 9

9. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018). https://doi.org/10.1007/s10601-018-9285-6

10. L Gurobi Optimization: Gurobi optimizer reference manual (2018). http://www.
gurobi.com

11. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal.
Mach. Intell. 12(10), 993–1001 (1990)

12. Kourentzes, N., Barrow, D.K., Crone, S.F.: Neural network ensemble operators for
time series forecasting. Expert Syst. Appl. 41(9), 4235–4244 (2014)

13. Kuhn, M., Johnson, K.: Appliedpredictivemodeling: functions and data sets
for ‘applied predictie modeling’ (2014). https://cran.r-project.org/web/packages/
AppliedPredictiveModeling/index.html

14. Mǐsić, V.V.: Optimization of tree ensembles. Oper. Res. 68(5), 1605–1624 (2020)
15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.

Res. 12, 2825–2830 (2011)
16. Schweidtmann, A.M., Mitsos, A.: Deterministic global optimization with artifi-

cial neural networks embedded. J. Optim. Theory Appl. 180(3), 925–948 (2018).
https://doi.org/10.1007/s10957-018-1396-0

17. Serra, T., Kumar, A., Ramalingam, S.: Lossless compression of deep neural net-
works. arXiv preprint arXiv:2001.00218 (2020)

18. Serra, T., Tjandraatmadja, C., Ramalingam, S.: Bounding and counting linear
regions of deep neural networks. In: International Conference on Machine Learning,
pp. 4558–4566. PMLR (2018)

19. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: 7th International Conference on Learning Repre-
sentations, ICLR 2019, pp. 1–21 (2019)

20. West, D., Dellana, S., Qian, J.: Neural network ensemble strategies for financial
decision applications. Comput. Oper. Res. 32(10), 2543–2559 (2005)

21. Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural
networks. Cem. Concr. Res. 28(12), 1797–1808 (1998)

22. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. CRC Press, Boco
Raton (2012)

23. Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: many could be better
than all. Artif. Intell. 137(1–2), 239–263 (2002). https://doi.org/10.1016/S0004-
3702(02)00190-X

https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/s10601-018-9285-6
http://www.gurobi.com
http://www.gurobi.com
https://cran.r-project.org/web/packages/AppliedPredictiveModeling/index.html
https://cran.r-project.org/web/packages/AppliedPredictiveModeling/index.html
https://doi.org/10.1007/s10957-018-1396-0
http://arxiv.org/abs/2001.00218
https://doi.org/10.1016/S0004-3702(02)00190-X
https://doi.org/10.1016/S0004-3702(02)00190-X

Heavy-Tails and Randomized Restarting
Beam Search in Goal-Oriented Neural

Sequence Decoding

Eldan Cohen(B) and J. Christopher Beck

Department of Mechanical and Industrial Engineering, University of Toronto,
Toronto, Canada

{ecohen,jcb}@mie.utoronto.ca

Abstract. Recent work has demonstrated that neural sequence models
can successfully solve combinatorial search problems such as program
synthesis and routing problems. In these scenarios, the beam search
algorithm is typically used to produce a set of high-likelihood candi-
date sequences that are evaluated to determine if they satisfy the goal
criteria. If none of the candidates satisfy the criteria, the beam search
can be restarted with a larger beam size until a satisfying solution is
found. Inspired by works in combinatorial and heuristic search, we inves-
tigate whether heavy-tailed behavior can be observed in the search effort
distribution of complete beam search in goal-oriented neural sequence
decoding. We analyze four goal-oriented decoding tasks and find that
the search effort of beam search exhibits fat- and heavy-tailed behavior.
Following previous work on heavy-tailed behavior in search, we propose
a randomized restarting variant of beam search. We conduct extensive
empirical evaluation, comparing different randomization techniques and
restart strategies, and show that the randomized restarting variant solves
some of the hardest instances faster and outperforms the baseline.

Keywords: Beam search · Neural sequence models · Randomized
restarts

1 Introduction

Neural sequence models are commonly used in the modeling of sequential data
and are the state-of-the-art approach for tasks such as machine translation [10],
text summarization [6], and image captioning [37]. Beam search is the most com-
monly used algorithm for decoding neural sequence models by (approximately)
finding the most likely output sequence conditioned on the input. To do so, beam
search generates sequences token-by-token, extending a fixed number of active
candidate sequences (beam size) at each step.

Recently, neural sequence models have been successfully applied to different
combinatorial search problems such as program synthesis and routing problems.
Unlike machine translation and image captioning, such problems often have a
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 115–132, 2021.
https://doi.org/10.1007/978-3-030-78230-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_8

116 E. Cohen and J. C. Beck

goal criteria that can be used to evaluate candidate solutions and require solu-
tions that satisfy the goal criteria. For example, in resource-constrained combi-
natorial routing problems, we may wish to find a tour that satisfies some resource
constraint (e.g., limited fuel or budget). In such scenarios, beam search is used
to produce a set of promising (high-likelihood) candidate sequences that are
evaluated to determine if they satisfy the goal criteria. If none of them satisfy
the criteria, the beam search can be restarted with a larger beam size until a
satisfying solution is found.

Previous work on heuristic and combinatorial search algorithms found they
tend to exhibit a fat- and heavy-tailed behavior that can be exploited to boost
their performance by incorporating randomized restarts in the search (e.g.,
[8,12]). In this work, we investigate whether a heavy-tailed behavior can also
be observed for goal-oriented beam search. We consider four goal-oriented neu-
ral sequence decoding tasks, each with a goal criteria that enforces bounded
suboptimality with respect to a chosen evaluation metric. We focus on complete
anytime beam search (CAB), a complete variant of beam search commonly used
in goal-oriented neural sequence decoding, and perform an extensive empiri-
cal study of the heavy-tailed behavior and the impact of randomized restarts.
Specifically, we make the following contributions:

1. We show that for goal-oriented neural sequence problems, complete anytime
beam search exhibits a fat- or heavy-tailed behavior on ensembles of relaxed
problems, similar to the behavior observed for CSPs and SAT.

2. We consider a randomized variant of beam search that is based on noise injec-
tion to the inputs of the neural network and show that randomized complete
anytime beam search exhibits fat- or heavy-tailed behavior on ensembles of
multiple runs on a single instance.

3. Inspired by previous work on heavy-tailed behavior in combinatorial and
heuristic search problems, we introduce a randomized restarting variant of
complete anytime beam search and show that it outperforms the baseline by
solving some of the hardest problems faster.

4. We conduct extensive empirical evaluation and analyze the impact of differ-
ent parameters including the constrainedness of the goal criteria, the restart
policy, and the type of randomization.

2 Background

2.1 Beam Search for Goal-Oriented Neural Sequence Decoding

A neural sequence model learns a probability distribution over sequences by
being trained to predict the probability of the next token in a sequence,
p(yt|x; y1:t−1), conditioned on the input x and the partial sequence y1:t−1 [5].
The total probability of a (partial) sequence y1:t follows from the chain rule of
probability:

p(y1:t|x) = p(yt|x; y1:t−1) · p(y1:t−1) =
t∏

t′=1

p(yt′ |x; y1:t′−1). (1)

Randomized Restarting Beam Search in Neural Sequence Decoding 117

It is common to model p(yt|x; y1:t−1) using a Recurrent Neural Network [16],
where the input x and the partial sequence y1:t−1 we condition on are expressed
by a fixed length representation ht. This representation is updated each step
using a non-linear function f : ht = f(ht−1, yt−1) with h0 being a representa-
tion of the input x and y0 being a special token that represents the start of
the sequence. The conditional probability over the next token yt can then be
computed using the softmax function,

p(yt = vi|x; y1:t−1) =
exp(wiht)∑|V|

j=1 exp(wjht)
,

where V = {v1, v2, ...} is the set of all possible tokens and wi are model weights.
Beam search is a limited-width breadth-first search. In the context of

sequence models, it is often used as an approximation to finding the (single)
sequence y that maximizes Eq. (1), or as a way to obtain a set of high-probability
sequences from the model. At the first step, t = 0, we only have one (empty)
sequence. At each of the following steps, t ≥ 1, we consider all one-token exten-
sions of the beam sequences from step t − 1 and retain (at most) B partial
sequences with the highest probability. In the last step, we return the B highest
probability complete sequences, which we assume to be of equal length (as they
can be padded). B is called the beam width (or, alternatively, beam size) and
the probabilities of (partial) sequences are estimated by the neural network.

In goal-oriented neural sequence decoding, we are not looking for the most-
likely sequence according to the learned model. Instead, we are looking for a
solution that satisfies the goal criteria. In such scenarios, we use beam search to
generate a set of B high-quality candidates that are then evaluated to determine
if they satisfy the goal criteria. Once a candidate satisfies the goal criteria, it is
returned as the solution of the beam search.

Previous work on goal-oriented neural sequence decoding considered a variant
of the complete anytime beam search (CAB) [42] in which failing to find a
satisfying solution results in doubling the beam width and re-running the beam
search [2,25,43]. As the beam width increases, a larger portion of the hypotheses
space is explored and the search is guaranteed to find a solution, if one exists.
Algorithm 1 shows pseudo-code for this variant of complete anytime beam search.

Algorithm 1. Complete Anytime Beam Search
function CAB(goalCriteria)

beamWidth ← 1
while not solved do

candidates ← BeamSearch(beamWidth)
for cand ∈ candidates do

if Satisfy(cand, goalCriteria) then
return cand

beamWidth ← 2 · beamWidth

118 E. Cohen and J. C. Beck

2.2 Heavy-Tailed Behavior and Randomization in Heuristic and
Combinatorial Search Algorithms

Analyzing the empirical distribution of search effort over an ensemble of prob-
lems, rather than just the mean or median, can often help design better search
algorithms. Previous work has found fat- or heavy-tailed behavior in the dis-
tribution of search effort for different search algorithms on NP-complete prob-
lems, e.g., the number of backtracks in CSPs, on ensembles of random problems
[7,12,13]. This behavior tends to appear in ensembles of relaxed problems, i.e.,
problems with high density of solutions. In these ensembles, the median search
effort is low, however the hardest instances can require orders-of-magnitude
higher effort. Interestingly, Gomes et al. [12] also found heavy-tailed behavior
in the search effort distribution of a randomized search procedure on a single
instance, suggesting that some of the hardest problems can be solved easily by
minor changes in the search procedure. This result has motivated significant
work on reducing heavy-tailed behavior using randomized restarts, portfolios,
etc. [11].

Fat- and heavy-tailed distributions have a long tail containing a considerable
concentration of mass. Formally, a random variable X is considered heavy-tailed
if it has a Pareto-like decay of its tail above some threshold xl, i.e., there exists
some xl > 0, c > 0, α > 0 such that P [X > x] = cx−α for x > xl [32]. An
approximately linear behavior over several orders of magnitude in the log-log
plot of 1 − CDF (x) (i.e., the survival function) is a clear sign of heavy-tailed
behavior with the slope providing an estimate of the stability index α [14].

Fig. 1. Heavy and non-heavy tailed behavior [14].

To demonstrate heavy-tailed behavior, we present an example from Gomes
et al. [14]. Figure 1 shows the log-log plot of 1 − CDF (x) for two normally
distributed random variables with a mean of 2 and different standard deviation.
It also shows a random variable that represents the number of steps it takes for a
symmetric random walk on a line to get back to the starting point. The normal
distributions exhibit a fast-decay behavior, while the random walk exhibits a
clear heavy-tailed behavior indicated by the approximately linear behavior on
the log-log plot.

Randomized Restarting Beam Search in Neural Sequence Decoding 119

3 Goal-Oriented Benchmark Problems

In our analysis, we use a set of four goal-oriented benchmark problems. Following
is a description of each problem and its goal criteria.

3.1 Combinatorial Routing Problems

Several recent works have demonstrated the potential of using deep learning to
solve combinatorial optimzation problems [9,22,23,30]. A recent work [23] pro-
posed an architecture based on attention layers and trained using REINFORCE
[41] to generate solutions for combinatorial routing problems that minimize the
solution cost. The authors use this architecture to generate solutions to the Trav-
elling Salesman Problem (TSP), two variants of the Vehicle Routing Problem
(VRP), the Orienteering Problem (OP), and the Prize Collecting TSP (PCTSP)
and show it outperforms a wide range of baselines. Decoding can be done using
sampling or beam search, and the best solution among the generated candidates
is returned. To eliminate infeasible solutions, e.g., revisiting the same node in
TSP, the authors use masking (setting the log-probabilities of infeasible solu-
tions to −∞). In our work, we use Kool et al.’s [23] architecture1 and problem
instances and run experiments on two combinatorial routing problems:

– The Travelling Salesman Problem (TSP) consists of constructing a tour that
starts at the depot, visits all nodes exactly once, and returns to the depot.

– The Capacitated Vehicle Routing Problem (CVRP) consists of constructing
multiple routes, each starting and ending at the depot, such that the total
demand of the nodes in each route does not exceed the vehicle capacity.

The cost of solution in both problems is the sum of pairwise Euclidean distances
of consecutive nodes in the solution path (including the depot).

Goal Criteria. As the current model is trained to minimize the solution cost,
we consider the goal-oriented problem of finding a solution with a bounded
optimality gap. Assuming a minimization problem with cost function C, our
goal criteria for a candidate solution x is C(x)−C(x∗)

C(x∗) ≤ ε, where x∗ is an optimal
solution and ε controls the constrainedness of problems (increasing ε leads to
a higher expected number of feasible solutions).2 Following Kool et al. [23], we
compute optimal solutions for TSP using Concorde [1] and approximate optimal
solutions for CVRP using KLH3 [17] (Kool et al. [23] note CVRP problems with
more than 20 location were intractable for an exact solver).

1 Obtained from github.com/wouterkool/attention-learn-to-route.
2 This notion of constrainedness matches the notion of resource-constrainedness pre-

viously used to study planning in resource-constrained environments [29].

http://github.com/wouterkool/attention-learn-to-route

120 E. Cohen and J. C. Beck

3.2 Visual Program Synthesis

Several recent works have considered the problem of synthesizing programs for
images using deep neural networks [27,33,36]. These networks take an image as
input and output a program that generates the image. The quality of a candidate
program can be evaluated using a metric of projection loss, typically a distance
measure between the generated image and the input. In our experiments, we use
CSGNet3 [33], a neural architecture that takes in a 2D or 3D shape image and
outputs a program to generate the shape using instructions based on constructive
solid geometry (CSG). CSGNet is trained using a combination of supervised
learning and reinforcement learning (using REINFORCE [41]) to minimize the
visual distance between the generated solutions and the input images.

Goal Criteria. Our goal criteria is based on Chamfer Distance (CD), a mea-
sure of visual similarity between two shapes that is used by Sharma et al. [33]
to evaluate CSGNet. Let CD(a, b) denote the (non-negative) Chamfer distance
between shape a and shape b. We define our goal criteria for a candidate solution
x to be CD(x, i) ≤ γ where i is the input shape and the parameter γ controls
the constrainedness of problems.

3.3 Conditional Molecular Design

A recent line of work focuses on generating molecules with specific properties
[18–20], such as the molecular weight, the Wildman-Crippen partition coefficient
[40], and a quantitative estimation of drug-likeness (QED) [3]. Kang and Cho
[20] proposed a semi-supervised variational autoencoder that is trained on a set
of existing molecules from the ZINC dataset [35] with only a partial annotation
(i.e., only a fraction of the molecules are labelled with the property values).4

The model represents a generative process in which the input molecule x
is generated from the distribution p(x|z, y) that is conditioned on the molecule
properties y and a latent variable z. The molecules are represented using SMILES
strings [39] and are generated character-by-character. For the conditional gen-
eration of molecules with a specific property, we sample z from its prior and y
from its prior conditioned on the specific property. A molecule representation x̂
is obtained from y and z using the decoder’s conditional probability p(x|y, z),

x̂ = arg max p(x|y, z), (2)

where Eq. (2) is approximated by a beam search.

Goal Criteria. We focus on the QED property [3], a measure of drug-likeness
in the range [0, 1] that is based on desirability functions for several molecu-
lar properties. We compute QED using RDKit [26] and evaluate the generated

3 Obtained from github.com/Hippogriff/CSGNet.
4 Obtained from github.com/nyu-dl/conditional-molecular-design-ssvae.

http://github.com/Hippogriff/CSGNet
http://github.com/nyu-dl/conditional-molecular-design-ssvae

Randomized Restarting Beam Search in Neural Sequence Decoding 121

Fig. 2. TSP (100 nodes): Results for 500 random instances.

molecules based on the absolute difference between their QED and the desired
QED. Formally, we define our goal criteria for a candidate solution x to be
|QED(x) − q| ≤ ρ where q is the desired value of QED and the parameter ρ
represents a bound on the deviation from the desired QED value and controls
the constrainedness of the criteria.

4 Fat- and Heavy-Tailed Behavior in Goal-Oriented
Neural Sequence Decoding

In this section we demonstrate the existence of heavy-tailed behavior in goal-
oriented neural sequence decoding. Due to space, we only present results for
one benchmark problem, the Travelling Salesman Problem (TSP), however in
Appendix A, we present similar results for the other three benchmarks.5

We consider a collection of 500 randomly generated TSP problem instances
with 100 nodes solved using beam search with a beam width of 10.
Figure 2a shows the distribution of solution quality presented as optimality gap
(C(x)−C(x∗)

C(x∗)) to match our goal criteria. The center of the distribution is around
0.03 with the mean (marked in a dashed line) at approximately 0.034. However,
there is a small number of problems for which the optimality gap can be much
higher (up to approximately 0.1).

Next, we consider the case of solving the goal-oriented problem where solu-
tions must satisfy a bound on the optimality gap denoted as ε (as discussed
in Sect. 3.1). We use complete anytime beam search (Algorithm 1) to solve the
problems with the given bound as goal criteria. We start with a beam width of
1, and double the beam width in each iteration if no solution that satisfies the
goal criteria is found. We record the beam width for which a satisfying solution
was found representing the required search effort.

Figure 2b shows the search effort distribution for three different goal criteria
ε = 0.04, ε = 0.05, ε = 0.06. The y-axis represents the number of unsolved
5 All appendices appear in tidel.mie.utoronto.ca/pubs/rr-beam-appendix.pdf.

https://tidel.mie.utoronto.ca/pubs/rr-beam-appendix.pdf

122 E. Cohen and J. C. Beck

problems in log-scale, while the x axis represents the search effort (i.e., beam
width) in discrete log2-scale (i.e., in steps of 2i, i = 0, 1, ...) to match the behavior
of the complete anytime beam search. We artificially add the step 0 (i.e., no
search effort) to denote the total number of problems. For ε = 0.05 and ε = 0.06,
there is a clear heavy-tailed behavior with a very low median (beam width of 1)
and a slow decay of the tail over multiple orders of magnitude. In fact, not all
problems were solved for the maximum beam width of 32, 768. Note that when
ε = 0.05, 332 of the 500 problems are solved with a beam width of 1, while five
problems could not be solved for a beam width of 32, 768. For a more constrained
goal criteria of ε = 0.04, we still observe a fat-tailed behavior, however we see
a noticeable increase in the difficulty of problems and the number of problems
that could not be solve in the search effort limits is significantly higher. We could
not analyze more constrained goal criteria due to the high computational cost,
however we hypothesize that problems will become significantly harder and the
heavy-tailed behavior will reduce, consistent with previous work [7,12].

The above results suggest that goal-oriented beam search exhibits a heavy-
tailed behavior in ensembles of random problems, similar to the one observed for
other combinatorial and heuristic search algorithms. In these algorithms, much
of the large variability in the search effort for ensembles of random problems was
found to be associated with the algorithm, rather than the problem instances
[12]. To isolate the variability of the search algorithm, in the next section we ana-
lyze the search effort distribution of a randomized variant of complete anytime
beam seach on a single instance.

4.1 Fat- and Heavy-Tailed Behavior on a Single Instance

In order to introduce randomization into beam search decoding of neural
sequence models, we inject random noise in the inputs of the neural network
that is being decoded using beam search. Injecting random noise in the inputs
of a neural network is a known technique in the training of neural networks
in order to improve their robustness [16].6 Note that the noise injected to the
network’s inputs does not impact the goal test that is still based on the origi-
nal input, i.e., the noise does not change the problem we are solving. The sole
purpose of the noise is to introduce some randomness in the network’s predicted
probabilities and, as a result, in the beam search decoding.

For TSP instances, the inputs to the network consist of the locations of all
nodes, expressed as two-dimensional coordinates normalized in the range [0, 1].
We inject noise to the network inputs by adding random noise drawn from a
uniform distribution, U(−0.01, 0.01). Figure 3a shows the distribution of search
effort for 500 randomized runs (i.e., runs with different random injected noise) for
different values of ε. We can see a fat-tailed behavior that indicates a significant

6 Note that we are not aware of any direct connection between noise injection in
training to increase robustness and our use of noise injection in testing to introduce
randomness in the decoding process. However, it might be interesting to consider
whether there is some underlying connection.

Randomized Restarting Beam Search in Neural Sequence Decoding 123

Fig. 3. (a) TSP (100 nodes): Distribution of beam widths for 500 randomized runs on a
single instance. (b) Problem-specific noise injection to network’s inputs. See Appendix
B for detailed description.

variability is associated with the search method. Note that the results in Fig. 3a
were observed for a single, arbitrarily chosen instance. Experiments with other
instances also yielded fat- and heavy-heavy tailed behavior, however we found
large differences among instances: different instances exhibited different levels of
fat- and heavy-tailedness for different levels of goal criteria constrainedness.

Figure 3b briefly summarizes the problem-specific noise injection used for the
other three benchmarks. A detailed description of the random noise injection and
experimental results for these benchmarks appear in Appendix B.

The above results indicate that significant variability can be associated with
the search algorithm itself. Previous works have exploited the large variability
associated with the search algorithm to improve problem solving performance by
introducing randomized restarts (see Sect. 2.2). In the next section, we propose
a complete variant of beam search that incorporates randomized restarts and
evaluate its impact on the distribution of search effort.

5 Randomized Restarting Neural-Guided Beam Search
for Goal-Oriented Combinatorial Problems

We present randomized-restarting complete anytime beam search (RR-CAB), a
variant of complete anytime beam search (Algorithm1) that uses randomized
beam search and a custom restart strategy. Algorithm 2 presents the pseudo-
code of RR-CAB, where the goal criteria and the restart strategy are passed
as parameters. In each iteration the algorithm runs a randomized beam search
(using a random seed) with a beam width that is determined by the restart
strategy. The algorithm returns when one of the candidate solutions generated
by the beam search satisfies the goal criteria.

In order to randomize the results of a beam search, we consider the following
two options.

Beam Search with Injected Input Noise. Following the methodology in
Sect. 4.1, we inject random noise to the inputs of the neural networks.

124 E. Cohen and J. C. Beck

Algorithm 2. Randomized Complete Beam Search
function RR-CAB(goalCriteria, restartStrategy)

iteration ← 1
while not solved do

beamWidth ← restartStrategy(iteration)
seed ← RandomSeed()
candidates ← RandomizedBeamSearch(beamWidth, seed)
for cand ∈ candidates do

if Satisfy(cand, goalCriteria) then
return cand

iteration ← iteration + 1

Stochastic beam search (SBS) [24]. SBS is a stochastic variant of beam
search that samples k sequences without replacement from a sequence model
and therefore produces randomized output. The level of diversity in SBS is con-
trolled by the softmax temperature that modifies the conditional probability
of each token during the decoding process. The probability of token yt condi-
tioned on the partial sequence y1:t−1, is defined as a softmax normalization of
the unnormallized log-probabilities, φ(yt|x; y1:t−1), with a temperature T [24]:

p(yt|x; y1:t−1) =
exp(φ(yt|x; y1:t−1)/T)∑
y′ exp(φ(y′|x; y1:t−1)/T)

.

The temperature T > 0 and higher T leads to higher diversity. The default tem-
perature is T = 1, where the predicted probabilities are not modified. In our
experiments, we considered two temperature configurations: the default temper-
ature T = 1.0 and a higher diversity temperature T = 1.5.

Note that we could not perform the analysis in Sect. 4.1 using SBS since,
unlike input noise injection, we cannot guarantee that repeated runs with differ-
ent beam widths will maintain similar conditional probability distributions (see
discussion in Sect. 7). However, in RR-CAB, we are not interested in maintaining
the same probability distributions across runs and therefore SBS can be used as
a randomized variant of beam search.

5.1 Restart Strategies

A restart strategy is a sequence (t1, t2, t3, ...) of run lengths after which the search
restarts. In goal-oriented neural sequence decoding, the sequence length is either
fixed (e.g., in TSP and CVRP) or predicted by the network (e.g., in visual pro-
gram synthesis or conditional molecule generation). If we want to allocate more
search effort, we simply extend the beam width thus allowing more sequences to
be tested against the goal criteria.

In each iteration, we run a beam search with a given beam width until a
solution if found. In deterministic complete anytime beam search (Algorithm1),
the beam width is increased in each iteration. In RR-CAB, running a search with
the same beam width multiple times leads to different results and can sometimes

Randomized Restarting Beam Search in Neural Sequence Decoding 125

be more efficient than increasing the beam width. We therefore employ a custom
restart strategy to determine the beam width in each iteration. We consider two
popular restart strategies from the literature.

Fixed-Cutoff Strategy. Fixed-cutoff strategies [15] are simple strategies of the
form (tc, tc, ...) where tc is a constant. This strategy is often not robust enough:
a small tc value might not be sufficient to solve all problems, while a larger value
will be computationally inefficient.

Geometric Strategy. Geometric strategies [38] take the form (r0, r1, r2, r3,)
where the geometric factor r controls how fast the cutoff values grow. When
r = 2 and randomization is not applied, this strategy has a similar behavior to
the complete beam search procedure described in Sect. 2.1.

6 Empirical Results

In this section, we present empirical analysis of the performance of RR-CAB
on the goal-oriented benchmarks. We compare results for the two randomiza-
tion techniques (input noise injection and SBS) and the two restart strategies
(geometric and fixed-cutoff) described in Sect. 5.

6.1 Results for the Travelling Salesman Problem (TSP)

We consider the same collection of 500 randomly generated TSP problems with
100 nodes used in Sect. 4. We analyze the results of RR-CAB with random noise
injection and the two restart strategies: geometric with r = 2 and fixed-cutoff
with beam width B = 8. In order to directly compare the performance of a
fixed-cutoff strategy and a geometric strategy, we organize the results of fixed-
cutoffs beam search in batches of multiple beam searches with a constant beam
width, such that they sum to the beam width of the corresponding beam search
with geometric restarts. For example, we present results for a geometric restart
policy for the beam width thresholds 1, 2, 4, 8, 16, 32, etc. In comparison, for
fixed-cutoff restarts, the result for a threshold of 16 represents a batch of two
beam searches, each with a constant beam width of 8.

Figure 4 compares the distribution of search effort of standard CAB and RR-
CAB in the configurations described above. In general, the randomized variants
tend to under perform for the very small beam width: problems that were easily
solved without randomization do not benefit, and even suffer, from adding ran-
domization. In particular, since we use a beam width B = 8 for the fixed-cutoff
strategy, solutions are only found starting from a threshold of 8. However, as
we increased the search effort, we see that the randomized variants outperform
standard CAB. For the more constrained problems, we see that the fixed-cutoff
strategy significantly outperforms the geometric restarts strategy. This could
be due the use of relatively large r chosen for fair comparison with CAB. For
ε = 0.6, geometric restarts seem to have similar performance to fixed cut-offs.

126 E. Cohen and J. C. Beck

Fig. 4. TSP (100 nodes): Distribution of beam widths for 500 random instance for
RR-CAB with input noise injection.

The inherent differences between the two restart strategies result in an appar-
ent inferiority of fixed-cutoffs in smaller beam widths: in addition to having no
solutions for beam widths smaller than 8, even for a beam width of 8 it underper-
forms since RR-CAB with geometric restarts has already made three randomized
runs (for beam width 1, 2, and 4) that can lead to solutions. In practice, this
is easily mitigated by using a restart policy that starts with geometric restarts
before changing to fixed-cutoffs: 1, 2, 4, 8, 8, ... To maintain simple and clear com-
parison we do not adopt this enhancement in our evaluation.

Figure 5 shows similar comparison to Fig. 4 where the beam search is ran-
domized using SBS with a softmax temperature of T = 1 (top) and T = 1.5
(bottom). Again, we see that introducing randomization to CAB leads to better
performance. Using softmax temperature of T = 1.5 exhibits better performance
and manages to solve more hard instances faster. Interestingly, for SBS we find
that geometric restarts are approximately as good as fixed-cutoff strategy.

Fig. 5. TSP (100 nodes): Distribution of beam widths for 500 random instances for
RR-CAB with SBS using T = 1.0 (top) and T = 1.5 (bottom).

Randomized Restarting Beam Search in Neural Sequence Decoding 127

The above results show that introducing randomization in the search can
help solve some of the hardest instances faster. Consistent with previous work
on CSPs and SAT, the impact on more relaxed instances tends to be more
significant [12]. However, note that we cannot analyze the impact of RR-CAB
on more constrained instances due to computational limitations and even for
ε = 0.4, using randomization seems to have positive impact on the performance.

6.2 Results for the Other Benchmarks

Figure 6, Fig. 7, and Fig. 8 show the results for CVRP, visual program synthesis
and conditional molecule generation, respectively. For CVRP and molecule gen-
eration, we found that, similar to TSP, a temperature of T = 1.5 yields better
results when using SBS. In visual program synthesis, higher temperature did not
lead to better results and we present results for T = 1.

In the visual program synthesis problem, the number of potential expansions
of each of the beam candidates is much higher than the other problems (approx-
imately 400, compared to 36–100 in the other problems). Therefore, when using
SBS for this problem, we only consider the top 50 extensions of each candidate.
Practically, it is unlikely that an extension of partial hypothesis that is not in
the most likely 50 extensions will lead to a hypothesis that will be returned
by the beam search. However, when applying randomization it may have the
undesired outcome of promoting very low-ranked hypotheses and we therefore
consider only the top 50 hypotheses.

Fig. 6. CVRP (50 nodes): RR-CAB with noise injection (top), SBS (bottom).

Consistent with our results for TSP, we find that RR-CAB solves some the
hardest problems faster and outperforms the baseline. As in TSP, when using
random noise injection, the fixed cut-offs strategy tends to outperforms the geo-
metric strategy.

128 E. Cohen and J. C. Beck

Fig. 7. Visual Program Synthesis: RR-CAB with noise injection (top), SBS (bottom).

Fig. 8. Molecule Generation: RR-CAB with noise injection (top), SBS (bottom).

7 Discussion and Future Work

Our empirical results suggest that RR-CAB exploits the variability associated
with the search procedure and significantly outperforms the baseline by solving
some of the hardest problems faster. In this section, we discuss different aspects
related to RR-CAB and directions for future work.

Randomization Techniques. We consider two techniques that can randomize
the results of a beam search: input noise injection and SBS. While both tech-
niques introduce randomization to the predicted probabilities, there are some
important differences between them. A key limitation of the noise injection tech-
nique is that it needs to be tailored for each problem. In our work, we had to
manually try different randomization approaches in order to find one that would

Randomized Restarting Beam Search in Neural Sequence Decoding 129

generate sufficient variability on a single instance without making the problem
significantly harder across different runs. Alternatively, an inherent limitation of
SBS is that we are unable to guaranteed that repeated runs with different beam
widths will maintain similar conditional probability distributions. The implica-
tion of this limitation is that we cannot analyze the search effort distribution of
SBS on a single problem instance, as we do for beam search with noise injec-
tion in Sect. 4.1. As future work, it is interesting to investigate other generic
ways of introducing noise into the decoding process. Potential directions include
applying noise to hidden units [4,31] or using dropout [34] in inference.

Restart Strategies and Parallelization. We focused on two well known
restart strategies: fixed-cutoff and geometric restarts. Previous works in combi-
natorial optimization has considered more advanced restart strategies such as
Luby’s universal strategy [28] and dynamic and learning restart strategies (e.g.,
[21]). Investigating ways to incorporate such strategies in RR-CAB is an inter-
esting direction for future work.

A key challenge in designing restart strategies for beam search is their ability
to be parallelized on a GPU. In our experiments, we present results for the fixed-
cutoff restart strategy by batching together beam searches and comparing these
results to the corresponding final beam width of a geometric strategy. As we
start investigating more complicated restart strategies, such as Luby’s universal
strategy [28], we will not be able to batch the results together to maintain
comparability. Furthermore, even in our comparison, it is not clear that a set of
four beam search instances, each with a beam width of 8 and executed together
on a GPU, is comparable to one beam search with a beam width of 32. Our work,
therefore, raises the need for well-defined evaluation metrics that can be used to
compare the results of parallelized complete beam searches with different restart
strategies, even when it not possible to batch together runs as we currently do.

8 Conclusion

In this work we show that fat- and heavy-tailed behavior, that was previ-
ously observed for several combinatorial and heuristic search algorithms, can
be observed for complete anytime beam search in goal-oriented neural sequence
decoding. We perform an extensive empirical analysis, across four goal-oriented
benchmarks, and find fat- and heavy-tailed behavior in the distribution of search
efforts of beam search. Inspired by previous work on combinatorial and heuristic
search, we propose a randomized restarting variant of complete anytime beam
search, RR-CAB, and study the impact of different randomization techniques
and restart strategies. Our experiments show that RR-CAB solves some of the
hardest problems faster and outperforms the baseline. Our work raises interest-
ing questions on the impact of parallelization on the development and evaluation
of randomized restarting beam search algorithms and highlights directions for
future work.

130 E. Cohen and J. C. Beck

Acknowledgements. We thank the anonymous reviewers for their valuable feedback.
This work was supported by the Natural Sciences and Engineering Research Council
of Canada.

References

1. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP solver (2006)
2. Balog, M., Gaunt, A., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder:

learning to write programs. In: International Conference on Learning Representa-
tions (ICLR) (2017)

3. Bickerton, G.R., Paolini, G.V., Besnard, J., Muresan, S., Hopkins, A.L.: Quanti-
fying the chemical beauty of drugs. Nat. Chem. 4(2), 90 (2012)

4. Cho, K.: Noisy parallel approximate decoding for conditional recurrent language
model. arXiv preprint arXiv:1605.03835 (2016)

5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: EMNLP (2014)

6. Chopra, S., Auli, M., Rush, A.M.: Abstractive sentence summarization with atten-
tive recurrent neural networks. In: North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL-HLT), pp.
93–98 (2016)

7. Cohen, E., Beck, J.C.: Fat- and heavy-tailed behavior in satisficing planning. In:
AAAI Conference on Artificial Intelligence (AAAI), pp. 6136–6143 (2018)

8. Cohen, E., Beck, J.C.: Local minima, heavy tails, and search effort for GBFS. In:
International Joint Conferences on Artificial Intelligence (IJCAI), pp. 4708–4714
(2018)

9. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.-M.: Learning
heuristics for the TSP by policy gradient. In: van Hoeve, W.-J. (ed.) CPAIOR
2018. LNCS, vol. 10848, pp. 170–181. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93031-2 12

10. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional
sequence to sequence learning. In: International Conference on Machine Learning
(ICML), pp. 1243–1252 (2017)

11. Gomes, C.: Randomized backtrack search. In: Milano, M. (ed.) Constraint and Inte-
ger Programming: Toward a Unified Methodology, vol. 27, pp. 233–291. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-1-4419-8917-8 8

12. Gomes, C.P., Fernández, C., Selman, B., Bessière, C.: Statistical regimes across
constrainedness regions. Constraints 10(4), 317–337 (2005). https://doi.org/10.
1007/s10601-005-2807-z

13. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial
search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121–135. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0017434

14. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in sat-
isfiability and constraint satisfaction problems. J. Autom. Reason. 24(1), 67–100
(2000). https://doi.org/10.1023/A:1006314320276

15. Gomes, C.P., Selman, B., Kautz, H., et al.: Boosting combinatorial search through
randomization. In: National Conference on Artificial Intelligence (AAAI), vol. 98,
pp. 431–437 (1998)

16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

http://arxiv.org/abs/1605.03835
https://doi.org/10.1007/978-3-319-93031-2_12
https://doi.org/10.1007/978-3-319-93031-2_12
https://doi.org/10.1007/978-1-4419-8917-8_8
https://doi.org/10.1007/s10601-005-2807-z
https://doi.org/10.1007/s10601-005-2807-z
https://doi.org/10.1007/BFb0017434
https://doi.org/10.1023/A:1006314320276
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Randomized Restarting Beam Search in Neural Sequence Decoding 131

17. Helsgaun, K.: An extension of the Lin-Kernighan-Helsgaun TSP solver for con-
strained traveling salesman and vehicle routing problems. Roskilde University,
Roskilde (2017)

18. Jin, W., Barzilay, R., Jaakkola, T.: Junction tree variational autoencoder for molec-
ular graph generation. In: International Conference on Machine Learning (ICML),
pp. 2323–2332 (2018)

19. Jin, W., Yang, K., Barzilay, R., Jaakkola, T.: Learning multimodal graph-to-graph
translation for molecule optimization. In: International Conference on Learning
Representations (ICLR) (2018)

20. Kang, S., Cho, K.: Conditional molecular design with deep generative models. J.
Chem. Inf. Model. 59(1), 43–52 (2018)

21. Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic restart policies.
In: National Conference on Artificial Intelligence (AAAI), pp. 674–681 (2002)

22. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial opti-
mization algorithms over graphs. In: Conference on Neural Information Processing
Systems (NeurIPS), pp. 6348–6358 (2017)

23. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
In: International Conference on Learning Representations (ICLR) (2019)

24. Kool, W., Van Hoof, H., Welling, M.: Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement. In: International
Conference on Machine Learning (ICML), pp. 3499–3508 (2019)

25. Lample, G., Charton, F.: Deep learning for symbolic mathematics. In: International
Conference on Learning Representations (2019)

26. Landrum, G.: RDKit: open-source cheminformatics. http://www.rdkit.org
27. Liu, Y., Wu, Z., Ritchie, D., Freeman, W.T., Tenenbaum, J.B., Wu, J.: Learn-

ing to describe scenes with programs. In: International Conference on Learning
Representations (ICLR) (2018)

28. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Inf. Process. Lett. 47(4), 173–180 (1993)

29. Nakhost, H., Hoffmann, J., Müller, M.: Resource-constrained planning: a Monte
Carlo random walk approach. In: International Conference on Automated Planning
and Scheduling (ICAPS) (2012)

30. Nazari, M., Oroojlooy, A., Snyder, L., Takác, M.: Reinforcement learning for solv-
ing the vehicle routing problem. In: Conference on Neural Information Processing
Systems (NeurIPS), pp. 9839–9849 (2018)

31. Poole, B., Sohl-Dickstein, J., Ganguli, S.: Analyzing noise in autoencoders and
deep networks. arXiv preprint arXiv:1406.1831 (2014)

32. Resnick, S.I.: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-45024-7

33. Sharma, G., Goyal, R., Liu, D., Kalogerakis, E., Maji, S.: CSGNet: neural shape
parser for constructive solid geometry. In: Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5515–5523 (2018)

34. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

35. Sterling, T., Irwin, J.J.: ZINC 15-ligand discovery for everyone. J. Chem. Inf.
Model. 55(11), 2324–2337 (2015)

36. Tian, Y., et al.: Learning to infer and execute 3D shape programs. In: International
Conference on Learning Representations (ICLR) (2019)

http://www.rdkit.org
http://arxiv.org/abs/1406.1831
https://doi.org/10.1007/978-0-387-45024-7

132 E. Cohen and J. C. Beck

37. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: lessons learned from
the 2015 MSCOCO image captioning challenge. IEEE Trans. Pattern Anal. Mach.
Intell. 39(4), 652–663 (2017)

38. Walsh, T.: Search in a small world. In: International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1172–1177 (1999)

39. Weininger, D.: Smiles, a chemical language and information system. 1. Introduction
to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)

40. Wildman, S.A., Crippen, G.M.: Prediction of physicochemical parameters by
atomic contributions. J. Chem. Inf. Comput. Sci. 39(5), 868–873 (1999)

41. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992). https://doi.org/10.
1007/BF00992696

42. Zhang, W.: Complete anytime beam search. In: National Conference on Artificial
Intelligence (AAAI), pp. 425–430 (1998)

43. Zohar, A., Wolf, L.: Automatic program synthesis of long programs with a
learned garbage collector. In: Conference on Neural Information Processing Sys-
tems (NeurIPS), pp. 2094–2103 (2018)

https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696

Combining Constraint Programming
and Temporal Decomposition
Approaches - Scheduling of

an Industrial Formulation Plant

Christian Klanke1(B) , Dominik R. Bleidorn2 , Vassilios Yfantis3 ,
and Sebastian Engell1

1 Process Dynamics and Operations Group, Faculty of Biochemical and Chemical
Engineering, TU Dortmund University, Emil-Figge-Straße 70,

44229 Dortmund, Germany
christian.klanke@tu-dortmund.de

2 INOSIM, Joseph-von-Fraunhofer-Str. 20, 44227 Dortmund, Germany
3 Chair of Machine Tools and Control Systems, Department of Mechanical

and Process Engineering, Technische Universität Kaiserslautern,
Gottlieb-Daimler-Straße 42, 67663 Kaiserslautern, Germany

Abstract. This contribution deals with the development of a Constraint
Programming (CP) model and solution strategy for a two-stage indus-
trial formulation plant with parallel production units for crop protection
chemicals. Optimal scheduling of this plant is difficult: a high number of
units and operations have to be scheduled while at the same time a high
degree of coupling between the operations is present due to the need for
synchronizing charging and discharging operations.

In the investigated problem setting the formulation lines produce sev-
eral intermediates that are filled into a variety of types of final containers
by filling stations. Formulation lines and filling stations each consist of
parallel, non-identical sets of equipment units. Buffer tanks are used to
decouple the two stages, to increase the capacity utilization of the overall
plant.

The CP model developed in this work solves small instances of the
scheduling problem monolithically. To deal with large instances a decom-
position algorithm is developed. The overall set of batches is divided into
subsets which are scheduled iteratively. The algorithm is designed in a
moving horizon fashion, in order to counteract the disadvantages of the
limited lookahead that order-based decomposition approaches typically
suffer from. The results show that the complex scheduling problem can
be solved within acceptable solution times and that the proposed mov-
ing horizon strategy (MHS) yields additional benefits in terms of solution
quality.

Keywords: Constraint Programming · Moving-horizon ·
Decomposition algorithm · Batch process scheduling

This work was partially funded by the European Regional Development Fund (ERDF)
in the context of the project OptiProd.NRW.

c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 133–148, 2021.
https://doi.org/10.1007/978-3-030-78230-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_9&domain=pdf
http://orcid.org/0000-0003-1016-0502
http://orcid.org/0000-0002-5203-3889
http://orcid.org/0000-0003-4950-8393
http://orcid.org/0000-0002-3125-9846
https://doi.org/10.1007/978-3-030-78230-6_9

134 C. Klanke et al.

1 Introduction

The goal of the manufacturing and process industries is the profitable produc-
tion of goods. For this purpose, the production has to be efficient and effective,
ensuring that the company remains competitive. One determining factor to suc-
ceed is the optimal utilization of machines and material to cut production costs
and remain resource-efficient. One means to achieve both, without modifying
the production environment, and thus without extensive investments, is optimal
scheduling.

While scheduling for simple processes can be done manually, most real-life
processes and plants are very complex and automated, optimization-based pro-
cedures become necessary. This gave rise to a variety of solution approaches, of
which many can be found in [2].

Among the exact approaches, i.e. among approaches that are able to find a
provable globally optimal solution, Constraint Programming (CP) has shown to
be a promising solution technique on a variety of benchmark scheduling problems
and industrial cases [4,5,11]. In comparison to Mixed-Integer Linear Program-
ming (MILP), for which an overview of different modeling approaches for the
scheduling of batch processes is provided in [8], CP exhibits several advantages.
Those advantages include the richer mathematical syntax of CP and the ability
to exploit domain-specific knowledge more easily to improve the search process.

In any case computer-aided scheduling also has to cope with the curse of
dimensionality, because almost all scheduling problems belong in the class of
NP-hard problems, i.e. problems for which the solution time grows exponen-
tially, when the problem size increases [6]. Therefore much research went into
the development of methods to efficiently create schedules, trading-off solution
time and solution quality [7].

One of these is temporal decomposition, where the orders are split into sev-
eral sets of orders, the sets are scheduled sequentially for each subproblem and
in every subproblem timing constraints are introduced to take into account the
solution of the previous subproblem. The solutions of the subproblems are then
concatenated to yield the overall schedule. In [1] temporal decomposition of a
scheduling problem formulated as a MILP is complemented by spatial decom-
position, i.e. decomposition based on groups of units, and close to optimum
solutions are obtained consistently. It was possible to reduce the computational
time to a fraction of the time needed to solve the monolithic problem. A similar
approach was described in [12] where temporal decomposition approaches were
applied to a scheduling problem formulated as an MILP.

In this paper, a real-life industrial batch scheduling problem is modeled and
optimized with a CP-based approach. Due to the size of the problem a mono-
lithic solution is computationally not tractable and a moving horizon decom-
position approach, that yields acceptable overall solution times, is developed.
At the core of the decomposition strategy, temporal decomposition is applied.
However, temporal decomposition suffers from myopia with respect the orders
that are scheduled in subsequent iterations and unnecessarily large changeover
times might occur. Our approach remedies this issue by dynamically reassigning

Scheduling of an Industrial Formulation Plant 135

orders to subproblems, based on the most recent partial solution. To the best of
the authors knowledge, no such combination of a CP model that is solved with
a moving horizon decomposition approach or temporal decomposition for a case
study of industrial complexity has been reported yet.

A scheduling problem similar to the one solved in this work was considered
in [10] with the constraint logic programming system CHIP. The investigated
production process consists of a batch formulation and a continuous packaging
part, where a storage tank separates each batch formulation line from the subse-
quent packaging stage. However, the industrial case study we investigate in this
paper is of significantly higher complexity regarding the process constraints that
are modeled, which makes the use of a decomposition approach necessary.

This paper is structured as follows: in Sect. 2 the industrial formulation
plant for crop protection chemicals that is considered in this work is introduced.
Section 3 presents the solution methodology, including the CP model and the
moving horizon strategy (MHS). Results are presented in Sect. 4. A conclusion
and an outlook are provided in Sect. 5.

2 Case Study

Formulation of crop protection chemicals refers to the preparation of their active
ingredients in a way to make them suitable for use. Active ingredients are highly
chemically and biologically active substances. Therefore they have to be diluted
or suspended in a liquid, in order to ensure the safety of the user. Finally, through
the formulation different physicochemical properties of the products can be con-
trolled.

A schematic depiction of the formulation plant is shown in Fig. 1. The plant
consists of three main sections, the formulation lines, the filling stations and the
buffer tanks. The plant is operated sequentially, i.e. intermediate products are
first produced in the formulation lines and then filled into their final containers
by the filling stations. The buffer tanks are used for storage of the intermediate
products, in order to decouple the two production stages. Formulation lines,
buffer tanks and filling stations are fully connected via a transfer panel.

Each formulation line consists of a pre-processing line and three identical
standardization tanks, i.e. stirred tank reactors. Standardization refers to a
mixing operation of the solvent and the active ingredient. Only a single pre-
processing line is connected to all standardization tanks in a formulation line,
only one tank can be filled at the same time. After a tank has been filled, a
changeover operation has to take place in the pre-processing line prior to the
formulation of the next product. This changeover includes cleaning and setting
up the equipment for the next product. Only full batches are produced, i.e. the
standardization tanks are always filled up to their full capacity. After the stan-
dardization of a batch has been completed, the tank is ready to be emptied.
However, it is not required to empty the tank immediately. The standardization
tanks can be used for intermediate storage. When a tank is emptied, its content
is transferred either to a filling station or to a buffer tank.

136 C. Klanke et al.

The filling stations can be connected to every standardization and buffer
tank and are used to fill the intermediate products into their final containers.
They do not posses a dedicated buffer. Instead they directly drain the tank
they are connected to (standardization or buffer tank) in a continuous manner.
A filling operation is time consuming and depends on the filled amount and
on the flowrate of the filling station. The tank connected to a filling station
is therefore gradually emptied. Once the filling operation has been completed,
a changeover, i.e. cleaning and preparation, has to be performed both for the
tank and the filling station. An additional constraint of the filling stations is
that they are not operated during night shifts, in contrast to the formulation
lines. In order to decouple the two production stages and to utilize the full
production capacity of the formulation lines, primarily the buffer tanks are used
for intermediate storage. A buffer tank can store multiple batches of the same
intermediate product from the formulation lines. The transfer time between a
standardization and a buffer tank is negligible. The buffer tanks are emptied
by the filling stations in the same way as the standardization tanks. After a
buffer tank has been emptied, a changeover has to be performed before new
intermediates can be stored.

Each intermediate product can only be processed in a subset of the available
formulation lines and filling stations. The changeover times between the uses of
pieces of equipment depend on the product sequence.

The scheduling task for the formulation plant consists of the allocation of the
different batches of intermediate products to the standardization tanks and to
the filling stations and the timing and sequencing of these operations. The use of
the buffer tanks also constitutes a degree of freedom for the scheduling algorithm.
The goal is to minimize the production time, i.e. the makespan or the total
completion time, needed to meet the specified demand of the products. Due dates
and deadlines are not considered, as the plant operates according to a make-to-
stock policy. It is assumed that the set of orders is known a priori, rendering
this scheduling problem deterministic and static. For the real application, due
to uncertainties in the production process and newly incoming orders, frequent
rescheduling has to take place with updated information.

The same scheduling problem has previously been addressed in [14], where a
decomposition-based MILP strategy was employed. In the following section the
CP-based solution strategy is introduced.

3 Methodology

The complexity of the presented case study is such that it is computationally
intractable to solve large problem instances in a monolithic fashion. For this
reason a temporal decomposition-based approach is proposed. At first the set
of all batches is obtained from the set of orders. Then this set of batches is
divided into subsets of constant size. Afterwards each of these subsets is sched-
uled iteratively, fixing the decisions made in previous iterations and considering
the timing constraints that are imposed on the current iteration. The approach

Scheduling of an Industrial Formulation Plant 137

Transfer Panel
Pre-processing

line

Pre-processing

line

...

Formulation Lines

Buffer Tanks

...

...

Filling lines

Fig. 1. Schematic depiction of the industrial formulation plant.

is extended to a moving horizon scheme: from the batches considered for a sub-
problem, only a certain number are fixed in the schedule, while the remaining
batches are withheld to be scheduled in the subsequent iterations.

First the CP model is presented which solves small-scale instances mono-
lithically and is the base for the decomposition approach. This is followed by
a description of the moving horizon strategy. The model was implemented in
Python 3.6, using Google’s software suite for combinatorial optimization, OR-
Tools (version 7.6.7570) [9]. The corresponding CP-SAT Solver was used.

3.1 Variables

CP is based upon handling discrete variables. The three types of variables that
are used within the CP model are integer variables, Boolean variables and inter-
val variables. The latter are explained in more detail: Interval variables enable
a higher-level representation of time intervals. Within this work we use interval
variables to represent the different activities that are performed on the units
(i.e. a single piece of equipment), therefore we use the words activity and inter-
val variable synonymously. The time horizon T = [0, tHor] ⊂ N0 is discretised
into a finite set of timepoints and all durations are rounded up to a multiple
of the discretization interval (one hour in our case) to match these integrality
requirements. An activity I is defined in terms of integer variables: the start of
the activity Start(I), the end of the activity End(I) and its duration duration(I).

Furthermore, activities can be declared as optional, in which case a Boolean
variable I.isPresent is attached to activity I. I.isPresent takes the value False
or 0 if the activity is excluded from the schedule and takes the value True or
1 if the activity is included. For activities that are not optional, all constraints
assume I.isPresent = 1. If an optional activity is not present, no constraint will
act on the related variables, unless explicitly specified.

138 C. Klanke et al.

Inherently, all activities are constrained by Eq. (1). I denotes the set of activ-
ities.

I.isPresent =⇒ End(I) − Start(I) = duration(I) ∀I ∈ I (1)

At least one activity is introduced per unit j ∈ J and batch b ∈ B, where
multiple interval variables may be introduced per batch and unit, to accurately
represent the synchronization between different transfer operations, changeovers
or the discretization of the filling operations. The sets J and B denote the
complete set of processing units and batches respectively. On the formulation
tanks J T an interval variable I lj,b is defined for each tank, batch and type of
operation l ∈ LT = {Charge, Mix, Dis}, i.e. charging, mixing and discharging.
Charging and discharging refers to filling and emptying a tank. Similarly for the
buffer tanks J St interval variables are introduced per batch and tank and type
of operation l ∈ LSt = {stor, empt}, i.e. filling and storing, and discharging of
the tank. In the case of the filling operations a discretization into n individual
intervals represented by the interval variables IFillstep

j,b,i is necessary, to account
for the continuous operation of the filling stations J Fill. The following sets of
interval variables are therefore introduced for the formulation stage, the filling
stage and the buffer tanks:

I lj,b ∀b ∈ B, j ∈ J T , l ∈ LT = {Charge, Mix, Dis}
I lj,b ∀b ∈ B, j ∈ J St, l ∈ LSt = {Stor, Empt}
IFillstep
j,b,i ∀b ∈ B, j ∈ J Fill, i = 1, ..., n

IFill
j,b ∀b ∈ B, j ∈ J Fill

For all of the aforementioned activities, the domains of the start and end of the
interval variables have to be defined and are initialised as: Start(I) = 0,End(I) =
tHor.

Except for the intermediate and buffer tank storage times, the duration of
the activities is given a priori by the product-dependent charging, discharging
and processing rates of the equipment.

3.2 Constraints

The constraints (2) enforce that exactly one charging and mixing activity is
present for each batch. Furthermore, at most one discharging operation from the
formulation tanks to the filling stations and one storing and emptying operation
for the buffer tanks is present. These storing and emptying operations only occur
in pairs on the buffer tanks. Since discharging the content of a formulation
tank into a buffer tank takes much less time than one discrete time interval,
these transfers are not considered via activities and hence there might be less
discharging operations from the formulation tanks than charging and mixing
operations.

Scheduling of an Industrial Formulation Plant 139

∑

I∈Il
b

I.isPresent = 1,∀b ∈ B,∀l ∈ {Charge, Mix},

∑

I∈Il
b

I.isPresent ≤ 1,∀b ∈ B,∀l ∈ {Dis, Stor, Empt}

IStor
j,b .isPresent = IEmpt

j,b .isPresent,∀b ∈ B, j ∈ J St

(2)

Since discharging from a formulation tank or buffer tank into a filling station
takes place synchronously, equal start and end times of discharging or filling are
enforced via constraints (3), depending on whether the filling stations are fed
from the formulation tanks directly or from the buffer tanks:

(
I lj′,b.isPresent = 1 ∧ IFill

j,b .isPresent = 1
)

=⇒
{

Start(I lj′,b) = Start(IFill
j,b)

End(I lj′,b) = End(IFill
j,b)

}

∀b ∈ B, j ∈ J Fill, (l, j′) ∈ {{Empt} × J St} ∪ {{Dis} × J T }
(3)

Constraints (4) ensure, that the basic sequences within the formulation tanks
are satisfied. This means, that the discharging, storing and filling operations
have to take place after the mixing operations in the formulation tank have
ended, and that at most the maximal intermediate storage time tinter elapses
before discharging from the formulation tank to the filling station takes place.
Moreover, the end of the charging operation is synchronized with the start of
the mixing operation in the formulation tanks.

End(IMix
j,b) ≤ Start(IStor

j′,b) ∀b ∈ B, j ∈ J T , j′ ∈ J St

End(IMix
j,b) ≤ Start(IFill

j′,b) ∀b ∈ B, j ∈ J T , j′ ∈ J Fill

End(IMix
j,b) + tinter ≥ Start(IDis

j,b) ∀b ∈ B, j ∈ J T

Start(IDis
j,b) ≥ End(IMix

j,b) ∀b ∈ B, j ∈ J T

End(ICharge
j,b) = Start(IMix

j,b) ∀b ∈ B, j ∈ J T

(4)

The disjunctive NoOverlap-constraint enables a straightforward formulation
of the allocation of resources only in mutually exclusive time periods. In this
model it is used to model that a single pre-processing line can only supply
one formulation tank at a time during the charging operation on one of the
formulation lines in J Form. Similarly, the interval variables are constrained to
not overlap for all operations that can be performed in a formulation tank or on
a filling station, to ensure that only one batch is processed at a time on a unit.
Beyond that, it is not possible to store intermediates of different types p, p′ ∈
Pinter in the buffer tanks. ISt

p,j denotes the set of storage activities associated with
intermediate p on unit j and Ij denotes all activities that can be performed on
unit j. As the non-working periods for the filling stations are represented by the
interval variables I ∈ IShift, the tasks on the filling stations are also constrained
to not overlap with these.

140 C. Klanke et al.

NoOverlap
({

ICharge
j |j ∈ J T

fl

})
∀fl ∈ J Form

NoOverlap(Ij) ∀j ∈ J T

NoOverlap({I, I ′}) ∀j ∈ J St,∀I ∈ ISt
p,j , I

′ ∈ ISt
p′,j ,

p
= p′

NoOverlap(Ij ∪ IShift) ∀j ∈ J Fill

(5)

Because of the additional efforts associated with changing the connectivity,
the filling of a batch only takes place on a single unit. For this purpose the
Boolean variable V Fill

b,j is used to indicate that a filling activity (and all related
intervals) of batch b are assigned to filling station j. The corresponding con-
straints are given by Eqs. (6):

∑

i∈{1,...,n}
IFillstep
j,b,i .isPresent ≥ 1 =⇒ Vb,j ∀j ∈ J Fill, b ∈ B

Vb,j =⇒ ¬Vb,j′ ∀j ∈ J Fill, j′ ∈ J Fill \ j, b ∈ B
(6)

For the buffer tanks, a cumulative constraint, given by Eq. (7), is defined.
The amount of stored material must not exceed the capacity of the buffer tank
at any given time point. The first argument of the AddCumulative constraint
specifies a set of interval variables, the second argument specifies the correspond-
ing contributions to the filling, i.e. the individual batchsizes Cb, and the third
argument specifies the maximum capacity of the unit Cj . Due to the NoOver-
lap constraints on the buffer tank, it is avoided, that different intermediates are
stored in the same buffer tank at the same time.

AddCumulative(Ij , {Cb=BI
|∀I ∈ Ij}, Cj) ∀j ∈ J St (7)

To ensure that the order demands are met by the filling stations, con-
straint (8) is introduced, where Cb,i represents the amount filled in a single,
discretized step of a filling operation. Due to the errors introduced by the dis-
cretization of the scheduling horizon and the fixed batch sizes, constraining the
amount to the exact batch size is not possible. IFillstep

b denotes the set of dis-
cretized filling intervals of batch b.

|IFillstep
b |∑

i=1

∑

j∈J Fill

IFillstep
j,b,i .isPresent · Cb,i ≥ Cb ∀b ∈ B (8)

Changeovers, as described in Sect. 2 occur in the following units:

(i) in the pre-processing feed,
(ii) in the formulation tanks,
(iii) in the filling stations,
(iv) and in the buffer tanks.

The duration of changeovers depend on where they occur (pre-processing
line, standardization tank, filling station or buffer tank) and which two tasks are

Scheduling of an Industrial Formulation Plant 141

adjacent to the changeover, in particular whether the two tasks process batches
of the same or of different (intermediate) products.

We handle the first dependency by defining the set of constraints for each
set of units separately. The second dependency requires to know the sequence of
the tasks.

To model the changeovers, Boolean variables are used to define a graph G =
(N,E) formed by all activities on a unit (or line). The set of nodes N consists
of all activities considered for the changeover plus a start- and endnode. The set
of edges E contains all pairwise combinations of all nodes, represented by the
Boolean variables. A path through a graph defines a sequence of tasks on a unit.
To trace these sequences, the variable LII′j is introduced, which is 1, if activity
I is preceding I ′, on unit j. An edge from a node to itself can be used to exclude
an activity from the graph. This accounts for batches that are not produced on
a unit in the schedule or batches that do not affect the changeover times. A
circuit constraint defines the directional graph in the model and enforces that
each node is visited exactly once (forming a Hamiltonian path). Equation (9)
contains the circuit constraints and Eq. (10) contains the constraints necessary
to ensure that activities in the path are part of the schedule. If an edge is part
of the path, the two corresponding tasks/nodes are constrained to be present in
the schedule and a minimum waiting duration between their start- and endtime
is enforced.

CircuitConstraint(GPreprocess)
CircuitConstraint(GFormulation tanks)
CircuitConstraint(Gfilling stations)
CircuitConstraint(GBuffer tanks)

(9)

The path allows the solver to trace the relative position of activities. This is
used to check if a solution candidate complies with the changeover constraints
as given by Eq. (11):

LII′j =⇒
{

I.isPresent
I ′.isPresent

}

∀i ∈ Il
j , j ∈ J , l ∈ {Span, Charge, Fill, Stor, Empt} (10)

LII′j =⇒ End(I) + coII′j ≤ Start(I ′) ∀I ∈ Il
j ,

I ′ ∈ Il
j , j ∈ J , l ∈ {Span, Charge, Fill, Stor, Empt} (11)

Changeovers for cleaning activities on a formulation tank take place between
the end of the processing activity and the start of the charging activity of a
subsequent batch. The last processing activity can either be the mixing step
or the discharging step. This depends on whether the intermediate storage is
transferred to a storage tank or filling station. In the buffer tanks changeovers
take place between the end of a discharging operation and the start of the sub-
sequent filling and storing operation. To consider these changeovers, additional

142 C. Klanke et al.

spanning interval variables ISpan
j ∈ ISpan are necessary, which are considered in

the circuit constraint (9) instead of the individual activities. They are given by
constraints (12):

Start(ISpan
j) = Start(ICharge

j) ∀I ∈ IT
j , j ∈ J T

End(ISpan
j) = End(IMix

j) ∀I ∈ IT
j , j ∈ J T

Start(ISpan
j) = Start(IStor

j) ∀I ∈ IT
j , j ∈ J St

End(ISpan
j) = End(IEmpt

j) ∀I ∈ IT
j , j ∈ J St

(12)

A special case are the changeovers within the buffer tanks. In contrast to the
other units, they can hold multiple batches of the same order at the same time.
A changeover in the buffer tanks only occurs, when a new product is stored.
This changeover happens between the end of removing the last batch from a
buffer tank, and the start of filling a new batch of a different product in the
same buffer tank. Because batches can arrive and leave the buffer that belong
to different orders, storage intervals may partially or fully overlap each other.
To take this into account additional constraints are necessary. For each pair of
storage activities, a Boolean variable Loverlap

II′j has been defined, which is True if
the activity overlaps with another activity. The constraints are given by Eq. (13).
They are a set of implications, that ensure that changeovers between activities
which are partially or completely overlapped by other activities are considered
correctly, or excluded from the Hamiltonian path.

Loverlap
II′j =⇒ Start(I) ≥ Start(I ′) ∀I ∈ ISt

j , I ′ ∈ ISt
j , j ∈ J St

Loverlap
II′j =⇒ End(I) < End(I ′) ∀I ∈ ISt

j , I ′ ∈ ISt
j , j ∈ J St

LII′j =⇒ Start(I ′) ≥ Start(I) ∀I ∈ ISt
j , I ′ ∈ ISt

j , j ∈ J St

LII′j =⇒ End(I ′) > End(I) ∀I ∈ ISt
j , I ′ ∈ ISt

j , j ∈ J St

(13)

The objectives makespan FMK and completion time FCT are defined as given
by Eq. (14):

FMK = max
I∈I

End(I)

FCT =
∑

I∈(IT ∪IFill)

End(I) (14)

Further constraints have been added to remove symmetries. Constraints in
Eq. (15) greatly improve the performance of the search process, as the start time,
end time and duration variables of activities on units, that are not used by the
activity, would otherwise be branched or propagated on.

¬I.isPresent =⇒

⎧
⎨

⎩

Start(I) = 0 ∀I ∈ I
End(I) = 0 ∀I ∈ I

duration(I) = 0 ∀I ∈ I

⎫
⎬

⎭ (15)

Batches of the same product on the same line are indistinguishable, yet their
permutations increase the search space, as they are considered separate entities
by the solver. To remove the symmetries, all batches of the same product are
constrained to be scheduled in order (if present) on the formulation lines, as given

Scheduling of an Industrial Formulation Plant 143

by Eq. (16). The discrete filling steps of a single batch on the filling stations are
treated analogously.

Start(ICharge
j,b−1) ≤ Start(ICharge

j,b) ∀b = 2, . . . , |Bo|, j ∈ J Fill, o ∈ O (16)

3.3 Moving Horizon Strategy

The complexity of the scheduling problem in terms of the interactions between
the decisions, as well as its sheer scale, in terms of number of operations to be
scheduled, necessitates the use of a decomposition algorithm to obtain optimised
schedules in a reasonable amount of time.

In this work a batch-based decomposition strategy is chosen, since a decom-
position based on complete orders would lead to prohibitively large subproblems.
The complete set of batches B is evenly decomposed into smaller subsets Bk that
are scheduled in iteration k of the solution algorithm. A final schedule is obtained
by concatenation of the partial solutions that are computed in the iterations k.
The number of batches that are scheduled in each iteration is chosen by balancing
the solution time against the schedule quality.

The MHS is displayed in Algorithm 1. For each subset Bk a set of corre-
sponding interval variables Ik is generated.

In every iteration, a two-step solution procedure is employed. The first step
is a makespan optimization by solving the model π(FMK), which can be solved
computationally efficiently in the CP setting. This is followed by an optimization
of the total completion time π(FCT) in which the makespan is bounded by the
previously obtained value by adding the constraints FMK ≤ F ∗

MK . A solution
hint (initial solution) Ik,∗ that is equal to the solution that was obtained in the
makespan optimization step is passed to the completion time optimization step.

It is necessary to optimise both objectives sequentially because of makespan-
equivalent subsolutions, that are detrimental to the overall solution. When omit-
ting the completion time optimization, units may show periods of inactivity
between activities. Constraint propagation is known to perform better on max-
type objectives, such as makespan, than on sum-type objectives such as comple-
tion time [3]. Therefore the preliminary makespan optimization speeds up the
solution procedure noticeably. This is the reason why a sequential optimization
was chosen over an objective that consists of a weighted sum of the makespan
and the total completion time.

The decomposition algorithm has been implemented in a moving horizon
fashion. In each iteration, a number of batches is scheduled, but the batches for
which the completion times on the filling stations are the largest are removed
from the solution (Algorithm 1, lines 14–21). Only the allocation and timing
decisions for the remaining IH batches are fixed on the formulation tanks, fill-
ing stations, and buffer tanks. In this strategy IH refers to the number of batches
in the implementation horizon and PH to the number of batches in the predic-
tion horizon. The removed (PH − IH) batches are added to the set of batches
to be scheduled in the next iteration. This algorithm design aims to decrease

144 C. Klanke et al.

the myopia of scheduling only a subset of orders in each iteration, as Fig. 2
demonstrates. On the left of Fig. 2, four iterations of the solution strategy are
displayed, where IH = PH. This leads to a large changeover time between I1

and I2 being incurred in the second iteration. However, when the prediction
horizon is increased to PH = 3, a better sequence is found. While unnecessarily
large changeover times are avoided, an optimization with |Ik| = 4 did not need
to be solved, which leads to a decrease in computation times.

TimeTime

k = 4

IH = 1, PH = 3IH = PH = 1

k = 3
I1 I2 I3 I4

I1 I2

I1 I3

I1 I2I3

I1 I2I3 I4

I1 I3I1 I2 I3

I1

k = 2

k = 1

k = 4

k = 3

k = 2

k = 1

I1 = {I1, I2, I3}
I2 = {I2, I3, I4}

I4 = {I2}

I1 = {I1}
I2 = {I2}

I4 = {I4}
I3 = {I3} I3 = {I2, I4} Changeover

times
I1 I2 I3 I4

I1 - a b b
I2 a - b b
I3 b b - c
I4 b b c -
with a > b > c.

ΣcoI,I′ = a + b + c ΣcoI,I′ = 2 · b + c

I2I4

I2I4

Fig. 2. Illustration of how the moving horizon Strategy can reduce the myopia of order-
based decomposition approaches on a single unit.

4 Results

The results section is structured as follows: First results for a case with 78 batches
are presented to demonstrate, that reductions in the computational time have
been achieved, while the solution quality is equal to the one presented in [14].
Secondly, the influence of different lengths of prediction and implementation
horizons is investigated on a set of larger cases with 253 batches each.

All computations have been conducted on a FUJITSU ESPRIMO P920
Workstation with a 4-core Intel i7 processor (3.40 GHz) and 32 GB of RAM.
The considered formulation plant consists of 7 formulation lines, each with 3
standardization tanks, 8 filling stations, and 5 buffer tanks.

In Fig. 3 an illustrative schedule for the case study with 78 batches, corre-
sponding to the production of about one week, is shown. Colored, horizontal bars
represent operations. Sets of operations that belong to one batch, i.e. charging,
mixing, discharging (Formulation tanks) or discretized filling (Filling stations)
or filling and discharging (Buffer tanks) are separated by vertical, black lines.

Both the formulation and the filling stations exhibit periods of underutiliza-
tion, e.g. FL5, FS5 and FS6. Therefore, neither the formulation nor the filling
stage is the clear bottleneck stage. The utilization of a line heavily depends on
its flexibility, i.e. the set of orders that can be produced on a certain formulation

Scheduling of an Industrial Formulation Plant 145

Algorithm 1. Moving horizon strategy
1: K = �|B|/N� � Determine number of iterations
2: I1,∗, F ∗

MK = π(FMK) � Solve CP min. MK
3: I1,∗, F ∗

CT = π(FCT) � Solve CP min. CT
4: for k = 2, . . . , K do
5: for all j ∈ J do � Define horizon shift constraints
6: EST = max

I∈Ik−1,∗
j

End(I) � Compute Earliest Starting Time

7: I ′ = {I ∈ Ik−1,∗
j |End(I) = EST}

8: D(Start(I)) = {End(I) + coI′Ij , . . . , |TH |} ∀I ∈ Ik
j

9: � Reduce domain of Start(I)
10: end for
11: Ik,∗, F ∗

MK = π(FMK)
12: Ik,∗, F ∗

CT = π(FCT , Ik,∗, FMK ≤ F ∗
MK)

13: � Solve with solution hint Ik,∗ and MK constraint
14: for k = 1, . . . , (PH − IH) do � Keep IH batches
15: Ik,∗

last = {I | End(I) = max
I∈Ik,∗

j ,j∈JFill
End(I)} � Retrieve last activity

16: for all b ∈ Bk do
17: if Ik,∗

last ∈ Ik,∗
b then � Check if the last activity belongs to batch b

18: Ik,∗ = Ik,∗ \ Ik,∗
b � Remove all activities of that batch

19: end if
20: end for
21: end for
22: I∗ = I∗ ∪ Ik,∗ � Append to final solution
23: end for

or filling station. Overall a good balancing of the loads of the processing lines
is achieved with the exception of FS7, but the orders that are processed on this
line cannot be processed elsewhere.

The makespan of this exemplary schedule is 133 h. This is the same value
that was reported in [14] for the same set of orders. The schedule was obtained
within 23 min, with IH = 5 and PH = 5. In [14] up to 5 batches were scheduled
per iteration, which took 38 min in total. This is reduction in computational
time by 40%. Beyond that, an optimality gap of 5% was used in each iteration,
while in our approach each iteration is solved to optimality.

A measure to improve the quality of solutions when a decomposition approach
is used, is to sort the list of orders prior to scheduling. Sorting for a criterion
that reflects the flexibility of an order, similar to the algorithm proposed in [13],
could reduce the gaps. However, the list of orders already represents priorities
of the demand satisfaction and therefore no presorting was implemented.

In order to evaluate the benefits of the MHS compared to a temporal decom-
position that fixes all operations in a single iteration, i.e. where IH = PH, a
set of 10 random instances was generated and optimised with different values
of IH and PH. All random instances consist of 253 batches, but the types of
intermediate and final products are randomised. This randomisation of the types

146 C. Klanke et al.

Fig. 3. Illustrative schedule for the case study with 78 batches, IH = 5 and PH = 5.
One colour may include multiple orders.

Table 1. Results of the MHS for a set of 10 randomised instances with 253 batches
each for varying implementation and prediction horizons.

IH PH PH/IH Runtime [s] Av. Makespan [h] Av. Completion time [h]

1 5 5 14550 404 12811

2 5 2.5 8171 399 12823

3 5 1.67 5702 405 12922

5 5 1 3359 399 12955

1 3 3 1799 403 12852

2 3 1.5 1430 408 12978

3 3 1 801 396 13131

1 2 2 1127 409 13020

2 2 1 622 400 13232

1 1 1 549 404 13334

of intermediate and final product impacts the changeover times, the processing
times, and which units are eligible for the batches of an order.

In Table 1 the average runtime, average makespan and average completion
time results for the 10 instances are given. For the completion time it can be seen,
that it tends to decrease with higher values for the ratio PH/IH. However, for
the makespan no clear trend can be identified. This might be due to the symme-
tries implied by the makespan objective which are difficult to account for across
the different subproblems. Although better objective functions are achieved with
an increasing PH compared to IH, a trade off between the improvements in
solution quality against the increased computation times has to be made.

Scheduling of an Industrial Formulation Plant 147

5 Summary, Conclusion and Outlook

In this work a CP model and a moving horizon decomposition strategy were
developed to solve a large-scale scheduling problem for a real-life formulation
plant. Noteworthy features of the scheduling problem are the necessity to model
the allocation and the capacity utilization of the buffer tanks explicitly, the
continuous operating mode of the filling stations as well as the non-identity of the
processing units in terms of processing rates and eligibility. The MHS that was
developed decomposes the scheduling problem into manageable subproblems,
while alleviating the limitations of simple order-based decomposition schemes.
As a result, acceptable solution times, especially when considering the problem
size, have been obtained. Lower solution times than with a MILP approach were
achieved for the same solution quality.

Soft metrics are also worth to be discussed. A special challenge in modeling
the plant operations of the case study under consideration, for a MILP formu-
lation, is the representation of the continuously operated filling stations. A dis-
cretization of the processing time was necessary to represent the variable filling
time and to model a set of independent filling operations. In [14] a discrete-time
model was suggested because of the presence of mass balances, that leads to
variables with up to four indices (three for order, unit and timepoint and one for
the processing time discretization). Considering model design and maintenance,
CP requires less expert knowledge to represent such features, as interval vari-
ables inherently enable for variable durations and mass balances can be easily
represented with cumulative constraints. This results in a better overall compre-
hensibility of the CP model compared to MILP models in this case.

Taking into account the possibility of employing high-level formulations in CP
models which improves the ease of application and the evidence that has recently
accumulated that CP outperforms MILP formulations in many combinatorial
optimization problems [4,5,11], it can be said that CP has received too little
attention for practical applications yet. A further practical consideration is that
the software suite OR-tools and its CP-SAT solver currently are open source
products, while the performance of MILP-based approaches heavily relies on the
use of commercial solvers, such as Gurobi or CPLEX.

Future work will include the modelling of the up- and downstream logistics as
well as a more detailed scheduling of personnel, because both aspects can lead
to bottlenecks in the production process under consideration. Furthermore, a
sorting algorithm for the list of orders, that still considers for the fixed priorities
of certain orders, will be developed to investigate if the solution quality can be
improved further.

References

1. Elkamel, A., Zentner, M., Pekny, J.F., Reklaitis, G.V.: A decomposition heuris-
tic for scheduling the general batch chemical plant. Eng. Optim. 28(4), 299–330
(1997). https://doi.org/10.1080/03052159708941137

https://doi.org/10.1080/03052159708941137

148 C. Klanke et al.

2. Harjunkoski, I., et al.: Scope for industrial applications of production scheduling
models and solution methods. Comput. Chem. Eng. 62, 161–193 (2014). https://
doi.org/10.1016/j.compchemeng.2013.12.001

3. Kovács, A., Beck, J.C.: A global constraint for total weighted completion time
for unary resources. Constraints 16(1), 100–123 (2011). https://doi.org/10.1007/
s10601-009-9088-x

4. Ku, W.Y., Beck, J.C.: Mixed integer programming models for job shop scheduling:
a computational analysis. Comput. Oper. Res. 73, 165–173 (2016). https://doi.
org/10.1016/j.cor.2016.04.006

5. Laborie, P.: An update on the comparison of MIP, CP and hybrid approaches
for mixed resource allocation and scheduling. In: van Hoeve, W.-J. (ed.) CPAIOR
2018. LNCS, vol. 10848, pp. 403–411. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93031-2 29

6. Lenstra, J.K., Rinnooy Kan, A.H., Brucker, P.: Complexity of machine scheduling
problems. Ann. Disc. Math. 1(C), 343–362 (1977). https://doi.org/10.1016/S0167-
5060(08)70743-X

7. Leung, J.Y.: Handbook of Scheduling: Algorithms, Models, and Performance Anal-
ysis. CRC Press (2004)

8. Méndez, C.A., Cerdá, J., Grossmann, I.E., Harjunkoski, I., Fahl, M.: State-of-
the-art review of optimization methods for short-term scheduling of batch pro-
cesses. Comput. Chem. Eng. 30(6–7), 913–946 (2006). https://doi.org/10.1016/j.
compchemeng.2006.02.008

9. Perron, L., Furnon, V.: Or-tools https://developers.google.com/optimization/
10. Simonis, H., Cornelissens, T.: Modelling producer/consumer constraints. In: Mon-

tanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 449–462. Springer, Hei-
delberg (1995). https://doi.org/10.1007/3-540-60299-2 27

11. Wari, E., Zhu, W.: A constraint programming model for food processing industry:
a case for an ice cream processing facility. Int. J. Prod. Res. 57(21), 6648–6664
(2019). https://doi.org/10.1080/00207543.2019.1571250

12. Wu, D., Ierapetritou, M.G.: Decomposition approaches for the efficient solution of
short-term scheduling problems. Comput. Chem. Eng. 27(8–9), 1261–1276 (2003).
https://doi.org/10.1016/S0098-1354(03)00051-6

13. Yfantis, V., Corominas, F., Engell, S.: Scheduling of a consumer goods produc-
tion plant with intermediate buffer by decomposition and mixed-integer linear
programming. IFAC-PapersOnLine 52(13), 1837–1842 (2019). https://doi.org/10.
1016/j.ifacol.2019.11.469

14. Yfantis, V., Siwczyk, T., Lampe, M., Kloye, N., Remelhe, M., Engell, S.: Iterative
medium-term production scheduling of an industrial formulation plant. Comput.
Aided Chem. Eng. 46, 19–24 (2019). https://doi.org/10.1016/B978-0-12-818634-
3.50004-7

https://doi.org/10.1016/j.compchemeng.2013.12.001
https://doi.org/10.1016/j.compchemeng.2013.12.001
https://doi.org/10.1007/s10601-009-9088-x
https://doi.org/10.1007/s10601-009-9088-x
https://doi.org/10.1016/j.cor.2016.04.006
https://doi.org/10.1016/j.cor.2016.04.006
https://doi.org/10.1007/978-3-319-93031-2_29
https://doi.org/10.1007/978-3-319-93031-2_29
https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.1016/j.compchemeng.2006.02.008
https://doi.org/10.1016/j.compchemeng.2006.02.008
https://developers.google.com/optimization/
https://doi.org/10.1007/3-540-60299-2_27
https://doi.org/10.1080/00207543.2019.1571250
https://doi.org/10.1016/S0098-1354(03)00051-6
https://doi.org/10.1016/j.ifacol.2019.11.469
https://doi.org/10.1016/j.ifacol.2019.11.469
https://doi.org/10.1016/B978-0-12-818634-3.50004-7
https://doi.org/10.1016/B978-0-12-818634-3.50004-7

The Traveling Social Golfer Problem: The
Case of the Volleyball Nations League

Roel Lambers, Laurent Rothuizen, and Frits C. R. Spieksma(B)

Eindhoven University of Technology, Eindhoven, The Netherlands
f.c.r.spieksma@tue.nl

Abstract. The Volleyball Nations League is the elite annual interna-
tional competition within volleyball, with the sixteen best nations per
gender contesting the trophy in a tournament that spans over 6 weeks.
The first five weeks contain a single round robin tournament, where
matches are played in different venues across the globe. As a result of this
setup, there is a large discrepancy between the travel burdens of meeting
teams, which is a disadvantage for the teams that have to travel a lot. We
analyse this problem, and find that it is related to the well-known Social
Golfer Problem. We propose a decomposition approach for the resulting
optimization problem, leading to the so-called Venue Assignment Prob-
lem. Using integer programming methods, we find, for real-life instances,
the fairest schedules with respect to the difference in travel distance.

Keywords: Social Golfer problem · Volleyball Nations League ·
Integer programming

Prologue

It is the beginning of June 2018 when the Italian men volleyball team go unde-
feated in the first round of the inaugural Volleyball Nations League. They played
their three first-round matches in Kraljevo, Serbia, and for the next round of
three matches they have to travel, via Belgrade, Rome, Buenos Aires, to reach
the next venue in San Juan, Argentina, after more than 24 h of traveling. Playing
only a few days after this trip, their momentum seems lost and they lose two
out of their three games, all played within a week, upon which they immediately
need to fly to Japan for the third round.

Ultimately, the Italian team had to travel literally across the globe within a
time span of four weeks, playing matches against the best volleyball teams in the
world. Even though they started off with three victories, they ended eighth and
did not qualify for the final stages. In comparison, the French team played all
their matches within Europe and emerged as winner of the main event. Later that
year however, during the World Championship, the Italian team outperformed
the French team.

This work is based on [13].

c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 149–162, 2021.
https://doi.org/10.1007/978-3-030-78230-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_10

150 R. Lambers et al.

1 Introduction

The above example is just one of many that highlights the importance of travel
times in the Volleyball Nations League (VNL). It is well established within the
scientific literature that extensive travelling has a negative impact on sport per-
formance. Although we do not intend to survey the literature on this subject, this
finding is reported for various sports ranging from rugby [11] to baseball ([15],
and [18]) and from basketball [9] to triathletes [16]; see also the references con-
tained in these papers. We close this paragraph by a quote from [14] who con-
cludes: “Jet lag and travel fatigue are considered by high-performance athletic
support teams to be a substantial source of disturbance to athletes.” This finding
is illustrated in the prologue of this paper, and serves as its motivation.

The Volleyball Nations League is a tournament organized every year by the
FIVB (Fédération Internationale de Volleyball), for both men and women (see
https://www.volleyball.world/en/vnl/2021). This tournament was first orga-
nized in 2018 to replace the World League/World Grand Prix as annual volley-
ball tournament. Every tournament contains 16 teams, and consists of multiple
phases. In the first phase, lasting for five weeks, all 16 teams play in a single
round robin. The best 6 teams then qualify for the second phase, where out
of two groups of three, four teams emerge to play cross finals. Our interest is
exclusively on the first phase.

In the VNL tournament, teams play in rounds. In each round, each team is
in a poule consisting of 4 teams, meeting all teams in their poule once. After 5
rounds, all teams have played all the other teams exactly once, and a ranking
is made based on the results in this single round robin tournament. All the
matches in a single poule are held at the same venue, however, every round
has its 4 poules played out in different venues. As it is a disadvantage to have
traveled more than your opponent going into a match, our main interest lies
in minimizing a measure that captures the imbalance in travel times between
opposing teams.

A priori, it is not clear how a round robin schedule that can be decomposed
in poules is obtained. In fact, finding a schedule that fits this VNL-format is
related to the so-called Social Golfer Problem (SGP). In this problem we are
given gp golfers and w rounds, and the SGP-question is whether it is possible
to let the gp golfers play in g groups of p golfers in each of the w rounds, in
such a way that every pair of golfers plays in the same group in at most one
round, see [4,10,17]. This question is far from innocent: only for restricted sets
of values for g, p, w the answer to this question is known. For instance, when
g = p = w − 1, solutions are known to exist when g is a prime power - and no
other solution to these type of instances has been found, nor has it been proven
that these are the only instances for which a solution can exist [8].

Of course, in the context of the Volleyball Nations League, each golfer cor-
responds to a team, and a group corresponds to a poule. Since the Volleyball
Nations League has g = p = 4 and w = 5, it follows that the answer to the
SGP-question is affirmative, and hence a schedule for the VNL that consists of
5 rounds, each round consisting of 4 poules, is known to exist. In this paper,

https://www.volleyball.world/en/vnl/2021

The Traveling Social Golfer Problem 151

we introduce the Traveling Social Golfer Problem (TSGP), as a generalization
of the SGP; the TSGP allows us to take fairness, as measured by the difference
in travel times between opposing teams, into account.

Another well-known problem related to the scheduling problem in the Vol-
leyball Nations League is the Travelling Tournament Problem (TTP), see [6] for
a precise description. In contrast to our problem, in the TTP pairs of teams
meet in the venue of one of the two opposing teams. Moreover, the objective in
the TTP is to minimize total travel distance; difference in travel time between
opposing teams is not considered in the TTP. We refer to [7] and [5] for an
overview concerning the TTP.

A number of studies has been devoted to the scheduling of national volleyball
leagues where mainly for cost reasons, the objective is to minimize total travel
time. We mention [2] who model the Argentine national volleyball league as
an instance of the Traveling Tournament Problem, and [3] who investigate the
Italian volleyball league. Further, [12] study the Norwegian Volleyball League;
one of their models, motivated by a cost-objective, is devoted to minimizing total
travel distance in that league. These leagues are organized in the format of a
Double Round Robin, and as such differ from the VNL.

2 The Traveling Social Golfer Problem (TSGP)

2.1 Definition of the TSGP

As described in Sect. 1, the Social Golfer Problem is a well known combi-
natorial question, where the task is to schedule golfers in groups of size p over
multiple rounds, such that no golfer plays with another golfer in the same group
twice. In the Traveling Social Golfer Problem (TSGP), all groups have
to play at (different) venues, where the objective is to create a schedule that min-
imizes the unfairness arising from golfers having different travel times between
the venues.

In order to give a precise formulation of the TSGP, we use the following
notation to describe the input:

– N : the number of teams,
– k: a poule size,
– V : the set of venues,
– d(v, w): a distance between each pair of venues v, w ∈ V , and
– cv: a multiplicity for each v ∈ V .

The multiplicities cv indicate the exact number of times venue v ∈ V must host
a poule; indeed, in the practical situation of the VNL, it is not uncommon that
a venue is host to different poules in different rounds. The multiplicities allow
us to accommodate such situations.

152 R. Lambers et al.

Furthermore, we use the following notation to describe a solution:

– R: a set of rounds,
– P r

i : the set of teams in poule i in round r, 1 ≤ i ≤ N
k , r ∈ R,

– vr(t): the venue of the poule in which team t ∈ {1, . . . , N} plays in round
r ∈ R.

Finally, we measure the value of a schedule S by its unfairness u(S) as follows:

u(S) =
∑

r∈R\{1}

N
k∑

i=1

max
s,t∈P r

i

|d(vr(s), vr−1(s)) − d(vr(t), vr−1(t))|. (1)

Thus, for every poule P r
i in every round r ∈ R \ {1}, we consider the two

teams whose difference in travel distance needed to arrive at the corresponding
venue, is maximum over all pairs of teams in the poule; this quantity is summed
over all poules, and all rounds (except the first round, as we assume that all
teams have ample time to arrive at their first venue). Thus, a lower value of
u(S) indicates that the difference in travel times between opposing teams was
less and thus the schedule was more fair. The measure u is applicable to any
schedule for N teams that has a poule/round-structure.

Example 1. A tournament with N = 4, teams 1, . . . , 4, is organized over three
rounds, and poules of size k = 2. There are four venues, V = {A,B,C,D},
with cA = cD = 2 and cB = cC = 1. Distances between venues are d(A,B) =
d(A,C) = d(B,D) = d(C,D) = 1 and d(A,D) = d(B,C) = 2.

The following schedule S with poules P r
i and venues v is used:

P 1
1 = {1, 2}, v = A P 1

2 = {3, 4}, v = D

P 2
1 = {1, 3}, v = A P 2

2 = {2, 4}, v = B

P 3
1 = {1, 4}, v = D P 3

2 = {2, 3}, v = C

Thus:

u(S) = |2 − 0| + |1 − 1| + |2 − 1| + |2 − 1| = 4

We state the following optimization problem that we call the (N, k)-Traveling
Social Golfer Problem, or (N, k)-TSGP for short.

Problem 1. (N, k)-TSGP
Input: A number of teams N ∈ N, a poule size k ∈ N, a set of venues V each
with multiplicity cv (v ∈ V), and a distance function d : V × V → R.
Output. A schedule S consisting of |R| rounds minimizing u(S) such that:

– there is an equi-partitioning of N teams in poules P r
1 , . . . P r

N
k

for each round
r ∈ R, with for each pair of distinct teams s, t,∃! i, r with s, t ∈ P r

i ,
– an allocation of poules to venues that results in venues vr(t) (r ∈ R, t =

1, . . . , N) such that venue v ∈ V acts cv times as a host for a poule.

The Traveling Social Golfer Problem 153

It is clear that, depending on the input, a feasible schedule to (N, k)-TSGP
need not exist; in fact, it is not difficult to find instances where there is no
schedule S that satisfies all the constraints. Indeed, as the schedule asks for a
partitioning of the N teams in poules of size k in each round, we immediately
see that N should be a multiple of k, or N ≡k 0. In addition, as the schedule
should correspond to a single round robin tournament, and as all teams play
k − 1 matches per round, we conclude that N − 1 should be a multiple of k − 1,
or (N − 1) ≡k−1 0. Thus, a solution of the (N, k)-TSGP can only exist if there
is an integral ρ such that N = k · ((k − 1)ρ + 1).

The above are necessary conditions that need to be satisfied. In fact, the
(N, k)-TSGP can only have a solution that satisfies the single round robin for-
mat, if the corresponding instance of the SGP is solvable. In general, solutions
of the SGP are known to exist when N = k2 and k is a prime power. Thus, for
the Volleyball Nations League, the underlying N = 16, k = 4-SGP problem will
be solvable.
Remark. For the rest of the paper, we will assume that N = k2 and |R| = k+1.

2.2 Decomposing the TSGP into Venue Assignment and Nation
Assignment

The problem of solving an instance of (N = k2, k) − TSGP can be decomposed
into two phases:

– Venue Assignment. In the first phase, we specify, for each round r ∈ R, which
venues act as a host in each round r ∈ R. Let Ur ⊂ V , with |Ur| = k,
r = 1, . . . , k + 1 be the set of venues that act as hosts in round r.

– Nation Assignment. In the second phase, we decide upon the composition of
the poules, i.e., we choose the sets P r

i and allocate these poules to the venues
in Ur, r = 1, . . . , k + 1.

By going through these two phases, we find a schedule S. It is crucial to observe
that the unfairness of S, i.e., u(S), follows directly from the venue assignment
when N = k2. We record this observation formally.

Theorem 1. For each schedule S of a given an instance of (N = k2, k)−TSGP ,
u(S) is determined only by the Venue Assignment, for each integer k ≥ 2.

Proof. We claim that for each schedule S:

u(S) =
∑

r∈R\{1}

k∑

i=1

max
s,t∈P r

i

|d(vr(s), vr−1(s)) − d(vr(t), vr−1(t))|

=
∑

r∈[1,...,k]

∑

u∈Ur+1

max
v,w∈Ur

|d(v, u) − d(w, u)|.

154 R. Lambers et al.

The latter equality follows from the fact that, independent of the composition
of the poules, the k teams that play in a poule in some round, will not meet again
in a next round, and hence these k teams will travel to each of the k distinct
venues in the next round. 	

Theorem 1 allows us to compute the unfairness of a schedule S, u(S), without
specifying the schedule S. As a consequence, it becomes much easier in practice
to find schedules for which u(S) is minimum (see Sect. 5).

3 The Complexity of Venue Assignment

In this section, we formally define Venue Assignment, and establish its complex-
ity. Given that feasible schedules to the (N = k2, k)-TSGP exist, Theorem 1
implies that our task of finding an optimal solution to (N, k)-TSGP is reduced
to finding an optimal venue assignment. Clearly, this is related to the differences
in traveled distance between two opposing teams, which in turn follows from the
venues that are selected in each round.

In an extreme case, if only a single venue v is given (with multiplicity cv =
k(k + 1)), then all matches in all poules in all rounds are played in the same
venue, and there is no travel distance. However, in general, the set of venues V
and their pairwise distances, are instrumental in finding good venue assignments.
Of course, we assume that

∑
v∈V cv = k(k+1). We now give a formal description.

Problem 2. Venue-Assignment (VA)
Input. A value k ∈ N, a set of venues V , an integral multiplicity cv for v ∈ V ,
and a distance matrix d(v, w) for each v, w ∈ V .

Output. For r ∈ [1, . . . , k+1], subsets Ur ⊂ V with |Ur| = k, such that ∀v ∈ V ,
cv = |{r : v ∈ Ur}| that minimizes:

Δ =
∑

r∈[1,...,k]

∑

u∈Ur+1

max
v,w∈Ur

|d(v, u) − d(w, u)|. (2)

To establish the hardness of Venue-Assignment, we use the following deci-
sion problem.

Problem 3. Longest Hamiltonian Path on a Complete Graph (LHP)
Input: A complete graph G = (H,E), |H| = n with nonnegative, symmetric
weights w(h1, h2) for each h1, h2 ∈ H, and an integer B.
Question: Does there exist a Hamiltonian Path (hi1 , . . . , hin) in G such that∑n−1

j=1 d(hij , hij+1) ≥ B?

LHP is well-known to be NP-complete.

Theorem 2. Venue-Assignment is NP-Hard.

The Traveling Social Golfer Problem 155

Proof. We prove this statement by a reduction from Longest Hamiltonian
Path on a Complete Graph.

Given an instance of LHP, with vertex set H = {h1, . . . , hn} and weights
w : L × L → R, we construct an instance of the decision problem corresponding
to VA, using a parameter K, in the following way.

We choose k = n − 1. Further, the set of venues V consists of V = V1 ∪ V2,
where V1 = H and |V2| = k − 1. For each v ∈ V1, cv = 1 and for each v ∈ V2,
cv = k + 1. Let D = maxh1,h2∈H w(h1, h2) and define a distance function d in
the following way:

d(u, v) =

⎧
⎨

⎩

w(u, v) u, v ∈ V1

2D u ∈ V1, v ∈ V2

0 u, v ∈ V2

(3)

Notice that the resulting distances satisfy the triangle inequality when the
instance of LHP does. Finally, we set K = k2 · 2D − B, and ask whether there
exists a venue assignment with unfairness at most K. We have now specified an
instance of the decision version of VA.

Let us argue that if there exists a solution to VA with unfairness at most K,
LHP is a yes-instance, and vice versa.

To find a solution to any instance of VA, we need to find Ur ⊂ V for r ∈ [k+1]
such that ∀v ∈ V , cv = |{r : v ∈ Ur}|. As we know that for all v ∈ V2, cv = k+1,
we see that any feasible solution must have V2 ⊂ Ur for each r, and as cv = 1
for v ∈ V1, we get that any feasible solution must schedule every venue v ∈ V1

exactly once. Thus, any feasible solution to VA consists of Ur = V2 ∪ vir with
vir ∈ V1 and vir = vi′r ⇐⇒ r = r′. In other words, any feasible solution to VA
corresponds to an ordering p = (vi1 , . . . , vik+1) of the venues in V1. Given such
an ordering p we get the following expression for the unfairness:

K =
k∑

r=1

(
(k − 1) · 2D + (2D − d(vir+1 , vir))

)
(4)

The first term in the summation results from the fact that there are k−1 venues
from V2 in every round and one from V1, and since d(v, w)−d(v, v′) = 2D−0 for
all v, v′ ∈ V2, w ∈ V1, we get k − 1 venues where the maximal travel difference is
2D. The second term equals the difference in travel distance between the teams
traveling from any of the v ∈ V2 to the vir+1 ∈ V1, and the team traveling from
vir ∈ V1.

We find:

K =
k∑

r=1

(
(k − 1) · 2D + (2D − d(vir+1 , vir))

)
(5)

= k2 · 2D −
k∑

r=1

d(vir+1 , vir) (6)

= k2 · 2D − B. (7)

156 R. Lambers et al.

Thus, solving this instance of the decision version of VA equals solving the
corresponding instance of LHP, which implies that VA is NP-Hard. 	

4 An Integer Programming Formulation

In this section, we give an integer programming formulation of Venue-
Assignment. Motivated by the current practice in the VNL, we incorporate
the following issue in our formulation: each venue has a team that considers this
venue as its home-venue. Next, in any schedule for the VNL it must be the case
that when a venue is hosting a poule, the poule must contain the team for which
this venue is the home-venue. And in case there are multiple venues that are the
home-venue of the same team, it is a fact that those venues are never a host of
a poule in the same round. In the context of the VNL, this property allows that
each venue always hosts a poule that contains the national team; this team can
be regarded as the home playing team, or host nation.

Let xv,r be the binary variables that indicate whether venue v ∈ V hosts
a poule in round r ∈ {1, . . . , 5} = R. Further, we need real variables sv,w,r

(capturing distances between venues v and w acting as host in rounds r and
r + 1), mv,r (capturing the largest distance traveled to venue v in round r),
and Kv,r (capturing the difference in travel distance to venue v in round r). Let
Δ = maxv,w d(v, w), and let W ⊂ V ×V be the set of pairs of venues that cannot
both host a poule in the same round. The following IP minimizes u: the sum of
the difference in travel distances per poule, over the poules.

min
∑

v∈V

∑

r∈R

Kv,r (8)

s.t.
∑

v∈V

xv,r = k ∀r ∈ R, (9)

∑

r∈R

xv,r = cv ∀v ∈ V, (10)

xv,r + xw,r ≤ 1 ∀r ∈ R, ∀(v, w) ∈ W, (11)
sv,w,r ≥ dv,w(xv,r + xw,r−1 − 1) ∀v, w ∈ V, ∀r ∈ R \ 1, (12)
sv,w,r ≤ min(dv,wxv,r, dv,wxw,r−1) ∀v, w ∈ V, ∀r ∈ R \ 1, (13)
mv,r ≥ sv,w,r ∀v, w ∈ V, ∀r ∈ R \ 1, (14)
Kv,r ≥ mv,r − sv,w,r − D(1 − xw,r−1) ∀v, w ∈ V, ∀r ∈ R \ 1, (15)
xv,r ∈ {0, 1},Kv,r ≥ 0 ∀v ∈ V, r ∈ R. (16)

Constraints (9) ensure that in every round, k venues are host; constraints (10)
ensure that every venue hosts as often as required; constraints (11) ensure that
two venues that should not host simultaneously, will not host simultaneously.
Auxiliary variables sv,w,r are at least as big as dv,w, the distance traveled between
w, v between round r − 1 and r if the venues host in the respective rounds, by
(12), but never bigger than dv,w by (13). The variables mv,r equal the maximum

The Traveling Social Golfer Problem 157

distances traveled to venue v in round r (can equal zero 0 if v does not host
in round r), as defined by (14), and Kv,r resembles the difference in traveled
distances towards v in round r compared to the maximum travel distance, where
the terms −D · (1 − xv′,r−1) in (15) nullify any influence by distances between a
venue that does not host in round r − 1.

(8) is the objective function, minimizing u =
∑

v,r Kv,r.

5 Solving VNL in Practice

5.1 Do Feasible Schedules Exist?

Solving the Venue-Assignment with the IP from the previous section, does
not automatically lead to a schedule for a practical instance of the VNL. As
described in Sect. 4, in the Volleyball Nations League, the venues of a poule
can be considered as home to one of the teams in the poule. A poule scheduled
to play in China, will have the Chinese team in it as home team (as an aside,
it is interesting to note here that [1] find the presence of (a significant) home
advantage in volleyball matches played in Italian and Greek national leagues).
Of course, each venue is a home venue to a single team; however, a team can
have multiple home venues.

It is not true that, when given an assignment of venues to rounds, a schedule
is guaranteed to exist such that every venue is a home venue. Then, in such
a case, a venue hosts a poule of teams, none of which plays home. Example 2
shows how a feasible solution for the Venue-Assignment cannot be extended
to a solution of the traveling social golfer problem, with all venues being a home
venue.

Example 2. Let N = 4 be the number of teams with poule size k = 2, and let
V be the set of home venues. All countries t have a venue vt ∈ V , where for
countries t = 1, 2, their venue has a multiplicity of 2 and the other venues have
a multiplicity of 1. Solving the corresponding instance of Venue-Assignment
could result in a solution as is given in Table 1.

Table 1. Infeasible venue-assignment

Poule Round 1 Round 2 Round 3

1 v1 v1 v3

2 v2 v2 v4

The venue assignment in Table 1 clearly satisfies the given multiplicities.
However, it is impossible to schedule match (t1, t2) in any round when restricting
teams to play at their home venue whenever it is scheduled in a round. Moreover,
venue assignments satisfying the given multiplicities yielding a feasible schedule
do exist for the given example.

158 R. Lambers et al.

Thus, we see that solving the Venue-Assignment alone is not necessarily
the same as solving the VNL-problem in practice. However, the following claim
shows that for the particular dimensions of the VNL (N = 16, k = 4), a Venue-
Assignment can always be extended to a solution for the Volleyball Nations
League.

Claim. Let N = 16 be the number of teams and k = 4 the poule size. Let V be
the set of venues, with multiplicity constraints such that each team has at least
one home venue, and all venues need to be scheduled at least once - never with
two venues of the same team hosting simultaneously. Then any solution of the
corresponding Venue-Assignment instance, can be extended to a solution of
the V NL-instance.

Although we do not formally prove this claim, we exhibit in Table 2 a
‘blueprint’ that can be extended to a feasible schedule for any venue assign-
ment that follows from any set of multiplicities.

Table 2. Blueprint for finding a nation assignment

R1 R2 R3 R4 R5

1, 5, 9, 13 1, 6, 11, 16 1, 4, 10, 15 1, 3, 12, 14 1, 2, 7, 8

2, 6, 10, 14 2, 5, 12, 15 2, 3, 13, 16 2, 4, 9, 11 3, 4, 5, 6

3, 7, 11, 15 3, 8, 9, 10 6, 7, 9, 12 5, 7, 10, 16 10, 11, 12, 13

4, 8, 12, 16 4, 7, 13, 14 5, 8, 11, 14 6, 8, 13, 15 9, 14, 15, 16

5.2 Results

As instances of VNL satisfy the conditions of the Claim, we can proceed apply-
ing the IP for the Venue-Assignment to the known instances of the Volleyball
Nations League, and compare our solution to that of the schedules used in prac-
tice. The IP is implemented in Python 3 using Gurobi 9.0. All computations
have been done on a laptop with an Intel Core i7-7700HQ CPU 2.8-GHz proces-
sor and 32 GB RAM. The distances between venues are obtained via https://
www.distancecalculator.net/, and are divided by 100 and rounded down. The
four instances that we analyse are the Women’s and Men’s tournaments of 2018
and 2019. All values resulting from the IP are given to be optimal by the solver
and are found within approximately 2 h of computation time. In Table 3 we give
the unfairness corresponding to the optimal venue assignment, u(Sopt), and we
give the unfairness that corresponds to the venue assignments used in practice,
u(Sreal). Also we give the total travel distance for the two corresponding solu-
tions, d(Sopt) and d(Sreal), where the distance is given in units of 100 km. The
final column gives the computation time in seconds.

https://www.distancecalculator.net/
https://www.distancecalculator.net/

The Traveling Social Golfer Problem 159

Table 3. Unfairness of real life Sreal and optimal Sopt, and their total travel distance.

Instance u(Sopt) u(Sreal) d(Sopt) d(Sreal) Computation time (s)

M2018 233 1366 4272 4806 5105 s

W2018 381 1541 4956 4169 1036 s

M2019 347 1239 5237 4657 7230 s

W2019 491 1288 4214 3708 4650 s

As is imminent from Table 3, the fairness of the schedules used in the Vol-
leyball Nations League can be much improved in comparison to the schedules
that have been used. Moreover, these improvements in fairness do not come at
the expense of the total travel distance; indeed, total travel distance is similar
for our schedules when compared to the real life schedules.

Fig. 1. Optimal venues per round, VNL Men 2018

We now discuss our schedules in more detail. In Table 4, the optimal venue
selection for the 2018 Men’s tournament, as given by the IP, is shown, and this
venue assignment is also visualized in Fig. 1 - the output for the other instances
is given in Appendix A. For comparison, the ‘real’ schedule is shown in Table 5.

In Fig. 1 we see that the optimal schedule creates two specific European
rounds, where all poules are played within Europe, and two rounds without any
poule in Europe. In contrast with that, the schedule that was used in practice
had both European and non-European venues in every round - thus partially
leading to a high amount of unfairness(Tables 6, 7 and 8).

As the unfairness in travel times as well as total traveled distances is com-
pletely determined by the venue assignment, any nation assignment is equally

160 R. Lambers et al.

good with respect to the objectives. Up to satisfying the underlying SGP and
assigning home nations to home venues, there is complete freedom to optimize
the nations assignment to whatever other objectives the organizers see fit; this
can be done without compromising on the original objectives.

Table 4. Venues per round, Men’s VNL 2018, Optimal. European venues in boldface.

Round 1 Melbourne (AUS) Tehran (IRA) Ufa (RUS) Varna (BUL)

Round 2 Goiânia (BRA) Jiangmen (CHN) Osaka (JPN) Seoul (KOR)

Round 3 Katowicze (POL) Kraljevo (SRB) Rouen (FRA) Sofia (BUL)

Round 4 Aix-en-Prov. (FRA) Lodz (POL) Ludwigsb. (GER) Modena (ITA)

Round 5 Hoffman Est. (USA) Ningbo (CHN) Ottawa (CAN) San Juan (ARG)

Table 5. Venues per round, Men’s VNL 2018, Real. European venues in boldface.

Round 1 Rouen (FRA) Ningbo (CHN) Katowicze (POL) Kraljevo (SRB)

Round 2 Goiânia (BRA) Sofia (BUL) Lodz (POL) San Juan (ARG)

Round 3 Ottawa (CAN) Osaka (JPN) Ufa (RUS) Aix-en-Prov. (FRA)

Round 4 Seoul (KOR) Ludwigsb. (GER) Hoffman Est. (USA) Varna (BUL)

Round 5 Melbourne (AUS) Jiagmen (CHN) Tehran (IRA) Modena (ITA)

Acknowledgement. The research of Frits C.R. Spieksma was partly funded by the
NWO Gravitation Project NETWORKS, Grant Number 024.002.003.

A Optimal solutions to VNL-instances

Table 6. Venues per round, Womens VNL 2018. Unfairness u(S) = 381

Round 1 Bangkok (THA) Barneri (ITA) Hong Kong (HKO/CHN) Santa Fe (ARG)

Round 2 Eboli (ITA) Rotterdam (NED) Stuttgart (GER) Walbrzyck (POL)

Round 3 Jiangmen (CHN) Naklon (THA) Suweo (KOR) Toyota (JPN)

Round 4 Apeldoorn (NED) Bydgozcz (POL) Kraljevo (GER) Ningbo (CHN)

Round 5 Ankara (TUR) Yekaterinburg (RUS) Lincoln (USA) Macau (CHN)

The Traveling Social Golfer Problem 161

Table 7. Venues per round, Men’s VNL 2019. Unfairness u(S) = 347

Round 1 Katowicze (POL) Novi Sad (SRB) Plovdiv (BUL) Urmia (IRN)

Round 2 Ardabi (IRN) Brisbane (AUS) Ufa (RUS) Varna (BUL)

Round 3 Cuiaba (BRA) Jiangmen (CHN) Mendoza (ARG) Tokyo (JPN)

Round 4 Cannes (FRA) Gondomas (POR) Leipzig (GER) Milan (ITA)

Round 5 Brasilia (BRA) Hofman Est. (USA) Ningbo (CHN) Ottawa (CAN)

Table 8. Venues per round, Women’s VNL 2019. Unfairness u(S) = 491

Round 1 Ankara (TUR) Macau (CHN) Opole (POL) Ruse (BUL)

Round 2 Boryeong (KOR) Yekaterinburg (RUS) Ningbo (CHN) Tokyo (JPN)

Round 3 Bangkok (THA) Brasilia (BRA) Jiangmen (CHN) Lincoln (USA)

Round 4 Apeldoorn (NED) Conegliano (ITA) Kortrijk (BEL) Stuttgart (GER)

Round 5 Ankara (TUR) Belgrade (SRB) Hong Kong (HKO/CHN) Perugia (ITA)

References

1. Alexandros, L., Panagiotis, K., Miltiades, K.: The existence of home advantage in
volleyball. Int. J. Performance Anal. Sport 12, 272–281 (2012)

2. Bonomo, F., Cardemil, A., Durán, G., Marenco, J., Sabán, D.: An application of
the traveling tournament problem: the argentine volleyball league. Interfaces 42,
245–259 (2012)

3. Cocchi, G., Galligari, A., Nicolino, F., Piccialli, V., Schoen, F., Sciandrone, M.:
Scheduling the Italian national volleyball tournament. Interfaces 48, 271–284
(2018)

4. Dotú, I., Van Hentenryck, P.: Scheduling social golfers locally. In: Barták, R.,
Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 155–167. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11493853 13

5. Durán, G., Durán, S., Marenco, J., Mascialino, F., Rey, P.: Scheduling Argentina’s
professional basketball leagues: a variation on the travelling tournament problem.
Eur. J. Oper. Res. 275, 1126–1138 (2019)

6. Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament prob-
lem: a combined integer programming and constraint programming approach. In:
Burke, E., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 100–109.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45157-0 6

7. Goerigk, M., Westphal, S.: A combined local search and integer programming
approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354
(2014). https://doi.org/10.1007/s10479-014-1586-6

8. Harvey, W., Winterer, T.: Solving the MOLR and social golfers problems. In: van
Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 286–300. Springer, Heidelberg (2005).
https://doi.org/10.1007/11564751 23

9. Huyghe, T., Scanlan, A., Dalbo, V., Calleja-González, J.: The negative influence
of air travel on health and performance in the national basketball association: a
narrative review. Sports 6, 89 (2018)

10. Liu, K., Löffler, S., Hofstedt, P.: Solving the social golfers problems by constraint
programming in sequential and parallel. In: Proceedings of the 11th International
Conference on Agents and Artificial Intelligence (ICAART 2019), pp. 29–39 (2019)

https://doi.org/10.1007/11493853_13
https://doi.org/10.1007/978-3-540-45157-0_6
https://doi.org/10.1007/s10479-014-1586-6
https://doi.org/10.1007/11564751_23

162 R. Lambers et al.

11. Lo, M., Aughey, R.J., Stewart, A.M., Gill, N., McDonald, B.: The road goes ever
on and on-a socio-physiological analysis of travel-related issues in super rugby. J.
Sports Sci. (2020)

12. Raknes, M., Pettersen, K.H.: Optimizing sports scheduling: mathematical and con-
straint programming to minimize traveled distance with benchmark from the nor-
wegian professional volleyball league. Master Thesis, Norwegian Business School
(2018)

13. Rothuizen, L.: A variation of the travelling tournament problem: fairness in the
volleyball nations league. Bachelor Thesis, Eindhoven University of Technology
(2020)

14. Samuels, C.: Jet lag and travel fatigue: a comprehensive management plan for sport
medicine physicians and high-performance support teams. Clin. J. Sport Med. 22
(2012)

15. Song, A., Severini, T., Allada, R.: How jet lag impairs major baseball performance.
Proc. Natl. Acad. Sci. 114, 1407–1412 (2017)

16. Stevens, C., Thornton, H., Fowler, P., Esh, C., Taylor, L.: Long-haul northeast
travel disrupts sleep and induces perceived fatigue in endurance athletes. Front.
Physiol. 20 (2018)

17. Triska, M., Musliu, N.: An effective greedy heuristic for the social golfer problem.
Ann. Oper. Res. 194, 413–425 (2012)

18. Winter, W.C., Hammond, W.R., Green, N.H., Zhang, Z., Bliwise, D.L.: Measuring
circadian advantage in major league baseball: a 10-year retrospective study. Int. J.
Sports Physiol. Performance 4, 394–401 (2009)

Towards a Compact SAT-Based Encoding
of Itemset Mining Tasks

Ikram Nekkache1,2(B) , Said Jabbour1(B) , Lakhdar Sais1 ,
and Nadjet Kamel2

1 CRIL - CNRS UMR 8188, University of Artois, Lens, France
{nekkache,jabbour,sais}@cril.fr

2 LRSD Laboratory, Department of Computer Science, Faculty of Sciences,
University Ferhat Abbas Sétif-1, Sétif, Algeria

{ikram.nekkache,nkamel}@univ-setif.dz

Abstract. Many pattern mining tasks have been modeled and solved
using constraints programming (CP) and propositional satisfiability
(SAT). In these two well-known declarative AI models, the problem is
encoded as a constraints network or a propositional formula, whose asso-
ciated models correspond to the patterns of interest. In this new declar-
ative framework, new user-specified constraints can be easily integrated,
while in traditional data mining, such additional constraints might
require an implementation from scratch. Unfortunately, these declara-
tive data mining approaches do not scale on large datasets, leading to
huge size encodings. In this paper, we propose a compact SAT-based
encoding for itemset mining tasks, by rewriting some key-constraints.
We prove that this reformulation can be expressed as a Boolean matrix
compression problem. To address this problem, we propose a greedy app-
roach allowing us to reduce considerably the size of the encoding while
improving the pattern enumeration step. Finally, we provide experimen-
tal evidence that our proposed approach achieves a significant reduction
in the size of the encoding. These results show interesting improvements
of this compact SAT-based itemset mining approach while reducing sig-
nificantly the gap with the best state-of-the-art specialized algorithm.

Keywords: Data mining · Itemset mining · Satisfiability

1 Introduction

Frequent itemset mining problem is a fundamental task in data mining, knowl-
edge discovery and data analysis. Initially proposed for the well-known market
basket analysis application [1], it is now widely used in various fields and tasks
that require the discovery of regularities between items or attributes. This real
interest has been accompanied by numerous algorithm developments for enu-
merating interesting patterns. Different classes of patterns have been identified
allowing to reduce the size of the output. Closed and maximal patterns are some

c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 163–178, 2021.
https://doi.org/10.1007/978-3-030-78230-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_11&domain=pdf
http://orcid.org/0000-0003-3527-9649
http://orcid.org/0000-0002-8389-8332
http://orcid.org/0000-0003-2879-8627
http://orcid.org/0000-0003-3608-8895
https://doi.org/10.1007/978-3-030-78230-6_11

164 I. Nekkache et al.

of these traditional condensed representations. In addition, users can control
the set of required patterns by enumerating those covering at least λ (called a
minimum support threshold) transactions (see [8] for a survey).

Recently, new declarative approaches for data mining have been emerged.
Initiated by De Raedt et al., this new research trend proposes to make use of
constraint programming for modeling and solving data mining tasks including
itemset mining (CP4IM) in [5]. The goal is two folds. First, in this declarative
and flexible framework, new constraints can be easily integrated in contrast to
specialized approaches where new implementations are often required. Secondly,
data mining tasks might benefit from the continuous progress in the efficiency
of CP solvers. In such CP framework, usual itemset mining constraints (e.g.
frequency, maximality, monotonicity) can be elegantly formulated and easily
integrated [11].

Encouraged by these promising results, several contributions used the two
well-known AI models, CP and SAT, to solve other data mining problems. The
problem of discovering frequent, closed and maximal patterns in a sequence
of items and a sequence of itemsets has been formalized using propositional
satisfiability [12]. In [4], the authors solve the frequent itemset mining prob-
lem by compiling the set of all itemsets into a binary decision diagram (BDD)
(augmented with counts). Then frequent itemsets are extracted by querying the
BDD. By considering the relationship between local constraint-based mining and
constraint satisfaction problems, Khiari et al. [13] proposed a model for mining
patterns that combines several local constraints, i.e., patterns defined by n-ary
constraints. In addition, new constraint-based languages have been designed for
modeling and solving data mining problems. We can mention the constraint-
based language defined in [15], which enables the user to define queries in a
declarative manner to handle pattern sets and global patterns. All primitive
constraints of the language are modeled and solved using the SAT framework.
More recently, Guns et al. [10], introduced a general-purpose declarative mining
framework called MiningZinc. Compared with the CP4IM framework [11], Min-
ingZinc supports a wide variety of different solvers (including DM algorithms
and general-purpose solvers) and uses a significantly more expressive high-level
modeling language.

CP and SAT-based approaches for data mining have real advantages in terms
of “declarativeness” and genericity. Their major bottleneck rises in their lack of
scalability. Recently, several attempts to solve such challenging issue have been
initiated, using for example decomposition and parallel approaches as a mean to
compete with specialized approaches [2].

Our goal in this paper, is to effectively compact and reduce the size of SAT-
based encoding for itemset mining problem proposed in [6], on large real datasets.
Our approach involves rewriting some important constraints compactly. We also
show that the compression process can be expressed as a matrix compression
problem.

The paper is structured as follows. Section 2 provides the preliminary knowl-
edge about propositional logic, SAT problems and itemset mining. Section 3

Towards a Compact SAT-Based Encoding of Itemset Mining Tasks 165

reviews the SAT-based encoding of itemset mining. Section 4 presents our new
a compact SAT encoding for the itemset mining problem. Section 5 focuses on
the experimental results. Finally we conclude and propose some perspectives.

2 Technical Background

In this section, we provide a brief description of itemset mining, propositional
logic and propositional satisfiability.

2.1 Propositional Logic and SAT Problem

A propositional language L defined from a finite set of propositional variables
V ar = {p, q, r, . . .}, the logical constants ⊥,�, and the usual logical connec-
tives (namely, ¬, ∧, ∨, →, and ↔) is considered. Propositional formulas will
be denoted by Greek letters Σ, Δ, etc. V ar(Σ) denotes the set of propositional
variables appearing in the formula Σ. It is common for logical reasoning algo-
rithms to operate on normal form representations instead of arbitrary formulas.
A formula in conjunctive normal form (CNF) is a conjunction (∧) of clauses,
where a clause is a disjunction (∨) of literals. A literal is a propositional variable
(p) or its negation (¬p). In addition, a Boolean interpretation μ of a formula Σ
is a total function from V ar(Σ) to {0, 1} (0 corresponds to false and 1 to true).
We denote by Σ|x the formula Σ where x assigned true, i.e., Σ ∧ x. μ is a model
of Σ iff it makes it true in the usual truth-functional way. Then, Σ is satisfiable
if there exists a model of Σ. models(Σ) denotes the set of models of a formula
Σ. Lastly, SAT is the NP-complete problem that consists in deciding whether a
given CNF formula is satisfiable or not.

2.2 An Overview of Itemset Mining

We consider Ω a set of items. The elements of Ω are indicated by the letters
a, b, c, etc. An itemset I over Ω is a subset of Ω, i.e., I ⊆ Ω. 2Ω denotes the set
of all itemsets over Ω. Typically, a transaction Ti is a pair (i, I) with 1 ≤ i ≤ m,
called the transaction identifier, and I an itemset, i.e., (i, I) ∈ N × 2Ω . For
Ti = (i, I), the size of Ti, is defined as |Ti| = |I|. A transaction database D is
a set of transactions (D ⊆ N × 2Ω) where each transaction identifier refers to
a unique itemset. The maximum size of the transactions of D, is noted |T | =
max(i,I)∈D|I|. Given a transaction database D and an itemset I, the cover of
I in D, denoted C(I,D), is defined as follows: {i ∈ N | (i, J) ∈ D and I ⊆
J}. The support of I in the database D, denoted as Supp(I,D), is defined as
the cardinality of C(I,D), i.e., Supp(I,D) = |C(I,D)|. An itemset I ⊆ Ω such
that Supp(I,D) ≥ 1 is closed iff, for all itemsets J with I ⊂ J , Supp(J,D) <
Supp(I,D).

In the transaction database depicted in Table 1, we have Supp({b, d, e},D) =
|{2, 10}| = 2.

166 I. Nekkache et al.

Table 1. Transaction database D.

Tid Itemset

1 c e f g

2 b d e f g h

3 a b d

4 a b d f h

5 b c e f g h

6 c g

7 a b d h

8 c e g

9 a b d

10 b c d e f g h

Let D be a transaction database over Ω and λ a minimum support threshold.
The frequent itemset mining problem consists in computing the following set:

FIM(D, λ) = {I ⊆ Ω | Supp(I,D) ≥ λ}

It is well known that the main problem in itemset mining lies in the size
of the output, which could be exponential, even when considering condensed
representation of patterns.

3 SAT-based Encoding of Itemset Mining

Here, we review the SAT encoding scheme of the problem of mining itemsets
of a transaction database D as proposed in [6]. Basically, to encode the itemset
mining problem into SAT, one must introduce a set of variables and a set of
constraints on those variables. More precisely, different variables are used to
represent the cover of an itemset X. These variables are used in 0/1 linear
inequalities to ensure the support of X.

Given a transaction database D = {(1, T1), . . . , (m,Tm)}, a minimum support
threshold λ. To represent the candidate itemset X, a propositional variables pa is
associated to each item a in order to guarantee if a belongs to X (i.e., pa = true).
For the cover of X, new variables qi are also introduced for each transaction
identifier i ∈ {1 . . . m}. In addition, a set of constraints are introduced on the
variables to define a one-to-one mapping between the models of the obtained
CNF formula, denoted as ΣD,λ, and the set of itemsets.

First, the constraint allowing to capture all the transactions where the can-
didate itemset does not appear:

m∧

i=1

(qi ↔
∧

a�∈Ti

¬pa) (1)

Towards a Compact SAT-Based Encoding of Itemset Mining Tasks 167

This constraint expresses that qi is false if and only if the candidate itemset is
not in the transaction Ti i.e. there is at least one item a in the candidate itemset
that does not belong to the transaction.

By the following constraint, the candidate itemset is forced to be closed:
∧

a∈Ω

(pa ∨
∨

i, a�∈Ti

qi) (2)

In fact, if the set of all transactions containing a are false, then the itemset
candidate is mapped to a subset of transactions containing a. Consequently, a
must be in the final itemset.

Finally, to allow only the itemsets respecting the minimum size threshold
min can be expressed using the following cardinality constraint:

∑

a∈I
pa ≥ min (3)

Proposition 1. The set of models of (1)∧(2)∧(3) corresponds to the set of
closed itemsets of size at least min.

Finally, the frequency constraint, can be simply expressed as follows:

m∑

i=1

qi ≥ λ (4)

The frequent itemset mining task corresponds to the conjunction of (1) and (4).

Example 1. Let us reconsider the transaction database of Table 1. The itemset
mining problem is defined as:

q1 ↔ (¬pa ∧ ¬pb ∧ ¬pd ∧ ¬ph)
q2 ↔ (¬pa ∧ ¬pc)
q3 ↔ (¬pc ∧ ¬pe ∧ ¬pf ∧ ¬pg ∧ ¬ph)
q4 ↔ (¬pc ∧ ¬pe ∧ ¬pg)
q5 ↔ (¬pa ∧ ¬pd)
q6 ↔ (¬pa ∧ ¬pb ∧ ¬pd ∧ ¬pe ∧ ¬pf ∧ ¬ph)
q7 ↔ (¬pd ∧ ¬pe ∧ ¬pf ∧ ¬pg)
q8 ↔ (¬pa ∧ ¬pb ∧ ¬pd ∧ ¬pf ∧ ¬ph)
q9 ↔ (¬pc ∧ ¬pe ∧ ¬pf ∧ ¬pg ∧ ¬ph)
q10 ↔ (¬pa)
q1 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 + q10 ≥ λ

4 A Compact SAT-Based Encoding

In this section, we propose an enhancement of the SAT-based encoding of itemset
mining tasks. Let us take a look to the closeness constraint (2). For large real

168 I. Nekkache et al.

data, often |T | |Ω|. I.e., the number of missed items in each transaction is
huge compared to those appearing in it. Consequently, the number of clauses
associated to the constraint (2) is nearly |D|× |Ω|. Clearly, for large transaction
databases such number of clauses is the main limitation for the scalability of the
SAT-based itemset mining approaches. Moreover, for the closeness constraint,
the size of the derived clauses might be very large i.e., for an item a, we need to
consider all the transactions not containing a.

To deal with this important bottleneck, we propose an enhancement of the
encoding described in Sect. 3. Let us first remark that the formula (1) can be
equivalently formulated, by eliminating ↔, as the conjunction of the two follow-
ing clausal formulas (5) and (6):

∧

a∈Ω

∧

a�∈Ti

(¬pa ∨ ¬qi) (5)

∧

Ti∈D

((
∨

a�∈Ti

pa) ∨ qi) (6)

Constraint (5) links each item to transactions where it does not appear. This
constraint can also be reformulated as a set of implications:

∧

a∈Ω

(pa →
∧

i∈1...m | a�∈Ti

¬qi) (7)

Constraint (7) expresses that if pa is assigned to true, then the set of all
Boolean variables associated to transactions Ti not containing a are propagated
to false. A first approach to reduce the size of the encoding consists in detecting
sub-terms in (

∧

i∈1...m | a�∈Ti

¬qi), the right side of the implications in (7), and

introducing auxiliary variables to represent such sub-terms. To illustrate such
a method, let us consider again Example 1. The sub-term (¬q3 ∧ ¬q6 ∧ ¬q9)
appears four times in (7).

pa → (¬q1 ∧ ¬q2 ∧ ¬q5 ∧ ¬q6 ∧ ¬q8 ∧ ¬q10)
pb → (¬q1 ∧ ¬q6 ∧ ¬q8)
pc → (¬q2 ∧ ¬q3 ∧ ¬q4 ∧ ¬q7 ∧ ¬q9)
pd → (¬q1 ∧ ¬q5 ∧ ¬q6 ∧ ¬q8)
pe → (¬q3 ∧ ¬q4 ∧ ¬q6 ∧ ¬q7 ∧ ¬q9)
pf → (¬q3 ∧ ¬q6 ∧ ¬q7 ∧ ¬q8 ∧ ¬q9)
pg → (¬q3 ∧ ¬q4 ∧ ¬q6 ∧ ¬q9)
ph → (¬q1 ∧ ¬q3 ∧ ¬q4 ∧ ¬q6 ∧ ¬q8 ∧ ¬q9)

Consequently, a new variable r can be used to represent such sub-term. As
the sub-term (¬q3 ∧ ¬q6 ∧ ¬q9) is of positive polarity, we only need to add the
definition (r → (¬q3 ∧ ¬q6 ∧ ¬q9)), and substitute such sub-term with r in each
implication containing it. The resulting formula is equivalent with respect to
satisfiability. Such process allows us to earn 5 clauses in total i.e., 12 clauses are
replaced with 7 clauses: 4 clauses (implications involving r) and 3 binary clauses

Towards a Compact SAT-Based Encoding of Itemset Mining Tasks 169

(associated the definition of r). Nevertheless, such process requires an algorithm
looking for such frequent sub-terms.

In this paper, we propose a new approach to identify efficiently such sub-
terms. It is based on transactions reordering and the introduction of new vari-
ables providing an original way to compact the encoding presented above.

In the sequel, we indicate by g(a) (respectively f(a)) the identifier of the last
(respectively first) transaction involving a in the database.

Definition 1. For an item a, we denote by f(a) (respectively g(a)) the inner
(resp. outer) transaction containing a. i.e., f(a) = min

1≤i≤m
{i | a ∈ Ti} and

g(a) = max
1≤i≤m

{i | a ∈ Ti}

Using g(a), the formula (7) can be expressed as the conjunction of (8) and
(9).

∧

a∈Ω

(pa →
∧

i<g(a) | a�∈Ti

¬qi) (8)

∧

a∈Ω

(pa →
∧

g(a)<i≤m

¬qi) (9)

In fact, let us look to the formula (9), starting from g(a), all the transactions
with greater identifiers, their associated variables have to be propagated to false.
In the sequel, we show how such propagation can be captured differently by
reformulating compactly such formulas using additional variables.

By associating to each transaction Ti a new Boolean variable ri, the formula
(9) can be reformulated as the conjunction of the formulas (10) and (11):

∧

a∈Ω

(pa → rg(a) ∧
∧

i | a�∈Ti, i<g(a)

¬qi) (10)

∧

i∈1...m−1

(ri → ¬qi) ∧ (ri → ri+1) (11)

Formula (11) forms a propagation chain allowing, when ri is set to true, to
propagate all qi to false from i to m. Such chain of propagated literals can be
used for different items a allowing to reduce the encoding size. Then, when pa is
set to true, rg(a) is then assigned to true, allowing using the propagation chain
(11), to assign all the variables associated to transactions greater than g(a) to
false. Let us remark that the encoding size reduction depends on the chosen
transactions ordering.

For the closeness constraint (2), it can be rewritten through the new addi-
tional variables as follows:

∧

a∈Ω

(pa ∨ ¬rg(a) ∨
∨

i | a�∈Ti, i<g(a)

¬qi) (12)

170 I. Nekkache et al.

Indeed, the formula (12) is derived from the formula (2) by substituting all
literals ¬qi with i greater than g(a) with ¬rg(a).

To significantly reduce the size of the encoding, one need to find an ordering
of the transactions that maximize both the distance between g(a) and m and
between 1 and f(a). Equivalently, one need to minimize the distance between
f(a) and g(a) the first and the last transactions containing a respectively.

Similarly, considering a chain of implications in the reverse order, the previous
transformation can be formulated as follows:

∧

i∈1..m−1

(ri → ¬qi ∧ ri+1) (13)

∧

i∈2..m

(si → ¬qi ∧ si−1) (14)

∧

a∈Ω

(pa → rg(a) ∧ sf(a) ∧
∧

i∈]f(a),g(a)[,a�∈Ti

¬qi) (15)

∧

a∈Ω

(pa ∨ ¬rg(a) ∨ ¬sf(a) ∨
∨

i∈]f(a),g(a)[,a�∈Ti

¬qi) (16)

As for ri, the Boolean variables si are added to guarantee the propagation
of the transaction variables to the top i.e., if si is true, then all transaction qj

such that j ≤ i are propagated to false. As explained above, to reduce the size
of the encoding while enhancing the propagation process, we need to find the
best possible transaction ordering.

For a given ordering over the transactions of D, the number of clauses of our
encoding is in the worst case bounded by:

∑

a∈Ω

(g(a) − f(a) + 1) + 3 × |Ω| + 4 × |D|

Indeed, each of the formulas (13) and (14) admits 2 × |D|. The formula (16)
is in clausal form with |Ω| clauses. Finally, the formula (15) is an implication,
that leads to 2 × |Ω| +

∑
a∈Ω(g(a) − f(a) + 1) binary clauses.

Remark 1. Let us remark that, the best ordering corresponds to those where the
transactions containing each item are contiguous. In this case, the best encoding
size is equal to 3 × |Ω| + 4 × |D|.
Our optimisation problem consists in minimizing

∑
a∈Ω(g(a)−f(a)). The prob-

lem of finding the best transaction ordering can be seen as Boolean matrix com-
pression. In fact, by considering a 0–1 formulation of the transaction database,
our goal is to rearrange the matrix rows such that the 1 values of each row are as
consecutive as possible i.e., make the interval]f(a), g(a)[as tight as possible. Our
problem generalize the well known optimal linear arrangement problem [9]. We
note this problem GOLA for Generalized Optimal Linear Arrangement problem.

Let us formally define our Boolean compression matrix problem.

Towards a Compact SAT-Based Encoding of Itemset Mining Tasks 171

Definition 2 (Problem Definition). Given a 0–1 matrix M . The optimal
compression matrix problem consists in finding a permutation σ over rows of M
such that

∑
1≤i≤m h(i) is minimized, where h(i) = (g(i) − f(i)).

Example 2. Let us reconsider the dataset of Example 1. The 0–1 matrix repre-
sentation of the table D is depicted in Table 2. By reordering the transactions
of the table, we can leads to matrix represented in Table 3.

Table 2. Boolean matrix of transaction database D.

a b c d e f g h

t1 0 0 1 0 1 1 1 0

t2 0 1 0 1 1 1 1 1

t3 1 1 0 1 0 0 0 0

t4 1 1 0 1 0 1 0 1

t5 0 1 1 0 1 1 1 1

t6 0 0 1 0 0 0 1 0

t7 1 1 0 1 0 0 0 1

t8 0 0 1 0 1 0 1 0

t9 1 1 0 1 0 0 0 0

t10 0 1 1 1 1 1 1 1

Table 3. Boolean matrix of transaction database D reordred.

a b c d e f g h

t3 1 1 0 1 0 0 0 0

t9 1 1 0 1 0 0 0 0

t7 1 1 0 1 0 0 0 1

t4 1 1 0 1 0 1 0 1

t2 0 1 0 1 1 1 1 1

t10 0 1 1 1 1 1 1 1

t5 0 1 1 0 1 1 1 1

t1 0 0 1 0 1 1 1 0

t8 0 0 1 0 1 0 1 0

t6 0 0 1 0 0 0 1 0

Proposition 2. GOLA is a NP-hard problem.

Proof. Let us note Garey et al. [9] have proven that the classical problem of
optimal linear arrangement (OLA in short) is NP-Hard. The decision version
of this problem is defined as: given a graph G = (V,E) and a positive integer

172 I. Nekkache et al.

k and the question is to answer if there exists a one-to-one mapping f : V →
{1, 2, . . . , |V |} such that

∑
(u,v)∈E |f(u)−f(v)| ≤ k. It is easy to remark that our

problem generalize the optimal linear arrangement. When modeled as a graph
the solution of GOLA is exactly the one of optimal linear arrangement. Here
edges represent rows and vertices represent columns.

Several works in the literature, addressed the problem of compressing a large
Boolean matrix.

For example, Booth and Lueker [3] showed in 1976 that for a given matrix M,
there is a linear time algorithm that determines whether M has the consecutive-
ones property and produces the desired permutation if so. Thus, if the relation
has the consecutive-ones property, we can reorder the columns on disk so that
the elements of each row can be accessed in a single seek. However, this will in
general not be possible and minimizing the number of runs when a matrix does
not have the consecutive-ones property is hard.

4.1 Solving Generalized Optimal Linear Arrangement Problem

In this section, we discuss the GOLA problem using complete and greedy
approaches. Let us note that as for OLA problem, it is possible to consider
some dedicated heuristics allowing high compression rate by searching the best
possible values of

∑

a∈Ω

(g(a) − f(a)). To obtain the optimal solution, a possible

approach consists in encoding the problem into Partial MaxSAT in order to ben-
efit from the state-of-the-art solvers continuously improved these recent years. To
do so, we consider a mapping between the set of transactions {T1, . . . , Tm}, the
rows of the matrix, and the required positions. For each transaction Ti, m new
Boolean variables are introduced to catch the possible positions in the requested
optimal solution of Ti i.e., tij is true iff Ti is ranked in position j.

The combination of constraints (17) and (18) express a one-to-one mapping
between the set of the rows and the new positions i.e., each row must be set
exactly in one position from 1 to m. (17) requires that each transaction have to
be set in one position and (18) expresses that two transactions could not be put
in the same position.

∑

j∈1...m

tij = 1 for all i ∈ [1..m] (17)

∑

j∈1...m

tji ≤ 1 for all i ∈ [1..m] (18)

To capture the bounds of each item a, we associate to each item a two sets of
variables namely xa,1, . . . , xa,m. xa,i indicates that transaction i contains item a.

Constraint (19) allows to link xa,i to tij .

∧

a∈Ω

m∧

j=1

(
∨

Ti | a∈Ti

tij → xa,j) (19)

Towards a Compact SAT-Based Encoding of Itemset Mining Tasks 173

f(a) and g(a) can be expressed as follows:

f(a) =
m∑

i=1

i × (xa,i ∧
∧

1≤j<i

¬xa,j)

g(a) =
m∑

i=1

i × (xa,i ∧
∧

i<j≤m

¬xa,j)

Finally, the objective function can be expressed as the follows:

minimize
∑

a∈Ω

(g(a) − f(a)) (20)

A solution of (17) ∧ (18) ∧ (19) subject to the objective function (20) cor-
responds to a best rearrangement for matrix compression allowing to compress
efficiently our encoding. Nevertheless, the NP-Hardness of this problem is clearly
an issue in practice. Thus, it will be convenient to design an alternative approach
providing high reduction factor while maintaining a reasonable amount of time.

To do so, a greedy approach can be used instead. It proceeds as follows. It
recursively picks up the less frequent item a in the current database. Then, all
transactions containing a are placed on the top of D. The goal is to minimize
g(a). This operation is repeated by considering the less frequent item in the
remaining transactions i.e., D \ {Ti, a ∈ Ti}. Let us remark that two strategies
can be considered: either to choose the less frequent item in D \ {Ti, a ∈ Ti} or
in the whole database D.

Example 3. Let us reconsider the transaction database D depicted in Table 1.
By applying, the greedy approach, the obtained transaction database is depicted
in Fig. 1. The associated chain of implications, are illustrated on the left side of
the figure.

Fig. 1. Transactions reordering: a greedy approach.

174 I. Nekkache et al.

Finally, the complete encoding associated to the transaction database
reordered greedily (Fig. 1) is given by the following Boolean formula:

(pa → r5) ∧ (pb → r8) ∧ (pc → s5) ∧ (pd → r7)∧
(pe → ¬q10 ∧ s4) ∧ (pf → r9 ∧ s3) ∧ (pg → s4) ∧ (ph → r8 ∧ s2)∧∧

5≤i≤9

(ri → ri+1 ∧ ¬qi) ∧
∧

2≤i≤7

(si → si−1 ∧ ¬qi)

5 Experimental Evaluation

We now present the experiments carried out to evaluate the performance of our
approach. In particular, we study the compression rate and the time needed to
enumerate models of the obtained formula and then of the pattern of interest. For
comparison, we consider the solver MiniSAT [7], adapted to enumerate all models
by performing a backtrack search without restart as depicted in DPLL-type
Algorithm 1. More precisely, the algorithm branch first on items variables. In
fact, each assignment over items variables allows to propagate all the qi variables.
The items variables are chosen according to the frequency of the items in the
database i.e., the solver branch on the less frequent first. No conflict analysis is
performed. A simple backtrack is performed after each conflict or when a model
is found.

Our experiments were performed on a machine with Intel Xeon quad-core
processors with 32 GB of RAM running at 2.66 GHz on Linux CentOS. Time-
out was set to 1800 s and memory-out to 10 GB in all runs. We consider the
datasets coming from FIMI1 and CP4IM2. The characteristics of the considered
datasets are given in Table 4. The sources of the model enumeration are available
at : https://github.com/ikramnekkache/CESATIM.

We follow the experimental schema of Dlala et al. [6]: The enumeration
problem is decomposed into the enumeration of a sequence of sub-problems
Σi = Σ ∧ ¬pa1 ∧ . . . ∧ ¬pai−1 ∧ pai

where Ω = {a1, . . . , an} and Σ is the for-
mula of SAT-Based encoding of itemsets mining problem. Solving Σi consists in
considering transactions containing ai. Then, to encode Σi, our compact app-
roach is used. In the sequel, we denote by CESATIM our compact encoding for
SAT-Based itemsets mining using decomposition as in [6]. We compare the per-
formances of CESATIM against ParaSATMiner and two CP approaches namely
ClosedPattern [14] and CoverSize [16].

In Table 5, we report the comparative results of our CESATIM approach using
different minimum support threshold values. For each dataset, the number of
models (closed patterns) and the total CPU time (in seconds) are reported.

The symbol (-) is used to mention that the solver is not able to finish
the enumeration process within the fixed time out. According to the results,
CESATIM outperform ParaSATMiner and the CP approaches on almost all the

1 http://fimi.ua.ac.be/data/.
2 http://dtai.cs.kuleuven.be/CP4IM/datasets/.

https://github.com/ikramnekkache/CESATIM
http://fimi.ua.ac.be/data/
http://dtai.cs.kuleuven.be/CP4IM/datasets/

Towards a Compact SAT-Based Encoding of Itemset Mining Tasks 175

Algorithm 1: DPLL for all model enumeration
Input: a CNF formula Σ
Output: SAT or UNSAT
I = ∅ ; /* interpretation */

dl = 0 ; /* decision level */

while (true) do
c = unitPropagation(Σ,I);
if (c ! = null) then

dl ← dl − 1;
if (dl < 0) then

return UNSAT;
else

backtrack until(dl − 1);

else
if (I |= Σ) then

S ← S ∪ {I};
dl ← dl − 1;
if (dl < 0) then return UNSAT;
backtrack until(dl)

else
x = selectDecisionVariable(Σ);
dl = dl + 1;
I = I ∪ {x};

Table 4. Data characteristics.

Instance #Transactions #Items Density Size

Chess 3196 75 49.0% 340K

Mushroom 8124 119 19.0% 516K

T10I4D100K 100000 870 1.0% 3.9M

Retail 88162 16470 0.06% 4,2M

Connect 67558 129 35.62% 8.9M

T40I10D100K 100000 942 4.31% 15M

Pumsb 49046 2113 3.0% 16,7M

Kosarak 990002 41267 0.01% 32M

Accidents 340183 468 7.0% 34M

datasets. Particularly, our approach enumerate the set of all closed itemsets of
pumbs in only 194.70 s while ParaSATMiner needs 643.11 s. ClosedPattern and
CoverSize are not able to finish the enumeration of all patterns under the fixed
time out. Notably, except for retail where ParaSATMiner outperfoms CESATIM,
on all the remaining datasets, CESATIM achieves the best performances.

176 I. Nekkache et al.

Table 5. ParaSATMiner vs CESATIM vs ClosedPattern vs CoverSize.

Instance Θ Closed

pattern

Cover size ParaSat

Miner

#Clauses CESATIM #Clauses #Models

Retail 80 – 265.10 12.51 1617596 13.84 964643 > 8.103

60 – 295.47 16.48 2091800 18.50 1179210 > 41.104

40 – 334.23 23.53 3077550 27.45 1591962 > 2.104

20 – 439.94 39.95 6520011 48.13 2949890 > 5.104

10 – 586.16 72.23 15415367 88.36 6934878 1.105

Connect 40000 7.54 14.95 6.32 1518140 3.39 1065923 > 7.104

20000 50.22 75.48 21.51 3205501 8.45 2459758 > 5.105

10000 526.43 431.19 64.11 5448843 21.96 4428425 > 3.106

5000 – – 166.43 7549685 51.23 6310490 > 1.107

Chess 2000 1.51 1.22 0.21 55083 0.12 38584 � 7.104

1500 6.30 4.09 0.79 128897 0.38 96691 > 5.105

1000 51.35 28.62 5.04 214078 2.21 171067 > 4.106

500 577.29 311.47 46.07 339787 20.37 285651 > 45.106

250 – – 173.44 414786 81.92 352443 � 2.108

100 – – 463.07 465613 230.13 395220 > 5.108

Accidents 100000 101.68 145.96 73.03 14765606 22.12 11654191 � 1.105

80000 319.25 283.98 142.73 17435639 35.76 14024172 � 4.105

60000 – 866.21 294.79 22051341 66.49 17995214 > 1.106

40000 – – 723.79 31196169 159.74 26000938 � 6.106

Pumbs 40000 20.99 389.43 4.12 428574 2.30 288083 > 2.104

35000 103.20 325.42 9.76 727145 4.25 500954 � 2.105

30000 434.25 404.26 29.20 1341404 10.67 974194 � 9.105

25000 – 994.35 132.86 2111763 39.65 1569301 � 6.106

20000 – – 643.11 3801324 194.70 2821021 > 3.107

T40I10D100K 10000 4.16 51.43 2.69 0 1.48 0 � 1.102

8000 5.08 51.13 4.11 0 1.88 0 > 1.102

6000 10.38 52.39 7.28 138699 2.65 138704 > 2.102

4000 30.51 53.26 9.98 1198000 3.80 893000 > 4.102

2000 144.89 58.22 23.63 16880498 10.59 11951802 > 1.103

T10I4D100K 500 106.87 24.04 3.00 916075 1.73 695817 > 1.103

400 147.14 25.56 3.60 1709425 2.21 1108283 > 1.103

300 217.40 27.73 4.61 3345488 3.02 1824098 > 4.103

200 314.17 29.12 6.51 6226063 4.39 3021183 > 1.104

100 497.10 32.40 15.24 14354996 10.79 6642109 > 2.104

50 – 45.05 85.52 34040358 67.90 17041570 > 4.104

Kosarak 4000 – – 26.81 8298064 24.22 5125364 > 2.103

3000 – – 37.35 10867305 35.41 6523942 > 4.103

2000 – – 62.27 15819901 60.15 9163330 > 3.104

1000 – – 141.90 35068843 136.87 20604547 � 5.105

Mushroom 250 1.14 2.54 1.23 956487 0.90 742560 > 1.104

100 1.64 1.91 2.16 1149719 1.65 868463 > 3.104

50 2.70 2.47 2.37 1209497 1.86 893076 > 5.104

25 2.82 3.16 2.82 1251890 2.30 906841 � 8.104

5 5.57 4.20 4.31 1300095 3.74 917710 > 1.105

To explain the performances of our compact encoding we report in columns
6 and 8 the number of total clauses generated by ParaSATMiner and CESATIM
respectively. The number of clauses generated by CESATIM corresponds to the
total number of clauses of all the sub-problems generated during the decompo-

Towards a Compact SAT-Based Encoding of Itemset Mining Tasks 177

sition steps. As we can observe, using our approach the total clauses is clearly
lower. For instance, for T10I4D100K data, ParaSATMiner generates 34040358
clauses where CESATIM needs only 17041570 clauses.

6 Conclusion

In this paper, we presented an efficient approach for compacting the SAT-based
encoding of the itemset mining task. We proved that this compact reformula-
tion can be expressed as a Boolean matrix compression problem. We proposed
a greedy approach that allows us to significantly reduce the size of the encod-
ing. Experimental results show significant compression rate with respect to the
original encoding size. Interestingly, our approach leads to better performances
improvements compared to both the original ParaSATMiner and the two well
known CP approaches, namely ClosedPattern and CoverSize.

As a future work, it may be interesting to extend our approach to SAT-based
encoding of other data mining problems such as sequential pattern mining. The
second issue is to improve our greedy approach, by finding more better ordering
heuristics.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: ACM SIGMOD International Conference on Manage-
ment of Data, pp. 207–216. ACM Press, Baltimore (1993)

2. Belaid, M., Bessiere, C., Lazaar, N.: Constraint programming for mining borders
of frequent itemsets. In: Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August
2019, pp. 1064–1070 (2019)

3. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3),
335–379 (1976)

4. Cambazard, H., Hadzic, T., O’Sullivan, B.: Knowledge compilation for itemset
mining. In: ECAI 2010, pp. 1109–1110 (2010)

5. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining.
In: ACM SIGKDD, pp. 204–212 (2008)

6. Dlala, I.O., Jabbour, S., Raddaoui, B., Sais, L.: A parallel sat-based framework
for closed frequent itemsets mining. In: Principles and Practice of Constraint Pro-
gramming - 24th International Conference, CP 2018, Proceedings, Lille, France,
27–31 August 2018, pp. 570–587 (2018)

7. Eén, N., Sörensson, N.: An extensible sat-solver. In: Proceedings of the Sixth Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT
2003), pp. 502–518 (2002)

8. Fournier-Viger, P., Lin, J.C., Vo, B., Truong, T.C., Zhang, J., Le, H.B.: A survey
of itemset mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 7(4) (2017)

9. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified np-complete graph
problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

178 I. Nekkache et al.

10. Guns, T., Dries, A., Tack, G., Nijssen, S., De Raedt, L.: Miningzinc: a modeling
language for constraint-based mining. In: Proceedings of the Twenty-Third Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 1365–1372
(2013)

11. Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: a constraint programming
perspective. Artif. Intell. 175(12–13), 1951–1983 (2011)

12. Jabbour, S., Sais, L., Salhi, Y.: Boolean satisfiability for sequence mining. In:
CIKM, pp. 649–658 (2013)

13. Khiari, M., Boizumault, P., Crémilleux, B.: Combining CSP and constraint-based
mining for pattern discovery. In: Taniar, D., Gervasi, O., Murgante, B., Pardede,
E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6017, pp. 432–447. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12165-4 35

14. Lazaar, N., Lebbah, Y., Loudni, S., Maamar, M., Lemière, V., Bessiere, C., Boizu-
mault, P.: A global constraint for closed frequent pattern mining. In: International
Conference on Principles and Practice of Constraint Programming, pp. 333–349
(2016)

15. Metivier, J.P., Boizumault, P., Crémilleux, B., Khiari, M., Loudni, S.: A constraint-
based language for declarative pattern discovery. In: 2011 IEEE 11th International
Conference on Data Mining Workshops (ICDMW), pp. 1112–1119. Vancouver,
Canada (2011)

16. Schaus, P., Aoga, J.O.R., Guns, T.: Coversize: A global constraint for frequency-
based itemset mining. In: International Conference on Principles and Practice of
Constraint Programming, pp. 529–546 (2017)

https://doi.org/10.1007/978-3-642-12165-4_35

A Pipe Routing Hybrid Approach Based
on A-Star Search and Linear Programming

Marvin Stanczak1,2(B), Cédric Pralet1(B), Vincent Vidal1(B),
and Vincent Baudoui2(B)

1 ONERA/DTIS, Université de Toulouse, 31055 Toulouse, France
{marvin.stanczak,cedric.pralet,vincent.vidal}@onera.fr

2 Airbus Defence and Space, Toulouse, France
{marvin.stanczak,vincent.baudoui}@airbus.com

Abstract. In this work, we consider a pipe routing problem encountered
in the space industry to design waveguides used in telecommunication
satellites. The goal is to connect an input configuration to an output
configuration by using a pipe composed of a succession of straight sec-
tions and bends. The pipe is routed within a 3D continuous space divided
into non-regular convex cells in order to take obstacles into account. Our
objective is to consider several non-standard features such as dealing with
a set of bends restricted to a bend catalog that can contain both orthog-
onal and non-orthogonal bends, or with pipes that have a rectangular
section, which makes the pipe orientation important. An approach is
introduced to automate the design of such pipe systems and help design-
ers to manage the high number of constraints involved. Basically, this
approach formulates the pipe routing problem as a shortest path prob-
lem in the space of routing plans, where a routing plan is specified by the
parts composing a pipe and by geometrical constraints imposed on these
parts. The problem is then solved using weighted A* search combined
with a linear program that quickly evaluates the feasibility and the cost
of a routing plan. The paper shows that the approach obtained has the
capacity to solve realistic instances inspired by industrial problems.

Keywords: Pipe routing · Linear programming · Weighted A*

1 Introduction

Waveguide routing plays an important role during the design phase of a telecom-
munication satellite. A waveguide can be seen as a pipe with a rectangular section
which carries an electromagnetic signal between two components of the satellite
payload. Traditionally, waveguide designers define routes manually and build a
route as a succession of rigid straight sections and rigid bends using their exper-
tise to select a routing configuration that saves length and bends. The bends
that can be used are defined in catalogs provided by waveguide manufacturers.
These catalogs can include orthogonal bends (90◦ bends, when the direction of
the pipe before the bend is orthogonal to the direction of the pipe after the bend)
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 179–195, 2021.
https://doi.org/10.1007/978-3-030-78230-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_12

180 M. Stanczak et al.

but also non orthogonal ones (30◦ bends, 45◦ bends, 60◦ bends, etc.) which are
useful to save length in the very constrained routable space inside a satellite.

Due to the large number of waveguides to be routed and to the large number
of constraints to take into account, waveguide routing is usually a highly time-
consuming task. In other industries, research has been conducted to automate
the pipe routing process, to save time and money during the design phase.

Existing Methods. Historically, the classic pipe routing algorithm is the Maze
algorithm introduced by Lee [23]. It considers a discrete routing environment
represented as a regular grid where the cells occupied by obstacles are labeled.
Then, starting from the source cell, the best route is computed by exploring
the cells’ neighborhood until the target is reached. Other algorithms were pro-
posed to consume less memory space, based on Particle Swarm Optimization [3],
Genetic Algorithm [18,21], or Ant Colony Optimization [9,19]. Recently, Belov
also introduced a Constraint Programming formulation [4,5]. With regard to non
orthogonal bends, Ando proposed to introduce additional edges in the cell adja-
cency graph [2], but this approach does not guarantee to find a feasible solution
even if one exists in the continuous space.

Other methods called Skeleton approaches build a graph of possible route
candidates using rules inspired by experience. The pipe routing problem is still
modeled as a shortest path problem in a discrete graph, but this time the nodes
of the graph are associated with continuous positions that are not forced to be
located on a regular grid. The skeleton approach was tackled using the Dikjstra
algorithm [20] or Mixed Linear Integer Programming [13]. A more recent paper
also explored Evolutionary Algorithms considering multi-objective routing in a
skeleton graph [24]. Similarly to the cell decomposition strategy, the skeleton
approach can lead to sub-optimal solutions in the continuous space.

To improve the quality of the solutions, some authors proposed a two-stage
approach that first searches for a global routing channel, and then details the
routes inside each cell of this channel [31], sometimes using patterns [26].

To avoid discretizing the routing space, other methods discretize the set of
possible physical pipe components and build pipes by adding components one
by one from a catalog containing bends and straight sections of fixed length [12].
Again, this method can fail to find feasible solutions due to the discretization.

Another way to route pipes in a continuous environment is the Escape Algo-
rithm or Line Search Algorithm. This technique introduced by Hightower [15]
extends lines from the origin point using a set of directions and repeats this
extension each time a line intersects an obstacle, until the destination is reached.
This approach allows dealing with non orthogonal bends but it does not take
into account the orientation of the pipe sections, which is required in the case of
waveguide routing. Indeed, the waveguide must reach the destination with the
right orientation, that is to say with the right angular position of the section
around the neutral fibre followed by the barycentre of the section along the pipe.

Last, parametric models were also proposed using adaptable pipe patterns
with parameters such as the length of straight sections. The pipe route can
then be optimized using Mathematical Programming [25,28] or Genetic Algo-
rithms [17], but existing models do not consider non orthogonal bends.

Hybrid Approach for Pipe Routing 181

Contribution. Most of the previous methods rely on the classical assumptions
that the pipe has a circular section, has axis-parallel segments and/or uses
orthogonal bends only, but these hypotheses are not acceptable for waveguides.
For these reasons, no method from the literature can be reused to solve the
waveguide routing problem. This article introduces a new pipe routing tech-
nique that addresses the three following challenges: optimize pipe cost in a 3D
continuous routing space, use non orthogonal bends from a catalog and take into
account unsymmetrical pipe sections. We consider the routing of a single pipe
only. In an industrial context, such a routing problem must be solved in few sec-
onds in order to ensure quick iterations during the design phase. The extended
problem which deals with several pipes is left for future work.

The rest of the article is organized as follows. Section 2 introduces a formal
definition of the pipe routing problem considered. Section 3 describes the notion
of routing plan and presents a linear program that evaluates the feasibility and
cost of a plan. Section 4 formulates the pipe routing problem as a shortest path
problem in the space of routing plans and defines heuristics for estimating the
cost required to reach the goal configuration from the current routing plan.
Section 5 provides experimental results obtained with the weighted A* search,
and Sect. 6 gives future work perspectives.

2 Problem Definition

2.1 Routing Space

The routing space W ⊆ R
3 describes the physical space that the pipe neutral

fibre can cross. The structure of a telecommunication satellite is made of several
panels on which waveguides must be fixed. Thus, the routable space is naturally
split into several cells that correspond to the close environment of each panel.
As about one hundred obstacles can be fixed on a panel, these cells are divided
into sub-cells that avoid obstacles, using a Delaunay constrained triangulation.
This way, we model the routing space W as a set of cells C where each cell c ∈ C
is a convex polyhedron Pc (see Fig. 1).

Two cells c, c′ ∈ C that overlap are called adjacent, and their interface i is
the non-empty polyhedron Pi = Pc ∩ Pc′ . We denote by I the set of routing
interfaces between cells, and by I (c) the set of interfaces involving cell c. We
assume here that each interface is a surface, even if the techniques defined can
be extended to the case where interfaces are volumes. From these definitions,
the routing space can be represented as a graph containing one node per routing
cell and one edge per routing interface between two cells. In the following, this
graph is assumed to be connected.

2.2 Input and Output Configurations

In pipe routing, the goal is to connect an input configuration with an output
configuration. Mathematically speaking, a configuration θ is a pair (Pθ, oθ) where

182 M. Stanczak et al.

Fig. 1. Pipe in a simple routing space containing three cells (interfaces between cells
are depicted in blue, straight sections in orange and bends in green) (Color figure
online)

Pθ is a point in R
3 and oθ is an orientation defined by three vectors (−→eo,1, ...,

−→eo,3)
that form an orthonormal basis of R3 with −→eo,3 normal to the pipe section.

The origin point is located in a convex polyhedron Pori. included in an origin
cell cori. ∈ C and the destination point is located in a convex polyhedron Pdest.

included in a destination cell cdest. ∈ C. Using polyhedrons Pori. and Pdest.

instead of fixed origin and destination points allows keeping some flexibility in
early design phases. For instance, if a straight pipe section can connect an origin
and a destination configuration up to a small position error, it can be relevant
to slightly move the origin or destination point instead of defining a pipe that
contains a loop to compensate for the position error.

Additionally, the (unique) origin orientation oori. can be set as the reference
orientation, and there exists a set of possible destination orientations Odest.,
either because the destination orientation is still flexible, or because some orien-
tations are equivalent from the pipe section point of view.

2.3 Straight Sections and Bends

To connect input and ouput configurations, engineers use catalogs of parts
referred to as straight sections and bends. In our modeling, these parts are
approximated as functions that transform a configuration θ = (Pθ, oθ) into
another configuration θ′ = (Pθ′ , oθ′).

A straight section u of length Lu ∈ R
+ is modeled as an application that

transforms a configuration θ = (Pθ, oθ) into a configuration θ′ = u (θ) = (Pθ′ , oθ′)
where point Pθ′ is obtained by a translation of Pθ along direction −−→eoθ,3 (Pθ′ =
Pθ+Lu

−−→eoθ,3) and where the orientation is unchanged (oθ′ = oθ). In the following,
a translation of length L is referred to as tL, therefore u (θ) = tLu

(θ).
The modeling of bends is a bit more complex. Basically, a bend b has a certain

length and changes the direction of the pipe according to a given bend radius.
It is approximated as a pipe section composed of a straight section of length
Lb ∈ R

+ called the half-length of the bend, an orientation change defined by a

Hybrid Approach for Pipe Routing 183

rotation matrix Mb, and another straight section of length Lb again (see Fig. 1).
More formally, a bend b is modeled as a function that tranforms a configuration
θ = (Pθ, oθ) into a configuration tLb

◦ rMb
◦ tLb

(θ) obtained by applying (1) a
translation tLb

of length Lb, (2) a rotation rMb
defined by matrix Mb, and (3) a

second translation tLb
of length Lb. For a given bend, the intermediate config-

uration rMb
◦ tLb

(θ) is called the transition configuration. It corresponds to the
configuration obtained just after the break point of the bend.

In the following, we consider a restricted set of bends B called the catalog of
bends. It can contain only 90◦ bends for instance, or 90◦ and 45◦ bends, or any
other combination of bend types and angles. Using a catalog of bends can seem
counter-intuitive at first since bend suppliers often propose a continuous choice
of bend angle radius, and since complex bends could be obtained through 3D-
printing. However, using a catalog of bends allows reusing bends and ordering
numerous bends of the same type, which reduces the costs.

2.4 Pipe and Polyline Approximation

Given the catalog of bends B, a pipe π of length Nπ > 0 is then a pair π =(
θori.

π , σπ

)
composed of an initial configuration θori.

π and a composition

σπ = uπ,Nπ
◦ bπ,Nπ−1 ◦ uπ,Nπ−1 ◦ ... ◦ uπ,2 ◦ bπ,1 ◦ uπ,1

alternating between straight sections uπ,i, for i ∈ �1, Nπ�, and bends bπ,i ∈ B,
for i ∈ �1, Nπ − 1� (see Fig. 1).

As straight sections and bends apply translation and rotation operations
on the initial configuration, the neutral fibre of pipe π describes a polyline
[P1, ..., PNπ+1] in R

3 whose points correspond to the transition configurations
of the bends (except for the first and last points). The ith point of this polyline
is Pπ,i, and the ith segment is [Pπ,i, Pπ,i+1]. We also denote by �π,i the length
of the ith segment of pipe π, and by θπ,i = (Pπ,i, oπ,i) the ith transition config-
uration of π, for i ∈ �1, Nπ + 1� (with the convention that θπ,1 = θori.

π , and that
θπ,Nπ+1 is the configuration obtained at the end of the pipe).

2.5 Constraints

We now list the constraints that must be satisfied by a pipe π.

– The initial and final configurations of π must be consistent with the required
input and output configurations, that means respectively Pπ,1 ∈ Pori. and
Pπ,Nπ+1 ∈ Pdest., but also oπ,1 = oori. and oπ,Nπ+1 ∈ Odest..

– The polyline defined by the pipe must contain at most Nmax segments. This
limits the number of break points, which is particularly useful when the pipe
conveys a flow whose quality is impacted by such break points.

– Every bend used in π must belong to catalog B.
– All segments of the polyline traversed by the neutral fibre of the pipe must

be contained within the routing space, that is [Pπ,i, Pπ,i+1] ⊂ W for every

184 M. Stanczak et al.

i ∈ �1, Nπ�. For computational reasons, the constraints enforcing that a pipe
section must not cross other pipe sections are omitted. They can be checked
afterwards, and in case of violation, a manual modification of the pipe design
is required.

– For stability reasons, the pipe must be attached to floors or walls of the
structure within which it is routed. As a result, there is a set of orientations
Oc allowed within each cell c ∈ C. Typically, for a rectangular pipe section
we impose that the orientation o of each pipe segment passing through a cell
c must be orthogonal to a facet of c called a wall. If −→u denotes the normal of
this wall, we must ensure that either −→eo,1.

−→u = 0 or −→eo,2.
−→u = 0 (possibility to

attach a bracket to one of the sides of the rectangular section).
– Every straight section of the pipe must have a minimum length Lmin ∈ R

+.
This specification comes from constraints imposed by suppliers.

2.6 Objective Function

The objective in the pipe routing problem is to minimize the overall cost of the
pipe, given that each bend b has a cost Cb ∈ R

+ and each straight section of
length � has a cost � μ where μ ∈ R

+ is a linear cost. The objective is then to
minimize the global cost Cπ of the pipe defined by:

Cπ = μ

Nπ∑

i=1

�π,i +
Nπ−1∑

i=1

Cbπ,i

3 Routing Plan

In order to route a pipe, we propose to iteratively build its neutral fibre starting
from the origin configuration, by making at each step decisions such as the
addition of a new bend at the end of the pipe or the crossing of an interface
between two adjacent cells. To formalize the approach, the concept of routing
plan is introduced to represent the decisions made so far on the pipe components.

3.1 Definition

A routing plan s describes, in an abstract way, a neutral fibre composed of Ns

successive segments with for each segment i:

– the bend bs,i ∈ B applied at the end point of segment i, for i ∈ �1, Ns − 1�;
– the sequence of interfaces Is,i ⊆ I crossed by segment i, for i ∈ �1, Ns�.

Moreover, a routing plan can be terminated or not. When a routing plan is
terminated, the neutral fibre has to reach the pipe destination. The set of routing
plans is denoted by S. Several data can be derived from the basic definition of
a routing plan, including:

– the orientation os,i ∈ O of segment i, for i ∈ �1, Ns�; this orientation can be
computed from the origin orientation and from the list of bends applied;

– the cell cs,i ∈ C to which the end point of segment i belongs, for i ∈ �1, Ns�;
this cell can be computed from the last interface crossed by segment i.

Hybrid Approach for Pipe Routing 185

3.2 Feasibility and Cost

A routing plan s ∈ S is feasible if it is possible to create a neutral fibre following
the choices made in s and satisfying the pipe routing constraints introduced in
Sect. 2.5. This feasibility problem can be formulated as a linear program, referred
to as LPs, that contains four kinds of variables:

– length variables �s
i such that, for i ∈ �1, Ns�, the real variable �s

i is the length
of the ith segment of the neutral fibre;

– position variables ps
i =

(
ps

i,x, ps
i,y, ps

i,z

)
such that, for i ∈ �1, Ns + 1�, the

real variable ps
i,x (respectively ps

i,y and ps
i,z) is the x-coordinate (respectively

y-coordinate and z-coordinate) of the ith point of the neutral fibre;
– interface variables qs

i,j =
(
qs
i,j,x, qs

i,j,y, qs
i,j,z

)
such that, for i ∈ �1, Ns� and

j ∈ Is,i, the real variable qs
i,j,x (respectively qs

i,j,y and qs
i,j,z) is the x-coordinate

(respectively y-coordinate and z-coordinate) of the intersection between the
ith segment of the neutral fibre and an interface j it has to cross;

– interface distance variables αs
i,j such that, for i ∈ �1, Ns� and j ∈ Is,i, the

real variable αs
i,j is the distance between the ith point of the neutral fibre and

the intersection qs
i,j with the interface j it has to cross.

Linear program LPs can be formulated as follows:

minimize μ
∑Ns

i=1 �s
i +

∑Ns−1
i=1 Cbs,i

(1)
subject to :
ps
1 ∈ Pori. (2)

ps
Ns+1 ∈ Pdest. if s is terminated (3)
ps

i+1 ∈ Pcs,i
∀i ∈ �1, Ns� (4)

�s
i ≥ Lbs,i−1 + Lmin + Lbs,i

∀i ∈ �1, Ns� (5)
−−−−→
ps

i p
s
i+1 = �s

i
−−−→eos,i,3 ∀i ∈ �1, Ns� (6)

qs
i,j ∈ Pj ∀i ∈ �1, Ns� ∀j ∈ Is,i (7)

αs
i,j ≤ �s

i ∀i ∈ �1, Ns� ∀j ∈ Is,i (8)
−−−→
ps

i q
s
i,j = αs

i,j
−−−→eos,i,3 ∀i ∈ �1, Ns� ∀j ∈ Is,i (9)

�s
i ∈ R

+ ∀i ∈ �1, Ns� (10)
ps

i ∈ R
3 ∀i ∈ �1, Ns + 1� (11)

qs
i,j ∈ R

3 αs
i,j ∈ R

+ ∀i ∈ �1, Ns� ∀j ∈ Is,i (12)

Constraint 2 states that the neutral fibre must start from the origin cell.
Such an inclusion constraint within a convex polyhedron can be expressed as
a set of linear constraints. Constraint 3 imposes that if plan s is terminated,
the neutral fibre must reach the destination cell. In the same way, Constraints
4 force the successive break points of the neutral fibre to belong to the cell to
which they are allocated given plan s. Constraints 5 impose a minimal length
on the segments. For the ith segment, this minimum length is obtained from the
minimal length Lmin of straight sections and from the respective contributions

186 M. Stanczak et al.

Lbs,i−1 and Lbs,i
of the previous and next bends (see Fig. 2). By convention, we

assume that Lbs,0 = 0 and Lbs,Ns
= 0, since the first and last segments do not

have a previous or a next bend respectively. Constraints 6 define the coordinates
of the (i + 1)th point of the neutral fibre from the coordinates of the ith point,
the orientation of the ith segment as specified by routing plan s, and the length
of this segment. Constraints 7–9 impose that the intersection between the ith

segment and an interface j it has to cross must belong both to the interface and
to the segment.

Fig. 2. Portion of a pipe between two successive break points of the neutral fibre (the
straight section with variable length is depicted in orange). (Color figure online)

If LPs does not have a solution, then routing plan s is not feasible and, by
convention, its cost is infinite. On the contrary, when there is a solution, routing
plan s is feasible. In this case, the optimum value g (s) of LPs is a lower bound
on the cost of any pipe that satisfies the constraints defined by routing plan s.
Furthermore, the straight sections of the pipe can be rebuilt from the optimal
lengths found for the pipe segments, while the bends are already defined by s.

4 Shortest Path Problem Formulation

Based on the routing plan presented above, the pipe routing problem can be
seen as a shortest path problem in a graph whose nodes correspond to routing
plans and whose arcs represent the basic updates that can be made on routing
plans: bend addition, interface crossing, or pipe termination. The goal is then to
explore the space of routing plans S from an empty routing plan starting at the
origin cell cori. with the origin orientation oori., in order to reach a feasible and
terminated plan, ending at destination cell cdest. with a destination orientation in
Odest.. Thus, the pipe routing problem can be solved using an A*-like algorithm
after formally defining the possible successors of a routing plan in the search
space (see Sect. 4.2) and a path-finding heuristic (see Sect. 4.3).

Hybrid Approach for Pipe Routing 187

4.1 Search Algorithms

Various heuristic search schemes can be considered to solve shortest path prob-
lems. Several of them were compared in [29], showing that hill climbing meth-
ods can provide fast results [16,22], while best-first search [1,8,11] and beam
search [6,10,30] often offer a better trade-off between solution quality and com-
putation time. Also, compared to beam search, best-first search is more suitable
for state spaces in which destination states cannot be reached from some states.
We focus here on best-first search techniques, that develop at each step the
search node that seems the more promising among all search nodes created so
far.

Among the best-first search algorithms, the Weighted A* approach [27] pro-
vides competitive results in many fields. Basically, in the A* algorithm [14], the
evaluation of a state s is given as f (s) = g (s) + h (s) where g (s) stands for the
minimal cost to reach s from the initial state and h (s) stands for the heuristic
evaluation of the minimum cost to reach a goal state starting from s. In Weighted
A* (denoted WA*), this evaluation is replaced by f (s) = g (s) + ε · h (s) where
ε > 1 gives a higher weight to the heuristic evaluation, so as to favor the expan-
sion of search nodes corresponding to configurations that seem to be close to the
destination. In our case, g (s) is obtained from the value of an optimal solution
to LPs, while three possible versions of h (s) are presented in Sect. 4.3.

4.2 Neighborhood

By definition, a terminated routing plan cannot be expanded. On the contrary, if
routing plan s ∈ S is not terminated, it can be expanded by adding new routing
decisions, as defined below. During plan expansions, only the feasible plans are
considered as successors. Indeed, if LPs is not feasible and if plan s′ ∈ S extends
s, then LPs′ is not feasible either because LPs is a subproblem of LPs′ .

Bend Addition. Let b be a bend of catalog B. If Ns < Nmax and if the orientation
rMb

(os,Ns
) obtained after applying bend b from the current last orientation os,Ns

is acceptable in the current last cell cs,Ns
(rMb

(os,Ns
) ∈ Ocs,Ns

), then bend b can
be added to routing plan s. This adds a new segment to the neutral fibre and
definitively allocates the end point of the Ns

th segment to cell cs,Ns
. Formally,

the resulting routing plan s′ is defined as follows:

Ns′ = Ns + 1 (13)
bs′,i = bs,i ∀i ∈ �1, Ns′ − 2� (14)

bs′,Ns′ −1 = b (15)
Is′,i = Is,i ∀i ∈ �1, Ns′ − 1� (16)
Is′,Ns′ = [] (17)

Interface Crossing. Let j be a neighbor interface of the current cell, that is
j ∈ I (cs,Ns

). Let nj be the normal to the interface that is oriented towards the

188 M. Stanczak et al.

current cell. If the scalar product between the current orientation os,Ns
and nj

is negative and if os,Ns
satisfies the orientation constraints of the cell cj located

on the other side of the interface (os,Ns
∈ Ocj

), then interface j can be crossed.
We also limit ourselves to the destination cells that have not been visited before,
meaning that cj �= cs,i for i ∈ �1, Ns�. Formally, the resulting plan s′ is defined
as follows:

Ns′ = Ns (18)
bs′,i = bs,i Is′,i = Is,i ∀i ∈ �1, Ns′ − 1� (19)

Is′,Ns′ = Is,Ns′ ∪ [j] (20)

Pipe Termination. Last, if the destination cell and the destination orientation
have been reached, meaning that cs,Ns

= cdest. and os,Ns
∈ Odest., then routing

plan s can be terminated. The resulting plan s′ is the same as plan s but it is
terminated and it has to reach the destination position (see Constraint 3).

4.3 Trail Heuristic

In order to choose a routing plan s to expand at each step, one key component
is the heuristic evaluation of s, that must give an estimation of the minimum
cost required to extend s and reach a feasible and terminated routing plan. This
section proposes three heuristic evaluations.

Distance as the Crow Flies. A first naive heuristic evaluation is the distance as
the crow flies from the end point of the routing plan to the destination position,
referred to as ha.c.f.. However, this heuristic does not take into account the
routing space constraints. The introduced method with this heuristic and ε = 1
is used as baseline because of the lack of a usable approach from the literature.

Trail Space. To get more accurate estimations of the distance to the destination,
we introduce two other heuristics based on a graph G (M,D) defining so-called
candidate trails between some specific points of the routing space. Formally, a
trail for a routing plan s ∈ S is a polyline inside the routing space that connects
the end point ps

Ns+1 of s as provided by LPs to the destination polyhedron Pdest..
In a trail, the constraints expressing that each orientation change of the polyline
must correspond to a bend of the catalog are ignored, the goal being only to
estimate the quality of a routing plan. Furthermore, the sequence of interfaces
crossed by a trail is called a channel.

We propose to discretize the trail space during a preprocessing step by sam-
pling a set of points M (i) on each interface i ∈ I using Bridson’s algorithm [7].
It is a maximum Poisson disk sampling method which ensures that sampled
points are separated by a sampling radius ρ ∈ R

+, such that when ρ decreases,
the density of sampled points increases. Then, for two distinct interfaces i, i′

involving a common cell c (i, i′ ∈ I(c)), each point in M (i) is connected to all
the points in M (i′). Last, a set of points M (Pdest.

)
is generated in the desti-

nation polyhedron Pdest.. The points in M (Pdest.
)

are connected to points on
the interfaces of cdest.. The graph obtained is denoted G (M,D).

Hybrid Approach for Pipe Routing 189

Trail Length Heuristic. During a preprocessing step, the distance LM from each
point M ∈ M to the destination cell as well as the corresponding shortest
trail is computed using a Dijkstra procedure. Then, the remaining cost to the
destination for a routing plan s ∈ S can be evaluated based on the length of the
shortest trails in G (M,D) (see Fig. 3). The estimation is further improved by
using the shortest trail for an extended routing plan s̃ ∈ S that can be computed
by crossing as many interfaces as possible in the channel of the shortest trail
from plan s without adding any bends. The feasibility of the extended plans is
evaluated using the linear programs, whose solutions can be reused when the
extended plans are expanded in turn. Finally, this heuristic is defined by:

hlength (s) =

⎧
⎨

⎩

μ · minM∈M(Pdest.) ‖−−−−−→
ps̃

Ns̃+1M‖ if cs̃,Ns̃
= cdest.,

μ · minM∈∪
i∈I(cs̃,Ns̃)

M(i)

(
‖−−−−−→
ps̃

Ns̃+1M‖ + LM

)
otherwise.

(21)

Fig. 3. Trail heuristic on a simple routing case (trails are depicted in green). (Color
figure online)

Trail Cost Heuristic. Previous heuristics only estimate the lineic contribution
to the cost of a pipe. However, the polyline [M1, ...,MK] of the shortest trail for
extended plan s̃ can also be used to estimate the cost of the remaining bends that
will be added to the pipe to reach the destination. This approach is described
in Algorithm 1, that returns a heuristic evaluation referred to as hcost. This
algorithm analyzes the successive orientation changes on the trail and tries to
reproduce these changes with the bends of the catalog. It estimates the bend
cost using a function σ that takes as an input the orientation o of the pipe
and a vector −→u , and that returns as an output a quantity σ(o,−→u) = −→eo,3 · −→u

‖−→u ‖
estimating through a scalar product the angular proximity between the main
direction −→eo,3 of orientation o and the direction defined by −→u . The closer σ (o,−→u)
is to 1, the closer o is from direction −→u . Note that with such an approach, we
ignore the orientation of the pipe section around the neutral fibre. Last, from
the last orientation o reached when following the trail, Algorithm 1 also adds the

190 M. Stanczak et al.

cost Dijkstra
(
o,Odest.

)
of the best bend combination that reaches a destination

orientation from o. Such a cost can be precomputed for any reachable orientation
o, before using Algorithm 1.

Algorithm 1. Evaluate hcost (s)
Require: s ∈ S, shortest trail polyline [M1, ..., MK] from extended plan s̃.

o ← os,Ns

Cbends ← 0
for k ∈ �1, K − 1� do

repeat
improvement ← false

b∗ ← argmaxb∈B

(
σ

(
rMb (o) ,

−−−−−−→
MkMk+1

))

if σ
(
rMb∗ (o) ,

−−−−−−→
MkMk+1

)
> σ

(
o,

−−−−−−→
MkMk+1

)
then

improvement ← true
Cbends ← Cbends + Cb∗

o ← rMb∗ (o)
end if

until improvement = false
end for
return hlength (s) + Cbends + Dijkstra

(
o, Odest.

)

Admissibility. It is important to note that heuristic functions hlength and hcost

are not necessarily admissible, as they can overestimate the real cost required
to reach the goal configuration. Additionally, even with the distance as the crow
flies, the state evaluations are not monotonic, meaning that for a state s′ extend-
ing s, we might have f (s′) < f (s) (proof omitted for space reasons, but basically
it is possible to define an example in which the intermediate end point implicitly
chosen when solving LPs does not belong to an optimal path). These remarks
imply that the first feasible and terminated routing plan reached by A*-like
algorithms with these heuristics is not necessarily optimal in our case.

5 Experiments

The shortest path formulation presented in Sect. 4 for the pipe routing prob-
lem can be solved using a Weighted A* (WA*) search hybridized with a lin-
ear program which evaluates the cost of routing plans. This hybrid approach
has been implemented using the Java language and the simplex solver from
Apache Commons Math 3.6.1 (but other LP solvers might be faster). It has
been tested on four routing problems of increasing complexity, with the three
proposed heuristics ha.c.f., hlength and hcost. Experiments were conducted on an
Intel 2.70GHz processor with 16 GB of RAM. In absence of a reusable approach
from the literature, the baseline is the proposed method with ha.c.f. and ε = 1.

Hybrid Approach for Pipe Routing 191

5.1 Test Cases

In practice, the proposed method is used by adding conflicting obstacles itera-
tively into the cell decomposition. Thus, it is possible to reduce industrial cases
to simple setups like the one presented on Fig. 4. The dimensions of this routing
space are 380 by 120 by 120. Instances 1, 2, 3 and 4 split this routing space
into respectively 8, 34, 62 and 78 cells after adding respectively 0, 18, 42 and
58 obstacles into the cell decomposition. All instances aim at connecting con-
figuration θs to configuration θd using a maximum number of 100 bends (that
defines the maximum number of segments). The bend catalog contains 90◦ and
45◦ bends that have a common cost Cb = 100. The linear cost is set to 1. In
the industry, such instances have to be solved many times, so a solution must
be found quickly. For this purpose, the runtime has been limited to 3min here,
and the search is stopped when the first solution is found.

Fig. 4. Configurations of the instances, with the routing space and the solution of
instance 2 found using WA* search and heuristic hcost with ε = 1.2 and ρ = 5.

5.2 Results and Discussion

Our approach has been tested with the WA* search using ε values set to 1
(corresponding to A*), 1.2, 1.5, 2, 3 and 5. For the trail heuristics, the sampling
radius ρ is set to 5. Figure 5 shows the performances and the number of visited
plans for the different heuristics. For clarity reasons, only the best values of ε
are shown for each heuristic.

As expected, heuristic ha.c.f. which uses the distance as the crow flies does
not succeed to solve difficult instances and visits many more routing plans than
other heuristics. In the same way, the trail length heuristic hlength requires a
high value of ε = 5 to be able to solve more complex instances, and it does not
manage to solve Instance 4 within an acceptable runtime. Nevertheless, when
heuristics ha.c.f. and hlength succeed, they provide good solutions.

192 M. Stanczak et al.

Fig. 5. Results of the three heuristics with ρ = 5 on the four test case instances.

In comparison, heuristic hcost outperforms the previous ones when the num-
ber of cells increases, that is when there are more obstacles to avoid. Indeed,
it solves all instances within reasonable runtimes, even with smaller values of ε,
and the solutions obtained on the smallest instances are competitive with ha.c.f.

and hlength. Difficult cases are solved after about one minute and the pipes found
are acceptable by a human designer, as shown on Fig. 4.

In a second experiment, heuristic hcost has been tested using ρ values of 1, 5,
10, 25 and 50 to evaluate the impact of the sampling radius on the performances.
The results are shown on Fig. 6. WA*-search tends to visit more routing plans
when the sampling radius ρ decreases, meaning that more points are sampled on
each interface. Consequently, the resolution of the routing instances takes more
time. However, increasing the sampling density seems to improve the cost of the
solutions. This trend must be confirmed on more test cases, but the adjustment
of the sampling radius would be a trade-off between the runtime and the quality
of the solutions. On our instances, the best complete tuning uses ε = 2 and
ρ = 5, which provides the solution given in Fig. 4.

Obviously, the regularity of the solutions depends on the bend cost. The
instances used in this paper strongly penalize the bends in comparison with the
linear cost, which favors the regularity of the pipes. Bend costs closer to the lineic
cost would lead to less regular optimal pipes and the approach would provide
solutions that might be rejected by designers because of a high number of bends.

Last, real test cases have confirmed that linear program LPs does not prevent
a pipe from colliding with itself. It particularly happens to correct an infinitesi-
mal gap on one axis between the origin and destination positions. This case can
be fixed using a tolerance on positions, but the phenomenon also occurs when

Hybrid Approach for Pipe Routing 193

Fig. 6. Impact of the sampling radius ρ using WA*-search with ε = 2 and hcost.

the pipe orientation has to change in a small space. The automated management
of self interfering constraints is a future work direction.

6 Conclusion

This paper presented an algorithm for routing a single pipe in a continuous
3D routing space divided into convex cells, using both orthogonal and non-
orthogonal bends. The approach is able to take into account the orientation of
the pipe section, which is particularly useful for rectangular pipes. It is based
on a combination between weighted A* search in the discrete space of routing
plans and linear programming for evaluating the feasibility and the cost of a
routing plan in the continuous routing space. Several heuristics were proposed
and compared on realistic instances. The best one, based on a quick estimation
of the remaining trail to reach the destination, provides acceptable solutions
within reasonable runtimes and can be used on industrial cases.

For future work, the performance of the proposed approach could be improved
by adding to the routing plan the definition of the next interface that should
be crossed. The underlying idea is that the linear program could exploit such
a specification to generate a better intermediate end point. Furthermore, the
linear program LPs is solved from scratch at each iteration, but it could be
warm-started using the solution formed for the prior routing plan. Additionally,
instead of A* or weighted A*, a full Mixed Integer Linear Programming (MILP)
model could be tested, even if experiments performed on obstacle-free routing
spaces showed that getting results within a few seconds can be challenging for
MILP. Last, the method must be extended to the multiple pipe routing problem
using an high level approach like in [5].

194 M. Stanczak et al.

References

1. Aine, S., Chakrabarti, P., Kumar, R.: AWA*-a window constrained anytime heuris-
tic search algorithm. In: IJCAI, pp. 2250–2255 (2007)

2. Ando, Y., Kimura, H.: An automatic piping algorithm including elbows and bends.
J. Jpn. Soc. Naval Architects Ocean Engineers 15, 219–226 (2012)

3. Asmara, A., Nienhuis, U.: Automatic piping system in ship. In: International Con-
ference on Computer and IT Application (COMPIT). Citeseer (2006)

4. Belov, G., Czauderna, T., Dzaferovic, A., Garcia de la Banda, M., Wybrow, M.,
Wallace, M.: An optimization model for 3d pipe routing with flexibility constraints.
In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 321–337. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66158-2_21

5. Belov, G., Du, W., Garcia de al Banda, M., Harabor, D., Koenig, S., Wei, X.:
From multi-agent pathfinding to 3D pipe routing. In: Symposium on Combinatorial
Search (SoCS) (2020)

6. Bisiani, R.: Beam search. Encycl. Artif. Intell. 2, 1467–1468 (1992)
7. Bridson, R.: Fast Poisson disk sampling in arbitrary dimensions. SIGGRAPH

Sketches 10, 1 (2007)
8. Ebendt, R., Drechsler, R.: Weighted A* search-unifying view and application. Artif.

Intell. 173(14), 1310–1342 (2009)
9. Fan, X., Lin, Y., Ji, Z.: The ant colony optimization for ship pipe route design in

3D space. In: 2006 6th World Congress on Intelligent Control and Automation, vol.
1, pp. 3103–3108. IEEE (2006)

10. Furcy, D., Koenig, S.: Limited discrepancy beam search. In: IJCAI (2005)
11. Furcy, D., Koenig, S.: Scaling up WA* with commitment and diversity. In: IJCAI,

pp. 1521–1522 (2005)
12. Furuholmen, M., Glette, K., Hovin, M., Torresen, J.: Evolutionary approaches to

the three-dimensional multi-pipe routing problem: a comparative study using direct
encodings. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp.
71–82. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12139-5_7

13. Guirardello, R., Swaney, R.E.: Optimization of process plant layout with pipe
routing. Comput. Chem. Eng. 30(1), 99–114 (2005)

14. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

15. Hightower, D.W.: A solution to line-routing problems on the continuous plane. In:
Proceedings of the 6th Annual Design Automation Conference, pp. 1–24 (1969)

16. Hoffmann, J.: Extending FF to numerical state variables. In: ECAI pp. 571–575.
Citeseer (2002)

17. Ikehira, S., Kimura, H., Ikezaki, E., Kajiwara, H.: Automatic design for pipe
arrangement using multi-objective genetic algorithms. J. Jpn Soc. Naval Archi-
tects Ocean Engineers 2, 155–160 (2005)

18. Ito, T.: A genetic algorithm approach to piping route path planning. J. Intell.
Manuf 10(1), 103–114 (1999)

19. Jiang, W.Y., Lin, Y., Chen, M., Yu, Y.Y.: A co-evolutionary improved multi-ant
colony optimization for ship multiple and branch pipe route design. Ocean Eng.
102, 63–70 (2015)

20. Kim, S.H., Ruy, W.S., Jang, B.S.: The development of a practical pipe auto-routing
system in a shipbuilding CAD environment using network optimization. Int. J.
Naval Architecture Ocean Eng. 5(3), 468–477 (2013)

https://doi.org/10.1007/978-3-319-66158-2_21
https://doi.org/10.1007/978-3-642-12139-5_7

Hybrid Approach for Pipe Routing 195

21. Kimura, H.: Automatic designing system for piping and instruments arrangement
including branches of pipes. In: International Conference on Computer Applica-
tions in Shipbuilding (ICCAS), pp. 93–99 (2011)

22. Koenig, S., Sun, X.: Comparing real-time and incremental heuristic search for real-
time situated agents. Auton. Agents Multi-Agent Syst. 18(3), 313–341 (2009)

23. Lee, C.Y.: An algorithm for path connections and its applications. IRE Trans.
Electron. Comput. 3, 346–365 (1961)

24. Liu, L., Liu, Q.: Multi-objective routing of multi-terminal rectilinear pipe in 3D
space by MOEA/D and RSMT. In: 2018 3rd International Conference on Advanced
Robotics and Mechatronics (ICARM), pp. 462–467. IEEE (2018)

25. Medjdoub, B., Bi, G.: Parametric-based distribution duct routing generation using
constraint-based design approach. Autom. Constr. 90, 104–116 (2018)

26. Park, J.H., Storch, R.L.: Pipe-routing algorithm development: case study of a ship
engine room design. Exp. Syst. Appl. 23(3), 299–309 (2002)

27. Pohl, I.: First results on the effect of error in heuristic search. Mach. Intell. 5,
219–236 (1970)

28. Sakti, A., Zeidner, L., Hadzic, T., Rock, B.S., Quartarone, G.: Constraint program-
ming approach for spatial packaging problem. In: Quimper, C.-G. (ed.) CPAIOR
2016. LNCS, vol. 9676, pp. 319–328. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33954-2_23

29. Wilt, C.M., Thayer, J.T., Ruml, W.: A comparison of greedy search algorithms.
In: 3rd Annual Symposium on Combinatorial Search (2010)

30. Zhou, R., Hansen, E.A.: Beam-stack search: integrating backtracking with beam
search. In: ICAPS, pp. 90–98 (2005)

31. Zhu, D., Latombe, J.C.: Pipe routing-path planning (with many constraints). In:
Proceedings. 1991 IEEE International Conference on Robotics and Automation,
pp. 1940–1941. IEEE Computer Society (1991)

https://doi.org/10.1007/978-3-319-33954-2_23
https://doi.org/10.1007/978-3-319-33954-2_23

MDDs Boost Equation Solving
on Discrete Dynamical Systems

Enrico Formenti , Jean-Charles Régin , and Sara Riva(B)

Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France
{enrico.formenti,jean-charles.regin,sara.riva}@univ-cotedazur.fr

Abstract. Discrete dynamical systems (DDS) are a model to repre-
sent complex phenomena appearing in many different domains. In the
finite case, they can be identified with a particular class of graphs called
dynamics graphs. In [9] polynomial equations over dynamics graphs have
been introduced. A polynomial equation represents a hypothesis on the
fine structure of the system. Finding the solutions of such equations val-
idate or invalidate the hypothesis.

This paper proposes new algorithms that enumerate all the solutions
of polynomial equations with constant right-hand term outperforming
the current state-of-art methods [10]. The boost in performance of our
algorithms comes essentially from a clever usage of Multi-valued decision
diagrams.

These results are an important step forward in the analysis of complex
dynamics graphs as those appearing, for instance, in biological regulatory
networks or in systems biology.

Keywords: Multi-valued decision diagrams · Discrete dynamical
systems · Graphs semiring

1 Introduction

Multi-valued Decision Diagrams (MDD) are a generalization of Binary Decision
Diagrams (BDD) [1,5] used to obtain efficient representations of functions (with
finite domains) or (finite) sets of tuples. An MDD is a Directed Acyclic Graph
(DAG) created from a finite set of variables with specific (finite) domains. Asso-
ciating each variable with a level of the structure, the MDD represents a set of
feasible assignments as a path from the root to the final node. A crucial aspect
of MDDs is the exponential compression power of the reduction operation and
the fact that many classical operations (intersection, union, etc..) can be per-
formed without decompression. In the last years, MDDs have been applied in
many disparate research domains proving the potential of this structure. MDDs
are used, for instance, to improve random forest algorithms replacing the classic
binary decision trees [12], to represent and analyze automotive product data of
valid/invalid product configurations [6], and to perform trust analysis in social
networks [16]. There are also applications related to mathematical models like
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 196–213, 2021.
https://doi.org/10.1007/978-3-030-78230-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_13&domain=pdf
http://orcid.org/0000-0002-1007-7912
http://orcid.org/0000-0001-6204-5894
http://orcid.org/0000-0003-2133-8089
https://doi.org/10.1007/978-3-030-78230-6_13

MDDs Boost Equation Solving on Discrete Dynamical Systems 197

Multi-State Systems (MSS) [15]. In this case, MDDs represent the MSS structure
in terms of Multi-Valued Logic to compute some measures. MDDs find appli-
cations also in the analysis of the discrete dynamical systems. Indeed, in [13],
MDD represents logic rules to analyze some properties and dynamics aspects in
the case of regulatory networks (for example, to perform a stable states identi-
fication).

In this work, we propose to apply MDDs to equations over Discrete Dynam-
ical Systems (DDS). DDS are a model to represent complex phenomena which
evolve in (discrete) time coming from different domains such as genetic regu-
latory networks, boolean automata networks, population dynamics, and many
others. DDS consist in a finite set of states and a next-state function. In the finite
case, DDS correspond to a particular class of graphs, called dynamic graphs (i.e.
graphs with outgoing degree one). Therefore, DDS are simple structures that can
be applied to any phenomena that evolve according to a function. Often, when
representing phenomena with DDS, one needs to validate “macro” dynamics
coming from experimental results, or to identify the set of “micro” dynamics
which generate a given “macro” behavior observed.

In [9], operations of sum and multiplication have been introduced to explain
how DDS can be combined to generate new dynamical behaviors. Equipping the
set of DDS with these operations provides a commutative semiring, and this nat-
urally leads to write polynomial equations over DDS. This is interesting because
these equations (with a constant right-hand term) can model hypotheses over
the dynamics, and if one can prove properties for DDS then they can be auto-
matically lifted to the application models. The idea is to solve these equations
to validate the corresponding hypotheses. This paper introduces a pipeline to
solve equations over the cycles of dynamics graphs (i.e. equations/hypotheses
over the long term behavior of a phenomenon), formally introduced in [10]. The
first part of this paper proposes a new algorithm which outperforms the state-
of-art technique (Colored-Tree method) using MDDs to enumerate the solutions
set of simple equations. The second part introduces a pipeline to solve general
equations using MDDs to solve basic cases and to limit the exploration of the
solutions space. The overall purpose is to introduce the first complete pipeline,
based on MDD, to solve the equations introduced in [9,10] to study the hypoth-
esis over the long term behavior of a phenomenon modeled by DDS.

2 Preliminaries

2.1 Multi-valued Decision Diagrams (MDDs)

Multi-valued decision diagrams are the extension of Binary decision diagrams
(BDD) in which the diagram consists of a rooted acyclic graph able to represent
a multi-valued function f : {0...d − 1}r → {true, false}. Considering a generic
MDD, each level represents a variable and a final layer contains the true ter-
minal node (tt). Therefore, the data-structure contains r + 1 layers and a path
from the root to the tt node represents a valid set of assignments. Each node
is characterised by the variable represented in the layer and at most d outgoing

198 E. Formenti et al.

edges. In general, the edges are directed from an upper layer to a lower one. An
edge corresponds to an assignment of the variable to a certain value specified
over the edge. This data-structure presents only one root and one leaf. The false
node, and the corresponding paths to reach this node, are omitted.

According to [2,8] , an MDD is deterministic if all the nodes have pairwise
distinct labels on outgoing edges. Moreover, an MDD is ordered if given two
nodes A and B such that A is the parent of B, we have that the variable repre-
sented into the node A is the smallest (w.r.t. a given total order over the set of
variables).

r

x1 x1

x2 x2

tt

1 2

2 2 3

2

3
3

Fig. 1. The MDD corresponding to the valid assignments {(1, 2, 3), (2, 2, 3), (2, 3, 3),
(1, 2, 2)} for the variables x0, x1 and x2. The structure presents 4 layers. The root and
its edges represent the variable x0 and its possible assignments.

One of the most interesting aspects of MDDs is their reduction. According
to this procedure, they can gain an exponential factor in representation space.
The reduction of MDDs aims at merging equivalent nodes i.e. that have equiva-
lent outgoing paths. In particular, two nodes are equivalent if they have the same
label and destination for each edge. The idea is to identify and merge equivalent
nodes from the bottom to the top of the MDD, see Fig. 2 for an example.

r

x1 x1 x1

x2 x2 x2

tt

1 2
3

2 32 3

2
3 2

3
3

r

x1 x1x1

x2 x2

tt

1 2
3

2
3

2 3

2
3

3

Fig. 2. An MDD before reduction (left) and its reduced version (right).

Several reduction algorithms for MDDs have been introduced [3,7]. In our
software we use the pReduce algorithm [14] since the time complexity per
node is bounded by its number of outgoing arcs and the complexity is linear on
the size of the MDD.

MDDs Boost Equation Solving on Discrete Dynamical Systems 199

Another big advantage of using MDDs is that classical set operations such
as Cartesian product, complement, intersection, union, difference, and many
others can be performed without decompressing the structure. For instance, the
cartesian product over MDDs can be performed just by transforming the root of
an MDD into the tt node of another one (see Fig. 3 for an example).

r

x1

x1

x2

x2

tt

1

2

2

2

3

2
3

3

x1

x1

x1

x2

x2

tt

1

2
3

2

3

2

3

2

3

3

Fig. 3. The MDD representing the Cartesian product of the MDD in Fig. 1 and the
MDD in Fig. 2 (right). The diagram is drawn horizontally for lack of room.

Given two MDDs, the intersection algorithm creates a new MDD to represent
the solutions contained in both the original ones (see Fig. 4). To achieve this
goal, the process starts with the creation of a new root, and only the outgoing
edges that are common between the two structures are recreated. In this way,
each new node corresponds to two original nodes and the process is iterated.
It is important to remember that in the end, it is necessary to verify if there
are nodes without children; if any, they must be deleted. The drawback of this
algorithm is that the resulting MDD can be larger than the original ones. For
more details, we refer the reader to [14] and [4].

r

x1 x1

x2 x2

tt

1
2

2 2 3

2 3

r

x1 x1x1

x2 x2

tt

1
23

2 3 2

2
3

3

r

x1 x1

x2 x2

tt

1
2

2 2

2 3

Fig. 4. Two MDDs (left and center) and their intersection (right).

2.2 Discrete Dynamical Systems and Dynamics Graphs

A Discrete Dynamical System (DDS) is a structure 〈χ, f〉 where χ is a finite
set of states and f : χ → χ is a function called the next state map. When
modelling a phenomenon by a DDS 〈χ, f〉, χ is its set of states and f is the law
which brings from state α ∈ χ at time t to the state f(α) at time t + 1.

When χ is finite, any DDS 〈χ, f〉 can be identified with its dynamics graph
G ≡ 〈V,E〉 where V = χ and E = {(α, β) ∈ V × V, f(α) = β}. Therefore, all the

200 E. Formenti et al.

properties of the DDS can be deduced from the properties of its dynamics graph.
As a first property, one can remark that they are graphs with outgoing degree
one and hence each strongly connected components of such graphs is made by a
single cycle (or loop). From now on, we will turn all the discussion about DDS in
terms of dynamics graphs. Call DG the set of all dynamics graphs up to (graph)
isomorphism. One can define on DG two operations: sum and product as follows.
Given two graphs, G1 = 〈V1, E1〉 ∈ DG and G2 = 〈V2, E2〉 ∈ DG, the sum
G1+G2 is the graph G = 〈V1 � V2, E1 � E2〉 ∈ DG, where � is the disjoint union
operator. The product G1 · G2 is the graph 〈V ′, E′〉 ∈ DG with V ′ = V1 × V2

and E′ = {((α1, α2), (β1, β2)) ∈ V ′ × V ′, (α1, β1) ∈ E1 and (α2, β2) ∈ E2}. The
product defined above consists in the parallel synchronous execution of the two
dynamics graphs. The sum is the mutually exclusive alternative between the two
behaviours.

R := 〈DG,+, ·〉 is a commutative semiring in which 〈∅, ∅〉 is the neutral
element w.r.t. + and 〈{α} , {(α, α)}〉 is the neutral element w.r.t. multiplication.

Now, consider the semiring R[x1, x2, . . . , xs] of polynomials over R in the
variables xi, naturally induced by R. Polynomial equations of the form (1) model
hypotheses about a certain dynamics deduced from experimental data.

a1 · xw1
1 + a2 · xw2

2 + . . . + ak · xws
s = C (1)

Equation (1) can be interpreted as follows. The constant term C on the right-
hand side is the dynamical system deduced from experimental data. The point
is that C comes just from experimental data and hence it might be the “macro”
result of many cooperating hidden variables at a “micro” level. On the left
hand side of (1), we have a hypothesis on the “micro” structure based on par-
tial information (the coefficients) and unknown information (the variables). In
other words, the coefficients ai are hypothetical sub-dynamical systems that
should cooperate to produce the observed dynamics C. Finding valid values for
the unknown variables provides a finer structure for C which can bring further
knowledge about the observed phenomenon.

More generally, one can interpret Eq. (1) as a question over dynam-
ics graphs (i.e. directed graphs with outgoing degree 1). The constant
right-hand side represents the current graph and the left-hand side is a ques-
tion (hypothesis) about a possible decomposition (according to the semi-ring
operations).

In [9], it has been proved that finding solutions to generic polynomial equa-
tions (i.e. in which both left and right-hand side of the equation are made by
polynomials) over DDS is undecidable, while the problem is decidable when the
right-hand side of the equation is constant. However, even in the decidable case,
the complexity of the problem is beyond NP, except for very particular cases.

Some abstractions are introduced to progressively filter the solutions space
according to features of the real solutions. Therefore, the general solutions are
found in the intersection of the solutions of these abstractions. For this reason,
the solutions enumeration of each abstraction is fundamental.

MDDs Boost Equation Solving on Discrete Dynamical Systems 201

At least three abstractions can be devised on dynamics graphs, namely,
abstraction on cycles, on cardinality (of the vertex set) and on paths. Study-
ing each abstraction separately allows to study different aspects of a dynamics.
In particular, solving equations over cycles leads to the validation of hypotheses
over the long term behavior of a phenomenon.

3 The Abstraction on Cycles

In this paper we analyze equations over the cyclic part of the dynamics. Con-
sidering a generic Eq. (1), we introduce a pipeline to solve the abstraction over
the long term behavior but before we need to recall some notation and some
concepts that will be useful in the sequel.

For a dynamics graph G, let G̊ be the subgraph of G which contains only the
cycles and the loops. Denote R the restriction of R such that for any G ∈ R,
G̊ ∈ R. It is not difficult to see that 〈R,+, ·〉 is a sub-semiring of 〈R,+, ·〉. Thus,
solving Eq. (1) over R is a necessary step for solving it over R. This also implies
that we have to enumerate all solutions in R first and then filter them out using
the other abstractions to find the general solutions.

Notation 1. A cycle {α1, α2, . . . , αp} of length p can be conveniently denoted

by C1
p . A subgraph, with K different lengths of cycles is denoted

K⊕

i=1

Cni
pi

(Fig. 5).

Fig. 5. A dynamics graph G, in which the subgraph G̊ is the red part and it is denoted
C2

2 ⊕ C1
3 ⊕ C1

5 according to our notation.

The operations of sum and product over R can be conveniently applied to
the new notation. Graphically, we can consider the result of a sum as a new
system composed by all the cycles of the input systems, and the product one as
a new system generated with the Cartesian product of the cycles of the input
systems.

Definition 1 (Sum). Consider two dynamics graphs Å ≡
KA⊕

i=1

CnAi
pAi

and B̊ ≡
KB⊕

j=1

C
nBj
pBj , Å⊕B̊ is

KA⊕

i=1

CnAi
pAi

⊕
KB⊕

j=1

C
nBj
pBj = CnA1

pA1
⊕. . .⊕C

nAKA
pAKA

⊕CnB1
pB1

⊕. . .⊕C
nBKB
pBKB

.

Considering two sets of cycles CnAi
pAi

and C
nBj
pBj , if they have the same cycles

length (pAi = pBj), then they can be rewritten like C
nAi+nBj
pAi .

202 E. Formenti et al.

Definition 2 (Product). Consider Å ≡
KA⊕

i=1

CnAi
pAi

and B̊ ≡
KB⊕

j=1

C
nBj
pBj , Å
 B̊ is

KA⊕

i=1

CnAi
pAi

KB⊕

j=1

C
nBj
pBj =

KA⊕

i=1

KB⊕

j=1

CnAi
pAi

 C
nBj
pBj =

KA⊕

i=1

KB⊕

j=1

C
nAi·nBj ·gcd(pAi,pBj)

lcm(pAi,pBj)
where

gcd is the greatest common divisor and lcm is the least common multiple.

With the help of the previous notation, Eq. (1) can be rewritten as

(
K1⊕

i=1

Cn1i
p1i

 x̊1
w1) ⊕ (

K2⊕

i=1

Cn2i
p2i

 x̊2
w2) ⊕ . . . ⊕ (

Ks⊕

i=1

Cnsi
psi

 x̊s
ws) =

m⊕

j=1

Cnj
pj

(2)

where Kz is the number of distinct cycles size in the system az with z ∈ {1, . . . , s}
(cf. Eq. (1)) and nzi is the number of cycles of length pzi of az. In the right term
C, there are m different periods, where for the jth different period there are nj

cycles of period pj . However, Eq. (2) is still hard to solve in the present form.
We can simplify it further by performing a contraction step which consists in
cutting Eq. (2) into two simpler equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Cn11
p11

 x̊1
w1 =

m⊕

j=1

Cuj
pj

C1
1
 ẙ =

m⊕

j=1

Cvj
pj

(3a)

(3b)

with ẙ = (
K1⊕

i=2

Cn1i
p1i

 x̊1
w1) ⊕ (

K2⊕

i=1

Cn2i
p2i

 x̊2
w2) ⊕ . . . ⊕ (

Ks⊕

i=1

Cnsi
psi

 x̊s
ws) and

nj = uj + vj for j ∈ {1, . . . , m}. By recursively applying contraction steps, and
for all possible uj , vj values in Equations (3a) and (3b), solving Eq. (2) boils
down to solve multiple times simple equations i.e. equations of the form

C1
p
 X = Cn

q (4)

where p ∈ {p11, p12, . . . , psKs
}, q ∈ {p1, p2, . . . , pm}, and n is smaller than the

number of cycles of length q in the right part.
Assume that X is x̊z

wz such that z ∈ {1, . . . , s}. It is necessary to find x̊z from
X i.e. we need to compute the wz root of X. Given 2M integers pi, ki ∈ N, with
pi > 0 for all i ∈ {1, . . . ,M}, let l(p1, p2, ..., pt, k1, k2, ..., kt) be the lcm between
the pi for which ki �= 0 and t ≤ M (with l(p1, p2, ..., pt, k1, k2, ..., kt) = 1 iff
∀1 ≤ i ≤ t, ki = 0). Assume Å ≡ C1

p1
⊕ C1

p2
⊕ ... ⊕ C1

pM
. Then,

(
Å

)w

≡
M⊕

i=1

C
pw−1
i

pi ⊕ ⊕

k1+k2+...+kM=w
0≤k1,k2,...,kM<w

(
w

k1,k2,...,kM

)
C

∏M
t=1
kt �=0

p
kt−1
t ·∏M

t=2
kt �=0

gcd(l(p1,...,pt−1,k1,...,kt−1),pt)

l(p1,p2,...,pM ,k1,k2,...,kM) . (5)

MDDs Boost Equation Solving on Discrete Dynamical Systems 203

3.1 The State-of-art Method

In [10], two computational problems are devised concerning simple equations.
The SOBFID (SOlve equation on BIjective Finite DDS) problem is a decision
problem which takes in input p, n, q ∈ N \ {0} and returns true iff C1

p
 X = Cn
q

admits a solution. EnumSOBFID is the problem which takes the same input as
SOBFID and outputs the list of all solutions of C1

p
 X = Cn
q .

To the best of our knowledge, the Colored-Tree Method (CTM) proposed in
[10] is the best current technique to solve this problem. The method exploits
a connection between EnumSOBFID and the well-known Change-making problem
[11] coupled with a completeness-check (running in exponential time) to explore
the feasible solutions space. Essentially, the right term n is decomposed in every
possible way and these possibilities are represented in a tree. The method com-
prises two main phases: tree building and solutions aggregation. In the first one,
the algorithm uses a tree to decompose the right part of the equation in a cer-
tain number of subgraphs, searching for each node of the tree (each subgraph)
the minimum number of product operations (minimum number of cycles in the
variable or minimum number of children) which are necessary to produce it. The
subgraphs found are then divided into subsets of children. Iterating this idea on
each subset produced, the method arrives to enumerate all the possible ways
to generate the cycles involved in the right part. During the second phase, the
method computes (bottom-up) the real solutions of the equation represented in
the tree.

4 Boosting Everything up with MDDs

The enumeration of solutions for Eq. (2) is one of the main objective of this
paper. In order to achieve this, we solve the EnumSOBFID problem and show
that MDDs boost up the enumeration. In other words, we are interested to find
all the possible ways to generate Cn

q cycles starting with one cycle of length p.
This last problem is similar to the well-known Change-making problem (in its
enumeration version) in which one aims at finding all the possible ways to change
a total amount with a given set of coins. In our case, the total amounts are the
Cn

q cycles but to complete the similarity we need to find the coins which can be
part of a solution. Remark that a cycle C1

u generates Cr
q cycles in the right part

iff r divides q, u = q
p · r, gcd(p, q

p · r) = r and lcm(p, q
p · r) = q. A cycle C1

u with
the previous properties is called feasible and r is a feasible divisor of q.

Let Dp,q = {d1, . . . , dl} be the set of feasible divisors (w.r.t. Eq. (4) of course).
There is a solution to (4) iff there exist x1, . . . , xl such that

∑l
i=1 dixi = n (i.e.

there is a solution to the Change-making problem for a total amount n and a
coins system Dp,q). To solve EnumSOBFID we need to enumerate all solutions of
the previous Change-making problem. At this point MDDs come into play. We

204 E. Formenti et al.

are going to use them to have a compact and handful representation of the set
of all possible solution to Eq. (4).

SB-MDD. The MDD Mp,q,n containing all solutions to Eq. (4) is a labelled
digraph 〈V,E, �〉 where V =

⋃Z
i=1 Vi with Z = � n

minDp,q
� + 1 and V1 = {root},

Vi is a multiset of {1, . . . , n − 1}, and, finally, VZ = {tt}. For any node α ∈ V ,
let val(α) = α if α �= root and α �= tt, val(root) = 0 and val(tt) = n. For
any i ∈ {1, . . . , Z − 1} and for any α ∈ Vi and β ∈ Vi+1 ∪ {tt}, (α, β) ∈ E iff
val(β)−val(α) ∈ Dp,q and val(β) ≤ val(tt). The labelling function � : E → Dp,q

is such that for any (α, β) ∈ E, �((α, β)) = val(β) − val(α) ∈ Dp,q.
Graphically, Mp,q,n can be represented by layers as usual, interpreting each

layer as the usage of the i-th coin. Each node represents the sum of coins from
the root to the node. Moreover, the longest path in Mp,q,n is Z = � n

minDp,q
�+1.

Remark that Mp,q,n contains duplicated solutions, indeed, it contains all the
permutations of a solution but according to Eq. (4) different permutations lead
to the same solution. For this reason, we impose a symmetry breaking con-
straint: for any node α (different from tt), let e be the label of the incoming
edge; the only allowed outgoing edges of α are those with label � ≤ e. In this
way all the paths of the MDD will be ordered and the size of the MDD will be
smaller. An SB-MDD is an MDD which satisfies the symmetry breaking con-
straint. The building of Mp,q,n ends with a pReduction which merges equivalent
nodes and deletes all nodes (and the corresponding edges) which are not on a
path from root to tt . Let us illustrate the construction with an example.

Example 1. Consider the simple equation C1
2
 X = C6

6 . The set of divisors of q
(smaller or equal to n) is {6, 3, 2, 1}. However, Dp,q = {1, 2}. Indeed, we have

r = 6 ∧ u = 18 → gcd(2, 18) �= 6 ∧ lcm(2, 18) �= 6

r = 3 ∧ u = 9 → gcd(2, 9) �= 3 ∧ lcm(2, 9) �= 6

r = 2 ∧ u = 6 → gcd(2, 6) = 2 ∧ lcm(2, 6) = 6

r = 1 ∧ u = 3 → gcd(2, 3) = 1 ∧ lcm(2, 3) = 6

Figure 6 shows M2,6,6 in its classic form (left) and in its SB-MDD form
(right). Remark that in Fig. 6 (left) many solutions are duplicated. For example,
the solution [2, 2, 1, 1] (in red) is represented (more than) twice. Once M2,6,6 is
built and reduced, reading solutions correspond to paths labels from root to tt :
{[2, 2, 2], [2, 2, 1, 1], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]}.

MDDs Boost Equation Solving on Discrete Dynamical Systems 205

r

2

12

34

5 34

5 4

5

tt

12

2 1 1
2

1
2

1

2
1

2

1

1

2 1

1

2

1

21

r

2

12

34

5 34

5 4

5

tt

12

2 1 1

11

2
1

1

1

1

1

1

1

Fig. 6. The reduced MDD representing all the solutions of C1
2 � X = C6

6 in its classic
form (left) and in its SB-MDD form (right).

The solution [2, 2, 2] says that 6 is changed with 3 coins of value r = 2.
Recalling that u = q

p · r we can express the solution in term of dynam-
ics graphs as C3

6 . Operating similarly for all the other solutions we find{
C3

6 , C2
6 ⊕ C2

3 , C1
6 ⊕ C4

3 , C6
3

}
.

4.1 Equations over Dynamics Graphs

We have shown how MDDs can be used to compute the solutions set of simple
equations. In this section, we introduce a pipeline to solve Equations of form (2)
to validate hypotheses over discrete systems represented by DDS. The goal is
the enumeration of solutions. The pipeline consists in the following steps:

– identification and resolution of the necessary equations (each necessary equa-
tion corresponds to an SB-MDD);

– enumeration of the contractions steps by an MDD structure;
– computation of the solutions of each contraction step with a particular tech-

nique to compute the intersection between SB-MDDs.

Necessary Equations. As we have already seen, to solve a generic equation
over dynamics graphs we need to find the solutions of a certain number of con-
traction steps (Equations (3a) and (3b)). Each of these contraction steps ends
up with a system of equations of the form

Cnzi
pzi

 Xz =
m⊕

j=1

Cvj
pj

(6)

where z ∈ {1, . . . , s}, i ∈ {1, . . . , Kz}, and vj ≤ nj . This means that each
monomial is responsible for the generation of a subgraph of the right term. In
other words, the solution of (6) is the Cartesian product of the solutions of a
certain number of simple equations. Remark that a single simple equation might
occur several times while searching for a solution of a single contraction step or
in multiple contraction steps.

206 E. Formenti et al.

According to the product rules, each equation Cnzi
pzi

Xz = C
vj
pj is equivalent

to C1
pzi

Xz = C
vj
nzi
pj . Remark that if vj/nzi is not an integer, then the equation

has no solutions.
Since there are many contraction steps that need to be explored, we aim

at limiting the exploration by ignoring those which involve simple equations
without solutions. Therefore, the method starts with the computation of the set
of simple equations that can be involved in the result of a contractions step. This
amounts to compute all the SB-MDDs Mpzi,pj ,

n
nzi

with pzi ∈ {p11, . . . , psKs
},

pj ∈ {p1, . . . , pm}, for all n ∈ {1, . . . , nj}. In this way, even if a simple equation
is involved in many contraction steps, it is solved only once. A simple equation
with at least one solution is called necessary equation. It is important to
notice that it is not necessary to explore an SB-MDD to decide if a solution
exists. Indeed, by construction, an SB-MDD is generated iff it contains at least
a solution.

Contractions Steps. Once the set of necessary equations has been computed,
we create an MDD CS to enumerate all the contractions steps that must be taken
into account to enumerate the solutions of Eq. (2). This MDD will be a Cartesian
product of other MDDs, one for each pj of the right term, i.e. CS =×m

j=1
CSj .

Consider a cycle length pj in the constant term. The MDD CSj accounts for
all the feasible ways (according to the set of necessary equations) to generate
nj cycles of length pj using the monomials of the equation. Therefore, CSj is
a labelled digraph 〈Vj , Ej , �j〉 where Vj =

⋃s+1
z=1

⋃Kz

i=1 Vj,zi with Ks+1 = 1 (see
Eq. (2) for the meaning of Ki) and Vj,11 = {root}, Vj,zi ⊆ {0, ..., nj}, and, finally,
Vj,(s+1)1 = {tt}. For any node α ∈ Vj , let val(α) = α if α �= root and α �= tt,
val(root) = 0 and val(tt) = nj . The set of possible outgoing edges of level Vj,zi

is Dpzi,pj
= {g ∈ N | 1 ≤ g ≤ nj and Mpzi,pj ,

g
nzi

∈ necessary equations} ∪ {0} .
For any α, β ∈ Vj , (α, β) ∈ Ej iff

1. α ∈ Vj,zi and either β ∈ Vj,z(i+1) for some i < Kz or β ∈ Vj,(z+1)1;
2. val(β) − val(α) ∈ Dpzi,pj

and val(β) ≤ val(tt).

In this MDD the outgoing edges of a level Vj,zi represent the cycles of length
pj generated by the monomial Cnzi

pzi

 Xz of the left part. The labelling func-

tion �j : Ej → ⋃s
z=1

⋃Kz

i=1 Dpzi,pj
is such that for any (α, β) ∈ Ej , �j((α, β)) =

val(β)−val(α) ∈ Dpzi,pj
with α ∈ Vj,zi. Starting from each node, a label 0 means

that the monomial is not involved in the generation of the cycles of length pj .
The sum of the labels of each path from the root to the tt node will be equal to
nj , because nj cycles of length pj must be generated.

For each path of CS, it is necessary to perform some some additional steps
to understand if it leads to feasible solutions of the equation as explained in the
next section.

Solve a System. Each contraction step corresponds to a system of Equations
of type (6). To compute the solutions set of these equations one needs to com-
pute the Cartesian product between the different solutions of the corresponding

MDDs Boost Equation Solving on Discrete Dynamical Systems 207

simple equations. In its turn, a solution to a simple equation is represented by
a SB-MDD. Therefore, their Cartesian product is computed in linear time by
placing the SB-MDDs one on top of the other to form a new MDD. We call SB-
Cartesian MDD an MDD build in such a way. Remark that an SB-Cartesian
MDD is not a SB-MDD.

Recall that Xz in Eq. (6) represents a variable x̊z
wz and if x̊z is involved

in different monomials, then, an intersection operation is required. To compute
the solutions set of the variable, we start considering equations involving x̊z

with the same power wz by computing the intersection over the corresponding
MDDs. Moreover, remark that each x̊z

wz corresponds to a SB-Cartesian MDD
(except for the case in which a monomial is responsible for the generation of
only one cycle length). However, notice that the classic algorithm to perform the
intersection over MDDs cannot be used if the goal is the intersection between
MDDs issued by a Cartesian product (i.e. SB-Cartesian MDDs) because the
result depends on the order of the MDDs. In the next section, we propose a new
algorithm to perform this task independently from the order.

Once x̊z
wz is assigned with a set of solutions, we need to compute the wz-th

root for each value of x̊z
wz and finally the intersection between all the roots

found so far.
Finally, we stress that the root procedure is not a trivial step. Indeed, the

inverse operations of sum and product are not definable in the commutative
semiring of DDS. Therefore, we need an algorithmic technique to compute the
result of the w-th root of x̊. Considering Formula (5), the root can be computed
combinatorially or through a finite number of polynomials equations over real
numbers of increasing degree. We combine both approaches in order to speedup

the computations. Consider a generic system x̊ = C
n

′
1

p
′
1

⊕ C
n

′
2

p
′
2

⊕ . . . ⊕ C
n

′
l

p
′
l

such

that x̊w = Cn1
p1

⊕ Cn2
p2

⊕ . . . ⊕ Cnh
ph

, the number of cycles n
′
1, of the minimum

length p1, involved into the root’s solution is computed with the polynomial
equation (p1)w−1 · (n′

1)
w = n1 with p1 = p

′
1. The remaining part of the solution

is combinatorially computed knowing that a length of cycle pi may be involved
in the root solution iff ni ≥ (pi)w−1, and we will have a maximum number of
cycles of this length equals to ni

(pi)w−1 .

SB-Cartesian Intersection. Consider a set M of MDDs in which some are
SB-Cartesian MDDs and others are not. We propose an algorithm (Algorithm 1)
which computes the intersection of all the elements in M . Our algorithm needs
to be started with an initial set of candidate solutions S (initial guess). If M
contains at least a simple SB-MDD (i.e. one which is not a SB-Cartesian MDD),
then S is the set of solutions read in the MDD resulting from classical intersection
of the SB-MDDs in M ; otherwise S is the set of solutions read in an arbitrarily
chosen SB-Cartesian of M . Using S, we will compute the intersection between
the remaining SB-Cartesians. The idea is to search the solutions into each SB-
Cartesian MDD and update each time the remaining solutions.

208 E. Formenti et al.

Each candidate solution is ordered and recursively searched in a SB-Cartesian
MDD in M (Algorithms 2 and 3). If it is not found, then it is removed from the
set of candidate solutions. Given a SB-Cartesian element M of M , a candidate
solution s is validated if it possible to visit each SB-MDD involved in M using
a subset of the elements of the solution. Starting from the biggest elements of
s, we try to find a path from the root to the first tt node (recall that we are
visiting a SB-Cartesian MDD). We proceed in this way because the paths of each
SB-MDD are ordered. After having gone through the first SB-MDD, we need to
recursively repeat the procedure with the remaining elements of s.
Two special cases need our attention:

– a generic node in which it is not possible to find a common element between
the remaining elements of a solution and the outgoing edges;

– a node (different from the final tt node) in which there are no more elements
of s to compare with the outgoing edges.

In both cases, it is necessary to go back in the visited nodes until there is another
possible outgoing edge that can be taken into consideration. Once the validation
procedure arrives at the last SB-MDD of M , a linear search is performed with
the remaining elements. Finally, s ∈ M if there exists a path from the last root
to the final tt node following the remaining elements (Algorithm 4). If the linear
search fails, then we return to the first node with a different feasible outgoing
edge. If no different feasible edges exist, then s is not a solution. The previous
procedure is performed over each candidate solution of the initial guess.
We stress that in the worst case, for a given candidate solution, our algorithm
explores only the subgraph of a SB-Cartesian MDD made of feasible edges.

Algorithm 1: SB-Cartesian Intersection
Input : M , set of MDDs
Output: S, solutions of the intersection in M
Cartesian← ∅;
Traditional← ∅;
forall m ∈ M do

if m is a SB-Cartesian MDD then Cartesian.add(m) ;
else Traditional.add(m) ;

S ← ∅;
if |Traditional|> 0 then

if |Traditional| = 1 then

S ←Traditional[0].readSolutions();
else

MddIntersected←ClassicIntersection(Traditional[0],Traditional[1]);
forall m ∈Traditional \ {Traditional[0], Traditional[1]} do

MddIntersected←ClassicIntersection(MddIntersected,m);

S ←MddIntersected.readSolutions();

else

S ←Cartesian[0].readSolutions();
Cartesian.remove(0);

if |S|�= 0 then
forall m ∈Cartesian do

CartesianSearch(S,m);

return S

MDDs Boost Equation Solving on Discrete Dynamical Systems 209

The approach introduced to compute the intersection of SB-Cartesian MDDs
is suitable for our needs, its improvement constitutes an interesting future
research direction. We need to precise an additional aspect of our application.
As explained above, an SB-MDD corresponding to a simple equation has labels
based on the feasible divisors set (or feasible coins) and each divisor/coin cor-
responds to a certain cycle C1

u. However, two different coins of two different
simple equations can correspond to the same C1

u as well as the same coin may
correspond to different cycles lengths for different simple equations. Therefore,
when searching for a solution in a SB-Cartesian MDD, we must take into account
these cases. In our application, two divisors/coins are considered equivalent if
they correspond to the same C1

u.

Algorithm 2: SB-Cartesian Search
Input : S set of solutions, M a SB-Cartesian MDD
Output: S solutions involved in M
S ← ∅;
forall s ∈ S do

s.order();
find←FindSolution(s,0,M);

if find then S.add(s) ;

return S

Algorithm 3: FindSolution
Input : s solution, 0 ≤ i < |M |, M a SB-Cartesian MDD
Output: true if s ∈ M , false otherwise
return FindSolutionNode(s,M[i].root,i)

Algorithm 4: FindSolutionNode
Data: S sub-solution, N node, 0 ≤ i < |M |, M a SB-Cartesian MDD
Result: true if S ∈ M , false otherwise
find←FALSE;
if N is not a tt then

forall e ∈ S.removeDuplicates() ∧ find=FALSE do
if N.edge.contains(e) then

newSubSolution← S \ {e} ;
find←findSolutionNode(newSubSolution,N.children(e),i);

else
i ← i + 1;
if i= |M |−1 then

valid←LinearSearch(S,M[i].root);
if valid then return TRUE ;

else
return FindSolution(S,i)

return find

5 Experiments

The experimental evaluation is divided into two parts: one concerns simple equa-
tions and the other one is devoted to the complete method which solves generic
equations.

210 E. Formenti et al.

Concerning equations of the form C1
p
 X = Cn

q , in our experiments, we set
p = q since this grants the existence of at least a solution. Using the MDDs it
is possible to outperform the Colored-Tree method (CTM) w.r.t. both memory
and time. If we compare the dimension (in terms of nodes) of a colored-tree
with the corresponding SB-MDD for a given equation, the second one is smaller.
CTM presents some out of memory cases even for equations with n, q, and p
smaller than 30 and memory limit of 30GB (see Fig. 7 (left)). Using MDDs, we
solved equations with n, q, and p up to 100 without any out of memory case and
only 6GB RAM limit (see Fig. 7 (right)).

Analysing the time to solve equations with parameters up to 30, it turns
out that the new technique is faster than the previous one (see Table 1). The
reason is that CTM requires a time consuming check procedure to ensure the
completeness of the solutions which is not necessary in the MDD case. Due to
too high memory and time costs, CTM is unsuitable to solve simple equations
coming from contractions steps. The new method fixes these issues allowing to
solve generic polynomial equations.

Fig. 7. The number of nodes for the colored-tree with memory limit of 30GB (left) and
for the SB-MDD with memory limit of 4GB (right) in the case of equation for type
C1

q � X = Cn
q . Remark that the black square in the right part of the left diagram are

out of memory cases.

Turning to generic equations, we use the proposed pipeline to find the solu-
tions (if any). If roots computation is not performed then everything depends on
the number of monomials, the number of distinct sizes of cycles in the right side
of the equations. If these quantities grow also the number of contraction steps to
consider grows. Solutions spaces are limited by considering only contraction steps
that are feasible according to the necessary equations. For example, consider the
equation C1

5
 ẙ⊕C1
4
 ẙ2 ⊕C1

3
 x̊2 ⊕C1
2
 x̊3 = C3

10 ⊕C68
4 ⊕C9

3 ⊕C9
6 ⊕C136

12 , the
number of contraction steps is ≈ 2, 42 · 1016, but only 6665400 are considered.

The computation of roots is the most time consuming operation. Indeed, con-
sider the equation C2

3
 x̊ ⊕ C4
3
 ẙ = C162

3 ⊕ C20
6 ⊕ C104

12 , we can find 49329000
solutions considering the 6642 feasible contraction steps in only 58 s. If we con-
sider the same equation but with x̊2 in place of x̊, then the number of contraction
steps explored is the same, but we found 4510 solutions in 5.6 hours (therefore
the average computational time per contraction is 3.04 s).

MDDs Boost Equation Solving on Discrete Dynamical Systems 211

Roots computation is expensive and this is reasonable in a sense. Since the
division and subtraction operations cannot be performed directly, one needs
sophisticated techniques. The pipeline introduced above leads to the first com-
plete technique to solve equations over the asymptotic behavior of DDS. In
the end, the pipeline is already proving itself suitable for applications over real
experimental data.

Table 1. Computation times (millisec) of CTM (left) and MDD (right) over different
input parameters. Symbols ‘-’ represent out of memory cases.

q,p

n
2 3 4 5 6 7 8 9 10

2 56|0 56|0 54|0 54|0 53|0 54|0 54|0 54|0 53|0
3 54|1 54|0 55|1 54|0 55|1 54|0 55|1 54|0 55|1
4 55|2 54|1 56|2 53|0 57|2 54|0 55|2 55|1 55|2
5 55|2 56|2 59|2 54|0 61|30 54|0 58|2 55|3 56|2
6 58|2 56|2 60|2 58|1 63|9 55|0 60|2 56|2 62|2
7 60|3 58|2 63|19 56|1 78|21 54|0 63|29 60|2 61|2
8 63|2 59|2 96|10 60|2 107|20 56|1 97|9 61|2 65|2
9 66|3 60|3 106|21 57|2 153|22 57|1 168|21 60|3 76|20
10 84|3 62|2 140|11 58|2 185|21 57|2 369|11 70|2 120|17

q,p

n
11 12 13 14 15 16 17 18 19 20

11 55|0 824|25 55|0 116|3 74|21 406|22 55|0 1071|22 57|0 1334|23
12 58|1 17678|26 57|0 132|4 88|21 4105|12 56|0 6022|22 56|0 3672|22
13 61|2 177894|27 56|0 246|21 92|21 4163|27 55|0 5967|24 56|0 3332|24
14 59|2 1277979|26 61|1 900|11 116|22 19895|24 56|0 27381|27 56|0 96997|26
15 60|2 -|28 60|2 3721|22 169|22 19711|25 56|0 637457|26 59|0 419000|25
16 62|2 -|29 61|2 19900|12 502|23 -|13 57|0 1185947|26 60|0 759365|26
17 62|2 -|30 62|2 25908|24 554|23 -|26 57|0 -|27 57|0 -|27
18 64|2 -|46 62|2 164167|13 1102|22 -|26 61|2 -|28 61|0 -|30
19 66|2 -|32 63|2 226315|25 950|24 -|27 62|2 -|34 57|0 -|39
20 68|2 -|32 65|2 1707299|25 2749|24 -|16 63|2 -|31 62|2 -|29

q,p

n
21 22 23 24 25 26 27 28 29 30

21 2712|23 343542|26 60|0 -|35 95|4 389971|7 2034|12 -|28 58|0 -|37
22 23399|24 -|14 62|0 -|36 103|4 381929|7 2711|24 -|30 59|0 -|35
23 27430|24 -|27 59|0 -|38 134|4 -|7 2712|24 -|31 59|0 -|37
24 149296|25 -|16 64|2 -|39 149|4 -|8 20641|14 -|42 59|0 -|41
25 162413|25 -|28 65|2 -|40 160|4 -|26 24632|24 -|34 59|0 -|39
26 212277|25 -|16 66|2 -|42 403|5 -|15 24177|25 -|33 60|0 -|40
27 -|25 -|27 69|2 -|45 454|4 -|33 -|15 -|34 59|0 -|45
28 -|26 -|17 70|2 -|47 488|5 -|16 -|25 -|35 60|0 -|44
29 -|28 -|28 69|2 -|66 506|5 -|28 -|27 -|36 61|1 -|46
30 -|26 -|27 69|3 -|51 838|6 -|17 -|17 -|38 65|2 -|48

6 Conclusions and Perspectives

Equations on DDS are useful to analyze dynamics of phenomena. They allow
to model hypotheses on the dynamical behavior and solving them leads to their
validation or invalidation. In particular, Eq. (2) allow studying the long-term
aspects of the dynamics.

This paper introduces new algorithms to solve these equations over cycles
(i.e. long term behavior). In the case of simple equations, our technique outper-
forms the CTM. This is an important breakthrough because CTM was used to
solve simple equations (generated by contractions steps) and it was practically
unusable due to huge memory consumption and time-consuming check proce-
dures. Moreover, this paper proposes a pipeline to solve general equations. The
pipeline computes the necessary equations to limit the exploration of the con-
tractions steps and, in the end, it solves each system of equations corresponding

212 E. Formenti et al.

to a contractions step. This allows the treatment of much larger dynamics graphs
and much more complicated hypotheses.

Future perspectives include the improvement of the pipeline by parallelising
the identification of solutions of different feasible contractions steps. Another
research direction would try to speedup roots computation by increasing the
number of coefficients computed through polynomial equations to reduce the
combinatorics. In the end, this work aims to call for further research in MDDs.
In fact, studying different ways to perform the intersection between SB-Cartesian
MDDs is surely another subject that is worth exploring.

This research work leads to a complete and performing pipeline to validate
hypotheses over the long term behavior of dynamics graphs adding one more
item to the growing list of successful applications of MDDs.

Acknowledgments. This work has been supported by the French government,
through the 3IA Côte d’Azur Investments in the Future project managed by the
National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.

References

1. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. 27(06) ,509–516
(1978)

2. Amilhastre, J., Fargier, H., Niveau, A., Pralet, C.: Compiling CSPs: a complex-
ity map of (non-deterministic) multivalued decision diagrams. Int. J. Artif. Intell.
Tools 23(04), 1460015 (2014)

3. Andersen, H.R.: An introduction to binary decision diagrams. Lecture notes, avail-
able online, IT University of Copenhagen, p. 5 (1997)

4. Bergman, D., Cire, A.A., van Hoeve, W.: MDD propagation for sequence con-
straints. J. Artif. Intell. Res. 50, 697–722 (2014)

5. Bergman, D., Cire, A.A., Van Hoeve, W.J., Hooker, J.: Decision diagrams for
optimization, vol. 1. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-
42849-9

6. Berndt, R., Bazan, P., Hielscher, K.S., German, R., Lukasiewycz, M.: Multi-valued
decision diagrams for the verification of consistency in automotive product data.
In: 2012 12th International Conference on Quality Software, pp. 189–192. IEEE
(2012)

7. Cheng, K.C., Yap, R.H.: An MDD-based generalized arc consistency algorithm for
positive and negative table constraints and some global constraints. Constraints
15(2), 265–304 (2010)

8. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002)

9. Dennunzio, A., Dorigatti, V., Formenti, E., Manzoni, L., Porreca, A.E.: Polynomial
equations over finite, discrete-time dynamical systems. In: Mauri, G., El Yacoubi,
S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds.) ACRI 2018. LNCS, vol. 11115,
pp. 298–306. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99813-
8 27

10. Dennunzio, A., Formenti, E., Margara, L., Montmirail, V., Riva, S.: Solving equa-
tions on discrete dynamical systems. In: Cazzaniga, P., Besozzi, D., Merelli, I.,
Manzoni, L. (eds.) Computational Intelligence Methods for Bioinformatics and
Biostatistics, pp. 119–132. Springer International Publishing, Cham (2020)

https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1007/978-3-319-99813-8_27
https://doi.org/10.1007/978-3-319-99813-8_27

MDDs Boost Equation Solving on Discrete Dynamical Systems 213

11. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley, New York, NY, USA (1990)

12. Nakahara, H., Jinguji, A., Sato, S., Sasao, T.: A random forest using a multi-valued
decision diagram on an FPGA. In: 2017 IEEE 47th International Symposium on
Multiple-Valued Logic (ISMVL), pp. 266–271. IEEE (2017)

13. Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation and
analysis of logical models of genetic networks. In: Calder, M., Gilmore, S. (eds.)
CMSB 2007. LNCS, vol. 4695, pp. 233–247. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-75140-3 16

14. Perez, G., Régin, J.C.: Efficient operations on MDDs for building constraint pro-
gramming models. In: IJCAI (2015)

15. Zaitseva, E., Levashenko, V., Kostolny, J., Kvassay, M.: A multi-valued decision
diagram for estimation of multi-state system. In: Eurocon 2013, pp. 645–650. IEEE
(2013)

16. Zhang, L., Xing, L., Liu, A., Mao, K.: Multivalued decision diagrams-based trust
level analysis for social networks. IEEE Access 7, 180620–180629 (2019)

https://doi.org/10.1007/978-3-540-75140-3_16
https://doi.org/10.1007/978-3-540-75140-3_16

Two Deadline Reduction Algorithms
for Scheduling Dependent Tasks

on Parallel Processors

Claire Hanen1,2(B) , Alix Munier Kordon1 , and Theo Pedersen1

1 Sorbonne Université, CNRS, LIP6, 75005 Paris, France
{Claire.Hanen,Alix.Munier}@lip6.fr

2 UPL, Université Paris Nanterre, 92000 Nanterre, France

Abstract. This paper proposes two deadline adjustment techniques for
scheduling non preemptive tasks subject to precedence relations, release
dates and deadlines on a limited number of processors. This decision
problem is denoted by P |prec, ri, di|� in standard notations. The first
technique is an extension of the Garey and Johnson algorithm that inte-
grates precedence relations in energetic reasoning. The second one is an
extension of the Leung, Palem and Pnueli algorithm that builds itera-
tively relaxed preemptive schedules to adjust deadlines.

The implementation of the two classes of algorithms is discussed and
compared on randomly generated instances. We show that the adjust-
ments obtained are slightly different but equivalent using several metrics.
However, the time performance of the extended Leung, Palem and Pnueli
algorithm is much better than that of the extended Garey and Johnson
ones.

Keywords: Scheduling problem · Precedence constraints · Energetic
reasoning · Preemptive relaxation

1 Introduction

This paper addresses the decision scheduling problem described in standard nota-
tions introduced in [14] as P |prec, ri, di|�. A set of tasks T and a precedence
graph G are given. Each task i ∈ T has a deadline di, a release date ri and
a duration pi. Tasks are performed on m identical processors. We address the
existence of a feasible schedule. Notice that the problem is NP-hard in the strong
sense, even in the special cases where no precedence constraints exists and one
machine is considered 1|ri, di|� [11] or with unit execution times of tasks and
common deadline P |prec, ri, di = D, pi = 1|� [29].

However, defining efficient polynomial algorithms providing necessary exis-
tence conditions is a challenging question since they might be used to improve
the efficiency of constraint programming or branch and bound algorithms for the
related optimization problems. Indeed, such necessary existence conditions com-
bined to a binary search can provide a lower bound of the makespan (Cmax) or
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 214–230, 2021.
https://doi.org/10.1007/978-3-030-78230-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_14&domain=pdf
http://orcid.org/0000-0003-2482-5042
http://orcid.org/0000-0002-2170-6366
http://orcid.org/0000-0002-4567-1823
https://doi.org/10.1007/978-3-030-78230-6_14

Two Deadline Reduction Algorithms 215

the maximum lateness (Lmax). Exact algorithms make use of these bounds [24],
which appear particularly interesting when the branching scheme is based on
splitting or reducing the tasks’ intervals [2,5].

Such necessary conditions have been investigated by many authors since the
early eighties, thoroughly improving the efficiency of exact algorithms. Several of
them use interval adjustment techniques (ie. reducing deadlines and increasing
release times) by relaxing precedence constraints. The special case of unit exe-
cution times has been also investigated with adjustment techniques considering
both precedence and resource constraints.

Interval adjustment techniques based on energetic reasoning, ie. on the mea-
sure of the mandatory workload of time intervals, have been the subject of
much attention when no precedence constraint is considered. These techniques
developed for the problem P |ri, di|� were extended to handle the cumulative
scheduling problem (CuSP). In this case, each task i requires ci resources for its
execution, and the total number of resources is bounded. Baptiste et al. [1] and
Derrien and Petit [9] have developed low time complexity algorithms by reducing
the number of considered intervals. Ouellet and Quimper [27] and Carlier et al.
[6] have improved the data structures used in the algorithms.

Tesch in [28] analyzed the time needed to reach a fixed point for the technique
called energetic edge finding.

Most recent studies taking into account both precedence and resource con-
straints are devoted to the resource constrained scheduling problem (RCPSP)
and extend earlier work on 1-machine and job-shop scheduling problems. Accord-
ing to Laborie and Nuijten [22], energetic constraints are either propagated
on precedence relations, or precedence constraints are considered independently
from the job’s release times and deadlines in “energy precedence constraints”.
In order to compute a lower bound on the makespan, Haouari et al. proposed to
integrate RCPSP resources and precedence constraints through linear program-
ming via relevant relaxations of precedence and valid inequalities, either using
energetic [18] or preemptive bounds [19].

In addition, the special case with unit processing times (pi = 1 for each task
i ∈ T) has been investigated by several authors, most of them using reduction of
deadline techniques embedding precedence and resource constraints. Garey and
Johnson in [11] derived a polynomial algorithm (GJ algorithm in short) based
on energetic reasoning that solves the decision problem for m = 2 processors.
This algorithm was extended by Hanen and Zinder [17] to get an approximation
algorithm for the Lmax criteria for general parallel machines case when tasks
have unit processing times. The Leung, Palem and Pnueli algorithm [23] (abbre-
viated to LPP algorithm) expresses necessary conditions on deadlines based on
the iterative construction of schedules for relaxed sub-problems without prece-
dence constraints. They also proved that this algorithm optimally solves several
problems with particular precedence graphs. Hanen and Munier [4] showed that
these two algorithms reach the same fixed point deadlines and an experimental
study confirmed that the LPP algorithm is faster than the GJ one.

216 C. Hanen et al.

Our contribution in this paper is to extend both the GJ and LPP algorithms
to handle tasks with any duration, and to compare the two approaches. Notice
that, due to the inherent symmetry of the problem, all the algorithms considered
here can be used to modify release dates as well, by simply reversing the orienta-
tion of the precedence arcs and swapping release times and deadlines. However,
our experiments only considered deadline modifications.

The extension of the GJ algorithm theoretically dominates usual energetic
reasoning due to the addition of precedence constraints. Our approach also con-
siders stronger conditions than Laborie [21] who only considers the successors of
a task to adjust the deadlines. The extension of LPP algorithm is based on the
iterative construction of preemptive schedules. These two approaches were exper-
imentally compared on randomly generated instances: we first proposed several
measures of the effective deadline reduction, and the variation of the intrinsic
parallelism of the instances. We observed that the reductions of the deadlines
are roughly similar for the two extensions, even if the deadlines obtained are not
necessarily equal. However, we also observed that according to the theoretical
time complexity evaluation, the LPP algorithm has a much lower complexity
than GJ.

The paper has six sections. In Sect. 2, we present the problem and the main
notations. Section 3 is devoted to the extension of the GJ algorithm and the ener-
getic reasoning. Section 4 presents the extension of the LPP algorithm. Section 5
presents our experiments. Finally, we conclude in Sect. 6.

2 Notations

An instance I of our scheduling problem is given by a set of n tasks T , a
precedence graph G = (T ,A) and m identical processors. For every task i ∈ T ,
we denote by pi the execution time of i. We suppose that the release time ri and
the deadline di of each task i are given, and satisfy

ri + pi ≤ di. (1)

A feasible schedule assigns a starting time ti, such that ri ≤ ti ≤ di −pi, and
a processor among the m available ones, so that two tasks assigned to the same
processor do not overlap.

We consider the decision problem of the existence of a feasible schedule
denoted by P |prec, ri, di|�.

For any pair of tasks (i, j) ∈ T 2, we note i → j if there exists a path in G from
i to j. Then, Γ+�(i) (resp. Γ−�(i)) is the set of descendants (resp. ancestors)
of i, which are tasks j such that i → j (resp. j → i). For any pair of tasks (i, j)
with i → j, we denote by ��

ij the maximum value
∑

k∈ν,k �=j pk of a path ν of G
from i to j. We assume that these values are pre-processed. This can be done in
time complexity O(n3) by using the Floyd-Warshall algorithm [8].

We assume that release times and deadlines are consistent with the prece-
dence constraints:

∀(i, j) ∈ A, ri + pi ≤ rj and dj − pj ≥ di. (2)

Two Deadline Reduction Algorithms 217

In the sections below, we introduce deadline modification algorithms.
We consider the algorithm Propagate(i, d) that computes a consistent dead-

line vector assuming that all values of the input deadline vector d, except maybe
the modified deadline di, are consistent ie. follow conditions (1) and (2). Prop-
agate(i, d) returns false if di − pi < ri, otherwise it adjusts all the ancestors j
of i by setting dj = min(dj , di − ��

ji + pj − pi) and returns true. Notice that then
for any ancestor j of i, rj + pj ≤ dj . The time complexity of Propagate(i, d)
is O(n) provided that the values ��

ij are preprocessed.

3 Extension of the Garey and Johnson Algorithm

In this section we first explain the deadline reduction principle on which the
Garey and Johnson algorithm [11] is based. Then we present the extended Garey
and Johnson algorithm (eGJ in short) in its weak form, and analyze its time
complexity. Finally we present the strong form of eGJ.

3.1 Principles of Deadline Reductions

The idea of the original Garey and Johnson algorithm [11], which was designed
to solve the problem for two processors and tasks with unit processing times, is
to reduce the deadline of a job i based on the measure of the number of tasks
that must be executed in an interval [s, t] assuming i ends at its deadline. This
idea is extended here for tasks with any processing time by considering energetic
reasoning [1] on time intervals.

Let i be a task and let us consider two values s ≤ t such that i may end
between s and t:

ri ≤ s ≤ di ≤ t. (3)

Figure 1 presents the three subsets of tasks I(i, s, t), S(i, s, t) and T(i, s, t) that
should have a part processed between s and t.

T(i, s, t)

j ∈ S(i, s, t)

j ∈ I(i, s, t)

rj s di t dj

T(i, s, t) = I(i, s, t) ∪ S(i, s, t)

S(i, s, t) is the set of tasks j ∈
Γ+�(i) such that dj − pj < t.

I(i, s, t) is the set of tasks j �∈
Γ+�(i) such that rj + pj > s
and dj − pj < t.

Fig. 1. Sets of tasks I(i, s, t), S(i, s, t) and T(i, s, t) with some mandatory part in [s, t]

Any task j ∈ I(i, s, t) has no precedence relation with i; we set wj(i, s, t) as
the minimum part of the task j that must be performed between s and t in any

218 C. Hanen et al.

feasible schedule, i.e. when j is left shifted and right shifted as illustrated by the
blue and red parts in Fig. 1. Clearly, for any task j ∈ I(i, s, t),

wj(i, s, t) = min(t − s, pj ,max(0, rj + pj − s),max(0, t − (dj − pj))).

Similarly, tasks j from S(i, s, t) are descendants of i with a minimum part
wj(i, s, t) that must be performed between s and t assuming i may end
between s and di. Notice that the task j starts after s and we just have to
consider the contribution of j when it is right shifted.

∀j ∈ S(i, s, t), wj(i, s, t) = min(pj ,max(0, t − (dj − pj))).

The total amount of work that is to be performed between s and t considering
the minimum contribution of i in the interval [s, t] is then:

W (i, s, t) = max(0, ri + pi − s) +
∑

j∈T(i,s,t)

wj(i, s, t).

We define the associated slack Δ(i, s, t) = W (i, s, t) − m(t − s). If Δ(i, s, t) >
0, there is not enough room in the time interval [s, t] to execute the energy
W (i, s, t). This situation will fall into one of two cases, as in the following
properties:

Property 1. Let us consider a task i ∈ T and two values s and t such that
ri ≤ s ≤ di ≤ t. If Δ(i, s, t) > 0 and S(i, s, t) = ∅ then no feasible schedule
exists.

Proof. If S(i, s, t) = ∅, then T(i, s, t) = I(i, s, t); any task j ∈ I(i, s, t) has no
precedence relation with i and thus wj(i, s, t) part of j must be executed in the
time interval [s, t]. The total energy W (i, s, t) must then be executed in [s, t] in
any feasible schedule. Since Δ(i, s, t) > 0, no feasible schedule exists, the result.

�	

Property 2. Let us consider a task i ∈ T and two values s and t such that
ri ≤ s ≤ di ≤ t. If Δ(i, s, t) > 0 and S(i, s, t)
= ∅, then in any feasible schedule,
the completion time Ci of i verifies the inequality

Ci ≤ t −
⌈
W (i, s, t)

m

⌉

. (4)

Proof. The part wj(i, s, t) of any task j ∈ S(i, s, t) must be executed before time
t and after the end of i. Otherwise, if j ∈ I(i, s, t), wj(i, s, t) is the part of j that
must be executed between s and t. Since W (i, s, t) > 0, the only way to execute
these tasks is to decrease the completion time Ci of i in order to fit tasks from
T(i, s, t) between Ci and t, thus the completion time Ci of i must verify Eq. (4).

�	

Two Deadline Reduction Algorithms 219

3.2 Description of the eGJ Algorithm

The eGJ algorithm takes as input an instance (T ,G,m, r, d) of the problem and
outputs either a set of modified deadlines d∗ = (d�

i)i∈T that should be fulfilled
by any feasible schedule, or indicates that no feasible schedule exists, based on
the conditions expressed in Properties 1 and 2.

Triples (i, s, t) are enumerated in a way that will be described below, and at
each step if Δ(i, s, t) > 0 then it either results in an infeasibility or defines a
modification of the deadline of i based on the inequality (4)

di ← t −
⌈
W (i, s, t)

m

⌉

.

Once a modification of di occurs, the algorithm propagates the modification
to the nodes of Γ−�(i) using Propagate(i, d).

Not all possible triples (i, s, t) following inequality (3) need to be considered;
Hanen and Munier [15], inspired by Carlier et al. [7] show that the slack Δ(i, s, t)
has a local maxima only at the dominant triples with the forms (i, rj , dk),
(i, di, dk), (i, rk+dk−dj , dk), (i, di, rk+dk−di) with di > rk or (i, rj , rk+dk−rj)
with rj > rk.

For a current deadline vector d, we denote by R(d) the set of values t such
that there exists a dominant triple (i, s, t). If t ∈ R(d), we denote by Xt(d)
the set of tasks i such that there exists a dominant triple (i, s, t). Finally, for
t ∈ R(d), and i ∈ Xt(d) we denote by Li,t(d) the set of values s, such that (i, s, t)
is a dominant triple.

Algorithm 1 enumerates the dominant triples in three nested loops. The outer
loop enumerates t in decreasing order by maintaining a sorted list R correspond-
ing to the set {τ ∈ R(d), τ < t}. The intermediate loop browses elements i of
a list X corresponding to the set Xt(d) in decreasing order of deadlines, and
the inner loop browses elements s of a list L corresponding to the set Li,t(d) in
increasing order. At each iteration, Δ(i, s, t) is computed and either a contradic-
tion is found, or di is updated and propagated. Ordered lists X and R are then
updated.

3.3 Complexity Analysis of eGJ

The next lemma will be later used to bound the number of iterations of the outer
loop.

Lemma 1. Consider an iteration t of the outer loop for which at the beginning
of the iteration at least one task k satisfies t = dk. At the end of this iteration,
either infeasibility is detected or there is at least one task removed from X in
line 16.

Proof. Let us suppose by contradiction that at iteration t = di for i ∈ X, no
infeasibility is detected and no task is removed from X. If di is modified with
an interval [s, t], then Δ(i, s, t) > 0 and according to the propagation at each
step, any task j ∈ Γ+�(i) satisfies dj − pj ≥ di = t, so S(i, s, t) = ∅. Following
Property 1, the algorithm returns infeasibility (the contradiction). �	

220 C. Hanen et al.

Algorithm 1. eGJ algorithm
Require: A precedence graph G, release dates vector r, deadline vector d, processing

times vector p and m identical processors
Ensure: Modified deadlines vector d� or infeasibility
1: dmax = maxi∈T di,
2: R = R(dmax) in decreasing order, X = Xdmax(d) in decreasing order
3: while R �= ∅ and X �= ∅ do
4: t = first element of R, remove t from R
5: for all i ∈ X do
6: L = Li,t(d) in increasing order
7: repeat
8: s = first element of L, remove s from L
9: if Δ(i, s, t) > 0 then

10: Update di or return false (infeasibility) per Properties 1, 2
11: d = Propagate(i, d), return false if inconsistency with release times.
12: Update R (sorted list of {τ < t, τ ∈ R(d)})
13: end if
14: until s ≥ di

15: end for
16: Remove from X the tasks j for which dj = t
17: end while
18: return d� = (di)i∈T

The next lemma is an outcome of Lemma 1 that bounds the number of iterations
of the outer loop of Algorithm 1.

Lemma 2. The successive values of t are strictly decreasing. Moreover, the total
number of these successive values belongs to O(n2).

Proof. At the initialization step, all the values of R are different. At line 12, R
is updated with a list of values strictly less than t, thus the successive values of
t are strictly decreasing.

Let us consider now all the possible successive values for t:

– If t = dk, then following Lemma 1, at least one task i is removed from X.
Thus, there are at most n iterations in this case.

– Now, if t = rk + dk − di with di > rk, then dk > t and thus will not be later
modified by the algorithm. Moreover, if di is decreased to d′

i, t′ = rk+dk−d′
i >

t and thus will not be considered after t. There are then at most n2 iterations
in this case.

– Lastly, if t = rk + dk − rj with rj > rk, then dk > t and will also not be
decreased further. There are also n2 iterations in this case.

We deduce that the number of the successive values of t belongs to O(n2), which
concludes the lemma.

�	

Theorem 1. Algorithm eGJ is in time O(n5 log(n)).

Two Deadline Reduction Algorithms 221

Proof. For a fixed task i ∈ X, the execution time of the inner loop belongs
to O(n2 log n). Indeed, there are O(n2) values of s that must be sorted (in
time O(n2 log(n)). The time of the computation of the slack is in O(n). The
modification of di and the propagation happen only once per iteration on i; the
next value of di is less than s and thus the inner loop on s ends. So the time
complexity of this modification and the propagation is O(n). Lastly, updating
of the sorted list R is in time O(n2 log(n)).

Now, the size of X is bounded by n, while by Lemma 2, the total number of
iterations of the outer loop belongs to O(n2), thus the theorem is proved. �	

The tightness of this bound is not proved. We will show in Sect. 5 that the
experimental complexity of this algorithm is much smaller.

3.4 Strong Form of eGJ

The deadline reduction can be strengthened by considering for any valid triple
(i, s, t) a new slack Δ(i, s, t) assuming i is right shifted i.e. i ends exactly at its
deadline:

Δ(i, s, t) = min(pi, di − s) +
∑

j∈T(i,s,t)

wj(i, s, t) − m(t − s) (5)

Now assume that Δ(i, s, t) ≤ 0 and Δ(i, s, t) > 0. In any feasible schedule
the completion time of i satisfies Ci − s +

∑

j∈T(i,s,t)

wj(i, s, t) ≤ m(t − s) so that

Ci ≤ s + min(pi, di − s) − Δ(i, s, t). (6)

The deadline of i can thus be reduced to the right term of Eq. (6). This condition
can be inserted in Algorithm 1 adding to the inner loop (line 13) the case where
Δ(i, s, t) ≤ 0 and Δ(i, s, t) > 0 in which modification is done according to (6).
The modification is then propagated with Propagate(i, d), and lists L and R
are updated.

The arguments stated in Lemma 1 do not apply in this case; instead, all
possible values of 0 ≤ t ≤ dmax might be considered without updating R., which
would lead to a pseudo-polynomial complexity detailed in [16].

4 Extension of the Leung Palem and Pnueli Algorithm

This section is devoted to the description of two extended forms of the Leung,
Palem and Pnueli algorithm [23] for tasks with different execution times. Subsec-
tion 4.1 presents a general possible extension of this algorithm (eLPP in short),
based on an optimization scheduling problem BackwardSchedule. Two imple-
mentations are then discussed. In Subsect. 4.2, this problem is relaxed to obtain
a polynomial time algorithm while an exact pseudo-polynomial time algorithm
is presented is Subsect. 4.3.

222 C. Hanen et al.

4.1 Description of the eLPP Algorithm

For any task i ∈ T , we note Indep(i) the set of tasks j ∈ T such that i
→ j and
j
→ i. We set also Ti = Γ+�(i) ∪ Indep(i).

Consider release and deadline vectors r and d and a task i ∈ T . For any
value t ∈ {ri, . . . , di − pi} corresponding to a possible starting time of i, we
define t-dependent temporary release dates and deadlines for tasks in Ti ∪ {i}
as:

r̂j(t) =

⎧
⎨

⎩

max{rj , t + ��
ij} if j ∈ Γ+�(i)

t if i = j
rj if j ∈ Indep(i)

and d̂j(t) =
{

dj if j ∈ Ti

t + pi if j = i.

Consider a function Existence(i, t, r, d) which checks the feasibility of the pre-
emptive relaxation of the problem for tasks in Ti ∪ {i} with release dates r̂(t),
due dates d̂(t) and the m machine constraint. In a preemptive schedule each task
might be interrupted and resumed on different machines.

Existence(i, t, r, d)
Input: A task i ∈ T , release dates and deadlines vectors r and d, and

t ∈ {ri, . . . , di − pi}.
Question: Is there a feasible preemptive schedule of tasks from Ti ∪ {i}

meeting the release dates r̂(t) and the deadlines d̂(t)?

This decision problem belongs to the class P |ri, di, pmtn|�. As shown by
Martel [25], it can be transformed polynomially into a network flow problem
and thus polynomially solved using a classical maximum-flow algorithm [13].

Let us now define the function BackwardSchedule(i, r, d) that returns the
maximum value t� ∈ {ri, . . . , di − pi} such that Existence(i, t�, r, d) is true. If
such a value exists, t� + pi is an upper bound of the completion time of i in
any feasible schedule of the initial scheduling problem. Otherwise, no feasible
schedule exists and the function returns false. We will discuss in the following
several implementations of this function.

Algorithm 2 presents the extended version of the LPP algorithm. Tasks are
first sorted by decreasing release date. Deadlines of the tasks are then improved
iteratively in this order using the previous function BackwardSchedule. The
calls to Propagate maintain consistent deadlines considering precedence con-
straints.

The main problem addressed below is that no usual binary search on t
can be considered to solve BackwardSchedule because of the resource con-
straint for the task i. Indeed, a binary search can be considered to compute
t� if Existence(i, t, r, d) = true for each value t ∈ {ri, . . . t

�}, and Exis-
tence(i, t, r, d) = false for each value t ∈ {t� + 1, . . . di − pi}. This property
on t� is not verified.

Then, a simple approach to solve the optimization problem Backward-
Schedule would be to start with t = di − pi and check each integer value in
decreasing order until Existence(i, t, r, d) is true. The number of steps would

Two Deadline Reduction Algorithms 223

Algorithm 2. eLPP algorithm
Require: A precedence graph G, release dates r, deadlines d, processing times p and

m identical processors
Ensure: Modified deadlines d� or infeasibility
1: Adjust all ri in topological order to reflect precedence
2: Adjust all di in reverse topological order to reflect precedence
3: Renumber tasks such that r1 ≥ r2 ≥ . . . ≥ rn

4: for i = 1 to n do
5: resultB=BackwardSchedule(i, r, d)
6: if not resultB then
7: return false
8: end if
9: di =resultB

10: d =Propagate(i, d), return false if inconsistency with release times
11: end for
12: return d∗ = (di)i∈T

then be not polynomially bounded. Two implementations of BackwardSched-
ule were developed in the following to cope with this problem.

4.2 Weak eLPP Algorithm

The simplest way to speed-up the time complexity of the eLPP algorithm is
to limit the function Existence to tasks from Ti instead of Ti ∪ {i}. Indeed,
if the task i is removed, the problem Existence(i, t, r, d) is more constrained
when t increases, and thus a binary search on t can be considered to implement
BackwardSchedule. The complexity of the deadlines reduction algorithm is
in polynomial time in this case as proven in Theorem 2. However, the deadlines
obtained might be greater than the ones given by Algorithm 2.

Theorem 2. The weak eLPP algorithm is in time O(n4 ×maxi∈T log(di − pi −
ri)).

Proof. For each task i ∈ T and any value t ∈ {ri, . . . , di −pi}, the time complex-
ity for the computations of the vectors r̂ and d̂ is O(n2). The number of nodes
(resp. arcs) of the graph associated with the flow problem belongs to O(n) (resp.
O(n2)) [25]. The time complexity of the flow algorithm is in O(n3) using a push-
relabel algorithm with a FIFO vertex selection rule [13]. As t� is computed using
a binary search in the time interval {ri, . . . , di −pi}, we conclude that the overall
time complexity of weak eLPP algorithm is O(n4 × maxi∈T log(di − pi − ri)),
proving the theorem. �	

4.3 Strong eLPP Algorithm

The purpose of the strong version of eLPP is to develop an implementation of
Algorithm 2 that is faster but remains exact.

224 C. Hanen et al.

Let us consider the relaxed decision problem ExistenceR(i, u, v, r, d) defined
as follows which dissociates the parameters for the computation of the release
dates and deadlines:

ExistenceR(i, u, v, r, d)
Input: A task i ∈ T , release dates and deadlines vectors r and d, and a

pair of values (u, v) ∈ {ri, . . . , di − pi}2 with u ≥ v.
Question: Is there a feasible preemptive schedule of tasks from Ti ∪ {i}

meeting the release dates r̂(v) and the deadlines d̂(u)?

This decision problem also belongs to the class P |ri, di, pmtn|�. Thus, as for
Existence it can be solved using Martel’s transformation [25] to a network flow
problem coupled with a classical maximum-flow algorithm [13]. We can also note
that Existence is a special case of ExistenceR for which t = u = v.

Now, let us define the function BackwardScheduleR(i, u, r, d) with u ∈
{ri, . . . , di − pi} that returns the maximum value v� ∈ {ri, . . . , u} such that
ExistenceR(i, u, v�, r, d) is true if any, and false otherwise. Observe that, for
any (v, v′) ∈ {ri, . . . , di − pi}2 with v < v′, ExistenceR(i, u, v, r, d) is less
constrained than ExistenceR(i, u, v′, r, d). Thus, if ExistenceR(i, u, v′, r, d) =
true, then so is ExistenceR(i, u, v, r, d) and a binary search can be considered
to solve BackwardScheduleR.

The remaining problem is then to find the maximal fixed point of
BackwardScheduleR, that is, u� such that u� = BackwardSched-
uleR(i, u�, r, d). The next lemma establishes the relationship between Back-
wardScheduleR and BackwardSchedule.

Lemma 3. For any task i ∈ T , release dates and deadlines vectors r and d,
the value u� = BackwardScheduleR(i, u�, r, d) exists if and only if the value
t� =BackwardSchedule(i, r, d) exists. Moreover, u� = t�.

Proof. Assume first that u� exists, then ExistenceR(i, u�, u�, r, d) = true and
thus Existence(i, u�, r, d) = true. BackwardSchedule(i, r, d) then returns
an optimal value t� ≥ u�. Conversely, let us suppose that t� exists, then Exis-
tence(i, t�, r, d) = true. The consequence is that ExistenceR(i, t�, t�, r, d) =
true, thus u� exists and t� ≤ u�. �	

The following lemma shows an important property of the function Backward-
ScheduleR.

Lemma 4. Let us consider i ∈ T , release dates and deadlines vectors r and d.
For u ∈ {ri, . . . , di − pi}, the function u →BackwardScheduleR(i, u, r, d) is
non decreasing (if it returns an integer).

Proof. Assume that u and u′ are two integers in {ri, . . . , di − pi} with u′ < u.
If BackwardScheduleR(i, u′, r, d) = v′ ∈ {ri, . . . , u

′}, then we get Exis-
tenceR(i, u′, v′, r, d) = true. Since u′ < u, ExistenceR(i, u, v′, r, d) = true
and v′ ≤ u′ < u. Thus, BackwardScheduleR(i, u, r, d) exists and v′ ≤ v. �	

Two Deadline Reduction Algorithms 225

We now show how to compute the value u�. This can be done by computing a
sequence of upper bounds uβ , β ≥ 0 of u� that converges to u�. Indeed, let us
consider the sequence of integers uβ defined as:

1. u0 = di − pi;
2. For any β > 0, uβ =BackwardScheduleR(i, uβ−1, r, d).

The next theorem shows the convergence of this sequence to t�.

Theorem 3. If t� exists, the sequence uβ tends to t� (ie. there exists β� ∈ N
such that uβ� = t�).

Proof. We first prove that, for any value β ∈ N, uβ = t� or u0 > u1 > . . . > uβ ≥
t�. Indeed, u0 = di − pi ≥ t�. Now, let us suppose by recurrence that u0 > u1 >
. . . > uβ ≥ t� for β ≥ 1. By Lemma 4, the function BackwardScheduleR is
non decreasing with respect to u, thus since uβ−1 > uβ , we get uβ ≥ uβ+1.

1. If uβ = uβ+1, then by definition of u�, uβ = u� = uβ+1 and thus by Lemma 3,
uβ+1 = t�;

2. Let us suppose now that uβ > uβ+1. Then, since uβ > t�, we get by Lemma 4
that uβ+1 ≥ t�.

Lastly, since the sequence uβ is strictly decreasing until it reaches t�, there exists
a minimum integer β� such that uβ� = t�, and the theorem is proved. �	
The implementation of BackwardSchedule based on BackwardSched-
uleR simply consists of computing the sequence uβ until a fixed point is reached.
Alas, we do not have any polynomial upper bound of the time complexity of this
algorithm.

5 Experiments

This section is devoted to the description of our experiments’ results. Subsec-
tion 5.1 briefly describes the parameters considered for the data generation. Sub-
section 5.2 compares the running times of our four algorithms, while Subsect. 5.3
deals with their output analysis.

5.1 Data Generation

Random instances have been generated, using parameters that were fixed to keep
the problem size manageable and to generate non trivial comparable instances
with respect to the deadline reduction measures. The detailed description of the
generation of instances can be found in [16].

The number of tasks n varied from 10 to 50, while pmax ∈ [1, 5]. High values
of m make the problem trivial, thus we set m ∈ [1, 3]. We generated 10 instances
for each combination of input parameters.

The algorithms were implemented using Python 3.7.6 coupled with the pack-
ages numpy 1.18.1 and networkX 2.4. All our experiments were performed on an
Acer Swift SF314-41 composed of an AMD Ryzen 5 3500U running at 2.1 Ghz
with 4 cores, 8 Logical Processors and 8 MB RAM.

226 C. Hanen et al.

5.2 Complexity Analysis

The choice of the maximum flow algorithm is discussed to find the most efficient
implementation for the functions Existence and ExistenceR. As expected,
these functions took up the majority (98%) of eLPP runtime, so these choices
had significant impact on time complexity. We considered for our experiments
the shortest augmenting path flow algorithm [10] with an initial flow built using
Jackson’s preemptive algorithm [20] to solve these two problems. This choice
was experimentally motivated in [16] against preflow push [12] and Edmonds
Karp [10] algorithms.

The runtime of each of the four algorithms is compared, as well as how they
change with each of the problem parameters.

As shown in Fig. 2, up to n = 30, eGJ performed similarly to eLPP, but eLPP
was faster for higher values of n. The weak version of eGJ made no appreciable
difference to the speed, but for eLPP the weak version was faster by about 33%
on average.

Fig. 2. Comparison of algorithm runtimes following the number of tasks

The runtime for each problem instance was regressed against n, m, pmax,
pw
n and the choice of algorithm. The pathwidth pw of an instance I is the

maximum number of tasks that can be executed simultaneously considering only
release dates and deadlines [26]. The runtime and number of tasks were both
log transformed to help meet the model assumptions and identify the order of
complexity. Up to 95% of the variation in runtime was able to be explained by
these variables. The results were as follows:

– Though neither strong form is proven to be polynomial, in practice both eGJ
forms were about O(n3.4), while the eLPP forms were about O(n2.8).

– Increasing m by 1 resulted in a 38% decrease in runtime for eGJ, and a 30%
decrease for eLPP.

– Increasing pmax by 1 increased runtime by 26% for eGJ, and 18% for eLPP.
– Increasing pathwidth by n

10 increased runtime by 2% for eGJ, and 9% for
eLPP.

Two Deadline Reduction Algorithms 227

As far as speed is concerned, eLPP is clearly the stronger option. It was also
less sensitive to increases in most of the parameters, so the trend can be expected
to continue beyond the range tested. The usefulness of the weak form of eLPP
depends on the results of the following section.

5.3 Output Analysis

The aim of our experiments was to compare the strong and the weak versions of
the eGJ and eLPP algorithms. For this purpose, we defined for each instance I
and each algorithm A, the value δ�

A(I) ∈ Z which is the smallest value such that
the algorithm A does not detect infeasibility if, for each task i ∈ T , di + δ�

A(I) is
used as the deadline. For each couple (A, I), this value can be found by binary
search. We measured it for each algorithm (eLPP and eGJ, weak and strong
forms).

If we compare the results of the strong forms s-eGJ vs. s-eLPP, in all but 0.2%
of problem instances, the final δ�

A values matched; in 96%, each individual date
matched as well. Most of the 4% mismatches were due to one or two slightly
higher s-eLPP deadlines. Even when the dates did not match, the differences
were few and small, and overall, the s-eGJ dates dominated a majority of the
time (but not all the time). When n = 50, neither algorithm has a significant
advantage over the other in terms of date reduction.

The weak forms w-eGJ and w-eLPP had a δ�
A value that was 1 lower in

about 1% of cases for each compared with the respective strong forms s-eGJ
and s-eLPP. This decreased with n. At the vector level only 55% of the final
deadlines vectors matched entirely their strong counterparts. The difference
between the dates produced was often in several tasks and with values larger
than 1.

Four metrics, defined below, were calculated for each instance and averaged
across all instances.

Percentage of modified instances a 0/1 flag indicates whether any date was
modified in an instance;

Percentage of modified tasks the proportion of individual deadline values
modified;

Interval shrinkage the reduction as a proportion of the available intervals, so
1 −

∑n
i=1(d̃i−r̃i)∑n
i=1(di−ri)

where r, d are the initial dates and d̃, r̃ the final dates;
Pathwidth reduction the reduction in pathwidth pw as a percentage of the

original.

Table 1 summarises the metrics discussed above by algorithm, across all test
instances and instances for which n = 50. As the previous results suggested, the
strong forms were nearly identical. The amount of reduction made by the weak
forms was slightly less, though the number of modified dates was similar.

Dates were also reduced more with smaller m, and with larger pathwidth pw
(as a proportion of n). In particular, the interval shrinkage was approximately

228 C. Hanen et al.

Table 1. Date modifications across all tests and for instances with n = 50

All tests n = 50

s-eGJ s-eLPP w-eGJ w-eLPP s-eGJ s-eLPP w-eGJ w-eLPP

% instances modified 81% 81% 79% 79% 98% 98% 97% 97%

% tasks modified 34.2% 34.1% 32.4% 32.4% 52.8% 52.9% 52.1% 52.2%

Interval shrinkage 12.0% 12.0% 9.4% 9.5% 18.7% 18.8% 16.9% 16.9%

Pathwidth reduction 8.9% 8.9% 7.2% 7.2% 13.6% 13.6% 12.9% 12.9%

halved with each addition of a machine. The gap between the weak and strong
forms narrowed slightly as n increased.

With such little difference between the outputs of the strong forms, eLPP
maintains its advantage from the runtime results. The weak form offers a trade-
off; while it is considerably faster, less reduction is performed. It may be useful in
time-sensitive contexts where incremental reductions are relatively less valuable,
particularly if n is large.

6 Conclusions

We developed in this paper several extensions of the GJ and the LPP algorithms
to handle tasks with different processing times and precedence relations. The
aim here was to evaluate whether considering at the same time precedence and
resource constraints in deadline reduction algorithm was an interesting approach.

Two versions of each algorithm was developed: the weak ones (of polynomial
time complexity), and the strong ones (non polynomially time bounded com-
plexity). The strong version of the two extensions improves slightly the results,
with experimentally the same complexity as their weak counterpart. As the LPP
extensions outperforms the GJ ones in terms of theoretical as well as experimen-
tal complexity, it should be preferred.

However, their time complexity remains still large, and further improvement
should be investigated, inspired by the recent improvements of the computational
complexity of energetic reasoning for problems without precedence constraints
[3,27].

Our approach that embeds precedence and resources should be experimen-
tally compared to a process of usual precedence relaxation to compute reduced
deadlines followed by precedence propagation, repeated iteratively.

An interesting further study would compare the results of several interval
reduction techniques, in particular the one proposed by Haouari et al. [18,19].

Most of the algorithms that have been proposed for problems with parallel
processors extend quite naturally to cumulative resources. The extension of eGJ
and eLPP to such problems might be easier for eGJ.

Finally, the aim of the algorithms presented in this paper is to improve the
efficiency of either branch and bound or constraint programming algorithms.
This should be experimentally investigated in subsequent research.

Two Deadline Reduction Algorithms 229

References

1. Baptiste, P., Le Pape, C., Nuijten, W.: Satisfiability tests and time-bound adjust-
ments for cumulative scheduling problems. Ann. Oper. Res. 92, 305–333 (1999)

2. Bellenguez-Morineau, O.: Methods to solve multi-skill project scheduling problem.
4OR 6(1), 85–88 (2008)

3. Bonifas, N.: A O(n2 log(n)) propagation for the energy reasoning. In: Congrès
ROADEF, February 2016

4. Carlier, A., Hanen, C., Kordon, A.M.: The equivalence of two classical list schedul-
ing algorithms for dependent typed tasks with release dates, due dates and prece-
dence delays. J. Sched. 20(3), 303–311 (2017). https://doi.org/10.1007/s10951-
016-0507-8

5. Carlier, J., Latapie, B.: Une méthode arborescente pour résoudre les problèmes
cumulatifs. RAIRO - Oper. Res. Rech. Opérationnelle 25(3), 311–340 (1991)

6. Carlier, J., Pinson, E., Sahli, A., Jouglet, A.: An O(n2) algorithm for time-bound
adjustments for the cumulative scheduling problem. Eur. J. Oper. Res. 286(2),
468–476 (2020)

7. Carlier, J., Pinson, E., Sahli, A., Jouglet, A.: Comparison of three classical lower
bounds for the cumulative scheduling problem. (submitted) (2021)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edn., Cambridge (2009)

9. Derrien, A., Petit, T.: A new characterization of relevant intervals for energetic
reasoning. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 289–297. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 22

10. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM (JACM) 19(2), 248–264 (1972)

11. Garey, M.R., Johnson, D.S.: Two-processor scheduling with start-time and dead-
lines. SIAM J. Comput. 6, 416–426 (1977)

12. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J.
ACM (JACM) 35(4), 921–940 (1988)

13. Goldberg, A.V., Tarjan, R.E.: Efficient maximum flow algorithms. Commun. ACM
57(8), 82–89 (2014)

14. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in
deterministic sequencing and scheduling: a survey. In: Hammer, P., Johnson, E.,
Korte, B. (eds.) Discrete Optimization II, Annals of Discrete Mathematics, vol. 5,
pp. 287–326. Elsevier (1979)

15. Hanen, C., Munier Kordon, A.: Two deadline reduction algorithms for scheduling
dependent typed-tasks systems. In: ROADEF conference (2020)

16. Hanen, C., Munier Kordon, A., Pedersen, T.: Two deadline reduction algorithm
for scheduling dependent tasks on parallel processors (extended version) (2021).
https://hal.archives-ouvertes.fr/hal-03200297

17. Hanen, C., Zinder, Y.: The worst-case analysis of the Garey-Johnson algorithm. J.
Sched. 12(4), 389–400 (2009)

18. Haouari, M., Kooli, A., Néron, E.: Enhanced energetic reasoning-based lower
bounds for the resource constrained project scheduling problem. Comput. Oper.
Res. 39(5), 1187–1194 (2012)

19. Haouari, M., Kooli, A., Néron, E., Carlier, J.: A preemptive bound for the resource
constrained project scheduling problem. J. Sched. 17(3), 237–248 (2014)

20. Jackson, J.R.: Scheduling a production line to minimize maximum tardiness. man-
agement science research project (1955)

https://doi.org/10.1007/s10951-016-0507-8
https://doi.org/10.1007/s10951-016-0507-8
https://doi.org/10.1007/978-3-319-10428-7_22
https://hal.archives-ouvertes.fr/hal-03200297

230 C. Hanen et al.

21. Laborie, P.: Algorithms for propagating resource constraints in AI planning and
scheduling: Existing approaches and new results. Artif. Intell. 143(2), 151–188
(2003)

22. Laborie, P., Nuijten, W.: Constraint Programming Formulations and propagation
Algorithms, chap. 4, pp. 63–72. Wiley, Hoboken (2008)

23. Leung, A., Palem, K.V., Pnueli, A.: Scheduling time-constrained instructions on
pipelined processors. ACM Trans. Program. Lang. Syst. 23, 73–103 (2001)

24. Lombardi, M., Milano, M.: Optimal methods for resource allocation and scheduling:
a cross-disciplinary survey. Constr. An Int. J. 17(1), 51–85 (2012)

25. Martel, C.: Preemptive scheduling with release times, deadlines, and due times. J.
Assoc. Comput. Mach. 29(3), 812–829 (1982)

26. Munier Kordon, A.: A fixed-parameter algorithm for scheduling unit dependent
tasks on parallel machines with time windows. Discret. Appl. Math. 290, 1–6
(2021)

27. Ouellet, Y., Quimper, C.-G.: A O(n log2 n) checker and O(n2 log n) filtering algo-
rithm for the energetic reasoning. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS,
vol. 10848, pp. 477–494. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93031-2 34

28. Tesch, A.: Improving energetic propagations for cumulative scheduling. In: Hooker,
J. (ed.) CP 2018. LNCS, vol. 11008, pp. 629–645. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98334-9 41

29. Ullman, J.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10, 384–393
(1975)

https://doi.org/10.1007/978-3-319-93031-2_34
https://doi.org/10.1007/978-3-319-93031-2_34
https://doi.org/10.1007/978-3-319-98334-9_41
https://doi.org/10.1007/978-3-319-98334-9_41

Improving the Filtering
of Branch-and-Bound MDD Solver

Xavier Gillard1(B) , Vianney Coppé1 , Pierre Schaus1 ,
and André Augusto Cire2

1 Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
{xavier.gillard,vianney.coppe,pierre.schaus}@uclouvain.be

2 Rotman School of Management, University of Toronto Scarborough,
Toronto, Canada

andre.cire@rotman.utoronto.ca

Abstract. This paper presents and evaluates two pruning techniques
to reinforce the efficiency of constraint optimization solvers based on
multi-valued decision-diagrams (MDD). It adopts the branch-and-bound
framework proposed by Bergman et al. in 2016 to solve dynamic pro-
grams to optimality. In particular, our paper presents and evaluates the
effectiveness of the local-bound (LocB) and rough upper-bound pruning
(RUB). LocB is a new and effective rule that leverages the approxi-
mate MDD structure to avoid the exploration of non-interesting nodes.
RUB is a rule to reduce the search space during the development of
bounded-width-MDDs. The experimental study we conducted on the
Maximum Independent Set Problem (MISP), Maximum Cut Problem
(MCP), Maximum 2 Satisfiability (MAX2SAT) and the Traveling Sales-
man Problem with Time Windows (TSPTW) shows evidence indicating
that rough-upper-bound and local-bound pruning have a high impact
on optimization solvers based on branch-and-bound with MDDs. In par-
ticular, it shows that RUB delivers excellent results but requires some
effort when defining the model. Also, it shows that LocB provides a
significant improvement automatically; without necessitating any user-
supplied information. Finally, it also shows that rough-upper-bound and
local-bound pruning are not mutually exclusive, and their combined ben-
efit supersedes the individual benefit of using each technique.

1 Introduction

Multi-valued Decision Diagrams (MDD) are a generalization of Binary Deci-
sion Diagrams (BDD) which have long been used in the verification, e.g., for
model checking purposes [10]. Recently, these graphical models have drawn the
attention of researchers from the CP and OR communities. One of the research
streams which emerged from this increased interest about MDDs is decision-
diagram-based optimization (DDO) [5]. Its purpose is to efficiently solve com-
binatorial optimization problems by exploiting problem structure through DDs.
This paper belongs to the DDO sub-field and intends to further improve the

c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 231–247, 2021.
https://doi.org/10.1007/978-3-030-78230-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_15&domain=pdf
http://orcid.org/0000-0002-4493-6041
http://orcid.org/0000-0001-5050-0001
http://orcid.org/0000-0002-3153-8941
http://orcid.org/0000-0001-5993-4295
https://doi.org/10.1007/978-3-030-78230-6_15

232 X. Gillard et al.

efficiency of DDO solvers through the introduction of two bounding techniques:
local-bounds pruning (LocB) and rough-upper-bound pruning (RUB).

This paper starts by covering the necessary background on DDO. Then, it
presents the local-bound and rough-upper-bound pruning techniques in Sects.
3.1 and 3.2. After that, it presents an experimental study which we conducted
using ‘ddo’ [17]1, our open source fast and generic MDD-based optimization
library. This experimental study investigates the relevance of RUB and LocB
through four disinct NP-hard problems: the Weighted Maximum Independent
Set Problem (MISP), Maximum Cut Problem (MCP), Maximum 2 Satisfiability
Problem (MAX2SAT) and the Traveling Salesman Problem with Time Win-
dows (TSPTW). Finally, Sect. 5 discusses previous related work before drawing
conclusions.

2 Background

The coming paragraphs give an overview of discrete optimization with decision
diagrams. Most of the formalism presented here originates from [8]. Still, we
reproduce it here for the sake of self-containedness.

Discrete Optimization. A discrete optimization problem is a constraint satis-
faction problem with an associated objective function to be maximized. The
discrete optimization problem P is defined as max {f(x) | x ∈ D ∧ C(x)} where
C is a set of constraints, x = 〈x0, . . . , xn−1〉 is an assignment of values to vari-
ables, each of which has an associated finite domain Di s.t. D = D0×· · ·×Dn−1

from where the values are drawn. In that setup, the function f : D → R is the
objective to be maximized.

Among the set of feasible solutions Sol(P) ⊆ D (i.e. satisfying all constraints
in C), we denote the optimal solution by x∗. That is, x∗ ∈ Sol(P) and ∀x ∈
Sol(P) : f(x∗) ≥ f(x).

Dynamic Programming. Dynamic programming (DP) was introduced in the mid
50’s by Bellman [3]. This strategy is significantly popular and is at the heart
of many classical algorithms (e.g., Dijkstra’s algorithm [12, p.658] or Bellman-
Ford’s [12, p.651]).

Even though a dynamic program is often thought of in terms of recursion, it
is also natural to consider it as a labeled transition system. In that case, the DP
model of a given discrete optimization problem P consists of:

– a set of state-spaces S0, . . . , Sn among which one distinguishes the initial state
r, the terminal state t and the infeasible state ⊥.

– a set of transition functions ti : Si ×Di → Si+1 for i = 0, . . . , n−1 taking the
system from one state si to the next state si+1 based on the value d assigned
to variable xi (or to ⊥ if assigning xi = d is infeasible). These functions should
never allow one to recover from infeasibility (ti(⊥, d) = ⊥ for any d ∈ Di).

1 https://github.com/xgillard/ddo.

https://github.com/xgillard/ddo

Improving the Filtering of Branch-and-Bound MDD Solver 233

– a set of transition cost functions hi : Si ×Di → R representing the immediate
reward of assigning some value d ∈ Di to the variable xi for i = 0, . . . , n − 1.

– an initial value vr.

On that basis, the objective function f(x) of P can be formulated as follows:

maximize f(x) = vr +
n−1∑

i=0

hi(si, xi)

subject to

si+1 = ti(si, xi) for i = 0, . . . , n − 1;xi ∈ Di ∧ C(xi)

si ∈ Si for i = 0, . . . , n

where C(xi) is a predicate that evaluates to true when the partial assignment
〈x0, . . . , xi〉 does not violate any constraint in C.

The appeal of such a formulation stems from its simplicity and its expres-
siveness which allows it to effectively capture the problem structure. Moreover,
this formulation naturally lends itself to a DD representation; in which case it
represents an exact DD encoding the complete set Sol(P).

2.1 Decision Diagrams

Because DDO aims at solving constraint optimization problems and not just
constraint satisfaction problems, it uses a particular DD flavor known as reduced
weighted DD – DD as of now. As initially posed by Hooker [21], DDs can be
perceived as a compact representation of the search trees. This is achieved, in
this context, by superimposing isomorphic subtrees.

To define our DD more formally, we will slightly adapt the notation from [5].
A DD B is a layered directed acyclic graph B = 〈n,U,A, l, d, v, σ〉 where n is
the number of variables from the encoded problem, U is a set of nodes; each of
which is associated to some state σ(u). The mapping l : U → {0 . . . n} partitions
the nodes from U in disjoint layers L0 . . . Ln s.t. Li = {u ∈ U : l(u) = i} and the
states of all the nodes belonging to the same layer pertain to the same DP-state-
space (∀u ∈ Li : σ(u) ∈ Si for i = 0, . . . , n). Also, it should be the case that no
two distinct nodes of one same layer have the same state (∀u1, u2 ∈ Li : u1 �=
u2 =⇒ σ(u1) �= σ(u2), for i = 0, . . . , n).

The set A ⊆ U ×U from our formal model is a set of directed arcs connecting
the nodes from U . Each such arc a = (u1, u2) connects nodes from subsequent
layers (l(u1) = l(u2) − 1) and should be regarded as the materialization of a
branching decision about variable xl(u1). This is why all arcs are annotated via
the mappings d : A → D and v : A → R which respectively associate a decision
and value (weight) with the given arc.

Example 1. An arc a connecting nodes u1 ∈ L3 to u2 ∈ L4, annotated with
d(a) = 6 and v(a) = 42 should be understood as the assignment x3 = 6 per-
formed from state σ(u1). It should also be understood that t3(σ(u1), 6) = σ(u2)
and the benefit of that assignment is v(a) = h3(σ(u1), 6) = 42.

234 X. Gillard et al.

Because each r-t path describes an assignment that satisfies P, we will use
Sol(B) to denote the set of all the solutions encoded in the r-t paths of DD B.
Also, because unsatisfiability is irrecoverable, r-⊥ paths are typically omitted
from DDs. It follows that a nice property from using a DD representation B for
the DP formulation of a problem P, is that finding x∗ is as simple as finding the
longest r-t path in B (according to the relation v on arcs).

Exact-MDD. For a given problem P, an exact MDD B is an MDD that exactly
encodes the solution set Sol(B) = Sol(P) of the problem P. In other words,
not only do all r-t paths encode valid solutions of P, but no feasible solution
is present in Sol(P) and not in B. An exact MDD for P can be compiled in
a top-down fashion2. This naturally follows from the above definition. To that
end, one simply proceeds by a repeated unrolling of the transition relations until
all variables are assigned.

2.2 Bounded-Size Approximations

In spite of the compactness of their encoding, the construction of DD suffers
from a potentially exponential memory requirement in the worst case3. Thus,
using DDs to exactly encode the solution space of a problem is often intractable.
Therefore, one must resort to the use of bounded-size approximation of the exact
MDD. These are compiled generically by inserting a call to a width-bounding
procedure to ensure that the width (the number |Li| of distinct nodes belonging
to the Li) of the current layer Li does not exceed a given bound W . Depending
on the behavior of that procedure, one can either compile a restricted-MDD (=
an under-approximation) or a relaxed-MDD (= an over-approximation).

Restricted-MDD: Under-Approximation. A restricted-MDD provides an under-
approximation of some exact-MDD. As such, all paths of a restricted-MDD
encode valid solutions, but some solutions might be missing from the MDD.
This is formally expressed as follows: given the DP formulation of a problem P,
B is a restricted-MDD iff Sol(B) ⊆ Sol(P).

To compile a restricted-MDD, it is sufficient to simply delete certain nodes
from the current layer until its width fits within the specified bound W . To that
end, the width-bounding procedure simply selects a subset of the nodes from Li

which are heuristically assumed to have the less impact on the tightness of the
bound. Various heuristics have been studied in the literature [7], and minLP was
shown to be the heuristic that works best in practice. This heuristic decides to
select (hence remove) the nodes having the shortest longest path from the root.

2 An incremental refinement a.k.a. construction by separation procedure is detailed in
[11, pp. 51–52] but we will not cover it here for the sake of conciseness.

3 Consequently, it also suffers from a potentially exponential time requirement in the
worst case. Indeed, time is constant in the final number of nodes (unless the transition
functions themselves are exponential in the input).

Improving the Filtering of Branch-and-Bound MDD Solver 235

Relaxed-MDD: Over-Approximation. A relaxed-MDD B provides a bounded-
width over-approximation of some exact-MDD. As such, it may hold paths that
are no solution to P, the problem being solved. We have thus formally that
Sol(B) ⊇ Sol(P).

Compiling a relaxed-MDD requires one to be able to merge several nodes
into an inexact one. To that end, we use two operators:

– ⊕ which yields a new node combining the states of a selection of nodes so as
to over-approximate the states reachable in the selection.

– Γ which is used to possibly relax the weight of arcs incident to the selected
nodes.

These operators are used as follows. Similar to the restricted-MDDs case, the
width-bounding procedure starts by heuristically selecting the least promising
nodes and removing them from layer Li. Then the states of these selected nodes
are combined with one another so as to create a merged node M = ⊕(selection).
After that, the inbound arcs incident to all selected nodes are Γ -relaxed and
redirected towards M. Finally, the result of the merger (M) is added to the
layer in place of the initial selection of nodes.

Summary. Figure 1 summarizes the information from Sects. 2.1 and 2.2. It dis-
plays the three MDDs corresponding to one same example problem having four
variables. The exact MDD (a) encodes the complete solution set and, equiva-
lently, the state space of the underlying DP encoding. One easily notices that
the restricted DD (b) is an under approximation of (a) since it achieves its width
boundedness by removing nodes d and e and their children (i, j). Among others,
it follows that the solution [x0 = 0, x1 = 0, x2 = 0, x3 = 0] is not represented in
(b) even though it exists in (a). Conversely, the relaxed diagram (c) achieves a
maximum layer with of 3 by merging nodes d, e and h into a new inexact node
M and by relaxing all arcs entering one of the merged nodes. Because of this,
(c) introduces solutions that do not exist in (a) as is for instance the case of the
assignment [x0 = 0, x1 = 0, x2 = 3, x3 = 1]. Moreover, because the operators ⊕
and Γ are correct4, the length of the longest path in (c) is an upper bound on
the optimal value of the objective function. Indeed, one can see that the length
of the longest path in (a) (= the exact optimal solution) has a value of 25 while
it amounts to 26 in (c).

2.3 The Dynamics of Branch-and-Bound with DDs

Being able to derive good lower and upper bounds for some optimization problem
P is useful when the goal is to use these bounds to strengthen algorithms [13,
31,32]. But it is not the only way these approximations can be used. A complete
and efficient branch-and-bound algorithm relying on those approximations was
proposed in [8] which we hereby reproduce (Algorithm 1).

4 The very definition of these operators is problem-specific. However, [22] formally
defines the conditions that are necessary to correctness.

236 X. Gillard et al.

r

a b c

d e f g h

kji

t

(a) Exact

r

a b c

f g h

k

t

(b) Restricted

r

a b c

f g

kji

t

(c) Relaxed

M
⊕(d, e, h)

x1

x2

x3

x0 0 1 2

0 1 0 2 0 1 2

0 0 1 0 2 3

0 0 1

4 2 6

0 7 2 5 9 7 4

1 1 3 4 3 1

1 6 6

0 1 2

2 0 1 2

0 2 3

1

4 2 6

5 9 7 4

4 3 1

6

0 1 2

2 0 1

0 1 0 23

0 0 1

4 2 6

5 9 7

1 3 4 33

1 6 6

0 0

1 3

Γ (a, e)

2
4

1

13

Fig. 1. The exact (a), restricted (b) and relaxed (c) versions of an MDD with four
variables. The width of MDDs (b) and (c) have been bounded to a maximum layer
width of three. The decision labels of the arcs are shown above the layers separation
lines (dashed). The arc weights are shown below the layer separation lines. The longest
path of each MDD is boldfaced. In (c), the node M is the result of merging nodes
d, e and h with the ⊕ operator. Arcs that have been relaxed with the Γ operator are
pictured with a double stroke. Note, because these arcs have been Γ -relaxed, their value
might be greater than that of corresponding arcs in (a), (b). Similarly, all “inexact”
nodes feature a double border.

This algorithm works as follows: at start, the node r is created for the initial
state of the problem and placed onto the fringe – a global priority queue that
tracks all nodes remaining to explore and orders them from the most to least
promising. Then, a loop consumes the nodes from that fringe (line 1), one at
a time and explores it until the complete state space has been exhausted. The
exploration of a node u inside that loop proceeds as follows: first, one compiles
a restricted DD B for the sub-problem rooted in u (line 5). Because all paths
in a restricted DD are feasible solutions, when the lower bound v∗(B) derived
from the restricted DD B improves over the current best known solution v; then
the longest path of B (best sol. found in B) and its length v∗(B) are memorized
(lines 7-9).

In the event where B is exact (no restriction occurred during the compilation
of B), it covers the complete state space of the sub-problem rooted in u. Which
means the processing of u is complete and we may safely move to the next node.
When this condition is not met, however, some additional effort is required. In
that case, a relaxed DD B is compiled from u (line 11). That relaxed DD serves
two purposes: first, it is used to derive an upper bound v∗(B) which is compared
to the current best known solution (line 12). This gives us a chance to prune
the unexplored state space under u when v∗(B) guarantees it does not contain
any better solution than the current best. The second use of B happens when
v∗(B) cannot provide such a guarantee. In that case, the exact cutset of B is used
to enumerate residual sub-problems which are enqueued onto the fringe (lines
13–14).

Improving the Filtering of Branch-and-Bound MDD Solver 237

A cutset for some relaxed DD B is a subset C of the nodes from B such that
any r − t path of B goes through at least one node ∈ C. Also, a node u is said
to be exact iff all its incoming paths lead to the same state σ(u). From there,
an exact cutset of B is simply a cutset whose nodes are all exact. Based on this
definition, it is easy to convince oneself that an exact cutset constitutes a frontier
up to which the relaxed DD B and its exact counterpart B have not diverged.
And, because it is a cutset, the nodes composing that frontier cover all paths
from both B and B; which guarantees the completeness of Algorithm 1 [8].

Any relaxed-MDD admits at least one exact cutset – e.g. the trivial {r} case.
Often though, it is not unique and different options exist as to what cutset to
use. It was experimentally shown by [8] that most of the time, the Last Exact
Layer (LEL) is superior to all other exact cutsets in practice. LEL consists of
the deepest layer of the relaxed-MDD having all its nodes exact.

Example 2. In Fig. 1 (c), the first inexact node M occurs in layer L2. Hence,
the LEL cutset comprises all nodes (a, b, c) from the layer L1. Because M is
inexact, and because it is a parent of nodes i, j and k, these three nodes are
considered inexact too.

Algorithm 1. Branch-And-Bound with DD
1: Create node r and add it to Fringe
2: x ← ⊥
3: v ← −∞
4: while Fringe is not empty do
5: u ← Fringe.pop()
6: B ← Restricted(u)
7: if v∗(B) > v then
8: v ← v∗(B)
9: x ← x∗(B)

10: if B is not exact then
11: B ← Relaxed(u)
12: if v∗(B) > v then
13: for all u′ ∈ B.exact cutset() do
14: Fringe.add(u′)
15: return (x, v)

Algorithm 2. Local bound pruning
1: Create node r and add it to Fringe
2: x ← ⊥
3: v ← −∞
4: while Fringe is not empty do
5: u ← Fringe.pop()
6: if v|∗u ≤ v then
7: continue
8: B ← Restricted(u)
9: if v∗(B) > v then

10: v ← v∗(B)
11: x ← x∗(B)
12: if B is not exact then
13: B ← Relaxed(u)
14: if v∗(B) > v then
15: for all u′ ∈ B.exact cutset() do
16: if v|∗u′ > v then
17: Fringe.add(u′)
18: return (x, v)

3 Improving the Filtering of Branch-and-Bound MDD

In the forthcoming paragraphs, we introduce the local bound and present the
rough upper bound: two reasoning techniques to reinforce the pruning strength
of Algorithm 1.

3.1 Local Bounds (LocB)

Conceptually, pruning with local bounds is rather simple: a relaxed MDD B
provides us with one upper bound v∗(B) on the optimal value of the objec-
tive function for some given sub-problem. However, in the event where v∗(B)

238 X. Gillard et al.

is greater than the best known lower bound v (best current solution) nothing
guarantees that all nodes from the exact cutset of B admit a longest path to t
with a length of v∗(B). Actually, this is quite unlikely. This is why we propose to
attach a “local” upper bound to each node of the cutset. This local upper bound
– denoted v|∗u for some cutset node u – simply records the length of the longest
r-t path passing through u in the relaxed MDD B.

In other words, LocB allows us to refine the information provided by a relaxed
DD B. On one hand, B provides us with v∗(B) which is the length of the longest
r-t path in B. As such, it provides an upper bound on the optimal value that can
be reached from the root node of B. With the addition of LocB, the relaxed DD
provides us with an additional piece of information. For each individual node u
in the exact cutset of B, it defines the value v|∗u which is an upper bound on the
value attainable from that node.

As shown in Algorithm 2, the value v|∗u can prove useful at two different
moments. First, in the event where v|∗u ≤ v, this value can serve as a justification
to not enqueue the subproblem u (line 16) since exhausting this subproblem will
yield no better solution than v. More formally, by definition of a cutset and of
LocB, it must be the case that the longest r-t path of B traverses one of the
cutset nodes u and thus that v∗(B) = v|∗u (where v|∗u is the local bound of u).
Hence we have: ∃u ∈ cutset of B : v∗(B) = v|∗u. However, because v∗(B) is the
length of the longest r-t path of B, there may exist cutset nodes that only belong
to r-t paths shorter than v∗(B). That is: ∀u′ ∈ cutset of B : v∗(B) ≥ v|∗u′ . Which
is why v|∗u′ can be stricter than v∗(B) and hence let LocB be stronger at pruning
nodes from the frontier.

The second time when v|∗u might come in handy occurs when the node u is
popped out of the fringe (line 6). Indeed, because the fringe is a global priority
queue, any node that has been pushed on the fringe can remain there for a long
period of time. Thus, chances are that the value v has increased between the
moment when the node was pushed onto the fringe (line 17) and the moment
when it is popped out of it. Hence, this gives us an additional chance to com-
pletely skip the exploration of the sub-problem rooted in u.

Let us illustrate that with the relaxed MDD shown on Fig. 2, for which the
exact cutset comprises the highlighted nodes a and b. Please note that because
this scenario may occur at any time during the problem resolution, we will
assume that the fringe is not empty when it starts. Assuming that the current
best solution v is 20 when one explores the pictured subproblem, we are certain
that exploring the subproblem rooted in a is a waste of time, because the local
bound v|∗a is only 16. Also, because the fringe was not empty, it might be the
case that b was left on the fringe for a long period of time. And because of this,
it might be the case that the best known value v was improved between the
moment when b was pushed on the fringe and the moment when it was popped
out of it. Assuming that v has improved to 110 when b is popped out of the
fringe, it may safely be skipped because v|∗b guarantees that an exploration of b
will not yield a better solution than 102.

Improving the Filtering of Branch-and-Bound MDD Solver 239

Algorithm 3 describes the procedure to compute the local bound v|∗u of each
node u belonging to the exact cutset of a relaxed MDD B. Intuitively, this is
achieved by doing a bottom-up traversal of B, starting at t and stopping when the
traversal crosses the last exact layer (line 5). During that bottom-up traversal,
the algorithm marks the nodes that are reachable from t. This way, it can avoid
the traversal of dead-end nodes. Also, Algorithm 3 maintains a value v∗

↑t
(u) for

each node u it encounters. This value represents the length of the longest u-t
path. Afterwards (line 13), it is summed with the length of the longest r-u path
v∗

r−u to derive the exact value of the local bound v|∗u.

Algorithm 3. Computing the local bounds
1: lel ← Index of the last exact layer
2: v∗

↑t
(u) ← −∞ for each node u ∈ B // init. longest u-t path

3: mark(t) ←true
4: v∗

↑t
(t) ← 0 // longest t-t path

5: for all i = n to lel do
6: for all node u ∈ Li do
7: if mark(u) then
8: for all arc a = (u′, u) incident to u do
9: mark(u′) ← true

10: v∗
↑t

(u′) ← max(v∗
↑t

(u′), v∗
↑t

(u) + v(a)) // longest u’-t path

11: for all node u ∈ B.exact cutset() do
12: if mark(u) then
13: v|∗u ← v∗

r−u + v∗
↑t

(u) // longest r-u path + longest u-t path

14: else
15: v|∗u ← −∞

3.2 Rough Upper Bound (RUB)

Rough upper bound pruning departs from the following observation: assuming
the knowledge of a lower bound v on the value of v∗, and assuming that one
is able to swiftly compute a rough upper bound vs on the optimal value v∗

s of
the subproblem rooted in state s; any node u of a MDD having a rough upper
bound vσ(u) ≤ v may be discarded as it is guaranteed not to improve the best
known solution. This is pretty much the same reasoning that underlies the whole
branch-and-bound idea. But here, it is used to prune portions of the search space
explored while compiling approximate MDDs.

To implement RUB, it suffices to adapt the MDD compilation procedure
(top-down, iterative refinement, ...) and introduce a check that avoids creating
a node u′ with state next when vnext ≤ v.

The key to RUB effectiveness is that RUB is used while compiling the
restricted and relaxed DDs. As such, its computation does not directly appear in
Algorithm 1, but rather is accounted within the compilations of Restricted(u)
and Relaxed(u) from Algorithm 1. Thus, it really is not used as yet-an-other-
bound competing with that of line 12, but instead to speed up the computation

240 X. Gillard et al.

of restricted and relaxed DDs. More precisely, this speedup occurs because the
compilation of the DDs discards some nodes that would otherwise be added to
the next layer of the DD and then further expanded, which are ruled out by
RUB. A second benefit of using RUBs is that it helps tightening the bound
derived from a relaxed DD (Algorithm 1 line 12). Because the layers that are
generated in a relaxed DD are narrower when applying RUB, there are fewer
nodes exceeding the maximum layer width. The operator ⊕ hence needs to merge
a smaller set of nodes in order to produce the relaxation.

The dynamics of RUB is graphically illustrated by Fig. 3 where the set of
highlighted nodes can be safely elided since the (rough) upper bound computed
in node s is lesser than the best lower bound.

r

a b

0 0 0 0

10 0

2 100 5

41 24

t

v|∗b = 102v|∗a = 16

v∗ = 102

Fig. 2. An example relaxed-MDD hav-
ing an exact cutset {a, b} with local
bounds v|∗a and v|∗b . The nodes with
a simple border represent exact nodes
and those with a double border repre-
sent “inexact” nodes. The edges along
the longest path are displayed in bold.

r

s

t

v = 100

vs = 42

Fig. 3. Assuming a lower bound v of
100 and a rough upper bound vs of 42
for the node s, all the highlighted nodes
(in red, with a dashed border) may be
pruned from the MDD. (Color figure
online)

Important Note. It is important to understand that because the RUB is
computed at each node of each restricted and relaxed MDD compiled during the
instance resolution, it must be extremely inexpensive to compute. This is why
RUB is best obtained from a fast and simple problem specific procedure.

4 Experimental Study

In order to evaluate the impact of the pruning techniques proposed above, we
conducted a series of experiments on four problems. In particular, we con-
ducted experiments on the Maximum Independent Set Problem (MISP), the

Improving the Filtering of Branch-and-Bound MDD Solver 241

Maximum Cut Problem (MCP), the Maximum Weighted 2-Satisfiablility Prob-
lem (MAX2SAT) and the Traveling Salesman Problem with Time Windows
(TSPTW). For the first three problems, we generated sets of random instances
which we attempted to solve with different configurations of our own open source
solver written in Rust [17]5. For TSPTW, we reused openly available sets of
benchmarks which are usually used to assess the efficiency of new solvers for
TSPTW [27]. Thanks to the generic nature of our framework, the model and
all heuristics used to solve the instances were the same for all experiments.
This allowed us to isolate the impact of RUB and LocB on the solving perfor-
mance and neutralize unrelated factors such as variable ordering. Indeed, the
only variations between the different solver flavors relate to the presence (or
absence) of RUB and LocB. All experiments were run on the same physical
machine equipped with an AMD6176 processor and 48GB of RAM. A maxi-
mum time limit of 1800 1800seconds was allotted to each configuration to solve
each instance.

The details of the DP models and RUBs we formulated for all four problems
are given in the appendices to the extended version of this paper6.

MISP. To assess the impact of RUB and LocB on MISP, we generated random
graphs based on the Erdos-Renyi model G(n, p) [15] with the number of vertices n
= 250, 500, 750, 1000, 1250, 1500, 1750 and the probability of having an edge con-
necting any two vertices p = 0.1, 0.2, ... , 0.9. The weight of the edges in the gener-
ated graphs were drawn uniformly from the set {−5,−4,−3,−2,−1, 1, 2, 3, 4, 5}.
We generated 10 instances for each combination of size and density (n, p).

MCP. In line with the strategy used for MISP, we generated random MCP
instances as random graphs based on the Erdos-Renyi model G(n, p). These
graphs were generated with the number of vertices n = 30, 40, 50 and the
probability p of connecting any two vertices = 0.1, 0.2, 0.3, .., 0.9. The weights
of the edges in the generated graphs were drawn uniformly among {−1, 1}. Again,
we generated 10 instances per combination n, p.

MAX2SAT. Similar to the above, we used random graphs based the Erdos-Renyi
model G(n, p) to derive MAX2SAT instances. To this end, we produced graphs
with n = 60, 80, 100, 200, 400, 1000 (hence instances with 30, 40, 50, 100, 200
and 500 variables) and p = 0.1, 0.2, 0.3, .. , 0.9. For each combination of size
(n) and density (p), we generated 10 instances. The weights of the clauses in the
generated instances were drawn uniformly from the set {1, 2, 3, 5, 6, 7, 8, 9, 10}.

TSPTW. To evaluate the effectiveness of our rules on TSPTW, we used the
467 instances from the following suites of benchmarks, which are usually used
to assess the efficiency of new TSPTW solvers. AFG [2], Dumas [14], Gendreau-
Dumas [16], Langevin [26], Ohlmann-Thomas [28], Solomon-Pesant [29] and
Solomon-Potvin-Bengio [30].
5 https://github.com/xgillard/ddo.
6 Available online at: http://hdl.handle.net/2078.1/245322.

https://github.com/xgillard/ddo
http://hdl.handle.net/2078.1/245322

242 X. Gillard et al.

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200 1400 1600 1800

#
so

lv
ed

to
op

tim
al
ity

Duration (s)

None (1 thread)
RUB (1 thread)
LocB (1 thread)

RUB+LocB (1 thread)
RUB+LocB (24 threads)

Gurobi 9.0.3 (24 threads)
Gurobi 9.0.3 (1 thread)

(a) MISP: Solved over time

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400 1600 1800

All instances

#
so

lv
ed

to
op

tim
al
ity

Duration (s)

None (1 thread)
RUB (1 thread)
LocB (1 thread)

RUB+LocB (1 thread)
RUB+LocB (24 threads)

Gurobi 9.0.3 (24 threads)
Gurobi 9.0.3 (1 thread)

(b) MCP: Solved over time

300

350

400

450

500

0 200 400 600 800 1000 1200 1400 1600 1800

#
so

lv
ed

to
op

tim
al
ity

Duration (s)

None (1 thread)
RUB (1 thread)
LocB (1 thread)

RUB+LocB (1 thread)
RUB+LocB (24 threads)

Gurobi 9.0.3 (24 threads)
Gurobi 9.0.3 (1 thread)

(c) MAX2SAT: Solved over time

200

210

220

230

240

250

260

270

280

0 200 400 600 800 1000 1200 1400 1600 1800

#
so

lv
ed

to
op

tim
al
ity

Duration (s)

None (1 thread)
RUB (1 thread)
LocB (1 thread)

RUB+LocB (1 thread)
RUB+LocB (24 threads)

(d) TSPTW: Solved over time

Fig. 4. Number of solved instances over time for each considered problem

Figure 4 gives an overview of the results from our experimental study. It
respectively depicts the evolution over time of the number of instances solved
by each technique for MISP (a), MCP (b) and MAX2SAT (c) and TSPTW (d).

As a first step, our observation of the graphs will focus on the differences that
arise between the single threaded configurations of our ddo solvers. Then, in a
second phase, we will incorporate an existing state-of-the-art ILP solver (Gurobi
9.0.3) in the comparison. Also, because both Gurobi and our ddo library come
with built-in parallel computation capabilities, we will consider both the single
threaded and parallel (24 threads) cases. This second phase, however, only bears
on MISP, MCP and MAX2SAT by lack of a Gurobi TSPTW model.

DDO Configurations. The first observation to be made about the four graphs in
Fig. 4, is that for all considered problems, both RUB and LocB outperformed the
’do-nothing’ strategy; thereby showing the relevance of the rules we propose. It
is not clear however which of the two rules brings the most improvement to the
problem resolution. Indeed, RUB seems to be the driving improvement factor for
MISP (a) and TSPTW (d) and the impact of LocB appears to be moderate or
weak on these problems. However, it has a much higher impact for MCP (b) and
MAX2SAT (c). In particular, LocB appears to be the driving improvement fac-
tor for MCP (b). This is quite remarkable given that LocB operates in a purely
black box fashion, without any problem-specific knowledge. Finally, it should
also be noted that the use of RUB and LocB are not mutually exclusive. More-
over, it turns out that for all considered problems, the combination RUB+LocB
improved the situation over the use of any single rule.

Improving the Filtering of Branch-and-Bound MDD Solver 243

Furthermore, Fig. 5 confirms the benefit of using both RUB and LocB
together rather than using any single technique. For each problem, it measures
the “performance” of using RUB+LocB vs the best single technique through
the end gap. The end gap is defined as

(
100 ∗ |UB|−|LB|

|UB|
)
. This metric allows

us to account for all instances, including the ones that could not be solved to
optimality. Basically, a small end gap means that the solver was able to confirm
a tight confidence interval of the optimum. Hence, a smaller gap is better. On
each subgraphs of Fig. 5, the distance along the x-axis represents the end gap
for reach instance when using both RUB and LocB whereas the distance along
y-axis represents the end gap when using the best single technique for the prob-
lem at hand. Any mark above the diagonal shows an instance for which using
both RUB and LocB helped reduce the end gap and any mark below that line
indicates an instance where it was detrimental.

From graphs 5-a, 5-c and 5-d it appears that the combination RUB+LocB
supersedes the use of RUB only. Indeed the vast majority of the marks sit above
the diagonal and the rest on it. This indicates a beneficial impact of using both
techniques even for the hardest (unsolved) instances. The case of MCP (graph
5-b) is less clear as most of the marks sit on the diagonal. Still, we can only
observe three marks below the diagonal and a bit more above it. Which means
that even though the use of RUB in addition to LocB is of little help in the case
of MCP, its use does not degrade the performance for that considered problem.

0

20

40

60

80

100

0 20 40 60 80 100

R
U
B

RUB+LocB

(a) MISP end gap comparison

0

5

10

15

20

0 5 10 15 20

Lo
cB

RUB+LocB

(b) MCP end gap comparison

0

2

4

6

8

10

0 2 4 6 8 10

R
U
B

RUB+LocB

(c) MAX2SAT end gap comparison

0

20

40

60

80

100

0 20 40 60 80 100

R
U
B

RUB+LocB

(d) TSPTW end gap comparison

Fig. 5. End gap: the benefit of using both techniques vs the best single one

Comparison with Gurobi 9.0.3. The first observation to be made when comparing
the performance of Gurobi vs the DDO configurations, is that when running on
a single thread, ILP outperforms the basic DDO approach (without RUB and
LocB). Furthermore, Gurobi turns out to be the best single threaded solver for
MCP by a fair margin. However, in the MISP and MAX2SAT cases, Fig. 4 shows
that the DDO solvers benefitting from RUB and LocB were able to solve more
instances and to solve them faster than Gurobi. Which underlines the importance
of RUB and LocB.

When lifting the one thread limit, one can see that the DD-based approach
outperform ILP on each of the considered problems. In particular, in the case of
MCP for which Gurobi is the best single threaded option; our DDO solver was
able to find and prove the optimality of all tested instances in a little less than
800 s. The ILP solver, on the other end, was not able to prove the optimality
of the 9 hardest instances within 30 min. Additionally, we also observe that in

244 X. Gillard et al.

spite of the performance gains of MIP when running in parallel, Gurobi fails to
solve as many MISP and MAX2SAT instances and to solve them as fast as the
single threaded DDO solvers with RUB and LocB. This emphasizes once more
the relevance of our techniques. It also shows that the observation from [9] still
hold today: despite the many advances of MIP the DDO approach still scales
better than MIP on the considered problems when invoked in parallel.

5 Previous Work

DDO emerged in the mid’ 2000’s when [24] proposed to use decision diagrams
as a way to solve discrete optimization problems to optimality. More or less
concomitantly, [1] devised relaxed-MDD even though the authors envisioned its
use as a CP constraint store rather than a means to derive tight upper bounds
for optimization problems. Then, the relationship between decision diagrams and
dynamic programming was clarified by [21].

Recently, Bergman, Ciré and van Hoeve investigated the various ways to com-
pile decision diagrams for optimization (top-down, construction by separation)
[11]. They also investigated the heuristics used to parameterize these DD com-
pilations. In particular, they analyzed the impact of variable ordering in [7,11]
and node selection heuristics (for merge and deletion) in [7]. Doing so, they
empirically demonstrated the crucial impact of variable ordering on the tight-
ness of the derived bounds and highlighted the efficiency of minLP as a node
selection heuristic. Later on, the same authors proposed a complete branch-and-
bound algorithm based on DDs [8]. This is the algorithm which we propose
to adapt with extra reasoning mechanisms and for which we provide a generic
open-source implementation in Rust [17]. The impressive performance of DDO
triggered some theoretical research to analyze the quality of approximate MDDs
[5] and the correctness of the relaxation operators [22].

This gave rise to new lines of work. The first one focuses on the resolution of
a larger class of optimization problems; chief of which multi-objective problems
[4] and problems with a non-linear objective function. These are either solved
by decomposition [4] or by using DDO to strengthen other IP techniques [13]. A
second trend aims at hybridizing DDO with other IP techniques. For instance, by
using Lagrangian relaxation [23] or by solving a MIP [6] to derive with very tight
bounds. But the other direction is also under active investigation: for example,
[31,32] use DD to derive tight bounds which are used to replace LP relaxation
in a cutting planes solver. Very recently, a third hybridization approach has
been proposed by Gonzàlez et al. [18]. It adopts the branch-and-bound MDD
perspective, but whenever an upper bound is to be derived, it uses a trained
classifier to decide whether the upper bound is to be computed with ILP or by
developing a fixed-width relaxed MDD.

The techniques (ILP-cutoff pruning and ILP-cutoff heuristic) proposed by
Gonzalez et al. [18] are related to RUB and LocB in the sense that all techniques
aim at reducing the search space of the problem. However, they fundamentally
differ as ILP-cutoff pruning acts as a replacement for the compilation of a relaxed

Improving the Filtering of Branch-and-Bound MDD Solver 245

MDD whereas the goal of RUB is to speed up the development of that relaxed
MDD by removing nodes while the MDD is being generated. The difference is
even bigger in the case of ILP-cutoff heuristic vs LocB: the former is used as a
primal heuristic while LocB is used to filter out sub-problems that can bear no
better solution. In that sense, LocB belongs more to the line of work started by
[1,19,20]: it enforces the constraint lb ≤ f(x) ≤ ub and therefore provokes the
deletion of nodes and arcs that cannot lead to the optimal solution.

More recently, Horn et al. explored an idea in [25] which closely relates to
RUB. They use “fast-to-compute dual bounds” as an admissible heuristic to
guide the compilation of MDDs in an A* fashion for the prize-collecting TSP.
It prunes portions of the state space during the MDD construction, similarly to
when RUB is applied. Our approach differs from that of [25] in that we attempt
to incorporate problem specific knowledge in a framework that is otherwise fully
generic. More precisely, it is perceived here as a problem-specific pruning that
exploits the combinatorial structure implied by the state variables. It is inde-
pendent of other MDD compilation techniques, e.g., our techniques are com-
patible with node merge (⊕) operators and other methodologies defined in the
DDO literature. We also emphasize that, as opposed to more complex LP-based
heuristics that are now typical in A* search, we investigate quick methodologies
that are also easy to incorporate in a MDD branch and bound.

6 Conclusion and Future Work

This paper presented and evaluated the impact of the local bound and rough
upper bound techniques to strengthen the pruning of the branch-and-bound
MDD algorithm. Our experimental study on MISP, MCP, MAX2SAT and
TSPTW confirmed the relevance of these techniques. In particular, our experi-
ments have shown that devising a fast and simple rough upper bound is worth
the effort as it can significantly boost the efficiency of a solver. Similarly, our
experiments showed that the use of local bound can significantly improve the effi-
ciency of DDO solver despite its problem agnosticism. Furthermore, it revealed
that a combination of RUB and LocB supersedes the benefit of any single reason-
ing technique. These results are very promising and we believe that the public
availability of an open source DDO framework implementing RUB and LocB
might serve as a basis for novel DP formulation for classic problems.

References

1. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol.
4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74970-7 11

2. Ascheuer, N.: Hamiltonian path problems in the on-line optimization of flexible
manufacturing systems (1996)

3. Bellman, R.: The theory of dynamic programming. Bull. Am. Math. Soc. 60(6),
503–515 (1954). https://projecteuclid.org:443/euclid.bams/1183519147

https://doi.org/10.1007/978-3-540-74970-7_11
https://doi.org/10.1007/978-3-540-74970-7_11
https://projecteuclid.org:443/euclid.bams/1183519147

246 X. Gillard et al.

4. Bergman, D., Cire, A.A.: Multiobjective optimization by decision diagrams. In:
Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 86–95. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44953-1 6

5. Bergman, D., Cire, A.A.: Theoretical insights and algorithmic tools for decision
diagram-based optimization. Constraints 21(4), 533–556 (2016). https://doi.org/
10.1007/s10601-016-9239-9

6. Bergman, D., Cire, A.A.: On finding the optimal BDD relaxation. In: Salvagnin,
D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 41–50. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59776-8 4

7. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Optimization bounds
from binary decision diagrams. INFORMS J. Comput. 26(2), 253–268 (2014).
https://doi.org/10.1287/ijoc.2013.0561

8. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization
with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016). https://doi.
org/10.1287/ijoc.2015.0648

9. Bergman, D., Cire, A.A., Sabharwal, A., Samulowitz, H., Saraswat, V., van Hoeve,
W.J.: Parallel combinatorial optimization with decision diagrams. In: International
Conference on AI and OR Techniques in Constriant Programming for Combinato-
rial Optimization Problems, pp. 351–367 (2014)

10. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992). https://doi.
org/10.1016/0890-5401(92)90017-A

11. Cire, A.A.: Decision diagrams for optimization. Ph.D. thesis, Carnegie Mellon Uni-
versity Tepper School of Business (2014)

12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2009)

13. Davarnia, D., van Hoeve, W.J.: Outer approximation for integer nonlinear pro-
grams via decision diagrams (2018)

14. Dumas, Y., Desrosiers, J., Gelinas, E., Solomon, M.M.: An optimal algorithm for
the traveling salesman problem with time windows. Oper. Res. 43(2), 367–371
(1995)

15. Erdös, P., Rényi, A.: On random graphs i. Publicationes Mathematicae Debrecen
6, 290 (1959)

16. Gendreau, M., Hertz, A., Laporte, G., Stan, M.: A generalized insertion heuristic
for the traveling salesman problem with time windows. Oper. Res. 46(3), 330–335
(1998)

17. Gillard, X., Schaus, P., Coppé, V.: Ddo, a generic and efficient framework for MDD-
based optimization. Accepted at the International Joint Conference on Artificial
Intelligence (IJCAI-20); DEMO track (2020)

18. Gonzalez, J.E., Cire, A.A., Lodi, A., Rousseau, L.M.: Integrated integer program-
ming and decision diagram search tree with an application to the maximum inde-
pendent set problem. Constraints 1–24 (2020)

19. Hadžić, T., Hooker, J., Tiedemann, P.: Propagating separable equalities in an MDD
store. In: CPAIOR, pp. 318–322 (2008)

20. Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based
constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–
280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9 23

21. Hooker, J.N.: Decision diagrams and dynamic programming. In: Gomes, C., Sell-
mann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 94–110. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38171-3 7

https://doi.org/10.1007/978-3-319-44953-1_6
https://doi.org/10.1007/s10601-016-9239-9
https://doi.org/10.1007/s10601-016-9239-9
https://doi.org/10.1007/978-3-319-59776-8_4
https://doi.org/10.1287/ijoc.2013.0561
https://doi.org/10.1287/ijoc.2015.0648
https://doi.org/10.1287/ijoc.2015.0648
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/978-3-642-15396-9_23
https://doi.org/10.1007/978-3-642-38171-3_7

Improving the Filtering of Branch-and-Bound MDD Solver 247

22. Hooker, J.N.: Job sequencing bounds from decision diagrams. In: Beck, J.C. (ed.)
CP 2017. LNCS, vol. 10416, pp. 565–578. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66158-2 36

23. Hooker, J.N.: Improved job sequencing bounds from decision diagrams. In: Schiex,
T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 268–283. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30048-7 16

24. Hooker, J.: Discrete global optimization with binary decision diagrams. In: GICO-
LAG 2006 (2006)

25. Horn, M., M̃aschler, J., R̃aidl, G.R., R̃önnberg, E.: A*-based construction of
decision diagrams for a prize-collecting scheduling problem. Comput. Oper.
Res. 126, 105125 (2021). https://doi.org/10.1016/j.cor.2020.105125, http://www.
sciencedirect.com/science/article/pii/S0305054820302422

26. Langevin, A., Desrochers, M., Desrosiers, J., Gélinas, S., Soumis, F.: A two-
commodity flow formulation for the traveling salesman and the makespan problems
with time windows. Networks 23(7), 631–640 (1993)

27. López-Ibáñez, M., Blum, C.: Benchmark instances for the travelling salesman prob-
lem with time windows. Online (2020). http://lopez-ibanez.eu/tsptw-instances

28. Ohlmann, J.W., Thomas, B.W.: A compressed-annealing heuristic for the traveling
salesman problem with time windows. INFORMS J. Comput. 19(1), 80–90 (2007)

29. Pesant, G., Gendreau, M., Potvin, J.Y., Rousseau, J.M.: An exact constraint logic
programming algorithm for the traveling salesman problem with time windows.
Transp. Sci. 32(1), 12–29 (1998)

30. Potvin, J.Y., Bengio, S.: The vehicle routing problem with time windows part ii:
genetic search. INFORMS J. Comput. 8(2), 165–172 (1996)

31. Tjandraatmadja, C.: Decision diagram relaxations for integer programming. Ph.D.
thesis, Carnegie Mellon University Tepper School of Business (2018)

32. Tjandraatmadja, C., van Hoeve, W.J.: Target cuts from relaxed decision diagrams.
INFORMS J. Comput. 31(2), 285–301 (2019). https://doi.org/10.1287/ijoc.2018.
0830

https://doi.org/10.1007/978-3-319-66158-2_36
https://doi.org/10.1007/978-3-319-66158-2_36
https://doi.org/10.1007/978-3-030-30048-7_16
https://doi.org/10.1016/j.cor.2020.105125
http://www.sciencedirect.com/science/article/pii/S0305054820302422
http://www.sciencedirect.com/science/article/pii/S0305054820302422
http://lopez-ibanez.eu/tsptw-instances
https://doi.org/10.1287/ijoc.2018.0830
https://doi.org/10.1287/ijoc.2018.0830

On the Usefulness of Linear Modular
Arithmetic in Constraint Programming

Gilles Pesant1(B), Kuldeep S. Meel2, and Mahshid Mohammadalitajrishi1

1 Polytechnique Montréal, Montreal, Canada
gilles.pesant@polymtl.ca

2 National University of Singapore, Singapore, Singapore
meel@comp.nus.edu.sg

Abstract. Linear modular constraints are a powerful class of con-
straints that arise naturally in cryptanalysis, checksums, hash functions,
and the like. Given their importance, the past few years have witnessed
the design of combinatorial solvers with native support for linear modular
constraints, and the availability of such solvers has led to the emergence
of new applications. While there exist global constraints in cp that con-
sider congruence classes over domain values, linear modular arithmetic
constraints have yet to appear in the global constraint catalogue despite
their past investigation in the context of model counting for csps. In this
work we seek to remedy the situation by advocating the integration of
linear modular constraints in state-of-the-art cp solvers.

Contrary to previous belief, we conclude from an empirical inves-
tigation that Gauss-Jordan Elimination based techniques can provide
an efficient and scalable way to handle linear modular constraints. On
the theoretical side, we remark on the pairwise independence offered by
hash functions based on linear modular constraints, and then discuss
the design of hashing-based model counters for cp, supported by empir-
ical results showing the accuracy and computational savings that can be
achieved. We further demonstrate the usefulness of native support for
linear modular constraints with applications to checksums and model
counting.

1 Introduction

Given a set of variables X = {x1, x2, . . . , xn} with their associated domains of
values D = {D1,D2, . . . , Dn} and set of constraints C over X , the Constraint
Satisfaction Problem (csp), denoted ϕ = (X ,D, C), seeks to assign to each vari-
able xi ∈ X a value from Di such that every constraint in C is satisfied. It is often
convenient and effective to use constraints that can succinctly express recurring
relations of arbitrary arity. The global constraints catalogue [2] has grown over
the years to encompass a wide variety of such constraints, including the case
of values considered modulo a given parameter (e.g. AllDifferent modulo,
Among modulo, Maximum modulo). But despite the investigation of linear
modular arithmetic constraints by Gomes et al. [11] in the context of model
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 248–265, 2021.
https://doi.org/10.1007/978-3-030-78230-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_16

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 249

counting for csps, the latter constraints seem to have gone largely unnoticed in
the cp community and indeed do not appear in that catalogue.1

The purpose of this paper is to advocate the inclusion of modular arithmetic
constraints in cp solvers, motivated by important applications such as model
counting, and to investigate the algorithmic opportunities currently available for
efficient inference on such constraints as well as remaining challenges, through
an empirical evaluation featuring linear modular arithmetic constraints.

In this paper we address the question of how to efficiently integrate linear
modular constraints in a cp solver. As mentioned before, Gomes et al. [11] stud-
ied linear modular equalities in the context of model counting and remarked that
a system based on Gauss-Jordan Elimination (gje) would be inefficient. As a
result, they proposed an adaptation of Trick’s dynamic programming algorithm
[18] to handle individual constraints. Their empirical evaluation was limited to
short constraints (i.e. on about six variables). We take advantage of the com-
pact table implementation for extensional constraints [9] to revisit gje and thus
reach the opposite conclusion: gje applied to a system of linear modular con-
straints achieves significantly better performance than the alternative dynamic
programming algorithm on individual constraints.

We demonstrate the scalability of our framework through an empirical eval-
uation on large linear modular constraints and show the opportunities offered
by a solver with native support for linear modular constraints. Here we can
draw a parallel with the availability of CryptoMiniSat, a SAT solver with native
support for linear modular constraints in the Boolean domain (i.e., XOR con-
straints), which has opened up several applications. Linear modular arithmetic
constraints naturally occur in several domains such as checksums, error correct-
ing codes, cryptography, learning parity without noise, and model counting. In
this paper we present applications to checksums and model counting.

The rest of the paper is organized as follows. We first present background and
formal definition and representation of linear modular arithmetic constraints in
Sect. 2. We present domain filtering algorithms for linear modular constraints
in Sect. 3. We then present applications to checksums and model counting in
Sects. 4 and 5. Finally, we conclude in Sect. 6.

2 Background

An integer modulus p > 1 defines a congruence equivalence relation on the set of
all integers Z: integers i and j are said to be congruent if there exists an integer
k such that i − j = kp. Thus it partitions Z into p congruence classes, the ring
of integers modulo p, on which addition and multiplication are defined in the
obvious way.

We are interested in linear modular arithmetic constraints of the general form

� ≤ ax ≤ u (mod p)

1 One exception is the work on bit-vector domains, involving some modular arithmetic,
with applications to software verification and cryptography [1,8,13].

250 G. Pesant et al.

where x is a vector of n integer finite-domain variables, a a vector of integer
coefficients, � and u two integers, and p the modulus. We will also be interested
in systems of m linear modular equalities in n integer finite-domain variables,

Ax = b (mod p).

An integer i in such a ring has a multiplicative inverse if and only if i and
p are coprime. When p is prime then clearly every 0 < i < p is coprime with p.
In fact the ring of integers modulo p is a finite field Fp—every non-zero element
having a multiplicative inverse—if and only if p is prime.

Gauss-Jordan Elimination can solve systems of linear equations not only over
the real numbers but also over any field, such as Fp. We take advantage of this
in Sect. 3.

The linear modular equations are closely related to the universal hash func-
tions. Given two finite sets N and M , let H(N,M) � {h : N → M} be a
family of hash functions mapping N to M . We use h

R←− H(N,M) to denote the
probability space obtained by choosing a function h uniformly at random from
H(N,M).

Definition 1. A family of hash functions H(N,M) is k-wise independent if
∀α1, α2, . . . αk ∈ M and for distinct y1, y2, . . . yk ∈ N , h

R←− H(N,M),

Pr [(h(y1) = α1) ∧ (h(y2) = α2) . . . ∧ (h(yk) = αk)] =
(

1
M

)k

(1)

Note that every k-wise independent hash family is also k − 1 wise indepen-
dent. The phrase strongly 2-universal is also used to refer to 2-wise independent
as noted by Vadhan in [19], although the concept of 2-universal hashing proposed
by Carter and Wegman [3] only required that Pr[h(x) = h(y)] ≤ 1

2m .

3 Domain Filtering for Linear Modular Constraints

Gomes et al. [11] proposed filtering algorithms for linear finite-domain con-
straints over Fp—in this section we describe our implementation,2 including
some important improvements. On equality constraints one can apply both gje
(provided p is prime) to simplify the system and optionally reach domain con-
sistency, and also the dynamic programming representation for individual con-
straints to reach domain consistency. On inequality constraints only the latter
applies. Note that domain values belonging to the same congruence class in Fp

can be managed as a single one since their supports for these constraints will
always be identical.

2 Available at https://github.com/PesantGilles/MiniCPBP.

https://github.com/PesantGilles/MiniCPBP

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 251

Algorithm 1: Filtering algorithm for system Ax = b (mod p)

τub ← 1
for i ← 1 to np do

if xp[i] is bound then
transfer index p[i] into b

else

τub ← τub × |D(xp[i])|
if τub ≤ τmax then

T ← ∅
enumParamVars(1)
if T is empty then

fail
else

post Table(〈xi〉i∈p〈xi〉i∈d, T)
set Algorithm 1 as inactive

3.1 Gauss-Jordan Elimination for Systems of Linear Modular
Equality Constraints with a Prime Modulus

When p is prime every element of the finite field has a multiplicative inverse,
which is required to apply gje in order to simplify and solve systems of linear
equations over Fp. We precompute multiplicative inverses using the Extended
Euclidean algorithm, which also allows us to confirm that p is prime. We do not
reproduce these two algorithms here as they are well known.

Because our variables are not free but each have a finite domain restricting
their value, deciding satisfiability for the system is not immediate given the
reduced row echelon form. We may find that the system is inconsistent in which
case we report it. Otherwise the resulting parametric form yields a more efficient
domain consistency algorithm and smaller (i.e. with fewer variables) individual
equality constraints to feed potentially to the dynamic programming filtering
algorithm.

3.2 Domain Consistency for a System of Linear Modular Equality
Constraints in Parametric Form

Recall that Gomes et al. [11] chose not to implement gje. We present a straight-
forward algorithm to achieve domain consistency on such systems and which is
tractable when the number of parametric variables is small enough. Basically
we enumerate the combinations of values for the parametric variables and check
that each equation in the parametric form is satisfiable, i.e. that the required
value belongs to the domain of the corresponding nonparametric variable. Any
unsupported value in the domain of a parametric variable should be removed—
any never-required value in the domain of a nonparametric variable should also
be removed. Actually there already exists a constraint that can enforce this for
us and even provide an efficient incremental algorithm: a Table constraint on

252 G. Pesant et al.

Algorithm 2: enumParamVars(r)
if r ≤ np then

foreach v ∈ D(xp[r]) do
τ [r] ← v
enumParamVars(r + 1)

else
for i ← 1 to nd do

s ← b[d[i]]
for j ← 1 to nb do

s ← s − A[d[i]][b[j]] × xb[j]

for j ← 1 to np do
s ← s − A[d[i]][p[j]] × τ [j]

s ← s (mod p)
if s �∈ D(xd[i]) then

return
τ [np + i] ← s

T ← T ∪ {τ}

the enumerated tuples using the compact table implementation. However as the
number of tuples grows exponentially with the number of parametric variables
we only enforce domain consistency once the number of tuples falls below a given
threshold τmax as variables become bound and domains are reduced.

Let p, b, and d denote the array of indices of unbound parametric,
bound parametric, and non-parametric (dependent) variables respectively, and
np, nb, nd their size. We call Algorithm 1 whenever a parametric variable becomes
bound. It first transfers newly-bound variables from p to b while at the same
time computing the size of the Cartesian product of the domains of the remain-
ing parametric variables, which is an upper bound on the number of valid tuples
we would enumerate. If that upper bound does not exceed our threshold τmax

we proceed to enumerate valid tuples (see Algorithm 2) and then post a Table
constraint on the unbound variables. Once this happens, Algorithm1 will no
longer be called until we backtrack over that posted Table constraint.3

Theorem 1. Algorithm1 has a worst-case running time in Θ(m(n − m)pnp).

Proof. Its time complexity is dominated by that of Algorithm 2. We map domains
to the set {0, 1, . . . , p − 1} and there are np parametric variables, so we have at
most pnp tuples to enumerate. For each tuple there are at most m equations
(the rank of the row-reduced matrix) on n − m + 1 variables to evaluate. We
can check whether a value belongs to a domain in constant time (sparse set
representation). �	
In practice our choice of threshold τmax keeps the exponential factor pnp in check.

3 In practice we actually implement the compact table filtering algorithm and apply
it directly instead of repeatedly posting and retracting Table constraints.

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 253

3.3 Dynamic Programming for a Single Linear Modular Constraint

We next describe a simple adaptation of an existing filtering algorithm for indi-
vidual linear constraints to be used when dealing with an inequality constraint
or in conjunction with the previous algorithm for systems of linear equalities, as
previously proposed [11].

First observe that the usual bounds consistency algorithm for linear con-
straints does not work correctly here. Consider for example

2x + y = 4 x, y ∈ {1, 2, 3, 4}.

Reasoning from the smallest value in the domain of x allows us to determine that
the largest feasible value for y is 2, thereby declaring values 3 and 4 unsupported
and filtering them out of the domain of y. But if we have instead

2x + y = 4 (mod 5) x, y ∈ {1, 2, 3, 4}
then that same reasoning is incorrect since, for example, value 3 for y is supported
by value 3 for x since 2 · 3 + 3 = 9 ≡ 4 (mod 5). Note that the domain value
yielding the smallest contribution of a variable with positive coefficient to the
equation is not necessarily the smallest one: here value 3 gives the smallest
contribution, 1, for x.

Consider the general linear modular constraint � ≤ ax ≤ u (mod p) with an
equality constraint corresponding to the special case � = u. The pseudo-polytime
domain consistency algorithm based on dynamic programming that was origi-
nally proposed for knapsack constraints [18] can be easily adapted for modular
arithmetic, leading to a worst-case time complexity in Θ(np min(d, p)) where d
stands for the domain size. It potentially becomes less time- and space-consuming
than its original version if the modulus is not too large, which is typically the case
in many applications, and even truly polynomial if p is polynomially-related to
the domain size or to the number of variables.4 If there are several equality con-
straints of same prime modulus, gje will have reduced the number of variables
in each constraint, making the algorithm even faster.

We use that algorithm once the number of unbound variables falls below
some chosen threshold υmax: modular arithmetic makes the state space very
densely connected which makes it hard to filter anything in the presence of
several variables providing many degrees of freedom. That same observation led
Gomes et al. [11] to apply it with at most six variables.

4 Application to Checksums

Checksums are commonly used to ensure data integrity of various identifiers such
as social security and medicare numbers. This section is meant as an illustra-
tion of the usefulness of cp equipped with linear modular constraints, here for
checksums.
4 For example if p is chosen as the smallest prime number larger than the domain size,

as one can always find a prime between d and 2d for any d > 1.

254 G. Pesant et al.

The International Standard Book Number (ISBN) is a unique identifier for
books that uses a checksum in order to ensure its integrity. Originally ISBNs
append a check digit (actually ranging from 0 to 10) to a nine-digit identifier.
That check digit x10 is determined through a weighted sum with the other digits
x1, . . . , x9 in modular arithmetic:

10∑
i=1

(11 − i)xi ≡ 0 (mod 11)

This added redundancy helps detect some common transcription errors: one
can detect any single digit mistake as well as any pair of swapped digits. However
double digit mistakes may go undetected. Arguably some digit mistakes are more
likely than others, particularly from a handwritten version. For example digit
“1” is easily confused with a “7” but not with an “8”. So a natural question is:
If we restrict double digit mistakes to such easily confused pairs, can they still
go undetected?

We can write a cp model to help investigate this. Consider the very conser-
vative set of confused ordered pairs P = {(1, 7), (7, 1), (3, 5), (5, 3), (5, 8), (8, 5)}
and let ak = 11−k (1≤k≤10), the coefficients of the ISBN checksum. Sequences
of variables 〈x1, x2, . . . , x10〉 and 〈y1, y2, . . . , y10〉 each model an ISBN. For every
two digit positions 〈i, j〉 1≤i<j≤10 we ask whether, given a valid ISBN, replacing
each digit at these positions by another from a confused pair can yield another
valid ISBN:

Sum modulo(〈ak〉1≤k≤10, 〈xk〉1≤k≤10, 0, 11)
Sum modulo(〈ak〉1≤k≤10, 〈yk〉1≤k≤10, 0, 11)
Table(〈xi, yi〉,P)
Table(〈xj , yj〉,P)
yk = xk 1≤k≤10, k = i, k = j

xi < yi

xk ∈ {0, 1, . . . , 9} 1≤k≤9
x10 ∈ {0, 1, . . . , 10}

The validity of each ISBN is enforced by a linear modular constraint
Sum modulo. The close relationship of these ISBNs is enforced by using Table
constraints for positions i and j constrained to exchange digits from a confused
pair and by setting the other digits to be equal. We also add an inequality
between the digits at position i in order to avoid symmetric solutions. Because
many of the digits in the two ISBNs are identical and since we only seek to know
whether or not the model is satisfiable, prior to search we arbitrarily set most of
them to zero while leaving enough degrees of freedom, which greatly accelerates
search.

Solving this model we find many solutions, indicating a real risk that such
mistakes go undetected even when we consider few pairs of confused digits.
Inspecting these solutions we find for example that if the leading digit is a “1”

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 255

or a “7” being exchanged, the second exchanged digit yielding an undetected
mistake (i.e. a valid ISBN) must occur at a position among the set {2, 3, 8, 9, 10}.
We also notice that any confused pair can be used twice at positions 〈1, 10〉, 〈2, 9〉,
〈3, 8〉 and so forth. This is actually true for any arbitrary pair of digits (d1, d2)
and can be derived analytically:

akd� + a11−kd� = (11 − k)d� + kd� = 11d� ≡ 0 (mod 11) 1≤k≤10, 1≤�≤2

So even a single allowed pair of exchangeable digits, occurring at the right com-
bination of positions, can lead to an undetected mistake.

Now what if we added a second checksum? For example we rotate left by
one position the vector of coefficients 〈ak〉1≤k≤10 and add the corresponding
Sum modulo constraint with a new check digit. Solving this augmented model
reveals that all double digit mistakes are now detected. Can it even detect triple
digit mistakes? No—even restricting to the set P of confused pairs, each triplet of
digit positions admits exactly one combination of three pairs hiding the mistake.
If we restrict further the confused pairs solely to “1” and “7” then any such
mistake will be detected (i.e. we find no solution for any triplet). However if we
had chosen instead a left rotation by three positions for the second checksum,
we discover by solving the corresponding cp model that there is a single (though
unlikely) undetected mistake at positions 〈5, 8, 9〉:

a5 + a8 + a9 = 6 + 3 + 2 = 11 ≡ 0 (mod 11)
a8 + a1 + a2 = 3 + 10 + 9 = 22 ≡ 0 (mod 11)

Again this serves only as an illustration of the kind of analysis made easier with
cp.

5 Application to Model Counting

We now focus on the problem of model counting and demonstrate how the native
support of linear modular constraints can lead to the development of scalable
model counting techniques.

Given a csp ϕ, let sol(ϕ) represent the set of solutions of ϕ. The problem of
model counting is to estimate |sol(ϕ)|. An approximate model counter takes in
a csp instance ϕ, tolerance parameter ε, and confidence parameter δ as input
and returns an estimate c such that Pr[|sol(ϕ)|

1+ε ≤ c ≤ (1 + ε)|sol(ϕ)|] ≥ 1 − δ.
The seminal work of Valiant [20] showed that this problem is #P-complete

and the hardness manifests itself in the practical implementations of exact count-
ing. Consequently, there has been a surge of interest in the design of approximate
techniques. Hashing-based techniques have emerged as a dominant approach over
the past few years with its promise of scalability and rigorous (ε, δ)-guarantees.
The core idea is to employ pairwise independent hash functions to partition
the solution space of ϕ into roughly equal small cells of solutions. To this end,
the standard family of pairwise independent hash functions in the context of
Boolean variables consists of linear polynomials over F2. The past few years

256 G. Pesant et al.

have witnessed the development of scalable approximate model counters such
as ApproxMC [5,6,10]. The availability of CryptoMiniSat [15,17], a solver with
native support for XORs has been crucial for the scalability of these hashing-
based techniques. The importance of CryptoMiniSat can be witnessed in Soos
and Meel’s recent work [15,16] that shows runtime improvements of two to three
orders of magnitude solely in the handling of CNF-XORs drastically improved
the performance of the underlying model counter, ApproxMC.

Gomes et al. [11] generalize the XOR counting framework for csps by using
linear modular constraints. Their approach, which repeatedly tests satisfiability
in cells defined by randomly-generated linear modular constraints, provides lower
bounds on the solution count of a given problem ϕ. Another approach to counting
for variables over finite domains is due to Chakraborty et al. [4] in the context
of SMT constraints. They proposed the idea of using a conjunction of hash
functions defined over a set of distinct primes {p1, p2, . . . pk} to ensure that one
can partition the solution space into the desired number of cells M by considering
the prime factorization of M .

The primary focus of our work is to showcase the potential of linear modular
arithmetic constraints, not (yet) to design a scalable approximate model counter
for csps. Accordingly we focus on a simple procedure proposed by Chakraborty
et al. [7]: Let d be the maximum size of the domain of a variable in ϕ and let n be
the number of variables in ϕ. Then, let N = dn. Chakraborty et al. [7] proposed
the following simple algorithmic procedure that takes in a formula ϕ and c and
returns Y = 1 if |sol(ϕ)| ≥ c and returns Y = 0 otherwise. The procedure is
guaranteed to be correct with confidence at least 1 − δ.

The procedure is as follows: Repeat the following O(log 1/δ) times: at iter-
ation i, choose a hash function h ∈ H(N, 2�c�) and check if ϕ ∧ h−1(0) is sat-
isfiable, then set Zi = 1 else Zi = 0. Now we return Y = 1 if the median of
{Z1, Z2, . . . Zi . . .} is 1, else we return Y = 0. We refer the reader to [7] for the
proof.

For the purpose of this paper, we make a simple observation that the analysis
of Chakraborty et al. can be extended with respect to any bound on the number
of solutions of ϕ ∧ h−1(0), i.e., the current analysis checks whether the number
of solutions of ϕ ∧ h−1(0) is greater than 1 but one could substitute any fixed
threshold, as is also done in the context of (ε, δ) approximate counting algo-
rithms. We refer the reader to [12] for a longer discussion. The implementation
of this scheme is simple enough to illustrate the power of our framework yet
retains the core aspect of the (ε, δ)-counter, thereby allowing one to extrapolate
the importance of results in the context of approximate model counting for csps.

In the rest of this section we present experiments using linear modular equal-
ity constraints in order to evaluate both gje on a system of constraints and
the dynamic programming algorithm on individual constraints, in the context
of approximately counting the solutions of csps. All experiments were run on a
cluster of dual core AMD Opteron 275 @ 2.2 GHz processors running Java SE
11 on Linux CentOS 7.6 using the MiniCP 1.0 solver. For search we branch on
the parametric variables identified during gje (since the rest are dependent on

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 257

them) using variable ordering heuristic min-domain. Individual entries in the
tables of results are the average of thirty runs.

5.1 Synthetic Problem

We conducted a controlled experiment using a csp on n variables and ten domain
values (with p = 11). For half of the variables, one third of them must take value
0 (modeled using an Exactly constraint, which is decomposed into a Sum
constraint over indicator variables); for the other half, all values must be different
(modeled using an AllDifferent constraint enforcing domain consistency).
The clean combinatorial nature of such a csp allows us to derive analytically
the exact number of solutions without the need to enumerate them, thus making
it possible to measure the accuracy of an approximate count even when the full
exploration of the search space is computationally prohibitive.

Fig. 1. Search tree size and computation time for different choices of τmax and using
the dynamic programming algorithm for individual constraints (“DP” with υmax = 6)
or not. Each data point corresponds to an instance (n, m).

Figure 1 first evaluates the impact on efficiency of some choices of threshold
τmax about the number of tuples that can be included in a Table constraint
and of using or not the filtering algorithm in Sect. 3.3 for individual constraints.
Though instances are not identified on the plot, search tree size for a given
instance does not tend to vary a lot across configurations—hence its data points
appear at about the same height. We make two observations from the horizontal
spread of the points for a given instance: the dynamic programming algorithm’s
occasional small reduction in search effort does not make up for the frequent
significant increase in computation time; a choice of τmax = 1000 generally works
best here. These pragmatic choices were also confirmed on several of the instances
from Sect. 5.2. Accordingly all remaining experiments use these settings.

258 G. Pesant et al.

It is interesting to note that our more efficient implementation of gje using a
Table constraint leads to a conclusion that is the opposite of [11]: it is better to
use gje alone instead of the dynamic programming algorithm on each constraint
and without gje.

As mentioned before, the objective of this paper is not to build a full-blown
approximate model counter but develop the underlying techniques to support
such a model counter in the context of cp. Therefore, we demonstrate the effec-
tiveness of our techniques via the approach due to Chakraborty et al. [7]. To
simulate such an experiment, for a fixed number m of linear modular constraints,
we seek to enumerate the solutions. It is perhaps worth recalling that the core
idea of hashing-based counting is to enumerate solutions in a cell after adding
a certain number of constraints, and then extrapolate the count of the original
formula by scaling the count in a cell by the number of cells. In the context
of hashing-based counters for sat, one often needs to balance the tradeoff of
handling cells with large number of solutions and the error in the approximation
due to small cells. We seek to study whether such tradeoffs exist in cp as well,
so as to allow the future developers of cp-based approximate model counters to
make informed choices.

Table 1 reports the accuracy of our approximate count as we vary the number
m of linear modular constraints added. As expected computation time decreases
as m increases but so does the accuracy of our approximation. Nevertheless on
instances with trillions of solutions we manage to produce approximate counts
with a relative error under 1% in a matter of seconds. To achieve comparable
accuracy we spend about one order of magnitude more time for an instance with
three orders of magnitude more solutions in a search space that is five orders of
magnitude larger. Consider as well that computing an exact count by exhaustive
enumeration for as few as ten variables (n = 10; m = 0 line in the table) required
almost five hours whereas an approximation with a relative error under 1% is
obtained under a second.

We also report in Table 1 the accuracy of a much simpler yet naive approach
to extrapolating the number of solutions enumerated in a subspace (cell): choose
m variables uniformly at random and fix them to some value in their domain, also
chosen uniformly at random (note that after each variable is fixed we perform
constraint propagation to filter the remaining domains). We see clearly that
the relative error is much larger and does not improve much as m decreases. It
illustrates how the theoretical guarantees of linear modular constraints do make
a difference.

These instances admit many solutions, with a ratio of the number of solutions
to the size of the search space ranging from 1e−1 (n = 10) to 1e−5 (n = 20).
We will see in the next section that the gain in performance may not always be
as spectacular when that ratio is lower.

5.2 Benchmarks from [11]

In order to make some comparisons, we now consider the benchmark problems
used in Gomes et al. [11]: the n-queens problem, DIMACS graph colouring

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 259

Table 1. Impact of the number of linear modular constraints m on our approximate
count for synthetic instances. We also report the accuracy of a naive approach that
simply fixes m variables at random.

n Total #solns m Linear modular constraints Naive

Time (s) #solns in cell Error (%) Error (%)

10 9.92 × 108 0 17829.8 992023200 – –

3 52.9 745356 0.04 20.49

4 5.3 67806 0.26 36.14

5 0.6 6171 0.92 45.38

6 0.1 564 3.76 52.91

7 0.0 50 11.42 57.32

15 2.25 × 1012 6 373.2 1269977 0.07 76.73

7 41.1 115414 0.15 84.51

8 6.8 10497 0.75 86.80

9 1.2 950 2.45 99.01

10 0.2 85 9.28 118.33

20 2.08 × 1015 9 2379.2 883113 0.09 79.04

10 232.5 80301 0.24 101.13

11 54.2 7322 1.12 79.31

12 13.9 665 3.64 94.41

13 3.3 59 9.72 101.79

instances, and the Spatially Balanced Latin Square problem. For each instance
we set p to the smallest prime number greater or equal to the domain size.

Spatially Balanced Latin Squares. A Latin square of order n is an n × n
matrix in which each cell is assigned one of n distinct symbols such that each
row and column contains each symbol. A spatially balanced Latin square (SBLS)
additionally requires that for each pair of symbols, the sum of their distance in
each row be equal to a given constant. These find applications in experimental
design. There are very few such combinatorial objects of any given order, i.e.
their search space is very sparsely populated with solutions. As in [14] we con-
sider particular streamlined SBLS, a subclass restricted to column order permu-
tations of a cyclically-constructed Latin square. Our cp model uses n variables
with identical domain {1, 2, . . . , n} to specify the order of the columns, an AllD-
ifferent constraint over them to enforce a permutation, and combinations of
Sum and Table contraints to enforce spatial balance. We further fix the first
column in order to break some amount of symbol symmetry. Its search space
is much smaller yet solutions are still very sparsely distributed: the solution-to-
search-space ratio ranges from 2.4e−9 to 1.2e−12 for the order −12, −14, and
−15 instances we consider (there can be no solution whenever n ≡ 1 (mod 3)).

260 G. Pesant et al.

Table 2. Impact of the number of linear modular constraints m on our approximate
count for several benchmark problems.

Instance m Time (s) Number of solutions

In cell Extrapolated Error (%)

sbls12 0 1252 672 672 –

1 994 53 685 1.95

2 356 4 682 1.43

sbls14 0 170860 1968 1968 –

1 145781 116 1968 0.00

2 46170 7 2123 7.86

sbls15 0 2411411 13248 13248 –

2 668312 45 13019 1.73

3 140114 3 13101 1.11

queens13 0 98 73712 73712 –

2 49 433 73115 0.81

3 33 33 71767 2.64

queens15 0 3231 2279184 2279184 –

3 918 464 2278649 0.02

4 482 28 2360860 3.58

queens17 0 175140 95815104 95815104 –

4 23415 1141 95319733 0.52

5 11876 65 92432691 3.53

myciel4 0 224 142282920 1.423e+8 –

3 79 1138181 1.423e+8 0.01

5 36 45554 1.424e+8 0.05

7 9 1821 1.422e+8 0.04

9 3 73 1.417e+8 0.39

2 insertions 3 0 ?? ?? ?? –

11 29844 116705 5.698e+12 ??

13 8776 4662 5.691e+12 ??

15 1665 187 5.692e+12 ??

17 285 8 5.824e+12 ??

Table 2 reports our results on these instances. Because there are so few solu-
tions, after adding one or two linear modular constraints the cell does not contain
many solutions. As a result the computational savings are modest. Still, for the
order-15 instance we obtain approximations to within 1% in under two days
whereas enumerating the solutions took 28 days. Recall that the focus of [11]
was to compute lower bounds with high confidence using short (i.e. on at most
six variables) linear modular constraints. For instances sbls14 and sbls15 they

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 261

Table 3. Searching the space of vertex colourings for graphs.

Instance Vertices Edges Colours Search space Solutions Ratio

myciel4 23 71 5 521 142282920 3e−7

myciel5 47 236 6 645 ?? ??

2 insertions 3 37 72 4 435 ?? ??

report lower bounds of 591 and 1748 respectively, computed in a few minutes.
Though correct, these significantly underestimate the true counts, 27552 and
198720, obtained by multiplying our m = 0 counts by n to account for fixing the
first column.

n-Queens Problem. One must place n queens on an n × n chessboard so that
no two queens can attack each other. As usual we model this problem using
n variables and three AllDifferent constraints. The solution-to-search-space
ratio ranges from 2.4e−10 to 1.2e−13, slightly lower than that of the previous
problem. One can get an approximate count with relative error under 1% at
a computational cost reduced by a growing factor ranging here from 2 to 7.5
(Table 2). For queens15, [11] report 3.9e+5 as lower bound whereas the true
count is close to 2.3e+6.

Graph Colouring. Given an undirected graph, assign a colour from a given
set to each vertex so that vertices linked by an edge bear distinct colours. Our
cp model has one variable per vertex whose domain is the set of colours and
a binary disequality for each edge. We considered the four instances used by
[11]. Because in our case we ultimately explore an entire cell, most of these
instances were out of reach: we report on instance 2 insertions 3 and on the
next smaller instance from myciel5, whose characteristics are given in Table 3.
Here the search space is much more densely populated with solutions but the
number of variables in the model is also significantly higher. Despite breaking
some colour symmetry by arbitrarily colouring both endpoints of some edge, we
only managed to enumerate the solutions of myciel4. On this instance we obtain
an approximation with relative error under 1% at a computational cost reduced
by close to two orders of magnitude (Table 2). While we cannot measure the error
on instance 2 insertions 3 our converging results suggest that the true count is
near 6.83e+13 (4 × 3× 5.69e+12, factoring in the pre-coloured edge) and that a
close approximation can be computed in under 30 min (m = 15) by enumerating
solutions in one of 515 ≈ 3e+10 cells—exploring the whole search space would
take much much longer. The lower bound computed in [11] is 2.3e+12.

5.3 Towards a Practical Scalable Model Counter

The encouraging empirical evaluation in the preceding section leads one to ask:
what would be needed to design a practical efficient model counter? To this end,

262 G. Pesant et al.

we believe a general recipe would be the one followed by Chakraborty et al.
in their design of SMTApproxMC but a direct translation of their approach
would induce linear modulo constraints over different primes. In this context,
one wonders whether there is an alternate approach that can ensure all the
constraints are over the same modulus. We sketch out a promising direction
below by observing the construction of hash functions based on inequalities.
Instead of the usage of hash functions with different primes in order to partition
the solution space into the desired number of cells, we seek to use inequalities.
In particular we propose hash functions such that all the items x that map to a
cell α are represented using: Ax + b ≤ α (mod p) wherein p is a prime, and A,
x, b, and α are matrices of sizes m × n, n × 1, m × 1, and m × 1 respectively
with entries in [0, p − 1]. Let α[i] represent the value of the i-th coordinate of α.
We now state the desired properties of pairwise independence:

Lemma 1. For x, y ∈ [p]n, we have

Pr[Ax + b ≤ α] =
∏

m(α[i] + 1)
pm

(2)

Pr[Ax + b ≤ α | Ay + b ≤ α] =
∏

m(α[i] + 1)
pm

(3)

Proof. Chakraborty et al. [4] showed

Pr[Ax + b = α] = Pr[Ax + b = α | Ay + b = α] =
1

pm
(4)

For u, v ∈ [p]n, we define u ≺ v if for all i, u[i] ≤ v[i].

Pr[Ax + b ≤ α] = Pr[
⋃

β≺α

Ax + b = β]

= Pr[Ax + b = 0]
∏
m

(α[i] + 1) =
∏

m(α[i] + 1)
pm

Similarly, we have

Pr[Ax + b ≤ α | Ay + b ≤ α] = Pr[
⋃

β≺α

Ax + b = β | Ay + b ≤ α] =

∏
m(α[i] + 1)

pm

�	
The expected number of solutions is |sol(ϕ)|×∏

m(α[i]+1)

pm . Since α[i] ∈ [0, p−1],
similar to the case of random XORs, there exists an appropriate assignment to
α[i] such that the expected number of solutions is in the desired range.

6 Conclusion and Future Outlook

Motivated by the recent surge of interest in applications based on model counting
in the sat domain and the concurrent development of efficient hashing-based

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 263

model counting, we examined the key enabling factors for such a development.
We observed that the availability of solvers with native support for hashing
constraints was a crucial contributing factor to the aforementioned development.
In the context of csps, the hashing constraints with pairwise independence can
be represented by linear modular arithmetic constraints. We provided an efficient
implementation of such constraints in a cp solver, reversing previous choices of
approach, and demonstrated their usefulness for model counting but also for
other applications such as checksums. Our empirical evaluation highlighted the
potential computational savings it can bring as well as the tradeoffs that should
be taken into account when developing hashing-based techniques for approximate
model counting on csps.

From our experiments in Sect. 5, despite our success in being able to reach
close approximate counts at a fraction of the computational cost, we currently
see two obstacles to the widespread use of hashing-based techniques for model
counting in cp. The first is when the total number of solutions s is relatively
small with respect to p (e.g. for SBLS): m must be smaller than logp s to expect
the resulting cell to contain solutions so if that quantity does not exceed two
or three we cannot gain much speedup. The approach outlined in Sect. 5.3 may
remove that first obstacle. The second is when the number of variables n is large
(e.g. for graph coloring): logp s may be large enough for us to add many linear
modular constraints but having n − m parametric variables may still be too
many to fix before any gje filtering can occur (recall threshold τmax) and so
the process remains time consuming even though in principle we are limiting
our search to a single cell. This relates more generally to the lack of filtering
opportunities for linear modular constraints on a large number of variables, as
mentioned in Sect. 3: propagation will only appear late in the search tree, once
enough variables have been instantiated.

Follow-up work in the short term includes building on this work to implement
approximate model counting schemes, and improving the filtering capability of
our gje algorithm by replacing our simple τmax threshold by a more sophis-
ticated mechanism and possibly by introducing smart tables [21] in order to
attempt earlier propagation in the search tree.

The broader objective of this paper is to initiate discussion among the cp
community on the development of solvers with native support for linear modular
arithmetic constraints. Akin to the sat community where the initial framework
proposed by Soos et al. [17] in CryptoMiniSat received widespread attention
and subsequent studies improved the framework considerably, we hope the same
would hold true with respect to our work.

Acknowledgements. We thank the anonymous reviewers for their constructive crit-
icism which helped us improve the original version of the paper. Financial support
for this research was provided in part by NSERC Discovery Grant 218028/2017 and
by National Research Foundation Singapore under its NRF Fellowship Programme
[NRF-NRFFAI1-2019-0004].

264 G. Pesant et al.

References

1. Bardin, S., Herrmann, P., Perroud, F.: An alternative to SAT-based approaches for
bit-vectors. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 84–98. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-
2 7

2. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue:
past, present and future. Constraints Int. J. 12(1), 21–62 (2007). https://doi.org/
10.1007/s10601-006-9010-8

3. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: ACM Sym-
posium on Theory of Computing, pp. 106–112. ACM (1977)

4. Chakraborty, S., Meel, K.S., Mistry, R., Vardi, M.Y.: Approximate probabilistic
inference via word-level counting. In: Proceedings of AAAI (2016)

5. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200–216. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40627-0 18

6. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approxi-
mate counting for probabilistic inference: from linear to logarithmic SAT calls. In:
Proceedings of IJCAI (2016)

7. Chakraborty, S., Meel, K.S., Vardi, M.Y.: On the hardness of probabilistic inference
relaxations. In: Proceedings of AAAI (2019)

8. Chihani, Z., Marre, B., Bobot, F., Bardin, S.: Sharpening constraint programming
approaches for bit-vector theory. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR
2017. LNCS, vol. 10335, pp. 3–20. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59776-8 1

9. Demeulenaere, J., et al.: Compact-table: efficiently filtering table constraints with
reversible sparse bit-sets. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp.
207–223. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 14

10. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting: a new strategy for obtain-
ing good bounds. Proc. AAAI 21, 54–61 (2006)

11. Gomes, C.P., van Hoeve, W.J., Sabharwal, A.Selman, B.: Counting CSP solutions
using generalized XOR constraints. In: AAAI, pp. 204–209. AAAI Press (2007)

12. Meel, K.S., Akshay, S.: Sparse hashing for scalable approximate model counting:
theory and practice. In: Proceedings of Logic in Computer science (LICS), July
2020

13. Michel, L.D., Van Hentenryck, P.: Constraint satisfaction over bit-vectors. In:
Milano, M. (ed.) CP 2012. LNCS, pp. 527–543. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33558-7 39

14. Smith, C., Gomes, C., Fernández, C.: Streamlining local search for spatially bal-
anced Latin squares. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI-05, Proceedings
of the Nineteenth International Joint Conference on Artificial Intelligence, Edin-
burgh, Scotland, UK, 30 July–5 August 2005, pp. 1539–1540. Professional Book
Center (2005)

15. Soos, M., Gocht, S., Meel, K.S.: Tinted, detached, and lazy CNF-XOR solving and
its applications to counting and sampling. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 463–484. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8 22

16. Soos, M., Meel, K.S.: BIRD: engineering an efficient CNF-XOR SAT solver and its
applications to approximate model counting. In: Proceedings of AAAI Conference
on Artificial Intelligence (AAAI), January 2019

https://doi.org/10.1007/978-3-642-12002-2_7
https://doi.org/10.1007/978-3-642-12002-2_7
https://doi.org/10.1007/s10601-006-9010-8
https://doi.org/10.1007/s10601-006-9010-8
https://doi.org/10.1007/978-3-642-40627-0_18
https://doi.org/10.1007/978-3-319-59776-8_1
https://doi.org/10.1007/978-3-319-59776-8_1
https://doi.org/10.1007/978-3-319-44953-1_14
https://doi.org/10.1007/978-3-642-33558-7_39
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-030-53288-8_22

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 265

17. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

18. Trick, M.A.: A dynamic programming approach for consistency and propagation
for knapsack constraints. Ann. OR 118(1–4), 73–84 (2003). https://doi.org/10.
1023/A:1021801522545

19. Vadhan, S.P., et al.: Pseudorandomness. Found. Trends R© Theor. Comput. Sci.
7(1–3), 1–336 (2012)

20. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

21. Verhaeghe, H., Lecoutre, C., Deville, Y., Schaus, P.: Extending compact-table to
basic smart tables. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 297–307.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2 19

https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1023/A:1021801522545
https://doi.org/10.1023/A:1021801522545
https://doi.org/10.1007/978-3-319-66158-2_19

Injecting Domain Knowledge in Neural
Networks: A Controlled Experiment

on a Constrained Problem

Mattia Silvestri(B), Michele Lombardi, and Michela Milano

University of Bologna, Bologna, Italy
{mattia.silvestri4,michele.lombardi2,michela.milano}@unibo.it

Abstract. Recent research has shown how Deep Neural Networks
trained on historical solution pools can tackle CSPs to some degree,
with potential applications in problems with implicit soft and hard con-
straints. In this paper, we consider a setup where one has offline access
to symbolic, incomplete, problem knowledge, which cannot however be
employed at search time. We show how such knowledge can be generally
treated as a propagator, we devise an approach to distill it in the weights
of a network, and we define a simple procedure to extensively exploit
even small solution pools. Rather than tackling a real-world application
directly, we perform experiments in a controlled setting, i.e. the classical
Partial Latin Square completion problem, aimed at identifying patterns,
potential advantages, and challenges. Our analysis shows that injecting
knowledge at training time can be very beneficial with small solution
pools, but may have less reliable effects with large solution pools. Scala-
bility appears as the greatest challenge, as it affects the reliability of the
incomplete knowledge and necessitates larger solution pools.

1 Introduction

Given enough data, Deep Neural Networks (DNNs) are capable of learning com-
plex input-output relations with high accuracy. Recent work has shown how
this applies also to the solution process of Constraint Satisfaction Problems,
at least to some degree: examples include the approach from [26], relying on a
pool of solutions, or Reinforcement Learning approaches inspired by [2], relying
on solution checkers/evaluators. This class of approaches, while still not close
to the state of the art in combinatorial decision making, may have advantages
in terms of robustness and when implicit soft or hard constraints are present.
For example, course timetables often need to take into account both explicit
constraints (e.g. preferences, capacities) and informal agreements or manually
enforced rules. A second, less explored, area of application concerns problems
with well-defined sources of symbolic knowledge, which cannot however be easily
exploited at search time. Examples include simulators, complex nonlinear equa-
tions, or particularly expensive (e.g. NP-hard) propagators. In this context, a
Deep Learning approach may learn to satisfy such constraints without the need
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 266–282, 2021.
https://doi.org/10.1007/978-3-030-78230-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_17

Knowledge Injection in DNN 267

for a propagator at search time. In this paper, we focus on the latter use case
and investigate methods for injecting offline information into DNNs designed to
tackle combinatorial problems. Specifically, we will consider training a network
for identifying variable-value assignments that are likely to be feasible. We will
assume the availability of both implicit knowledge (from data), and explicit sym-
bolic knowledge that can be accessed prior to the search process. Rather than
tackling a real-world problem directly, we perform experiments in a controlled
setting, with the aim to gauge the potential of the approach and identify the key
challenges. The idea, in the spirit of [6], is to test the ground before starting the
complex and time-consuming endeavor of applying such methods in a real-world
use case.

In detail, we use as a benchmark the Partial Latin Square (PLS) completion
problem, which requires to complete a partially filled n × n square with values
in {1..n}, such that no value appears twice on any row or column. Despite its
simplicity, the PLS is NP-hard, unless we start from an empty square, it has
practical applications (e.g. in optical fiber routing), and serves as the basis for
more complex problems (e.g. timetabling). We focus on the only PLS due to its
clear structure, availability of multiple solutions that can be easily generated, and
its single defining parameter (size). Using a classical constrained problem as a
case study grants access to domain knowledge (the declarative formulation), and
facilitates the generation of empirical data (problem solutions). This combination
enables controlled experiments that are impossible to perform on real-world
datasets.

As a baseline, we train on a pool of solutions a problem-agnostic, data-driven,
approach. We devise a simple method to extract multiple training examples from
a finite set of solutions, and we define a technique, building over Semantic Based
Regularization [9] to inject at training time domain knowledge coming from con-
straint propagators. We then adjust the amount of initial data (empirical knowl-
edge) and of injected constraints (domain knowledge) and assess the ability of
the approach to identify feasible assignments. Our results show that even very
small solution pools, provided they are coupled with offline knowledge injection,
are enough for the DNN to identify feasible assignments with reliability com-
parable to a propagator at search time. When training solutions are plentiful,
conversely, injecting offline knowledge has a less pronounced (or even deleterious)
effect. Scalability appears as the greatest challenge, as it affects the reliability of
the incomplete knowledge and necessitates larger solution pools.

The paper is organized as follows: Sect. 2 briefly surveys the related literature
and motivates the choice of our baseline techniques; Sect. 3 discusses the details
of the problem and methods we use; Sect. 4 presents the results of our analysis,
while Sect. 5 provides concluding remarks.

2 Related Works and Baseline Choice

The analysis that we aim to perform requires 1) a data-driven technique that
can solve a constrained problem, with no access to its structure; moreover, we

268 M. Silvestri et al.

need 2) methodologies for injecting domain knowledge in such a system. In this
section, we briefly survey methods available in the literature for such tasks and
we motivate our selection of techniques.

Neural Networks for Solving Constrained Problems. The integration of Machine
Learning methods for the solution of constrained problems is an active research
topic, recently surveyed in [3]. Many such approaches consider how ML can
improve specific steps of the solution process: here, however, we are inter-
ested in methods that use learning to replace (entirely or in part) the mod-
eling activity itself. These include Constraint Acquisition techniques (e.g. [4]),
which attempt to learn a declarative problem description from feasible/infeasible
variable assignments. These approaches may however have trouble dealing with
implicit knowledge (e.g. preferences) that cannot be easily stated in a well-
defined constraint language. Techniques for encoding Machine Learning models
in constrained problems (e.g. [11,16,20,25]) are capable of integrating empirical
and domain knowledge, but not at training time; additionally, they require to
know a-priori which variables are involved in the constraints to be learned.

Some approaches (e.g. [1,5]) rely on carefully structured Hopfield Networks
to solve constrained problems, but designing these networks (or their training
algorithms) requires full problem knowledge. Recently, Reinforcement Learning
and Pointer Networks [2] or Attention [14] have been used for solving specific
classes of constrained problems, with some measure of success. These approaches
also require a high degree of problem knowledge to generate the reward signal,
and to some degree for the network design. The method from [26] applies Neural
Networks to predict the feasibility of a binary CSP, with a very high degree
of accuracy; the prediction is however based on a representation of the allowed
variable-value pairs, and hence requires explicit information about the problem.

In the approach from [12], from some of the authors of this paper, a Neural
Network is used to learn how to extend a partial variable assignment so as to
retain feasibility. Despite its limited practical effectiveness, this method shares
the best properties of Constraint Acquisition (no explicit problem information),
without being restricted to constraints expressed in a classical declarative lan-
guage. This last approach was chosen as our baseline, since it represents (to
the best of our knowledge) the data driven method for constraint problems that
requires the least amount of problem knowledge. In particular, it requires neither
information about the problem constraints (like e.g. [26]), nor a fully known (or
at least evaluable) problem model like all Reinforcement Learning approaches.

Domain Knowledge in Neural Networks. There are several approaches for incor-
porating external knowledge in Neural Networks, none of which has been applied
so far on constrained decision problems. One method to take into account domain
knowledge at training time is Semantic Based Regularization (SBR) [8], which
is based on the idea of converting (logical) constraints into regularizing terms
in the loss function used by a gradient-descent algorithm. Differentiability is
achieved by means of fuzzy logic. In a similar way, [27] describes a semantic loss

Knowledge Injection in DNN 269

function that quantifies how much the network is satisfying constraints defined
as sentences of propositional logic.

The approach can be pushed to an extreme by entirely replacing the loss
function with a logical formula (again in fuzzy form), such as in Logic Tensor
Networks (LTNs) [23]. LTNs are connected to Differentiable Reasoning [24],
which uses relational background knowledge to benefit from unlabeled data.

Domain knowledge has also been introduced in differentiable Machine Learn-
ing (mainly Deep Networks) by adjusting their structure, rather than the loss
function: examples include Deep Structured Models, e.g. [15] and [17], the latter
integrating deep learning with Conditional Random Fields. The authors of [7]
have developed a method to inject the domain knowledge encoded as First Order
Logic formulas in Neural Networks generating an additional final layer that modi-
fies the predictions according to the knowledge. Integration of external knowledge
in Neural Networks after training is considered for example in DeepProbLog [18],
where DNNs with probabilistic output (classifiers in particular) are treated as
predicates. Markov Logic Networks achieve similar results via the use of Markov
Fields defined over First Order Logic formulas [21], which may be defined via
probabilistic ML models. [22] presents a Neural Theorem Prover using differen-
tiable predicates and the Prolog backward chaining algorithm.

Some works attempt to both learn symbolic knowledge and enable reasoning
with predicates represented by ML models. The method in [19] are similar in
spirit to SBR or LTN, but they enable learning the weights of constraint terms
(based on compatibility with the data), rather than having them fixed by an
expert. This connects the approach to Differentiable Inductive Logic Program-
ming, which attempts to learn (soft) logic problem from noisy data [10], by
building over Inductive Logic Programming ideas.

We use a method loosely based on SBR for injecting knowledge at train-
ing time, as it offers a good compromise between flexibility and simplicity. In
addition, since we regularize the propagator output rather than the constraint
itself, our predicates are unary and hence we have no relational terms, making
approaches like [7,23] and [27] extremely similar to SBR in our setup.

3 Basic Methods

We reimplemented the approach from [12] and extended it via a number of
techniques, described in this section together with our evaluation procedure.

Neural Network for the Data Driven Approach. The baseline approach is based
on training a Neural Network to extend a partial assignment (also called a partial
solution) by making one additional assignment, so as to preserve feasibility.
Formally, the network is a function:

f : {0, 1}m → [0, 1]m (1)

whose input and output are m dimensional vectors. Each element in the vectors
is associated to a variable-value pair 〈zj , vj〉, where zj is the associated variable

270 M. Silvestri et al.

Algorithm 1. deconstruct(x)
D = ∅
while ‖x‖1 > 0 do

Let y = 0 # zero vector
Select a random index i s.t. xi = 1
Set xi = 0, set yi = 1
Add the pair 〈x, y〉 to D

return D

and vj is the associated value. We refer to the network’s input as x, assuming
that xj = 1 iff zj = vj . Each component fj(x) of the output is proportional
to the probability that pair 〈zj , vj〉 is chosen for the next assignment. This is
achieved in practice by using an output layer with m neurons with a sigmoid
activation function. The setup makes no assumptions on the constraint structure
but requires a fixed problem size and variables with finite domains.

Dataset Generation Process. The input of each training example corresponds to
a partial solution x, and the output to a single variable value assignment (repre-
sented as a vector y using a one-hot encoding). The training set is constructed by
repeatedly calling the randomized deconstruction procedure of Algorithm1 on
an initial set of full solutions (referred to as solution pool). Each call generates
a number of examples that are used to populate a dataset. At the end of the
process, we discard multiple copies of identical examples. Two examples may
have the same input, but different output, since a single partial assignment may
have multiple viable completions.

Unlike [12], here we sometimes perform multiple calls to Algorithm1 for the
same starting solution. This simple approach enables to investigate indepen-
dently the effect of the training set size and of the actual amount of empirical
knowledge (the size of the solution pool).

Training and Knowledge Injection. The basic training for the NN is the same
as for neural classifiers. Since the network output can be assimilated to a class,
we process the network output through a softmax operator, and then we use as
a loss function the categorical cross-entropy H. Additionally, we inject domain
knowledge at training time via an approach that combines ideas of Semantic
Based Regularization (SBR) and Constraint Programming.

Without loss of generality, we assimilate domain knowledge to a constraint
propagator, in the sense that it can be used to flag specific variable-value pairs
as either feasible or infeasible. In our experimentation, we indeed use a classical
propagator (Forward Checking) as the source of domain knowledge.

Formally, given a constraint (or a collection of constraints) C, here we will
treat its associated propagator as a multivariate function such that Cj(x) = 1
iff assignment zj = vj has not been marked as infeasible by the propagator,
while Cj(x) = 0 otherwise. Given that, we formulate three different approaches
to augment the loss function with an SBR inspired term.

Knowledge Injection in DNN 271

The first one relies on the usual assumption that pruned values are supposed
to be provably infeasible. Given an example 〈x, y〉, we have:

Lnegative
sbr (x) =

m−1∑

j=0

((1 − Cj(x)) · fj(x)) (2)

i.e. increasing the output of a neuron corresponding to a pair flagged as infeasible
incurs in a penalty that grows with fj(x).

For the other two methods, we just acknowledge that the domain knowledge
may be incomplete, discouraging provably infeasible pairs, and encouraging the
remaining ones. The only difference is in the cost function. In one instance the
cost function is the binary cross-entropy, since for each partial solution there
may exist many global viable completions, and the SBR inspired term is:

Lbce
sbr (x) =

m−1∑

j=0

(Cj(x) · log(fj(x)) + (1 − Cj(x)) · log(1 − fj(x)) (3)

In the other case instead we employ the mean squared error as cost function for
the SBR inspired regularization:

Lmse
sbr (x) =

m−1∑

j=0

(Cj(x) − fj(x))2 (4)

Our full loss is hence given by:

L(x, y) = H

(
1
Z

f(x), y
)

+ λLsbr (x) (5)

where Z is the partition function and the scalar λ controls the balance between
the cross-entropy term H and the SBR term, i.e. the amount of trust we
put in the incomplete domain knowledge. Since we assume the domain knowl-
edge/propagator to be incomplete, there is a risk of injecting incorrect informa-
tion into the model. In practice, this is balanced by the presence of the categorical
cross-entropy term in the loss: only the single pair that comes from the decon-
struction of a full solution will be associated with a non-null component, and
this pair is guaranteed to be globally feasible.

The method can be applied for all known propagators with discrete, finite
domain, variables. By adapting the structure of the SBR term, it can be made
to work for important classes of numerical propagators (e.g. those that enforce
Bound Consistency).

Evaluation and Knowledge Injection. We evaluate the approach via a constraint
solver, a classical PLS model, and a randomized search strategy. Formally, we
assume access to a function solve(x, C, h), where x is the starting partial
assignment, C is the considered (sub)set of problem constraints, and h is a

272 M. Silvestri et al.

Algorithm 2. feastest(X, C, h)
J∗ = arg max{hj(x) | Cj(x) = 1} # Most likely assignments
Pick j∗ uniformly at random from J∗

Set xj∗ = 1
if solve(x, Cpls , hrnd) �= ⊥ then

return 1 # Globally feasible
else

return 0 # Globally infeasible

probability estimator for variable-value pairs (e.g. our trained NN). The func-
tion runs a Depth First Search using the Google or-tools constraint solver: the
variable-value pair for the left branch is chosen at random with probabilities
proportional to h(x′), where x′ is the current state of assignments. The solve
function returns either a solution, or ⊥ in case of infeasibility.

Our main evaluation method tests the ability of the NN to identify indi-
vidual assignments that are globally feasible, i.e. that can be extended into full
solutions. This is done via Algorithm 2, which 1) starts from a given partial solu-
tion; 2) relies on a constraint propagator C (if supplied) to discard some of the
provably infeasible assignments; 3) uses the NN to make a (deterministic) single
assignment; 4) attempts to complete it into a full solution (taking into account
all problem constraints, i.e. Cpls). Replacing the NN with a uniform probability
estimator provides an uninformed search strategy. We repeat the process on all
partial solutions from a test set and collect statistics. This approach is identical
to one of those in [12], with one major difference, i.e. the ability to use a con-
straint propagator for “correcting” the output of the probability estimator. This
enables us to assess the impact of using the offline knowledge directly during the
search, something that is allowed in our controlled setting, but that would be
impossible (e.g.) with an actual simulator.

Unlike in typical Machine Learning evaluations, accuracy is not a meaningful
metric in our case, as it is tied to the (practically irrelevant) ability to replicate
the same sequence of assignments observed at training time. Incidentally, accu-
racy is very low when measured in the traditional way in all our experiments.

4 Empirical Analysis

In this section we discuss our experimental analysis, which is designed around
three key questions:

Q1: Does injecting knowledge at training time improve the network’s ability to
identify feasible assignments?

Q2: What is the effect of adjusting the amount of available empirical knowledge?
Q3: Can knowledge injection improve the ability to satisfy constraints in a soft

fashion, i.e. in terms of the number of violations?

Knowledge Injection in DNN 273

Fig. 1. Effect of the injection of the all constraints at training time comparing the
regularization methods for different λ values, on the PLS-12. The dataset is generated
from a 10,000 solutions pool.

While Q1 and Q2 focus on the feasibility of individual assignments, Q3 assumes
that some degree of infeasibility can be tolerated. We present a series of experi-
ments in our controlled use case that investigate such research directions. Details
about the rationale and the setup of each experiment are reported in dedicated
sections, but some common configurations can be immediately described.

We perform different experiments on 7×7, 10×10 and 12×12 PLS instances,
resulting respectively in input and output vectors with 343, 1000 and 1728 ele-
ments. For all the experiments, we use a feed-forward, fully-connected Neural
Network with three hidden layers, each with 512 units having ReLU activation
function. This setup is considerably simpler than the one we used in [12], but
manages to reach very similar results. We employ the Adam optimizer from
Keras-TensorFlow 2.0, with default parameters. We use a batch size of 2048 for
experiments on the PLS-7, whereas we adopt a batch size of 50,000 for the ones
on PLS-10 and PLS-12.

4.1 Regularization Methods Comparison and λ-tuning

As a first step to evaluate the impact of knowledge injection at training time,
we compare the regularization methods and evaluate how the λ value affects
the performance of each of them. We focus on the PLS-12, which is the great-
est dimension among the ones examined in this work so that advantages and
limitations for each method can easily emerge. We refer as negative, bce and
mse to the methods which respectively employ the SBR inspired loss functions
described in Eq. (2), eq. (3) and Eq. (4).

274 M. Silvestri et al.

Fig. 2. Effect of the injection of the only rows constraints at training time compar-
ing the regularization methods for different λ values, on the PLS-12. The dataset is
generated from 10,000 solutions pool.

The evaluation concerns whether injecting domain knowledge at training time
may help the NN in the identification of feasible assignments, assuming the same
knowledge is not available at search time. We also assume in this instance that
a large number of historical solutions is available.

This experimentation is motivated by practical situations in which: 1) a
domain expert has only partial information about the problem structure, but
a pool of historical solutions is available; 2) some constraints (e.g. from differen-
tial equations or discrete event simulation) cannot be enforced at search time.
In detail, the training set is generated using the deconstruction approach from
Sect. 3, starting from a set of 10,000 PLS solutions, 75% of which are used for
training and the remaining ones for testing. Each solution is then deconstructed
exactly once, yielding a training set of 1,000,000 examples. An additional valida-
tion set of 5,000 partial solutions is adopted to assess the improvements during
training via the feastest procedure, using the network as the heuristic h and
an empty set of constraints as C (no propagation when choosing the assign-
ment to be checked). Since this computation is really expensive, we perform the
assessment every 10 epochs. If for 10 successive checks the best global feasibility
ratio found so far is not improved then we stop the training.

For each regularization approach, we train two neural networks: one trained
with knowledge about row constraints and another trained with knowledge about
row and column constraints. For the first network, we use the SBR-inspired
methods (and a Forward Checking propagator) to inject knowledge that both
assigning a variable twice and assigning a value twice on the same row is for-
bidden. For the second one, we do the same, applying the Forward Checking
propagator also to column constraints (i.e. no value can appear twice on the

Knowledge Injection in DNN 275

Fig. 3. Full constraints injection at training time on different problem dimensions.

same column). Due to the use of an incomplete propagator, both the networks
make use of incomplete knowledge.

In addition, we train a model-agnostic neural network that lacks even the
basic knowledge that a variable cannot be assigned twice, since this is not
enforced by our input/output encoding, and must infer that from data.

We evaluate the resulting approaches via the feastest procedure, using the
separated test set as X, the trained networks as h, and an empty set of con-
straints (i.e. no propagation at test time). We compare them with methods that
randomly choose an assignment with an uniform probability distribution but that
can rely on a set of constraints C during the evaluation. We consider the two
scenarios in which C is the set of the row constraints (rnd-rows) and the one
in which C is the set of column and row constraints (rnd-full). These methods
are representative of the behavior (at each search node) of a Constraint Pro-
gramming solver having access to either only row constraints or the full problem
definition. It allows us to gauge the ideal effect of the offline symbolic knowledge.
Finally, we consider a very pessimistic baseline, referred to as rnd, which again
randomly chooses an assignment with an uniform probability distribution but
does not rely on the propagation of any constraints (i.e. C is the empty set). We
then produce “feasibility plots” that report on the x-axis the number of assigned
variables (filled cells) in the considered partial solutions and on the y-axis the
ratio of suggested assignments that are globally feasible. Since rnd-rows and
rnd-full methods are the only ones that can rely on online constraints propa-
gation, we have highlighted them using solid lines. In Fig. 1, we show results when
all the constraints are employed by the Forward Checking constraints propaga-
tor, whereas in Fig. 2 we do not propagate the columns constraints. The balance
between learning the constraints from empirical data and the Forward Checking
propagator is tuned by λ: reducing its value means giving more emphasis on the

276 M. Silvestri et al.

Fig. 4. Full constraints injection at training time when the dataset is reduced to the
10% of its initial size.

global feasible assignments obtained by deconstruction of the complete solutions
rather than on the incomplete knowledge. We report results for λ equal to 10, 1
and 0.1

For all the λ values, the negative approach’s behavior is hardly distinguish-
able from rnd. A reasonable explanation is that it encourages the network to
keep the output the lowest as possible instead of discouraging the network to
make provably infeasible assignments. Since this approach is not effective at all,
we do not consider it for further analysis.

We choose the best λ parameters for the bce and mse regularization meth-
ods with the aim of distilling the constraints propagator in the neural network’s
weights, finding a tradeoff between learning from correct knowledge and the
incomplete one. Considering the overall performance, the mse regularization
method provides better results with λ = 1, so this value is chosen for the suc-
cessive analysis. The bce approach provides the best performance with λ = 10.
Despite in Fig. 2 lower values of λ provide better feasibility ratios, these results
are not preferable since they make the regularization not effective, i.e. the meth-
ods collapse to agn. The bce method provides a little improvement over the
mse one but, as we will see when answering question 2, it is not robust when
only a limited amount of empirical knowledge is available.

4.2 Domain Knowledge at Training Time for Different Problem
Dimensions

Unlike the previous section, here we extend the analysis to the PLS of dimensions
7 and 10, considering the only mse and bce regularization methods together
with their best λ values. The datasets are generated as described in the previous

Knowledge Injection in DNN 277

Fig. 5. Rows constraints injection at training time when the dataset is reduced to the
10% of its initial size.

section, yielding training sets of size 350, 000 and 700, 000 for respectively the
PLS-7 and PLS-10.

In Fig. 3, we show results when all the constraints are employed by the
forward checking constraints propagator. As long as the problem size is small
enough, agn performs considerably better than rnd-full, even if no propaga-
tion is employed at evaluation time: this is symptomatic of the network actually
managing to learn the problem constraints from the available data, which (unlike
the propagator output) is guaranteed feasible. As the problem size grows, the
gap decreases, until it almost disappears for PLS-12.

For PLS-7, injecting incomplete symbolic knowledge appears to have an
adverse effect, as it biases the network toward trusting too much the incom-
plete propagator. With a large problem dimension (i.e. PLS-12) the benefits
introduced by knowledge injection become more visible, especially when using
the bce regularization method. The decreasing performance of the data driven
methods is likely a consequence of the training set size staying constant, in the
face of a search space that becomes increasingly large. In all cases, the feasibility
ratio is high for almost empty and almost full squares, with a noticeable drop
when ∼60% of the square is filled. The trend may be connected to a known
phase transition in the complexity of this problem [13].

4.3 Training Set Size and Empirical Information

Next, we proceed to tackle Question 2, by acting on the training set generation
process. In classical Machine Learning approaches, the amount of available infor-
mation is usually measured via the training set size: this is a reasonable approach
since the number of training examples has a strong impact on the ability of an

278 M. Silvestri et al.

Fig. 6. Effect of reducing the solution pool size from 10,000 to 100.

ML method to learn and generalize. We performed experiments to probe the
effect of the training set size on the performance of the data-driven approaches:
the training sets are reduced to the 10% of the initial size, i.e. 35, 000, 70, 000
and 100, 000 for respectively PLS of size 7, 10 and 12. In Fig. 4 and Fig. 5, we
show results when respectively all the constraints and the only rows constraints
are injected via the regularization methods. In this case, knowledge injection at
training time has a dramatic effect : the agn approach is very sensitive to the
available number of examples and it has a great drop in performance. Despite
being less pronounced, the bce method has a major drop in performance too.
Instead, the mse approach provides much more robust results.

In our setup, we have also the possibility to apply the deconstruction process
multiple times, so that the number of different examples that can be obtained
from a single solution grows with the number of possible permutations of the
variable indices (i.e. O(n2!) for the PLS). The approach opens up the possibility
to generate large training sets from very few starting solutions. This is scientifi-
cally interesting since the “actual” empirical information depends on how many
solutions are available; it is also very useful in practice since in many practical
applications only a relatively small number of historical solutions exists.

The results of this evaluation are shown in Fig. 6 for a solution pool of 100 ele-
ments, rather than the original 10,000. Due to the bad results provided with the
reduced datasets, we do not further investigate the bce regularization approach
but we examine the only mse method. For this analysis, we collapse the feasibil-
ity results of the neural network trained with full knowledge injection (referred to
as mse-full) and of the network trained without the columns constraints knowl-
edge injection (mse-rows) in a single plot. The size of the generated training
set is comparable to the original. Despite the dramatically reduced number of
training solutions, the mse-rows and mse-full methods perform really close

Knowledge Injection in DNN 279

to respectively rnd-rows and rnd-full, i.e. they behave similarly to what the
propagator would if employed at search time. Instead, the performance of the
agn drops dramatically, stressing again its sensitivity to the available empirical
information.

From a practical point of view, it seems that injecting constraints during
training can be a very effective strategy when only a small number of training
solutions is available. Constraint injection tends to be redundant if the same
type of propagation can be performed at search time, but can be very useful in
cases when this is not possible.

4.4 Constraint Violation Assessment

In the last set of our experiments, we investigate the effectiveness of the trained
NNs at guiding a search process toward solutions that are close to being feasible,
but not necessarily so. This is equivalent to treating constraints as soft and
may be of practical relevance on overconstrained problems (e.g. many real-world
timetabling applications). This setup tends to be more challenging for the ML
models, since chains of variable-value assignments may lead to partial solutions
that are remarkably different from those observed at training time.

In detail, we used each trained neural network as a value selection heuristic
in Depth First Search, once again for PLS of sizes 7, 10 and 12; we used for
this experiment a fixed variable ordering. As a baseline for the comparison, we
consider (uniformly) random value selection referred to as rnd, while for the
NNs we select a random value with probability proportional to the network
output. We generate a fixed number of solutions (500) from an empty square,
rather than starting from partially filled ones. When generating the solutions,
we never propagate the entirety of the PLS constraints: this setup serves as a
controlled experiment for use cases where some constraints are either unknown
or cannot be enforced at search time. We measure the degree of feasibility of
the generated solutions by quantifying the violations for the constraints that
were not propagated at search time. For this purpose, we measure violations by
counting how many times a value is not appearing exactly once in the same row
or column, depending on which constraint is being considered.

We train two model-agnostic neural networks: one on the dataset obtained
by random deconstruction of 10,000 solutions (referred to as agn-10k) and the
other one on the dataset obtained by multiple random deconstructions of 100
solutions (referred to as agn-100). Similarly, we train two neural networks with
knowledge injection at training time of all the constraints by means of the mean
squared error version of the SBR-inspired method and the Forward Checking
propagator (referred to as sbr-10k and sbr-100). Neither row nor column con-
straints are propagated during the search, and therefore we count the violations
of both in the final solutions. Results are shown in Table 1: the SBR-inspired
approach allows to significantly reduce the number of violations, and it achieves
very similar results even when only a small amount of empirical knowledge is
available. The agn approach performs considerably better than rnd, as long as

280 M. Silvestri et al.

Table 1. Number of soft constraints violations per generated solution.

Rnd Agn-10k Sbr-10k Agn-100 Sbr-100

Rows Cols Rows Cols Rows Cols Rows Cols Rows Cols

PLS-7 29 29 11 9 4 3 20 20 4 4

PLS-10 61 61 28 25 8 7 52 53 7 7

PLS-12 88 88 56 53 22 30 70 76 17 20

a large pool of solutions is available, but the gap narrows when trained on exam-
ples generated from 100 solutions. It is interesting to see how, when constraints
are interpreted in a soft fashion, injecting full problem knowledge at training
time has a much more robust effect compared to the analysis in Sect. 4.2.

5 Conclusion

We considered injecting domain knowledge in Deep Neural Networks to account
for domain knowledge that cannot be easily enforced at search time. We chose
the PLS as a case study and extended an existing NN approach to enable knowl-
edge injection. We performed controlled experiments to investigate three main
questions, drawing the following conclusions:

Q1: As long as enough empirical data is available w.r.t. the problem size, an
agnostic data-driven approach can be better at identifying feasible assign-
ments than random choice supported by propagation at search time. How-
ever, the performance gap narrows quickly as the problem size grows. Inject-
ing incomplete domain problem knowledge at training time does not appear
to provide reliable advantages.

Q2: A pure data-driven approach is very sensitive to the available empiri-
cal information. Injecting knowledge at training time significantly improves
robustness: if both row and column constraints are considered, only a limited
performance drop is observed with as few as 100 historical solutions.

Q3: If constraints are relaxed and treated as soft, injecting domain knowledge
can be very effective.

As a side product of our analysis, we have formulated and tested different regular-
ization approaches to develop an SBR-inspired method to constraint propagators
into a source of training-time information, plus a technique to extract multiple
training examples from a few historical solutions. An open question and future
research direction is the experimentation with different problem types to make
sure that our results hold in general.

References

1. Adorf, H.M., Johnston, M.D.: A discrete stochastic neural network algorithm for
constraint satisfaction problems. In: Proceedings of IJCNN, vol. 3, pp. 917–924,
June 1990. https://doi.org/10.1109/IJCNN.1990.137951

https://doi.org/10.1109/IJCNN.1990.137951

Knowledge Injection in DNN 281

2. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial opti-
mization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)

3. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. arXiv preprint arXiv:1811.06128 (2018)

4. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artif.
Intell. 244, 315–342 (2017). https://doi.org/10.1016/j.artint.2015.08.001

5. Bouhouch, A., Chakir, L., Qadi, A.E.: Scheduling meeting solved by neural network
and min-conflict heuristic. In: Proceedings of IEEE CIST, pp. 773–778, October
2016. https://doi.org/10.1109/CIST.2016.7804991

6. Van Cauwelaert, S., Lombardi, M., Schaus, P.: Understanding the potential of
propagators. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 427–436.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3 29

7. Daniele, A., Serafini, L.: Neural networks enhancement through prior logical knowl-
edge. arXiv preprint arXiv:2009.06087 (2020)

8. Diligenti, M., Gori, M., Sacca, C.: Semantic-based regularization for learning and
inference. Artif. Intell. 244, 143–165 (2017)

9. Diligenti, M., Gori, M., Saccà, C.: Semantic-based regularization for learn-
ing and inference. Artificial Intelligence 244, 143–165 (2017). https://doi.
org/10.1016/j.artint.2015.08.011, http://www.sciencedirect.com/science/article/
pii/S0004370215001344. Combining Constraint Solving with Mining and Learn-
ing

10. Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif.
Intell. Res. 61, 1–64 (2018)

11. Fischetti, M., Jo, J.: Deep neural networks as 0–1 mixed integer linear programs:
A feasibility study. In: Proceedings of CPAIOR (2018)

12. Galassi, A., Lombardi, M., Mello, P., Milano, M.: Model agnostic solution of CSPs
via deep learning: a preliminary study. In: van Hoeve, W.-J. (ed.) CPAIOR 2018.
LNCS, vol. 10848, pp. 254–262. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-93031-2 18

13. Gomes, C.P., Selman, B., et al.: Problem structure in the presence of perturbations.
AAAI/IAAI 97, 221–226 (1997)

14. Kool, W., Hoof, H., Welling, M.: Attention solves your tsp, approximately. Statis-
tics 1050, 22 (2018)

15. Lin, G., Shen, C., Van Den Hengel, A., Reid, I.: Efficient piecewise training of deep
structured models for semantic segmentation. In: Proceedings of the IEEE CVPR,
pp. 3194–3203 (2016)

16. Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Artif.
Intell. 244, 343–367 (2017). https://doi.org/10.1016/j.artint.2016.01.005

17. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional lstm-cnns-crf.
In: Proceedings of ACL, pp. 1064–1074. Association for Computational Linguis-
tics (2016). https://doi.org/10.18653/v1/P16-1101, http://aclweb.org/anthology/
P16-1101

18. Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T., De Raedt, L.: Deep-
problog: neural probabilistic logic programming. arXiv preprint arXiv:1805.10872
(2018)

19. Marra, G., Giannini, F., Diligenti, M., Gori, M.: Integrating learning and rea-
soning with deep logic models. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe,
A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol.
11907, pp. 517–532. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
46147-8 31

http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1811.06128
https://doi.org/10.1016/j.artint.2015.08.001
https://doi.org/10.1109/CIST.2016.7804991
https://doi.org/10.1007/978-3-319-18008-3_29
http://arxiv.org/abs/2009.06087
https://doi.org/10.1016/j.artint.2015.08.011
https://doi.org/10.1016/j.artint.2015.08.011
http://www.sciencedirect.com/science/article/pii/S0004370215001344
http://www.sciencedirect.com/science/article/pii/S0004370215001344
https://doi.org/10.1007/978-3-319-93031-2_18
https://doi.org/10.1007/978-3-319-93031-2_18
https://doi.org/10.1016/j.artint.2016.01.005
https://doi.org/10.18653/v1/P16-1101
http://aclweb.org/anthology/P16-1101
http://aclweb.org/anthology/P16-1101
http://arxiv.org/abs/1805.10872
https://doi.org/10.1007/978-3-030-46147-8_31
https://doi.org/10.1007/978-3-030-46147-8_31

282 M. Silvestri et al.

20. Mǐsić, V.V.: Optimization of tree ensembles. arXiv preprint arXiv:1705.10883
(2017)

21. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–
136 (2006)

22. Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: Advances in Neu-
ral Information Processing Systems, pp. 3788–3800 (2017)

23. Serafini, L., Garcez, A.D.: Logic tensor networks: deep learning and logical reason-
ing from data and knowledge. arXiv preprint arXiv:1606.04422 (2016)

24. Van Krieken, E., Acar, E., Van Harmelen, F.: Semi-supervised learning using dif-
ferentiable reasoning. J. Appl. Logic (2019)

25. Verwer, S., Zhang, Y., Ye, Q.C.: Auction optimization using regression
trees and linear models as integer programs. Artif. Intell. 244(Suppl. C),
368–395 (2017). Combining Constraint Solving with Mining and Learn-
ing. https://doi.org/10.1016/j.artint.2015.05.004, http://www.sciencedirect.com/
science/article/pii/S0004370215000788

26. Xu, H., Koenig, S., Kumar, T.K.S.: Towards effective deep learning for constraint
satisfaction problems. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 588–597.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9 38

27. Xu, J., Zhang, Z., Friedman, T., Liang, Y., Broeck, G.: A semantic loss function for
deep learning with symbolic knowledge. In: International Conference on Machine
Learning, pp. 5502–5511. PMLR (2018)

http://arxiv.org/abs/1705.10883
http://arxiv.org/abs/1606.04422
https://doi.org/10.1016/j.artint.2015.05.004
http://www.sciencedirect.com/science/article/pii/S0004370215000788
http://www.sciencedirect.com/science/article/pii/S0004370215000788
https://doi.org/10.1007/978-3-319-98334-9_38

Learning Surrogate Functions
for the Short-Horizon Planning
in Same-Day Delivery Problems

Adrian Bracher(B), Nikolaus Frohner, and Günther R. Raidl

Institute of Logic and Computation, TU Wien, Favoritenstraße 9–11/192-01,
1040 Vienna, Austria

{nfrohner,raidl}@ac.tuwien.ac.at

Abstract. Same-day delivery problems are challenging stochastic vehi-
cle routing problems, where dynamically arriving orders have to be deliv-
ered to customers within a short time while minimizing costs. In this
work, we consider the short-horizon planning of a problem variant where
every order has to be delivered with the goal to minimize delivery tar-
diness, travel times, and labor costs of the drivers involved. Stochas-
tic information as spatial and temporal order distributions is available
upfront. Since timely routing decisions have to be made over the planning
horizon of a day, the well-known sampling approach from the literature
for considering expected future orders is not suitable due to its high
runtimes. To mitigate this, we suggest to use a surrogate function for
route durations that predicts the future delivery duration of the orders
belonging to a route at its planned starting time. This surrogate func-
tion is directly used in the online optimization replacing the myopic
current route duration. The function is trained offline by data obtained
from running full day-simulations, sampling and solving a number of sce-
narios for each route at each decision point in time. We consider three
different models for the surrogate function and compare with a sampling
approach on challenging real-world inspired artificial instances. Results
indicate that the new approach can outperform the sampling approach
by orders of magnitude regarding runtime while significantly reducing
travel costs in most cases.

Keywords: Same-day delivery · Dynamic and stochastic vehicle
routing · Sampling · Surrogate function optimization · Supervised
learning

1 Introduction

Short delivery times are essential when it comes to selling goods online, especially
during the COVID-19 pandemic when many physical stores had to close tem-
porarily. An increasing number of online retailers are offering same-day delivery

This project is partially funded by the Doctoral Program “Vienna Graduate School
on Computational Optimization”, Austrian Science Foundation (FWF) Project
No. W1260-N35.

c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 283–298, 2021.
https://doi.org/10.1007/978-3-030-78230-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_18

284 A. Bracher et al.

to satisfy the demand for quickly available goods, further intensifying the need
for cost and labor efficient dynamic vehicle routing. Same-day delivery prob-
lems [12] are stochastic and dynamic in nature and are a subcategory of vehicle
routing problems. In this work a problem variant with additional constraints
arising from practice is considered. Orders arrive dynamically over the day and
are due only a short time after arrival. The orders have to be assigned to drivers
and routes are generated with the goal to minimize delivery tardiness, travel
times, and labor costs of the drivers involved. The fleet is homogeneous and the
orders are served from a single depot. Each driver has a predefined shift, however
the shift end times can be advanced or postponed to some extent to account for
the uncertainty of the actual load.

This paper builds upon a double-horizon approach that was proposed in [3],
which is further explained in Sect. 2.

However, we are unsatisfied with the existing short-horizon optimization,
which we declare myopic, due to the following aspect: Routes that are optimal
regarding all available orders sometimes have to start soon due to some orders,
but also include one or more less urgent orders with a delivery deadline rela-
tively far in the future. If these currently available orders with later deadlines
introduce a significant travel overhead, it would frequently be wiser to postpone
their delivery as they can likely be combined with future orders resulting in
more efficient routes overall. Thus, it would be beneficial to split routes between
urgent and less urgent orders. Routes can only be changed up to their departure,
and possible future improvements for routes with a later starting time are not
considered in the static, myopic optimization. The aim of this work is to present
our adaptations to improve on this aspect.

The basic idea of our approach is to craft a function that discounts travel
times based on the aforementioned observations, making separate routes with
later starting times more attractive. We will refer to that function as surrogate,
since it replaces the normal route duration in the objective function and also
is used instead of a classical sampling approach, which is the de facto stan-
dard for stochastic considerations. This surrogate function is trained offline in
a supervised learning fashion, reducing the computational effort in the online
application in comparison to a sampling approach substantially. The necessary
training data is generated by full-day simulations, in which we sample and solve
100 scenarios for each route at every decision point in time. Three different mod-
els for the surrogate are considered, a manually crafted exponential function, a
linear regression, and a multi-layer perceptron.

In Sect. 2, an overview of related work is given and discussed. Section 3 defines
and formalizes the problem at hand and aims to provide a better understanding
with an illustrative example. Then, in Sect. 4, we explain our new approach in
detail and describe the training data acquisition and training process in a step-
by-step manner. Details on our test setup, and a comparison of our approaches
with a sampling approach on real-world inspired artificial instances, can be
found in Sect. 5. We observe that on our benchmark instances, the new approach
reduces route travel costs by ≈6.1% in the median compared to the myopic opti-

Learning Surrogate Functions for Planning in SDD Problems 285

mization with similar tardiness. The sampling approach, in comparison, achieves
a similar route duration reduction but requires a computation time that is larger
by a factor of ≈540. We finally conclude in Sect. 6.

2 Related Work

For a review on dynamic and stochastic vehicle routing problems, see Ritzinger
et al. [9]. Our underlying problem variant is introduced in [3] and derived from an
online store with promised delivery durations of one or two hours. The problem
is fully dynamic with a planning horizon of one day, where stochastic informa-
tion regarding the hourly number and spatial distribution of orders is available
upfront. A distinguishing feature is a flexibility of the shift ending times of the
drivers, which is considered in the objective function together with route dura-
tions and a penalty for delivery deadline violations.

So far, the pillars of solving this problem are an adaptive large neighbor-
hood search (ALNS) [1,7,10] for the repeated point-in-time optimization runs to
obtain routes for currently available orders and a dual horizon approach inspired
by Mitrović-Minić et al. [6]. At every decision epoch, a simplified assignment
problem is solved for the larger horizon (i.e., the whole day) using expected
values for the orders and driver performance. This allows an estimation of the
required labor time which is subsequently fed back into the objective function
used in the point-in-time optimization runs considering only short horizons. Near
real-time decisions regarding planned assignments of orders to multiple trips of
drivers, when to send drivers home, and when to start routes are then derived
from the result of this optimization.

Due to the short delivery deadlines within few hours after customers place
their orders, the problem falls into the class of same-day delivery problems
(SDDP). In a recent notable work, Voccia et al. [12] present a SDDP variant
with hard time windows where orders can also be delegated to a third-party,
apart from delivering it with the in-house fleet. The number of orders to be
delivered in-house is to be maximized and formulated as reward of a Markov
decision process (MDP). A multiple scenario sampling approach (MSA) [2] is
tailored to the problem, where at every decision epoch a multi-trip team ori-
enteering problem with time windows is solved heuristically and a consensus
solution is derived. This method increases the number of filled requests for some
instance classes substantially compared to a simple delay strategy, where deci-
sions are postponed to gather more information until an impact on the number
of filled requests occurs. Still, a relevant drawback is that at every decision a
couple of minutes computation time is required, making it unsuitable for our
near real-time setting.

Despite the fact that we do not model our problem as an MDP explicitly,
we perform implicit state transitions where actions (for each driver in the depot
either wait, start an unalterable delivery route, or end shift) are derived from the
heuristic solution. The goal of this work is to further adapt the objective function
so that the implied actions lead to states with a higher expected reward in the
near future.

286 A. Bracher et al.

Using the approximate dynamic programming paradigm [8], Ulmer et al. [11]
solve a single-vehicle SDDP with preemptive depot returns using an Approxi-
mate Value Iteration (AVI) scheme where the value function is learned in an
offline training phase over full-day simulations. Furthermore, a dynamic state
space aggregation is used to create a lookup table facilitating near real-time
online decision making.

Joe and Lau [4] build upon this approach for a dynamic vehicle routing
problem with stochastic customers and different degrees of dynamism where
re-routing decisions have to be performed on routing plans over the day. They
replace the lookup table with a deep Q network employing value function approx-
imation via temporal difference learning with experience replay. A heuristic
search in the decision space is performed via simulated annealing. This approach
is compared with AVI [11] and MSA [2], and the authors report reductions of
the costs in the range of 10% for higher degrees of dynamism.

In a similar spirit, we approximate the value of states by predicting the future
costs of orders that are in a currently planned route by means of parametric
functions to be learned in an offline training phase with training data derived
from multiple realizations in the short horizon—we consider the routes separately
and do not roll-out until the end of the day, hence we make use of a vehicle-
based and temporal decomposition. This learned function is then incorporated
as surrogate in the objective function to be solved heuristically using our ALNS,
resulting in more anticipatory online decision making.

3 Problem Definition and Formalization

In this Section we first give a formal description of the considered dynamic and
stochastic vehicle routing problem and then show an illustrative example where
myopic optimization in the short horizon planning leads to inefficient routes.

We follow the notation of the preceding article [3] and distinguish between
three different problem variants: the offline problem with full knowledge of the
day in advance (OFF), the dynamic problem at a specific time t̃ (DYN-t̃), and
the full dynamic problem for a whole day (DYN-DAY). In this paper we will
mostly focus on the dynamic variants.

3.1 Instance Specification

A DYN-DAY instance consists of many DYN-t̃ instances for increasing times t̃
that are solved iteratively over the whole day. A DYN-DAY instance contains n
orders collectively denoted by V , each of which has a release time trelv at which
the order is ready to be delivered by a driver and a due time tduev at which
the order should be delivered the latest, v ∈ V . Moreover, for each order an
availability time tavailv is provided which corresponds to the time the customer
places the order and tells us when we are allowed to consider the order in our
planning. We further assume to have for dynamic instances a function ω(t1, t2)
available that yields the expected numbers of orders within the time interval

Learning Surrogate Functions for Planning in SDD Problems 287

[t1, t2] within any relevant business times. We also have an idea of the mean
order duration, i.e., the mean active labor time by a driver to deliver an order,
a good DYN-DAY solution in a particular application typically has and denote
this by φ̂.

DYN-t̃ instances occur and are solved every time an order is released, i.e., at
times

{
t̃ | ∃v ∈ V : t = trelv

}
.

Any problem instance also provides information about its relevant vehi-
cles/drives, denoted by set U , with m = |U |, including each driver’s planned
shift time interval [qstartu , qendu] and earliest shift end q0u ∈ [qstartu , qendu], u ∈ U . The
drivers’ shift ends are subject to flexibility and therefore also part of the decision
process and objective function. Last but not least, order locations locv, ∀v ∈ V ,
expected travel times δ(v, v′) from locv to locv′ , where v, v′ ∈ V ∪{0}, 0 denotes
the warehouse, are given. The travel times include necessary delays like average
stop time at the customers, average times for loading a vehicle at the warehouse
and postprocessing times when returning to the warehouse. We also assume that
the triangle inequality holds for δ.

3.2 Feasible Solutions

A candidate solution is a tuple 〈R, τ, q〉 where

– R = (Ru)u∈U denotes the ordered sequence of routes Ru = {ru,1, . . . , ru,�u}
to be performed by each vehicle u ∈ U , and each route r ∈ Ru is an ordered
sequence r = {vr

0 = 0, vr
1, . . . , v

r
lr

, vr
lr+1 = 0} with vr

i ∈ V, i = 1, . . . , lr, being
the i-th order to be delivered and 0 representing the warehouse at which each
tour starts and ends,

– τ = (τr)r∈Ru,u∈U are the (planned) departure times of the routes, and
– q = (qu)u∈U are the shift end times of the vehicles.

The time at which the i-th order vr
i of route r, i = 1, . . . , lr, is delivered is

a(r, i) = τr +
i−1∑

j=0

δ(vr
j , vr

j+1). (1)

The total duration of a route r ∈ Ru of a vehicle u ∈ U is

d(r) =
lr∑

i=0

δ(vr
i , vr

i+1), (2)

and the route therefore is supposed to end at time τr + d(r).

Let τmin(r) = maxi=1,...,lr trelvr
i

be the earliest feasible starting time of a route
r, which corresponds to the maximum release time of the orders served in the
route. In our planning all routes r ∈ R can be changed up to their respective

288 A. Bracher et al.

departure time τr, after which the route is fixed. Furthermore, let τmax(r) be
the latest starting time without violating any due time, i.e.,

τmax(r) = min
i=1,...,lr

⎛

⎝tduevr
i

−
i−1∑

j=0

δ(vr
j , vr

j+1)

⎞

⎠ . (3)

A solution is feasible when

– each order v ∈ V appears exactly once in all the routes in
⋃

u∈U Ru,
– each route r ∈ Ru, u ∈ U , is started in the planned shift time of the assigned

vehicle, i.e., τr ∈ [qstartu , qendu], and not started before all orders are released,
i.e., τr ≥ τmin(r),

– the routes in each Ru, u ∈ U , start at increasing times and do not overlap,
i.e., τru,i

+ d(ru,i) ≤ τru,i+1 , i = 1, . . . , |Ru| − 1,
– and the actual shift end time is not smaller than the finishing time of

the last route (if there is one) and the minimum shift time, i.e., qu ≥
max(q0u, supr∈Ru

(τr + d(r))), u ∈ U .

3.3 Objective Function

The utmost goal is to minimize and balance any tardiness of deliveries. As sec-
ondary objectives, the route durations and the excess labor times are to be
minimized. We model this via an objective function to be minimized consisting
of a linear combination of a quadratic tardiness penalty term and linear cost
terms for the secondary objectives:

f(〈R, τ, q〉) = α ·
∑

r∈Ru,u∈U

lr∑

i=1

max(0, a(r, i)− tduevr
i

)2 + γ ·
∑

u∈U

(qu − q0u)+
∑

r∈Ru,u∈U

d(r),

(4)
A tardiness penalty factor of α = 1000 is chosen to approximate a lexicographic
approach. The excess labor times cost factor γ is set to 4.

The objective values are not easily interpretable by humans. To give us
another solution quality indicator we use the mean order duration φ(r) = d(r)

lr
for

a route r ∈ R, measured in minutes, which can be understood as mean active
labor time by a driver to deliver an order. Calculating the mean over all the
routes in a solution yields φ̄, which is an important figure of merit of a whole
solution.

3.4 Illustrative Example

To make the issue we address in this work clear, we present a simple example of a
DYN-DAY instance, in which an optimal solution to a first DYN-t̃ instance leads
to a situation so that an overall suboptimal solution for DYN-DAY is achieved.

Let us assume orders 1–6 become available at t̃ = 0 and we are thus consider-
ing DYN-0. Orders 1–5 are supposed to have the same due time 60 min later. The
remaining order 6 is located far away from orders 1 to 5 and has a substantially

Learning Surrogate Functions for Planning in SDD Problems 289

Fig. 1. Myopic solution (top) vs. optimal solution (bottom). Node 0 represents the
warehouse, all other nodes orders.

later due time of 120 min. Considering only these orders an optimal solution to
DYN-0 would be to pack all orders into one route, since only then the total route
duration is minimal. This single route r1 has to start at time τr1 = 5 to avoid
any tardiness. This solution is depicted in the top half of Fig. 1. The problem
with this solution arises when half an hour later new orders 7–10 are placed
with some delivery locations close to order 6, which itself, however, has been
included in the already started first route. An optimal solution for DYN-30min
will then be a route r2 with the remaining orders 7–10 as also pictured in Fig. 1.
The resulting total objective value, which in this case is equal to the sum of all
route durations, is 220 min.

A better solution to this example can be seen in the second half of Fig. 1.
The important difference is that the first route from the previous solution is split
into two, resulting in one route r3 comprising orders 1–5, starting at time τr3

= 5 and having a mean order duration better than the former single route, and
one route r4 containing only order 6. This latter route has a bad mean order
duration of 50 min per order, but also a much later starting time of τr4 = 90.
Even though this results in a worse short-term objective value for DYN-0, this
second route has now a lot of slack left and considering expected future orders
can likely be improved later. In our example this happens when the new orders
7–10 become available in DYN-30, and order 6 can be delivered in one route r5
together with the new orders. Overall the objective value and sum of all route
durations for this solution is 190, which is an improvement of approximately
14% over the myopic solution.

In conclusion, when orders are expected in the near future, it makes sense to
postpone to a certain degree the delivery of orders with due times farther in the
future when they cannot be well integrated in soon-to-start routes.

290 A. Bracher et al.

4 Discounting Travel Times to Consider Expected Orders

As pointed out in Sect. 2, to at least partially avoid traps like the one sketched
above arising from the myopic view of the DYN-t̃ instances, the standard method
from literature is to sample scenarios into the near future by creating artificial
orders from expected spatial and temporal distributions, to solve these scenar-
ios, and then to derive a consensus solution [2,12]. We propose the simpler app-
roach of discounting durations of routes in the objective function of the DYN-t̃
instances in dependence of their starting times, the number of expected future
orders, and further features. We make use of supervised learning to come up
with a surrogate function for the route durations to move the computational
effort into a one-time offline training phase. This function is then directly used
in the optimization of a given DYN-t̃. We now describe our approach in detail.

In the definition of f(〈R, τ, q〉) in (4) on page 6 we replace the route duration
d(r) of each route r ∈ Ru, u ∈ U with a discounted duration d′(r) acting as a
surrogate for the future delivery time of the orders belonging to r. We define the
following aims to guide us to a sensible discounting function.

– Routes that are already efficient, i.e., have a low mean order duration φ(r),
should not be modified.

– The discounting of the duration should in general be stronger when more
orders are expected in the near future. On the contrary, we should not reduce
d(r) if there are no further orders expected until route r should start.

– Routes that are inefficient and combine orders that are due soon with orders
that have significantly more time left should be avoided in particular.

– In conclusion, the discounted route duration d′(r) should approximate the
expected total time it will take to perform the deliveries of that route in the
future, taking into account expected new orders and assuming optimal routing
decisions also in the future.

A current route that will be started soon cannot be expected to be improved
much as not many new orders are expected. This includes routes with small
slack max(0, τmax(r) − t̃) but also any other case in which the route is started
soon, e.g., due to an earliest starting time strategy. In contrast, larger improve-
ments are likely for any route that is planned to be started much later and
which is not yet efficient, particularly if many orders are expected in the near
future, more precisely in the time interval from the current time t̃ to the route’s
planned starting time τr. Thus, this duration is an important parameter of the
discounting.

Another important parameter is the expected number of arriving new orders
until the start of the route, i.e., ω(t̃, τr). Moreover, the estimated mean order
duration of a good DYN-DAY solution φ̂ is also important for the following con-
sideration. A route r to be started at some distant time τr and whose mean order
duration φ(r) is worse than φ̂ can be expected to be adapted and combined with
future orders so that the average times for delivering the orders in r approaches
φ̂.

Learning Surrogate Functions for Planning in SDD Problems 291

Formally, we model this by the discounted route duration function

d′(r) =

{
gΘ(d(r), lr, ω(t̃, τr), φ̂, . . .) if τr > t̃ ∧ φ(r) > φ̂

d(r) else.
(5)

where function gΘ represents a machine learning model with trainable param-
eters Θ and input features that include at least d(r), lr, ω(t̃, τr) and φ̂. This
model is supposed to yield reduced durations within [φ̂ · lr, d(r)] for routes that
are not started immediately (τr > t̃) and where the current mean order duration
φ(r) is worse than φ̂. In Sect. 4.2 we will consider three different approaches
for realizing gΘ, which are an exponential function, a linear regression, and a
multilayer perceptron.

An aspect of this approximation that deserves mentioning is that multiple
routes of the current solution may be scheduled at overlapping times in the future
and may compete for new orders. This may slow down improvement of inefficient
routes but may also create new possibilities for more efficient combinations. As
we do not see any meaningful and efficient way to consider this aspect and also
conjecture that the benefits and disadvantages of concurrent routes in conjunc-
tion with the route improvement potential may outweigh each other at least to a
certain degree, we do not explore this further here. Moreover, the actual impact
may be partially mitigated by suitably tuning Θ.

4.1 Obtaining Training Data

To obtain training date for our route duration discounting models, we apply the
following sampling-based approach on a set of representative historic or artificial
DYN-DAY training instances.

1. We consider a DYN-DAY instance and iteratively solve the implied DYN-t̃
instances in the classical way without any route distance discounting. For
each obtained DYN-t̃ solution, we apply a decomposition approach, in which
we consider each route independently by the following steps.

2. Each route r to be started not immediately, i.e., at some time τr > t̃, and
for which φ(r) > φ̂, we create nsample scenarios, with nsample being a strat-
egy parameter. Each scenario consists of the original orders of route r and
norders ∼ P(ω(t̃, τr)) additional artificial orders, where norders is a random
number always sampled anew from the Poisson distribution P(ω(t̃, τr)) with
mean ω(t̃, τr). The motivation here is that the arrival of orders can be seen
as a Poisson process. Each artificial order is assigned a randomly sampled
geographical location from a set of sufficient size representing the delivery
area, a random availability time in (t̃, τr], and a due time that corresponds
to the availability time plus the maximum delivery duration promised to the
customers. Each scenario created this way is then solved as an independent
OFF instance.

3. In each obtained scenario solution we consider each original (i.e., not sampled)
order and take its route’s mean order duration. The sum of these times over

292 A. Bracher et al.

all original orders is then said to be the scenario’s total delivery duration
for the original orders of route r. Ultimately we average these total delivery
durations over all scenarios to obtain the target duration d̂(r) which we want
to approximate by our discounted route duration d′(r).

4. We store the original route r together with d(r), t̃, τr, ω(t̃, τr), φ̂ and the
obtained d̂(r) for training and continue by processing all further routes in the
same way.

4.2 Models for the Discounting

As introduced in Eq. (5), function gΘ(d(r), lr, ω(t̃, τr), φ̂, . . .) is a trainable model
that yields the discounted route duration when d(r) > φ̂ · lr. For training this
model we apply the mean squared error (MSE) in respect to the training targets,
i.e., d̂(r), as loss function. We investigate here three alternative models presented
in the following.

Exponential Function

gexpρ (d(r), lr, ω(t̃, τr), φ̂) = d(r) − (d(r) − φ̂ · lr) · (1 − e−ρ·ω(t̃,τr)) (6)

This function was manually crafted based on the previously explained con-
siderations that the mean order delivery time of orders in a current route with
a distant starting time can be expected to improve up to a certain amount. The
expected maximum improvement is assumed to be equal to d(r)−φ̂ ·lr. However,
actual improvement can only occur with additional orders in the interval (t̃, τr].
This is expressed by the last term in the function, where parameter ρ controls the
speed of approaching φ̂ · lr in dependence of the number of expected upcoming
new orders ω(t̃, τr) until the route’s starting time τr in an exponential manner.
The parameter that needs to be learned here is just Θ = ρ, and we apply grid
search to find a value minimizing the MSE.

Linear Regression. Our second approach is a linear combination of a larger set
of manually selected features, i.e., linear regression, with the trainable param-
eters vector Θ being the respective regression coefficients. We initially consider
the following features in addition to a constant bias.

1. The basic features d(r), lr, ω(t̃, τr) and φ̂ as in the exponential function.
2. The relative starting time of the route τr − t̃.
3. The difference φ(r)− φ̂, i.e., how far off the route’s mean delivery duration is

from the assumed target value φ̂.
4. The variance of the geographic locations of the orders for each route, denoted

by var(r); the farther apart the delivery locations are, the more likely it seems
that a new order fits nicely in between two existing orders.

5. The square and the logarithm of each of the above features to also accommo-
date nonlinear dependencies in a simple form.

Learning Surrogate Functions for Planning in SDD Problems 293

To avoid the inclusion of features that do not significantly improve the pre-
diction and reduce the danger of overfitting, we started off with just the basic
features and iteratively added a feature from the remaining pool that reduced
the MSE the most. This process of selecting features was continued until the
MSE did not change by more than one percent. 5-fold cross validation was used
in this feature selection process to reduce the risk of overfitting. Ultimately, we
came up with the feature vector (d(r), lr, ω(t̃, τr), log(ω(t̃, τr)), φ̂, φ(r) − φ̂,
(φ(r)− φ̂)2, (τr − t̃)2, log(τr − t̃), var(r), var(r)2) used in all further experiments.

Multilayer Perceptron. Our third model for discounting travel durations is
a multilayer perceptron (MLP). It is fully connected with two hidden layers and
ReLU activation functions in all layers, and Adam [5] is used as optimizer. The
considered pool of features was the same as in the linear regression, and the same
selection process was performed leading to the feature vector (d(r), log(d(r)),
lr, φ̂, τr − t̃, φ(r) − φ̂) used in all following experiments. Note in particular that
here the variance of the orders’ geographic locations did not show a significant
contribution and therefore was not included. Further details on the network
configuration and training will be provided below in the experimental results.

5 Computational Study

All algorithms were implemented in Python 3.8. Training and evaluation of the
regressors was performed with scikit-learn version 0.23.1. All tests were con-
ducted on Intel Xeon E5-2640 2.40 GHz processors in single-threaded mode and
a memory limit of 4 GB.

In all tests a driver is sent home as early as possible, i.e., after the driver’s
last so far planned route or at the earliest shift end, to minimize labor cost.
Planned routes always start at the latest possible departure time that does not
increase the costs for labor time and tardiness to utilize the full slack for possible
improvement. The three different discounting models are compared with results
using the myopic optimization as done in [3] and the sampling approach with
consensus function. The ALNS, which is the fundamental optimization method
for all mentioned approaches, stops after 100 non-improving iterations, and we
refer to [3] for all further details concerning its operators and configuration.

5.1 Instances

We consider artificial DYN-DAY instances that are inspired by real-world
instances of an online retailer. We consider steady, linearly rising, and falling
load patterns over 11 h, where the average load over the day is either 10, 20, 30,
or 40 arriving orders per hour. Orders are due in one hour with 60% probability
and with 40% in two hours. The order locations are uniformly distributed in
the unit square. Travel times between orders are determined by the Euclidean
distance multiplied by 50 min, additional constant six minutes stop times at the

294 A. Bracher et al.

customers, and small loading and postprocessing times from and to the ware-
house. The warehouse location is randomly chosen from {0.25, 0.75}2 inspired
by the slight off-center location of the real-world situation. Since we focus on
the route duration costs, sufficiently many drivers are available all the time to
ensure zero or very little tardiness. We generated 240 instances in total, 20 for
each of the 12 instance classes and perform a 50/50 training and test split. φ̂ is
provided for each class. All instances were made available on GitHub1.

5.2 Training of the Discounted Route Duration Models

Following the training and test data generation as described in Sect. 4.1, we end
up with a 60% batch of 33790 training samples and a 40% batch of 22527 test
samples to train and evaluate an estimator for d̂(r).

We train the learnable parameter ρ in the exponential model (6) by means
of a grid search. The result can be seen in Fig. 2, which displays how the MSE
changes depending on ρ. Moreover, the instance’s φ̂ is reduced by 20%, which
was empirically determined to produce better results in previous experiments.
The single global optimum for ρ is 0.091, at which the test MSE is 154 909 and
154 265 for the training batch.

Fig. 2. Exponential model: MSE of
predicted values gΘ(r) with respect
to labels d̂(r), i.e., the loss over ρ.

In case of the linear regression with
the finally selected features as laid out in
Sect. 4.2, MSEs of 144 785 and 143 329 were
achieved on the training and test portions of
the data, respectively.

Concerning the MLP, preliminary tests
suggested that two hidden layers with 50
nodes each seem to be a reasonable choice,
which we used further on. The learning rate
that is used for training is a constant 0.001.
To avoid overfitting we utilize early stopping,
for which 300 iterations without improve-
ment of a 10% validation set is the stop-
ping criterion. The resulting training and
test MSEs are 80 032 and 79 219 respectively,
slightly less than half of the error of the expo-
nential model.

Concerning the MSEs, we can conclude that the linear regression performs
slightly better than the exponential model, but the MLP is clearly superior. As
we considered separate training and test sets and the respective MSEs lie close
together for all three models, we conclude that overfitting seems to be no issue
for all three models.

1 https://github.com/nfrohner/pdsvrpddsf.

https://github.com/nfrohner/pdsvrpddsf

Learning Surrogate Functions for Planning in SDD Problems 295

5.3 Full-Day Simulation Results

The myopic short-horizon optimization serves as a baseline to quantify the
improvement that is achieved. Furthermore, the three route duration discount-
ing approaches are compared to a sampling approach with consensus function
as the de facto standard for considering stochastic aspects. This approach cre-
ates for each DYN-t̃ instance 100 scenarios by augmenting the original instance
with randomly sampled orders. These sampled orders are generated in the same
manner as already explained in Sect. 4.1, except that the time interval [t̃, t̃ + 1h]
is used instead of the slack of the route, i.e., samples are generated for up to
one hour into the future. These scenarios are then solved with the myopic short-
term optimization utilizing ALNS. Then, all sampled orders are removed from
each scenario solution. Finally, a consensus solution is derived from the scenario
solutions in a way that was inspired by [12]. The selection is done by counting
identical scenario solutions and choosing the most frequent solution as consensus
solution. We define identical in this context as two solutions that assign identi-
cal routes to the same drivers in the same sequence. Analogous to that identical
routes are defined as routes that contain the same orders in the same sequence.

We use the original objective function f(〈R, τ, q〉) as defined in (4) as the
primary measure of success for comparing results, but also aim to gain a more in-
depth understanding of the different approaches by observing the total duration
of all routes in a solution, the total excess labor time of a solution, the mean
order duration over the whole solution φ̄ and the running time on the specified
test setup. Tardiness is not presented in this Section, because it is negligibly
small for all instance classes and approaches alike, which was one of our aims
when generating the test instances as explained in Sect. 5.1.

In Table 1 the median of the mentioned measures of success are compared
for all instance classes and the median of the relative changes to results of the
myopic approach is displayed for the most important measures as well. As the
sampling approach did not terminate within a time limit of 700 h per full-day
instance for average loads of 30 and higher, we only obtained results up to an
average load of 20 for it. In Fig. 3 boxplots of f(〈R, τ, q〉) are drawn over instance
classes grouped by the average load as well as the load pattern.

As expected, all approaches that consider possible future orders outperform
the myopic optimization, up to 8% in the median. We observe that the expo-
nential approach outperformed the other approaches for average loads of 30 and
40. Furthermore, a positive correlation between the average load and the rela-
tive improvement over the myopic short-term optimization can be seen. Falling
load solutions have higher f(〈R, τ, q〉) in general, but the differences in relative
improvement over the myopic optimization among load patterns is rather small,
with steady load having a slight edge over falling and rising load.

Considering that the MLP has the smallest training MSE, it is unexpected to
observe that some solutions are worse than the ones that utilize the exponential
model. We suspect that the cause for this is attributed to the way in which the
training data is generated. More specifically, we intentionally decided to restrict
the training data generation to routes in final DYN-t̃ solutions obtained from

296 A. Bracher et al.

Table 1. The three discounting approaches, myopic optimization, and sampling applied
to ten benchmark instances for each combination of average load and a falling, rising,
or steady load as the day progresses.

Load Pattern Approach f(〈R, τ, q〉) Trav. time [h] Labor φ Runtime [min]

Avg Median Change Median Change Median Median Change Median

10 Falling Myopic 4057.258 0.00% 67.197 0.00% 136.5 36.125 0.00% 4

Exponential 3921.867 −2.92% 64.297 −3.14% 424.5 34.920 −3.14% 5

Linear Regression 3851.000 −4.28% 64.069 −4.32% 141.0 35.170 −4.33% 8

MLP 3912.190 −4.96% 64.349 −3.92% 147.9 34.404 −3.92% 11

Classical Sampling 3928.320 −4.20% 64.634 −3.80% 201.4 35.157 −3.79% 2950

Rising Myopic 3816.300 0.00% 63.413 0.00% 172.5 35.485 0.00% 4

Exponential 3695.408 −3.49% 61.564 −3.32% 37.0 33.920 −3.31% 5

Linear Regression 3662.175 −3.57% 61.036 −3.59% 117.5 34.505 −3.58% 8

MLP 3701.557 −3.89% 61.693 −3.79% 61.6 33.976 −3.81% 12

Classical Sampling 3749.525 −1.14% 62.464 −0.85% 45.5 34.845 −0.85% 3347

Steady Myopic 3984.472 0.00% 66.040 0.00% 0.0 35.475 0.00% 5

Exponential 3891.581 −4.31% 64.456 −5.01% 0.0 34.000 −5.00% 5

Linear Regression 3938.683 −4.97% 65.258 −5.63% 135.0 33.795 −5.63% 7

MLP 3845.711 −5.54% 63.349 −5.48% 0.0 33.064 −5.48% 8

Classical Sampling 3769.011 −8.56% 62.771 −8.41% 3.5 32.618 −8.41% 2543

20 Falling Myopic 7142.592 0.00% 118.993 0.00% 77.0 32.015 0.00% 24

Exponential 6802.900 −5.90% 112.105 −5.87% 19.0 30.025 −5.87% 32

Linear Regression 6823.300 −5.40% 112.755 −5.58% 25.0 30.265 −5.57% 49

MLP 6884.071 −5.10% 112.935 −5.10% 1.0 30.360 −5.10% 51

Classical Sampling 6693.054 −6.32% 111.639 −6.18% 4.0 30.127 −6.18% 30372

Rising Myopic 7027.803 0.00% 116.848 0.00% 380.0 32.365 0.00% 23

Exponential 6482.008 −6.51% 107.817 −6.53% 177.0 30.965 −6.53% 32

Linear Regression 6419.892 −6.62% 106.955 −6.52% 136.0 31.055 −6.54% 40

MLP 6432.858 −6.54% 107.044 −6.22% 124.2 31.065 −6.20% 62

Classical Sampling 6641.478 −3.79% 110.440 −3.72% 102.0 32.138 −3.72% 33728

Steady Myopic 7101.992 0.00% 117.963 0.00% 252.5 32.690 0.00% 26

Exponential 6765.575 −6.77% 112.431 −6.60% 137.5 31.465 −6.59% 28

Linear Regression 6830.842 −4.02% 113.435 −3.86% 127.5 31.585 −3.85% 37

MLP 6721.294 −5.68% 111.578 −5.53% 95.1 31.519 −5.54% 52

Classical Sampling 6735.598 −5.93% 112.078 −5.60% 94.0 31.060 −5.60% 25646

30 Falling Myopic 10432.136 0.00% 172.496 0.00% 487.5 31.150 0.00% 77

Exponential 9657.147 −7.07% 159.930 −7.01% 681.0 29.030 −7.00% 95

Linear Regression 9721.894 −5.92% 160.721 −5.55% 713.0 29.025 −5.55% 135

MLP 9689.704 −5.95% 160.690 −5.44% 714.7 29.072 −5.45% 176

Rising Myopic 10313.425 0.00% 170.299 0.00% 1308.5 31.055 0.00% 76

Exponential 9687.325 −6.66% 160.255 −6.66% 802.5 28.690 −6.68% 99

Linear Regression 9766.358 −6.26% 162.100 −6.14% 385.5 29.150 −6.14% 134

MLP 9599.087 −6.68% 159.226 −6.06% 569.4 29.196 −6.04% 146

Steady Myopic 10378.903 0.00% 171.450 0.00% 867.5 31.460 0.00% 82

Exponential 9633.436 −6.94% 159.578 −6.64% 629.0 29.225 −6.62% 76

Linear Regression 9772.233 −5.61% 161.868 −5.32% 305.5 29.895 −5.34% 112

MLP 9802.089 −4.79% 162.408 −4.82% 675.5 29.394 −4.83% 156

40 Falling Myopic 12632.717 0.00% 209.611 0.00% 508.5 29.530 0.00% 149

Exponential 11713.483 −7.83% 194.497 −7.90% 247.0 27.420 −7.88% 193

Linear Regression 11970.428 −6.76% 198.876 −6.56% 241.5 27.465 −6.57% 295

MLP 12031.577 −6.41% 199.944 −6.38% 414.8 27.629 −6.36% 425

Rising Myopic 12837.467 0.00% 212.832 0.00% 969.5 30.170 0.00% 195

Exponential 12005.597 −6.65% 199.567 −6.58% 494.5 27.675 −6.57% 234

Linear Regression 12238.508 −6.36% 203.612 −6.21% 408.5 28.025 −6.20% 311

MLP 12042.505 −6.57% 199.835 −6.22% 615.2 27.862 −6.21% 332

Steady Myopic 12635.717 0.00% 209.439 0.00% 883.0 29.335 0.00% 178

Exponential 11715.214 −8.04% 194.479 −8.16% 540.5 27.000 −8.16% 170

Linear Regression 11798.203 −6.49% 196.503 −6.46% 407.0 27.560 −6.48% 259

MLP 11836.576 −7.42% 196.776 −7.45% 535.3 27.341 −7.46% 309

Learning Surrogate Functions for Planning in SDD Problems 297

the ALNS. The reasoning behind that decision is that we want to avoid an
overwhelmingly large number of routes that are very bad, to derive finer tuned
models for better routes, which usually end up in the solution. This is especially
bad for the linear regression and the MLP that are more closely fitted to the
training data, whereas the exponential function benefits in this regard from its
simplicity and robustness.

Fig. 3. Solution quality f(〈R, τ, q〉) over average load and load pattern. The sampling
approach is not included in the load pattern graphic due to missing data for average
loads greater than 20.

6 Conclusions and Future Work

We considered a same-day delivery problem in which dynamically arriving orders
have to be delivered within a short time span while minimizing travel times,
labor costs, and tardiness. We focused on incorporating stochastic knowledge
into the objective function of the point-in-time optimization runs, realized by
an ALNS, by discounting route durations in dependence of diverse features. The
most important features are the number of orders that can be expected up to
the latest time the route would need to be started and the route’s mean deliv-
ery duration, but several other factors were also considered and partly showed
significant benefits.

Overall, our experiments clearly indicated that this approach is able to alle-
viate to a substantial degree the weaknesses of a myopic optimization, in par-
ticular in higher load situations. Of the three route duration discounting models
the exponential function performs the best, reducing the travel time as well as
the total objective by ≈6.1% on average over all instance classes. The more flex-
ible neural net, in contrast, performed significantly weaker. We conjectured that
the reason for this at the first glance surprising observation is the bias we have
in the training data. The simpler exponential function seems to be more robust
concerning candidate routes with properties that do not appear so frequently in

298 A. Bracher et al.

the routes determined by the ALNS when generating training data. Moreover,
the independent consideration of the routes is another source of potential errors.
In our experiments, the exponential discounting even outperformed the sampling
approach regarding solution quality in most cases and cuts down on runtime by
several orders of magnitude.

Further work should consider alternative ways of generating training data
to possibly reduce the bias. For example, intermediate solutions of the ALNS
may occasionally also be used for data generation. Bootstrapping φ̂ from previous
non-myopic runs could improve the accuracy of the parameter and lead to further
improvement. Moreover, the variability of this mean order duration over the day
due to varying load and traffic should be considered. Also, further tests with
real-world inspired spatial order distributions (e.g., clustered instances) and load
patterns could be helpful to evaluate practical aspects of the discounting models.

References

1. Azi, N., Gendreau, M., Potvin, J.Y.: An adaptive large neighborhood search for a
vehicle routing problem with multiple routes. Comput. Oper. Res. 41(1), 167–173
(2014)

2. Bent, R.W., Van Hentenryck, P.: Scenario-based planning for partially dynamic
vehicle routing with stochastic customers. Oper. Res. 52(6), 977–987 (2004)

3. Frohner, N., Raidl, G.R.: A double-horizon approach to a purely dynamic and
stochastic vehicle routing problem with delivery deadlines and shift flexibility. In:
Causmaecker, P.D., et al. (eds.) Proceedings of the 13th International Conference
on the Practice and Theory of Automated Timetabling - PATAT 2021, Vol. I.
Bruges, Belgium (2020)

4. Joe, W., Lau, H.C.: Deep reinforcement learning approach to solve dynamicvehicle
routing problem with stochastic customers. In: Proceedings of theInternational
Conference on Automated Planning and Scheduling, vol. 30, pp. 394–402 (2020)

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

6. Mitrović-Minić, S., Krishnamurti, R., Laporte, G.: Double-horizon based heuristics
for the dynamic pickup and delivery problem with time windows. Trans. Res. Part
B: Methodol. 38(8), 669–685 (2004)

7. Pisinger, D., Ropke, S.: A general heuristic for node routing problems. Comput.
Oper. Res. 34, 2403–2435 (2007). https://doi.org/10.1007/978-3-642-46629-8 9

8. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality. Wiley, Hoboken (2007)

9. Ritzinger, U., Puchinger, J., Hartl, R.F.: A survey on dynamic and stochastic
vehicle routing problems. Int. J. Prod. Res. 54(1), 215–231 (2016)

10. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Trans. Sci. 40(4), 455–472 (2006)

11. Ulmer, Marlin W., Thomas, Barrett W., Mattfeld, Dirk C.: Preemptive depot
returns for dynamic same-day delivery. EURO J. Trans. Logist. 8(4), 327–361
(2018). https://doi.org/10.1007/s13676-018-0124-0

12. Voccia, S.A., Campbell, A.M., Thomas, B.W.: The same-day delivery problem for
online purchases. Trans. Sci. 53(1), 167–184 (2019)

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-642-46629-8_9
https://doi.org/10.1007/s13676-018-0124-0

Between Steps: Intermediate Relaxations
Between Big-M and Convex Hull

Formulations

Jan Kronqvist(B) , Ruth Misener , and Calvin Tsay

Department of Computing, Imperial College London, London, UK
{j.kronqvist,r.misener,c.tsay}@imperial.ac.uk

Abstract. This work develops a class of relaxations in between the big-
M and convex hull formulations of disjunctions, drawing advantages from
both. The proposed “P -split” formulations split convex additively sepa-
rable constraints into P partitions and form the convex hull of the parti-
tioned disjuncts. Parameter P represents the trade-off of model size vs.
relaxation strength. We examine the novel formulations and prove that,
under certain assumptions, the relaxations form a hierarchy starting from
a big-M equivalent and converging to the convex hull. We computation-
ally compare the proposed formulations to big-M and convex hull formu-
lations on a test set including: K-means clustering, P ball problems, and
ReLU neural networks. The computational results show that the inter-
mediate P -split formulations can form strong outer approximations of
the convex hull with fewer variables and constraints than the extended
convex hull formulations, giving significant computational advantages
over both the big-M and convex hull.

Keywords: Disjunctive programming · Relaxation comparison ·
Formulations · Mixed-integer programming · Convex MINLP

1 Introduction

There are well-known trade-offs between the big-M and convex hull formulations
of disjunctions in terms of problem size and relaxation tightness. Convex hull for-
mulations [4,6,9,16,20,36] provide a sharp formulation for a single disjunction,
i.e., the continuous relaxation provides the best possible lower bound. The con-
vex hull is often represented by so-called extended (a.k.a. perspective/multiple-
choice) formulations [5,7,11,14,15,17,39], which introduce multiple copies of
each variable in the disjunction(s). On the other hand, the big-M formulation
only introduces one binary variable for each disjunct and results in a smaller
problem in terms of both number of variables and constraints; however, in gen-
eral it provides a weaker relaxation than the convex hull and may require a
solver to explore significantly more nodes in a branch-and-bound tree [10,39].
Even though the big-M formulation is weaker, in some cases it computationally
outperforms extended convex hull formulations, as the simpler subproblems can
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 299–314, 2021.
https://doi.org/10.1007/978-3-030-78230-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_19&domain=pdf
http://orcid.org/0000-0003-0299-5745
http://orcid.org/0000-0001-5612-5417
http://orcid.org/0000-0003-2848-2809
https://doi.org/10.1007/978-3-030-78230-6_19

300 J. Kronqvist et al.

offset the larger number of explored nodes. Anderson et al. [1] describe a folklore
observation in mixed-integer programming (MIP) that extended convex hull for-
mulations tend to perform worse than expected. The observation is supported
by the numerical results in Anderson et al. [1] and in this paper.

This paper presents a framework for generating formulations for disjunctions
between the big-M and convex hull with the intention of combining the best of
both worlds: a tight, yet computationally efficient, formulation. The main idea
behind the novel formulations is partitioning the constraints of each disjunct
and moving most of the variables out of the disjunction. Forming the convex
hull of the resulting disjunctions results in a smaller problem, while retaining
some features of the convex hull. We call the new formulation the P -split, as
the constraints are split into P parts. While many efforts have been devoted
to computationally efficient convex hull formulations [3,11,19,33,37,40–42] and
techniques for deriving the convex hull of MIP problems [2,22,25,31,35], our
primary goal is not to generate the convex hull. Rather, we provide a straight-
forward framework for generating a family of relaxations that approximate the
convex hull for a general class of disjunctions using a smaller problem formula-
tion. Our experiments show that the P -split formulations can give a significant
computational advantage over both the big-M and convex hull formulations.

This paper is organized as follows: the P -split formulation is presented in
Sect. 2, together with properties of the P -split relaxations and how they com-
pare to the big-M and convex hull relaxations. We also present a non-extended
realization of the P -split formulation for the special case of a two-term disjunc-
tion. Finally, a numerical comparison of the formulations is presented in Sect. 3
using instances with both linear and nonlinear disjunctions.

1.1 Background

We consider optimization problems containing disjunctions of the form

∨
l∈D

[
gk(x) ≤ bk ∀k ∈ Cl

]

x ∈ X ⊂ R
n,

(1)

where D contains the indices of the disjuncts, Cl the indices of the constraints
in disjunct l, and X is a convex compact set. This paper assumes the following:

Assumption 1. The functions gk : R
n → R are convex additively separable

functions, i.e., gk(x) =
∑n

i=1 hik(xi) where hik : R → R are convex functions,
and each disjunct is non-empty on X .

Assumption 2. All functions gk are bounded over X .

Assumption 3. Each disjunct contains significantly fewer constraints than the
number of variables in the disjunction, i.e., |Cl| << n.

The first two assumptions are needed for the P -split formulation to be valid
and result in a convex MIP. While the first assumption simplifies our anal-
ysis of P -split formulations, it could easily be relaxed to partially additively

Relaxations Between Big-M and Convex Hull Formulations 301

separable functions. Furthermore, the computational experiments only consider
problems with linear or quadratic constraints, which ensures that the convex hull
of the disjunction is representable by a polyhedron or (rotated) second-order cone
constraints [6]. Assumption 3 characterizes problem structures favorable for the
presented formulations. Problems with such a structure include, e.g., cluster-
ing [28,32], mixed-integer classification [24,30], optimization over trained neural
networks [1,8,12,13,34], and coverage optimization [18].

2 Relaxations Between Convex Hull and Big-M

The formulations in this section apply to disjunctions with multiple constraints
per disjunct. However, to simplify the derivation, we only consider disjunctions
with one constraint per disjunct, i.e., |Cl| = 1 ∀l ∈ D. The extension to multiple
constraints per disjunct simply applies the splitting procedure to each constraint.

To derive the new formulations, we partition the variables into P sets and
form the corresponding index sets I1, . . . , IP . The constraint for each disjunct
is then split into P constraints, by introducing auxiliary variables αj ∈ R

P

∨
l∈D

[
gl(x) ≤ bl

]

x ∈ X
−→ ∨

l∈D

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑

i∈I1

hi,l(xi) ≤ αl
1

...∑

i∈IP

hi,l(xi) ≤ αl
P

P∑

s=1

αl
s ≤ bl

αl
s ≤ αl

s ≤ ᾱl
s ∀s ∈ {1, . . . , P}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x ∈ X ,αl ∈ R
P ∀ l ∈ D.

(2)

Note that if the same function hi,l (or group of functions) appears in mul-
tiple disjuncts, then it can be represented by a single auxiliary variable in the
disjuncts. By Assumption 2, function hi,l is bounded on X , and bounds on the
auxiliary variables are given by

αl
s := min

x∈X

∑

i∈Is

hi,l(xi), ᾱl
s := max

x∈X

∑

i∈Is

hi,l(xi). (3)

The P -split formulation does not require tight bounds, but weak bounds result
in an overall weaker relaxation.

The splitting creates a lifted formulation by introducing P × |D| auxiliary
variables. Both formulations in (2) have the same feasible set in the x variables.
We can then treat the splitted constraints as global constraints

∨
l∈D

⎡

⎣
P∑

s=1
αl

s ≤ bl

αl
s ≤ αl

s ≤ ᾱl
s ∀s ∈ {1, . . . , P}

⎤

⎦

∑

i∈Is

hi,l(xi) ≤ αl
s ∀s ∈ {1, . . . , P}, ∀ l ∈ D

x ∈ X ,αl ∈ R
P ∀ l ∈ D.

(4)

302 J. Kronqvist et al.

Definition 1. Formulation (4) is a P -split representation of the original dis-
junction in (2).

Lemma 1 relates the P -split representation to the original disjunction. The prop-
erty is rather simple, but for completeness we have stated it as a lemma.

Lemma 1. The feasible set of P -split representation projected onto the x-space
is equal to the feasible set of the original disjunctions in (2).

Proof. An x̄ that is feasible for (4) and violates (2) gives a contradiction. Simi-
larly, an x̄ that is feasible for (2) is also clearly feasible for (4). �	

Using the extended formulation [4] to represent the convex hull of the dis-
junction in (4) results in the P -split formulation

αl
s =

∑

d∈D
ν

αl
s

d ∀ s ∈ {1, . . . , P}, ∀ l ∈ D
P∑

s=1
ν

αl
s

l ≤ blλl ∀ l ∈ D
αl

sλd ≤ ν
αl

s

d ≤ ᾱl
sλd ∀ s ∈ {1, . . . , P},∀ l, d ∈ D (P -split)∑

i∈Is

hi,l(xi) ≤ αl
s ∀ s ∈ {1, . . . , P}, ∀ l ∈ D

∑

l∈D
λl = 1, λ ∈ {0, 1}|D|

x ∈ X ,αl ∈ R
P , ναl

s ∈ R
P ∀ s ∈ {1, . . . , P}, ∀ l ∈ D ,

which forms a convex MIP problem. To clarify our terminology: a 2-split formu-
lation is a formulation (P -split) where the constraints of the original disjunction
are split up into two parts, i.e., P = 2. We assume that the disjunction is part of
a larger optimization problem that may contain multiple disjunctions. Therefore,
we need to enforce integrality on the λ variables even if we recover the convex
hull of the disjunction. Proposition 1 shows the correctness of the the (P -split)
formulation of the original disjunction.

Proposition 1. The set of feasible x variables in formulation (P -split) is equal
to the feasible set of x variables in disjunction (2).

Proof. By Lemma 1, (2) and (4) have equivalent x feasible sets. For λ ∈ {0, 1}|D|,
the extended formulation (P -split) exactly represents the disjunction (4). �	
Proposition 1 states that the P -split formulation is correct for integer feasible
solutions, but it does not give any insight on the quality of the continuous relax-
ation. The following subsections further analyze the properties of the (P -split)
formulation and its relation to the big-M and convex hull formulations.

Remark 1. A (P -split) formulation introduces P · (|D|2 + 1
)

continuous and |D|
binary variables. Unlike the extended convex hull formulation (which introduces
|D| · n continuous and |D| binary variables), the number of “extra” variables is
independent of n, i.e., the number of variables in the original disjunction. As
we later show, there are applications where |D| << n for which (P -split) formu-
lations can be smaller and computationally more tractable than the extended
convex hull formulation.

Relaxations Between Big-M and Convex Hull Formulations 303

2.1 Properties of the P -Split Formulation

This section focuses on the strength of the continuous relaxation of the P -split
formulation, and how it compares to convex hull and big-M formulations. To
simplify the analyses, we only consider disjunctions with a single constraint
per disjunct. However, the results again directly extend to the case of multiple
constraints per disjunct by applying the same procedure to each constraint.

We first analyze the 1-split, as summarized in the following theorem.

Theorem 1. The 1-split formulation is equivalent to the big-M formulation.

Proof. We eliminate the disaggregated variables ναl

d from the 1-split formulation
using Fourier-Motzkin elimination. Furthermore, we eliminate trivially redun-
dant constraints, e.g., αlλd ≤ ᾱlλd, resulting in

αl ≤ blλl +
∑

d∈D\l

ᾱlλd ∀l ∈ D
n∑

i=1

hi,l(xi) ≤ αl ∀ l ∈ D
∑

l∈D
λl = 1, λ ∈ {0, 1}|D|,x ∈ X , αl ∈ R ∀ l ∈ D.

(5)

The auxiliary variables αl are removed by combining the first and second con-
straints in (5). The smallest valid big-M coefficients are M l = ᾱl − bl, which
enables us to write (5) as

n∑

i=1

hi,l(xi) ≤ bl + M l(1 − λl) ∀l ∈ Dk

∑

l∈D
λl = 1, λ ∈ {0, 1}|D|, x ∈ X .

(6)

�	
Since the 1-split formulation introduces |D|2 + 1 auxiliary variables, but has
the same continuous relaxation as the big-M formulation, there are no clear
advantages of the 1-split formulation vs the big-M formulation.

We now examine the other extreme, where constraints are fully disaggregated,
i.e., the n-split. Its relation to the convex hull is given in the following theorem.

Theorem 2. If all hi,l are affine functions, then the n-split formulation (where
constraints are split for each variable) provides the convex hull of the disjunction.

Proof. In the linear case, the original disjunction is given by

∨
l∈D

[
(al)T x ≤ bl

]

x ∈ X ,
(7)

and the n-split formulation can be written compactly as

∨
l∈D

[
Blα̃ ≤ b̃l

]

α̃ = Γx, x ∈ X , α̃ ∈ R
n×|D|.

(8)

304 J. Kronqvist et al.

The n-split formulation is given by the convex hull of (8) through the extended
formulation. Here, Γ defines a bijective mapping between the x and α̃ variable
spaces (only true for an n-split). A reverse mapping is given by x = Ψα̃. The
linear transformations preserve an exact representation of the feasible sets, i.e.,

Blα̃ ≤ b̃l ⇐⇒ (al)T Ψα̃ ≤ b, (al)T x ≤ bl ⇐⇒ BlΓx ≤ b̃l. (9)

For any point z in the the convex hull of (8) ∃ α̃1, α̃2, . . . α̃|D| and λ ∈ R
|D|
+

z =
|D|∑

l=1

λlα̃
l

|D|∑

l=1

λl = 1, Blα̃l ≤ b̃l ∀ l ∈ D.

(10)

Applying the reverse mapping to (10) gives

Ψz =
|D|∑

l=1

λlΨα̃l. (11)

By construction,
(
al

)T
Ψα̃l ≤ bl ∀l ∈ D. The point Ψz is given by a convex

combination of points that all satisfy the constraints of one of the disjuncts in
(7) and, therefore, belongs to the convex hull of (7). The same technique easily
shows that any point in the convex hull of disjunction (7) also belongs to the
convex hull of disjunction (8). �	
As mentioned before, non-tight bounds on the auxiliary variables αl can result
in a weaker relaxation. Theorem2 does not hold with nonlinear functions, since
the mapping may be neither bijective nor a homomorphism. In general, the n-
split formulation will not obtain the convex hull of nonlinear disjunctions, as
Sect. 2.2 shows by example, but it can provide a strong outer approximation.

Two-Term Disjunctions. We further analyze the special case of a two-term
disjunction for which we also present a non-lifted P -split formulation in the
following theorem.

Theorem 3. For a two-term disjunction, the P -split formulation has the fol-
lowing non-extended realization

∑

j∈Sp

⎛

⎝
∑

i∈Ij

hi,1(xi)

⎞

⎠ ≤
⎛

⎝b1 −
∑

s∈S\Sp

α1
s

⎞

⎠ λ1 +
∑

s∈Sp

ᾱ1
sλ2 ∀Sp ⊂ S

∑

j∈Sp

⎛

⎝
∑

i∈Ij

hi,2(xi)

⎞

⎠ ≤
⎛

⎝b2 −
∑

s∈S\Sp

α2
s

⎞

⎠ λ2 +
∑

s∈Sp

ᾱ2
sλ1 ∀Sp ⊂ S

λ1 + λ2 = 1, λ ∈ {0, 1}2, x ∈ X ,

(12)

where S = {1, 2, . . . P}.

Relaxations Between Big-M and Convex Hull Formulations 305

Proof. The equality constraints for the disaggregated variables (αl
s = ν

αl
s

1 +ν
αl

s
2)

enable us to easily eliminate the variables ν
αl

s
1 from (P -split), resulting in

P∑

s=1

(
α1

s − ν
α1

s
2

)
≤ b1λ1 (13)

P∑

s=1

ν
α2

s
2 ≤ b2λ2 (14)

αl
sλ1 ≤ αl

s − ν
αl

s
2 ≤ ᾱl

sλ1 ∀s ∈ {1, 2, . . . , P},∀ l ∈ {1, 2} (15)

αl
sλ2 ≤ ν

αl
s

2 ≤ ᾱl
sλ2 ∀s ∈ {1, 2, . . . , P},∀ l ∈ {1, 2} (16)

∑

i∈Is

hi,l(xi) ≤ αl
s ∀ s ∈ {1, 2, . . . , P}, ∀ l ∈ {1, 2} (17)

λ1 + λ2 = 1, λ ∈ {0, 1}2 (18)

x ∈ X ,αl ∈ R
P ,ναl

s ∈ R
P ∀ l ∈ {1, 2},∀ s ∈ {1, 2, . . . , P}. (19)

Next, we use Fourier-Motzkin elimination to project out the ν
α1

s
2 variables.

Combining the constraints in (15) and (16) only results in trivially redundant
constraints, e.g., αl

s ≤ ᾱl
s(λ1 + λ2). Eliminating the first variable ν

α1
1

2 creates
two new constraints by combining (13) with (15)–(16). The first constraint is
obtained by removing ν

α1
1

2 and α1
1 from (13) and adding α1

1λ2 to the left-hand

side. The second constraint is obtained by removing ν
α1

1
2 from (13) and sub-

tracting ᾱ1
1λ2 from the left-hand side. Eliminating the next variable is done by

repeating the procedure of combining the two new constraints with the corre-
sponding inequalities in (15)–(16). Each elimination step doubles the number
of constraints originating from inequality (13). Eliminating all the variables ν

α1
s

2

and α1
s results in the first set of constraints

∑

s∈Sp

α1
s ≤

⎛

⎝b1 −
∑

s∈S\Sp

α1
s

⎞

⎠ λ1 +
∑

s∈Sp

ᾱ1
sλ2 ∀Sp ⊂ S. (20)

The variables ν
α2

s
2 and α2

s are eliminated by same steps, resulting in the second
set of constraints in (12). �	

To further analyze the tightness of different P -split relaxations we require
that the bounds on the auxiliary variables be independent, as defined below:

306 J. Kronqvist et al.

Definition 2. We say that the upper and lower bounds for the constraint∑n
i=1 hi(xi) ≤ 0 are independent on X if

min
x∈X

(hi(xi) + hj(xj)) = min
x∈X

hi(xi) + min
x∈X

hj(xj)

max
x∈X

(hi(xi) + hj(xj)) = max
x∈X

hi(xi) + max
x∈X

hj(xj),
(21)

hold for all i, j ∈ {1, 2, . . . n}.
Independent bounds are not restricted to linear constraints, but the most general
case of independent bounds are linear disjunctions with X defined as a box.
Independent bounds enable us to establish a strict relation on the tightness of
different P -split formulations, which is presented in the next corollary.

Corollary 1. For a two-term disjunction with independent bounds, a (P + 1)-
split formulation, obtained by splitting one variable group in the P -split, is always
as tight or tighter than the corresponding P-split formulation.

Proof. The non-extended formulation (12) for the (P + 1)-split comprises the
constraints in the P -split formulation and some additional constraints. �	
From Corollary 1 it follows that the P -split formulations represent a hierarchy
of relaxations, and we formally state this property in the following corollary.

Corollary 2. For a linear two-term disjunction the P-split formulations form
a hierarchy of relaxations, starting from the big-M relaxation (P = 1) and con-
verging to the convex hull relaxation (P = n).

Proof. Theorems 1 and 2 give equivalence to big-M and convex hull. By Corollary
1, the (P + 1)-split is as tight or tighter than the P -split relaxation. �	

2.2 Illustrative Example

To see the differences between P -split formulations, consider the disjunction
[∑4

i=1 x2
i ≤ 1

] ∨ [∑4
i=1(3 − xi)2 ≤ 1

]
(ex-1)

x ∈ R
4.

The tightest valid bounds on all the auxiliary variables are given by

αl
s = 0, ᾱl

s :=
(√

|Is| · 32 + 1
)2

∀s ∈ {1, 2, 3, 4}, ∀l ∈ {1, 2}. (22)

These bounds are derived from the fact that one of the two constraints in the
disjunction must hold, and are symmetric for the two sets of α-variables. The
continuously relaxed feasible sets of the P -split formulations of disjunction (ex-
1) are shown in Fig. 1, which shows that the relaxations overall tighten with

Relaxations Between Big-M and Convex Hull Formulations 307

increasing number of splits P . The 4-split formulation does not give the convex
hull, but provides a good approximation. For this example, the independent
bound property does not hold and the relaxations do not form a proper hierarchy.
To show why the independent bound property is needed, we compare the non-
extended representations of the 1-split and 2-split formulations:

4∑

i=1

x2
i ≤ λ1 +

(√
36 + 1

)2

λ2,

4∑

i=1

(3 − xi)
2 ≤ λ2 +

(√
36 + 1

)2

λ1 (1-s)

2∑

i=1

x2
i ≤ λ1 +

(√
18 + 1

)2

λ2,
4∑

i=3

x2
i ≤ λ1 +

(√
18 + 1

)2

λ2 (2-s1)

2∑

i=1

(3 − xi)
2 ≤ λ2 +

(√
18 + 1

)2

λ1,
4∑

i=3

(3 − xi)
2 ≤ λ2 +

(√
18 + 1

)2

λ1 (2-s2)

4∑

i=1

x2
i ≤ λ1 + 2

(√
18 + 1

)2

λ2,
4∑

i=1

(3 − xi)
2 ≤ λ2 + 2

(√
18 + 1

)2

λ1. (2-s3)

The 1-split formulation is given by (1-s), and the 2-split by (2-s1)–(2-s3). The
2-split contains additional constraints (2-s1) and (2-s2), but (2-s3) is a weaker
version of (1-s). If the independent bound property were true, then (2-s3) and
(1-s) would be identical and the relaxations would form a proper hierarchy.

3 Numerical Comparison

To compare how the formulations perform computationally, we apply the P -split,
big-M, and convex hull formulations to several test problems. We consider three
types of optimization problems that have a suitable structure for the P -split
formulation (assumptions 1–3) and that are known to be challenging.

K-Means Clustering. Using the formulation by Papageorgiou and Trespala-
cios [28], the K-means clustering problem [26] is given by

min
r∈RL,xj∈Rn,∀j∈K

L∑

i=1

ri

s.t. ∨
j∈K

[∥
∥xj − di

∥
∥2

2
≤ ri

]
∀i ∈ {1, 2, . . . , L},

(23)

where xj are the cluster centers, {di}L
i=1 are n-dimensional data points, and

K = {1, 2, . . . k}. The tightest upper bound for the auxiliary variables in the P-
split formulations are given by the largest squared Euclidean distance between
any two data points in the subspace corresponding to the auxiliary variable. By
introducing auxillary variables for the differences (x − d), we can express the
convex hull of the disjunctions by rotated second order cone constraints [6] in a

308 J. Kronqvist et al.

1-split/big-M
({x1, x2, x3, x4})

2-split
({x1, x2}, {x3, x4})

4-split
({x1}, {x2}, {x3}, {x4})

Fig. 1. The dark circles show the feasible set of (ex-1) in the x1, x2 space. The light
grey areas show the continuously relaxed feasible set of the P-split formulations. The
sets in the parentheses show the partitioning of variables.

form suitable for Gurobi. We use the G2 data set [27] to generate low-dimensional
test instances, and the MNIST data set [23] to generate high-dimensional test
instances. For the MNIST-based problems, we select the first images of each
class ranging from 0 to the number of clusters. Details about the problems are
presented in Table 1.

P ball Problems. The task is to assign p-points to n-dimensional unit balls
such that the total �1 distance between all points is minimized and only one point
is assigned to each unit ball [21]. Upper bounds on the auxiliary variables in the
P-split formulation are given by the same technique as for the M -coefficients
in [21], but in the subspace corresponding to the auxiliary variable. By intro-
ducing auxiliary variables for the differences between the points and the centers,
we are able to express the convex hull by second order cone constraints [6] in
a form suitable for Gurobi. We have generated a few larger instances to obtain
more challenging problems and details of the problems are given in Table 1.

ReLU Neural Networks. Optimization over a ReLU neural network (NN)
is used to quantify extreme outputs [1,8]. Each ReLU activation function
(y = max{0,wT x + b}) can be expressed as a two-part disjunction using the
P -split formulation, by separating wT x =

∑
i∈S1∪...∪SP

wixi. Upper bounds
on node outputs and auxiliary variables can be computed using simple interval
arithmetic. We created several instances (Table 1) that minimize the prediction
of single-output NNs trained on the d-dimensional Ackley/Rastrigin functions.
All NNs were implemented in PyTorch [29] and trained for 1000 epochs, using
a Latin hypercube of 106 samples. Note that more samples may be required to
accurately represent the target functions, but here we are solely concerned with
the performance of various optimization formulations. In later work, we explore
techniques to tailor the P -split formulations proposed in this paper specifically
to ReLU NNs [38].

Relaxations Between Big-M and Convex Hull Formulations 309

Table 1. Details of the clustering, P ball and neural network problems.

Name Data points Data dimension Number of clusters

Cluster g1 20 32 2

Cluster g2 25 32 2

Cluster g3 20 16 3

Cluster m1 5 784 3

Cluster m2 8 784 2

Cluster m3 10 784 2

Number of balls Number of points Ball dimension

P ball 1 10 5 8

P ball 2 10 5 16

P ball 3 8 5 32

Input dimension (d) Hidden layers Function

NN 1 2 [50, 50, 50] Ackley

NN 2 10 [50, 50, 50] Ackley

NN 3 3 [100, 100] Rastrigin

Computational Setup. Optimization performance is dependent on both the
tightness and the computational complexity of the continuous relaxation. The
default (automatic) parameter selection in Gurobi causes large variations in
the results that are due to different solution strategies rather than differences
between formulations. Therefore, we used the parameter settings MIPFocus =
3, Cuts = 1, and MIQCPMethod = 1 for all problems. We found that using
PreMIQCPForm = 2 drastically improves the performance of the extended convex
hull formulations for the clustering and P ball problems. However, it resulted
in worse performance for the other formulations and, therefore, we only used
it with the convex hull. Since the NN problems only contain linear constraints,
only the MIPFocus and Cuts parameters apply to these problems The default
values were used for all other settings. All problems were solved using Gurobi
9.0.3 on a desktop computer with an i7 8700k processor and 16 GB RAM.

Different variable partitionings can lead to differences in the P -split formu-
lations. For all the problems, the variables are simply partitioned based on their
ordered indices. For the K-means clustering and P ball problems, we have used
the smallest valid M-coefficients and tight bounds for the α-variables. The K-
means clustering and P ball problems both have analytical expressions for all
the bounds. For the NN problems tight bounds are not easily obtained, and the
bounds are obtained using interval arithmetic.

310 J. Kronqvist et al.

Table 2. CPU times [s] and numbers of nodes explored for test problems. In bold is the
winner for each test instance with respect to both time and number of nodes. The grey
shading shows the P -split times that strictly outperform both the big-M and convex
hull formulations. The time limit was 1800 CPU seconds. Cells marked NA correspond
to instances with fewer than P terms per disjunction. Note that, despite differences
in the numbers of splits, the test problems have similar numbers of variables in the
splitted variable sets. For example, the 8-split formulations for the Cluster g instances
and the 196-split formulations for the Cluster m instances all have 4 variables per split.

Instance Big-M 2-split 4-split 8-split 16-split 32-split Convex hull

Cluster g1 time >1800 81.0 13.9 2.9 1.7 3.5 42.0

nodes >8998 2946 1096 256 98 91 73

Cluster g2 time >1800 106.3 7.7 4.3 2.1 4.5 40.6

nodes >10431 1736 481 217 104 86 77

Cluster g3 time >1800 >1800 870.6 407.2 597.5 NA >1800

nodes >28906 >40820 19307 14923 16806 >7797

P ball 1 time 403.0 235.4 285.1 18.5 NA NA 42.2

nodes 29493 7919 5518 2202 1437

P ball 2 time >1800 483.6 326.6 41.6 30.6 NA 28.2

nodes >19622 13602 5871 3921 1261 531

P ball 3 time >1800 >1800 >1800 149.3 91.1 78.7 114.0

nodes >7537 >6035 >6708 7042 3572 631 554

big-M 14-split 28-split 56-split 196-split 392-split convex hull

Cluster m1 time >1800 >1800 129.5 76.8 32.0 33.2 313.3

nodes >10680 >9651 2926 1462 524 195 228

Cluster m2 time >1800 1116.5 156.1 27.1 97.0 54.2 1260.1

nodes >4867 6220 1915 805 2752 1155 131

Cluster m3 time >1800 >1800 429.5 60.0 23.2 19.8 >1800

nodes >4419 >4197 3095 1502 741 397 >93

1-split/ 2-split 4-split 8-split 16-split 32-split 50-split/

big-M convex hull*

NN 1 time 36.1 29.4 41.8 57.0 85.7 145.1 198.5

nodes 24177 12377 11229 7415 11117 9793 11734

NN 2 time 21.6 35.5 50.7 131.4 287.3 776.1 >1800

nodes 19746 20157 14003 11174 6687 12685 >4016

NN 3 time 141.8 210.6 206.5 275.5 305.8 429.1 556.6

nodes 116996 101113 86582 84455 69022 56873 48153

*50-split is not the convex hull of each node for NN 3, which has layers of 100 nodes.

3.1 Numerical Results

Table 2 shows the elapsed CPU time and number of nodes explored to solve each
problem. The results show that P -split formulations can drastically reduce the
number of explored nodes compared to the big-M formulation, even with only a
few splits. The differences are clearest for the nonlinear problems, where both the

Relaxations Between Big-M and Convex Hull Formulations 311

CPU times and numbers of nodes are reduced by several orders of magnitude.
As expected, the convex hull formulation results in the fewest explored nodes.
However, the P -split formulations have a simpler1 problem formulation, reducing
the CPU times for all but one instance compared to the convex hull. The results
clearly show the advantage of the intermediate P -split formulations, resulting
in a tighter formulation than big-M and a computationally cheaper formulation
than the extended convex hull.

Note that the P -split formulations are in general robust towards the choice of
P . For the clustering and P ball problems, all P -split formulations outperformed
the big-M formulation both in terms of solution times and numbers of explored
nodes. For the cases where the smallest P -split formulations timed out, Gurobi
terminated with a much smaller gap compared to that of the big-M formulation.
The P -split formulations also outperform the convex hull formulations in terms
of solution time for a wide range of P in all but one of the test problems.

For the NN problems, which have linear disjunctions, the situation is some-
what different. Here, while increasing P still decreased the number of explored
nodes, the improvements are less significant, and the trend is not completely
monotonic. Note that bounds on the inputs to layers 2–3 are computed using
interval arithmetic, resulting in overall weaker relaxations for all formulations.
The weaker bounds in layers 2–3 reduce the benefits of both the P -split and
convex hull formulations, and may favor the simpler big-M formulation. As the
reduction in explored nodes is less drastic, smaller formulations perform the best
in terms of CPU time, supporting claims that extended formulations may per-
form worse than expected [1,40]. This may also be a consequence of Gurobi effi-
ciently handling linear problems when it detects big-M-type constraints. Ignoring
the big-M (1-split), the 2- and 4-splits have the lowest CPU time for all NNs,
and all the split formulations solve the problems significantly faster than the
convex hull formulation.

4 Conclusions

We have presented a general framework for generating intermediate relaxations
in between the big-M and convex hull. The numerical results show a great poten-
tial of the intermediate relaxations, by providing a good approximation of the
convex hull through a computationally simpler problem. For several of the test
problems, the intermediate relaxations result in a similar number of explored
nodes as the convex hull formulation while reducing the total solution time by
an order of magnitude.

Acknowledgements. The research was funded by a Newton International Fellow-
ship by the Royal Society (NIF\R1\182194) to JK, a grant by the Swedish Cul-
tural Foundation in Finland to JK, and by Engineering & Physical Sciences Research

1 The extended convex hull formulations for the nonlinear problems require auxiliary
variables and (rotated) second order cone constraints. All P -split formulations have
fewer variables and constraints and only contain linear/convex-quadratic constraints.

312 J. Kronqvist et al.

Council (EPSRC) Fellowships to RM and CT (grant numbers EP/P016871/1 and
EP/T001577/1). CT also acknowledges support from an Imperial College Research
Fellowship.

References

1. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong
mixed-integer programming formulations for trained neural networks. Math. Pro-
gram. 183(1), 3–39 (2020). https://doi.org/10.1007/s10107-020-01474-5

2. Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete
optimization problems. SIAM J. Algebraic Discrete Methods 6(3), 466–486 (1985)

3. Balas, E.: On the convex hull of the union of certain polyhedra. Oper. Res. Lett.
7(6), 279–283 (1988)

4. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points.
Discrete Appl. Math. 89(1–3), 3–44 (1998)

5. Balas, E.: Disjunctive Programming. Springer International Publishing (2018).
https://doi.org/10.1007/978-3-030-00148-3

6. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications, vol. 2. Siam (2001)

7. Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming
with indicator constraints. Math. Program. 151(1), 191–223 (2015)

8. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient ver-
ification of ReLU-based neural networks via dependency analysis. In: AAAI-20
Proceedings, pp. 3291–3299 (2020)

9. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization.
Math. Program. 86(3), 595–614 (1999). https://doi.org/10.1007/s101070050106

10. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer programming, volume 271 of
graduate texts in mathematics (2014)

11. Conforti, M., Wolsey, L.A.: Compact formulations as a union of polyhedra. Math.
Program. 114(2), 277–289 (2008). https://doi.org/10.1007/s10107-007-0101-0

12. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018). https://doi.org/10.1007/s10601-018-9285-6

13. Grimstad, B., Andersson, H.: ReLU networks as surrogate models in mixed-integer
linear programs. Comput. Chem. Eng. 131, 106580 (2019)

14. Grossmann, I.E., Lee, S.: Generalized convex disjunctive programming: nonlinear
convex hull relaxation. Comput. Optim. Appl. 26(1), 83–100 (2003). https://doi.
org/10.1023/A:1025154322278

15. Günlük, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear
programs with indicator variables. Math. Program. 124(1–2), 183–205 (2010)

16. Helton, J.W., Nie, J.: Sufficient and necessary conditions for semidefinite repre-
sentability of convex hulls and sets. SIAM J. Optim 20(2), 759–791 (2009)

17. Hijazi, H., Bonami, P., Cornuéjols, G., Ouorou, A.: Mixed-integer nonlinear pro-
grams featuring ”on/off” constraints. Comput. Optim. Appl. 52(2), 537–558
(2012). https://doi.org/10.1007/s10589-011-9424-0

18. Huang, C.F., Tseng, Y.C.: The coverage problem in a wireless sensor network.
Mob. Netw. Appl. 10(4), 519–528 (2005)

19. Jeroslow, R.G.: A simplification for some disjunctive formulations. Eur. J. Oper.
Res. 36(1), 116–121 (1988)

https://doi.org/10.1007/s10107-020-01474-5
https://doi.org/10.1007/978-3-030-00148-3
https://doi.org/10.1007/s101070050106
https://doi.org/10.1007/s10107-007-0101-0
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1023/A:1025154322278
https://doi.org/10.1023/A:1025154322278
https://doi.org/10.1007/s10589-011-9424-0

Relaxations Between Big-M and Convex Hull Formulations 313

20. Jeroslow, R.G., Lowe, J.K.: Modelling with integer variables. In: Korte, B., Ritter,
K. (eds.) Mathematical Programming at Oberwolfach II, pp. 167–184. Springer,
Berlin (1984). https://doi.org/10.1007/BFb0121015

21. Kronqvist, J., Misener, R.: A disjunctive cut strengthening technique for convex
MINLP. Optim. Eng. 1–31 (2020). https://doi.org/10.1007/s11081-020-09551-6

22. Lasserre, J.B.: An explicit exact SDP relaxation for nonlinear 0-1 programs. In:
Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 293–303. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45535-3 23

23. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. ATT Labs
(2010). http://yann.lecun.com/exdb/mnist2

24. Liittschwager, J., Wang, C.: Integer programming solution of a classification prob-
lem. Manage. Sci. 24(14), 1515–1525 (1978)

25. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization.
SIAM J. Optim. 1(2), 166–190 (1991)

26. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability. vol. 1, pp. 281–297. Oakland, CA, USA (1967)

27. Mariescu-Istodor, P.F.R., Zhong, C.: XNN graph LNCS 10029, 207–217 (2016)
28. Papageorgiou, D.J., Trespalacios, F.: Pseudo basic steps: bound improvement guar-

antees from Lagrangian decomposition in convex disjunctive programming. EURO
J. Comput. Optim. 6(1), 55–83 (2018)

29. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, pp. 8026–8037
(2019)

30. Rubin, P.A.: Solving mixed integer classification problems by decomposition. Ann.
Oper. Res. 74, 51–64 (1997). https://doi.org/10.1023/A:1018990909155

31. Ruiz, J.P., Grossmann, I.E.: A hierarchy of relaxations for nonlinear convex gen-
eralized disjunctive programming. Eur. J. Oper. Res. 218(1), 38–47 (2012)

32. Sağlam, B., Salman, F.S., Sayın, S., Türkay, M.: A mixed-integer programming
approach to the clustering problem with an application in customer segmentation.
Eur. J. Oper. Res. 173(3), 866–879 (2006)

33. Sawaya, N.W., Grossmann, I.E.: Computational implementation of non-linear con-
vex hull reformulation. Comput. Chem. Eng. 31(7), 856–866 (2007)

34. Serra, T., Kumar, A., Ramalingam, S.: Lossless compression of deep neural net-
works. In: Hebrard, E., Musliu, N. (eds.) CPAIOR 2020. LNCS, vol. 12296, pp.
417–430. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58942-4 27

35. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM J. Discrete
Math. 3(3), 411–430 (1990)

36. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex pro-
gramming. Math. Program. 86(3), 515–532 (1999)

37. Trespalacios, F., Grossmann, I.E.: Algorithmic approach for improved mixed-
integer reformulations of convex generalized disjunctive programs. INFORMS J.
Comput. 27(1), 59–74 (2015)

38. Tsay, C., Kronqvist, J., Thebelt, A., Misener, R.: Partition-based formulations
for mixed-integer optimization of trained relu neural networks. arXiv preprint
arXiv:2102.04373 (2021)

39. Vielma, J.P.: Mixed integer linear programming formulation techniques. SIAM
Rev. 57(1), 3–57 (2015)

40. Vielma, J.P.: Small and strong formulations for unions of convex sets from the
cayley embedding. Math. Program. 177(1–2), 21–53 (2019)

https://doi.org/10.1007/BFb0121015
https://doi.org/10.1007/s11081-020-09551-6
https://doi.org/10.1007/3-540-45535-3_23
http://yann.lecun.com/exdb/mnist2
https://doi.org/10.1023/A:1018990909155
https://doi.org/10.1007/978-3-030-58942-4_27
http://arxiv.org/abs/2102.04373

314 J. Kronqvist et al.

41. Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonsepara-
ble piecewise-linear optimization: unifying framework and extensions. Oper. Res.
58(2), 303–315 (2010)

42. Vielma, J.P., Nemhauser, G.L.: Modeling disjunctive constraints with a logarith-
mic number of binary variables and constraints. Math. Program. 128(1–2), 49–72
(2011)

Logic-Based Benders Decomposition
for an Inter-modal Transportation

Problem

Ioannis Avgerinos(B), Ioannis Mourtos, and Georgios Zois

ELTRUN Research Lab, Department of Management Science and Technology,
Athens University of Economics and Business, Athens 104 34, Greece

{iavgerinos,mourtos,georzois}@aueb.gr

Abstract. This paper studies a real-life inter-modal freight transporta-
tion problem, comprised by three consecutive stages: disposition where
orders are picked up by trucks, transferred and unloaded to a set of
warehouses in Central and Eastern Europe, inter-region transport where
the orders are packed into trailers, which are shipped to warehouses in
Turkey using different inter-region transport modes, and last-mile deliv-
ery where the orders unloaded at the warehouses in Turkey are picked
up by vans and delivered to their final destination. The objective is to
minimise total transport and tardiness cost. After restricting the routes
in the disposition stage, we formulate a mixed-integer linear program
that captures the entire delivery process. Then, we propose a Benders’
decomposition and prove the validity of a set of optimality cuts and of
a subproblem relaxation. We show the impact of this approach on large-
scale real instances under user-imposed time limits. We further strength-
ening the master problem with a set of valid inequalities and speed up
the solution of the subproblem using Constraint Programming.

Keywords: Inter-modal transportation · Pickup and delivery
planning · Benders decomposition · Integer programming · Constraint
programming

1 Introduction

It is known that Benders Decomposition [4] is quite effective for complex trans-
portation problems [8,10], often occurring in inter-modal transportation (e.g.,
[3,7]). Although heuristic approaches are popular in such problems (e.g., [2,9]),
we are interested in exact methods, because cost reduction appears to be of
utmost importance for logistics providers. In addition, we are also motivated
by the practical considerations of a real use case, arising from EKOL that is a

This research has been supported by the EU through the COG-LO Horizon 2020
project, grant number 769141 and the GSRI through the i@transport project, grant
number T2EΔK00345.

c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 315–331, 2021.
https://doi.org/10.1007/978-3-030-78230-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_20

316 I. Avgerinos et al.

major such provider in Europe. EKOL implements weekly planning using ship-
ment requests arriving until the very last moment, therefore it is critical that
execution time remains below 1–2 h.

Let us detail the three stages of the problem in hand, while also discussing
some indicative background. The first stage, called disposition, includes the col-
lection of orders from their pickup points and their unloading to a set of depots
in Poland, Hungary, Czech Republic and Slovakia, using single-trailer trucks
(i.e., trucks of identical capacity). Before the orders are transferred to the ware-
houses, a customs’ clearance process has to be carried out by specific companies,
while the time-span of loading, customs clearance and unloading is restricted by
the operating hours (i.e., time-windows) of all companies involved. This setting
already resembles the Vehicle Routing Problem with Time Windows (VRPTW).
The existence of multiple depots in our case introduces the multi-depot variant
in which each route begins and ends at the same depot [12]. Given the difficulty
of solving optimally that variant in reasonable time, we opt for the alternative
approach of pre-defining the candidate routes and obtaining a set-covering for-
mulation [11]. This results in a reasonable number of feasible routes because of
the strict operating hours of the companies involved, the small average number
of orders fitting the capacity of a trailer and the fact that each pick-up point
must be served by its nearest depot. Thus, solving a TSP with time-windows
returns the shortest time per route in a few seconds.

The second stage includes the inter-regional transportation of the orders from
Central and Eastern Europe to Turkey. Here orders, each with a known weight,
are assigned to trailers, each of known capacity. Afterwards, trailers are assigned
to given transport modes, each with a known origin and destination, departure
and arrival time, capacity (in number of trailers), a fixed and a variable (per
trailer) cost. Transport modes link all depots to the warehouses of Istanbul or
Denizli in Turkey through shipment by trucks (each carrying multiple trailers)
from any depot or by railway from Hungary only to Istanbul or by combining
railway from the Czech Republic to the port of Trieste and seaway from Trieste
to Istanbul or Mersin (the cost and travel times from the railway stations and
ports to the two warehouses are included in the arrival times and the fixed costs
of the concerned modes). A relevant definition of these transport modes appears
in [9] and an analogous mathematical model appears in [13]. Overall, this second
stage must assign orders to trailers and trailers to transport modes at minimum
cost, where of course a mode is eligible for a trailer only if its departure time
exceeds the packing time of that trailer, which in turn must start after the arrival
of all its orders at the depot. Indicative work on the relevant single-depot and
multi-depot cross-docking problems appears in [2,14].

The third stage is the last-mile delivery of the orders, after their arrival to
Turkey and their unloading at the respective warehouse. Here, a large number
of small vans serve each warehouse and often carry a single order. Therefore, we
can reasonably apply the simplifying assumption that each van delivers a sin-
gle order, thus obtaining a resource-constrained parallel-scheduling formulation.
Specifically, the delivery of each order is considered as a ‘task’ to be scheduled

LBBD for an Inter-modal Transportation Problem 317

to any of the available vans, i.e., ‘machines’. The problem aims to minimize the
tardiness cost, as implied by the number of days of delayed delivery, compared
to a predefined deadline, multiplied by an order-unique weight, referred to as
importance by the EKOL dispatchers.

Our Contribution. Given the elaborate structure of the entire inter-modal set-
ting we examine, our first offering is the construction of a unified mathematical
model. We proceed with a Benders Decomposition, in which the master prob-
lem sustains the first two stages and the subproblem gets the third one. Apart
from exploiting the Benders’ approach, this decomposition allows us to add the
redundant capacity constraints of [1] to the master problem, as that exhibits a
facility location structure. We also use Constraint Programming for the solution
of the subproblem. The proofs regarding the validity of both the optimality cuts
and the subproblem relaxation added to the master problem follow the style of
[5]. We experiment with several weekly instances of EKOL and establish the
computational efficiency of our approach compared to a standard solver under
time limits of 1/2 or 1 h.

2 Modeling

Notation. Table 1 presents the notation of the MILP formulation. For each order
n ∈ N, pickupn, customsn and deliveryn denote the corresponding locations;
demandn is its weight and tduen its delivery deadline. The penalty imposed if tduen

is exceeded equals the squared value of days of delay multiplied by the weight
in.

Each trailer is linked with a single depot in Europe. The set of transport
modes M includes pre-computed routes for disposition represented by the sub-
set of pickup modes M− and delivery modes M+. If the origin of a delivery
mode is a depot in Europe and its destination a warehouse in Turkey, the mode
is considered as complete and is placed in M+

full; otherwise, it is considered
as partial and belongs to M+

part. The distinction between partial and complete
modes concerns the inter-regional modes only, therefore the subset M− is not
divided. seqm denotes the sequence of nodes or partial modes that are linked
with m. The departure time from the origin originm of mode m ∈ M and the
arrival time to its destination destm, are departurem and arrivalm, respectively.

The travel cost of each trailer that is shipped by mode m is ctravelm and the
fixed cost of the mode, irrespective of the number of trailers, is cfixedm . The
maximum number of trailers that can be shipped simultaneously by a single
mode m is Qtrailers

m and the availability of vehicles is denoted by bm.
J is the set of depots in Europe and L is the set of warehouses in Turkey. T

represents hourly time slots and D daily ones. The parameter αnm is equal to 1
if order n is picked up by route m ∈ M− and 0 otherwise. The capacity of all
trailers is qg and the transportation cost from the warehouse l ∈ L to the delivery
location deliveryn is cdeliverynl . The number of available vans in warehouse l is

318 I. Avgerinos et al.

Kl and the travel duration from l to deliveryn is tnl. The time window per day
d ∈ D is [openingd, closingd].

Variables hnm determine the assignment of orders to modes, yng determine
the assignment of orders to trailers and xgm the transport mode of trailers.
Variables unlt are equal to 1 if the delivery of order n from warehouse l ∈ L
begins at time t ∈ T . Integer variables wm denote the number of times that
mode m is used. The tardiness cost is defined by the integer variable Tn, daynd
indicates whether order n is handled in day d and og is a ‘dummy’ continuous
variable, equal to the total payweight units in trailer g.

Preprocessing. We compute the candidate feasible pickup routes of disposi-
tion as a pre-processing step, by constructing sequences that do not exceed the
capacity of a trailer and do not violate the time-windows imposed. The result
of this process is the subset M− (Table 1). If the constructed route collects an
order, the respective parameter αnm is fixed to 1. Each trailer is dedicated to a
single depot, thus the rest of the depots are irrelevant as it cannot be shipped
from them. Therefore, the variables xgm that include trailers g and modes m
that are featured with an irrelevant depot are fixed to 0. The MILP for the entire
inter-modal transportation problem is as follows.

P:
min

∑

g∈G

∑

m∈M

ctravelm · xgm +
∑

m∈M

cfixedm · wm +
∑

n∈N

∑

l∈L

∑

t∈T

cnl · unlt +
∑

n∈N

in · Tn

subject to:
∑

m∈M−
hnm = 1 ∀n ∈ N (1)

∑

g∈G

∑

m∈M−
αnm · xgm = 1 ∀n ∈ N (2)

∑

m∈M−
xgm ≤ 1 ∀g ∈ G (3)

∑

m∈M+
full

qg · xgm ≥
∑

n∈N

demandnyng ∀g ∈ G (4)

∑

m∈M+
full

xgm ≤ 1 ∀g ∈ G (5)

xgm = xgm′ ∀g ∈ G,m ∈ M+
full,m

′ ∈ seqm (6)

Qtrailers
m · wm ≥

∑

g∈G

xgm ∀m ∈ M (7)

LBBD for an Inter-modal Transportation Problem 319

Table 1. MILP notation

Sets

N Orders

G Trailers

M Modes

M− ⊂ M Pickup Modes

M+ ⊂ M Delivery Modes

M+
part ⊂ M+ Partial Modes

M+
full

⊂ M+ Complete Modes

J Depots in Central & Eastern Europe

L Warehouses in Turkey

T Hours

D Days

Orders information

pickupn n ∈ N Pickup company of order n

customsn n ∈ N Customs company of order n

deliveryn n ∈ N Delivery company of order n

demandn n ∈ N Demand of order n in payweight units

tdue
n n ∈ N Delivery deadline of order n in hours

in n ∈ N Importance of order n

Modes information

seqm m ∈ M The ordered sequence of nodes that are included in mode m

originm m ∈ M The origin of mode m

destm m ∈ M The destination of mode m

tdeparture
m m ∈ M The departure time of m in hours

tarrival
m m ∈ M The arrival time of m in hours

ctravel
m m ∈ M Variable cost of each trailer shipped to m

cfixed
m m ∈ M Fixed cost of each mode m

Qtrailers
m m ∈ M Maximum number of trailers of mode m

bm m ∈ M Maximum number of times that m can be used

Other parameters

αnm n ∈ N, m ∈ M− 1 if order n is collected by m, 0 otherwise

qg g ∈ G Capacity of trailer g in payweight units

c
delivery
nl

n ∈ N, l ∈ L Delivery cost of order n from warehouse l

Kl l ∈ L Number of vans in warehouse l

tnl n ∈ N, l ∈ L Travel duration from warehouse l to the final destination of n

openingd d ∈ D Opening hour in day d

closingd d ∈ D Closing hour in day d

Variables

hnm n ∈ N, m ∈ M 1 if order n is shipped to mode m, 0 otherwise

xgm g ∈ G, m ∈ M 1 if trailer g is shipped to mode m, 0 otherwise

unlt n ∈ N, l ∈ L, t ∈ T 1 if the delivery of order n starts at t from l, 0 otherwise

yng n ∈ N, g ∈ G 1 if order n is packed to trailer g, 0 otherwise

wm m ∈ M Integer number of times that mode m is used

rn n ∈ N Continuous variable, release time of n

Tn n ∈ N Integer squared value of the number of days of tardiness of n

daynd n ∈ N, d ∈ D 1 if order n is handled in day d, 0 otherwise

og g ∈ G Continuous variable denoting the weight of trailer g

320 I. Avgerinos et al.

∑

m∈M−
tarrivalm · hnm ≤

∑

m∈M+

tdeparturem · hnm ∀n ∈ N (8)

hnm + 1 ≥ xgm + yng ∀g ∈ G,n ∈ N,m ∈ M+
full (9)

∑

t∈T

unlt ≥ hnm ∀n ∈ N,m ∈ M+
full, l = destm (10)

∑

m∈M+
full

hnm = 1 ∀n ∈ N (11)

∑

g∈G

yng = 1 ∀n ∈ N (12)

rn ≥ arrivalm · hnm ∀n ∈ N,m ∈ M (13)

∑

l∈L

∑

t∈T

unlt = 1 ∀n ∈ N (14)

∑

n∈N

∑

t′∈{t′|t−tnl<t′≤t}
unlt ≤ Kl ∀l ∈ L, t ∈ T (15)

rn − t ≤ (1 − unlt) · M ∀n ∈ N, l ∈ L, t ∈ T (16)

Tn ≥
∑

l∈L

∑

t∈T

⌊
1 +

t + tnl − tduen

24
⌋ · ⌊|1 +

t + tnl − tduen

24
|⌋ · unlt ∀n ∈ N

(17)

∑

d∈D

daynd = 1 ∀n ∈ N (18)

∑

l∈L

∑

t∈T

t · unlt ≥
∑

d∈D

openingd · daynd ∀n ∈ N (19)

∑

l∈L

∑

t∈T

t · unlt ≤
∑

d∈D

closingd · daynd ∀n ∈ N (20)

LBBD for an Inter-modal Transportation Problem 321

xgm, yng, unlt, hnm, daynd ∈ {0, 1} ∀n ∈ N, g ∈ G,m ∈ M, l ∈ L, t ∈ T, d ∈ D
wm ∈ {0, ..., bm} ∀m ∈ M
rn ∈ R+, Tn ∈ N ∀n ∈ N

The objective function is the sum of travel and fixed costs per trailer, the
costs of all orders during the last-mile delivery stage and the tardiness cost.

Constraints (1)–(3) refer to the disposition stage. Constraints (4)–(12) are
imposed on the inter-modal transport stage, in which (4) is the Generalized
Assignment Problem constraint of orders to trailers and (5)–(12) is the inter-
modal routing problem. Constraints (13)–(19) are the last-mile delivery stage.

Constraints (1) ensure that each order is collected by exactly one pickup
route and Constraints (2) ensure that the assigned trailer is shipped to the
same route. Constraints (3) ensure that each trailer is assigned to one route at
most. Constraints (4) restrict the total weight of each trailer to its capacity, while
Constraints (5) are equivalent with (3), concerning the delivery transport modes.
Constraints (6) enforce the assignment of each trailer to all corresponding partial
modes. Constraints (7) define the number of times that each mode is used and
Constraints (8) is a precedence constraint, ensuring that each order cannot be
shipped to Turkey if the unloading to a European depot is not completed. The
assignment variables are connected in (9), enforcing each order to be assigned
to the same mode that its trailer is shipped to. (10) fixes the assignment of
each order to the destination of the assigned mode, while (11) is equivalent with
(1) for the delivery modes. Constraints (12) ensure that each order is loaded
to one trailer. Constraints (13) define the release time of each order. The start
of the delivery of each order occurs at a single discrete time instance in (14)
and (15) is the parallel-scheduling constraint, restricting the maximum number
of simultaneous deliveries to the number of available vehicles. (16) are big-M
constraints that prevent each order to be delivered before it is released to Turkey
and the squared value of tardiness in days. Constraints (18) ensure that the
delivery of each order is completed in a single day and (19)–(20) restrict the
delivery of all orders during the operating hours of the warehouses. Constraints
(14)–(18) are a reformulation of the original minimum tardiness MILP of [5],
adapted to our setting.

Constraints (17) ensure that Tn will receive the proper value of squared tar-
diness. While a straightforward computation of tardiness would imply a simpler
constraint:

Tn ≥
∑

l∈L

∑

t∈T

(t + tnl − tduen)
24

· unlt ∀n ∈ N

in which tnl is the travel time from warehouse l to the delivery point of n,
EKOL wishes to calculate the squared value of the number of days of tardy
delivery. The hours of tardiness are divided by 24 and rounded down to obtain
the actual days of tardy delivery:

322 I. Avgerinos et al.

Tn ≥
∑

l∈L

∑

t∈T

⌊
1 +

(t + tnl − tduen)
24

⌋ · unlt ∀n ∈ N

As the squared value of that expression would incorrectly neglect the negative
values, we multiply it with its absolute value to obtain a negative sign in the
LHS if no tardiness occurs (imposing Tn ≥ 0):

Tn ≥
∑

l∈L

∑

t∈T

⌊
1 +

(t + tnl − tduen)
24

⌋ · ⌊
1 +

|t + tnl − tduen |
24

⌋ · unlt ∀n ∈ N

3 A Logic-Based Benders Decomposition Approach

Let P = min{f(x) + g(y)|x ∈ Dx, y ∈ Dy} be an MILP formulation for an
optimization problem P, where x, y are groups of variables, f(x), g(y) are linear
cost functions and Dx, Dy are the domains of x, y. Loosely speaking, a Benders
Decomposition approach considers two smaller problems, the master problem
M = min{z|z ≥ f(x), x ∈ Dx} and the Subproblem S = min{f(x̂) + g(y)|y ∈
Dy}, where M iteratively provides its solution to S. At each iteration, if the
solution of S is greater than the solution of M, a Benders optimality cut ensures
that the same solution value will be computed only if a better one is not found. If
S is infeasible, for an optimal solution x̂ of M, a Benders feasibility cut ensures
that the solution will not be repeated. Therefore, the validity of the method
depends on the construction of Benders cuts. An extended description of the
Benders Decomposition approach can be found in [6].

Algorithm 1 provides an adaptation of the Benders Decomposition approach
in our setting. It starts by solving the M to obtain an initial solution (x). The
objective value of M is the incumbent lower bound ẑ of the problem P. In each
iteration, after fixing all variables in x to the values of x̂, Algorithm 1 solves S.
A bounding function denoted by Bk

m(ĥm) generates Benders cuts for each mode
m ∈ M+

full, which are added to M and considered for the current iteration. The
optimal vector x̂k of M in the current iteration is used to update the lower
bound ẑ. If the sum of the objective value of S and the costs related to the x
variables equal to ẑ, the algorithm terminates.

3.1 Constructing the Initial Master Problem

M:
min z
subject to:
z ≥ ∑

g∈G

∑

m∈M

ctravelm · xgm +
∑

m∈M

cfixedm · wm +
∑

n∈N

∑

l∈L

cdeliverynl · unl

(21)

LBBD for an Inter-modal Transportation Problem 323

Algorithm 1. A Benders Decomposition Algorithm for an Inter-modal Trans-
portation problem
1: Let k = 0 be an iteration number;
2: Solve M and let x̂ = (ĥnm, x̂gm, ûnl, ŷng, ŵm, ôg) be its optimal solution and f(x̂)

its objective value;
3: Let ẑ = f(x̂) be the incumbent lower bound on the optimal solution of P;
4: Let β0(x̂) = 1;
5: while f(x̂) + βk(x̂) > ẑ do
6: Set k = k + 1;
7: Solve S and let βk(x̂) be the optimal objective value;
8: Construct a bounding function Bk

m(ĥm) for each mode m ∈ M+
full, where ĥm

are the values ĥnm for all orders n ∈ N assigned to mode m in x̂;
9: Add Optimality Cuts (37), (38) to M;

10: Solve M and let x̂k be the optimal solution;
11: Let ẑ be equal to the objective value of the solution of M;
12: Set x̂ = x̂k;
13: Let f(x̂) be the total cost value in x;

14: Return ẑ;

(1)–(9) and (11), (12) of P
unl ≥ hnm ∀n ∈ N,m ∈ M+

full, l = destm
(22)

xgm, yng, unl, hnm ∈ {0, 1} ∀n ∈ N, g ∈ G,m ∈ M, l ∈ L
wm ∈ {0, ..., bm} ∀m ∈ M

We formulate the master problem M by integrating the Disposition and
Inter-region transportation stages and we define its objective by a continuous
variable z that corresponds to a valid upper bound on the sum of travel and
fixed costs over all trailers during these two stages (see Constraints (21)). We
also replace variables unlt by unl that denotes just the assignment of orders to
warehouses in Turkey. Constraints (1) to (9) and (11) to (12) are duplicated and
Constraints (10) is replaced with Constraints (22).

Then, we add to M a set of redundant capacity constraints. Specifically,
we adapt the valid inequalities proposed by [1] for two variants of the Capaci-
tated Facility Location problem and induce a ‘dummy‘ non-negative variable og
per trailer g ∈ G, which is set equal to the total demand served by g. These
inequalities are (23)–(25) and their validity is easy to show.

og ≤
∑

n∈N

qg · yng ∀g ∈ G (23)

og =
∑

n∈N

demandn · yng ∀g ∈ G (24)

324 I. Avgerinos et al.

∑

g∈G

og =
∑

n∈N

demandn (25)

og ∈ R
+ ∀g ∈ G

Moreover, since the release time is not a part of the master problem, Constraints
(13) are not included in the formulation of M and, based on the solution of M,
variables rn are fixed to r̂n as follows:

r̂n =
∑

m∈M+
full

ĥnm · arrivalm ∀n ∈ N

3.2 Benders Subproblem

An MILP Formulation. We fix the solution values of the master problem,
i.e., ûnl and r̂n, and we formulate the following subproblem S:

S:

min
∑

n∈N

in · Tn

subject to:
∑

t∈T

unlt = ûnl ∀n ∈ N, l ∈ L (26)

unlt = 0 ∀n ∈ N, l ∈ L, t < r̂n (27)
(14), (15) and (17)–(20) of P
Tn ∈ N ∀n ∈ N

unlt, daynd ∈ {0, 1} ∀n ∈ N, l ∈ L, t ∈ T, d ∈ D

Since the release time of each order is fixed, we apply Constraints (26) to
enforce that the delivery of order n to its final destination starts at a single
time slot t ∈ T that has been already assigned by M (given by ûnl). Note
also that Constraints (16) can be replaced by the simple precedence Constraints
(27), which ensure that no order will start its delivery before its release time.
Constraints (14) to (15) and (17) to (20) of P are duplicated to S.

A Constraint Programming Formulation. Due to the increased effective-
ness of CP methods on scheduling problems, we propose an equivalent formu-
lation, S − CP , where we consider the sets N , L, D (of orders, locations and
days, respectively) and the variables sn, τn, dayn, denoting that start of delivery
time, the tardiness (in days) and the day of delivery, for each order n ∈ N ,
respectively. We also consider the fixed values ûn ∈ L and r̂n, computed by the
solution of M.

Constraints (28) are global constraints (of the form Cumulative(s, p, c, C))
ensuring that if each order n uses a single vehicle and the maximum number of

LBBD for an Inter-modal Transportation Problem 325

available vehicles in each warehouse l is Kl, then the start times s of orders in
l, which are processed in tnl time units, do not violate the number of available
vehicles. Constraints (29) ensure that the delivery of each order starts after its
release time. Constraints (30) ensure that, when an order n is delivered to the
final destination by a warehouse l, the tardiness (in days) is defined by the
difference of delivery time (sn + tnl) and deadline of n, while Constraints (31)
ensure that squared tardiness will contribute to the objective value. Finally,
Constraints (32), (33) ensure that the start time of an order delivery begins
strictly during the operating hours of the warehouses in Turkey.

S − CP :

min
∑

n∈N

in · Tn

subject to:
Cumulative((sn|ûn = l), (tnl|ûn = l), 1,Kl) ∀l ∈ L (28)
sn ≥ r̂n ∀n ∈ N (29)

un = l → τn ≥ sn + tnl − tduen

24
∀n ∈ N (30)

Tn ≥ τn
2 ∀n ∈ N (31)

dayn = d → sn ≥ openingd ∀n ∈ N (32)
dayn = d → sn ≤ closingd ∀n ∈ N (33)
Tn, sn, τn ∈ N ∀n ∈ N

dayn ∈ D ∀n ∈ N

3.3 Adding Valid Benders Optimality Cuts

We consider two groups of variables xk : xk
gm, yk

ng, h
k
nm, uk

nl, w
k
m, okg and yk :

T k
n , uk

nlt, dayk
nd and let f(xk) =

∑
g∈G

∑
m∈M ctravelm · xk

gm +
∑

m∈M (cfixedm ·
wk

m) +
∑

n∈N

∑
l∈L cdeliverynl · uk

nl, for each iteration k of Algorithm 1 and
g(yk) =

∑
n∈N in · T k

n .
Let x̂k−1 = (ĥk−1

nm , x̂k−1
gm , ûk−1

nl , ŷk−1
ng , ŵk−1

m , ôk−1
g) be an optimal solution of M

in iteration k−1. Let also Nk−1
m = {n ∈ N |ĥk−1

nm = 1} be the set of orders assigned
to mode m ∈ M+

full, for each m ∈ M+
full. In the next iteration k, as described in

Algorithm 1, the objective value of an optimal solution ŷk = (ûk
nlt, T̂

k
n , r̂kn, ˆday

k

nd)
of Subproblem S (which uses as fixed the values of X̂k−1) is denoted by βk(x̂k−1).
Let now T̂ k

m =
∑

n∈Nk−1
m

in · T̂ k
n be the total tardiness cost of mode m ∈ M+

full

in S in iteration k. Then, the objective value of S, can be written as:

βk(x̂k−1) =
∑

m∈M+
full

T̂ k
m (34)

We now construct the bounding function, Bk
m(ĥk

m) for each mode m ∈ M+
full,

where ĥk
m are the values ĥk

nm for all orders n ∈ N assigned to m in x̂k. This

326 I. Avgerinos et al.

function is equal to T̂ k
m if all orders in Nk−1

m will be assigned to the same mode
also in iteration k, and 0 otherwise, i.e.,:

Bk
m(ĥk

m) =

{
T̂ k
m if {n ∈ Nk−1

m |ĥk
nm = 0} = ∅

0 otherwise
(35)

The following Lemma is crucial in order to guarantee the validity of our
approach.

Lemma 1. Let Bk(xk) =
∑

m∈M+
full

Bk
m(hk

m) + f(xk) and x̂k−1 be an optimal
solution of M in iteration k − 1. Then, the following two properties hold:

P1: If Xk = X̂k−1, then Bk(Xk) = f(x̂k−1) + βk(x̂k−1).
P2: f(x′

k−1) + g(y′
k) ≥ Bk(x′

k), for any feasible solutions x′
k−1, x

′
k and y′

k in
iterations k − 1, k respectively.

Proof. For Property P1, by replacing the variables in xk with the corresponding
solution values in x̂k−1 the set {n ∈ Nk−1

m |ĥk
nm = 0} will be equal to the empty

set. Thus, by (35),
∑

m∈M+
full

Bk
m(ĥm) =

∑
m∈M+

full
T̂ k
m, which, by (34), is equal

to βk(x̂). Hence, Bk(xk) = βk(x̂k−1) + f(x̂k−1) = f(x̂k−1).
For Property P2, assume to the contrary that there is a feasible solution with

values x′
k,y

′
k, for M,S respectively, in iteration k, such that:

Bk(x′
k) > f(x′

k−1) + g(y′
k) (36)

If x′
k = x̂k−1, by Property P1, Bk(x′

k) = f(x̂k−1)+βk(x̂k−1). Since the objective
value of S is g(y′

k) = βk(x̂k−1), we yield a contradiction. Therefore, it must hold
that the solution values x′

k,y
′
k are different than the optimal solution values,

x̂k−1, ŷk, of M,S in iteration k − 1 and k respectively. If x′
k �= x̂k−1, then

the values h′k
m are different from ĥk−1

m . Thus, there is at least an order n ∈ N
that is not assigned to the same mode m ∈ M+

full in iteration k, and thus the

set {n ∈ Nk−1
m |h′k

nm = 0} in x′
k is not empty, {n ∈ Nk−1

m |h′k
nm = 0} �= ∅.

Hence, by definition of our bounding function, Bk
m(h′k

m) = 0, which is definitely
less than or equal to the tardiness cost of mode m in Y′

k. Now, let order n be
assigned to a mode m′ �= m in x′

k. If the rest of the orders n′ ∈ Nk−1
m′ are not

displaced in x′
k, then the tardiness cost of m′ must be greater or equal than T̂ k

m′

in y′
k, since the number of orders that have to be scheduled is increased, while

Bk
m′(h′k

m′) = T̂ k
m′ by definition. If any order n′ ∈ Nk−1

m′ is displaced in x′
k, then

{n′ ∈ Nk−1
m′ |h′k

n′m′ = 0} �= ∅, hence the value of Bk
m′(h′k

m) is less or equal to the
tardiness cost of m′ in Y′

k. Therefore, we can safely assume that Bk
m(h′k

m) is less
than or equal than the new tardiness cost for all modes m and their sum is less
or equal than the new total tardiness cost, i.e.,

∑
m∈M+

full
Bk

m(h′k
m′) ≤ g(y′

k),

which is equivalent to f(x′
k−1) +

∑
m∈M+

full
Bk

m(h′
m) ≤ f(x′

k−1) + g(y′
m), and

thus Bk(x′
k) ≤ f(x′

k−1) + g(y′
k), contradicting (36). 	

LBBD for an Inter-modal Transportation Problem 327

Since by Lemma 1 the bounding function Bk(xk) satisfies Properties P1 and
P2 in each iteration k of Algorithm 1, and the domain of variables Y is finite,
the following can be shown as [5, Theorem 1].

Theorem 1. Algorithm 1, converges to the optimal value of P after finitely
many steps.

Now, based on the validity of our Bounding function, we integrate the fol-
lowing set of valid linear inequalities to the master problem M at iteration k.

zr
m ≥ T̂ r

m − T̂ r
m · (|Nr−1

m | −
∑

n∈Nr−1
m

hnm) ∀m ∈ M+
full, r = 1, ..., k

(37)

z ≥
∑

m∈M+
full

zrm + f(xr) ∀r = 1, ..., k (38)

where zrm are positive real variables for all m ∈ M+
full. Constraints (37) ensure

that if at least one order n ∈ Nr−1
m is not assigned to m in iteration r, zrm will

be equal to 0. On the contrary, if all orders are placed to the same warehouse
again, zrm will be equal to T̂ r

m. Constraints (38) ensure that the objective value
of M will take into account the lower bound of the subproblem computed by
the bounding function.

The iterative addition of (37) and (38) to M will converge to the optimal
solution after a finite number of iterations, as it is proved by Theorem 1.

3.4 Subproblem Relaxation

Adding valid cuts to M is proved to be adequate for achieving optimality after a
number of iterations, however converging to optimality is usually a long process.
To fasten our algorithm a simple but quite effective valid subproblem relaxation
R is added to M, assuming that the number of single-driver vans in the ware-
houses of Turkey l ∈ L is infinite, and thus each order n is delivered immediately
after being unloaded.

R:

zn ≥ ∑

m∈M+
full

⌊
1 +

arrivalm+tnl−tdue
n

24

⌋ · ⌊|1 +
arrivalm+tnl−tdue

n
24

|⌋ · hnm ∀n∈N

(39)

z ≥
∑

n∈N

in · zn + f(x) (40)

Note that R is a valid relaxation of S, because the feasible solutions of Tn

are a subset of the feasible solutions of zn, and thus the corresponding squared
tardiness is a lower bound on Tn. Constraints (39) ensure that the zn is equal
to the squared tardiness (in days), if we assume that each order is handled
immediately after being released and Constraints (40) updates the objective
function, adding also the tardiness costs.

328 I. Avgerinos et al.

4 Computational Work

The experiments are run on the Linux server (4 processors, 3.3 GHz CPU, 12
GB RAM) using CPLEX 12.10 (Python API for MILP and CP Optimizer in
OPL for CP). We present the results for 20 consecutive weeks, from June 2016
to November 2016 and we impose a time limit of 1800, 3600 and 7200 s on the
MILP and the master problem M.

Each dataset concerns orders received during an entire week (i.e., 168 h).
The number of orders ranges from 41 to 153, the number of pickup and customs
companies from 61 to 201 and the number of pickup routes (m ∈ M−) from 96
and 810. The number of delivery modes m ∈ M+ equals 131 in all data sets.
The fixed cost cfixedm lays in the range of e891-2179 and the travel cost of each
trailer ctravelm in e34-337. All trailers have a fixed capacity qg of 27000 payweight
units and the capacity of modes in number of trailers is equal to either 10 or 20
for roadway modes, 30 for railway modes and 60 or 100 for seaway shipments.
Roadway transports can be carried out by either single-driver’ vehicles (imposing
a break of 9 h after each 9-h continuous travel) or by double-driver’ vehicles (each
driver is resting during the 9 h of the other one’s shift). The importance weight
in of orders is between 1 and 50, multiplied by the cost of 100 e. Last, the
number of single-driver vans Kl is 15 per warehouse in Turkey.

Table 2. Weekly datasets results - 0.5 h limit

Gap (%) Time (s)

MILP Benders (w/o RedIn) Benders (w RedIn) Benders (CP) MILP Benders (w/o RedIn) Benders (w RedIn) Benders (CP)

1 4.5 0.0 0.0 0.0 1813 141 30 28

2 – 22.1 3.2 3.2 – 1867 1867 1839

3 0.1 0.0 0.0 0.0 1815 85 31 26

4 – – 2.1 2.1 – – 1905 1866

5 – 8.9 6.6 6.6 – 1863 1863 1786

6 – 8.7 4.6 4.6 – 1853 1854 1847

7 – 10.8 1.8 1.8 – 1864 1865 1857

8 0.0 0.0 0.0 0.0 181 91 73 60

9 4.7 1.1 0.0 0.0 1845 1846 274 88

10 – 10.2 2.6 2.6 – 1882 1884 1863

11 6.3 3.6 0.0 0.0 1855 1857 1547 1403

12 – 8.0 3.0 3.0 – 2008 2008 1868

13 – 5.0 0.3 0.3 – 1920 1877 702

14 – 6.6 3.8 3.8 – 1955 1957 1865

15 9.4 4.5 3.3 3.3 1904 1909 1910 1903

16 9.1 3.8 3.0 3.0 1902 1934 1928 1852

17 – 7.1 3.2 3.2 – 1911 2005 1899

18 – 5.0 0.7 0.7 – 1963 1956 1833

19 – 4.4 1.3 1.3 – 1890 1938 1855

20 5.2 3.3 1.2 1.2 1977 2037 2041 1980

The number of variables ranges from 105 to 7.2 · 105 and the number of
constraints between 4.0 · 105 and 6.0 · 106, i.e., instances are large compared to
the ones that reported in the literature.

The results displayed in Tables 2 and 3 concern the solution of the original
MILP (MILP) against the proposed decomposition approach with an MILP-
formulated subproblem (Benders (w/o RedIn)), the same approach after
adding the cuts (21)–(23) (Benders (w RedIn)) and, finally, the same with
the cuts but with a CP formulation for the subproblem (Benders (CP)).

LBBD for an Inter-modal Transportation Problem 329

If the Gap value is more than 0.0, the time limit has been reached without
achieving optimality. Symbol ‘-’ denotes that no feasible solution was found. For
decomposition algorithms, the time limit is imposed on the solution of the mas-
ter problem M. Since the solution of M is a valid lower bound of the optimal
solution and the solution of the subproblem is an upper bound, we can safely
assume that the computed Gap, equal to S Solution−M BestBound

S Solution , is the worst
possible optimality gap. As for the problem instances that could not be solved to
optimality within the allotted time, the difference of Time from the time limit
is the duration of the preprocessing (and the subproblem, for the decomposition
cases). Note that due to the complexity of the master problem, if the solution of
the decomposition terminates strictly in 1800 s, the algorithm would never pro-
ceed to the subproblem. A Gap (%) that is exclusively computed by the master
should not be compared with the Gap (%) of the MILP, since the incumbent
solution of the master is not a valid upper bound on the solution of the overall
problem. On the other hand, if we allow full MIP to run for equal time (i.e., an
extra 180 s, for Instance 20) with Benders decomposition, as we can note, the
results will be the same. Regarding the CP-styled variant, the master problem
is identical for the Benders (w RedIn) and Benders (CP) experiments. Since the
time limit is imposed on the master and the subproblem is solved optimally in
both experiments, the Gap (%) is expected to remain identical as well. The
supremacy of CP variant comes from shortening the (already quick) subproblem
optimization. We believe that CP could be even more valuable in larger instances
or in instances with tighter deadlines.

Table 3. Weekly datasets results - 1 h limit

Gap (%) Time (s)

MILP Benders (w/o RedIn) Benders (w RedIn) Benders (CP) MILP Benders (w/o RedIn) Benders (w RedIn) Benders (CP)

1 4.3 0.0 0.0 0.0 3613 142 29 31

2 – 11.0 3.2 3.2 – 3674 3736 3633

3 0.0 0.0 0.0 0.0 1884 89 39 35

4 – 10.0 2.1 2.1 – 3798 3776 3676

5 – 8.8 6.6 6.6 – 3670 3686 3606

6 8.9 8.7 4.6 4.6 3655 3657 3664 3620

7 7.4 8.9 1.8 1.8 3666 3670 3865 3604

8 0.0 0.0 0.0 0.0 213 93 100 97

9 4.7 1.1 0.0 0.0 3649 3648 292 294

10 – 6.8 2.4 2.4 – 3690 3762 3645

11 6.3 3.6 0.0 0.0 3657 3663 2971 2853

12 – 10.1 3.0 3.0 – 3833 3869 3771

13 – 4.7 0.2 0.2 – 3772 3726 3686

14 – 6.0 3.8 3.8 – 3771 3802 3749

15 11.9 4.5 3.3 3.3 3712 3721 3731 3692

16 7.7 3.6 2.9 2.9 3754 3755 3761 3680

17 – 6.7 3.0 3.0 – 3780 3869 3793

18 9.9 4.7 0.6 0.6 3766 3768 3775 3694

19 9.7 4.0 1.3 1.3 3732 3724 3802 3701

20 3.9 2.8 0.3 0.3 3829 3747 3766 3688

These results show that the initial MILP formulation fails to compute a fea-
sible solution for several datasets, although this is less frequent as the time limit
is increased. Interestingly, despite the high complexity of the mathematical for-
mulation, the structure of the problem and the reasonable assumption that each
order is served by the nearest depot (thus variables yng and hnm become 0, for

330 I. Avgerinos et al.

all trailers g not dedicated to the nearest depot of order n and all modes that
originate from a different depot respectively) helps MILP to feasible solve with
quite good Gaps (%) some of our datasets (Table 3). The Benders Decompo-
sition method computes solutions for all datasets, while the optimality gap is
not remarkably affected by the extension of the time limit. The addition of the
redundant capacity constraints to the master problem achieves lower optimality
gaps, again irrespective of the time limit. Finally, the CP formulation of the sub-
problem solves the scheduling problem in a few seconds, i.e., quite faster than
the MILP formulation. Let us conclude by noting that increasing the time limit
to 2 h had no significant impact thus the corresponding results are omitted.

5 Conclusions

This study is motivated by a large inter-modal transportation problem that
includes a pickup stage, a packing and shipment process and a last-mile deliv-
ery to the final recipients. As the MILP formulation of the entire problem is
not computationally effective, we employ a Logic-Based Benders Decomposition,
consider redundant constraints that tighten the master problem and a CP-styled
formulation of the subproblem. The successful application of this method on real
datasets of large size justify our approach.

A more general case would be to consider that each pick-up point could
be served by any depot; then, the disposition routes might increase drastically
but the total cost might be reduced. Moreover, lifting the assumption that each
last-mile delivery vehicle handles each order individually augments the problem
with a vehicle routing formulation. Both directions of future work could benefit
by looking at alternative decompositions and considering the use of additional
families of cutting planes.

References

1. Aardal, K.: Reformulation of capacitated facility location problems: how redundant
information can help. Ann. Oper. Res. 82, 289–308 (1998)

2. Ahkamiraad, A., Wang, Y.: Capacitated and multiple cross-docked vehicle routing
problem with pickup, delivery, and time windows. Comput. Ind. Eng. 119, 76–84
(2018)

3. Azizi, V., Hu, G.: Multi-product pickup and delivery supply chain design with
location-routing and direct shipment. Int. J. Prod. Res. 226, 107648 (2020)

4. Benders, J.F.: Partitioning procedures for solving mixed-variables programming
problems. Numer. Math. 4, 238–252 (1962)

5. Hooker, J.N.: Planning and scheduling by logic-based benders decomposition.
Oper. Res. 55(3), 588–602 (2007)

6. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Math. Program.
A 96, 33–60 (2003)

7. Li, J., Li, Y., Pardalos, P.M.: Multi-depot vehicle routing problem with time
windows under shared depot resources. J. Comb. Optim. 31(2), 515–532 (2014).
https://doi.org/10.1007/s10878-014-9767-4

https://doi.org/10.1007/s10878-014-9767-4

LBBD for an Inter-modal Transportation Problem 331

8. Mahéo, A., Kilby, P., Hentenryck, P.V.: Benders decomposition for the design of a
hub and shuttle public transit system. Transp. Sci. 53(1), 77–88 (2019)

9. Moccia, L., Cordeau, J.-F., Ropke, S., Valentini, M.P.: Modeling and solving a
multimodal transportation problem with flexible-time and scheduled services. Net-
works 57(1), 53–68 (2011)

10. Rahmaniani, R., Crainic, T.G., Gendreau, M., Rei, W.: The Benders decomposition
algorithm: a literature review. Eur. J. Oper. Res. 259(3), 801–817 (2017)

11. Rousseau, L.-M., Gendreau, M., Pesant, G., Focacci, F.: Solving VRPTWs with
constraint programming based column generation. Ann. Oper. Res. 130, 199–216
(2004)

12. Wu, T.-H., Low, C., Bai, J.-W.: Heuristic solutions to multi-depot location-routing
problems. Comput. Oper. Res. 29, 1393–1415 (2002)

13. Xiong, G., Wang, Y.: Best routes selection in multimodal networks using multi-
objective genetic algorithm. J. Comb. Optim. 28(3), 655–673 (2012). https://doi.
org/10.1007/s10878-012-9574-8

14. Yu, V.F., Jewpanya, P., Redi, A.A.N.P.: Open vehicle routing problem with cross-
docking. Comput. Ind. Eng. 94, 6–17 (2016)

https://doi.org/10.1007/s10878-012-9574-8
https://doi.org/10.1007/s10878-012-9574-8

Checking Constraint Satisfaction

Victor Jung and Jean-Charles Régin(B)

Université Côte d’Azur, CNRS, I3S, Nice, France
{victor.jung,jean-charles.regin}@univ-cotedazur.fr

Abstract. We address the problem of verifying a constraint by a set
of solutions S. This problem is present in almost all systems aiming at
learning or acquiring constraints or constraint parameters. We propose
an original approach based on MDDs. Indeed, the set of solutions can
be represented by the MDD denoted by MDDS . Checking whether S
satisfies a given constraint C can be done using MDD(C), the MDD that
contains the set of solutions of C, and by searching if the intersection
between MDD(S) and MDD(C) is equal to MDD(S). This step is
equivalent to searching whether MDD(S) is included in MDD(C). Thus,
we give an inclusion algorithm to speed up these calculations. Then,
we generalize this approach for the computation of global constraint
parameters satisfying C. Next, we introduce the notion of properties on
the MDD nodes and define a new algorithm allowing to compute in only
one step the set of parameters we are looking for. Finally, we present
experimental results showing the interest of our approach.

Keywords: Multi-valued decision diagram · Inclusion · Constraint
learning

1 Introduction

Many works in Constraint Programming try to improve the quality of a model
by adding new implicit constraints [11], redundant constraints [4] or global con-
straints [8]. All these works face a common problem: the verification of the
satisfaction of constraints by a given set of solutions. Some choose a brute force
approach [8,11], others prefer a more specific but ad-hoc approach [2]. In all
cases, these methods go through the solutions to test if they satisfy constraints.
Constraints are not necessarily tested individually, but the solutions can be con-
sidered one after the other.

In this paper, we propose a more global and efficient method to test whether
a set of solutions verifies one or a set of constraints. Multi-valued decision dia-
grams (MDDs) are a very efficient data structure to represent a set of solutions
in a compressed way and for which many operators are available to combine
MDDs without decompressing them. We therefore propose to use MDD(S) the
MDD which corresponds to the set of solutions S. We show that we can simply
test if S satisfies a constraint C, by using MDD(C), the MDD that represents

c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 332–347, 2021.
https://doi.org/10.1007/978-3-030-78230-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_21&domain=pdf
http://orcid.org/0000-0001-6204-5894
https://doi.org/10.1007/978-3-030-78230-6_21

Checking Constraint Satisfaction 333

the solutions of C, and then by performing the intersection between MDD(S)
and MDD(C). This method is simple to implement since it only requires con-
structing the two MDDs and performing their intersection, for which efficient
algorithms are available, and then testing whether the resulting MDD is similar
to MDD(S). However it has an important flaw: it will create and calculate a
MDD even if the intersection will not be equal to MDD(S). It therefore risks
doing many operations unnecessarily. To avoid this we introduce an inclusion
operator between MDDs since this is what we want to test: is MDD(S) included
in MDD(C)?

This operator is efficient when it is a question of verifying a precise and
unique constraint, but not very efficient when it is a question of searching for
the parameters of a constraint such that the resulting constraint is satisfied
by a set of solutions. Finding the parameters of a global constraint so that
it is satisfied by a set of solutions is a recurrent problem at present [2,4,8,
11,12]. To solve this problem we propose to work with MDD(S) which we
enrich by introducing the notion of node properties. Then, a process called “the
parent-child propagation of the parameters” is performed through the MDD.
More precisely, the global constraint is expressed by properties including the
parameters and these properties are propagated in MDD(S) in order to compute
for each sub-tree of the MDD those which are compatible with the constraint.
Thus, we determine the most restrictive parameters of the constraint that are
satisfied by the MDD.

This article is organized as follows. First, we give some basic definitions.
Then, we present a general scheme to check the satisfaction of a constraint and
improve it by defining a new operation between MDDs. Next, we address the
problem of finding parameters of global constraints by introducing the notion of
node properties. Finally, we provide benchmarks and results testing the different
approaches described in this article, and we conclude.

2 Preliminaries

2.1 Constraint Programming

A finite constraint network N . is defined as a set of n variables X = {x1, . . . , xn},
a set of current domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite set
of possible values for variable xi, and a set C of constraints between variables.
We introduce the particular notation D0 = {D0(x1), . . . , D0(xn)} to represent
the set of initial domains of N on which constraint definitions were stated. A
constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir) is a subset
T (C) of the Cartesian product D0(xi1)×· · ·×D0(xir) that specifies the allowed
combinations of values for the variables xi1 , . . . , xir . An element of D0(xi1)×· · ·×
D0(xir) is called a tuple on X(C). A value a for a variable x is often denoted by
(x, a). Let C be a constraint. A tuple τ on X(C) is valid if ∀(x, a) ∈ τ, a ∈ D(x).
C is consistent iff there exists a tuple τ of T (C) which is valid. A value a ∈ D(x)
is consistent with C iff x �∈ X(C) or there exists a valid tuple τ of T (C) with

334 V. Jung and J.-C. Régin

(x, a) ∈ τ . We denote by #(a, τ) the number of occurences of the value a in a
tuple τ .

We present some constraints that we will use in the rest of this paper.
A global cardinality constraint (gcc) constrains the number of times every

value can be taken by a set of variables. This is certainly one of the most useful
constraints in practice. Note that the alldiff constraint corresponds to a gcc
in which every value can be taken at most once.

Definition 1. A global cardinality constraint is a constraint C in which
each value ai ∈ D(X(C)) is associated with two positive integers li and ui with
li ≤ ui defined by
gcc(X, l, u) = {τ |τ is a tuple on X(C) and ∀ai ∈ D(X(C)) : li ≤ #(ai, τ) ≤
ui}.
Definition 2. Given X a set of variables, l and u two integers with l ≤ u and
V a set of values. The among constraint ensures that at least l variables of X
and at most u will take a value in V , that is
among(X,V, l, u) = {τ | τ is a tuple on X(C) and l ≤ ∑

a∈V #(a, τ) ≤ u}
This constraint has been introduced in CHIP [1].
The sequence constraint [1] is a conjunction of sliding among constraints.

Definition 3. Given X a set of variables, q, l and u three integers with l ≤ u
and V a set of values. The sequence constraint holds if and only if for 1 ≤ i ≤
nq + 1 among({xi, ..., xi+q−1}, V, l, u) holds. More precisely
Sequence(X, V, q, l, u) = { τ | τ is a tuple on X(C) and for each sequence S

of q consecutive variables: l ≤ ∑
v∈V #(v, τ, S) ≤ u}.

2.2 Multi-valued Decision Diagram

The decision diagrams considered in this paper are reduced, ordered multi-valued
decision diagrams (MDD) [3,7,13], which are a generalization of binary decision
diagrams [5]. They use a fixed variable ordering for canonical representation and
shared sub-graphs for compression obtained by means of a reduction operation.
An MDD is a rooted directed acyclic graph (DAG) used to represent some multi-
valued functions f : {0...d − 1}n → true, false. Given the n input variables, the
DAG contains n + 1 layers of nodes, such that each variable is represented at a
specific layer of the graph. Each node on a given layer has at most d outgoing arcs
to nodes in the next layer of the graph. Each arc is labeled by its corresponding
integer. The arc (u, a, v) is from node u to node v and labeled by a. Sometimes
it is convenient to say that v is a child of u. All outgoing arcs of the layer n
reach tt, the true terminal node (the false terminal node is typically omitted).
There is an equivalence between f(a1, ..., an) = true and the existence of a path
from the root node to the tt whose arcs are labeled a1, ..., an.

The reduction of an MDD is an important operation that may reduce the
MDD size by an exponential factor. It consists in removing nodes that have
no successor and merging equivalent nodes, i.e. nodes having the same set of
neighbors associated with the same labels. This means that only nodes of the
same layer can be merged.

Checking Constraint Satisfaction 335

MDD of a Constraint. Let C be a constraint defined on X(C). The MDD
associated with C, denoted by MDD(C), is an MDD modeling the set of tuples
of C. More precisely, MDD(C) is defined on X(C), such that the arc labels of
the layer of the variable x correspond to values of x, and a path of MDD(C)
(that is a path from the root node to the tt node) where ai is the label of layer
i corresponds to a tuple (a1, ..., an) on X(C).

Operators. We reproduce here the description of the generic Function apply
[9,10] because we will see that the inclusion can be easily modelled thanks to it1.
From the MDDs mdd1 and mdd2 it computes mddr = mdd1 ⊕ mdd2, where ⊕
is union, intersection, difference, symmetric difference, complementary of union
and complementary of intersection. Function apply is mainly based on the pos-
sible combinations of labeled arcs. It proceeds by associating nodes of the two
MDDs operands. Each node x of the resulting MDD is associated with a node
x1 of the first MDD and a node x2 of the second MDD represented by a pair
(x1, x2). First, the root is created from the two roots. Then, the layers are suc-
cessively built. From the nodes of layer i − 1 the nodes of layer i are built as
follows. For each node x = (x1, x2) of layer i − 1, the arcs outgoing from nodes
x1 and x2 and labeled by the same value v are considered. We recall that there
is only one arc leaving a node x with a given label. Thus, there are four pos-
sibilities depending on whether there are y1 and y2 such that (x1, v, y1) and
(x2, v, y2) exist or not. The action that is performed for each of these possibili-
ties will define the operation performed for the given layer. For instance, a union
is defined by creating a node y = (y1, y2) and an arc (x, v, y) each time one of
the arcs (x1, v, y1) or (x2, v, y2) exists. An intersection is defined by creating a
node y = (y1, y2) and an arc (x, v, y) when both arcs (x1, v, y1) and (x2, v, y2)
exist. Thus, these operations can be simply defined by expressing the condition
for creating a node and an arc.

Function apply, given in Algorithm 1 takes as parameters the two MDDs,
two arrays op, V having as many elements as layers, and typeOp the operation
type (i.e. intersection, union...). For each layer i, op[i] contains 4 entries, each
one representing the fact that we create an arc or not for a combination of arc
existence in the two MDDs and V [i] represents the set of values needed by the
complementary set. If it is equal to nil then V [i] will be equal to the union of the
values of the neighbors of the considered nodes. At the end the resulting MDD
is reduced by calling pReduce algorithm [9].

The values of op[i] defining the binary operations are defined as follows for
the different combinations:

1 Unlike Perez and Régin [9], the complementary of an MDD M is computed by
making the difference between the universal MDD and M . This avoids the need of
a dedicated algorithm.

336 V. Jung and J.-C. Régin

op[0] op[1] op[2] op[3]

¬a1 ∧ ¬a2 ¬a1 ∧ a2 a1 ∧ ¬a2 a1 ∧ a2

Layer [1..r-1] r [1..r-1] r [1..r-1] r [1..r-1] r

A ∩ B F F F F F F T T

A ∪ B F F T T T T T T

A − B F F F F T T T F

Algorithm 1: Generic Apply Function.
apply(mdd1, mdd2, op, V, typeOp): MDD

// L[i] is the set of nodes in layer i.
root ← createNode(root(mdd1), root(mdd2))
L[0] ← {root}
for each i ∈ 1..r do

L[i] ← ∅
for each node x ∈ L[i − 1] do

get x1 and x2 from x = (x1, x2)

if V [i] = nil then V [i] ← values(ω+(x1) ∪ ω+(x2))
for each v ∈ V [i] do

if � ∃(x1, v, y1) ∈ ω+(x1) then

if � ∃(x2, v, y2) ∈ ω+(x2) ∧ op[0] then createArc(L, i, x, v, w[i])

if ∃(x2, v, y2) ∈ ω+(x2) ∧ op[1] then addArcAndNode(L, i, x, v, nil, y2)

else
if � ∃(x2, v, y2) ∈ ω+(x2)∧op[2] then addArcAndNode(L, i, x, v, y1, nil)

if ∃(x2, v, y2) ∈ ω+(x2) ∧ op[3] then addArcAndNode(L, i, x, v, y1, y2)

if typeOp = Inclusion then
if ∃(x1, v, y1) ∈ ω+(x1)∧ � ∃(x2, v, y2) ∈ ω+(x2) then return false

if typeOp = Inclusion then return true
merge all nodes of L[r] into t
pReduce(L)
return root

addArcAndNode(L, i, x, y1, v, y2)
if � ∃y ∈ L[i] s.t. y = (y1, y2) then

y ← createNode(y1, y2)
add y to L[i]

createArc(L, i, x, v, y)

3 Checking Constraint Satisfaction

A first solution to test whether a set of solutions S satisfies a constraint C is to
represent S by an MDD, denoted MDD(S), then use MDD(C) the MDD of the
constraint C and calculate the intersection between MDD(S) and MDD(C).
If this intersection is equal to MDD(S) then this means that all solutions of S
satisfy the constraint C. The proof of the soundness of this approach is quite
immediate: an MDD is a set of solutions, so if the intersection does not modify
MDD(S) then it means that any solution of MDD(S) is also a solution of
MDD(C) and therefore this solution satisfies the constraint.

This approach is not particularly efficient, because it systematically requires
the intermediate calculation of an intersection between MDDs. However, we

Checking Constraint Satisfaction 337

are not interested in this intersection2. What matters is to know whether this
intersection is similar to the initial MDD. We can reduce what we are trying
to do in a single step: we check a relation of inclusion. Indeed, answering the
question MDD(S) ∩ MDD(C) = MDD(S)? is equivalent to answering the
following question: MDD(S) ⊆ MDD(C)? As this operator does not exist in
the literature, we propose to create it.

3.1 Operator of Inclusion

The inclusion operator between MDDs is easily done using the generic function
apply. Let’s consider that we want to know if MDD1 is included in MDD2. We
use the same rules as the intersection operator with a notable exception: if an
edge a is in MDD1 but not in MDD2, then we end the algorithm by returning
false. In this case there is at least one solution in MDD1 which is not in MDD2

so MDD1 cannot be included in MDD2. For the three other cases we can easily
find those of the intersection. Using the terminology of the preliminaries, we have
clearly: ¬a1 implies that no arc is created and a1 ∧ a2 implies an arc creation,
since the solutions are common.

We notice that it is not necessary to keep in memory the MDD that is built.
Indeed, we just need to know if we can create each new level. To do this, only
the last level that has just been built is useful and must be kept in memory, the
others being no longer useful can be destroyed. The reduction of the built MDD
is no longer useful either since we are only interested in the ability to build an
MDD from the root to tt. Function apply must therefore return true instead of
performing the reduction at the end. This allows us to save time compared to
the previous method.

4 Inferring Parameters of Global Constraints

The inclusion operator allows to answer in an efficient way to the question of
the satisfaction of a constraint by a set of solutions S. However, in practice, the
question that is often asked is more general: given a global constraint C involving
a set of parameters, for which parameters S satisfies this constraint?

Let us consider P a set of parameters and C(P) a constraint defined using
these parameters. Formally, we can present the problem in the following way:
What are the sets P such that ∀s ∈ S, s satisfies C(P)?

A first way to proceed is to check for each set of parameters P if we have
MDDS ⊆ MDDC(P).

We propose to add additional information, called properties, to each node
of an MDD. This idea has similarities with the scheme introduced by J. Hooker
et al. [6]. This information is used to memorize the valid parameters from the
root to the node in relation to the constraint under consideration. When we
2 We could also perform the intersection between MDD(S) and the negation of

MDD(C) and check whether it is empty or not. However the computation of the
negation is required so it does not improve the classical intersection.

338 V. Jung and J.-C. Régin

will reach tt, we will know the parameters that are checked by all the solu-
tions. In addition, retaining all the parameter sets is superfluous and we can
be satisfied with retaining the more restrictive parameters. Other acceptable
parameters may be derived from these restrictive parameters. For example, if the
constraint sequence(X,V, q = 3, l = 1, u = 2) is satisfied then the constraints
sequence(X,V, q = 3, l = 0, u = 2), sequence(X,V, q = 3, l = 1, u = 3,) and
sequence(X,V, q = 3, l = 0, u = 3) are also satisfied. So, the more restrictive
parameters are (q = 3, l = 1, u = 2).

We present on an example the ideas of our algorithm. We will use the binary
representation of a sequence constraint. Indeed, for a sequence constraint, we
can abstract any X and V into a binary problem with V = {1}. If xi = 1 then
it means that xi takes its value in V (xi ∈ V) otherwise we have xi=0. So we
are in the presence of only binary variable and we are looking for the parameter
values (q, u, l) which are satisfied by S.

Fig. 1. Sequences for MDD(S) (Color
figure online)

Consider the red node f in
MDD(S) (Fig. 1). There are two
paths to access this node from the
root: take 0, 0 then 1 (which cor-
responds to the blue path -left- on
the diagram) or take 1, 1 then 0
(which corresponds to the path in
green -right-). In total, there are 5
sub-MDDs (i.e. smaller MDDs con-
tained in the main MDD) having this
red node f as the terminal node: 1
having as starting point the general
root ({0-0-1, 1-1-0}), then 2 having
as root the two nodes of the first
layer ({0-1}, {1-0}) and finally 2 hav-
ing as root the two nodes of the sec-
ond layer ({1}, {0}). Strictly speak-
ing, there are actually 6 sub-MDDs,
since the MDD consisting only of the
red node f exists.

Properties (i.e. satisfied sequences) are added to nodes:

– Node R. This node contains only the basic information, i.e. (q = 0, l = 0, u =
0), since the only way to reach this node is to start from it and take no edge.
This is the basic case, viable for all nodes.

– Node a (blue). In addition to the basic case, it is possible to reach this node
starting from the root and taking the value 0. As we take 0 times the value
1, the satisfied Sequence is (q = 1, l = 0, u = 0).

– Node b (green). Same as for the previous node, except that we take once
the value 1. The satisfied Sequence is therefore (q = 1, l = 1, u = 1).

– Node c (blue). We retrieve the information from the parent node (there is
only one here). So we have (q = 0, l = 0, u = 0) and (q = 1, l = 0, u = 0).

Checking Constraint Satisfaction 339

There is only one edge that can be traversed, with a value of 0. If we add
0 to the preceding satisfied sequences, we obtain (q = 1, l = 0, u = 0) and
(q = 2, l = 0, u = 0). We retain these sequences.

– Node d (green). By the same reasoning, we obtain (q = 1, l = 1, u = 1) and
(q = 2, l = 2, u = 2).

– Node f (red). We start by looking at parent Node c (blue). By adding
the fact that we can reach the red node f by taking the value 1, we have
(q = 1, l = 0, u = 1), (q = 2, l = 0, u = 1) and (q = 3, l = 1, u = 1).
In the same way, looking at the side of parent Node d (green), we obtain
(q = 1, l = 0, u = 1), (q = 2, l = 1, u = 2) and (q = 3, l = 2, u = 2). We notice
that Sequence constraints of size 2 and size 3 are not compatible. In this
case, the union of the two Sequence constraints is performed (since both
are satisfied). We thus obtain (q = 1, l = 0, u = 1), (q = 2, l = 0, u = 2) and
(q = 3, l = 1, u = 2). We can then check that for each path leading to the red
node f , we take between 0 and 2 times the value 1 for a path of size 2, and
between 1 and 2 times the value 1 for a path of size 3.

Figure 2 shows a slightly more complete example.

Fig. 2. Satisfied sequence constraints for each node. Value q corresponds to the index
in the array associated with a node.

However, one thing is noticeable: it is possible to lose information (Fig. 3).
For example, the node b contains the information (q = 0, l = 0, u = 0), (q =
1, l = 0, u = 0) and (q = 2, l = 1, u = 1), but we can see that for paths of size
1 belonging to the MDD it is possible to take between 0 and 1 times the value
1. To solve this problem, we make the union of all the nodes of a layer (for each

340 V. Jung and J.-C. Régin

layer) that we store in an accumulator. This operation can be performed at the
same time as the information is constructed.

Fig. 3. Simple example to show information loss. Value q correspond to the index in
the array associated with a node.

We remind that it is not necessary to retain all the information as represented
on the diagram: we can simply keep the last two layers since the construction is
done in a sliding way.

4.1 Implementation

The information is represented in the form of a property associated with each
node. Each constraint will define its own property. The propagation of informa-
tion from the MDD nodes is performed using a breadth-first approach, because
we need all parent nodes to be correctly defined before propagating to the chil-
dren. A depth-first approach would be strictly speaking impossible because all
children would have to be re-explored each time the parents are updated (which
is highly inefficient). During propagation, one looks to see if the child is already
carrying a property or not. Two cases are possible.

– The child’s property is already defined. In this case, the information already
present must be merged with the new information provided by the parent.
Function mergeWithProperty of a property is in charge of this.

– The child property is not defined. In this case we simply create new informa-
tion based only on the parents’ information. Function createProperty of
the property performs this operation.

Checking Constraint Satisfaction 341

Algorithm 2 is a possible implementation of this mechanism. The important
Functions are mergeWithProperty and createProperty. They depend on
the type of constraint that the property represents, so it is difficult to define a
general way to represent the information. Technically, Function createProp-
erty is quite simple. We believe that the real difficulty lies in the definition
of Function mergeWithProperty, because the information must be complete
and valid, i.e. it must represent the state of the constraint in a correct way for
the node that contains it at any moment of the propagation.

Algorithm 2: Propagation
propagatePropertyMDD, property

MDD.root.addProperty(property)
for each layer L in MDD do

for each node in L do
transferProperty(node)

return MDD.tt.getProperty().getResult()

transferProperty(node) for each (label, child) in node.children do
if child.hasProperty() then

child.getProperty().mergeWithProperty(node.getProperty(), label)

else child.addProperty(node.getProperty().createProperty(label))

Time Complexity: in O((|A| − |N |)× O(mergeWithProperty) +
|N |× O(createProperty)), where |A| is the number of edges and |N | the
number of nodes. Function createProperty is called only once for each node,
that is |N | times globally. Function mergeWithProperty is globally called
|A| − |N | times. O(mergeWithProperty) and O(createProperty) are the
time complexity of the functions mergeWithProperty and createProp-
erty. As these functions depend on the constraint and the implementation, we
can’t give any further details.

Space Complexity. We retain (i+1) information for each node of layer i. The
space complexity thus depends both on the layer where we are located (the last
two layers in reality) and on the number of nodes present in the layer. As it is not
possible to predict the number of nodes in a layer for any MDD, the complexity
remains rather vague.

Let Li be the number of nodes in the layer i and L the number of layers. The
space complexity is in: O(Max(i × |Li| + (i + 1) × |Li+1|)), ∀i s.t. 0 ≤ i < L.

4.2 Properties Definitions

We provide the definition of properties for sum (
∑

x∈X x = [min,max]),
sequence, and cardinality constraints as examples. These constraints have been
chosen in relation to the problems we are working on, and not in relation to the
difficulty of implementation. These are also quite common constraints.

342 V. Jung and J.-C. Régin

Sum Constraint. The sum property is quite simple to model (Algorithm 3). As
the result is an interval, we just need to use a pair (min,max) to represent the
data. Switching from a parent to a child is simply the addition of an interval
with an integer (the value of the arc), and the merge operation is a simple union
between two intervals. Each node contains the minimum and maximum value
that can be obtained by a path from the root to that node. The end node tt
therefore contains the minimum and maximum value that can be obtained by
taking any path through the MDD.

Algorithm 3: Sum Property
createProperty(label)

(min, max) ← (thismin + label, thismax + label)
return (min, max)

mergeWithProperty(property, label)
thismin ← min(thismin, propertymin+ label)
thismax ← max(thismax, propertymax+ label)

getResult()
return this

Cardinality Constraint. We represent the property of a global cardinality con-
straint as a values matrix of size |V |×2. Each value considered in the constraint
is associated with a pair (min,max) representing the minimum and maximum
number of times the value is taken. Moving from a parent to a child through an
arc labeled by a, amounts to incrementing by 1 the number of times the value
a is taken, which is a simple addition operation on the intervals. On the other
hand, performing the merge amounts, as for the sum, to performing a union
operation. Algorithm 4 is a possible implementation.

Sequence Constraint. The sequence property is the most complex of the three
(Algorithm 5). In itself, Function createProperty and mergeWithProp-
erty correspond, as for the cardinality constraint, to perform respectively an
addition on intervals and a union operation. The difference comes from the fact
that, for the sequence, it is necessary to have separate information, represented
here by accumulator. This peculiarity comes from the sliding and global aspect of
the sequence constraint: each node contains information about a local sequence,
i.e. sequences that contain it as the final value. However, it is possible in this case
to lose information - as shown in Fig. 3. This accumulator can be implemented
in different ways: either by building it on the fly (memory gain but time loss),
in which case it is not necessary to retain the information on more than two
layers (the last two in a sliding manner), or by building it once the propagation
of the property is completed, but all the information of all the nodes must be in
memory (time gain but memory loss). Here, the accumulator is built on the fly.

Checking Constraint Satisfaction 343

Algorithm 4: Cardinality Property
createProperty(label)

values ← ∅
for each value v in the GCC do

values[v]min ← this.values[v]min

values[v]max ← this.values[v]max

if label ∈ values then
values[label]min ← values[label]min + 1
values[label]max ← values[label]max + 1

property.values ← values
return property

mergeWithProperty(property, label)
for each value v in the GCC do

add ← 0
if v = label then

add ← 1

values[v]min ← min(property.values[v]min + add, values[v]min)
values[v]max ← min(property.values[v]max + add, values[v]max)

getResult
return this

Algorithm 5: Sequence Property
createProperty(label)

values ← ∅
values[0] ← (0, 0)
add ← (label is in the sequence values)? 1 : 0
for each i from 1 to depth + 1 do

values[i]min ← this.values[i − 1]min + add
values[i]max ← this.values[i − 1]max + add

property.values ← values
property.depth ← depth + 1
accumulate(property)
return property

mergeWithProperty(property, label)
add ← (label is in the sequence values)? 1 : 0
for each i from 1 to depth do

values[i]min ← min(property.values[i − 1]min + add, values[i]min)
values[i]max ← max(property.values[i − 1]max + add, values[i]max)

accumulate(this)

accumulate(property)
for each i from 1 to property.depth do

accumulator[i]min ← min(property.values[i]min, accumulator[i]min)
accumulator[i]max ← max(property.values[i]max, accumulator[i]max)

getResult()
return accumulator

344 V. Jung and J.-C. Régin

5 Experiments

5.1 Testing Environment

The algorithms have been implemented in Java 12. The experiments were per-
formed on a Windows 10 machine using a Ryzen 2600 AMD CPU and 32 GB
of RAM for the car sequencing problem and on a machine having four E7- 4870
Intel processors, each having 10 cores with 256 GB of memory and running under
Scientific Linux for the nurse rostering problem.

The different tests comparing the methods presented in this paper were per-
formed using solutions from instances of Car Sequencing and Nurse Rostering
(represented as a MDD). These instances can be obtained on request from the
authors. However, we give some important information:

Car Sequencing. The Car Sequencing MDD contains 25942 nodes, 53985 arcs
and represents 2.6×1014 solutions. There are two options with capacity 1/2 and
2/3, 4 car classes (configurations) and a total of 100 cars.

Nurse Rostering. The Nurse Rostering MDD contains 128325 nodes, 220600
arcs and represents 1.2×1028 solutions. There are 6 nurses, 28 days and 3 shifts.
The scheduling has some predefined data : 1 means that the nurse is working
that day, - means that the nurse is not working that day and 0 means that it
is yet to be determined. Each day, each shift has a minimum number required
of nurse working that shift (we can have more, but never less). We have various
constraints, such that a nurse cannot work more than 7 days straight and must
have at least 2 free days in a row in a 2-weeks window.

Testing each raw solution individually requires testing 2.6 × 1014 and 1.2 ×
1028 solutions (respectively for Car Sequencing and Nurse Rostering problems).
Doing such benchmark in a reasonable amount of time is out of the question.

5.2 Comparison Between Inclusion and Intersection Based Inclusion

We will compare the two methods to compute the inclusion presented in this
paper. We do not take into account the time and space needed to create and
store the MDDs representing the constraints - we only focus on time and space
needed to compute the inclusion between two MDDs.

We can see from results in Table 1 that the inclusion method is better in
every way than the intersection based inclusion. We observe improvements by a
factor between 2 and 3 in time and between 1.5 and 3 in memory for GCC and
Sum constraints, and almost 5 in time for the sequence constraint.

This result was clearly expected, as the inclusion operation is at worst an
intersection, without the reduce and compare part of the intersection based
inclusion.

In the Car Sequencing problem, the GCC constraint expresses the number
of time a car has to be produced and the Sequence constraint represents the
maximum capacity of each option (that is, for any subsequence of q consecutive

Checking Constraint Satisfaction 345

Table 1. Intersection vs Inclusion (Average time in ms, memory in MB).

Constraints Car sequencing Nurse rostering

Intersection Inclusion Intersection Inclusion

Time Memory Time Memory Time Memory Time Memory

GCC 95 48 50 29 7 052 1 716 2 820 1 186

Sum 85 47 46 30 – – – –

Sequence 187 98 38 27 15 320 3 244 5 039 1 402

cars, the maximum number of cars that can have this option). In the Nurse
Rostering problem, the GCC constraint expresses the demands for a shift (that
is the minimum number of nurses required for a given shift) and the Sequence
constraint expresses the fact that a nurse must have at least a certain number
of breaks in a sliding time window.

The Sum constraint does not have any powerful meaning in these problems,
but we decided to test it on at least one problem. We did not test the sum
constraint for the Nurse Rostering problem, hence the dash symbol.

5.3 Learning Parameters of a Global Constraint

We compare the different methods (inclusion, intersection based inclusion and
properties) in order to determine the parameters of a global constraint. The
tested constraints are the sequence, sum and GCC constraints. To determine the
parameters with the inclusion and intersection based methods, a dichotomous
search on the parameters is performed. For example, if the constraint SUM(a,
b) is satisfied, we test if the constraint SUM(a, b/2) is satisfied: if it is, we test
SUM(a, b/4), otherwise we test SUM(a, b ∗ 3/4). We modify the parameters one
by one until they are fixed. However, for both methods, we do not compute the
sequence parameters for all possible values of q because it would take too much
time (we stop at q = 11). The time and memory used when building the MDDs
are integrated into the results.

As we can see from these results, using properties to compute the parameters
of a global constraint is better than performing successive inclusion checks by
at least a factor 65 in time (1 391 ms vs 22 ms for the sum constraint for the
Car Sequencing, in Table 2) and at most a factor 145 in time (283 994 ms vs
1 952 ms for the GCC constraint for the Nurse Rostering, in Table 3). For the
sequence constraint, we reach a factor of 75 with the properties even if we do not
compute all sequences with the other methods. Furthermore, a very big part of
the process is to build all the MDDs of the constraints, resulting in an increase
in both time and memory consumption, as expected. Once again we find the
factor 2 that we had in our previous comparison between the two methods of
inclusion.

346 V. Jung and J.-C. Régin

Table 2. Car sequencing problem (time in ms, memory in MB).

Methods GCC Sum Sequence

Time Memory Time Memory Time Memory

Intersection 6 080 3 240 2 137 1 328 11 306 6 493

Inclusion 3 371 2 204 1 391 1 021 6 114 3 867

Properties 48 10 22 4 82 37

Table 3. Nurse rostering problem (average time in ms, memory in MB).

Methods GCC Sequence

Time Memory Time Memory

Intersection 663 647 170 281 704 405 137 625

Inclusion 283 994 137 625 235 996 65 768

Properties 1 952 348 5 677 1 436

5.4 Conclusion

This article sheds light on a new aspect of the interest of using MDDs in the
context of constraint programming. We have introduced a new inclusion oper-
ator that allows to answer the question of the satisfaction of a constraint more
efficiently than by using the classical sequence of operations on MDDs (intersec-
tion, reduction, comparison). In addition, we have shown that adding properties
to the nodes of a MDD allowing to represent locally the state of a constraint is a
very efficient way to obtain the parameters of a global constraint (we presented
GCC, sum and sequence), provided that this constraint can be formalized as a
node property. This method is much more advantageous than a succession of
inclusion operations, both from a temporal and spatial point of view, because it
does not require any constraint construction in the form of an MDD. The use of
inclusion is nevertheless of interest when the constraint is particularly complex,
unique, or very difficult to formalize in the form of a property. The question
of the use of properties for other constraints (other than global) seems to be
the next step in order to answer in more detail the problem of extracting the
parameters of a constraint from a set of solutions.

Acknowledgments. This work has been supported by the French government,
through the 3IA Côte d’Azur Investments in the Future project managed by the
National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.

Checking Constraint Satisfaction 347

References

1. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. J. Math.
Comput. Modell. 20(12), 97–123 (1994)

2. Beldiceanu, N., Simonis, H.: A constraint seeker: finding and ranking global con-
straints from examples. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 12–26.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7 4

3. Bergman, D., Ciré, A.A., van Hoeve, W., Hooker, J.N.: Decision Diagrams for Opti-
mization. Artificial Intelligence: Foundations, Theory, and Algorithms. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-319-42849-9

4. Bessière, C., Coletta, R., Petit, T.: Learning implied global constraints. In: IJCAI
2007, Proceedings of the 20th International Joint Conference on Artificial Intelli-
gence, Hyderabad, India, 6–12 January 2007, pp. 44–49 (2007)

5. Bryant, R.E.: Graph-based algorithms for boolean function manipulation 35(8),
677–691 (1986)

6. Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based
constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–
280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9 23

7. Kam, T., Brayton, R.K.: Multi-valued decision diagrams. Technical report
UCB/ERL M90/125, EECS Department, University of California, Berkeley,
December 1990. http://www2.eecs.berkeley.edu/Pubs/TechRpts/1990/1671.html

8. Leo, K., Mears, C., Tack, G., Garcia de la Banda, M.: Globalizing constraint mod-
els. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 432–447. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40627-0 34

9. Perez, G., Régin, J.C.: Efficient operations on MDDs for building constraint pro-
gramming models. In: International Joint Conference on Artificial Intelligence,
IJCAI-15, Argentina, pp. 374–380 (2015)

10. Perez, G.: Decision diagrams: constraints and algorithms. Ph.D. thesis, Université
Nice Sophia Antipolis (2017)

11. Picard-Cantin, É., Bouchard, M., Quimper, C.-G., Sweeney, J.: Learning param-
eters for the sequence constraint from solutions. In: Rueher, M. (ed.) CP 2016.
LNCS, vol. 9892, pp. 405–420. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44953-1 26

12. Picard-Cantin, É., Bouchard, M., Quimper, C.-G., Sweeney, J.: Learning the
parameters of global constraints using branch-and-bound. In: Beck, J.C. (ed.) CP
2017. LNCS, vol. 10416, pp. 512–528. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66158-2 33

13. Srinivasan, A., Ham, T., Malik, S., Brayton, R.K.: Algorithms for discrete function
manipulation. In: 1990 IEEE International Conference on Computer-Aided Design.
Digest of Technical Papers, pp. 92–95 (1990). https://doi.org/10.1109/ICCAD.
1990.129849

https://doi.org/10.1007/978-3-642-23786-7_4
https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1007/978-3-642-15396-9_23
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1990/1671.html
https://doi.org/10.1007/978-3-642-40627-0_34
https://doi.org/10.1007/978-3-319-44953-1_26
https://doi.org/10.1007/978-3-319-44953-1_26
https://doi.org/10.1007/978-3-319-66158-2_33
https://doi.org/10.1007/978-3-319-66158-2_33
https://doi.org/10.1109/ICCAD.1990.129849
https://doi.org/10.1109/ICCAD.1990.129849

Finding Subgraphs with Side Constraints

Özgür Akgün1 , Jessica Enright2 , Christopher Jefferson1 ,
Ciaran McCreesh2(B) , Patrick Prosser2 , and Steffen Zschaler3

1 University of St Andrews, St Andrews, Scotland
2 University of Glasgow, Glasgow, Scotland

ciaran.mccreesh@glasgow.ac.uk
3 King’s College London, London, UK

Abstract. The subgraph isomorphism problem is to find a small “pat-
tern” graph inside a larger “target” graph. There are excellent dedi-
cated solvers for this problem, but they require substantial programming
effort to handle the complex side constraints that often occur in practical
applications of the problem; however, general purpose constraint solvers
struggle on more difficult graph instances. We show how to combine the
state of the art Glasgow Subgraph Solver with the Minion constraint
programming solver to get a “subgraphs modulo theories” solver that is
both performant and flexible. We also show how such an approach can
be driven by the Essence high level modelling language, giving ease of
modelling and prototyping to non-expert users. We give practical exam-
ples involving temporal graphs, typed graphs from software engineering,
and costed subgraph isomorphism problems.

1 Introduction

Finding small “pattern” graphs inside larger “target” graphs is a widely appli-
cable hard problem, with applications including compilers [5], bioinformatics
[6,16], chemistry [29], malware detection [8], pattern recognition [17], and the
design of mechanical locks [35]. This has led to the development of numerous
dedicated algorithms, with the Glasgow Subgraph Solver [24] being the current
state of the art [33]. However, practitioners are often interested in versions of
the problem with additional restrictions, or side constraints. Some of these, such
as exact vertex labelling schemes, are trivial to include in a dedicated solver,
but others currently require either extensive programming or inefficient post-
processing. This paper explores a different approach: by allowing the Glasgow
Subgraph Solver to use the Minion constraint programming (CP) solver [19] for
side constraints, we achieve both the performance only a dedicated solver can
offer, with the flexibility of a full CP toolkit. This hybrid modelling system can
be driven by the Essence high level modelling language [18] and the Conjure
toolchain, making it accessible to non-specialists.

This research was supported by the Engineering and Physical Sciences Research Coun-
cil [grant number EP/P026842/1].

c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 348–364, 2021.
https://doi.org/10.1007/978-3-030-78230-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_22&domain=pdf
http://orcid.org/0000-0001-9519-938X
http://orcid.org/0000-0002-0266-3292
http://orcid.org/0000-0003-2979-5989
http://orcid.org/0000-0002-6106-4871
http://orcid.org/0000-0003-4460-6912
http://orcid.org/0000-0001-9062-6637
https://doi.org/10.1007/978-3-030-78230-6_22

Finding Subgraphs with Side Constraints 349

1 2 3
1 2pattern:

1 3

2

4

5

2

2
1

2

3

target:

Fig. 1. A small pattern and a larger target graph used in examples throughout this
paper. The plain text numbers are vertex names, and the shapes on vertices represent
vertex labels. The graphs to the right are type graphs, which are used in Sect. 3.1. The
italic labels on edges are used for temporal graphs, which are discussed in Sect. 3.2, and
should otherwise be ignored.

1.1 Preliminaries

We begin with a look at the subgraph isomorphism problem, from a high level
constraint modelling perspective. The basic non-induced subgraph isomorphism
problem is to find an injective mapping from a pattern graph to a target graph,
such that adjacent vertices in the pattern are mapped to adjacent vertices in
the target. Variations on the problem are common, and are often combined. For
example, in the induced version of the problem, non-edges must be mapped to
non-edges; in the directed version, the input graphs have directed edges whose
orientations must be preserved by the mapping; in the vertex labelled version,
each vertex has a label, and the mapping must map vertices to like-labelled
vertices; and in the edge-labelled version, edges have labels which must be pre-
served. It is also common to want to count or enumerate all solutions, rather
than deciding whether at least one solution exists. Subsets of these variations
are supported by many dedicated subgraph isomorphism algorithms, including
the Glasgow Subgraph Solver.

We can express these problems in the Essence modelling language, as follows.
We assume vertices take their labels from the set L = {1 . . . �} for some given
�, and edges from E = {1 . . . e} (and so � and / or e may be 1, for applications
that do not use labels on vertices and/or edges):

given l, e : int

letting L be domain int (1..l)

letting E be domain int (1..e)

We take as input a directed pattern graph which has p vertices (which we number
from 1 to p, in the set P), and a directed target graph which has t vertices
(numbered from 1 to t, the set T). Each graph is represented as total function
from vertices to vertex labels, and a partial function from pairs of (not necessarily
distinct) vertices to edge labels:

350 Ö. Akgün et al.

given p, t : int

letting P be domain int (1..p)

letting T be domain int (1..t)

given pat : function (P, P) --> E

given tgt : function (T, T) --> E

given plab : function (total) P --> L

given tlab : function (total) T --> L

Now we wish to find an injective mapping f :

find f : function (total , injective) P --> T

that preserves vertex labels,

such that forAll a : P . plab(a) = tlab(f(a))

and directed edges, including their labels:

such that forAll ((a, b), lbl) in pat .

((f(a), f(b)), lbl) in toSet(tgt)

As a simple example, the following inputs show the problem instance repre-
sented in Fig. 1. We have three different vertex labels (circle, square, and dia-
mond), and only a single edge type (which is directed; the numerical labels on
edges are not used in this section):

letting l be 3

letting e be 1

We may now describe the pattern:

letting p be 3

letting pat be function ((1, 2) --> 1, (2, 3) --> 1)

letting plab be function (1 --> 1, 2 --> 1, 3 --> 2)

and the target:

letting t be 5

letting tgt be function ((1, 3) --> 1, (3, 1) --> 1,

(2, 3) --> 1, (3, 4) --> 1, (3, 5) --> 1)

letting tlab be function (1 --> 1, 2 --> 1, 3 --> 1,

4 --> 2, 5 --> 3)

Using the Conjure tool to compile Essence to a constraint programming model
which is then solved by Minion, we find there are exactly two solutions to the
problem, as we would expect:

(1 --> 1, 2 --> 3, 3 --> 4)

(1 --> 2, 2 --> 3, 3 --> 4)

But what if our application requires induced isomorphisms? Then we can easily
add the constraint

such that forAll (a, b) : (P, P) .

(f(a), f(b)) in defined(tgt) -> (a, b) in defined(pat)

Finding Subgraphs with Side Constraints 351

And Conjure will now find us a single solution,

(1 --> 2, 2 --> 3, 3 --> 4)

As we will see in Sect. 3, supporting other problem variants and constraints is
similarly straightforward, even if auxiliary variables are required. For example,
if instead we want to allow relabelling on vertex labels (which is typically not
supported by dedicated solvers), we could do the following:

find r : function (total , injective) L --> L

such that forAll a : P . r(plab(a)) = tlab(f(a))

and we would find two additional solutions,

(1 --> 1, 2 --> 3, 3 --> 5)

(1 --> 2, 2 --> 3, 3 --> 5)

and if we removed the injective keyword for the relabelling, we would find a fifth
mapping

(1 --> 2, 2 --> 3, 3 --> 1)

We return to relabelling in Sect. 3.1.

1.2 Initial Experiments and Motivation

Unfortunately, whilst elegant and flexible, the performance of this approach
leaves a lot to be desired on basic subgraph isomorphism instances. The compu-
tational experiments in this paper are performed on a cluster of machines with
dual Intel Xeon E5-2697A v4 processors and 512GBytes RAM running Ubuntu
18.04. The source code used for these experiments is released as part of the Glas-
gow Subgraph Solver1, Minion2, and Conjure3 distributions, and we provide a
separate archive for experimental scripts4.

For graphs, we will be using the 14,621 unlabelled, undirected instances from
Solnon’s benchmark suite5. This benchmark suite was originally designed for
algorithm portfolios work [21], and brings together several collections of appli-
cation and randomly-generated instances with varying difficulties and solution
counts (including many unsatisfiable instances). Some of the instances have up to
900 vertices and 14,420 edges in patterns and up to 6,671 vertices and 209,000
edges in targets. These lead to rather large models, by constraint programming
standards: the largest generated table constraint has nearly half a million entries.
However, these sizes are realistic from an applications perspective, and it would
be desirable if solvers could handle even larger target graphs.

In Fig. 2 we plot the cumulative number of instances solved over time for
the non-induced decision problem, comparing the high level approach to the

1 https://github.com/ciaranm/glasgow-subgraph-solver/releases/tag/cpaior2021-fin
ding-subgraphs-with-side-constraints.

2 https://github.com/minion/minion/releases/tag/1.9.
3 https://github.com/conjure-cp/conjure.
4 https://github.com/ciaranm/cpaior2021-finding-subgraphs-with-side-constraints.
5 https://perso.liris.cnrs.fr/christine.solnon/SIP.html.

https://github.com/ciaranm/glasgow-subgraph-solver/releases/tag/cpaior2021-finding-subgraphs-with-side-constraints
https://github.com/ciaranm/glasgow-subgraph-solver/releases/tag/cpaior2021-finding-subgraphs-with-side-constraints
https://github.com/minion/minion/releases/tag/1.9
https://github.com/conjure-cp/conjure
https://github.com/ciaranm/cpaior2021-finding-subgraphs-with-side-constraints
https://perso.liris.cnrs.fr/christine.solnon/SIP.html

352 Ö. Akgün et al.

Fig. 2. Left, the cumulative number of instances solved over time, for the non-induced
decision problem with no side constraints. Right, comparing the high level approach
with the Glasgow Subgraph Solver on an instance by instance basis; points on the outer
axes represent timeouts.

Glasgow Subgraph Solver [24] and PathLAD [21] (the two strongest CP-inspired
approaches), and to VF2 [10] and RI [6] (simpler algorithms which perform well
on easy instances). The high level approach has very slow startup times (which
is to be expected as it involves launching a Java virtual machine and reading in
a very large table constraint), but much more worryingly, only catches up with
the worst other solver in number of instances solved as the timeout approaches.
Worse, as the scatter plot in Fig. 2 shows, there are almost no instances where
the high level approach does better than the Glasgow Subgraph Solver. (For
induced problems, the results are even less favourable).

These first results motivate the remainder of this paper. We want to retain the
convenience of the high level modelling approach, and to be able to add arbitrary
side constraints to suit different applications, but we do not want to have to
abandon the performance that dedicated solvers can get on hard instances. In
Sect. 2 we evaluate several ways of using a CP solver in conjunction with the
Glasgow Subgraph Solver, with a focus on low level implementation details. In
Sect. 3 we then return to high level modelling, and look at the convenience it
provides for retyping typed graphs, for temporal problems, and for optimisation
problems.

2 Hybrid Solving with High-Level Modelling

Designing an effective hybrid solving system involved three major decisions: how
the high-level modelling language would identify suitable problems to hybridise,
how the solvers would communicate, and how often this communication would

Finding Subgraphs with Side Constraints 353

occur. The first two decisions were relatively straightforward to make, but the
third required using computational experiments to evaluate different options.
This section discusses all three of these decisions.

2.1 High-Level Modelling

We chose to use the Essence modelling language [18] because of its support for
convenient high-level types like functions and relations, which can easily describe
graphs and related abstractions. In a conventional modelling pipeline, problems
are specified in Essence and then are converted to concrete models that can be
solved by a CP solver (in our experiments Minion) via the Conjure and Sav-
ileRow tools. We augmented Conjure with a command line option that instructs
it to generate an extra file which describes how the variables representing the
graph are represented in the SavileRow input (known as Essence’). This is used
by the graph solver so it can map between its internal state and the variables
in Essence’. SavileRow converts the graph model to Minion input, and this con-
version contains information which allows Minion to map its internal state back
to the Essence’ given to SavileRow. The graph solver and Minion then commu-
nicate mappings between the nodes and edges in the graph using the identifiers
in the Essence’ representation of the problem.

This design is based upon the notion that a CP solver and a subgraph solver
can have enough of a shared understanding of a problem to solve it co-operatively.
Indeed, the Glasgow Subgraph Solver [24] employs a CP approach to solve
subgraph-finding problems, but using special data structures and algorithms—
for example, rather than representing the adjacency constraint using an explicit
table, it uses bitset adjacency matrices [22]. The solver also exploits various
graph invariants involving degrees [36] and paths [2] to further reduce the search
space, and employs special search order heuristics [1]. From this paper’s per-
spective, the most important design aspect is that internally, the solver has a
CP style variable for each vertex in the pattern graph, whose domains range
over the vertices of the target graph. The solver performs a backtracking search
with restarts and nogood recording, attempting to assign each variable a value
from its domain, whilst respecting adjacency and injectivity constraints. At each
recursive call of search, the solver performs propagation to eliminate infeasible
values from domains. If any domain becomes empty, the solver backtracks; oth-
erwise, it selects a variable, and tries assigning it each value from its domain in
turn.

The high-level approach, then, gives us a way of setting up the subgraph
solver and a CP solver such that they both have an equivalent set of variables
and values for the graph part of the model, and tells us how to form a corre-
spondence between their internal representations. Importantly, this allows the
CP solver to have additional variables that the subgraph solver does not know
about, and we do not specifically require the CP solver to be aware of all of the
graph constraints. (Additionally, due to preprocessing, the CP solver may also
sometimes have only a subset of values for some graph variables visible to it).

354 Ö. Akgün et al.

2.2 When to Communicate?

Having found a way to set up the two solvers, we must next ask when they should
communicate. The simplest approach would be to use the CP solver as a solution
checker for the subgraph solver. Whenever the subgraph solver finds a solution,
it will pass it to the CP solver, which will treat the solution as a set of equality
constraints. The CP solver will then attempt to find a satisfying assignment.
If the CP solver does not have any additional variables, this is equivalent to
simply checking that the remaining constraints hold, but in general this will
require search. For a decision problem, the CP solver then communicates back
to the subgraph solver either “yes, this is a valid solution”, or “no, reject this
solution and keep going”. If we are solving a counting or enumeration problem,
the CP solver must find all solutions and communicate this back to the subgraph
solver.

For more power, but possibly also greater cost, we could additionally ask a
CP solver at every stage of search to test whether the subgraph solver is in an
obviously infeasible state. Whenever the subgraph solver has finished perform-
ing propagation, it can communicate the trail (that is, its current sequence of
guessed assignments) to the CP solver, which again treats these as additional
equality constraints. The CP solver then performs its own propagation (but not
search), and communicates back either a “yes, keep going” or a “no, backtrack
immediately”. Finally, after this testing, we could also ask the CP solver to com-
municate any deletions it infers back to the subgraph solver. In other words, the
subgraph solver would use the CP solver as an additional propagator.

Unfortunately, each of these approaches has drawbacks. The solution we will
settle upon is based upon rollbacks; we will describe this below, after presenting
experiments that demonstrate the difference between these approaches.

2.3 How to Communicate

To enable communication between the two solvers, we use FIFOs (named pipes),
and a simple text-based protocol. Both solvers are run and initialised, and then
the subgraph solver proceeds as normal, whilst the CP solver waits to be given
commands. The subgraph solver then communicates its trail or a candidate
solution as a set of assignment constraints to the CP solver. The CP solver then
sets these assignments as its state and either performs a single propagation, or
complete search, as directed. When finished the solver communicates its success
or failure state, and any deletions (if requested), back to the subgraph solver and
reverts any changes made by setting the assignments. This approach is designed
to be solver-agnostic, and adding support for different CP solvers (or non-CP
solvers) is simple, as long as they support performing a search or propagation
from a given set of assignments.

2.4 Design Experiments

We now present the results of some computational experiments. The experi-
ments in this section are designed to be hard, and to emphasise the difference

Finding Subgraphs with Side Constraints 355

Fig. 3. Comparing different approaches to hybrid solving, showing the cumulative num-
ber of instances solved over time. On the top row, “no side constraints” then with the
“more odd target vertices than even target vertices” side constraint; on the bottom
row, the “mostly odd target vertices” side constraint on the left, and the “odd to odd,
even to even” side constraint on the right. In the top left plot, the “Checking” and
“Rollback” lines are indistinguishable. The Glasgow+ lines show the Glasgow Subgraph
Solver with manually-implemented side constraints.

between the approaches, rather than to be realistic. We will continue to work
with Solnon’s non-induced subgraph isomorphism benchmark instances, but will
consider four variations. Firstly, we will consider the problem with no side con-
straints. This is, in some sense, the worst case scenario, where we must pay the
full price of hybrid solving, but cannot get any benefit from it. Secondly, let us

356 Ö. Akgün et al.

say that the number of odd-indexed target vertices used must be greater than
the number of even target vertices used:

such that (sum i : P . f(i) % 2) >

(sum i : P . (f(i) + 1) % 2)

Thirdly, let us instead say that fewer than three odd target vertices may be used:

such that (sum i : P . f(i) % 2) < 3

And fourthly, let us say that even pattern vertices must be mapped to even
target vertices, and odd pattern vertices to odd target vertices:

such that forAll a : P . (a % 2) = (f(a) % 2)

We chose these problems because the second is likely not to be able to perform
inference until deep in a search tree (when most pattern vertices are mapped to
specific target vertices), the third is likely to be able to perform inference early
in the search tree (after a few assignments have been made, but not at the root
node), and the fourth should propagate only at the root node.

The results of these experiments are presented in Fig. 3. Let us first look
at the top left plot, where we do not actually have any side constraints. When
calling the CP solver as a solution checker, we ultimately achieve the same per-
formance as the Glasgow Subgraph Solver6, although we can pay a substantial
startup overhead. This should not be surprising: with no side constraints, the
subgraph solver runs as normal, and will perform just one call to the CP solver
on satisfiable instances. The propagating approach is over an order of magnitude
slower: calling the CP solver at every search node is clearly very expensive. (We
also tried calling the CP solver to test feasibility, without communicating dele-
tions; this made no noticeable difference to performance, and so is not pictured.)
Finally, all approaches substantially outperform using a CP solver on its own
without help from the subgraph solver.

What about the remaining three plots in Fig. 3, where we do have side con-
straints? As we hoped, we see differences between the three plots. On the top
right, where we expect the side constraints to fire late, solution checking clearly
beats propagation during search. However, on the bottom left, where we expect
side constraints to fire early, the propagating approach is much better than solu-
tion checking. Meanwhile, on the bottom right, where our constraints fire only at
the root node, checking performs extremely poorly compared to propagating. In
each case, any hybrid approach using the subgraph solver remains much better
than a pure CP approach, except that in bottom right plot checking is slightly
worse than just using the CP solver on its own.

As a point of comparison, we also implemented these three sets of side con-
straints natively inside the Glasgow solver: we label these as Glasgow+. For the
“more odd than even” case, we did this through solution checking; for “less than
three odd” we implemented checking during search; and for “odd to odd, even to
even” we implemented initial domain filtering. Our implementation choices here
6 Actually, because high level modelling can use different names for variables and val-

ues, we get slight differences due to changes to tiebreaking in search order heuristics.

Finding Subgraphs with Side Constraints 357

are intended to reflect what a reasonable programmer would do if the high level
approach were not available (and we intentionally selected side constraints that
would not be too difficult to implement). In two of the three cases, the hand-
crafted code does somewhat outperform the hybrid solving, but in the “more odd
than even” case, hybrid solving actually beats the hand-crafted dedicated solver
implementation when using the rollback approach, which we now describe.

2.5 A Rollback Approach to Communication

From what we have seen so far, it is obviously important to call the CP solver
some of the time during search, but too expensive to call it all of the time. We
will therefore introduce a new approach, which we call rollback. This approach
is inspired by backjumping [27], as well as by the conflict analysis methods used
in SAT and SMT solvers [32] and in lazy clause generating CP solvers [25,34].
The idea is as follows. Firstly, we call the CP solver with full propagation at
the root node, in case we are dealing with a particularly rich labelling scheme.
Secondly, we use the CP solver for solution checking, since this is required for
correctness. Now, suppose the CP solver rejects a candidate solution: this will
cause the subgraph solver to backtrack. At this point, we call the CP solver
again, with full propagation. Either the CP solver indicates feasibility, in which
case we proceed with search (potentially with a reduced set of domains), or the
CP solver indicates failure, in which case we backtrack again, and do another
attempt at full propagation, and so on until feasibility is reached.

The idea behind this approach is to avoid calling the CP solver when it is
unlikely to do anything useful, but that once a failure has been encountered, we
want to extract as much information as we can from the CP solver. If the failure
encountered was due to a “local” property of the solution, such as in the “more
odd than even” example, then we will quickly return to just using the subgraph
solver for search. However, if the failure is due to only a few early assignments,
as in the “fewer than three odd vertices” example, then we will jump back to
nearly the root of the search tree.

The results in Fig. 3 demonstrate the success of this approach. When there
are no side constraints, this approach has no overheads compared to solution
checking. When constraints fire late, this approach is better than solution check-
ing, and when constraints fire early, this approach is better than always prop-
agating during search. In other words, rolling back from failures gives us all of
the strengths and none of the weaknesses of the simpler approaches. We will
therefore use this method for the remainder of the paper.

3 Subgraph Problems with Side Constraints

We now look at three classes of real-world subgraph-finding problems that, until
now, have been solved using dedicated approaches. We show how easy it is to
model these problems in Essence, demonstrating the usefulness of the high-level
modelling approach for prototyping and development.

358 Ö. Akgün et al.

3.1 Retyping Problems

The basic notion of a graph conveys only adjacency information, and a sub-
graph isomorphism simply finds a certain structural pattern. In practice, this is
often augmented with additional information—for example, we have seen how
labels can be associated with vertices and edges, which can be used in chemical
applications to represent different kinds of atom or bond. In this case, subgraph
isomorphisms are also expected to preserve labels, so carbon atoms can only be
mapped to carbon atoms, and double bonds must be mapped to double bonds.
A richer labelling abstraction comes in the form of typed graphs, where the labels
themselves also carry a graph structure [15]; we show an example in Fig. 1. In
practice this labelling structure is specified by providing two graphs, together
with a morphism from the main graph to its type graph.

For typed graphs, morphisms between the graphs are typically defined
between graphs typed over the same type graph, but there are situations where
we are interested in mapping between graphs typed over different type graphs.
One such scenario from a software engineering context is described by Durán et
al. [12,13], where graph transformation systems are composed by defining mor-
phisms between the rules constituting the respective transformation systems. In
this case, the source and target transformation systems will normally have dif-
ferent type graphs; a morphism must also be established between the two type
graphs. Mappings between the various graphs making up the rules then need
to preserve structure and typing subject to the morphism between type graphs.
This approach to specification composition is implemented by the GTSMorpher
tool.7 A key objective is to minimise the amount of specification that needs to
be written. For example, the tool allows morphisms between graph transforma-
tion systems to be only partially specified and then automatically completes
the full morphism, if it can do so unambiguously—this requires solving a sub-
isomorphism problem.

We may describe typed graph subisomorphism problems in Essence as fol-
lows. As before, we are given a pattern graph and a target graph, both of which
carry labels; we will draw the vertex labels from different sets, to emphasise the
relabelling.

given pl, tl, e : int

letting PL be domain int (1..pl)

letting TL be domain int (1..tl)

letting E be domain int (1..e)

We are also given labelled graphs,

given p, t : int

letting P be domain int (1..p)

letting T be domain int (1..t)

given pat : function (P, P) --> E

given tgt : function (T, T) --> E

7 https://github.com/gts-morpher/gts morpher.

https://github.com/gts-morpher/gts_morpher

Finding Subgraphs with Side Constraints 359

given plab : function (total) P --> PL

given tlab : function (total) T --> TL

but now the labels also carry a graph structure,

given pattype : function (PL, PL) --> E

given tgttype : function (TL, TL) --> E

We are looking for an injective mapping from the pattern graph to the target
graph,

find f : function

(total , injective) P --> T

as well as an injective mapping between the label graphs,

find r : function

(total , injective) PL --> TL

in such a way that graph structure and labels are preserved,

such that forAll ((a, b), lbl) in pat .

((f(a), f(b)), lbl) in toSet(tgt)

such that forAll a : P .

r(plab(a)) = tlab(f(a))

and also requiring that the structure on the labels is preserved,

such that forAll (a,b) in defined(pattype) .

pattype ((a,b)) = tgttype ((r(a),r(b)))

Consider again the example in Fig. 1, and now suppose they are equipped
with the type structures shown to the right of each graph,

letting pattype be function (

(1, 1) --> 1, (1, 2) --> 1, (2, 1) --> 1)

letting tgttype be function (

(1, 1) --> 1, (1, 2) --> 1,

(1, 3) --> 1, (3, 1) --> 1)

We now find two solutions:

(1 --> 1, 2 --> 3, 3 --> 5)

(1 --> 2, 2 --> 3, 3 --> 5)

because we can map pattern vertex 3 to target vertex 5 through retyping, but
mapping pattern vertex 3 to target vertex 4 would not respect the type graph
structure.

More generally, the field of model-driven software engineering includes
numerous examples of using search and optimisation techniques to generate or
transform graphs [7]. Existing approaches largely make use of ad-hoc [31] and
metaheuristic methods [4,9,14], but we believe that with the help of suitably
accessible high-level modelling tools, this could become a fruitful area for con-
straint programming research in the future.

360 Ö. Akgün et al.

3.2 Temporal Subgraph Problems

Another labelling scheme is used in temporal graphs, where edges are labelled
with timestamps that denote times when edges are active—here we use inte-
gers as timestamps. Including information on the timing of edges substantially
increases the modelling power of these graphs, allowing them to more accurately
reflect the structure and dynamics of a wide variety of real-world systems (e.g.
trade networks, changing contact networks, transport networks), and address
optimisation questions in which the timing of edges is fundamental.

As algorithms and formalisms have become available for temporal graphs,
examples of their application have become widespread [20], notably includ-
ing applications within epidemiology [3] and computational social science [30].
Because the use of temporal graphs has spread beyond theoretical researchers,
the ability to rapidly define and experiment with new problem definitions and
constraints is valuable—practitioners are unlikely to define bespoke algorithms
for novel problems as they arise.

There are at least three common kinds of temporal subgraph isomorphism.
In an exact subisomorphism, times are simply labels that must match exactly. If
we look at Fig. 1, now ignoring vertex labels but using the edge labels to carry
the timestamps,

letting l be 1

letting e be 3

letting p be 3

letting pat be function ((1, 2) --> 1, (2, 3) --> 2)

letting plab be function (1 --> 1, 2 --> 1, 3 --> 1)

letting t be 5

letting tgt be function ((1, 3) --> 2, (3, 1) --> 2,

(2, 3) --> 1, (3, 4) --> 2, (3, 5) --> 3)

letting tlab be function (1 --> 1, 2 --> 1, 3 --> 1,

4 --> 1, 5 --> 1)

then there are two solutions,

(1 --> 2, 2 --> 3, 3 --> 1)

(1 --> 2, 2 --> 3, 3 --> 4)

A less strict kind of subisomorphism is an offset, where edge labels must
match exactly, but offset by an integer constant. In our example, this means
“find a mapping where the event from 2 to 3 occurs one time unit after the
event from 1 and 2”. We can model this as follows:

find o : int(-e..e)

such that forAll (a,b) in defined(pat) .

pat((a,b)) = o + tgt((f(a), f(b)))

and we find one additional solution,

(1 --> 1, 2 --> 3, 3 --> 5)

Finding Subgraphs with Side Constraints 361

Finally, in an order embedding, the pattern edge labels simply define an
order on events. We can model this as follows:

find o : function (total) E --> E

such that forAll x : int (1..e - 1) . o(x) <= o(x + 1)

such that forAll (a,b) in defined(pat) .

pat((a,b)) = o(tgt((f(a), f(b))))

which gets us yet another solution,

(1 --> 2, 2 --> 3, 3 --> 5)

Of course, when using a high level modelling approach, we are not restricted
to these three problem variants, and could easily try out new models in an
interactive setting. For example, it would take only a few minutes to write a
model for a temporal problem where all edges must occur within a short but
unspecified time period [28], whereas adapting a dedicated solver to check this
constraint would be a substantial programming effort (and making the solver
propagate rather than check this constraint would be even harder).

3.3 Subgraph Isomorphism with Costs

The system we created also support optimisation problems (and does not require
that the subgraph isomorphism solver be aware that this is what is going on).
If, for example, each target vertex has a cost associated with it,

given tcost : function (total) T --> int

then we can ask to find the cheapest solution,

minimising sum([tcost(f(a)) | a : P])

We could also just as easily ask for the solution whose most expensive edge
is cheapest, or that uses fewest vertices with a particular label. These kinds of
problem occur widely in practice, including in skyline graph queries [26], labelled
subgraph finding [11], and weighted clique problems [23].

4 Conclusion

The system we have presented shows that it is possible to combine the power
of modern subgraph solvers with the flexibility of a general purpose constraint
programming toolkit, although doing so efficiently requires careful consideration
of how frequently the solvers communicate. We believe further research in this
direction may be useful—for example, would it be possible to make use of some
kind of conflict analysis rather than a backjumping approach?

When driven by a high level modelling approach, this system is particularly
suitable for rapid prototyping and for dynamic queries where side constraints can
be specified in response to user need. However, the high level modelling approach
does come with a large startup cost, which makes it unsuitable for deployment in
application contexts that involve solving many thousands of problem instances

362 Ö. Akgün et al.

in real-time. Fortunately though, connecting the low level solvers manually is
also an option once a design has been decided upon. We also expect that new
approaches may be necessary to deal with the huge but sparse graphs that arise
in some applications, since table constraints and conventional CP domain stores
both struggle when moving beyond ten thousand of vertices in target graphs.

References

1. Archibald, B., Dunlop, F., Hoffmann, R., McCreesh, C., Prosser, P., Trimble,
J.: Sequential and parallel solution-biased search for subgraph algorithms. In:
Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 20–
38. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9 2

2. Audemard, G., Lecoutre, C., Samy-Modeliar, M., Goncalves, G., Porumbel, D.:
Scoring-based neighborhood dominance for the subgraph isomorphism problem.
In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 125–141. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10428-7 12

3. Bansal, S., Read, J., Pourbohloul, B., Meyers, L.A.: The dynamic nature of contact
networks in infectious disease epidemiology. J. Biol. Dyn. 4(5), 478–489 (2010)

4. Bill, R., Fleck, M., Troya, J., Mayerhofer, T., Wimmer, M.: A local and global
tour on MOMoT. Softw. Syst. Model. 18(2), 1017–1046 (2017). https://doi.org/
10.1007/s10270-017-0644-3

5. Hjort Blindell, G., Castañeda Lozano, R., Carlsson, M., Schulte, C.: Modeling
universal instruction selection. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp.
609–626. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 42

6. Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D.E., Ferro, A.: A subgraph iso-
morphism algorithm and its application to biochemical data. BMC Bioinf. 14(S–7),
S13 (2013)

7. Boussäıd, I., Siarry, P., Ahmed-Nacer, M.: A survey on search-based model-driven
engineering. Autom. Softw. Eng. 24(2), 233–294 (2017). https://doi.org/10.1007/
s10515-017-0215-4

8. Bruschi, D., Martignoni, L., Monga, M.: Detecting self-mutating malware using
control-flow graph matching. In: Büschkes, R., Laskov, P. (eds.) DIMVA 2006.
LNCS, vol. 4064, pp. 129–143. Springer, Heidelberg (2006). https://doi.org/10.
1007/11790754 8

9. Burdusel, A., Zschaler, S., John, S.: Automatic generation of atomic consistency
preserving search operators for search-based model engineering. In: Kessentini, M.,
Yue, T., Pretschner, A., Voss, S., Burgueño, L. (eds.) 22nd ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems, MOD-
ELS 2019, Munich, Germany, 15–20 September 2019, pp. 106–116. IEEE (2019).
https://doi.org/10.1109/MODELS.2019.00-10

10. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algo-
rithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10),
1367–1372 (2004)

11. Dell’Olmo, P., Cerulli, R., Carrabs, F.: The maximum labeled clique problem. In:
Adacher, L., Flamini, M., Leo, G., Nicosia, G., Pacifici, A., Piccialli, V. (eds.)
Proceedings of the 10th Cologne-Twente Workshop on Graphs and Combinatorial
Optimization. Extended Abstracts, Villa Mondragone, Frascati, Italy, 14–16 June
2011, pp. 146–149 (2011)

https://doi.org/10.1007/978-3-030-19212-9_2
https://doi.org/10.1007/978-3-319-10428-7_12
https://doi.org/10.1007/s10270-017-0644-3
https://doi.org/10.1007/s10270-017-0644-3
https://doi.org/10.1007/978-3-319-23219-5_42
https://doi.org/10.1007/s10515-017-0215-4
https://doi.org/10.1007/s10515-017-0215-4
https://doi.org/10.1007/11790754_8
https://doi.org/10.1007/11790754_8
https://doi.org/10.1109/MODELS.2019.00-10

Finding Subgraphs with Side Constraints 363

12. Durán, F., Moreno-Delgado, A., Orejas, F., Zschaler, S.: Amalgamation of domain
specific languages with behaviour. J. Log. Algebraic Methods Program. 86, 208–
235 (2017). https://doi.org/10.1016/j.jlamp.2015.09.005

13. Durán, F., Zschaler, S., Troya, J.: On the reusable specification of non-functional
properties in DSLs. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol.
7745, pp. 332–351. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36089-3 19

14. Efstathiou, D., Williams, J.R., Zschaler, S.: Crepe complete: multi-objective opti-
mization for your models. In: Paige, R.F., Kessentini, M., Langer, P., Wimmer,
M. (eds.) Proceedings of the First International Workshop on Combining Mod-
elling with Search- and Example-Based Approaches co-located with 17th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MOD-
ELS 2014), Valencia, Spain, 28 September 2014. CEUR Workshop Proceedings,
vol. 1340, pp. 25–34. CEUR-WS.org (2014)

15. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCSSeries.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

16. Elhesha, R., Sarkar, A., Kahveci, T.: Motifs in biological networks. In: Yoon, B.-
J., Qian, X. (eds.) Recent Advances in Biological Network Analysis, pp. 101–123.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57173-3 5

17. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern
recognition in the last 10 years. IJPRAI 28(1), 1450001 (2014). https://doi.org/
10.1142/S0218001414500013

18. Frisch, A.M., Harvey, W., Jefferson, C., Hernández, B.M., Miguel, I.: Essence:
a constraint language for specifying combinatorial problems. Constraints Int. J.
13(3), 268–306 (2008). https://doi.org/10.1007/s10601-008-9047-y

19. Gent, I.P., Jefferson, C., Miguel, I.: Minion: a fast scalable constraint solver. In:
Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI 2006, 17th Euro-
pean Conference on Artificial Intelligence, 29 August–1 September 2006, Riva del
Garda, Italy, Including Prestigious Applications of Intelligent Systems (PAIS 2006),
Proceedings. Frontiers in Artificial Intelligence and Applications, vol. 141, pp. 98–
102. IOS Press (2006)

20. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012).
https://doi.org/10.1016/j.physrep.2012.03.001

21. Kotthoff, L., McCreesh, C., Solnon, C.: Portfolios of subgraph isomorphism algo-
rithms. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol.
10079, pp. 107–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
50349-3 8

22. McCreesh, C., Prosser, P.: A parallel, backjumping subgraph isomorphism algo-
rithm using supplemental graphs. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255,
pp. 295–312. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-
5 21

23. McCreesh, C., Prosser, P., Simpson, K., Trimble, J.: On maximum weight clique
algorithms, and how they are evaluated. In: Beck, J.C. (ed.) CP 2017. LNCS, vol.
10416, pp. 206–225. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66158-2 14

24. McCreesh, C., Prosser, P., Trimble, J.: The glasgow subgraph solver: using con-
straint programming to tackle hard subgraph isomorphism problem variants. In:
Gadducci, F., Kehrer, T. (eds.) ICGT 2020. LNCS, vol. 12150, pp. 316–324.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51372-6 19

https://doi.org/10.1016/j.jlamp.2015.09.005
https://doi.org/10.1007/978-3-642-36089-3_19
https://doi.org/10.1007/978-3-642-36089-3_19
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-030-57173-3_5
https://doi.org/10.1142/S0218001414500013
https://doi.org/10.1142/S0218001414500013
https://doi.org/10.1007/s10601-008-9047-y
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1007/978-3-319-50349-3_8
https://doi.org/10.1007/978-3-319-50349-3_8
https://doi.org/10.1007/978-3-319-23219-5_21
https://doi.org/10.1007/978-3-319-23219-5_21
https://doi.org/10.1007/978-3-319-66158-2_14
https://doi.org/10.1007/978-3-319-66158-2_14
https://doi.org/10.1007/978-3-030-51372-6_19

364 Ö. Akgün et al.

25. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = lazy clause generation.
In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 544–558. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74970-7 39

26. Pande, S., Ranu, S., Bhattacharya, A.: SkyGraph: retrieving regions of interest
using skyline subgraph queries. Proc. VLDB Endow. 10(11), 1382–1393 (2017).
https://doi.org/10.14778/3137628.3137647

27. Prosser, P.: Hybrid algorithms for the constraint satisfaction problem. Comput.
Intell. 9, 268–299 (1993). https://doi.org/10.1111/j.1467-8640.1993.tb00310.x

28. Redmond, U., Cunningham, P.: Temporal subgraph isomorphism. In: Rokne, J.G.,
Faloutsos, C. (eds.) Advances in Social Networks Analysis and Mining 2013,
ASONAM 2013, Niagara, ON, Canada, 25–29 August 2013, pp. 1451–1452. ACM
(2013). https://doi.org/10.1145/2492517.2492586

29. Régin, J.: Développement d’outils algorithmiques pour l’Intelligence Artificielle.
Application à la chimie organique. Ph.D. thesis, Université Montpellier 2 (1995)

30. Sekara, V., Stopczynski, A., Lehmann, S.: Fundamental structures of dynamic
social networks. Proc. Natl. Acad. Sci. 113(36), 9977–9982 (2016)

31. Semeráth, O., Nagy, A.S., Varró, D.: A graph solver for the automated generation
of consistent domain-specific models. In: Chaudron, M., Crnkovic, I., Chechik, M.,
Harman, M. (eds.) Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, 27 May–03 June 2018, pp. 969–980.
ACM (2018). https://doi.org/10.1145/3180155.3180186

32. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: Rutenbar, R.A., Otten, R.H.J.M. (eds.) Proceedings of the 1996 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 1996, San Jose, CA,
USA, 10–14 November 1996, pp. 220–227. IEEE Computer Society/ACM (1996).
https://doi.org/10.1109/ICCAD.1996.569607

33. Solnon, C.: Experimental evaluation of subgraph isomorphism solvers. In: Conte,
D., Ramel, J.-Y., Foggia, P. (eds.) GbRPR 2019. LNCS, vol. 11510, pp. 1–13.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20081-7 1

34. Stuckey, P.J.: Lazy clause generation: combining the power of sat and CP (and
MIP?) solving. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS,
vol. 6140, pp. 5–9. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13520-0 3

35. Vömel, C., de Lorenzi, F., Beer, S., Fuchs, E.: The secret life of keys: on the
calculation of mechanical lock systems. SIAM Rev. 59(2), 393–422 (2017). https://
doi.org/10.1137/15M1030054

36. Zampelli, S., Deville, Y., Solnon, C.: Solving subgraph isomorphism problems with
constraint programming. Constraints 15(3), 327–353 (2010)

https://doi.org/10.1007/978-3-540-74970-7_39
https://doi.org/10.14778/3137628.3137647
https://doi.org/10.1111/j.1467-8640.1993.tb00310.x
https://doi.org/10.1145/2492517.2492586
https://doi.org/10.1145/3180155.3180186
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1007/978-3-030-20081-7_1
https://doi.org/10.1007/978-3-642-13520-0_3
https://doi.org/10.1007/978-3-642-13520-0_3
https://doi.org/10.1137/15M1030054
https://doi.org/10.1137/15M1030054

Short-Term Scheduling of Production
Fleets in Underground Mines Using

CP-Based LNS

Max Åstrand1,2(B), Mikael Johansson1, and Hamid Reza Feyzmahdavian2

1 Division of Decision and Control Systems, School of Electrical Engineering
and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden

mikaelj@kth.se
2 ABB Corporate Research, Väster̊as, Sweden

{max.astrand,hamid.feyzmahdavian}@se.abb.com

Abstract. Coordinating the mobile production fleet in underground
mines becomes increasingly important as the machines are more and
more automated. We present a scheduling approach that applies to sev-
eral of the most important production methods used in underground
mines. Our algorithm combines constraint programming with a large
neighborhood search strategy that dynamically adjusts the neighborhood
size. The resulting algorithm is complete and able to rapidly improve con-
structed schedules in practice. In addition, it has important benefits when
it comes to the acceptance of the approach in real-life operations. Our
approach is evaluated on public and private industrial problem instances
representing different mines and production methods. We find significant
improvements over the current industrial practice.

Keywords: Scheduling · Underground mining · Constraint
programming · Large neighborhood search

1 Introduction

In today’s modern underground mine, the excavation is increasingly performed
by highly automated mobile machines. Several of these machines can now be
operated simultaneously by a single human operator from a centralized control
room. This transformation alleviates some traditionally limiting factors in min-
ing operations, such as access to human resources and the safety of underground
workers. Consequently, when the mining activities are increasingly automated,
it is possible to coordinate the activities more efficiently. Instead of focusing
on how individual activities should be performed, mine automation now turns
to address when each activity should take place and by which machine. This
coordination of activities is called short-term mine scheduling, and it is the pro-
cess of allocating resources and determining feasible start and end times for the
upcoming mining activities.

c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 365–382, 2021.
https://doi.org/10.1007/978-3-030-78230-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_23&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_23

366 M. Åstrand et al.

Short-term mine scheduling is usually a manual process that depends criti-
cally on the skills of the manual scheduler [2,30]. Even if heuristic constructive
procedures have been adapted in some mines, the overall level of automation
in mine scheduling is low. While constructive procedures can quickly provide
feasible schedules for several hundreds of activities, they are typically cumber-
some to customize and maintain over time as well as limited when it comes to
optimization. Another approach effective at quickly constructing feasible sched-
ules is Constraint Programming (CP). CP has been shown to perform well on
scheduling benchmarks [16], in industrial manufacturing settings [29], and in the
mining industry [3]. A benefit of CP compared to constructive procedures is due
to the declarative paradigm: separating what a solution is from how to find it.
In combination with the expressiveness of CP, these attributes make it easier
to consider the plurality of process constraints that real-world industrial set-
tings may exhibit. In complex environments, there is also often an opportunity
for significant optimization over manually constructed schedules. The standard
approach for optimization in CP (backtracking search using Branch and Bound)
may however be unsatisfactory when it comes to the speed at which good solu-
tions are found. In these cases, combining CP with Large Neighborhood Search
(LNS) facilitates finding high-quality solutions faster [28].

In this paper, we present a CP model that applies to several of the most
common production methods used in underground mines. The constraint model
strengthens and generalizes previous approaches in mine scheduling. In addi-
tion, the general structure of the approach lends itself to production scheduling
in other heavy industries, including forestry and agriculture, where the produc-
tion fleet is increasingly automated. For these scheduling problems, we propose
an algorithm that dynamically adjusts the size of the neighborhoods explored
by LNS. In contrast to more common approaches, the algorithm is both com-
plete and able to rapidly improve the constructed schedules. Its local optimal-
ity properties are also easy to explain to human operators, which is essential
for real-life acceptance. Furthermore, we combine ideas from adaptive LNS and
tabu-search to guide the neighborhood selection. Our joint approach is evaluated
on both public and private industrial problem instances, representing different
mines and production methods. We find that our algorithm compares favorably
to both conventional restart-based backtracking search and to modern industrial
practice.

2 Underground Mine Scheduling

Underground mining is the process of excavating ore from beneath the surface.
The ore is located in deposits (ore-bodies) which may be located several kilo-
meters underground. Depending on the shape and orientation of the ore-body,
different mining (production) methods are used to extract the ore. A common
factor for most mining methods is that they use drilling and blasting to sepa-
rate the ore from the ore-body. The operation hence follows what is known as a
blast cycle: a number of sequential process steps required to advance the exca-

Scheduling of Underground Production Fleets 367

Fig. 1. An illustration of the main activities in a typical blast cycle taking place at a
mining face.

vation process. Even in small operations, many blast cycles are simultaneously
conducted at different mining faces (tunnel endings) throughout the mine.

The approach presented in this work applies to mining methods where the
activities of each individual blast cycle take place at the same location. This
includes the most common methods used in small- and medium-sized mines, as
well as some large-scale mining methods. In addition, it covers the scheduling of
mine development (tunneling) that occurs in all underground mines regardless
of mining method. We will pay special attention to room-and-pillar mining and
cut-and-fill mining [10]. Room-and-pillar is common for flat, near-horizontal,
ore-bodies containing e.g. copper, coal, or potash. As the name suggests, it is
based on excavating the ore such that pillars are left in the ore-body to support
the surrounding rock mass. Cut-and-fill is more common for steep irregular ore-
bodies containing high-value ore, such as gold or silver, and the ore is extracted
in horizontal slices.

While the typical fleet and the number of mining faces vary between the
considered mining methods, they follow roughly the same blast cycle (see Fig. 1).
First, the mining face is drilled using a drill-rig. The drill-rig prepares multiple
holes in the rock mass, which are then charged with explosives using a charging
vehicle. The explosives are in turn detonated to separate the ore from the rock
mass. Due to safety, blasting can typically only occur during pre-defined time
slots called blast windows. After the toxic blast fumes have been ventilated, the
ore is transported away from the face using tailored front-end loaders known as
load-haul-dump machines. Later, material loosely attached to the insides of the
mining tunnel is scaled using a hydraulic hammer mounted on a mobile machine.
Next, the sides and the roof of the tunnel are reinforced by bolting the inside of
the tunnel to the adjacent rock mass and spraying the inside with concrete to
reduce the risk of sudden rock bursts. When concrete is being used, the face is

368 M. Åstrand et al.

left unavailable for a specific cure time as the concrete burns. Lastly, when the
sides and the roof of the tunnel are safe, the face is scaled to prepare it for the
drill-rig to initiate the next blast cycle.

Short-term mine scheduling coordinates the daily operations. It often consid-
ers both the blast cycle activities and auxiliary activities such as machine main-
tenance. The mine scheduling function ensures that all activities have access to
the necessary resources and determines the start- and end-time of each individual
activity. Due to process uncertainties, the schedule typically only spans a couple
of days and it is extended using a rolling horizon approach [2]. The schedule is
also continuously revised during its execution, emphasizing the need for rapid
solving times. The mine scheduling problem has equivalents in other industries
where highly specialized machines travel between locations to perform a step-
wise sequence of activities. This includes e.g. forestry and farming. Similar to
mining, these are also low-margin and high-volume industries, meaning that even
minor efficiency improvements may have a significant impact on profitability.

In contrast to most works in the scheduling literature that use makespan as
the objective function, we will use the sum of face makespans. The motivation
is twofold. First, using the overall makespan in a rolling horizon approach puts
too much emphasis on the face that currently has the most mining activities
scheduled on it. In our experience, using the sum of face makespan makes the
schedules less prone to rapid changes of production paces between faces when
the horizon extends. Second, the sum of face makespan is easily converted into
“blasting pace”, which is a common key performance metric used in the mining
industry.

Related Work. There are only a few related works on short-term mine schedul-
ing. Schulze et al. [24] consider a room-and-pillar mine where they formulate a
MILP model for small instances and present several constructive procedures
suitable for larger settings. The constructive procedures are later [25] extended
to include job selection and staffing with the goal of minimizing the deviation
between the amount of mined potash and a targeted production rate. Seifi et
al. [26] study the same mine but employ a two-stage approach: using MILP
to solve a relaxed version of the scheduling problem and then incorporate all
mining constraints by means of a heuristic algorithm. This approach is later
[27] outperformed by a stronger MILP model. Our previous work [4], extending
on [3], employs CP to schedule the blast cycle activities in a cut-and-fill mine.
The model considers several mining-specific details such as machine travel times
and the mix of interruptible and uninterruptible activities. In [4], a simple LNS
strategy using fixed neighborhood sizes is also introduced and indicates that
LNS appears to be a promising improvement strategy.

Our CP model draws inspiration from job-shop scheduling. Grimes et al. [13]
compare two models for job-shop scheduling: one based on unary-constraints and
tailored search heuristics, and one model based on simpler reified disjunctive con-
straints combined with learning search heuristics. Despite providing less prop-
agation, the model based on reified disjunctive constraints compares favorably

Scheduling of Underground Production Fleets 369

on some classical job shop instances due to, among other things, the combina-
tion of learning search heuristics and restart-based search. Grimes and Hebrard
[12] note that the simpler model can easily be adapted to handle various side
constraints and objective functions, including sum objectives. This model serves
as an inspiration to the model we employ for mine scheduling. The standard
job-shop does however not include task allocation. Booth et al. [7] remark that
the literature on combining task allocation and scheduling using CP is limited.
They compare a CP-based approach with a MILP-based approach to a multi-
robot task allocation and scheduling problem. The authors conclude that CP
works well for the general structure of these problems. The task allocation is
implemented using optional interval variables, which are more recently also used
to schedule truck-and-drone final mile delivery systems [14] and for simultaneous
task allocation and motion scheduling of dual-arm robots [6].

Adaptive Large Neighborhood Search (ALNS) is a method to identify favor-
able neighborhood structures among a set of alternatives [23]. In the contem-
porary literature, ALNS is often combined with tabu-based techniques to avoid
re-visiting solutions. A recent example is He et al. [15] that studies oversub-
scribed sequence-dependent scheduling problems. Unlike previous approaches,
they use a tight integration of the two methods, which is demonstrated to work
well on a real-world satellite scheduling problem. The authors attribute this to
the diversifying capabilities of ALNS together with the intensifying proficiency
of tabu-search.

3 Approach

We consider mine scheduling problems specified by the following data:

L A set of locations L = {1, · · · , |L|} representing the mining faces. Further,
the travel time �l,l′ is fully specified for all combinations of locations and it
is the time needed to drive from location l to location l′.

M A machine set M = {1, · · · , |M|} of the machines available for production.
Each machine m ∈ M belongs to a machine class c representing the machine-
job eligibility. The subset Mc ⊂ M contains all machines of class c.

J A set J = {1, · · · , |J |} of mining activities (jobs) to be scheduled. For each
job j ∈ J , the following 3 parameters are known. First, the machine class
needed to perform the job (Mj). All machines m ∈ Mc can process job j
as long as Mj = c. Second, the location Lj ∈ L where the job takes place.
Third, the expected duration Dj ∈ Z

+ that the machine is required to be
present at the location.

P A set of tuples P = {(jp
1 , js

1), · · · , (jp
|P|, j

s
|P|)} denoting precedence con-

straints jp ≺ js between preceding job jp and succeeding job js.

For clarity, in this contribution we will assume that all machines travel with the
same travel speed and that all machines of the same class exhibit an equal pro-
cessing rate. While our approach can easily be adapted to relax these assump-
tions, our experience is that these assumptions are not limiting in the most
common production scenarios.

370 M. Åstrand et al.

3.1 Constraint Programming

Model. Our constraint model uses the following decision variables:

sj A nonnegative variable representing the start time of job j ∈ J .
ojm A boolean variable indicating whether machine m ∈ M is allocated to

job j ∈ J .
bjj′ A boolean sequencing variable for the machines. If bjj′ = 1, then job j

precedes job j′ on the same machine. Of course, bjj′ = 0 represents the
opposite, i.e. j′ ≺ j.

cjj′ Similar to bjj′ , but instead of denoting the order of jobs on machines, it
describes the order of jobs on the locations.

O The objective function representing the sum of makespans over all loca-
tions.

Since exactly one eligible machine needs to be allocated to each job, we have the
constraints

ojm = 0 ∀(m, j) : m ∈ Mc ∧ c �= Mj (1)
∑

m∈M
ojm = 1 ∀j ∈ J . (2)

Jobs that require no mobile machinery (e.g. blasting) are included by introducing
a virtual machine class with infinite capacity.

For sequencing the jobs on the machines, we enforce the following:

bjj′ = 1 ⇐⇒ ojm = 1 ∧ oj′m = 1 ∧
sj + Dj + �LjLj′ < sj′ ∀(m, j, j′) : j < j′. (3)

bjj′ = 0 ⇐⇒ ojm = 1 ∧ oj′m = 1 ∧
sj′ + Dj′ + �Lj′ Lj

< sj ∀(m, j, j′) : j < j′. (4)

bjj′ = � ⇐⇒ ¬(ojm = 1 ∧ oj′m = 1) ∀(m, j, j′), (5)

where bjj′ = � is a dummy value introduced to represent that job j and j′ are
scheduled on different machines and hence require no sequencing.

Note that our earlier model [4] only considers production scenarios where the
job order on each location is fully specified and can be implemented as precedence
constraints. By introducing another sequencing variable cjj′ , representing the
job order on the locations, this model generalizes to more mining methods and
the scheduling of vital auxiliary jobs such as maintenance and inspection. We
constrain the location sequencing variables by

cjj′ = 1 ⇐⇒ sj + Dj < sj′ ∀(m, j, j′) : j < j′ ∧ Lj = Lj′ (6)
cjj′ = 0 ⇐⇒ sj′ + Dj′ < sj ∀(m, j, j′) : j < j′ ∧ Lj = Lj′ (7)

cjj′ = � ∀(j, j′) : Lj �= L′
j . (8)

Scheduling of Underground Production Fleets 371

Further, there are many precedence constraints in mining due to e.g. geome-
chanics, the confined environment, and the blast cycle. The start times of the
preceding jobs jp and the succeeding jobs js are restricted by

sjp + Djp ≤ sjs ∀(jp, js) ∈ P. (9)

The objective is to minimize the sum of location makespans

O =
∑

l∈L
max
j∈Jl

(
sj + Dj

)
, (10)

where the set Jl = {j ∈ J | Lj = l} holds all jobs on location l.

Extensions. Different mining methods exhibit different process constraints.
If concrete cure-times are needed for some mining activities, they affect the
subsequent availability of the location but not the machine. This is enforced by
adding a time buffer Dcure to Eq. (6) such that sj + Dj + Dcure < sj′ , and
modifying Eqs. (7) and (9) similarly for the jobs that involve concrete.

Individual temporal constraints are supported by directly restricting the fea-
sible domain of the start-times. Consider e.g. blast jobs j ∈ J (bl) ⊂ J where
the start times need to be aligned with a blast window, then

sj ∈ {sb | b = 1, . . . , B} ∀j ∈ J (bl). (11)

Here, sb denotes the start-time of blast window b. Further, using the compressed-
time approach as described in [4] deals with the mix of interruptible and unin-
terruptible jobs efficiently.

While Eqs. (3) to (5) indeed provide disjunctive machine execution, we find it
useful to overload them by an optional unary-constraint when searching highly
constrained search spaces

unary
(
{(sj ,Dj , ojm) | j ∈ J }

)
∀m ∈ M. (12)

This also holds for the sequencing of jobs on the locations, and hence

unary
(
{(sj ,Dj) | j ∈ J : Lj = l}

)
∀l ∈ L (13)

is also added as a redundant constraint.

Search. Our search strategy assigns machines to jobs, then branches on the
sequencing variables, and lastly determines the start-times.

First, we assign the machine allocation variables ojm = 1 such that machines
of the same class are allocated an equal number of jobs (ties are broken index-
wise). Moreover, the machine allocation variables are grouped by class, meaning
that all jobs requiring the same machine class are branched on sequentially.

372 M. Åstrand et al.

Second, we branch on the variables cjj′ that sequence the jobs on the loca-
tions. The variables are selected in increasing order of min(sj)+min(sj′), where
min(sj) denotes the lowest value in the domain of sj . The value selection is

cjj′ =

{
1, if min(sj) < min(sj′),
0, otherwise.

(14)

Note that this search strategy sequences jobs in order of how early they feasibly
can be scheduled given the current state of branching, which resembles greedy
constructive procedures that previously have been applied to the mine scheduling
problem [20]. A fully determined sequence of the jobs on each location need not
impose an order of the assigned jobs on each individual machine. Therefore, after
the c’s are determined, we branch on the b variables following the same strategy.

Finally, when a feasible job sequencing has been determined (for both loca-
tions and machines) a solution is instantiated by assigning the start times to their
lowest feasible value sj = min(sj). This also determines the objective function O.

There may be several machines within each class that have the same process-
ing rate and travel speed. In these cases, we eliminate symmetrical solutions by
lightweight dynamic symmetry breaking [19] using that the columns of ojm are
partially exchangeable.

3.2 Large Neighborhood Search

Large Neighborhood Search (LNS) is a method for local search using CP [28].
Starting from a solution, LNS is based on relaxing a subset of the decision vari-
ables to their original domain and resolving within that relaxation in the hope of
finding an improving solution. The relaxed variables imply the neighborhood that
is being explored, and the choice of neighborhood is crucial for the performance
of the method [9].

In the scheduling literature, neighborhoods are often machine-based, time-
based, or completely random. However, restricting the neighborhoods based on
these criteria performs poorly in our setting. We attribute this to the large
number of precedence constraints between jobs on the same location. This results
in effective neighborhoods that are too inflexible to contain improving solutions.
Instead, we have found location-based relaxations to be effective. This means
that we implicitly determine which decision variables to relax by selecting a
subset of locations. For the selected locations, all decision variables (sj , ojm, bjj′ ,
and cjj′) corresponding to jobs on those locations are relaxed.

Our model uses bjj′ and cjj′ to hold the structure of the schedule (inspired by
[13]). This modeling structure resembles constructing a Partial Order Schedule,
a concept that is used in the LNS by Laborie and Godard [17]. In contrast
to their approach to relax all start times in the schedule, we have found it
beneficial to only relax the start times of the jobs within the neighborhood. In
our setting, we attribute this to a more advantageous trade-off between each
iteration’s computational complexity and the number of iterations performed.

Scheduling of Underground Production Fleets 373

Algorithm 1. LNS-IncLoc
Input: feasible schedule σ with objective O, initial neighborhood size n = 2
1: while not terminated do
2: N ← draw and remove a neighborhood from Nn according to strategy S
3: pN ← relax (σ, {sj , ojm, bjj′ , cjj′ | ∀m, j, j′ : m ∈ M, Lj ∈ N, Lj′ ∈ N})
4: σ′ ← solve pN requiring O′ < O

5: if solution found then
6: n ← 2, restore Nn

7: σ ← σ′

8: else if Nn = ∅ then
9: n ← n + 1, restore Nn

10: end if
11: end while

Dynamic Neighborhood Size. Let Nn denote the set of all combinations of
n locations. For n = 2, then

N2 =
{

{l, l′} | l, l′ ∈ L, l < l′
}

(15)

constitutes the set of all potential neighborhoods. For small n, the search space
induced by relaxing n locations is relatively small and can be rapidly explored.
While the computational burden increases with n, so does the potential of finding
larger improvements. In our earlier work [4] we compared n = 2 with n = 3 and
found no strategy to be strictly dominating.

Therefore, in this work, we introduce LNS-IncLoc: an algorithm that adjusts
n dynamically throughout the solution process. The algorithm is based on
increasing the number of locations when all current neighborhoods are proven
not to contain improving solutions. If an improving solution is found, n is
decreased, and the search continues in smaller neighborhoods. In Algorithm 1,
solve pN refers to using the CP model to solve the problem pN constructed by
relaxing the variables corresponding to the locations in neighborhood N ∈ Nn.
Note that the majority of the explored neighborhoods do not contain any improv-
ing solution. Therefore, after finding the first feasible solution, the search strate-
gies for the sequencing variables are replaced by the weighted degree search
heuristic [8] to show infeasibility faster.

Our algorithm resembles variable-depth neighborhood search [1] in the sense
that the neighborhoods grow as the solution process progresses. However, instead
of partially searching the neighborhoods using heuristics, as is most common in
variable-depth neighborhood search, we search the neighborhoods exhaustively.
Since eventually n = |L|, our algorithm is in-fact complete; given enough time
it will return the optimal solution. Unfortunately, there are

(|L|
n

)
combinations

for each n. Hence to prove optimality,
∑(|L|

n

)
= 2|L| neighborhoods need to

be searched sequentially, making optimality only relevant for small instances.
However, we observe empirically that our approach tends to find many improve-
ments in small neighborhoods for the problem under study. These improvements

374 M. Åstrand et al.

strengthen the upper bound on the objective, which is crucial for tractable solu-
tion times when increasing n. Therefore, while completeness is only relevant for
small instances, LNS-IncLoc is also efficient in rapidly improving large instances.

The dynamic adjustments of n in LNS-IncLoc also bring another benefit in
real-life deployments. From our previous efforts working close with mine sched-
ulers, we remark that it is important to be able to explain the rationale behind
the automatically created schedules. This is a challenge we have faced both when
using constructive heuristics [20] and CP [3]. A distinct feature of LNS-IncLoc
is that if the algorithm terminates at e.g. n = 5 we can guarantee the manual
scheduler that there is no better solution unless we rearrange activities on more
than 4 locations. The fact that LNS-IncLoc removes these obvious improvements
(that skilled manual schedulers may find by e.g. swapping two machines on two
locations) increases the trust in the automation.

Neighborhood Selection Strategies. The neighborhood size n does not
determine in what order the neighborhoods N ∈ Nn are explored. This choice
is made by a separate selection strategy S at line 3 in Algorithm 1. The selec-
tion strategy is important for the combined performance of our approach. During
preliminary experiments, we investigated several different strategies. For brevity,
we will only present three of them: Sin-order, Srandom, and Stabu.

The first strategy Sin-order uses a fixed permutation of Nn and selects neigh-
borhoods index-wise using that permutation. As an example, for any given
permutation π the strategy Sin-order produces a static neighborhood sequence
Nπ1 , . . . , Nπ|Nn| . In general, this permutation can be calculated based on fea-
tures of the incumbent. However, in our numerical experiments we use a fixed
random permutation throughout all iterations. This strategy resembles a first-
improvement local search strategy using a fixed neighborhood order [21].

The second strategy Srandom selects a neighborhood from Nn at random using
a uniform distribution over the remaining neighborhoods in Nn. This strategy,
in contrast to Sin-order, will produce different random sequences each time.

Inspired by previous work that tightly couple ALNS with tabu-based meth-
ods [15,31], we introduce the selection strategy Stabu. When using a uniform
distribution over the neighborhoods nothing prevents the strategy from acci-
dentally selecting several similar neighborhoods in sequence. As an example,
consider the three neighborhoods {l1, l2}, {l1, l3} and {l3, l4}. If {l1, l2} is proven
not to contain any improving solutions, then in a tabu-fashion we should favor
selecting the more disparate neighborhood {l3, l4} over the more similar {l1, l3}.
To this end, the strategy Stabu implements a non-uniform distribution over the
neighborhoods in each iteration. This is implemented by counting the number
of times a location has been relaxed cL

l , l = 1, . . . , |L| and calculating the sum of
location counts for each individual neighborhood N ∈ Nn

cN
N =

∑

l∈N

cL
l , N = 1, . . . , |Nn|. (16)

Scheduling of Underground Production Fleets 375

Each neighborhood is then associated with a weight wN which is inversely pro-
portional to the number of times the constituent locations have been relaxed

wN =
1

1 + cN
N − min

N ′
cN
N ′

. (17)

By using a roulette wheel selection procedure [5] the probability pN of selecting
any neighborhood becomes

pN =
wγ

N∑
N ′∈Nn

wγ
N ′

, N = 1, . . . , |Nn| (18)

where γ ≥ 0 is a tuning parameter. Letting γ = 0 we recover Srandom, while
γ > 0 enforces tabu. In our problem setting, γ = 2 appears to work well.

4 Results

In this section, we first investigate the impact that the neighborhood selection
strategy has on LNS-IncLoc. We then compare LNS-IncLoc with restart-based
search and an ALNS-inspired method. In our evaluations, we will use instances
from a room-and-pillar mine, a cut-and-fill mine, and synthetic instances exhibit-
ing more general precedence constraints. More specifically, we use the 8 public
instances studied separately in [27]. These instances come from a German potash
mine that uses the room-and-pillar mining method. The instances vary between
91–120 jobs, 18–24 disjunctive locations, and 13–14 machines divided over 7
machine classes. Compared to the other datasets, these instances have fewer
jobs per location and represent mines where the fleet is comparably small con-
sidering the number of available mining faces. We will also use data from [4]
representing a Swedish cut-and-fill mine. These 12 instances vary between 100–
105 jobs, 10–20 locations, and 21 to 23 machines divided non-uniformly over 7
machine classes. These instances have a fully specified order of execution for the
jobs on each location. This is because the jobs on each location come from the
same blast cycle, whereas in the instances from the room-and-pillar mine, each
disjunctive location consists of several workplaces representing one blast cycle
each.

We also generate synthetic instances of three different problem sizes: 100
jobs on 10 locations, 150 jobs on 15 locations, and 200 jobs on 20 locations
(denoted J100, J150, and J200, respectively). By varying the number of available
machines, we can evaluate instances where both locations and machines are
the main bottlenecks. Therefore, for each problem size, we use three different
machine setups: 8 machines uniformly divided on 4 machine classes, 10 machines
on 5 classes, and 15 machines on 5 classes. For each combination of problem size
and machine setup, we generate 10 randomized instances where the job durations
are uniformly sampled between 10 and 50 time-units, the machine travel times
are set to be on average 25% of the average job duration, and 25% of the jobs
have a precedence relation. This results in 3 × 3 × 10 = 90 generated instances.

376 M. Åstrand et al.

Fig. 2. A feasible schedule containing 100 jobs on 10 locations using 8 machines from
4 machine classes (left). The characteristic behavior of LNS-IncLoc where the blue
dashed line correspond to the terminal solution using a fixed neighborhood size of
n = 2 (above). (Color figure online)

The CP model has been implemented using Gecode 6.2 [11], where the solver
runs in a single thread on an Intel Xeon 3.1 GHz processor. The LNS is imple-
mented using Gecode’s meta-search engines. Figure 2 shows a feasible solution to
a J100 instance with 8 available machines. The color of the job corresponds to
the machine class needed to process it, while the arrows denote precedence con-
straints. The small time buffers between jobs in the machine-view represent the
time needed for the corresponding machine to move between locations. Lastly,
note that using only 8 machines produces a machine-constrained instance, which
can be understood since fewer jobs are scheduled back-to-back in the location-
view compared to the machine-view.

In Fig. 2 we can also see how the objective O and the neighborhood size n
evolve using LNS-IncLoc. The red dots correspond to the objective when an
improving solution is found, while the black dots correspond to neighborhoods
that are proven not to contain any improving solution. We can observe that once
an improving solution is found, e.g. when n = 4 at ∼150 s, many subsequent
solutions are found in smaller neighborhoods. The search space that needs to
be explored in each iteration grows exponentially with n. Hence, restarting from
n = 2 each time a solution is found ensures that the tightest upper bound on the

Scheduling of Underground Production Fleets 377

Table 1. Comparing different neighborhood selection strategies by the average
improvement after 5 min (Δ5min), the average and the range of the solutions at ter-
mination (Δterm and Rterm), the average number of iterations (#its) and the average
number of improving solutions (#sols).

8 machines 10 machines 15 machines

Sin-order Srandom Stabu Sin-order Srandom Stabu Sin-order Srandom Stabu

J100 Δ5min 17.7 19.0 19.4 19.1 20.2 20.7 21.7 23.5 24.1

Δterm 22.6 22.4 23.0 23.9 24.3 23.7 26.0 26.1 26.5

Rterm 22.8 18.9 22.3 7.7 19.7 11.7 11.2 12.1 10.4

#its 4758 4266 4366 4796 4307 4051 2857 2479 2667

#sols 125 115 118 139 124 114 102 96 103

J150 Δ5min 5.6 6.4 7.3 7.7 8.4 9.1 9.4 13.4 13.7

Δterm 10.5 12.7 12.2 13.7 13.1 14.0 17.0 18.4 18.8

Rterm 7.6 6.9 9.8 15.1 15.4 12.2 13.5 16.6 10.9

#its 5409 5701 5499 5056 4906 5015 3080 3085 3033

#sols 74 108 96 105 92 104 88 93 100

J200 Δ5min 2.0 3.1 3.3 3.2 4.9 5.0 3.8 6.2 7.0

Δterm 5.2 7.1 7.0 7.2 8.5 8.3 9.2 11.2 11.7

Rterm 6.2 9.0 11.2 9.2 10.5 10.5 15.3 17.3 16.3

#its 4604 4701 4603 4376 4337 4278 2664 2570 2631

#sols 49 64 63 69 81 78 66 80 82

objective is used before increasing the neighborhood size. When using a static
neighborhood size of n = 2, the value of the objective stagnates at a terminal
solution indicated by the blue dashed line in Fig. 2.

To compare the neighborhood strategies introduced in Sect. 3.2 we solve all
instances of J100, J150, and J200 using 15, 30, and 45 min time-out, respectively.
The result of the comparison is shown in Table 1, where we observe that Srandom

and Stabu clearly outperform Sin-order. There is a notable difference in average
performance on all problem sizes, but it is most prominent when we consider the
improvement of the objective after 5 min of solve time (Δ5min) on the largest
problem instance (200 jobs and 15 machines). On these instances, the average
improvement using Stabu is almost twice as large as using Sin-order. The tabu-
inspired strategy actually has the best average improvement after 5 min on all
instances; however Srandom seems to perform equally well concerning the solution
quality at termination. Figure 3 contains a more detailed view of the average
objective during the first 5 min of solving J150. Indeed, Stabu is slightly better
than Srandom for all machine setups.

We now compare LNS-IncLoc using Stabu with restart-based search on the
synthetic data, the room-and-pillar data (RnP), and the cut-and-fill data (CnF).
For the restart-based search, we use the same model as presented in Sect. 3.1.
However, since learning heuristics and restarts have been proven to be a potent
combination [8], we switch to a weighted degree heuristic for the sequencing

378 M. Åstrand et al.

Fig. 3. Comparison of the average objective improvement during the first 5min on all
J150 instances using different neighborhood strategies.

Fig. 4. Comparing LNS-IncLoc using Stabu with restart-based search on a variety of
instances. The dashed line depicts the average objective improvement and the shaded
area corresponds to the range of all solving runs.

variables after finding the first feasible solution. We use a Luby cut-off sequence
[18] with a scale factor of 256.

In Fig. 4 we compare the average, the maximum, and the minimum improve-
ment of objective value on J100, RnP, and CnF using LNS-IncLoc and restart-
based search. On all instances, we can see that LNS-IncLoc is better at quickly
improving the solution quality. For the RnP data, it takes ∼700 s before any
improving solution is found using restart-based search. In contrast, during the
first 700 s of LNS-IncLoc it has on average already improved the schedule by
∼8%. On the CnF data, there are indeed situations where restart-based search
may be competitive, considering that the best improvement using restart-based
search is better than the average performance using LNS-IncLoc after ∼1000
s. However, it is also visible in Fig. 4 that LNS-IncLoc exhibits better average
performance and more rapid convergence on all studied instances.

Finally, we evaluate an ALNS-inspired method to choose between the three
different neighborhood selection strategies (Sin-order, Srandom, and Stabu). Similar
to [17] we associate each strategy S with a weight ωS proportional to the prob-
ability of being selected. The weights are updated as ωS ← λωS +(1−λ)r using
the reward r = ΔO/Δt, where ΔO and Δt denote the objective improvement and
the computation time of that iteration. We heuristically set λ = 0.99 based on
preliminary experiments. While ALNS proved better than using only Sin-order, we

Scheduling of Underground Production Fleets 379

Table 2. Comparison of different approaches using average improvement after 5min
(Δ5min), the average and the range of the solutions at termination (Δterm and Rterm),
and the average number of improving solutions (#sols).

J100 J150 J200 RnP CnF

restarts Δ5min 1.0 0.2 0.0 0.0 0.0

Δterm 3.0 0.6 0.0 3.1 0.9

Rterm 10.3 6.4 0.0 7.5 5.4

#sols 10 3 1 14 4

ALNS Δ5min 19.9 7.4 3.3 4.6 1.2

Δterm 23.6 12.9 7.5 8.2 4.2

Rterm 22.3 15.4 14.4 9.9 5.8

#sols 108 84 61 54 20

LNS-tabu Δ5min 21.4 10.0 5.1 5.6 1.2

Δterm 24.4 15.0 9.0 9.3 4.6

Rterm 22.3 17.2 18.3 13.4 7.4

#sols 112 100 75 56 20

do not observe any consistent average performance improvement (see Table 2).
An interesting challenge for ALNS in our setting is that the reward signal is
very sparse: it is only non-zero for 1–2% of the iterations (cf. #its and #sols in
Table 1). This means that the weights quickly decay after finding a solution and
the resulting strategy converges to a uniform random choice over the available
strategies (cf. [22]). An interesting remark is, however, that the ALNS-inspired
method exhibits smaller average range on all studied instances.

Even though the vast majority of underground mines still rely on manual
scheduling, there are some adopters of constructive procedures. As noted in
Sect. 3.1, our search strategy finds a first feasible solution that resembles a sched-
ule constructed by a greedy constructive procedure. In our earlier work [4] we
showed that on a particular mining instance, a simple static LNS strategy with
n = 3 improved by 7% over a common constructive algorithm. Referring to
Table 2, we now observe that the average improvement of LNS-IncLoc on the
synthetic, the room-and-pillar, and the cut-and-fill instances, is in the range
4–24%. Remember that our objective function roughly translates to production
pace. Hence, for a high-volume industry such as mining, even a seemingly modest
average objective improvement of 4% may result in large operational benefits.

5 Discussion and Conclusion

Optimizing the construction of short-term mine schedules holds great poten-
tial for future mining operations. In this work, we have presented a CP model
for mine scheduling that strengthens and generalizes previous models to accom-
modate for characteristics found in several common underground mining meth-

380 M. Åstrand et al.

ods. We also introduced LNS-IncLoc, a CP-based LNS strategy that dynami-
cally adjusts the location-based neighborhood size. The approach is complete
and able to rapidly improve constructed schedules, as demonstrated on real-life
data from different mines that operate using different mining methods. Further,
LNS-IncLoc has local optimality properties that are useful when interacting with
manual schedulers. This facilitates the acceptance of the method in practice. We
conclude that combining CP, LNS, and dynamic neighborhood sizes, appears to
be a promising approach for short-term mine scheduling.

When evaluating the ALNS-inspired approach to adaptively choose the neigh-
borhood selection strategy, we experienced that using the common reward
ΔO/Δt is challenging since improving solutions are only found in 1–2% of all
iterations. Hence, ALNS with sparse reward is an interesting future research
direction. Moreover, since the majority of the explored neighborhoods do not
contain any improving solution, it would be interesting to see whether a cumu-
lative relaxation could be leveraged to prove infeasibility faster.

Acknowledgements. This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

References

1. Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale
neighborhood search techniques. Discret. Appl. Math. 123(1–3), 75–102 (2002)

2. Åstrand, M., Johansson, M., Greberg, J.: Underground mine scheduling modeled
as a flow shop - a review of relevant works and future challenges. J. Southern Afr.
Inst. Min. Metall. 118(12), 1265–1276 (2018)

3. Åstrand, M., Johansson, M., Zanarini, A.: Fleet scheduling in underground mines
using constraint programming. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS,
vol. 10848, pp. 605–613. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93031-2 44

4. Åstrand, M., Johansson, M., Zanarini, A.: Underground mine scheduling of mobile
machines using constraint programming and large neighborhood search. Comput.
Oper. Res. 123, 105036 (2020)

5. Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford
(1996)

6. Behrens, J.K., Lange, R., Mansouri, M.: A constraint programming approach to
simultaneous task allocation and motion scheduling for industrial dual-arm manip-
ulation tasks. In: 2019 International Conference on Robotics and Automation
(ICRA), pp. 8705–8711. IEEE (2019)

7. Booth, K.E.C., Nejat, G., Beck, J.C.: A constraint programming approach to multi-
robot task allocation and scheduling in retirement homes. In: Rueher, M. (ed.) CP
2016. LNCS, vol. 9892, pp. 539–555. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-44953-1 34

8. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: ECAI, vol. 16, p. 146 (2004)

https://doi.org/10.1007/978-3-319-93031-2_44
https://doi.org/10.1007/978-3-319-93031-2_44
https://doi.org/10.1007/978-3-319-44953-1_34
https://doi.org/10.1007/978-3-319-44953-1_34

Scheduling of Underground Production Fleets 381

9. Carchrae, T., Beck, J.C.: Principles for the design of large neighborhood search. J.
Math. Modell. Algorithms 8, 245–270 (2009)

10. Darling, P.: SME Mining Engineering Handbook, vol. 1. SME (2011)
11. Gecode Team: Gecode: Generic constraint development environment (2019).

https://www.gecode.org
12. Grimes, D., Hebrard, E.: Solving variants of the job shop scheduling problem

through conflict-directed search. INFORMS J. Comput. 27(2), 268–284 (2015)
13. Grimes, D., Hebrard, E., Malapert, A.: Closing the open shop: contradicting con-

ventional wisdom. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 400–408.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 33

14. Ham, A.M.: Integrated scheduling of m-truck, m-drone, and m-depot constrainedby
time-window, drop-pickup, and m-visit using constraint programming. Transp.
Res. Part C: Emerg. Technol. 91, 1–14 (2018)

15. He, L., de Weerdt, M., Yorke-Smith, N.: Time/sequence-dependent scheduling: the
design and evaluation of a general purpose tabu-based adaptive large neighbour-
hood search algorithm. J. Intell. Manuf. 31(4), 1051–1078 (2019). https://doi.org/
10.1007/s10845-019-01518-4

16. Laborie, P.: An update on the comparison of MIP, CP and hybrid approaches
for mixed resource allocation and scheduling. In: van Hoeve, W.-J. (ed.) CPAIOR
2018. LNCS, vol. 10848, pp. 403–411. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93031-2 29

17. Laborie, P., Godard, D.: Self-adapting large neighborhood search: application to
single-mode scheduling problems. Proceedings MISTA-07, Paris 8 (2007)

18. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Inf. Process. Lett. 47(4), 173–180 (1993)

19. Mears, C., De La Banda, M.G., Demoen, B., Wallace, M.: Lightweight dynamic
symmetry breaking. Constraints 19(3), 195–242 (2014)

20. Mishchenko, K., Åstrand, M., Molander, M., Lindkvist, R., Viklund, T.: Developing
a tool for automatic mine scheduling. In: Topal, E. (ed.) MPES 2019. SSGG, pp.
146–153. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33954-8 18

21. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Courier Corporation (1998)

22. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Comput.
Oper. Res. 34(8), 2403–2435 (2007)

23. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

24. Schulze, M., Rieck, J., Seifi, C., Zimmermann, J.: Machine scheduling in under-
ground mining: an application in the potash industry. OR Spectrum 38(2), 365–403
(2015). https://doi.org/10.1007/s00291-015-0414-y

25. Schulze, M., Zimmermann, J.: Staff and machine shift scheduling in a German
potash mine. J. Scheduling 1–22 (2017)

26. Seifi, C., Schulze, M., Zimmermann, J.: A two-stage solution approach for a shift
scheduling problem with a simultaneous assignment of machines and workers. In:
The 39th International Symposium on Application of Computers and Operations
Research in the Mineral Industry, Wroclaw, Poland (2019)

27. Seifi, C., Schulze, M., Zimmermann, J.: A new mathematical formulation for
apotash-mine shift scheduling problem with a simultaneous assignment of machines
and workers. Eur. J. Oper. Res. 292, 27–42 (2020)

28. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

https://www.gecode.org
https://doi.org/10.1007/978-3-642-04244-7_33
https://doi.org/10.1007/s10845-019-01518-4
https://doi.org/10.1007/s10845-019-01518-4
https://doi.org/10.1007/978-3-319-93031-2_29
https://doi.org/10.1007/978-3-319-93031-2_29
https://doi.org/10.1007/978-3-030-33954-8_18
https://doi.org/10.1007/s00291-015-0414-y
https://doi.org/10.1007/3-540-49481-2_30

382 M. Åstrand et al.

29. Simonis, H.: Building industrial applications with constraint programming. In:
Goos, G., Hartmanis, J., van Leeuwen, J., Comon, H., Marché, C., Treinen, R.
(eds.) CCL 1999. LNCS, vol. 2002, pp. 271–309. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45406-3 6

30. Song, Z., Schunnesson, H., Rinne, M., Sturgul, J.: Intelligent scheduling for under-
ground mobile mining equipment. PloS One 10(6), e0131003 (2015)

31. Žulj, I., Kramer, S., Schneider, M.: A hybrid of adaptive large neighborhood search
and tabu search for the order-batching problem. Eur. J. Oper. Res. 264(2), 653–664
(2018)

https://doi.org/10.1007/3-540-45406-3_6

Learning to Reduce State-Expanded
Networks for Multi-activity Shift

Scheduling

Till Porrmann and Michael Römer(B)

Decision Analytics Group, Bielefeld University, 33615 Bielefeld, Germany
{till.porrmann,michael.roemer}@uni-bielefeld.de

Abstract. For personnel scheduling problems, mixed-integer linear pro-
gramming formulations based on state-expanded networks in which
nodes correspond to rule-related states often have very strong LP relax-
ations. A challenge of these formulations is that they typically give rise to
large model instances. If one is willing to trade in optimality for compu-
tation time, a way to reduce the size of the model instances is to heuris-
tically remove unpromising nodes and arcs from the state-expanded net-
works.

In this paper, we propose to employ machine learning models for
guiding the reduction of state-expanded networks for multi-activity shift
scheduling problems. More specifically, we train a model that predicts
the flow through a node from its state attributes, and based on this
prediction, we decide whether to keep a node or not. In experiments
with a well-known set of multi-activity shift scheduling instances, we
show that our approach substantially reduces both the size of the model
instances and their solution times while still obtaining optimal solutions
for the vast majority of the instances. The results indicate that our app-
roach is competitive with a state-of-the art Lagrangian-relaxation-based
matheuristic for multi-activity shift scheduling problems.

1 Introduction

The shift scheduling problem consists in designing a set of employee work shifts
that cover demands given in terms of number of persons needed per sub-period
(e.g. 15 or 30 min) of a day. The composition of a shift needs to follow rules e.g.
stemming from labor regulations, union agreements and work contracts. These
rules govern aspects such as the total number of working hours per day, the
number, placement and duration of breaks and the duration of consecutive blocks
of work. In this paper, we focus on an important variant of the problem, the so-
called multi-activity shift scheduling problem (MASSP). In this problem, there
are multiple activities, that is, different types of demand to be covered in each
period, and there are additional rules governing the minimum and maximum
duration of consecutive periods an employee can be assigned a single activity
and rules governing the sequencing of activities.
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 383–391, 2021.
https://doi.org/10.1007/978-3-030-78230-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_24&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_24

384 T. Porrmann and M. Römer

Various publications propose mathematical programming approaches for
solving the MASSP exactly, either directly solving monolithic MILP formula-
tions [3,4,6] or using decomposition approaches such as Branch-and-Price [5,7].
Several of these approaches rely on formulating the set of feasible shifts in for-
mal languages such as automata [3,7] or context-free grammars [4,5]. Heuristic
approaches for the MASSP that have been proposed in the literature are a
large neighbourhood search [10] and a recently published Lagrangian relaxation-
based matheuristic [8] which can be considered the state-of-the-art in heuristic
approaches for the MASSP.

In this paper, we formulate the MASSP as a MILP which handles the shift
composition rules in a state-expanded network in which every source-to-sink
path correspond to a feasible shift. This network, in which nodes are associated
with rule-related states and arcs are associated with the assignment of activities
and breaks, is embedded in in the MILP as a flow component. Formulations
based on state-expanded networks were previously applied to other personnel
scheduling problems such as airline crew scheduling [9] and nurse rostering [11].

The state-expanded network formulation for the MASSP presented here is
very strong, but it leads to huge model instances and its solution time is not
competitive with state-of-the-art exact approaches. Still, its structure allows us
to employ heuristic network reduction techniques that make the models much
smaller and faster to solve. Obviously, such a network reduction turns the formu-
lation into a primal approximation, and an important (and difficult) question is
which nodes and arcs can be removed without compromising the solution quality
too much. Therefore, we propose to use machine learning to support this selec-
tion. More specifically, we train a regression model that predicts the flow through
a node from its state attributes. Based on this prediction, we decide whether to
keep a node or not. We observe that while there is a constantly growing amount
of papers combining ML and OR, see e.g. the recent overview [1], we are not
aware of any approach using ML techniques for reducing networks underlying
large-scale MILP models. For an established set of MASSP instances, we show
that compared to a simple network reduction heuristic, the ML-based reduc-
tion is clearly superior. Within a time limit of 10 min, the approach obtains the
(known) optimal solution for most instances – showing that the new approach
is competitive with the state-of-the art in heuristics for the MASSP.

The remainder of the paper is organized as follows: In the next section, we
introduce the structure of state-expanded networks that encode all shift com-
position rules for a simple example and for the well-known Demassey instances
first introduced in [7]. In Sect. 3, we present the MILP formulation based on
the state-expanded network, and in Sect. 4, we describe how we use Machine
Learning to guide the reduction of the state-expanded network underlying the
formulation. Section 5 presents the results from our computational experiments.

2 Shifts as Paths in State-Expanded Networks

In the MASSP, we seek to design a minimum-cost set of shifts covering the
demands for a set of activities A for each period p in a planning period P (as an

Learning to Reduce State-Expanded Networks 385

example, P may consist of all 15 min-periods of a day). Typically, the number n
of shifts to be composed is given a priori, and it is assumed that all employees
to which these shifts will be assigned have the same skills. The objective is to
minimize total costs composed of assignment costs incurred for each period and
of penalties for under- or overcovering demand for an activity a in a period
p. In this paper, we assume that all shift composition rules are hard, but it is
straightforward to incorporate soft rules.

As mentioned in the introduction, key to our formulation is the idea that all
shift composition rules are encoded in a (directed) state-expanded network G =
(N,E) in a way that each path from the source node to the sink vsink corresponds
to a feasible shift and the set of all source-sink paths in G corresponds to the
set of all feasible shifts. Each node in N state = N\{vsource, vsink} is associated
with a rule related state sv which typically is a tuple of state attributes. The arc
ecirc = (vsource, vsink) ∈ E is denoted as the flow circulation arc, and in case of
a given number of employees n, its flow value is fixed to n. All arcs between the
nodes in N state represent state transitions induced by assigning a block of work
or break with a length of at least one period.

Fig. 1. State-expanded network for the example

Example. To illustrate the construction of a state-expanded network represent-
ing the set of feasible shifts, let us consider a small and simplified single-activity
shift scheduling problem with a horizon of 9 periods. In this problem, a feasible
shift needs to satisfy the following hard shift composition rules: A shift needs
to contain either five or six periods of work spread across two blocks of work
which have to be separated by a break lasting one period. A work block has
a duration between two periods and four periods. To model this problem, we
assign each node v ∈ N state a state sv consisting of four state attributes: spv is

386 T. Porrmann and M. Römer

the period index of the node, sbeforev is a categorical attribute denoting whether
the last assignment was none, break or work. The attribute s#break

v denotes the
number of break periods taken so far and s#work

v is a counter of the number
of work periods assigned so far. The resulting network with all feasible nodes
is displayed in Fig. 1. The state attributes of the nodes in N state are visualized
using the node position (spv corresponds to the x-axis, s#work

v to the y-axis); the
combinations of the other attributes and the source and sink nodes are depicted
with different colors and shapes, see the legend of the figure. The arcs between
nodes in v ∈ N state represent state transitions induced by assigning activities
and breaks. In particular, the arcs emanating from a node v for which sbeforev =
none or break represent assignments of two consecutive work periods, ensuring
that the minimum work block duration rule is satisfied. A node v for which
sbeforev = work may have an outgoing work arc representing a single additional
period of work assignment if the maximum duration of the work block of four
will not be exceeded. Note in the special constellation of rules in the example,
we do not need to store an extra attribute to measure the length of a work block,
since we can infer feasibility of the maximum work block duration rule from a
combination of the state attributes s#work

v and s#break
v . The nodes for which

sbeforev = work and s#break
v = 0 also have an outgoing break arc representing

a single break period. The rule limiting the number of total work periods to
be either five or six is ensured by the fact that there are only arcs from nodes
v ∈ N state to vsink if 5 ≤ s#work

v ≤ 6. The remaining arcs represent the connec-
tions between vsource and the initial state nodes (for which vbefore = none and
the flow circulation arc ecirc.

Rules and States for the Demassey Instances. In our computational
experiments, we use the MASS problem introduced in [7]. This problem deals
with a planning horizon of 24 h partitioned into periods of 15 min, and each
shift needs to fully fall into the planning horizon. The number of work hours
performed per shift needs to be between three and eight. Short shifts with
less than six hours of work need to have a single 15-minute break, longer
shifts need to exhibit two single-period breaks and one break of four periods
(one hour). The minimum number of consecutive periods for which an activ-
ity is performed is four, and a switch between two different activities is only
allowed if there is a break in between. To model these shift composition rules,
we need to slightly extend the state representation discussed in the example
above: Instead of having a single break-related state attribute, we now have
one attribute for the number of short breaks and one for the number of long
breaks assigned so far. The full tuple of state attributes of a node v is as follows:
sv = (spv , s

before
v , s#work

v , s#shortbreak
v , s#longbreak

v). Note that in the multi-activity
case, the attribute sbeforev has one possible value for each activity (instead of
only work in the single-activity case) in addition to the values none and break.
Analogously, the two types of work arcs (long arcs representing a block with
the minimum-duration activity assignment and short arcs representing single-
period activity assignment) discussed above are also present in the network for

Learning to Reduce State-Expanded Networks 387

each activity. Regarding the breaks, instead of only having single-break arcs, we
also add arcs spanning four periods to represent long breaks.

3 MILP Formulation

The state-expanded network constitutes the core element of our MILP formula-
tion for the MASSP. It enters the model in form of a network flow component.
The flow on an arc e ∈ E is represented by the integer decision variable Xe.
The cost of a unit flow on arc e is denoted as ce. As an example, depending
on the assignment represented by arc e, this cost factor may include the cost
of the working time represented by e, and be 0 otherwise. The other two sets
of decision variables are Y u

a,p and Y o
a,p which model the under- and overcover-

ing of the demand da,p of activity a in period p; these variables are associated
with penalties cu and co for under- and overcovering. Note that in case of hard
covering limits, the corresponding variables can be forced to be 0.

Using the described symbols, the MILP model can be written as follows:

min
∑

e∈E

ceXe +
∑

a∈A

∑

p∈P

(
coY o

a,p + cuY u
a,p

)
(1)

∑

e∈vin

Xe =
∑

e∈vout

Xe ∀v ∈ N (2)

Xecirc = n (3)
∑

e∈Ecovers
a,p

Xe + Y u
a,p − Y o

a,p = da,p ∀a ∈ A, p ∈ P (4)

Xe ∈ Z
+
0 ∀e ∈ E (5)

Y o
a,p ≥ 0, Y u

a,p ≥ 0 ∀a ∈ A, p ∈ P (6)

The objective function (1) contains the cost induced by the flow in the state-
expanded network and the penalties for over- and undercovering demand. (2) are
the flow balance constraints for each node ensuring that for each v, the flow on
the incoming arcs vin equals the flow on the outgoing arcs vout, and constraint
(3) fixes the flow on the circulation arc ecirc to the number n of employees.
In case that the number of employees is a decision in the problem at hand,
this constraint can be dropped, and the cost of an employee can be modeled
in the cost coefficient ccirce . Constraint set (4) models the demand covering for
each activity and period, the set Ecovers

a,p ⊂ E is the set of arcs representing an
assignment that covers activity a in period p. In order to extract the set of n
shifts from the solution of this model, we need to decompose the flow in G into
n paths; observe that such a decomposition is not necessarily unique.

4 Learning to Reduce the Network

The formulation presented in the previous sections gives rise to huge model
instances resulting in relatively long solution times which impairs the practical

388 T. Porrmann and M. Römer

usefulness of the approach. If one is willing to sacrifice the guarantee of finding
an optimal solution, one way to reduce both model size and computation time is
to remove “unpromising” nodes and arcs from the state-expanded network. To
decide which nodes to remove, a straightforward approach is to resort to simple
heuristics such as removing arcs representing very long shifts. As we will see
later, however, such simplistic rules may severely impact the solution quality.

To achieve better results, we propose to employ machine learning to guide
the selection of the nodes to remove from the network. For this prediction, we
exploit the fact that each node v ∈ N state is associated with a tuple of state
attributes which can be used as predictors. The idea is to let a regression model
predict the flow fv =

∑
e∈vin Xe through a node in an optimal solution. The

features used for the prediction f̂v of the flow through a node v are the state
attributes sv of a node and the average workload in the problem instance, that
is, the ratio between the total demand d =

∑
a∈A

∑
p∈P da,p and the number

of employees n. This means that for the Demassey instances used in the paper,
we have six features (the state attributes described in Sect. 2 and the average
workload) for each data point. One subtlety arises with respect to the attribute
sbeforev : If the previous assignment was a work activity, its value corresponds
to an activity id, and for each activity, there is a “copy” of v with all other
attributes being equal. This leads to symmetry issues and to the problem that a
regression model trained with a certain number of activities does not generalize
to instances with different numbers of activities. To overcome these issues, we
aggregate the node information of all nodes for which sbefore is a work activity
and all other attributes are identical; the flow label of this “aggregated node” is
then the sum of the flows of all the flow labels of the original nodes.

To train the regression model, we use the solutions obtained by optimally
solving the full model for a set of training instances. Note that this means that
for each instance in the training set, the number of data points corresponds to the
number of nodes |N state| of a single-activity instance corresponding to around
13,000 data points per instance. The reduced network is obtained as follows: For
each node in the network we check if it should be kept or not by comparing
the (real-valued) predicted flow value f̂v to a threshold θ. If f̂v < θ, we mark
the node for removal. In a second step, we check if there are nodes without a
removal mark for which all predecessors are marked. If there are such unreachable
nodes, we make them reachable by (recursively) deleting removal marks from
all predecessors of the unreachable unmarked nodes. After this procedure, we
remove all marked nodes and their adjacent arcs.

5 Experimental Results

To evaluate our approach, we use the Demassey instances that were introduced
and described in [7]. These instances are probably the most widely used instances
for evaluating and comparing solution approaches for the MASSP. The instance
set contains 100 instances with 1 to 10 activities and for each number of activities
there are 10 instances. All instances have the same rules set and only vary

Learning to Reduce State-Expanded Networks 389

with respect to the number of activities and with respect to work demand. To
ensure that we only use out-of-sample predictions when evaluating our ML-based
network reduction approach, we partition the instance set into three subsets (the
first subset consists of the first four instances of each activity, the second of the
next three and the third subset of the last three). Like in k−fold cross validation,
we predict the flow values for the instances in each subset using a regression
model that was trained on the instances in the union of the two other subsets.
For the regression, we use the XGBoost-Regressor [2] with standard parameters.
XGBoost uses an ensemble of regression trees, and in our tests outperformed
other regression approaches. After training, the XGBoost-Regressor can be used
to perform a feature importance analysis. For our problem, it turned out that
by far the most important features were state attributes sp and s#work

v as well
as the average workload per employee in the instance.

Table 1 provides information about the size of the model instances for the
model using the full (unreduced) network. In addition, it shows the average num-
ber of nodes and the average reduction in number of nodes in percent that is
obtained by a simple heuristic reduction rule and by the ML reduction. In the
simple reduction heuristic, all nodes that represent states in which the num-
ber of work periods is higher than the average work load of an employee in the
instance + four periods is removed. In the ML-based reduction, we use the strat-
egy described in Sect. 4 using θ = 0.0005 for the instance groups with up to 5
activities and θ = 0.0015 for the others; these values were determined experi-
mentally and could certainly be tuned in future work. The table shows that the
ML-based strategy removes the nodes much more aggressively than the simple
reduction rule: While the ML-based reduction on average removes about 62% of
all nodes, the simple heuristic only removes about 20% on average.

Table 1. Instance sizes and effect of the network reduction

Full network Heur. reduction (avg) ML reduction (avg)

Act Cols Rows Nodes Nodes % removed Nodes % removed

1 22204 13017 12920 11857.5 8.2 7082.2 45.2

2 44303 20178 19985 17339.4 13.2 9925.8 50.3

3 66402 27339 27050 23391.7 13.5 13975.9 48.3

4 88501 34500 34115 26635.7 21.9 15846 53.6

5 110600 41661 41180 33014.5 19.8 18117.7 56

6 132699 48822 48245 37038.8 23.2 13577.1 71.9

7 154798 55983 55310 37405.2 32.4 13192.6 76.1

8 176897 63144 62375 47136.8 24.4 15804.4 74.7

9 198996 70305 69440 52200.3 24.8 16860.8 75.7

10 221095 77466 76505 60930.1 20.4 21655.2 71.7

AVG: 121649.5 45241.5 44712.5 34695 20.2 14603.8 62.3

390 T. Porrmann and M. Römer

In Table 2, we present the average quality of the solutions and the average
solution times of the approaches presented in Table 1. Our MILP models are
solved using Gurobi 9.1.1 with the Barrier solver for solving the root relax-
ation. All computations are conducted on a notebook with an Intel CORE i7
- 10750H CPU (2.60 GHz) and 16 GB RAM. Table 1 compares these results to
those from the state-of-the-art matheuristic approach presented in [8] which had
been obtained on a server with an Intel Xeon E5-2687W 3.1 gigahertz processor
and 64 GB RAM, using CPLEX 12.6. For solving the full model, we used a
time limit of 60 min, and for the reduced models, we set a time limit of 10 min.
The result shows that even the full model could be solved to optimality for
all but nine instances within one hour. Regarding the reduced models, we can
make the following observations: First, the quality of the solutions obtained with
the simple reduction heuristic is much worse than the quality of the solutions
obtained with the ML-based reduction approach; despite the fact that the ML-
based model instances are only about half as big.

Table 2. Solution quality and solution times

Full network Heur. reduction ML Reduction Lagrangian matheuristic

NbS Time NbS Time NbS Time NbS Time

Act Opt Avg s Opt 1% Avg s Opt 1% Avg s 0.01% 1% Avg s

1 10 5.5 5 5 2.4 10 10 4 7 10 12

2 10 12.9 3 3 5.6 9 9 4.4 8 9 75.6

3 10 98 5 5 38.5 9 10 48.8 9 10 97.5

4 10 97.9 3 5 39.6 10 10 80.3 6 7 180.4

5 10 186.5 4 4 76.7 9 10 185.8 9 9 35.3

6 9 566.7 8 8 119.9 9 9 54 7 7 95.9

7 9 858.6 6 7 80 9 10 100.1 7 9 131.6

8 10 1170.9 6 8 97 9 10 63.6 4 7 113.8

9 7 1443.3 5 5 83.4 10 10 142 7 10 54.6

10 6 2148.4 1 3 319.8 6 6 324 6 8 172.1

AVG: 9.1 658.9 4.6 5.3 86.3 9 9.4 100.7 7 8.6 96.9

Second, the quality of the solutions obtained with the ML-based approach
is not only good, but for the vast majority of the instances, it is able to find
the optimal solution to the original problem. The quality of the solutions for the
instance group 10 falls behind a bit here, but in that case, for all four instances
for which no solution with a gap smaller than 1% was found, the 10-min time
limit was hit. Third, the ML-based approach is clearly competitive with the
matheuristic presented in [8]: For most instance groups, our approach finds more
near-optimal solutions, but also, the average computation time of our approach
is slightly worse. As mentioned above, however, their results were obtained on
different hardware and with an older solver – the same is true for the results
with state-of-the art exact approaches not reported here.

Learning to Reduce State-Expanded Networks 391

6 Conclusions

In this paper, we presented initial results from using ML to guide the reduction
of state-expanded networks for solving MASSP problems. The results are very
encouraging: Compared to a simple network reduction heuristic, the ML-based
strategy is able to achieve much better results that are in the range of other
state-of-the art heuristics for the MASSP.

References

1. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

2. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD 2016, pp. 785–794. ACM, New York (2016).
http://doi.acm.org/10.1145/2939672.2939785

3. Côté, M.C., Gendron, B., Quimper, C.G., Rousseau, L.M.: Formal languages for
integer programming modeling of shift scheduling problems. Constraints 16(1),
54–76 (2011)

4. Côté, M.C., Gendron, B., Rousseau, L.M.: Grammar-based integer programming
models for multiactivity shift scheduling. Manage. Sci. 57(1), 151–163 (2010)

5. Côté, M.C., Gendron, B., Rousseau, L.M.: Grammar-based column generation for
personalized multi-activity shift scheduling. INFORMS J. Comput. 25(3), 461–474
(2013)

6. Dahmen, S., Rekik, M., Soumis, F.: An implicit model for multi-activity shift
scheduling problems. J. Sched. 21(3), 285–304 (2017). https://doi.org/10.1007/
s10951-017-0544-y

7. Demassey, S., Pesant, G., Rousseau, L.-M.: Constraint programming based column
generation for employee timetabling. In: Barták, R., Milano, M. (eds.) CPAIOR
2005. LNCS, vol. 3524, pp. 140–154. Springer, Heidelberg (2005). https://doi.org/
10.1007/11493853 12

8. Hernández-Leandro, N.A., Boyer, V., Salazar-Aguilar, M.A., Rousseau, L.M.: A
matheuristic based on Lagrangian relaxation for the multi-activity shift scheduling
problem. Eur. J. Oper. Res. 272(3), 859–867 (2019)

9. Mellouli, T.: A network flow approach to crew scheduling based on an analogy
to a train/aircraft maintenance routing problem. In: Voss, S., Daduna, J. (eds.)
Computer-Aided Scheduling of Public Transport. LNEMS, vol. 505, pp. 91–120.
Springer, Berlin (2001). https://doi.org/10.1007/978-3-642-56423-9 6

10. Quimper, C.G., Rousseau, L.M.: A large neighbourhood search approach to the
multi-activity shift scheduling problem. J. Heuristics 16(3), 373–392 (2010)

11. Römer, M., Mellouli, T.: A direct MILP approach based on state-expanded network
flows and anticipation for multi-stage nurse rostering under uncertainty. In: Burke,
E.K., Di Gaspero, L., Özcan, E., McCollum, B., Schaerf, A. (eds.) PATAT 2016:
Proceedings of the 11th International Conference of the Practice and Theory of
Automated Timetabling, Udine, Italy, pp. 549–552 (2016)

http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1007/s10951-017-0544-y
https://doi.org/10.1007/s10951-017-0544-y
https://doi.org/10.1007/11493853_12
https://doi.org/10.1007/11493853_12
https://doi.org/10.1007/978-3-642-56423-9_6

SeaPearl: A Constraint Programming
Solver Guided by Reinforcement Learning

Félix Chalumeau1, Ilan Coulon1, Quentin Cappart2(B),
and Louis-Martin Rousseau2

1 École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
{felix.chalumeau,ilan.coulon}@polytechnique.edu

2 École Polytechnique de Montréal, Montreal, Canada
{quentin.cappart,louis-martin.rousseau}@polymtl.ca

Abstract. The design of efficient and generic algorithms for solving
combinatorial optimization problems has been an active field of research
for many years. Standard exact solving approaches are based on a clever
and complete enumeration of the solution set. A critical and non-trivial
design choice with such methods is the branching strategy, directing how
the search is performed. The last decade has shown an increasing interest
in the design of machine learning-based heuristics to solve combinatorial
optimization problems. The goal is to leverage knowledge from histori-
cal data to solve similar new instances of a problem. Used alone, such
heuristics are only able to provide approximate solutions efficiently, but
cannot prove optimality nor bounds on their solution. Recent works have
shown that reinforcement learning can be successfully used for driving
the search phase of constraint programming (CP) solvers. However, it
has also been shown that this hybridization is challenging to build, as
standard CP frameworks do not natively include machine learning mech-
anisms, leading to some sources of inefficiencies. This paper presents the
proof of concept for SeaPearl, a new CP solver implemented in Julia,
that supports machine learning routines in order to learn branching deci-
sions using reinforcement learning. Support for modeling the learning
component is also provided. We illustrate the modeling and solution
performance of this new solver on two problems. Although not yet com-
petitive with industrial solvers, SeaPearl aims to provide a flexible
and open-source framework in order to facilitate future research in the
hybridization of constraint programming and machine learning.

Keywords: Reinforcement learning · Solver design · Constraint
programming

1 Introduction

The goal of combinatorial optimization is to find an optimal solution among a
finite set of possibilities. Such problems are frequently encountered in transporta-
tion, telecommunications, finance, healthcare, and many other fields [1,5,32,42,

F. Chalumeau and I. Coulon—The two authors contributed equally to this paper.
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 392–409, 2021.
https://doi.org/10.1007/978-3-030-78230-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_25

SeaPearl: A CP Solver Guided by RL 393

48,49]. Finding efficient methods to solve them has motivated research efforts
for decades. Many approaches have emerged in the recent years seeking to take
advantage of learning methods to outperform standard solving approaches. Two
types of approaches have been particularly successful while still showing draw-
backs. First, machine learning approaches, such as deep reinforcement learning
(DRL), have shown their promise for designing good heuristics dedicated to
solve combinatorial optimization problems [6,15,16,29]. The idea is to leverage
knowledge from historical data related to a specific problem in order to solve
rapidly future instances of the problem. Although a very fast computation time
for solving the problem is guaranteed, such approaches only act as a heuristics
and no mechanisms for improving a solution nor to obtain optimality proofs
are proposed. A second alternative is to embed a learning-component inside a
search procedure. This has been proposed for mixed-integer programming [22],
local search [21,56], SAT solvers [38,45], and constraint programming [2,11].
However, it has been shown that such a hybridization is challenging to build,
as standard optimization frameworks do not natively include machine learning
mechanisms, leading to some sources of inefficiencies. As an illustrative exam-
ple, Cappart et al. [11] used a deep reinforcement learning approach to learn the
value-selection heuristic for driving the search of a CP solver. To do so, they
resorted to a Python binding in order to call deep learning routines in the solver
Gecode [44], causing an important computational overhead.

Following this idea, we think that learning branching decisions in a con-
straint programming solver is an interesting research direction. That being said,
we believe that a framework that can be used for prototyping and evaluat-
ing new ideas is currently missing in this research field. Based on this context,
this paper presents SeaPearl (homonym of CPuRL, standing for constraint
programming using reinforcement learning), a flexible, easy-to-use, research-
oriented, and open-source constraint programming solver able to natively use
deep reinforcement learning algorithms for learning value-selection heuristics.
The philosophy behind this solver is to ease and speed-up the development pro-
cess to any researcher desiring to design learning-based approaches to improve
constraint programming solvers. Accompanying this paper, the code is avail-
able on Github1, together with a tutorial showcasing the main functionalities of
the solver and how specific design choices can be stated. Experiments on two
toy-problems, namely the graph coloring and the travelling salesman problem
with time windows, are proposed in order to highlight the learning aspect of the
solver. Note also that compared to impact-based search [40], hybridization with
ant colony optimization [46], or similar mechanisms where a learning component
is used to improve the search of the solving process for a specific instance, the
goal of our learning process is to leverage knowledge learned from other similar
instances. This paper is built upon the proof of concept proposed by Cappart
et al. [11]. Our specific and original contributions are as follows: (1) we propose
an architecture able to solve CP models, whereas [11] was restricted to dynamic
programming models, (2) the learning phase is fully integrated inside the CP

1 https://github.com/corail-research/SeaPearl.jl.

https://github.com/corail-research/SeaPearl.jl

394 F. Chalumeau et al.

solver, and (3) the reinforcement learning environment is different as it allows
CP backtracking inside an episode. Finally, the solver is fully implemented in
Julia language, avoiding the overhead of Python calls from a C++ solver.

The next section introduces reinforcement learning and graph neural network,
a deep architecture used in the solver. The complete architecture of SeaPearl is
then proposed, followed by an illustration of the modelling support for the learn-
ing component. Finally, experiments and discussions about research directions
that can be carried out with this solver are proposed.

2 Technical Background

This section gives details about the two main concepts that make SeaPearl
different from other CP solvers.

2.1 Reinforcement Learning

Reinforcement Learning (RL) [47] is a sub-field of machine learning dedicated
to train agents to take actions in an environment in order to maximize an accu-
mulated reward. The goal is to let the agent interacts with the environment and
discovers which sequences of actions lead to the highest reward. Formally, let
〈S,A, T,R〉 be a tuple representing the environment, where S is the set of states
that can be encountered in the environment, A is the set of actions that can
be taken by the agent, T : S × A �→ S is the transition function leading the
agent from a state to another one given the action taken and, R : S × A �→ R

is the reward function associated with a particular transition. The behaviour of
an agent is driven by its policy π : S �→ A, deciding which action to take when
facing a specific state S. The goal of an agent is to compute a policy maximizing
the accumulated sum of rewards during its lifetime, referred to as an episode,
and defined by a sequence of states st ∈ S with t ∈ [1, T] and sT is the terminal
state. Considering a discounting factor γ, the total return at step t is denoted
by Gt =

∑T
k=t γk−tR(sk, ak).

In deterministic environments, the value of taking an action a from a state
s under a policy π is defined by the action-value function Qπ(st, at) = Gt.
Then, the problem consists in finding a policy that maximizes the final return:
π∗ = argmaxπ Qπ(s, a), ∀s, a ∈ S × A. However, the number of possibilities has
an exponential increase with the number of states and actions, which makes solv-
ing this problem exactly intractable. Reinforcement learning approaches tackle
this issue by letting the agent interact with the environment in order to learn
information that can be leveraged to build a good policy. Many RL algorithms
have been developed for this purpose, the most recent and successful ones are
based on deep learning [23] and are referred to as deep reinforcement learning
[3]. The idea is to approximate either the policy π, or the action-value function
Q by a neural network in order to scale up to larger state-action spaces. For
instance, value-based methods, such as DQN [36], have the following approxima-
tion: Q̂π(θ, st, at) ≈ Qπ(st, at); whereas policy-based methods approximates the
policy: π̂(θ, s) ≈ π(s), where θ are parameters of a trained neural network.

SeaPearl: A CP Solver Guided by RL 395

2.2 Graph Neural Network

Learning on graph structures is a recent and active field of research in the
machine learning community. It has plenty of applications such as molecular
biology [27], social sciences [37], and physics [41]. It has also been considered for
solving combinatorial optimization problems [10]. Formally, let G = (V,E) be a
graph with V the set of vertices, E the set of edges, fv ∈ R

k a vector of k fea-
tures attached to a vertex v ∈ V , and similarly, hv,u ∈ R

q a vector of q features
attached to an edge (v, u) ∈ V . Intuitively, the goal of graph neural networks
(GNN) is to learn a p-dimensional representation μv ∈ R

p for each node v ∈ V
of G. Similar to convolutional neural networks that aggregate information from
neighboring pixels of an image, GNNs aggregate information from neighboring
nodes using edges as conveyors. The features fv are aggregated iteratively with
the neighboring nodes in the graph. After a predefined number of aggregation
steps, the node embedding are produced and encompass both local and global
characteristics of the graph.

Such aggregations can be performed in different ways. A simple one has been
proposed by Dai et al. [14] and used by Khalil et al. [28]. It works as follows. Let
T be the number of aggregation steps, μt

v be the node embedding of v obtained
after t steps and N (v) the set of neighboring nodes of v ∈ V in G. The recursive
computation of μt

v is shown in Eq. (1), where vectors θ1 ∈ R
p×k, θ2 ∈ R

p×p,
θ3 ∈ R

p×p, θ4 ∈ R
p×q are vectors of parameters that are learned, and σ a non-

linear activation function such as ReLU. The final embedding μT+1
v obtained

gives a representation for each node v of the graph, that can consequently be
used as input of regular neural networks for any prediction tasks.

μt+1
v = σ

⎛

⎝θ1fv + θ2
∑

u∈N (v)

μt
u + θ3

∑

u∈N (v)

σ (θ4hv,u)

⎞

⎠ ∀t ∈ {1, . . . , T} (1)

Many variants and improvements have been proposed to this framework. A
noteworthy example is the graph attention network [50], that uses an attention
mechanism [4], commonly used in recurrent neural networks. Detailed informa-
tion about GNNs are proposed in the following surveys [10,12,53,55] and an
intensive comparisons on the computational results of the different architectures
have been proposed by Dwivedi et al. [20].

3 Embedding Learning in Constraint Programming

This section describes the architecture and the design choices behind SeaPearl.
A high-level overview is illustrated in Fig. 1. Mainly inspired by [11], the architec-
ture has three parts: a constraint programming solver, a reinforcement learning
model, and a common representation acting as a bridge between both modules.

396 F. Chalumeau et al.

Fig. 1. Overview of SeaPearl architecture

Constraint Programming Solver. A CP model is a tuple 〈X,D,C,O〉 where
X is the set of variables we are trying to assign a value to, D(X) is the set of
domains associated with each variable, C the set of constraints that the variables
must respect and O an objective function. The goal of the solver is to assign a
value for each variable x ∈ X from D(x) which satisfy all the constraints in C
and that optimize the objective function O. The design of the solving process
is heavily inspired by what has been done in modern trailing-based solvers such
as OscaR [39], or Choco [26]. It also takes inspiration from MiniCP [30] in
its philosophy. The focus is on the extensibility and flexibility of the solver,
especially for the learning component. The goal is to make learning easy and
fast to prototype inside the solver. That being said, the solver is minimalist. At
the time of writing, only few constraints are implemented.

Reinforcement Learning Model. The goal is to improve the CP solving
process using knowledge from previously solved problems. It is done by learning
an appropriate value-selection heuristic and using it at each node of the tree
search. Following Bengio et al. [7], this kind of learning belongs to the third
class (machine learning alongside optimization algorithms) of ML approaches for
solving combinatorial problems, and raises many challenges. To do so, a generic
reinforcement learning environment genuinely representing the behaviour of the
solving process for solving a CP model must be designed. Let Qp be a specific
instance of a combinatorial problem p we want to solve, Cp

i be the associated
CP model at the i-th explored node of the tree search, and Sp

i be statistics of
the solving process at the i-th node (number of bactracks, if the node has been
already visited, etc.). The environment 〈S,A, T,R〉 we designed is as follows.

State. We define a state si ∈ S as the triplet (Qp, Cp
i ,Sp

i). By doing so, each state
contains (1) information about the instance that is solved, (2) the current state
of the CP model and (3) the current state of the solving process. In practice, each

SeaPearl: A CP Solver Guided by RL 397

state is embedded into a d-dimensional vector of features, that serves as input
for a neural network. This can be done in different manners and two possible
representations are proposed in the case studies.

Action. Each action corresponds to a value that can be assigned to a variable of
the CP model. An action a ∈ A at a state si ∈ S is available if and only if it is
in the domain of the variable x that has been selected for branching on at step
i (a ∈ D(X) for Cp

i).

Transition Function. The transition updates the current state according to the
action that has been selected. In our case, it updates the domains of the dif-
ferent variables. It is important to highlight that the transition encompasses
everything that is done inside the CP solver at each branching step, such as the
constraint propagation during the fix-point computation, or the trailing in case
of backtrack. This is an important difference with [11] where the transition only
consists in the assignation of a value to a variable and is disconnected from the
internal mechanisms of the CP solving process.

Reward Function. The reward is a key component of any reinforcement learning
environment [17]. In our case, it has a direct impact on how the tree search
is explored. Although it is commonly expressed as a function of the objective
function O, it is not clear how it can be shaped in order to drive the search
to provide feasible solutions, the best one and to prove optimality, which often
require different branching strategies. For this reason, the solver allows the user
to define its own reward. That being said, a reward that gives a penalty of −1 at
each step is integrated by default. This simple reward encourages the agent to
conclude an episode as soon as possible. The end of an episode means that the
solver reached optimality. Hence, giving such a penalty drove the agent to reduce
the number of visited nodes for proving optimality. An alternative definition has
been proposed in [11]. The reward signal consists in two terms, having a different
importance. The first one is dedicated to find a feasible solution, whereas the
second one drives the episode to find the best feasible solution. The reward is
designed in order to prioritize the first term. The motivation is to drive the search
to find a feasible solution by penalizing the number of non-assigned variables
before a failure, and then, driving it to optimize the objective function.

Learning Agent. Once the environment has been defined, any RL agent can be
used to train the model [36,43]. The goal is to build a neural network NN that
outputs an appropriate value to branch on at each node of the tree search. At the
beginning of each new episode, an instance Qp of the problem we want to solve
is randomly taken from the training set and the learning is conducted on it. The
training algorithm returns a vector of weights (θ) which is used for parametrizing
the neural network. A recurrent issue in related works using learning approaches
to solve combinatorial optimization problem is having access to enough data for
training a model. It is not often the case, and this makes the design of new
approaches tedious. To deal with this limitation, the solver integrates a support

398 F. Chalumeau et al.

for generating synthetic instances, which are directly fed in the learning process.
Then, the training is done using randomly generated instances sampled from a
similar distribution to those we want to solve.

State Representation. In order to ensure the genericity of the framework,
the neural architecture must be able to take any triplet (Qp, Cp

i ,Sp
i) as input,

which requires to encode the RL state by a suitable representation. Doing so
for the statistics (Sp

i) is trivial as they mainly consist of numerical values or
categorical data. The information related to the instances (Qp) is by definition
problem-dependent, and several architectures are possible [11]. This informa-
tion can also be omitted in our solver. However, a representation able to handle
any CP model (Cp

i) is required. In another context, Gasse et al. [22] proposed
a variable-constraint bipartite graph representation of mixed-integer linear pro-
grams in order to learn branching decisions inside a MIP solver using imitation
learning. The representation they used is leveraged using a graph neural net-
work. Following this idea, our solver adopted a similar architecture, referred to
as a tripartite graph but tailored for CP models. A CP model 〈X,D,C,O〉 is
represented by a simple and undirected graph G(Vx, Vd, Vc, E) as follows. Each
variable x ∈ X is associated to a vertex from Vx, each possible value (union of all
the domains) to a vertex from Vd, and each constraint to a vertex from Vc. Edges
only connect either nodes from Vx to Vc if the variable x is involved in constraint
c, or nodes from Vx to Vd if d is inside the current domain of x. Finally, each
vertex and each edge can be labelled with a vector of features, corresponding
to additional information of the model (arity of a constraint, domain size of a
variable, type of a global constraint, etc.). The main asset of this representation
is its genericity, as it can be used to represent any CP model. It is important to
note that designing the best state representation is still an open research ques-
tion and many options are possible. Two representations have been tested in this
paper. The first one is the generic representation based on the tripartite graph,
whereas the second one leverages problem-dependent features, as in [11].

Solving Algorithm. The solving process of SeaPearl is illustrated in Algo-
rithm 1. It mostly works in the same manner as any modern CP solver. The main
difference is the consistent use of a learned-heuristic for the value selection. While
the search is not completed (lines 8–14), the fix-point algorithm is executed on
the current node (line 9), and the features used as input of the neural network
are extracted, both concerning the CP model (line 9) and the solving statistics
(line 11). Using such information, the trained model is called in order to obtain
the value on which the current variable must be branched on (line 12). Finally,
the best solution found is returned (line 15). Note also that additional mecha-
nisms, such as prediction caching [11], can be added to speed-up the search. The
architecture of the network considered (line 12) is proposed in Fig. 2. It works as
follows: (1) the GNN computes a latent d-dimensional vector representation of
the features related to the current variable the tripartite graph, (2) the vector is
used as input of a fully-connected neural network in order to obtain a score for
each possible value (resp. action), and (3) this score is passed through a mask
in order to keep only the values that are inside the domain.

SeaPearl: A CP Solver Guided by RL 399

Algorithm 1: Solving process of SeaPearl

1 � Pre: Qp is a specific instance of combinatorial problem p.
2 � Pre: Cp

0 is the state of the CP model 〈X, D, C, O〉 at the root node.
3 � Pre: NN is a neural architecture giving a value at a node of the tree.
4 � Pre: w is a trained weight vector parametrizing the neural network.
5 Cp

0 := CPEncoding(Qp)
6 Ψ := CP-search(Cp

0)
7 i := 0
8 while Ψ is not completed do
9 fixPoint(Cp

i)
10 Sp

i := getSearchStatistics(Ψ)
11 x := selectVariable(Cp

i)
12 v := NN(w, x, Qp, Cp

i , Sp
i)

13 Cp
i+1 := branch(Ψ, x, v)

14 i := i + 1

15 return bestSolution(Ψ)

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x1
x2
x3
...
xn

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

GraphNN
z1
z2
z3
...

zp

Feature
extraction Dense NN 1

0
1
...

0

z1
0
z3
...

0

Variable's feature

Q values

Mask

Ouput

y1
y2
y3
...
yd

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Fig. 2. Simplified representation of the neural network architecture

4 Modeling, Learning and Solving with SeaPearl

The goal of SeaPearl is to make most of the previous building blocks transpar-
ent for the end-user. This section illustrates how it is done with the graph coloring
problem. Let G(V,E) be an undirected graph. A coloring of G is an assignment
of labels to each node such that adjacent nodes have a different label. The graph
coloring problem consists in finding a coloring that uses the minimal number
of labels. The programming language that we selected to develop SeaPearl is
Julia [8], which is (1) efficient during runtime, and (2) rich in both mathematical
programming [9,19,31,33] and machine learning libraries [25,54]. This resolves
the issue encountered in [11] where an inefficient Python binding has been devel-
oped in order to call deep learning routines in C++ implementation of the solver
Gecode [44]. More examples are also available on the Github repository of the
solver. A regular CP model of the graph coloring problem is shown in Listing
1.1. The first step is to build a trailer, instantiating the trailing mechanisms
and a model, instantiating the tuple 〈X,D,C,O〉. Variables, constraints, and

400 F. Chalumeau et al.

the objective are then added to this object. Once the model is built, the solving
process can then be run. At that time, no learning is done.

Listing 1.1. CP model for the graph coloring problem
� �

Preamble
n_vertex, n_edge, edges = getInput(instance)
trailer = SeaPearl.Trailer()
model = SeaPearl.CPModel(trailer)

Variable declaration
k = SeaPearl.IntVar(0, n_vertex, trailer)
x = SeaPearl.IntVar[]

for i in 1:n_vertex
push!(x, SeaPearl.IntVar(1, n_vertex, trailer))
SeaPearl.addVariable!(model, last(x))

end

Constraints
for v1, v2 in input.edges

push!(model.constraints, SeaPearl.NotEqual(x[v1], x[v2], trailer))
end

for v in x
push!(model.constraints, SeaPearl.LessOrEqual(v, k, trailer))

end

Objective (minimizing by default)
model.objective = k
SeaPearl.solve!(model)

� �

The next snapshot (Listing 1.2) shows how a reinforcement learning agent
can be easily defined. The first instruction corresponds to the definition of the
deep architecture, consisting of 4 graph attention layers (GATConv), and 5 fully-
connected layers (Dense). To do so, a binding with the library Flux [25] has
been developed. The second instruction defines the deep reinforcement learning
agent. It requires as input (1) the neural architecture, (2) the optimizer desired
(Adam), (3) the type of RL algorithm (DQN) and (4) hyper-parameters that
depends on the specific algorithm selected (e.g., the discounting factor).

The last snapshot (Listing 1.3) shows how the training routines can be
defined. The value-selection heuristic is first defined as a heuristic that will be
trained using the previously defined RL agent. Then, a random generator, dedi-
cated to construct new training instances, is instanciated. For the graph coloring
case, this generator is based on the construction proposed by [13] and builds
graphs of n vertices with density p that are k-colorable. Finally, the training can
be run. To do so, the user has to provide the value-selection to be trained, the
instance generator, the number of episodes, the search strategy, and the variable
heuristic. Once trained, the heuristic can be used to solve new instances.

SeaPearl: A CP Solver Guided by RL 401

Listing 1.2. Reinforcement Learning agent for the graph coloring problem
� �

Neural network architecture
neuralNetwork = SeaPearl.FlexGNN(

graphChain = Flux.Chain(
GATConv(nInput => 10, heads=2),
GATConv(20 => 10, heads=3),
GATConv(30 => 10, heads=3),
GATConv(30 => 20, heads=2),

),
nodeChain = Flux.Chain(

Dense(20, 20),
Dense(20, 20),
Dense(20, 20),
Dense(20, 20),

),
outputLayer = Dense(20, nOutput))

Reinforcement learning agent
agent = RL.Agent(

policy = RL.QBasedPolicy(
learner = SeaPearl.CPDQNLearner(

approximator = RL.Approximator(neuralNetwork, ADAM())
loss_function = huber_loss,
discounting_factor = 0.9999,
batch_size = 32,
...

),
explorer = SeaPearl.CPEpsilonGreedyExplorer()))

� �

Listing 1.3. Training a value-selection heuristic
� �

Defining the value selection heuristic as the RL agent
val_heuristic = SeaPearl.LearnedHeuristic(agent)

Generating random instances
gc_generator = SeaPearl.GraphColoringGenerator()

Training the model
SeaPearl.train!(

valueSelectionArray = [val_heuristic],
generator = gc_generator,
nb_episodes = 1000,
strategy = SeaPearl.DFSearch,
variableHeuristic = SeaPearl.MinDomain())

� �

We would like to highlight that these pieces of code illustrate only a small
subset of the functionalities of the solver. Many other components, such as the
reward, or the state representation can be redefined by the end-user for proto-
typing new research ideas. This has been made possible thanks to the multiple
dispatching functionality of Julia, allowing the user to redefine types without
requiring changes to the source code of SeaPearl.

5 Experimental Results

The goal of the experiments is to evaluate the ability of SeaPearl to learn good
heuristics for value-selection. Comparisons against greedy heuristics on two NP-
hard problems are proposed: graph coloring and travelling salesman with time

402 F. Chalumeau et al.

windows. In order to ease the future research in this field and to ensure repro-
ducibility, the implementation, the models and the results are released in open-
source with the solver. Instances for training the models have been generated
randomly with a custom generator. Training is done until convergence, limited to
13 h on AWS’ EC2 with 1 vCPU of Intel Xeon capped to 3.0GHz, and the mem-
ory consumption is capped to 32 GB. The evaluation is done on other instances
(still randomly generated in the same manner) on the same machine.

5.1 Graph Coloring Problem

The experiments are based on a standard CP formulation of the graph coloring
problem (Listing 1.1), using the smallest domain as variable ordering. Instances
are generated in a similar fashion as in [13]. They have a density of 0.5, and the
optimal solutions have less than 5 colors. Comparisons are done with a heuristic
that takes the smallest available label in the domain (min-value), and a random
value selection. For each instance, 200 random trials are performed and the
average, best and worst results are reported. The training phase ran for 600
episodes (execution time of 13 h) using DQN learning algorithm [36], a graph
attention network has been used as deep architecture [50] upon the tripartite
graph detailed in Sect. 3. A new instance is generated for each episode. The
first experiment records the average number of nodes that has been explored
before proving the optimality of the instances at different steps of the training,
and using the default settings of SeaPearl. Results are presented in Fig. 3 for
graphs with 20 and 30 nodes. Every 30 episodes, an evaluation is performed
on a validation set of 10 instances. We can observe that the learned heuristic
is able to reproduce the behaviour of the min-value heuristic, showing that the
model is able to learn inside a CP solver. Results of the final trained model
on 50 new instances are illustrated in Fig. 4 using performance profiles [18]. The
metric considered is still the number of nodes explored before proving optimality.
Results show that the heuristic performances can be roughly equaled.

5.2 Travelling Salesman Problem with Time Windows

Given a graph of n cities, The travelling salesman problem with time windows
(TSPTW) consists of finding a minimum-cost circuit that connects a set of cities.
Each city i is defined by a position and a time window, defining the period when
it can be visited. Each city must be visited once and the travel time between two
cities i and j is defined by di,j . It is possible to visit a city before the start of its
time windows but the visitor must wait there until the start time. However, it is
not possible to visit a city after its time window. The goal is to minimize the sum
of the travel distances. This case study has been proposed previously as a proof
of concept for the combination of constraint programming and reinforcement
learning [11]. We reused the same design choices they did. The CP model is
based on a dynamic programming formulation, the neural architecture is based
on a graph attention network and the reward is shaped to drive the agent to find
first a feasible solution, and then to find the optimal one. It is also noteworthy

SeaPearl: A CP Solver Guided by RL 403

Fig. 3. Training curve of the DQN agent for the graph coloring problem

Fig. 4. Performance profiles (number of nodes) for the graph coloring problem

to mention that the default tripartite graph of our solver is not used in this
experiment. A graph representing directly the current TSPTW instance is used
instead, with the position and the time windows bounds as node features, and
the distances between each pair of nodes as edge features.

Instances are generated using the same generator as in [11]. The training
phase ran for 3000 episodes (execution time of 6 h) and a new instance is gen-
erated for each episode. The variable ordering used is the one inferred by the
dynamic programming model, and the value selection heuristic consists of taking
the closest city to the current one. The random value selection is also considered.
As with the previous experiment, we record the average number of nodes that
have been explored before proving optimality. Results are presented in Fig. 5 for
instances with 20 and 50 cities. Once the model has been trained, we observe that
the learned heuristic is able to outperform the heuristic baseline with a factor
of 3 in terms of the number of nodes visited. This result is corroborated by the
performance profiles in Figs. 6a-6b, which show the number of nodes explored
before optimality for the final trained model. Execution time required to solve
the instances is illustrated in Figs. 6c-6d. We can observe that even if less nodes

404 F. Chalumeau et al.

are explored, the greedy heuristic is still faster. This is due to the time needed
to traverse the neural network at each node of the tree search.

Fig. 5. Training curve of the DQN agent for the TSPTW

6 Perspectives and Future Works

Leveraging machine learning approaches in order to speed-up optimization solver
is a research topic that has an increasing interest [2,11,22]. In this paper, we
propose a flexible and open-source research framework towards the hybridization
of constraint programming and deep reinforcement learning. By doing so, we
hope that our tool can facilitate the future research in this field. For instance,
four aspects can be directly addressed and experimented: (1) how to design
the best representation of a CP state as input of a neural network, (2) how to
select an an appropriate neural network architecture for efficiently learn value-
selection heuristics, (3) what kinds of reinforcement learning algorithm are the
most suited for this task, and (4) how the reward should be designed to maximize
the performances. Besides, other research questions have emerged during the
development of this framework. This section describes five of them.

Extending the Learning to Variable Selection. As a first proof of concept,
this work focused on how a value-selection heuristic can be learned inside a
constraint programming solver. Although crucial for the performances of the
solver, especially for proving optimality [51], this has not been studied in this
paper, and it has to be defined by the user. Integrating a learning component
on it as well would be a promising direction.

Finding Solutions and Proving Optimality Separately. As highlighted by
Vilim et al. [51], finding a good solution and exploring/pruning the search tree
efficiently in order to prove optimality are two different tasks, that may require
distinct heuristics. On the contrary, the reinforcement learning agent presented in
this paper can hardly understand how and when both tasks should be prioritized.
This leads to another avenue of future work: having two specialized agents, one
dedicated to find good solutions, and the other one to prove optimality.

SeaPearl: A CP Solver Guided by RL 405

Fig. 6. Performance profiles for the TSPTW

Accelerating the Computation of the Learned Heuristics. As for any
solving tool, efficiency is a primary concern. It is thus compulsory for the learned
heuristic to be not only better than a man-engineered heuristic in terms of
number of nodes visited but also in terms of execution time. As highlighted in
the experiments, calling a neural neural network is time consuming compared
to calling a simple greedy heuristic. Interestingly, this aspect has not been so
considered in most deep learning works, as the trained model are only called
few times, rendering the inference time negligible in practice. In our case, as the
model has to be called at each node of the tree search (possibly more than 1
million times), the inference time becomes a critical concern. This opens another
research direction: finding an appropriate trade-off between a large model having
accurate prediction and a small model proposing worse prediction, but much
faster. This has been addressed by Gupta et al. [24] for standard MIP solvers.
Another direction is to consider the network pruning literature, dedicated to
reduce heavy inference costs of deep models in low-resource settings [34,35].

Reducing the Action Space. A recurrent difficulty is to deal with problems
having large domains. On a reinforcement learning perspective, it consists of
having a large action space, which makes the learning more difficult, and reduces
the generalization to large instances. A possible direction could be to reduce the
size of the action space using a dichotomy selection. Assuming a domain of n

406 F. Chalumeau et al.

values and a number of actions capped at k, the current domain is divided into
k intervals, and the selection of an action consists in taking a specific interval.
This can be done until a final value has been found. Another option is to use
another architectures that are less sensitive to large action spaces, such as pointer
networks [52], which are commonly used in natural language processing but
which have also been considered in combinatorial optimization [16].

Tackling Real Instances. The data used to train the models are randomly
generated from a specified distribution. Although this procedure is common in
much of published research in the field [22,29], it cannot be used for solving
real-world instances. One additional difficulty to consider in real-world instances
is having access to enough data to be able to accurately learn the distribution.
One way to do that is to modify slightly the available instances by introducing
small perturbations on them. This is referred to as data augmentation, but may
be insufficient as it can fail to represent the distribution of the future instances.

7 Conclusion

Combining machine learning approaches with a search procedure in order to
solve combinatorial optimization problems is a hot topic in the research commu-
nity, but it is still a challenge as many issues must be tackled. We believe that the
combination of constraint programming and reinforcement learning is a promis-
ing direction for that. However, developing such hybrid approaches requires a
tedious and long development process [11]. Based on this context, this paper
proposes a flexible, easy-to-use and open-source research framework towards the
hybridization of constraint programming and deep reinforcement learning. The
integration is done on the search procedure, where the learning component is
dedicated to obtain a good value-selection heuristic. Experimental results show
that a learning is observed, and highlight challenges related to execution time.
Many open challenges should be addressed for an efficient use of machine learn-
ing methods inside a solving process. We position this contribution not only as a
new CP solver, but also as an open-source tool dedicated to help the community
in the development of new hybrid approaches for tackling such challenges.

References

1. Anagnostopoulos, K.P., Mamanis, G.: A portfolio optimization model with three
objectives and discrete variables. Comput. Oper. Res. 37(7), 1285–1297 (2010)

2. Antuori, V., Hebrard, E., Huguet, M.-J., Essodaigui, S., Nguyen, A.: Leveraging
reinforcement learning, constraint programming and local search: a case study in
car manufacturing. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 657–672.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58475-7_38

3. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforce-
ment learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)

4. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

https://doi.org/10.1007/978-3-030-58475-7_38
http://arxiv.org/abs/1409.0473

SeaPearl: A CP Solver Guided by RL 407

5. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems, vol. 39. Springer Science & Busi-
ness Media, Heidelberg (2012)

6. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial opti-
mization with reinforcement learning (2017)

7. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. Eur. J. Oper. Res. 290, 405–421(2020)

8. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to
numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/
141000671

9. Bromberger, S., Fairbanks, J., et al.: Juliagraphs/Lightgraphs. jl: an optimized
graphs package for the julia programming language (2017)

10. Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris, C., Veličković, P.: Com-
binatorial optimization and reasoning with graph neural networks. arXiv preprint
arXiv:2102.09544 (2021)

11. Cappart, Q., Moisan, T., Rousseau, L.M., Prémont-Schwarz, I., Cire, A.: Com-
bining reinforcement learning and constraint programming for combinatorial opti-
mization. arXiv preprint arXiv:2006.01610 (2020)

12. Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., Murphy, K.: Machine learning on
graphs: a model and comprehensive taxonomy (2021)

13. Culberson, J.C., Luo, F.: Exploring the k-colorable landscape with iterated greedy.
In: Dimacs Series in Discrete Mathematics and Theoretical Computer Science, pp.
245–284. American Mathematical Society (1995)

14. Dai, H., Dai, B., Song, L.: Discriminative embeddings of latent variable models for
structured data. In: International conference on machine learning, pp. 2702–2711
(2016)

15. Dai, H., Khalil, E.B., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial opti-
mization algorithms over graphs. In: Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems, pp. 6351–6361 (2017)

16. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.-M.: Learning
heuristics for the TSP by policy gradient. In: van Hoeve, W.-J. (ed.) CPAIOR
2018. LNCS, vol. 10848, pp. 170–181. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93031-2_12

17. Dewey, D.: Reinforcement learning and the reward engineering principle. In: AAAI
Spring Symposia (2014)

18. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Program. 91(2), 201–213 (2002)

19. Dunning, I., Huchette, J., Lubin, M.: Jump: a modeling language for mathe-
matical optimization. SIAM Rev. 59(2), 295–320 (2017). https://doi.org/10.1137/
15m1020575, http://dx.doi.org/10.1137/15M1020575

20. Dwivedi, V.P., Joshi, C.K., Laurent, T., Bengio, Y., Bresson, X.: Benchmarking
graph neural networks. arXiv preprint arXiv:2003.00982 (2020)

21. Gambardella, L.M., Dorigo, M.: Ant-q: a reinforcement learning approach to the
traveling salesman problem. In: Machine learning proceedings 1995, pp. 252–260.
Elsevier (1995)

22. Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combina-
torial optimization with graph convolutional neural networks. arXiv preprint
arXiv:1906.01629 (2019)

23. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep learning, vol. 1. MIT
press, Cambridge (2016)

https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
http://arxiv.org/abs/2102.09544
http://arxiv.org/abs/2006.01610
https://doi.org/10.1007/978-3-319-93031-2_12
https://doi.org/10.1007/978-3-319-93031-2_12
https://doi.org/10.1137/15m1020575
https://doi.org/10.1137/15m1020575
http://dx.doi.org/10.1137/15M1020575
http://arxiv.org/abs/2003.00982
http://arxiv.org/abs/1906.01629

408 F. Chalumeau et al.

24. Gupta, P., Gasse, M., Khalil, E.B., Kumar, M.P., Lodi, A., Bengio, Y.: Hybrid
models for learning to branch. arXiv preprint arXiv:2006.15212 (2020)

25. Innes, M., et al.: Fashionable modelling with flux. CoRR abs/1811.01457 (2018).
https://arxiv.org/abs/1811.01457

26. Jussien, N., Rochart, G., Lorca, X.: Choco: an open source java constraint program-
ming library. In: CPAIOR 2008 Workshop on Open-Source Software for Integer and
Contraint Programming (OSSICP 2008), pp. 1–10 (2008)

27. Kearnes, S., McCloskey, K., Berndl, M., Pande, V., Riley, P.: Molecular graph
convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30(8), 595–
608 (2016)

28. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial opti-
mization algorithms over graphs. In: Advances in neural information processing
systems, pp. 6348–6358 (2017)

29. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475 (2018)

30. Michel, L., Schaus, P., Van Hentenryck, P.: MiniCP: a lightweight solver for con-
straint programming (2018). https://minicp.bitbucket.io

31. Legat, B., Dowson, O., Garcia, J.D., Lubin, M.: Mathoptinterface: a data structure
for mathematical optimization problems (2020)

32. Li, H., Womer, K.: Modeling the supply chain configuration problem with resource
constraints. Int. J. Proj. Manage. 26(6), 646–654 (2008)

33. Lin, D., et al., other contributors: JuliaStats/Distributions.jl: a Julia package for
probability distributions and associated functions (2019). https://doi.org/10.5281/
zenodo.2647458

34. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Proceedings of
the 31st International Conference on Neural Information Processing Systems, pp.
2178–2188 (2017)

35. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network
pruning. arXiv preprint arXiv:1810.05270 (2018)

36. Mnih, V., et al.: Playing atari with deep reinforcement learning (2013)
37. Monti, F., Frasca, F., Eynard, D., Mannion, D., Bronstein, M.M.: Fake

news detection on social media using geometric deep learning. arXiv preprint
arXiv:1902.06673 (2019)

38. Nejati, S., Le Frioux, L., Ganesh, V.: A machine learning based splitting heuristic
for divide-and-conquer solvers. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp.
899–916. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58475-7_52

39. OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar
40. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,

M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30201-8_41

41. Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., Battaglia,
P.W.: Learning to simulate complex physics with graph networks. arXiv preprint
arXiv:2002.09405 (2020)

42. Schaus, P., Van Hentenryck, P., Régin, J.-C.: Scalable load balancing in nurse to
patient assignment problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR
2009. LNCS, vol. 5547, pp. 248–262. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01929-6_19

43. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

44. Schulte, C., Lagerkvist, M., Tack, G.: Gecode, pp. 11–13 (2006). http://www.
gecode.org

http://arxiv.org/abs/2006.15212
https://arxiv.org/abs/1811.01457
http://arxiv.org/abs/1803.08475
https://minicp.bitbucket.io
https://doi.org/10.5281/zenodo.2647458
https://doi.org/10.5281/zenodo.2647458
http://arxiv.org/abs/1810.05270
http://arxiv.org/abs/1902.06673
https://doi.org/10.1007/978-3-030-58475-7_52
https://bitbucket.org/oscarlib/oscar
https://doi.org/10.1007/978-3-540-30201-8_41
http://arxiv.org/abs/2002.09405
https://doi.org/10.1007/978-3-642-01929-6_19
https://doi.org/10.1007/978-3-642-01929-6_19
http://arxiv.org/abs/1707.06347
http://www.gecode.org
http://www.gecode.org

SeaPearl: A CP Solver Guided by RL 409

45. Selsam, D., Bjørner, N.: Guiding high-performance sat solvers with unsat-core
predictions. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 336–
353. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_24

46. Solnon, C.: Ant colony optimization and constraint programming. Wiley Online
Library (2010)

47. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An introduction. MIT press,
Cambridge (2018)

48. Toth, P., Vigo, D.: The vehicle routing problem. SIAM (2002)
49. Tsolkas, D., Liotou, E., Passas, N., Merakos, L.: A graph-coloring secondary

resource allocation for d2d communications in LTE networks. In: 2012 IEEE 17th
international workshop on computer aided modeling and design of communication
links and networks (CAMAD), pp. 56–60. IEEE (2012)

50. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

51. Vilím, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based
scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3_30

52. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks (2015)
53. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey

on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24
(2021). https://doi.org/10.1109/tnnls.2020.2978386

54. Yuret, D.: Knet: beginning deep learning with 100 lines of julia. In: Machine Learn-
ing Systems Workshop at NIPS, vol. 2016, p. 5 (2016)

55. Zhou, J., et al.: Graph neural networks: A review of methods and applications
(2019)

56. Zhou, Y., Hao, J.K., Duval, B.: Reinforcement learning based local search for
grouping problems: a case study on graph coloring. Expert Syst. Appl. 64, 412–
422 (2016)

https://doi.org/10.1007/978-3-030-24258-9_24
http://arxiv.org/abs/1710.10903
https://doi.org/10.1007/978-3-319-18008-3_30
https://doi.org/10.1109/tnnls.2020.2978386

Learning to Sparsify Travelling Salesman
Problem Instances

James Fitzpatrick1(B) , Deepak Ajwani2 , and Paula Carroll1

1 School of Business, University College Dublin, Dublin, Ireland
james.fitzpatrick1@ucdconnect.ie, paula.carroll@ucd.ie

2 School of Computer Science, University College Dublin, Dublin, Ireland
deepak.ajwani@ucd.ie

Abstract. In order to deal with the high development time of exact
and approximation algorithms for NP-hard combinatorial optimisation
problems and the high running time of exact solvers, deep learning tech-
niques have been used in recent years as an end-to-end approach to
find solutions. However, there are issues of representation, generalisa-
tion, complex architectures, interpretability of models for mathematical
analysis etc. using deep learning techniques. As a compromise, machine
learning can be used to improve the run time performance of exact algo-
rithms in a matheuristics framework. In this paper, we use a pruning
heuristic leveraging machine learning as a pre-processing step followed
by an exact Integer Programming approach. We apply this approach to
sparsify instances of the classical travelling salesman problem. Our app-
roach learns which edges in the underlying graph are unlikely to belong
to an optimal solution and removes them, thus sparsifying the graph and
significantly reducing the number of decision variables. We use carefully
selected features derived from linear programming relaxation, cutting
planes exploration, minimum-weight spanning tree heuristics and various
other local and statistical analysis of the graph. Our learning approach
requires very little training data and is amenable to mathematical anal-
ysis. We demonstrate that our approach can reliably prune a large frac-
tion of the variables in TSP instances from TSPLIB/MATILDA (>85%)
while preserving most of the optimal tour edges. Our approach can suc-
cessfully prune problem instances even if they lie outside the training
distribution, resulting in small optimality gaps between the pruned and
original problems in most cases. Using our learning technique, we discover
novel heuristics for sparsifying TSP instances, that may be of indepen-
dent interest for variants of the vehicle routing problem.

Keywords: Travelling Salesman Problem · Graph sparsification ·
Machine learning · Linear programming · Integer programming

1 Introduction

Owing to the high running time of exact solvers on many instances of NP-hard
combinatorial optimisation problems (COPs), there has been a lot of research
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 410–426, 2021.
https://doi.org/10.1007/978-3-030-78230-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_26&domain=pdf
http://orcid.org/0000-0002-9419-7005
http://orcid.org/0000-0001-7269-4150
http://orcid.org/0000-0003-1029-1668
https://doi.org/10.1007/978-3-030-78230-6_26

Learning to Sparsify TSP Instances 411

interest in leveraging machine learning techniques to speed up the computation
of optimisation solutions. In recent years, deep learning techniques have been
used as an end-to-end approach (see e.g., [30]) for efficiently solving COPs. How-
ever, these approaches generally suffer from (i) limited generalisation to larger
size problem instances and limited generalisation from instances of one domain
to another domain, (ii) need for increasingly complex architectures to improve
generalisability and (iii) inherent black-box nature of deep learning that comes
in the way of mathematical analysis [6]. In particular, the lack of interpretability
of these models means that (1) we do not know which properties of the input
instances are being leveraged by the deep-learning solver and (2) we cannot be
sure that the model will still work as new constraints are required, which is
typical in industry use-cases.

In contrast to the end-to-end deep learning techniques, there has been recent
work (see e.g. [13]) to use machine learning as a component to speed-up or
scale-up the exact solvers. In particular, Lauri and Dutta [19] recently proposed
a framework to use machine learning as a pre-processing step to sparsify the
maximum clique enumeration instances and scale-up the exact algorithms in
this way. In this work, we build upon this framework and show that integrating
features derived from operations research and approximation algorithms into
the learning component for sparsification can result in reliably pruning a large
fraction of the variables in the classical Travelling Salesman Problem (TSP).
Specifically, we use carefully selected features derived from linear programming
relaxation, cutting planes exploration, minimum-weight spanning tree (MST)
heuristics and various other local and statistical analysis of the graph to sparsify
the TSP instances. With these features, we are able to prune more than 85% of
the edges on TSP instances from TSPLIB/MATILDA, while preserving most of
the optimal tour edges. Our approach can successfully prune problem instances
even if they lie outside the training distribution, resulting in small optimality
gaps between the pruned and original problems in most cases. Using our learning
technique, we discover novel heuristics for sparsifying TSP instances, that may
be of independent interest for variants of the vehicle routing problem.

Overall, our approach consists of using a pruning heuristic leveraging machine
learning (ML) as a pre-processing step to sparsify instances of the TSP, followed
by an exact Integer Programming (IP) approach. We learn which edges in the
underlying graph are unlikely to belong to an optimal TSP tour and remove
them, thus sparsifying the graph and significantly reducing the number of deci-
sion variables. Our learning approach requires very little training data, which is a
crucial requirement for learning techniques dealing with NP-hard problems. The
usage of well analysed intuitive features and more interpretable learning models
means that our approach is amenable to mathematical analysis. For instance, by
inserting the edges from the Christofides and double-tree approximations in our
sparsified instances, we can guarantee the same bounds on the optimality gap.
We hypothesise that our approach, integrating features derived from operations
research and approximation algorithms into a learning component for sparsifi-

412 J. Fitzpatrick et al.

cation, is likely to be useful in a range of COPs, including but not restricted to,
vehicle routing problems.

Outline. The paper is structured as follows: Sect. 2 describes the related works.
In Sect. 3 we outline the proposed sparsification scheme: the feature generation,
the sparsification model and post-processing techniques. Section 4 contains the
experimental setup, exposition on the computational experiments and results.
Discussion and conclusions follow in Sect. 5.

2 Notation and Related Work

Given a graph G = (V,E;w) with a vertex set V = {1, ..., n}, an edge set
E = {(u, v)|u, v ∈ V, u �= v} and a weighting function wG(e) → Z

+ that assigns
a weight to each edge e ∈ E, the goal of the TSP is to find a tour in G that
visits each vertex exactly once, starting and finishing at the same vertex, with
least cumulative weight. We denote by m the number of edges |E| and by n the
number of vertices |V | of the problem.

2.1 Exact, Heuristic and Approximate Approaches

The TSP is one of the most widely-studied COPs and has been for many decades;
for this reason, many very effective techniques and solvers have been developed
for solving them. Concorde is a well-known, effective exact solver which imple-
ments a branch and cut approach to solve a TSP IP [1], and has been used
to solve very large problems. An extremely efficient implementation of the Lin-
Kernighan heuristic is available at [15], which can find very close-to-optimal
solutions in most cases. Approximation algorithms also exist for the metric TSP
that permit the identification of solutions, with worst-case performance guaran-
tees, in polynomial time [7,26]. Many metaheuristic solution frameworks have
also been proposed, using the principles of ant colony optimisation, genetic algo-
rithms and simulated annealing among others [5,9,16]. In each of these tradi-
tional approaches to the TSP, there are lengthy development times and extensive
problem-specific knowledge is required. If the constraints of the given problem
are altered, the proposed solution method may no longer be satisfactory, possibly
requiring further development.

2.2 Learning to Solve Combinatorial Optimisation Problems

Inspired by the success of deep learning to solve natural language processing and
computer vision tasks, the question of how effective similar techniques might be
in COP solution frameworks arises. Interest in this research direction emerged
following the work of Vinyals et al. [30], in which sequence-to-sequence neural
networks were used as heuristics for small instances of three different COPs,
including the TSP. This was quickly followed by other ML-based approaches
[3,18,21] that solve larger problem instances and avoid the need for supervised

Learning to Sparsify TSP Instances 413

learning where access to data is a bottleneck. Graph neural networks [25] and
transformer architectures [29] lead to significant speedups for learned heuris-
tics, and have been demonstrated to obtain near-optimal solutions to yet larger
TSP and vehicle routing problem (VRP) instances in seconds. Although they
can produce competitive solutions to relatively small problems, these learning
approaches appear to fail to generalise well to larger instance sizes, and most of
these approaches require that the instance is Euclidean, encoding the coordinates
of the vertices for feature computation. In cases of failure and poor solution qual-
ity, however, there is little possibility of interpreting why mistakes were made,
making it difficult to rely on these models.

2.3 Graph Sparsification

Graph sparsification is the process of pruning edges from a graph G = (V,E) to
form a subgraph H = (V,E′ ⊂ E) such that H preserves or approximates some
property of G [4,11,23]. Effective sparsification is achieved if |E′| � |E|. The
running time of a TSP solver can be reduced if the underlying complete graph
Kn can be sparsified such that the edges of at least one optimal Hamiltonian
cycle are preserved. The work of Hougardy and Schroeder [17] sparsifies the
graph defining symmetric TSP instances exactly, removing a large fraction of the
edges, known as “useless” edges, that provably cannot exist in an optimal tour.
Another heuristic approach due to Wang and Remmel [31] sparsifies symmetric
instances by making probabilistic arguments about the likelihood that an edge
will belong to an optimal tour. Both of these approaches have proven successful,
reducing computation time significantly for large instances, but are unlikely to
be easy to modify for different problem variants.

Recently, the sparsification problem has been posed as a learning problem, for
which a binary classification model is trained to identify edges unlikely to belong
to an optimal solution. Grassia et al. [12] use supervised learning to prune edges
that are unlikely to belong to maximum cliques in a multi-step sparsification
process. This significantly reduces the computational effort required for the task.
Sun et al. [28] train a sparsifier for pruning edges from TSP instances that are
unlikely to belong to the optimal tour. These approaches have the advantage
that they can easily be modified for similar COP variants. The use of simpler,
classical ML models lends them the benefits of partial interpretability and quick
inference times. However, in the latter case, it is assumed that a very large
number of feasible TSP solutions can be sampled efficiently, which does not hold
for all routing-type problems, and in neither case are guarantees provided about
the quality of the optimal solutions for sparsified problem instances.

3 Sparsification Scheme

The sparsification problem is posed as a binary classification task. Given some
edge e ∈ E, we wish to assign it a label 0 or 1, where the label 0 indicates
that the associated edge variable should be pruned and the label 1 indicates

414 J. Fitzpatrick et al.

that it should be retained. We acquire labelled data for a set of graphs G =
{G1, ..., Gn} corresponding to TSP problem instances. For each graph Gi =
(Vi, Ei) we compute a set of pi optimal tours Ti = {t1i , ..., t

pi

i }, as many as can
be found within the tolerance level of the IP solver, and for each edge e ∈ Ei

we compute a feature representation �qe. Each tour ti has an implied set of edges
ti =⇒ εi ⊂ Ei. Labelling each e ∈

⋃pi

j=1 εj
i = Ei with 1 and each edge e ∈ Ei \Ei

as 0, we train an edge classifier to prune edges that do not belong to an optimal
tour. An optimal sparsifier would prune all but those edges belonging to optimal
tours (potentially also solving the TSP). This classifier represents a binary-fixing
heuristic in the context of an IP. In the following sections, we describe the feature
representation that is computed for each edge and post-processing steps that are
taken in order to make feasibility and approximation guarantees.

3.1 Linear Programming Features

We pose the TSP as an IP problem, using the DFJ formulation [8]. Taking Aij

as the matrix of edge-weights, we formulate it as follows:

minimize z =
n∑

i,j=1;i�=j

Aijxij (1)

subject to
n∑

i;i�=j

xij = 1, j = 1, ..., n (2)

n∑

j;j �=i

xij = 1, i = 1, ..., n (3)

∑

(i,j)∈W

xij ≤ |W | − 1, W ⊆ V ; |W | ≥ 3 (4)

xij ∈ {0, 1}, i, j = 1, ...,m; i �= j (5)

Useful information about the structure of a TSP problem can be extracted
by inspecting solution vectors to linear relaxations of this IP; in this way we
can obtain insights into the candidacy of edges for the optimal tour. In fact, in
several cases, for the MATILDA problem set, the solution to the linear relaxation
at the root of the Branch and Bound (B&B) tree is itself an optimal solution to
the TSP.

We denote the solution to the linear relaxation zLP of the integer programme
at the root node of the B&B tree by �̂x

0
. At this point, no variables have been

branched on and no subtour elimination cuts have been introduced. That is, the
constraints (4) are dropped and the constraints (5) are relaxed as:

xij ∈ [0, 1], i, j ∈ {1, ...,m}, i �= j. (6)

One can strengthen this relaxation by introducing some subtour elimination
constraints (4) at the root node. In this case, the problem to be solved remains

Learning to Sparsify TSP Instances 415

a linear programming problem but several rounds of subtour elimination cuts
are added. One can limit the computational effort expended in this regard by
restricting the number of constraint-adding rounds with some upper bound k =
�log2(m)�. The solution vector for this problem after k rounds of cuts is denoted

by �̃x
k
. We can also use as features the associated reduced costs �rk of the decision

variables, which are computed in the process of a Simplex solver, standardising
their values as �̂r

k
= �rk/max�rk.

In order to capture broader information about the structure of the problem,
stochasticity is introduced to the cutting planes approach. Inspired by the work
of Fischetti and Monaci [10], the objective of the problem is perturbed. Solv-
ing the perturbed problem results in different solution vectors, which can help
us to explore the solution space. We solve the initial relaxation zLP in order
to obtain a feasible solution, which can sometimes take a significant amount of
computing effort. Subtour-elimination constraints are added to the problem for
each subtour in the initial relaxation. Following this, k = �log2(m)� copies of
this problem are initialised. For each new problem, the edge weights Aij are per-
turbed, and the problem is re-solved. The normalised reduced costs are obtained
from each perturbed problem and for each edge (i, j) the mean reduced cost r̃ij

is computed. We use the vector �̃r of such values as a feature vector1.

3.2 Minimum Weight Spanning Tree Features

The MST provides the basis for the Christofides–Serdyukov [7,26] and double-
tree approximation algorithms, which give feasible solutions with optimality
guarantees for a symmetric, metric TSP. Taking inspiration from these approxi-
mation algorithms, we use multiple MSTs to extract edges from the underlying
graph thereby allowing us to compute features using them.

Algorithm 1. MST Features
Input: G = (V, E), j

1: H ← (V, E′′ = ∅)
2: for j ∈ {1, 2, ..., �log n�} do
3: T = (V, E′ ⊂ E) ← MST(G)
4: G = (V, E) ← (V, E \ E′)
5: H = (V, E′′) ← (V, E′′ ∪ E′)
6: wH(e) = 1/j ∀e ∈ E′

Output: H = (V, E′′)

First, a new graph H =
(V, ∅) is initialised with the
vertex set but not the edge
set of the complete graph
G = (V,E) = Kn. For j =
�log2(n)� � n iterations the
MST T = (V,E′) of G is com-
puted and the edges E′ are
removed from E and added to
the edge set of H. Then, at

each step, G(V,E) ← G(V,E \ E′), giving a new MST at each iteration with
unique edges. The iteration at which edges are added to the graph H is stored, so
that a feature q̂j

il = 1p
il/p may be computed, where 1p

il is the indicator, taking unit
value if the edge e = (i, l) ∈ E was extracted at iteration p and zero otherwise.

1 For additional detail regarding computation of these features, please see: https://
arxiv.org/abs/2104.09345.

https://arxiv.org/abs/2104.09345
https://arxiv.org/abs/2104.09345

416 J. Fitzpatrick et al.

Since the value of j should be small, the vast majority of the edges will
have zero-valued feature-values. This edge transferal mechanism can be used as
a sparsification method itself: the original graph can be pruned such that the
only remaining weighted edges are those that were identified by the successive
MSTs, with the resulting graph containing j(n − 1) edges.

3.3 Local Features

The work of Sun et al. [28] constructs four local features on the graph G = (E, V),
comparing weights of an edge (i, j) ∈ E to the edge weights (k, j), k ∈ V and
(i, k), k ∈ V . While relatively inexpensive to compute, yet less expensive features
can be computed, comparing a given edge weight (i, j) to the maximum and
minimum weights in E. That is, for each (i, j) ∈ E we compute a set of features
qij as:

qa
ij = (1 + Aij)/(1 + max

(l,k)∈E
Alk) (7)

qb
ij = (1 + Aij)/(1 + max

l∈V
Ail) (8)

qc
ij = (1 + Aij)/(1 + max

l∈V
Alj) (9)

qd
ij = (1 + min

(l,k)∈E
Alk)/(1 + Aij) (10)

qe
ij = (1 + min

l∈V
Ail)/(1 + Aij) (11)

qf
ij = (1 + min

l∈V
Alj)/(1 + Aij) (12)

The motivation for the features (7) and (10) is to cheaply compute features that
relate a given edge weight to the weights of the entire graph in a global manner.
On the other hand, motivated by the work of Sun et al. [28], the features (8),
(9), (11), (12), compare a given edge weight to those in its direct neighbourhood;
the edge weight associated with edge (i, j) is related only to the weights of the
associated vertices i and j.

3.4 Postprocessing Pruned TSP Graphs

In this setting, sparsification is posed as a set of m independent classification
problems. The result of this is that there is no guarantee that any feasible solution
exists within a pruned problem instance. Indeed, even checking that any tour
exists within a sparsified graph is itself an NP-hard problem. One can guarantee
feasibility of the pruned graph by ensuring that the edges belonging to some
known solution exist in the pruned graph; this forces both connectivity and
Hamiltonicity (see Fig. 1). The pruned graph has at least one feasible solution
and admits an optimal objective no worse than that of the solution that is
known. For the TSP we can construct feasible tours trivially by providing any
permutation of the vertices, but it is likely that such tours will be far from

Learning to Sparsify TSP Instances 417

optimal. Assuming the problem is metric, we can use an approximation algorithm
to construct a feasible solution to the problem that also gives a bound on the
quality of the solution.

Fig. 1. The pruned graph H does not admit a feasible solution. Given a known solution,
we add the edges E′′ of the solution to the pruned graph in order to guarantee the
feasibility of the pruned instance. If we obtain E′′ using an approximation algorithm,
then we can make guarantees about the quality of the solutions obtained from H.

4 Experiments and Results

All experiments were carried out in Python2. Graph operations were performed
using the NetworkX package [14] and the training was carried out with the Scikit-
Learn package [22]. The linear programming features were computed using the
Python interfaces for the Xpress and SCIP optimisation suites [2,20]. Training
and feature computation was performed on a Dell laptop running Ubuntu 18.04
with 15. 6 GB of RAM an, Intel R© CoreTM i7-9750H 2.60GHz CPU and an
Nvidia GeForce RTX 2060/PCIe/SSE2 GPU.

4.1 Learning to Sparsify

First we train a classification model to prune edges that are unlikely to belong
to an optimal tour. That is, given the feature representation

�qil = [qa
il, q

b
il, q

c
il, q

d
il, q

e
il, q

f
il, �̂r

k

il, �̃ril, q̂
j
il]

T

for the edge (i, l), we aim to train a machine learning model that can classify
all the edges of a given problem instance in this manner. In each case we let the
parameter k = �log2(m)� and j = �log2(n)�, since these numbers grow slowly
with the size of the graph and prevent excessive computation. In order to address
the effects of class imbalance, we randomly under-sample the negative class such
that the classes are equally balanced, and adopt class weights {0.01, 0.99} for
the negative and positive classes respectively to favour low false negative rates

2 All code available at: https://github.com/JamesFitzpatrickMLLabs/optlearn.

https://github.com/JamesFitzpatrickMLLabs/optlearn

418 J. Fitzpatrick et al.

for the positive class, favouring correctness over the sparsification rate. Sample
weights wil = Ail/maxil Ail are applied to each sample associated with an edge
(i, l) to encourage the classifier to reduce errors associated with longer edges.

In many instances there exists more than one optimal solution. We compute
all optimal solutions within the tolerance level of the solver (1 × 10−8) and
assign unit value to the label for edges that belong to any optimal solution.
Any optimal solution gives an upper bound on the solution for any subsequent
attempts to solve the problem. To compute each solution, one can introduce
a tour elimination constraint to the problem formulation to prevent previous
solutions from being feasible. The problem can then be re-solved multiple times
to obtain more solutions to the problem, until no solution can be found that has
the same objective value as that of the original optimal tour.

Training was carried out on problem instances of the MATILDA problem
set [27], since they are small (n = 100 for each) and permit relatively cheap
labelling operations. One third (63) of the CLKhard and LKCChard problem
instances were chosen for the training set, while the remaining problem instances
are retained for the testing and validation sets. These two problem categories
were selected for training once it was identified through experimentation that
sparsifiers trained using these problems generally performed better (with fewer
infeasibilities). This is in line with the findings of Sun et al.[28]. Since each of the
linear programming features must be computed for any given problem instance,
it is worthwhile checking if any solution �̂x

0
or �̃x

k
is an optimal TSP solution,

which would allow all computation to terminate at this point. All of the edges
of a given graph belong to exactly one of training, test or validation sets, and
they must all belong to the same set. Each symmetric problem instance in the
TSPLIB problem set [24] for which the order n ≤ 3038 is retained for evaluation
of the learned sparsifier only.

Following pruning, edges of a known tour are inserted, if they are not already
elements of the edge set of the sparsified graph. In this work, we compute both
the double-tree and Christofides approximations, since they can be constructed
in polynomial time and guarantee that the pruned graph will give an optimality
ratio �̂opt/�opt ≤ 3/2, where �̂opt is the optimal tour length for a pruned problem
and �opt is the optimal tour length for the original problem. The performance
of the classifier is evaluated using the optimality ratio �̃ = �̂opt/�opt and the
retention rate m̃ = m̂/m, where m̂ is the number of edges belonging to the
pruned problem instance. Since the pruning rate 1 − m̃ implies the same result
as the retention rate, we discuss them interchangeably. Introducing any known
tour guarantees feasibility at a cost in the sparsification rate no worse than
(m̂ + n)/m̂.

4.2 Performance on MATILDA Instances

The sparsification scheme was first evaluated on the MATILDA problem
instances, which are separated into seven classes, each with 190 problem
instances. Logistic regression, random forest and linear support vector classi-
fiers were evaluated as classification models. Although no major advantage was

Learning to Sparsify TSP Instances 419

displayed after a grid search over these models, here, for the sake of comparison
with Sun et al., an L1-regularised SVM with an RBF kernel is trained as the
sparsifier. We can see from Table 1 that the optimality ratios observed in the
pruned problems are comparable to those of Sun et al., with a small deteriora-
tion in the optimality gap for the more difficult problems (around 0.2%) when
the same problem types were used for training. However, this comes with much
greater sparsification rates, which leads to more than 85% of the edges being
sparsified in all cases and almost 90% on average, as opposed to the around 78%
observed by Sun et al. We similarly observe that the more difficult problems are
pruned to a slightly smaller extent than the easier problem instances.

Table 1. Evaluation of the trained sparsifier against the problem subsets of the
MATILDA instances. Here each cell indicates the mean value of the optimality ratio
or pruning rate over each subset of problems (not including training instances)

Statistic (Mean) Problem Class

CLKeasy CLKhard LKCCeasy LKCChard easyCLK-

hardLKCC

hardCLK-

easyLKCC

random

l̃ 1.00000 1.00176 1.00000 1.00385 1.00049 1.00035 1.00032

1 − m̃ 0.90389 0.89021 0.91086 0.88298 0.88874 0.90357 0.89444

4.3 Pruning with and Without Guarantees

This section describes experiments carried out to test how much the sparsi-
fier would need to rely on inserted tours to produce feasibly reduced prob-
lem instances. The optimality ratio statistics are shown in Table 2. Before
post-processing, pruning was achieved with a maximum rate of edge retention
max{m̂/m} = 0.139, a minimum rate min{m̂/m} = 0.075 and a mean rate
〈m̂/m〉 = 0.100 among all problem instances. In the vast majority of cases, at
least one optimal tour is contained within the pruned instance (column 2), or one
that is within 2% of optimal (column 4). For the more difficult problem instances,
there were several infeasible instances produced each time. In some cases the
pruned instances admitting sub-optimal solutions with respect to the original
problem had improved optimality ratios (columns 3 and 4). The worst-case opti-
mality improves for each problem class (except CLKeasy, where all problems
were sparsified without losing an optimal solution) after post-processing. The
distribution of these values with post-processing is depicted in Fig. 2.

This sparsification scheme was also tested on the TSPLIB problem instances
(see Table 3). Before post-processing, for the majority of the problem instances,
an optimal tour is contained within the sparsified graphs (column 2), and the
vast majority of the problem instances have optimality ratios no worse than
�̃ = 1.05 (column 4). Unlike with the MATILDA instances, the pruning rate
varies significantly. This is in accordance with the findings of Sun et al. [28] and
indicates that the sparsifier is less certain about predictions made, and fewer
edges are therefore removed in many cases. For some smaller problem instances
(smaller than the training set problems) the pruning rate approaches 0.5167.

420 J. Fitzpatrick et al.

Table 2. Optimality ratio statistics before and after approximate tour insertion fol-
lowing learned sparsification (MATILDA problem instances). Each cell indicates the
number of problem instances of each class for which the optimality ratio resided within
the bounds stated before and after post-processing. For example, the cell in column 2
containing 174 → 176 indicates that 174 purely sparsified instances admitted unit opti-
mality ratios, but 176 did so after the post-processing. The last column contains the
maximum optimality gap for each class. If there are infeasibly sparsified graphs, this
value is denoted by ∞.

Problem Class # of Problems With Below Condition True Worst Case

�̂opt/�opt = 1.0 �̂opt/�opt < 1.01 �̂opt/�opt < 1.02 max{�̂opt/�opt}
CLKeasy 190 → 190 190 → 190 190 → 190 1 → 1

CLKhard 110 → 123 153 → 181 165 → 190 ∞ → 1.018

LKCCeasy 189 → 190 189 → 190 190 → 190 1.016 → 1

LKCChard 35 → 65 82 → 168 104 → 185 ∞ → 1.024

easyCLK-hardLKCC 172 → 181 180 → 186 180 → 188 ∞ → 1.024

hardCLK-easyLKCC 167 → 181 175 → 188 176 → 189 ∞ → 1.030

random 174 → 176 186 → 188 188 → 190 ∞ → 1.016

Total 1037 → 1106 1155 → 1291 1193 → 1322 ∞ → 1.030

Fig. 2. Each point represents a problem instance, showing the pruning rate and the
optimality ratio achieved for each problem in the MATILDA benchmark set.

The median pruning rate was 0.9109, with the mean pruning rate at 0.8904 and
a standard deviation of 0.086. The highest pruning rate was for the problem
u2152.tsp, for which 0.9758 m edges were removed, achieving an optimality ratio
of 1.0.

Introducing the approximate tours brought the worst-case optimality ratio
to 1.01186 (column 5) for d657.tsp, with median and mean pruning rates of,
respectively, 0.8991 and 0.8718. The mean optimality ratio (excluding the infea-
sible instances) before approximate tour insertion was 1.01546 and (also without

Learning to Sparsify TSP Instances 421

these same problems) 1.00073 after insertion, indicating that in most cases there
is little reduction in solution quality as a result of sparsification. In Fig. 3 we can
see depicted the relationship between the problem size (the order, n) and the
pruning rate. Almost all of the instances retain optimal solutions after pruning,
those that don’t are indicated by the colour scale of the points. We can see from
this plot that the drilling problem d657.tsp and problems pr [144, 226, 266].tsp
ts225.tsp have some of the largest optimality deviations (up to 1.2%), likely
because in these problems the vertices are aligned in regular, often clustered
patterns, which leads to problems with edge-weight distributions much different
from the problems of the training set.

Table 3. Optimality ratio statistics before and after approximate tour insertion fol-
lowing learned sparsification (TSPLIB problem instances). Results for each symmetric
problem instance with n ≤ 1000 using a logistic regression sparsifier. This set con-
tained 76 problem instances, some of which are not metric TSPs. Although we cannot
make provable guarantees for the non-metric problem instances, we can still use the
approximate tours to ensure feasibility.

Problem Class # of Problems With Below Condition True Worst Case

�̂opt/�opt = 1.0 �̂opt/�opt < 1.005 �̂opt/�opt < 1.010 max{�̂opt/�opt}
TSPLIB 55 → 56 69 → 70 72 → 73 ∞ → 1.01186

4.4 Minimum Weight Spanning Tree Pruning

Empirical experiments demonstrated that using only successive MSTs, as out-
lined in Sect. 3.2, one can effectively sparsify symmetric TSP instances. This
scheme proceeds without the need for a classifier, by building a new graph H
with only the edges of the MSTs and their associated edge weights in G. This
sparsified instance achieves a retention rate of jn/m, where j is the number
of trees computed. In many cases, simply using this as a scheme for selecting
edges for retention was sufficient to sparsify the graph while achieving a unit
optimality ratio.

On the MATILDA problems, again with j = �log2(n)�, this achieves a worst-
case optimality ratio of 1.0713 and a uniform pruning rate of 0.86, with the
majority of the pruned instances containing an optimal solution. Under these
conditions the easier problems (CLKeasy and LKCCeasy) had optimal tours
preserved in every problem instance except for one. For the more difficult prob-
lem instances, in the vast majority of cases, the ratio does not exceed 1.02 (see
Table 4). Insertion of approximate tours in this scenario does not lead to much
improvement, since every instance of the MATILDA problem set is sparsified
feasibly in this scheme.

For the TSPLIB problems, all but two can be sparsified feasibly without
the insertion of approximate edges: p654.tsp and fl417.tsp. Since k is a function
of the problem order, n = 100, 86% of the edges of a graph will be removed,
whereas at order n = 1000, the pruning rate reaches 98%. The worst optimality

422 J. Fitzpatrick et al.

Fig. 3. Here each point represents a problem instance. The horizontal axis depicts the
logarithm of the problem size in terms of the number of nodes. The vertical axis shows
the sparsification rate and the colouring of the points indicates the optimality ratio
observed.

Table 4. Optimality ratio statistics before and after approximate tour insertion follow-
ing MST sparsification (MATILDA problem instances). Comparison between the pure
multiple MST pruning scheme and the same scheme with double-tree post-processing.
In every case for the MATILDA problem set, the pruned instances are feasible.

Problem Class # of Problems With Below Condition True Worst Case

�̂opt/�opt = 1.0 �̂opt/�opt < 1.02 �̂opt/�opt < 1.05 max{�̂opt/�opt}
CLKeasy 190 → 190 190 → 190 190 → 190 1 → 1

CLKhard 85 → 88 185 → 185 190 → 190 1.029 → 1.029

LKCCeasy 189 → 190 190 → 190 190 → 190 1.002 → 1.002

LKCChard 77 → 78 183 → 183 189 → 189 1.071 → 1.054

easyCLK-hardLKCC 173 → 190 190 → 190 190 → 190 1.012 → 1.012

hardCLK-easyLKCC 171 → 173 190 → 190 190 → 190 1.015 → 1.015

random 176 → 176 190 → 190 190 → 190 1.006 → 1.006

All 1061 → 1330 1318 → 1330 1329 → 1330 1.071 → 1.054

ratio for any feasible problem was for pr226.tsp, at l̃ = 1.106, with a retention
rate of 0.071. The majority of the sparsified instances retained an optimal tour
(see Table 5), with the mean optimality ratio 〈�̃〉 for all feasible problems tak-
ing the value 1.0061. Including approximate tour edges in the sparsified graphs
results in none having an optimality gap greater than 1.084 (pr654.tsp, which
was previously infeasible, with a retention rate of 3.1%). The other previously
infeasibly-sparsified problem, fl417.tsp admits an optimality ratio �̃ = 1.077,
retaining just 4.3% of its edges. The mean optimality ratio for all problems
emerged as 1.0053.

Learning to Sparsify TSP Instances 423

Table 5. Optimality ratio statistics before and after approximate tour insertion fol-
lowing MST sparsification (TSPLIB problem instances). For each problem instance the
number of trees j differed, according to the order n.

Problem Class # of Problems With Below Condition True Worst Case

�̂opt/�opt = 1.0 �̂opt/�opt < 1.02 �̂opt/�opt < 1.05 max{�̂opt/�opt}
TSPLIB 51 → 51 66 → 67 71 → 71 ∞ → 1.084

4.5 Specifying the Pruning Rate

One of the advantages of including the post-processing step that guarantees the
feasibility of the pruned instance is that we can exert greater control over the
pruning rate. Training a sparsifier in the manner outlined above necessitates
a trade-off between the optimality ratio and the pruning rate. Higher pruning
rates result in sparsified problems that are easier to solve but that have typically
poorer optimality ratios. Indeed, if the sparsification rate is too high, many of
the sparsified instances will also become infeasible. Including approximate tours,
however, allows us to choose effectively any decision threshold for the classifier,
ranging from total sparsification and removing all edges, to choosing a threshold
that results in no sparsification at all and the retention of all edges from the
original graph. So long as there is at least one known feasible tour, regardless of
its quality, then the pruned instance will be feasible after post-processing.

5 Discussion and Conclusions

In this work we have demonstrated that it is possible to learn to effectively
sparsify TSP instances, pruning the majority of the edges using a small classifi-
cation model while relying on LP and graph-theoretic features that can be effi-
ciently computed. Providing optimality guarantees is possible by inserting edges
of approximate tours, ensuring that even out-of-distribution problem instances
can be tackled with this scheme. These features are supplemented with local
statistical features, comparing edge weights to the global and neighbouring dis-
tributions. This scheme successfully generalises to larger problem instances out-
side of the training distribution. Where there is a lack of training data or where
expediency is favoured, it has been shown that the MST extraction mechanism
with inserted approximate tours performs well on most problem instances.

The motivation of this work has been to use the methods of ML to aid in
the design of heuristics for solving combinatorial optimisation problems. This is
in the hope that such an approach can reduce the development time required.
Development time for ML solutions depends typically on the engineering of either
features or problem-specific models and architectures. This can effectively trans-
fer the engineering effort from one task to another, without producing tangible
benefits. In this approach, classical ML models are used, which means that fea-
ture design is paramount to the success of the model. Here, LP features are

424 J. Fitzpatrick et al.

designed that are not dependent upon the formulation of the problem; any TSP
problem that requires formulation as binary IP with subtour-elimination (or
capacity) constraints can have features produced in the same manner. This is
attractive because it simply requires knowledge of IP formulations that give
tight relaxations. Such relaxations may also be sufficient to solve the problem,
potentially obviating the need for any further computation. Optimality ratio per-
formance does not appear to depend on the problem size, which indicates that
this pre-processing scheme might help extend the applicability of learned solving
heuristics. Some preliminary experimental results indicated that this approach
can be leveraged to speed up solving times for a custom-built Branch and Cut
solver for the TSP using the DFJ formulation, but further experimentation and
implementation in C will be necessary to determine the extent to which speedups
can be achieved.

The use of the approximation algorithms guarantees the feasibility of the
pruned problem instance, but it does not provide a tight bound on the optimal-
ity ratio. Tighter bounds can be achieved by using these in combination with
effective heuristics. Alternatively, one could compute successive approximations
by removing from consideration edges belonging to a tour once they have been
computed, analogously to Algorithm 1. The observations from experimentation
indicate that while these approximate tours rarely improve the optimality ratio
at lower pruning rates, they are not only necessary for feasibility at higher prun-
ing rates, but can help immensely to improve the final optimality ratio.

This scheme has the potential to be developed in a similar manner for other
routing problems, in particular vehicle routing problems, for which solvers are
not as effective in practice as they are for the TSP. To realise the benefits of
scheme, an implementation would also have to be rewritten in a lower level
language. Subsequent work could be done to evaluate the smallest problem sizes
for which training can be carried out effectively and applicability to the VRP,
where it might be possible to extend the use of the vehicle-flow IP formulation
to larger problems, which typically need to be solved using a Branch, Cut and
Price approach.

Acknowledgements. This publication has emanated from research supported in part
by a grant from Science Foundation Ireland under Grant number 18/CRT/6183. For
the purpose of Open Access, the author has applied a CC BY public copyright licence
to any Author Accepted Manuscript version arising from this submission.

References

1. Applegate, D.L., et al.: Certification of an optimal TSP tour through 85,900 cities.
Oper. Res. Lett. 37(1), 11–15 (2009)

2. Ashford, R.: Mixed integer programming: a historical perspective with Xpress-MP.
Ann. Oper. Res. 149(1), 5 (2007)

3. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial opti-
mization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)

4. Benczúr, A.A.: Approximate s-t min-cuts in o (n2) time. In: Proceedings of the
28th ACM Symposium on Theory of Computing (1996)

http://arxiv.org/abs/1611.09940

Learning to Sparsify TSP Instances 425

5. Braun, H.: On solving travelling salesman problems by genetic algorithms. In:
Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 129–133.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0029743

6. Di Caro, G.A.: A survey of machine learning for combinatorial optimization. In:
30th European Conference on Operations Research (EURO) (2019)

7. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical report, Carnegie-Mellon Univ. Pittsburgh Pa Management Sci-
ences Research Group (1976)

8. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman
problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954)

9. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem.
Biosystems 43(2), 73–81 (1997)

10. Fischetti, M., Monaci, M.: Exploiting erraticism in search. Oper. Res. 62(1), 114–
122 (2014)

11. Fung, W.-S., Hariharan, R., Harvey, N.J.A., Panigrahi, D.: A general framework
for graph sparsification. SIAM J. Comput. 48(4), 1196–1223 (2019)

12. Grassia, M., Lauri, J., Dutta, S., Ajwani, D.: Learning multi-stage sparsification
for maximum clique enumeration. arXiv preprint arXiv:1910.00517 (2019)

13. Gupta, P., Gasse, M., Khalil, E.B., Kumar, M.P., Lodi, A., Bengio, Y.: Hybrid
models for learning to branch. In: Larochelle, H., Ranzato, M.A., Hadsell, R., Bal-
can, M.-F., Lin, H.-T. (eds.) Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, 6–12 December 2020, virtual (2020)

14. Hagberg, A., Swart, P., Chult, D.S.: Exploring network structure, dynamics, and
function using NetworkX. Technical report, Los Alamos National Lab. (LANL),
Los Alamos, NM (United States) (2008)

15. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

16. Hopfield, J.J., Tank, D.W.: “Neural” computation of decisions in optimiza-
tion problems. Biol. Cybern. 52(3), 141–152 (1985). https://doi.org/10.1007/
BF00339943

17. Hougardy, S., Schroeder, R.T.: Edge elimination in TSP instances. In: Kratsch,
D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 275–286. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12340-0 23

18. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475 (2018)

19. Lauri, J., Dutta, S.: Fine-grained search space classification for hard enumeration
variants of subset problems. In: The Thirty-Third AAAI Conference on Artifi-
cial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artifi-
cial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, 27
January–1 February 2019, pp. 2314–2321. AAAI Press (2019)

20. Maher, S., Miltenberger, M., Pedroso, J.P., Rehfeldt, D., Schwarz, R., Serrano, F.:
PySCIPOpt: mathematical programming in Python with the SCIP optimization
suite. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016.
LNCS, vol. 9725, pp. 301–307. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-42432-3 37

21. Nazari, M., Oroojlooy, A., Snyder, L.V., Takác, M.: Reinforcement learning for
solving the vehicle routing problem. In: Advances in Neural Information Processing
Systems, pp. 9839–9849 (2018)

https://doi.org/10.1007/BFb0029743
http://arxiv.org/abs/1910.00517
https://doi.org/10.1007/BF00339943
https://doi.org/10.1007/BF00339943
https://doi.org/10.1007/978-3-319-12340-0_23
http://arxiv.org/abs/1803.08475
https://doi.org/10.1007/978-3-319-42432-3_37
https://doi.org/10.1007/978-3-319-42432-3_37

426 J. Fitzpatrick et al.

22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

23. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)
24. Reinelt, G.: TSPLIB-a traveling salesman problem library. INFORMS J. Comput.

3(4), 376–384 (1991)
25. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph

neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)
26. Serdyukov, A.I.: On some extremal walks in graphs. Upravlyaemye Sistemy 17,

76–79 (1978)
27. Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP difficulty by learn-

ing from evolved instances. In: Blum, C., Battiti, R. (eds.) LION 2010. LNCS,
vol. 6073, pp. 266–280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13800-3 29

28. Sun, Y., Ernst, A., Li, X., Weiner, J.: Generalization of machine learning for prob-
lem reduction: a case study on travelling salesman problems. OR Spectr. 2020,
1–27 (2020). https://doi.org/10.1007/s00291-020-00604-x

29. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

30. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems, pp. 2692–2700 (2015)

31. Wang, Y., Remmel, J.: A method to compute the sparse graphs for traveling sales-
man problem based on frequency quadrilaterals. In: Chen, J., Lu, P. (eds.) FAW
2018. LNCS, vol. 10823, pp. 286–299. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78455-7 22

https://doi.org/10.1007/978-3-642-13800-3_29
https://doi.org/10.1007/978-3-642-13800-3_29
https://doi.org/10.1007/s00291-020-00604-x
https://doi.org/10.1007/978-3-319-78455-7_22
https://doi.org/10.1007/978-3-319-78455-7_22

Optimized Item Selection to Boost
Exploration for Recommender Systems

Serdar Kadıoğlu, Bernard Kleynhans(B), and Xin Wang

AI Center of Excellence Fidelity Investments, Boston, USA
{serdar.kadioglu,bernard.kleynhans,xin.wang}@fmr.com

Abstract. Recommender Systems have become the backbone of person-
alized services that provide tailored experiences to individual users. Still,
data sparsity remains a common challenging problem, especially for new
applications where training data is limited or not available. In this paper,
we formalize a combinatorial problem that is concerned with selecting
the universe of items for experimentation with recommender systems.
On one hand, a large set of items is desirable to increase the diversity of
items. On the other hand, a smaller set of items enable rapid experimen-
tation and minimize the time and the amount of data required to train
machine learning models. We show how to optimize for such conflict-
ing criteria using a multi-level optimization framework. Our approach
integrates techniques from discrete optimization, unsupervised cluster-
ing, and latent text embeddings. Experimental results on well-known
movie and book recommendation benchmarks demonstrate the benefits
of optimized item selection.

Keywords: Recommender systems · Exploration-exploitation · Item
selection · Set covering

1 Introduction

Recommender Systems have become central in our daily lives and are widely
employed in the industry. Prominent examples include online shopping sites (e.g.,
Amazon.com [20]), music and movie services (e.g., YouTube [7], Netflix [30,44]
and Spotify [13,26]), mobile application stores (e.g., iOS App Store and Google
Play), and online advertising [32]. The primary goal of recommender systems is
to help users discover relevant content such as movies to watch, articles to read,
or products to buy. From the user’s perspective, this creates a tailored digital
experience, and from the business’ perspective, it drives incremental revenue.

These systems learn users’ preferences from historical observations to select
the right content, at the right time, for the right channel. However, data sparsity
is a common challenging problem, especially for newly launched recommender
systems. The classical setting is composed of a set of users, U , and a set of items,
I, from which top-k items are chosen (e.g., items with the highest probability to
be clicked) and shown to the user at time t. For each recommendation, the reward
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 427–445, 2021.
https://doi.org/10.1007/978-3-030-78230-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_27

428 S. Kadıoğlu et al.

is observed (e.g., whether the user clicked). The reward feedback is incorporated
into the next decision at time t + 1, and the system proceeds.

While recommendation systems are concerned with selecting the top-k items
at each step, there is an apriori decision that governs the entire process: what
should the universe of items I that can be recommended be? In this paper, we
focus on this problem, especially for new applications where training data is
limited or not available.

To collect the necessary response data, recommender systems take advantage
of randomized experimentation (i.e., exploration) to build personalization mod-
els (i.e., exploitation). However, randomized exploration incurs unwanted costs.
From users’ perspective, randomized experimentation is not the desired digital
experience, in fact, the exact opposite of it. From business’s perspective, ran-
domization leads to missed opportunities. It has a cost on business KPIs from
engagement metrics, e.g., the click-through rate, to take-action rates for positive
outcomes, e.g., opening an account or buying a product.

It is therefore critical to speed-up exploration and switch to personalization
as quickly as possible. However, collecting the amount of randomized response
data to train efficient machine learning models takes considerable time and effort.
This is a significant bottleneck, especially in low volume, low click-through rate
applications, making the selection of the universe of items for randomized exper-
imentation crucial.

In this paper, we present a multi-level optimization approach for selecting
items to be included in randomized experimentation for recommender systems.
Our selection procedure is designed to maximize knowledge transfer of users’
responses and minimize the time-to-market for personalization. To that end, we
jointly optimize the cardinality of the item universe and the diversity of items
included in it. Our main contributions can be summarized as follows:

• By minimizing the cardinality of the item universe, we reduce the experi-
mentation time window and mitigate the aforementioned negative impact on
customer experience and business KPIs.

• We show how to use a latent embedding space to calculate diversity measures
between items and maximize the diversity of the selected items.

• We propose a simple warm-start procedure based on item-to-item similarity
to enable transfer learning from the randomized exploration phase to the
personalized exploitation phase.

• More broadly, our hybrid approach serves as an integration block between
modern recommender systems and classical discrete optimization techniques.

2 Problem Definition

Let us start with a formal description of our problem statement.

Definition 1 (Item Selection Problem (ISP)). Given a set of items I, the
goal of the Item Selection Problem (ISP) is to find the minimum subset S ⊆ I
that covers a set of labels Lc within each category c ∈ C while maximizing the
diversity of the selection S in the latent embedding space of items E(I).

Optimized Item Selection 429

Illustrative Example: To make our abstract ISP definition more concrete, we
consider a running example based on movie recommendations.

Fig. 1. Recommender System components from ISP to Personalization.

In a Movie Recommender System, the items I correspond to all available
movie titles that could be recommended. Collecting data on user ratings for all
available movies would be time-consuming. We are therefore interested in finding
a subset S of movies to initialize the system for training data collection. We need
to ensure that selected movies cover a wide range of variety. The categories of
interest, C can include the genre, language and producer. Within each category
c ∈ C, we can have a set of labels, such as action, comedy, thriller in the genre
category, and English and French in the language category. Such metadata is
commonly available in recommender systems. The ISP seeks to include at least
one movie from each label Lc within the different categories c ∈ C. Notice that
the selection can include multiple movies with the same label (e.g., comedy).
Additionally, we want to maximize the diversity of selected movies in the latent
embedding space E(I). The latent representation can be based on textual data
(e.g., synopses, movie reviews) or image data (e.g., cover art).

For unstructured text, the embeddings can be found using TFIDF [17], word
embeddings such as Word2Vec [27], Doc2Vec [21], or language models like BERT
[8]. For image data, the embedding can be based on convolutional neural net-
works. Finally, decomposition and dimensionality reduction techniques, such as
NMF [22] and SVD [10] can be used over the latent representation.

3 Recommender System Components

The ISP is most relevant for recommender systems in new customer experiences
for which there exists no historical data. As illustrated in Fig. 1, randomized
experimentation is employed to collect training data DS . This training data is
later used to build personalization models MS . The longer the exploration phase
takes, the worse the customer experience and business outcomes are. To mitigate
this, our strategy focuses on solving the ISP to guide the randomized exploration
which is later augmented with warm-started models M

′
S .

430 S. Kadıoğlu et al.

In the remainder, we focus on solving the ISP and the warm-start procedure.
Training recommender models and creating item embeddings are generic com-
ponents. These are orthogonal to our approach and recent algorithms from the
literature can be utilized as discussed in the Related Work section.

4 Solving the ISP

The Item Selection Problem is an instance of Multi-Objective Optimization
where the goal is to maximize the diversity among selected items while min-
imizing the size of the selection that can cover all predefined labels (or the max-
imum possible when the subset size is fixed). Our approach is closely related to
the classical Set Covering Problem (SCP) [1] which we embed in a multi-level
optimization framework. It consists of three levels; finding the minimum subset
size, maximizing diversity and maximizing coverage within a fixed bound.

4.1 Minimizing the Subset Size

Selecting a subset of items that cover all predefined labels is a standard cover-
ing formulation. Let Ml,i be the incident matrix where rows correspond to all
predefined labels, l ∈ Lc, for each category c ∈ C, and columns correspond to
item i ∈ I. We define Lc,i as the label in category c for item i and set Ml,i to 1
only if Ml,i = Lc,i. Let X be the set of decision variables where xi is a binary
variable denoting whether item i ∈ I is included in the selection. Assume each
selected item incurs a cost of 1 and let c represent the unit cost vector. Then
formulating the unicost item selection problem, Punicost, is straightforward:

min

I∑

i

cixi

∑

i∈I

Ml,ixi ≥ 1 ∀l ∈ Lc,∀c ∈ C

xi ∈ {0, 1}, ci = 1 ∀i ∈ I

(Punicost)

Assume unicost selection ⊆ I is the solution to Punicost where k =
|unicost selection| is the number of selected items.

4.2 Maximizing Diversity

Our simple mapping from ISP to SCP so far does not take diversity into account.
To that end, we turn to the latent representation of items. The variety of the
selected subset can be captured as the separation in the item embedding space
E(I). Given the minimum subset size k from the solution of Punicost, we cluster
the embedding space of items into k clusters. Let K denote the cluster centers.
Then minimizing the total distance to centroids maximize the diversity among

Optimized Item Selection 431

selected items. In other words, we are interested in a subset of items that are
far away from each other in the latent space (i.e., maximum inter-distance) and
closer to the cluster centers (i.e., minimum intra-distance).

Accordingly, we reformulate Punicost by changing its cost structure: the inclu-
sion of item i incurs cost, ci, based on its distance to the closest cluster.

ci = min distance(i, k) k ∈ K ∀i ∈ I (Pdiverse)

The resulting problem formulation, Pdiverse, is a reformulation of Punicost

with the diversity cost structure. The diversity cost vector is normalized such
that the total cost is the same as for Punicost. To speed up the optimization
process, we also initialize Pdiverse with the solution from Punicost

1. The solution
of Pdiverse, denoted diverse selection, is the minimum subset of items that are
most spread out from each other in the embeddings space E(I) while still main-
taining the guarantee that all predefined labels are covered. For the distance
metric, common choices are cosine distance or Euclidean distance.

4.3 Bounded Subset Size

While solving Punicost and Pdiverse successively leads to the smallest, most
diverse set with coverage guarantees, it provides no control on the cardinality
of the selection. However, remember that the time it takes to run randomized
experiments is directly proportional to the number of items. Therefore, it is
desirable to control the subset size and hence the time window of randomization
using a predefined bound, t.

Given a constant t such that t ≤ |Pdiverse| we are interested in selecting at
most t items from the most diverse set of items, diverse selection, (not from
the entire set I) such that the coverage is maximized.

Let X be the set of item selection variables as defined before. We introduce
a set of binary decision variables, is label coveredl to denote whether label l is
covered with the selected items. Then Pmax cover@t can be formulated as:

max
∑

l∈Lc,c∈C

is label coveredl

∑

i∈I

xi ≤ t

Ml,ixi ≤ is label coveredl ∀l ∈ Lc, ∀c ∈ C ∀i ∈ I
∑

i∈I

Ml,ixi ≥ is label coveredl ∀l ∈ Lc, ∀c ∈ C

xi ∈ {0, 1} ∀i ∈ I

is label coveredl ∈ {0, 1} ∀l ∈ Lc, ∀c ∈ C

(Pmax cover@t)

1 Thanks to our anonymous reviewer for this suggestion.

432 S. Kadıoğlu et al.

Multi-Level Optimization for ISP(I, M, E, t)
In: Items: I
In: Incident Matrix: M [label][item]
In: Embedding Space: E(I)
In: Maximum Subset Size: t
Out: Selected Items: S ⊆ I

// First Level: Minimize the subset size
// Find the minimum set of items with full coverage
Formulate Punicost(I, M)
unicost selection ← solve(Punicost)

// Second Level: Maximize diversity
// Find the minimum set of items with full coverage that maximizes diversity
k ← |unicost selection| � Use the first level to decide the number of clusters
K ← cluster(E(I), num clusters = k) � Find clusters in the embedding space
Initialize cost ← zeros(|I|) � Set closest centroid distance as the diversity cost
for all item ∈ I do

costitem ← min(distance(item, centroids ∈ K))
end for
Formulate Pdiverse(I, M, cost, unicost selection)
diverse selection ← solve(Pdiverse) � Solve for coverage and diversity

// Third Level: Maximize bounded coverage
// Find the maximum coverage within the diverse set subject to the bound
t ← |diversity selection|
Formulate Pmax cover@t(diverse selection, M, t)
S = max coverage ← solve(Pmax cover@t)

return S

Algorithm 1: Multi-Level Optimization for the Item Selection Problem (ISP).

In this formulation, the objective is to maximize the number of unique labels
covered. The first constraint limits the total number of selected items with the
given upper bound t. The second constraint links selection variables, X, with
label coverage variables, is label covered. The constraint states that if a selected
item exhibits the label, then that label is covered. The variable is label covered
can still be set to one even when no content is selected (since 0 ≤ 1), which is
taken care of by the third constraint. It ensures that if a label is covered, at least
one item offering it should be in the selection.

4.4 Multi-level Optimization

Bringing these components together, Algorithm 1 depicts our multi-level opti-
mization framework that consist of solving Punicost, Pdiversity and Pmax cover@t.
The framework is flexible to accommodate different latent embeddings, cluster-
ing techniques, and distance metrics that fit a given dataset the best. A concrete

Optimized Item Selection 433

Warm-Start Procedure(I, S, E, MS, q)
In: Items: I
In: Selected Items: S ⊆ I
In: Embedding Space: E(I)
In: Trained Models for S: MS

In: Distance Quantile: q ∈ (0, 1)
Out: Warm-started Model: M

// Calculate item-to-item similarities using item embedding E(I)
for all i ∈ I do

Di,j ← distance(Ei, Ej) for j ∈ I
end for

// Find distance threshold based on similarities of items in S
for all s ∈ S do

Dmin
s ← min(Ds,j) for j ∈ S, j �= s

end for
w ← quantile(Dmin

s , q)

// Warm-start untrained models
MS′ ← ∅
for all s′ ∈ S′ = I \ S do

Dmin
s′ ← min(Ds,j) for j ∈ S

if Dmin
s′ ≤ w then

p ← argmin(Ds,j) for j ∈ S
MS′ ← MS′ ∪ TransferLearning(MSp)

end if
end for

return M ← MS′ ∪ MS

Algorithm 2: Warm-Start Procedure to transfer knowledge from the random-
ization (exploration) phase to the personalization (exploitation) phase.

instantiation we use in this paper is the TFIDF [17] featurization of item descrip-
tions with the standard k-means clustering algorithm and cosine distance as the
distance metric.

5 Warm-Starts

Given the solution of ISP, the experimentation phase can start. This yields the
training data DS which is used to build personalization model MS . The idea
behind transfer learning [3,4] is to leverage MS such that, when the personaliza-
tion phase starts, it is not restricted to the initial subset of items but can expand
beyond the trained model MS . To that end, we warm-start items s′ ∈ S′ : I \ S
to build MS′ sharing knowledge from MS .

As depicted in Algorithm 2, we take advantage of the item embedding E(I) to
calculate item-to-item similarities. Given pairwise distances, we find the closest

434 S. Kadıoğlu et al.

item s ∈ S for each untrained item s′. To use s for the warm-start of s′, we
enforce distance(s, s′) ≤ w for w > 0 to ensure that the items are sufficiently
similar. We obtain the distance threshold w from the distribution of pairwise
distances within a certain quantile, e.g., the top decile q = 10%.

Finally, for transfer learning between s and s′, we can leverage the train-
ing data Ds or trained parameters of model Ms. After the initial warm-start,
the training data for s and s′ grows separately. This allows models to continue
learning independently from each other after the warm-start.

6 Experiments

We experiment with well-known datasets from book and movie recommenda-
tions. The main goal of our experiments is to demonstrate the speed-up in the
random experimentation phase enabled by our multi-level optimization frame-
work while ensuring diversity and transfer learning capacity.

6.1 Evaluation Metrics and Questions

The exact time window, in the number of days/weeks required for experimen-
tation, depends on several factors such as the expected interaction volume, the
engagement level of users (e.g., average click-through rates) and the complexity
of the learning algorithm to train (e.g., linear regression vs. wide&deep net-
works [5]). While these remain application-specific, to assess the effectiveness of
our approach, we focus on the following evaluation metrics measured before and
after warm-start:

• Before warm-start: The number of items, which serves as a proxy of explo-
ration time (the lower, the better) and the number of labels covered, which
measures the scope of exploration (the higher, the better).

• After warm-start: The number of items, which measures the capacity of
transfer learning (the higher, the better) and number of labels covered, which
is a proxy for the diversity of items that can be recommended (the higher,
the better).

To demonstrate the potential speed-up in random experimentation and effec-
tiveness of the warm-start procedure we consider the following specific questions:

Q1: What is the minimum number of items required to cover all labels?
Q2: How much speed-up is enabled in exploration phase when using optimized

item selection to collect response data for training?
Q3: How effective is the warm-start procedure in increasing the number of items

and the resulting coverage?
Q4: How sensitive is the ISP to the choice of latent embedding space of items?

Optimized Item Selection 435

Table 1. Summary statistics for Book and Movie Recommendation datasets.

Dataset # Items Categories # Labels

GoodReads 1,000 {Genre, Publisher, Genre × Publisher} 574

10,000 1,322

MovieLens 1,000 {Genre, Producer, Language, Genre × Language} 473

10,000 1,011

6.2 Datasets: Book and Movie Recommendations

We use two well-known datasets from the recommender systems literature: the
GoodReads Book Reviews [41,42] with 11,123 books (items) and the MovieLens
(ml-25m) Movie Recommendations [14] with 62,423 movies (items). We consider
two randomly selected subsets, small and large versions with 1,000 and 10,000
items, respectively. These datasets provide category and label metadata used in
our ISP formulations. Table 1 summarizes the statistics of our datasets.

For book recommendations, there are 11 different genres (e.g., fiction, non-
fiction, children), 231 different publishers (e.g., Vintage, Penguin Books, Mariner
Books), and genre-publisher pairs. This leads to 574 and 1,322 unique book labels
for the small and large datasets, respectively.

For movie recommendations, there are 19 different genres (e.g., action, com-
edy, drama, romance), 587 different producers, 34 different languages (e.g.,
English, French, Mandarin), and genre-language pairs. This leads to 473 and
1,011 unique movie labels for the small and large datasets, respectively.

In the ISP, we are interested in selecting movies (books) for exploration that
cover all (or maximum) genres, producers (publishers), languages, and genre-
language (genre-publisher) combinations.

6.3 Setup and Parameters

All our experiments were run on a machine with Linux RHEL7 operating system,
a 16-core 2.2 GHz CPU, and 64 GB of RAM. To solve the optimization prob-
lems, we use the Python-MIP [38] package, which comes with the precompiled
COIN-OR CBC Solver [16]. For clustering, we employ the default k-means
algorithm from the sklearn [2] library. To generate embeddings from unstruc-
tured text, we utilize the TextWiser [18] library. For the warm-start procedure
we use a distance quantile of q = 0.1. Experiments for non-deterministic methods
are repeated n = 50 times using different seeds and the results are averaged.

6.4 Embedding Space

The embedding space is based on textual descriptions of movies and books.
To convert unstructured text data into meaningful vector representations, we
use Term Frequency Inverse Document Frequency (TFIDF) [17], ignoring terms
with a document frequency lower than the cut-off threshold of min df = 20.

436 S. Kadıoğlu et al.

To reduce dimensionality, we transform these vectors using non-negative matrix
factorization [22] and generate 30-dimensional feature vectors for each item. In
Sect. 6.9, we also experiment with other strategies to understand the sensitivity
of ISP as a function of the embedding space.

6.5 Comparisons

We compare Punicost, Pdiverse, Pmax cover@t on each dataset against the following
challenger algorithms:

1. Random: Uniform random selection as a simple baseline. The Random
method uses the subset size k from the solution for Punicost.

2. Greedy: The classical greedy heuristic for set covering that adds items itera-
tively, whereby at each step, the item with the best cost

coverage ratio is selected.
This is a competitive baseline with a polynomial-time approximation scheme
with worst-case guarantees [40].

3. KMeans: Unsupervised clustering approach that operates on the same
embedding space. As in Random, it uses the subset size k from the solution
of Punicost as the number of clusters. This method first clusters the latent
space into k centers and then selects items closest to the centroids.

While Greedy maximizes coverage, it does not take diversity into account.
This helps us assess the effectiveness of Pdiverse. Analogously, while KMeans
maximizes diversity, it omits label coverage. This in turn helps us determine the
effectiveness of coverage constraints. Both Random and KMeans select k items
for which we have an optimality certificate from Punicost that covers all labels.

Table 2. [Q1] Comparison of our solution to ISP and challenger approaches on the
GoodReads dataset before and after warm-start in terms of the number of items
selected and label coverage.

Dataset Method Before Warm-Start After Warm-Start

Items Labels Coverage Items Labels Coverage

Random 374 325 57% 463 367 64%

GoodReads Greedy 374 574 100% 460 574 100%

1K Items Punicost 374 574 100% 470 574 100%

574 Labels KMeans 374 333 58% 741 431 75%

Pdiverse 446 574 100% 523 574 100%

Random 1,080 606 46% 2,226 771 58%

GoodReads Greedy 1,080 1,322 100% 2,227 1,322 100%

10K Items Punicost 1,080 1,322 100% 2,433 1,322 100%

1,322 Labels KMeans 1,080 589 45% 2,834 838 64%

Pdiverse 1,165 1,322 100% 1,602 1,322 100%

Optimized Item Selection 437

Table 3. [Q1] Comparison of our solution to ISP and challenger approaches on the
MovieLens dataset before and after warm-start in terms of the number of items selected
and label coverage.

Dataset Method Before Warm-Start After Warm-Start

Items Labels Coverage Items Labels Coverage

Random 243 220 46% 624 274 58%

MovieLens Greedy 249 473 100% 648 473 100%

1K Items Punicost 243 473 100% 647 473 100%

473 Labels KMeans 243 206 43% 659 276 58%

Pdiverse 248 473 100% 652 473 100%

Random 523 298 29% 2,479 561 55%

MovieLens Greedy 703 1,011 100% 3,031 1,011 100%

10K Items Punicost 523 1,011 100% 2,659 1,011 100%

1,011 Labels KMeans 523 317 31% 1,801 542 54%

Pdiverse 558 1,011 100% 1,971 1,011 100%

6.6 Analysis of Coverage [Q1]

To answer Q1 and find the minimum set of items covering all labels, we solve
Punicost and compare the number of selected items, the resulting label coverage
before and after the warm-start procedure.

Book Recommendations: Table 2 summarizes our results for the GoodReads
dataset. Solving Punicost before warm-start returns 374 items covering all 574
labels in the small dataset and 1,080 items that cover all 1,322 labels in the large
dataset. This represents reductions of 63% and 89% compared to selecting all
items. We then use |Punicost| for Random and Greedy. The Greedy algorithm
is also competitive on both datasets in terms of label coverage. As expected,
the number of labels covered by Random and KMeans is markedly lower. The
solution for Pdiverse only requires 72 and 85 more items than |Punicost| demon-
strating the slight pay-off to maximize the diversity of the selected content. After
the warm-start procedure using Algorithm 2, KMeans yields the highest num-
ber of warm-started items. This is expected since clustering purely targets the
diversity of the space, but unfortunately, its label coverage is no different than
Random.

Movie Recommendations: Table 3 summarizes our results on the MovieLens
datasets. Punicost achieves complete coverage with almost a 90% reduction com-
pared to selecting all items. In this dataset, Greedy cannot achieve the quality
of the optimum solution. Its optimality gap (249 vs. 243) for the small dataset is
2% and is significantly worse (703 vs. 523) at 34% for the large dataset. Random
and KMeans continue performing poorly in terms of coverage before and after
warm-start.

438 S. Kadıoğlu et al.

(a) GoodReads 1K (b) GoodReads 10K

(c) MovieLens 1K (d) MovieLens 10K

Fig. 2. [Q2] Bounded coverage of labels with varying number of selected items t.

Lastly, in terms of runtime, solving the multi-level optimization with Punicost,
Pdiversity and Pmax cover@t takes 20 min at most. This shows the efficiency of
optimization technology when faced with recommendation benchmarks.

6.7 Analysis of Bounded Coverage [Q2]

To answer Q2 and demonstrate potential speed-up in random experimentation,
we vary the subset bound t and analyze the label coverage before and after
warm-starts for Pmax cover@t, KMeans and Random. We keep the range of t
the same between datasets, with the exception of MovieLens 1K due to the
smaller number of required items to cover all labels. In practice, the bound t
is application-driven governed by time constraints, expected volumes, and user
engagement. Figure 2 presents our results.

Before the warm-start, we see that, for each method, coverage increases con-
sistently as t increases. Critically, for a given coverage level, the required number
of items t is always lower for Pmax cover@t compared to other methods, indicating
potential speed-up. For example, on the small GoodReads dataset, a coverage
of 50% can be achieved at t = 140, while t = 320 is required to obtain the same

Optimized Item Selection 439

(a) GoodReads 1K (b) GoodReads 10K

(c) MovieLens 1K (d) MovieLens 10K

Fig. 3. [Q3] Warm-Start analysis of unit coverage with varying distance quantile q.

coverage using the KMeans and Random methods. There is a 2X reduction in
the number of items, again demonstrating time savings in exploration.

After the warm-start, coverage increases for each method at each t, and
notably, the coverage for Pmax cover@t continues to rank highest in both datasets.
KMeans and Random results in similar coverage, but neither is capable of pass-
ing 50% (60%) with 200 (400) items on small and large sets whereas Pmax cover@t

reaches 80% (85%) within the same bound.
It is worth noting that the number of items warm-started is not the same for

different methods. In the next section, we analyze the efficiency of the warm-start
procedure in terms of the number of labels covered per item.

6.8 Analysis of Warm-Start [Q3]

To answer Q3 and assess the effectiveness of the warm-start procedure in Algo-
rithm2 we perform sensitivity analysis on the distance quantile q and evaluate
the average number of labels covered per item after warm-start. We keep the
number of selected items fixed at t = 100 for small dataset and t = 400 for large
dataset and find the selected items using Pmax cover@t, KMeans and Random.

440 S. Kadıoğlu et al.

Table 4. [Q4] Comparison of different item embeddings in terms of coverage and
capacity to warm-start unseen items on the GoodReads datasets.

Dataset Embedding Items Labels Coverage Unit Coverage

TFIDF 254 313 54% 1.2

GoodReads Word2Vec 233 318 55% 1.4

1K Items GloVe 208 299 52% 1.4

574 Labels Byte-Pair 235 300 52% 1.3

TFIDF 1,743 723 55% 0.4

GoodReads Word2Vec 900 608 46% 0.7

10K Items GloVe 1,098 641 48% 0.6

1,322 Labels Byte-Pair 940 553 42% 0.6

Using the selected items, we run the warm-start procedure at different values
of q. As q increases, the distance constraint to warm-start an item is relaxed,
thereby increasing the number of items that can be feasibly warm-started. In
parallel, this possibly reduces the relevance of these items given the already
collected training data.

Figure 3 presents the results for GoodReads and MovieLens datasets. For
each method, the charts show the unit coverage (the number of covered labels
divided by the number of items) after the warm-start. Notice that, as q increases,
unit coverage decreases across the board for all methods and datasets. This
clearly demonstrates the diminishing returns in label coverage as more items are
included. Consistent with the coverage analysis, Pmax cover@t is the most effective
approach in terms of the number of labels covered per item, significantly better
than Random and KMeans especially for the top (semi-) decile, i.e., q ≤ 0.1.

6.9 Analysis of Embedding Space [Q4]

To answer Q4 and evaluate the sensitivity of ISP with respect to the underlying
item embeddings, we solve Pmax cover@t on the books dataset with a fixed t = 100
and q = 0.1. We experiment with several complementary embeddings using Tex-
tWiser [18]. Besides our baseline TFIDF, we employ FastText Word2Vec to
learn word vectors [11,27], GloVe [29] embedding to learn global word represen-
tations, and Byte-Pair [35] embedding to learn character level information. In
all cases, we apply Singular Value Decomposition (SVD) [10] to generate a fixed
size 30-dimensional latent representation.

Table 4 reports the total number of items and percentage of label cover-
age after warm-start. The coverage is similar for the different embeddings hint-
ing at the robustness of our multi-level framework. Nevertheless, more complex
embeddings provide better unit coverage compared to TFIDF. In particular, the
Word2Vec embedding achieves the best unit coverage in both datasets, closely
followed by the GloVe embedding. This is thanks to the recent advances in NLP
and the efficiency of pretrained models in capturing text semantics.

Optimized Item Selection 441

7 Related Work

Our work at the intersection of Operations Research (OR), Natural Lan-
guage Processing (NLP), and Recommender Systems is related to several other
approaches. From OR perspective, while cover formulations are standard in the
literature, we show that optimization solvers can tackle problems derived from
widely used recommendation datasets. Our multi-level optimization framework
can be seen as an example of Hybrid Optimization [15] as it combines strengths
of the cover formulation with unsupervised clustering on the embedding space.
From NLP and Transfer Learning perspective, we take advantage of the recent
advances in pre-trained word embeddings such as FastText [11], GloVe [29], and
Byte-Pair [35]. From a Recommenders perspective, our framework leaves the
choice of personalization algorithm open to a wide range of options, such as
matrix factorization, collaborative filtering [19,34], nearest-neighbors [9], fac-
torization machines [31], and deep learning models including Wide&Deep[5],
DeepFM [12], and DCN [43] (see [23,45] for a survey).

While we considered an approach that starts with exploration followed by
exploitation, these steps can be blended together [32]. For instance, multi-armed
bandit learning policies [36] such as ε-Greedy, Thompson Sampling [37], and
Upper Confidence Bounds [39] mixes exploration and exploitation. We can still
incorporate ISP in these settings to guide the exploration component. Tradition-
ally, statistical power analysis [6] and experimental design [33] methods offer a
formal treatment to identify significant effects for a given statistical power. How-
ever, given the combinatorial nature of the problem and limited data context,
these methods are rarely suited for item selection.

Finally, our warm-start procedure shares similarities with [3,4] which builds
ensembles based on item similarity. A more involved approach would be to trans-
fer models between different applications as in cross-system recommendations
[28,46], e.g., cross-referencing between different systems such as book and movie
recommendations.

8 Interactive Exploration of ISP

Finally, let us mention that the selection of the item universe is not purely an
algorithmic problem. There are other criteria beyond coverage and diversity,
such as preferences, time-sensitive and seasonal information, and regulatory or
legal constraints. The selection of items can be viewed as an instance of human-
in-the-loop optimization problem. For that purpose, we built an exploratory
analysis tool as shown in Fig. 4. The tool allows interaction with our optimization
algorithms. It uses UMAP [25] and t-SNE [24] to visualize the 2D embedding
space (a) where centroids and selected items are color-coded. The tool provides
hover-over display cues to view item metadata (a) and detailed tables (b). It
shows relevant statistics of the response data (c & d) and presents the network
structure (e) behind the warm-start procedure to surface item similarities.

442 S. Kadıoğlu et al.

Fig. 4. Interactive visualization tool for item selection and exploratory analysis. Plot
(a) visualizes the 2D embedding of items with trained items in blue, warm-started items
in red and other untrained items in black; (b) shows the original content metadata such
as Genre and Title; (c) and (d) show the feedback for each item or a group of items; (e)
visualizes the warm-start relationships, such as how warm-started items are connected
to trained items. (Color figure online)

9 Conclusion

We introduced a new combinatorial optimization problem, called the Item Selec-
tion Problem (ISP) for Recommender Systems in new and data-sparse applica-
tions. Our multi-level optimization framework combining OR, NLP, and Unsu-
pervised Learning achieved significant speed-up in the exploration phase as
demonstrated in our experiments. By speeding up the exploration, we allevi-
ate issues stemming from randomization in customer experience and business
outcomes. We hope that our ISP formalism not only facilitates further integra-
tion between these complementary fields but also helps practitioners design new
recommendation system experiences.

References

1. Beasley, J.E.: An algorithm for set covering problem. Eur. J. Oper. Res. 31(1),
85–93 (1987)

2. Buitinck, L., et al.: API design for machine learning software: experiences from the
scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and
Machine Learning, pp. 108–122 (2013)

3. Caruana, R., Munson, A., Niculescu-Mizil, A.: Getting the most out of ensemble
selection. In: Proceedings of the 6th IEEE International Conference on Data Min-
ing (ICDM 2006), Hong Kong, China, 18–22 December 2006, pp. 828–833. IEEE
Computer Society (2006)

Optimized Item Selection 443

4. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from
libraries of models. In: Brodley, C.E. (ed.) Machine Learning, Proceedings of the
Twenty-first International Conference (ICML 2004), Banff, Alberta, Canada, 4–8
July 2004. ACM International Conference Proceeding Series, vol. 69. ACM (2004)

5. Cheng, H., et al.: Wide & deep learning for recommender systems. In: Karatzoglou,
A., et al. (eds.) Proceedings of the 1st Workshop on Deep Learning for Recom-
mender Systems, DLRS@RecSys 2016, Boston, MA, USA, 15 September 2016, pp.
7–10. ACM (2016)

6. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Academic Press,
Cambridge (2013)

7. Covington, P., Adams, J., Sargin, E.: Deep neural networks for Youtube recom-
mendations. In: Sen, S., Geyer, W., Freyne, J., Castells, P. (eds.) Proceedings of
the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19
September 2016, pp. 191–198. ACM (2016)

8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

9. Goldberg, D., Nichols, D.A., Oki, B.M., Terry, D.B.: Using collaborative filtering
to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)

10. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solu-
tions. In: Bauer, F.L. (ed.) Linear Algebra, Handbook for Automatic Computa-
tion. HDBKAUCO, vol. 2, pp. 134–151. Springer, Heidelberg (1971). https://doi.
org/10.1007/978-3-662-39778-7 10

11. Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vec-
tors for 157 languages. In: Proceedings of the International Conference on Language
Resources and Evaluation (LREC 2018) (2018)

12. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based
neural network for CTR prediction. In: Sierra, C. (ed.) Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Mel-
bourne, Australia, 19–25 August 2017, pp. 1725–1731. ijcai.org (2017)

13. Hansen, C., et al.: Contextual and sequential user embeddings for large-scale music
recommendation. In: Santos, R.L.T., et al. (eds.) RecSys 2020: Fourteenth ACM
Conference on Recommender Systems, Virtual Event, Brazil, 22–26 September
2020, pp. 53–62. ACM (2020)

14. Harper, F., Konstan, J.: The MovieLens datasets: history and context. ACM Trans.
Interact. Intell. Syst. 5(4), 1–19 (2015)

15. Hooker, J.N.: Integrated Methods for Optimization. International Series in Oper-
ations Research and Management Science, vol. 100. Springer, Boston (2007).
https://doi.org/10.1007/978-0-387-38274-6

16. Forrester, J., et al.: coin-or/Cbc: Version 2.10.5, March 2020
17. Jones, K.S.: A statistical interpretation of term specificity and its application in

retrieval. J. Document. 28, 11–21 (1972)
18. Kilitcioglu, D., Kadioglu, S.: Representing the unification of text featurization

using a context-free grammar. In: Proceedings of the AAAI Conference on Artificial
Intelligence (2021)

19. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recom-
mender systems. Computer 42(8), 30–37 (2009)

20. Lake, T., Williamson, S.A., Hawk, A.T., Johnson, C.C., Wing, B.P.: Large-scale
collaborative filtering with product embeddings. CoRR abs/1901.04321 (2019)

21. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning, pp. 1188–1196 (2014)

http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-662-39778-7_10
https://doi.org/10.1007/978-3-662-39778-7_10
https://doi.org/10.1007/978-0-387-38274-6

444 S. Kadıoğlu et al.

22. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In:
Advances in Neural Information Processing Systems, pp. 556–562 (2001)

23. Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state
of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.)
Recommender Systems Handbook, pp. 73–105. Springer, Boston (2011). https://
doi.org/10.1007/978-0-387-85820-3 3

24. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

25. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

26. Mehrotra, R., Shah, C., Carterette, B.A.: Investigating listeners’ responses to diver-
gent recommendations. In: Santos, R.L.T., et al. (eds.) RecSys 2020: Fourteenth
ACM Conference on Recommender Systems, Virtual Event, Brazil, 22–26 Septem-
ber 2020, pp. 692–696. ACM (2020)

27. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

28. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

29. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP), pp.
1532–1543 (2014)

30. Quadrana, M., Karatzoglou, A., Hidasi, B., Cremonesi, P.: Personalizing session-
based recommendations with hierarchical recurrent neural networks. In: Cre-
monesi, P., Ricci, F., Berkovsky, S., Tuzhilin, A. (eds.) Proceedings of the Eleventh
ACM Conference on Recommender Systems, RecSys 2017, Como, Italy, 27–31
August 2017, pp. 130–137. ACM (2017)

31. Rendle, S.: Factorization machines. In: Webb, G.I., Liu, B., Zhang, C., Gunopulos,
D., Wu, X. (eds.) ICDM 2010, The 10th IEEE International Conference on Data
Mining, Sydney, Australia, 14–17 December 2010, pp. 995–1000. IEEE Computer
Society (2010)

32. Ricci, F., Rokach, L., Shapira, B. (eds.): Recommender Systems Handbook.
Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6

33. Ryan, T.P., Morgan, J.: Modern experimental design. J. Stat. Theory Pract. 1(3–
4), 501–506 (2007)

34. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Platt, J.C.,
Koller, D., Singer, Y., Roweis, S.T. (eds.) Advances in Neural Information Pro-
cessing Systems 20, Proceedings of the Twenty-First Annual Conference on Neu-
ral Information Processing Systems, Vancouver, British Columbia, Canada, 3–6
December 2007, pp. 1257–1264. Curran Associates, Inc. (2007)

35. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1715–1725. Association
for Computational Linguistics, Berlin, Germany, August 2016

36. Strong, E., Kleynhans, B., Kadioglu, S.: MABWiser: a parallelizable contextual
multi-armed bandit library for Python. In: 2019 IEEE 31st International Confer-
ence on Tools with Artificial Intelligence (ICTAI 2019), pp. 885–890. IEEE (2019).
https://github.com/fidelity/mabwiser

37. Thompson, W.R.: On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika 25, 285–294 (1933)

https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1007/978-0-387-85820-3_3
http://arxiv.org/abs/1802.03426
https://doi.org/10.1007/978-1-4899-7637-6
https://github.com/fidelity/mabwiser

Optimized Item Selection 445

38. Toffolo, T.A.M., Santos, H.G.: Python-MIP: Version 1.9.1. https://www.python-
mip.com/

39. Valko, M., Korda, N., Munos, R., Flaounas, I., Cristianini, N.: Finite-time analysis
of kernelised contextual bandits. In: Proceedings of the Twenty-Ninth Conference
on Uncertainty in Artificial Intelligence, pp. 654–663 (2013)

40. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001). https://
doi.org/10.1007/978-3-662-04565-7

41. Wan, M., McAuley, J.J.: Item recommendation on monotonic behavior chains. In:
Pera, S., Ekstrand, M.D., Amatriain, X., O’Donovan, J. (eds.) Proceedings of the
12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC,
Canada, 2–7 October 2018, pp. 86–94. ACM (2018)

42. Wan, M., Misra, R., Nakashole, N., McAuley, J.J.: Fine-grained spoiler detection
from large-scale review corpora. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.)
Proceedings of the 57th Conference of the Association for Computational Linguis-
tics, ACL 2019, Florence, Italy, 28 July–2 August 2019, Volume 1: Long Papers,
pp. 2605–2610. Association for Computational Linguistics (2019)

43. Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions.
CoRR abs/1708.05123 (2017)

44. Wu, C., Alvino, C.V., Smola, A.J., Basilico, J.: Using navigation to improve rec-
ommendations in real-time. In: Sen, S., Geyer, W., Freyne, J., Castells, P. (eds.)
Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA,
USA, 15–19 September 2016, pp. 341–348. ACM (2016)

45. Zhang, S., Yao, L., Sun, A.: Deep learning based recommender system: a survey
and new perspectives. CoRR abs/1707.07435 (2017)

46. Zhao, L., Pan, S.J., Xiang, E.W., Zhong, E., Lu, Z., Yang, Q.: Active transfer learn-
ing for cross-system recommendation. In: DesJardins, M., Littman, M.L. (eds.)
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence,
Bellevue, Washington, USA, 14–18 July 2013. AAAI Press (2013)

https://www.python-mip.com/
https://www.python-mip.com/
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

Improving Branch-and-Bound Using
Decision Diagrams and Reinforcement

Learning

Augustin Parjadis1(B), Quentin Cappart1, Louis-Martin Rousseau1,
and David Bergman2

1 École Polytechnique de Montréal, Montreal, Canada
{augustin.parjadis-de-lariviere,quentin.cappart,

louis-martin.rousseau}@polymtl.ca
2 University of Connecticut, Storrs, CT 06260, USA

david.bergman@uconn.edu

Abstract. Combinatorial optimization has found applications in
numerous fields, from transportation to scheduling and planning. The
goal is to find an optimal solution among a finite set of possibilities.
Most exact approaches use relaxations to derive bounds on the objective
function, which are embedded within a branch-and-bound algorithm.
Decision diagrams provide a new approach for obtaining bounds that,
in some cases, can be significantly better than those obtained with a
standard linear programming relaxation. However, it is known that the
quality of the bounds achieved through this bounding method depends on
the ordering of variables considered for building the diagram. Recently, a
deep reinforcement learning approach was proposed to compute a high-
quality variable ordering. The bounds obtained exhibited improvements,
but the mechanism proposed was not embedded in a branch-and-bound
solver. This paper proposes to integrate learned optimization bounds
inside a branch-and-bound solver, through the combination of reinforce-
ment learning and decision diagrams. The results obtained show that the
bounds can reduce the tree search size by a factor of at least three on
the maximum independent set problem.

Keywords: Decision diagrams · Branch-and-bound · Reinforcement
learning.

1 Introduction

Historically introduced for encoding Boolean functions and used for circuit
design and verification [10,21], Decision Diagrams (DDs) have recently been
reapplied in the field of combinatorial optimization [2,8,17], for example to
sequencing problems [13] or the multidimensional bin packing problem [18].
Assuming a maximization objective, the optimal solution can be obtained in
polynomial time in respect to the size of the decision diagram by following the
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 446–455, 2021.
https://doi.org/10.1007/978-3-030-78230-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_28

Improving Branch-and-Bound Using DDs and RL 447

longest path from the root to the terminal node of an exact DD. However, the
size of exact DDs grows exponentially with the number of variables, which make
them unsuitable for solving large problems. Recently, decision diagrams pro-
vided new means of obtaining bounds for combinatorial optimization problems
that can be significantly better than those obtained via a traditional linear pro-
gramming relaxation [6]. Bergman et al. [9] proposed to use DDs to encode a
parametrizable and tractable approximation of the solution set. Such structures
are referred to as approximate DDs.

The performance of this procedure highly depends on the ordering of the
variables used to create the DDs. Better ordering can lead to tighter optimization
bounds, which results in fewer nodes explored during the BnB search and an
expected solution time reduction. Nevertheless, finding an ordering that yields
the best bound is NP-hard and difficult to model. Typically heuristics have been
considered for defining variable ordering [5] and only a few limited studies have
proposed exact approaches for specific problem classes (see, e.g. [4]). Recently,
Cappart et al. [12] proposed a deep reinforcement learning (DRL) [3,20] approach
for computing the variable ordering. The idea is to train an agent to build a
DD, with the incentive (i.e., the reward) to obtain bounds as tight as possible.
However, this procedure has not been integrated in a BnB algorithm.

The contribution this paper makes is to illustrate the benefits and challenges
of using both primal and dual bounds obtained with DRL-guided DDs within a
BnB procedure. As a first experiment we apply this algorithm to the maximum
independent set problem (MISP). Our preliminary results show that the proposed
approach is able to prove optimality with significantly fewer nodes explored,
due to the better bounds obtained. However, it is done at the expense of a
significant increase in the execution time, as a deep neural network has to be
called multiple times at each BnB node. An improved algorithm which uses
caching and restricts the use of the DRL agent is also presented, and proves
efficient on larger problems.

This paper introduces some preliminaries for DDs and reinforcement learning
before presenting the BnB algorithm, followed by experimental results. Finally,
the limitations of the current approach and directions for future research are
discussed.

2 Learning Bounds Inside Branch-and-Bound

2.1 Decision Diagram-Based Branch-and-Bound

The DDs used in this work are Binary Decision Diagrams (BDDs), although
the generalization to multi-valued decision diagrams is immediate. A BDD B =
(U,A, d) is a directed acyclic multi-graph in which the node set U is partitioned
into layers L1, . . . , Ln+1. The set of solutions for a problem can be represented by
a BDD in which each path from the root node r to the terminal node t encodes a
feasible solution: each arc along the path gives the value of the variable associated
with the layer the arc starts from, and a longest path in the diagram gives an
optimal solution to the problem. Conversely, each feasible solution can be found

448 A. Parjadis et al.

in the BDD. Each layer L1, . . . , Ln is associated with a unique variable xk of the
problem with k ∈ {1, . . . , n}. Each arc a ∈ A goes from one layer to the next and
has label d(a) ∈ {0, 1} that encodes the values of the layer’s associated binary
variable.

For larger problems in combinatorial optimization, BnB algorithms are
widely used to generate a search tree of manageable size using optimization
bounds. Such bounds can be obtained via feasible solutions and linear relax-
ation, and we focus here on how approximated DDs provide a simple alter-
native for computing bounds. An exact DD can be relaxed by merging nodes
of a layer to narrow the diagram without removing any solutions, but adding
unfeasible solutions [9]. A relaxed DD provides a dual bound when solved, the
quality of which depends on the amount of merging operations done. Likewise, a
restricted DD can be created by removing nodes of an exact DD; some solutions
are deleted but none are created, yielding a subset of solutions that can pro-
vide a primal bound. A branching process can also be conducted on DD nodes,
which provides a complete BnB scheme based on DDs as an alternative to the
classic linear programming-based BnB. A DD-based BnB algorithm is described
in Algorithm 2. Detailed information is proposed by Bergman et al. [5].

2.2 Variable Ordering and Reinforcement Learning

Recently, a machine learning approach has been proposed to address the NP-
hard problem of variable ordering for DDs [12] using reinforcement learning
(RL) [24]. The goal of a RL agent is to maximize the expected sum of rewards
obtained by learning a behavior policy. In the case of DD construction, the
agent incrementally builds an approximated DD and observes the bound given
by the partially built diagram. The rewards given as feedback are defined by the
evolution of the bound obtained (a reduction of an upper bound is encouraged,
whereas an increase is penalized and vice versa for a lower bound). The state
observed by the agent is a function of the problem instances and of the variables
already added in the current DD. An action consists in selecting a new variable
to add to the next layer of the DD. Finding a policy maximizing the action-value
function for all states and actions is hard and a practical solution is to compute
an approximation of Q using a Q-learning algorithm [25] applied to a graph
neural network. The exact procedure can be found in can be found in [12].

2.3 The Branch-and-Bound Algorithm with a RL Agent

This section presents the main contribution of the paper: how to implement a
BnB algorithm using DDs together with RL. The process is as follows. At each
node explored during a DD-based BnB algorithm, a relaxed and a restricted DD
are built and an ordering for the variables left at this stage of the search has to
be determined for each DD. Currently, heuristics that try to greedily limit the
width of the DD are used, and perform much better than simple lexicographic
or random orderings.

Improving Branch-and-Bound Using DDs and RL 449

We propose to work on the ordering of the approximate DDs by using a RL
agent on a graph embedding rather than handcrafted heuristics. Two steps are to
be considered for building this agent: (1) a training phase, consisting of learning
a good policy for the problem at hand, and (2) a solving phase, corresponding
to the execution of the BnB algorithm.

Vectorized Representation. A graph neural network (GNN) [11,19] is used
to obtain a vectorized representation of a graph by computing node embeddings.
The vectorization is built as follows: (1) the problem instance is represented as
a graph (e.g., a MISP instance), (2) each vertex/edge of the nodes are decorated
with relevant features (e.g. the weight of each vertex), (3) A GNN is used to
obtain an d-dimensional embedding for each vertex of the graph, and (4) the
embedding is given as input to a fully-connected neural network in order to
obtain the final Q-values that are used for the prediction, indicating the quality
of each vertex to be inserted in the current embedding.

Training Phase. The training is based on neural fitted Q-learning with a set
of randomly generated graphs, and returns the weights w for the approximated
action-value function Q̂. The Q-value approximation is obtained with the use of
a GNN with the library structureToVec [14]. The standard Q-learning algo-
rithm can be enriched in several classic ways, among which are mini-batches to
guarantee a better gradient descent based on several examples instead of one,
reward scaling for a better handling of large reward quantities and an adaptive
ε-greedy policy to move away from a local optimum, balancing exploration and
exploitation. Details on the learning phase can be found in [12]. As the training
uses the bound obtained via the partially built DD, the RL agent is dependent
on the type of bound used. Therefore we consider two agents, one trained for
relaxed DDs for which a low value upper bound is desired, and the other for
restricted DDs for which the highest possible lower bound is desired. Once the
parameters w for the Q-value have been learned, a simple policy can be derived
as described below.

Solving Phase. The solver uses a trained RL agent each time a DD is devel-
oped. Algorithm 1 describes how an ordering is obtained by calling the agent
several times, and Algorithm 2 describes the BnB algorithm using the DDs con-
structed with the RL agents. New variable orderings are computed at each node
of the BnB to build the restricted and relaxed DDs. The RL agent is designed
to obtain high-quality bounds, which then allows to update the lower bound or
prune the node if applicable. Let But be the DD induced by all nodes and paths
going from u to t (which gives in particular Brt = B). If But is an exact DD,
B′

ut designates a restriction and But a relaxation of But. If a restricted DD B′
ut

is exact, no restriction was needed and thus no branching is performed. The
variable orderings are obtained as described below.

In Algorithm 1, the state of the problem is given to the agent that responds
with the Q-values for each variable. The variable u that maximizes the Q-value

450 A. Parjadis et al.

Algorithm 1. DD construction with RL agent
1: B = ({L1, . . . , Ln}, A, d) an empty DD, to be built with the variables V
2: for j ∈ {1, n} do
3: u = argmaxa∈V Q̂(s, a,w)
4: build layer Lj with the variable u
5: V ← V \{u}, bu = 1
6: end for
7: return B

learned by the GNN is chosen and added to the partially built DD. A feature
bu for each u ∈ V indicates if a variable has already been selected for the
DD construction. After the selection of the variable u, the feature is updated.
This modifies the state of the problem, so the Q-values are computed again to
select the next variable. The process continues until all the variables have been
considered and the DD is complete.

Algorithm 2. DD based branch-and-bound, 2 RL agents
1: zopt = −∞, Q = {r}
2: while Q �= ∅ do
3: select node u ∈ Q
4: create restricted DD B′

ut with Algorithm 1
5: if v∗(B′

ut) > zopt then zopt = v∗(B′
ut) end if

6: if B′
ut non exact then

7: create relaxed DD But with Algorithm 1
8: if not pruned, select exact cutset to add to Q
9: end if

10: end while

Complexity. Obtaining a variable ordering by calling a GNN is expensive
because of the nature of the steps involved. The node embeddings are created by
a message passing algorithm and fed to a fully connected neural network. This
has to be done for each variable in the ordering, resulting in a time complexity
of O(|E| × n2). In the next section, Algorithm 1 for variable ordering is com-
pared against a classic heuristic called MinState, which has a time complexity
of O(w × n); with w the width of the DD. The additional complexity brought
by the GNN should thus have to be justified with an efficient node reduction
during the BnB.

3 Experimental Results

The goal of the first set of experiments is to show that a significant reduction of
nodes explored in the tree search is possible with a well trained GNN. However,
it is done at the expense of the computation time. The second experiment shows

Improving Branch-and-Bound Using DDs and RL 451

how this issue can be mitigated using a caching mechanism, and a hybrid heuris-
tic. Similar to previous works [7,12], the case study considered is the maximum
independent set problem (MISP). The solver is written in C++ and is imple-
mented upon the code of Cappart et al. [12] for the RL agent part and Bergman
et al. [5] for the DD-based BnB. The learning and the solving were ran on a
Dell XPS 15 9570 with a Intel i7-8750H 2.20 GHz CPU. The training time was
limited to eight hours. All instances considered have been randomly generated
using a Barabasi-Albert scheme with the density parameter ν = 4 [1].

Definition 1 (Maximum Independent Set Problem). An independent set
I in a weighted graph G = (V,E) is a subset I ⊆ V in which 2 vertices
cannot be adjacent. The problem consists of finding an independent set of
maximum weight, i.e. maximizing the function f(x) =

∑|V |
k=1 wkxk such that

∀(i, j) ∈ E, xi + xj ≤ 1 with xk indicating whether the vertex k is selected or
not, and wk being the weight associated to this vertex.

3.1 Performances of the Learned Variable Ordering

We plot in Fig. 1 the number of nodes explored during the DD-based BnB over
100 random instances. For the variable orderings, the GNN algorithm uses a
GNN trained for relaxation over random graphs with the same distribution.
Restriction is still done with a MinState ordering. The GNN consists of 4 iter-
ations of belief propagation and a neural network with 2 layers of size 64. The
heuristic algorithm uses MinState for relaxation and restriction. The results can
be found in Table 1, with the average time in seconds. We can see that even
if the number of nodes is drastically reduced, the execution time remains an
important concern compared to MinState. Figure 1 shows the percentage of the
graphs solved under a given number of nodes in performance profile [22]: the
higher the curve, the better. Overall, the number of nodes needed to solve all
the MISP instances is typically reduced by a factor of three to four with the RL
agent for graphs over 100 nodes, noting that 90% of the instances were solved
in fewer nodes.

Table 1. Average time and nodes explored for 100 MISP instances of size n

Algorithm n = 80 n = 100 n = 120

Nodes Time Nodes Time Nodes Time

GNN 1416 16.70 4628 79.90 34434 878.10

GNN+ 2131 2.40 13152 10.00 81015 41.10

MinState 2802 0.32 22680 5.30 100822 40.40

3.2 Caching to Save Computation Time

To avoid calling the agent too often and speed-up the resolution, the GNN-
computed orderings are stored and re-used for subsequent DDs that might have

452 A. Parjadis et al.

(a) n = 80 (b) n = 100

Fig. 1. Performance profile of a GNN agent and MinState for variable ordering over
100 instances of the MISP

a similar structure. To re-use an ordering, the number of variables for the current
DD has to be close to the number of variables of the stored ordering and be
included in it. When the number of variable differs too much, the stored ordering
can be quite poor for the current DD (similar to a random ordering). This
sacrifices some precision in favor of computational efficiency. Furthermore, the
computation time bottleneck is expressed the most when it is needed the least,
which is at the end of the BnB tree for small DDs. Bound improvements there
are small and do not have major consequences, and small DDs are very fast to
build with little need for a GNN. We experiment on the use of the RL agent
before a given threshold for the number of nodes (here, 100 BnB nodes), and the
use of the MinState heuristic after this threshold to close the search faster. Those
improvements are natural given the cost of a GNN feed-forward operation, and
we observe in Table 1 and in Fig. 2 with the algorithm GNN+ that the average
number of nodes explored during a search can in fact be effectively reduced while
keeping a competitive solving time for large problems.

3.3 Discussion

As highlighted in the experiment, the learned bounds can be successfully lever-
aged in the solver in order to reduce the number of nodes explored. However,
the execution time is an important bottleneck, which makes the hybridization
challenging to design, and additional mechanisms should be considered in order
to improve the efficiency. Caching is one of them but is still not enough. We
made other attempts to get improvements, such as (1) using the same agent for
the restriction and the relaxation, (2) using a fixed ordering during the com-
plete BnB process instead of dynamically recomputing it, (3) calling the GNN
only every n steps or at random intervals, but without much success. We believe
that finding other ways to improve is a promising research direction. A simi-
lar question has been addressed by Gupta et al. [16] for standard MIP solvers.
They show that expressive and costly GNNs can be combined with inexpressive

Improving Branch-and-Bound Using DDs and RL 453

but cheap fully connected neural networks in order to obtain a better trade-off
between prediction quality and computational efficiency.

)s(emit,021=n)b(sedon,021=n)a(

Fig. 2. Performance profile of an improved GNN agent and MinState for variable order-
ing over 100 instances of the MISP

4 Conclusion

DDs provide a new flexible and general methodology for generating tight bounds
for optimization problems, and DD-based BnB algorithms are often competitive
with recent integer programming solvers. This paper presents a method that
takes advantages of the flexibility of DDs for bound generation in BnB through
machine learning. The reduction of the number of nodes indicates that this is
a promising research direction, but subject to important challenges (e.g. the
execution time). The generic nature of DD construction and BnB solving for
discrete optimization problems makes for an interesting combination, with pos-
sible application to other problem classes like the maximum cut problem [6], the
set covering problem [9] and the traveling salesperson problem [15,23].

The next step to better bridge the gap between machine learning and opti-
mization would involve a general framework that takes advantage of the graph
structure and recursive formulation of a problem by learning to construct DDs
with high quality bounds for the problem, and solving it with an efficient BnB
algorithm. Data generation for the training step would remain a challenge.

The use of machine learning to generate both lower and upper bounds for
combinatorial optimization proved efficient and opens the door to multiple pos-
sibilities for future research on the integration of these disciplines. Applying
deep learning tools to optimization faces practical bottlenecks that have to be
overcome for practical applications and broad adoption in exact optimization
solvers.

454 A. Parjadis et al.

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97 (2002)

2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol.
4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74970-7 11

3. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: A brief survey
of deep reinforcement learning. CoRR abs/1708.05866 (2017). http://arxiv.org/
abs/1708.05866

4. Behle, M.: On threshold BDDs and the optimal variable ordering problem. In:
Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 124–135.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73556-4 15

5. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization
with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016)

6. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.: Decision Diagrams for
Optimization. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42849-9

7. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Variable ordering for the
application of BDDs to the maximum independent set problem. In: Beldiceanu, N.,
Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 34–49. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29828-8 3

8. Bergman, D., Cire, A.A., van Hoeve, W.J., Yunes, T.: BDD-based heuristics for
binary optimization. J. Heuristics 20(2), 211–234 (2014). https://doi.org/10.1007/
s10732-014-9238-1

9. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for
combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011.
LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21311-3 5

10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 100(8), 677–691 (1986)

11. Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris, C., Veličković, P.: Com-
binatorial optimization and reasoning with graph neural networks. arXiv preprint
arXiv:2102.09544 (2021)

12. Cappart, Q., Goutierre, E., Bergman, D., Rousseau, L.M.: Improving optimiza-
tion bounds using machine learning: decision diagrams meet deep reinforcement
learning. Proc. AAAI Conf. Artif. Intell. 33, 1443–1451 (2019)

13. Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing prob-
lems. Oper. Res. 61(6), 1411–1428 (2013). https://doi.org/10.1287/opre.2013.1221

14. Dai, H., Dai, B., Song, L.: Discriminative embeddings of latent variable models for
structured data. In: International Conference on Machine Learning, pp. 2702–2711
(2016)

15. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.-M.: Learning
heuristics for the TSP by policy gradient. In: van Hoeve, W.-J. (ed.) CPAIOR
2018. LNCS, vol. 10848, pp. 170–181. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93031-2 12

16. Gupta, P., Gasse, M., Khalil, E., Mudigonda, P., Lodi, A., Bengio, Y.: Hybrid
models for learning to branch. In: Advances in Neural Information Processing
Systems, vol. 33 (2020)

https://doi.org/10.1007/978-3-540-74970-7_11
https://doi.org/10.1007/978-3-540-74970-7_11
http://arxiv.org/abs/1708.05866
http://arxiv.org/abs/1708.05866
https://doi.org/10.1007/978-3-540-73556-4_15
https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1007/978-3-642-29828-8_3
https://doi.org/10.1007/s10732-014-9238-1
https://doi.org/10.1007/s10732-014-9238-1
https://doi.org/10.1007/978-3-642-21311-3_5
https://doi.org/10.1007/978-3-642-21311-3_5
http://arxiv.org/abs/2102.09544
https://doi.org/10.1287/opre.2013.1221
https://doi.org/10.1007/978-3-319-93031-2_12
https://doi.org/10.1007/978-3-319-93031-2_12

Improving Branch-and-Bound Using DDs and RL 455

17. Hadzic, T., Hooker, J.: Postoptimality analysis for integer programming using
binary decision diagrams. In: GICOLAG Workshop (Global Optimization), Vienna.
Technical report, Carnegie Mellon University (2006)

18. Kell, B., van Hoeve, W.-J.: An MDD approach to multidimensional bin packing.
In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 128–143.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38171-3 9

19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

20. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–44 (2015).
https://doi.org/10.1038/nature14539

21. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Syst. Tech. J. 38(4), 985–999 (1959)

22. Moré, J.J., Dolan, E.D.: Benchmarking optimization software with perfor-
mance profiles. Math. Program. 91, 201–213 (2002). https://doi.org/10.1007/
s101070100263

23. O’Neil, R.J., Hoffman, K.: Decision diagrams for solving traveling salesman prob-
lems with pickup and delivery in real time. Oper. Res. Lett. 47(3), 197–201 (2019)

24. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

25. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992).
https://doi.org/10.1007/BF00992698

https://doi.org/10.1007/978-3-642-38171-3_9
http://arxiv.org/abs/1609.02907
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/BF00992698

Physician Scheduling During a Pandemic

Tobias Geibinger1, Lucas Kletzander1(B), Matthias Krainz2, Florian Mischek1,
Nysret Musliu1, and Felix Winter1

1 Christian Doppler Laboratory for Artificial Intelligence and Optimization
for Planning and Scheduling, DBAI, TU Wien, Vienna, Austria

{tgeibing,lkletzan,fmischek,musliu,winter}@dbai.tuwien.ac.at
2 St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria

matthias.krainz@stanna.at

Abstract. At the beginning of the pandemic last year some hospitals
had to change their physician schedules to take into account infection
risks and potential quarantines for personnel. This was especially impor-
tant for hospitals that care for high-risk patients, like the St. Anna Chil-
dren’s Hospital in Vienna, which is a tertiary care center for pediatric
oncology. It was very important to develop solving methods for this com-
plex problem in short time. We relied on constraint solving technology
which proved to be very useful in such critical situations. In this paper we
present a constraint model that includes the variety of requirements that
are needed to ensure day-to-day operations as well as the additional con-
straints imposed by the pandemic situation. We introduce an innovative
set of grouping constraints to partition the staff, with the intention to
easily isolate a small group in case of an infection. The produced sched-
ules also keep part of the staff as backup to replace personnel in quaran-
tine. In our case study, we evaluate and compare our proposed model on
several state-of-the-art solvers. Our approach could successfully produce
a high-quality schedule for the considered real-world planning scenario,
also compared to solutions found by human planners with considerable
effort.

Keywords: Physician scheduling · COVID-19 · Constraint
programming

1 Introduction

Scheduling staff in a hospital can usually be seen as a rostering problem, where
personnel are assigned to shifts to meet daily demands. In this paper we consider
a real-world problem occurring in the St. Anna Children’s Hospital in Vienna,
where the normal scheduling procedures had to be rapidly adapted due to an
ongoing pandemic. In addition to ordinary operational requirements, we also
need to take additional constraints about infection risk into account. For exam-
ple, it would be unwise for doctors to change their assigned stations frequently,
as they would risk coming into contact with more of their colleagues and more
c© Springer Nature Switzerland AG 2021
P. J. Stuckey (Ed.): CPAIOR 2021, LNCS 12735, pp. 456–465, 2021.
https://doi.org/10.1007/978-3-030-78230-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78230-6_29&domain=pdf
https://doi.org/10.1007/978-3-030-78230-6_29

Physician Scheduling During a Pandemic 457

patients. Also, an important goal is to maintain a low total number of working
doctors to reduce unnecessary infection risk and keep some physicians in reserve
to cover for colleagues in quarantine.

Recently, the emergency scenarios during the pandemic have been considered
in the pharmaceutical industry and for nurse rostering in [1,2]. However, in this
paper we focus on a new physician scheduling problem [3], which to the best of
our knowledge includes unique features and pandemic related constraints.

To produce schedules that can deal with these new and complex requirements,
we developed a Constraint Programming (CP) model that allowed us to quickly
prototype a model and adapt it to changing requirements. CP approaches have
been applied for other physician scheduling and related problems [4–7], although
without consideration of pandemic-related constraints. We also included several
redundant constraints to the model and evaluated it on several state-of-the-art
CP and mixed integer programming (MIP) solvers. We were able to quickly find
high-quality solutions under several different configurations.

Our model was used to produce the schedule for the physicians in two hos-
pital wards of the St. Anna Children’s hospital. We show that the additional
constraints can help in reducing the contacts both between physicians and with
their patients, compared to work schedules generated under normal conditions.

The rest of this work is structured as follows: In Sect. 2 we describe the
problem in detail. In Sect. 3 we present experimental results and briefly go over
different usage scenarios in practice.

2 Problem Description and Constraint Model

2.1 Input Parameters and Decision Variables

Table 1 provides an overview of all problem input parameters. Given is a set
of departments D and a set of stations S. Each station s is associated with a
department vs ∈ D. If work on a station s requires contact and collaboration
with the whole department it is referred to as a common station s ∈ C ⊆ S. A
regular station can be considered as a sub-area of a department.

The aim is to schedule a set of physicians P to a set of skills K on the
different stations. Physicians have preferences for every combination of a station
and a skill. These preferences are given by pi,s,k ∈ {0, 1, 2, 3, 4} with i ∈ P ,
s ∈ S, k ∈ K, where lower values mean a higher preference and a value of 4
indicates that the particular station and skill cannot be assigned to the respective
physicians.

A subset of the personnel R ⊆ P is at high risk for COVID-19 and should
work in departments with lower risk of exposure to COVID-19 patients as stated
by rv for department v. Another subset A ⊆ P must work in the current planning
period (usually because they were part of the reserve previously). Each physician
i has a corresponding maximum number of working hours per week wi and
a (possibly empty) set of days Fi where they are not allowed to work (e.g.
vacation).

458 T. Geibinger et al.

Table 1. Input parameters of the physician scheduling problem

Description Parameter

Length of scheduling horizon in days n (n ≡ 0 mod 7)

Scheduling horizon L = {1, . . . , n}
Set of departments D (D+ = D ∪ {0})

Set of stations S (S+ = S ∪ {0})

Department of station vs ∀s ∈ S+ (v0 = 0)

Set of common stations C ⊆ S

Set of physicians P

Set of skills K (K+ = K ∪ {0})

Station and skill preferences pi,s,k ∈ N ∀i ∈ P, s ∈ S, k ∈ K

Set of high-risk physicians R ⊆ P

Department risk score rv ∀v ∈ D (r0 = 0)

Set of physicians that have to work A ⊆ P

Maximum working hours per week wi ∈ N ∀i ∈ P

Set of forbidden working days Fi ⊆ L ∀i ∈ P

Set of shifts (0 is a dummy denoting a day off) T (T+ = T ∪ {0})

Length of a shift in hours lt ∈ N ∀t ∈ T+ (l0 = 0)

Forbidden shift successors Qt ⊆ T ∀t ∈ T+ (Q0 = 0)

Cover requirements (shift demands) ds,t,j,k ∈ N ∀s ∈ S, t ∈ T, j ∈ L, k ∈ K

Set of subsuming shifts U

Department of subsuming shift dpu ∈ D ∀u ∈ U

Cover requirements of subsuming shifts dsu,j ∈ N ∀u ∈ U, j ∈ L

Skillset of subsuming shift Vu ⊆ K ∀u ∈ U

Note that a history of previous assignments is also used for a seamless tran-
sition. For brevity it can be found in the appendix.1

The planning horizon (or length of the schedule) n is the number of days in
the current scheduling period L. The set of possible shifts is T , where each t ∈ T
is associated with a length lt in hours and a set of forbidden successors Qt that
must not be assigned on the following day.

Demand is given as a 4-dimensional matrix where ds,t,j,k denotes the number
of employees required to work shift t in station s using skill k on day j. This
demand matrix is supplemented by subsumed demands, which indicate that some
regular shifts (1) in any single (non-common) station of a department should
be replaced by a 24-h shift (2). The reasoning for this is that regular shifts
are distributed over different stations of a department, while for the night a
qualified physician can cover multiple stations simultaneously. Therefore, this
demand can neither be fixed to one particular station nor one particular skill.
Instead, we define a requirement for 24-h shifts that replace (subsume) a given
number of regular shifts. The total set of these replacements is U . The parameter
dpu references the department affected by replacement u. For each day j in the

1 See https://cdlab-artis.dbai.tuwien.ac.at/papers/pandemic-scheduling/.

https://cdlab-artis.dbai.tuwien.ac.at/papers/pandemic-scheduling/

Physician Scheduling During a Pandemic 459

planning horizon, dsu,j denotes the number of shifts that should be replaced
across the whole department. These shifts must be chosen from those using any
of the skills listed in Vu.

We demonstrate the use of subsumed demands via a simple example (Fig. 1)
for one department on a single day. Here, one of the regular shifts of a senior
physician or physician in any of the three non-common stations must be replaced
by a 24-h shift. In the example schedule on the right, this is the shift of physician
P4 in station S2. Alternatively, the shift of physician P2 in station S1 could also
have been chosen.

Fig. 1. Example demand for a single department and day. The department has 3
stations, plus a common station (Cm) and demand during the day shift for three
different skills: Senior physician (SP), physician (P), and Assistant (Ass).

A solution either assigns a day off (value 0) or a shift, skill, and station to
all physicians on each day of the horizon using the decision variables in Table 2.

Table 2. Decision variables of the physician scheduling problem

Description Variable

Assigned shift per physician and day xi,j ∈ T+ ∀i ∈ P, j ∈ L

Assigned skill per physician and day yi,j ∈ K+ ∀i ∈ P, j ∈ L

Assigned station per physician and day zi,j ∈ S+ ∀i ∈ P, j ∈ L

2.2 Hard Constraints

The first set of constraints ensures that a physician either has a day off (all cor-
responding variables are 0) or has a proper shift, skill, and station assignment:2

([xi,j = 0] + [yi,j = 0] + [zi,j = 0]) ∈ {0, 3} ∀i ∈ P, j ∈ L (1)

2 We make use of the Iverson brackets: [P] = 1, if P = true and [P] = 0 if P = false.

460 T. Geibinger et al.

The sequence constraints handle limitations for work assignments on consec-
utive days. The maximum number of consecutive shifts is limited to 6, thus at
least one out of every 7 consecutive days needs to be off.

6∨

k=0

(xi,j+k = 0) ∀i ∈ P, j ∈ {1, . . . , n − 6} (2)

Forbidden shift sequences are excluded by checking after assignment of shift t
on day j that the shift on day j + 1 is not in the forbidden set Qt.

xi,j+1 �∈ Q(xi,j) ∀i ∈ P, j ∈ {1, . . . , n − 1} (3)

The personalized assignment constraints handle individual personnel limita-
tions for assignments. First, the maximum number of working hours per week is
checked for each physician.3 For each week the sum of shift lengths lt for all t
that are assigned in this week is bounded by wi.

7∑

k=1

l(xi,(7·j+k)) ≤ wi ∀i ∈ P, j ∈ {0, . . . , n
7

− 1} (4)

Secondly, forbidden days are handled by fixing xi,j = 0 for all j ∈ Fi.

xi,j = 0 ∀i ∈ P, j ∈ Fi (5)

The given demand needs to be covered exactly. The relevant demand con-
straints check that for each combination of station s, shift t and skill k the
number of assigned physicians on each day j matches the demand ds,t,j,k.

∑

i∈P

[xi,j = t ∧ zi,j = s ∧ yi,j = k] = ds,t,j,k

∀s ∈ S, t ∈ T, j ∈ L, k ∈ K where t > 2 ∨ s ∈ C (6)

However, there is an exception for shift types 1 (regular) and 2 (24-h) on non-
common stations. Here, assignments of 24-h shifts also count towards the demand
for regular shifts, since a 24-h shift functions as an extension of a regular shift.
The additional constraint for subsumption u checks that the number of physi-
cians assigned a 24-h shift on any non-common station of the correct department
with any skill in Vu needs to match dsu,j on each day j.

∑

i∈P

[xi,j ∈ {1, 2} ∧ zi,j = s ∧ yi,j = k] = ds,1,j,k ∀s ∈ S \ C, j ∈ L, k ∈ K (7)

∑

i∈P

[xi,j = 2 ∧ v(zi,j) = dpu ∧ zi,j �∈ C ∧ yi,j ∈ Vu] = dsu,j ∀u ∈ U, j ∈ L (8)

3 Weeks are assumed to start on the first day of the schedule.

Physician Scheduling During a Pandemic 461

Two additional limits are defined for these assignments: Some assignments are
impossible, when pi,s,k = 4 for physician i, station s, and skill k on each day j.

pi,(xi,j),(yi,j) < 4 ∀i ∈ P, j ∈ L (9)

Changing the department is a major risk and therefore prohibited. For physician
i the assignment of each station s in the current schedule needs to map to the
same department v via vs (days off are mapped to the dummy department 0).
We model this requirement using the nvalue global constraint.

nvalue({v(zi,j)|j ∈ L}) ≤ 2 ∀i ∈ P (10)

Physicians in A ⊆ P are required to work, e.g., because they stayed at home
for the whole previous period. At least one shift needs to be assigned to these
physicians. Note that due to the minimization of the number of working person-
nel, this typically is enough to enforce a regular schedule for these physicians.

∨

j∈L

(xi,j > 0) ∀i ∈ A (11)

2.3 Soft Constraints

The objective function is defined as the following weighted sum, minimizing the
number of working physicians wp (w1 = 50), the sum of preference scores pr
(w2 = 5), the sum of risk penalties r (w3 = 10), and critically the number of
station changes sc (w4 = 500):4

minimize w1 · wp + w2 · pr + w3 · r + w4 · sc (12)

The number of working physicians wp is defined as physicians with at least one
shift assignment in the current schedule.

wp =
∑

i∈P

⎡

⎣
∨

j∈L

(xi,j > 0)

⎤

⎦ (13)

The total preference score pr sums the preference scores of all assignments.

pr =
∑

i∈P

∑

j∈L

pi,(xi,j),(yi,j) (14)

For the next objectives the last station assignment to a non-common station is
tracked by lsi,j . The initial value lsi,0 is 0, the value is updated each day zi,j is
set to a non-common station.

lsi,j =

{
lsi,j−1 if zi,j ∈ C

zi,j otherwise
∀i ∈ P, j ∈ L (15)

4 These weights were determined by the hospital staff.

462 T. Geibinger et al.

The sum of risk penalties is calculated by using the department risk score of the
assigned department (there can be at most one) for each physician i ∈ R.

r =
∑

i∈R

r(v(lsi,n)) (16)

The number of station changes is obtained by counting occurrences of lsi,j−1 �=
lsi,j for all physicians i (unless lsi,j−1 = 0, in case of a previously unused physi-
cian).

sc =
∑

i∈P

∑

j∈L

[lsi,j−1 > 0 ∧ lsi,j �= lsi,j−1] (17)

In addition to the hard and soft constraints we experimented with two sets
of redundant constraints that impose redundant restrictions on the shift require-
ments. Furthermore, we evaluated two custom search strategies plus the solvers’
default search strategy with our model. For details about the redundant con-
straints and search strategies see the appendix of this paper.

3 Experimental Evaluation

We implemented our model using the solver-independent modeling language
MiniZinc 2.5.3 and applied it to create the schedule of a ward of the St. Anna
Children’s hospital for two weeks in April 2020.5 The ward consists of two depart-
ments with three stations (plus the common station) each. There are 26 physi-
cians to be scheduled in the ward, with four different skills. Four configurations
of redundant constraints (none, only group 1, only group 2, and both), combined
with three search strategies, result in a total of twelve different configurations of
our approach.

We evaluated each variant using the state-of-the-art CP and MIP solvers:
CPLEX 20.1 [8], CP Optimizer 20.1 [9], Gecode 6.3.0 [10], Gurobi 9.10 [11],
Chuffed 0.10.4 [12] and OR-Tools 7.8 [13]. Each solver was executed using a
single thread on an Intel Xeon CPUs E5-2650 v4 (2.90 GHz) with a time limit
of one hour and a memory limit of 20 GB.

Neither Chuffed nor Gecode were able to find feasible solutions to the problem
under any configuration within the runtime limit. CP Optimizer found feasible
solutions using 6 out of the 12 variants, exactly those that included the sec-
ond redundant constraint set. The best solution had an objective value of 5880.
OR-Tools managed to find solutions under 10 configurations, achieving the opti-
mal objective value of 1880 in 8 runs. Both Gurobi and CPLEX found feasible
solutions with an objective value of 1880 using all 12 configurations. However,
Gurobi was consistently faster in finding the best solution, and proved optimal-
ity of this solution under 9 configurations, whereas CPLEX and OR-Tools could
not prove optimality. Since Gurobi was already able to find optimal solutions

5 The anonymized instances are available at https://cdlab-artis.dbai.tuwien.ac.at/
papers/pandemic-scheduling/.

https://cdlab-artis.dbai.tuwien.ac.at/papers/pandemic-scheduling/
https://cdlab-artis.dbai.tuwien.ac.at/papers/pandemic-scheduling/

Physician Scheduling During a Pandemic 463

within the one hour time limit, we did not perform experiments using a longer
runtime.

Regarding the impact of the search strategies and redundant constraints,
while the 3 configurations for which Gurobi could not prove optimality within
an hour all included redundant constraint group 2, at the same time the fastest
optimality proof did include these constraints (175 s, using only group 2, with
default search strategy). Other than that, no distinctive trend could be seen with
regards to the redundant constraints or used search strategies.

We note that the performance of the CP solvers may be improved by more
extensive use of global constraints. Based on this, we also formulated con-
straint (2) with global at least constraints, but saw no performance improvement.
Another possible improvement would be to formulate the demand requirements
(6) using global cardinality constraints. However, this would require a major
reformulation of the used decision variables. A solution of optimal quality was
in any case found by Gurobi within at most 75 s regardless of the configuration,
which indicates that using our model with the solver Gurobi is useful to quickly
generate high-quality schedules in practice.

To evaluate the performance on a larger dataset, we constructed a second
instance by doubling all cover requirements and duplicating each employee (lead-
ing to a total of 52 physicians). Both Gurobi and CPLEX were not able to prove
optimality for the second instance within the runtime limit. However, Gurobi
managed to find solutions with an objective value of 3660 in all configurations.
CPLEX found feasible solutions for 11 out of 12 configurations, with 9 of them
reaching the objective value 3660.

3.1 Impact of Pandemic-Related Constraints

We also compared the optimal solution found by our model with the one pro-
duced under “non-pandemic” conditions. Table 3 shows the differences between
the two variants. While the assignments for the physicians in the high-risk group
could not be reduced, two other physicians could be taken off work and placed
in reserve to cover for absences. The main difference however is visible in the
number of stations changes. While in the “non-pandemic” variant physicians
changed their assigned stations 69 times, in the full model only a single change
is necessary due to the additional constraints, which greatly decreases the poten-
tial for infection spreads. Notably, this was possible without compromising the
qualifications and preferences of the physicians at all.

Table 3. Values of the different objectives in an optimal solution.

Objective Full model “Non-pandemic”

Station changes 1 69

Total working 24 26

Risk group working 5 5

Preferences 26 26

464 T. Geibinger et al.

4 Conclusion

In this short paper we introduced a new physician scheduling problem. Novel
constraints were proposed based on the needs of the St. Anna Children’s Hospital
in Vienna during the pandemic. Although our solution approach was developed
for this particular hospital, the ideas considered in this paper are also useful for
generating schedules in other healthcare institutions that must decrease infection
risks. We provided a constraint model that includes pandemic specific constraints
and investigated additional redundant constraints and search strategies.

State-of-the-art solvers were able to obtain very good solutions in a rea-
sonable amount of time, whereas providing such solutions by a human planner
requires scheduling experience and takes much more time. From the practical
point of view, the investigation of solver independent formulations was very
useful, as various solvers could be evaluated quickly. The constraint technology
showed to be very convenient to develop a rapid solution.

For future work it would be interesting to evaluate our approach for instances
of other healthcare institutions and to extend our approach for related problems
such as the nurse rostering problem.

Acknowledgments. The financial support by the Austrian Federal Ministry for Digi-
tal and Economic Affairs, the National Foundation for Research, Technology and Devel-
opment and the Christian Doppler Research Association is gratefully acknowledged.

References

1. Zucchi, G., Iori, M., Subramanian, A.: Personnel scheduling during COVID-19
pandemic. Optim. Lett. 15(4), 1385–1396 (2021)

2. Seccia, R.: The nurse rostering problem in COVID-19 emergency scenario. Tech-
nical report (2020)

3. Erhard, M., Schoenfelder, J., Fügener, A., Brunner, J.O.: State of the art in physi-
cian scheduling. Eur. J. Oper. Res. 265(1), 1–18 (2018)

4. Weil, G., Heus, K., Francois, P., Poujade, M.: Constraint programming for nurse
scheduling. IEEE Eng. Med. Biol. Mag. 14(4), 417–422 (1995)

5. Bourdais, S., Galinier, P., Pesant, G.: hibiscus: a constraint programming applica-
tion to staff scheduling in health care. In: Rossi, F. (ed.) CP 2003. LNCS, vol.
2833, pp. 153–167. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45193-8 11

6. Rousseau, L.-M., Pesant, G., Gendreau, M.: A general approach to the physician
rostering problem. Ann. Oper. Res. 115(1), 193–205 (2002)

7. White, C.A., White, G.M.: Scheduling doctors for clinical training unit rounds
using tabu optimization. In: Burke, E., De Causmaecker, P. (eds.) PATAT 2002.
LNCS, vol. 2740, pp. 120–128. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45157-0 8

8. IBM and CPLEX. 20.1 IBM ILOG CPLEX Optimization Studio CPLEX User’s
Manual (2020). https://www.ibm.com/analytics/cplex-optimizer

9. IBM and CPLEX. 20.1 IBM ILOG CPLEX Optimization Studio CP Optimizer
User’s Manual (2020). https://www.ibm.com/analytics/cplex-cp-optimizer

https://doi.org/10.1007/978-3-540-45193-8_11
https://doi.org/10.1007/978-3-540-45193-8_11
https://doi.org/10.1007/978-3-540-45157-0_8
https://doi.org/10.1007/978-3-540-45157-0_8
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-cp-optimizer

Physician Scheduling During a Pandemic 465

10. Schulte, C., Lagerkvist, M., Tack, G.: Gecode 6.30 reference documentation (2020).
https://www.gecode.org

11. Gurobi Optimization LLC. Gurobi Optimizer Reference Manual (2020). http://
www.gurobi.com

12. Chu, G.: Improving combinatorial optimization. Ph.D. thesis, University of Mel-
bourne, Australia (2011)

13. Laurent Perron and Vincent Furnon. Google OR-Tools 7.8 (2020). https://
developers.google.com/optimization/

https://www.gecode.org
http://www.gurobi.com
http://www.gurobi.com
https://developers.google.com/optimization/
https://developers.google.com/optimization/

Author Index

Ajwani, Deepak 410
Akgün, Özgür 348
Åstrand, Max 365
Avgerinos, Ioannis 315

Baudoui, Vincent 179
Beck, J. Christopher 115
Bergman, David 106, 446
Bjørner, Nikolaj 1
Bleidorn, Dominik R. 133
Bracher, Adrian 283

Cappart, Quentin 392, 446
Cardonha, Carlos 106
Carroll, Paula 410
Chalumeau, Félix 392
Cire, André Augusto 231
Cohen, Eldan 115
Coppé, Vianney 231
Coulon, Ilan 392

Demirović, Emir 62

Engell, Sebastian 133
Enright, Jessica 348

Fabris, Irene 89
Feyzmahdavian, Hamid Reza 365
Fitzpatrick, James 410
Formenti, Enrico 196
Frohner, Nikolaus 283

Geibinger, Tobias 456
Gillard, Xavier 231

Hanen, Claire 214
Hill, Alessandro 26
Horn, Matthias 72
Hoshino, Richard 89

Jabbour, Said 163
Jefferson, Christopher 348

Johansson, Mikael 365
Jung, Victor 332

Kadıoğlu, Serdar 427
Kamel, Nadjet 163
Karlsson, Emil 45
Klanke, Christian 133
Kletzander, Lucas 456
Kleynhans, Bernard 427
Kordon, Alix Munier 214
Krainz, Matthias 456
Kronqvist, Jan 299

Lambers, Roel 149
Levatich, Maxwell 1
Lombardi, Michele 266
Lopes, Nuno P. 1
Lozano, Leonardo 106

McCreesh, Ciaran 348
Meel, Kuldeep S. 248
Milano, Michela 266
Mischek, Florian 456
Misener, Ruth 299
Mohammadalitajrishi, Mahshid 248
Mourtos, Ioannis 315
Musliu, Nysret 456

Nekkache, Ikram 163

Parjadis, Augustin 446
Pedersen, Theo 214
Pesant, Gilles 248
Porrmann, Till 383
Pralet, Cédric 179
Prosser, Patrick 348

Raidl, Günther R. 72, 283
Régin, Jean-Charles 196, 332
Riva, Sara 196

Römer, Michael 383
Rönnberg, Elina 45
Rothuizen, Laurent 149
Rousseau, Louis-Martin 392, 446
Rybalchenko, Andrey 1

Sais, Lakhdar 163
Schaus, Pierre 231
Silvestri, Mattia 266
Spieksma, Frits C. R. 149
Stanczak, Marvin 179

Ticktin, Jordan 26
Tsay, Calvin 299

van Driel, Ronald 62
Vidal, Vincent 179
Vossen, Thomas W. M. 26
Vuppalapati, Chandrasekar 1

Wang, Keliang 106
Wang, Xin 427
Winter, Felix 456

Yfantis, Vassilios 133
Yorke-Smith, Neil 62

Zois, Georgios 315
Zschaler, Steffen 348

468 Author Index

	Preface
	Organization
	Abstracts
	Why You Should Constrain Your Machine Learned Models
	Contextual Optimization: Bridging Machine Learning and Operations
	Complete Symmetry Breaking Constraints for the Class of Uniquely Hamiltonian Graphs
	Variable Ordering for Decision Diagrams: A Portfolio Approacho��
	Contents
	Supercharging Plant Configurations Using Z3
	1 Introduction
	1.1 Complexity Without Perplexity
	1.2 Domain Engineering - Deep Cleaning
	1.3 Solver Engineering - Deep Solving

	2 Virtual Plant Configurations
	2.1 Domains
	2.2 A Formalization of Domain Constraints
	2.3 Objectives
	2.4 Solvable Formalizations

	3 Experiences with Domain Engineering
	3.1 Model Visualization
	3.2 Checking Global Model Invariants
	3.3 Root-Cause Analysis Using Unsatisfiable Cores

	4 Experiences with Solver Engineering
	4.1 SMT Theories and Solvers
	4.2 Uninterpreted Functions
	4.3 Bit-Vectors
	4.4 Constraints as Code
	4.5 Solving for Multiple Objectives

	5 Experiences with MiniZinc
	6 Perspective
	References

	A Computational Study of Constraint Programming Approaches for Resource-Constrained Project Scheduling with Autonomous Learning Effects
	1 Introduction
	2 Optimization Model
	3 Constraint Programming Formulations
	4 Relaxations, Restrictions and Lower Bounding
	4.1 CP-Based Lower Bounding
	4.2 Relaxations
	4.3 Destructive Lower Bounding
	4.4 A Restriction-Based Upper Bound

	5 Computational Study
	5.1 CP Formulation Comparison
	5.2 Lower Bounding Performance
	5.3 Scheduling and Upper Bounding Efficacy
	5.4 Overall Performance
	5.5 Learning Potential and Benefit
	5.6 Parameter Performance Impact

	6 Conclusion
	References

	Strengthening of Feasibility Cuts in Logic-Based Benders Decomposition
	1 Introduction
	2 Literature Background
	3 Logic-Based Benders Scheme and Cut Strengthening
	3.1 Logic-Based Benders Decomposition
	3.2 Cut-Strengthening Algorithms

	4 Problems and Modelling
	4.1 Cumulative Facility Scheduling with Fixed Costs
	4.2 Single Machine Scheduling with Sequence-Dependent Setup Times and Multiple Time Windows
	4.3 Vehicle Routing with Location Congestion

	5 Computational Evaluation
	5.1 Instances
	5.2 Percentage of Solved Instances

	6 Concluding Remarks
	References

	Learning Variable Activity Initialisation for Lazy Clause Generation Solvers
	1 Introduction
	2 Background
	3 Approach
	3.1 Machine Learning Model

	4 Empirical Study
	4.1 Data Sets
	4.2 Experimental Configuration and Results

	5 Conclusion
	References

	A*-Based Compilation of Relaxed Decision Diagrams for the Longest Common Subsequence Problem
	1 Introduction
	2 Multi-valued Decision Diagrams for the LCS Problem
	3 Independent Upper Bounds
	4 A*-Based Construction of MDDs
	4.1 Relaxed MDDs
	4.2 Further Details

	5 Experimental Results
	5.1 Comparison of Independent Upper Bounds
	5.2 Impact of Parameters phi and beta
	5.3 Main Comparison of A*C and TDC

	6 Conclusions
	References

	Partitioning Students into Cohorts During COVID-19
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Mathematical Model
	5 Application
	6 Discussion
	7 Conclusion
	References

	A Two-Stage Exact Algorithm for Optimization of Neural Network Ensemble
	1 Introduction
	2 Literature Review
	3 Notation and Baseline Formulation
	4 Two-Stage Optimization Algorithm
	5 Computational Study
	5.1 Instances
	5.2 Results and Analysis

	6 Conclusion and Future Work
	References

	Heavy-Tails and Randomized Restarting Beam Search in Goal-Oriented Neural Sequence Decoding
	1 Introduction
	2 Background
	2.1 Beam Search for Goal-Oriented Neural Sequence Decoding
	2.2 Heavy-Tailed Behavior and Randomization in Heuristic and Combinatorial Search Algorithms

	3 Goal-Oriented Benchmark Problems
	3.1 Combinatorial Routing Problems
	3.2 Visual Program Synthesis
	3.3 Conditional Molecular Design

	4 Fat- and Heavy-Tailed Behavior in Goal-Oriented Neural Sequence Decoding
	4.1 Fat- and Heavy-Tailed Behavior on a Single Instance

	5 Randomized Restarting Neural-Guided Beam Search for Goal-Oriented Combinatorial Problems
	5.1 Restart Strategies

	6 Empirical Results
	6.1 Results for the Travelling Salesman Problem (TSP)
	6.2 Results for the Other Benchmarks

	7 Discussion and Future Work
	8 Conclusion
	References

	Combining Constraint Programming and Temporal Decomposition Approaches - Scheduling of an Industrial Formulation Plant
	1 Introduction
	2 Case Study
	3 Methodology
	3.1 Variables
	3.2 Constraints
	3.3 Moving Horizon Strategy

	4 Results
	5 Summary, Conclusion and Outlook
	References

	The Traveling Social Golfer Problem: The Case of the Volleyball Nations League
	1 Introduction
	2 The Traveling Social Golfer Problem (TSGP)
	2.1 Definition of the TSGP
	2.2 Decomposing the TSGP into Venue Assignment and Nation Assignment

	3 The Complexity of Venue Assignment
	4 An Integer Programming Formulation
	5 Solving VNL in Practice
	5.1 Do Feasible Schedules Exist?
	5.2 Results

	A Optimal solutions to VNL-instances
	References

	Towards a Compact SAT-Based Encoding of Itemset Mining Tasks
	1 Introduction
	2 Technical Background
	2.1 Propositional Logic and SAT Problem
	2.2 An Overview of Itemset Mining

	3 SAT-based Encoding of Itemset Mining
	4 A Compact SAT-Based Encoding
	4.1 Solving Generalized Optimal Linear Arrangement Problem

	5 Experimental Evaluation
	6 Conclusion
	References

	A Pipe Routing Hybrid Approach Based on A-Star Search and Linear Programming
	1 Introduction
	2 Problem Definition
	2.1 Routing Space
	2.2 Input and Output Configurations
	2.3 Straight Sections and Bends
	2.4 Pipe and Polyline Approximation
	2.5 Constraints
	2.6 Objective Function

	3 Routing Plan
	3.1 Definition
	3.2 Feasibility and Cost

	4 Shortest Path Problem Formulation
	4.1 Search Algorithms
	4.2 Neighborhood
	4.3 Trail Heuristic

	5 Experiments
	5.1 Test Cases
	5.2 Results and Discussion

	6 Conclusion
	References

	MDDs Boost Equation Solving on Discrete Dynamical Systems
	1 Introduction
	2 Preliminaries
	2.1 Multi-valued Decision Diagrams (MDDs)
	2.2 Discrete Dynamical Systems and Dynamics Graphs

	3 The Abstraction on Cycles
	3.1 The State-of-art Method

	4 Boosting Everything up with MDDs
	4.1 Equations over Dynamics Graphs

	5 Experiments
	6 Conclusions and Perspectives
	References

	Two Deadline Reduction Algorithms for Scheduling Dependent Tasks on Parallel Processors
	1 Introduction
	2 Notations
	3 Extension of the Garey and Johnson Algorithm
	3.1 Principles of Deadline Reductions
	3.2 Description of the eGJ Algorithm
	3.3 Complexity Analysis of eGJ
	3.4 Strong Form of eGJ

	4 Extension of the Leung Palem and Pnueli Algorithm
	4.1 Description of the eLPP Algorithm
	4.2 Weak eLPP Algorithm
	4.3 Strong eLPP Algorithm

	5 Experiments
	5.1 Data Generation
	5.2 Complexity Analysis
	5.3 Output Analysis

	6 Conclusions
	References

	Improving the Filtering of Branch-and-Bound MDD Solver
	1 Introduction
	2 Background
	2.1 Decision Diagrams
	2.2 Bounded-Size Approximations
	2.3 The Dynamics of Branch-and-Bound with DDs

	3 Improving the Filtering of Branch-and-Bound MDD
	3.1 Local Bounds (LocB)
	3.2 Rough Upper Bound (RUB)

	4 Experimental Study
	5 Previous Work
	6 Conclusion and Future Work
	References

	On the Usefulness of Linear Modular Arithmetic in Constraint Programming
	1 Introduction
	2 Background
	3 Domain Filtering for Linear Modular Constraints
	3.1 Gauss-Jordan Elimination for Systems of Linear Modular Equality Constraints with a Prime Modulus
	3.2 Domain Consistency for a System of Linear Modular Equality Constraints in Parametric Form
	3.3 Dynamic Programming for a Single Linear Modular Constraint

	4 Application to Checksums
	5 Application to Model Counting
	5.1 Synthetic Problem
	5.2 Benchmarks from ch16GHSS07
	5.3 Towards a Practical Scalable Model Counter

	6 Conclusion and Future Outlook
	References

	Injecting Domain Knowledge in Neural Networks: A Controlled Experiment on a Constrained Problem
	1 Introduction
	2 Related Works and Baseline Choice
	3 Basic Methods
	4 Empirical Analysis
	4.1 Regularization Methods Comparison and -tuning
	4.2 Domain Knowledge at Training Time for Different Problem Dimensions
	4.3 Training Set Size and Empirical Information
	4.4 Constraint Violation Assessment

	5 Conclusion
	References

	Learning Surrogate Functions for the Short-Horizon Planning in Same-Day Delivery Problems
	1 Introduction
	2 Related Work
	3 Problem Definition and Formalization
	3.1 Instance Specification
	3.2 Feasible Solutions
	3.3 Objective Function
	3.4 Illustrative Example

	4 Discounting Travel Times to Consider Expected Orders
	4.1 Obtaining Training Data
	4.2 Models for the Discounting

	5 Computational Study
	5.1 Instances
	5.2 Training of the Discounted Route Duration Models
	5.3 Full-Day Simulation Results

	6 Conclusions and Future Work
	References

	Between Steps: Intermediate Relaxations Between Big-M and Convex Hull Formulations
	1 Introduction
	1.1 Background

	2 Relaxations Between Convex Hull and Big-M
	2.1 Properties of the P-Split Formulation
	2.2 Illustrative Example

	3 Numerical Comparison
	3.1 Numerical Results

	4 Conclusions
	References

	Logic-Based Benders Decomposition for an Inter-modal Transportation Problem
	1 Introduction
	2 Modeling
	3 A Logic-Based Benders Decomposition Approach
	3.1 Constructing the Initial Master Problem
	3.2 Benders Subproblem
	3.3 Adding Valid Benders Optimality Cuts
	3.4 Subproblem Relaxation

	4 Computational Work
	5 Conclusions
	References

	Checking Constraint Satisfaction
	1 Introduction
	2 Preliminaries
	2.1 Constraint Programming
	2.2 Multi-valued Decision Diagram

	3 Checking Constraint Satisfaction
	3.1 Operator of Inclusion

	4 Inferring Parameters of Global Constraints
	4.1 Implementation
	4.2 Properties Definitions

	5 Experiments
	5.1 Testing Environment
	5.2 Comparison Between Inclusion and Intersection Based Inclusion
	5.3 Learning Parameters of a Global Constraint
	5.4 Conclusion

	References

	Finding Subgraphs with Side Constraints
	1 Introduction
	1.1 Preliminaries
	1.2 Initial Experiments and Motivation

	2 Hybrid Solving with High-Level Modelling
	2.1 High-Level Modelling
	2.2 When to Communicate?
	2.3 How to Communicate
	2.4 Design Experiments
	2.5 A Rollback Approach to Communication

	3 Subgraph Problems with Side Constraints
	3.1 Retyping Problems
	3.2 Temporal Subgraph Problems
	3.3 Subgraph Isomorphism with Costs

	4 Conclusion
	References

	Short-Term Scheduling of Production Fleets in Underground Mines Using CP-Based LNS
	1 Introduction
	2 Underground Mine Scheduling
	3 Approach
	3.1 Constraint Programming
	3.2 Large Neighborhood Search

	4 Results
	5 Discussion and Conclusion
	References

	Learning to Reduce State-Expanded Networks for Multi-activity Shift Scheduling
	1 Introduction
	2 Shifts as Paths in State-Expanded Networks
	3 MILP Formulation
	4 Learning to Reduce the Network
	5 Experimental Results
	6 Conclusions
	References

	SeaPearl: A Constraint Programming Solver Guided by Reinforcement Learning
	1 Introduction
	2 Technical Background
	2.1 Reinforcement Learning
	2.2 Graph Neural Network

	3 Embedding Learning in Constraint Programming
	4 Modeling, Learning and Solving with SeaPearl
	5 Experimental Results
	5.1 Graph Coloring Problem
	5.2 Travelling Salesman Problem with Time Windows

	6 Perspectives and Future Works
	7 Conclusion
	References

	Learning to Sparsify Travelling Salesman Problem Instances
	1 Introduction
	2 Notation and Related Work
	2.1 Exact, Heuristic and Approximate Approaches
	2.2 Learning to Solve Combinatorial Optimisation Problems
	2.3 Graph Sparsification

	3 Sparsification Scheme
	3.1 Linear Programming Features
	3.2 Minimum Weight Spanning Tree Features
	3.3 Local Features
	3.4 Postprocessing Pruned TSP Graphs

	4 Experiments and Results
	4.1 Learning to Sparsify
	4.2 Performance on MATILDA Instances
	4.3 Pruning with and Without Guarantees
	4.4 Minimum Weight Spanning Tree Pruning
	4.5 Specifying the Pruning Rate

	5 Discussion and Conclusions
	References

	Optimized Item Selection to Boost Exploration for Recommender Systems
	1 Introduction
	2 Problem Definition
	3 Recommender System Components
	4 Solving the ISP
	4.1 Minimizing the Subset Size
	4.2 Maximizing Diversity
	4.3 Bounded Subset Size
	4.4 Multi-level Optimization

	5 Warm-Starts
	6 Experiments
	6.1 Evaluation Metrics and Questions
	6.2 Datasets: Book and Movie Recommendations
	6.3 Setup and Parameters
	6.4 Embedding Space
	6.5 Comparisons
	6.6 Analysis of Coverage [Q1]
	6.7 Analysis of Bounded Coverage [Q2]
	6.8 Analysis of Warm-Start [Q3]
	6.9 Analysis of Embedding Space [Q4]

	7 Related Work
	8 Interactive Exploration of ISP
	9 Conclusion
	References

	Improving Branch-and-Bound Using Decision Diagrams and Reinforcement Learning
	1 Introduction
	2 Learning Bounds Inside Branch-and-Bound
	2.1 Decision Diagram-Based Branch-and-Bound
	2.2 Variable Ordering and Reinforcement Learning
	2.3 The Branch-and-Bound Algorithm with a RL Agent

	3 Experimental Results
	3.1 Performances of the Learned Variable Ordering
	3.2 Caching to Save Computation Time
	3.3 Discussion

	4 Conclusion
	References

	Physician Scheduling During a Pandemic
	1 Introduction
	2 Problem Description and Constraint Model
	2.1 Input Parameters and Decision Variables
	2.2 Hard Constraints
	2.3 Soft Constraints

	3 Experimental Evaluation
	3.1 Impact of Pandemic-Related Constraints

	4 Conclusion
	References

	Author Index

