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Abstract. Interpretability is a critical factor in applying complex deep
learning models to advance the understanding of brain disorders in neu-
roimaging studies. To interpret the decision process of a trained classi-
fier, existing techniques typically rely on saliency maps to quantify the
voxel-wise or feature-level importance for classification through partial
derivatives. Despite providing some level of localization, these maps are
not human-understandable from the neuroscience perspective as they
often do not inform the specific type of morphological changes linked to
the brain disorder. Inspired by the image-to-image translation scheme,
we propose to train simulator networks to inject (or remove) patterns of
the disease into a given MRI based on a warping operation, such that
the classifier increases (or decreases) its confidence in labeling the simu-
lated MRI as diseased. To increase the robustness of training, we propose
to couple the two simulators into a unified model based on conditional
convolution. We applied our approach to interpreting classifiers trained
on a synthetic dataset and two neuroimaging datasets to visualize the
effect of Alzheimer’s disease and alcohol dependence. Compared to the
saliency maps generated by baseline approaches, our simulations and
visualizations based on the Jacobian determinants of the warping field
reveal meaningful and understandable patterns related to the diseases.

1 Introduction

In recent years, deep learning has achieved unparalleled success in the field of
medical image computing [1] and is increasingly used to classify patients with
brain diseases from normal controls based on their Magnetic Resonance Imaging
(MRI) data [2]. Compared to traditional machine learning methods, deep models
can generally result in superior classification accuracy [3] by training on a large
amount of raw imaging data and employing more complex network architectures
and learning strategies. However, a primary challenge of applying complex deep
networks to 3D MRI data is the lack of model interpretability, which arguably
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plays a more pivotal role compared to the prediction accuracy itself. For example,
when a learning model is used to aid the diagnosis by human experts, one needs
to understand how the model reasons its prediction [4]. In other studies where
neuroimaging is not a part of the diagnosis workflow (i.e., discovery-oriented
analysis), the goal of learning image-based classifiers is solely for revealing the
impact of the disease on the brain [5].

Compared to the large body of literature on model development, methods for
model interpretation (or model visualization) are either oversimplified or mis-
specified for neuroimaging studies. For example, the most widely used visualiza-
tion techniques to date are gradient-based methods [6,7], which aim to generate
a saliency map for a given MRI. This map encodes the importance of the infor-
mation contained within each voxel (or local neighborhood) in driving the model
prediction. Despite the wide usage in computer vision tasks, the application of
gradient-based methods in neuroimaging studies is limited as the saliency maps
are generally noisy on the voxel level, imprecise in locating object boundaries,
and applicable to only selective network architectures. Most importantly, the
saliency maps only indicate the location of brain structures impacted by the
disease but do not inform what type of morphological changes are induced (e.g.,
atrophy of cortical gray matter associated with Alzheimer’s disease).

In this work, we propose to interpret a trained classifier by learning two addi-
tional simulator networks, which aim to learn human-understandable morpholog-
ical patterns within an image that can impact the classifier’s prediction. Moti-
vated by the image-to-image translation scheme, one simulator warps an MRI of
a healthy subject to inject the disease pattern such that the classifier increases its
confidence in predicting the MRI as diseased (i.e., logit shift), and the other sim-
ulator removes the patterns from the MRI of a diseased subject to decrease the
confidence. We then visualize the disease pattern on a subject-level by comparing
the image appearance between the raw and simulated image pair or by quantifying
the Jacobian map (encoding tissue expansion and shrinkage) of the warping field.
To generate robust simulators, we employ a cycle-consistent scheme to encourage
the simulators to inject and remove patterns only related to disease while preserv-
ing subject-specific information irrelevant to the disease. Furthermore, we propose
to couple the two simulators into one coherent model by using the conditional
convolution operation. The proposed visualization method was applied to inter-
pret classifiers trained on a synthetic dataset, 1344 T1-weighted MRIs from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI), and a dataset of 1225 MRIs
for classifying individuals with alcohol dependence. We compared our visualiza-
tion with a number of widely used alternative techniques. Unlike the visualizations
from those alternatives, our learning-based method generated images that capture
high-level shape changes of brain tissue associated with the disease.

2 Related Work

Most existing methods for model interpretation visualize feature-level or voxel-
level saliency scores quantified by partial derivatives [6,7]; i.e., how a small
change in feature or voxel values can influence the final prediction. These deriva-
tives can be efficiently computed by back-propagation. However, the voxelwise
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Fig. 1. To interpret a trained classifier (P), the proposed framework trains two sepa-
rate simulator networks to learn the morphological change that defines the separation
between control and diseased cohorts. The disease simulator (G1) injects the disease
pattern into an image X such that the prediction logit p̂ for the simulated image X̂
increases by a pre-dined threshold δ. The control simulator removes the pattern from
an image. The two simulators are trained in a cycle-consistent fashion.

derivatives are generally noisy and non-informative as the variation in a voxel
is more related to low-level features rather than the final prediction. One of the
exceptions is Grad-CAM [7], which can generate smooth and robust visualization
based on deriving feature-level importance but cannot accurately locate object
boundaries and is only applicable to certain types of networks. Other than using
partial derivatives, occlusion-based methods [8] quantify the importance of a
local image neighborhood for prediction by first masking the regional informa-
tion in the images (zero-out, blur, shuffle, deformation, etc.) and then evaluating
the impact on the classifier’s prediction accuracy. However, the resulting saliency
map can only be defined for the whole population but not for each individual.
Recently, Ghorbani [9] has proposed a concept-based interpretation, which aims
to directly identify critical image segments that drive the model decision. How-
ever, when applied to neuroimaging applications, all the above methods can only
locate brain structures that are important for prediction but do not explain the
alteration of those structures associated with a disease (Fig. 1).

Recently, image-to-image translation frameworks have achieved marked suc-
cess in medical applications including denoising, multi-modal image registra-
tion, and super-resolution reconstruction [10,11]. The goal of such frameworks
is to learn a bijective mapping between two distributions from different image
domains. Inspired by this technique, we formulate the two domains as MRIs of
healthy and diseased cohorts and learn how an MRI of a healthy subject will be
altered if the subject is affected by the disease (and vice versa).

3 Methods

3.1 Cycle-Consistent Image Simulation

Let X be the set of MRI of controls and Y the set of diseased participants. We
assume a deep classifier P has been trained on the datasets such that p = P(X)
is the logit (value before sigmoid) encoding the confidence in labeling image
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X as diseased; i.e., X is from a diseased subject if p > 0 and from a control
subject otherwise. Now our goal is to visualize the model P to understand how
the morphological information in X impacts the final prediction p. To do so, we
propose to train two simulator networks G1 and G2, where G1(·) alters the MRI
of a control subject X ∈ X to resemble a diseased one X̂ := G1(X) (adding the
disease pattern to X as if the subject was affected by the disease), and G2(·)
removes the disease pattern from an MRI Y ∈ Y so that Ŷ := G2(Y ) resembles
the MRI of a healthy control.

Based on existing image-translation methods, one would apply a binary train-
ing strategy [12] to learn G1 and G2; i.e., to fool the classifier such that P(X̂) > 0
and P(Ŷ ) < 0. However, the neurological condition linked to a brain disorder may
lie in a continuous spectrum as encoded in the predicted logit p. For example, the
severity of cognitive impairment can be highly heterogeneous in the AD cohort
such that some AD patients should have larger logit values and others having
logits closer to 0. As such, the above binary objective may overemphasize the
severe AD cases in converting them into controls, thereby implicitly reweighing
the importance across subjects during training. To avoid such bias, we enforce
the simulators to produce a logit shift greater than a pre-defined threshold δ for
each subject; i.e., P(X̂) − P(X) > δ and P(Ŷ ) − P(Y ) < −δ. This logit shift loss
is then formulated as

Elogit := EX∼X [max(P(X) − P(X̂),−δ)] + EY ∼Y [max(P(Ŷ ) − P(Y ),−δ)]. (1)

As commonly explored in the literature, we also incorporate the cycle-consistent
loss to ensure that the simulators can recover the original input from a simulated
image. This guarantees that subject-specific information in the image irrelevant
to the disease is not perturbed during the simulation, i.e.

Ecycle := EX∼X [||G2(G1(X)) − X)||2] + EY ∼Y [||G1(G2(Y )) − Y )||2]. (2)

3.2 Coupling Simulators via Conditional Convolution

A drawback of traditional cycle-consistent learning is that the two simulators G1

and G2 are designed as independent networks albeit the two simulation tasks are
extremely coupled (injecting vs removing disease patterns). In other words, the
network parameters between G1 and G2 should be highly dependent, and each
convolutional kernel at a certain layer should perform related functions. Here, we
propose to combine the two simulators into a coherent model whose behavior can
be adjusted based on the specific simulation task. We do so by using conditional
convolution (CondConv) [13] as the fundamental building blocks of the network
shown in Fig. 2. Let f and f ′ be the input and output features of a convolutional
operation with activation σ. As opposed to the static convolutional kernel, the
CondConv kernel W is conditionally parameterized as a mixture of experts

f ′ := σ(α1 · W1 � f + ... + αK · WK � f), (3)

where W is a linear combination of k sub-kernels with weights {αk|k = 1, ...,K}
determined via a routing function rk(·). With t being the task label (e.g., 0 for
G1 and 1 for G2), we design the following routing function
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Fig. 2. Two simulators are coupled into one single model by using Conditional Convo-
lution (CondConv), whose parameters are dependent on the specific simulation task.
The output of the joint simulator is a warping field φ that is applied to the input X
to derive the simulated X̂.

αk = rk(f, t) := sigmoid([GlobalAvgPool(f), t] ∗ Rk), (4)

where Rk are the learnable parameters to be multiplied with the concatenation of
the pooled feature and the task label. In doing so, the behavior of the convolution
can adapt to subject-specific brain appearance encoded in f and the specific task.

3.3 Learning Warping Fields

In principle, the two simulators can generate any patterns that separate the
healthy and diseased cohorts (intensity difference, shape change, etc.). In sce-
narios where the disease is known to impact brain morphometry, we can enforce
the simulators to only learn the shape patterns that differentiate cohorts. To do
so, we let the output of the simulators be 3D warping fields φ1 := G1(X) and
φ2 := G2(X), which are then applied to the input images to derive the warped
images X̂ = X ◦ φ1, Ŷ = Y ◦ φ2. The warping layer is implemented the same as
in [14], which uses linear interpolation to compute the intensity of a sub-voxel
defined at non-integer locations. As also adopted in [14], a diffusion regularizer
is added to the warping field φ to preserve the smoothness of φ. Let V be the
voxels in the image space. The smoothness loss is

Eφ := λφ

∑

v∈V

||∇φ(v)||2 , where ∇φ(v) = (
∂φ(v)

∂x
,
∂φ(v)

∂y
,
∂φ(v)

∂z
). (5)

The final objective function is E := Elogit + Ecycle + Eφ.

4 Experiments

To showcase the concept of our cycle-consistent image simulation, we first eval-
uated the method on a synthetic dataset by only considering Elogit and Ecycle

during training. We then incorporated Eφ in the training to show the advantage
of warping-field visualization over existing visualization techniques in the con-
text of analyzing Alzheimer’s Disease. Lastly, we applied the proposed approach
to identify regional atrophy linked to alcohol dependence.



76 Z. Liu et al.

Fig. 3. (a) The group-separating pattern was the magnitude of two off-diagonal Gaus-
sians. (b, c, d) The learned simulators could reduce and increase the intensity of
off-diagonal Gaussians of a given image in a cycle-consistent fashion; (e) Normalized
cross-correlation (NCC) between the ground-truth pattern and the pattern derived by
different approaches. Bottom: visualizations of the group-separating patterns.

4.1 Synthetic Experiments

Dataset: We generated a synthetic dataset comprising two groups of data, each
containing 512 images of resolution 32 × 32 pixels. Each image was generated
by 4 Gaussians, whose locations randomly varied within each of the 4 blocks
(Fig. 3(b)). We assume the magnitude of the two off-diagonal Gaussians defined
the differential pattern between the two cohorts. Specifically, the magnitude
was sampled from a uniform distribution U(1, 5) for each image from Group 1
and from U(4, 8) (with stronger intensities) for Group 2 (Fig. 3(a)). On the other
hand, the magnitude of the two diagonal Gaussians was sampled from U(1, 6) and
regarded as subject-specific information impartial to group assignment. Gaussian
noise was added to the images with standard deviation 0.002.

Classification: We first trained a classifier to distinguish the two groups on 80%
of the data. The classifier network (P) comprised of 3 stacks of 2D convolution
(feature dimension = {2, 4, 8}), ReLU, and max-pooling layers. The resulting 128
features were fed to a multi-layer perceptron with one hidden layer of dimen-
sion 16 and ReLU activation. Training the classifier resulted in a classification
accuracy of 87.5% on the remaining 20% testing images.

Visualization: To visualize the group-separating pattern learned by the classi-
fier, we designed the simulator as a U-net structure with skip connections (Fig. 2).
The encoder was 4 stacks of 2D CondConv (feature dimension = {1, 2, 4, 8}),
BatchNorm, LeakyReLu, and max-pooling layers. Each CondConv operation
used 3 experts (K = 3) as adopted in the original implementation of [13].
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The resulting 64 features were fed into a fully connected layer of dimension
64 and ReLU activation. The decoder had an inverse structure of the encoder by
replacing the pooling layers with up-sampling layers. The warping field was not
used in this experiment, so the networks directly generated simulated images.
The logit shift threshold was set to δ = 5. For each test image, we then computed
the intensity difference between the raw and simulated images (X − X̂).

Baseline: We also generated visualizations through 4 baseline approaches: back-
propagation (BP), guided BP [6], Grad-CAM, and guided Grad-CAM [7]. To
show the importance of using conditional convolution for our model, we also
generated the pattern using our model trained with two separate encoders using
conventional convolution. As the results of different approaches had different
scales, each estimated pattern was compared with the ground-truth using nor-
malized cross-correlation (NCC), where the ground-truth was defined as the
magnitude difference associated with the two off-diagonal Gaussians (Fig. 3(h)).

Results: Figure 3 shows two examples of the learned simulation. For a train-
ing image from Group 2 (Fig. 3(b)), the simulator reduced the intensity of off-
diagonal Gaussians, indicating that the model successfully captured the group-
separating patterns (Fig. 3(c)). Meanwhile, the model preserved subject-specific
information including the location and magnitude of the two diagonal Gaussians.
Through cycle-consistent simulation, the model also accurately recovered the
input image (Fig. 3(d)). In line with the visual comparison, the pattern generated
by our model (Fig. 3(g)) only focused on the off-diagonal Gaussians and closely
resembled the ground-truth (Fig. 3(h)). Note, when replacing the CondConv
with conventional convolution, the pattern became less robust (Fig. 3(f)). On
the other hand, the visualizations derived by BP, guided BP and guided Grad-
CAM were noisy as the saliency values frequently switched signs. This behavior
was inconsistent with our data construction, where the magnitude change of the
Gaussians had the same sign at each voxel. The pattern associated with Grad-
CAM was too smooth to accurately locate the object of interest. Lastly, this
qualitative analysis was supported by the NCC metric (Fig. 3(e)) indicating our
model with CondConv was the most accurate approach for defining the pattern.

4.2 Visualizing the Effect of Alzheimer’s Disease

Dataset: We evaluated the proposed model on 1344 T1-weighted MRIs from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI1). The dataset consisted of
images from 229 Normal Control (NC) subjects (age: 76 ± 5.0 years) and 185
subjects with Alzheimer’s Disease (75.3 ± 7.6 years). Each subject had 1 to 8
longitudinal scans within a 4 year study period and only contained MRIs that
were successfully preprocessed. The preprocessing consisted of denoising, bias
field correction, skull stripping, affine registration to a template, re-scaling to a
64 × 64 × 64 volume, and transforming image intensities within the brain mask
to z-scores. This dataset was randomly split into 80% training and 20% testing
on the subject level.
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Fig. 4. Predicted logic values by the classifier of all raw AD images (blue) in the test set,
simulated images after removing disease patterns (orange), and cycle-back simulations
(green). Images are re-ordered based on the raw logic values. The simulator is learned
based on (a) the proposed logit loss or (b) the binary cross-entropy loss. (Color figure
online)

Implementation:1 We first trained a classifier P containing 4 stacks of 3×3×3
convolutional layers (feature dimension {16, 32, 64, 16}), ReLU, and max-pooling
layers. The resulting 512 features were fed into a multi-layer perceptron with one
hidden layer of dimension 64 and ReLU activation. Based on this architecture,
the classifier achieved 88% NC/AD classification accuracy (balanced accuracy)
on the testing set. Note, as the goal of our work was to visualize a trained classi-
fier as opposed to optimizing the classification accuracy on a particular dataset,
we did not consider the dependency of longitudinal scans for simplicity. To inter-
pret this trained classifier, we adopted a similar simulator architecture as in the
synthetic experiment while using 5 convolutional stacks with 3D CondConv (fea-
ture dimension = {16, 32, 64, 16, 16}), a fully connected layer of dimension 512,
and a 3-channel output (warping field φ). We set λφ = 0.02 and the logit shift
threshold δ = 12.5. The simulators were trained on all the NC and AD subjects
by an Adam optimizer for 45 epochs with a learning rate of 1e−4.

Results: We first show the impact of the logit shift loss on the cycle-consistency
of the simulation. Figure 4(a) displays the logit values of all raw testing images
predicted by the classifier P (blue curve). After removing and injecting disease
patterns through the cycle-consistent simulators, the logit values consistently
decreased and increased while preserving their relative positions. However, if we
replaced the logit shift loss by the binary cross-entropy loss [12] (BCE, Fig. 4(b)),
the logit values of the simulated and cycle-back images became all uniform. This
was undesirable as the goal of the simulator was to uncover the pattern that
correlated with the severity of the brain disorder, which was encoded by the
magnitude of the logit values. Using the BCE loss simply ‘fooled’ the classifier
but lost this important information.

1 Source code can be found at https://github.com/ZucksLiu/DeepInterpret.

https://github.com/ZucksLiu/DeepInterpret
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Fig. 5. Example visualization of our proposed approach and the baselines. Color scales
were omitted for baseline approaches as they are arbitrary across models and subjects.
All the computation was performed in the down-sampled space and resized to the
original resolution for easy visualization. (Color figure online)

Figure 5(b) shows a simulated image after injecting the AD pattern into the
raw image of an NC subject. By directly comparing the two grayscale images,
we observe enlargement of the ventricles and cerebrospinal fluid (CSF) and atro-
phy of brain tissue. This pattern comported with the effects of AD reported in
prior literature [15]. Moreover, the morphological change captured by the simu-
lator can be quantitatively measured by the log of Jacobian determinant of the
warping field φ (Fig. 5(c)). We used this Jacobian map as the visualization pro-
duced by our method, which was then compared with the visualization of the
same subject produced by the baseline approaches. In line with the synthetic
experiment, the Grad-CAM saliency map was smooth and did not locate mean-
ingful regions with respect to the AD effect. Other saliency maps by BP, guided
BP, and guided Grad-CAM were noisy and contained frequent sign changes in
the saliency values. As a second example, we also visualize the simulated image
(Fig. 5(e)) after removing the disease pattern from an AD subject and the corre-
sponding Jacobian map (Fig. 5(f)). The patterns were similar to Fig. 5(c) except
for the change of direction (regions with shrinkage now showed expansion), indi-
cating the cycle-consistent nature of the two coupled simulators.

Beyond the subject-level visualization, we also produced the Jacobian visual-
ization on the group level by non-rigidly registering the structural maps of all NC
subjects to a template and computing the average Jacobian map in the template
space (Fig. 6). This procedure was also used to produce the group-level visualiza-
tion of baseline approaches. We also generated a group-level visualization based
on the occlusion method [8] (this method cannot be applied to generate subject-
level visualization), which first used a sliding window of 8×8×8 with stride 4 to
mask the test images and then re-computed the testing accuracy as the saliency
score associated with the center voxel of the sliding window.
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Fig. 6. Group-level visualization for the ADNI dataset. Color scale is defined according
to the subject-level visualization in Fig. 5. (Color figure online)

After inspecting the subject-level and group-level visualizations, we now sum-
marize 4 advantages of the Jacobian-based visualization: (1) Our Jacobian maps
accurately located the disease pattern while avoided generating overly smooth
or noisy visualizations; (2) The Jacobian values had real morphological mean-
ings (tissue volume change) while the baseline visualizations only informed the
location of the disease pattern; (3) The Jacobian values were signed (shrinkage
or expansion) informing the direction of changes, while the sign of the saliency
values by baseline methods was less meaningful in the context of MR analysis;
(4) The Jacobian values had a deterministic scale (percentage of volume change)
while the saliency values of the baseline approaches are meaningless and highly
variant across models and subjects.

4.3 Visualizing the Effect of Alcohol Dependence

The dataset comprised 1225 T1-weighted MRIs of 274 NC subjects (age:
47.3 ± 17.6) and 329 participants with alcohol dependence (age: 49.3 ± 10.5)
according to DSM-IV criteria [16]. 74 of the alcohol dependent group were also
human immunodeficiency virus (HIV) positive. All experimental settings repli-
cated the ADNI experiment. Based on an 80%–20% training and testing split
on the subject level, the classifier resulted in a 76.2% accuracy for classify-
ing alcohol-dependent subjects. After training the simulators on all images, we
computed the group-level Jacobian visualization for all NC subjects in the
testing set. Figure 7 indicates that regions with the most severe atrophy were
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Fig. 7. Left: Jacobian visualization of the effect of alcohol dependence; Right: gray
matter volume of 4 brain regions from the orbitofrontal cortex measured for all NC
and alcohol-dependent subjects. The volumes scores were corrected for age and sex.

located in the orbitofrontal cortex. This converges with recent studies that fre-
quently suggested the disruption in the structural and functional properties of
the orbitofrontal cortex associated with alcohol dependence [17].

To confirm this finding, we tested the group difference in the volumetric mea-
sures of 4 regions of interest: the superior and medical fronto-orbital gyri, the
rectus, and the olfactory gyrus. Only the baseline MR of each subject was used in
this analysis. The volumetric measures were extracted by segmenting the brain
tissue into gray matter, white matter, and CSF via Atropos and parcellating the
regions by the SRI24 atlas. With age and gender being the covariates, a gen-
eral linear model tested the group difference between NC and alcohol-dependent
subjects in the gray matter volume of the 4 regions. All tests resulted in signif-
icant group differences based on two-tailed t-statistics (p < 0.001, see boxplots
in Fig. 7), which confirmed the validity of our visualization result. These results
indicate that our data-driven visualization can be readily combined with a pri-
ori regional analysis (e.g., Fig. 7), which allows neuroscientists to cross-validate
findings from data-driven and hypothesis-driven analyses.

5 Conclusion

In this work, we have proposed a novel interpretation/visualization technique
based on the image-to-image translation scheme. By learning simulators that
could inject and remove disease patterns from a given image, our approach
permitted human-understandable and robust visualization on both the subject
level and group level. While the experiment focused on identifying morphological
changes associated with a disease, the proposed framework has the potential to
study generic disease effects, e.g., intensity changes induced by lesions. Moreover,
our method also has great generalizability as it is independent of the classifier’s
architecture. In summary, our work marks an important step towards the appli-
cation of deep learning in neuroimaging studies.
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