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Abstract. We propose a reinforcement learning (RL) based approach
for anatomical landmark localization in medical images, where the agent
can move in arbitrary directions with a variable step size. Using a contin-
uous action space reduces the average number of steps required to locate
a landmark by more than 30 times compared to localization using dis-
crete actions. Our approach outperforms a state-of-the-art RL method
based on a discrete action space and is inline with state-of-the-art super-
vised regression based methods. Furthermore, we extend our approach
to a multi-agent setting, where we allow collaboration between agents to
enable learning of the landmarks’ spatial configuration. The results of
the multi-agent RL based approach show that the position of occluded
landmarks can be successfully estimated based on the relative position
predicted for the visible landmarks.
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1 Introduction

Automatic localization of anatomical landmarks is an important step for a wide
range of applications in medical image analysis, e.g. for registration or to initial-
ize segmentation algorithms. Nevertheless, accurate anatomical landmark local-
ization is also a challenging task due to anatomical and image intensity varia-
tions. Current state-of-the-art methods for anatomical landmark localization are
based on supervised learning of Convolutional Neural Networks (CNNs) to either
directly regress landmark coordinates [7] or their heatmap representation [11].
However, CNN based methods suffer from two major limitations. Either they
require large amounts of memory to store the intermediate network outputs
of the whole image on the GPU or, using patch-based approaches, depend on
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an additional model for global guidance. Differently to supervised learning, rein-
forcement learning (RL) based approaches have the advantage, that the RL agent
is able to internally keep a representation of the environment, i.e. the content
of the medical images. Applied to a medical task such as anatomical landmark
localization, this internal representation of the anatomy allows the RL agent to
navigate through the image from any arbitrary starting position, without the
need of an additional model for global guidance. Furthermore, by learning from
patches, RL eliminates the need of storing the large intermediate network out-
puts of the whole image in GPU memory, which is a challenge, especially when
working with large 3D volumes. Finally, the navigation through images based
on the perception of local image information is similar to the way a physician
localizes anatomical structures in a medical image. Indeed, the physician, based
on their prior knowledge in human anatomy, can estimate the position of an
anatomical structure relative to other structures in the image.

Anatomical landmark localization was first formulated as a RL task by Ghesu
et al. [4]. In this approach, they utilized a Deep Q-Network (DQN) agent [10] to
observe a sub-image and move with a fixed one-pixel step size on the four princi-
pal directions through the 2D image or on the six principal directions through the
volumetric image. Since the agent is restricted to a discrete action space with a
fixed step size, during inference the DQN approach needs a large number of steps
before localizing the target landmark. Ghesu et al. [5] tackle this problem with
a multi-scale framework to cover a larger field of view (FOV) and accordingly
take large action steps. Their implementation, however, uses a separate neural
network for each scale. Alansary et al. [1], similarly, use a multi-scale approach,
where a single neural network is used for all scales to reduce training time. To
localize multiple landmarks simultaneously, the same group extended their work
by sharing the weights between convolution layers of multiple DQN agents [12]
and by additionally combining the extracted information in the fully-connected
layers before generating the actions [6]. A mutual challenge of all DQN-based
approaches for landmark localization is the identification of the optimal stopping
criterion of the agent. For that purpose, Maicas et al. [9] proposes an additional
trigger action, which increases the action space of the DQN agent and conse-
quently the complexity of the approach. A better-accepted approach is proposed
in [4] where oscillation within a local neighborhood is used as an indicator for
termination, however, this limits the accuracy of the method and prolongs infer-
ence time.

To overcome the above-mentioned limitations of DQN-based approaches, in
this work, we propose a continuous action space for localizing anatomical land-
marks. By allowing the agent to move in an arbitrary direction with variable
step size, we reduce the number of steps the agent needs to localize the target
landmark, which effectively speeds up inference time while improving the accu-
racy. To implement a continuous action space, we utilize an actor-critic approach
proposed in [8]. In our setup, the problem of the stopping criterion is intrinsically
addressed, since the agent stops moving when the movement displacement falls
below the pixel size. Furthermore, inspired by multi-agent RL [2], we extend
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our single-landmark/single-agent approach by introducing multiple agents to
localize multiple landmarks simultaneously. Finally, we introduce communica-
tion between agents by providing every agent with it’s relative position to the
other agents. This allows learning of a spatial configuration between landmarks,
which serves as regularization and provides an estimate of landmarks’ position
even in the case where landmarks are missing or occluded.

2 Method

Fig. 1. Basic principle of the actor-
critic architecture which allows continuous
actions [8]. The actor network predicts an
action and the critic network predicts a Q-
value to evaluate the action.

Anatomical landmark localization can
be formulated as a Markov Decision
Process (MDP) by defining an envi-
ronment, states, actions and a reward
function. The environment is the med-
ical image I in which the agent navi-
gates to localize the target landmark.
The position in the environment is the
state s ∈ R

D of the agent, where D is
the number of image dimensions. The
environment observed by the agent at
the state s is the observation o(s) ⊂ I,
which is restricted to a local image
patch around s. To allow the agent
to move in arbitrary directions with a
varying step size, we defined a contin-
uous action space similarly as in [8].
We represent the action a as a vector
with a = [a1, · · · , aD]T ∈ R

D. Which
action the agent takes after observ-
ing the state s is defined by the pol-
icy π. The agent’s state after taking
an action is obtained by adding the
action vector a to the current state s, i.e. s′ = s + a. The reward function r for
taking action a is defined as:

r = ||s − g|| − ||s′ − g||, (1)

where g is the position of the target landmark and || · || is the Euclidean distance.
The MDP can be solved by sampling experience tuples of the form 〈s,a, r, s′〉

to determine the Q-function which can be written recursively as a Bellman
equation:

Qt+1(s,a) = E[r + max
a′

Qt(s′,a′)] (2)

with recursive step t. Differently from the DQN approach [10], where a single
network can be used to model the Q-function due to the discrete action space, we
use an actor-critic architecture as in [8] to allow continuous actions, see Fig. 1.



770 K. Kasseroller et al.

Thus, a critic network parameterized with θQ is modeling the Q-function, while
a second, actor network μ parameterized with θμ is used to learn the policy π.
During inference only the actor network is used to generate the new position of
the agent.

To improve the stability of the training we use soft updates for both, critic
Q and actor μ network as in [8]. Thus, we update the parameters of the target
network θ

{Q,μ}
T with parameters of the current network θ

{Q,μ}
C . An alternating

procedure is used to optimize the parameters of both critic θQ and actor network
θμ. By keeping the parameters of the actor network fixed, we optimize the critic
parameters θQ using the Bellman loss:

arg max
θQ
C

1
N

N∑

i

[
ri + γQ(s′

i, μ(s′
i|θμ

T )|θQ
T )

− Q(si, μ(si|θμ
T )|θQ

C )
]2

,

(3)

where N is the size of the mini-batch and γ ∈ [0, 1] is the discount factor used to
weigh future rewards; the parameters θQ

T and θQ
C refer to the target and current

network parameters of the critic respectively.
To optimize the parameters θμ of the actor network, we keep the parameters

of critic θQ fixed and maximize the expected Q-value by using the chain rule to
compute the gradient:

∇θµ
C
Q(θQ

C , θμ
C) ≈ 1

N

N∑

i

[
∇μ(si|θµ)Q(si, μ(si)|θQ

C )∇θµ
C
μ(si|θμ

C)
]
. (4)

Differently from DQN [10], where the stopping criterion is usually determined
by state oscillation, in the proposed approach with continuous action space we
can define the stopping criterion as an action with an absolute length below one
pixel.

So far we introduced an agent that performs a single action and therefore
can only detect one landmark at a time. To simultaneously localize multiple
landmarks in an image during inference, multiple agents have to be trained
individually, each one trained for a different landmark. However, in such an
approach no communication among agents exists. In this work we propose an
approach for multi landmark localization inspired by a collaborative multi-agent
system. Thus, the input to the actor network are now multiple observations, each
corresponding to different agents, see Fig. 2. The actor network independently
predicts the next action for each agent. Together with the observation of each
agent, these actions are used as input to the critic network to predict a single
Q-value optimized using Eq. 3. To allow collaboration between multiple agents
and thus, to learn the spatial configuration of the landmarks, the position of
each agent relative to each other is additionally provided to the actor and critic
network. To this end, we define a list of pairwise offsets D in the following form:

D = {si − sj |i, j ∈ K, i �= j}, (5)

where K is the number of agents.
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Fig. 2. Schematic representation of our proposed method for landmark localization.
One observation per agent is used as input to the actor network which predicts the next
actions. To allow collaboration, we additionally provide the list of pairwise offsets D
(Eq. 5) to the network to enable learning of the spatial configuration of the anatomical
landmarks. During training, an additional critic network is used which approximates
the Q-function.

3 Experimental Setup

Dataset. We used a publicly available dataset of hand radiographs [3] acquired
from different X-ray scanners to compare our method to both state-of-the-art RL
and supervised learning based approaches for anatomical landmark localization.
The dataset consists of 895 images with an average size of 156 × 2169 pixels.
Since the images do not contain information about the physical resolution, we
follow [11] and assume a wrist width of 50 mm from which we calculate a physical
resolution for each image. We downsample all images to a common long-axis
size of 512 pixels and split the dataset with the ratio 80:20 into 716 images for
training and 179 images for testing. Due to the long training time needed for RL
based approaches, we used five representative landmarks from the 37 landmarks
provided by the authors of [11].

Implementation Details. In our single-agent approach, the actor network
consists of three consecutive convolution-pooling-convolution blocks followed by
three fully-connected layers, after which a final fully-connected layer yields the
network output. All convolution layers use an isotropic kernel size of 3 and ReLU
activation, the number of filters of the first convolution layer is 32 and is doubled
after every pooling layer. We employ average pooling with an isotropic kernel
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size of 2 and zero padding. In the first three fully-connected layers we utilize
256 output neurons and ReLU activation, while the final fully-connected layer
uses no activation function and directly outputs the predicted action. The actor
and critic network are identical with following exceptions: the actor’s prediction
is provided as an additional input at the first fully-connected layer of the critic
network, and the critic network predicts a single Q-value. This approach we
named Single-Agent Landmark Localization (SALL).

In the multi-agent approach, the observation of the agent is processed indi-
vidually in a unique convolution path, resulting in one parallel convolution path
per agent. These paths are concatenated before the first fully-connected layer to
generate the action of all agents simultaneously. The list of pairwise offsets D
is provided as input to the first fully-connected layer as shown in Fig. 2. Same
as with single-agent approach, the critic network of the multi-agent approach
outputs a single Q-value. We named our multi-agent approached MALL. Addi-
tionally, we evaluated our multi-agent approach without collaboration between
agents by omitting the pairwise offsets D from the input to the actor and critic
network. We named this approach in our experiments MALLnoSC where SC
stands for spatial configuration.

During training, the agent is initialized at a random position within the
image. The agent progresses to the next image, if the distance between target
and the agent’s current position is below one pixel or if the maximum number of
steps is reached, i.e. 300 for DQN and 100 otherwise, leaving enough space for
the agent to explore the entire state space. Furthermore, we limit the maximum
step size per action to a distance of 50 pixels in each direction and we round the
agent’s position to the position of the closest pixel. If the agent overshoots the
image bounds, it’s position is moved to the closest position at the image border,
out of bounds pixels of the observation are set to zero. Similarly to Lillicrap
et al. [8], our actor network receives exploration noise from a Gaussian distribu-
tion during training. As hyperparameters we used γ = 0.85, a replay memory size
of 105, an exploration noise with a variance of 0.15, a soft update ratio of 0.125
and Adam optimizer with a learning rate of 10−5 and 10−3 for the actor and
critic respectively. We trained for 30k episodes, the training time for the single-
agent approaches was around three days and for the multi-agent approaches
around 10 days on a workstation with Nvidia R© Titan V GPU.

Evaluation. We divide our experiments into single-landmark localization exper-
iments, where we train five SALL networks independently each predicting a dif-
ferent landmark, and multi-landmark localization experiments, where we train
MALL as well as MALLnoSC network to predict five landmarks simultaneously.
For comparison, we use our implementation of DQN [4] and the original code
of a state-of-the-art supervised learning based approach using heatmap regres-
sion, Spatial Configuration-Net (SCN) [11]. To ensure deterministic results and
a fair comparison for all experiments, we use the center of the image as the
agent’s initial position during inference. We compute the point error (PE) as
the Euclidean distance between the agent’s final position and target landmark
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in mm to evaluate the prediction accuracy. We present the average PE for all
validation samples per landmark as well as it’s overall average. Furthermore, we
also determine the average number of steps the agent needs to localize the target
landmark.

4 Results

The accuracy of the evaluated RL and supervised learning based approaches for
landmark localization are presented in Table 1, separately for each landmark as
well as all landmarks combined. In the same table we also show the average
number of steps needed to terminate the RL based methods. The cumulative
error distribution for all evaluated methods is shown in Fig. 3 again for each
landmark separately as well as all landmarks combined. In Fig. 4 we show the
results as error vectors drawn relative to the groundtruth landmark position
of the respective image for all evaluated methods. In the same figure, we also
show the results of the evaluated methods when the image is partially occluded
starting from the landmark positioned between the metacarpal and phalanges
bones simulated by uniform noise.

5 Discussion

In this work, we proposed a RL method for anatomical landmark localization
using a continuous action space that allows the agent to move in an arbitrary
direction with variable step size. This is different to existing state-of-the-art RL
methods that use a discrete action space and a fixed step size, leading to a large
number of steps and consequently long inference time to localize a landmark.
As shown in Table 1, DQN [4], a state-of-the-art RL method for landmark local-
ization, needs in average 193 forward passes of observation patches extracted
from the inference image to localize a landmark. In contrast to that, our SALL
method requires in average only 6.2 passes to reach the landmark. Hence, our
experiments have shown that utilization of a continuous action space decreases
the inference time by more than 30 times, which can be of high importance in
e.g. time critical or energy efficient applications.

Our method has also shown to be more accurate compared to DQN, see
Table 1 and Fig. 3, 4. While the average PE of the DQN method is 1.19±0.9 mm
our method is able to localize landmarks with an average PE of 0.86 ± 0.74 mm.
This trend can be seen for all landmarks individually, while the largest differ-
ence can be observed for landmark 0, where our SALL method is 0.5 mm more
accurate than DQN. One of the reasons why DQN is limited in accuracy is the
stopping criterion, which is usually defined by oscillation of the agent and leads
to ambiguity between the oscillating locations. This ambiguity is intrinsically
resolved by our method, since the stopping criterion is predefined by a minimal
displacement of the agent’s position.

In comparison to the state-of-the-art SCN [11] method based on supervised
learning and heatmap regression, our SALL method has shown inline results, see
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Table 1. Average point error (PE) of all evaluated approaches for landmark localiza-
tion in mm, separately for each landmark (LM) and all landmarks combined (All), as
well as the average number of steps required to terminate the RL based approaches
during inference.

Algorithm LM 0 LM 1 LM 2 LM 3 LM 4 All

SCN [11] PE 0.27 ± 0.17 0.37 ± 0.21 0.64 ± 0.49 1.09 ± 0.93 1.15 ± 0.9 0.7 ± 0.73

#steps - - - - - -

DQN [4] PE 0.94 ± 0.46 0.87 ± 0.81 0.83 ± 0.54 1.9 ± 1.16 1.42 ± 0.84 1.19 ± 0.9

#steps 253.6 85.8 177.5 219.1 229.3 193.0

SALL PE 0.4 ± 0.35 0.52 ± 0.32 0.82 ± 0.53 1.44 ± 0.97 1.09 ± 0.75 0.86 ± 0.74

#steps 5.8 4.9 5.9 7.0 7.3 6.2

MALLnoSC PE 1.41 ± 0.88 1.32 ± 0.71 1.82 ± 1.03 2.02 ± 1.14 1.71 ± 0.97 1.66 ± 0.99

#steps 31.8 31.8 31.8 31.8 31.8 31.8

MALL PE 1.35 ± 1.03 1.22 ± 0.72 1.63 ± 0.94 2.04 ± 1.2 1.78 ± 1.03 1.6 ± 1.04

#steps 27.7 27.7 27.7 27.7 27.7 27.7

Table 1 and Fig. 3, 4. Although SALL achieves a better performance on landmark
4, a possible reason why SALL did not outperform SCN might be due to defin-
ing the agent’s position on a pixel level, which can be improved by allowing
subpixel predictions. Furthermore, to achieve a high accuracy, a heatmap-based
CNN method like SCN has to store the intermediate network outputs of the
whole image in GPU memory which is a challenge, especially when working with
large 3D volumes. Since our RL method processes local image patches extracted
around the agent’s position, we are expecting similar performance for both 2D
and 3D landmark localization tasks.

In this work, we additionally extend our single-agent approach (SALL) to a
multi-agent approach (MALL) that is capable to simultaneously localize multiple
landmarks. Differently to the recent work [6,12], where the weights are shared
between convolution layers of multiple DQN agents, our method has a sepa-
rate convolutional path per agent before generating the action of every agent
using fully-connected layers. Furthermore, in our method, we establish direct
communication between agents by providing each agent with it’s relative posi-
tion to all other agents. This communication between agents allows learning of
the spatial configuration of anatomical landmarks, which is common in medical
applications. Our experiments with partly occluded images (Fig. 4, right) show
that both, heatmap based SCN [11] as well as the RL based DQN [4] are not
able to localize the occluded landmark. The same behaviour is also shown by our
single-agent RL method (SALL). It is interesting to see, that our multi-agent
RL approach without list of pairwise offsets D (MALLnoSC) is failing to localize
not only occluded but also visible landmarks when a large part of the image
is replaced by random noise. A reason could be that the information extracted
from each agent’s observation is combined in the actor before an action of each
agent is generated. Thus, corrupted observations of individual agents strongly
affect the performance of all other agents due to common fully-connected layers
in the actor. Nevertheless, we would also expect a similar behaviour from other
approaches that utilize a single network to generate the actions of multiple agents
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Fig. 3. Cumulative error distribution for all evaluated methods shown for all landmarks
combined as well as for each landmark separately.

like [6]. Differently, when a list of pairwise offsets is provided to our multi-agent
RL approach (MALL), it is able to not only localize the visible landmarks but
also to use the information on their position to estimate the relative position of
the occluded landmarks, see Fig. 4. Thus, our RL approach is able to successfully
integrate the spatial configuration of the anatomical landmarks without the need
of an additional model for global regularization, like statistical shape models or
graphical models.

Additionally to evaluation of the proposed approach on volumetric images, in
our future work we are planning to further investigate our multi-agent network
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architecture to improve the accuracy of the method. Namely, the average PE of
MALL (1.6±1.04 mm) is larger compared to SALL (0.86±0.74 mm), which can
be explained by an increased complexity of the MALL network compared to the
SALL network. To improve the accuracy of MALL, the number of episodes can
be increased, however, we trained both methods for the same number of episodes
due to the long training time of MALL. A possible improvement to the MALL
architecture is to use shared weights in each agent’s convolutional path similarly
to [6,12], which would reduce the number of parameters and consequently also
the training time.

6 Conclusion

In conclusion, our proposed RL based approach allows the agent to move in
arbitrary directions with a variable step size to localize an anatomical landmark
in medical images. Our results show, that the proposed continuous action space
reduces the number of steps necessary to localize the landmark by more than 30
times in average compared to a state-of-the-art RL approach based on discrete
actions. This consequently decreases the number of forward passes needed to
localize the landmark, which can be of high importance in time critical or energy
efficient applications. Moreover, compared to methods using a fixed step size,
where the stopping criterion is often defined by oscillation of the agent’s position
and thus, limiting the accuracy of the method and prolonging inference time,
the stopping criterion in the continuous action space is intrinsically defined by a
minimal displacement of the agent’s position. Furthermore, the movement with
a variable step size is also more similar to how a physician advances through a
medical image, since the proposed agent is able to adapt the step size depending
on the distance from the anatomy of interest.

Our single-agent RL based method has shown a higher accuracy than DQN, a
state-of-the-art RL approach for landmark localization. Compared to the state-
of-the-art supervised learning based SCN approach, our single-agent RL app-
roach achieved inline results. However, in contrast to SCN, our RL approach
only requires patches and not the whole image as input, which can be beneficial
when working with large volumetric images. In our extension to our multi-agent
RL based approach, we also introduced communication among agents by pro-
viding each agent with it’s relative position to the other agents which allowed
learning of the spatial configuration of the landmarks. Thus, the results of our
multi-agent RL based approach show that the position of the occluded land-
marks can be successfully estimated based on the relative position predicted for
the visible landmarks.
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