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Abstract. Deep learning models with large learning capacities often
overfit to medical imaging datasets. This is because training sets are often
relatively small due to the significant time and financial costs incurred
in medical data acquisition and labelling. Data augmentation is there-
fore routinely used to expand the availability of training data and to
increase generalization. However, augmentation strategies are often cho-
sen on an ad-hoc basis without justification. In this paper, we present
an augmentation policy search method with the goal of improving model
classification performance. We include in the augmentation policy search
additional transformations that are commonly used in medical image
analysis and evaluate their performance. In addition, we extend the aug-
mentation policy search to include non-linear mixed-example data aug-
mentation strategies. Using these learned policies, we show that princi-
pled data augmentation for medical image model training can lead to
significant improvements in ultrasound standard plane detection, with
an average Fl-score improvement of 7.0% overall over naive data aug-
mentation strategies in ultrasound fetal standard plane classification.
We find that the learned representations of ultrasound images are better
clustered and defined with optimized data augmentation.
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1 Introduction

The benefits of data augmentation for training deep learning models are well
documented in a variety of tasks, including image recognition [19,22,23] and
regression problems [11,21]. Data augmentation acts to artificially increase the
size and variance of a given training dataset by adding transformed copies of the
training examples. This is particularly evident in the context of medical imaging,
where data augmentation is used to combat class imbalance [9], increase model
generalization [10,17], and expand training data [8,26]. This is usually done
with transformations to the input image that are determined based on expert
knowledge and cannot be easily transferred to other problems and domains. In
ultrasound, this usually manifests as data augmentation strategies consisting of
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small rotations, translations and scalings [1]. However, whilst it is appealing to
base augmentation strategies on “expected” variations in input image presen-
tation, recent work has found that other augmentation strategies that generate
“unrealistic looking” training images [18,23] have led to improvements in gener-
alization capability. There has therefore been great interest in developing data
augmentation strategies to automatically generate transformations to images
and labels that would lead to the greatest performance increase in a neural
network model. In this paper, inspired by the RandAugment [6] augmentation
search policy, we automatically look for augmentation policies that outperform
standard augmentation strategies in ultrasound imaging based on prior knowl-
edge and extend our algorithm to include mixed-example data augmentation [23]
in the base policy search. We evaluate the proposed method on second-trimester
fetal ultrasound plane detection, and find that a randomly initialized network
with our augmentation policy achieves performance competitive with methods
that require external labelled data for network pre-training and self-supervised
methods. We also evaluate our method on a fine-tuning a pre-trained model, and
find that using an optimized augmentation policy during training improves final
performance.

Contributions: Our contributions are three fold: 1) We investigate the use of
an augmentation search policy with hyperparameters that does not need expen-
sive reinforcement learning policies and can be tuned with simple grid search; 2)
We extend this augmentation search policy to combinations that include mixed-
example based data augmentation and include common medical imaging trans-
formations; 3) We explain the performance of optimal augmentation strategies
by looking at their affinity, diversities and effect on final model performance.

Related Work: Medical image datasets are difficult and expensive to acquire.
There has therefore been previous work that seeks to artificially expand the
breadth of training data available in medical image classification [10,15], seg-
mentation [9,20] and regression [8].

Original Data Manipulation: Zeshan et al. [15] evaluate the performance of
eight different affine and pixel level transformations by training eight different
CNNs for predicting mammography masses and find that ensembling the trained
models improves the classification performance significantly. Nalepa et al. [20]
elastically deform brain MRI scans using diffeomorphic mappings and find that
tumour segmentation is improved. However, in the above works, specific aug-
mentations and parameters are selected arbitrarily and are task and modality
dependent. In contrast, we propose an automated augmentation policy search
method that can out perform conventional medical imaging augmentation base-
lines.

Artificial Data Generation: Florian et al. [8] generates new training samples
in by linearly combining existing training examples in regression. Models trained
to estimate the volume of white matter hyperintensities had performance com-
parable to networks trained with larger datasets. Zach et al. [9] also linearly
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combine training examples and target labels linearly inspired by mix-up [25] but
focus on pairing classes with high and low incidence together, which was found
to be beneficial for tasks with high class imbalance such as in brain tumor seg-
mentation. Maayan et al. [10] train a conditional generative adversarial network
(cGAN) to generate different types of liver lesions and use the synthesized sam-
ples to train a classification network. Dakai et al. [17] use a cGAN to synthesize
3D lung nodules of different sizes and appearances at multiple locations of a lung
CT scan. These generated samples were then used to finetune a pretrained lung
nodule segmentation network that improved segmentation of small peripheral
nodules. However, cGAN-based methods are difficult to train and have signifi-
cant computational costs during augmentation.

Automated Augmentation Policy Search: There are augmentation policy
search methods in the natural image analysis [5,13,18] that learn a series of
transformations which are parameterized by their magnitudes and probability.
However, these searches are expensive, and cannot be run on the full training
dataset as the hyperparameter search for each transformation require significant
computational resources. RandAugment (RA) [6] finds that transformations can
have a shared magnitude and probability of application and achieve similar per-
formance, without expensive reinforcement learning. However, RA is limited to
single-image transformations. We therefore explore the use of an extended RA
policy search with additional transformations that are more specific to medical
imaging, and expand its capabilities to include mixed-example image examples
to include artificial data in model training.

2 Methods

In this section we describe our proposed framework for augmentation policy
search, depicted in Fig. 1 which consists of three key procedures i) data genera-
tion, ii) data augmentation, iii) policy searching and interpretation.

Mixed-Example Data Augmentation: The original dataset D = {(X;,Y;)}
consists of a series of i ultrasound frames X and their associated classes Y.
We first generate a paired dataset Dpgired = {(.’171,1)2)%7 (yl,yg)%} by pairing
examples from different classes. Examples of artificial data are then generated
using non-linear methods [23], which are found to be more effective than linear
intensity averaging (mix-up) [25]. As illustrated in Fig. 2, instead of pixel-wise
averaging, the bottom A; fraction of image x; is vertically concatenated with
the top 1 — \; fraction of image x5. Similarly, the right Ay fraction of image x
is horizontally concatenated with the left 1 — A\ fraction of image zo. After the
concatenations, the resulted images are combined to produce an image  in which
the top-left is from x1, the bottom right is from x5, and the top-right and bottom-
left are mixed between the two. Moreover, instead of linear pixel averaging, we
treat each image as a zero-mean waveform and normalize mixing coefficients
with image intensity energies [24]. Formally, given initial images x; » with image
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Fig. 2. The procedure for non-linear mixed-example data augmentation using an image
pair and the final artificial mixed-example image.
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intensity means and standard deviations of p; » and o 2, the generated artificial
mixed-example image T is:

x1(4,7) — 1 ifit <A\ H and j < AW
. g[zl(i,j)f,uﬂqL =Cl2o(i,7) — po] ifi <X\ Handj> MW
%[ml(i,j) pn] + Glx2(i, j) — pol ifi > A H and j < AW
x2(4,j) — po ifi > MH and j > AW

where ¢ is the mixing coefficient (14 ZL - %)’1 and ¢ is the normalization

term defined as y/c? + (1 — ¢)2. The row index and column index is represented
by 4,7 and the height and width of the images are represented by H, W.

We sample A1 23 ~ Beta(m/10,m/10) where m is a learnt hyperparameter
varied from 0-10. As m approaches 10, A values are more uniformly distributed
across 0—1 and artificial images are more interpolated. The ground truth label
after interpolation is determined by the mixing coefficients and can be calculated
with:

7= (A3A1+ (1= A3)A2)y1 + (As(1 = A1) + (1 = A3)(1 = A2))yo

Original Data Augmentation: Augmentation transformations are then
applied to the mixed images. Inspired by [6], we do not learn specific magnitudes
and probabilities of applying each transformation in a given transformation list.
Each augmentation policy is instead defined only by n, which is the number of
transformations from the list an image undergoes, and m, which is the magni-
tude distortion of each transformation. Note that m is a shared hyperparame-
ter with the mixed-example augmentation process. We investigate the inclusion
in the transformation list transformations commonly used in ultrasound image
analysis augmentation: i) grid distortions and elastic transformation [4] and ii)
speckle noise [2]. The transformation list then totals 18 transformations, exam-
ples of which can be seen in Fig. 3. The mapping between m and transformation
magnitude follows the convention in [5].

Optimization: We define f and 6 as a convolutional neural network (CNN)
and its parameters. As depicted in Fig. 1, we train a CNN with the augmented
mini-batch data ! and obtain the predicted output class scores fy(Z?). These
are converted into class probabilities p(Z?) with the softmax function. The KL-
divergence between fp(') and ¢ is then minimized with back-propagation and
stochastic gradient descent

B
:*DKL(Z/ | p(& ZZ log

where B is the batch size, C' is the number of classes and L is the loss.

Due to the limited search space, the hyperparameters n and m that produce
the optimum classification performance can be found using grid search as seen
in Fig. 1. The best performing m,n tuple is used during final model evaluation.
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Fig. 3. Examples of how each transformation and augmentation policy affect input
images. Each color represents a transformation, and augmented image is transformed
using a number of transformations (n) at a magnitude of (m). 7: our additional trans-
formations.

Quantifying Augmentation Effects: We investigate how augmentation
improves model generalization and quantify how different augmentation poli-
cies affect augmented data distributions and model performance. We adopt a
two dimensional metric - affinity and diversity [12] to do this. Affinity quanti-
fies the distribution shift of augmented data with respect to the unaugmented
distribution captured by a baseline model; the diversity quantifies complexity of
the augmented data. Given training and validation datasets, D; and D,,, drawn
from the original dataset D, we can generate an augmented validation dataset
D(m, n); derived from D, using m,n as hyperparameters for the augmentation
policy. The affinity A for this augmentation policy is then:

A =E[L(D,)] - E[L(D,)]

where E[L(D)] represents the expected value of the loss computed on the dataset
D loss of a model trained on D;.

The diversity, D, of the augmentation policy a is computed on the augmented
training dataset D; with respect to the expected final training loss, L;, as:

D = E[L(D,)]

Intuitively, the greater the difference in loss between an augmented validation
dataset and the original dataset on a model trained with unaugmented data, the
greater the distribution shift of the augmented validation dataset. Similarly, the
greater the final training loss of a model on augmented data, the more complexity
and variation there is in the final augmented dataset.



Principled Ultrasound Data Augmentation 735

3 Experiments and Results

We use a clinically acquired dataset consisting of ultrasound second-trimester
fetal examinations. A GE Voluson E8 scanner was used for ultrasound image
acquisition. For comparison with previous work [7,16], fetal ultrasound images
were labelled into 14 categories. Four cardiac view classes (4CH, 3VV, LVOT,
RVOT) corresponding to the four chamber view, three vessel view, left and right
ventricular outflow tracts respectively; the brain transcerebellar and transven-
tricular views (TC, TV); two fetal spine sagittal and coronal views (SpineSag,
SpineCor); the kidney, femur, abdominal circumference standard planes, pro-
file view planes and background images. The standard planes from 135 routine
ultrasound clinical scans were labelled, and 1129 standard plane frames were
extracted. A further 1127 background images were also extracted and three-fold
cross validation was used to verify the performance of our network.

Network Implementation: A SE-ResNeXt-50 [14] backbone is used for the
classification task. Networks were trained with an SGD optimizer with learn-
ing rate of 1073, a momentum of 0.9 and a weight decay of 10~*. Networks
were trained for a minimum of 150 epochs, and training was halted if there
was 20 continuous epochs without improvement in validation accuracy. Mod-
els were implemented with PyTorch and trained on a NVIDIA GTX 1080 Ti.
Random horizontal and vertical flipping were used in all RA policies as a base-
line augmentation. Models were trained with a batch size of 50. We evaluated
the performance of networks trained with augmentation policies with values of
m,n where m,n = {1,3,5,7,9} and used a simple grid search for augmentation
strategies to find optimal m, n values.

Table 1. Results for standard plane detection (mean + std %). The best performing
augmentation strategies are marked in bold for each metric.

‘ Random Initialization ‘ Initialized with external data ‘

RA Mix. RA Siam. Init. Saliency SonoNet SonoNet + Mix.RA

No Aug. SN Pol.
6] (ours) [16] (7] [3,7) (ours)

Precision ‘ 56.54+1.2 70.44+2.3 74.7+1.8 75.1+1.8 ‘ 75.8£1.9 79.54+1.7 82.3+1.3 86.3+1.3
Recall ‘ 55.1+1.2 64.94+1.6 72.24+2.3 73.4+1.9 ‘ 76.4+£2.7 75.1£3.4 87.3+1.1 85.1+1.3
F1l-Score ‘ 55.44+1.2 67.0+1.3 72.841.8 74.0+1.8 ‘ 75.7£2.0 76.6+2.6 84.5+0.9 85.4+1.5

Results on CNNs with Random Initialization: The effectiveness of
our mixed-example augmentation search policy algorithm (Miz. RA) on SE-
ResNeXt-50 models that are randomly initialized is compared with models
trained with the baseline RandAugment (RA) augmentation search policy; a
commonly used augmentation strategy (SN Pol.) in line with that found in [7],
where images are augmented with random horizontal flipping, rotation £10°,
aspect ratio changes +10%, cropping and changing brightness 425% and image
cropping 95 — 100%; and no augmentation (No. Aug.).
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Fig. 4. Confusion matrix for Miz. RA (left) and the difference in precision between
Miz. RA and SN Pol.

From Table 1 we can see that the proposed method Miz. RA outperforms all
other augmentation methods on every metric with random network initialization,
including the baseline R4 augmentation policy search (Fig.4).

To better understand how Miz. RA outperforms naive augmentation, we
show the confusion matrix for the best performing model Miz. Aug and the
difference in confusion matrix between it and naive augmentation SN Pol. We
find that in general, heart plane classification is improved with a mean increase
in macro F1-Score of 4.0%. Other anatomical planes with the exception of the
femur plane also show consistent increases in performance with movement of
probability mass away from erroneously classified background images to the
correct classes suggesting the model is able to recognize greater variation in
each anatomical class.

The t-SNE embeddings of the penultimate layer seen in Fig. 5 can also be used
to visualize the differences in feature spaces in trained networks with different
augmentation policies. Compared to the model trained with no augmentation,
our best performing policy leads to a better separation of the abdominal and
profile standard planes from the background class as well as clearer decision
boundaries between anatomical classes. The two brain views (TC, TV) and the
demarcation of the boundary between the kidney view and abdominal plane
view is also better defined.

Between the best performing policy m,n = (5,3) and an underperforming
policy m,n = (7,7), we find that profile planes are better separated from the
background class and the abdominal planes better separated from the kidney
views, which suggests that the optimum m, n value increases network recognition
of salient anatomical structures. However, in all three cases, the cardiac views
remain entangled. This can be attributed to the difficulty of the problem, as even
human expert sonographers cannot consistently differentiate between different
cardiac standard plane images. We also find that the background class also
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Mix. RA Mix. RA No Aug.

e 3VT e RVOT e TV e Abdominal e Femur e SpineCor Profile
4CH LvOoT TC Kidneys Lips SpineSag BG

Fig.5. t-SNE embeddings for different augmentation policies. The boxes represent
the regions from which example images are taken from. The blue and purple boxes
contain examples of the (SpineCor, SpineSag, and BG) and (3VT, RVOT, BG) classes
respectively taken from the highlighted positions in the t-SNE embedding. Best viewed
in color. (Color figure online)

contains examples of the anatomies in each class, but in sub-optimal plane views,
which leads to confusion during classification. This difficulty is illustrated in
example background images in Fig.5 where the heart and spine are visible in
the BG class.

Pre-trained Networks: We also compare our work to methods where net-
works were initialized with external data as seen in the right of Table 1. Baseline
methods of self-supervised pre-training using video data [16] (Siam. Init.), multi-
modal saliency prediction [7] (Saliency) and Sononet (Sononet) [3] were used to
initialize the models and the models fine-tuned on our dataset. Using our aug-
mentation policy during fine-tuning of a pre-trained SonoNet network further
increased the performance of standard plane classification with an increase in
final Fl-score of 0.9% when m,n = (5,1). This reduction in optimum trans-
formation magnitude may be due to the change in network architecture from
SE-ResNeXt-50 to a Sononet, as the smaller Sononet network may not be able
to capture representations the former is able to. Furthermore, we find that aug-
mentation policy with a randomly initialized network Miz. RA approaches the
performance of the Siam. Init. and Saliency pre-trained networks. This is despite
the fact that the Siam. Init. requires additional 135 US videos for network self-
supervised initialization, and Saliency required external multi-modal data in the
form of sonographer gaze.

Ablation Study: To better understand the individual contributions to the Miz.
RA augmentation search policy, we show the results of an ablation study on the
components of Miz. RA in Table 2.

It can be seen that both including Speckle noise transformations and defor-
mation (Grid, Elastic) transformations lead to increased classifier performance
for standard plane classification of +0.1% and +0.3% respectively with further
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Table 2. Ablation study on the individual components of our Miz. RA policy search
algorithm on training of a randomly initialized CNN for ultrasound standard plane
detection. All metrics are macro-averages due to the class imbalance. The Linear Miz.
RA is included as a baseline mixed-example augmentation strategy.

No Aug. SN Pol. RA RA + Speckle RA + Deform. Ext. RA  Linear Mix. RA Non-Linear Mix. RA

©) @ O+@ O+@ O+ @
Precision ‘ 56.5+1.2 70.4£2.3 73.9£1.7 ‘ 74.6£1.7 74.6x1.7 74.0£2.4  T74.6+1.6 75.1£1.8
Recall ‘ 55.1+1.2 64.9£1.6 72.942.0 ‘ 72.1+1.8 72.9+1.8 74.5+£1.3 732415 73.4+1.9
F1-Score ‘ 55.4+1.2 67.0£1.3 72.8£1.8 ‘ 72.9£1.7 73.2+1.2 73.6£1.3  73.7+1.6 74.0£1.8

improvement when both are combined together with Ext. RA. We find that both
RA and Ezt. RA had an optimal m,n = (5,3), suggesting that the magnitude
ranges for our additional transformations are well matched to the original trans-
formation list. This performance increase is further boosted when mixed-example
augmentation is introduced on top of Ezt. RA, with non-linear mixed-example
augmentations outperforming a linear mix-up based method.

14 7,7 o RA -8l
: (75) ® Ext.RA - 80
12 L a 31(5{) = Mix. RA
. 7, 7) (!‘; E (5,3) (3, _r\:) -79
(7, . (1.7)
>10 % ® s & T 78
i 1,5 — «(1,3)
508 /JZ' 5) 5, 17 | -77
> (7,5) ‘g.a (7,1) 3,1)
Qo6 (5, 7) (55 -76
(7, 3) e (7,1)
0.4 @,37 B B 63 3 (1) 11 -75
@7 B3 g u T (1,7) i} (1,3 @
0.2 G5 ea 3)—» % 31 ¢ 31 -4
0.0 CRORNRNCO B¢ A CR T 73
6.0 5.5 5.0 45 4.0 35 3.0 2.5
Affinity

Fig. 6. Affinity and diversity metrics for RA, Ezt. RA and Miz. RA augmentation
policy search algorithms. Each point represents a (m, n) value in hyperparameter space.
Best performing m, n values are highlighted in red for each policy search method. Color
represents final F1-Score on a randomly initialized CNN. (Color figure online)

Affinity and Diversity: The affinity and diversity of the augmentation policies
is shown in Fig. 6. We find that there exists a “sweet spot” of affinity and diversity
using non-mixed class augmentation strategies at an affinity distance of ~3.8 and
diversity of ~0.25 which maximized model performance, corresponding to m,n =
(5,3). At high m,n values, affinity distance is too high and the distribution of
the augmented data is too far away from the validation data, decreasing model
performance. However, at low m,n values, the diversity of the augmented data
decreases and the model sees too little variation in input data.

It can also be seen that the Miz. RA augmented dataset showed a reduced
affinity distance to the original dataset than the Ext. RA dataset at the same
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m,n = (5,3) value, implying that our proposed transforms shifts augmented
images to be more similar to the original images. Moreover, using a mixed-
example data augmentation strategy drastically increased diversity for any given
value of data distribution affinity, which improved final model performance. The
best performing mixed-example augmentation policy m,n = (3,3) reduced the
magnitude of each transformation compared to the optimal non-linear augmen-
tation policy. This suggests that mixed-example augmentation acts to increase
the diversity of training images which reduces the magnitude required during
further processing.

4 Conclusion

The results have shown that we can use a simple hyper-parameter grid search
method to find an augmentation strategy that significantly outperforms conven-
tional augmentation methods. For standard plane classification, the best per-
forming augmentation policy had an average increase in F1-Score of 7.0% over
that of a standard ultrasound model augmentation strategy. Our augmentation
policy method is competitive with the Siam. Init. [16] despite the latter needing
additional external data for pre-training. Our method also improves the perfor-
mance of a Sononet pre-trained model when fine-tuned using our augmentation
policy search method. From t-SNE plots and confusion matrix differences, we
can see that the performance increase is from better classification of background-
labelled planes. It should be noted that a large degree of misclassification was due
to standard planes being mis-classified into background images or vice-versa, and
qualitative evaluation of t-SNE clusters show that this was due to background
labelled images containing sub-optimal views of labelled anatomical structures.
The ablation study also shows that our additional transformations and non-linear
mixed example augmentation improve model performance. The evaluation using
affinity and diversity indicate that the hyperparameter search involves a trade-
off between diversity and affinity. We find that using non-linear mixed-class data
augmentation drastically increases diversity without further increasing affinity,
which helps explain the increase in model performance. In conclusion, we have
shown that our augmentation policy search method outperforms standard man-
ual choice of augmentation. The augmentation policy search method presented
does not have any inference-time computational cost, and has the potential to
be applied in other medical image settings where training data is insufficient and
costly to acquire.

Acknowledgements. We acknowledge the Croucher Foundation, ERC (ERC-ADG-
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