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Abstract. Finite Element Analysis (FEA) is useful for simulating Tran-
scather Aortic Valve Replacement (TAVR), but has a significant bottle-
neck at input mesh generation. Existing automated methods for imaging-
based valve modeling often make heavy assumptions about imaging char-
acteristics and/or output mesh topology, limiting their adaptability. In
this work, we propose a deep learning-based deformation strategy for
producing aortic valve FE meshes from noisy 3D CT scans of TAVR
patients. In particular, we propose a novel image analysis problem formu-
lation that allows for training of mesh prediction models using segmen-
tation labels (i.e. weak supervision), and identify a unique set of losses
that improve model performance within this framework. Our method can
handle images with large amounts of calcification and low contrast, and
is compatible with predicting both surface and volumetric meshes. The
predicted meshes have good surface and correspondence accuracy, and
produce reasonable FEA results.

Keywords: Weakly supervised deep learning · Shape deformation ·
Aortic valve modeling

1 Introduction

Transcatheter Aortic Valve Replacement (TAVR) is an emerging minimally
invasive treatment option for aortic stenosis [22]. In recent years, studies have
explored Finite Element Analysis (FEA) for simulating TAVR from pre-operative
patient images, and have shown promising results for predicting patient outcome
and finding better treatment strategies [3]. However, there exists a significant
bottleneck at producing FE meshes from patient images, as the manual process
takes several hours for each patient and requires expert knowledge about the
anatomy as well as the meshing techniques and requirements.
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Fig. 1. Top row: I → S → M progression, where blue box shows the desired sequence
and red box shows a faulty output using marching cubes, a common choice for ĝ(S).
Bottom row: different meshes using the same segmentation based on the choice of g(S).
Y: aortic root/wall and R, G, B: valve leaflets. (Color figure online)

Automated solutions for aortic valve modeling have been proposed. Ionasec
et al. [7] and Liang et al. [11] used a combination of landmark and boundary
detection driven by intensity-based features to produce valve meshes with a
predefined topology. Pouch et al. [16] used multi-atlas segmentation and medial
modeling to match the template mesh to the predicted segmentation. Ghesu
et al. [5] used marginal space deep learning to localize an aortic wall template
mesh and subsequently deformed it along the surface normal. Although various
approaches have demonstrated success with valve modeling, they have drawbacks
such as heavy reliance on intensity changes along the valve structures, extensive
assumptions about valve geometry, and limited adaptability to FE meshes due
to assumptions about the output mesh topology.

To address these issues, we propose a deep learning-based deformation strat-
egy for predicting FE meshes from noisy 3D CT scans of TAVR patients. Our
main contributions are three-fold: (1) We propose a novel image analysis prob-
lem formulation that allows for weakly supervised training of image-to-mesh
prediction models, where training is performed with segmentation labels instead
of mesh labels. (2) We make minimal assumptions in defining this formulation,
so it can easily adapt to various imaging conditions and desired output mesh
topology (even from surface mesh to volumetric mesh). (3) We identify a unique
set of losses that improves model performance within this framework.

2 Methods

2.1 Possible Problem Formulation: Meshing from Segmentation

Let I be an image, and let S and M be the corresponding segmentation and mesh
outputs, respectively. Considering the sequential generation steps I → S → M ,
we can define two mapping functions f(I) = S and g(S) = M (Fig. 1).
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The most common choices for f(I) and g(S) are the inside volume a structure
and marching cubes, respectively. However, for thin structures such as valve
leaflets, näıve surface meshing fails to provide the desired open surface meshes
with accurate attachment points (Fig. 1). It is also problematic for the aortic
wall, which requires tube-like openings. Therefore, to obtain the correct surface,
we must extract structural information from S via curve fitting [11], medial
modeling [16], or manual labeling. This makes it extremely difficult to define a
general g(S) without making heavy assumptions about the anatomy and output
mesh even when provided with manually defined S during test time.

2.2 Proposed Problem Formulation: Mesh Template Matching

Instead of solving for g(S), we propose a problem formulation that we refer to
as Mesh Template Matching (MTM), summarized schematically in Fig. 2. Here,
we find the deformation field φ∗:

φ∗ = arg min
φ

L(M,M0, φ) (1)

where M and M0 are target and template meshes, respectively. We use a convo-
lutional neural network (CNN) as our function approximator hθ(I;S0,M0) = φ
where I is the image, S0 is the segmentation template (paired to M0), and θ is
the network parameters. Then, we solve for θ that minimizes the loss:

θ∗ = arg min
θ

[
E(I,M)∼D[L(M,M0, hθ(I;S0,M0))]

]
(2)

where D is the training set distribution. We propose two different variations of
MTM, as detailed below.

2.2.1 MTM

For the vanilla MTM, we initially defined L from Eq. 1 as:

L(M,M0, φ) = Lacc(M,φ(M0)) + λ Lsmooth(φ) (3)

where φ(M0) is the deformed template, Lacc is the spatial accuracy loss, and
Lsmooth is the field smoothness loss with a scaling hyperparameter λ. From
here, we removed the need for ground truth M with the following steps:

arg min
φ

L(M,M0, φ) = arg min
φ

[Lacc(M,φ(M0)) + λ Lsmooth] (4)

= arg min
φ

[Lacc(g∗(S), φ(g∗(S0)) + λ Lsmooth] (5)

≈ arg min
φ

[Lacc(ĝ(S), φ(ĝ(S0))) + λ Lsmooth] (6)
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Fig. 2. Training (above dotted line) and inference steps (below dotted line) for the
vanilla MTM. Blue box represents paired image-segmentation training samples and
red box represents fixed templates. Note that M0 can freely change topology as long
as its surface is in close proximity to ĝ(S0) surface. MTMgeo is similar, but instead of
Lsmooth, we calculate Lgeo using φ(M0) during training. (Color figure online)

where g∗ is the ideal meshing function (for which the topology is defined by
the template mesh), ĝ is marching cubes, and S and S0 are target and template
segmentation volumes. Our key approximation step (Eq. 6) makes two important
assumptions: (1) g∗ mesh surface is in close proximity to ĝ mesh surface by
Euclidean distance and (2) φ is smooth with respect to Euclidean space. The
first assumption is reasonable because ground truth meshes are often created
using segmentation labels as intermediate steps, and the second assumption is
enforced by Lsmooth and the choice of φ (discussed further in Sect. 2.3).

Common choices for the spatial accuracy loss are mean surface distance (e.g.
Chamfer distance) and volume overlap (e.g. Dice). Since Dice and other seg-
mentation losses are typically lenient towards errors in segmentation boundaries
(and we need accuracy at boundaries for meshes), we used the Chamfer distance:

Lacc(P,Q) =
1

| P |
∑

p∈P

min
q∈Q

‖p − q‖22 +
1

| Q |
∑

q∈Q

min
p∈P

‖q − p‖22 (7)

where P and Q are points sampled on surfaces of φ(ĝ(S0)) and ĝ(S), respectively.
We experimented with adding Dice [13] to the loss, but observed no significant
improvement in performance.
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For field smoothness loss, we used the bending energy term to penalize non-
affine fields [19]:

Lsmooth =
1
V
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(8)

where V is the total number of voxels and X, Y , Z are the number of voxels
in each dimension. We experimented with adding gradient magnitude [1] and
field magnitude [10] to the loss, but observed no significant improvement in
performance.

2.2.2 MTMgeo

For the second variation of MTM, referred to as MTMgeo, we replaced Lsmooth

with Lgeo to preserve various desired geometric qualities of the deformed tem-
plate mesh:

L(M,M0, φ) = Lacc(M,φ(M0)) + Lgeo(M0, φ(M0)) (9)

where we apply identical steps as Eq. 4–7 to get:

arg min
φ

L(M,M0, φ) ≈ arg min
φ

[Lacc(P,Q) + Lgeo] (10)

The geometric quality loss is a weighted sum of three different losses:

Lgeo(M0, φ(M0)) = λ0 Lnorm + λ1 Llap + λ2 Ledge (11)

where λi are scaling hyperparameters, Lnorm is face normal consistency loss,
Llap is Laplacian smoothing loss, and Ledge is edge correspondence loss.

Lnorm =
1

| Nf |
∑

(nfi,nfj)∈Nf

1 − < nfi,nfj >

‖nfi‖2 ‖nfj‖2
(12)

nfi is the normal vector calculated at a given face and Nf is the set of all pairs
of neighboring faces’ normals within φ(M0).

Llap =
1

| V |
∑

vi∈φ(V )

∥
∥
∥
∥
∥
∥

1
| N (vi) |
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∥
∥
∥
∥
∥
∥
2

(13)

N (vi) represents neighbors of vi. The norm represents the magnitude of the
differential coordinates, which approximates the local mean curvature.

Ledge =
1

| ε |
∑

(vi,vj)∈ε

( ‖vi − vj‖2
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′
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Our proposed edge correspondence loss is different from the edge length loss
[6,23] in that it allows meshes to change sizes more freely, as long as the edge
length ratio stays consistent before and after deformation. This is beneficial for
medical FE meshing tasks where (1) patients have organs of different sizes and
(2) consistent edge ratio helps convert between triangular and quadrilateral faces.
The latter is important because quadrilateral faces are desired in FEA for more
accurate simulation results, but many mesh-related algorithms and libraries are
only compatible with triangular faces.

2.3 Deformation Field

As mentioned in Sect. 2.2.1, the choice of φ is important for applying the key
approximation step in MTM. Our approach is to learn a diffeomorphic B-spline
deformation field from which we interpolate displacement vectors at each node
of the template mesh. By requiring the result to adhere to topology-preserving
diffeomorphism, we help prevent mesh intersections that can commonly occur
with node-specific displacements. Also, when the field is calculated in the reverse
direction for deforming a template image/segmentation to prevent hole artifacts,
the invertible property of diffeomorphism allows for much more accurate field
calculation. The B-spline aspect helps generate smooth fields, which prevents
erratic changes in field direction or magnitude for nearby interpolation points.

3 Experiments and Results

3.1 Data Acquisition and Preprocessing

We used an aortic valve dataset consisting of 88 CT scans from 74 different
patients, all with tricuspid valves. Of the 88 total scans, 73 were collected from
transcatheter aortic valve replacement (TAVR) patients at the Hartford hospital,
and the remaining 15 were from the training set of the MM-WHS public dataset
[25]. From the Hartford images, we randomly chose some patients to include more
than one random time point from the ∼10 time points collected over the cardiac
cycle. The 88 images were randomly split into 40, 10, 38 for training, validation,
and testing sets, respectively, with no patient overlap between the training and
testing sets. We pre-processed all CT scans by converting to Hounsfield units
(HU), thresholding, and renormalizing to [0, 1]. We resampled all images to fix
the spatial resolution at 1× 1 × 1 mm3, and cropped and rigidly aligned them
using three manually annotated landmark points to focus on the aortic valve,
resulting in final images with [64, 64, 64] voxels.

We focused on 4 aortic valve components: the aortic root/wall (for segmenta-
tion/mesh, respectively) and the 3 leaflets. The ground truth segmentation labels
(for training) and mesh labels (for testing) for all 4 components were obtained via
manual and semi-automated annotations by human experts in 3D slicer [4]. We
first obtained the segmentation labels using the brush tool and the robust statis-
tics segmenter. Then, using the segmentation as guidance, we manually defined
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Fig. 3. Cross sectional display of CT images and meshes at 3 different viewing planes.
Each block of images (separated by white space) represents a different test set patient.
Y: aortic wall and R, G, B: valve leaflets (Color figure online)

the boundary curves of the aortic wall and the leaflets, while denoting key land-
mark points of commissures and hinges. We then applied thin plate spline to
deform mesh templates from a shape dictionary to the defined boundaries, and
further adjusted nodes along the surface normals, using a combination of man-
ually marked points on surface and intensity gradient-based objective, similar
to [11]. The surface mesh template was created by further processing one of the
ground truth meshes with a series of remeshing and stitching steps. The final
template surface mesh was a single connected component mesh with 12186 nodes
and 18498 faces, consisting of both triangular and quadrilateral faces.

3.2 Implementation Details

We used Pytorch [15] to implement a variation of a 3D U-net [18] as our function
approximator hθ(I;S0,M0). Since the network architecture is not the focus of
this paper, we kept it consistent between all deep learning-based methods for
fair comparison. The basic Conv unit was Conv3D-InstanceNorm-LeakyReLu,
and the network had 4 encoding layers of ConvStride2-Conv with residual con-
nections and dropout, and 4 decoding layers of Concatenation-Conv-Conv-Up-
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sampling-Conv. The base number of filters was 16, and was doubled at each
encoding layer and halved at each decoding layer. The output of the U-net was
a 3 × 64 × 64 × 64 tensor, which we interpolated to obtain a 3 × 24 × 24 × 24
tensor that we then used to displace the control points of a 3D diffeomorphic
third-order B-spline transformation to obtain a dense displacement field using
the Airlab registration library [20]. The Chamfer distance and geometric quality
losses were implemented using Pytorch3D [17] with modifications. We used the
Adam optimizer [9] with a fixed learning rate of 1e−4, batch size of 1, and 2000
training epochs. The models were trained with B-spline deformation augmenta-
tion step over 2000 epochs, resulting in 80k training samples and around 24 h of
training time on a single NVIDIA GTX 1080 Ti.

3.3 Evaluation Metrics

For spatial accuracy, we evaluated the Chamfer distance (mean surface accu-
racy) and the Hausdorff distance (worst-case surface accuracy) between ground
truth meshes and predicted surface meshes. The Chamfer distance was calcu-
lated using 10k sampled points on each mesh surface using Pytorch3D [17], and
the Hausdorff distance was calculated using the meshes themselves using IGL [8].
For correspondence error, we evaluated the Euclidean distance between hand-
labeled landmarks (3 commissures and 3 hinges) and specific node positions on
the predicted meshes (e.g. commissure #1, was node #81 on every predicted
mesh, etc.). Additionally, for bare minimum FEA viability, we used CGAL [12]
to check for self-intersections and degenerate edges/faces of predicted volumetric
meshes with no post-processing.

3.4 Comparison with an Image Intensity Gradient-Based Approach

We compared our method against the semi-automated version of [11], which uses
manually delineated boundaries to first position the template meshes and refines
them using an image gradient-based objective (Fig. 3). This approach performs
very well under ideal imaging conditions, where there are clear intensity changes
along the valve components, but it tends to make large errors in images with high
calcification and low contrast. On the other hand, MTM does not particularly
favor one condition or another, as long as enough variations exist in training
images. However, this could also mean that it could make errors for “easy”
images if the model has not seen a similar training image. We chose to not include
Liang et al. [11] for evaluation metric comparisons because (1) it uses manually
delineated boundaries, which skews both surface distance and correspondence
errors and (2) we used some of its meshes as ground truth without any changes,
when the images are in good condition (e.g. Fig. 3 bottom left).

3.5 Comparison with Other Deformation Strategies

We chose three deformation-based methods for comparison: Voxelmorph [1], U-
net + Robust Point Matching (RPM) [2], and TETRIS [10] (Table 1, Fig. 4).
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Table 1. Summary of evaluation metrics, mean ± standard deviation across all test
set patients and all 4 valve components. “Bad” column: percentage of predicted test
set meshes with self-intersection or degeneracy with no post-processing. Lower is better
for all metrics.

Chamfer
(mm)

Hausdorff
(mm)

Commissure
error (mm)

Hinge error
(mm)

Bad (%)

Voxelmorph 3.01 ± 1.38 9.51 ± 3.04 6.80 ± 3.93 7.15 ± 4.36 100.00

U-net + RPM 0.99 ± 0.32 4.57 ± 1.59 2.25 ± 1.27 2.38 ± 1.15 76.32

TETRIS 0.95 ± 0.30 4.35 ± 1.99 1.84 ± 1.10 2.32 ± 1.38 5.26

MTMgeo (ours) 0.82 ± 0.26 4.48 ± 2.43 1.49 ± 0.94 2.33 ± 1.07 10.53

MTM (ours) 0.80 ± 0.24 4.04 ± 1.86 1.57 ± 1.05 2.30 ± 1.36 0.00

Fig. 4. Component-specific evaluation metrics (summarized in Table 1) for the four best
performing methods. AW: aortic wall, L1, L2, L3: 3 leaflets, C1, C2, C3: 3 commissure
points, H1, H2, H3: 3 hinge points

Voxelmorph [1] uses a CNN-predicted deformation field to perform intensity-
based registration with an atlas image. Given a paired image-mesh template, we
first trained for image registration and used the resulting field to deform the mesh
to the target image. Since there is no guidance for the network to focus on the
valve components, the resulting deformation is optimized for larger structures
around the valve rather than the leaflets, leading to poor mesh accuracy.

U-net + RPM [2,18] is a sequential model where we trained a U-net for
voxel-wise segmentation and used its output as the target shape for registration
with a template mesh. RPM (implemented in [14]) performs optimization during
test time, which requires longer time and expert knowledge for parameter tuning
during model deployment. It also produces suboptimal results, possibly due to
the segmentation output and point sampling not being optimized for matching
with the template mesh.

TETRIS [10] uses a CNN-predicted deformation field to deform a segmenta-
tion prior to optimize for segmentation accuracy. Using a paired segmentation-
mesh template, we first trained for template-deformed segmentation and used
the resulting field to deform the mesh. Since the field is not diffeomorphic and
calculated in the reverse direction to prevent hole artifacts, we used VTK’s
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Fig. 5. FEA results using MTM-predicted meshes from 6 test set patients. Values
indicate maximum principal stress in the aortic wall and leaflets during diastole.

implementation of Newton’s method [21] to get the inverse deformation field for
the template mesh. The inaccuracies at the segmentation boundaries and errors
due to field inversion lead to suboptimal performance.

MTM consistently outperforms all other deformation strategies in terms of
spatial accuracy and produces less degenerate meshes (Table 1, Fig. 4). The accu-
racy values are also comparable to those in [7,11], which use cleaner images, heav-
ier assumptions about valve structure, and/or ground truth meshes for training.
MTMgeo arguably performs similarly to MTM, suggesting that we may be able
to replace field smoothness penalty with other mesh-related losses to refine the
results for specific types of meshes. This may be especially useful for training
with volumetric meshes, where we might want to dynamically adjust the thick-
ness of different structures based on the imaging characteristics.

3.6 FEA Results

Volumetric FE meshes were produced by applying the MTM-predicted defor-
mation field to a template volumetric mesh, which was created by applying a
simple offset + stitch operation from the template surface mesh. We set aortic
wall and leaflet thicknesses to 1.5 cm and 0.8 cm, respectively, and used C3D15
and C3D20 elements. FEA simulations were performed with an established pro-
tocol, similar to those in [11,24]. Briefly, to compute stresses on the aortic wall
and leaflets during valve closing, an intraluminal pressure (P = 16 kPa) was
applied to the upper surface of the leaflets and coronary sinuses, and a dias-
tolic pressure (P = 10 kPa) was applied to the lower portion of the leaflets
and intervalvular fibrosa. The maximum principal stresses in the aortic wall
and leaflets were approximately 100–500 kPa (Fig. 5), consistent with previous
studies [11,24]. This demonstrates MTM-predicted meshes’ suitability for FEA
simulations.
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3.7 Limitations and Future Works

Although MTM shows promise, it has much room for improvement. First, the
current setup requires 3 manual landmark points during preprocessing for crop-
ping and rigid alignment. We will pursue end-to-end learning using 3D whole-
heart images via region proposal networks, similar to [13]. Second, our model
does not produce calcification meshes, which are important for proper simulation
because calcification and valve components have different material properties.
We will need a non-deformation strategy for predicting calcification meshes since
their size and position vary significantly between patients. Third, the restric-
tion to smooth and diffeomorphic field prevents large variations in valve shapes.
We will continue exploring the possibility of extending our framework to node-
specific displacement vectors.

4 Conclusion

We presented a weakly supervised deep learning approach for predicting aortic
valve FE meshes from 3D patient images. Our method only requires segmenta-
tion labels and a paired segmentation-mesh template during training, which are
easier to obtain than mesh labels. Our trained model can predict meshes with
good spatial accuracy and FEA viability.
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