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Abstract. High screening coverage during colonoscopy is crucial to
effectively prevent colon cancer. Previous work has allowed alerting the
doctor to unsurveyed regions by reconstructing the 3D colonoscopic sur-
face from colonoscopy videos in real-time. However, the lighting incon-
sistency of colonoscopy videos can cause a key component of the colono-
scopic reconstruction system, the SLAM optimization, to fail. In this
work we focus on the lighting problem in colonoscopy videos. To suc-
cessfully improve the lighting consistency of colonoscopy videos, we have
found necessary a lighting correction that adapts to the intensity dis-
tribution of recent video frames. To achieve this in real-time, we have
designed and trained an RNN network. This network adapts the gamma
value in a gamma-correction process. Applied in the colonoscopic surface
reconstruction system, our light-weight model significantly boosts the
reconstruction success rate, making a larger proportion of colonoscopy
video segments reconstructable and improving the reconstruction quality
of the already reconstructed segments.
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1 Introduction

Colonoscopy is an effective examination to prevent colon (large intestine) cancer
by screening for lesions. During a colonoscopy a flexible tube called a colonoscope
is inserted up to the distal end of the patient’s colon, and then it is withdrawn
through the colon while producing a video by a camera that is attached at the
tip of the colonoscope. A point light attached to the colonoscope tip moves with
the camera to provide the lighting source. During a colonoscopy the camera
sends back live images of the colon wall to the doctor, who watches, detects
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and removes cancerous or pre-cancerous lesions with a surgical knife inside the
colonoscope.

Fig. 1. The lighting in the colonoscopy video can change rapidly from frame to frame,
and a large part of the colon interior can be poorly lit due to the complicated colon
terrain. This lighting issue can bring troubles to the diagnosis and the colon surface
reconstruction system.

Due to time limitations, colonoscopy is a one-pass exam, but high coverage
of screening and high polyp detection rate are crucial. Previous work tried to
aid the colonoscopy process by alerting the doctor to unsurveyed colon regions
(“blind spots”) revealed by reconstructing the already screened surfaces in real-
time from colonoscopy videos [11]. However, as shown in Fig. 1, the complex
topography makes a notable proportion of the colon surface be poorly lit; also,
it causes brightness and contrast to change rapidly from frame to frame. The poor
lighting situation challenges 1) lesion detection by the doctor and 2) successful
reconstruction of the surfaces, thereby allowing alerts as to blind spots.

In this work we focus on this lighting issue in colonoscopy. We aim to make the
lighting of colonoscopy videos consistent between consecutive frames and also to
brighten the dark regions in colonoscopy video frames. Such image enhancement
is commonly carried out by curve adjustment approaches [6,7] such as gamma
correction, and recent deep learning methods can apply a more sophisticated
adjustment to each image pixel with CNN- [5,19] or GAN-based models [1,8].
Considering that our inputs are video frames, we adopt the learning-based app-
roach and develop an RNN-based network for adaptive curve adjustment. Our
network is trained in an unsupervised fashion using a loss measuring the light-
ing consistency among nearby frames and will produce well-lit frame sequences
at test time. Applying our model as a pre-processing step to the frames for
reconstruction leads to significant improvement of both the number of recon-
structable colonoscopy video segments and the quality of reconstructions, with
time overhead small enough to be ignored.

Overall, the contributions of this work are

– To our knowledge, our work is the first one to focus on the lighting consistency
issue in the colonoscopy video.

– We propose a light-weight RNN model for lighting enhancement of an
image sequence, which can be trained without ground-truth. Tested on real
colonoscopy images, our model can effectively brighten the poorly lit regions
in each frame, and make the lighting consistent from frame to frame.
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– Most importantly, applied in the colonoscopic surface reconstruction system,
our model effectively boosts the reconstruction success rate and improves the
reconstruction quality without sacrificing the time efficiency of the system.

2 Background: SLAM and Colonoscopic Reconstruction

Here, we review the mechanism behind the 3D reconstruction technique SLAM,
which is a key component in colonoscopic reconstruction systems. We then ana-
lyze why the lighting issue in colonoscopy can cause the SLAM system to fail.

2.1 SLAM Mechanism

3D reconstruction is a challenging task in computer vision. One of the most
successful methods for this task is Simultaneous Localization And Mapping
(SLAM). SLAM systems have achieved tremendous success in indoor and
outdoor-scene reconstruction [4,17]. Recently, with the development of deep
learning, neural networks have been applied to aid SLAM for better reconstruc-
tion [18,20,24], especially in the more challenging scenarios such as reconstruc-
tion from colonoscopy video [11].

SLAM is an algorithm that can achieve real-time dense reconstruction from
a sequence of monocular images [2,3,12,13]. As the name suggests, SLAM has a
localization component and a mapping component; the two components operate
cooperatively. The localization (tracking) component predicts the camera poses
from each incoming image frame. Based on the visual clues extracted from the
images, the mapping component optimizes especially the pose predictions but
also the keypoints’ depth estimates. The objective function used in the optimiza-
tion of the SLAM of [2], which is applied in colonoscopic reconstruction [11], is

Eij =
∑

p∈Pj

ωp

∥∥∥∥(Ij [p′] − bj) − eaj

eai
(Ii[p] − bi)

∥∥∥∥
γ

(1)

p′ = Π(TΠ−1(p, dp)) (2)

Sampled from a source image Ii, each keypoint p in the keypoint set Pj can be
projected to a location p′ in a target image Ij , based on its predicted depth dp
and the predicted camera transformation T . Π denotes the projection. Supposing
the transformation and depth predictions are correct, p of image Ii and p′ of
image Ij come from the same surface point, so Ii[p] and Ij [p′] should have the
same intensity. This assumption is the mechanism behind the energy function
Eij which is the photometric error between two frames Ii and Ij in Eq. 1, where
‖∗‖γ denotes the Huber norm. The ak and bk values are discussed below.

2.2 The Lighting Problem in Colonoscopic Surface Reconstruction

The photometric-based optimization in SLAM depends on the light consistency
between frames, that assuming the same physical location in the environment is
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shown in similar intensities in different frames. This is a prerequisite that can be
mostly fulfilled in an indoor or outdoor scenario with the steady lighting source,
e.g., sunlight. When it comes to colonoscopy, this lighting consistency assumption
can often be violated since the point light is moving with the camera and can
change rapidly due to motion and occlusion. Although the SLAM algorithm also
optimizes an additional brightness transformation as a compensation, denoted as
e−a(I−b) in Eq. 1, it just fixes each frame’s exposure and cannot handle the more
complicated lighting changes in colonoscopy videos such as contrast difference
(bright regions become brighter and dark regions become darker). So without
specific brightness adjustment, this kind of rapid lighting change in colonoscopy
makes the SLAM system unstable, often leading to tracking failure.

We want to alleviate the failures caused by lighting changes. In this work we
accomplished this by explicitly adjusting the brightness of the image sequence
to make them more consistent. This requires solving an adaptive image enhance-
ment problem that each image in the sequence is enhanced in relation to adjacent
frames. We develop a deep learning method for this task, which will be discussed
in detail in the next section.

3 Method

In this work we apply an adaptive intensity mapping to enhance the colonoscopy
frame sequence with the help of an RNN network, whose implementation and
unsupervised training strategy will be introduced in this section.

3.1 Adaptive Gamma Correction

Image enhancement is a classical topic in computer vision. Multiple directions
have been proposed to resolve the issue, such as histogram equalization and
its variants [14,22], unsharp masking [10,15] and more recently deep learning
pixel-wise prediction approaches [5,8,9].

(a) The curve of gamma correction

γ = 0.5 γ = 1.0 (original) γ = 2

(b) An image corrected by different gamma values

γ = 1

γ = 2

γ = 4

γ = 0.5
γ = 0.25

Fig. 2. The gamma correction: (a) Gamma correction’s effect on image intensity; (b)
The figure in the middle is been adjusted by different gamma values.

Our driving problem of the reconstruction from colonoscopy video requires
real-time execution, so our lighting enhancement must be accomplished at the
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video frame rate. This requires that only a handful of parameters be adjusted
from frame to frame in an enhancement method. An example approach that
meets this requirement is gamma correction [6,7]. In gamma correction, for every
pixel in an image, its input value Iin is adjusted by the power γ, then multiplied
by a constant A to get the enhanced value Iout:

Iout = AIγ
in (3)

In practice, the input intensities will be normalized to [0, 1], so the constant
A will be set to 1 and γ is the only parameter controlling the adjustment. By
applying a different γ value, the same image can be brightened or darkened to
a different extent, as the example shown in (b) of Fig. 2.

Fig. 3. At each time step, the RNN takes an input image and predicts its γ value to
enhance the image. The network is trained by contrasting the current corrected image
with two previous corrected images and the first two input images of the sequence.

Our goal is to improve the lighting consistency of an image sequence. Adjust-
ing the way in which each frame is enhanced requires an adaptive version. To
model this adaptation, we specifically design a recurrent neural network (RNN)
to capture the temporal information needed in the enhancement and to predict
the γ value for each image. The overall pipeline of our RNN-based adaptive
gamma correction is shown in Fig. 3. The details of the RNN network will be
discussed next.

3.2 RNN Network

Although the gamma correction is cheap in computation, our enhancement RNN
network also needs to be light-weight in order to serve as an additional pre-
processing step for the current real-time colonoscopic surface reconstruction sys-
tem. Thus, we build our RNN network on the ConvLSTM unit [23], with only
two additional convolution layers:
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x1 = ReLU(Conv(Ii)) (4)
[x2, hi] = ConvLSTM([x1, hi−1]) (5)

x3 = ReLU(Conv(x2)) (6)
f = AvgPool(x3) (7)

γi = ReLU(Af + b) (8)

At test time, at each time step the network takes the current image frame
Ii as the input, includes latent information of the previous frames hi−1 into the
computation, and predicts the gamma correction value γi for the current frame.
The prediction happens recurrently, enhancing the entire sequence as shown in
Fig. 3.

3.3 Training Strategy

With no ground-truth to supervise the network training, our RNN is trained in
an unsupervised fashion to achieve lighting consistency. We achieve this consis-
tency by comparing the current adjusted frame to four reference frames. Only in
training, these reference frames consist of the previous two adjusted frames and
the first two images of the entire sequence, which serve as the “seed” images to
stabilize the training by setting a brightness baseline. For example in Fig. 3, the
target frame is surrounded in black and all the reference frames are surrounded
in red.

The loss we are optimizing utilizes the structural similarity measurement [21]:

Lssim = mean(1 − SSIM(Ir, It)) (9)

= mean(1 − (2μIrμIt + c1)(2σIrIt + c2)
(μ2

Ir
+ μ2

It
+ c1)(σ2

Ir
+ σ2

It
+ c2)

) (10)

where at each pixel location, μI is the local average, σ2
I is the local variance

and σIrIt is the covariance of two images. c1 and c2 are small constants to
avoid dividing by zero. The SSIM function is composed of three comparisons:
luminance, contrast and structure. When applying to training, the luminance
and contrast comparisons will force the network to produce adjusted images
with similar lighting to the reference frames.

Specular regions have very high intensities that inordinately influence the
lighting estimation in a frame. Therefore, in training when computing the Lssim,
we mask out the pixels with input intensity larger than 0.7. Each training
sequence contains 10 sequential frames, with the first two as seeds, and the
loss of each target frame is computed as the average Lssim of its four reference
frames.
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4 Experiments

4.1 Implementation Details

To build the dataset of our task, we collected 105 colonoscopy video snippets,
each containing 50 to 150 frames. 60 snippets were used as the training data, 1
was used for validation, and the rest were reserved for evaluation. Among the
44 evaluation sequences, 12 of them could be successfully reconstructed using
the colonoscopic surface reconstruction system in previous work [11], while 32
of them could not.

For the training and validation snippets, we divided them into 10-frame over-
lapping sub-sequences. In this way we created about 1800 training sequences. We
used the Adam optimizer with a fixed learning rate of 5×10−5 to train the RNN
network for 10 epochs. A batch size of 4 was used. We implemented our method
using the PyTorch framework on a single Nvidia Quadro RTX5000 GPU.

At test time our network enhances the entire snippet from start to end with
an average image enhancement run time of less than a millisecond. Considering
the frame rate we use to extract images from video is 18 frames per second,
the overhead brought by our method is small enough and does not violate the
real-time execution when added to the colonoscopic reconstruction system.

4.2 Visual Effect

Fig. 4. The visual comparison of the same sequence before (top) and after (bottom) the
RNN enhancement. After enhancement, the extreme dark regions have been brightened
up and the lighting consistency improves.

In Fig. 4 we show a snippet that is been enhanced using our trained RNN
network, where the original frames are shown on the top and the enhanced ones
on the bottom. The overall brightness of the sequence has been largely improved
and the “down the barrel” regions are brightened up and clearly revealed after
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enhancement. Moreover, the lighting consistency is significantly improved. The
image contrast changes rapidly in the original sequence, due to a haustral ridge
blocking much of the light. After enhancement, these changes across frames from
bright on average to dark on average and then back to bright on average are far
less obvious: the lighting of the sequence becomes much more consistent.

4.3 Application in Colonoscopic Surface Reconstruction

In the colonoscopic surface reconstruction system RNNSLAM [11], a deep learn-
ing RNN network runs in parallel with a standard SLAM system. The RNN
component predicts the depths and pose of each camera frame to initialize their
SLAM optimization, and the SLAM outputs the improved values of poses and
depths and updates the hidden states of RNN. This combination leads to low
tracking error. Our RNN lighting enhancement network can also run in parallel
with the RNNSLAM. The enhanced images produced by our method are given
to its SLAM component as the image inputs.

Success on the Cases that Fail with Original Images. To prove the valid-
ity of our method, we tested the RNNSLAM system with enhanced images on
32 cases which cannot be reconstructed with the original images. A case is cat-
egorized as a failure when RNNSLAM predicts obvious discontinuous camera
poses, or the system aborts automatically when it cannot give reasonable pose
prediction. We noticed that most of the previous failure cases include significant
lighting changes or large camera motion that leads to lighting occlusion. When
testing them with our enhancement module inserted, 21 of 32 succeeded without
tracking failure: the reconstruction success rate significantly increased. We also
tested these 32 cases with the images enhanced by histogram equalization [14]
and by a neural-network method Zero-DCE [6]1; only 8 and 12, respectively
succeeded, showing our method outperforms the traditional and deep-learning
single-image enhancement approaches on improving the reconstruction success
rate.

In Fig. 5 we illustrate a case of improved tracking using our lighting correc-
tion, where the predicted camera trajectory without enhancement is shown in
red, and the trajectory after enhancement is shown in blue. In each case the
camera is predicted to start from the top right position and to move along the
respective trajectory to the bottom left position. Particularly in the figure, we
show the positions predicted for two successive keyframes t and t+1. Although it
is clear to the human eye that the motion between these two images is subtle, due
to a lighting change, the camera pose prediction changes by a dramatic distance
of 2.63 when using the original frames, clearly indicating an error comparing to
the 0.03 median camera translation of this trajectory. This issue of discontinuity
in predicted poses does not occur after we enhance the input images, where the

1 We implemented the training in [6] without color constancy loss using the
colonoscopy images from our training set.
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Fig. 5. The comparison of pose trajectories for the same sequence without (red) and
with (blue) the RNN lighting enhancement. The pose discontinuity issue indicated by
large camera translation does not occur after using enhanced images.

predicted camera poses move smoothly and the maximum camera translation of
this trajectory is 0.11.

Pose Improvement of Previously Reconstructable Sequences. Not only
does our lighting enhancement allow previously un-reconstructable sequences to
be reconstructed, but as demonstrated in the following, it improves the pose
trajectories produced from sequences that were previously reconstructable. To
quantitatively measure the pose improvement, we adopt the evaluation method
in [11], using COLMAP [16] on the un-enhanced images to generate a high-
quality baseline trajectory as the virtual “ground-truth” for each video sequence.
As the evaluation metric we compute the absolute pose error (APE) of each
timestamp in the generated trajectory compared to its “ground-truth”. For each
trajectory, the RMSE of the APE statistics of all timestamps is computed. We
tested 12 colonoscopic sequences that were already reconstructable without our
enhancement strategy. We computed the RMSE and other APE statistics (mean,
std, etc.) of each sequence respectively, and in Table 1 we list the summary
statistics across these 12 sequences. For better reference, we also show the errors
of the trajectories produced by COLMAP when using enhanced images. Since
we are measuring the error, the lower the result is, the better.

For every sample in these 12 sequences, even though the original lighting
is consistent enough for the SLAM to produce decent pose predictions, our
enhancement method brought further improvement, decreasing their pose errors.
This result shows that besides significantly increasing the reconstruction success
rate, our method can also bring minor improvement to the reconstruction quality
in cases that can be reconstructed successfully without lighting enhancement.
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Table 1. The average APE statistics of 12 colonoscopic sequences

Method Mean Mean Std Min Median Max

RMSE APE APE APE APE APE

COLMAP w/Enhanced img 0.329 0.295 0.143 0.077 0.278 0.736

RNNSLAM w/Original img 0.840 0.752 0.371 0.203 0.694 1.666

RNNSLAM w/Enhanced img 0.680 0.606 0.302 0.105 0.554 1.388

Before
enhancement

After our
enhancement

Fig. 6. An extreme tracking condition, the “close occluder”. Its complicated lighting
situation is beyond our enhancement method’s capacity.

5 Discussion and Conclusion

Due to the complexity of colon geometry, the lighting in colonoscopy videos
tends to have rapid changes that lead to failures in the colonoscopic surface
reconstruction system. In this work we focused on improving the lighting con-
sistency in colonoscopy videos. We proposed a light-weight RNN network for
an adaptive lighting enhancement method to enhance the colonoscopy image
sequence, which brightens the dark regions and makes lighting consistent from
frame to frame. With the help of our enhancement module, a larger portion of
colonoscopy videos can now be successfully reconstructed and the reconstruction
quality is improved.

Future Work.

1. Our method is initially designed to improve the lighting consistency of
colonoscopy sequences, but it is also applicable for other video modalities. For
example, for other types of endoscopy videos and outdoor driving sequences
with large lighting changes, our network can be trained on these data to
improve their lighting consistency for better reconstruction.
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2. Although our method successfully increases the reconstruction success rate,
there is still a notable fraction of colonoscopy sequences that cannot be recon-
structed after the lighting fix. They usually contain some extreme tracking
conditions, and one of them is what we call the “close occluder”. In this case,
as the colonoscope moving behind a haustral ridge, or moving side-way and
being really close to the colon surface, the image foreground occupies a large
portion of an image frame, as shown in the last two images of Fig. 6. The
lighting in these images is usually extremely bright in the foreground and
extremely dark in the background. Moreover, when using these frames, the
SLAM system will choose keypoints for optimization not only from the “down
the barrel” portion of the image, as it usually does with the normal frames,
but also from the bright foreground. Therefore, in order for these cases to
succeed, the bright and the dark regions both need to be more elaborately
adjusted to achieve global lighting consistency. Currently our method cannot
handle this complicated scenario and a more sophisticated image enhance-
ment technique is needed; we leave it to future work.
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