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Abstract. Based on diffusion tensor imaging (DTI), one can construct
a Riemannian manifold in which the dual metric is proportional to the
DTI tensor. Geodesic tractography then amounts to solving a coupled
system of nonlinear differential equations, either as initial value problem
(given seed location and initial direction) or as boundary value problem
(given seed and target location). We propose to furnish the tractography
framework with an uncertainty quantification paradigm that captures
the behaviour of geodesics under small perturbations in (both types of)
boundary conditions. For any given geodesic this yields a coupled system
of linear differential equations, for which we derive an exact solution. This
solution can be used to construct a geodesic tube, a volumetric region
around the fiducial geodesic that captures the behaviour of perturbed
geodesics in the vicinity of the original one.
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1 Introduction

Geodesic tractography for diffusion weighted magnetic resonance imaging (DWI)
asserts that neuronal tracts are geodesics relative to some data induced metric.
In the case of diffusion tensor imaging (DTI) a Riemannian metric presents
itself, since its tensorial type matches that of the diffusion tensor. Indeed, from
a heuristic point of view a connection between DTI and Riemannian geometry
is intuitive if one stipulates the dual metric to be proportional to the diffusion
tensor [13,15], for in that case short paths are tantamount to high diffusivity
pathways, reflecting the preferred orientation of white matter tracts in line with
the vestigial idea of classical streamline tractography. Finally, the Hopf-Rinow
theorem [12] guarantees the existence of at least one tentative geodesic tract
between any given pair of points, which may contribute to efforts of minimising
false negatives. Clearly this compels us to furnish the method with an explicit
criterion for pruning false positives. We will refer to the comprehensive frame-
work accounting for all these observations as the Riemann-DTI paradigm1.
1 The manifest inclusion of a geodesic pruning criterion actually requires a coupling to

Euclidean geometry, so a more accurate designation would be ‘Riemann-Euclidean-
DTI paradigm’.
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The qualitative plausibility of the Riemann-DTI paradigm has been con-
firmed in numerous experiments on real and synthetic data. However, despite
adaptations proposed to overcome shortcomings [4,8,11], state of the art geodesic
tractography does not, in general, produce quantitative results. This is not sur-
prising, since complex fiber configurations induce articulated diffusivity profiles
that cannot be captured by DTI and, a fortiori, by any Riemann-DTI paradigm,
due to insufficient degrees of freedom. But even in the restricted case of ‘single
fiber coherence’, with neatly aligned axons forming smooth bundles, the stip-
ulation of an unambiguous correspondence between DTI data and Riemannian
metric consistent with white matter organisation may be too much to hope
for. Water diffusion and axon geometry are, albeit correlated, entirely different
things.

Nevertheless, by virtue of its non-invasive nature, intuitive appeal and rela-
tive simplicity, DTI does have clinical potential. In this article we explore avenues
to make the Riemann-DTI paradigm amenable for use in the neurosurgical work-
flow [16]. One crucial aspect, highlighted in this endeavour, is the quantitative
effect of perturbations of seed and target regions in tractography. In this article
we adopt a generic approach, applicable to any Riemann-DTI paradigm. The
precise form of the metric is immaterial for our analysis, although we will illus-
trate results for a particular instance.

We stress that our goal is not overly ambitious. Inevitable model errors (such
as the inadequacy of DTI or of a particular Riemann-DTI paradigm) are not
considered. What we aim to accomplish is to avoid conveying a false sense of
faith in crisp tractography results towards the clinician, an inherent risk of any
deterministic method. We do so by furnishing the Riemann-DTI paradigm with
a rigorous uncertainty analysis detailed in the next section. The uncertainty
alluded to is of a fundamental nature and cannot be removed or diminished
without data-extrinsic knowledge.

2 Theory

We address the stability of geodesic tractography in the sense of robustness to
generic perturbations of initial or boundary conditions. We focus on how such
perturbations affect a tractogram in terms of a conservative estimate of uncer-
tainty that prevails regardless of additional sources of uncertainty along a trac-
tography pipeline, such as DTI data noise. This ‘intrinsic’ uncertainty enables
a fair comparison between different tractography results, since geometrical dif-
ferences can only be meaningfully quantified if one accounts for the empirical
margins of uncertainty.

We depart from a metric tensor field gij(x) on an n-dimension manifold M
and a pair of unperturbed initial or boundary conditions,

(x(0), ẋ(0)) .= (x0, v0) , or (1a)
(x(0), x(T )) .= (x0, xT ) , (1b)
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for a fiducial geodesic path x = x(t), t∈ [0, T ], with ẋ(t) .=dx(t)/dt. By virtue of
the second order nature of geodesic tractography and the geodesic completeness
theorem, recall Sect. 1, there are no a priori constraints on the components of
each pair. We then consider two types of perturbations, representing variations
of (1a) or (1b):

(x0, v0) = (x0, v0) + η(z0, w0) + O(η2) , (2a)

(x0, xT ) = (x0, xT ) + η(z0, zT ) + O(η2) . (2b)

The parameter 0 ≤ η � 1 is dimensionless. Terms of order O(η2) are considered
negligible and will be suppressed henceforth.

The geodesic equation for x = x(t) is given, component-wise relative to some
coordinate basis, by

ẍi + Γi
jk(x)ẋj ẋk = 0 , (3)

assuming arclength parametrization relative to the metric gij(x) and employing
summation convention [14,17]. The Christoffel symbols in (3) are given by

Γi
jk =

1
2
gi� (∂jg�k + ∂kgj� − ∂�gjk) . (4)

As usual, gij indicates the components of the Gram matrix of the dual met-
ric, i.e., gikgkj = δi

j . We furnish (3) with either (1a) or (1b), and consider a
perturbed path

xi(t; η) = xi(t) + ηzi(t) , (5)

induced by (2). Each boundary condition, either (1a) or (1b), guarantees the
existence of a unique solution to (3) within a sufficiently small tubular neigh-
bourhood of the unperturbed trajectory x(t). The requirement that the per-
turbed path (5) represents itself a geodesic for any sufficiently small η imposes
constraints on the function z = z(t). Technically, it is, unlike the coordinate
path x = x(t), vector-valued. From a geometric point of view this is rigorously
justified if one regards (5) as the first order expansion of a parametrized geodesic
congruence with parameter η (keeping t fixed), induced by the tangent vector

z(t) .=
∂

∂η
xi(t; η)

∣
∣
∣
∣
η = 0

. (6)

We will refer to z(t) as the deviation vector, as it measures the first order differ-
ence between the geodesics x(t) and x(t, η).

Inserting (5) into (3) the function z = z(t) can be seen to satisfy the geodesic
deviation equation [14,17]:

D2zi

dt2
+ Ri

jk�ẋ
jzkẋ� = 0 , (7)

in which Ri
jk� is the Riemann tensor :

Ri
jk� = ∂kΓi

j� − ∂�Γi
jk + Γi

kmΓm
j� − Γi

�mΓm
jk . (8)
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The operator D/dt in (7) represents a covariant derivative [14,17] along x(t).
For the components vi of a vector field v it is given in terms of the ordinary
t-derivative and Γ-correction terms by Dvi/dt = dvi/dt + Γi

jkvj ẋk.
We may rewrite (7) as a first order system:

⎧

⎪⎨

⎪⎩

Dzi

dt
= wi ,

Dwi

dt
= −Ri

jk�ẋ
jzkẋ� .

(9)

Resolving covariant derivatives in terms of ordinary derivatives and Γ-correction
terms leads to ⎧

⎪⎨

⎪⎩

dzi

dt
= wi − Γi

jkzj ẋk ,

dwi

dt
= −Ri

jk�ẋ
jzkẋ� − Γi

jkwj ẋk .

(10)

This system can in turn be written as a homogeneous vector-valued first order
ordinary differential equation of dimension 2n:

d

dt

[
z
w

]

=
[
A In

B A

] [
z
w

]

, (11)

in which A, B and In are n×n-matrices with entries

Ai
j

.= −Γi
jkẋk (In)i

j
.= δi

j Bi
j

.= −Ri
kj�ẋ

kẋ� . (12)

The solution may be conveniently written in terms of product integrals from
multiplicative calculus, cf. Gill and Johansen [9] for a survey, and Florack and
Van Assen [7] for the non-commutative case at hand. Abbreviating (11) as

d

dt
Z = MZ , (13)

with Z(t) = (z(t), w(t)) and initial condition Z0
.=Z(0), the closed-form solution

is given by

(14)

in which exp is the matrix exponential function, and

(15)

for any partitioning of the integration interval [0, t], with interval widths Δsi =
si−si−1 and sample points s∗

i ∈ [si−1, si], i = 1, . . . , N , such that s0 = 0, sN = t.
We may write (14) as Z(t) = Π(t)Z0, with 2n×2n block matrix
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(16)

Using this notation, the solution z(t) to the system (7) furnished with initial
conditions (2a) may be succinctly expressed as

z(t) = Π11(t)z0 + Π12(t)w0 . (17)

If, instead of (2a), we consider endpoint perturbations of type (2b), then we
must treat w0

.= w(0) as an unknown, such that upon setting t = T in (17)
we have z(T ) = zT . By making this substitution we obtain a relation between
the unknown constant w0 and the pair (z0, zT ). Solving this relation for w0 in
terms of (z0, zT ) and substituting it into (17), the solution of the boundary value
problem, i.e., (7) and (2b), can be written as

z(t) =
(

Π11(t) − Π12(t)Π12(T )−1Π11(T )
)

z0 + Π12(t)Π12(T )−1zT . (18)

Equations (17) and (18) are the closed-form solutions for our deviation vector
z(t) along the fiducial geodesic x(t) in terms of initial, respectively endpoint
perturbations, (z0, w0) and (z0, zT ), recall (2). Also recall that, given x(t), these
closed-form expressions for z(t) imply a closed-form expression for any perturbed
path x(t) via (5), valid up to first order in η.

To further investigate the perturbations (2), we note that the deviation vector
z(t) in (5) is found to be bilinear in (z0, w0), respectively (z0, zT ), recall (17) and
(18). Hence we may generically write

z(t) = P (t)z0 + Q(t)y. (19)

for matrices P (t), Q(t) ∈ R
n×n, with either y

.= w0 or y
.= zT .

Instead of regarding the perturbation (z0, y) as fixed, it is instructive to view
it as a realization of some random variable, rendering z(t) stochastic as well. In
this way we are able to capture the behaviour of z(t) for different perturbations
(z0, y) all at once. Let fz0 , fy be the probability density functions of the random
variables z0 and y, assuming a zero mean for both. Assuming z0 and y to be
independent of each other, the probability density fz(t) of z(t) is given by a
convolution of the densities of each of the terms in (19):

fz(t) =
1

det(P (t))
1

det(Q(t))
(fz0 ◦ P−1(t)) ∗ (fy ◦ Q−1(t)) . (20)

This may be restated in terms of Fourier transforms2 [10]:

fz(t) = F−1
((F(fz0) ◦ PT(t)

) (F(fy) ◦ QT(t)
))

, (21)

2 The Fourier transform of a probability density function, F(f), is also known as the
characteristic function. It always exists and, like the density function, it completely
characterizes the random variable.
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in which the superscript T denotes matrix transposition. Note that (21) is valid
even for singular P (t) and/or Q(t), unlike (20). The level sets of fz(t) may be
used to visualize the distribution of z(t) for each parameter value t. In general,
however, these sets are curved surfaces embedded in n = 3 dimensional space
and thus likely to overlap and intersect for different values of t, obfuscating the
visualization. To avoid this we note that components of the deviation vectors
z(t) parallel to ẋ(t) are geometrically irrelevant and may be absorbed into a
reparameterization of the curve. Therefore we consider the Euclidean projection
of z(t) onto the plane orthogonal to the tangent vector ẋ(t):

z⊥(t) =
(

I3 − ẋ(t)ẋT(t)
‖ẋ(t)‖2

)

z(t) . (22)

The corresponding probability density fz⊥(t) is obtained by the formal replace-
ment in (21)

P (t) �→P⊥(t) .=
(

I3− ẋ(t)ẋT(t)
‖ẋ(t)‖2

)

P (t) , Q(t) �→Q⊥(t) .=
(

I3− ẋ(t)ẋT(t)
‖ẋ(t)‖2

)

Q(t) ,

(23)
Instead of representing tractograms as a collection of ‘naked’ curves, we propose
the concept of geodesic tubes, constructed by inflating these curves to tubes with
local cross sections given by the level sets of fz⊥(t), see Fig. 1. More precisely,
the tube around geodesic curve x(t) is given by

Tube(x, β) =
⋃

t∈[0,T ]

{x(t) + ηz : fz⊥(t)(z) = β} , (24)

for some parameter β>0 controlling the extent of the level sets. By constructing
geodesic tubes in this way, a non-vanishing geodesic deviation is tantamount to
an inflated tube, whose volume reflects the first order geodesic path corrections
induced by the stochastic perturbations at hand. Thus a geodesic tube provides
an estimation of the uncertainty for any computed geodesic.

Last, we note that the visualization of geodesic tubes may be challenging in
case geodesics are not sufficiently far from each other, since their tubes are likely
to cause clutter. This difficulty can be overcome by constructing a probability
density f from (20) or (21), by summing over x, integrating over t and suitable
renormalization, so that

f(ξ) ∝
∑

x

∫

t

fz(t)

(
ξ − x(t)

η

)

dt . (25)

Recall that fz(t) itself, and not only through its argument, depends on x (not
indicated for simplicity of notation). Equation (25) may be seen as a generaliza-
tion of (20), (21) for multiple geodesics, representing the probability to find a
perturbed trajectory induced by any of the unperturbed geodesics. The level set
{f(ξ) = β} represents the uncertainty arising from a collection of geodesics due
to perturbations in initial or boundary conditions, and it is the generalization
of (24).
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3 Experiments

We perform experiments on two clinical DWI datasets, acquired with a Philips
Achieva 3T MRI scanner (b = 1500, 50 diffusion-weighting directions, six b = 0
images, 2 mm isotropic voxel size). Note that throughout our experiments the
dimension of space is n = 3 and the defining Gram matrix for our Riemann-
DTI paradigm is the adjugate of the DTI matrix D, gij = det D Dinv

ij , cf. Fuster
et al. [8] for a geometric motivation. In the experiments we restrict ourselves
to perturbations of type (2b), so that y

·= zT in (19). Perturbations of type
(2a) will induce tubes with ever growing cross sections, corresponding to the
accumulation of errors when solving (7) as an initial value problem; in this case
we cannot expect the first order approximation (5) to hold along the entire
geodesic. By restricting ourselves to perturbations of type (2b) we ensure that,
at least near the two endpoints, the perturbations are sufficiently small.

We assume variables z0, zT to follow normal distributions N (0, I3), in which
case z⊥(t) is also normally distributed with covariance matrix

Σ⊥(t) = P⊥(t)PT
⊥ (t) + Q⊥(t)QT

⊥(t) . (26)

From the expression

fz⊥(t)(ξ) =
1

√

(2π)2 det(Σ⊥(t))
exp

(

−1
2
ξTΣ−1

⊥ (t)ξ
)

(27)

it is clear that the level sets are determined by the quadratic form ξ �→ξTΣ−1
⊥ (t)ξ

and thus will be elliptical. We set the parameters in (24) to η = 1.0 and
β = 0.1/

√

(2π)2 det(Σ⊥(t)). Parameter β is chosen such that the integral of
fz⊥(t) over the superlevel set {ξ : fz⊥(t)(ξ) ≥ β} is 0.9, i.e., so that the tube
covers 90% of the probability distribution fz⊥(t).

Figure 1 illustrates the construction of geodesic tubes for two arbitrarily
chosen, unperturbed geodesics, in relation to explicitly computed neighbour-
ing geodesics (from explicitly perturbed endpoints). The geodesic tubes enclose
most of the perturbed geodesics, except for a few in the bottom right illustration.
In both cases, the ellipses representing the level sets become almost degenerate
indicating a unidirectional deviation, which is in agreement with the perturbed
geodesics. Although we do not satisfy the ‘usual’ constraint for linear perturba-
tion theory3, viz. η � 1, we still obtain plausible results. In the bottom right
illustration we notice perturbed geodesic curves running (partly) outside the
interior of the tube, but upon closer inspection we find that these curves have
boundary values z0, zT , fairly distant from x0, xT . It no surprise then, that the
first order approximation underlying the geodesic tube ceases to be valid.

3 The role of η is confounded with the widths of the probability distributions for z0
and zT by virtue of (2). If these are sufficiently narrow, then η is a formal parameter
that may be set to 1 without loss of generality.
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Fig. 1. Left: In red, two arbitrarily chosen geodesics between a seedpoint in the brain
stem and a target in the precentral gyrus. In translucent blue, the associated geodesic
tubes, cf. Eq. (24). Right: In green, 40 perturbed geodesics in the vicinity of the orig-
inal, unperturbed geodesics. Note that the perturbed boundary values do not need to
be confined to the plane perpendicular to ẋ(0), respectively ẋ(T ). (Color figure online)

Figure 2 presents a qualitative comparison of the Cortico Spinal Tract (CST).
We generated 5000 geodesics and their associated densities fz(t). Every unper-
turbed geodesic gives rise to 40 perturbed ones, yielding a total of 2 × 105

geodesics, which are explicitly computed for the sake of this experiment by
repeatedly solving (3) with boundary conditions (2b). Our proposed alternative
avoids solving—in principle arbitrarily many—nonlinear differential equations
for neighbouring geodesics via (3), solving instead a single linear differential
equation for a representative geodesic tube, recall (7). Our experiments indicate
that the computation of geodesic tubes may indeed be a feasible strategy as long
as the perturbations remain sufficiently small. To ensure that we only illustrate
geodesics having this property, we compute from the densities in (27) the point-
wise expectation value E[‖z⊥(t)‖2], and subsequently the tractwise quantity

M = max
t∈[0,T ]

E[‖z⊥(t)‖2] . (28)

Of the 5000 computed tracts, only 2352 (resp. 2170) are used in determining
the density f in (25), viz. those for which M ≤ 3E[‖z⊥(0)‖2] = 3

√

π/2≈ 3.75.
Although in no way rigourous, this ad-hoc threshold allows us to impose the
condition that deviations are sufficiently small, ensuring validity of (5). The
images on the left show the 90% level set of the densities f and the ones on the
right illustrate the empirical densities of the perturbed geodesics, obtained by
counting how many of them pass through each voxel.
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Figure 3 presents a comparison between the geodesic tubes and the iFOD2
probabilistic fiber tracking algorithm of MRtrix3 [18]. In both the geodesic and
the probabilistic MRtrix3 tracking, we have constrained the tracts of the right
Inferior Fronto-Occipital Fasciculus (IFOF) to pass through the capsula externa.
This criterion is induced by anatomical prior knowledge and not by the usage of
geodesic deviation. Results in Fig. 3 show a good qualitative agreement between
probabilistic and geodesic tracking.

4 Discussion

We have addressed the stability of geodesic tractography in the sense of its
robustness to perturbations of initial or boundary conditions. By perturbing
such conditions for a fiducial geodesic, the first order effect on the considered
geodesic is analytically computed for the first time (for a general metric), using
the well-known geometric concept of geodesic deviation. Based on this, we have
proposed the idea of geodesic tubes to visually capture the collective behaviour
of perturbed tracts in the vicinity of the original geodesic.

Our experiments indicate that the computation of geodesic tubes (for a rel-
atively sparse set of geodesics with uncertain boundary conditions) may indeed
be a feasible strategy, providing both an estimation of the uncertainty for any
computed geodesic as well as a dimensionality reduction principle for handling
massive bundles of geodesics, as long as perturbations remain sufficiently small.
Such reduction is gained by solving a single linear differential equation instead
of, in principle, arbitrarily many, non-linear differential equations. This leads to
a computational efficiency which favours our analytical approach over practical
methods, e.g., brute force Monte Carlo simulations. At the same time the exper-
iments reveal the need for an operational definition of what ‘sufficiently small’
means in this context. The appropriate length scales must somehow be induced
by the local data structure, which we will address in future work.

Our framework can be extended in several ways. Firstly, instead of perturbed
boundary conditions we may consider perturbations of the metric tensor field
gij induced by DTI noise. This leads to an inhomogeneous geodesic deviation
equation, generalizing (7), in which an additional force term is active along the
entire geodesic path. This extension will be studied in future work.

Secondly, we may consider the more general Finsler-DWI paradigm [1–3,5,6],
stipulated as a ‘canonical’ extension of the Riemann-DTI paradigm. Such a Fins-
lerian extension offers the advantages that (i) an analogous geometric description
of geodesic tractography and perturbative effects applies, albeit mathematically
more cumbersome, and (ii) the descriptive power is greatly enhanced by the
removal of the quadratic restriction underlying the Riemann-DTI paradigm (i.e.,
the limitation to DTI, respectively to inner product induced norms), making it
the natural choice for an unconstrained DWI (HARDI) representation. Thus our
perturbative analysis is potentially relevant beyond the scope of Riemann-DTI.
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Fig. 2. Anterior view of a coronal cross section of a DWI scan with a tumor on the
left side of the brain. Left: Density of the geodesic deviation, as per (25). Such accu-
mulated density over all unperturbed geodesics prevents clutter arising from geodesics
and corresponding tubes being too close to each other. Right: Empirical density of
the perturbed geodesics obtained by counting how many of them pass through each
voxel. Every one of the 5000 unperturbed geodesics generates 40 perturbed geodesics.
In total we have solved nonlinear differential equation (3) 2 × 105 times, in contrast
to the construction of the densities in (20) or (21), which requires both (3) and (7) to
be solved just 5000 times, illustrating the computational profit gained from the use of
geodesic tubes.

Fig. 3. Sagittal cross section of the same DWI scan as in Fig. 2. Left: Density induced
by tracts from the right Inferior Fronto-Occipital Fasciculus (IFOF), as per (25). Of
the 5000 computed tracts, only 1264 have been used in (25), viz. those which pass
through the capsula externa and satisfy M ≤ 3

√
π/2. Right: 2514 tracts generated

by MRtrix3 FOD-based probabilistic fiber tracking of the right IFOF, again including
only tracts that pass through the capsula externa.
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