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�Introduction

The role of nutrition and lifestyle as effective strate-
gies to decrease diabetes and cardiovascular disease 
risk is becoming increasingly important as over 
one-third of Americans are prediabetic and more 
than 60% of Americans eat more than the daily 
recommended amount of sodium, added sugar, 
and saturated fats [1, 2]. Although a wide variety 
of diet and lifestyle treatment options are avail-
able to patients, clinical dietary counseling often 
fails to meet patient needs and provide sufficient 
guidance and feedback on progress [3]. One way to 
understand the impact of diet is through biomark-
ers, which serve as noninvasive, cost-effective, and 
diverse tools for physicians to quantify a patient’s 
responses to nutritional therapy. While there are 
several methods of monitoring a patient’s response 
to nutritional therapy, biomarkers are preferred due 
to their low cost, greater accessibility, and avail-

ability of rapid testing. The biomarkers discussed 
in this chapter were selected based on their clinical 
relevance and strength of literature available. This 
chapter will focus on how biomarkers can be used 
to assess the impact of diet and lifestyle changes on 
cardiovascular health (Fig. 2.1).

�BMI/Body Composition

Obesity, defined by a BMI of greater than 30 kg/
m2, is a well-known risk factor for dyslipidemia, 
hypertension, diabetes, cardiometabolic syn-
drome, CVD, and cancer. However, extending 
beyond a pure weight-based assessment, new evi-
dence sheds light on the importance of body fat 
distribution and body composition in overall health 
[4, 5]. Numerous tools are available to clinicians 
to quantify body composition. For example, dual 
energy absorptiometry (DEXA) scans are used to 
analyze body composition and are an important 
diagnostic tool for osteopenia and osteoporosis. 
Further, DEXA scans have been utilized to assess 
fat mass normalized by height squared (FMI), 
which is advantageous over BMI in that the value 
is independent of lean muscle mass, and FMI may 
be used as a predictor for cardiovascular health [6]. 
DEXA scans have been used in clinical research 
and in special populations such as athletes [7]. 
However, current guidelines suggest that the clini-
cal utility of DEXA scans in metabolic syndrome 
evaluation requires further research [8].
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An even less invasive measurement of body 
composition is the waist-to-hip ratio, measured 
simply by circumference. An increased waist-
to-hip ratio shows a significant association with 
risk of myocardial infarction, as well as coro-
nary artery disease, and T2D [9], [10]. In fact, 
waist-to-hip ratio shows both a graded and a sig-
nificant association with myocardial infarction, 
especially in comparison to BMI, across ethnic 
groups [11]. The population-attributable risks of 
MI for waist-to-hip ratio in the top two quintiles 
of INTERHEART study participants was 24.3% 
compared with only 7.7% for the top two quin-
tiles of BMI [9]. The importance of waist-to-hip 
ratio and waist circumference in predicting car-
diometabolic risk has been increasingly recog-
nized in the literature, and qualitative descriptors 
known as “pear” body shaped and “apple” body 
have been applied to describe patients with more 
weight around the hips and more weight around 
the waist, respectively [12, 13]. Furthermore, there 

is evidence to suggest that even in women with 
normal weight, central obesity is associated with 
increased risk of mortality, similar to mortality in 
women with elevated BMI with central obesity 
[14]. These findings underscore the importance of 
assessing not only BMI as a risk factor for future 
cardiovascular disease, but also central obesity.

Studies have shown when body composition 
is modified with modalities such as high intensity 
exercise and diet, there is a reduction in body fat, 
waist circumference and increase in muscle mass. 
For example, patients with a history of myo-
cardial infarction (n = 90) who performed high 
intensity exercise lost 4 pounds more of body fat, 
gained 1.5 pounds more of muscle, and reduced 
their waist circumference by 2.54 cm more than 
those who solely performed moderate exercise 
[15]. In addition, the Mediterranean diet (MD) in 
particular can be useful in reducing weight cir-
cumference, as demonstrated in a meta-analysis 
by Kastorini et al. [16].
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�Blood Pressure

Numerous large-scale studies have provided 
strong and consistent evidence that both systolic 
(SBP) and diastolic (DBP) blood pressures are 
positively associated with cardiovascular disease 
outcomes [17]. These findings are consistent 
across genders, various age groups, racial and 
ethnic groups, and across different countries. Not 
only is elevated blood pressure an overall pre-
dictor for cardiovascular outcomes, systolic and 
diastolic values are helpful in differentiating risk 
for patients and may act as a marker to assess 
risk of cardiometabolic syndrome [17]. While 
hypertension significantly affects the heart, it has 
multi-organ effects and is a risk factor for kidney 
disease and stroke [18].

Vegetarians have been shown to have lower 
blood pressure than those who eat omnivorous 
diets. In a meta-analysis of 258 studies, vegetar-
ian diets were found to reduce SBP ~5–7 mm Hg 
and DBP by ~2–5 mm Hg, which is equivalent 
to the effect of losing 2.5 lbs [19]. Mirroring 
these findings , the MD decreases both SBP 
(−2.35 mm Hg) and DBP (−1.58 mm Hg) blood 
pressure [16]. Conversely, salty foods increase 
risk of hypertension: increasing SBP by 4.58 mm 
Hg and DBP by 2.25  mm Hg per 1000  mg of 
sodium [20]. Alarmingly, the risk of hyperten-
sion for participants in the upper third and fourth 
quartile (>3819 mg/day) is more than 4x higher 
compared to those in the lower two quartiles 
(P < 0.01).

Exercise also plays a crucial role in manag-
ing hypertension. Endurance training, dynamic 
resistance training and isometric training lower 
both SBP and DBP [21]. A systematic review 
and meta-analysis by Cornelissen and Smart in 
2013 found that blood pressure reductions after 
low-intensity endurance exercise were smaller 
than blood pressure reductions after moderate- or 
high-intensity training [21]. (Low-intensity exer-
cise training was defined by <55% of heart rate 
maximum or < 40% of heart rate reserve) [21]. 
Surprisingly, this same meta-analysis found that 
the groups exercising >210 min a week had the 

smallest reductions in blood pressure, possibly 
due to the fact that more exercise was performed 
at a lower intensity [21]. There are many differ-
ent effective options for exercise to reduce blood 
pressure, but it may be worthwhile to consider 
prescribing a supervised facility-based exercise 
program for patients new to exercise, as this does 
yield the highest adherence [21].

�Total Cholesterol

Total cholesterol, a commonly performed mea-
sure, is the sum of LDL cholesterol, VLDL 
cholesterol, HDL cholesterol, intermediate-
density lipoprotein (IDL) cholesterol and cho-
lesterol associated with lipoprotein(a) (Lp(a)). 
Cholesterol is a requirement for physiological 
function—it is an essential structural component 
of cell membranes and acts as a precursor for ste-
roid hormones produced by the body. While the 
liver’s synthesis of cholesterol is largely deter-
mined by genetic factors and feedback mecha-
nisms, the remainder of cholesterol is obtained 
through dietary intake. Foods such as dairy 
products, eggs, meat, and poultry are significant 
sources of cholesterol in the diet. Though reduc-
ing such animal product intake seems intuitive 
to lower total cholesterol in patients with hyper-
lipidemia, dietary cholesterol has little effect on 
cardiovascular disease risk [22]. In fact, the rela-
tionship between dietary cholesterol and cardio-
vascular disease is different in a given individual; 
studies demonstrate that the fractional absorption 
rate of dietary cholesterol is variable, ranging 
from 20% to 80% [22].

According to US population studies, an 
optimal total cholesterol level in an adult is 
<150 mg/dL [23]. It is important to note, how-
ever, that there is a large difference in cardiovas-
cular mortality rates for a given total cholesterol 
value [24]. Total serum cholesterol may be 
tracked longitudinally as a way to assess both 
risk for cardiovascular disease and nutrition sta-
tus, alongside other clinically significant values, 
discussed below.

2  Impact of Nutrition on Biomarkers of Cardiovascular Health
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�Low-Density Lipoproteins (LDL)

While total cholesterol is an important value to 
track over time and is a predictor of cardiovas-
cular risk, LDL is colloquially termed “bad cho-
lesterol” and is the main target of lipid lowering 
therapies such as statins. LDL is particularly 
utilized clinically as epidemiologic data dem-
onstrates a positive and consistent relationship 
between LDL concentration and cardiovascu-
lar mortality and cardiovascular events. There 
is also substantial data to support the effort of 
lowering LDL, as reduction decreases patients’ 
cardiovascular risk across a wide spectrum of 
patients, including those with known cardiovas-
cular disease.

LDL is known to play a key role in the patho-
physiology of atherosclerosis. Portions of blood 
vessels that are susceptible to atherosclerosis 
retain lipoproteins like LDL, and it is this reten-
tion that is an initial and key step in the forma-
tion of atherosclerotic plaques in the arteries. The 
mechanism of plaque formation is well under-
stood, and the evidence for LDL’s key role in 
atherosclerotic formation is corroborated by the 
understanding of Familial Hypercholesterolemia, 
an inherited disease associated with severely ele-
vated LDL levels and premature atherosclerotic 
cardiovascular disease [25].

While LDL is the target of pharmacotherapy, 
diet plays a vital role in LDL reduction. The MD, 
which contains large amounts of plant sterols 
and nuts, lowers LDL, as compared to a low-fat 
controlled diet [26]. Meta-analyses of vegetarian 
diets corroborate that vegetarian diets not only 
lower total cholesterol, but LDL as well [27]. 
Further, nuts such as almonds, hazelnuts, and 
walnuts have been linked with a decrease in LDL 
and C-reactive protein, an acute phase reactant 
discussed later in this chapter. Additionally, vis-
cous fiber has been shown to reduce LDL by trap-
ping bile salts and preventing reuptake in the GI 
tract, as well as interfering with cholesterol being 
absorbed into cells [26].

Target LDL is based on multiple factors, 
but US population studies suggest that LDL 
<100 mg/dL manifests in low levels of athero-

sclerotic cardiovascular disease and patients 
with an LDL >190  mg/dL have a high risk 
of atherosclerotic cardiovascular disease 
[23]. LDL is an important value in the clini-
cal assessment of risk for heart disease, and 
clinicians target therapies based on changes 
in LDL, which acts as a useful biomarker. 
Pharmacologic therapies used to lower LDL 
include statins, ezetimibe, bile acid seques-
trants, and PCSK9 inhibitors [23].

�High-Density Lipoproteins (HDL)

Opposite of LDL, HDL is often introduced to 
patients as the “good cholesterol.” And unlike 
LDL, there is a known inverse relationship 
between HDL and the risk for cardiovascular 
events [28]. HDL is a scavenger of cholesterol––
it assists in facilitating the return of cholesterol 
from the blood vessels back to the liver for even-
tual elimination. Furthermore, HDL prevents 
oxidation of LDL to limit LDL’s role in the gen-
eration of atherosclerotic plaque and prevents 
secretion of the vasoconstrictor endothelin [29].

HDL values <40  mg/dL are considered an 
independent risk factor for cardiovascular dis-
ease [30]. Although low HDL is correlated with 
cardiovascular disease, raising HDL by pharma-
cologic interventions has not been consistently 
shown to have significant clinical benefit [31]. 
Some diets, such as the MD, have been shown to 
increase HDL levels, but the maximum thresh-
old of improvement appears to be as low as 12%. 
Importantly, saturated fats and, to a lesser extent, 
unsaturated fatty acids have been shown to 
increase HDL [32]. Moderate alcohol consump-
tion, specifically wine, is positively associated 
with higher levels of HDL [33, 34]. Conversely, 
diets high in carbohydrates and low in fats have 
been associated with low HDL [35]. There is pre-
liminary evidence that aerobic exercise improves 
the anti-inflammatory and anti-oxidative proper-
ties of HDL, but the lack of consistent findings 
in this regard warrants more studies to determine 
the importance of exercise on HDL values and 
function [31].

C. K. Ormiston et al.
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�Non-HDL Cholesterol

The sum of LDL and VLDL values is termed 
non-HDL cholesterol , which is more atherogenic 
than LDL or VLDL alone [23]. Therefore, non-
HDL more accurately assesses atherogenic lip-
ids and CV risk than LDL, especially in patients 
with hypertriglyceridemia. In patients with high 
triglycerides, such as patients with metabolic 
syndrome and Type II Diabetes, LDL is less 
accurately estimated by means of the Friedewald 
equation [23, 25]. Due to the limitations of the 
Friedewald equation, other ways of estimating 
LDL have been developed such as the Martin-
Hopkins equation, which is a novel method to 
estimate LDL by using an adjustable factor of 
triglycerides to VLDL ratio [36]. Given that 
there are atherogenic lipids beyond LDL, some 
evidence suggests non-HDL cholesterol values 
could be more predictive of cardiovascular risk 
than LDL [37, 38]. In a recent 10-year risk cohort 
study, both LDL and non-HDL cholesterol values 
above 160 mg/dL were independently associated 
with a 50–80% increased relative risk of mortal-
ity [39].

In addition to underscoring the importance of 
non-HDL cholesterol as a marker of atheroge-
nicity, the 2018 cholesterol management guide-
lines also underscore apolipoprotein B (apoB), 
the major apolipoprotein embedded in LDL and 
VLDL, as a stronger indicator of atherogenicity 
than LDL [23]. Another atherogenic biomarker 
similar in clinical utility and risk assessment to 
apoB is LDL particle number [40]. Both apoB 
and LDL particle number have been shown to be 
stronger cardiovascular disease risk factors than 
LDL cholesterol, but apoB has been the prefer-
able particle for guideline adoption given lower 
cost, standardization, and scalability [40].

�Triglycerides

Meta-analyses have demonstrated that both ele-
vated fasting and non-fasting triglycerides are 
associated with increased risk of coronary artery 
disease [41]. The Women’s Health Study fur-

ther corroborated the strong association between 
raised triglycerides and coronary artery disease, 
as well as risk of myocardial infarction and all-
cause mortality [42, 43]. In addition to cardiovas-
cular risk, a triglyceride level > 150 mg/dL is a 
significant risk factor for metabolic syndrome, a 
cluster of pathological processes related to insu-
lin resistance and elevated free fatty acids [44]. 
Additionally, elevated triglyceride concentra-
tions (>885  mg/dL) are associated with risk of 
pancreatitis [45].

While these correlations between hypertri-
glyceridemia and risk for cardiovascular disease 
have been well studied, there is a need to further 
evaluate the clinical significance of lowering tri-
glycerides by pharmacotherapy [45]. However, 
triglycerides are highly affected by diet and life-
style. The MD, high in MUFA, PUFA and dietary 
fiber, can be particularly helpful in lowering tri-
glycerides [44]. Many studies have shown that 
high intake of carbohydrates (greater than 60% of 
caloric intake) is associated with a rise in triglyc-
erides [44]. In addition, high alcohol consump-
tion is associated with elevated triglycerides, but 
low and moderate alcohol intake are associated 
with lower triglycerides; this is likely dependent 
on the type of alcohol consumed [46].

There are several classes of pharmacologic 
agents, such as fibrates, that reduce triglyceride 
levels, but both weight loss and moderate inten-
sity exercise, such as brisk walking and social 
dancing, have been identified as key interventions 
to reduce triglyceride levels [47]. Additionally, 
dietary supplementation of ω-3 acid ethyl esters 
can be considered as an additional therapy for 
hypertriglyceridemia with a very minimal side 
effect profile [48]. Icospaent ethyl, a prescription 
highly purified eicosapentaenoic acid, has been 
shown to lower triglycerides and reduce the risk 
of ischemic cardiac events [49].

�Lipoprotein(a)

Lp(a) is a well-known risk factor for coronary 
disease that is highly heritable; elevated levels 
are associated with atherosclerosis development 
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and incidence of cardiovascular events [50]. 
Specifically, elevated Lp(a) levels have been 
associated with both coronary disease and cal-
cific aortic valve disease. Lp(a) is distinguished 
from LDL by the presence of apolipoprotein 
(a), which likely mediates proinflammatory and 
prothrombotic effects of the protein [51]. While 
Lp(a) is a modified LDL particle, Lp(a) levels 
are independent of LDL levels [25]. There is sig-
nificant evidence to support the use of Lp(a) as 
a risk factor for CVD, and there are randomized 
trials ongoing that are targeting Lp(a) [52, 53]. 
It is important to note that treatment with nia-
cin can reduce Lp(a) up to 20–30% but has not 
been associated with improved outcomes [25]. 
Interestingly, monoclonal antibodies to PCSK9 
may lower Lp(a) by 30% and have been associ-
ated with improved outcomes in large clinical 
trials such as FOURIER and ODESSEY [25, 
54, 55]. Additionally, there are new pharmaco-
logic approaches in phase III clinical trials that 
target Lp(a) lowering and it will be important to 
assess if lowering Lp (a) translates to decreased 
CV events [53]. There are little data available to 
support the influence of dietary choices on lower-
ing Lp(a), but several studies suggest that low-fat 
diets may result in an increase in Lp(a) [56].

�Hs-CRP

C-reactive protein (CRP), produced by the liver, 
is a marker of systemic inflammation [57]. 
High-sensitivity C-reactive protein (hs-CRP) 
is a higher sensitivity test that can detect lower 
grades of inflammation than a standard CRP test 
[57]. While numerous pathologic processes rang-
ing from infection to autoimmune disease can 
elevate hs-CRP levels, it can also be used as a 
global assessment of cardiovascular risk. Given 
that many processes can lead to systemic inflam-
mation, hs-CRP elevations may be transient in 
response to infection and should be repeated 
when these confounding processes are quies-
cent. Meta-analysis conducted by Li et  al. sug-
gests hs-CRP can stratify cardiovascular risk and 
all-cause mortality risk in the general population 
[57]. Further, data from the Women’s Health 

Study suggests hs-CRP predicts cardiovascular 
events even in groups that have no other apparent 
markers of cardiovascular disease [58]. An hs-
CRP <2.0 mg/L is often considered the threshold 
for low risk and a value of >2.0 mg/L is consid-
ered the threshold for higher risk [59].

Provided that inflammation plays a key role 
in the pathophysiology of atherosclerotic for-
mation, the correlation between hs-CRP and 
cardiovascular disease is not surprising. Even in 
patients with low levels of atherogenic biomark-
ers such as non-HDL cholesterol and apoB, a 
discordantly elevated hs-CRP level resulted in 
a 30–60% greater relative risk of developing 
ASCVD compared to patients with low hs-CRP 
[59]. While many cardiovascular risk factors 
such as smoking, diabetes, and hypertension can 
increase the inflammatory response and, thereby, 
hs-CRP, an anti-inflammatory diet may be help-
ful in reducing systemic inflammation and could 
help improve cardiovascular outcomes. Anti-
inflammatory diets are the subject of many stud-
ies currently, but it has been well established 
that ω-3 fatty acids are anti-inflammatory, and 
ω-6 fatty acids tend to be pro-inflammatory. 
ω-3 fatty acids may be found in walnuts, canola 
oil, and soybean oil, and fish such as salmon, 
halibut, and mackerel. Conversely, ω-6 acids are 
found in corn and sunflower oils. It is generally 
recommended that protein in an anti-inflamma-
tory diet be plant-based with small amounts of 
fish and lean meats. Further, the phytonutrients 
found in soy-based proteins have been dem-
onstrated to have anti-inflammatory properties 
[60]. While a comprehensive anti-inflamma-
tory diet is beyond the scope of this text, the 
Mediterranean and other plant-based diets have 
been identified as general guidelines with anti-
inflammatory properties.

�TMAO and the Gut Microbiome 
(Fig. 2.2)

Trimethylamine N-oxide is a gut microbiota-
dependent biomarker derived from L-carnitine, 
choline, and betaine. TMAO levels reflect a 
pro-atherogenic milieu in the gut microbi-

C. K. Ormiston et al.
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ome and is associated with poor CV outcomes 
[61]. The normal range for serum TMAO is 
0.5–5  μmol/L.  TMAO is felt to play a role in 
cardiovascular disease and enhancing CV risk. 
A study on adults undergoing elective diagnos-
tic cardiac catheterization found that partici-
pants who had a major cardiac event ≤3  years 
of catheterization had higher baseline TMAO 
levels compared to those who did not experience 
a cardiac event (5.0 μM vs. 3.5 μM; P < 0.001). 
Furthermore, elevated levels of TMAO were 
associated with a significant risk of mortality 
(hazard ratio (HR): 3.37; P  <  0.001) and non-
fatal myocardial infarction/stroke (HR: 2.135; 
P < 0.001) [61].

Foods rich in phosphatidylcholine (beef, eggs, 
and pork) get converted into trimethylamine and 
then TMAO. Increased choline levels induce 
greater gut microbial activity and, subsequently 
higher levels of TMAO.  The KarMeN study, 
which monitored plasma TMAO levels in healthy 
adults after eating red meat, found a positive cor-
relation (r  =  0.25) between red meat consump-
tion and choline levels. Additionally, participants 

with TMAO levels >3.98 μmol/L ate more than 
the daily recommended amount of red meat per 
day [62].

Conversely, plant-based diets can decrease 
TMAO levels by promoting more diverse and 
stable microbiota. This is due to greater intake 
of fiber, polyphenols, and beneficial bacteria. 
For example, Klimenko et al. found plant-based 
diets greatly improve microbiome diversity [63]. 
Long-term fruit and vegetable consumption also 
improved local microbial diversity (p  <  0.05). 
Moreover, reduced meat and greater fruit/veg-
etable consumption can be cardioprotective and 
inhibit TMAO production. In Koeth et al.’s study 
on L-carnitine metabolism, omnivores produced 
>20× more plasma TMAO than vegans despite 
consuming the same amount of L-carnitine 
(p = 0.001) [64].

The MD has also shown to promote gut diver-
sity and reduce TMAO levels. De Filippis et  al. 
examined the relationship between MD adherence 
and gut microbiota, observing significantly lower 
urinary TMAO levels in plant-based eaters vs. 
omnivores (p < 0.0001) and MD adherence hav-

Fiber increased lactic acid bacteria
(ie: Ruminococcus and E. rectale)

Polyphenols from plant foods like soy
increase Bifidobacterium and Lactobacillus

Increased
Inflammation

(hsCRP)

Higher TMAO

Plant based diet
Decreased risk for
cardiovascular disease

Animal based diet
Increased risk for

cardiovascular disease

Leaky gut

•

•

Fig. 2.2  The impacts of a plant-based diet vs. animal-based diet on TMAO levels, the gut microbiome, and the risk of 
coronary arterial plaque buildup. (Printed with permission from ©Christina Pecora)
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ing a negative correlation with TMAO levels [65]. 
Also, 25% of plasma metabolites are different 
between vegetarians and omnivores, further show-
ing how diet can change the gut microbiome [66].

Although advertised as anti-inflammatory, the 
paleo diet may adversely interact with our gut 
microbiota and increase TMAO levels. Genoni 
et  al. found serum TMAO levels were signifi-
cantly higher in strict paleo diet eaters (<1 daily 
serving of grains/dairy) compared to those who 
eat a healthy balanced diet (9.53  μmol/L vs. 
3.93 μmol/L, P < 0.01). This is possibly due to 
the lack of fiber in paleo diets [67]. In compar-
ing the Atkins diet and Ornish diet after 4 weeks, 
Park et  al. found the Atkins diet had higher 
TMAO levels compared to the Ornish diet: 3.3 
vs. 1.8 μmol/L, p = 0.01 [68].

Additionally, Verdam et  al. showed micro-
biome diversity is linked to inflammation in 
individuals who are obese. Compared to non-
obese participants, participants who are obese 
exhibited lower Bacteroidetes:Firmicutes ratios 
(p = 0.007) and higher levels of Proteobacteria, 
inflammatory bacteria positively associated with 
BMI and CRP (p  =  0.0005). Klimenko et  al. 
also showed an inverse relationship between 
gut diversity and BMI (p < 0.05) [63]. This sug-
gests obesity-induced loss of microbiota diver-
sity results in greater inflammation [69]. Other 
studies, however, show an opposite relationship 
between obesity and Bacteroidetes:Firmicutes 
ratios, indicating further research is needed on 
the specific interactions between our gut micro-
biota and lifestyle [70, 71].

�Albumin and Prealbumin

Albumin and prealbumin give important infor-
mation into a patient’s protein and calorie intake. 
Albumin, the most abundant serum protein, is 
a moderate indicator of malnutrition, with the 
normal range being 3.5–5.2 g/dL. As a negative 
acute-phase protein, its serum concentration and 
production is downregulated during inflamma-
tion [72]. Although prealbumin is also a negative 
acute-phase protein, its shorter half-life (~2 days) 

makes it a more sensitive indicator of acute mal-
nutrition and protein-calorie consumption com-
pared to albumin. Prealbumin’s reference range 
is 15–35  mg/dL [73]. As negative acute-phase 
proteins, prealbumin and albumin have high sen-
sitivities to inflammation and additional steps are 
required to determine if reduced levels are mal-
nutrition- or inflammation-induced.

Prealbumin and malnutrition risk are inversely 
related, where hypoalbuminemia (<3.5 g/dL) and/
or hypoprealbuminemia (<15  mg/dL) indicate 
higher malnutrition risk. This is because visceral 
protein synthesis is not prioritized by the liver 
and is only made in sufficiently nourished states. 
Consequently, inadequate nutritional intake 
inhibits synthesis of albumin and prealbumin, 
and subsequently lowers each protein’s levels. 
Additionally, Saka et  al. (n  =  97, 55 malnour-
ished) observed prealbumin levels increased by 
20% and risk of malnutrition decreased by 12% 
after 1 week of nutritional support, highlighting 
prealbumin’s sensitivity to dietary changes [74].

Maintaining healthy nutritional intake is also 
integral in predicting morbidity and mortality. A 
study on admitted patients with acute coronary 
syndrome and lower prealbumin levels showed 
their risk of a major in-hospital cardiac event 
was more than 3× the risk of patients with nor-
mal prealbumin levels: 20.8 vs 6.1% [75]. Also, 
Lourenço et  al. found the risk of heart failure 
death doubled in patients with discharge preal-
bumin levels ≤15  mg/dL, citing an imbalance 
protein-energy demands [76].

There are concerns, however, on albu-
min’s reliability in monitoring nutritional sta-
tus. For example, Lee et  al. showed patients 
did not exhibit abnormal albumin levels until 
they reached extreme starvation: <12 BMI 
or  >  6  weeks of starvation [77]. And while a 
meta-analysis found the risk ratio for a CVD 
event per 1  g/dL decrease in plasma albumin 
was 1.96 (95% CI, 1.43–2.68), this was likely 
due to inflammation and not malnutrition [78]. 
Additionally, another study (n  =  262) showed 
80% of geriatric patients had low albumin lev-
els despite receiving adequate nutrition [79]. 
Additional steps beyond albumin testing should 
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therefore be taken to accurately determine a 
patient’s nutritional status.

�Magnesium

Magnesium plays a dual role as a marker of 
nutritional status and cardiovascular health due 
to its interactions with CRP and serum plasma. 
Hypomagnesemia (<1.4 mg/dL) is linked to such 
conditions as hypertension, arrhythmia, diabe-
tes, and CHD [80]. Magnesium deficiency is so 
prevalent, in fact, that over 10% of hospitalized 
patients exhibit hypomagnesaemia [81]. Also, 
thiazide and loop diuretics have been shown to 
induce moderate reductions in magnesium con-
centration, but usually at or close to the normal 
range [82]. The normal range of serum magne-
sium is 1.46–2.68 mg/dL and 4.2–6.8 mg/dL for 
RBC magnesium [80, 83].

Magnesium is often acquired through green 
vegetables, meat, and dietary supplements. 
Global trends in diet have contributed to declin-
ing magnesium intakes through increased con-
sumption of soda and processed foods, which 
increase bodily phosphorus levels and thus the 
required daily magnesium intake. Additionally, 
the Framingham Heart Study (n = 2695) showed 
hypomagnesemia can increase the risk of connec-
tive tissue inflammation and aortic calcification 
due to a surplus of intracellular calcium. It was 
found that a 50-mg/day magnesium intake (by 
diet and supplements) was linked to 22% lower 
coronary artery calcification (CAC) (p < 0.001) 
and 12% lower abdominal aortic calcification 
(AAC) (p  =  0.07). Further, the risk of having 
CAC was 58% lower (p < 0.001) and any AAC 
was 34% lower (p = 0.01) in those with the high-
est magnesium intake compared to those with the 
lowest magnesium intake [84]. This is because 
the deficiency of magnesium allows calcium 
ions to dominate the binding sites of cardiac and 
smooth muscle cells, resulting in intracellular 
calcium buildup. Salaminia et  al. showed mag-
nesium supplementation plays a role in cardiac 
arrhythmia risk, with magnesium supplements 
decreasing ventricular and supraventricular 
arrhythmias compared to placebo (OR  =  0.32; 

p  <  0.001 and OR  =  0.42; p  <  0.001, respec-
tively) [85]. Moreover, each 100 mg/day increase 
of dietary magnesium has been linked to a 22% 
reduction in HF risk [86].

Magnesium intake is often higher in those eat-
ing a plant-based diet, as indicated by Koebnick 
et al.’s prospective study of 108 pregnant women. 
Women eating a plant-based diet (ovo-lacto veg-
etarian or low meat) had significantly higher 
magnesium intakes compared to women on the 
Western (control) diet: 508 ± 14 mg/day for ovo-
lacto vegetarians (P < 0.001) 504 ± 11 mg/day 
for low-meat eaters (P < 0.001) vs. 412 ± 9 mg/
day for the control diet. While serum magnesium 
levels were similar across groups, RBC magne-
sium levels were higher in the low-meat group 
than the control group (P = 0.058) [87]. The MD 
has also exhibited moderate success in ensuring 
sufficient magnesium intake, with 66.9% of par-
ticipants in the MEAL study (n = 1838) meeting 
the daily recommended intake (~200–522  mg/
day) [88].

Numerous magnesium diagnostic tests are 
currently available. Although using RBC mag-
nesium is sometimes preferable given RBC’s 
higher magnesium content, its utility and reli-
ability has yet to be established [83, 89]. A 24-h 
urine analysis has also shown to be unreliable 
due to variability of renal magnesium reabsorp-
tion and excretion [90, 91]. Additionally, current 
serum magnesium guidelines have come under 
scrutiny for being insufficient in ascertaining a 
patient’s status [92]. As such, the combined use 
of 24 h urine, serum, and dietary magnesium tests 
is suggested to gain the most complete picture of 
a patient’s magnesium status.

�HbA1c and Fasting Glucose

Normal range for fasting blood glucose is 
70–99  mg/dL, with hyperglycemia resulting in 
risk of diabetes and hypoglycemia leading to 
acute neurological changes. HbA1C is a quan-
titative measure of average blood glucose of 
the past 2–3 months and is critical for diagnos-
ing and monitoring diabetes and determining 
cardiovascular mortality. The ideal range for non-
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diabetics is <5.7% and ≤ 7.0% for patients with 
T2D [93, 94].

Plant-based diets have shown to be success-
ful in regulating blood glucose levels and reduc-
ing insulin resistance [95]. A meta-analysis 
found that T2D patients eating a plant-based diet 
reduced their HbA1c levels by 3.9% (P = 0.001) 
but had a nonsignificant 6.49  mg/dL decrease 
(P = 0.301) in fasting blood glucose levels [96]. 
Further, a randomized, 10-week study on eight 
men with untreated T2D showed diets composed 
of high-protein and low-carbohydrate foods can 
potentially improve blood glucose and HbA1c lev-
els, exhibiting an average glucose of 126 mg/dL 
and 7.6 ± 0.3 HbA1c in the diet group vs. 198 mg/
dL glucose and 9.8  ±  0.5 HbA1c in the control 
group [97]. The MD has also shown potential, 
reducing blood glucose levels by 3.89 mg/dL in 
a meta-analysis (n = 534,906) [16]. Intermittent 
fasting (500–600  cal/day for 2 nonconsecutive 
days/week), an increasingly popular eating pat-
tern, can also slightly decrease HbA1c levels in 
patients with T2D.  In a 12-month randomized 
noninferiority trial, HbA1c lowered by 0.3% but 
did not show as much of an improvement com-
pared to the continuous restriction diet group 
(1200–1500  cal/day), which showed a 0.5% 
reduction [98].

�Vitamin D

Vitamin D is a prohormone produced by the 
kidneys to regulate serum calcium concentra-
tion levels and immunological processes. As 
an essential vitamin it must be acquired exter-
nally. The greatest natural source of vitamin 
D, besides sunlight, is animal products such as 
dairy, fatty fish (salmon, tuna, etc), and some red 
meat and cruciferous vegetables. As we transi-
tion into a more indoors-oriented society, with 
62% of respondents in the Indoor Generation 
Report (n = 16,000) spending 15–24 h indoors 
per day, vitamin D supplementation is becom-
ing increasingly important [99]. The most 
clinically relevant form of serum vitamin D is 
25(OH)D and the reference range is 50 nmol/L 
to 125 nmol/L.

Since the majority of vitamin D rich foods 
are derived from animal sources and vitamin 
D fortified foods are not common, vegans and 
vegetarians may be at a greater risk of vitamin 
D deficiency. In fact, the EPIC Oxford Study 
(n  =  226 omnivores, 231 vegetarians, 232 veg-
ans) found male vegans, vegetarians, and omni-
vores ate 0.88 μg/day, 1.56 μg/day, and 3.39 μg/
day, respectively. Women had similar results: 
0.88 μg/day, 1.51 μg/day, and 3.32 μg/day [100].

In terms of supplementation, Barger-Lux et al. 
(n = 116) found supplementing with the recom-
mended vitamin D3 intake of 10 μg/day (400 IU/
day), the equivalent of 10 large eggs or 3 oz. of 
salmon, raises 25(OH)D by 11 nmol/L [101]. The 
issue therefore becomes the efficacy and sustain-
ability of acquiring vitamin D from food sources, 
a concern also brought up in the Adventist 
Health-2 study, since salmon is expensive and 
eating ten eggs a day introduces numerous other 
health risks, namely hypercholesterolemia. Also, 
as the EPIC Oxford study showed, neither omni-
vores nor vegetarians/vegans are meeting their 
recommended daily vitamin D intake, meaning 
all eating groups have to augment their diet with 
vitamin D3 supplements to fulfill the recom-
mended dietary intake.

Additionally, vitamin D may possess anti-
inflammatory effects against cancer and diabetes, 
with several meta-analyses indicating vitamin D 
supplementation lowers cancer mortality rates 
[102]. In fact, a double-blinded randomized 
study on vitamin D supplementation and prostate 
cancer risk (n = 250) found 58% of patients in the 
supplement group vs 49% in the placebo group 
had a ≥ 50% reduction of prostate-specific anti-
gens (PSA) and a HR of 0.67 (P = 0.04) [103]. 
Also, Mousa et al. (n = 1270) found patients with 
T2D and taking vitamin D supplements had lower 
levels of CRP (standardized mean difference 
(SMD) −0.23; P = 0.002), tumor necrosis factor 
α (SMD −0.49; P = 0.005), erythrocyte sedimen-
tation rate (SMD −0.47; P  =  0.03), and higher 
levels of leptin (SMD 0.42; P = 0.03) compared 
to control groups, highlighting how vitamin D 
supplementation can mediate chronic inflamma-
tion in T2D patients [104]. Further, the Health 
Professionals Follow-up Study (n = 18,225 men) 
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found those with 25(OH)D deficiencies were 2× 
more likely to develop myocardial infarction than 
those who had healthy 25(OH)D concentrations 
(relative risk, 2.42; P < 0.001) [105].

The nationwide, randomized, placebo-con-
trolled VITAL Study (n = 25,871) shows further 
research is required, however, with vitamin D3 
supplementation showing no significant effects 
on cardiovascular health and cancer risk. For 
example, the HR between the vitamin D supple-
mentation and placebo group was 0.96 (P = 0.47) 
and incidence of a major cardiovascular event 
had a hazard ratio of 0.97 (P  =  0.69) [102]. 
Michos et al. parallel these findings, suggesting 
diet and sunlight should be prioritized over sup-
plements for optimizing vitamin D levels [106]. 
The authors also found calcium supplements can 
increase one’s risk of myocardial infarction and 
stroke, indicating dietary calcium and physical 
activity are safer methods of calcium intake.

�Vitamin B12 and Folate

While the plant-based diet dramatically improves 
cardiovascular health, there are limitations of 
implementing this diet–primarily risks of essen-
tial vitamin deficiencies. Vitamin B12, the largest 
and most complex essential vitamin, is primar-
ily sourced from animal products and is a criti-
cal enzyme cofactor involved in the oxidation of 
odd-numbered fatty acid chains. Additionally, 
it is neuroprotective and converts homocysteine 
into nontoxic molecules. B12 deficiency not only 
leads to neurological damage but also a buildup 
of homocysteine, which promotes arterial plaque 
buildup, increasing the risk of atherothrombosis 
[107, 108]. Folate is another essential vitamin 
and is critical for the biosynthesis of nucleo-
tide bases involved in amino acid synthesis and 
metabolism. Folate in its natural form is com-
monly found and consumed in spinach, nuts, 
beans, and other leafy green vegetables. In its 
synthetic form, folic acid, folate can be found in 
fortified foods such as bread and cereals.

While meats are rich in B12, folate is pri-
marily found in plant-based foods. It therefore 
comes as no surprise that vegetarians and vegans 

may have B12 deficiencies since their diets lack 
the only natural source of B12: meat. Rauma 
et  al.’s analysis of serum B12 concentrations 
and dietary intakes of living food diet vegans, 
who follow a strict raw food diet, and omni-
vores, it was found vegans have significantly 
(P  <  0.001) lower average B12 serum concen-
trations (193 pmol/L) as opposed to omnivores 
(311  pmol/L). Additionally, the serum concen-
trations in participants who supplemented their 
diets with B12 rich foods, such as seaweed, had 
levels twice as high compared to those who did 
not supplement, having an average B12 concen-
tration of 221 pmol/L vs 105 pmol/L (P = 0.025). 
It should be noted, however, that this study popu-
lation is part of a very strict subset of vegans and 
their B12 levels could be drastically different 
from average vegans due to dietary differences 
[109]. In a study on B12 supplementation in 50 
vegetarians with B12 deficiency (<150 pmol/L), 
supplementation was shown to be crucial for 
vegans in keeping healthy B12 concentra-
tions. By supplementing with 500 μg/day, par-
ticipants exhibited significant improvements in 
B12 serum concentration (from 134 ± 125.6 to 
379 ± 206.2 pmol/L, p < 0.0001) and reductions 
in plasma homocysteine levels (from 16.7 ± 11 
to 11.3 ± 6 μmol/L, p < 0.01) [110].

In the EPIC-Oxford study (n = 689: 226 omni-
vores, 231 vegetarians, and 232 vegans), 52% of 
vegans, 7% of vegetarians, and 1 omnivore were 
B12 deficient (<118  pmol/L). Consequently, 
average serum B12 concentrations in vegans were 
the lowest (122 pmol/L), with vegetarians com-
ing second (182  pmol/L), and omnivores with 
the average highest concentration (281 pmol/L) 
(P < 0.001). This is, of course, due to plant-based 
diets lacking natural sources of B12. Also, of the 
vegans and vegetarians that were not using B12 
supplements, 95% and 31% of vegans and veg-
etarians were failing to meet the recommended 
daily intake (1.5  μg/day), mirroring the trends 
found in Rauma et  al. Conversely, folate con-
centrations were highest in vegans (37.5 nmol/L) 
and lowest in omnivores (20.0 nmol/L), indicat-
ing an inverse relationship between folate and 
B12 (P < 0.001) [111]. Schupbach et al.’s study 
(n = 206, 100 omnivores, 53 vegans, 53 vegetar-
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ians) corroborates these findings, with 58% of 
omnivores being deficient in folate (<15 nmol/L, 
p < 0.05) [112].

The MD, a diet rich in fruits, vegetables, and 
lean meats (fish, poultry, etc.), can mediate B12 
deficiency in vegans. In the KIDMED study 
(n  =  3166, 6- to 24-yr-olds), none of the par-
ticipants were found to have B12 deficiencies 
however 14.3% of 6- to 14-yr-olds (P = 0.021) 
and 25.5% of 15- to 24-yr-olds (P  =  0.002) 
were deficient in folate [113]. This is likely due 
to a lack of MD adherence and greater average 
consumption of sweet drinks and processed 
foods found in younger adults [114]. Fortified 
foods rich in folate and other essential vitamins 
such as ready-to-eat cereals, however, have 
been shown to decrease folate deficiency risk 
(p < 0.001) in MD eaters (n = 3534) [115]. Also, 
Planells et  al. (n  =  384) showed the MD pro-
vided enough B12 (89.1% had acceptable lev-
els) but was moderately successful in mediating 
folate deficiency (57.6% acceptable) [116]. In a 
study on the MD and pregnant women (n = 72), 
however, 70.8% were B12 deficient and none 
were folate deficient, indicating pregnant 
women may be a vulnerable population to B12 
deficiency [117].

�Conclusion

The role and use of biomarkers and lifestyle 
changes to monitor and treat cardiovascular 
health and nutrition are of increasing inter-
est among health providers and patients. In this 
chapter, we reviewed the potential of biomarkers 
to monitor the impact of lifestyle changes. We 
also presented data on how plant-based diets and 
minimal red meat consumption can have positive 
effects on biomarkers like triglycerides, TMAO, 
and cholesterol.

While the biomarkers reviewed in this chapter 
are the most clinically relevant and useful mea-
sures for detecting the impact of diets and nutri-
tional therapy, the list of possible biomarkers that 
could contribute to clinical nutrition is continu-
ally evolving.
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