
Ferruccio Damiani
Ornela Dardha (Eds.)

LN
CS

 1
27

17

23rd IFIP WG 6.1 International Conference, COORDINATION 2021
Held as Part of the 16th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2021
Valletta, Malta, June 14–18, 2021, Proceedings

Coordination Models
and Languages

Lecture Notes in Computer Science 12717

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Ferruccio Damiani • Ornela Dardha (Eds.)

Coordination Models
and Languages
23rd IFIP WG 6.1 International Conference, COORDINATION 2021
Held as Part of the 16th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2021
Valletta, Malta, June 14–18, 2021
Proceedings

123

Editors
Ferruccio Damiani
University of Turin
Turin, Italy

Ornela Dardha
Sir Alwyn William Building
University of Glasgow
Glasgow, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-78141-5 ISBN 978-3-030-78142-2 (eBook)
https://doi.org/10.1007/978-3-030-78142-2

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-8109-1706
https://orcid.org/0000-0001-9927-7875
https://doi.org/10.1007/978-3-030-78142-2

Foreword

The 16th International Federated Conference on Distributed Computing Techniques
(DisCoTec 2021) took place during June 14–18, 2021. It was organised by the
Department of Computer Science at the University of Malta, but was held online due to
the abnormal circumstances worldwide affecting physical travel. The DisCoTec series
is one of the major events sponsored by the International Federation for Information
Processing (IFIP), the European Association for Programming Languages and Systems
(EAPLS) and the Microservices Community. It comprises three conferences:

– COORDINATION, the IFIP WG 6.1 23rd International Conference on Coordination
Models and Languages;

– DAIS, the IFIP WG 6.1 21st International Conference on Distributed Applications
and Interoperable Systems;

– FORTE, the IFIP WG 6.1 41st International Conference on Formal Techniques for
Distributed Objects, Components, and Systems.

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to sys-
tems research issues. As is customary, the event also included several plenary sessions
in addition to the individual sessions of each conference, which gathered attendants
from the three conferences. These included joint invited speaker sessions and a joint
session for the best papers from the three conferences. Associated with the federated
event, four satellite events took place:

– DisCoTec Tool, a tutorial session promoting mature tools in the field of distributed
computing;

– ICE, the 14th International Workshop on Interaction and Concurrency Experience;
– FOCODILE, the 2nd International Workshop on Foundations of Consensus and

Distributed Ledgers;
– REMV, the 1st Robotics, Electronics, and Machine Vision Workshop.

I would like to thank the Program Committee chairs of the different events for their
help and cooperation during the preparation of the conference, and the Steering
Committee and Advisory Boards of DisCoTec and its conferences for their guidance
and support. The organization of DisCoTec 2021 was only possible thanks to the
dedicated work of the Organizing Committee, including Caroline Caruana and Jasmine
Xuereb (publicity chairs), Duncan Paul Attard and Christian Bartolo Burlo (workshop
chairs), Lucienne Bugeja (logistics and finances), and all the students and colleagues
who volunteered their time to help. I would also like to thank the invited speakers for
their excellent talks. Finally, I would like to thank IFIP WG 6.1, EAPLS and the
Microservices Community for sponsoring this event, Springer’s Lecture Notes in
Computer Science team for their support and sponsorship, EasyChair for providing the

reviewing framework, and the University of Malta for providing the support and
infrastructure to host the event.

June 2021 Adrian Francalanza

vi Foreword

Preface

This volume contains the papers presented at COORDINATION 2021, the 23rd
International Conference on Coordination Models and Languages, organized online by
the University of Malta in Valletta during June 14–18, 2021, as part the federated
DisCoTec conference.

The COORDINATION conference provides a well-established forum for the
growing community of researchers interested in coordination models and languages,
architectures, verification, and implementation techniques necessary to cope with the
complexity induced by the demands of today’s software development. For the third
year in a row, COORDINATION has called for tool papers describing experience
reports, technological artefacts, and innovative prototypes, as well as educational tools
in the scope of the research topics of the conference. Tool papers were selected
according to the combination of an extended abstract and a short video demonstration,
after which full papers were produced to be included in these proceedings following a
light-weight review. In addition, seeking to further reinforce the practical applicability
aspects of the COORDINATION community research, we have explicitly included
among the topics of interest the industry-led efforts in coordination and industrial case
studies.

The Program Committee of COORDINATION 2021 comprised 32 researchers from
14 countries. We received 16 full paper submissions, 7 short paper submissions, and 8
tool paper submissions. Each paper was evaluated by three reviewers and this process
was supplemented by an in-depth discussion phase during which the merits of all the
papers were considered. The contributions published in this volume were selected
according to their quality, originality, clarity, and relevance. The final program com-
prises 8 full papers, 2 short papers, and 7 tool papers. The program also included an
invited tutorial and an invited talk. The invited talk was given by Mira Mezini from TU
Darmstadt, Germany. A short abstract of this talk is included in this volume under the
title “Let it Flow: Reactive Computations for Consistent-by-Design Distributed
Applications”.

We are grateful to all authors who have submitted their work, to the members of the
Program Committee and their sub-reviewers for their help in evaluating the papers, and
to all the participants for their interest in the conference. We would particularly like to
express our gratitude to Giorgio Audrito and Silvia Lizeth Tapia Tarifa, the chairs
of the Tool Track; to Stephanie Balzer and Anastasia Mavridou, the organizers of the
special topic on digital contracts; to Maurice ter Beek and Hugo Torres Vieira, the
organizers of the special topic on configurable systems; and to Ivan Lanese and Larisa
Safina, the organizers of the special topic on microservices. Their strong involvement
was a key enabling factor for the preparation of the conference. Furthermore, we wish
to thank the Steering Committee of COORDINATION and the Steering Board of
DisCoTec for their support.

For the second year in a row, DisCoTec – the federated conference whereof
COORDINATION is part – took place during the COVID-19 pandemic with many
countries having imposed travel restrictions and some of the participants being in
lockdown. In the name of all COORDINATION 2021 participants, we thank the
Organizing Committee chaired by Adrian Francalanza for allowing the conference to
proceed smoothly despite the inherent difficulties of holding it online. Personal thanks
go to Duncan Paul Attard, Christian Bartolo Burlo, Caroline Caruana, and Jasmine
Xuereb for their help with the conference publicity and running the website.

Finally, we would like to thank the International Federation for Information
Processing (IFIP) WG 6.1 for the financial support, Springer for their sponsorship and
Anna Kramer, personally, for the support during the production phase of the
proceedings, EasyChair for the paper collection, reviewing, and proceedings preparation
environment, the University of Malta for providing the infrastructure, and the
microservices community and the European Association for Programming Languages
and Systems (EAPLS) for the additional publicity they provided.

April 2021 Ferruccio Damiani
Ornela Dardha

viii Preface

Organization

Program Committee Chairs

Ferruccio Damiani University of Turin, Italy
Ornela Dardha University of Glasgow, UK

Steering Committee

Gul Agha University of Illinois at Urbana Champaign, USA
Farhad Arbab CWI and Leiden University, Netherlands
Simon Bliudze Inria, Lille, France
Laura Bocchi University of Kent, UK
Wolfgang De Meuter Vrije Universiteit Brussels, Belgium
Rocco De Nicola IMT School for Advanced Studies Lucca, Italy
Giovanna di Marzo

Serugendo
Université de Genève, Switzerland

Tom Holvoet KU Leuven, Belgium
Jean-Marie Jacquet University of Namur, Belgium
Christine Julien The University of Texas at Austin, USA
Eva Kühn Vienna University of Technology, Austria
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Michele Loreti University of Camerino, Italy
Mieke Massink (Chair) CNR-ISTI, Italy
José Proença ISEP, Portugal
Rosario Pugliese University of Florence, Italy
Hanne Riis Nielson Technical University of Denmark, Denmark
Marjan Sirjani Mälardalen University, Sweden
Carolyn Talcott SRI International, USA
Emilio Tuosto Gran Sasso Science Institute, Italy
Vasco T. Vasconcelos University of Lisbon, Portugal
Mirko Viroli Università di Bologna, Italy
Gianluigi Zavattaro Università di Bologna, Italy

Program Committee

Zena M. Ariola University of Oregon, USA
Robert Atkey University of Strathclyde, UK
Giorgio Audrito University of Turin, Italy
Stephanie Balzer CMU, USA
Simon Bliudze Inria, Lille, France
Laura Bocchi University of Kent, UK
Roberto Casadei University of Bologna, Italy

Vashti Galpin University of Edinburgh, UK
Fatemeh Ghassemi University of Tehran, Iran
Elisa Gonzalez Boix Vrije Universiteit Brussel, Belgium
Omar Inverso University of Southampton, UK
Jean-Marie Jacquet University of Namur, Belgium
Eva Kühn Vienna University of Technology, Austria
Ivan Lanese University of Bologna, Italy
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Michele Loreti University of Camerino, Italy
Mieke Massink CNR-ISTI, Italy
Anastasia Mavridou SGT Inc./NASA Ames Research Center, USA
Hernan Melgratti Universidad de Buenos Aires, Argentina
Violet Ka I. Pun Western Norway University of Applied Sciences,

Norway
Larisa Safina Inria, Lille, France
Gwen Salaün University of Grenoble Alpes, France
Meng Sun Peking University, China
Carolyn Talcott SRI International, USA
Silvia Lizeth Tapia Tarifa University of Oslo, Norway
Maurice H. ter Beek CNR-ISTI, Italy
Peter Thiemann Universität Freiburg, Germany
Hugo Torres Vieira Universidade da Beira Interior, Portugal
Vasco T. Vasconcelos University of Lisbon, Lisbon, Portugal
Tarmo Uustalu Reykjavik University, Iceland

Tool Track Chairs

Giorgio Audrito University of Turin, Italy
Silvia Lizeth Tapia Tarifa University of Oslo, Norway

Special Sessions Organizers

Configurable Systems in the DevOps Era:

Maurice H. ter Beek CNR-ISTI, Italy
Hugo Torres Vieira Universidade da Beira Interior, Portugal

Microservices:

Ivan Lanese University of Bologna, Italy
Larisa Safina Inria, Lille, France

x Organization

Techniques to Reason About Interacting Digital Contracts:

Stephanie Balzer CMU, USA
Anastasia Mavridou SGT Inc./NASA Ames Research Center, USA

Additional Reviewers

Davide Basile
Vincenzo Ciancia
Michael Coblenz
Said Daoudagh
Gianluca Filippone
Fabrizio Fornari
Saverio Giallorenzo
Gerson Joskowicz
Eduard Kamburjan
Ajay Krishna

Ai Liu
Dominic Orchard
Yann Regis-Gianas
Rudolf Schlatte
Martina Sengstschmid
André Souto
Martin Steffen
Bernardo Toninho
Gianluca Turin
Adriana Laura Voinea

Sponsors

Organization xi

Let it Flow: Reactive Computations
for Consistent-by-Design Distributed

Applications (Abstract of Invited Talk)

Mira Mezini

Technische Universität Darmstadt
mezini@cs.tu-darmstadt.de

Abstract. Ubiquitous connectivity of millions of powerful (mobile) devices to
each other and to web and cloud computing platforms via programmable net-
works has fostered globally distributed computing systems – the information
power grids of the 21st century – and the development of different kinds of
massively distributed applications such as social networking apps (e.g., instant
messengers, multiplayer games, etc.), collaborative workflows (e.g., Google
Docs, Figma, Trello, etc.), real-time businesses (e.g., collaborative condition
monitoring, real-time cross-organizational workflows, etc.), decentralized data
ecosystems (e.g., for processing data owned by different stakeholders), etc.

Today, distributed applications often rely on centralized solutions for con-
sistency management. However, centralized management is not a good fit for
massively distributed applications regarding offline availability, low latency, or
user-controlled data privacy. Decentralized architectures are a better match, but
in this setting applications developers must consider partial failures and need to
trade-off between availability and strong consistency, ideally employing dif-
ferent consistency levels for different application parts. While there are storage
systems that support hybrid consistency, the difficult and error-prone decision
about selecting the right consistency levels is left to application developers.

In this talk, I argue for language-based solutions to automate consistency
decisions. With such solutions, it is the responsibility of the language machinery
to reason about consistency levels and to make use of hybrid consistency as
needed by the application semantics. As a result, such languages offer devel-
opers well-defined and formally-proven consistency guarantees
“out-of-the-box”. I will briefly overview some language-based solutions and
will elaborate more on the effectiveness of reactive programming in enabling
automated concurrency control and fault-tolerance with clear consistency
guarantees. I will present the ideas in the context of REScala (rescala-lang.com)
- a library-based extension to Scala - that we have designed and implemented in
my lab. In REScala, applications are modeled as compositions of reactive
abstractions, which denote time-changing values resulting from computations
with reactive application semantics (i.e., computations get executed whenever
their inputs change). We have reinterpreted and extended this programming
model, thereby adopting multi-version consistency control, conflict-free repli-
cated data types, and invariant-based reasoning to enable language-integrated
handling of consistency in concurrent and distributed settings with well-defined
guarantees.

Contents

Tutorial

Modeling and Analyzing Resource-Sensitive Actors:
A Tutorial Introduction . 3

Rudolf Schlatte, Einar Broch Johnsen, Eduard Kamburjan,
and Silvia Lizeth Tapia Tarifa

Communications: Types and Implemenations

Manifestly Phased Communication via Shared Session Types 23
Chuta Sano, Stephanie Balzer, and Frank Pfenning

Deconfined Global Types for Asynchronous Sessions 41
Francesco Dagnino, Paola Giannini,
and Mariangiola Dezani-Ciancaglini

Relating Functional and Imperative Session Types 61
Hannes Saffrich and Peter Thiemann

Safe Session-Based Asynchronous Coordination in Rust 80
Zak Cutner and Nobuko Yoshida

A Session Subtyping Tool . 90
Lorenzo Bacchiani, Mario Bravetti, Julien Lange,
and Gianluigi Zavattaro

Towards Probabilistic Session-Type Monitoring . 106
Christian Bartolo Burlò, Adrian Francalanza, Alceste Scalas,
Catia Trubiani, and Emilio Tuosto

Java Typestate Checker . 121
João Mota, Marco Giunti, and António Ravara

Asynchronous Global Types in Co-logic Programming 134
Riccardo Bianchini and Francesco Dagnino

Large-Scale Decentalised Systems

Tuple-Based Coordination in Large-Scale Situated Systems 149
Roberto Casadei, Mirko Viroli, Alessandro Ricci, and Giorgio Audrito

A Theory of Automated Market Makers in DeFi . 168
Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente

ReGraDa: Reactive Graph Data. 188
Leandro Galrinho, João Costa Seco, Søren Debois,
Thomas Hildebrandt, Håkon Norman, and Tijs Slaats

Modelling: Structures and Implementations

The Structure of Concurrent Process Histories . 209
Chad Nester

A Clean and Efficient Implementation of Choreography Synthesis
for Behavioural Contracts. 225

Davide Basile and Maurice H. ter Beek

A Practical Tool-Chain for the Development of Coordination Scenarios:
Graphical Modeler, DSL, Code Generators
and Automaton-Based Simulator . 239

Eva Maria Kuehn

Microservices

Microservice Dynamic Architecture-Level Deployment Orchestration. 257
Lorenzo Bacchiani, Mario Bravetti, Saverio Giallorenzo, Jacopo Mauro,
Iacopo Talevi, and Gianluigi Zavattaro

Jolie and LEMMA: Model-Driven Engineering and Programming
Languages Meet on Microservices. 276

Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti,
Florian Rademacher, and Sabine Sachweh

SCAFI-WEB: A Web-Based Application for Field-Based
Coordination Programming. 285

Gianluca Aguzzi, Roberto Casadei, Niccolò Maltoni, Danilo Pianini,
and Mirko Viroli

Author Index . 301

xvi Contents

Tutorial

Modeling and Analyzing
Resource-Sensitive Actors: A Tutorial

Introduction

Rudolf Schlatte(B) , Einar Broch Johnsen , Eduard Kamburjan ,
and Silvia Lizeth Tapia Tarifa

University of Oslo, Oslo, Norway
{rudi,einarj,eduard,sltarifa}@ifi.uio.no

Abstract. Actor languages decouple communication from synchroniza-
tion, which makes them suitable for distributed and scalable applications
with flexible synchronization patterns, but also facilitates analysis. ABS
is a timed actor-based modeling language which supports cooperative
scheduling and the specification of timing- and resource-sensitive behav-
ior. Cooperative scheduling allows a process which is executing in an actor
to be suspended while it is waiting for an event to occur, such that another
process in the same actor can execute. Timed semantics allows the specifi-
cation of the temporal behavior of the modeled system. Resource-sensitive
behavior takes a supply and demand perspective of execution, relating cost
centers which provision resources to processes which require them. These
modeling concepts have been used in ABS to model cloud computing, e.g.,
data-processing applications running on the Hadoop platform and micro-
services running on containers orchestrated by Kubernetes. In this tuto-
rial, we present ABS and its execution environment, and discuss the use of
cooperative scheduling and resources in modeling cyber-physical systems
and applications deployed on virtualized infrastructure.

Keywords: Resource-sensitive behavior · Cloud computing ·
Distributed actor systems

1 Introduction

Models of modern distributed applications often require that we not only
describe the interactions between endpoints, but also precisely specify how the
application uses system resources and how its timed behavior depends on these
resources. In contexts such as cloud systems, the resource usage may be the criti-
cal property to be analyzed with the model. The resource model, the concurrency
model and the performed computations all interact and cannot be analyzed in
isolation. To model systems that incorporate all these aspects, we need modeling

This research is supported by the Research Council of Norway via the SIRIUS research
center (Grant 237898).
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 3–19, 2021.
https://doi.org/10.1007/978-3-030-78142-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_1&domain=pdf
http://orcid.org/0000-0001-5601-5517
http://orcid.org/0000-0001-5382-3949
http://orcid.org/0000-0002-0996-2543
http://orcid.org/0000-0001-9948-2748
https://doi.org/10.1007/978-3-030-78142-2_1

4 R. Schlatte et al.

languages that are rich enough to express (a) timed behavior, (b) resource usage,
(c) interactions between distributed components, and (d) complex computations.

This tutorial shows how these aspects of distributed applications can be
combined in resource-sensitive models using the Abstract Behavioral Specifica-
tion (ABS) language [19], which has been successfully applied in several indus-
trial case studies of such systems (see Sect. 7). ABS is based on object-oriented
programming principles. Its basics are easy to learn for anybody with basic pro-
gramming experience in mainstream programming languages, such as Java. This
tutorial gives a brief language overview and mainly focuses on the usage of its
advanced features for modeling timed and resource-sensitive behavior. For a full
overview of the language, we refer to the user manual [1].

Beyond an overview over the modeling features for timed and resource-
sensitive behavior, we also address the practical questions of usage. We describe
how to use the compiler and simulator, as well as additional features such as the
built-in visualization and debugging capabilities: how to compile ABS models,
how to run them, how to visualize their executions as interleaved scheduling
decisions, and how to replay a specific scheduling. We suggest useful patterns
for distributed resource modeling.

All example files in this paper are available at https://github.com/abstools/
absexamples/tree/master/collaboratory/tutorials/discotec-2021. For a detailed
tutorial on other aspects of ABS, we refer to Hähnle [17] on the layered semantics
of ABS and to Clarke et al. [11] for variability modeling.

Overview. Section 2 gives an overview of ABS and shows how to compile and
execute a simple example. Section 3 goes into more depth on how to specify
time and resource behavior, and Sect. 4 shows some typical patterns of larger
distributed systems. Section 5 discusses visualization and external control of
simulations, while Sect. 6 shows how to deterministically record and replay sim-
ulations. Finally, Sect. 7 gives pointers to further case studies and tools. Instruc-
tions on how to download and use the compiler toolchain of ABS can be found
in Appendix A.

2 The ABS Language

ABS decouples communication and synchronization of processes running on
actors via its use of (1) asynchronous method calls, (2) futures and (3) cooper-
ative scheduling. Asynchronous method calls do not synchronize between caller
and callee. Instead, the caller receives a future, which resolves once their callee
process terminates later. Futures, thus, allow synchronization between processes
on different actors (objects). Futures are first-class constructs in ABS, i.e., they
can be explicitly represented and manipulated. Different processes inside one
actor synchronize using cooperative scheduling : on each actor, only one process
runs at a time, with scheduling happening at explicit release points. Schedula-
bility of processes at the release point may depend on the state of a future, or on
a Boolean condition over the state of the object the process runs on. ABS also

https://github.com/abstools/absexamples/tree/master/collaboratory/tutorials/discotec-2021
https://github.com/abstools/absexamples/tree/master/collaboratory/tutorials/discotec-2021

Modeling and Analyzing Resource-Sensitive Actors: A Tutorial Introduction 5

includes a side-effect-free functional layer that is used to define functions and
algebraic datatypes. This section presents ABS by way of example; for detailed
reference, see the manual [1].

2.1 A Simple ABS Model

1 Hello;
2 Hello { Bool printMessage(); }
3

4 Hello(String name) Hello {
5 Bool printMessage() { println(Hello $name$!); True; }

}
6 // Main block:
7 { Hello hello = Hello("world");
8 <Bool> f = hello!printMessage();
9 f?;

10 Bool r = f. ;
11 println("Main block finished."); }

Fig. 1. A small ABS model

Figure 1 shows a very small ABS model. All ABS models consist of one or
more module definitions, containing zero or more definitions of interfaces, classes,
functions, or datatypes. An optional main block defines the behavior of a model.

The example defines an interface (Line 2) followed by a class implementing
that interface (Line 4). (Note that since classes are not types in ABS, classes and
interfaces may share the same name.) The main block starting at Line 7 first
creates an object, then asynchronously sends it a printMessage and awaits for
(i.e., synchronizes on) the resulting process to terminate, and finally retrieves
the value stored in the future before printing a message. When removing Lines 9
and 10, the order of the two lines of output is nondeterministic. This is because
the two print statements are executed in processes running on different actors
(but usually the message from the main block will be printed first).

ABS models can be compiled to execute on Erlang with the command absc
–erlang filename .abs. After compilation, models can be simulated using the
command gen/erl/run.

Observe that during the execution of Lines 8–10 the message print
Message() is put in the message pool of the object hello, then the await state-
ment suspends the caller’s execution process (in this case the main block) until
the return value of that method printMessage() has been processed and stored
in the future f. At this point, the calling process becomes schedulable again,
and proceeds to retrieve the value stored in the future using a get expression.
(A get expression without a preceding await blocks the process until the future
is resolved, i.e., no other process will be scheduled.)

Suspending a process means that the object can execute other messages from
its message pool in the meantime. ABS demands that each process suspends itself

6 R. Schlatte et al.

explicitly via await or termination. I.e., it is not possible that two processes
(if the method is called twice) executing printMessage overlap. The method
printMessage contains no await statement, so one process starts, prints and
terminates before another one does the same.

ABS supports the shorthand await o!m(args) (where o is an object,
m a method and arg the arguments to the method) for the statements f
= o!m(args); await f?; and o.m(args) for f = o!m(args); r = f.get;
which blocks the caller object (does not release control) until the future f has
been resolved (i.e., the future has received the return value from the call). The
statement this.m(args) models a synchronous self-call, which corresponds to
a standard call to a subroutine (no blocking mechanism).

3 Specifying Time and Resource Behavior

Timed ABS [9] is an extension to the core ABS language that introduces a
notion of abstract time. It allows the modeling of an explicit passage of time, to
represent execution time inside methods. This modeling abstraction can be used
to model, in addition to the functional behavior, the timing-related behavior
of real systems running on real hardware. In contrast to real systems, time in
an ABS model does not advance by itself. Instead, it is expressed in terms of
a duration statement (as in, e.g., UPPAAL [27]). Timed ABS adds a clock to
the language semantics that advances in response to duration statements, as
in Line 7 in Fig. 4. Time is expressed as a rational number, so the clock can
advance in infinitesimally small steps.

Deployment is modelled using deployment components [22]. A deployment
component is a modelling abstraction that captures locations offering (restricted)
computing resources. ABS also supports cost annotations associated to state-
ments to model resource consumption, as in Line 6 in Fig. 4. The combina-
tion of deployment components with computing resources and cost annotations
allows modeling implicit passage of time. Here time advances when the available
resources per time interval have been consumed.

50 70

Alternate
sms and call

Huge number of
sms per time interval

time

Alternate
sms and call

Midnight Window

(a) The New Year’s Eve client scenario.

Clock

Hosting
machine

Computing
Resources

request()
request()

telb

smsb

smscomp

telcomp

Client

Client

sms()

call(n)

sms()

call(n)

tel

sms

(b) The telephone company scenario.

Fig. 2. A scenario capturing client handsets and two telephone services with cooper-
ating load balancers.

When integrating the time model and the resource consumption model, the
global clock only advances when all processes are blocked or suspended and no

Modeling and Analyzing Resource-Sensitive Actors: A Tutorial Introduction 7

process is ready to run. This means that for time to advance, all processes are
in one of the following states: (1) the process is awaiting for a guard that is not
enabled (using await statements); (2) the process is blocked on a future that is
not available (using get expressions); (3) the process is suspended waiting for
time to advance (using duration); or (4) the process is waiting for some resource
(using cost annotations). In practice this means that all processes run as long as
there is “work to be done,” capturing the so called run-to-completion semantics.

In the rest of this section we present a simple example, adopted from [21], to
showcase the behavioral specification of time and resource consumption.

3.1 Example: Phone Services on New Year’s Eve

1 Bool isMidnightWindow(Int interval) =
2 let Rat curr = timeValue(now()) % interval
3 curr > 50 && curr < 70;
4

5 Handset (Int interval, Int cyclelength, TelephoneServer ts,
SMSServer smss) {

6 Bool call = False;
7 Unit run() {
8 (timeValue(now()) < 250) {
9 (isMidnightWindow(interval)) {

10 Int i = 0;
11 (i < 10) { smss!sendSMS(); i = i + 1; }
12 (1);
13 } { (call) { ts!call(1); } { smss!sendSMS();

} }
14 call = !call;
15 (cyclelength); } } }

Fig. 3. The client handset in Timed ABS.

At midnight on New Year’s Eve, people stop making phone calls and instead
send text messages with seasonal greetings. Inspired by this observation of human
nature, we model a workload, depicted in Fig. 2a, in which people in a “normal”
behavior alternate between a phone call and a message, but change their behavior
during the so called “midnight window” to only sending a massive amount of
messages. This behaviour is modeled by the handset clients implemented in
Fig. 3. The handset makes requests to the two services. The normal behaviour
of the handset is to alternate between sending an SMS and making a call at
each time interval. When it makes a call, the client waits for the call to end
before proceeding (synchronous call). The handset’s spike occurs between the
time window starting at time 50 and ending at time 70 that represents the

8 R. Schlatte et al.

1 TelephoneServer { Unit call(Int calltime);}
2 TelephoneServer TelephoneServer {
3 Int callcount = 0;
4 Unit call(Int calltime){
5 (calltime > 0) {
6 [Cost: 1] calltime = calltime - 1;
7 (1);}
8 callcount = callcount + 1;} }
9

10 SMSServer { Unit sendSMS();}
11 SMSServer SMSServer {
12 Int smscount = 0;
13 Unit sendSMS() { [Cost: 1] smscount = smscount + 1;} }

Fig. 4. The mobile phone services modelled in Timed ABS

“midnight window”, and checked by the function isMidnightWindow in Fig. 3.
During the spike, the handset sends 10 SMS requests at each time interval.

Telephone and SMS are the two services handling the method calls from the
Handset. The services are deployed on dedicated virtual machines, as depicted
in Fig. 2b. The abstract implementations of the services in Timed ABS are
given in Fig. 4. The telephone service offers a method call which is invoked
synchronously (i.e., the caller waits for the callee), with the duration of the
call as parameter. The SMS service offers a method sendSMS which is invoked
asynchronously (waiting from the callee is not needed). Cost are accrued for
each time interval during a call and for each sendSMS invocation to model the
computing resources that handling calls and messages consume.

The model also considers resources and includes dynamic load balancing,
which enables the two virtual machines hosting the telephone and SMS services
to exchange resources during load spikes. This is captured by the Balancer class
in Fig. 5, whose instances run on each service. The Balancer class implements
an abstract balancing strategy, transfers resources to its partner virtual machine
when receiving a request message, monitors its own load, and requests assis-
tance when needed. The class has an active process defined by its run method,
which monitors the local load. The ABS expression thisDC() returns a refer-
ence to the deployment component on which an object is deployed, and the
method call load(Speed, n) returns the average usage (0–100%) of process-
ing speed in the previous n time intervals. If the load is above 90, the bal-
ancer requests resources from its partner. If a Balancer receives a request for
resources, it will consider if it has enough resources and it is not overloaded,
and if so, transfer part of its available computing resources to its partner, this
guarantees that the capacity is always maintained above a minimum (see Line 16
in Fig. 5).

The configuration of the system, depicted in Fig. 2b, is given in the main
block shown in Fig. 6. The two deployment components model the hosting virtual

Modeling and Analyzing Resource-Sensitive Actors: A Tutorial Introduction 9

1 Balancer(String name, Rat minimum) Balancer {
2 Balancer partner = ;
3 Rat ld = 100;
4

5 Unit run() {
6 partner != ;
7 (timeValue(now()) < 250) {
8 (1);
9 ld = thisDC()!load(Speed, 1);

10 (ld > 90) { partner!requestdc(thisDC());} } }
11

12 Unit requestdc(DC comp) {
13 InfRat total = thisDC()!total(Speed);
14 Rat ld = thisDC()!load(Speed, 1);
15 Rat requested = finvalue(total) / 3;
16 (ld < 50 && (finvalue(total)-requested>minimum)) {
17 thisDC()!transfer(comp, requested, Speed);} }
18

19 Unit setPartner(Balancer p) {partner = p;} }

Fig. 5. The balancer in Timed ABS

1 { Rat minimum = 15;
2 DC smsdc = DeploymentComponent("smsdc",map[Pair(Speed, 80)]);
3 DC teldc = DeploymentComponent("teldc",map[Pair(Speed, 80)]);
4 [DC: smsdc] SMSServer sms = SMSServer();
5 [DC: teldc] TelephoneServer tel = TelephoneServer();
6 [DC: smsdc] Balancer smsb = Balancer("smsb",minimum);
7 [DC: teldc] Balancer telb = Balancer("telb",minimum);
8 smsb!setPartner(telb);
9 telb!setPartner(smsb);

10

11 Handset(100,1,tel,sms); // start many clients
12
13 }

Fig. 6. The main block configuration Timed ABS

machines; objects are created inside deployment components via the [DC: id]
annotations. After compilation, it is possible to simulate the example with the
command gen/erl/run -l 100 -p 8080. Here -l 100 allows to run the model
until simulated time 100, and -p 8080 allows to observe the load in the deploy-
ment components using a browser (via http://localhost:8080/, see Sect. 5
for more details about visualization).

10 R. Schlatte et al.

telcomp

0 10 20 30 40 50 60 70 80 90 Time
0

10

20

30

40

50

60

70

80

C
P

U

smscomp

0 10 20 30 40 50 60 70 80 90 Time
0

20

40

60

80

100

120

140

C
P

U

telcomp

0 10 20 30 40 50 60 70 80 90 Time
0

10

20

30

40

50

60

70

80

C
P

U

smscomp

0 10 20 30 40 50 60 70 80 90 Time
0

10

20

30

40

50

60

70

80

C
P

U
Fig. 7. Running the example with (to the left) and without (to the right) load balanc-
ing. Here red lines capture the available resources per time interval in the deployment
components and blue lines capture the amount of used resources by the services per
time interval. With load balancing the overload of the SMS service is quickly overcome
after time 70, without load balancing the SMS service is overloaded until time 75.
(Color figure online)

Figure 7 shows two simulations of the example, one with and one without
active resource balancers (by commenting out Lines 6–9 in Fig. 6). Observe
in particular the changing resp. constant total capacity of the two deployment
components, and the duration of overload of the SMS component during and
after the midnight window.

4 Advanced Synchronization Patterns

So far, we have seen asynchronous method calls that produce futures, and how
to read the resulting value from such a future. This section shows some advanced
synchronization patterns that an ABS model can employ to coordinate among
a number of independent worker objects and their processes. We use as an
example a model of MapReduce as originally described in [12]. The ABS source
file is at https://github.com/abstools/absexamples/blob/master/collaboratory/
tutorials/discotec-2021/MapReduce.abs.

4.1 Coordinating Multiple Processes via Object State

Our model of MapReduce employs a pool of worker machines, each modeled
as an ABS object, and one coordinator object that creates invokeMap and
invokeReduce processes on the workers, awaits the results, and calculates inter-
mediate values and the final result.

https://github.com/abstools/absexamples/blob/master/collaboratory/tutorials/discotec-2021/MapReduce.abs
https://github.com/abstools/absexamples/blob/master/collaboratory/tutorials/discotec-2021/MapReduce.abs

Modeling and Analyzing Resource-Sensitive Actors: A Tutorial Introduction 11

1 Set<Worker> workers = set[];
2 Worker getWorker() {
3 Int maxWorkers = 5;
4 (emptySet(workers) && nWorkers < maxWorkers) {
5 nWorkers = nWorkers + 1;
6 DeploymentComponent dc = DeploymentComponent(
7 worker $nWorkers$, map[Pair(Speed, 20)]);
8 [DC: dc] Worker w = Worker();
9 workers = insertElement(workers, w);

10 }
11 size(workers) > 0;
12 Worker w = take(workers);
13 workers = remove(workers, w);
14 w;
15 }
16 Unit finished(Worker w) {
17 workers = insertElement(workers, w);
18 }

Fig. 8. A worker pool in ABS with maximum size 5.

The coordinator implements the worker pool, as shown in Fig. 8, as an object
field called workers. The two methods getWorker and finished coordinate via
this field. (Remember that multiple processes of getWorker and finished can
run at the same time.)

The method finished simply adds a worker back into the pool. The method
getWorker, on the other hand, can only return workers that are currently in the
pool. In case fewer workers than the maximum have been created, the condition
in Line 4 evaluates to True and a new worker on a fresh deployment component
is created and added to the pool.

Multiple processes can hit the await condition in Line 11; one of them will
be woken up and return a worker object to the caller each time a worker is
added to the pool via the finished method. Note that the worker itself can call
finished after completing its task, thereby adding itself back to the pool, so
the coordinator does not need to keep track of worker status.

12 R. Schlatte et al.

1 (item items) {
2 Worker w = .getWorker();
3 String key = fst(item); List<String> value = snd(item);
4 <List<Pair<String, Int>>> fMap = w!invokeMap(key, value);
5 // Worker.invokeMap calls finished’ after finishing the task
6 fMapResults = insertElement(fMapResults, fMap);
7 }
8 (fMapResult elements(fMapResults)) {
9 fMapResult?;

10 List<Pair<String, Int>> mapResult = fMapResult. ;
11 // process results of this map task ...
12 }

Fig. 9. Distributing tasks among a pool of workers and collecting their results.

4.2 Synchronizing on Multiple Processes via Futures

Figure 9 shows how to distribute tasks among workers in such a worker pool
and collect results afterwards. The set fMapResults holds the futures of the
invokeMap processes. Tasks are distributed among worker instances obtained via
getWorker, ensuring that each worker processes only one task at a time. After
all tasks have been distributed, Line 8 and onward collect all results for further
processing. It is easy to see that this constitutes a barrier ; the subsequent reduce
phase of the MapReduce model (not shown) will only start after all results from
the map phase have been received by the coordinator.

worker 1

0 1 2 3 4 5 6 7 8Time
0

2

4

6

8

10

12

14

16

18

20

C
P

U

worker 2

0 1 2 3 4 5 6 7 8Time
0

2

4

6

8

10

12

14

16

18

20

C
P

U

Fig. 10. Machine load during map and reduce phases. Reduce begins at time t = 7.

Figure 10 shows the load over time on the deployment components of two
of the worker objects (the other three workers process tasks over the whole
simulation run). It can be seen that the load on these workers starts dropping
before time t = 7, where all map tasks are finished and the reduce phase begins.
The graph shown is the default visualization implemented by the Model API
(see Sect. 5).

Modeling and Analyzing Resource-Sensitive Actors: A Tutorial Introduction 13

5 Visualizations via the Model API

This section describes the Model API, a way to communicate with a running
ABS model via HTTP requests. The Model API can be used to retrieve data
from a model and to insert asynchronous method calls. At compile time, HTML
and Javascript files can be added to a model to implement bespoke visualizations.

5.1 Exporting Objects and Methods

Objects and methods are made accessible for the model API via annotations.
Figure 11 shows the use of the HTTPCallable annotation to mark the method
getText in Line 3 as callable via the Model API, and the use of HTTPName in
Line 9 to make the object t visible via the name text.

1 Example;
2 Text {
3 [HTTPCallable] String getText();
4 }
5 CText(String message) Text {
6 String getText() { message; }
7 }
8 {
9 [HTTPName: "text"] Text t = CText("This is the message");

10 }

Fig. 11. A Model API Example.

To use the Model API, the model is started with a parameter -p xxxx, where
xxxx is the port number where the model listens for requests. After starting the
above model with gen/erl/run -p 8080, calling the getText method from the
command line results in a JSON-formatted result as follows:

$ curl localhost:8080/call/text/getText
{

"result": "This is the message"
}

Full documentation of the Model API can be found in the ABS manual at
https://abs-models.org/manual/#-the-model-api.

5.2 Adding a Custom Visualization

When a model is started with the parameter -p xxxx, it is possible to con-
nect with a web browser to the URL http://localhost:xxxx/ (where xxxx

https://abs-models.org/manual/#-the-model-api

14 R. Schlatte et al.

is a port number). By default, this URL shows a simple visualization of the
load and total availability of the CPU resource of all deployment components
in the model. It is possible to replace this visualization with custom, model-
specific visualizations. This is done by compiling the model with the parameter
–modelapi-index-file and giving the name of a HTML file which will then be
displayed by the browser. Additionally, the parameter –modelapi-static-dir
can be used to include a directory of static assets (Javascript libraries, graphics
files, CSS stylesheets, etc.) into the model. These files are accessible within the
Model API with /static/filename.

For space reasons, this paper does not show an example of this technique. We
have prepared a worked example of a water tank controller and a simulated water
tank which can be found at https://abs-models.org/documentation/examples/
single-watertank/.

6 Record and Replay of Simulations

As already discussed, the semantics of the ABS language are nondeterministic
wrt. scheduling of processes. This section discusses a feature of the ABS simu-
lator that makes it possible to record and replay simulator runs, such that the
scheduling decisions taken during record are faithfully reproduced during replay.
This section only shows how to use this feature; a technical discussion can be
found in [32].

1 Example;
2 Printer {
3 Unit printMessage(String message);
4 }
5 CPrinter Printer {
6 Unit printMessage(String message) {
7 println(The message is: $message$);
8 }
9 }

10 {
11 Printer printer = CPrinter();
12 (m ["Hello", "Hola", "Hallo", "Hei"]) {
13 printer!printMessage(m);
14 }
15 }

Fig. 12. A nondeterministic ABS program.

Consider the ABS code in Fig. 12, which will print four different greetings in
arbitrary order when run. Running the example with the command gen/erl/run
-t trace.json will produce a file trace.json. Afterwards, running with the
command gen/erl/run -r trace.json will print the same interleaving of mes-
sages as observed during the recording run.

https://abs-models.org/documentation/examples/single-watertank/
https://abs-models.org/documentation/examples/single-watertank/

Modeling and Analyzing Resource-Sensitive Actors: A Tutorial Introduction 15

7 Case Studies and Other Analysis Tools

Fredhopper Cloud Services provides search and targeting facilities for e-commerce
retailers as a service (SaaS) [3]. Their software is under constant development
and relies on automated configuration [16], continuous monitoring and testing.
Using ABS-models allows changes to be analyzed prior to deployment. This
includes low-level effects such as consuming the resources of a DC.

For the Fredhopper case study, a general replay tool for logs from the pro-
duction system was built [6]. The replay tool interacts with the simulator via
the Model API and enables simulating real-world scenarios from Fredhopper’s
system logs. This was used to validate the correlation between the model and
the actual system, and for predicting the effects of changes in the system.

ABS-YARN is a case study showing how ABS may be used for modeling appli-
cations running on Apache’s Hadoop YARN framework with different configu-
rations [30]. Hadoop is a popular cloud infrastructure system and YARN (Yet
Another Resource Negotiator) provides a platform for job scheduling and for
cluster resource management for Hadoop configurations.

Simulation shows that the ABS framework can accurately reflect the behav-
ior of YARN and can efficiently compare different deployment decisions. This
work was extended to Hadoop Spark Streaming [28] and used to study different
instance purchasing options provided by Amazon Web Services [20].

The HyVar toolchain is a framework that targets context-dependent software
upgrades for car ECUs (Electronic Control Units). The framework collects infor-
mation from a fleet of cars, analyzes this information to decide how to update the
software running on the different cars, and sends software updates back to the
cars when needed. The objective of the Timed ABS simulations was to efficiently
analyze the scalability of the toolchain [29].

Multicore Memory Systems. This case study focussed on how a model of multi-
core memory systems [8], formalized in structural operational semantics, could
be implemented as a simulator of memory operations on a multicore architecture
in ABS. The focus of this work was on correctness preserving transformations of
operational rules with pattern matching synchronization conditions at the SOS
level to a decentralised and asynchronous actor model [7]. The await-statements
of ABS were crucial to ensure a granularity of interleaving between processes
which corresponded to the SOS model.

Kubernetes. This case study develops a formal model in Timed ABS of a con-
tainerized orchestration system for cloud-native microservices, which are loosely-
coupled collections of services designed to be able to adapt to traffic in very fine-
grained and flexible ways. The model focussed on resource consumption and
scaling of microservices deployed and managed by Kubernetes [18].

This work performed experiments on HPC4AI, a cluster for deploying high-
performance applications, in order to compare the observed behavior of real
systems to corresponding observations of instances of the model [31].

16 R. Schlatte et al.

Compugene is a case study that models transcription of mRNA in the context of
computational biology1. To do so, the effect of different rates of degradation in
neighboring cells has been taken into account. The time model of ABS is crucial
to model biological processes.

The simulation is used to compare the mathematical model (expressed in
ABS) with experimental results, with the aim to reduce the need for the more
time-consuming experiments.

FormbaR is a case study that models the railway operations rulebooks of the
main German railway infrastructure company [24]. Using an executable model,
changes in the rulebooks can be prototyped with quick feedback cycles for their
maintenance. The time model is needed to faithfully mirror train driving.

The simulator was leveraged for analyzing the effects of rule changes. A
special visualization tool using the Model API is used to interact with the sim-
ulation without modifying the ABS code and to summarize the results of the
execution [26]. In a more general context, this shows how the model API enables
debugging tools where the user can inject faults and observe the outcome.

Other Tools
Several static analyses tools have been developed for ABS and we list them here
together with bigger case studies that use them, as they offer further insights
into modeling with ABS in practice. For tools and case studies of other Active
Object languages we refer to the survey by de Boer et al. [10]. Many static
analyses, such as deadlock checkers, are bundled in the SACO [2] suite and its
extensions [23].

Systematic Checking. Systematic testing explores all execution paths in a pro-
gram and is implemented for ABS in the SYCO tool [4]. SYCO has been applied
to check properties of Software defined networks [5], a paradigm to dynamically
and flexibly adapt the policy of network-switches using a central controller and
the C-to-ABS [33] framework, a tool that translates C into ABS code to analyze
safety properties of C code with underspecified behavior.

Deductive Verification. Deductive verification checks safety properties, such
as object invariants, using logical reasoning and as such can reason about
unbounded systems and unbounded inputs. Two deductive verification tools are
available for ABS: KeY-ABS [13], which has been used to verify a Network-on-
Chip packet switching platform [14] and Crowbar [25], which has been applied
to a case study in the C-to-ABS framework described above.

A Installing the ABS Compiler

The ABS compiler is contained in a file absfrontend.jar; the latest released
version can be found at https://github.com/abstools/abstools/releases/latest.
To run the compiler and the generated models, a Java development kit (JDK)
version 11 or greater, and Erlang version 22 or greater must be installed.
1 https://www.compugene.tu-darmstadt.de.

https://github.com/abstools/abstools/releases/latest
https://www.compugene.tu-darmstadt.de

Modeling and Analyzing Resource-Sensitive Actors: A Tutorial Introduction 17

Then, to compile an ABS file model.abs, use the command java -jar
absfrond.jar –erlang model.abs. The compiler creates a subdirectory gen/,
the compiled model can be run with the command gen/erl/run (or, on Win-
dows, gen/erl/run.bat).

More detailed installation instructions, including links to the necessary soft-
ware, is at https://abs-models.org/getting_started/local-install/.

Models that do not use the Model API can also be written and run
in a web-based IDE based on EasyInterface [15]. To run the collaboratory
locally, install docker2 then run the following command: docker run -d –rm -p
8080:80 –name collaboratory abslang/collaboratory:latest and con-
nect a browser to http://localhost:8080/. On the start page, you can access
ABS documentation and examples, and go to the web-based IDE. To shut down
the collaboratory, run the command docker stop collaboratory.

References

1. ABS Development Team: ABS Documentation. Version 1.9.2. https://abs-models.
org/manual/

2. Albert, E., et al.: SACO: static analyzer for concurrent objects. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 562–567. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_46

3. Albert, E., et al.: Formal modeling and analysis of resource management for cloud
architectures: an industrial case study using Real-Time ABS. Serv. Oriented Com-
put. Appl. 8(4), 323–339 (2014)

4. Albert, E., Gómez-Zamalloa, M., Isabel, M.: SYCO: a systematic testing tool for
concurrent objects. In: CC, pp. 269–270. ACM (2016)

5. Albert, E., Gómez-Zamalloa, M., Isabel, M., Rubio, A., Sammartino, M., Silva,
A.: Actor-based model checking for software-defined networks. J. Log. Algebraic
Methods Program. 118, 100617 (2021)

6. Bezirgiannis, N., de Boer, F., de Gouw, S.: Human-in-the-loop simulation of cloud
services. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 143–158. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-67262-5_11

7. Bezirgiannis, N., de Boer, F., Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: Imple-
menting SOS with active objects: a case study of a multicore memory system. In:
Hähnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS, vol. 11424, pp. 332–350.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16722-6_20

8. Bijo, S., Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: A formal model of data
access for multicore architectures with multilevel caches. Sci. Comput. Program.
179, 24–53 (2019)

9. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-
defined schedulers for real-time concurrent objects. Innov. Syst. Softw. Eng. 9(1),
29–43 (2013)

10. de Boer, F.S., Serbanescu, V., et al.: A survey of active object languages. ACM
Comput. Surv. 50(5), 76:1–76:39 (2017)

2 https://www.docker.com/products/docker-desktop.

https://abs-models.org/getting_started/local-install/
https://abs-models.org/manual/
https://abs-models.org/manual/
https://doi.org/10.1007/978-3-642-54862-8_46
https://doi.org/10.1007/978-3-319-67262-5_11
https://doi.org/10.1007/978-3-319-67262-5_11
https://doi.org/10.1007/978-3-030-16722-6_20
https://www.docker.com/products/docker-desktop

18 R. Schlatte et al.

11. Clarke, D., Muschevici, R., Proença, J., Schaefer, I., Schlatte, R.: Variability mod-
elling in the ABS language. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 204–224. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25271-6_11

12. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

13. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the
concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6_35

14. Din, C.C., Tapia Tarifa, S.L., Hähnle, R., Johnsen, E.B.: History-based specifica-
tion and verification of scalable concurrent and distributed systems. In: Butler, M.,
Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 217–233. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25423-4_14

15. Doménech, J., Genaim, S., Johnsen, E.B., Schlatte, R.: EasyInterface: a toolkit
for rapid development of GUIs for research prototype tools. In: Huisman, M.,
Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 379–383. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54494-5_22

16. de Gouw, S., Mauro, J., Nobakht, B., Zavattaro, G.: Declarative elasticity in ABS.
In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski, I. (eds.) ESOCC 2016.
LNCS, vol. 9846, pp. 118–134. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44482-6_8

17. Hähnle, R.: The abstract behavioral specification language: a tutorial introduction.
In: Giachino, E., Hähnle, R., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2012.
LNCS, vol. 7866, pp. 1–37. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40615-7_1

18. Hightower, K., Burns, B., Beda, J.: Kubernetes: Up and Running Dive into the
Future of Infrastructure. O’Reilly (2017)

19. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_8

20. Johnsen, E.B., Lin, J.-C., Yu, I.C.: Comparing AWS deployments using model-
based predictions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol.
9953, pp. 482–496. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47169-3_39

21. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Dynamic resource real-
location between deployment components. In: Dong, J.S., Zhu, H. (eds.) ICFEM
2010. LNCS, vol. 6447, pp. 646–661. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-16901-4_42

22. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architec-
tures and resource consumption in timed object-oriented models. J. Log. Algebr.
Methods Program. 84(1), 67–91 (2015)

23. Kamburjan, E.: Detecting deadlocks in formal system models with condition syn-
chronization. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 76, (2018)

24. Kamburjan, E., Hähnle, R., Schön, S.: Formal modeling and analysis of railway
operations with active objects. Sci. Comput. Program. 166, 167–193 (2018)

25. Kamburjan, E., Scaletta, M., Rollshausen, N.: Crowbar: behavioral symbolic exe-
cution for deductive verification of active objects. CoRR abs/2102.10127 (2021)

https://doi.org/10.1007/978-3-642-25271-6_11
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-25423-4_14
https://doi.org/10.1007/978-3-662-54494-5_22
https://doi.org/10.1007/978-3-319-44482-6_8
https://doi.org/10.1007/978-3-319-44482-6_8
https://doi.org/10.1007/978-3-642-40615-7_1
https://doi.org/10.1007/978-3-642-40615-7_1
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-319-47169-3_39
https://doi.org/10.1007/978-3-319-47169-3_39
https://doi.org/10.1007/978-3-642-16901-4_42
https://doi.org/10.1007/978-3-642-16901-4_42

Modeling and Analyzing Resource-Sensitive Actors: A Tutorial Introduction 19

26. Kamburjan, E., Stromberg, J.: Tool support for validation of formal system models:
interactive visualization and requirements traceability. In: F-IDE@FM, EPTCS,
vol. 310, pp. 70–85 (2019)

27. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. J. Softw. Tools Tech-
nol. Transf. 1(1–2), 134–152 (1997)

28. Lin, J., Lee, M., Yu, I.C., Johnsen, E.B.: A configurable and executable model
of Spark Streaming on Apache YARN. Int. J. Grid Util. Comput. 11(2), 185–195
(2020)

29. Lin, J.C., Mauro, J., Røst, T.B., Yu, I.C.: A model-based scalability optimization
methodology for cloud applications. In: IEEE SC2, pp. 163–170. IEEE Computer
Society (2017)

30. Lin, J.-C., Yu, I.C., Johnsen, E.B., Lee, M.-C.: ABS-YARN: a formal framework
for modeling Hadoop YARN clusters. In: Stevens, P., Wąsowski, A. (eds.) FASE
2016. LNCS, vol. 9633, pp. 49–65. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49665-7_4

31. Turin, G., Borgarelli, A., Donetti, S., Johnsen, E.B., Tapia Tarifa, S.L., Damiani,
F.: A formal model of the Kubernetes container framework. In: Margaria, T., Stef-
fen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 558–577. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-61362-4_32

32. Tveito, L., Johnsen, E.B., Schlatte, R.: Global reproducibility through local control
for distributed active objects. FASE 2020. LNCS, vol. 12076, pp. 140–160. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45234-6_7

33. Wasser, N., Tabar, A.H., Hähnle, R.: Automated model extraction: from non-
deterministic C code to active objects. Sci. Comput. Program. 204, 102597 (2021)

https://doi.org/10.1007/978-3-662-49665-7_4
https://doi.org/10.1007/978-3-662-49665-7_4
https://doi.org/10.1007/978-3-030-61362-4_32
https://doi.org/10.1007/978-3-030-45234-6_7

Communications: Types and
Implemenations

Manifestly Phased Communication via
Shared Session Types

Chuta Sano(B), Stephanie Balzer, and Frank Pfenning

Carnegie Mellon University, Pittsburgh, USA

Abstract. Session types denote message protocols between concurrent
processes, allowing a type-safe expression of inter-process communica-
tion. Although previous work demonstrate a well-defined notion of sub-
typing where processes have different perceptions of the protocol, these
formulations were limited to linear session types where each channel of
communication has a unique provider and client. In this paper, we extend
subtyping to shared session types where channels can now have multiple
clients instead of a single client. We demonstrate that this generalization
can statically capture protocol requirements that span multiple phases
of interactions of a client with a shared service provider, something not
possible in prior proposals. Moreover, the phases are manifest in the type
of the client.

1 Introduction

Session types prescribe bidirectional communication protocols between concur-
rent processes [15,16]. Variations of this type system were later given logical cor-
respondences with intuitionistic [4] and classical [22] linear logic where proofs
correspond to programs and cut reduction to communication. This correspon-
dence mainly provided an interpretation of linear session types, which denote
sessions with exactly one client and one provider. Shared session types, which
encode communication between multiple clients and one provider, were proposed
with a sharing semantics interpretation in a prior work [2]. Clients communicat-
ing along a shared channel follow an acquire-release discipline where they must
first acquire exclusive access to the provider, communicate linearly, and then
finally release the exclusive access, allowing other clients to acquire.

However, not all protocols that follow this acquire-release paradigm are safe;
if a client that successfully acquires some shared channel of type A releases it at
an unrelated type B, other clients that are blocked while trying to acquire will
still see the channel as type A while the provider will see the channel as type
B. To resolve this, we require an additional constraint that clients must release
at the same type at which it acquired. This was formally expressed in [2] as the
equi-synchronizing constraint, which statically verifies that session types encode
communication which does not release at the wrong type. Although shared ses-
sion types serve an important role in making session typed process calculi theory
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 23–40, 2021.
https://doi.org/10.1007/978-3-030-78142-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-78142-2_2

24 C. Sano et al.

applicable to practical scenarios, we previously [19] showed that shared session
types cannot express phases, or protocols across successive acquire-release cycles,
due to the equi-synchronizing constraint being too restrictive (see Sect. 5).

We demonstrate that subtyping, first formalized in the session-typed process
calculi setting by Gay and Hole [11], and its behavior across the two linear and
shared modalities provide the groundwork for an elegant relaxation of the equi-
synchronizing constraint, allowing for phases to be manifest in the session type.
In message passing concurrency, subtyping allows a client and provider to safely
maintain their own local views on the session type (or protocol) associated with
a particular channel. Although previous papers [1,11] investigate subtyping in
the purely linear session type setting, we found that extending these results to
the linear and shared session type setting as in [2] yields very powerful results
with both practical and theoretical significance.

In this paper, we build upon past results on subtyping and propose a for-
mulation of subtyping compatible with shared session types. We in particular
introduce the subsynchronizing constraint, a relaxation of the equi-synchronizing
constraint.

The main contributions of this paper include:

– A full formalization of a subtyping relation for shared session types and their
meta theory.

– The introduction of the subsynchronizing constraint, a relaxation of the equi-
synchronizing constraint.

– Illustrations of practical examples in this richer type system, further bridg-
ing the gap between session-typed process calculi and practical programming
languages.

The rest of the paper will proceed as follows: Sect. 2 provides a brief introduc-
tion to linear and shared session-typed message-passing concurrency. Section 3
demonstrates the inability for prior systems to express phasing and motivates
our approach. Section 4 provides an introduction to linear subtyping along with
an attempt to extend the relation to the shared setting. Section 5 introduces
the notion of phasing and the subsynchronizing judgment. Section 6 presents a
message passing concurrent system using our typesystem and the corresponding
progress and preservation statements. Section 7 discusses related work. Section 8
concludes the paper with some points of discussion and future work.

An extended version of this paper is available as a technical report [20],
containing detailed proofs, a complete formalization of the system, and more
complex examples. This paper will focus on our advancements to the type system
and key ideas while treating the syntax of the language and the operational
interpretation informally.

Manifestly Phased Communication via Shared Session Types 25

2 Background

2.1 Linear Session Types

Based on the correspondence established between intuitionistic linear logic and
the session-typed π-calculus [4,21] we can interpret a intuitionistic linear sequent

A1, A2, . . . , An � B

as the typing judgment for a process P by annotating the linear propositions
with channel names:

a1 : A1, a2 : A2, . . . , an : An
︸ ︷︷ ︸

Δ

� P :: (b : B)

Interpreted as a typing judgment, we say that process P provides a session
of type B along channel b while using channels a1, . . . , an with session types
A1, . . . , An, respectively. Interpreted as a sequent, we say that P is a proof
of some proposition B with hypotheses A1, . . . , An. Following linear logic, the
context Δ is restricted and rejects contraction and weakening. Programatically,
this means that linear channels cannot be aliased nor freely deleted – they must
be fully consumed exactly once.

Since the session type associated with a channel denotes a bidirectional pro-
tocol, each connective has two operational interpretations – one from the per-
spective of the provider and one from the client. This operationally dual interpre-
tation results in a schema where for any connective, either the client or provider
will send while the other will receive as summarized in Table 1.

For example, a channel of type A ⊗ 1 requires that the provider sends a
channel of type A and proceeds as type 1 while the client receives a channel
of type A and proceeds as 1. The multiplicative unit 1 denotes the end of the
protocol – the provider must terminate and close its channel while a client must
wait for the channel to be closed. A channel of type ⊕{l : A} (n-nary internal
choice) requires the provider to choose and send a label i in l and proceed as
Ai while the client must receive and branch on some label i and proceed as Ai.
Similarly, a channel of type &{l : A} requires the client to choose and send a
label and the provider to receive and branch on a label. The continuation type
of some session type refers to the type after a message exchange; for example, B
would be the continuation type of A ⊗ B and similarly Ai of ⊕{l : A} for some
i in l. The unit 1 does not have a continuation type since it marks the end of
communication.

We consider a session type denoting the interaction with a provider of a
queue of integers, which we will develop throughout the paper:

queue = &{enqueue :int ⊃ queue,

dequeue : ⊕ {some : int ∧ queue,none : queue}}

26 C. Sano et al.

Table 1. A summary of the linear connectives and their operational interpretations

Type Interpretation from provider Interpretation from client Continuation

1 Close channel (terminate) Wait for channel to close -

A ⊗ B Send channel of type A Receive channel of type A B

A � B Receive channel of type A Send channel of type A B

⊕{l : A} Send a label i ∈ l Receive and branch on i ∈ l Ai

&{l : A} Receive and branch on i ∈ l Send a label i ∈ l Ai

where we informally adopt value input and output ⊃ and ∧ [21] as value ana-
logues to channel input and output � and ⊗, respectively, which are orthogonal
to the advancements in this work. Following this protocol, a client must send a
label enqueue or dequeue. If it chooses enqueue, it must send an int and then
recur, and on the other hand, if it chooses dequeue, it will receive either some int
as indicated by the some branch of the internal choice or nothing as indicated
by the none branch. In either case, we let the queue recur1. Dually, a server
must first receive a label enqueue or dequeue from the client. If it receives an
enqueue, it will receive an int and then recur. If it receives a dequeue instead, it
must either send a some label followed by the appropriate int and then recur or
send a none label and then recur.

We adopt an equi-recursive [8] interpretation which requires that recursive
session types be contractive [11], guaranteeing that there are no messages asso-
ciated with the unfolding of a recursive type. This in particular requires that we
reason about session types coinductively.

We now attempt to encode a protocol representing an auction based on [9].
An auction transitions between the bidding phase where clients are allowed to
place bids and the collecting phase where a winner is given the item while all
the losers are refunded their respective bids.

bidding = &{bid : ⊕ {ok : id ⊃ money ⊃ bidding,

collecting : collecting}}
collecting = &{collect : id ⊃ ⊕ {prize : item ∧ bidding,

refund : money ∧ bidding,

bidding : bidding}}

In this example, we make the bidding phase and collecting phase explicit by
separating the protocol into bidding and collecting. Beginning with bidding,
a client must send a bid label2. The provider will either respond with an ok ,
allowing the client to make a bid by sending its id, money, and then recursing
back to bidding, or a collecting , indicating that the auction is in the collecting
phase and thereby making the client transition to collecting.
1 We do not consider termination to more easily align with later examples.
2 The currently unnecessary unary choice will be useful later.

Manifestly Phased Communication via Shared Session Types 27

For collecting, the client must send a collect label. For ease of presentation,
we require the client to also send its id immediately, giving enough information
to the provider to know if the client should receive a prize or a refund , along
with bidding if the client is in the wrong phase. The prize branch covers the
case where the client won the previous bid, the refund branch covers the case
where the client lost the bid, and the bidding branch informs the client that the
auction is currently in the bidding phase.

Because linear channels have exactly one provider and one client, what we
have described so far only encodes a single participant auction. One can assert
that the provider is actually a broker to an auction of multiple participants, but
that does not solve the fundamental problem, that is, encoding shared commu-
nication with multiple clients.

2.2 Shared Session Types

Although linear session types and their corresponding process calculi give a
system with strong guarantees such as session fidelity (preservation) and dead-
lock freedom (progress), as we show in the previous section while attemping to
encode an auction, they are not expressive enough to model systems with shared
resources. Since multiple clients cannot simultaneously communicate to a single
provider in an unrestricted manner, we adopt an acquire-release paradigm. The
only action a client can perform on a shared channel is to send an acquire request,
which the provider must accept. After successfully acquiring, the client is guar-
anteed to have exclusive access to the provider and therefore can communicate
linearly until the client releases its exclusive access.

Instead of treating the acquire and release operations as mere operational
primitives, in prior work [2] we extend the type system such that the acquire
and release points are manifest in the type by stratifying session types into
shared and linear types. Unlike linear channels, shared channels are unrestricted
in that they can be freely aliased or deleted. In the remaining sections, we will
make the distinction between linear and shared explicit by marking channel
names and session type meta-variables with subscripts L and S respectively
where appropriate. For example, a linear channel is marked aL, while a shared
channel is marked bS.

Since shared channels represent unrestricted channels that must first be
acquired, we introduce the modal upshift operator ↑S

LAL for some AL which
requires clients to acquire and then proceed linearly as prescribed by AL. Simi-
larly, the modal downshift operator ↓S

LBS for some BS requires clients to release
and proceed as a shared type. Type theoretically, these modal shifts mark tran-
sitions between shared to linear and vice versa. In summary, we have:

(Shared Layer) AS ::= ↑S
LAL

(Linear Layer) AL, BL ::= ↓S
LAS | 1 | AL ⊗ BL | AL � BL | &{l:AL} | ⊕ {l:AL}

28 C. Sano et al.

where we emphasize that the previously defined (linear) type operators such as
⊗ remain only at the linear layer – a shared session type can only be constructed
by a modal upshift ↑S

L of some linear session type AL.
As initially introduced, clients of shared channels follow an acquire-release

pattern – they must first acquire exclusive access to the channel, proceed linearly,
and then finally release the exclusive access that they had, allowing other clients
of the same shared channel to potentially acquire exclusive access. The middle
linear section can also be viewed as a critical region since the client is guaranteed
unique access to a shared provider process. Therefore, this system naturally
supports atomic operations on shared resources.

Using shared channels, we can encode a shared queue, where there can be
multiple clients interacting with the same data:

shared queue = ↑S
L&{enqueue :int ⊃ ↓S

Lshared queue,

dequeue : ⊕ {some : int ∧ ↓S
Lshared queue,

none : ↓S
Lshared queue}}

A client of such a channel must first send an acquire message, being blocked
until the acquisition is successful. Upon acquisition, the client must then proceed
linearly as in the previously defined linear queue. The only difference is that
before recursing, the client must release its exclusive access, allowing other
blocked clients to successfully acquire.

3 Equi-Synchronizing Rules Out Phasing

We can also attempt to salvage the previous attempt of encoding (multi-
participant) auctions by “wrapping” the previous purely linear protocol between
↑S

L and ↓S
L.

bidding = ↑S
L&{bid : ⊕ {ok : id ⊃ money ⊃ ↓S

Lbidding,

collecting : ↓S
Lcollecting}}

collecting = ↑S
L&{collect : id ⊃ ⊕ {prize : item ∧ ↓S

Lbidding,

refund : money ∧ ↓S
Lbidding,

bidding : ↓S
Lbidding}}

A client to bidding must first acquire exclusive access as indicated by ↑S
L,

proceed linearly, and then eventually release at either bidding (in the ok branch)
or collecting (in the collecting branch). Similarly, a client to collecting must
first acquire exclusive access, proceed linearly, and then eventually release at
bidding since all branches lead to bidding.

Unfortunately, as formulated so far, this protocol is not sound. For example,
consider two auction participants P and Q that are both in the collecting phase

Manifestly Phased Communication via Shared Session Types 29

and blocked trying to acquire. Suppose P successfully acquires, in which case
it follows the protocol linearly and eventually releases at bidding. Then, if Q
successfully acquires, we have a situation where Q rightfully believes that it
acquired at collecting but since P previously released at type bidding, the
auctioneer believes that it currently accepted a connection from bidding. The
subsequent label sent by the client, collect is not an available option for the
provider; session fidelity has been violated.

Previous work [2] addresses this problem by introducing an additional
requirement that if a channel was acquired at some type AS, all possible future
releases (by looking at the continuation types) must release at AS. This is for-
mulated as the equi-synchronizing constraint, defined coinductively on the struc-
ture of session types. In particular, neither bidding nor collecting are equi-
synchronizing because they do not always release at the same type at which it
was acquired. For bidding, the collecting branch causes a release at a different
type, and for collecting, all branches lead to a release at a different type.

A solution to the auction scenario is to unify the two phases into one:

auction = ↑S
L&{bid : ⊕ {ok : id ⊃ money ⊃ ↓S

Lauction,

collecting : ↓S
Lauction},

collect : id ⊃ ⊕ {prize : item ∧ ↓S
Lauction,

refund : money ∧ ↓S
Lauction,

bidding : ↓S
Lauction}}

The type auction is indeed equi-synchronizing because all possible release
points are at auction.

This presentation of the auction however loses the explicit denotation of the
two phases; although the previous linear single participant version of the auction
protocol can make explicit the bidding and collecting phases in the session type,
the equi-synchronizing requirement forces the two phases to merge into one in the
case of shared session types. In general, the requirement that all release points
are equivalent prevents shared session types to encode protocols across multiple
acquire-release cycles since information is necessarily “lost” after a particular
acquire-release cycle.

4 Subtyping

So far, there is an implicit requirement that given a particular channel, both its
provider and clients agree on its protocol or type. A relaxation of this requirement
in the context of linear session types have been investigated by Gay and Hole [11],
and in this section, we present subtyping in the context of both linear session
types and shared session types.

If A ≤ B, then a provider viewing its offering channel as type A can safely
communicate with a client viewing the same channel as type B. This perspective

30 C. Sano et al.

reveals a notion of substitutability, where a process providing a channel of type
A can be replaced by a process providing A′ such that A′ ≤ A and dually, a
client to some channel of type B can be replaced by another process using the
same channel as some type B′ such that B ≤ B′. The following subtyping rules,
interpreted coinductively, formalize the subtyping relation between session types:

1 ≤ 1
≤1

AL ≤ A′
L BL ≤ B′

L

AL ⊗ BL ≤ A′
L ⊗ B′

L

≤⊗
A′

L ≤ AL BL ≤ B′
L

AL � BL ≤ A′
L � B′

L

≤�

∀i ∈ l AiL ≤ A′
iL

⊕{l:AL} ≤ ⊕{l:A′
L, m:BL}

≤⊕
∀i ∈ l AiL ≤ A′

iL

&{l:AL, m:BL} ≤ &{l:A′
L}

≤&

One of the notable consequences of adopting subtyping is that internal and
external choices allow one side to have more labels or branches. For internal
choice, since the provider sends some label, there is no harm in a client to be
prepared to handle additional labels that it will never receive and vice versa
for external choice. Another observation is that subtyping of session types is
covariant in their continuations; following this paradigm, we can immediately
define subtyping for the new type connectives ↑S

L and ↓S
L:

AL ≤ BL

↑S
LAL ≤ ↑S

LBL

≤↑S
L

AS ≤ BS

↓S
LAS ≤ ↓S

LBS

≤↓S
L

Remark 1. The subtyping relation ≤ is a partial order.

A key principle governing subtyping of session types is that ignorance is bliss;
neither the client nor the provider need to know the precise protocol that the
other party is following, as supported by our extended report [20] which proves
the same progress and preservation theorems in an implementation of session
typed process calculus with shared channels [2] in a system with subtyping.

Let us revisit the shared queue example:

shared queue = ↑S
L&{enqueue :int ⊃ ↓S

Lshared queue,

dequeue : ⊕ {some : int ∧ ↓S
Lshared queue,

none : ↓S
Lshared queue}}

Instead of allowing all clients to freely enqueue and dequeue, suppose we only
allow certain clients to enqueue and certain clients to dequeue. With subtyping,
we first fix the provider’s type to be shared queue. Next, we restrict writer
clients by removing the dequeue label and similarly restrict reader clients by
removing the enqueue label:

producer = ↑S
L&{enqueue : int ⊃ ↓S

Lproducer}
consumer = ↑S

L&{dequeue : ⊕{some : int ∧ ↓S
Lconsumer,none : ↓S

Lconsumer}}

Manifestly Phased Communication via Shared Session Types 31

where it is indeed the case that shared queue ≤ producer and
shared queue ≤ consumer, justifying both the writer and reader clients’ views
on the type of the channel.

We will defer the detailed discussion of the subtle interactions that occur
between the notion of equi-synchronizing constraint and subtyping to Sect. 5.1.
For this example however, the fact that all three types shared queue, pro-
ducer, and consumer are independently equi-synchronizing is a strong justifi-
cation of its soundness.

5 Phasing

One of the most common patterns when encoding data structures and protocols
via session types is to begin the linear type with an external choice. When
these types recur, we are met with another external choice. A notion of phasing
emerges from this pattern, where a single phase spans from the initial external
choice to the recursion.

We introduced an auction protocol, which in its linear form can make
explicit the two distinct phases, yet in its shared form cannot due to the equi-
synchronizing constraint. With subtyping however, this seems to no longer be a
problem; the auctioneer can view the protocol as auction whereas the clients can
independently view the protocol as bidding or collecting depending on their
current phase since auction ≤ bidding and auction ≤ collecting.

provider

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

auction = ↑S
L&{bid : ⊕ {ok : id ⊃ money ⊃ ↓S

Lauction,

collecting : ↓S
Lauction},

collect : id ⊃ ⊕ {prize : item ∧ ↓S
Lauction,

refund : money ∧ ↓S
Lauction,

bidding : ↓S
Lauction}}

clients

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bidding = ↑S
L&{bid : ⊕ {ok : id ⊃ money ⊃ ↓S

Lbidding,

collecting : ↓S
Lcollecting}}

collecting = ↑S
L&{collect : id ⊃ ⊕ {prize : item ∧ ↓S

Lbidding,

refund : money ∧ ↓S
Lbidding,

bidding : ↓S
Lbidding}}

Unfortunately, there is a critical issue with this solution. Since shared chan-
nels can be aliased, a client in the collecting phase can alias the channel, follow
the protocol, and then ignore the released type (bidding phase) – it can then
use the previously aliased channel to communicate as if in the collecting phase.
In general, the strategy of encoding phases in shared communication through
a shared supertype allows malicious clients to re-enter previously encountered
phases since they may internally store aliases. Thus, what we require is a subtyp-
ing relation across shared and linear modes since linear channels are restricted
and in particular cannot be aliased.

We first add two new linear connectives ↑L
L and ↓L

L that, like ↑S
L and ↓S

L, have
operationally an acquire-release semantics but enforce a linear treatment of the

32 C. Sano et al.

associated channels. Prior work [14] has already explored such intra-layer shifts,
albeit for the purpose of enforcing synchronization in an asynchronous message-
passing system. Thus for example, the protocol denoted by ↑L

LAL requires the
client to “acquire” as in the shared case. If the provider happens to provide a
linear channel ↑L

LAL, then this merely adds a synchronization point in the com-
munication. The more interesting case is when the provider is actually providing
a shared channel, some ↑S

LAL; a client should be able to view the session type
as ↑L

LAL without any trouble. We formalize this idea to the following additional
subtyping relations:

AL ≤ BL

↑SLAL ≤ ↑LLBL

≤↑S
L

↑L
L

AS ≤ BL

↓SLAS ≤ ↓LLBL

≤↓S
L

↓L
L

AL ≤ BL

↑LLAL ≤ ↑LLBL

≤↑L
L

AL ≤ BL

↓LLAL ≤ ↓LLBL

≤↓L
L

Using the new connectives, we can complete the auction protocol where the
two phases are manifest in the session type; a client must actually view the
auction protocol linearly!

bidding = ↑L
L&{bid : ⊕ {ok : id ⊃ money ⊃ ↓L

Lbidding,

collecting : ↓L
Lcollecting}}

collecting = ↑L
L&{collect : id ⊃ ⊕ {prize : item ∧ ↓L

Lbidding,

refund : money ∧ ↓L
Lbidding,

bidding : ↓L
Lbidding}}

where auction ≤ bidding and auction ≤ collecting. Compared to the initially
presented linear auction protocol, this version inserts the purely linear shifts ↑L

L

and ↓L
L where appropriate such that the protocol is compatible with the shared

auction protocol that the auctioneer provides. Therefore, the addition of ↑L
L and

↓L
L to our system allows a natural subtyping relation between shared session

types and linear session types, where they serve as a means to safely bridge
between shared and linear modalities.

Remark 2. A protocol spanning multiple phases can also be interpreted as a
deterministic finite autonomata (DFA) where nodes represent the phase or the
state of the protocol and edges represent choice branches. The previous auction
protocol can be encoded as a two state DFA as shown in Fig. 1.

Manifestly Phased Communication via Shared Session Types 33

biddingstart collecting

bid → ok

bid → collecting

collect → {prize, refund , bidding}

Fig. 1. A DFA representation of the two phases in the auction protocol. Multiple labels
enclosed in brackets as in {prize, refund , bidding} mean that any of those labels can be
selected.

5.1 Subsynchronizing Constraint

We note in Sect. 2.2 that in previous work [2], we require session types to be equi-
synchronizing, which requires that processes following the protocol are released at
the exact type at which it was acquired. This constraint guarantees that clients do
not acquire at a type that they do not expect. With the introduction of subtyping
however, there are two major relaxations that we propose on this constraint.

Releasing At a Subtype. A client P using some channel as some type aS:AS can
safely communicate with any (shared) process offering a channel of type aS:A′

S

such that A′
S ≤ AS due to subtyping. If another client acquires aS and releases

it at some A′′
S such that A′′

S ≤ A′
S, then P can still safely communicate along

aS since A′′
S ≤ AS by transitivity. Thus, one reasonable relaxation to the equi-

synchronizing constraint is that processes do not need to be released at the same
exact type but instead a subtype.

Branches That Never Occur. A major consequence of subtyping is that providers
and clients can wait on some branches in the internal and external choices which
in fact never will be sent by the other party. For example, suppose a provider
P provides a channel of type AS = ↑S

L&{a : ↓S
LAS, b : ↓S

LBS}. Assuming some
unrelated BS, we can see that AS is not equi-synchronizing because the b branch
can lead to releasing at a different type. However, suppose some client C views
the channel as ↑S

L&{a : ↓S
LAS} – in this case, P can only receive a, and the b

branch can safely be ignored since C will never send the b label. This points to
the necessity of using both the provider and client types to more finely verify
the synchronizing constraint. Of course, if there is another client D that views
the channel in a way that the b branch can be taken, then the entire setup is not
synchronizing. Thus, we must verify the synchronization constraint for all pairs
of providers and clients.

Following previous work [2], we formulate constraints by extending the shared
types: Â ::= ⊥ | AS | � where ⊥ ≤ AS ≤ � for any AS. Intuitively, � indicates
a channel that has not been acquired yet (no constraints on a future release), AS

indicates the previous presentation of shared channels, and ⊥ indicates a channel

34 C. Sano et al.

that will never be available (hence, any client attempting to acquire from this
channel will never succeed and be blocked).

We are now ready to present the subsynchronizing judgment, interpreted
coinductively, which is of the form � (A,B, D̂) ssync for some A and B such
that A ≤ B. It asserts that a provider providing a channel of type A and a
client using that channel with type B is subsynchronizing with respect to some
constraint D̂. To verify a pair of types A and B to be subsynchronizing, we take
� as its initial constraint (recall that � represents no constraint), that is, we say
that A and B are subsynchronizing if � (A,B,�) ssync.

� (1, 1, D̂) ssync
S1

� (BL, B′
L, D̂) ssync

� (AL ⊗ BL, A′
L ⊗ B′

L, D̂) ssync
S⊗ � (BL, B′

L, D̂) ssync

� (AL � BL, A′
L � B′

L, D̂) ssync
S�

∀i ∈ l � (AiL, A′
iL, D̂) ssync

� (⊕{l:AL}, ⊕{l:A′
L, m:BL}, D̂) ssync

S⊕ ∀i ∈ l � (AiL, A′
iL, D̂) ssync

� (&{l:AL, m:BL}, &{l:A′
L}, D̂) ssync

S&

� (AL, A′
L, D̂) ssync

� (↑L
LAL, ↑L

LA′
L, D̂) ssync

S↑L
L

� (AL, A′
L, D̂) ssync

� (↓L
LAL, ↓L

LA′
L, D̂) ssync

S↓L
L

� (AL, A′
L, ↑S

LAL) ssync

� (↑S
LAL, ↑S

LA′
L, �) ssync

S↑S
L

� (AS, A′
S, �) ssync ↓S

LAS ≤ D̂

� (↓S
LAS, ↓S

LA′
S, D̂) ssync

S↓S
L

� (AL, A′
L, ↑S

LAL) ssync

� (↑S
LAL, ↑L

LA′
L, �) ssync

S↑S
L↑L

L

� (AS, A′
L, �) ssync ↓S

LAS ≤ D̂

� (↓S
LAS, ↓L

LA′
L, D̂) ssync

S↓S
L↓L

L

The general progression of derivations to verify that two types are subsyn-
chronizing is to first look for an upshift ↑S

L on the provider’s type, involving
either S↑S

L or S↑S
L↑L

L. After encountering a ↑S
L, it “records” the provider’s type

as the constraint and continues to look at the continuations of the types. When
encountering internal and external choices, it only requires the continuations for
the common branches to be subsynchronizing. When it encounters a downshift
↓S

L from the provider’s side, it checks if the release point as denoted by the con-
tinuation of ↓S

L is a subtype of the recorded constraint, in which case it continues
with the derivation with the � constraint.

Remark 3. Subsynchronizing is a strictly weaker constraint than equi-
synchronizing. In particular, if A is equi-synchronizing, then the pair A,A are
subsynchronizing.

6 Metatheory

In this section we present the progress and preservation theorems in a syn-
chronous message passing concurrent system implementing our type system. We
defer many of the technical details of the system and the proofs to our extended
report [20] which follows a similar style to the system in a previous work [2]. In
particular, the two theorems are equally strong as the ones in [2], justifying our
subtyping extension.

Manifestly Phased Communication via Shared Session Types 35

6.1 Process Typing

We take the typing judgment presented in Sect. 2.1 and extend it with shared
channels as introduced in Sect. 2.2:

Γ � P :: (aS:AS)
Γ ;Δ � Q :: (aL:AL)

where Γ = a1S:Â1, . . . , anS:Ân is a structural context of shared channels and
constraints (⊥ and �) which can appear at runtime.

The first judgment asserts that P provides a shared channel aS:AS while
using shared channels in Γ ; the lack of dependence on any linear channels Δ is
due to the independence principle presented in [2]. The second judgment asserts
that Q provides a linear channel aL:AL while using shared channels in Γ and
linear channels in Δ.

Forwarding is a fundamental operation that allows a process to identify its
offering channel with a channel it uses if the types match.

BL ≤ AL

Γ ; yL:BL � fwd xL yL :: (xL:AL)
IDL

B̂ ≤ AS

Γ, yS:B̂ � fwd xS yS :: (xS:AS)
IDS

B̂ ≤ AL

Γ, yS:B̂; · � fwd xL yS :: (xL:AL)
IDLS

The rules IDL and IDS require the offering channel to be a supertype of
the channel it is being identified with. Since we syntactically distinguish shared
channels and linear channels, we require an additional rule IDLS that allows
linear channels to be forwarded with a shared channel provided the subtyping
relation holds.

We also show the right rule of ⊗, which requires the provider to send a
channel yL alongside its offering channel xL:

A′
L ≤ AL Γ ; Δ � P :: (xL:BL)

Γ ; Δ, yL:A′
L � send xL yL; P :: (xL:AL ⊗ BL)

⊗R

Similar to the forwarding case, a shared channel can instead be sent if the
appropriate subtyping relation holds:

Â ≤ AL Γ, yS:Â; Δ � P :: (xL:BL)

Γ, yS:Â; Δ � send xL yS; P :: (xL:AL ⊗ BL)
⊗RS

One important observation is that typing judgments remain local in the pres-
ence of subtyping; the channels in Γ and Δ may be provided by processes at some
subtype (maintained in the configuration; see Sect. 6.3) and need not match. We
therefore do not adopt a general subsumption rule that allows arbitrary substi-
tutions that preserve subtyping and instead precisely manage where subtyping
occurs in the system.

36 C. Sano et al.

6.2 Processes and Configuration

To reason about session types and process calculi, we must consider a collection
of message passing processes, which is known as a configuration. In our system,
we split the configuration into the shared fragment Λ and the linear fragment
Θ, where Λ is a list of process predicates that offer shared channels and Θ is
similarly a list of process predicates that offer linear channels.

The most fundamental process predicate denotes a process term P that pro-
vides some channel a and is of form proc(a, P). We also introduce the predicate
unavail(aS), which represents a shared process that is unavailable to be acquired,
for example, due to it being acquired by another process, and connect(aL, bS),
which provides a linear reference aL to a shared channel bS, needed to express
shared to linear subtyping.

We require the linear configuration Θ to obey an ordering that processes
can only depend on processes that appear to its right; proc(aL, P),proc(bL, Q)
would be ill-formed if P depends on bL. On the other hand, Λ has no ordering
constraints. For the subsequent sections, we require that configurations are well-
formed, which essentially requires that both shared and linear processes provide
unique channel names thereby avoiding naming conflicts.

6.3 Configuration Typing

The configuration typing judgment asserts that a given configuration collectively
provides a set of shared and linear channels; each fragment is checked separately
as shown by the only typing rule for the combined configuration:

Γ |= Λ :: (Γ) Γ |= Θ :: (Δ)

Γ |= Λ; Θ :: (Γ ; Δ)
Ω

The shared context Γ appears on both sides due to circularity; the appearance
on the left side allows any processes to depend on a particular shared channel in
Γ while the appearance on the right side asserts that Λ collectively provides Γ .
In most cases, Â is some shared session type AS, but the maximal and minimal
types ⊥ and � can appear at runtime.

For the shared fragment, we check each process predicate independently; in
particular, a configuration typing rule for some proc(aS, P) is shown below.

� (A′
S, AS, �) ssync Γ � P :: (aS:A′

S)

Γ |= proc(aS, P) :: (aS:AS)
Λ3

An important point is that aS is of type AS in Γ and A′
S is only local to the

process typing judgment; thus, the provider P views the channel aS at type
A′

S while all clients view the channel aS at type AS. The subtyping relation
A′

S ≤ AS is subsumed by the subsynchronizing judgment � (A′
S, AS,�) ssync

which guarantees that the pair (A′
S, AS) is subsynchronizing.

A configuration typing rule for some (linear) proc(aL, P), Θ′ is shown below.

Manifestly Phased Communication via Shared Session Types 37

aS:Â ∈ Γ � (A′
L, AL, Â) ssync Γ ; Δa � P :: (aL:A′

L) Γ |= Θ′ :: (Δa, Δ′)

Γ |= proc(aL, P), Θ′ :: (a : AL, Δ′)
Θ3

Since P may use some linear channels Δa, we split the offering channels of Θ′

to Δa,Δ′ and make explicit that P will consume Δa. Similar to the shared
case, the process typing judgment (third premise) locally assumes aL is of type
A′

L such that A′
L ≤ AL (again, subsumed by the subsynchronizing judgment),

guaranteeing that a client of aL view the channel as type AL.

6.4 Dynamics

The operational semantics of the system is formulated through multiset rewrit-
ing rules [5], which is of form S1, . . . , Sn → T1, . . . , Tm, where each Si and Tj

corresponds to a process predicate. Each rule captures a transition in a subset
of the configuration; for example, the following is one of three rules that capture
the semantics of forwarding:

proc(aL, fwd aL bS) → connect(aL, bS) (D-FWDLS)

Connect predicates are consumed if a process acquires linearly on a channel that
is provided by a shared process. We first show how a shared process providing
some bS can be acquired:

proc(aL, xL ← acqS bS; P)

proc(bS, xL ← accS bS; Q)
→

proc(aL, [bL/xL]P),

proc(bL, [bL/xL]Q)
, unavail(bS) (D-↑S

L)

The rule says that a client can successfully acquire if there is a corresponding
accept by the provider. In the following rule, a connect predicate “coordinates”
the acquire/accept between different modes:

proc(aL, xL ← acqL bL; P)

proc(cS, xL ← accS cS; Q)
, connect(bL, cS) →

proc(aL, [cL/xL]P),

proc(cL, [cL/xL]Q)
, unavail(cS)

(D-↑S
L2)

6.5 Theorems

So far, we have incompletely introduced the statics [20, Appendix D] and the
dynamics [20, Appendix E] of the system, focusing on the interesting cases that
depart from the system presented in [2].

The preservation theorem, or session fidelity, guarantees that well-typed con-
figurations remain well-typed. In particular, this means that processes will always
adhere to the protocol denoted by the session type.

Theorem 1 (Preservation). If Γ |= Λ;Θ :: (Γ ;Δ) for some Λ,Θ, Γ, and Δ,
and Λ;Θ → Λ′;Θ′ for some Λ′;Θ′, then Γ ′ |= Λ′;Θ′ :: (Γ ′;Δ) where Γ ′ Γ .

38 C. Sano et al.

Proof. By induction on the dynamics and constructing a well-typed configu-
ration for each case. See [20, Appendix F] for the detailed proof, covering all
cases.

The Γ ′ Γ captures the idea that the configuration can gain additional shared
processes and that the types of shared channels can become smaller. For example,
if a process spawns an additional shared process, then the configuration will gain
an additional channel in Γ and if a shared channel is released to a smaller type,
the type of the shared channel in Γ can become smaller. Note that although it is
indeed true that linear processes can be spawned, it will never appear in Δ since
the linear channel that the newly spawned process offers must be consumed by
the process that spawned the channel, meaning Δ is unchanged.

The progress theorem is as in [2], where we only allow configurations to be
stuck due to failure of some client to acquire, for example, due to deadlock.
A poised process [2,17] is one that is currently trying to communicate across
its offering channel and is analogous to the role of values in typical functional
languages. Both shared and linear configurations are poised if and only if all its
processes are trying to communicate across its offering channel.

Theorem 2 (Progress). If Γ |= Λ;Θ :: (Γ ;Δ) then either:

1. Λ;Θ → Λ′;Θ for some Λ′ or
2. Λ is poised and one of:

(a) Λ;Θ → Λ′;Θ′ or
(b) Θ is poised or
(c) a linear process in Θ is unable stuck and therefore unable to acquire

Proof. By induction on the typing of the configuration Λ;Θ. We begin by induc-
tion on the typing of Λ to prove either (1) or Λ is poised. After, we prove (2) by
induction on the typing of Θ while assuming Λ is poised. See [20, Appendix G]
for the detailed proof.

Remark 4. Another paper [3] introduces additional static restrictions to allow
a stronger and more common notion of progress, which are orthogonal to our
results. Adopting this extension to the system we present here would give the
usual notion of progress with deadlock freedom.

7 Related Work

Our paper serves as an extension to the manifest sharing system defined in [2] by
introducing a notion of subtyping to the system which allows us to statically relax
the equi-synchronizing constraint. Early glimpses of subtyping can be seen in the
previous system with the introduction of ⊥ and � as the minimal and maximal
constraints, which happened to be compatible with our subtyping relation.

Subtyping for session types was first proposed by Gay and Hole [11], and
a slightly modified style of session types guided from the correspondence with
intuitionistic linear logic was given a subtyping extension [1]. Both these papers

Manifestly Phased Communication via Shared Session Types 39

do not investigate the more recently discovered modal shifts, which is our con-
tribution to the subtyping front.

There have also been many recent developments in subtyping in the context
of multiparty session types [6,7,12,13], which are a different class of type sys-
tems that describe protocols between an arbitrary number of participants from a
neutral global point of view. Understanding the relation of our subtyping system
to these systems is an interesting item for future work.

8 Conclusion

We propose a subtyping extension to a message passing concurrency program-
ming language introduced in previous work [2] and showed examples highlighting
the expressiveness that this new system provides. Throughout the paper, we fol-
low two important principles, substitutability and ignorance is bliss, which gave
a rich type system that in particular allows phases (in a shared setting) to be
manifest in the type.

One immediate application of shared subtyping is that combined with refine-
ment types [9,10], it can encode finer specifications of protocols. For example
in the auction scenario, we can statically show that each client that does not
win a bid gets refunded precisely the exact amount of money it bid. Without
shared to linear subtyping, specifications of shared communication across mul-
tiple acquire-release cycles were not possible.

A future work in a more theoretical platform is to extend the setting to adjoint
logic [18], which provides a more general framework of reasoning about modal
shifts in a message passing system. In particular, we found that affine session
types, where contraction (aliasing) is rejected, have immediate applications.

Acknowledgements. We would like to thank the anonymous reviewers for feedback
on the initially submitted version of this paper.

References

1. Acay, C., Pfenning, F.: Intersections and unions of session types. In: Kobayashi,
N. (ed.) 8th Workshop on Intersection Types and Related Systems (ITRS 2016),
EPTCS 242, Porto, Portugal, pp. 4–19, June 2016

2. Balzer, S., Pfenning, F.: Manifest sharing with session types. In: International
Conference on Functional Programming (ICFP), pp. 37:1–37:29. ACM, September
2017. Extended version available as Technical Report CMU-CS-17-106R, June 2017

3. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session
types. In: Caires, L. (ed.) ESOP 2019. LNCS, vol. 11423, pp. 611–639. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17184-1 22

4. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

5. Cervesato, I., Scedrov, A.: Relating state-based and process-based concurrency
through linear logic. Inf. Comput. 207(10), 1044–1077 (2009)

https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-642-15375-4_16

40 C. Sano et al.

6. Chen, T.c., Dezani-Ciancaglini, M., Scalas, A., Yoshida, N.: On the preciseness of
subtyping in session types. Log. Methods Comput. Sci. 13(2) (2017). https://doi.
org/10.23638/LMCS-13(2:12)2017

7. Chen, T.C., Dezani-Ciancaglini, M., Yoshida, N.: On the preciseness of subtyping
in session types. In: Proceedings of the Conference on Principles and Practice of
Declarative Programming (PPDP 2014), Canterbury, UK. ACM, September 2014

8. Crary, K., Harper, R., Puri, S.: What is a recursive module? In: In SIGPLAN
Conference on Programming Language Design and Implementation, pp. 50–63.
ACM Press (1999)

9. Das, A., Balzer, S., Hoffmann, J., Pfenning, F., Santurkar, I.: Resource-aware ses-
sion types for digital contracts. In: Küsters, R., Naumann, D. (eds.) 34th Computer
Security Foundations Symposium (CSF 2021), Dubrovnik, Croatia. IEEE (June
2021, to appear)

10. Das, A., Pfenning, F.: Session types with arithmetic refinements. In: Konnov, I.,
Kovács, L. (eds.) 31st International Conference on Concurrency Theory (CONCUR
2020), LIPIcs, Vienna, Austria, vol. 171, pp. 13:1–13:18, September 2020

11. Gay, S.J., Hole, M.: Subtyping for session types in the π-calculus. Acta Informatica
42(2–3), 191–225 (2005)

12. Ghilezan, S., Jakšić, S., Pantović, J., Scalas, A., Yoshida, N.: Precise subtyping for
synchronous multiparty sessions. J. Log. Algebr. Methods Program. 104, 127–173
(2019). https://doi.org/10.1016/j.jlamp.2018.12.002

13. Ghilezan, S., Pantović, J., Prokić, I., Scalas, A., Yoshida, N.: Precise subtyping for
asynchronous multiparty sessions (2020)

14. Griffith, D.: Polarized substructural session types. Ph.D. thesis, University of Illi-
nois at Urbana-Champaign (2015, in preparation)

15. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

16. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

17. Pfenning, F., Griffith, D.: Polarized substructural session types. In: Pitts, A. (ed.)
FoSSaCS 2015. LNCS, vol. 9034, pp. 3–22. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46678-0 1

18. Pruiksma, K., Pfenning, F.: A message-passing interpretation of adjoint logic. In:
Martins, F., Orchard, D. (eds.) Workshop on Programming Language Approaches
to Concurrency and Communication-Centric Software (PLACES), EPTCS 291,
Prague, Czech Republic, pp. 60–79, April 2019

19. Sano, C.: On Session Typed Contracts for Imperative Languages. Masters thesis,
Carnegie Mellon University, December 2019. Available as Technical Report CMU-
CS-19-133, December 2019

20. Sano, C., Balzer, S., Pfenning, F.: Manifestly phased communication via shared
session types. CoRR abs/2101.06249 (2021). https://arxiv.org/abs/2101.06249

21. Toninho, B.: A logical foundation for session-based concurrent computation. Ph.D.
thesis, Carnegie Mellon University and Universidade Nova de Lisboa, May 2015.
Available as Technical Report CMU-CS-15-109

22. Wadler, P.: Propositions as sessions. In: Proceedings of the 17th International
Conference on Functional Programming (ICFP 2012), Copenhagen, Denmark, pp.
273–286. ACM Press, September 2012

https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1007/978-3-662-46678-0_1
https://arxiv.org/abs/2101.06249

Deconfined Global Types
for Asynchronous Sessions

Francesco Dagnino1, Paola Giannini2(B), and Mariangiola Dezani-Ciancaglini3

1 DIBRIS, Università di Genova, Genoa, Italy
paola.giannini@uniupo.it

2 DiSIT, Università del Piemonte Orientale, Alessandria, Italy
3 Dipartimento di Informatica, Università di Torino, Turin, Italy

Abstract. Multiparty sessions with asynchronous communications and
global types play an important role for the modelling of interaction proto-
cols in distributed systems. In designing such calculi the aim is to enforce,
by typing, good properties for all participants, maximising, at the same
time, the behaviours accepted. The global types presented in this paper
improve the state-of-the-art by extending the set of typeable asynchronous
sessions and preserving decidability of type checking together with the key
properties of Subject Reduction, Session Fidelity and Progress.

Keywords: Communication-based programming · Multiparty
sessions · Global types

1 Introduction

Multiparty sessions [17,18] are at the core of communication-based program-
ming, since they formalise message exchange protocols. A key choice in the
modelling is synchronous versus asynchronous communications, giving rise to
synchronous and asynchronous multiparty sessions. In the multiparty session
approach global types play the fundamental role of describing the whole scenario,
while the behaviour of participants is implemented by processes. A natural ques-
tion is when a set of processes agrees with a global type. The straightforward
answer is the design of type assignment systems relating processes and global
types. Global types are projected onto participants to get the local behaviours
prescribed by the protocol. In conceiving such systems one wants to permit all
possible typings which guarantee desirable properties: the mandatory Subject
Reduction, but also Session Fidelity and Progress. Session Fidelity [17,18] means
that the content and the order of exchanged messages respect the prescriptions
of the global type. Progress [9,12] requires that all participants willing to com-
municate will be able to do it and, in case of asynchronous communication, also
that all sent messages (which usually are in a queue) will be received.

A standard way of getting more permissive typings is through subtyping [14].
Following the substitution principle [20], we can safely put a process of some
type where a process of a bigger type is expected. For synchronous multiparty
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 41–60, 2021.
https://doi.org/10.1007/978-3-030-78142-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-78142-2_3

42 F. Dagnino et al.

sessions the natural subtyping allows less inputs and more outputs [11]. This
subtyping is not only correct, but also complete, that is, any extension of this
subtyping would be unsound [15]. A powerful subtyping for asynchronous ses-
sions was proposed in [21] and recently proved to be complete [16]. The key idea
of this subtyping is anticipating outputs before inputs to improve efficiency. The
drawback of this subtyping is its undecidability [5,19]. To overcome this prob-
lem, some decidable restrictions of this subtyping were proposed [5,6,19] and a
sound, but not complete, decision algorithm, is presented in [4].

Asynchronous communications better represent the exchange of messages
between participants in different localities, and are more suitable for implemen-
tations. So it is interesting to find alternatives to subtyping which increase typa-
bility of asynchronous multiparty sessions. Recently a more permissive design
of global types has been proposed [8]: it is based on the simple idea of split-
ting outputs and inputs in the syntax of global types. In this way outputs can
anticipate inputs. Multiparty sessions are typed by configuration types, which
are pairs of global types and queues. The freedom gained by this definition is
rather confined in [8], whose main focus was to define an event structure seman-
tics for asynchronous multiparty sessions. In particular global types must satisfy
well-formedness conditions which strongly limit their use.

In the present paper we start from the syntax of global types in [8], signif-
icantly enlarging the set of allowed global types which are well formed. In this
way we obtain a decidable type system in which we are able to type also an
example requiring a subtyping which fails for the algorithm in [4]. On the neg-
ative side, we did not find a global configuration in our system for the running
example of [4]. The well-formedness of global types must guarantee that partici-
pants in different branches of choices have coherent behaviours and that all sent
messages found the corresponding readers. This last condition is particularly
delicate for cyclic computations in which the number of unread messages may
be unbounded. Our type system gains expressivity by:
– requiring to a participant the knowledge of the chosen branch only when her

behaviour depends on that;
– allowing an unbound number of unread messages when all of them will be

eventually read.
Our type system enjoys Subject Reduction, Session Fidelity and Progress.

We illustrate the proposed calculus with an example in which the number of
unread messages is unbounded. We choose this example since typing this session
in standard type systems for multiparty sessions requires a subtyping which
is not derivable by the algorithm in [4]. In fact this session is Example 24 of
that paper in our notation. In addition this example is not typeable in [8]. The
process P = q?{λ1;P1, λ2;P2} waits from participant q either the label λ1 or
the label λ2: in the first case it becomes P1, in the second case it becomes P2.
Similarly the process Q = p!{λ1;Q1, λ2;Q2} sends to participant p either the
label λ1 becoming Q1 or the label λ2 becoming Q2. So the multiparty session
p[[P]] ‖ q[[Q]] ‖ ∅, where ∅ is the empty queue, can reduce as follows:

p[[P]] ‖ q[[Q]] ‖ ∅ q p!λ1−−−→ p[[P]] ‖ q[[Q1]] ‖ 〈q, λ1, p〉 q p?λ1−−−−→ p[[P1]] ‖ q[[Q1]] ‖ ∅

Deconfined Global Types for Asynchronous Sessions 43

decorating transition arrows with communications and denoting by 〈q, λ1, p〉 the
message exchanging label λ1 from q to p. If P1 = q!λ; q!λ; q!λ;P and Q1 = p?λ;Q
we get:

p[[P1]] ‖ q[[Q1]] ‖ ∅ p q!λ−−−→ p[[q!λ; q!λ;P]] ‖ q[[Q1]] ‖ 〈p, λ, q〉
p q!λ−−−→ p[[q!λ;P]] ‖ q[[Q1]] ‖ 〈p, λ, q〉 · 〈p, λ, q〉
p q!λ−−−→ p[[P]] ‖ q[[Q1]] ‖ 〈p, λ, q〉 · 〈p, λ, q〉 · 〈p, λ, q〉
p q?λ−−−→ p[[P]] ‖ q[[Q]] ‖ 〈p, λ, q〉 · 〈p, λ, q〉

Then there is a loop in which for each cycle the number of messages 〈p, λ, q〉 on
the queue increases by two. Assuming that P2 = q!λ;P2 and Q2 = p?λ;Q2,
each of such messages is eventually read by q. This session can be typed
by the configuration type whose queue is empty and whose global type is
G = q p!{λ1; q p?λ1;G1 , λ2; q p?λ2;G2}, where G1 = p q!λ; p q!λ; p q!λ; p q?λ;G
and G2 = p q!λ; p q?λ;G2. The type G prescribes that q put on the queue either
the label λ1 or λ2 for p who has to read the label from the queue. Then p and q
must follow the protocols described by either G1 or G2. It should be intuitively
clear why this global type is well formed. The formalisation of this intuition is
given in the remainder of the paper and requires some ingenuity.

The effectiveness of our type system is demonstrated by the implementation
described in the companion paper [3]. This tool (available at [2]) implements in
co-logic programming the necessary predicates for the typing of sessions.
Outline Our calculus of multiparty sessions is presented in Sect. 2, where the
Progress property is defined. Section 3 introduces configuration types and their
input/output matching, which will be completed by the algorithm given in
Sect. 5. Global types are projected onto processes in Sect. 4, where we define
the type system and state its properties.

2 A Core Calculus for Multiparty Sessions

Since our focus is on typing by means of global types we only consider one
multiparty session instead of many interleaved multiparty sessions. This allows
us to depart from the standard syntax of processes with channels [1,17] in favour
of simpler processes with output and input operators and explicit participants
as in [13,15,22].

We assume the following base sets: participants p, q, r ∈ Part, and labels
λ ∈ Lab.

Definition 1 (Processes). Processes P are defined by:

P ::=ρ 0 | p!{λi;Pi}i∈I | p?{λi;Pi}i∈I

where I �= ∅ and λj �= λh for j �= h.

The symbol ::=ρ, in the definition above and in other definitions, indicates that
the productions should be interpreted coinductively. That is, they define possibly

44 F. Dagnino et al.

infinite processes. However, we assume such processes to be regular, that is, with
finitely many distinct sub-processes. In this way, we only obtain processes which
are solutions of finite sets of equations, see [10].

A process of shape p!{λi;Pi}i∈I (internal choice) chooses a label in the set
{λi | i ∈ I} to be sent to p, and then behaves differently depending on the sent
label. A process of shape p?{λi;Pi}i∈I (external choice) waits for receiving one
of the labels {λi | i ∈ I} from p, and then behaves differently depending on
the received label. Note that the set of indexes in choices is assumed to be non-
empty, and the corresponding labels to be all different. An internal choice which
is a singleton is simply written p!λ;P , and p!λ;0 is abbreviated p!λ, analogously
for an external choice.

In a full-fledged calculus, labels would carry values, namely they would be of
shape λ(v). For simplicity, here we consider pure labels.

Messages are triples 〈p, λ, q〉 denoting that participant p has sent label λ
to participant q. Sent messages are stored in a queue, from which they are
subsequently fetched by the receiver.

Message queues M are defined by:

M ::= ∅ | 〈p, λ, q〉 · M

The order of messages in the queue is the order in which they will be read.
Since order matters only between messages with the same sender and receiver,
we always consider message queues modulo the following structural equivalence:

M · 〈p, λ, q〉 · 〈r, λ′, s〉 · M′ ≡ M · 〈r, λ′, s〉 · 〈p, λ, q〉 · M′ if p �= r or q �= s

Note, in particular, that 〈p, λ, q〉 · 〈q, λ′, p〉 ≡ 〈q, λ′, p〉 · 〈p, λ, q〉. These two equiv-
alent queues represent a situation in which both participants p and q have sent
a message to the other one, and neither of them has read the message. This sit-
uation may happen in a multiparty session with asynchronous communication.

Multiparty sessions are comprised of pairs participant/process of shape p[[P]]
composed in parallel, each with a different participant p, and a message queue.

Definition 2 (Multiparty sessions). Multiparty sessions are defined by:

N ‖ M where N ::= p1[[P1]] ‖ · · · ‖ pn[[Pn]]

and n > 0 and pi �= pj for i �= j and M is a message queue.

In the following we use session as short for multiparty session.
We assume the standard structural congruence on sessions (denoted ≡), that

is, we consider sessions modulo permutation of components and adding/removing
components of the shape p[[0]].

If P �= 0 we write p[[P]] ∈ N as short for N ≡ p[[P]] ‖ N′ for some N′. This
abbreviation is justified by the associativity and commutativity of ‖.

To define the asynchronous operational semantics of sessions, we use an LTS
whose labels record the outputs and the inputs. To this end, communications

Deconfined Global Types for Asynchronous Sessions 45

p[[q!{λi;Pi}i∈I]] ‖ ‖ M p q!λh−−−−→ p[[Ph]] ‖ ‖ M · 〈p, λh, q〉 where h ∈ I [Send]

q[[p? λj ;Qj j J]] p, λh, q
p q?λh q[[Qh]] where h J [Rcv]

Fig. 1. LTS for asynchronous sessions.

(ranged over by β) are either the asynchronous emission of a label λ from par-
ticipant p to participant q (notation p q!λ) or the actual reading by participant
q of the label λ sent by participant p (notation p q?λ).

The LTS semantics of sessions is specified by the two rules [Send] and [Rcv]
given in Fig. 1. Rule [Send] allows a participant p with an internal choice (a
sender) to send one of its possible labels λh, by adding the corresponding message
to the queue. Symmetrically, rule [Rcv] allows a participant q with an external
choice (a receiver) to read the first message in the queue sent to her by a given
participant p, if its label λh is one of those she is waiting for.

The semantic property we aim to ensure, usually called progress [9,12], is
the conjunction of a safety property, deadlock-freedom, and two liveness prop-
erties: input lock-freedom and orphan message-freedom. Intuitively, a session is
deadlock-free if, in every reachable state of computation, it is either terminated
(i.e. of the shape p[[0]] ‖ ∅) or it can move. It is input lock-free if every component
wishing to do an input can eventually do so. Finally, it is orphan-message-free if
every message stored in the queue is eventually read.

The following terminology and notational conventions are standard.
If N ‖ M β1−→ · · · βn−−→ N′ ‖ M′ for some n ≥ 0 (where by convention

N′ ‖ M′ = N ‖ M if n = 0), then we say that N′ ‖ M′ is a derivative of N ‖ M.
We write N ‖ M β−→ if N ‖ M β−→ N′ ‖ M′ for some N′,M′.

Definition 3 (Live, terminated, deadlocked sessions). A session N ‖ M
is said to be

– live if N ‖ M β−→ for some β;
– terminated if N ≡ p[[0]] and M = ∅;
– deadlocked if it is neither live nor terminated.

To formalise progress (Definition 6) we introduce another transition relation on
sessions, which describes their lockstep execution: at each step, all components
that are able to move execute exactly one asynchronous output or input.

We define the player of a communication as the sender in case of output and
as the receiver in case of input:

play(p q!λ) = p play(p q?λ) = q

Let Δ denote a non empty set of communications. We say that Δ is coherent
for a session N ‖ M if

46 F. Dagnino et al.

1. for all β1, β2 ∈ Δ, play(β1) = play(β2) implies β1 = β2, and
2. for all β ∈ Δ, N ‖ M β−→.

The lockstep transition relation N ‖ M Δ=⇒ N′ ‖ M′ is defined by:

N ‖ M Δ=⇒ N′ ‖ M′ if Δ = {β1, . . . , βn} is a maximal coherent set for N ‖ M and

N ‖ M β1−→ · · · βn−−→ N′ ‖ M′

The notion of derivative can be reformulated for lockstep computations as fol-
lows.

If N ‖ M Δ1=⇒ · · · Δn==⇒ N′ ‖ M′ for some n ≥ 0 (where by convention
N′ ‖ M′ = N ‖ M if n = 0), then we say that N′ ‖ M′ is a lockstep derivative
of N ‖ M. Clearly each lockstep derivative is a derivative, but not vice versa.

A lockstep computation is an either finite or infinite sequence of lockstep tran-
sitions, and it is maximal if either it is finite and cannot be extended (because the
last session is not live), or it is infinite. Let γ range over lockstep computations.

Formally, a lockstep computation γ can be denoted as follows, where x ∈
N ∪ {ω} is the length of γ:

γ = {Nk ‖ Mk
Δk==⇒k Nk+1 ‖ Mk+1}k<x

That is, γ is represented as the set of its successive lockstep transitions, where
the arrow subscript k is used to indicate that the transition occurs in the k-th
step of the computation. This is needed in order to distinguish equal transitions
occurring in different steps. For instance, in the session N ‖ 〈p, λ, q〉, where
N = p[[P]] ‖ q[[Q]] with P = q!λ;P and Q = p?λ;Q, all lockstep transitions
with k ≥ 1 are of the form

N ‖ 〈p, λ, q〉 {p q!λ,p q?λ}
=======⇒k N ‖ 〈p, λ, q〉

We can now formalise the progress property:

Definition 4 (Input-enabling session). A session N ‖ M is input-enabling
if p[[q?{λi;Pi}i∈I]] ∈ N implies that, for all maximal

γ = {Nk ‖ Mk
Δk==⇒k Nk+1 ‖ Mk+1}k<x

with N0 ‖ M0 = N ‖ M, there exists h < x such that p q?λi ∈ Δh for some
i ∈ I.

Definition 5 (Queue-consuming session). A session N ‖ M is queue-
consuming if M ≡ 〈p, λ, q〉 · M′ implies that, for all maximal

γ = {Nk ‖ Mk
Δk==⇒k Nk+1 ‖ Mk+1}k<x

with N0 ‖ M0 = N ‖ M, there exists h < x such that p q?λ ∈ Δh.

Deconfined Global Types for Asynchronous Sessions 47

Definition 6 (Progress). A session has the progress property if:

1. (Deadlock-freedom) None of its lockstep derivatives is deadlocked;
2. (No locked inputs) All its lockstep derivatives are input-enabling;
3. (No orphan messages) All its lockstep derivatives are queue-consuming.

It is easy to see that deadlock-freedom implies no locked inputs and no orphan
messages for finite computations.

Example 1. Let N = p[[P]] ‖ q[[Q]] ‖ r[[R]], where P = q!λ;P , Q = p?λ; r?λ′;Q
and R = q!λ′;R.
The unique maximal lockstep computation of N ‖ ∅ is the following:

N ‖ ∅ {p q!λ,r q!λ′}
=======⇒ N ‖ 〈p, λ, q〉 · 〈r, λ′, q〉
{p q!λ,p q?λ,r q!λ′}
===========⇒ p[[P]] ‖ q[[r?λ′;Q]] ‖ r[[R]] ‖ 〈r, λ′, q〉 · 〈p, λ, q〉 · 〈r, λ′, q〉
{p q!λ,r q?λ′,r q!λ′}
===========⇒ N ‖ 〈p, λ, q〉 · 〈r, λ′, q〉 · 〈p, λ, q〉 · 〈r, λ′, q〉
· · · · · ·

It is easy to check that N ‖ ∅ has the progress property. Indeed, every input
communication in Q is eventually enabled, and, even though the queue grows at
each step of the lockstep computation, every message in the queue is eventually
read.

3 Configuration Types

As in [8], the key difference with respect to classical formulations of global types
in literature is the splitting between output choices and inputs. Sessions are
typed by configuration types, which are pairs of global types and queues.

Definition 7 (Global and configuration types).

1. Global types G are defined by:

G ::=ρ p q!{λi;Gi}i∈I | p q?λ;G | End
where I �= ∅ and p �= q and λj �= λh for j �= h.

2. Configuration types are pairs G ‖ M, where G is a global type and M is a
message queue.

As for processes, ::=ρ indicates that global types are regular.
The global type p q!{λi;Gi}i∈I specifies that player p sends a label λk with

k ∈ I to participant q and then the interaction described by the global type
Gk takes place. The global type p q?λ;G specifies that player q receives label λ
from participant p and then the interaction described by the global type G takes
place. A choice between different inputs is useless, since only one label can be
received in each branch of an output choice.

In configuration types, as specified by the previous definition, inputs and
outputs may be unrelated both between them and with the messages in the

48 F. Dagnino et al.

[End]
�iom End ‖ ∅
=========== [In]

�iom G ‖ M
�iom p q?λ;G ‖ 〈p, λ, q〉 · M
========================= �read (G, M)

[Out]
�iom Gi ‖ M · 〈p, λi, q〉 ∀i ∈ I

�iom p q!{λi;Gi}i∈I ‖ M
============================= �read (Gi, M · 〈p, λi, q〉) ∀i ∈ I

[Empty-R] �read (G, ∅) [Out-R]
�read (Gi, M) (∀i ∈ I)

�read (p q!{λi;Gi}i∈I , M)

[In-R1]
�read (G, M)

read (p q?λ;G, p, λ, q)
[In-R2]

�read (G, M)

read (p q?λ;G,)
〈≡�M p, λ, q〉 · M′

Fig. 2. Input/output matching of configuration types (Coinductive version).

queue. In order to get a type system which guarantees progress we need to single
out suitable configuration types. Moreover, we want to do this without imposing
unnecessary restrictions. In this section we introduce the first two conditions
we impose on configuration types: input/output matching and boundedness. A
third and last condition (projectability) will be discussed in Sect. 4, where we
will relate configurations types to session computations.

To ensure correspondence between inputs and outputs, in Fig. 2 we define
the input/output matching of configuration types. A configuration type G ‖ M
is input/output matching if we can derive iom G ‖ M. The double dotted line
indicates that the rules should be interpreted coinductively, i.e., we allow infinite
proof trees. The intuition is that every input in the global type will find, when
it is the first communication of a player, a corresponding message on the queue
and every message put on the queue will be eventually read. To satisfy the first
constraint rule [In] requires that the message sent from p to q with the expected
label be indeed the first message from p to q on the queue. To satisfy the sec-
ond constraint if the global type is End, then there should be no messages on
the queue, rule [End]. If the global type is a choice of outputs, rule [Out] says
that, after performing any output, the configurations (in which the queues have
been augmented by the messages sent) should have matching inputs/outputs.
Moreover rules [In] and [Out] require that all messages in the queue will be
eventually read. This last restriction is enforced by the auxiliary judgment
read (G,M), which means that (each path of) G reads all the messages in M.
The inductive definition of this judgment is given at the bottom of Fig. 2. If the
queue is empty, rule [Empty-R], then the judgement holds. If G is a choice of
outputs, rule [Out-R], then in each branch of the choice all the messages in the
queue must be read. For an input type p q?λ;G, if the message at the top of the
queue (considered modulo ≡) is 〈p, λ, q〉 we read it, rule [In-R1], otherwise we
do not to read messages, rule [In-R2].

For example we can derive iom G ‖ ∅, where G is the global type discussed
in the Introduction. The proof has an infinite non-regular branch showing the
judgments iom G ‖ 〈p, λ, q〉 · · · 〈p, λ, q〉

︸ ︷︷ ︸

2n

for n ≥ 1.

Deconfined Global Types for Asynchronous Sessions 49

[End-I] I
iom End ‖ ∅ [Cycle]

, (G, M) �I
iom G ‖ M′ �ok (G, M, M′)

[Out-I]
, (p q!{λi;Gi}i∈I , M) �I

iom Gi ‖ M · 〈p, λi, q〉 ∀i ∈ I
I
iom p q!{λi;Gi}i∈I ‖ M

[In-I]
, (p q?λ;G, 〈p, λ, q〉 · M) �I

iom G ‖ M
I
iom p q?λ;G p, λ, q

Fig. 3. Input/output matching of configuration types (Inductive version).

The coinductive formulation of input/output matching for configuration
types is natural and elegant, but to get an effective type system we need an
inductive formulation. Figure 3 gives such a formulation, which is parametric
on the auxiliary judgment ok (G,M,M′). This judgment will be detailed in
Sect. 5, where the soundness proof of the inductive formulation w.r.t. the coin-
ductive one is sketched. By H we denote a set of pairs (G,M) needed to detect
when, starting from a configuration, we encounter a configuration with the same
global type. Rules [End-I], [Out-I] and [In-I] are obtained from the correspond-
ing rules in Fig. 2 by increasing the set of circular hypotheses as usual and by
dropping the reading condition. The rule [Cycle] can be applied when the global
type already appeared in the derivation and it requires a condition involving the
global type and the two queues associated with it, expressed by the judgment
ok (G,M,M′). This judgement must enforce the property that all messages in
M′ will be eventually read by G and moreover that every input in G should find,
when it is enabled, a corresponding message in M′. In [8] the trivial condition
M = M′ = ∅ is used. Requiring M ≡ M′ would mean to restrict the coinduc-
tive system to regular derivations. We will discuss more significant and expressive
conditions in Sect. 5. Note that, to obtain an actual algorithm from the rules in
Fig. 3, we have to force the application of [Cycle] as soon as possible, and to
fail if the judgement ok (G,M,M′) does not hold.

Unfortunately input/output matching is not enough to avoid computations
where some participant remains stuck forever. To enforce lock-freedom by typing,
we need the boundedness condition (Definition 9) as shown in Example 4.

Let the players of a global type to be its active participants. The function
players associates to global types their sets of players, which are the smallest sets
such that:

players(p q!{λi;Gi}i∈I) = {p} ∪ ⋃

i∈I players(Gi)
players(p q?λ;G) = {q} ∪ players(G) players(End) = ∅

Note that the regularity assumption on global types ensures that the set of
players of a global type is finite.

Global types can be naturally seen as trees. We use ξ to denote a path
in global type trees, i.e., a possibly infinite sequence of communications p q!λ
or p q?λ. With ξn we represent the n-th communication in the path ξ, where
0 ≤ n < x and x ∈ N ∪ {ω} is the length of ξ. With ε we denote the empty

50 F. Dagnino et al.

sequence and with · the concatenation of a finite sequence with a possibly infinite
sequence. The function Paths gives the set of paths of global types, which are
the greatest sets such that:

Paths(p q!{λi;Gi}i∈I) =
⋃

i∈I{p q!λi · ξ | ξ ∈ Paths(Gi)}
Paths(p q?λ;G) = {p q?λ · ξ | ξ ∈ Paths(G)} Paths(End) = {ε}

We can now formalise the requirement that the first occurrences of players
in a global type are at a bounded depth in all paths starting from the root. This
is done by defining the depth of a player p in a global type G, depth(G, p).

Definition 8 (Depth of a player). Let G be a global type. For ξ ∈ Paths(G)
set depth(ξ, p) = inf{n | play(ξn) = p}, and define depth(G, p), the depth of p in
G, as follows:

depth(G, p) =

{

1 + sup{depth(ξ, p) | ξ ∈ Paths(G)} p ∈ players(G)
0 otherwise

Note that, if p �= play(ξn) for some path ξ and all n ∈ N, then depth(ξ, p) =
inf ∅ = ∞. Hence, if p is a player of a global type G, but it does not occur as a
player in some path of G, then depth(G, p) = ∞.

Definition 9 (Boundedness). A global type G is bounded if depth(G′, p) is
finite for all participants p ∈ players(G) and all types G′ which occur in G.

Example 2. The following example shows the necessity of considering all types
occurring in a global type for defining boundedness. Consider G = r q!λ; r q?λ;G′,
where

G′ = p q!{λ1; p q?λ1; q r!λ3; q r?λ3 , λ2; p q?λ2;G′}
Then we have: depth(G, r) = 1 depth(G, p) = 3 depth(G, q) = 2 whereas

depth(G′, r) = ∞ depth(G′, p) = 1 depth(G′, q) = 2

Since global types are regular the boundedness condition is decidable.

4 Type System

Usually in type assignment systems for multiparty sessions [17,18] global types
are projected onto local types and local types are assigned to processes. The
simplicity of our calculus allows us to project global types directly onto processes
as in [8,22].

Figure 4 gives the rules defining the judgment G�p �→ P , saying that the
global type G, projected onto participant p, gives the process P . The double
dotted line indicates that such rules should be interpreted coinductively. Notice
that proof trees are regular, that is, with finitely many distinct sub-trees.

The definition uses process contexts which can have an arbitrary number
of holes indexed with natural numbers, where we assume that each hole has a

Deconfined Global Types for Asynchronous Sessions 51

C ::= []n | p?{λi; Ci}i∈I | p!{λi; Ci}i∈I | P where I �= ∅, λj �= λh for j �= h

[Ext]
G�p �→ 0
======== p �∈ players(G) [Out-Snd]

Gi �p �→ Pi ∀i ∈ I

(p q!{λi;Gi}i∈I)�p �→ q!{λi;Pi}i∈I

=================================

[Out-Rcv]
Gi �q C→� [p?λi;Pi,j]j∈J ∀i ∈ I

(p q!{λi;Gi}i∈I)�q C→� [p?{λi;Pi,j}i∈I]j∈J

=== q ∈ players(p q!{λi;Gi}i∈I)

[Out-Ext]
Gi �s C→� [r?λ′

i;Ri,j]j∈J ∀i ∈ I

(p q!{λi;Gi}i∈I)�s C→� [r?{λ′
i;Ri,j}i∈I]j∈J

===
s {∈� p, q}
s ∈ players(Gi) ∀i ∈ I

[In-Rcv]
G�q �→ P

(p q?λ;G)�q p?λ;P
===================== [In-Ext]

G�s �→ P

(p q?λ;G)�s P
================

s �= q
s players(G)

Fig. 4. Projection of global types.

different index. Given a context C with holes indexed in J , we denote by C[Pj]j∈J

the process obtained by filling the hole indexed by j with Pj , for all j ∈ J .
Rule [Ext] states that projecting onto a participant which is not a player

gives the inactive process. The following three rules describe the effect of pro-
jecting a global type which starts with the output of a label, chosen in a set,
from player p to player q, and continues as Gi, if the label chosen was λi.

Rule [Out-Snd] projects the global type onto the sender p and, as expected,
the resulting process is an output process sending the chosen label and continuing
with the corresponding projections.

Rule [Out-Rcv] projects the output choice onto the receiver of the message
and [Out-Ext] onto any other player of the global type. Such projections are
well defined if the projections of the branches Gi, for i ∈ I, give processes which
can be consistently combined to provide the resulting processes. More precisely,
they have a common structure, modelled by a multi-hole context C with j ∈ J
holes, where the j-th holes in the projections of Gh and Gk for h �= k ∈ I can
be filled with different processes. The processes filling the j-th holes of different
branches must start with inputs from the same sender and labels identifying
the branches. In this way, the processes in the j-th holes of all branches can
be combined in an external choice, which is used to fill the same context in
the resulting projection. If the context has no holes, i.e., it is a process, then
the projections of all branches are just this process, which is also the result-
ing projection. For instance, if G = p q!{λ1; p q?λ1; p r?λ , λ2; p q?λ2; p r?λ}, then
G� r = p?λ since (p q?λ1; p r?λ)� r = (p q?λ2; p r?λ)� r = p?λ.

The only difference between [Out-Rcv] and [Out-Ext] is that, in rule [Out-
Rcv] the sender and the labels are those of the external choice to be projected,
whereas in rule [Out-Ext] they are arbitrary. Note that, if the participant r
sending the message to s in rule [Out-Ext] is not the participant p who chooses
the branch, then also r before behaving differently, i.e., sending distinct messages
to s in different branches, must receive distinct messages exposing the various

52 F. Dagnino et al.

branches. So in order to behave differently in various branches a player must
know in which branch of the choice she is, by receiving a label from a player who
knows in which branch of the choice she is.

The last two rules describe the effect of projecting a global type starting
with player q reading label λ sent by participant p, and continuing as G. In rule
[In-Rcv], projecting onto player q gives the process waiting for the input λ from
p, and then continuing as the projection of G. In rule [In-Ext], projecting onto
any other player of G simply gives the projection of G. Note that the case where
the participant is not a player in G is covered by rule [Ext].

Rules in Fig. 4 define a relation, while usually the projection of a global type
is expected to be a function. We can prove that for bounded global types this
is the case. We conjecture that the boundedness condition could be avoided.
Assuming boundedness strongly simplifies the proof and it is anyway necessary
to ensure progress, as shown in Example 4.

Proposition 1. If G is a bounded global type and G � p �→ P and G � p �→ Q,
then P = Q.

Thanks to the above proposition, for a bounded global type G, we denote by
G�p the unique P such that G�p �→ P , thus we have G�p = P . Since from now
on we will only deal with bounded global types we will use this notation.

In the following example we consider a global type obtained by anticipating
output choices and we show the need for multihole contexts in projecting a choice
of outputs onto the receiver of the communication.

Example 3. Let G = pq!{λ1; pq?λ1;G′ , λ2; pq?λ2;G′} where

G′ = qp!{λ3; qp?λ3 , λ4; qp?λ4;G}
We have the projection

G�q = p?{λ1; p!{λ3 , λ4;G�q} , λ2; p!{λ3 , λ4;G�q}}
by filling the empty context with the external choice obtained by combining the
projections onto q of the branches pq?λ1;G′ and pq?λ2;G′.
Consider now G′′ = pq!{λ1;G1 , λ2;G2} where

Gi = qp!{λ3; pq?λi; qp?λ3 , λ4; pq?λi; qp?λ4;G′′} for i = 1, 2.

G′′ is obtained from G by anticipating the output choice in G′ before the inputs
pq?λ1 and pq?λ2 in the two branches of G. To compute the projection of G′′ onto
q we find the context C = p!{λ3; []1, λ4; []2} to obtain

G′′ �q = C[p?{λ1 , λ2}]1[p?{λ1;G′′ �q , λ2;G′′ �q}]2
= p!{λ3; p?{λ1 , λ2}, λ4; p?{λ1;G′′ �q , λ2;G′′ �q}}

Configuration types describing well behaved sessions must be input/output
matching, with global types which are bounded and projectable onto all their
players.

Deconfined Global Types for Asynchronous Sessions 53

[≤ -0]
0 0
===== [≤-out]

Pi ≤ Qi i ∈ I

p! λi;Pi i I p! λi;Qi i I J

============================= [≤-In]
Pi ≤ Qi i ∈ I

p? λi;Pi i I J p? λi;Qi i I

==============================

Fig. 5. Preorder on processes.

[Type]
Pi ≤ G�pi i ∈ I players(G) ⊆ {pi | i ∈ I}

Πi Ipi[[Pi]] : G

Fig. 6. Multiparty session typing rule.

Definition 10 (Well-formed configuration types). We say that G ‖ M is
well formed if iom G ‖ M holds and G is bounded and G � p is defined for all
p ∈ players(G).

In our type assignment system we permit only well-formed configuration types.
Processes and projections of global types are compared using the pre-order on
processes defined in Fig. 5. To compare two processes they must be both internal
choices or external choices or the inactive process. In the first case it is better the
process doing less outputs and in the second case the one expecting more inputs
and in both cases their continuations after the same label must be in the same
relation. The only typing rule is given in Fig. 6. It requires that for each pi[[Pi]]
in the session the process Pi be better than the projection of the global type onto
pi for all i ∈ I. The condition players(G) ⊆ {pi | i ∈ I} allows participants in the
session paired with process 0: this is necessary to guarantee invariance of typing
with respect to structural equivalence of sessions. Notice that we can compute the
projections of global types, since the regularity assumption ensures that there is
only a finite number of cases to examine. Moreover the contexts required in rules
[Out-Rcv] and [Out-Ext] can be determined by examining the projections of
the branches in the output choices. The regularity of processes ensures that with
a simple strategy based on cycle detection we can compare processes according
to the preorder of Fig. 5. Therefore our type system is effective once we establish
the decidability of ok (G,M,M′) and that I

iom G ‖ M implies iom G ‖ M. We
do not know if iom G ‖ M implies I

iom G ‖ M.

Example 4. Without the boundedness condition the configuration type G′ ‖ ∅
with G′ defined in Example 2 could type the session p[[P]] ‖ q[[Q]] ‖ r[[q?λ3]] ‖ ∅,
where P = q!{λ1 , λ2;P} and Q = p?{λ1; r!λ3 , λ2;Q}. In this session participant
r may wait forever.

In order to state the properties of our type system it is useful to introduce
an LTS for configuration types as in [8], see Fig. 7. The first two rules show
transitions of top level output choices and inputs. The other two rules deal with
transitions performed inside output choices and inputs. For these to happen
the player of the performed communication must be different from the player
of the enclosing output choice or input. In the case of an output choice the
same communication must be done in all branches. The relation between the

54 F. Dagnino et al.

[Top-Out] p q!{λi;Gi}i∈I ‖ M p q!λj−−−→ Gj ‖ M · 〈p, λj , q〉 j ∈ I

[Top-In] p q?λ;G ‖ 〈p, λ, q〉 · M p q?λ−−−→ G ‖ M

[Inside-Out]
Gi ‖ M · 〈p, λi, q〉 β−→ G′

i ‖ M′ · 〈p, λi, q〉 i ∈ I

p q!{λi;Gi}i∈I ‖ M β−→ p q!{λi;G′
i}i∈I ‖ M′

p �= play(β)

[Inside-In]
G ‖ M β−→ G′ ‖ M′

p q?λ;G p, λ, q
β

p q?λ;G′ p, λ, q ′
q �= play(β)

Fig. 7. LTS for configuration types.

queues in the premises and in the conclusions of these rules mirror those of the
rules for input/output matching, see Fig. 2, so that starting with well-formed
types the LTS produces always well-formed types. The inside rules are needed to
allow transitions of configuration types to mimic those of sessions. For example
if N ≡ p[[q?λ]] ‖ q[[p?λ′]], M ≡ 〈q, λ′, p〉 · 〈p, λ, q〉 and G = pλ?q; q p?λ′, then

we get N ‖ M : G ‖ M and N ‖ M q p?λ′
−−−→ p[[q?λ]] ‖ 〈p, λ, q〉. We have

G ‖ M q p?λ′
−−−→ pλ?q ‖ 〈p, λ, q〉 by rule [Inside-In].

As usual we start with Inversion and Canonical Form lemmas.

Lemma 1 (Inversion). If N ‖ M : G ‖ M, then for all p[[P]] ∈ N we have
P ≤ G�p.

Lemma 2 (Canonical Form). If N ‖ M : G ‖ M and p ∈ players(G), then
p[[P]] ∈ N and P ≤ G�p.

Subject Reduction ensures not only that the reduced session is typeable, but
also that this session is typed by the configuration type obtained from the initial
one by doing the same communication of the session transition.

Theorem 1 (Subject Reduction). If N‖M :G‖M and N ‖ M β−→ N′ ‖ M′,
then G ‖ M β−→ G′ ‖ M′ and N′ ‖ M′ : G′ ‖ M′.

A transition of configuration types is mimicked by a transition of sessions with
a communication which can differ for the label in case of output, while it is
the same in case of input. The reason is that a process with less outputs is
better than a process with more outputs. Therefore a global type in which a
player chooses a label can have more outputs than the process implementing the
player. To state Session Fidelity we define p q!λ ∼= p q!λ′ and p q?λ ∼= p q?λ for
all p, q, λ, λ′.

Theorem 2 (Session Fidelity). If N ‖ M : G ‖ M and G ‖ M β−→, then

N ‖ M β′
−→ with β ∼= β′.

Deconfined Global Types for Asynchronous Sessions 55

The more interesting property of our type system is Progress. The proof of input
enabling is based on the fact that all players have a finite depth in bounded global
types and that this depth (when greater than 1) decreases by reducing global
types at the top level. The proof of queue consuming uses input/output matching
to ensure that messages in the queue will find suitable readers. In both cases we
use Session Fidelity to get the transitions of sessions from the transitions of the
configuration types typing them.

Theorem 3 (Progress). If N ‖ M : G ‖ M, then N ‖ M has the progress
property.

5 An Algorithm for Input/Output Matching

In this section we show the effectiveness of our type system by completing the
inductive definition of input/output matching, see Fig. 3. This amounts to spec-
ify the condition ok (G,M,M′) of rule [Cycle]. The coinductive definition of
input/output matching, see Fig. 2, checks that all messages on the queue are
read at each application of rules [In] and [Out], therefore rule [Cycle] needs
to do a similar check on the (final) queue M′. Note that, if a message in M is
not in M′, then a coinductive derivation of the judgement iom G ‖ M′ would
get stuck on rule [In], i.e., the judgement would not be derivable. So we require
that all messages in M be in M′. Since we want to allow also derivations in
which the queue between two occurrences of the same global type may increase
we allow M′ ≡ M · M′′. In order to ensure that the messages in the queue
M′′ do not interfere with the input/output matching of G we demand that they
can be moved after the outputs of G. As a result the messages in M′′ will be
accumulated at the end of the queue and must be read in all paths of G.

The following examples show the need for the above restrictions on the mes-
sages of M′.

Example 5. 1. Let G = p q!λ1; p q?λ1;G′, where G′ = p q!{λ1;G , λ2; p q?λ2;G}.
To derive iom G ‖ ∅ we should have iom G ‖ 〈p, λ1, q〉 since the message
〈p, λ1, q〉 is left on the queue in the branch of G′ starting with p q!λ1. The
derivation of iom G ‖ 〈p, λ1, q〉 would require first iom G′ ‖ 〈p, λ1, q〉 and
then iom p q?λ2;G ‖ 〈p, λ1, q〉 · 〈p, λ2, q〉. But rule [In] is not applicable to
iom p q?λ2;G ‖ 〈p, λ1, q〉 ·〈p, λ2, q〉. Indeed the message 〈p, λ1, q〉 prevents the
message 〈p, λ2, q〉 from being read by p q?λ2;G.

2. Let G = p q!{λ1; p q?λ1; q p!λ3; q p?λ3;G′ , λ2; p q?λ2; q p!λ3; q p!λ3; q p?λ3;G},
where
G′ = p q!λ4; p q?λ4;G′. To get read (G, 〈q, λ3, p〉) we need read (G′, 〈q, λ3, p〉),
which does not hold. In fact the message 〈q, λ3, p〉 may remain forever in the
queue.

The first restriction is formalised by the judgement agr (G,M) in Fig. 8, to be
read G agrees with M. Rule [Out-C] requires that the queue M either does not
contain a message from p to q, or I is a singleton, let I = {1}, M ≡ 〈p, λ1, q〉·M1

56 F. Dagnino et al.

[End-C]
agr (End, M)

[Cycle-C]
, (G, M) �agr (G, M)

[In-C]
, (p q?λ;G, M) �agr (G, M)

agr (p q?λ;G, M)

[Out-C]
, (p q!{λi;Gi}i∈I , M) �agr (Gi, M′) ∀i ∈ I

agr (p q!{λi;Gi}i∈I , M)
M · 〈p, λi, q〉 ≡ 〈p, λi, q〉 · M′ ∀i ∈ I

[Cycle-DR]
�read (G, M)

G,G �dread (G, M)
[End-DR] G �dread (End, ∅)

[In-DR]
G, p q?λ;G′ �dread (G′, M)

dread (p q?λ;G′,)
[Out-DR]

G, p q!{λi;Gi}i∈I �dread (Gi, M) (∀i ∈ I)

dread (p q! λi;Gi i I ,)

Fig. 8. Agreement and deep read judgments.

and M′ ≡ M1 · 〈p, λ1, q〉 for some M1. We avoid non determinism asking to use
rule [Cycle-C] whenever applicable. Considering Example 5(1) we can see that
agr (G′, 〈p, λ1, q〉) does not hold, since 〈p, λ1, q〉 · 〈p, λ2, q〉 �≡ 〈p, λ2, q〉 · M0 for
all M0.
The second restriction is formalised by the judgement dread (G,M), dubbed
G deeply reads M. If the global type is End, then the queue must be empty,
as expected. In case the global type is a choice of outputs the messages in the
queue must be consumed in all branches and likewise if it is an input. As soon
as a cycle is reached we require that M be read with the standard judgment.
The cycle is discovered by adding as premises the examined global types. With
G we denote a set of global types. It is not difficult to show that dread (G, ∅) for
any G. Looking at Example 5(2) we see that read (G′, 〈q, λ3, p〉) does not hold.
Therefore dread (G, 〈q, λ3, p〉) is not derivable, as expected.

To sum up ok (G,M,M′) is defined by the following rule:

[OK]
read (G,M) agr (G,M′′) dread (G,M′′)

ok (G,M,M′)
M′ ≡ M · M′′

The correctness of this definition is stated by the main result of this section,
i.e. the Soundness Theorem (Theorem 4). The proof of this theorem is based
on the fact that the agreements of two queues imply the agreement of their
concatenation and the same holds for deep readability.

Lemma 3. 1. If agr (G,M1) and agr (G,M2), then agr (G,M1 · M2).
2. If dread (G,M1) and dread (G,M2), then dread (G,M1 · M2).

Theorem 4 (Soundness). If I
iom G ‖ M, then iom G ‖ M.

Proof (Sketch). First of all we observe that the definition of the judgement
H I

iom G ‖ M can be equivalently expressed assuming H to be a sequence
rather than a set, the only difference is the rule [cycle] which will have the
following shape

Deconfined Global Types for Asynchronous Sessions 57

[Cycle′]
read (G,M) agr (G,M′′) dread (G,M′′)

H1, (G,M),H2 I
iom G ‖ M′ M′ ≡ M · M′′

where we have used rule [OK].
We say that a sequence H is coherent if H1 I

iom G ‖ M holds for any decompo-
sition H = H1, (G,M),H2.

The proof is by coinduction on the definition of iom G ‖ M (see Fig. 2). To
this end, we define the set A as follows:

̂G ‖ ̂M ∈ A if ̂M ≡ M1 ·M2, agr (̂G,M2), dread (̂G,M2) and H I
iom

̂G ‖ M1

for some coherent H.
From the hypothesis I

iom G ‖ M, we have immediately that G ‖ M ∈ A, since
M ≡ M · ∅, agr (G, ∅) and dread (G, ∅) always hold, and the empty sequence is
coherent. Thus, to conclude the proof, we just have to show that A is consistent
with respect to the rules in Fig. 2. We prove that for all H coherent, ̂G, M1 and
M2, if H I

iom
̂G ‖ M1, agr (̂G,M2) and dread (̂G,M2), then iom

̂G ‖ M1 · M2

is the conclusion of a rule in Fig. 2, whose premises are in A.
The proof is by induction on the length of H, splitting cases on the last rule used
to derive H I

iom
̂G ‖ M1. Cases for rules [End-I], [In-I] and [Out-I] just use

the corresponding rules in Fig. 2, relying on inversion lemmas for agr (̂G,M2)
and dread (̂G,M2), on the fact that H I

iom
̂G ‖ M1 implies read (̂G,M1)

and that this together with dread (̂G,M2) implies read (̂G,M1 · M2). We only
remark that, for the case [Out-I], the commutativity requirement in the side
condition of rule [Out-C] is essential. In the case of rule [Cycle′] we have H =
H1, (̂G,M′),H2, M1 ≡ M′ · M′′, agr (̂G,M′′) and dread (̂G,M′′), and, since
H is coherent, we have H1 I

iom
̂G ‖ M′ and H1 is coherent as well. Then, the

thesis follows by induction hypothesis, applied to H1 I
iom

̂G ‖ M′ and M′′ ·M2,
because H1 is shorter than H and agr (G,M′′ · M2) and dread (̂G,M′′ · M2)
hold by Lemma 3.

Considering the global type G of the Introduction to prove the judgment
I
iom G ‖ ∅ we have to show that the messages on the queue do not interfere

with the outputs of the type G and they will be eventually read. This is done by
deriving agr (G, 〈p, λ, q〉 · 〈p, λ, q〉) and dread (G, 〈p, λ, q〉 · 〈p, λ, q〉).

6 Conclusion and Future Work

In this paper we presented a new definition of well-formedness for global types
specifying protocols for multiparty sessions. Using the proposal of [8], communi-
cations between participants are split into output choices and inputs and a queue
is added to keep the messages sent but yet not received. The flexibility gained
by this syntax must however be disciplined, since we do not want to loose the
matching between outputs and inputs that is immediate in the standard formu-
lations of global types. Moreover we require the progress property, that in this

58 F. Dagnino et al.

asynchronous setting means not only that participants willing to communicate
will eventually do it, but also that no message will stay on the queue forever.
To this aim already in [8] some well-formedness conditions were defined. We
deconfine the global and configuration types by extending:

– the definition of input/output matching allowing the typing of multiparty
sessions, such as our running example, in which the queue will contain an
unbounded number of messages;

– the definition of projection allowing to anticipate output choices over inputs
(see Example 3).

We give a coinductive definition of an input/output matching that shows
explicitly the properties enforced, i.e., when the protocol gets to the point in
which a participant is waiting for a message, the message is on the queue and
at any point of the protocol the messages in the queue can be all consumed.
The definition is not effective, so we formulate an inductive version, which we
prove to be sound and still expressive enough to type our running example. An
important advantage of the splitting of communications into outputs and inputs
is that we can specify, at the type level, protocols in which outputs of a given
participant may be anticipated before some of its inputs without the need for
asynchronous subtyping. To take advantage of this feature we give a definition
of projection which takes into account the tree-like shape of global types and
generalises the one of [8].

As future work we plan to adapt the definition of projection to permit pro-
tocols in which a participant can send labels to different receivers in choices
as in [7]. A problem left open is the completeness of the inductive definition of
input/output matching with respect to the coinductive one. This is related to the
proof of decidability/undecidability of the coinductive definition of input/output
matching. We conjecture that completeness does not hold, but we did not find
a counter-example.

Acknowledgment. We are grateful to Ilaria Castellani and Elena Zucca for enlight-
ening discussions on the subject of this paper. We thank Elena Zucca also for her
careful reading of the paper. Her suggestions led to many improvements. Last but not
least we are indebted to the anonymous referees for their constructive remarks.

References

1. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9_33

2. Bianchini, R., Dagnino, F.: Asynchronous-global-types-implementation. https://
github.com/RiccardoBianc/Asynchronous-global-types-implementation

3. Bianchini, R., Dagnino, F.: Asynchronous global types in co-logic programming.
In: Damiani, F., Dardha, O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp.
134–146. Springer, Cham (2021)

https://doi.org/10.1007/978-3-540-85361-9_33
https://github.com/RiccardoBianc/Asynchronous-global-types-implementation
https://github.com/RiccardoBianc/Asynchronous-global-types-implementation

Deconfined Global Types for Asynchronous Sessions 59

4. Bravetti, M., Carbone, M., Lange, J., Yoshida, N., Zavattaro, G.: A sound algo-
rithm for asynchronous session subtyping. In: Fokkink, W.J., van Glabbeek, R.
(eds.) CONCUR. LIPIcs, vol. 140, pp. 38:1–38:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.CONCUR.2019.38

5. Bravetti, M., Carbone, M., Zavattaro, G.: Undecidability of asynchronous session
subtyping. Inf. Comput. 256, 300–320 (2017). https://doi.org/10.1016/j.ic.2017.
07.010

6. Bravetti, M., Carbone, M., Zavattaro, G.: On the boundary between decidability
and undecidability of asynchronous session subtyping. Theoret. Comput. Sci. 722,
19–51 (2018). https://doi.org/10.1016/j.tcs.2018.02.010

7. Castellani, I., Dezani-Ciancaglini, M., Giannini, P.: Reversible sessions with flexible
choices. Acta Informatica, 553–583 (2019). https://doi.org/10.1007/s00236-019-
00332-y

8. Castellani, I., Dezani-Ciancaglini, M., Giannini, P.: Global types and event struc-
ture semantics for asynchronous multiparty sessions. CoRR abs/2102.00865 (2021).
https://arxiv.org/abs/2102.00865

9. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 26(2),
238–302 (2016). https://doi.org/10.1017/S0960129514000188

10. Courcelle, B.: Fundamental properties of infinite trees. Theoret. Comput. Sci. 25,
95–169 (1983). https://doi.org/10.1016/0304-3975(83)90059-2

11. Demangeon, R., Honda, K.: Nested protocols in session types. In: Koutny, M., Ulid-
owski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 272–286. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32940-1_20

12. Deniélou, P.M., Yoshida, N.: Dynamic multirole session types. In: Thomas Ball,
M.S. (ed.) POPL, pp. 435–446. ACM Press (2011). https://doi.org/10.1145/
1926385.1926435

13. Dezani-Ciancaglini, M., Ghilezan, S., Jaksic, S., Pantovic, J., Yoshida, N.: Pre-
cise subtyping for synchronous multiparty sessions. In: Gay, S., Alglave, J. (eds.)
PLACES. EPTCS, vol. 203, pp. 29–44. Open Publishing Association (2016).
https://doi.org/10.4204/EPTCS.203.3

14. Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta Informatica
42(2/3), 191–225 (2005). https://doi.org/10.1007/s00236-005-0177-z

15. Ghilezan, S., Jaksic, S., Pantovic, J., Scalas, A., Yoshida, N.: Precise subtyping for
synchronous multiparty sessions. J. Logic Algeb. Methods Program. 104, 127–173
(2019). https://doi.org/10.1016/j.jlamp.2018.12.002

16. Ghilezan, S., Pantović, J., Prokić, I., Scalas, A., Yoshida, N.: Precise subtyping
for asynchronous multiparty sessions. Proc. ACM Program. Lang. 5(POPL), 1–28
(2021). https://doi.org/10.1145/3434297

17. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) POPL, pp. 273–284. ACM Press (2008). https://
doi.org/10.1145/1328897.1328472

18. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1145/2827695

19. Lange, J., Yoshida, N.: On the undecidability of asynchronous session subtyping.
In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 441–
457. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7_26

20. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994). https://doi.org/10.1145/197320.197383

https://doi.org/10.4230/LIPIcs.CONCUR.2019.38
https://doi.org/10.1016/j.ic.2017.07.010
https://doi.org/10.1016/j.ic.2017.07.010
https://doi.org/10.1016/j.tcs.2018.02.010
https://doi.org/10.1007/s00236-019-00332-y
https://doi.org/10.1007/s00236-019-00332-y
https://arxiv.org/abs/2102.00865
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1016/0304-3975(83)90059-2
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1145/1926385.1926435
https://doi.org/10.1145/1926385.1926435
https://doi.org/10.4204/EPTCS.203.3
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1145/3434297
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1145/197320.197383

60 F. Dagnino et al.

21. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially com-
mutative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol.
5502, pp. 316–332. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00590-9_23

22. Severi, P., Dezani-Ciancaglini, M.: Observational equivalence for multiparty ses-
sions. Fundamenta Informaticae 167, 267–305 (2019). https://doi.org/10.1007/
s00236-019-00332-y

https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/s00236-019-00332-y
https://doi.org/10.1007/s00236-019-00332-y

Relating Functional and Imperative
Session Types

Hannes Saffrich and Peter Thiemann(B)

University of Freiburg, Freiburg im Breisgau, Germany
{saffrich,thiemann}@informatik.uni-freiburg.de

Abstract. Imperative session types provide an imperative interface to
session-typed communication in a functional language. Compared to
functional session type APIs, the program structure is simpler at the
surface, but typestate is required to model the current state of commu-
nication throughout.

Most work on session types has neglected the imperative approach.
We demonstrate that the functional approach subsumes previous work
on imperative session types by exhibiting a typing and semantics pre-
serving translation into a system of linear functional session types.

We further show that the untyped backwards translation from the
functional to the imperative calculus is semantics preserving. We restrict
the type system of the functional calculus such that the backwards trans-
lation becomes type preserving. Thus, we precisely capture the difference
in expressiveness of the two calculi and conclude that the lack of expres-
siveness in the imperative calculus is solely due to its type system.

Keywords: Session types ⋅ Distributed programming ⋅ Translation

1 Introduction

Session types provide a type discipline for bidirectional communication protocols
in concurrent programs. They originate with papers by Honda and others [9,25],
who proposed them as an expressive type system for binary communication in
pi-calculus. Later work considered embeddings in functional and object-oriented
languages, both theoretically and practically oriented [7,10,15,22].

A typical incarnation of session types [7] supports a data type of channel
ends described by a session type s governed by a grammar like this one:

s ∶∶= !t.s ∣ ?t.s ∣ ⊕{�i ∶ si} ∣ &{�i ∶ si} ∣ End t ∶∶= s ∣ t→ t ∣ t⊗ t ∣ . . .

Here, t ranges over all types in the language (functions, pairs, etc.) including
session types s. The session type !t.s describes a channel on which we can send
a value of type t and then continue communicating according to s. Dually, we
can receive a value of type t and continue according to s on a channel of type
?t.s. The internal choice type ⊕ . . . selects a choice �i and continues according
to si. The external choice & . . . continues with si if it receives �i. The session
type End signifies the end of the conversation.
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 61–79, 2021.
https://doi.org/10.1007/978-3-030-78142-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_4&domain=pdf
http://orcid.org/0000-0002-1825-0097
http://orcid.org/0000-0002-9000-1239
https://doi.org/10.1007/978-3-030-78142-2_4

62 H. Saffrich and P. Thiemann

let server u =
let (x, u) = receive u in (* u: ?Int .? Int .! Int.s’ *)
let (y, u) = receive u in (* u: ?Int .! Int.s’ *)
send (x+y, u) (* u: !Int.s’ *)

Listing 1.1. Example server in functional style

fun server u =
let x = receive u in
let y = receive u in
send x + y on u

Listing 1.2. Example server

fun server ’ () =
let x = receive u in
let y = receive u in
send x + y on u

Listing 1.3. Example server with capture

Functional vs Imperative Session Types. Most of the embedded session
type systems rely on a functional treatment of channel ends. That is, the com-
munication operations transform (the type of) a channel end as shown in this
example where the receive operation consumes a channel of type ?t.s and returns
a pair of the received value of type t and the continuation channel of type s:

receive ∶ ?t.s→ (t⊗ s)

This design forces a programmer to explicitly thread the channel reference
through the program. Moreover, the channel reference must be treated linearly
because a repeated use at the same type would break the protocol. The typi-
cal programming pattern is to rebind a variable, say u, containing the channel
end with a different type in every line as in Listing 1.1 (typings refer to the
state before the operation in that line). Writing a program in this style feels like
functional programming before the advent of monads, when programmers loudly
complained about the need for “plumbing” as demonstrated with u. Moreover,
this style is not safe for session types because most languages do not enforce the
linearity needed to avoid aliasing of channel ends at compile time.

Embeddings in object-oriented languages make use of fluent interfaces, which
favor the chaining of method calls [11], while embeddings in functional languages
wrap a channel into a monad [17], which does not scale well to programs that
process multiple channels. But much less work can be found that takes the
alternative, imperative approach inspired by typestate-based programming [24].

Vasconcelos, Gay, and Ravara [27] proposed a session type calculus embedded
in a multithreaded functional language, which we call VGR. It is a bit of a
mystery why VGR was not called imperative1 because it enables rewriting the
program fragment in Listing 1.1 as shown in Listing 1.2. The parameter u of the
server function is a reference to a communication channel. The operation receive

takes a channel associated with session type ?Int.S and returns an integer2.
Executing receive changes the type of the channel referred to by u to S, which
1 The conference version of their paper [28] is called “Session Types for Functional

Multithreading”.
2 Uppercase letters denote types in the VGR calculus.

Relating Functional and Imperative Session Types 63

indicates that the VGR calculus is a typestate-based system [24]. The function
send_on_ takes an integer to transmit and a channel associated with session type
!Int.S. It returns a unit value and updates the channel’s type to S.

Taken together, the server function in Listing 1.2 expects that its argument u

refers to a channel of type ?Int.?Int.!Int.S′ and leaves it in a state corresponding
to type S′ on exit. This functionality is reflected in the shape of a function type
in VGR: Σ1;T1→ T2;Σ2. In this type, T1 and T2 are argument and return type
of the function. The additional components Σ1 and Σ2 are environments that
reflect the state (session type) of the channels before (Σ1) and after (Σ2) calling
the function. The type of a channel, Chan α, serves as a pointer to the entry for
α in the current channel environment Σ. Channels in T1 refer to entries in Σ1

and channels in T2 refer to entries in Σ2, but both environments may refer to
further channels that describe channel references captured by the function (Σ1)
or created by the function (Σ2). In Listing 1.2, the type of server is

{α ∶ ?Int.?Int.!Int.S};Chan α→Unit;{α ∶ S}, (1)

for some fixed channel name α and session type S.
Compared to other session type systems [6,7], VGR does not require linear

handling of channel references, as can be seen by the multiple uses of variable u

in Listing 1.2. Instead, it keeps track of the current state of every channel using
the environment Σ, which is threaded linearly through the typing rules.

In Sect. 2 we give deeper insights into VGR, the kind of programs that
it accepts, and the programs that fail to typecheck. To give a glimpse of its
peculiarities, we examine the type of server in Eq. (1) more closely.

First, the type refers to the name α. This name identifies a certain channel
so that the function cannot be invoked on other channels. Second, a function
of this type can be typechecked without knowledge of the channel names that
are currently in use and their state. This property enables the definition of the
server function in a library, say, but the typechecker does not allow us to call the
function on a channel named differently than α, even if its session type matches.
Hence, the library may end up defining a function that cannot be called.

A variation of the type in Eq. (1) replaces the argument type by Unit:

{α ∶ ?Int.?Int.!Int.S};Unit→Unit;{α ∶ S}. (2)

This type can be assigned to a function like server’ in Listing 1.3 that is closed
over a reference to a channel of type Chan α. In this context, the fixation on a
certain channel name α is required for soundness: While we might want to apply
a function to different channels, it is not possible to replace a channel captured
in a closure. A function of type (2) may be called any time the channel α is in
a state matching the “before” session type of the function.

Subsequently, Gay and Vasconcelos created a functional session type calculus
based on a linear type system, which was later called LFST3 [7]. While LFST
is still monomorphic, a function like server can be applied to several different
3 Linear Functional Session Types.

64 H. Saffrich and P. Thiemann

channels with the same session type. In LFST, we can also close over a channel,
but doing so turns a function like server’ into a single-use function, whereas it can
be called many times in VGR provided the channel α is available at the right type
in the environment. Clearly, LFST lifts some restrictions of the VGR calculus,
but it seems to impose other restrictions. In any case, the exact correspondence
between the two calculi has never been studied.

There is another line of session-type research based on the Curry-Howard
correspondence between fragments of linear logic and process calculi [4]. Pro-
grams/processes in these systems may also be regarded as handling channels
“imperatively”, perhaps even more so than VGR. We discuss these approaches
in Sect. 7 along with other related work.

Contributions

– We show that LFST is at least as expressive as VGR by giving a typing-
preserving translation which simulates VGR in LFST (Sect. 5).

– We show that untyped VGR is at least as expressive as LFST by giving a
backwards translation which simulates LFST in VGR (Sect. 6).

– We exhibit a type system for LFST that characterizes the shortcomings
of VGR exactly. The backwards translation becomes type preserving with
respect to this system (Sect. 6.2).

In this paper we omit session type choice and recursion because these fea-
tures are straightforward to add and our results extend seamlessly. An extended
version of this paper with further proofs, the full rulesets of VGR and LFST,
and full definitions of the translations is available at http://arxiv.org/abs/2010.
08261.

2 Motivation

Channel Identities. Our discussion of VGR’s function type Σ1;T1→T2;Σ2 in
the introduction shows that a function that takes a channel as a parameter can
only be applied to a single channel. A function like server (Listing 1.2) must be
applied to the channel of type Chan α, for some fixed name α.

LFST sidesteps this issue by not encoding the identity of a channel in the
type. It rather posits that session types are linear so that channel references
cannot be duplicated. In consequence, the operations of the session API must
consume a channel and return a (nother) channel to continue the protocol.

Data Transmission vs Channel Transmission. In VGR, it is possible to
pass channels from one thread to another. The session type !S′.S indicates a
higher-order channel on which we can send a channel of type S′. The operation
to send a channel has the following typing rule in VGR:

C-SendS

Γ ; v↦ Chan β Γ ; v′↦ Chan α

Γ ;Σ,α ∶ !S′.S, β ∶ S′; send v on v′↦Σ;Unit;α ∶ S

http://arxiv.org/abs/2010.08261
http://arxiv.org/abs/2010.08261

Relating Functional and Imperative Session Types 65

The premises are value typings that indicate that v and v′ are references to
different, fixed channels β and α under variable environment Γ . The conclusion
is an expression typing of the form Γ ;Σ; e↦Σ1;T ;Σ2 where Σ is the incoming
channel environment, Σ1 is the part of Σ that is passed through without change,
and Σ2 is the outgoing channel environment after the operation indicated by
expression e which returns a result of type T . The rule states that channels β
and α have session type S′ and !S′.S, respectively. The channel β is consumed
(it is sent to the other end of channel α) and α gets updated to session type S.

Compared to the function type, sending a channel is more flexible. Any chan-
nel of type S′ can be passed because β is not part of channel α’s session type.
Alas, if the sender holds references to channel β (i.e., values of type Chan β),
then these references can no longer be exercised as β has been removed from Σ.
So one can say that rule C-SendS passes ownership of channel β to the receiver.

Abstracting over the send operation is not useful because it would fix channel
names in the function type.

However, there is another way to send a channel reference over a channel,
namely if it is captured in a closure. To see what happens in this case, we look
at VGR’s typing rules for sending and receiving data of type D. Types of the
form D comprise first-order types and function types, but not channels.

C-SendD

Γ ; v↦D Γ ; v′ ↦ Chan α

Γ ;Σ,α ∶ !D.S; send v on v′↦Σ;Unit;α ∶ S

C-ReceiveD

Γ ; v↦ Chan α

Γ ;Σ,α ∶ ?D.S; receive v↦Σ;D;α ∶ S

One possibility for type D is a function type like D1 = {β ∶ S
′
};Unit→Unit;{β ∶

S′′}. A function of this type captures a channel named β which may or may not
occur in Σ. It is instructive to see what happens at the receiving end in rule
C-ReceiveD. If we receive a function of type D1 and Σ already contains channel
β of appropriate session type, then we will be able to invoke the function.

If channel β is not yet present at the receiver, it turns out we cannot send it
later, as the received channel gets assigned a fresh name d:

C-ReceiveS

Γ ; v↦ Chan α freshd

Γ ;Σ,α ∶ ?S′.S; receive v↦Σ;Chan d;d ∶ S′, α ∶ S

For the same reason, it is impossible to send channel β first and then the closure
that refers to it: β gets renamed to some fresh d while the closure still refers to
β. Sending the channel effectively cuts all previous connections.

None of these issues arise in LFST because channels have no identity. Hence,
any value whatsoever can be sent over a channel, higher-order session types are
possible, and there is just one typing rule for sending and receiving, respectively.

Channel Aliasing. The VGR paper proposes the following function sendSend.
fun sendSend u v = send 1 on u; send 2 on v

66 H. Saffrich and P. Thiemann

fun sendSend u v sigma =
let (cu, sigma) = sigma.u in
let cu’ = send 1 on cu in
let sigma = sigma * {u: cu ’} in
let (cv, sigma) = sigma.v in
let cv’ = send 2 on cv in
let sigma = sigma * {v: cv ’} in
((), sigma)

Listing 1.4. Without aliasing

fun sendSend w sigma =
let (cw, sigma) = sigma.w in
let cw’ = send 1 on cw in
let sigma = sigma * {w: cw ’} in
let (cw, sigma) = sigma.w in
let cw’ = send 2 on cw in
let sigma = sigma * {w: cw ’} in
((), sigma)

Listing 1.5. With aliasing

It takes two channels and sends a number on each. This use is reflected in the
following typing.

sendSend ∶ Σ1;Chan u→ (Σ1;Chan v→Unit;Σ2);Σ1 (3)

with Σ1 = {u ∶ !Int.Su, v ∶ !Int.Sv} and Σ2 = {u ∶ Su, v ∶ Sv}.
Ignoring the types we observe that it would be semantically sound to pass

a reference to the same channel w, say, of session type !Int.!Int.End for u and v.
However, sendSend w w does not type check with type (3) because w would have to
have identity u and v at the same time, but environment formation mandates
they must be different.

Another typing of sendSend in VGR would be

sendSend′ ∶ Σ1;Chan w→ (Σ1;Chan w→Unit;Σ2);Σ1 (4)

with Σ1 = {w ∶ !Int.!Int.Sw} and Σ2 = {w ∶ Sw}. With this typing, sendSend w w type
checks. Indeed, the typing forces the two arguments to be aliases!

In LFST, the invocation sendSend w w is not legal as it violates linearity. Indeed,
to simulate the two differently typed flavors of sendSend requires two different
expressions in LFST. As an illustration, we show LFST expressions as they are
produced by our type-driven translation in Sect. 5. In the code fragment in
Listing 1.4, u and v have unit type (translated from Chan u and Chan v) and
sigma is a linear record with fields u and v that contain the respective channels.
The dot operator performs field selection and * is disjoint record concatenation.
The notation for record literals is standard.

In the translation of sendSend’ in Listing 1.5 record sigma only has one field w

containing the channel.

Abstraction over Channel Creation. A server typically accepts many con-
nections on the same access point and performs the same initialization (e.g.,
authentication) on each channel. Hence, it makes sense to abstract over the
creation of a channel.
fun acceptAdd () =

let c = accept addService in
// authenticate client on c (omitted)
c

Relating Functional and Imperative Session Types 67

let fork

new accept request

send receive close

Chan

Unit

End

Fig. 1. Syntax of VGR

(5)

(6)

request accept (7)

receive send (8)

(9)

new (10)

fork (11)

(12)

Fig. 2. Semantics of VGR

However, in VGR, the freshness condition on the channel created by accept only
applies inside the function body. The actual VGR type of acceptAdd does not reflect
freshness anymore as the name α, say, is fixed in the function type:

{};Unit→ Chan α;{α ∶ ?Int.?Int.!Int.S′}

In consequence, VGR cannot invoke acceptAdd twice in a row as the second invo-
cation would result in an ill-formed environment that contains two specifications
for channel α.

LFST elides this issue, again, by not tracking channel identities.

3 VGR: Imperative Session Types

Figure 1 defines the syntax of VGR [27]. Notably, expressions t are in A-normal
form and types distinguish between data types D and channels because two
different sets of typing rules govern sending and receiving of data vs. sending
and receiving a channel. We already used this syntax informally in the examples.

68 H. Saffrich and P. Thiemann

C-Const
Γ ; Unit

C-Chan
Γ ;γp Chan γp

C-Var
Γ,x T ;x T

C-Abs
Γ,x T ;Σ; e Σ1;U ;Σ2

Γ ;λx.e Σ;T U ;Σ1,Σ2

Fig. 3. Value typing rules of VGR

C-Accept
Γ ; v S fresh c

Γ ;Σ; accept v Σ;Chan c; c S

C-Request
Γ ; v S fresh c

Γ ;Σ; request v Σ;Chan c; c S

C-Val
Γ ; v T

Γ ;Σ; v Σ;T ;

C-App
Γ ; v Σ;T U ;Σ Γ ; v T

Γ ;Σ,Σ ; v v Σ ;U ;Σ

C-Fork
Γ ;Σ; t1 Σ1;T1; Γ ;Σ1; t2 Σ2;T2;

Γ ;Σ; fork t1; t2 Σ2;T2;

Fig. 4. Expression typing rules of VGR (excerpt)

We omit choices as they present no significant problem and as they can be
simulated using channel passing. We also omit the standard congruence rules for
processes and silently apply reduction rules up to congruence: parallel composi-
tion is a commutative monoid and the ν-binders admit scope extrusion.

Figure 2 defines the semantics of VGR. We use a slightly different, but equiv-
alent definition than in the literature. We define evaluation contexts E,F ∶∶=◻ ∣
letx = E in t that are used in many of the rules. This formulation avoids the
commuting conversion rule R-Let in the literature and fixes an issue with the

original reduction relation.4 We distinguish between expression reduction
�
⇒e

and process reduction
�
⇒p, both of which are tagged with a label �. This label

indicates the effect of the reduction and it ranges over

� ∶∶ = accept ∣ send ∣ new ∣ fork ∣ τ processes
� ∶∶ = acceptγ ∣ requestγ ∣ γ?v ∣ γ!v ∣ τ expressions

where τ stands for effect freedom and can be omitted. Labeled expression reduc-
tions are paired with their counterpart at the process level as familiar from
process calculi [13], that is, γ?v (γ!v) stand for receiving (sending) v on γ which
resolves to label send at the process level (9). Similarly, acceptγ (requestγ) stands
for accepting (requesting) a connection on fresh channel γ and resolves to label
accept at the process level.

Typing for VGR comes in three parts: value typing Γ ; v↦T in Fig. 3, expres-
sion typing Γ ;Σ; e↦Σ′;T ;Σ′′ in Fig. 4, and configuration typing Γ ;Σ;C ↦Σ′

(omitted). The value typing judgment relates an environment Γ and a value
4 letx = fork t; t′ in t′′ is stuck in the original work [27].

Relating Functional and Imperative Session Types 69

Constants k fix fork send receive accept request new

Expressions e x α k λx.e e e e, e let x, y e in e

α e e e e.α split e,α

Configurations C e C C νγ C νn C

Types t s s Unit t t t t t t r

SessionTypes s ?t.s !t.s End

Rows r r,α t

Environments Γ Γ,α t Γ, x t

Fig. 5. Syntax of LFST

v to a type T . The expression typing judgment is very similar to a type state
system. It relates a typing environment Γ , an incoming channel environment Σ,
and an expression to an environment Σ′ ⊆ Σ which contains the channels not
used by e, the type T , and the outgoing channel environment Σ′′. Σ′′ contains
typings for channels that have been used by e or created by e. The configuration
typing relates Γ , incoming Σ, and configuration C with Σ′ ⊆Σ which contains
the channels not used by C.

4 Linear Functional Session Types

On the functional side, we consider an extension of a synchronous variant of the
LFST calculus [7] by linear records with disjoint concatenation. Figure 5 gives
its syntax. The constants k and the first line of the expression grammar are
taken from the literature. The second line of the expression grammar is new and
defines operations on linear records. The empty record is {}, {α = e} constructs
a singleton record with field α given by e, e1 ⋅ e2 is the disjoint concatenation of
records e1 and e2, e.α projects field α out of the record e and returns a pair of the
contents of the field and the remaining record, split∗ e,α∗ generalizes splitting to
a list of names α∗ and returns a pair of two records, one with the fields α∗ and
the other with the remaining fields.

A configuration C can be a single thread, two configurations running in
parallel, a channel abstraction binding the two ends to γ and δ, or an access
point abstraction (νn)C. The latter is a straightforward addition to LFST, which
assumes the existence of globally known access points.

Metavariable t ranges over types, s ranges over session types, and r ranges
over rows, which are lists of bindings of names to types.

70 H. Saffrich and P. Thiemann

unrEnd unr s unrUnit
unr t1 unr t2

unr t1 t2
unr t1 t2

α t r unr t

unr r

T-Fork
Γ e Unit

Γ fork e Unit

T-Send
Γ Γ1 Γ2 Γ1 e1 t Γ2 e2 !t.s

Γ send e1 on e2 s

T-Recv
Γ e ?t.s

Γ receive e t s

T-New
unrΓ

Γ new s s

T-Accept
Γ e s

Γ accept e s

T-Request
Γ e s

Γ request e s

T-Emp
unrΓ

Γ

T-Single
Γ e t

Γ α e α t

T-SplitRecord
Γ e r1 r2 dom r1 α

Γ split e,α r1 r2

T-Concat
Γ Γ1 Γ2 Γ1 e1 r1 Γ2 e2 r2 r1 r2

Γ e1 e2 r1, r2

T-Field
Γ e r,α t

Γ e.α t r

Fig. 6. Typing rules for communication primitives and record operations in LFST

Figure 6 recalls the definition of the predicate unr t for unrestricted types,
which we lift pointwise to typing environments. It also contains the well-known
typing rules for the communication primitives as well as for the record fragment
of LFST. The rule T-Emp typechecks the empty record with the premise unrΓ
which states that Γ only contains unrestricted types. The rule T-Single is unsur-
prising. Premise Γ = Γ1+ Γ2 of rule T-Concat splits the incoming environment
Γ so that bindings to a linear type end up either in Γ1 or in Γ2. Premise r1 ♯ r2
states that rows r1 and r2 are disjoint, which means they bind different field
names. Under these assumptions the (disjoint) concatenation of records e1 and
e2 is accepted.

The rules for field access and splitting of the record generalize the elimination
rule for linear pairs. Rule T-Field shows that fields access singles out the field
named α. Its content is paired up with a record comprising the remaining fields.
Linearity of the record’s content is preserved as the pair is also linear. Rule
T-SplitRecord is similar, but splits its subject e according to a list α∗ of names
which must be present in e. The result is a linear pair of two records. We consider
an empty record to be unrestricted so that we can drop it if needed.

The remaining typing rules are taken from the original paper [7] (cf. also
Fig. 10). We modified the operational semantics to perform synchronous com-
munication and to fit with the labeled transition style used for VGR in Sect. 3.
Its formalization is omitted because of its similarity to VGR.

Relating Functional and Imperative Session Types 71

C-App

C-SendS
Chan Chan

send Unit
let
let
let send

C-Fork

fork
let split dom
let fork

C-New

new new

Fig. 7. Translation of expressions and threads (excerpt)

C-Thread

let
where dom

Fig. 8. Translation of configurations (excerpt)

5 Translation: Imperative to Functional

As a first step, we discuss the translation of the imperative session type calculus
VGR into the linear functional session type calculus LFST-rec. The extension
with record types is not essential, but it makes stating the translation more
accessible. All records could be elided by replacing them with suitably nested
pairs and mapping record labels to indices.

The translation from VGR to LFST-rec is type driven, i.e., it is a translation
of typing derivations. The gist of the approach is to translate VGR expressions
into a parameterized linear state transformer monad. It is parameterized in the
sense of Atkey [2] because the type of the state changes during the computation.

In particular, we map derivations for VGR value typing, VGR expression
typing, and VGR configuration typing such that the following typing preser-
vation results hold. For brevity, we indicate the translation with ⟪e⟫ and ⟪C⟫
where the arguments are really the typing derivations for e and C, respectively.
The translations on types ⟪T⟫, environments ⟪Γ⟫, ⟪Σ⟫, and values ⟪v⟫ are
homomorphic by induction on the syntax (see extended version), except for

⟪Chan α⟫ =Unit ⟪γ±⟫ = ()

⟪Σ1;T1→ T2;Σ2⟫ = ⟪T1⟫→ {⟪Σ1⟫}→ (⟪T2⟫ × {⟪Σ2⟫}) ⟪λx.e⟫ = λx.λσ.⟪e⟫σ

72 H. Saffrich and P. Thiemann

Translation of types

End End

Unit Unit

Chan Unit

Translation of values

Fig. 9. Type translation

Proposition 1 (Typing Preserving Translation).

Preserve-Value

Γ ; v↦ T

⟪Γ⟫ ⊢ ⟪v⟫ ∶ ⟪T⟫

Preserve-Expression

Γ ;Σ; e↦Σ1;T ;Σ2

⟪Γ⟫, σ ∶ {⟪Σ ∖Σ1⟫} ⊢ ⟪e⟫σ ∶ ⟪T⟫ × {⟪Σ2⟫}

Preserve-Config

Γ ;Σ;C ↦Σ1

⟪Γ⟫,⟪Σ ∖Σ1⟫ ⊢ ⟪C⟫

These statements are proved by mutual induction on the derivations of the VGR
judgments in the premises. The VGR typing judgments for expressions and con-
figurations pass through unused channels (in Σ1) in the style of leftover typings
[1]. While this style is convenient for some proofs, it cannot be used for the trans-
lation as it fails when trying to translate the term fork t1; t2. The first premise of
its typing rule C-Fork is Γ ;Σ; t1↦Σ1;T1;{}, which says that executing t1 con-
sumes some of the incoming channels Σ and does not touch the ones in Σ1. The
second premise Γ ;Σ1; t2↦Σ2;T2;{} picks up Σ1 and demands that t2 consumes
all its channels. This pattern does not work for the translation, which is based
on explicit channel passing: if we would pass all channels in Σ to t1, which is
forked as a new thread, there would be no way to obtain the leftover channels
Σ1 after thread t1 has finished. Moreover, these channels have to be available for
t2 even before t1 has finished! The same issue arises with translating the parallel
composition of two configurations. For that reason, in LFST-rec the translated
expressions and configurations are supplied with exactly the channels needed.
Hence the necessity to compute the needed channels as the difference Σ ∖Σ1.

Figure 9 contains the details of the type translation, the translation of envi-
ronments, and the translation of values. The only interesting case of the type
translation is the one for function types, which maps a function to a Kleisli
arrow in a linear, parameterized state monad. The incoming and outgoing chan-
nel environments are mapped to the incoming and outgoing state record types.
The other observation is that any channel type is mapped to the unit type.

The translation of values has two interesting cases. A channel value is mapped
to unit because channels are handled on the type level and channel references
are resolved by accessing the corresponding field of the state record. Lambdas

Relating Functional and Imperative Session Types 73

obtain an extra argument σ for the incoming state. The body of a lambda is
translated by the expression translation which is indexed by the incoming state
record σ and returns a pair of the result and the outgoing state record.

Figure 7 shows select cases from the translation of expressions that demon-
strate the role of the record operations. The conclusion of Preserve-Expression
shows that an expression is translated to a linear state transformer as in the
translation of the function type.

Figure 8 contains the translation of the C-Thread configuration rule, which
is the only interesting case. Its reifies the channels that are used in the thread
by collecting them in a record σ and injecting that record as the initial state of
the state monad. This record is transformed by the expression translation which
returns a pair of the return value of type ⟪T⟫ and the final record of type {⟪∅⟫}.
It is easy to see that this pair is unrestricted because the translation of a type
T is generally an unrestricted type and the empty record is also unrestricted.

We would like the translation to induce a simulation in that each step of
a typed VGR configuration C gives rise to one or more steps in its transla-
tion ⟪C⟫ in LFST-rec. Unfortunately, the situation is not that simple because
administrative reductions involving the state get in the way.

Proposition 2 (Simulation). If Γ ;Σ;C ↦ Σ′ and C
�
⇒p C′ in VGR, then

there is a configuration C in LFST-rec such that ⟪C⟫
�
→p

+

C and ⟪C′⟫
τ
→p

+

C.

6 Translation: Functional to Imperative

For the backwards translation we consider LFST programs without records and
we informally extend the expression language of VGR with pairs—analogous to
LFST, but unrestricted.

We first consider an untyped translation that demonstrates that the calculi
are equally expressive. Then we restrict the type system of LFST to identify a
subset on which the translation preserves typing.

6.1 Untyped Translation

In a first approximation, the backwards translation might map the send and
receive operations naively as follows.

�send e1 on e2� = letx = �e1� in let y = �e2� in let z = sendxon y in y (13)

�receive e� = let y = �e� in letx = receive y in (x, y) (14)

This mapping, extended to the rest of LFST, yields a program in A-normal form
to fit with VGR’s syntactic restrictions. The functional send operation returns
the updated channel, so we have to duplicate the channel reference y in its image
in VGR. Similarly, the functional receive operation returns a pair of the received

74 H. Saffrich and P. Thiemann

value and the updated channel, so the translation needs to construct a pair from
the received value and the updated channel y.

However, to prove a tight relation between reduction in LFST and VGR, we
need to be more careful to avoid administrative reductions. For example, if e in
(14) is already a value, then the inserted let y=�e� in . . . is gratuitous and results
in an extra (administrative) reduction in VGR.

This phenomenon is known since Plotkin’s treatise of the CPS translation
[16]. Hence, we factor the backwards translation in two steps. The first step trans-
forms the LFST program to A-normal form using an approach due to Sabry and
Felleisen [19]. This transformation is known to give rise to a strong operational
correspondence (a reduction correspondence [20]), it is typing preserving, and
it is applicable to LFST because it preserves linearity. The definition for this
translation �e� may be found in the extended version.

This refined ANF translation is compatible with evaluation because it is
compatible with values, evaluation contexts, and substitution.

Proposition 3 (ANF Simulation).

1. If e→e e′, then �e�→e
+ �e′�. 2. If C

�
→p C′, then �C�

�
→p

+

�C′�.

The second step is the expression translation �e� from LFST-ANF to VGR.
This translation is very simple because the source calculus is already in A-
normal form. The idea of the translation as stated at the beginning of this
section is clearly reflected in the first two lines of the expression translation �e�.
The remaining cases work homomorphically (see extended version).

�send v onw� = let z = send �v�on �w� in �w�

�receive v� = letx = receive �v� in (x, �v�)

�fork e� = fork �e�; ()

This setup establishes a tight connection between LFST-ANF and VGR,
because the translation preserves values, evaluation contexts, and substitution.

Proposition 4 (Backwards simulation). Let e, e′ and C,C′ be expressions
and configurations in LFST-ANF.

1. If e→e e′, then �e�⇒e �e′�. 2. If C
�
→p C′, then �C�

�
⇒p

+

�C′�.

Putting the results for the two steps together, we obtain the desired tight
simulation result by composing Propositions 3 and 4.

Proposition 5 (Full Backwards Simulation). Suppose that e, e′ and C,C′

are expressions and configurations in LFST.

1. If e →e e′, then ��e�� ⇒e
+

��e′��. 2. If C
�
→p C′, then ��C��

�
⇒p

+

��C′��.

Relating Functional and Imperative Session Types 75

T-LamU’

T-App’

T-Send”

send

T-Recv”

receive

T-New’

new

Fig. 10. Typing rules for LFST-EFF (excerpt)

6.2 Typed Backwards Translation

One can add the necessary information for a typed backwards translation to the
type system of LFST, at the price of making it more restrictive. We start with
an informal review of the requirements.

As VGR tracks channel identities, they have to be reflected in the LFST type
systems. Following Padovani [14], we tag session types as in sα consisting of a
session type s tagged with an identity α.

The function type in VGR specifies a transformation on the channels that
are implicitly or explicitly affected by the function. Hence, we must augment the
LFST type system with tracking the identities of channels, on which the program
performs an effect. To this end, we equip LFST with a suitable sequential effect
system [8]. It distinguishes between incoming and outgoing channels, Σi and Σo,
which are also reflected in the latent effect on the function arrow.

Γ ⊢′ e ∶ t/Σi↦Σo

We define tagged session types by adding an identity tag α to all session
types and augmenting function types with a set of uniquely tagged sessions. We
carve out a set of data types d, which can be transmitted in VGR programs.
Hence, session types proper (denoted by s) are a subset of LFST’s session types.

Types t ∶∶= sα ∣ [s] ∣ Unit ∣ t→
Σ↦Σ t ∣ t −∗Σ↦Σ t ∣ t⊗ t

Data d ∶∶= [s] ∣ Unit ∣ t→Σ↦Σ t ∣ t −∗Σ↦Σ t

Sessions s ∶∶= ?d.s ∣ !d.s ∣ ?s.s ∣ !s.s ∣ End

Using mostly standard effect typing rules (see Fig. 10), we show that effect
typing is a proper restriction of LFST typing.

76 H. Saffrich and P. Thiemann

End End

Chan

Unit Unit

Fig. 11. Type translation from LFST-EFF to VGR

Lemma 1 (Conservative Extension). Γ ⊢′ e ∶ t/Σ ↦Σ′ implies ∣Γ ∣ ⊢ e ∶ ∣t∣.

The translation to ANF does not affect LFST typing with effects.

Lemma 2 (ANF Compatible). Suppose that Γ ⊢′ e ∶ t/Σ ↦Σ′.
Then Γ ⊢′ �e� ∶ t/Σ ↦Σ′.

Figure 11 contains the backwards translation for types. An α-tagged session
type turns into the channel type Chan α and the effect annotation on function
types gets mapped to the before and after environments in VGR function types.

Proposition 6 (Typing Preservation (Backwards)).
Suppose that Γ ⊢′ e ∶ t/Σ1 ↦Σ2 for some expression e in LFST-ANF. Then for
all Σ such that Σ#Σ1 and Σ#Σ2, �Γ �;Σ,Σ1; �e�↦ �t�;Σ;Σ2.

7 Related Work

Pucella and Tov [17] give an embedding of a session type calculus in Haskell.
Like our translation, their embedding relies on a parameterized monad, which is
layered on top of the IO monad using phantom types. Linearity is enforced by
the monad abstraction. Multiple channels are implemented by stacking so that
channel names are de Bruijn indices. Stacking only happens at the (phantom)
type level, so that stack rearrangement has no operational consequences. The
paper comes with a formalization and a soundness proof of the implementation.
Sackman and Eisenbach [21] also encode session types for a single channel in
Haskell using an indexed (parameterized) monad.

Imai and coworkers [12] propose an encoding of binary session-based com-
munication as a library in OCaml. This library is based on an indexed state
monad that maintains the current state of a set of channels in a tuple. Chan-
nel names are encoded by lenses operating on this state and operations an a
channel change the index type at the position indicated by the lens. The pro-
gramming style resembles VGR, but it is explicitly monadic. The monad and its
type indexing are closely related to our encoding, which is linear by typing.

Another line of work on session types is based on process calculi obtained
through the Curry-Howard correspondence applied to fragments of linear logic
[3–5]. The resulting programs have an imperative flavor as they are based on
process calculus. The correspondence structures communication as a string of
interactions on a channel name. This channel name “changes type” by rebinding

Relating Functional and Imperative Session Types 77

at each communication operation. There is a monadic embedding of this app-
roach into a pure functional language [26]. In this stratified language, processes
are snippets of imperative code encapsulated as first-class monadic values into
the functional language. These values can be plugged into a process term by a
suitable version of the monadic bind operation. Processes may transmit channel
names or values from the functional stratum. Processes have the imperative fla-
vor as already mentioned. It would be interesting future work to relate this line
of work with the correspondence developed in the present paper.

Alias types [23] presents a type system for a low-level language where the
type of a function expresses the shape of the store on which the function oper-
ates. Function types can abstract over store locations α and the shape of the
store is described by aliasing constraints of the form {α↦ T}. Constraint com-
position resembles separating conjunction [18] and ensures that locations are
unique. Analogous to our channel types, pointers in the alias types system can
be duplicated and have a singleton type indicating their store location. Alias
types also include non-linear constraints, which are not required in our system.

8 Conclusion

Disregarding types, the imperative and functional session calculi are equally
powerful. But typing is the essence of a session calculus so that the imperative
calculus is strictly less expressive. Two issues are responsible for the limitations.

1. Identity tracking for channels restricts the usability of functional abstraction.
With explicit identity, functions are fixed to specific channels.

2. Having different typing rules for sending channels and sending (other) data
gives rise to lack of abstraction and hinders modularity. Higher-order channel
passing has subtle problems that render a transmitted channel useless.

Our results suggest that the type system severely restricts VGR’s expressive-
ness. Hence, it is an interesting future work to extend VGR’s type system such
that there are type and semantics preserving translations in both directions.

References

1. Allais, G.: Typing with leftovers - a mechanization of intuitionistic multiplicative-
additive linear logic. In: 23rd International Conference on Types for Proofs and
Programs, TYPES 2017. LIPIcs, Budapest, Hungary, May 29–June 1, 2017, vol.
104, pp. 1:1–1:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017).
https://doi.org/10.4230/LIPIcs.TYPES.2017.1

2. Atkey, R.: Parameterised notions of computation. J. Funct. Program. 19(3–4),
335–376 (2009). https://doi.org/10.1017/S095679680900728X

3. Balzer, S., Toninho, B., Pfenning, F.: Manifest Deadlock-freedom for shared session
types. In: Caires, L. (ed.) ESOP 2019. LNCS, vol. 11423, pp. 611–639. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17184-1 22

https://doi.org/10.4230/LIPIcs.TYPES.2017.1
https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1007/978-3-030-17184-1_22

78 H. Saffrich and P. Thiemann

4. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

5. Das, A., Pfenning, F.: Session types with arithmetic refinements. In: Konnov, I.,
Kovács, L. (eds.) 31st International Conference on Concurrency Theory, CONCUR
2020 (Virtual Conference). LIPIcs, Vienna, Austria, 1–4 September 2020, vol. 171,
pp. 13:1–13:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://
doi.org/10.4230/LIPIcs.CONCUR.2020.13

6. Fowler, S., Lindley, S., Morris, J.G., Decova, S.: Exceptional asynchronous session
types: session types without tiers. Proc. ACM Program. Lang. 3(POPL), 28:1–
28:29 (2019). https://doi.org/10.1145/3290341

7. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.
Funct. Program. 20(1), 19–50 (2010). https://doi.org/10.1017/S0956796809990268

8. Gordon, C.S.: A generic approach to flow-sensitive polymorphic effects. In: 31st
European Conference on Object-Oriented Programming, ECOOP 2017. LIPIcs,
Barcelona, Spain, 19–23 June 2017, vol. 74, pp. 13:1–13:31. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.ECOOP.
2017.13

9. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

10. Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., Honda, K.: Type-safe eventful
sessions in Java. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 329–
353. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14107-2 16

11. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 24

12. Imai, K., Yoshida, N., Yuen, S.: Session-OCaml: a session-based library with polar-
ities and lenses. Sci. Comput. Program. 172, 135–159 (2019). https://doi.org/10.
1016/j.scico.2018.08.005

13. Milner, R.: Communicating and Mobile Systems - The Pi-Calculus. Cambridge
University Press, New York (1999)

14. Padovani, L.: Context-free session type inference. In: Yang, H. (ed.) ESOP 2017.
LNCS, vol. 10201, pp. 804–830. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54434-1 30

15. Padovani, L.: A simple library implementation of binary sessions. J. Funct. Pro-
gram. 27, e4 (2017). https://doi.org/10.1017/S0956796816000289

16. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2), 125–159 (1975). https://doi.org/10.1016/0304-3975(75)90017-1

17. Pucella, R., Tov, J.A.: Haskell session types with (almost) no class. In: Proceedings
of the 1st ACM SIGPLAN Symposium on Haskell, Haskell 2008, Victoria, BC,
Canada, 25 September 2008, pp. 25–36. ACM (2008). https://doi.org/10.1145/
1411286.1411290

18. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
17th IEEE Symposium on Logic in Computer Science (LICS 2002), Copenhagen,
Denmark, 22–25 July 2002, Proceedings, pp. 55–74. IEEE Computer Society
(2002). https://doi.org/10.1109/LICS.2002.1029817

19. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.
LISP Symb. Comput. 6(3–4), 289–360 (1993)

20. Sabry, A., Wadler, P.: A reflection on call-by-value. ACM Trans. Program. Lang.
Syst. 19(6), 916–941 (1997). https://doi.org/10.1145/267959.269968

https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://doi.org/10.1145/3290341
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.4230/LIPIcs.ECOOP.2017.13
https://doi.org/10.4230/LIPIcs.ECOOP.2017.13
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/978-3-642-14107-2_16
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1016/j.scico.2018.08.005
https://doi.org/10.1016/j.scico.2018.08.005
https://doi.org/10.1007/978-3-662-54434-1_30
https://doi.org/10.1007/978-3-662-54434-1_30
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/267959.269968

Relating Functional and Imperative Session Types 79

21. Sackman, M., Eisenbach, S.: Session types in Haskell updating message passing for
the 21st century (2008). https://spiral.imperial.ac.uk:8443/handle/10044/1/5918

22. Scalas, A., Yoshida, N.: Lightweight session programming in Scala. In: 30th Euro-
pean Conference on Object-Oriented Programming, ECOOP 2016. LIPIcs, Rome,
Italy, 18–22 July 2016, vol. 56, pp. 21:1–21:28. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2016). https://doi.org/10.4230/LIPIcs.ECOOP.2016.21

23. Smith, F., Walker, D., Morrisett, G.: Alias types. In: Smolka, G. (ed.) ESOP 2000.
LNCS, vol. 1782, pp. 366–381. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-46425-5 24

24. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Software Eng. 12(1), 157–171 (1986). https://doi.
org/10.1109/TSE.1986.6312929

25. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7 118

26. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and ses-
sions: a monadic integration. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 350–369. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37036-6 20

27. Vasconcelos, V.T., Gay, S.J., Ravara, A.: Type checking a multithreaded functional
language with session types. Theor. Comput. Sci. 368(1–2), 64–87 (2006). https://
doi.org/10.1016/j.tcs.2006.06.028

28. Vasconcelos, V., Ravara, A., Gay, S.: Session types for functional multithreading.
In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 497–511.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 32

https://spiral.imperial.ac.uk:8443/handle/10044/1/5918
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1007/3-540-46425-5_24
https://doi.org/10.1007/3-540-46425-5_24
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1016/j.tcs.2006.06.028
https://doi.org/10.1016/j.tcs.2006.06.028
https://doi.org/10.1007/978-3-540-28644-8_32

Safe Session-Based Asynchronous
Coordination in Rust

Zak Cutner(B) and Nobuko Yoshida

Imperial College London, London, UK
zachary.cutner17@imperial.ac.uk, n.yoshida@imperial.ac.uk

Abstract. Rust is a popular systems language focused on performance
and reliability, with an emphasis on providing “fearless concurrency”.
Message passing has become a widely-used pattern by Rust develop-
ers although the potential for communication errors leaves developing
safe and concurrent applications an unsolved challenge. In this ongo-
ing work, we use multiparty session types to provide safety guarantees
such as deadlock-freedom by coordinating message-passing processes. In
contrast to previous contributions [20–22], our implementation targets
asynchronous applications using async/await code in Rust. Specifically,
we incorporate asynchronous subtyping theory, which allows program
optimisation through reordering input and output actions. We evaluate
our ideas by developing several representative use cases from the litera-
ture and by taking microbenchmarks. We discuss our plans to support
full API generation integrating asynchronous optimisations.

Keywords: Rust · Asynchronous communication ·
Deadlock-freedom · Session types

1 Introduction

Rust is a statically typed language designed for systems software development.
It is rapidly growing in popularity and has been voted “most loved language”
over five years of surveys by Stack Overflow [12]. Rust aims to offer the safety of
a high-level language without compromising on the performance enjoyed by low-
level languages. Message passing over typed channels is widely used in concurrent
Rust applications, whereby (low-level) threads or (high-level) actors communi-
cate efficiently and safely by sending each other messages containing data.

This paper proposes a new implementation framework (Rumpsteak) for effi-
ciently coordinating concurrent processes using asynchronous message-passing
communication in Rust based on multiparty session types (MPST) [16,17,31].
MPST coordinate interactions through linearly typed channels, where each chan-
nel must be used exactly once, ensuring protocol compliance without deadlocks or
communication mismatches. Rust’s affine type system is particularly well-suited
to MPST by statically guaranteeing a linear usage of session channels.

Previous implementations based on session types for Rust [20–22] operate
under a synchronous model—that is upon attempting to receive a message,
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 80–89, 2021.
https://doi.org/10.1007/978-3-030-78142-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_5&domain=pdf
http://orcid.org/0000-0001-7180-4530
http://orcid.org/0000-0002-3925-8557
https://doi.org/10.1007/978-3-030-78142-2_5

Safe Session-Based Asynchronous Coordination in Rust 81

a thread is blocked until the operation has completed. Although simple, this
model can cause significant computational resources to be wasted while a thread
is blocked and, moreover, many systems are inherently not synchronous. An
asynchronous model instead makes no assumptions about how long an opera-
tion will take. After beginning to receive a message, a process can continue with
its execution and be notified when the operation is complete. In practice, Rust
supports the monadic async/await syntax to perform asynchronous operations.
Functions that are asynchronous are annotated with async, causing them to
return futures; and await is attached to futures, denoting that execution should
continue elsewhere until the future is completed. Unfortunately, as shown in the
Rust Survey 2020 [29], “async” and “concurrency” are ranked as the 5th and
7th most “tricky” or “very difficult” features among Rust programmers.

To improve both the safety and efficiency of communications in Rust, our
work provides a Rust MPST toolchain (Rumpsteak), which supports asyn-
chronous execution. We focus on two key challenges: (C1) how to correctly
integrate MPST with Rust’s async/await syntax, preserving safety and deadlock-
freedom; and (C2) how to improve performance by using asynchronous execu-
tion. For (C1), we develop a set of async/await primitives to build up MPST
(see Sect. 2); and, for (C2), we evaluate the efficiency of our primitives using
microbenchmarks and develop several representative examples from the liter-
ature [10,24] with asynchronous communication optimisations (see Sect. 3).
Finally, we discuss design choices for integration with advanced MPST theories,
such as asynchronous subtying [14] and asynchronous multiparty compatibility
[24] to maximise communication speed-up, while still preserving safety between
asynchronous components in Rust (see Sect. 4). We include further examples,
source code and benchmarks in our repository [2] and the full version [11].

2 Overview

Workflow. Rumpsteak uses the top-down
approach to ensure correctness by design.
In [Step 1] we write a global type G to
describe the interactions between all roles,
and project it onto each role to obtain an
endpoint finite state machine (EFSM) Mi;
in [Step 2] we optimise each Mi to obtain
M ′

i ; in [Step 3] we generate an API Ai

from each M ′
i ; and in [Step 4] we use each

Ai to create an asynchronous Rust process
Pi. The group of processes P1...Pn created
in this way are free from communication
errors such as deadlocks.

G

M1 M2 ... Mn

M1 M2 ... Mn

A1 A2 ... An

P1 P2 ... Pn

[Step 1]

[Step 2]

[Step 3]

[Step 4]

Projection. For [Step 1], Rumpsteak uses νScr [3]: a new lightweight and
extensible Scribble toolchain implemented in OCaml. The Scribble language
[27,32] is widely used to describe multiparty protocols, agnostic to target

82 Z. Cutner and N. Yoshida

G A B add
add C A add
sub C A sub

Fig. 1. Global type for the ring-choice protocol

languages. For illustration, we use a ring protocol extended with choice
(ring-choice [11]), whose global type G is given in Fig. 1. Role B chooses between
sending an add and sub message to role C, which must in turn send the same
label to role A.

A B C

A B C

A B C

A B C

.

A B C

A B C

A B C

A B C

.

I (projected
interactions)

I (optimised
interactions)

Asynchronous Optimisation. Since G is
synchronous, näıvely projecting it onto B pro-
duces an overly synchronised EFSM MB

1. If
A is slow to send its value to B then the
entire interaction is blocked (as shown in I).
Instead, assuming each process begins with
its own initial value, B could send its value
to C in the meantime, allowing C to begin its
next iteration (as shown in I ′).

Therefore, in [Step 2], we transform MB into the more optimal M ′
B. Impor-

tantly, we ensure that (1) no data dependencies exist between interactions, allow-
ing their order to be changed; and (2) M ′

B is an asynchronous subtype [14] of MB,
allowing it to safely be used as a substitution while preserving deadlock-freedom.
Presently, these steps are performed manually (see Sect. 4).

0 1

C!add i32

A?add i32

C!sub i32

MB (projected)

0 1

C!add i32

A?add i32

C!sub i32

MB (optimised)

Code Generation. Rumpsteak includes a code generator
to produce an API in [Step 3]. Listing 1 shows the API
AB corresponding to the EFSM M ′

B, from which we have
elided other participants. To ensure that our API remains
readable by developers and to eliminate extensive boiler-
plate code, we make use of Rust procedural macros [28].
By decorating types with #[...], these macros perform
additional compile-time code generation. For each role, we
generate a struct storing its communication channels with
other roles. For example, B (line 3) contains unidirectional
channels from A and to C as per the protocol. We use
#[derive(Role)] to retrieve channels from the struct.

Following the approach of [22], we build a set of generic primitives to con-
struct a simple API—reducing the amount of generated code and avoiding arbi-
trarily named types. For instance, the Receive primitive (line 22) takes a role,
label and continuation as generic parameters. For readability, we elide two addi-
tional parameters used to store channels at runtime with #[session].

1 We use session type syntax [31] where ! and ? denote send and receive respectively.

Safe Session-Based Asynchronous Coordination in Rust 83

1 #[derive(Role)]
2 #[message(Label)]
3 struct B {
4 #[route(A)] a: Receiver,
5 #[route(C)] c: Sender,
6 }
7

8 #[derive(Message)]
9 enum Label {

10 Add(Add),
11 Sub(Sub),
12 }
13

14 struct Add(i32);
15 struct Sub(i32);
16

17 #[session]
18 type RingB = Select<C, RingBChoice>;
19

20 #[session]
21 enum RingBChoice {
22 Add(Add, Receive<A, Add, RingB>),
23 Sub(Sub, Receive<A, Add, RingB>),
24 }

Listing 1. Rust session type API for
M ′

B (AB)

1 async fn ring_b(
2 role: &mut B,
3 mut input: i32,
4) -> Result<Infallible> {
5 try_session(
6 role,
7 |mut s: RingB<'_, _>| async {
8 loop {
9 let x = input * 2;

10 s = if x > 0 {
11 let s = s.select(Add(x)).await?;
12 let (Add(y), s) = s.receive().await?;
13 input = y + x;
14 s
15 } else {
16 let s = s.select(Sub(x)).await?;
17 let (Add(y), s) = s.receive().await?;
18 input = y - x;
19 s
20 };
21 }
22 },
23).await
24 }

Listing 2. Possible Rust implementation for
process B (PB) using AB

Each choice generates an enum, as seen in RingBChoice (line 21), allowing pro-
cesses to pattern match when branching to determine which label was received.
Methods allowing the enum to be used with Branch or Select primitives are also
generated with #[session]. An enum is required since Rust’s lack of variadic
generics means choice cannot be easily implemented as a primitive. We show
how the RingBChoice type can be used with selection in the Ring type (line 18).

Our API requires only one session type for each role, internally sending a
Label enum (line 9) over reusable channels. We create a type for each label (lines
14 and 15) and use #[derive(Message)] to generate methods for converting to
and from the Label enum. In contrast, [22] requires a tuple of binary sessions
for each role and communicates using typed, one-shot channels. Our approach
is simpler, requiring fewer definitions, and also more performant (see Sect. 3).

Process Implementation. Using the API AB, we suggest a possible imple-
mentation of the process PB, shown in Listing 2, for [Step 4]. Linear usage of
channels is checked by Rust’s affine type system to prevent channels from being
used multiple times. When a primitive is executed, it consumes itself, prevent-
ing reuse, and returns its continuation. While [21] and [22] use compiler hints
to warn the programmer when a session is discarded without use, we ensure
this statically by harnessing the type checker. Developers are prevented from
constructing primitives directly using visibility modifiers and must instead use
try session (line 5). Its closure argument accepts the input session type and
returns the terminal type End. If a session is discarded, breaking linearity, then
the developer will have no End to return and the type checker will complain.
Even so, we can implement processes with infinitely recursive types (contain-
ing no End) such as RingB. We use an infinite loop (line 8) which is assigned

84 Z. Cutner and N. Yoshida

adder ring db

0

50

100

150

200

M
e
a
n

ru
n
n
in
g
ti
m
e
(

s)

[22]

Rumpsteak

Fig. 2. Comparison of
Rumpsteak and [22]

1 2 3 4 5
0

2

4

6

Number of repetitions

M
e
a
n

ru
n
n
in
g
ti
m
e
(

s)

adder + oneshot

adder + reuse

ring + oneshot

ring + reuse

db + oneshot

db + reuse

Fig. 3. Comparison of oneshot and reuse under asyn-
chronous execution

Infallible: Rust’s never (or bottom) type. Infallible can be implicitly cast to
any other type, including End, allowing the closure to pass the type checker as
before.

We allow roles to be reused across sessions since the channels they contain
can be expensive to create. Crucially, to prevent communication mismatches
between different sessions, try session takes a mutable reference to the role.
The same role, therefore, cannot be used multiple times at once because Rust’s
borrow checker enforces this requirement for mutable references.

3 Evaluation

Microbenchmarks. We investigate Rumpsteak’s performance, comparing it
with the most recent related work [22]. We introduce three protocols from [11]:

– (adder) an adder protocol between three participants;

G = A → B : {add(i32).B → A : {add(i32).A → C : {add(i32).
B → C : {add(i32).C → A : {sum(i32).C → B : {sum(i32).end}}}}}}

– (ring) a simpler version of ring-choice; and

G = A → B : {value(i32).B → C : {value(i32).C → A : {value(i32).end}}}
– (db) a double buffering protocol [19] between source S, kernel K and sink T.

G = K → S : {ready .S → K : {copy(i32).T → K : {ready .

K → T : {copy(i32).K → S : {ready .S → K : {copy(i32).
T → K : {ready .K → T : {copy(i32).end}}}}}}}}

Only terminating protocols are used so that we can practically measure their
running times. Most previous session type implementations in Rust [20,21] sup-
port only binary protocols. Our contribution and benchmarks instead target

Safe Session-Based Asynchronous Coordination in Rust 85

multiparty protocols, therefore we compare Rumpsteak only against [22] which
has a similar scope. Since [22] is built upon [21], we expect both to have similar
performance for binary protocols. We execute all benchmarks using an 8-core
Intel® CoreTM i7-7700K CPU @ 4.20 GHz with hyperthreading, 16GB RAM,
Ubuntu 20.04.2 LTS and Rust 1.51.0. We use version 0.3.4 of the Criterion.rs
library [15] to perform microbenchmarking and a single-threaded asynchronous
runtime from version 1.5.0 of the Tokio library [30].

Our first benchmark (Fig. 2) performs a direct comparison between Rump-
steak and [22] for all three protocols. It shows that Rumpsteak can run these
protocols around 50–150 times faster. We attribute this to our approach of using
asynchronous execution. Asynchronous tasks are significantly more lightweight
than kernel threads and so incur much lower overheads. We note that blocking
operations do not contribute to weaker synchronous performance as we bench-
mark with significantly more cores than the number of roles.

As discussed previously (see Sect. 2), Rumpsteak uses reusable channels in
contrast to one-shot channels used by [22]. To compare both approaches fairly,
Fig. 3 benchmarks Rumpsteak (reuse) against a subset of [22] ported to use
asynchronous execution (oneshot). We simulate a longer protocol by reusing
the same channels for a parameterised number of repetitions, although one-shot
channels, by design, cannot be reused. In adder and ring, oneshot performs
better than reuse for a single iteration. However, as the number of repetitions
increases, constructing a growing number of one-shot channels quickly outweighs
the one-time instantiation penalty of reusable channels. By the second iteration,
reuse overtakes the performance of oneshot in adder and db. Only for ring (which
contains the least number of exchanges) is oneshot still faster after five iterations,
although the gradients suggest that reuse will eventually overtake. We conclude
that reuse is more efficient than oneshot in all but the shortest protocols.

0

5

10

M
e
a
n

ru
n
n
in
g
ti
m
e
(m

s) Projected

B Optimised

C Optimised

B & C Optimised

Fig. 4. Comparison of ring
optimisations

We explore an asynchronous optimisation to ring

in Fig. 4 by swapping B/C’s input and output
actions. We also insert artificial 1ms communica-
tion delays to simulate a more realistic scenario. We
observe a significant performance improvement by
applying the optimisation to either B or C. More-
over, the effect is compounded by optimising both
participants at once, resulting in a 2/3 speed-up.

Figure 5 shows an asynchronous optimisation to
db whereby K sends S both ready messages at once,
further discussed in the full version [11]. We insert
similar artificial communication delays between S
and K for our experimental setup. Interestingly, this

optimisation causes duality between S and K to break. Since [22] uses a tuple of
binary session types for each role, it is crucially unable to express this optimisa-
tion. Therefore, we further propose a weaker optimisation for [22] by sending the
second ready message only after K has received the first copy message to pre-
serve duality. Figure 5 shows that while this weaker optimisation has little effect

86 Z. Cutner and N. Yoshida

on performance, the original and stronger optimisation which is expressable by
Rumpsteak results in around a 25% improvement.

0

5

10

15

M
e
a
n

ru
n
n
in
g
ti
m
e
(m

s) Projected

Weakly Optimised

Optimised

Fig. 5. Comparison of db
optimisations

Expressiveness. We further illustrate the expres-
siveness of Rumpsteak compared with [22] in
Fig. 6. We implement several examples of proto-
cols from the literature using Rumpsteak. For each
example, we detail its key features, particularly if
it makes use of asynchronous optimisations, and
whether we can also express the protocol using [22].

Our results demonstrate that [22] is less expres-
sive than Rumpsteak for asynchronously-optimised
protocols since its workflow does not include an
optimisation step. Some optimisations, which are
marked with , can nevertheless be expressed in [22]
by implementing them directly using its endpoint
API. However, this method does not benefit from using the workflow in [22]. Even
then, as discussed for db, [22] uses a tuple of binary session types for each role
and therefore any optimisation must not break duality between each pair of par-
ticipants. Unfortunately, this prohibits it from performing most asynchronous
optimisations, even in this more limited way. In contrast, Rumpsteak enjoys
complete flexibility to perform more complex optimisations in a wide-ranging
number of examples from the literature.

Conclusion. By using asynchronous execution, Rumpsteak is around two
orders of magnitude faster than [22], and this benefit is even greater in longer-
running protocols due to our use of reusable channels. We observe the need
for asynchronous optimisation by demonstrating several significant performance
improvements and show that, in several cases, Rumpsteak can express stronger
and more valuable optimisations than are expressable in [22].

4 Related and Future Work

There are a vast number of studies on session types, some of which are imple-
mented in programming languages [4] and tools [13]. A code generation toolchain
takes a protocol description and produces well-typed APIs, conforming to that
protocol. Several implementations use an EFSM-based approach to generate
APIs from Scribble [3,27,32] for target programming languages such as Java [18],
F# [26], Go [9], F� [33] and TypeScript [25]. We closely compared with previ-
ous work on API generation in Rust from MPST protocols [22] (see detailed
comparisons with [21] and [20] in [22]). We justify our work is (1) robust, using
affine typing, while providing a simpler API (see Sect. 2) and (2) faster and
more expressive by using async/await and reusable channels (see Sect. 3). Here,
our aim is ensuring correctness/safety by construction, maximising asynchrony
for gaining efficiency of message passing in Rust applications.

Safe Session-Based Asynchronous Coordination in Rust 87

Protocol
Features Expressable

C R IR AO [22] Rumpsteak

Two Adder [3]

adder [11]

ring [10,11] a a

Optimised ring [10,11] a a

ring-choice [10,11]

Optimised ring-choice [10,11]

db [10,11] a a

Optimised db [10,19,11] a a

Alternating Bit [24,1]

Elevatorb [24,5]

FFT [10]

C Contains choice R Recursive IR Infinitely recursive AO Uses asynchronous optimisations

a Although non-recursive, we can easily extend the protocol to make it recursive.
b We use the communicating session automata variation from [24].

Fig. 6. Expressiveness of [22] and Rumpsteak

Our main remaining challenge is how to validate the well-formedness of a set
of optimised EFSMs, i.e. {M ′

i}i∈I generated in [Step 2] of the workflow pre-
sented in Sect. 2. One possible approach is the use of multiparty asynchronous
subtyping [14] to validate M ′

i � Mi for each participant. Asynchronous session
subtyping was shown to be undecidable, even for binary sessions [8,23], hence,
in general, checking M ′

i � Mi is undecidable. Various limited classes of session
types for which M ′

i � Mi is decidable [6,7,10,23] are proposed but not applicable
to our use cases since (1) the relations in [6,8,23] are binary and the same limi-
tations do not work for multiparty; and (2) the relation in [10, Def. 6.1] does not
handle subtyping across unrolling recursions, e.g. the relation is inapplicable to
the double buffering algorithm [19] (see [10, Remark 8.1]). Hence, we need to find
non-trivial decidable approximations of our multiparty asynchronous subtyping
relation. The second approach is to use k-multiparty compatibility developed in
[24] to analyse a whole set of {M ′

i}i∈I . We investigate both options and report
our findings at the conference presentation.

Acknowledgements. We thank Nicolas Lagaillardie and Fangyi Zhou for their
helpful comments and suggestions. The work is supported by EPSRC, grants
EP/T006544/1, EP/K011715/1, EP/K034413/1, EP/L00058X/1, EP/N027833/1,
EP/N028201/1, EP/T014709/1, and EP/V000462/1 and by NCSS/EPSRC VeTSS.

88 Z. Cutner and N. Yoshida

References

1. Introduction to Protocol Engineering. http://cs.uccs.edu/∼cs522/pe/pe.htm.
Accessed 19 Feb 2021

2. Rumpsteak. https://github.com/zakcutner/rumpsteak
3. νScr. https://github.com/nuscr/nuscr
4. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends

Program. Lang. 3(2–3), 95–230 (2016)
5. Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the completeness of verifying mes-

sage passing programs under bounded asynchrony. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 372–391. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96142-2 23

6. Bravetti, M., Carbone, M., Lange, J., Yoshida, N., Zavattaro, G.: A sound algo-
rithm for asynchronous session subtyping. Leibniz Int. Proc. Inform. 140, 38:1–
38:16 (2019)

7. Bravetti, M., Carbone, M., Zavattaro, G.: Undecidability of asynchronous session
subtyping. Inf. Comput. 256, 300–320 (2017)

8. Bravetti, M., Carbone, M., Zavattaro, G.: On the boundary between decidability
and undecidability of asynchronous session subtyping. Theoret. Comput. Sci. 722,
19–51 (2018)

9. Castro, D., Hu, R., Jongmans, S.S., Ng, N., Yoshida, N.: Distributed Programming
Using Role-parametric Session Types in Go: Statically-typed Endpoint APIs for
Dynamically-instantiated Communication Structures. Proceedings of the ACM on
Programming Languages 3(POPL), 29:1–29:30 (2019)

10. Castro-Perez, D., Yoshida, N.: CAMP: cost-aware multiparty session protocol.
Proc. ACM Program. Lang. 4(OOPSLA), 1–30 (2020)

11. Cutner, Z., Yoshida, N.: Safe session-based asynchronous coordination in rust.
https://github.com/zakcutner/coordination-2021

12. Donovan, R.: Why the developers who use rust love it so much (2020). https://
stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-
much/. Accessed 31 Jan 2021

13. Gay, S., Ravara, A.: Behavioural Types: From Theory to Tools. River Publisher
(2017)

14. Ghilezan, S., Pantovic, J., Prokic, I., Scalas, A., Yoshida, N.: Precise subtyping for
asynchronous multiparty sessions. In: Proceedings of the ACM on Programming
Languages, POPL, vol. 5, pp. 16:1–16:28. ACM (2021)

15. Heisler, B.: Criterion.rs. https://github.com/bheisler/criterion.rs
16. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:

Proceedings of the ACM on Programming Languages, POPL, pp. 273–284. ACM
(2008)

17. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types.
JACM 63, 1–67 (2016)

18. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 24

19. Huang, H., Pillai, P., Shin, K.G.: Improving wait-free algorithms for interprocess
communication in embedded real-time systems. In: 2002 USENIX Annual Techni-
cal Conference (USENIX ATC 02). USENIX Association (2002)

20. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session types for rust. In: Pro-
ceedings of the 11th ACM SIGPLAN Workshop on Generic Programming, WGP,
pp. 13–22. ACM (2015)

http://cs.uccs.edu/~cs522/pe/pe.htm
https://github.com/zakcutner/rumpsteak
https://github.com/nuscr/nuscr
https://doi.org/10.1007/978-3-319-96142-2_23
https://github.com/zakcutner/coordination-2021
https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/
https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/
https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/
https://github.com/bheisler/criterion.rs
https://doi.org/10.1007/978-3-662-49665-7_24

Safe Session-Based Asynchronous Coordination in Rust 89

21. Kokke, W.: Rusty variation: deadlock-free sessions with failure in rust. Electron.
Proc. Theoret. Comput. Sci. 304, 48–60 (2019)

22. Lagaillardie, N., Neykova, R., Yoshida, N.: Implementing multiparty session types
in rust. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134,
pp. 127–136. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50029-0 8

23. Lange, J., Yoshida, N.: On the undecidability of asynchronous session subtyping.
In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 441–
457. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 26

24. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating
session automata. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
97–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 6

25. Miu, A., Ferreira, F., Yoshida, N., Zhou, F.: Communication-safe web programming
in typescript with routed multiparty session types. In: Proceedings of the 30th
ACM SIGPLAN International Conference on Compiler Construction, CC, pp. 94–
106. ACM (2021)

26. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in F#. In: 27th
International Conference on Compiler Construction, CC, pp. 128–138. ACM (2018)

27. Scribble Authors: Scribble: Describing Multi Party Protocols (2015). http://www.
scribble.org/

28. The Rust Project Developers: Procedural Macros. https://doc.rust-lang.org/
reference/procedural-macros.html

29. The Rust Survey Team: Rust Survey 2020 Results (2020). https://blog.rust-lang.
org/2020/12/16/rust-survey-2020.html. Accessed 31 Jan 2021

30. Tokio Contributors: Tokio. https://github.com/tokio-rs/tokio
31. Yoshida, N., Gheri, L.: A very gentle introduction to multiparty session types.

In: Hung, D.V., D’Souza, M. (eds.) ICDCIT 2020. LNCS, vol. 11969, pp. 73–93.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36987-3 5

32. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05119-2 3

33. Zhou, F., Ferreira, F., Hu, R., Neykova, R., Yoshida, N.: Statically verified refine-
ments for multiparty protocols. Proc. ACM Program. Lang. 4(OOPSLA) (2020)

https://doi.org/10.1007/978-3-030-50029-0_8
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-030-25540-4_6
http://www.scribble.org/
http://www.scribble.org/
https://doc.rust-lang.org/reference/procedural-macros.html
https://doc.rust-lang.org/reference/procedural-macros.html
https://blog.rust-lang.org/2020/12/16/rust-survey-2020.html
https://blog.rust-lang.org/2020/12/16/rust-survey-2020.html
https://github.com/tokio-rs/tokio
https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.1007/978-3-319-05119-2_3

A Session Subtyping Tool

Lorenzo Bacchiani1(B), Mario Bravetti1,2, Julien Lange3,
and Gianluigi Zavattaro1,2

1 University of Bologna, Bologna, Italy
lorenzo.bacchiani2@unibo.it

2 Focus Team, Inria, Sophia Antipolis, France
3 Royal Holloway, University of London, Egham, UK

Abstract. Session types are becoming popular and have been integrated
in several mainstream programming languages. Nevertheless, while many
programming languages consider asynchronous fifo channel communica-
tion, the notion of subtyping used in session type implementations is the
one defined by Gay and Hole for synchronous communication. This might
be because there are several notions of asynchronous session subtyping,
these notions are usually undecidable, and only recently sound (but not
complete) algorithmic characterizations for these subtypings have been
proposed. But the fact that the definition of asynchronous session sub-
typing and the theory behind related algorithms are not easily accessible
to non-experts may also prevent further integration. The aim of this
paper, and of the tool presented therein, is to make the growing body of
knowledge about asynchronous session subtyping more accessible, thus
promoting its integration in practical applications of session types.

1 Introduction

In recent years, session types have been integrated into several mainstream pro-
gramming languages (see, e.g., [1,15,19,23–26]) where they specify the pattern of
interactions that each endpoint must follow, i.e., a communication protocol. All
of these practical applications show a good level of maturity of the session type
theory, but there are still some limitations. In particular, the notion of subtyping
considered in such tools usually assumes synchronous communication channels,
while, in many cases, communication takes place over asynchronous point-to-
point fifo channels (where outputs are non-blocking). In this setting, the emit-
ted messages are stored inside channels, and there may be an arbitrary delay
between an output (on an endpoint) and the corresponding input (on the oppo-
site endpoint). The impact on session subtyping of these aspects related with
asynchronous communication has been initially studied in [12,20,21], but the
notions of subtyping proposed therein were subsequently proved to be undecid-
able [6,18]. Only recently, sound (but not complete) algorithms for asynchronous
session subtyping have been proposed [5,7,9]. However, the theory behind asyn-
chronous session types (see [11] for a gentle introduction) and related algorithms

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 90–105, 2021.
https://doi.org/10.1007/978-3-030-78142-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-78142-2_6

A Session Subtyping Tool 91

is rather intricate and this could limit their dissemination in the research com-
munity, as well as their adoption in practical applications.

The aim of this paper, and of the tool that we introduce, is to make the grow-
ing body of knowledge about asynchronous session subtyping more accessible.
More precisely, we present in an uniform and intuitive way various notions of
(a)synchronous session subtyping that were presented in the literature following
different formalisms, e.g., types in [9] or communicating finite-state machines
in [5]. Our tool integrates several algorithms for checking subtyping that can
be invoked from an easy-to-use Python GUI. This interface allows the user to
input, using standard session type syntax, two types: the candidate subtype and
supertype. The tool automatically generates the graphical representation of these
session types as communicating finite-state machines [3]. It is also possible to exe-
cute on them the desired subtyping algorithm(s). The tool has been implemented
in a modular way, and it is possible to easily include several subtyping algo-
rithms, simply by customizing a JSON configuration file. In the current version,
we consider: two algorithms from [17] for synchronous session subtyping (based
on Gay and Hole’s [14] and Kozen et al.’s [16] algorithms), a sound algorithm for
checking (orphan message free) asynchronous session subtyping [5], and a sound
algorithm for checking fair asynchronous session subtyping [9]. The implementa-
tions of these algorithms, besides returning a verdict about subtyping of the two
types, also return a graphical representation of the so-called subtyping simula-
tion game: i.e., the procedure to check that each relevant input/output action
that can be performed by the candidate subtype has a corresponding match-
ing action in the candidate supertype. This graphical representation is helpful
to understand the reason behind the given verdict. The original command line
Haskell implementations of the algorithms in [5,9,17] have been adapted and
integrated by: (i) uniformizing their graphical notation/colors (e.g., inner/outer
states represented as rectangles, with the initial one being thicker, error ones
being red, content of outer ones being blue, etc. . .), (ii) reimplementing the
synchronous algorithm so to also generate the simulation graph, (iii) completely
rewriting, in the fair asynchronous algorithm, the controllability check (existance
of a compliant peer, see Sect. 2.1) and (iv) error detection with generation of red
states for all algorithms, (v) pre-transforming inputted types with a Python
ANTLR4 parser that produces a common raw syntax.

Synopsis. Section 2 recalls basic notions about session subtyping using tool-
simulated examples and Sect. 3 describes the functionalities of the tool. Finally,
in Sect. 4 we conclude the paper.

The tool sources/binaries are available at [2].

2 Session Subtyping

We first recall the syntax of session types and their automata representation in
the style of communicating finite-state machines (CFSM) [3]. We then show how
our tool can generate simulation graphs for supported session subtyping rela-
tions: synchronous [17], asynchronous [5] and fair asynchronous subtyping [9].

92 L. Bacchiani et al.

Fig. 1. Hospital server. Fig. 2. Hospital clients.

Fig. 3. Satellite protocol server. Fig. 4. Satellite protocol clients.

In the asynchronous cases automata are assumed to communicate over
unbounded fifo channels as for CFSMs.

2.1 Session Types and Their Automata Representation

The formal syntax of two-party session types is given below. Notice that we
follow the simplified notation used in, e.g., [6,9,13], which abstracts away from
data carried by messages (payloads). This is done in order to focus on the key
aspects of the session subtyping problem (as we will see co/contra-variance of
output/input and output anticipation): passing data or channels (delegation)
are features that we deem orthogonal to such a problem.

Definition 1 (Session Types). Given a set of label names L, ranged over by
l, the syntax of two-party session types is given by the following grammar:

T ::= ⊕{li;Ti}i∈I | &{li;Ti}i∈I | μX.T | X | end

where I �=∅ and ∀i �=j ∈I. li �= lj.

A Session Subtyping Tool 93

Type ⊕{li;Ti}i∈I represents an internal choice among outputs, specifying
that the chosen label name li ∈L is sent and, then, continuation Ti is executed.
&{li;Ti}i∈I represents, instead, an external choice among inputs, specifying that,
once a label name li ∈L is received, continuation Ti takes place. Types μX.T and
X denote standard recursion constructs. We assume recursion to be guarded, i.e.,
in μX.T the recursion variable X occurs only after receiving or sending a label.
Type end denotes the end of the interaction. Session types are closed, i.e., all
recursion variables X occur under the scope of a corresponding binder μX.T .

In the tool we graphically represent the behaviour of a session type T as a
Labeled Transition System (LTS), see, e.g., Figs. 1, 2, 3 and 4. Following the
notation of CFSMs, we denote a LTS by (Q, q0,→), with Q being a set of states,
q0 the initial state and → a transition relation over Q×({!,?}×L)×Q, with label
“! l” representing output on l and label “? l” representing input on l.

We use LTS(T) to denote the LTS of type T . Let T be the set of all session
types T . We define transition relation −→ ⊆ T × ({!,?}×L)×T , as the least
transition set satisfying the following rules

⊕{li;Ti}i∈I
! li−→Ti i∈I &{li;Ti}i∈I

? li−→Ti i∈I
T{μX.T/X} �−→ T ′

μX.T
�−→T ′

with label � ranging over {!,?}×L. Notice that a state end, called termination
state, has no outgoing transitions. Given a session type T we define LTS(T)
as being (QT , T,→T), where: QT is the set of terms T ′ which are reachable
from T according to −→ relation and →T is defined as the restriction of −→ to
QT ×({!,?}×L)×QT .

Notice that in general an LTS may express more behaviours than the ones
described by session types: it can include non-deterministic and mixed choices,
i.e. choices including both inputs and outputs. Here we only consider LTSs
(Q, q0,→) such that ∃T ∈T . LTS(T) = (Q, q0,→).

Example 1. As an example of session types we consider the Hospital server
from [5]:

THS = μX.&{nd ;⊕{ko;X, ok;X}, pr ;⊕{ko;X, ok;X}}

Figure 1 shows LTS(THS) as produced by our tool. The server THS expects to
receive two types of messages: nd (next patient data) or pr (patient report).
Then it may send either ok or ko, indicating whether the evaluation of received
data was successful or not, and it loops.

We now define the dual of a session type T , written T . T is induc-
tively obtained from T as follows: ⊕{li;Ti}i∈I = &{li;T i}i∈I , &{li;Ti}i∈I =
⊕{li;T i}i∈I , end = end, X = X, and μX.T = μX.T . For example, the dual of
the Hospital server THS is:

THS = μX. ⊕{nd ; &{ko;X, ok;X}, pr ; &{ko;X, ok;X}}

94 L. Bacchiani et al.

Example 2. We now consider examples of session types that are clients of the
Hospital service: an “ideal” client THC and two specific ones T ′

HC and T ′′
HC ,

respectively.

THC = THS = μX. ⊕{nd ; &{ko;X, ok;X}, pr ; &{ko;X, ok;X}}
T ′

HC = μX. ⊕{nd ; &{ko;X, ok;X, dk;X}}
T ′′

HC = μX. ⊕{nd ; &{ko;X, ok;⊕{pr ;X}}}

Figure 2 shows LTS(T ′′
HC), LTS(T ′

HC) and LTS(THC),1 as produced by our tool.
The “ideal” client THC is simply the dual of the Hospital server: first it may

send two types of messages nd or pr , then it expects to receive either ok or
ko. In general, a client that is compliant with the Hospital server is a type such
that: (i) each message sent by the client (resp. server) can be received by the
server (resp. client), and (ii) neither the server nor the client blocks in a receive.
For example, the client T ′

HC , a slightly modified version of THC that may send
nd only and expects to receive also dk (don’t know) besides ok and ko (i.e.,
it applies covariance of outputs and contravariance of inputs, see [17]) is still
compliant with the Hospital server. Hence we say that T ′

HC is a subtype of THC .
Under asynchronous communication client compliance is relaxed by requiring

that all messages that are sent are eventually received. For example, in this set-
ting, client T ′′

HC (that may anticipate output nd w.r.t. inputs) is also a compliant
client, see [5], hence T ′′

HC is an asynchronous subtype of THC .
Notice that, both for synchronous and asynchronous communication (see [7]),

it holds, for any session type T, T ′: T ′ subtype of T implies T subtype of T ′
(closure under duality). As we will see, our tool automatically handles the gen-
eration of the dual subtyping problem (T subtype of T ′) from T ′ subtype of T
by exchanging and dualizing inputted types.

Example 3. As another example, we consider clients of the Satellite protocol
from [9]: an “ideal” client (the dual of the Satellite protocol server TSS whose
LTS is depicted in Fig. 3) and a specific one; here denoted with TSC and T ′

SC ,
respectively.

TSC = TSS = μX. &{tm;X, over ;μY. ⊕ {tc;Y, done; end}}
T ′

SC = μX. ⊕ {tc;X, done;μY. &{tm;Y, over ; end}}

Figure 4 shows LTS(T ′
SC) and LTS(TSC), as produced by our tool. The “ideal”

client TSC may receive a number of telemetries (tm), followed by a message over .
In the second phase, the client sends a number of telecommands (tc), followed
by a message done. Under fair asynchronous communication client T ′

SC (with
phases exchanged) is also compliant with the server, i.e. T ′

SC a fair asynchronous
subtype of TSC , see [9]. Compared to asynchronous communication considered
in Example 2, here client compliance entails that, under fairness assumption (i.e.

1 As we will see, the order in which the LTSs are presented reflects the subtyping
relation (we will show that T ′′

HC and T ′
HC are subtypes of THC) and the positions in

which types are inputed in the tool.

A Session Subtyping Tool 95

communication loops with some exit are assumed to be eventually escaped), both
the client and the server must reach successfull termination with no messages
left to be consumed in the fifo channels.

2.2 Synchronous Session Subtyping

In order to establish whether type T ′ is a synchronous subtype of a type
T [17] we can perform synchronous simulation of the (ordered) pair of LTSs
LTS(T ′) = (Q′, q′

0,→′) and LTS(T) = (Q, q0,→). Simulation states are pairs
(q′, q), with q′ ∈ Q′ and q ∈ Q. The simulation proceeds by starting from state
(q′

0, q0) and by synchronously matching transitions of LTS(T ′) and LTS(T) hav-
ing the same labels (both “! l” or both “? l”). For each reached simulation state
(q′, q) we must have: (i) the set of outputs (resp. inputs) fireable by q′ is sub-
set (resp. superset) or equal to the set of outputs (resp. inputs) fireable by q;
this enacts covariance (resp. contravariance) of outputs (resp. inputs), (ii) if
(q′, q) performs no transitions then both q′ and q must perform no transitions
(successfully terminate).

On the contrary, simulation states (q′, q) for which the above constraints are
not satisfied are called failure simulation states (depicted in red in our tool) and
cause synchronous subtyping not to hold.

Example 4. Figure 6 shows the synchronous simulation graph, as produced from
our tool, for the pair LTS(T ′

HC) and LTS(THC). Notice that our tool builds the
simulation graph as a tree: when a pair (q′, q) is reached, which was previously
traversed (as e.g. for the (1, 1) pair), simulation does not proceed further in that
branch and a dashed line is depicted connecting the two copies of (q′, q). Notice
that, if in T ′

HC we turn ?ko into ?ko1 (creating a mismatch with the server),
T ′

HC is no longer a synchronous subtype of THC . This can be seen in Fig. 7 where
the originated failure simulation state is depicted in red.

We now give the formal definition of synchronous subtyping. We first define set of
inputs and set of outputs fireable by a state q as follows: in(q) = {l | ∃q′.q ? l−→ q′}
and out(q) = {l | ∃q′.q ! l−→ q′}.

Example 5. Consider LTS(THC) (Fig. 2), we have the following:

in(1) = ∅ in(2) = {ko, ok}
out(1) = {nd ,nd} out(2) = ∅

Definition 2 (Synchronous Simulation). Given set of label names L and
two LTSs (P, p0,→1) and (Q, q0,→2), synchronous simulation is defined as a
labeled transition system over states of P ×Q, i.e. pairs denoted by p� q, with
p ∈ P and q ∈ Q. In particular, the initial state is p0 � q0 and the transition
relation ↪−→, labeled over {!,?}×L, is defined as the minimal relation satisfying
rules:

p
? l−→1 p′ q

? l−→2 q′ in(p)⊇ in(q)

p� q
? l

↪−→ p′ � q′
(In)

p
! l−→1 p′ q

! l−→2 q′ out(p)⊆out(q)

p� q
! l

↪−→ p′ � q′
(Out)

96 L. Bacchiani et al.

Fig. 5. Asynchronous simulation.

Fig. 6. Synchronous simulation.

1 1

2 2

!nd

Fig. 7. Failed synchronous simulation.

A Session Subtyping Tool 97

Formally, a type T ′ is a synchronous subtype of a type T if the LTS obtained
as the synchronous simulation of the pair LTS(T ′) and LTS(T) is such that, for
every state q′ � q reachable from the initial simulation state, we have: if q′ � q
performs no transitions then both q′ and q perform no transitions.

2.3 Asynchronous Session Subtyping

In contrast to synchronous simulation, the asynchronous one gives the possibility
of “anticipating”, in the right-hand LTS, output transitions w.r.t. input tran-
sitions that precede them. This can be shown, using our tool, via an example.

Example 6. Figure 5 shows the asynchronous simulation tree, as produced from
our tool, for the pair LTS(T ′′

HC) and LTS(THC). Simulation of Fig. 5 proceeds as
follows. For instance, after transitions !nd , ?ko and !pr (i.e. path “!nd ?ko !pr”)
are synchronously performed by LTS(T ′′

HC) and LTS(THC), they reach states 1
and 2, respectively. Now, LTS(T ′′

HC) in state 1 can only do output !nd , while
LTS(THC) in state 2 can only do inputs. Being asynchronous, the simulation
can proceed by calculating the so-called state 2 input tree inTree(2) = 〈ko :
1, ok : 1〉, i.e. the spanning tree from state 2 (constructed considering input
transitions only), which has two leaves, both being state 1. Provided that all
leaves of inTree(2) can perform !nd , the simulation can proceed by considering
〈ko : [], ok : []〉 as an “accumulated” input for the right-hand LTS and by making
all states in its leaves evolve by performing the !nd transition. Therefore, after
simulation performs !nd , LTS(T ′′

HC) and LTS(THC) reach states 2 and 〈ko :2, ok :
2〉, respectively (the state reached by the right-hand LTS is actually an input
tree).

In general, input trees (e.g. 〈ko : 2, ok : 2〉 in the example above) are defined
in [5] as input contexts A (representing “accumulated” input, e.g. 〈ko : [], ok : []〉
in the example above) with holes “[]” replaced by LTS states. Their syntax is:

A ::= [] | 〈li : Ai〉i∈I

In the tool we represent input trees by nested boxes. For instance the input tree
〈ko : 〈ko : 1, ok : 1〉, ok : 〈ko : 1, ok : 1〉〉 is represented as:

In general, due to input accumulation, represented by an input tree, even
if two types are in an asynchronous subtyping relation, the simulation could
proceed infinitely without meeting failure simulation states (as it would hap-
pen for the pair LTS(T ′′

HC) and LTS(THC) of Example 6). In our tool we use
the algorithm of [5] for checking asynchronous subtyping, which is sound but

98 L. Bacchiani et al.

not complete (in some cases it terminates without returning a decisive verdict).
In a nutshell, such an algorithm proceeds as follows. The subtyping simulation
terminates when we encounter a failure state (depicted in red in our tool), mean-
ing that the two types are not in the subtyping relation, or when we detect a
repetitive behaviour in the simulation (which, we show, can always be found, in
case of infinite simulation). In the latter case, we check whether this repetitive
behaviour satisfies sufficient conditions (see [5] for details) that guarantee that
the subtyping simulation will never encounter failures. If the conditions are sat-
isfied the algorithm concludes that the two types are in the subtyping relation,
otherwise a maybe verdict is returned.

Therefore, the tool always produces a finite simulation tree: for types that
are detected to be subtypes, simulation can stop in a state that is identified (via
a dashed transition in our tool) to a previously encountered state, even if they
are not identical; see bottommost state of Fig. 5 (outgoing dashed transition).
The sufficient conditions checked by the algorithm guarantees that the behaviour
beyond such a simulation state is a repetition of the behaviour already observed.

We now give the formal definition of asynchronous subtyping. Given a LTS
(Q, q0,→), we write q0

�1···�k−−−−→ qk iff there are q1, . . . , qk−1 ∈ Q such that qi−1
�i−→

qi for 1 ≤ i ≤ k. Given a list of messages ω = l1 · · · lk (k ≥ 0), we write ?ω for
the list ?l1 · · ·?lk and !ω for !l1 · · ·!lk.

Definition 3 (Input Context). An input context is a term of the grammar

A ::= []j | 〈li : Ai〉i∈I

where: All indices j, denoted by I(A), are distinct and are associated to holes.
Moreover, I �=∅ and ∀i �=j ∈I. li �= lj.

Holes are, thus, actually indexed so to make it possible to individually replace
them. In this way A[qi]i∈I(A) denotes the input tree obtained by syntactically
replacing each hole []i in A by a specific state qi ∈ Q. In the sequel, we use ITQ

to denote the set of input trees over states q ∈ Q.

Auxiliary Functions. Given a CSFM (Q, q0,→) and a state q ∈ Q, we define:

– cycle(�, q) ⇐⇒ ∃ω ∈ L∗, ω′ ∈ L+, q′ ∈ Q. q
�ω−−→ q′ �ω′

−−→ q′ (with � ∈ {!, ?}),
– the partial function inTree(·) as

inTree(q) =

⎧
⎪⎨

⎪⎩

⊥ if cycle(?, q)
q if in(q) = ∅

〈li : inTree(q′
i)〉i∈I if in(q) = {li | i∈I} �= ∅

with q′
i being the state such that q

? li−−→ q′
i.

Predicate cycle(�, q) says that, from q, we can reach a cycle with only sends (resp.
receives), depending on whether � =! or � =?. The partial function inTree(q),
when defined, returns the tree containing all sequences of messages which can
be received from q until a final or sending state is reached. Intuitively, inTree(q)
is undefined when cycle(?, q) as it would return an infinite tree.

A Session Subtyping Tool 99

Example 7. Consider LTS(THC) (Fig. 2), we have the following:

inTree(1) = 1 inTree(2) = 〈ko : 1, ok : 1〉

inTree(2) tool
representation

Example 8. Consider the LTS of Fig. 8. From state 1 we can reach state 2 with
an output. The latter can loop with an output into itself. Hence, we have both
cycle(!, 1) and cycle(!, 2).

1

2

!b

!a

3

!c

4

?d

Fig. 8. Output cycle example. Fig. 9. Fair asynchronous simulation fragment.

Definition 4 (Asynchronous Simulation). Given set of label names L and
two LTSs: LTS1 =(P, p0,→1) and LTS2 =(Q, q0,→2), asynchronous simulation
is defined as a labeled transition system over states of P×ITQ, i.e. pairs denoted
by p� A[qj]j∈J , with p ∈ P and A[qj]j∈J ∈ ITQ. In particular, the initial state
is p0 � q0 and the transition relation ↪−→, labeled over {!,?}×L, is defined as the
minimal relation satisfying rules in Definition 2, plus the following ones:

100 L. Bacchiani et al.

p
? lk−−→1 p′ k ∈ I in(p) ⊇ {li | i ∈ I }

p�〈li : Ai[qi,j]j∈Ji〉i∈I
? lk

↪−−→ p′ � Ak[qk,j]j∈Jk

(InCtx)

p
! l−→1 p′ ¬cycle(!, p)

∀j∈J.
(
inTree(qj)=Aj[qj,h]h∈Hj∧∀h∈Hj .(out(p)⊆out(qj,h)∧qj,h

! l−→2 q′
j,h)

)

p� A[qj]j∈J ! l
↪−→ p′ �A[Aj [q′

j,h]h∈Hj]j∈J
(OutA)

The two additional rules express how inputs are accumulated and consumed by
means of input trees in the LTS2. The first one is applicable when the input tree
state of the LTS2 is non-empty and the state p of the LTS1 is able to perform a
receive action corresponding to any message located at the root of the input tree
(contra-variance of receive actions). The second rule allows the LTS1 to execute
some send actions by matching them with send actions that, in the LTS2, occur
after receives. Intuitively, each send action outgoing from state p of the LTS1

must also be executable from each of the states qj,h of inTree(qj)=Aj[qj,h]h∈Hj ,
with qj being a leaf of the input tree state A[qj]j∈J of the LTS2 (covariance of
send actions). The constraint ¬cycle(!, p) guarantees that accumulated receive
actions will be eventually executed.

2.4 Fair Asynchronous Session Subtyping

Consider again the satellite protocol of Example 3. The asynchronous subtyping
of previous Sect. 2.3 rejects T ′

SC as a subtype of TSC . Indeed that notion of
subtyping allows for anticipation of outputs only when they are preceded by a
bounded number of inputs. However the outputs of TSC occur after an arbitrary
number of inputs. That notion of subtyping requires that all sent messages are
consumed along all possible computations of the receiver. While in T ′

SC there is
a degenerate execution where the candidate subtype sends an infinite number of
tc messages and thus never performs the required inputs.

In contrast, fair asynchronous session subtyping [9] relies on the assumption
that such degenerate executions cannot occur under the natural assumption the
loop of outputs eventually terminates, i.e., only a finite (but unspecified) amount
of messages can be emitted.

Concretely, the fair subtyping uses a more expressive notion of input contexts
A that also include recursive constructs. Their syntax becomes:

A ::= [] | 〈li : Ai〉i∈I | μX.A | X

These input context can encode the recursive reception of messages in the satel-
lite example and thus identify T ′

SC as a fair asynchronous subtype of TSC .
Figure 9 shows a fragment of the resulting fair asynchronous simulation tree,

as produced from our tool: due to the more complex syntax of input contexts,
states now contain a (possibly looping) automaton instead of an input tree.

A Session Subtyping Tool 101

3 Main Functionalities of the Tool

Besides the classic operations that a text editor allows (e.g. edit, load, save),
users can compute the dual of: either a single session type or the entire sub-
typing problem. To facilitate understanding of session types, the tool offers the
possibility to view/save the graphical representation of a given type by means of
“Show Image” and “Save Image” respectively. In our tool types are inputted by
means of two text areas: the leftmost one is used for the candidate subtype and
the rightmost one for the candidate supertype. Input types must be expressed
with the syntax presented in Definition 1, with “+” standing for “⊕” and “rec”
standing for “μ”. In addition the tool accepts: (i) the alternative “raw” syn-
tax [! a ;T, ! b ;T ′, . . .] standing for ⊕{a ;T, b ;T ′, . . . } and [? a ;T, ? b ;T ′, . . .] for
&{a ;T, b ;T ′, . . . } (ii) the abbreviations ! a ;T and ? a ;T standing for ⊕{a ;T}
and &{a ;T}. A Python parser checks that the inputted types fit the above syn-
tax using the following EBNF syntax:

S ::= OP { id ;S (, id ;S)∗} | rec id . S | id | end
! id ;S | [! id ;S (, ! id ;S)∗] | ? id ;S | [? id ;S (, ? id ;S)∗]

OP ::= + | &

where id is a non-empty sequence of uppercase and lowercase letters possibly
followed by trailing numbers.

The core of the tool is the algorithm menu. Users can choose between different
subtyping algorithms and possibly set a maximum number of execution steps.
The algorithm response can be: “true”, “false” or “maybe” (for asynchronous
algorithms, due to undecidability, or when the specified number of steps is not
enough to determine the subtyping relation), along with the time needed. In
addition, it is possible to run all the algorithms to have an overview of the
types of relationship that hold. Finally, the “Simulation Result” menu, which is
initially disabled, makes it possible to show or save the graphical output of the
last performed algorithm.

3.1 Extensibility of the Tool

Our tool (and its GUI) is automatically extensible with new subtyping algo-
rithms by simply modifying its json configuration file that we will detail in the
next section. Such a file can also be modified, directly from the GUI, by using
the “Algorithm configuration” menu under “Settings”. Configuration of a new
algorithm is done by providing: its displayed name and the path and calling
pattern of its execution command, in the form

ExecutableName [flag] [t1] [t2] [steps]

The tool will replace [flag][t1][t2][steps] with: the user-selected flags, the pair of
session types the user wants to check and the number of steps the algorithm is
requested to do. The above order of bracketed elements ([steps] is optional) may
change according to the algorithm. The json file also maps algorithm-dependent

102 L. Bacchiani et al.

flag names into tool functionalities by categorizing them. For instance, the default
flag category includes flags that simply modify the behaviour of algorithms: e.g.
the asynchronous one has the - -nofallback flag that prevents the algorithm from
trying to fall back to the dual subtyping problem in case of an initial maybe ver-
dict. Moreover, the execution flag category is useful when an executable encloses
different (alternative) algorithms, e.g. Gay and Hole (- -gayhole) and Kozen et al.’s
(- -kozen) algorithms for synchronous subtyping (with one indicated as being the
default). Moreover, the visual flag category includes just the name of the flag caus-
ing the algorithm to produce the graphical simulation.

When adding an algorithm to the tool, the following requirements have to
be satisfied: they have to support command line execution (with the possibility
of taking .txt files as input) and have to fit the “raw” syntax described above.
Regarding the algorithm response, the only requirement is that it is printed on
the standard output. Finally, to generate the graphical output, it is mandatory
that the algorithm creates a .dot file no matter what its name is (since it is
specified in dedicated section of the json configuration). It is important to observe
that our tool is agnostic to the implementation language of algorithms, since it
makes use of their executable version.

3.2 Configuration of Tool Algorithms

The json file presented below is an example of the “algorithms config.json” cur-
rently used by the tool. The standard exec field specifies the default execution
flag, e.g. Gay and Hole or Kozen. Moreover, the simulation file field indicates
the relative path to the algorithm generated Graphviz “.dot” simulation file.
Similarly win, osx and linux point at the folder in which the tool looks for the
algorithm binaries for that specific os.

1 [{
2 "alg_name ": "Async Subtyping",
3 "flag": "--nofallback",
4 "execution_flag ": "",
5 "standard_exec ": "",
6 "visual_flag ": "--pics",
7 "simulation_file ": "tmp/simulation_tree",
8 "win": "asynchronous -subtyping \\win\\",
9 "osx": "asynchronous -subtyping/osx/",

10 "linux": "asynchronous -subtyping/linux/",
11 "exec_comm ": "Checker [flags] [t1] [t2]"
12 },
13 {
14 "alg_name ": "Fair Async Subtyping",
15 "flag": "",
16 "execution_flag ": "",
17 "standard_exec ": "",
18 "visual_flag ": "--debug",

A Session Subtyping Tool 103

19 "simulation_file ": "tmp/simulation_tree",
20 "win": "fair -asynchronous -subtyping \\win\\",
21 "osx": "fair -asynchronous -subtyping/osx/",
22 "linux": "fair -asynchronous -subtyping/linux/",
23 "exec_comm ": "Checker [flags] [t1] [t2] [steps]"
24 },
25 {
26 "alg_name ": "Sync Subtyping",
27 "flag": "",
28 "execution_flag ": "--gayhole ,--kozen",
29 "standard_exec ": "--gayhole",
30 "visual_flag ": "--pics",
31 "simulation_file ": "tmp/simulation_tree",
32 "osx": "sync_subtyping /osx/",
33 "win": "sync_subtyping \\win\\",
34 "linux": "sync_subtyping /linux/",
35 "exec_comm ": "Checker [flags] [t1] [t2]"
36 }]

4 Conclusion

In this paper we introduced an integrated extensible GUI-based tool which:
applies algorithms for synchronous and (fair) asynchronous session subtyping,
and generates graphical simulations showing how underlying algorithms work.

Concerning future work, we plan to use our synchronous subtyping simula-
tion algorithm (with error detection) in the context of type checking for object
oriented programming languages where classes are endowed with usage proto-
cols [8]. Indeed, extending the theory of [8] with protocol subtyping, would make
it possible to verify correctness also for class inheritance. In particular, we have
started integrating our algorithm into the Java checker [22], which is based on [8].
Finally, we plan to extend the syntax of session types managed by our tool, e.g.
by including passing of data/channels and, possibly, by also encompassing pre-
emption mechanisms [4,10], which are often used in communication protocols.

References

1. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Program. Lang. 3(2–3), 95–230 (2016)

2. Bacchiani, L., Bravetti, M., Lange, J., Zavattaro, G.: Tool source files for Linux,
Windows and OSx (and binaries for Windows and OSx). https://github.com/
LBacchiani/session-subtyping-tool

3. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

4. Bravetti, M.: Axiomatizing maximal progress and discrete time. Log. Methods
Comput. Sci. 17(1), 1:1–1:44 (2021)

https://github.com/LBacchiani/session-subtyping-tool
https://github.com/LBacchiani/session-subtyping-tool

104 L. Bacchiani et al.

5. Bravetti, M., Carbone, M., Lange, J., Yoshida, N., Zavattaro, G.: A sound algo-
rithm for asynchronous session subtyping and its implementation. Log. Methods
Comput. Sci. 17(1), 20:1–20:35 (2021)

6. Bravetti, M., Carbone, M., Zavattaro, G.: Undecidability of asynchronous session
subtyping. Inf. Comput. 256, 300–320 (2017)

7. Bravetti, M., Carbone, M., Zavattaro, G.: On the boundary between decidability
and undecidability of asynchronous session subtyping. Theor. Comput. Sci. 722,
19–51 (2018)

8. Bravetti, M., et al.: Behavioural types for memory and method safety in a core
object-oriented language. In: Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470,
pp. 105–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64437-6 6

9. Bravetti, M., Lange, J., Zavattaro, G.: Fair refinement for asynchronous session
types. In: Kiefer, S., Tasson, C. (eds.) FOSSACS 2021. LNCS, vol. 12650, pp.
144–163. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71995-1 8

10. Bravetti, M., Zavattaro, G.: On the expressive power of process interruption and
compensation. Math. Struct. Comput. Sci. 19(3), 565–599 (2009)

11. Bravetti, M., Zavattaro, G.: Asynchronous session subtyping as communicating
automata refinement. Softw. Syst. Model. 20(2), 311–333 (2020). https://doi.org/
10.1007/s10270-020-00838-x

12. Chen, T., Dezani-Ciancaglini, M., Scalas, A., Yoshida, N.: On the preciseness of
subtyping in session types. Log. Methods Comput. Sci. 13(2), 1–61 (2017)

13. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp.
174–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-
2 18

14. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2–
3), 191–225 (2005)

15. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 24

16. Kozen, D., Palsberg, J., Schwartzbach, M.I.: Efficient recursive subtyping. Math.
Struct. Comput. Sci. 5(1), 113–125 (1995)

17. Lange, J., Yoshida, N.: Characteristic formulae for session types. In: Chechik, M.,
Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 833–850. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49674-9 52

18. Lange, J., Yoshida, N.: On the undecidability of asynchronous session subtyping.
In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 441–
457. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 26

19. Lindley, S., Morris, J.G.: Embedding session types in Haskell. In: Haskell 2016, pp.
133–145 (2016)

20. Mostrous, D., Yoshida, N.: Session typing and asynchronous subtyping for the
higher-order π-calculus. Inf. Comput. 241, 227–263 (2015)

21. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially com-
mutative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol.
5502, pp. 316–332. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00590-9 23

22. Mota, J., Giunti, M., Ravara, A.: Java typestate checker. In: Damiani, F., Dardha,
O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 121–133. Springer, Cham
(2021)

https://doi.org/10.1007/978-3-030-64437-6_6
https://doi.org/10.1007/978-3-030-71995-1_8
https://doi.org/10.1007/s10270-020-00838-x
https://doi.org/10.1007/s10270-020-00838-x
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-3-642-00590-9_23

A Session Subtyping Tool 105

23. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation for distributed protocols with interaction refinements in F�.
In: CC 2018. ACM (2018)

24. Orchard, D.A., Yoshida, N.: Effects as sessions, sessions as effects. In: Principles
of Programming Languages (POPL 2016), pp. 568–581 (2016)

25. Padovani, L.: A simple library implementation of binary sessions. J. Funct. Pro-
gram. 27, e4 (2017)

26. Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: Euro-
pean Conference on Object-Oriented Programming (ECOOP 2016), pp. 21:1–21:28
(2016)

Towards Probabilistic Session-Type
Monitoring

Christian Bartolo Burlò1(B) , Adrian Francalanza2 , Alceste Scalas3 ,
Catia Trubiani1 , and Emilio Tuosto1

1 Gran Sasso Science Institute, L’Aquila, Italy
christian.bartolo@gssi.it

2 Department of Computer Science, University of Malta, Msida, Malta
3 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract. We present a tool-based approach for the runtime analysis of
communicating processes grounded on probabilistic binary session types.
We synthesise a monitor out of a probabilistic session type where each
choice point is augmented with a probability distribution. The monitor
observes the execution of a process, infers its probabilistic behaviour
and issues warnings when the observed behaviour deviates from the one
specified by the probabilistic session type.

Keywords: Runtime Verification · Probabilistic session types ·
Monitor Synthesis

1 Introduction

Communication is central to present day computation. The expected communi-
cation protocol between two parties can be formalised as a (binary) session type,
typically describing qualitative aspects such as the order and choice of service
invocations at their corresponding payloads. In recent work, quantitative aspects
of the communication protocol are also layered over a session type [8,19].

Example 1. Consider a server hosting a guessing game by selecting an integer n
between 1 and 100. A client can repeatedly (i) try to guess, (ii) ask for a hint,
or (iii) quit the game. The expected interaction sequence of the guessing game
server can be specified with the session type Sgame below:

Sgame = rec X.&

⎧
⎪⎪⎨

⎪⎪⎩

?Guess(Int)[0.75].⊕
{

!Correct[0.01].X,
!Incorrect[0.99].X

}

,

?Help[0.2].!Hint(Str)[1].X,

?Quit[0.05].end

⎫
⎪⎪⎬

⎪⎪⎭

The work has been partly supported by: the project MoVeMnt (No: 217987-051) under
the Icelandic Research Fund; the BehAPI project funded by the EU H2020 RISE
under the Marie Sk�lodowska-Curie action (No: 778233); the MIUR projects PRIN
2017FTXR7S IT MATTERS and 2017TWRCNB SEDUCE; the EU Horizon 2020
project 830929 CyberSec4Europe; the Danish Industriens Fonds Cyberprogram 2020-
0489 Security-by-Design in Digital Denmark.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 106–120, 2021.
https://doi.org/10.1007/978-3-030-78142-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_7&domain=pdf
http://orcid.org/0000-0002-0016-086X
http://orcid.org/0000-0003-3829-7391
http://orcid.org/0000-0002-1153-6164
http://orcid.org/0000-0002-7675-6942
http://orcid.org/0000-0002-7032-3281
https://doi.org/10.1007/978-3-030-78142-2_7

Towards Probabilistic Session-Type Monitoring 107

The server waits for the client’s choice (at the external branching point &) to
either Guess a number, ask for Help, or Quit. If the client asks for help then the
server replies with a Hint message including a string and the session loops. After
the outcome of a guess, (described by the internal choice ⊕) is communicated
to the client, the protocol recurs. The type for the client is dual and denoted by
Sgame: each ‘⊕’ is swapped with ‘&’ and each ‘!’ is swapped with ‘?’.

Besides enforcing that parties follow a certain communication pattern, our
(augmented) session types also specify some quantitative aspects of the protocol.
For instance, Sgame above specifies that the server should give the client a real-
istic chance of guessing correctly (i.e., 1%), while Sgame specifies that the client
should request for help 20% of the time. According to this augmented specifica-
tion with quantitative requirements, a burst of client Help requests without any
attempts to guess the correct answer (that far exceeds 20% of total requests)
would constitute a violation of the protocol. More specifically, a substantial devi-
ation from the expected behaviour could be seen as an indicator of abnormal
behaviours such as an attempted denial-of-service attack. �

Session types (and their probabilistic variants) are usually checked statically,
by type checking the code of the interacting parties (e.g., the clients and the
server in this case). However, in an open network, it is common for one or more
interacting parties not to be available for analysis in a classical pre-deployment
fashion. There are even cases where, although we have full access to the partici-
pants, it is hard to statically verify their behaviour (e.g., when a client is a human
being, or generated via machine-learning techniques). This forces the verifier to
carry out certain correctness checks in a post-deployment phase of software pro-
duction. Recent work has shown that detections and enforcements of qualitative
process properties expressed in terms of automata-like formalisms can be car-
ried out effectively, at runtime, using monitors [1,4–6,16]. There are however
limits to a monitoring approach for verification [2,14]. At runtime, a monitor
(i) cannot observe more than one execution, (ii) can only observe finite prefixes
of a (possibly infinite) complete execution, and (iii) cannot detect execution
branches that could never have been taken (i.e., the analysis is evidence-based).
These constraints make it unclear whether quantitative behavioural aspects such
as the observation of branching probabilities, defined over complete (i.e., poten-
tially infinite) sequences of interactions, can be adequately monitored at runtime.
Note that, in order to determine (with absolute certainty) whether the client-
server interactions will observe the probabilities prescribed in Sgame above at
runtime, one needs access to the code for both the server and the client. Having
access to just the source code of the server—as it is reasonable to expect when
the specification is dictated by the party providing the service—does not help
us in determining whether the probabilities at the external branching point &
will be observed, since these depend on the choices made by the client (which is
often determined at runtime).

In this paper, we develop a tool-supported methodology for the runtime mon-
itoring of quantitative behaviour for two interacting components. In particular,
given a Probabilistic Session Type (PST) such as Sgame above, we synthesise a

108 C. Bartolo Burlò et al.

monitor that, at runtime, (i) observes the messages exchanged within the pro-
tocol to ensure that they follow the protocol prescribed by the session type, (ii)
estimates the probabilistic behaviour of the interacting parties from the interac-
tions observed at runtime, and (iii) determines whether to issue a warning for
behavioural deviations from the branching probabilities prescribed in the PST,
up to a pre-specified level of confidence. For generality, we target the scenario
with the weakest level of assumptions, namely where the monitor and its instru-
mentation are oblivious to the actual implementation of both interacting parties
participating in the session. Nevertheless, our solution still applies to cases where
we have access to the source of the interacting parties.

The rest of the paper is structured as follows. Section 2 explains our method-
ology in detail. This lays the necessary foundations for the construction of our
monitoring tool, described in Sect. 3. Comparisons to related work and discus-
sions about possible future work are given in Sect. 4. To the best of our knowl-
edge, the work we present here is the first attempt at verifying PSTs via runtime
monitoring.

2 Methodology

Our proposed methodology operates post-deployment, where both participants
in the session are analysed at runtime. As mentioned earlier, to maximise its
applicability and generality, our methodology does not require any part of the
participants’ behaviour to be analysed pre-deployment, effectively treating them
as black boxes. The definite verdict of whether an execution exhibited by a system
abides by some probabilistic specification can only be given once it terminates
(if at all). Nonetheless, our methodology is able to issue probabilistic judgements
from incomplete executions, based on the interactions observed up to that point.

Our runtime analysis employs online passive monitors [13,23]. These are
computational entities that run live and observe the incremental behaviour of
two communicating parties (as the execution proceeds) without affecting their
interactions. Although our monitors have no prior information about the actual
behaviour of the two parties, they are nevertheless able to:

(a) approximate on-the-fly the probabilistic behaviour of the interacting parties,
iteratively revising the approximation when a new interaction is observed,
and

(b) make (revocable) judgements that are based on the probability distribution
described by our PSTs, for a preset confidence level.

Our methodology is supported by a tool, discussed in Sect. 3, that automati-
cally synthesises a monitor from a PST S. At run-time, the monitor estimates
the probabilities for each choice point of S (by observing the messages being
sent and received), and determines whether such estimates respect the desired
probabilities specified in S. This way, the monitor can apportion blame to the
interacting party that has control at the choice point where a potential violation
is detected. In the sequel, we present the technical details of our methodology;
in Sect. 4 we discuss possible alternatives.

Towards Probabilistic Session-Type Monitoring 109

2.1 Probabilistic Session Types (PSTs)

In order to formalise probabilistic protocols, we adopt session types augmented
with probability distributions over the choice points (& and ⊕): they allow us
to specify the probability of a particular choice being taken by one of the com-
ponents interacting in a session. The syntax of our PSTs (from which Sgame in
Sect. 1 is derived) is:

S ::= &
{
?li(si)[pi].Si

}

i∈I
(external choice)

∣
∣ ⊕{

!li(si)[pi].Si

}

i∈I
(internal choice)

∣
∣ rec X.S (recursion)
∣
∣ X (recursion variable)
∣
∣ end (termination)

In choice points (& and ⊕) the indexing set I is finite and non-empty, the
choice labels li are pairwise distinct, and the sorts si range over basic data types
(Int, Str, Bool, etc.). Every choice point Sj is given a multinomial distribution
interpretation. We assume that

∑
i∈I pi = 1 where every pi is positive, and

represents the probability of selecting the branch labelled by li, over every choice
point of interest Sj . The probabilities prescribed at a choice point impose a
behavioural obligation on the interacting party who has control over the selection
at that choice point. For instance, at the external choice in Example 1, it is the
client that is required to adhere to the probabilities prescribed. As usual, we
assume that recursion is guarded, i.e., a recursion variable X can only appear
under an external or internal prefix.

2.2 Monitoring Sessions

For the sake of the presentation, we assume that choice points of a PST S are
indexed by a finite set of indices j ∈ J , which allows us to uniquely identify each
choice point as Sj . Accordingly, we let Ij be a set indexing the labels li,j of the
choice point Sj , and denote the probability assigned at Sj to the branch labelled
by li,j as pi,j . Our runtime analysis maintains the following counters:

– cj : number of times the choice point Sj is observed at run-time;
– ci,j : number of times the label li,j (i ∈ Ij) of choice Sj is taken.

For each j ∈ J , these counters yield the estimated probability :

p̂i,j =
ci,j
cj

j ∈ J, i ∈ Ij (1)

Namely, p̂i,j is the frequency with which the i-th branch li,j of choice point Sj has
been taken so far. The monitor continuously updates the estimated probabilities
as it observes the interactions taking place while the execution unfolds.

The monitor cannot base its decision to issue a warning only on these esti-
mated probabilities. These could potentially be very inaccurate if either of the

110 C. Bartolo Burlò et al.

components briefly exhibits sporadic behaviour at any point in time of execu-
tion. To assess whether the monitored sequence of interactions has substantially
deviated from the probabilistic behaviour specified in a session type, the run-
time analysis needs to consider how accurate these estimated probabilities are
in conveying the observed behaviour of the components. We relate this problem
to statistical inference, where the sequence of interactions observed up to the
current point of execution is a sample of the larger population, being the entire
(possibly infinite) execution.

There are various established paradigms for statistical inference. Our pro-
posed methodology takes a frequentist approach. In particular, we calculate con-
fidence intervals (CIs) [20] around each desired probability pi,j in a session type
to give an approximation of the expected probabilistic behaviour based on the
sample size and a confidence level 0 ≤ � < 1. For any S-abiding execution that
iterates through choice point Sj for cj times, the interval would contain the
acceptable range of values for the estimated probabilities with confidence �. To
calculate the CI for a choice point Sj , we first calculate the standard error SE
on the specified probabilities pi,j , which depends on the number of times that
choice point cj has iterated (i.e., the sample size). This is then used to calculate
the maximum acceptable error E (2) based on the given confidence level �, where
the multiplier Z(�) is the number of standard deviations of a normal distribution
representing the particular branch, covering (� × 100)% of its values [20].

Ei,j = Z(�) · SEi,j where SEi,j =

√
pi,j(1 − pi,j)

cj
for j ∈ J, i ∈ Ij (2)

Having calculated the error Ei,j , the runtime analysis calculates the confidence
interval around pi,j as:

[pi,j − Ei,j , pi,j + Ei,j] (3)

If and when an estimated probability p̂i,j (1) falls outside this interval, the
proposed runtime analysis for our methodology issues a warning implying that:

The estimated probability p̂i,j has deviated enough from the specified proba-
bility pi,j to conclude, with confidence �, that the interacting party respon-
sible for the choice point Sj violates the prescribed probability.

The higher the confidence level � specified, the longer it takes for the maxi-
mum error Ei,j in (2) to converge [20]. Consequently:

– when a higher confidence � is required, the monitor will have wider confidence
intervals, hence it needs to collect more evidence (i.e., a larger sample size)
in order to issue a warning;

– when a lower confidence � is required, the monitor will have narrower confi-
dence intervals, hence it might deem an observed session to deviate substan-
tially from the probabilities specified in S at an earlier point in execution.
This means that the monitor may potentially issue spurious warnings.

Towards Probabilistic Session-Type Monitoring 111

Importantly, after a warning is issued, the subsequent behaviour of the moni-
tored components might cause the (updated) estimated probabilities to fall back
within the confidence intervals. As a result, the monitor may retract the warn-
ing. The warnings issued by the monitor become irrevocable verdicts only when
the session terminates (if at all).

Example 2. Recall Sgame from Example 1. Assume that a monitor for Sgame is
instantiated with confidence level � = 99.999%, and that in the running session,
the client’s choice (&) has iterated nine times, with the client choosing Help five
times. Thus, the runtime analysis counters are:

c& = 9 cHelp,& = 5

The monitor calculates the estimated probability p̂Help,& = 0.56 from these
counter values using (1). It then calculates the error EHelp,& = 0.59 from (2)
(with Z(�) = 4.4172) for the Help branch in S. Using the specified probability
pHelp,& = 0.2 and EHelp,&, it calculates the confidence interval from (3) 0.2±0.59,
that is [−0.39, 0.79]. Since the estimated probability p̂Help,& = 0.56 falls within
this confidence interval, the monitor does not issue a warning.

Now, assume that the session continues, the external choice point & is iter-
ated, and the client chooses Help eight consecutive times more. This means that
the counters of our runtime analysis become:

c& = 17 cHelp,& = 13

From (1), the estimated probability is updated to p̂Help,& = 0.76. From (2),
the monitor also updates the confidence interval. Since c& is now larger, it yields
EHelp,& = 0.43 which results in the narrower confidence interval [−0.23, 0.63]. At
this point, our runtime analysis detects that the estimated p̂Help,& falls outside
this confidence interval and the corresponding warning is issued.

Note that a monitor for Sgame with lower confidence level � = 95% (i.e.,
Z(�) = 1.9599) would issue a warning earlier, e.g., when c& = 9 and cHelp,& = 5.
In fact, the lower confidence level would yield EHelp,& = 0.26 giving the tighter
confidence interval [−0.06, 0.46] which does not include p̂Help,& = 0.56. �

3 The Tool

We extend the monitoring framework in [5] to implement our probabilistic session
type monitors. The implementation is available at:

https://github.com/chrisbartoloburlo/stmonitor

The overall approach is depicted in Fig. 1: our tool synth generates a passive
monitor mon (written in Scala) from a probabilistic session type S that behaves
as a partial-identity [17]. In addition to carrying out the runtime analysis, such
monitors are also tasked with forwarding the messages analysed, offering higher
degrees of control for stopping execution once a violation is detected. Accord-

https://github.com/chrisbartoloburlo/stmonitor

112 C. Bartolo Burlò et al.

Srv CM mon CM C

synthS

Fig. 1. Outline of monitor synthesis and instrumentation

ingly, the synthesised executable analysis mon, is instrumented to act as an inter-
mediary proxy between two interacting components participating in the session,
e.g., between a client (C) and a server (Srv) for our PST Sgame from Exam-
ple 2. Internally, the synthesised monitor mon uses the lchannels library [22] to
represent the session type within Scala. To interact with the components, the
monitor makes use of user-supplied connection managers (CM) that sit between
the monitor and the components.1 The connection managers act as translators
and gatekeepers by transforming messages from the transport protocols sup-
ported by C and Srv to the session type representation used by mon, and vice
versa. These allow the monitor synthesis to abstract over the communication
protocols in use: i.e., the synthesis is agnostic to the message transportation
being used.

The quantitative analysis of the communicated messages applies only if the
qualitative aspects of the type are being respected. Similarly to the monitors
produced in [5], the code synthesised by our tool can be seen as communicating
finite-state machines [7] where states correspond to choice points in a session
type. Upon receiving a message, the actual direction of the choice point triggers
the analysis of a state’s transition modelling such a choice, potentially producing
a warning (or a warning retraction) as a side-effect. Algorithm1 outlines the logic
inside a single state representing a choice point Sj . The synthesis in [5] generates
the code that conducts the dynamic typechecking on the messages received, and
issues violation verdicts committed to S (line 12). In this work, we augment the
synthesis to equip the monitor logic with the ability to conduct the quantitative
analysis (lines 3 to 8) as discussed in Sect. 2.

1 This design is conveniently inherited from [4,5] but is orthogonal to our approach.

Towards Probabilistic Session-Type Monitoring 113

Algorithm 1: Synthesised state of a monitor
1 receive choice i at choice point Sj
2 if i ∈ choices Ij then
3 increment counters cj and ci,j
4 forall choices i ∈ Ij calculate
5 if not checkInterval(ci, ci,j, pi,j) then
6 issue a warning blaming the sender

7 else
8 retract warning

9 forward choice i to the other side
10 proceed according to the continuation of choice i in choice point j

of S
11 else
12 issue a violation verdict

The monitors generated by our tool include message counters along with the
logic necessary to estimate the probabilities of the choices in a running session.
This logic is used to issue warnings whenever the observed (partial) execution
deviates from the probabilities in each state Sj . If the message received by the
monitor respects the choice point Sj (line 2 in Algorithm 1), it increments the
counters of the current choice point, cj , and that of the choice taken ci,j . For
every choice within the choice point, the monitor invokes the function checkIn-
terval (described in Algorithm 2) to calculate and test whether the estimated
probability falls within the respective confidence interval (line 5). If the esti-
mated probability is not within the interval, the monitor issues a warning and
assigns blame to the sender of the current message (line 6). Otherwise, if the
probability lies within the interval, the monitor retracts a previously issued warn-
ing (line 8). In an effort to minimise unnecessary (repeated) notifications, the
monitors generated by our tool only issue (resp. retract) a warning the first time
an estimated probability transitions outside (resp. inside) the calculated confi-
dence interval. All subsequent notifications are suppressed in case of estimated
probabilities that remain outside (resp. inside) the interval.

Algorithm 2 is the function implementing the methodology outlined in Algo-
rithm2. It calculates the estimated probability and confidence interval around
the probability specified in the type, based on the counters maintained by the
monitor itself. We note that this function can be adapted to other techniques
that test whether the behaviour is being respected without affecting the main
synthesis of the monitor; see Sect. 4 for further discussions on this point.

114 C. Bartolo Burlò et al.

Algorithm 2: Function to calculate intervals
1 def checkInterval(ci, ci,j, pi,j):
2 calculate the estimated probability p̂i,j (1) using ci and ci,j
3 calculate the error Ei,j (2) using cj and pi,j
4 return

(
p̂i,j in [pi,j − Ei,j , pi,j + Ei,j]

)

Example 3. Recall the PST Sgame from Example 1 and assume that the monitor
synthesised from Sgame is instantiated with the confidence level � = 99.999%.
Consider the extended case from Example 2 whereby, after guessing incorrectly
4 times, the client asks for Help 13 times; it then guesses correctly 2 consecutive
times, which brings the monitor counters of the respective internal choice point
(⊕) to:

c⊕ = 6 cCorrect,⊕ = 2 cIncorrect,⊕ = 4

Following the logic in Algorithm1, after having incremented the counters
(line 3), the monitor checks the confidence intervals for every choice present in
the choice point (line 4). It invokes the function checkInterval with the arguments
c⊕, cCorrect,⊕, pCorrect,⊕ where pCorrect,⊕ = 0.01 for the choice Correct in Sgame.
The monitor calculates:

̂pCorrect,⊕ = 0.33 ECorrect,⊕ = 0.18 pCorrect,⊕ ±ECorrect,⊕ = [−0.17, 0.19]

Since ̂pCorrect,⊕ is not included in the interval, the function returns False. Con-
sequently, the monitor issues a warning blaming the server for sending Correct
with a probability higher than that specified in Sgame. Next, the monitor invokes
checkInterval for the choice Incorrect with the arguments c⊕, cIncorrect,⊕,
pIncorrect,⊕ where pIncorrect,⊕ = 0.99. Similarly, the monitor calculates:

̂pIncorrect,⊕ = 0.67 EIncorrect,⊕ = 0.18 pIncorrect,⊕ ± EIncorrect,⊕ = [0.81, 1.17]

and since ̂pIncorrect,⊕ does not lie within the interval, the monitor issues another
warning, again blaming the server for this choice.

Consider now the case where the client sends 6 further guesses, to which the
server replies with Incorrect for all. Therefore, the monitor counters for this
choice point are now updated as follows:

c⊕ = 12 cCorrect,⊕ = 2 cIncorrect,⊕ = 10

Similarly, the monitor calculates the intervals for both choices:

̂pCorrect,⊕ = 0.17 ECorrect,⊕ = 0.13 pCorrect,⊕ ± ECorrect,⊕ = [−0.12, 0.14]

̂pIncorrect,⊕ = 0.67 EIncorrect,⊕ = 0.13 pIncorrect,⊕ ± EIncorrect,⊕ = [0.86, 1.12]

Note that after the monitor observes more messages for this choice point,
the intervals shrink for both choices, gradually converging to the specified prob-
abilities. Nonetheless, the estimated probabilities from the observed behaviour

Towards Probabilistic Session-Type Monitoring 115

still do not fall within the confidence intervals in both cases. Accordingly, the
monitor does not issue any warnings since it had already issued one previously
when the potential violation was originally detected.

In fact, the monitor only retracts the warnings when the estimated probabili-
ties fall within the interval. Concretely, the client would have to guess incorrectly
6 more times, setting the counters to:

c⊕ = 18 cCorrect,⊕ = 2 cIncorrect,⊕ = 16

These counters result in the intervals:

̂pCorrect,⊕ = 0.11 ECorrect,⊕ = 0.1 pCorrect,⊕ ± ECorrect,⊕ = [−0.09, 0.11]

̂pIncorrect,⊕ = 0.89 EIncorrect,⊕ = 0.1 pIncorrect,⊕ ± EIncorrect,⊕ = [0.89, 1.09]

that both include the estimated probability, causing the monitor to retract the
warnings. �

It is often the case that warnings for certain branches have little significance.
For instance, in Example 3 above, the monitor also issues a warning for the choice
Incorrect in addition to that for Correct. In practice, one might only be inter-
ested in knowing that the server replied Correct with a higher probability than
that specified. To enable such specifications, we enrich the syntax of the proba-
bilistic session types in Sect. 2 with the possibility of using ∗ which specifies to
the monitor to not issue warnings for the respective branch or interval boundary.

Example 4. The PST Sgame from Example 1 can be modified to the type descrip-
tion S′

game below:

S′
game = rec X.&

⎧
⎪⎪⎨

⎪⎪⎩

?Guess(Int)[0.75, ∗].⊕
{

!Correct[0.01].X,
!Incorrect[∗].X

}

,

?Help[∗, 0.2].!Hint(Str)[∗].X,

?Quit[∗].end

⎫
⎪⎪⎬

⎪⎪⎭

The new type indicates to the monitor exactly which choices it should issue
warnings for. For the external choice, the monitor should only issue a warning
when the estimated probability of the client sending Guess is lower than 0.75
and that of sending Help is higher than 0.2, completely ignoring the probability
of the choice Quit. Similarly, for the internal choice, the monitor should only
issue a warning for the choice Correct, and suppress those for Incorrect. �

With this minor extension to the probabilistic session types we reduce the
number of warnings issued and retracted by the monitor. Moreover, we also
decrease the amount of computation performed by the monitor at runtime to
only those choices that are deemed important. Effectively, this improves the
overheads induced by the monitor.

116 C. Bartolo Burlò et al.

4 Conclusions and Discussion

We have presented a tool-based methodology to analyse specifications augmented
with quantitative requirements at runtime. More specifically, we extend existing
work to implement the synthesis of monitors from probabilistic session types
that conduct analysis of the interaction between two parties at runtime. The
synthesised monitors issue warnings based only on evidence observed up to the
current point of execution while taking into account its accuracy. Notably, the
proposed methodology can serve as the basis for other runtime analysis tech-
niques in which the specifications describe any quantitative behaviour.

We conjecture that our approach can be used for systems where protocol-
based interactions are replicated in large numbers, and where human intervention
is required to ensure their correct execution (e.g., healthcare and fraud detec-
tion in e-payments or online gambling). In such applications, our monitors would
direct human operation (i.e., the scarce resource) to the cases that have the high-
est likelihood of exhibiting anomalous behaviour. Another potential application
is that of control software that is derived using AI learning techniques. Although
effective, such software is often not fully understood and notorious for sudden
unexpected behaviour. With our approach, we can automate the monitoring of
its interactions and shut off communication whenever the approximated runtime
behaviour deviates considerably from that projected.

4.1 Related Work

Our methodology uses PSTs akin to those introduced in [19]. The authors use a
type system to statically estimate the probability of well-typed processes reach-
ing successful states. Notably, types are dynamically checked in our approach
and we do not guarantee probabilistic properties; the proposed runtime analy-
sis only issues warnings when the observed behaviour at runtime substantially
deviates from the specification. Moreover, our PSTs can also specify behaviour
of deterministic systems and are not restricted to probabilistic systems.

Several works apply probabilistic monitoring to minimise the number of runs
to be monitored, based on predefined confidence levels [18,21,26]. In [24], proba-
bility is estimated to check whether the system’s behaviour modelled as a hidden
Markov model satisfies a temporal property in cases where gaps are present in
the execution trace. Unlike these approaches, we use probabilities to specify
quantitative aspects of communication protocols which we then check whether
they are being respected at runtime.

On the runtime verification of probabilistic systems, the work in [11] models
systems as discrete-time Markov chains and expresses requirements using Prob-
abilistic Computation Tree Logic. Their aim is to adapt the behaviour of the
underlying system to satisfy non-functional requirements, such as reliability or
energy consumption. The work in [10] also monitors Markov Chains whereby
monitors are able to verify if a property is satisfied by executing the system
and steer it to take certain paths. Similarly to [11], Markov decision processes
are used in [12] to model probabilistic systems and optimise the performance

Towards Probabilistic Session-Type Monitoring 117

of their verification with the aim of using the results obtained to steer the sys-
tem. In [10,11] and [12], the authors adopt incremental verification techniques
that exploit the results of previous analyses of the system, whereas our runtime
analysis only considers the current execution without any prior knowledge on
the system. Moreover, we employ monitors that are passive and do not alter nor
control the behaviour of the monitored system in any way.

4.2 Future Work

Improving Confidence Interval Estimation. The proposed approach using on
confidence intervals described in Sect. 2 serves the goal of instantiating our inter-
pretation of probabilistic session types (Sect. 2.1) on a concrete mechanism for
monitors to emit judgements on the probabilistic behaviour of components at
runtime. Our approach is not limited, nor bound, to the current statistical infer-
ence technique. For instance, we can improve our CI estimation by utilising the
Wilson score interval [25], which is more costly but also more reliable than nor-
mal approximation when the sample size (observed messages up to the current
point of execution) is small or the specified probability is close to 0 or 1. With an
easy extension, we can additionally support different confidence levels per choice
points. We also plan to study alternative statistical inference paradigms apart
from the frequentist approach considered here, such as the Bayesian intervals [3]
which would potentially give different interpretations to the PSTs. In turn, this
would enable monitors to issue warnings based on the aggregate recommenda-
tions of the different estimators.

Alternative Interpretations of Probabilistic Session Types. In the proposed app-
roach we opted for an interpretation of probabilistic session types that only
considers probabilities at each individual choice point rather than the global
probabilistic behaviour. We plan to study different interpretations that consider
the dependencies among choice points in a session type, and also probabilities
that are data (payload) dependent.

An intricate aspect of our approach is that it may lead to a potential trade-
off between two extremes: taking longer to issue a warning with high confidence,
or issue warnings earlier with low confidence. The first extreme corresponds
to an increased risk of false negatives: a monitored application could substan-
tially diverge from the observed session type, without being flagged. The second
extreme corresponds to an increased risk of false positives: a statistically well-
behaving monitored application could be flagged after a minor divergence from
the expected frequency of choices. Finding the right value for the confidence
level requires careful calibration since it depends on the application and on the
relative cost of false negatives when compared to that of false positives.

Application-dependent heuristics together with more advanced interpreta-
tions of probabilistic session types can be used to overcome these difficulties.
For instance, we could consider the introduction of an observation window of
length w, and the probabilities in the session type could refer to a limited num-
ber of observed communications regulated by w. Accordingly, the monitor could

118 C. Bartolo Burlò et al.

keep track of the number of communications observed in the desired window,
and use this information to issue warnings in case deviations persist. Concretely,
with the interpretation of probabilities described in Sect. 2.1, a client in Exam-
ple 1 is allowed to send any number of consecutive requests for help, as long as
their frequency is not far from 20%, calculated by considering the entire his-
tory of the session. By introducing a small observation window, we can ensure
that two consecutive requests of help would be flagged at any point during the
session, regardless of their frequency.

Other Extensions and Improvements. We are in the process of conducting empir-
ical evaluations to assess the effectiveness of our methodology. There are a num-
ber of extensions that can be realised relatively easily to improve the tool’s
flexibility and applicability. For instance, our methodology can be extended so
that the probabilities within the session type are (machine-)learnt from a series
of observed interactions of different parties. Moreover, monitor (verdict) explain-
ability [9,15] is rapidly gaining importance: our tool can be readily extended to
provide useful explanations to support the warnings raised. We are also con-
sidering the adaptation of our methodology to the pre-deployment phase of
development, thus turning monitors into test drivers that can steer-and-verify
implementations.

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adven-
tures in monitorability: from branching to linear time and back again. Proc. ACM
Program. Lang. 3(POPL), 52:1–52:29 (2019). https://doi.org/10.1145/3290365

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: An opera-
tional guide to monitorability with applications to regular properties. Softw. Syst.
Model. 20(2), 335–361 (2021). https://doi.org/10.1007/s10270-020-00860-z

3. Agresti, A., Hitchcock, D.B.: Bayesian inference for categorical data analysis. Stat.
Methods Appl. 14(3), 297–330 (2005). https://doi.org/10.1007/s10260-005-0121-y

4. Bartolo Burlò, C., Francalanza, A., Scalas, A.: On the monitorability of session
types, in theory and practice. In: 35th European Conference on Object-Oriented
Programming, ECOOP 2021, 12–17 July 2021 (2021, to appear)

5. Bartolo Burlò, C., Francalanza, A., Scalas, A.: Towards a hybrid verifica-
tion methodology for communication protocols (short paper). In: Gotsman, A.,
Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 227–235. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-50086-3 13

6. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks
through multiparty session types. Theor. Comput. Sci. 669, 33–58 (2017). https://
doi.org/10.1016/j.tcs.2017.02.009

7. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983). https://doi.org/10.1145/322374.322380

8. Das, A., Wang, D., Hoffmann, J.: Probabilistic resource-aware session types. CoRR
abs/2011.09037 (2020). https://arxiv.org/abs/2011.09037

9. Dawes, J.H., Reger, G.: Explaining violations of properties in control-flow temporal
logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 202–
220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 12

https://doi.org/10.1145/3290365
https://doi.org/10.1007/s10270-020-00860-z
https://doi.org/10.1007/s10260-005-0121-y
https://doi.org/10.1007/978-3-030-50086-3_13
https://doi.org/10.1016/j.tcs.2017.02.009
https://doi.org/10.1016/j.tcs.2017.02.009
https://doi.org/10.1145/322374.322380
https://arxiv.org/abs/2011.09037
https://doi.org/10.1007/978-3-030-32079-9_12

Towards Probabilistic Session-Type Monitoring 119

10. Esparza, J., Kiefer, S., Kret́ınský, J., Weininger, M.: Online monitoring ω-regular
properties in unknown Markov chains. CoRR abs/2010.08347 (2020). https://
arxiv.org/abs/2010.08347

11. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation via quantitative
verification and sensitivity analysis at run time. IEEE Trans. Softw. Eng. 42(1),
75–99 (2016). https://doi.org/10.1109/TSE.2015.2421318

12. Forejt, V., Kwiatkowska, M., Parker, D., Qu, H., Ujma, M.: Incremental runtime
verification of probabilistic systems. In: Qadeer, S., Tasiran, S. (eds.) RV 2012.
LNCS, vol. 7687, pp. 314–319. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35632-2 30

13. Francalanza, A.: A theory of monitors. Inf. Computa. 104704 (2021, to appear).
https://doi.org/10.1016/j.ic.2021.104704

14. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Monitorability for the Hennessy-
Milner logic with recursion. Formal Methods Syst. Des. 51(1), 87–116 (2017).
https://doi.org/10.1007/s10703-017-0273-z

15. Francalanza, A., Cini, C.: Computer says no: verdict explainability for runtime
monitors using a local proof system. J. Log. Algebraic Methods Program. 119,
100636 (2021). https://doi.org/10.1016/j.jlamp.2020.100636

16. Francalanza, A., Mezzina, C.A., Tuosto, E.: Towards choreographic-based mon-
itoring. In: Ulidowski, I., Lanese, I., Schultz, U.P., Ferreira, C. (eds.) RC 2020.
LNCS, vol. 12070, pp. 128–150. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-47361-7 6

17. Gommerstadt, H., Jia, L., Pfenning, F.: Session-typed concurrent contracts. In:
Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 771–798. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89884-1 27

18. Grunske, L.: An effective sequential statistical test for probabilistic monitoring.
Inf. Softw. Technol. 53(3), 190–199 (2011). https://doi.org/10.1016/j.infsof.2010.
10.003

19. Inverso, O., Melgratti, H.C., Padovani, L., Trubiani, C., Tuosto, E.: Probabilis-
tic analysis of binary sessions. In: CONCUR. LIPIcs, vol. 171, pp. 14:1–14:21.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.
4230/LIPIcs.CONCUR.2020.14

20. Newcombe, R.G.: Confidence Intervals for Proportions and Related Measures of
Effect Size. CRC Biostatistics Series. CRC Press, Chapman & Hall, Boca Raton
(2012)

21. Ruchkin, I., Sokolsky, O., Weimer, J., Hedaoo, T., Lee, I.: Compositional prob-
abilistic analysis of temporal properties over stochastic detectors. IEEE Trans.
Comput. Aided Des. Integr. Circ. Syst. 39(11), 3288–3299 (2020). https://doi.
org/10.1109/TCAD.2020.3012643

22. Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: ECOOP.
LIPIcs, vol. 56, pp. 21:1–21:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2016). https://doi.org/10.4230/LIPIcs.ECOOP.2016.21

23. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000). https://doi.org/10.1145/353323.353382

24. Stoller, S.D., et al.: Runtime verification with state estimation. In: Khurshid, S.,
Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29860-8 15

https://arxiv.org/abs/2010.08347
https://arxiv.org/abs/2010.08347
https://doi.org/10.1109/TSE.2015.2421318
https://doi.org/10.1007/978-3-642-35632-2_30
https://doi.org/10.1007/978-3-642-35632-2_30
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1016/j.jlamp.2020.100636
https://doi.org/10.1007/978-3-030-47361-7_6
https://doi.org/10.1007/978-3-030-47361-7_6
https://doi.org/10.1007/978-3-319-89884-1_27
https://doi.org/10.1016/j.infsof.2010.10.003
https://doi.org/10.1016/j.infsof.2010.10.003
https://doi.org/10.4230/LIPIcs.CONCUR.2020.14
https://doi.org/10.4230/LIPIcs.CONCUR.2020.14
https://doi.org/10.1109/TCAD.2020.3012643
https://doi.org/10.1109/TCAD.2020.3012643
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1145/353323.353382
https://doi.org/10.1007/978-3-642-29860-8_15

120 C. Bartolo Burlò et al.

25. Wilson, E.B.: Probable inference, the law of succession, and statistical inference.
J. Am. Stat. Assoc. 22(158), 209–212 (1927). https://www.tandfonline.com/doi/
abs/10.1080/01621459.1927.10502953

26. Zhu, Y., Xu, M., Zhang, P., Li, W., Leung, H.: Bayesian probabilistic monitor: a
new and efficient probabilistic monitoring approach based on Bayesian statistics.
In: QSIC, pp. 45–54. IEEE (2013). https://doi.org/10.1109/QSIC.2013.55

https://www.tandfonline.com/doi/abs/10.1080/01621459.1927.10502953
https://www.tandfonline.com/doi/abs/10.1080/01621459.1927.10502953
https://doi.org/10.1109/QSIC.2013.55

Java Typestate Checker

João Mota(B) , Marco Giunti , and António Ravara

NOVA LINCS and NOVA School of Science and Technology, Caparica, Portugal
jd.mota@campus.fct.unl.pt, marco.giunti@gmail.com, aravara@fct.unl.pt

Abstract. Detecting programming errors and vulnerabilities in software
is increasingly important, and building tools that help developers with
this task is a crucial area of investigation on which the industry depends.
In object-oriented languages, one naturally defines stateful objects where
the safe use of methods depends on their internal state; the correct use
of objects according to their protocols is then enforced at compile-time
by an analysis based on behavioral types.

We present Java Typestate Checker (JATYC), a tool based on the
Checker Framework that verifies Java programs with respect to types-
tates. These define the object’s states, the methods that can be called in
each state, and the states resulting from the calls. The tool offers the fol-
lowing strong guarantees: sequences of method calls obey to object’s pro-
tocols; completion of objects’ protocols; detection of null-pointer excep-
tions; and control of the sharing of resources through access permissions.

To the best of our knowledge, there are no research or industrial tools
that offer all these features. In particular, the implementation of sharing
control in a typestate-based tool seems to be novel, and has an important
impact on programming flexibility, since, for most programs, the linear
discipline imposed by behavioral types is too strict.

Sharing of objects is enabled by means of an assertion language incor-
porating fractional permissions; to lift from programmers the burden of
writing the assertions, JATYC infers all of these by building a constraint
system and solving it with Z3, producing general assertions sufficient to
accept the code, if these exist.

Keywords: Behavioral types · object-oriented programming ·
typestates · access permissions · inference

1 Introduction

Programming errors such as de-referencing null pointers, or using resources
wrongly, e.g., reading from a closed file, just to name a few, result in programs
that might malfunction in many ways, producing unexpected behaviors or even
crashing. It is, therefore, crucial to develop tools that assist the software devel-
opment process by detecting mistakes as early as possible since these bugs occur
more often than one might think [31].

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 121–133, 2021.
https://doi.org/10.1007/978-3-030-78142-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_8&domain=pdf
http://orcid.org/0000-0003-3182-2245
http://orcid.org/0000-0002-7582-0308
http://orcid.org/0000-0001-8074-0380
https://doi.org/10.1007/978-3-030-78142-2_8

122 J. Mota et al.

In programming languages, some common errors are detected thanks to type
systems implemented in type checkers [8]. Unfortunately, the subset of errors
detected in present mainstream languages is still limited. For instance, most
OOP languages, including Java, do not statically ensure that methods are called
according to a specified protocol, like calling hasNext before calling next in
an iterator. Usually, the protocol is specified in natural language in the doc-
umentation, but not statically enforced: this is a source of many errors, like
accessing a variable that was not initialized [4]. More subtle undetected errors
include concurrent threads reading and eventually closing a shared resource
unexpectedly. While some language frameworks support a refined analysis, they
require expert users to provide complex specifications, for example, in separation
logic [20,21,29].

In this paper, we provide a tool to help filling this gap and introduce Java
Typestate Checker (JATYC), which type-checks a Java program where objects
are associated with typestates. Java classes are annotated with typestates defin-
ing the behavior of class instances in terms of available methods and state transi-
tions. With JATYC, well-typed programs have the following properties: objects
are used according to their protocols (typestates); protocols reach the end state;
null-pointer exceptions are not raised; data-races at the level of variables/fields
and interference between method calls on the same object do not occur. Ensur-
ing these properties is crucial to avoid protocol bugs like one found in [33], where
an app tracing COVID-19 failed to perform a crucial step in the protocol: notify
users if they were in close contact with potentially infectious patients, leaving
the protocol uncompleted.

JATYC is a new implementation of Mungo [24] that adds critical features
and fixes known issues, like assuming that a continue statement jumps to the
beginning of the loop’s body, thus skipping the condition expression [25], which
may produce false negatives. JATYC was implemented in Kotlin [22] as a plugin
for the Checker Framework [28].

Originally, Mungo was implemented with JastAdd [13], an extension to Java
that supports a specification formalism called Rewritable Circular Reference
Attributed Grammars [12], enabling the modular implementation of compiler
tools and languages [13]. Unfortunately, JastAdd does not seem to be actively
maintained1 and editor support is lacking (except for syntax highlighting)2. The
Checker Framework [28] is a tool that supports adding type systems to the Java
language. With a plugin written in Java or any other Java interoperable lan-
guage, one defines the type qualifiers and enforces the semantics of the type
system. Programmers can then write the type qualifiers in their programs, with
Java annotations3, and use the plugin to detect errors [28]. The Checker Frame-
work is actively maintained, well-integrated with the Java language and toolset,

1 The second to last release was on 2019: https://jastadd.cs.lth.se/releases/jastadd2/
2.3.4/release-notes.php.

2 https://jastadd.cs.lth.se/web/tool-support/.
3 https://www.oracle.com/technical-resources/articles/java/ma14-architect-annotati

ons.html.

https://jastadd.cs.lth.se/releases/jastadd2/2.3.4/release-notes.php
https://jastadd.cs.lth.se/releases/jastadd2/2.3.4/release-notes.php
https://jastadd.cs.lth.se/web/tool-support/
https://www.oracle.com/technical-resources/articles/java/ma14-architect-annotations.html
https://www.oracle.com/technical-resources/articles/java/ma14-architect-annotations.html

Java Typestate Checker 123

and has being used to detect bugs in popular projects, like null-pointer errors
in Google Collections [11], with their Nullness Checker plugin4. Together with
Kotlin, it allowed us to be more productive in the development of the tool.

JATYC was developed in the context of the first author’s master’s disserta-
tion [25]. The document and the code are freely distributed5. The major contri-
butions with respect to the current version of Mungo are:

– checking the absence of null pointer errors, which is critical to avoid the
“The Billion Dollar Mistake” [18];

– checking that the protocols of objects are completed, i.e. protocols reach
the end state;

– support for the static control of sharing of objects, allowing safe alias-
ing and concurrency, while preventing data-races, patterns which are very
common in object-oriented programming languages, thus increasing expres-
siveness and programming flexibility.

2 Related Work

We are interested in object-oriented languages where well-typed programs follow
these properties: objects follow their specified protocols; protocols reach the
end state; null-pointer exceptions are not raised; and data-races do not occur.
We now present a review of relevant works we know on the topics. A more
complete overview of existing works is also available in the first author’s master’s
dissertation [25].

Behavioral Types are type disciplines that describe properties associated
with the behavior of programs [19]. Type systems that include this notion, allow
for the static verification of interactions and protocol compliance, like ensuring
that the hasNext method is called before next in an iterator object.

If multiple references to the same object exist (i.e. aliasing), type information
can get outdated if the object changes state via another reference. In solutions
that implement behavioral types, it is common to force the linear use of
objects, meaning that there is only one reference for each object [2]. Unfor-
tunately, this restricts what a programmer can do, since sharing references is
common practice in imperative and object-oriented programming languages.

One solution to statically verify code with shared data is the use of access
permissions [5,6]: abstract capabilities that characterize the way a shared
resource can be accessed by multiple references [30]. This notion is built on
Linear Logic [16], which treats permissions as linear resources, and Separa-
tion Logic [27,29], which reasons about program behavior against specifications.
Access permissions are used to ensure that only a reference can write on a par-
ticular location at any given time, and to ensure that if a location is read by
a thread, all other threads only have read permission for that location, thus
avoiding interference in concurrent programs [30].

4 https://checkerframework.org/manual/#nullness-checker.
5 https://github.com/jdmota/java-typestate-checker.

https://checkerframework.org/manual/#nullness-checker
https://github.com/jdmota/java-typestate-checker

124 J. Mota et al.

Fractional permissions [6] are concrete fractional numbers, ranged over 0
and 1, representing the permission for a shared resource: absence of permission
is represented by 0; full permission (to read and write) is represented by 1;
and shared read-only access is represented by a value strictly between 0 and 1.
Fractional permissions can be split into a number of fractions and distributed
among multiple references. For example, a permission s can be split into s1 and
s2 such that s = s1 + s2, allowing two references to have read access to the same
resource. Permissions that were split may also be joined again [6,30].

Mungo [24] is a tool that extends Java with typestate definitions [15] which
are associated with Java classes and define the behavior of instances of those
classes, specifying the sequences of method calls allowed in terms of a state
machine. Mungo then statically checks that method calls happen in order, fol-
lowing the specified behavior, and ensures that protocols reach the end state.
Mungo does not allow aliasing of objects associated with typestates [24].

Fugue [10] integrates typestates [15] with an object-oriented programming
language, allowing the programmer to add declarative specifications on inter-
faces, providing preconditions and postconditions, and marking methods that
are used for allocating or releasing resources, thus limiting the order in which
object’s methods are called. Fugue then ensures that methods are called in cor-
rect order, preconditions are met before a method is called, and resources are
not used before allocated or after being released. Fugue allows aliasing through
its guarded types (NotAliased and MayBeAliased), which track the lifetime but
not the number of references to an object [10].

Plaid [17,26,32] is a typestate-oriented programming language [15] designed
for concurrency. In Plaid, the class of an object represents its current state, and
that class can change dynamically during runtime. Not only the interface (i.e.
available methods) depends on the state, the behavior (i.e. implementation) also
depends on the current state. Plaid also incorporates access permissions, which
are associated with each type to express the aliasing and the mutability of the
corresponding object, using keywords such as unique, shared and immutable.
Unfortunately, Plaid does not seem to be maintained any longer [17,30]. As far
as we know, Plaid as no notion of protocol completion.

To statically ensure the absence of null-pointer exceptions, there are tools
such as the Nullness Checker of the Checker Framework. This tool enhances the
Java’s type system so that types are non-nullable by default, which means that
null values cannot be assigned to them. To declare a variable or field with a
nullable type (i.e. a variable or field where the null value can be assigned to), one
can use the Nullable annotation6. Some modern languages, such as Kotlin, also
distinguish non-null types from nullable types, thus avoiding these exceptions7.
Nonetheless, these may produce false positives that might force the programmer
to provide additional checks, following a style known as defensive programming,
that a value is not null, even when it is provable that the code is safe8.

6 https://checkerframework.org/manual/#nullness-checker.
7 https://kotlinlang.org/docs/null-safety.html.
8 An example is available at https://tinyurl.com/2hmwx7vk.

https://checkerframework.org/manual/#nullness-checker
https://kotlinlang.org/docs/null-safety.html
https://tinyurl.com/2hmwx7vk

Java Typestate Checker 125

3 Motivating Example

To motivate the need for JATYC, consider a LineReader Java class that is
responsible for both opening a file and reading it line by line9. Listing 1.1 presents
an implementation.

Listing 1.1. LineReader class
1 import java . i o . ∗ ;
2 public c lass LineReader {
3 private Fi leReader f i l e = null ;
4 private int curr ;
5
6 public Status open (St r ing f) {
7 try {
8 f i l e = new Fi leReader (f) ;
9 curr = f i l e . read () ;

10 return Status .OK;
11 } catch (IOException exp) {
12 return Status .ERROR;
13 }
14 }
15
16 public St r ing read ()
17 throws IOException {
18 St r ingBu i ld e r s t r =
19 new St r ingBu i l d e r () ;
20 while (
21 curr != 10 && curr != −1
22) {
23 s t r . append ((char) curr) ;
24 curr = f i l e . read () ;
25 }
26 i f (curr == 10)
27 curr = f i l e . read () ;
28 return s t r . t oS t r i ng () ;
29 }
30
31 public boolean eo f () {
32 return curr == −1;
33 }
34
35 public void c l o s e ()
36 throws IOException {
37 f i l e . c l o s e () ;
38 }
39
40 public enum Status { OK, ERROR }
41 }

The intended protocol is defined implicitly by the sequences of method calls
that are supported, and by the “states” reached via those calls. To use the
LineReader, one must invoke the open method passing the path of the file. If the
call returns ERROR, then the file could not be opened. If it returns OK, then
one can proceed to read the file. Before calling the read method, one must call
the eof method to ensure that the end of the file was not reached. Each read call
returns a string with a new line. After reading the file, the close method must
be called to free the resources and close the underlying stream.

If this contract is not followed, errors may occur or wrong results may be
produced. If one attempts to read before calling open, a NullPointException will
9 The class could be a subclass of the abstract class java.io.Reader.

126 J. Mota et al.

be thrown since the file field has a null reference (line 24). Additionally, if one
calls the read method after calling close, an IOException will occur since the
stream is closed (line 37). Finally, if one keeps reading the file after eof returns
true, then read will return empty strings, giving a false impression that the
file being read contains empty lines10. While the Java compiler accepts most of
the wrong behaviors described above, in the next section we will show how to
enrich Java programs with typestate annotations that allow rejecting programs
containing these kinds of behavioral errors at compile-time.

4 What Is the Tool Good For?

Protocols. All instances of a Java class having a typestate are checked in
order to enforce the prescribed behavior. The typestate specifications are writ-
ten in .protocol files, with the form typestate T{S1 . . . Sn}, where each state
Si is a list of method transitions {M1 . . .Mj}, and the general form of Mi is:
T m(T1,...,Tk) : <v1: S1, ..., vm: Sm>, with T, T1, . . . , Tk Java types: when method
m is executed and returns value vi, the typestate switches to state Si

11.
Listing 1.2 presents the protocol for the LineReader (cf. Listing 1.1). It spec-

ifies four states, Init, Open, Read and Close, and implicitly includes the end
state, which is the final state. In the initial state Init, only the open method
is available to be called (line 3). If the method returns OK, the state changes
to Open; otherwise, the state changes to end, where no operations are allowed.
After opening the file, the close method may be called anytime, except if the
file was already closed (lines 7, 11, and 14). In the Open state, one may call the
eof method (line 6). If it returns true, the state changes to Close; otherwise, the
state changes to Read. In the Read state one may call the read method, which
then changes the state to Open (line 10).

Listing 1.2. LineReader protocol
1 type s ta t e LineReaderProtocol {
2 I n i t = {
3 Status open (St r ing) : <OK: Open , ERROR: end>
4 }
5 Open = {
6 boolean eo f () : <t rue : Close , f a l s e : Read>,
7 void c l o s e () : end
8 }
9 Read = {

10 St r ing read () : Open ,
11 void c l o s e () : end
12 }
13 Close = {
14 void c l o s e () : end
15 }
16 }

To associate a protocol with a Java class, one must include a Typestate
annotation containing the (relative) path of the protocol file. For backwards-
10 Code examples are available online at https://git.io/JtR7E.
11 The complete grammar is available at https://git.io/JtMu3.

https://git.io/JtR7E
https://git.io/JtMu3

Java Typestate Checker 127

compatibility with Mungo, we support the Typestate annotation from the
mungo.lib package (Listing 1.3).

Listing 1.3. LineReader class with Typestate annotation
1 import mungo . l i b . Typestate ;
2 @Typestate (“LineReader . p ro to co l ”)
3 public c lass LineReader { /∗ . . . ∗/ }

Protocol Compliance and Completion. JATYC ensures that instances
of Java classes associated with a typestate not only obey to the corresponding
protocol, but are also consumed (that is, they reach the end state): as a conse-
quence, potentially important method calls are not forgotten and resources are
freed. To add more flexibility, it is also possible to declare states in which an
object may stop to be used. These droppable states [25] are declared by including
the following special transition drop: end12.

To see an example of incorrect use of LineReader, consider Listing 1.4, where
errors are indicated in the comments. According to the protocol (Listing 1.2),
the reader object is in the Close state (line 5); thus, the only available method is
close, that is, read is not available. Negating the loop condition fixes the error.
Moreover, the close method is called nowhere: therefore the protocol does not
reach the end state.

Listing 1.4. LineReader use
1 LineReader reader = new LineReader () ;
2 switch (reader . open ()) {
3 case OK:
4 while (reader . e o f ()) {
5 System . out . p r i n t l n (reader . read ()) ;
6 // Error : cannot c a l l “read” on s t a t e Close
7 }
8 break ;
9 case ERROR:

10 System . e r r . p r i n t l n (“Could not open f i l e ”) ;
11 break ;
12 }
13 // Error : ob j e c t did not complete i t s pro toco l

Nullness Checking. Null pointer errors are the cause of most runtime
exceptions in Java programs [4,31]: being able to detect these errors at compile-
time is therefore crucial. Towards that direction, JATYC offers the following
guarantees: (1) types are non-null by default (contrary to Java’s default type
system13), method calls and field accesses are only performed on non-null types;
(2) false positives (in classes associated to protocols) are ruled out by taking
into account that methods are only called in a specific order. To allow a type to
be nullable, one can use the Nullable annotation. The analysis is based on the
formal work done in [7] for a language that served as basis for Mungo.

To exemplify guarantee (1), Listing 1.5 presents two scenarios where methods
are potentially called on null values. In line 5, JATYC reports an error since a

12 Example of droppable states at https://git.io/JOqfc.
13 The fact that null is a value of any type is the source of Java not being type safe [1].

https://git.io/JOqfc

128 J. Mota et al.

method call could be performed on null. In line 9, no error is reported since the
code checks for null first (line 8).

Listing 1.5. Nullness checking example (1)
1 import org . checkerframework . checker . j t c . l i b . Nu l l ab l e ;
2 import java . i o . Fi leReader ;
3 public c lass Main {
4 void use1 (@Nullable Fi leReader f i l e) {
5 int c = f i l e . read () ; // Error : cannot c a l l “read” on nu l l
6 }
7 void use2 (@Nullable Fi leReader f i l e) {
8 i f (f i l e != null)
9 int c = f i l e . read () ; // Safe operation

10 }
11 }

To see how guarantee (2) works, consider Listing 1.6: if one calls the read
method before open, a null pointer error will occur. But since open must be
called first (according to the protocol), we know that the file field is non-null
when read is called; thus, the operation is safe. Notice the absence of defensive
programming, required by many static analysis tools, namely by the Nullness
Checker of the Checker Framework.

Listing 1.6. Nullness checking example (2)
1 import org . checkerframework . checker . j t c . l i b . Nu l l ab l e ;
2 // . . .
3 public c lass LineReader {
4 private @Nullable Fi leReader f i l e = null ;
5 // . . .
6 public St r ing read () {
7 // . . .
8 curr = f i l e . read () ; // Safe operation
9 // . . .

10 }
11 }

Sharing. In imperative languages, it is common to have multiple references
to the same object. Aliasing makes it more difficult to track the state of each
object, since it may change via another reference. The whole challenge becomes
even harder in the presence of concurrent computations and accesses. Consider
the example in Listing 1.7 where a reference is stored in a field (line 1) and
passed to a method call (line 5). Depending on the body of the use method, the
program in Listing 1.7 can be safe or unsafe: if the method modifies the state of
the reader object (by calling methods on it), then the assumptions the wrapper
made about the state of the stored reference are wrong, and in turn the program
must be rejected, otherwise the program could be accepted. JATYC is able to
track the potential state changes in the use method, thus allowing for a more
liberal and sound management of resources.

Java Typestate Checker 129

Listing 1.7. Aliasing example (1)
1 class Wrapper { public LineReader reader = new LineReader () ; }
2 class Main {
3 void main () {
4 Wrapper wrapper = new Wrapper () ;
5 use (wrapper . r eader) ;
6 }
7 // . . .
8 }

Table 1. Assertions’ grammar

Assertion := Term | Term “∧” Assertion
Term := Access | Equality | TypeOf | Packed | Unpacked

Access := “access” “(” AccessLocation “,” f “)”
Equality := “eq” “(” Location “,” Location “)”
TypeOf := “typeof” “(” Location “,” t “)”
Packed := “packed” “(” Location “)”
Unpacked := “unpacked” “(” Location “)”

Location := id | id “.” Location
AccessLocation := id | id “.” “0” | id “.” AccessLocation

To track aliasing and control the operations that can be allowed, we inte-
grate behavioral types [19] with fractional permissions [6] in an assertion
language, obtaining an original (and promising) combination. Table 1 shows the
grammar of assertions. Each assertion is a conjunction of five types of predicates:
access (specifies the fractional permissions for access locations); typeof (asserts
the current state of an object); packed (asserts that the object’s fields are hidden
behind the abstract typestate view); unpacked (asserts that the object’s fields
are exposed); eq (asserts that two locations point to the same object). Access
locations refer to variables, fields, or the objects pointed by those, for example:
x refers to the local variable x ; x.y refers to the field y of the object pointed by
x ; x.0 refers to the object pointed by variable x. The x.0 notion allows us to
distinguish the permissions to call methods on objects from the permissions to
read from or write to the variables or fields themselves.

Listing 1.8. Aliasing example (2)
1 LineReader r1 = new LineReader () , r2 = r1 ;
2 // access (r1 , 1) ∧ access (r1 .0 , 1/2) ∧ typeo f (r1 , State “ In i t ”) ∧
3 // access (r2 , 1) ∧ access (r2 .0 , 1/2) ∧ typeo f (r2 , State “ In i t ”) ∧
4 // packed (r1) ∧ packed (r2) ∧ eq (r1 , r2)

Listing 1.8 shows an assertion example for two variables with the same refer-
ence. The predicate access(r1, 1) indicates there is read and write access permis-
sion to the variable; access(r1.0, 1/2) indicates that there is only read permission
to the object pointed by the variable (thus, only methods that keep the object

130 J. Mota et al.

in the same state may be called); typeof(r1, State “Init”) asserts that the object
is in the Init state; and packed(r1) indicates that the object’s fields are hidden
behind the abstract typestate view. The same meanings apply to r2. Finally,
eq(r1, r2) asserts that both variables hold the same reference.

To relieve the programmer from writing the assertions, JATYC embeds a
prototypal algorithm that infers all the assertions. The inference algo-
rithm is inspired by the work done in [14]. It has four steps: variables and
fields are collected; assertions over symbolic fractions, types and equalities are
constructed and associated with each expression in the code (before and after);
each expression is analyzed and constraints over the symbols are produced; and
finally, the constraint system is given to the Z3 Solver [9]. A satisfiable system
ensures: objects obey each other’s protocols, even in the presence of aliasing; no
data-races occur at the level of variables and fields; method calls that change
the state of an object do not interfere with each other.

Listing 1.9 shows a file being read in a separate thread (line 5), while
in the main thread, the reader is closed before waiting for the thread to
finish (line 9). This will result in an IOException when trying to read the
closed file (line 5). The algorithm infers that full permission to the reader
object is required in the thread (to read from it), and in the main thread
(to close it). When t.start is called, full permission is acquired, leaving the
main thread with no permission to the reader. When r.close is called, full
permission is necessary, but not available. This contradiction will result in
no solution being found, showing that there is a problem in the code. If
r.close() is moved after t.join(), a solution will be found, and the code accepted,
since t.join() gives back the permissions acquired when the thread started.

Listing 1.9. Concurrent LineReader use
1 LineReader r = new LineReader () ;
2 i f (r . open () == Status .OK) {
3 Thread t = new Thread (() −> {
4 while (! r . e o f ()) {
5 p r i n t l n (r . read ()) ;
6 }
7 }) ;
8 t . s t a r t () ;
9 r . c l o s e () ;

10 t . j o i n () ;
11 }

Limitations. First, subtyping and dynamic method dispatch in Java are cur-
rently ignored. This means that the programmer currently needs to avoid using
these Java features to still benefit from the guarantees that the tool provides.
Secondly, the inference algorithm has some issues: all objects are considered
to be unpacked, what causes problems if for example we want to work with
recursive data structures; the analysis of threads only works if the thread is
started and waited upon in the context in which it was created; and if the
algorithm reports that it found no solution, no further information is given
about the possible root problem. Thirdly, although the tool is fast at infer-
ring the fractional permissions, it is slow at inferring the types. Finally, only

Java Typestate Checker 131

concurrent scenarios with either a single reader and writer or multiple readers
are allowed. For example, the scenario in Listing 1.10 is not currently possible.

Listing 1.10. One writer and one reader
1 new Thread (() −> {
2 while (! r . e o f ())
3 p r i n t l n (r . read ()) ;
4 }) ;
5
6 new Thread (() −> {
7 while (! r . e o f ()) {}
8 }) ;

5 Future Work

To lift the restrictions leading to the rejection of the code in Listing 1.10, allowing
more permissible yet safe concurrent accesses to data, we will incorporate stan-
dard approaches like Rely-Guarantee [23], locks and monitors. We also plan to fix
limitations previously mentioned by taking into account subtyping and dynamic
method dispatching. We are aware of the work done in [3], and it would be
interesting to integrate the notion of synchronous session subtyping in JATYC.
Subtyping support is crucial and it should be our first next step. Additionally,
we plan to implement the inference of packing and unpacking, and pinpoint the
code locations that caused the constraint system to be unsatisfiable, allowing
the programmer to find out where the problem is. Furthermore, we would like
to support generics and collections. Finally, we plan to improve the performance
of the inference algorithm by only using Z3 to infer the fractional permissions
and using a different technique to infer the types.

Acknowledgements. We warmly acknowledge the anonymous reviewers whose com-
ments and suggestions pushed us to present a more complete and well-rounded discus-
sion of the topics.

This work was partially supported by the EU H2020 RISE programme under the
Marie Sk�lodowska-Curie grant agreement No. 778233 (BehAPI) and by NOVA LINCS
(UIDB/04516/2020) via the Portuguese Fundação para a Ciência e a Tecnologia.

References

1. Amin, N., Tate, R.: Java and Scala’s type systems are unsound: the existential
crisis of null pointers. ACM SIGPLAN Notices 51(10), 838–848 (2016). https://
doi.org/10.1145/3022671.2984004

2. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Program. Lang. 3(2–3), 95–230 (2016). https://doi.org/10.1561/2500000031

3. Bacchiani, L., Bravetti, M., Lange, J., Zavattaro, G.: A session subtyping tool, to
appear. In: 23rd International Conference on Coordination Models and Languages
(2021)

4. Beckman, N.E., Kim, D., Aldrich, J.: An empirical study of object protocols in
the wild. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 2–26. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22655-7 2

https://doi.org/10.1145/3022671.2984004
https://doi.org/10.1145/3022671.2984004
https://doi.org/10.1561/2500000031
https://doi.org/10.1007/978-3-642-22655-7_2

132 J. Mota et al.

5. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: The 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 259–270 (2005). https://doi.org/10.1145/1040305.
1040327

6. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5 4

7. Bravetti, M., et al.: Behavioural types for memory and method safety in a core
object-oriented language. In: Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470,
pp. 105–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64437-6 6

8. Cardelli, L.: Type systems. ACM Comput. Surv. 28(1), 263–264 (1996). https://
doi.org/10.1145/234313.234418

9. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

10. DeLine, R., Fähndrich, M.: The fugue protocol checker: Is your software baroque.
Technical Report, Technical Report MSR-TR-2004-07, Microsoft Research (2004)

11. Dietl, W., Dietzel, S., Ernst, M.D., Muşlu, K., Schiller, T.W.: Building and using
pluggable type-checkers. In: The 33rd International Conference on Software Engi-
neering, pp. 681–690 (2011). https://doi.org/10.1145/1985793.1985889

12. Ekman, T., Hedin, G.: Rewritable reference attributed grammars. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 147–171. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24851-4 7

13. Ekman, T., Hedin, G.: The jastadd extensible java compiler. In: The 22nd Annual
ACM SIGPLAN Conference on Object-oriented Programming Systems and Appli-
cations, pp. 1–18 (2007). https://doi.org/10.1145/1297105.1297029

14. Ferrara, P., Müller, P.: Automatic inference of access permissions. In: Kuncak,
V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 202–218. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9 14

15. Garcia, R., Tanter, É., Wolff, R., Aldrich, J.: Foundations of typestate-oriented
programming. ACM Trans. Program. Lang. Syst. (TOPLAS) 36(4), 12 (2014).
https://doi.org/10.1145/2629609

16. Girard, J.Y.: Linear logic. Theoretical Comput. Sci. 50(1), 1–101 (1987). https://
doi.org/10.1016/0304-3975(87)90045-4

17. Group, T.P.: The plaid programming language - introduction. https://www.cs.
cmu.edu/aldrich/plaid/plaid-intro.pdf. Accessed 10 Apr 2021

18. Hoare, T.: Null references: The billion dollar mistake, Presentation at QCon Lon-
don (2009). https://tinyurl.com/eyipowm4

19. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. (CSUR) 49(1), 1–36 (2016). https://doi.org/10.1145/2873052

20. Ishtiaq, S.S., O’hearn, P.W.: Bi as an assertion language for mutable data struc-
tures. In: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 14–26 (2001). https://doi.org/10.1145/1988042.1988050

21. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: Ver-
iFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5 4

22. Jemerov, D., Isakova, S.: Kotlin in Action. Manning Publications Company, New
York (2017)

https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/978-3-030-64437-6_6
https://doi.org/10.1145/234313.234418
https://doi.org/10.1145/234313.234418
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1985793.1985889
https://doi.org/10.1007/978-3-540-24851-4_7
https://doi.org/10.1145/1297105.1297029
https://doi.org/10.1007/978-3-642-27940-9_14
https://doi.org/10.1145/2629609
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://www.cs.cmu.edu/aldrich/plaid/plaid-intro.pdf
https://www.cs.cmu.edu/aldrich/plaid/plaid-intro.pdf
https://tinyurl.com/eyipowm4
https://doi.org/10.1145/2873052
https://doi.org/10.1145/1988042.1988050
https://doi.org/10.1007/978-3-642-20398-5_4

Java Typestate Checker 133

23. Jones, C.B.: Specification and design of (parallel) programs. In: Mason, R.E.A.
(ed.) The IFIP 9th World Computer Congress Information Processing, Paris, vol.
83, pp. 321–332 (1983). North-Holland/IFIP (1983)

24. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
mungo and stmungo. In: The 18th International Symposium on Principles and
Practice of Declarative Programming, pp. 146–159. ACM (2016). https://doi.org/
10.1145/2967973.2968595

25. Mota, J.: Coping with the reality: adding crucial features to a typestate-oriented
language. Master’s thesis, NOVA School of Science and Technology (2021). https://
github.com/jdmota/java-typestate-checker/blob/master/docs/msc-thesis.pdf

26. Naden, K., Bocchino, R., Aldrich, J., Bierhoff, K.: A type system for borrowing
permissions. ACM SIGPLAN Notices 47(1), 557–570 (2012). https://doi.org/10.
1145/2103621.2103722

27. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

28. Papi, M.M., Ali, M., Correa Jr, T.L., Perkins, J.H., Ernst, M.D.: Practical plug-
gable types for java. In: The 2008 International Symposium on Software Testing
and Analysis, pp. 201–212 (2008). https://doi.org/10.1145/1390630.1390656

29. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pp.
55–74. IEEE (2002). https://doi.org/10.1109/lics.2002.1029817

30. Sadiq, A., Li, Y.F., Ling, S.: A survey on the use of access permission-based speci-
fications for program verification. J. Syst. Softw. 159, 110150 (2020). https://doi.
org/10.1016/j.jss.2019.110450

31. Sunshine, J.: Protocol programmability. Ph.D. thesis, Carnegie Mellon University,
Pittsburgh (2013)

32. Sunshine, J., Naden, K., Stork, S., Aldrich, J., Tanter, É.: First-class state change in
plaid. ACM SIGPLAN Notices 46(10), 713–732 (2011). https://doi.org/10.1145/
2076021.2048122

33. Wetsman, N.: Contact tracing app for England and wales failed to flag people
exposed to Covid-19. The Verge (2020). https://www.theverge.com/2020/11/2/
21546618/uk-coronavirus-contact-tracing-app-error-alert-isolation

https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2967973.2968595
https://github.com/jdmota/java-typestate-checker/blob/master/docs/msc-thesis.pdf
https://github.com/jdmota/java-typestate-checker/blob/master/docs/msc-thesis.pdf
https://doi.org/10.1145/2103621.2103722
https://doi.org/10.1145/2103621.2103722
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1109/lics.2002.1029817
https://doi.org/10.1016/j.jss.2019.110450
https://doi.org/10.1016/j.jss.2019.110450
https://doi.org/10.1145/2076021.2048122
https://doi.org/10.1145/2076021.2048122
https://www.theverge.com/2020/11/2/21546618/uk-coronavirus-contact-tracing-app-error-alert-isolation
https://www.theverge.com/2020/11/2/21546618/uk-coronavirus-contact-tracing-app-error-alert-isolation

Asynchronous Global Types in Co-logic
Programming

Riccardo Bianchini and Francesco Dagnino(B)

DIBRIS, Università di Genova, Genoa, Italy
francesco.dagnino@dibris.unige.it

Abstract. Global types are at the core of communication based pro-
gramming. They allow a high level specification of protocols involving
many participants and enforce good safety and liveness properties, such
as absence of deadlock, locked participants and orphan messages. In this
paper, we describe an implementation of a novel formalism of global types
for sessions with asynchronous communications in co-logic programming,
where we use coinduction to properly handle the coinductive syntax of
global types and processes. We also define a simple query language to
write sessions and global types, providing primitives for type checking.

Keywords: Global types · Prolog · Coinduction

1 Introduction

We describe an implementation in co-logic programming [1,9,11] of a novel for-
mulation of global types for asynchronous sessions, described in a companion
paper [4]. Co-logic programming is an extension of logic programming where
predicates can be marked as coinductive. In this case, resolution relies on a mech-
anism of cycle detection which gives (successful) termination when the same goal
is encountered twice.

The benefits of this work are twofold: on one hand, to provide an implemen-
tation of the type system described in [4], and a simple user interface for making
related queries. On the other hand, global types and related judgments provide
a very interesting and challenging case study for co-logic programming, since
their encoding forces to clearly understand and express the either inductive or
coinductive nature of definitions, and the related termination issues. Notably,
sometimes inductive predicates are adequate, sometimes they need to be imple-
mented, rather than directly, as the negation of a predicate defined coinductively,
in other cases it is necessary to use the coinductive extension of SWI-Prolog.
Finally, in some cases, a by-hand cycle detection mechanism is needed, since
neither a standard inductive definition, nor a coinductive definition using built-
in cycle detection are enough to ensure termination. These issues are discussed
in detail in Sect. 5. We used SWI-Prolog [12] version 8.2.2 for x64-win64.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 134–146, 2021.
https://doi.org/10.1007/978-3-030-78142-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-78142-2_9

Asynchronous Global Types in Co-logic Programming 135

The tool is composed of two components:

– the core part, that is, the Prolog implementation of definitions in [4], such as
sessions, global types, projections, and typing judgments

– the query language, which provides a more user-friendly syntax, and a simple
typechecking phase to avoid inconsistencies in the user’s code.

Section 2 reports the definitions from [4] implemented in the tool. Section 3
is a brief presentation of co-logic programming. Section 4 describes the query
language, and Sect. 5 the Prolog implementation, discussing termination issues.
Finally, in Sect. 6 we summarize the contribution and discuss future devel-
opments. The complete code, and instructions for using the prototype,
can be found at https://github.com/RiccardoBianc/Asynchronous-global-types-
implementation.

2 Global Types for Asynchronous Sessions

We briefly summarize the formulation of global types for asynchronous sessions
introduced in [3], and subsequently extended in [4], reporting the formal defini-
tions implemented in the tool. The key idea in [3] is to directly handle asynchrony
at the level of global types, in the sense that an output and the corresponding
input operation are modeled by distinct type constructors. In this way, we can
directly assign a global type to an asynchronous session without the need of
asynchronous subtyping, but this comes at the cost that not all global types
ensure the desired properties, hence a notion of well-formedness becomes crucial
in our setting.

Another novelty with respect to classical presentations [2,5] of global types is
that a coinductive approach is adopted. Namely, processes and types with an infi-
nite behaviour are expressed as infinite regular terms, rather than by an explicit
fixed-point operator, and, correspondingly, functions handling them, e.g., the
projection, are also defined coinductively. This feature makes the implementa-
tion in co-logic programming very natural, as shown in the following.

Processes and Sessions. We assume base sets of participants p, q, r ∈ Part, and
labels λ ∈ Lab. The syntax of processes is as follows:

P ::=ρ p!{λi.Pi}i∈I | p?{λi.Pi}i∈I | 0 I �= ∅, λj �= λh for j �= h

The symbol ::=ρ indicates that the productions should be interpreted coinduc-
tively, rather than inductively as in the standard case. That is, they define pos-
sibly infinite terms. However, we assume such infinite terms to be regular, that
is, with finitely many distinct sub-terms.

A process of shape p!{λi.Pi}i∈I (internal choice) sends to p one of the labels
in a set, and then behaves differently depending on the sent label. A process of
shape p?{λi.Pi}i∈I (external choice) waits for receiving from p one of the labels
in a set, and then behaves differently depending on the received label. An internal

https://github.com/RiccardoBianc/Asynchronous-global-types-implementation
https://github.com/RiccardoBianc/Asynchronous-global-types-implementation

136 R. Bianchini and F. Dagnino

choice which is a singleton is simply written p!λ.P, and p!λ.0 is abbreviated p!λ,
and analogously for an external choice.

Queues are sequences of messages, which are triples consisting of a sender, a
label, and a receiver, as shown below:

M ::= ∅ | 〈p, λ, q〉 · M
(Multiparty) sessions consist of pairs participant/process composed in parallel,
each with a different participant, and a queue. That is, a session has shape
N ‖ M, where

N ::= p1[[P1]] ‖ · · · ‖ pn[[Pn]] pi �= pj for i �= j

For example consider the session:

p[[q!λ.q?λ′]] ‖ q[[p!λ′.p?λ]] ‖ ∅ (1)

where each of the participants p and q wishes to first send a message to and then
receive a message from the other one. In a synchronous setting, this session would
be stuck, because a communication arises from the synchronisation of an output
with a matching input, and here the output q!λ of p cannot synchronise with
the input p?λ of q, since the latter is guarded by the output p!λ′. Symmetrically,
the output p!λ′ of q cannot synchronise with the input q?λ′ of p. Instead, in an
asynchronous setting, p could put its message for q on the queue and q could
read it after putting its message for p on the queue and viceversa.

Type System. Classical global types describe the interaction in a session with
communications specifying the sender of the message, its receiver, and the sent
message. So a communication embeds both the sending and the receiving of the
message. Hence, it is not possible to assign a global type, e.g., to the session
above, since this type should specify that either the communication in which
p sends λ to q or the one in which q sends λ′ to p takes place first. In the
global types of [3], instead, communications are split into outputs and inputs,
as follows:

G ::=ρ pq!{λi.Gi}i∈I | pq?λ.G | End p �= q, I �= ∅, λj �= λh for j �= h

A global type of shape pq!{λi.Gi}i∈I specifies that p sends to q one of the labels
in a set, and then an interaction takes place which depends on the sent label.
A global type of shape pq?λ.G specifies that q receives from p the label λ, and
then the interaction described by G takes place. As processes, global types are
defined coinductively, so that infinite global types are allowed, but only of regular
shape. The players of a global type are those p occurring as senders in outputs
(pq!{λi.Gi}i∈I) or receivers in inputs (qp?λ.G).

With these types, it is possible to describe the asynchronous session (1) with
the type

pq!λ.qp!λ′.pq?λ.qp?λ′.End

Asynchronous Global Types in Co-logic Programming 137

or with the others obtained by swapping the order of outputs or inputs, that is,

qp!λ′.pq!λ.pq?λ.qp?λ′.End
pq!λ.qp!λ′.qp?λ′.pq?λ.End
qp!λ′.pq!λ′.qp?λ′.pq?λ.End

Configuration types are pairs G‖M where G is a global type and M is a
queue. A configuration type describes a session in which some participant sent
a message that is not yet read from its receiver. Well-formedness of G‖M is
defined as the conjunction of the following properties:

– G‖M is input/output matching, that is, every message put on the queue will be
eventually read and every enabled input should find a corresponding message
in the queue.

– G is bounded, that is, the first occurrence as player of a participant, if any,
is at a bounded depth in all paths, ensuring that no player remains stuck
forever.

– The projection of G on each player is well-defined (explained below).

The tool implements these properties as described in [4], which significantly
enlarge the class of typable sessions with respect to [3].

The notion of projection is a key one in type systems for multiparty sessions.
Usually [5,6], global types are projected onto local types and local types are
assigned to processes. In the simple calculus in [4], global types can be directly
projected onto processes, as in [3,8]. Projection computes, starting from a global
type G, the (most general) process P associated with a single participant p. This
is modeled by the judgment G�p �→ P, which is defined coinductively.

Example 1. For instance, the previously considered global type

G = pq!λ.qp!λ′.pq?λ.qp?λ′.End

is projected to processes P = q!λ.q?λ′.0 for participant p and Q = p!λ′.p?λ.0 for
participant q.

As already mentioned, the notion of well-formedness is crucial in this setting
as not all global types ensure desirable properties of asynchronous sessions. We
show below some examples of such global types explaining why they are not
well-formed.

Example 2. The following global type describes a deadlocked session, as q is
blocked waiting for the message λ2:

G = pq!λ1.qp!λ2.pq?λ2.qp?λ2.G

This type is not input/output matching, as the input pq?λ2 does not match any
previous output, hence G is not well-formed.

138 R. Bianchini and F. Dagnino

Example 3. The following global type describes a session where the participant
r can wait forever, because p and q can exchange the message λ1 forever:

G = p q!{λ1.pq?λ1.G, λ2.pq?λ2.qr!λ.qr?λ.G}
This type is not well-formed as it is not bounded precisely because of the infinite
path pq!λ1.pq?λ1.pq!λ1 . . ., which does not involve r.

Example 4. The following global type describes a session where the first message
is never read:

G = qp!λ1.G1 G1 = pq!λ.pq?λ.G1

This type is not input/output matching, as the output qp!λ1 is not matched by
any subsequent input, hence it is not well-formed.

Boundedness and projection, together with their Prolog implementation, will
be described in more detail in Sect. 5.

The typing judgment N‖M : G‖M checks that the session N‖M is consistent
with the global protocol represented by the configuration type G‖M. The judg-
ment is derived from the following conditions, for N = p1[[P1]] ‖ · · · ‖ pn[[Pn]]:

– For each participant pi, the associated Pi should be consistent with that
obtained as projection of the global type. That is, the protocol specified
through the global type can be more general than the process in the ses-
sion, as formalized by a preorder on processes.

– The players of the global type are a subset of the participants p1, . . . , pn of the
session. The converse is not required, so that, if a session is well-typed, then
the session obtained adding participants with inactive processes is well-typed
as well.

Whereas the tool is devoted to the implementation of the type system, hence
of the syntactic definitions and judgments described so far, [4] also provides
an asynchronous operational semantics for multiparty sessions, by means of a
labelled transition system, and proves that the type system ensures the following
properties of computations: deadlock-freedom (in every reachable state of com-
putation, the session is either terminated or it can move); input lock-freedom
(every component wishing to do an input will eventually do so); orphan-message-
freedom (every message stored in the queue is eventually read).

3 Co-logic Programming

A limit of standard logic programming is that we cannot define predicates on
non-well-founded structures, such as infinite lists. To overcome this, logic pro-
gramming has been extended to support coinduction by coinductive logic pro-
gramming [1,9,11], where terms are coinductively defined, that is, can be infinite,
and predicates are coinductively defined as well. Possibly infinite terms are repre-
sented by finite sets of equations between finite terms. For instance, the equation
L � [1,2|L] represents the infinite list [1,2,1,2,...]. On the other hand, the
infinite list of odd numbers cannot be represented by a finite set of equations.

Asynchronous Global Types in Co-logic Programming 139

Moreover, standard SLD resolution is replaced by co-SLD resolution [1,11],
which, roughly speaking, keeps trace of already encountered goals, called coin-
ductive hypotheses, so that, when a goal is found the second time, it is considered
successful.

A drawback of coinductive logic programming is that all predicates are inter-
preted coinductively, whereas in applications it is often the case that predicates
to be interpreted inductively and coinductively should coexist. To overcome this
issue, co-logic programming [10] marks predicates as either inductive or coinduc-
tive; however, no mutual recursion is allowed between an inductive and a coinduc-
tive predicate, that is, stratification is needed. Hence each layer can be interpreted
as the least or greatest fixed point, respectively, of an inference system where the
lower levels are assumed as axioms. This approach of marking predicates is sup-
ported by SWI-Prolog, the Prolog environment used for the implementation.

4 Query Language

Together with the implementation, we provide a high-level query language which
can be used to easily check the judgments described in Sect. 2. A program in this
language consists of groups, each one consisting of many tests. Both groups and
tests have names. For instance, the program below consists in a single group,
composed of two tests. In the first test, the global type and the processes are
those of Example 1, hence all queries succeed. In the second test, the global type
is that of Example 3, and the query not bounded G succeeds, indeed the global
type is not bounded.

Test_Group[
Example_1{
Process P = q!L; q?L1; 0
Process Q = p!L1; p?L; 0
GlobalType G = p>q!L; q>p!L1; p>q?L; q>p?L1; End
Session S = p[P] | q[Q] | Empty
io -match G|Empty
bounded G
proj(G,q) == Q
wf G|Empty
S has type G|Empty
}

Example_3{
GlobalType G = p>q!

{
L1; p>q?L1; G,
L2; p>q?L2; q>r!L; q>r?L; G
}

not bounded G
}

]

140 R. Bianchini and F. Dagnino

Each test consists of a list of declarations, followed by a list of queries.
Declarations begin with a keyword for the kind of declared entity: Process

for processes, GlobalType for global types, Queue for queues, and Session for
sessions. The syntax for such entities closely follows that of Sect. 2, apart that we
use the separator > to suggest the direction of the communication. The empty
queue is represented by the constant Empty. The declarations can be mutually
recursive. The tool performs a rudimentary typechecking, e.g., rejecting a pro-
gram where a declared process is used as a queue.

Queries correspond to judgments described in Sect. 2. In particular:

– io-match G|M checks that the configuration type G|M is input/output match-
ing

– bounded G checks that the global type G is bounded
– proj(G,p) == P checks that the projection of the global type G on p is P
– exists-proj(G,p) checks that the projection of the global type G on p is

well-defined
– exist-all-proj G checks that all the projections of the global type G are

well-defined
– wf G|M checks that the configuration type G|M is well-formed.
– S has type G|M checks that S is well-typed with respect to the configuration

type G|M
– for each query, it is also possible to check that its negation holds by prepending
not.

Again, the tool checks that entities are used in the queries accordingly to their
declaration. For instance, in the typing query it is checked that the first argument
is a session and the second argument is a configuration type.

The query language is parsed using ANTLR [7], generating a parsing tree
which is used to obtain the Prolog code. Then, the tool executes the Prolog
file directly using the Java Runtime standard library and its method exec
to execute string commands in separate processes and, finally, the results are
shown.

5 Prolog Implementation

We illustrate some fragments of Prolog code, chosen simple for space lim-
its, yet providing the flavour of the kind of issues to be faced in the imple-
mentation. First of all we mention that global types, being coinductively
defined, are implemented by (equations between) terms G of shape either
output_type(A,B,[L-G|LGs])), or input_type(A,B,L,G)), or end, where
A, B are participants, L are labels, and L-G and LGs are pairs 〈label, global
type〉 and lists of such pairs, respectively.

Asynchronous Global Types in Co-logic Programming 141

The first two are examples of cases where, to implement a coinductively
defined judgment, it is not adequate to just use a coinductive predicate, but
other strategies need to be used.

Consider the definition of player(G,A), checking whether the participant A
occurs as player in G. On an infinite (regular) global type, an inductive definition
of player would not terminate in the negative case, while a coinductive defi-
nition would be not correct, since it would be successful, when finding a cycle
(that is, the same global type), for an arbitrary argument. The solution is to
define player as the negation of a predicate not_player.
player(G,A) :-

\+ not_player(G,A).

not_player(output_type(A,_,LGs), B):-
B \= A,
not_player_list(LGs , B).

not_player(input_type(_,B,_,G), A) :-
A \= B,
not_player(G,A).

not_player(end ,_).

The predicate visits the global type and checks that at each node the participant
argument is not a player. This predicate being coinductive, when a cycle is found
the call succeeds, hence the predicate player fails, correctly, in the negative
case. On the other hand, in the positive case (an argument which is a player)
the predicate not_player finitely fails, hence the predicate player succeeds.

In other cases, a by-hand cycle detection mechanism is needed. An example
is the definition of players(G,As), computing the set of players As of G. On an
infinite (regular) global type, again an inductive definition would not terminate.
On the other hand, a coinductive definition would accept all the supersets of
the players, implementing a slightly different concept. The solution is to define
players using an additional parameter, the list Gs of already encountered global
types, initially empty.
players(Gs ,G,[]) :-

member(G,Gs).

players(Gs ,output_type(A,B,LGs),As) :-
\+ member(output_type(A,B,LGs),Gs),
players_list ([output_type(A,B,LGs)|Gs],LGs ,Bs),
union(A,Bs ,As).

players(Gs ,input_type(A,B,L,G),As) :-
\+ member(input_type(A,B,L,G),Gs),
players ([input_type(A,B,L,G)|Gs],G,Bs),
union(B,Bs ,As).

players(_,end ,[]).

142 R. Bianchini and F. Dagnino

The predicate visits the global type, and, at each node, the current global type is
added to the list if not present yet, otherwise a cycle is detected and the result is
the empty set. At each step, the result is the union of the players of the subterms
and of the current node; since, when a cycle is found, the result is only the empty
set, the only solution is exactly the set of players, rather than all the supersets
as in the coinductive case.

As more significant and involved examples, we describe the implementation of
the boundedness check and of the projection judgment. This is interesting since
it is not trivial to design a concrete algorithm from these abstract definitions.

Boundedness. Global types can be naturally seen as trees. We use ξ to denote a
path in global type trees, that is, a possibly infinite sequence of communications
p q!λ or p q?λ. With ξn we represent the n-th communication in the path ξ,
where 0 ≤ n < x and x ∈ N ∪ {ω} is the length of ξ. With ε we denote the
empty sequence and with · the concatenation of a finite sequence with a possibly
infinite sequence. The function Paths gives the set of paths of global types, which
are the greatest sets such that:

Paths(pq!{λi.Gi}i∈I) =
⋃

i∈I{pq!λi · ξ | ξ ∈ Paths(Gi)}
Paths(pq?λ.G) = {pq?λ · ξ | ξ ∈ Paths(G)}
Paths(End) = {ε}

The definition of boundedness is based on the concept of depth of a player. Let
G be a global type. For ξ ∈ Paths(G), set depth(ξ, p) = inf{n | play(ξn) = p},
and define depth(G, p), the depth of p in G, as follows:

depth(G, p) =

{
1 + sup{depth(ξ, p) | ξ ∈ G} p ∈ players(G)
0 otherwise

Note that, if p is a player of G, but it does not occur as player in some path ξ of
G (that is, p �= play(ξn) for all n ∈ N), then depth(ξ, p) = inf ∅ = ∞, modelling
the fact that p may wait forever.

A global type G is bounded if depth(G′, p) is finite for all p ∈ players(G) and
all types G′ which occur in G.

This check is implemented by the predicate bounded below.

bounded(G) :-
players(G,As),
bounded_list(G,As).

bounded_list(G,[A]) :-
all_finite_depth(G,A).

bounded_list(G,[A|As]) :-
all_finite_depth(G,A),
bounded_list(G,As).

The set of players of the global type is computed, and then, for each player,
it is checked that its depth in each subterm of the global type is finite, by the
predicate all_finite_depth, described below.

Asynchronous Global Types in Co-logic Programming 143

In the abstract definition given above, the depth of a player in G is obtained
by computing its depth in each of the paths of G. To enforce boundedness in an
algorithmic way, in the implementation we take a different approach, by defining
the predicate finite_depth which holds if a participant has finite depth in a
global type. That is, if the participant is a player, then it occurs as player in each
path of the given global type. Then, we define the predicate all_finite_depth
which checks that finite_depth holds for each subterm of the given type.

finite_depth(G,A,_) :-
not_player(G,A).

finite_depth(output_type(A,_,_),A,_).

finite_depth(input_type(_,A,_,_),A,_).

finite_depth(output_type(A,B,LGs),C,G_found) :-
\+ member(output_type(A,B,LGs),G_found),
finite_depth_list(LGs ,C,[output_type(A,B,LGs)| G_found]).

finite_depth(input_type(A,B,_,G),C,G_found) :-
\+ member(input_type(A,B,_,G),G_found),
finite_depth(G,C,[input_type(A,B,_,G)| G_found]).

In the first clause, if the participant is not a player of the global type, then
the depth is 0, so it is finite.

In the second and third clause, if the participant is a player in the root
node, then the depth is 1, so it is finite. Otherwise, we have to check that the
participant is a player for all the paths starting from the children nodes. To avoid
non-termination in this check, we use a by-hand cycle detection mechanism,
implemented with the argument G_found. This argument is the list of already
encountered global types, which grows at each recursive call. When the same
global type is encountered twice, that is, is already in G_found, the goal is
rejected, because it means that following that path the participant has not been
found as a player, so its depth is infinite.

Note the difference between player(G,A), holding if A occurs as player
in some path, and finite_depth(G,A,[]), holding if A occurs as player in
each path (or is not a player at all). The negation of the former is a universal
property (A never occurs as a player), which can be defined by a coinductive
predicate, namely, not_player(G,A), so to rely on the built-in cycle detection
mechanism offered by SWI-Prolog. The negation of the latter is an existential
property (A is a player, and it does not occur in some path) which cannot
be defined by a coinductive predicate. The solution is to use a by-hand cycle
detection mechanism as described above.

The predicate finite_depth_list, not reported, is the lifting to lists of
pairs label-global type of the predicate.

144 R. Bianchini and F. Dagnino

Finally, note that there is no clause for the inactive process because this case
is covered by the first clause.

The above predicate is applied to all the sub-terms of a global type by the
predicate all_finite_depth.

all_finite_depth(output_type(A,B,LGs),C) :-
finite_depth(output_type(A,B,LGs),C,[]),
all_finite_depth_list(LGs ,C).

all_finite_depth(input_type(A,B,Lambda ,G),C) :-
finite_depth(input_type(A,B,Lambda ,G),C,[]),
all_finite_depth(G,C).

all_finite_depth(end ,_).

This predicate is declared coinductive, because in this case when the goal is
encountered twice it must be accepted. The predicate all_finite_depth_list,
not reported, is the lifting to lists of pairs label-global type of the predicate.

Fig. 1. Projection: contexts and example of rule

Projection. The definition of projection G�q �→ P uses process contexts with an
arbitrary number of holes indexed with natural numbers, where each hole has a
different index. Given a context C with holes indexed in J , we denote by C[Pj]j∈J

the process obtained by filling the hole indexed by j in Pj , for all j ∈ J . In Fig. 1
we report the definition of contexts and one rule, namely, the one defining the
projection of an output choice on the receiver q, in the case it is a player in the
global type (the projection on a non-player is always the inactive process).

The rule states that the projection is well-defined if the projections on q of
the branches Gi, for i ∈ I, give processes which can be consistently combined to
provide the resulting projection. More precisely, they have a common structure,
modelled by a multi-hole context C, where, for each hole j ∈ J , this is filled by a
different process subterm in the projection of each branch. The process filling the
j-th hole of the projection of branch i must start with an input from p and label
λi. In this way, the processes in the j-th holes of all branches can be combined
in an external choice, which is used to fill the context in the resulting projection.

Note that the rule just assumes the existence of context C, whereas in the
implementation this context, if any, should be constructed. We show below how
this is achieved, in a simplified version, yet illustrating all the key features of
real code:

Asynchronous Global Types in Co-logic Programming 145

projection(output_type(A,B,[L1 -G1 ,L2 -G2|LGs]),B,P) :-
player(output_type(A,B,[L1 -G1 ,L2 -G2|LGs]),B),
projection_list ([L1 -G1 ,L2 -G2|LGs],B,[P1 ,P2|Ps]),
build_context(P1 ,P2 ,A,L1 ,L2 ,Context),
pairs_keys(LGs ,Ls),
check_each_process(Context ,A,[L1 ,L2|Ls],

[P1 ,P2|Ps],Fillings),
build_process_result(Context ,Fillings ,A,P).

This clause models the case when the output choice has two or more branches;
the case of only one branch is handled by an ad-hoc clause that does not build
any context, because this is not necessary. After checking that the participant
B is a player in the global type, the predicate projection_list computes the
projections on B of all the subterms. Then, the predicate build_context,
declared as coinductive, is used to build the context C. This predicate visits at
the same time the processes P1 and P2 obtained as projection of the first two
branches, checking that they are equal node by node, and reporting this common
structure in Context, until one among these three conditions occurs:

– Both processes are inactive.
– Both are an input node receiving from A the corresponding label (L1 and
L2, respectively), as explained above.

– Both are encountered for a second time.

In the first case the resulting context is the inactive process. In the second case
the result is a hole context, since holes model the different process subterms
after the input. In the third case, the query is successful, as it happens in a
coinductive predicate, hence the context result turns out to be cyclic as well.
After building the context, the predicate pairs_keys obtains the list of the
branch labels. Then, the predicate check_each_process checks that all the
processes computed as projections of the subterms can be obtained by filling the
holes in the context, producing Fillings, a list with an element for each branch
i ∈ I, which is in turn a list with an element λi.Pi,j for each hole j ∈ J . Finally,
the predicate build_process_result builds the final process result, filling the
context as explained above.

6 Conclusion

The work described in this paper is an implementation in co-logic programming
of a novel formulation of global types for asynchronous session, where asyn-
chrony is expressed at the level of the type system. The tool has been developed
in parallel with the theoretical investigation, thus it has been very useful to
check the proposed definitions, finding in some cases subtle bugs. The main
challenge has been to solve termination problems, naturally arising since we had
to deal with infinite, yet regular, structures. Our solutions, only illustrated on
simple examples in this short paper, are based on coinductive techniques mixed
with inductive ones, also employing in some cases user-defined cycle detection
mechanisms.

146 R. Bianchini and F. Dagnino

The tool could be improved in many directions. First of all, the current
implementation is a prototype, which should be refined and equipped with a
suitable user interface to become more usable. Currently, we only allow in the
user language queries with a yes/no answer. Queries computing a result, e.g.,
the projection of a global type on a participant, can be easily performed at
the Prolog level, but the tool still lacks a reverse translation to show the user
language version of the Prolog answer. Finally, another direction could be a more
efficient implementation, for example using a language such as C++.

Acknowledgements. We thank all the anonymous referees for their careful reading
and useful comments, which helped us improve the paper. We are also grateful to Paola
Giannini and Elena Zucca for their many suggestions to make the presentation clearer.

References

1. Ancona, D., Dovier, A.: A theoretical perspective of coinductive logic programming.
Fund. Inform. 140(3–4), 221–246 (2015). https://doi.org/10.3233/FI-2015-1252

2. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9_33

3. Castellani, I., Dezani-Ciancaglini, M., Giannini, P.: Global types and event struc-
ture semantics for asynchronous multiparty sessions. CoRR abs/2102.00865 (2021).
https://arxiv.org/abs/2102.00865

4. Dagnino, F., Giannini, P., Dezani-Ciancaglini, M.: Deconfined global types for
asynchronous sessions. In: Damiani, F., Dardha, O. (eds.) COORDINATION 2021.
LNCS, vol. 12717, pp. 41–60. Springer, Cham (2021)

5. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) ACM Symposium on Principles of Programming
Languages, POPL 2006, pp. 273–284. ACM Press (2008). https://doi.org/10.1145/
1328438.1328472

6. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1145/2827695

7. Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf (2013)
8. Severi, P., Dezani-Ciancaglini, M.: Observational equivalence for multiparty ses-

sions. Fund. Inform. 170(1–3), 267–305 (2019). https://doi.org/10.3233/FI-2019-
1863

9. Simon, L.: Extending logic programming with coinduction. Ph.D. thesis, University
of Texas at Dallas (2006)

10. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: extending
logic programming with coinduction. In: Arge, L., Cachin, C., Jurdziński, T., Tar-
lecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73420-8_42

11. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive logic programming.
In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345.
Springer, Heidelberg (2006). https://doi.org/10.1007/11799573_25

12. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-prolog. Theory Pract.
Logic Program. 12(1–2), 67–96 (2012)

https://doi.org/10.3233/FI-2015-1252
https://doi.org/10.1007/978-3-540-85361-9_33
https://arxiv.org/abs/2102.00865
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.3233/FI-2019-1863
https://doi.org/10.3233/FI-2019-1863
https://doi.org/10.1007/978-3-540-73420-8_42
https://doi.org/10.1007/11799573_25

Large-Scale Decentalised Systems

Tuple-Based Coordination in Large-Scale
Situated Systems

Roberto Casadei1(B) , Mirko Viroli1 , Alessandro Ricci1 ,
and Giorgio Audrito2

1 Alma Mater Studiorum–Università di Bologna, Cesena, Italy
{roby.casadei,mirko.viroli,a.ricci}@unibo.it

2 Università di Torino, Turin, Italy
giorgio.audrito@unibo.it

Abstract. Space and time are key elements for many computer-based
systems and often elevated to first-class abstractions. In tuple-based coor-
dination, Linda primitives have been independently extended with space
(with tuples and queries spanning spatial regions) or time information
(mostly for tuple scoping). However, recent works in collective adaptive
systems and aggregate computing show that space and time can natu-
rally be considered as two intertwined facets of a common coordination
abstraction for situated distributed systems. Accordingly, we introduce
the Spatiotemporal Tuples model, a natural adaptation of Linda model
for physically deployed large-scale networks. Unlike prior research, spa-
tiotemporal properties – expressing where and when a tuple should range
and has to be deposited/retrieved – naturally turn into specifications
of collective adaptive processes, to be carried on in cooperation by the
devices filling the computational environment, and sustaining tuple oper-
ations in a resilient way, possibly even in mobile and faulty environments.
Additionally, the model promotes decentralised implementations where
tuples actually reside where they are issued, which is good for supporting
peer-to-peer and mobile ad-hoc networks as well as privacy. In this paper,
we (i) present and formalise the Spatiotemporal Tuples model, based on
the unifying notion of computational space-time structure, (ii) provide
an implementation in the ScaFi aggregate computing framework, turn-
ing tuple operations into aggregate processes, and finally (iii) provide
evaluation through simulation and a rescue case study.

Keywords: tuple-based coordination · spatial tuples ·
self-organisation · aggregate computing · ScaFi

1 Introduction

Space and time are fundamental aspects of our reality. Space, logical or physical,
plays a fundamental role for many computer-based systems. This has been recog-
nised, e.g., in the Dagstuhl seminar on space-oriented computation [20], where
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 149–167, 2021.
https://doi.org/10.1007/978-3-030-78142-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_10&domain=pdf
http://orcid.org/0000-0001-9149-949X
http://orcid.org/0000-0003-2702-5702
http://orcid.org/0000-0002-9222-5092
http://orcid.org/0000-0002-2319-0375
https://doi.org/10.1007/978-3-030-78142-2_10

150 R. Casadei et al.

(i) coping with space for computational efficiency, (ii) embedding in space, and
(iii) representing space are shown to be dimensions characterising a wide range of
computing applications. Accordingly, several research fields have elevated space
to a first-class abstraction [7]. A notable example in the coordination field, and
specifically in tuple-space coordination [21], is the Spatial Tuples model [30],
where tuples are situated in regions of space and Linda coordination primitives
also depend on the spatial situation of the coordinating agents. Dually, time
has also been investigated as an explicit abstraction, leading to notions of time
for tuple-based systems [25,26]. However, recent works in collective adaptive
systems and field-based coordination/aggregate computing [6,8,32] show that
space and time can naturally be considered as intertwined facets of a common
coordination abstraction for situated distributed systems.

Therefore, in this paper we introduce a tuple-based coordination model that
considers space and time in combined form. Differently from prior research,
spatiotemporal properties – expressing where and when a tuple should range and
has to be deposited/retrieved – naturally turn into specifications of collective
adaptive processes, to be carried on in cooperation by the devices filling the
computational environment, and sustaining tuple operations in a resilient way
even in mobile and faulty environments. Most specifically, an out creates a tuple
that spreads in a dynamically changing region of space, rd similarly spreads a
query that unblocks the initiator if a match is found in the intersection of a
tuple region, and finally in performs like rd but additionally disables/removes
the tuple, making it inaccessible to other queries. Therefore, our contribution is
threefold1:

1. we present the Spatiotemporal Tuples model, in terms of a declarative seman-
tics of coherent tuple space evolution, and a compliant protocol solution by
a set of processes running on a computational space-time structure;

2. we describe an implementation in the ScaFi aggregate computing toolkit
[13,14], where tuple operations and spatiotemporal properties are expressed
as aggregate processes [15] creating so-called computational fields; and

3. we evaluate model and implementation by means of simulation.

A major merit of the overall approach is that it fosters implementations that are
inherently suitable to different kinds of system deployments, ranging from fully
peer-to-peer systems to centralised, cloud-based architectures.

The paper is organised as follows. Section 2 provides background and related
work in the area of tuple-based and space-based coordination. Section 3 describes
the Spatiotemporal Tuple model. Section 4 describes an implementation of the
model in terms of aggregate processes in ScaFi. Section 5 provides evaluation.
Finally, Sect. 6 provides conclusion and future work.

1 This work extends the workshop paper in [17] with formalisation, full implementa-
tion, and evaluation.

Tuple-Based Coordination in Large-Scale Situated Systems 151

2 Background and Related Work

Tuple-based coordination is a coordination paradigm where a collection of pro-
cesses coordinate by reading and writing tuples (ordered groups of values) on a
shared tuple space [21]. Tuple-based coordination logic can be expressed in a lan-
guage, such as the progenitor Linda [21], specifying process evolution in terms of
operations on tuples (e.g., write, read, removal). Tuple-based coordination has
been subject of extensive research, giving rise to several variants, extensions, and
implementations. In particular, in distributed and pervasive computing scenar-
ios, issues with the notion of a centralised tuple space tend to promote alternative
models with several local tuple spaces [22]. In the following literature review, we
survey the main contributions focussing on spatiotemporally situated systems.

2.1 Tuple-Based Coordination in Pervasive Systems and
Space(-Time)

Works have been proposed in the literature implementing tuple-based coordi-
nation for peer-to-peer (P2P) and mobile ad-hoc networks (MANETs) [23].
In these scenarios, challenges and opportunities include mobility, dynamicity,
locality, openness. Such features are often found in nature-inspired systems (cf.
SwarmLinda [31]) and can be exploited to build scalable systems exhibiting col-
lective intelligence [16]. These challenges require proper middleware support and,
sometimes, model and language extensions to deal with specific aspects includ-
ing situatedness and mobility. When a device is physically situated, it also acts
as a representative of a space-time region, providing a means for representing,
measuring, computing space—as exploited by spatial computing approaches [7].

στ -Linda [33] is an approach where Linda operations can be combined with
time- and network-oriented operations. Example constructs include neigh (to
spread an operation to the neighbourhood), next (to post-pone an operation to
the next program evaluation), and finally (to run an operation after a barrier of
other operations). A further extension proposed by στ -Linda is spatiotemporally
limited tuple operations, which this paper develops in a principled way.

LIME [27] provides a support for Linda in MANETs. It distinguishes between
logical and physical mobility of agents and hosts, to model both component
situation as well as topology change. Agents own a tuple space locally, and group
with other co-located and neighbour-host agents to consolidate tuple spaces,
supporting access to the overall tuple space of the entire group by a transient
sharing mechanism. In this paper, we also leverage a notion of “group”, to mean
the set of devices cooperating to support a space-time tuple operation.

The TOTA approach [24] views tuples as dynamic elements, which can be
copied and change both their location and shape. Specifically, scope, transfor-
mation, and maintenance rules can be specified to define and control how tuples
are to be propagated in a network, and how these must evolve and react to
environmental events along the path. In this paper, we leverage similar ideas to
propagate tuple operations (rather than tuples). The idea in TOTA that tuples

152 R. Casadei et al.

automatically propagate to neighbours is also at the basis of the approach of this
paper, where aggregate processes deal with propagation control (cf. Sect. 4.1).

In GeoLinda [28], tuples spaces are distributed and geometry-aware: both
tuples and reading operations have a volume (spatial extension). They call the
volume of a tuple its shape, and the volume of a reading operation its addressing
shape. Shapes can take various geometric forms (spheres, cones, etc.) and are
expressed relatively to a device’s location and orientation. In this paper, we
leverage the same idea of giving tuple operations a space-time extension, and also
define a way to express them in spatiotemporally situated networks of devices.

2.2 Spatial Tuples

Spatial Tuples [30] is a coordination model combining tuple-based with space-
based coordination. Its idea is to decorate tuples with spatial information, in
order to situate them to some point in space or some spatial region (in which
case, the tuple is said to have a spatial extension). The Spatial Tuples approach
comprises multiple languages for working with spatial tuples: a communication
language is used to express tuples and tuple templates (for matching), a space
description language is used to express spatial information, and a coordination
language is used for process interaction and evolution. The latter consists of the
following main spatial primitives [30]:

– out(t @ r)—for situating a tuple t to a spatial location or region r.
– rd(tt @ r)—for blocking until a tuple t matching template tt and inter-

secting region r is read (with non-deterministic choice).
– in(tt @ r)—for blocking until a tuple t matching template tt and inter-

secting region r is removed (with non-deterministic choice).

The space description language is application- or domain-specific and may
allow expressing geographic locations and regions. The situation of a tuple, how-
ever, does not need to be constant. For instance, a tuple can be attached to
another situated component, and hence its position would be defined indirectly.
Given a component id, t @ id would express that tuple t is bound to id. Such
a notion of binding is especially relevant in scenarios with mobility. Locations
and bindings could also be specified implicitly:

– t @ here: situates tuple t at the current position of the running component;
– t @ me: the location of tuple t is bound to that of the running component.

The Spatial Tuples approach fosters space-oriented coordination through mecha-
nisms for situated/stigmergic communication, where processes deposit and sense
data at specific locations, and spatial synchronisation, where the actions multiple
interacting processes are ordered depending on their spatial situation.

In Spatial Tuples, the key idea is to use spatial information to annotate
and retrieve tuples. There are parallelisms with attribute-based coordination [1],
whereby attributes are used to form and let ensembles interact. In this work,
however, we consider spatial information not just as a mere annotation to tuples
or components but as a specification driving and evolving spatiotemporally sit-
uated computational processes.

Tuple-Based Coordination in Large-Scale Situated Systems 153

3 A Model for Spatiotemporal Tuple-Based Coordination

3.1 Requirements

The Spatiotemporal Tuples model is designed to address the following concerns:

– Space. The model should capture situations in space, and provide suitable
spatial abstractions to capture diverse situations. Namely, we mean to provide
a computational notion of space, where space locations are associated with
computational nodes, and proximity of locations matches the ability of a
device to directly perceive its context, there including message reception.

– Time. The model should dually capture temporal situations, while abstract-
ing over the notion of time, and hence of system evolution. Also, since we
expressly target fully distributed systems, for which no general notion of
global time exists [19], the model should provide the expressiveness to spec-
ify what/how notions of local time can be used and propagated. Menezes et
al. [25] discuss the issues with using external notions of time in Linda-based
systems, and propose to measure time locally to observers of fadeable tuples.

– Consistency. The model should adhere to the general Linda semantics,
namely, ensuring safe interaction of primitives out/rd/in as formalised
in [11]. Unfortunately, in distributed settings, the CAP theorem [10] enters
the picture, asserting that you may pick only two among the three properties:
consistency, availability, and partition tolerance. This is an issue when imple-
menting atomic consumption of tuples (for in operation). However, designers
can leverage the many nuances in these properties and combinations.

– Heterogeneous deployments. The model should provide for a direct imple-
mentation for different kinds of underlying platforms, such as MANETs, P2P
networks, client/server, and cloud-based architectures. Namely, it should be
sufficiently general to capture diverse settings, also considering the architec-
tures and constraints of modern distributed systems.

3.2 Computational Space-Time Model

Defining a spatiotemporal model for Linda primitives requires a suitable under-
lying notion of computability, since there is need of tracking information propa-
gation in space and time. Thus, we base our model on the notion of space-time
computability of [2], which in turn founds on the event structure framework [34].
In this section, we recall this framework, tailored for the needs of this paper.

Definition 1 (Augmented Event Structure [2]). An augmented event
structure is a quadruple E = 〈E,�, d, s〉 where E is a countable set of events,
� ⊆ E × E is a messaging relation, d : E → Δ is a mapping from events to
the devices where they happened, s : E → S is a mapping from events to sensors
status (for any choice of a representation of sensors status σ ∈ S), such that:

– for any δ ∈ Δ, the set of events Eδ = {ε ∈ E | d(ε) = δ} forms a sequence
of chains, i.e., there are no distinct ε, ε1, ε2 ∈ Eδ such that either ε � εi for
i = 1, 2 or εi � ε for i = 1, 2,

154 R. Casadei et al.

δ0

δ1

δ2

δ3

δ4

de
vi
ce

time

ε00 ε01 ε02 ε03 ε04

ε10 ε11 ε12 ε13 ε14 ε15

ε20 ε21 ε22 ε23

ε30 ε31 ε32 ε33 ε34 ε35

ε40 ε41 ε42

m
es
sa
ge

self-message

reboot

Fig. 1. An augmented event structure E. It depicts events (circle nodes), messaging
relations (curly arrows), devices δ0, ..., δ4 (y-axis) and each circle node is labelled with
the depicted event of E. Colours denote the causal relation w.r.t. the reference event ε21
(doubly-circled, blue), partitioning events into causal past (red), causal future (green)
and concurrent (non-ordered, in black). (Color figure online)

– the transitive closure of � forms an irreflexive partial order < ⊆ E × E,
called causality relation,

– the set Xε = {ε′ ∈ E | ε′ < ε} ∪ {ε′ ∈ E | ε � ε′} is finite for all ε (i.e., �
and < are locally finite).

We say that event ε′ is a supplier of event ε iff ε′ � ε.

The intuition of this definition is that the messaging relation between events
on the same device represents one-step passage of time, while the messaging
relation between events on different devices represents proximity in space (and
ability to directly interact). Figure 1 depicts a sample augmented event struc-
ture E = 〈E,�, d, s〉 where E = {ε00, ..., ε

0
4, ε

1
0, ..., ε

1
5, ε

2
0, ..., ε

2
4, ε

3
0, ..., ε

3
3, ε

4
0, ..., ε

4
5}

consists of 24 events such that d(εi
j) = δi.

In this model, spatio-temporal tuple regions are definable subsets of the aug-
mented event structure with a unique originating event.

Definition 2 (Spatio-temporal Region). Let E = 〈E,�, d, s〉 be an aug-
mented event structure. A spatio-temporal region r is a definable2 predicate
associating a Boolean value r(ε, ε′) ∈ {�,⊥} to every pair of events ε, ε′ ∈ E,
such that r(ε, ε′) = � implies that ε ≤ ε′.

We write rε = {ε′ | r(ε, ε′) = �} ⊆ E for the set of events that belong to
the spatio-temporal region described by r and originating from ε. We say such a
set is connected if for every ε′ ∈ rε with ε′ �= ε, there exists an ε′′ ∈ rε such that
ε′′ � ε′. We say predicate r is connected if rε is connected for every ε ∈ E.

2 We do not give an explicit syntax for spatio-temporal regions, in order to cover appli-
cations with any such syntax. Definable corresponds to space-time computable [2],
thus requiring the existence of a computational procedure deciding whether the
predicate r(ε, ε′) holds in some event ε′ using only information in the past of ε′.

Tuple-Based Coordination in Large-Scale Situated Systems 155

In the definition above, ε can be understood as the event originating the
region, and ε′ as another event which is being checked for belonging to the region.
Connected regions can be used to guide the local propagation of a spatial process,
which can expand from the originating event to neighbours filtering out those
outside of the region, and reach every event in the region this way. Propagation
in non-connected regions r′ needs to be handled by providing a connected region
r to guide the propagation of the spatial process, such that r′

ε ⊂ rε, making the
process inactive in events outside of r′. As a paradigmatic example, consider the
following two region predicates:

– mek, which holds on future events within k hops of the originating device:
mek(ε, ε′) ⇔ ∃ε0 . . . εk ∈ E. d(ε) = d(ε0) ∧ ε ≤ ε0 � . . . � εk = ε′;

– herek, which holds on future events within k hops of the originating location:
herek(ε, ε′) ⇔ ∃ε0 . . . εk ∈ E. �(ε) = �(ε0) ∧ ε ≤ ε0 � . . . � εk = ε′, where
� : E → L is a given map associating a location (from a finite set of locations
L) to each event. Notice that multiple devices may be simultaneously in the
same location (unlike the me region).

We remark that the given theory can be applied to any other definable regions.

3.3 Specifications for Spatio-Temporal Tuple Operators

To provide a formalisation of spatio-temporal tuple operations, we specify
what an acceptable behaviour is for them, by mirroring the traditional non-
deterministic semantics of Linda in a distributed “event structures” setting. This
effectively constitutes a declarative semantics of the spatio-temporal tuples lan-
guage: a semantics at a denotational level is outlined in Sect. 3.4, while a concrete
operational implementation is given in Sect. 4.2. To state the specification, we
first need to define a notion of tuple space evolution, which is ultimately built
from the following grammar of processes.

Definition 3 (Extended Spatio-temporal Process). We define spatio-
temporal processes P and extended spatio-temporal processes Q according to the
following grammar:

P ::= outτ (t @ r)
∣
∣ inτ (tt @ r).P

∣
∣ rdτ (tt @ r).P

Q ::= P
∣
∣ gotτo,τi

where t are tuples, tt tuple templates, r regions, τ unique identifiers.

In this grammar, we avoided an explicit mention to classic process operators
(parallel and non-deterministic composition, replication, etc.), as their treatment
is orthogonal to the scope of this paper. This grammar follows closely that in
Sect. 2.2, with few notable differences. First, every out, in and rd construct
is marked with a unique identifier τ , discriminating every process from every
other. Second, inert got processes are introduced in Q to mark the accesses of
tuples from the distributed space, issued in the events when agreement is first

156 R. Casadei et al.

reached about the matching of the out tuple with a corresponding in or rd
process. As we shall see in the following definition, these agreement events must
necessarily follow matching events (belonging to the intersection of the regions of
the corresponding out and in/rd processes) and precede the continuation of the
in/rd processes. These inert processes are of the form gotτo,τi where τo is the
unique identifier of the out process introducing the tuple, and τi is the unique
identifier of the in or rd process accessing (and possibly removing) that tuple.
Notice that the got processes are necessary for the formal definition of which
matches are occurring in a computation. This information cannot be uniquely
reconstructed from the continuations alone: indeed, the same continuation P
may arise from reading/accessing (possibly) different tuples by different parent
processes.

In the remainder of this paper, we write name(P) for the τ first occurring in
P and write name(gotτo,τi) = (τo, τi). We also write kind(P) for the construct
first occurring in P (out, in or rd).

Definition 4 (Tuple Space Evolution). Let E = 〈E,�, d, s〉 be an aug-
mented event structure, and let Q be the set of extended spatio-temporal processes
according to Definition 3. A tuple space evolution is a function TS : E → Q∗

associating a finite set of processes TS(ε) = {Q1, . . . , Qn} to each event ε.

The following definition of a consistent tuple space evolution thus provides a
specification of acceptable behaviours for spatio-temporal tuple processes.

Definition 5 (Coherent Tuple Space Evolution). Let TS : E → Q∗ be a
tuple space evolution on E = 〈E,�, d, s〉 and Q. We say that TS is coherent if
it respects the following properties for any εx ∈ E where x = 1, 2, 3, g, i, o.

1. Identifier uniqueness: given Q1 ∈ TS(ε1) and Q2 ∈ TS(ε2), if
name(Q1) = name(Q2), then ε1 = ε2 and Q1 = Q2. Given an identifier τ ,
we write proc(τ) for the unique P appearing in TS such that name(P) = τ .

2. Continuation markers: given Q1 = opτi(tt @ r).P ∈ TS(ε1) and Q2 ∈
TS(ε3) such that name(P) = name(Q2), then there is τo such that gotτo,τi ∈
TS(ε2) where ε1 ≤ ε2 ≤ ε3.

3. Consistency: if gotτo,τi ∈ TS(εg), then:
– there exist Px = proc(τx) ∈ TS(εx) for x ∈ i, o;
– Pi = opτi(tt @ ri).P ′ with op ∈ {in, rd} and Po = outτo(t @ ro);
– there is ε′ ≤ εg in E such that ri(εi, ε

′) and ro(εo, ε
′) both hold;

– there exists a substitution σ such that tt[σ] = t;
– for every gotτo,τ ′ ∈ TS(ε′) with any ε′ ≤ εg in E, kind(proc(τ ′)) = rd.

4. Atomicity: if gotτo,τi and gotτo,τ ′
i both appear in TS and kind(proc(τi)) =

kind(proc(τ ′
i)) = in, then τi = τ ′

i .

The above properties state that (1) operation identifiers are globally unique;
(2) a got process always exists between a rd/in request and it is unblocking; (3)
a rd/in unblocks if there is a properly intersecting (in space-time and by tuple
match) tuple (region); and finally (4) no pair of in can consume the same tuple.

Tuple-Based Coordination in Large-Scale Situated Systems 157

time

sp
ac

e εout

ε†
out

tuut

tutut

(a) Graphics of outs.

time

sp
ac

e

εout ε†
out

εrd

ε

ε†
rd

εε

d

εM

(b) Graphics of rds.

time

sp
ac

e

εout

εinn

εM

ε′
in

ε′
M

εCCC

ε†
in

ε†
out

(c) Graphics of interacting ins and outs.

Fig. 2. Graphics illustrating the spatiotemporal tuple operations. (Color figure online)

3.4 Spatiotemporal Tuple-Based Coordination

Note that the declarative specification of coherent tuple space evolutions just
introduced does not hint at which underlying protocol may be used to respect
it. Here, we propose a sample such protocol, via a high-level denotational descrip-
tion (i.e., at a global event structure level instead of a local interaction level)
of the spatial processes that are created and propagated by each P , and how
they interact together. This protocol assumes that every region r is equipped
with leader predicate leadr(ε, ε′) which is satisfied for a set of events which
is a subset of the region leadr

ε ⊆ rε and consists of a single chain of events:
leadr

ε = {ε, ε1, . . . , εn} where ε � ε1 � . . . � εn.

Write (Fig. 2a). Operation out(t @ r) in an event εout emits tuple t to spatio-
temporal region r, corresponding to the set of events rεout

. The spatio-temporal
extension of the emitted tuple is bounded to region r (light and dark areas
together), which is a subset of the future event cone of εout (marked by the
wiggled lines coming out from it). The actual region where a tuple is available
may be smaller if a matching in operation occurs: tuple removal in event ε†

out

results in removing the future event cone of ε†
out (darker area) from the availabil-

ity region (lighter area). This behaviour can be implemented through a simple
broadcasting process bounded to region r.

Read (Fig. 2b). Operation rd(tt @ r).P reads, non-deterministically and in
a blocking fashion, a tuple t matching template tt, situated in some spatio-
temporal region r′ intersecting with r. The operation is issued at event εrd, and

158 R. Casadei et al.

propagates through a process within region r (blue). When the process enters the
region r′ (red) of an out operation with a tuple t matching template tt, notifica-
tions of the match(es) are propagated through broadcast in r (from events such
as εM). The first notification to reach the leader chain of r (horizontal dashed
line) is accepted (in event ε†

rd), leading to the termination of the read process,
and starting the computation of the continuation process P in ε†

rd.

Removal (Fig. 2c). Operation in(tt @ r).P fetches, non-deterministically and
in a blocking fashion, a tuple t matching template tt, situated in some spatio-
temporal region r′ intersecting with r. This fetching leads to the termination of
the out region, and no two different in operations are allowed to receive the same
t. The operation is issued at event εin, and propagates through a process within
region r (blue). Assuming the absence of partitions, atomicity and consistency
can be guaranteed through a protocol involving a joint acknowledgement of the
match between the two leaders of the in and out regions. This acknowledgement
process is embodied by a chain of events of the form εin ≤ εM ≤ εC ≤ ε†

in ≤
ε†
out. In εM a match is found: this is notified within region r′ to reach for the

leader chain (dashed lines) of the out operation in εC , which commits to the
first arriving request (if any). The commitment is then broadcast through both
regions r′ and r until it reaches the leader chain of the in operation. This leader
chain also commits to the first arriving request (in event ε†

in) leading to the
immediate termination of the in region and notifying the out region, which is
reached in event ε†

out and terminates afterwards. It is possible that after the
leader chain of an out operation commits to an incoming request (event εC), the
leader chain of the accepted request does not accept the commitment, since it has
already received another one. This can be detected by the out, given absence of
partitions (cf. Sect. 6), in this case, the leader chain of the out operation erases
its commitment, opening to new incoming requests. Notice that as multiple
acknowledgements are necessary, concurrency of multiple in and out operations
may lead to none of them being served.

4 Spatiotemporal Tuples as Aggregate Processes

The model in Sect. 3 founds on the idea that tuple operations are tasks that are
collective, adaptive and situated, namely on-going, collaborative computations
run by devices interacting in some spatial environment. In field calculi [32], the
notion of aggregate process [15] has been recently proposed to capture dynamic,
concurrent field computations and hence providing a programming abstraction
for collective adaptive processes. In this section, we provide a brief recap of aggre-
gate processes and their implementation in ScaFi (Sect. 4.1), then we describe
an implementation of Spatiotemporal Tuples (Sect. 4.2) conforming to the model
of Sect. 3—whereas its correctness and usability will be empirically evaluated in
Sect. 5.

Tuple-Based Coordination in Large-Scale Situated Systems 159

4.1 Aggregate Processes

In the field calculus (FC) [6], the formal model backing aggregate comput-
ing [8,32], dynamic collective behaviour is modelled as a functional manipu-
lation of computational fields (i.e., maps from devices to values). A FC program
encodes both computation and data exchange, and must be repeatedly evaluated
by each device against its local context (sensor values, state, and received mes-
sages). The output of evaluation is a message to be broadcast to neighbours for
coordination. So, when a device locally evaluates a FC expression, it can use data
from its neighbours that also evaluated that very expression—a notion known
as alignment [5]. In order to evaluate a dynamic number of expression, a mech-
anism is needed to properly deal with alignment. Also, whereas a FC program
is generally run by every device in the system, and branching mechanisms exist
to scope an expression on a partition of the system, dynamically controlling the
evolution of the scope of an expression tends to be tricky. A recent proposal is to
use a dedicated construct, called spawn , for generating and running dynamic
field computations [15]. Also called aggregate processes, their idea is to align on a
process identifier (like a pid in operating systems) and to let devices opt in/out
their execution and control the spreading of the process to neighbours.

Aggregate processes can be programmed in ScaFi as follows.

// 1. Define an aggregate process function, fixing types for pids, arguments, return values
val process: Pid => Args => (Return, Boolean) = ???
// 2. Define a field of pids for processes to be locally instantiated
val pids: Set[Pid] = ??? // e.g., reading a sensor for user commands, or via a FC expression
// 3. A field of arguments for the active process instances
val args: A = ???
// 3. A spawn expression is like a VM for processes of some kind
val map: Map[Pid,Return] = spawn[Pid,Args,Return](process _, keys, args)

The program is evaluated by every device repeatedly in execution rounds inter-
valled by sleeping periods where coordination messages are also exchanged
between neighbours, asynchronously. The execution and interaction protocol is
“fixed”, and dynamically gives rise to an augmented event structure (cf. Fig. 1);
what changes is the payload of messages, determined by local evaluation of the
program—namely, the program itself defines both local behaviour and data to
be exchanged for coordination. As evaluation proceeds, aggregate processes will
be generated and managed through spawn , and variable map will contain, at any
device, the map of the locally active processes (their IDs and local outputs).

Suppose the goal is to let the devices of the system emit messages within
some distance d from the emitter. Distances can be estimated by gradients [4],
i.e., algorithms mapping a Boolean field of sources to the floating-point field of
minimum distances from those sources. One gradient computation is not suffi-
cient, because any device would compute the minimum distance from its nearest
source. As dynamic field computations are required, aggregate processes can be
used. If, at some round, pids is locally non-empty, corresponding processes are
generated. Each time spawn is evaluated, function process is called for every
aggregate process that is locally active—newly generated processes, those run

160 R. Casadei et al.

(and preserved) in the previous round, or those acquired by neighbours. In this
example, the pids can be tuples of the emitter ID and the message; the argu-
ment can be a field d of a distance threshold; and process can be defined as a
field expression returning a tuple of (i) the message, and (ii) a Boolean stating
whether the gradient value from the emitter is lower or equal d. When a process
is generated at the emitter device, it spreads as follows:

– the emitter evaluates the process expression; the gradient from itself is 0, so
it yields the result and propagates the process pid to all its neighbours;

– an emitter’s neighbour evaluates the process expression; it computes the gra-
dient from the emitter; if its distance is lower or equal d, it yields the expres-
sion result and propagates the process pid to all its neighbours in turn, oth-
erwise it drops the process (which could still be re-evaluated in future if some
neighbour keeps propagating the same pid).

By repeated application of these steps, a d-radius bubble from the emitter hold-
ing the message is set-up, with devices 1-hop beyond it evaluating but dropping
the process. Such a continuous evaluation of the process border is essential for its
expansion and retraction—more details, also regarding process shutdown, can
be found in [15]. This example is very similar to what an out tuple operation
must be like, except that its aggregate process must close when interaction with
another aggregate process (of an in operation) leads to removal of the tuple.

4.2 Implementing Spatiotemporal Tuples via Aggregate Processes

We argue that aggregate processes are a suitable abstraction for implementing
the Spatiotemporal Tuples model because: (i) they are based on and extend
the FC, which is space-time universal [2] and a premier computational model
for systems situated in space and time; (ii) they enable an aggregate to run
a dynamic number of tuple operations concurrently; (iii) they define a tuple
operation as a collective adaptive process that is carried out collaboratively, in a
decentralised and self-organising way; and (iv) they enable each tuple operation
to have a dynamic scope that depends on its intended spatiotemporal situation.
In the following, we describe the essential elements of this implementation.

The basic idea is to map a tuple operation to a corresponding aggregate
process, and define how these should behave and interact. Most specifically:

– the problem of scoping a tuple operation to a certain spatiotemporal region
is mapped to the problem of scoping its aggregate process (i.e., specifying a
Boolean field to control what devices must opt in the aggregate process);

– the problem of matching tuple operations and non-deterministically selecting
tuples is mapped to the problem of letting aggregate processes interact and
reaching internal consensus;

– the problem of unblocking operations is mapped the problem of controlling
the lifetime of aggregate processes.

An implementation sketch is given in Fig. 3 (for the full sources, refer to the
repository provided in Sect. 5). For details on the FC/ScaFi language, refer

Tuple-Based Coordination in Large-Scale Situated Systems 161

def tupleOp(op: O)(arg: Map[O,R]): (R, Status) = op match {
case Out(...) => outLogic(...); case In(...) => inLogic(...); ...

}
rep[Map[O,R]](Map.empty())(ops => spawn(tupleOp _, newLocalOps(), ops))

(a) ScaFi field-calculus expression for spawning and executing tuple operations.

def outLogic(pid,t,r,ops,leader) = {
val inside = computeRegion(r)
val p = workflow(Available){

case curr @ Available => {
val requests = C(leader, ∪, request())
val choice = requests.headOption()
if(leader && choice.isPresent)

Serving(choice.get) else curr
}
case curr @ Serving(inP) => {

val ack = gossip(inLeaderAck())
(if(leader && ack) Done(inP) else curr)

<< Msg(ReservedFor(pid,inP))
}
case curr @ Done(inP) =>

{ curr << OutAck(pid,inP) }
}
(R(t,p.msgs), runOrNot(inside,p))

}

(b) Excerpt of ScaFi code for outs.

def inLogic(pid,tt,r,ops,leader) = {
val inside = computeRegion(r)
val p = workflow(Waiting){

case curr @ Waiting => {
val offers = C(leader,∪,outOffers(ops))
val choice = offers.headOption()
(if(leader && choice.isPresent)

Removing(choice.get) else curr)
<< Msg(Request(pid,choice))

}
case curr @ Removing(outP) => {

val ack = gossip(outLeaderAck())
(if(leader && ack) Done(outP) else curr)

<< Msg(InAck(pid,outP))
}
case Done(outP) => { /* no-op */ }

}
(R(p.tupleIfAny(),p.msgs),runOrNot(inside,p))

}

(c) Excerpt of ScaFi code for ins.

Fig. 3. (Pseudo-)Implementation of tuple operations as ScaFi processes.

to [14,16]. The idea is to let the tuple operation processes evolve in collective
behaviour phases (like in a state-machine), commanded by the leader, ensuring
“transactional semantics”, and to use messages (appended via << to the phase
descriptor) to let aggregate processes within an individual device to interact. As
shown in Fig. 3a, each aggregate process receives the overall map of processes
and corresponding results (ops, remembered from round to round via rep) as
an argument. Results R include a tuple (if any) and the messages. Function
computeRegion uses region description r to call a proper ScaFi function yielding
a Boolean field which is true only for the nodes that should belong to the region.
E.g., if r denotes the region within a range ρ from the leader, then field expression
gradient(mid()==leader)<=ρ is computed (where mid() returns the node ID);
or, if R is a geographic area, then GPScoordinates() ∈ R would do the job. Note
that devices opt for the process (runOrNot) based on inside and phase p.

5 Evaluation

With the goal of checking correctness in dynamic environments, and to dis-
cuss applicability, in this section we evaluate the presented model and imple-
mentation by means of simulation, through synthetic experiments (Sect. 5.1)
and a rescue case study (Sect. 5.2). For the simulations, we leverage the ScaFi

162 R. Casadei et al.

(a) A graphical view of the scenario
as simulated in the ScaFi-Alchemist
framework. The colours are used to de-
note different tuple operations (aggre-
gate processes), though actually a sin-
gle node may run several of them con-
currently. The smaller coloured dots
denote out processes, while the larger
halos denote in processes. The black
square symbols denote the devices that
generated any tuple operation.

(b) Evolution in time of the number of
outs and ins spawned and closed.

(c) Evolution in time of the number of
outs and ins in the different phases.

Fig. 4. Evaluation

incarnation [13] of the Alchemist simulator [29]. Source code, tools, and instruc-
tions for reproducing the experiments can be found in the attached public
repository3.

5.1 Simulation-Based Evaluation

Setup. The scenario is shown in Fig. 4a. We configure a square arena with 400
mobile devices displaced in a 1 km2 grid: they interact with neighbours within
a 100-m connectivity range, and compute the ScaFi program asynchronously
about once per second. We let the devices generate random tuple operations,
either out or in operations, such that the system is engaged in multiple, con-
current operations that need to be carried out. Moreover, we generate tasks so
that for t < 400 there are more outs than ins in the system, and for t > 400
there are more ins than outs. These operations have an extension of 450 m to
promote high contention and are generated so that they intersect (otherwise
they could not be matched). Then, we monitor the evolution of the system. We
keep track of the number of spawned operations and terminated operations, as
well as the phases that these transit on. We expect that a single in operation

3 https://github.com/metaphori/experiment-2021-spatiotemporaltuples.

https://github.com/metaphori/experiment-2021-spatiotemporaltuples

Tuple-Based Coordination in Large-Scale Situated Systems 163

(a) Explorers start exploring and deposit-
ing breadcrumbs.

(b) Some explorers hit obstacles and be-
come impaired.

(c) The followers managed to reach the
victims.

Fig. 5. Snapshots of the simulated case study. Notation: black discs (explorers), cyan
discs (followers), large blue dots (victims), large red squares (obstacles), small black
dots (tactical network nodes), coloured halos (breadcrumbs), orange dots on the discs
(impairment). (Larger pictures are available at the provided repository) (Color figure
online)

pairs up with a single out operation, and vice versa. We perform 100 runs of the
system, with different random seeds affecting the actual positions of nodes, the
relative scheduling of the devices, and which devices generate the operations.

Results. The results, averaging the data produced in the 100 runs, are shown
in Fig. 4. In Fig. 4b, we observe that the number of outs that get closed and the
number of ins that are satisfied grow equally. All the operations are satisfied,
provided there is still a matching one in the system, a condition that does not
hold approximately for t ∈ [200, 400] and t > 550 when no more in and out
processes are alive, respectively. In Fig. 4c, we observe how the processes transit
from their “waiting a match” phase to their “match found” phase. Note how the
out processes immediately offer their tuple to a matching in, but as the ins are
exhausted they become available again (approximately for t = [150, 400]).

5.2 Case Study: Rescue Scenario with Breadcrumbs

Like for Spatial Tuples, the Spatiotemporal Tuple model can be adopted in appli-
cations requiring various forms of spatial coordination. Example application sce-
narios providing motivation for this coordination approach can be found in [30].
A benefit of Spatiotemporal Tuples is streamlining decentralised implementation
of such coordination patterns in logically ad-hoc or peer-to-peer networks.

164 R. Casadei et al.

Consider a simple rescue scenario: a set of rescuers have to explore a ter-
ritory to find victims needing assistance; in the area, however, there are some
hazardous elements (e.g., mines or blocks) that may impair the rescuers. The
area is partially covered by a tactical mesh network. We consider two teams:
explorers and followers. According to the breadcrumb pattern [30], the explorers
navigate the area and, from time to time, leave a spatiotemporally-tagged tuple
(a “breadcrumb”) at their location to keep track of their paths. Some time later,
the followers begin their expedition: they move by following the breadcrumbs left
by the explorers; however, if the breadcrumbs-path interrupts, they take a ran-
dom detour and, after that, start exploring in turn. Screenshots of the different
phases of the simulation are in Fig. 5, showing how the spatial coordination pat-
tern, backed by spatiotemporal tuples, allows the rescuers to succeed in reaching
the victims (assuming no further obstacles impair them).

6 Conclusion and Future Work

In this paper, we propose a model for spatiotemporal tuples where tuple oper-
ations run on a computational space-time structure that logically bridges the
situation domain with the computation domain. This choice has a twofold ben-
efit: it enables locality and scalability of the tuple-based system and promotes
straightforward implementation in the aggregate computing paradigm.

Finally, we discuss the following aspects, to be fully investigated in the future.

– Properties and guarantees of the model and its implementations. Basic prop-
erties of the model are given in Definition 5: these ensure safety and liveness
of spatiotemporal tuple operations. A benefit of the proposed model with
respect to Spatial Tuples [30] is that it provides a convenient basis for decen-
tralised implementations where the tuple space is fragmented in a collection of
local tuple spaces owned by the individual devices. It also promotes scalabil-
ity through locality of tuples and operations: only the devices situated in the
spatial region of a tuple operation would execute the aggregate process sus-
taining that operation. So, what about sparse networks or positioning tuples
in areas not covered by any device? The idea is that a device should be aware
of what tuple operations are where: it is sufficient that it knows the aggre-
gate process IDs and it will play them once it belongs to their spatial region.
So, for scalability, a decentralised middleware solution could propagate those
IDs to a larger spatial region (still smaller than the entire application space),
hence exploiting locality while ensuring operations are not lost. Moreover, a
distributed implementation of the Spatiotemporal Tuple model has to decide
how to deal with the CAP theorem [10], i.e., what kind of consistency and
availability guarantees to provide when facing failure and network partitions.
For instance, the relative level of consistency and availability (e.g., by intro-
ducing time-outs or priorities) might affect scalability [9]. Design decisions
should be taken according to the levels of contention, variability (as induced
by mobility, failure), and operation rates.

Tuple-Based Coordination in Large-Scale Situated Systems 165

– Spatiotemporal property verification and monitoring. Potential for combining
the coordination language with spatial and temporal logics for verification
and monitoring, along the lines of [3], could also be investigated. Beside dis-
tributed runtime verification, statistical spatio-temporal model checking [18]
may be adopted for verifying implementations in simulated settings.

– Generality of the model w.r.t. deployments. A major merit of the approach is
that it supports both centralised, infrastructure-based deployments (cf. cloud-
or server-based systems) and decentralised, infrastructureless deployments
(cf. MANETs). Indeed, since aggregate computing systems can be partitioned
into different deployment units (a notion also known as pulverisation [12]),
applications can exploit available infrastructure and hosts to promote differ-
ent levels of performance and CAP guarantees.

References

1. Alrahman, Y.A., Nicola, R.D., Loreti, M.: Programming interactions in collective
adaptive systems by relying on attribute-based communication. Sci. Comput. Pro-
gram. 192 (2020). https://doi.org/10.1016/j.scico.2020.102428

2. Audrito, G., Beal, J., Damiani, F., Viroli, M.: Space-time universality of field
calculus. In: Di Marzo Serugendo, G., Loreti, M. (eds.) COORDINATION 2018.
LNCS, vol. 10852, pp. 1–20. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-92408-3 1

3. Audrito, G., Casadei, R., Damiani, F., Stolz, V., Viroli, M.: Adaptive distributed
monitors of spatial properties for cyber-physical systems. J. Syst. Softw. 175
(2021). https://doi.org/10.1016/j.jss.2021.110908

4. Audrito, G., Casadei, R., Damiani, F., Viroli, M.: Compositional blocks for opti-
mal self-healing gradients. In: 2017 IEEE 11th International Conference on Self-
Adaptive and Self-Organizing Systems (SASO), pp. 91–100. IEEE (2017)

5. Audrito, G., Damiani, F., Viroli, M., Casadei, R.: Run-time management of compu-
tation domains in field calculus. In: IEEE International Workshops on Foundations
and Applications of Self* Systems, pp. 192–197. IEEE (2016)

6. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus
of computational fields. ACM Trans. Comput. Log. 20(1), 5:1–5:55 (2019). https://
doi.org/10.1145/3285956

7. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
languages for spatial computing. In: Formal and Practical Aspects of DSLs: Recent
Developments, pp. 436–501. IGI Global (2013). http://arxiv.org/abs/1202.5509

8. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the Internet of Things.
IEEE Comput. 48(9), 22–30 (2015). https://doi.org/10.1109/MC.2015.261

9. Boix, E.G., Scholliers, C., De Meuter, W., D’Hondt, T.: Programming mobile
context-aware applications with TOTAM. J. Syst. Softw. 92, 3–19 (2014)

10. Brewer, E.: Cap twelve years later: how the “rules” have changed. Computer 45(2),
23–29 (2012)

11. Busi, N., Gorrieri, R., Zavattaro, G.: On the expressiveness of Linda coordination
primitives. Inf. Comput. 156(1–2), 90–121 (2000)

12. Casadei, R., Pianini, D., Placuzzi, A., Viroli, M., Weyns, D.: Pulverization in cyber-
physical systems: engineering the self-organizing logic separated from deployment.
Future Internet 12(11), 203 (2020)

https://doi.org/10.1016/j.scico.2020.102428
https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.1016/j.jss.2021.110908
https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956
http://arxiv.org/abs/1202.5509
https://doi.org/10.1109/MC.2015.261

166 R. Casadei et al.

13. Casadei, R., Pianini, D., Viroli, M.: Simulating large-scale aggregate MASs with
Alchemist and Scala. In: 2016 Federated Conference on Computer Science and
Information Systems (FedCSIS), pp. 1495–1504. IEEE (2016)

14. Casadei, R., Viroli, M., Audrito, G., Damiani, F.: FScaFi: a core calculus for
collective adaptive systems programming. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12477, pp. 344–360. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61470-6 21

15. Casadei, R., Viroli, M., Audrito, G., Pianini, D., Damiani, F.: Aggregate processes
in field calculus. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINATION 2019.
LNCS, vol. 11533, pp. 200–217. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-22397-7 12

16. Casadei, R., Viroli, M., Audrito, G., Pianini, D., Damiani, F.: Engineering collec-
tive intelligence at the edge with aggregate processes. Eng. Appl. Artif. Intell. 97,
104081 (2021)

17. Casadei, R., Viroli, M., Ricci, A.: Collective adaptive systems as coordination
media: the case of tuples in space-time. In: 1st IEEE International Conference on
Autonomic Computing and Self-Organizing Systems, ACSOS, Companion Volume,
pp. 139–144. IEEE (2020). https://doi.org/10.1109/ACSOS-C51401.2020.00045

18. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 46

19. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems: Concepts and
Designs, 3rd edn. Addison-Wesley-Longman, Boston (2002)

20. DeHon, A., Giavitto, J., Gruau, F. (eds.): Computing Media and Languages for
Space-Oriented Computation, Dagstuhl Seminar Proceedings, 03 September–08
September 2006, vol. 06361 (2007). http://drops.dagstuhl.de/portals/06361/

21. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. (TOPLAS) 7(1), 80–112 (1985)

22. Gelernter, D.: Multiple tuple spaces in Linda. In: Odijk, E., Rem, M., Syre, J.-
C. (eds.) PARLE 1989. LNCS, vol. 366, pp. 20–27. Springer, Heidelberg (1989).
https://doi.org/10.1007/3-540-51285-3 30

23. Loo, J., Mauri, J.L., Ortiz, J.H.: Mobile Ad Hoc Networks: Current Status and
Future Trends. CRC Press, Boca Raton (2016)

24. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: the TOTA approach. ACM Trans. Softw. Eng. Methodol. 18(4), 1–56
(2009). https://doi.org/10.1145/1538942.1538945

25. Menezes, R., Wood, A.: The fading concept in tuple-space systems. In: Proceedings
of the 2006 ACM Symposium on Applied Computing, pp. 440–444 (2006)

26. Merrick, I., Wood, A.: Scoped coordination in open distributed systems. In: Porto,
A., Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906, pp. 311–316.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45263-X 21

27. Murphy, A.L., Picco, G.P., Roman, G.C.: LIME: a coordination model and middle-
ware supporting mobility of hosts and agents. ACM Trans. Softw. Eng. Methodol.
15(3), 279–328 (2006). https://doi.org/10.1145/1151695.1151698

28. Pauty, J., Couderc, P., Banatre, M., Berbers, Y.: Geo-Linda: a geometry aware
distributed tuple space. In: 21st International Conference on Advanced Information
Networking and Applications (AINA 2007), pp. 370–377. IEEE (2007)

29. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with Alchemist. J. Simul. 7(3), 202–215 (2013). https://doi.org/10.
1057/jos.2012.27

https://doi.org/10.1007/978-3-030-61470-6_21
https://doi.org/10.1007/978-3-030-61470-6_21
https://doi.org/10.1007/978-3-030-22397-7_12
https://doi.org/10.1007/978-3-030-22397-7_12
https://doi.org/10.1109/ACSOS-C51401.2020.00045
https://doi.org/10.1007/978-3-319-47166-2_46
http://drops.dagstuhl.de/portals/06361/
https://doi.org/10.1007/3-540-51285-3_30
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1007/3-540-45263-X_21
https://doi.org/10.1145/1151695.1151698
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27

Tuple-Based Coordination in Large-Scale Situated Systems 167

30. Ricci, A., Viroli, M., Omicini, A., Mariani, S., Croatti, A., Pianini, D.: Spatial
tuples: augmenting reality with tuples. Expert. Syst. 35(5), e12273 (2018)

31. Tolksdorf, R., Menezes, R.: Using swarm intelligence in Linda systems. In: Omicini,
A., Petta, P., Pitt, J. (eds.) ESAW 2003. LNCS (LNAI), vol. 3071, pp. 49–65.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25946-6 3

32. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From dis-
tributed coordination to field calculus and aggregate computing. J. Log. Algebraic
Methods Program. 109 (2019). https://doi.org/10.1016/j.jlamp.2019.100486

33. Viroli, M., Pianini, D., Beal, J.: Linda in space-time: an adaptive coordination
model for mobile ad-hoc environments. In: Sirjani, M. (ed.) COORDINATION
2012. LNCS, vol. 7274, pp. 212–229. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30829-1 15

34. Winskel, G.: An introduction to event structures. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354, pp. 364–397. Springer,
Heidelberg (1989). https://doi.org/10.1007/BFb0013026

https://doi.org/10.1007/978-3-540-25946-6_3
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1007/978-3-642-30829-1_15
https://doi.org/10.1007/978-3-642-30829-1_15
https://doi.org/10.1007/BFb0013026

A Theory of Automated Market Makers
in DeFi

Massimo Bartoletti1 , James Hsin-yu Chiang2(B) ,
and Alberto Lluch-Lafuente2

1 Università degli Studi di Cagliari, Cagliari, Italy
bart@unica.it

2 DTU Compute, Technical University of Denmark, Copenhagen, Denmark
{jchi,albl}@dtu.dk

Abstract. Automated market makers (AMMs) are one of the most
prominent decentralized finance (DeFi) applications. They allow users
to exchange units of different types of crypto-assets, without the need to
find a counter-party. There are several implementations and models for
AMMs, featuring a variety of sophisticated economic mechanisms. We
present a theory of AMMs. The core of our theory is an abstract opera-
tional model of the interactions between users and AMMs, which can be
concretised by instantiating the economic mechanisms. We exploit our
theory to formally prove a set of fundamental properties of AMMs, char-
acterizing both structural and economic aspects. We do this by abstract-
ing from the actual economic mechanisms used in implementations and
identifying sufficient conditions which ensure the relevant properties.
Notably, we devise a general solution to the arbitrage problem, the main
game-theoretic foundation behind the economic mechanisms of AMMs.

1 Introduction

Decentralized finance (DeFi) is emerging as an alternative to the traditional
finance, boosted by blockchain-based crypto-tokens and smart contracts. One of
the main DeFi applications are Automated Market Makers (AMMs), which allow
users to exchange crypto-tokens of different types without the intermediation of
third parties. As of April 2021, the two AMM platforms leading by user activity,
Uniswap [14] and Curve Finance [5], alone hold $8.1B and $6.2B worth of tokens,
and process $1.5B and $210M worth of transactions daily [4,12].

AMMs are inherently hard to design, implement and understand, since they
involve sophisticated economic incentive mechanisms. Although they generally
only expose a handful of callable functions, interactions with AMMs are sensitive
to transaction ordering [21,23,28,31]: thus, actors with the power to influence
the order of transactions in the blockchain may be incentivized to do so for
profit or to harm specific users. Thus, there exists a need for foundational work
to devise formal models of AMMs which allow the study of their fundamental
properties, transaction concurrency and the effect of economic incentives.
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 168–187, 2021.
https://doi.org/10.1007/978-3-030-78142-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_11&domain=pdf
http://orcid.org/0000-0003-3796-9774
http://orcid.org/0000-0002-5126-9494
http://orcid.org/0000-0001-7405-0818
https://doi.org/10.1007/978-3-030-78142-2_11

A Theory of Automated Market Makers in DeFi 169

Current descriptions of AMMs are either economic models [17–19,24], which
focus on the efficacy of incentive design, or the actual implementations. While
economic models are useful to understand the macroscopic financial aspects of
AMMs, they do not precisely describe the interactions between AMMs and their
users. Still, understanding these interactions is crucial to determine possible devi-
ations from the expected behaviour. Implementations, instead, reflect the exact
behaviour of AMMs, but at a level of detail that hampers high-level understand-
ing and reasoning. Moreover, the rich variety of implementations, proposals and
models for AMMs, each featuring different sophisticated economic mechanisms,
makes it difficult to establish comparisons between AMM designs or to provide
a clear contour for the space of possible “well behaving” designs.

Contributions. In this paper we address these challenges by developing a the-
ory of AMMs. The core of our theory is a formal model of AMMs (Sect. 2), based
on a thorough inspection of leading AMM implementations like Uniswap [13],
Curve [16], and Balancer [3], as well as existing models from the literature [1,31].
Our model precisely describes the interactions between users and AMMs, and
their main economic features. An original aspect of our model is that it is para-
metric with respect to the key economic mechanism—the swap invariant—that
algorithmically determines exchange rates between tokens. This makes our model
general enough to encompass the mainstream implementations and models of
AMMs. With respect to economic models, our theory considers implementation
details that are crucial to guarantee (efficient) computability in practice. Our
model features an executable semantics, which can support implementations and
analysis tools. As a matter of fact, an open-source Ocaml implementation of our
executable semantics is provided as a companion of this paper.1

Building upon our model, we prove a set of properties characterizing both
structural (Sect. 3) and economic (Sect. 4) aspects of AMMs. With respect to
previous works, which focus on specific economic mechanisms, all our results are
parametric with respect to swap invariants. We identify indeed, for each property,
a set of conditions on swap invariants that are sufficient for the property to
hold. Our results include fundamental structural properties such as net worth
preservation (“value cannot be created/destroyed”), liquidity (“assets cannot be
frozen within an AMM”), and transaction concurrency (“two transactions can
be executed in any order”), as well as fundamental economic properties such as
incentive-consistency, which ensures an incentive feedback loop between deposits
and swaps of tokens. Most notably, we generalize the formulation and the solution
to the so-called arbitrage problem, the main game-theoretic foundation behind
the economic aspects of AMMs. We show that users are incentivized to perform
actions that keep the swap rates aligned with the exchange rates given by price
oracles. Namely, if an AMM offers a better swap rate than the oracles’ exchange
rate, rational users will perform swaps to narrow the gap. Further, we show that,
under certain conditions, deposits and swaps incentivize each other.

Overall, our theory encompasses and generalizes the main functional and eco-
nomic aspects of the mainstream AMM implementations, providing solid grounds
1 https://github.com/blockchain-unica/defi-workbench.

https://github.com/blockchain-unica/defi-workbench

170 M. Bartoletti et al.

for the design of future AMMs. Due to space constraints, we provide the proofs
of our statements in a separate technical report [26].

2 A Formal Model of Automated Market Makers

We introduce a formal, operational model of AMMs, focussing on the common
features implemented by the main AMM platforms. We discuss in Sect. 6 the
differences between these platforms and our model.

2.1 AMM States

Basics. We assume a set of users A, ranged over by A,A′ , . . ., and a set of
token types T, ranged over by τ, τ ′, We denote with T0 ⊆ T a specific
subset of token types that we call initial (they include, e.g., native blockchain
tokens). The rest of the token types in T represent minted tokens, denoted as
pairs (τ, τ ′) of distinct token types, and which represent shares in an AMM. We
use v, v′, r, r′ to range over nonnegative real numbers (R+

0), and we write r : τ to
denote r units of token type τ. We denote with dom f the domain of a partial
map f . We model the wallet of a user A as a term A[σ], where the partial
map σ ∈ T ⇀ R+

0 represents A’s token holdings. We model an AMM as a pair
of the form (r0 : τ0, r1 : τ1), representing the fact that the AMM is holding,
respectively, r0 and r1 units of token types τ0 and τ1.

States. We formalise the interaction between users and AMMs as a labelled
transition system (LTS). Its labels T ,T′ , . . . represent blockchain transactions,
while the states Γ, Γ ′, . . . are compositions of wallets and AMMs:

A1[σ1] | · · · | An[σn] | (r1 : τ1, r
′
1 : τ ′

1) | · · · | (rk : τk, r′
k : τ ′

k)

where all Ai are distinct, and for all i �= j: τi �= τ ′
i (i.e., the token types in an

AMM are distinct), and (τi = τj ⇒ τ ′
i �= τ ′

j) ∧ (τi = τ ′
j ⇒ τ ′

i �= τj) (i.e., distinct
AMMs cannot hold exactly the same token types). Two AMMs can indeed have
a common token type τ, as in (r1 : τ1, r : τ), (r′ : τ, r′

2 : τ ′
2), thus enabling

indirect trades between token pairs not directly provided by any AMM. A state
Γ is initial when it only contains wallets with initial tokens. We treat states as
sets of terms (wallets/AMMs): hence, Γ and Γ ′ are equivalent when they contain
the same terms; for a term Q, we write Q ∈ Γ when Γ = Q | Γ ′, for some Γ ′.

Example 1. Figure 1 shows an execution trace in our model, that we will explain
in detail later in Example 5. We write Γ

T−→ Γ ′ for a state transition from Γ to
Γ ′, triggered by a transaction T. The first two states are initial, while the others
contain an AMM for a token pair (τ0, τ1). �	

A Theory of Automated Market Makers in DeFi 171

A[70 : τ0, 80 : τ1] | B[30 : τ0]

A:xfer(B,10:τ1)−−−−−−−−−→ A[70 : τ0, 70 : τ1] | B[30 : τ0, 10 : τ1] (1)

A:dep(70:τ0,70:τ1)−−−−−−−−−−−→ A[70 : (τ0, τ1)] | B[· · ·] | (70 : τ0, 70 : τ1) (2)

B:swapL(30:τ0,20:τ1)−−−−−−−−−−−−−→ A[· · ·] | B[0 : τ0, 31 : τ1] | (100 : τ0, 49 : τ1) (3)

B:swapR(29:τ0,21:τ1)−−−−−−−−−−−−−→ A[· · ·] | B[30 : τ0, 10 : τ1] | (70 : τ0, 70 : τ1) (4)

B:rdm(30:(τ0,τ1))−−−−−−−−−−−→ A[30 : τ0, 30 : τ1, 40 : (τ0, τ1)] | B[· · ·] | (40 : τ0, 40 : τ1) (5)

B:swapL(30:τ0,16:τ1)−−−−−−−−−−−−−→ A[· · ·] | B[0 : τ0, 27 : τ1] | (70 : τ0, 23 : τ1) (6)

A:rdm(30:(τ0,τ1))−−−−−−−−−−−→ A[82 : τ0, 47 : τ1, 10 : (τ0, τ1)] | B[· · ·] | (18 : τ0, 6 : τ1) (7)

Fig. 1. Interactions between two users and an AMM.

Token Supply. We define the supply of a token type τ in a state Γ as the sum
of the balances of τ in all the wallets and the AMMs occurring in Γ. Formally:

splyτ(A[σ]) =

{
σ(τ) if τ ∈ dom σ

0 otherwise
splyτ(r0 : τ0, r1 : τ1) =

{
ri if τ = τi

0 otherwise

splyτ(Γ | Γ ′) = splyτ(Γ) + splyτ(Γ ′)

Example 2. Consider the first state in Fig. 1, Γ1 = A[70 : τ0, 80 : τ1] | B[30 : τ0].
We have that splyτ0(Γ1) = 70 + 30 = 100, while splyτ1(Γ1) = 80. Observe
that the supply of both token types remains constant in Fig. 1; we will show
in Lemma 2 that the supply of initial token types is always preserved. �	

Token Prices and Net Worth. Assume that initial tokens are priced by a
global oracle P0 ∈ T0 → R+

0 . We then define the price Pτ(Γ) of a token τ ∈ T
(either initial or minted) in a state Γ inductively as follows:

Pτ(Γ) = P0(τ) if τ ∈ T0

P(τ0,τ1)(Γ) =
r0 · Pτ0(Γ) + r1 · Pτ1(Γ)

sply(τ0,τ1)(Γ)
if (r0 : τ0, r1 : τ1) ∈ Γ

(8)

The main idea is that initial tokens are priced using directly the global oracle
while minted tokens are priced under the assumption that they can be redeemed.
Their price, hence, is obtained by (recursively) calculating the price of the tokens
that can be obtained by redeeming them (i.e. the proportions of the reserves r0
and r1 given the current supply). This intuition will be further formalized later
in Lemma 6.

Example 3. Let Γ7 = A[82 : τ0, 47 : τ1, 10 : (τ0, τ1)] | · · · be the final state
in Fig. 1. We have that sply(τ0,τ1)(Γ7) = 10. Assume that the prices of initial

172 M. Bartoletti et al.

tokens are P0(τ0) = 5 and P0(τ1) = 9. The price of the minted token (τ0, τ1) is
hence:

P(τ0,τ1)(Γ7) =
1
10

(
18 · Pτ0(Γ7) + 6 · Pτ1(Γ7)

)
=

18
10

· 5 +
6
10

· 9 = 14.4 �	
We now define a key concept to understand the incentives for users to par-

ticipate in AMMs, namely the net worth of a user A in a state Γ:

WA(Γ) =

{∑
τ∈domσ σ(τ) · Pτ(Γ) if A[σ] ∈ Γ

0 otherwise
(9)

The global net worth W (Γ) of a state Γ is the sum of the net worth in users’
wallets. The token units held in AMMs are not accounted for by W (Γ), because
their value is already recorded by minted tokens held in users’ wallets. Indeed,
the equality sply(τ0,τ1)(Γ) ·P(τ0,τ1)(Γ) = r0 ·Pτ0(Γ)+ r1 ·Pτ1(Γ) between the net
value of a minted token and the value of the AMM is a direct consequence of
the definition of price in (8).

As we shall see later, one of the main goals of users is to maximize their net
worth. This can be achieved through different interactions with the AMM (e.g.,
by investing tokens or trading units of differently priced token types).

Example 4. Recall from Fig. 1 the state Γ1 = A[70 : τ0, 80 : τ1] | B[30 : τ0], where
τ0 and τ1 are initial tokens. Assume again that the prices are P0(τ0) = 5 and
P0(τ1) = 9. The users’ net worth in Γ1 are then:

WA(Γ1) = 70 · P0(τ0) + 80 · P0(τ1) = 1070 WB(Γ1) = 30 · P0(τ0) = 150

In Γ7 = A[82 : τ0, 47 : τ1, 10 : (τ0, τ1)] | B[0 : τ0, 27 : τ1] | (18 : τ0, 6 : τ1) we have:

WA(Γ7) = 82 · Pτ0(Γ7) + 47 · Pτ1(Γ7) + 10 · P(τ0,τ1)(Γ7) = 977
WB(Γ7) = 27 · Pτ1(Γ7) = 243

Note that the net worth of A has decreased w.r.t. the initial state, while the net
worth of B has increased. One may think that B has been more successful than
A, but this depends on the users’ goals. Note, e.g., that A holds 10 units of the
minted token (τ0, τ1), whose price may increase in the future. �	

2.2 AMM Semantics

We now formally describe the interactions of the AMM that give rise to state
transitions. State transitions are triggered by the transactions in Table 1. We
formalise below their behaviour, but we give before an overview of our running
example from Fig. 1.

A Theory of Automated Market Makers in DeFi 173

Table 1. AMM transactions.

A : xfer(B, v : τ) A transfers v : τ to B

A : dep(v0 : τ0, v1 : τ1) A deposits v0 : τ0 and v1 : τ1 to an AMM (r0 : τ0, r1 : τ1),

receiving in return some units of the minted token (τ0, τ1)

A : swapL(v0 : τ0, v1 : τ1) A tranfers v0 : τ0 to an AMM (r0 : τ0, r1 : τ1), receiving in

return at least v1 units of τ1

A : swapR(v0 : τ0, v1 : τ1) A tranfers v1 : τ1 to an AMM (r0 : τ0, r1 : τ1), receiving in

return at least v0 units of τ0

A : rdm(v : τ) A redeems v units of minted token τ = (τ0, τ1) from an AMM

(r0 : τ0, r1 : τ1), receiving in return some units of τ0 and τ1

Example 5. Figure 1 actually displays a sequence of transitions in the LTS of
our model. To keep the example simple, we have used there the constant product
swap invariant, which requires swap transactions to preserve the product between
the amounts of the two tokens in the AMM; further, we have assumed no fees.
In step (1), A transfers 10 : τ1 from her wallet to B’s. In step (2), A creates
a new AMM, depositing 70 : τ0 and 70 : τ1; in return, she receives 70 units of
the minted token (τ0, τ1). In step (3), B swaps 30 of his units of τ0 for at least
20 units of τ1. The actual amount of units of τ1 received by B is 21: indeed,
(70 + 30) · (70 − 21) = 70 · 70, hence 21 satisfies the constant product swap
invariant. In step (4), B reverses his prior action by swapping 21 of his units of
τ1 for at least 29 units of τ0. Here, the actual amount of units of τ1 received by
B is 30, which also satisfies the constant product swap invariant. In step (5), B
redeems 30 units of the minted token (τ0, τ1), accordingly reducing the funds in
the AMM. Note that the received tokens exhibit the same 1-to-1 ratio as in the
initial deposit at step (2). In step (6), B swaps 30 of his units of τ0 for at least
16 units of τ1. Unlike in the previous swap at step (3), now the actual amount
of τ1 received by B is 17. Note that the implied swap rate between received τ1
units and sent τ0 units has deteriorated w.r.t. step (3), even if the pair (τ0, τ1)
had the same 1-to-1 ratio of funds. This is caused by the reduction in funds
resulting from A’s redeem action: thus, the swap rate is sensitive to both the
ratio of funds in the pair as well as their absolute balances, a key property of
the incentive mechanisms, as we shall see later in Sect. 4. Finally, in step (7)
A performs another redeem of 30 units of the minted token (τ0, τ1), thereby
extracting 52 units of τ0 and 17 units of τ1 from the AMM. Note that the ratio
of redeemed tokens is no longer 1-to-1 as in the previous redeem action (5), as
the prior left swap has changed the ratio between the funds of τ0 and τ1 in the
AMM. �	

We now formalise the transition rules. We use the standard notation σ{v/x} to
update a partial map σ at point x: namely, σ{v/x}(x) = v, while σ{v/x}(y) = σ(y)
for y �= x. Given a partial map σ ∈ T ⇀ R+

0 , a token type τ ∈ T and a partial
operation ◦ ∈ R+

0 × R+
0 ⇀ R+

0 , we define the partial map σ ◦ v : τ as follows:

174 M. Bartoletti et al.

σ ◦ v : τ =

{
σ{σ(τ) ◦ v/τ} if τ ∈ dom σ and σ(τ) ◦ v ∈ R+

0

σ{v/τ} if τ �∈ dom σ

Token Transfer. A user A can transfer some of her tokens to another user B,
provided that there are enough units of the token in A’s wallet. Formally:

σA(τ) ≥ v

A[σA] | B[σB] | Γ
A:xfer(B,v:τ)−−−−−−−−→ A[σA − v : τ] | B[σB + v : τ] | Γ

[Xfer]

A consequence of this rule is that tokens (both initial and minted) are fungible,
i.e. individual units of the same token type are interchangeable. In particular,
amounts of tokens of the same type can be split into smaller parts, and two
amounts of tokens of the same type can be joined.

Deposit. Any user can create an AMM for a token pair (τ0, τ1) provided that
such an AMM is not already present in the state. This is achieved by the trans-
action A : dep(v0 : τ0, v1 : τ1), through which A transfers v0 : τ0 and v1 : τ1 to
the new AMM. In return for the deposit, A receives a certain positive amount
of units of a new token type (τ0, τ1), which is minted by the AMM. The exact
amount of units received is irrelevant. In our model we choose v0 but any other
choice would be valid. We formalise this behaviour by the rule:

σ(τi) ≥ vi > 0 (i ∈ {0, 1}) τ0 �= τ1 (: τ0, : τ1), (: τ1, : τ0) �∈ Γ

A[σ] | Γ
A:dep(v0:τ0,v1:τ1)−−−−−−−−−−−→

A[σ − v0 : τ0 − v1 : τ1 + v0 : (τ0, τ1)] | (v0 : τ0, v1 : τ1) | Γ

[Dep0]

Once an AMM is created, any user can deposit tokens into it, as long as doing
so preserves the ratio of the token holdings in the AMM. When a user deposits
v0 : τ0 and v1 : τ1 to an existing AMM, it receives in return an amount of minted
tokens of type (τ0, τ1). This amount is the ratio between the deposited amount
v0 and the redeem rate of (τ0, τ1) in the current state Γ, i.e. the ratio between
the amount r0 of τ0 stored in the AMM, and the total supply sply(τ0,τ1)(Γ) of
the minted token in the state.

σ(τi) ≥ vi > 0 (i ∈ {0, 1}) r1v0 = r0v1 v = v0
r0

· sply(τ0,τ1)
(Γ)

Γ = A[σ] | (r0 : τ0, r1 : τ1) | Γ ′ A:dep(v0:τ0,v1:τ1)−−−−−−−−−−−→
A[σ − v0 : τ0 − v1 : τ1 + v : (τ0, τ1)] | (r0 + v0 : τ0, r1 + v1 : τ1) | Γ ′

[Dep]

Note that the premise r1v0 = r0v1 ensures that the ratio between the holdings
of τ0 and τ1 in the AMM is preserved by the dep transaction, i.e.:

r1 + v1
r0 + v0

=
r1
r0

As we shall see in Sect. 4, users are incentivized to invest tokens into AMMs
by the fact that trading operations (i.e., swaps) are subject to a fee mechanism
that makes the redeem rate increase over time.

A Theory of Automated Market Makers in DeFi 175

Swap. As shown in step (3) and on of Example 5, users can increase their net
worth by swapping tokens. Any user A can swap units of τ0 in her wallet for units
of τ1 in an AMM (r0 : τ0, r1 : τ1) by firing a transaction A : swapL(v0 : τ0, v1 : τ1).
Here, v0 is the amount of τ0 transferred from A’s wallet to the AMM, while v1
is a lower bound on the amount of τ1 that A will receive in return. The actual
amount v is determined by a swap invariant I ∈ R+

0 × R+
0 → R+

0 , that must
hold between the amounts of τ0 and τ1 held in the AMM before and after the
swap. To determine v, the AMM requires a fraction 0 < φ ≤ 1 of v0; the rest is
considered as a fee (the parameter φ is the fee rate). Formally:

σ(τ0) ≥ v0 > 0 I(r0 + φ v0, r1 − v) = I(r0, r1) 0 < v1 ≤ v ≤ r1

A[σ] | (r0 : τ0, r1 : τ1) | Γ
A:swapL(v0:τ0,v1:τ1)−−−−−−−−−−−−−→

A[σ − v0 : τ0 + v : τ1] | (r0 + v0 : τ0, r1 − v : τ1) | Γ

[SwapL]

The effect of the fee is that the redeem rate of minted tokens increases;
intuitively, the AMM retains a portion of the swapped amounts, but the overall
reserve is still distributed among all minted tokens, thereby ensuring liquidity
(as we shall formally establish liquidity later on in Lemma4).

Although actual AMM implementations use a variety of different swap invari-
ants, with the common aim to incentivize users to perform swaps, all these invari-
ants share a few common design choices. A crucial one is that there exists exactly
one v which satisfies the equation in the premise of [SwapL]; further, swapping 0
units of τ0 results in 0 units of τ1. Formally, for all r0, r1 > 0:

∀v ∈ R+
0 : ∃!v′ ∈ R+

0 : I(r0 + v, r1 − v′) = I(r0, r1) (10)

Hereafter, we assume that I always respects this condition. A common swap
invariant, implemented e.g. by Uniswap [13] and Mooniswap [7] (and also used
in Example 5), is the constant product invariant, which requires that the product
of the amounts of τ0 and τ1 in the AMM remains constant, i.e. I(r0, r1) = r0 ·r1.

The rule [SwapR] allows for swaps in the other direction:

σ(τ1) ≥ v1 > 0 I(r0 − v, r1 + φ v1) = I(r0, r1) 0 < v0 ≤ v ≤ r0

A[σ] | (r0 : τ0, r1 : τ1) | Γ
A:swapR(v0:τ0,v1:τ1)−−−−−−−−−−−−−→

A[σ + v : τ0 − v1 : τ1] | (r0 − v : τ0, r1 + v1 : τ1) | Γ

[SwapR]

where we assume that I enjoys the “right” version of the condition (10).
It is worth explaining why the swap transactions specify lower bounds for the

amount of return tokens, instead of an exact amount. In practice, when a user
emits a transaction, she cannot predict the exact state in which the transaction
will be actually committed. This makes it unfeasible to guess the exact amount
that will preserve the swap invariant: hence, users can only specify a lower bound
that they are willing to accept.

Redeem. Any user can redeem units of a minted token (τ0, τ1), obtaining in
return units of the underlying tokens τ0 and τ1. The redeemable amounts are

176 M. Bartoletti et al.

determined by the redeem rate: each unit of (τ0, τ1) can be redeemed for equal
fractions of τ0 and τ1 remaining in the AMM:

σ(τ0, τ1) ≥ v > 0 v0 = v r0
sply(τ0,τ1)(Γ)

v1 = v r1
sply(τ0,τ1)(Γ)

Γ = A[σ] | (r0 : τ0, r1 : τ1) | Γ ′ A:rdm(v:(τ0,τ1))−−−−−−−−−−→
A[σ + v0 : τ0 + v1 : τ1 − v : (τ0, τ1)] | (r0 − v0 : τ0, r1 − v1 : τ1) | Γ ′

[Rdm]

Example 6. Figure 2 shows the evolution of the AMM token holdings resulting
from the trace in Fig. 1, presented with Example 5. Recall that we have assumed
a constant product swap invariant x · y = k, and no swap fees (φ = 1). We refer
to a state in Fig. 1 by the action number preceding it: the AMM (70 : τ0, 70 : τ1)
in state (2) is shown in Fig. 2. Subsequent left (3) and right (4) swaps result in
a traversal along k = 70 · 70 from (70 : τ0, 70 : τ1) to (100 : τ0, 49 : τ1), and
back as the swap invariant must hold for swap actions. The redeem action (5)
reduces the holdings of both tokens by the same factor to reach (40 : τ0, 40 : τ1).
A left swap (6) traverses k′ = 40 · 40 to reach (70 : τ0, 23 : τ1) in state (6), which
is then followed by another redeem (7) action, reducing both token holdings
proportionally to (18 : τ0, 6 : τ1).

(40:τ
0
, 40:τ

1
)

(18:τ
0
, 6:τ

1
)

(70:τ
0
, 70:τ

1
)

(100:τ
0
, 49:τ

1
)

(70:τ
0
, 23:τ

1
)

τ
0

τ
1

x·y = k'

x·y = k''

x·y = k

Fig. 2. Evolution of balances of AMM (τ0, τ1) along the trace in Fig. 1.

3 Structural Properties of AMMs

We now establish some structural properties of AMMs, which do not depend on
the design of the economic mechanisms, i.e. on the choice of the swap invariant.
We denote with −→∗ the reflexive and transitive closure of −→. Given a finite
sequence of transactions λ = T1 · · ·Tk, we write Γ

λ−→ Γ ′ when Γ
T1−→ · · · Tk−−→ Γ ′.

We say that a state Γ is reachable if Γ0 −→∗ Γ for some initial Γ0. We denote
with type(T) the type of T (i.e., xfer, dep, . . .), with wal(T) the set of wallets

A Theory of Automated Market Makers in DeFi 177

affected by T (e.g., wal(A : xfer(B, v : τ)) = {A,B}), and with tok(T) the set of
token types affected by T (e.g., tok(A : swapL(v0 : τ0, v1 : τ1)) = {τ0, τ1}).

First, we establish that the AMMs’ LTS is deterministic. Note that, in swap
rules, an unconstrained swap invariant I could admit different solutions to the
equation in the premise: determinism is ensured by condition (10), which we
assume to be true for all swap invariants.

Lemma 1 (Determinism). If Γ
T−→ Γ ′ and Γ

T−→ Γ ′′, then Γ ′ = Γ ′′.

We can lift the statement to sequences of transactions by using a simple
inductive argument. The same applies to other single-step results in this section.

Lemma 2 ensures that the supply of each initial token type τ is preserved
by transitions (of any type). Note that preservation does not hold for minted
tokens, as they can be created (by rule [Dep]) and destroyed (by rule [Rdm]).

Lemma 2. For all τ ∈ T0, if Γ −→ Γ ′ then splyτ(Γ) = splyτ(Γ ′).

Lemma 3 ensures that the global net worth is preserved by transactions,
whereas the user’s net worth is preserved only by redeems/deposits.

Lemma 3 (Preservation of net worth). Let Γ
T−→ Γ ′. Then, W (Γ) =

W (Γ ′). Further, if type(T) ∈ {dep, rdm} or A �∈ wal(T), then WA(Γ) = WA(Γ ′).

Lemma 4 ensures that funds cannot be frozen in an AMM, i.e. that users can
always redeem arbitrary amounts of the tokens deposited in an AMM.

Lemma 4 (Liquidity). Let Γ be a reachable state such that (r0 : τ0, r1 : τ1) ∈
Γ with r0 + r1 > 0. Then: (a) sply(τ0,τ1)(Γ) > 0; (b) for all r′

0 ≤ r0, there exists
r′
1 ≤ r1 such that Γ −→∗ (r′

0 : τ0, r
′
1 : τ1) | · · · ; (c) for all r′

1 ≤ r1, there exists
r′
0 ≤ r0 such that Γ −→∗ (r′

0 : τ0, r
′
1 : τ1) | · · · .

We now study the concurrency of transactions. Two finite sequences of trans-
actions λ0 and λ1 are observationally equivalent, in denoted λ0 ∼ λ1, when, for
all states Γ, if Γ

λ0−→ Γ0 and Γ
λ1−→ Γ1 then Γ0 = Γ1. We say that two distinct

transactions T,T′ are concurrent (denoted, T#T′) if TT′ ∼ T′T. Note that
this does not mean that T and T′ cannot disable each other as demanded by
stricter notions of concurrency. Lemma 5 provides sufficient conditions for two
transactions to be concurrent: intuitively, two non-swap transactions are always
concurrent, while swap transactions are concurrent with xfer transactions, and
with any transactions which do not affect the same token types.

Lemma 5. Two distinct transactions T0, T1 are concurrent if, for i ∈ {0, 1},
type(Ti) ∈ {swapL, swapR} implies tok(Ti)∩ tok(T1−i) = ∅ or type(T1−i) = xfer.

As we shall see later in Sect. 4, it is actually desirable, and crucial for the
economic mechanism of AMMs, that swap transactions interfere with other trans-
actions that trade the same token type.

178 M. Bartoletti et al.

The theory of Mazurkiewicz’s trace languages [27] allows us to lift Lemma 5
to sequences of transactions. Let R be a symmetric and irreflexive relation on
the set X of all transactions. The Mazurkiewicz equivalence ∼R is the least con-
gruence in the free monoid X∗ such that: ∀T,T′ ∈ X: T RT′ =⇒ TT′ ∼R T′T.
Theorem 1 states that the Mazurkiewicz equivalence constructed on the concur-
rency relation # is an observational equivalence.

Theorem 1 (Concurrent transactions can be reordered). ∼# ⊆ ∼.

A direct consequence of Theorem 1 is that we can transform a finite sequence
of transactions into an observationally equivalent one by repeatedly exchanging
adjacent concurrent transactions—provided that both sequences are executable
in the LTS. For example, sequences of A : rdm() transactions can be freely
reordered, resulting in the same, unique state. This is exploited in the follow-
ing lemma, which supports the inductive definition of the price of minted tokens
in (8): indeed, computing the net worth of a user A under that price definition
corresponds to making A first redeem all her minted tokens, and then summing
the price of the resulting initial tokens.

Lemma 6. For all states Γ and users A, let rdmA(Γ) be the unique state reached
from Γ by performing only A : rdm() actions, such that A’s wallet in rdmA(Γ),
only contains initial tokens. Then:

WA(Γ) =
∑

τ∈domσ σ(τ) · P0(τ) if A[σ] ∈ rdmA(Γ)

Example 7. Recall from Example 4 that WA(Γ7) = 977. Assume that A performs
a further transaction to redeem all 10 units of (τ0, τ1) from her wallet. The
resulting state is Γ8 = A[100 : τ0, 53 : τ1] | · · · . We compute A’s net worth in that
state, using the oracle token prices: WA(Γ8) = 100 · P(τ0)(Γ7) + 53 · P(τ1)(Γ7) =
100 · 5 + 53 · 9 = 977, as correctly predicted by Lemma 6. �	

4 Properties of AMM Incentives

We now study the incentive mechanisms of AMMs. We start in Sect. 4.1 by
introducing a few notions of exchange rate, which are pivotal to understanding
these mechanisms. In Sect. 4.2 we devise general conditions on swap invariants,
overall named incentive-consistency, which guarantee that AMMs enjoy relevant
economic properties. In Sect. 4.3 we study solutions to the arbitrage problem,
which is the key to incentivize users to perform swap operations towards an
ideal state where the AMM’s exchange rates align with the exchange rates set
by price oracles. Finally, in Sect. 4.4 we study the incentives to swap and deposit
larger amounts.

4.1 Exchange Rates

The exchange rate between two token types is the number of units of one token
needed to buy one unit of the other token at the current price. We define Left
and Right versions of this notion, that reflect the direction of the exchange:

A Theory of Automated Market Makers in DeFi 179

XLΓ(τ0, τ1) = Pτ0(Γ)/Pτ1(Γ) XRΓ(τ0, τ1) = Pτ1(Γ)/Pτ0(Γ) (11)

The swap rate between τ0 and τ1 upon a payment of vi : τi (for i ∈ {0, 1})
is the ratio between v and vi, where v is the received amount of τ1−i resulting
from a swap action on an AMM (r0 : τ0, r1 : τ1). We first introduce an auxiliary
notion, parameterized over the balances r0 and r1, instead of the token types:

XLswap
φ (v0, r0, r1) = v/v0 if I(r0, r1) = I(r0 + φv0, r1 − v)

XRswap
φ (v1, r0, r1) = v/v1 if I(r0, r1) = I(r0 − v, r1 + φv1)

(12)

The swap rate is parameterized over the fee rate φ: the case where φ = 1 repre-
sents an ideal scenario with no fees: in this case, we write just XLswap(v0, r0, r1).
We define the swap rate in a state Γ such that (r0 : τ0, r1 : τ1) ∈ Γ as follows:

XLswap
Γ,φ (v0, τ0, τ1) = XLswap

φ (v0, r0, r1) XRswap
Γ,φ (v1, τ0, τ1) = XRswap

φ (v1, r0, r1)

We also define the redeem rate . The left version is:

XLrdm
Γ (τ0, τ1) = r0/sply(τ0,τ1)(Γ) if (r0 : τ0, r1 : τ1) ∈ Γ (13)

4.2 General Properties of Swap Invariants

We now introduce a set of properties of swap invariants, called cumulatively
incentive-consistency , which overall incentivize users to interact with AMMs
by performing swap and deposit actions.

Swap-Rate Continuity. This property requires that, for all r0, r1 > 0:

lim
ε→0

XLswap(ε, r0, r1) = 1/ lim
ε→0

XRswap(ε, r0, r1) ∈ R+ (14)

Figure 3 (left) illustrates this property, displaying the points (x, y) which
satisfy the constant product invariant x · y = k. The left swap rate limit for
the constant product invariant and φ = 1 is limε→0 XLswap(ε, r0, r1) = r1/r0,
while for the right swap we have limε→0 XRswap(ε, r0, r1) = r0/r1. Coinciding
left swap limit and right swap limit inverse are illustrated as the slope of the
product constant curve at a selected point in Fig. 3 (left). The constant product
invariant satisfies (14), i.e. it is swap-rate continuous.

Demand-Sensitivity. A swap invariant is demand-sensitive if the swap rate
strictly decreases with demand. Formally, for all r0, r1, r

′
0, r

′
1 > 0:

I(r0, r1) = I(r′
0, r

′
1) ∧ r′

0 > r0 =⇒ lim
ε→0

XLswap
φ (ε, r0, r1) > lim

ε→0
XLswap

φ (ε, r′
0, r

′
1)

(15)
We implicitly require that (15) and the subsequent properties stated for the

left version of an exchange rate also hold for the right version.

180 M. Bartoletti et al.

x·y = ky

x

y

x

x·y = k

(r
0
, r

1
)

(r
0
', r

1
')

(r
0
, r

1
)

(r
0
', r

1
')

(c·r
0
, c·r

1
)

(r
0
, r

1
)

(r
0
'/c, r

1
'/c)

x·y = k'

y

x

x·y = k

Fig. 3. The constant product invariant I(x, y) = x · y is swap-rate-consistent (left),
demand-sensitive (center), non-depletable, funds-consistent (right) and swap-rate con-
sistent (right).

Figure 3 (center) depicts two points (r0, r1), (r′
0, r

′
1) on the constant product

curve, which satisfy x · y = k for identical k. For the constant product invariant,
the left swap limit can be expressed as limε→0 XLswap(ε, r0, r1) = φ · r1/r0. For
the given k and points in Fig. 3 (center):

lim
ε→0

XLswap
φ (ε, r0, r1) = φ · k/r20 lim

ε→0
XLswap

φ (ε, r′
0, r

′
1) = φ · k/r′

0
2

Thus for r′
0 > r0, limε→0 XL

swap
φ (ε, r0, r1) > limε→0 XL

swap
φ (ε, r′

0, r
′
1): the constant

product invariant is demand-sensitive.

Non-depletion. This property ensures that the balance of tokens within an
AMM cannot be zeroed via swaps. Formally, I is non-depletable when, for all
r0, r1 > 0 and r′

0, r
′
1 ≥ 0:

I(r0, r1) = I(r′
0, r

′
1) =⇒ r′

0, r
′
1 �= 0 (16)

Note that the constant product invariant trivially satisfies this property.

Funds-Consistency. Deposits to an AMM ensure higher swap rates for a given
input amount v, whereas redeems will reduce the swap rates for v. This behaviour
is formalized later on in Theorem4, but is a consequence of the funds-consistency
property of the swap invariant. Formally, we require that for all r0, r1, r

′
0, r

′
1 > 0:

I(r0, r1) �= I(r′
0, r

′
1) ⇐⇒

∃!c ∈ R+ \ {1} : I(c · r′
0, c · r′

1) = I(r0, r1) ∧ I(r0
c , r1

c) = I(r′
0, r

′
1)

(17)

Figure 3 (right) illustrates funds-consistency for the constant product invariant.
Here, r0 · r1 = k �= k′ = r′

0 · r′
1. We observe that there exists a unique c > 0

in (c · r0) · (c · r1) = r′
0 · r′

1 = k′: namely, c =
√

(r′
0 · r′

1)/(r0 · r1). Conversely,
(r′

0/c) · (r′
1/c) = r0 · r1, which holds for the same value of c.

Swap-Rate-Consistency. The design of AMMs aims to ensure that redeems
and deposits do not interfere with the alignment of the swap rate towards the

A Theory of Automated Market Makers in DeFi 181

exchange rate. Since both deposits and redeems preserve the balance ratio of a
token pair, we require swap rate limits for all balances of a given ratio to be
constant. For all r0, r1, c > 0:

lim
ε→0

XLswap
φ (ε, r0, r1) = lim

ε→0
XLswap

φ (ε, c · r0, c · r1) (18)

Figure 3 (right) illustrates equal swap rate limits for given r0, r1 and c · r0, c · r1.
Here, limε→0 XLswap(ε, r0, r1) = φ · r1/r0 = φ · (c · r1)/(c · r0) for c > 0.

Finally, the following lemma establishes that the constant product swap
invariant (the one used e.g. by Uniswap and Mooniswap) is indeed incentive-
consistent. We conjecture that the same is true for the swap invariants imple-
mented by the other mainstream AMM platforms.

Lemma 7. The constant product swap invariant is incentive-consistent.

4.3 The Arbitrage Game

We now study the incentive mechanisms of AMMs from a game-theoretic per-
spective. Indeed, AMMs can be seen as multi-player games where users collabo-
rate or compete to achieve possibly conflicting goals. In such games the allowed
moves of users are the interactions with other users and with AMMs, while their
goal is typically to increase their net worth.

The arbitrage problem is an interesting example of an AMM game since
it is directly linked to the incentive of swaps in a way that makes AMMs track
exchange rates. The arbitrage problem has been formalized for specific swap
invariants, namely the weighted and constant product swap invariant [17,19]. We
generalize here the arbitrage problem to arbitrary swap invariants. We provide
sufficient conditions for the existence of solutions, and we link the solutions to
the expected relation between AMMs and exchange rates.

We model the arbitrage problem as a single-player, single-round game. The
initial game state is Γ0 = A[σ] | (r1 : τ0, r1 : τ1), where A is the only player.
The moves of A are all the possible transactions fired by A; we also consider
doing nothing as a possible move. The goal of A is to maximize her net worth,
i.e. to maximize WA(Γ)−WA(Γ0), where Γ is the state resulting from executing
the selected move. A solution to the game is a move that satisfies the goal, i.e.
one of the optimal moves. We further assume that A holds no minted tokens
containing (τ0, τ1) as a subterm (i.e., (τ0, τ1) itself, ((τ0, τ1), τ2), etc.). In this
way, any change in A’s net worth only depends on the exchange rate between τ0
and τ1, and on the transfer of value resulting from A’s move.

Before presenting the solution to the game we examine the potential candi-
dates for the solution. First, note that transfers are not valid solutions, as they
can only decrease A’s net worth. A second observation is that doing nothing,
depositing or redeeming do not alter A’s net worth (cf. Lemma 3). Hence, if one
of such moves is a solution, so are the other two. The only moves that may affect
A’s net worth are swaps. For a swap to be a solution to the game, it must, first
of all, result in a positive change of A’s net worth. This happens when the swap

182 M. Bartoletti et al.

rate is greater than the exchange rate. Theorem2 presents the solution to the
game. Note that if swapL(v0 : τ0, v1 : τ1) is a solution, then for all v′

1 ≤ v1, also
swapL(v0 : τ0, v

′
1 : τ1) is a solution. Without loss of generality, our statement

singles our the solution with the greatest v1 (similarly for the right swap).

Theorem 2. Let I be demand-sensitive and non-depletable, and let the initial
state of the game be Γ0 = A[σ] | (r0 : τ0, r1 : τ1), with r0, r1 > 0. Let σ(τ0), σ(τ1)
be large enough to enable any needed swap. Then, the solution to the game is:

– A : swapL(v0 : τ0, v1 : τ1) if Γ0
A:swapL(v0:τ0,v1:τ1)−−−−−−−−−−−−−→ Γ, and:

(1) lim
ε→0

XLswap
Γ0,φ(ε, τ0, τ1) > XLΓ0(τ0, τ1)

(2) lim
ε→0

XLswap
φ (ε, r0 + φ · v0, r1 − v1) = XLΓ(τ0, τ1) where ∃! δ:

I(r0, r1) = I(r0 + φ · v0, r1 − v1) = I(r0 + φ · (v0 + ε), r1 − (v1 + δ))

– A : swapR(v0 : τ0, v1 : τ1) if Γ0
A:swapR(v0:τ0,v1:τ1)−−−−−−−−−−−−−→ Γ, and:

(1) lim
ε→0

XRswap
Γ0,φ(ε, τ0, τ1) > XRΓ0(τ0, τ1)

(2) lim
ε→0

XRswap
φ (ε, r0 − v0, r1 + φ · v1) = XRΓ(τ0, τ1) where ∃! δ:

I(r0, r1) = I(r0 − v0, r1 + φ · v1) = I(r0 − (v0 + δ), r1 + φ · (v1 + ε))

– do nothing (or do any deposit or redeem), otherwise.

Intuitively, condition (1) requires that the swap rate for infinitesimal amounts is
greater than the exchange rate in the initial state; (2) requires that in the state
Γ reached by performing the move of the solution, the swap rate for infinitesimal
amounts tends to the exchange rate—thus achieving one of the main desiderata
on AMMs. Note that Γ is an equilibrium: no move from there can improve A’s
net worth, i.e. doing nothing is a solution for the arbitrage problem in Γ.

Note that for the swapL/swapR solutions, the swapped amounts are unique:
this is a consequence on the assumption (10). An implicit desideratum on these
solutions is that, given a specific instance of the swap invariant, they are effi-
ciently computable: this is the case, e.g., for the constant product invariant [17].

For φ = 1 we can observe by inspection of (14) that the do-nothing solution
for Theorem 2 only holds for:

lim
ε→0

XLswap
Γ0

(ε, τ0, τ1) = 1/ lim
ε→0

XRswap
Γ0

(ε, τ0, τ1) = XLΓ0(τ0, τ1) (19)

Thus, the solution to the game results in the AMM tracking global exchange
rates precisely: any infinitesimal deviation of the global exchange rate implies a
swap action in the arbitrage game.

The assumption that the players’ wallets are sufficiently large is common
in formulations of the arbitrage problem. We note that any rational agent is
incentivized to perform such a swap: the optimal solution to the arbitrage game

A Theory of Automated Market Makers in DeFi 183

can thus be approximated by multiple users exchanging smaller swap amounts.
Furthermore, the availability of flash-loans [29,30] can provide up-front funds,
and thus significantly reduce the balance requirements for arbitrage swaps.

Finally, we prove that a AMM deposits and redeems do not affect the solution
type of the arbitrage game. If the arbitrage solution prior to a deposit or redeem
is swapL, swapR or nothing, the arbitrage solution in the subsequent state should
remain of the same type.

Theorem 3. Let I be incentive-consistent. Let (r0 : τ0, r1 : τ1) ∈ Γ with r0, r1 >

0. If Γ
T−→ Γ ′, type(T) ∈ {dep, rdm}, then the arbitrage solutions in Γ and Γ ′

will have the same type or both be nothing.

In other words, the design of AMMs aims to ensure that deposits and redeems
do not interfere with the alignment of the swap rate towards the exchange rate.

Example 8. Consider the arbitrage game with player B and initial state Γ7 =
B[0 : τ0, 27 : τ1] | (18 : τ0, 6 : τ1) | · · · resulting after the last step in Fig. 1.
Assuming the constant product invariant and no fees (i.e., φ = 1), we have that:

lim
ε→0

XLswap
Γ7

(ε, τ0, τ1) = r1/r0 = 6/18 < 5/9 = XLΓ7(τ0, τ1)

lim
ε→0

XRswap
Γ7

(ε, τ0, τ1) = r0/r1 = 18/6 > 9/5 = XRΓ7(τ0, τ1)

Hence, by Theorem 2 it follows that the optimal move is swapR(v0 : τ0, v1 : τ1),
for suitable v0 and v1. To find these values, we must solve for v0 and v1 the
equations in item (2) of Theorem2, i.e.:

lim
ε→0

XRswap
φ (ε, r0 − v, r1 + v1) = XRΓ(τ0, τ1) I(r0, r1) = I(r0 − v0, r1 + v1)

Solving these equations gives:

v1 =

√
5
9

· r0r1 − r1 ≈ 1.74 v0 =
r0v1

r1 + v1
≈ 4

By performing swapR(v0 : τ0, v1 : τ1) with these values from Γ7, we obtain:

Γ = B[4 : τ0, 25.26 : τ1] | (14 : τ0, 7.74 : τ1) | · · ·
This action maximizes B’s net worth: indeed, we have WB(Γ7) = 243 and
WB(Γ) = 247.6; any other action will result in a lower net worth for B. �	

4.4 Incentivizing Deposits and Swaps

Theorem 2 ensures that incentive-consistent AMMs incentivize swaps to align to
exchange rates. We now show that, under certain conditions, deposits and swaps
incentivize each other. The intuition is that larger amounts of tokens in an AMM
provide better swap rates, therefore attracting users interested in swaps. These
swaps, in turn, result in increased redeem rates, making the AMM attractive for

184 M. Bartoletti et al.

further deposits. Note that this behaviour relies on an underlying assumption
of our model, i.e. that exchange rates are stable: oracle prices are fixed. In the
wild, exchange rates can vary over time, possibly making the net worth of users
holding minted AMM tokens decrease: this phenomenon is commonly referred
to as impermanent loss [9].

The following theorem shows that deposits increase swap rates, hence incen-
tivizing swaps, whilst redeems have the opposite effect.

Theorem 4. Let I be incentive-consistent. Let Γ = (r0 : τ0, r1 : τ1) | · · · , with
r0, r1 > 0, and let Γ

A:�−−→ Γ ′. Then, for all v ∈ R+:

XLswap
Γ,φ (v, τ0, τ1) ◦ XLswap

Γ ′,φ(v, τ0, τ1)

XRswap
Γ,φ (v, τ0, τ1) ◦ XRswap

Γ ′,φ(v, τ0, τ1)
where ◦ =

{
< if
 = dep(: τ0, : τ1)
> if
 = rdm(: (τ0, τ1))

We now show that, under certain conditions, swaps incentivize deposits. Intu-
itively, swaps contribute to higher redeem rates, which increase the net wealth
of the holders of minted AMM tokens:

Theorem 5. Let I be incentive-consistent. Let Γ = (r0 : τ0, r1 : τ1) | · · · and
Γ −→∗ Γ ′, where Γ ′ = (r′

0 : τ0, r
′
1 : τ1) | · · · . If r1/r0 = r′

1/r′
0 then:

XLrdm
Γ (τ0, τ1) ≤ XLrdm

Γ ′ (τ0, τ1) XRrdm
Γ (τ0, τ1) ≤ XRrdm

Γ ′ (τ0, τ1)

Recall that a user who deposits into an AMM (r0 : τ0, r1 : τ1) in state Γ
receives in return an amount of minted tokens. A consequence of Theorem5 is
that these minted tokens can be redeemed with a higher redeem rate in any
subsequent state Γ ′ which preserves the funds ratio r1/r0. Note that swaps
are the only actions that may affect the redeem rate along the run Γ −→∗ Γ ′.
Therefore, performing swaps that eventually re-align the funds ratio to r1/r0
incentivizes deposits.

The condition of constant funds ratio in Theorem5 is practically relevant.
For instance, for stable exchange rates, such as in the case of exchanges between
stable coins [6], the arbitrage game ensures stable fund ratios: users are hence
incentivized to provide funds, as the redeem rate is likely to increase over time.

5 Related Work

To the best of our knowledge, our work is the first to study AMMs abstracting
from the swap invariant. All works in literature consider concrete swap invari-
ants; most of them focus on the constant product, popularized by Uniswap [13].
The arbitrage problem for constant-product swap invariants has been formalized
in [17,19], which show that the solution can be efficiently computed, and sug-
gest that constant product AMMs accurately tend towards exchange rates. Our
work generalizes such results. Furthermore, as we have shown in Sect. 4.3 (19),
the fee-rate φ determines how much AMMs deviate from global exchange rates:
higher fees, however, also result in reduced swap amounts in arbitrage actions,

A Theory of Automated Market Makers in DeFi 185

negatively affecting fee accrual. In [24], the optimal fee-rate that maximizes the
fee accrual for the depositing user is analytically derived.

A executable model of Uniswap [13] has been specified in [1] to analyze integer
rounding errors in the Uniswap implementation.

A few alternatives to the constant product invariant have been proposed.
Curve features a peculiar invariant [22] optimized for large swap volumes between
stable coins, where the swap rate can support large amounts with small sensitiv-
ity. To efficiently compute swap invariant, implementations perform numerical
approximations [15]. Should these approximations fail to converge, these imple-
mentations still guarantee that the AMM remains liquid. We conjecture that
the invariants in [3,22] are incentive-consistent. The work [25] proposes a con-
stant product invariant that is adjusted dynamically based on the oracle price
feed, thus reducing the need for arbitrage transactions, but at the cost of lower
fee accrual. AMMs with virtual balances have been proposed [2] and imple-
mented [7,8]. In these AMMs, the swap rate depends on past actions, besides
the current funds balances in the AMM. This, similarly to [25], aims to minimize
the need for arbitrage transactions to ensure the local AMM swap rate tends
towards the exchange rates.

Some implementations [3] generalise AMM pairs to n-tokens, allowing users
to swap any non-intersecting sets of token types. For example, the constant-
product invariant becomes I(r0, . . . , rn) = rw0

0 · . . . · rwn
n where

∑n
i=0 wi = 1.

6 Conclusions

We have proposed a theory of AMMs, featuring a model of their behaviour and
a formally proven set of fundamental properties, characterizing both structural
and economic aspects. Our theory is parametric w.r.t. platform-specific features
(e.g., swap invariants), and it abstracts from implementation-specific features,
and from the features that are orthogonal to the core functionality of AMMs
(e.g., governance).

There are some differences between our model and the existing AMM plat-
forms. Uniswap implements flash-loans as part of the swap actions: namely, the
user can optionally borrow available pair funds [10] whilst returning these within
the same atomic group of actions. Further, Uniswap implements an exchange rate
oracle, allowing smart contracts to interpret (averages of) recent swap rates as
exchange rates [11]. Balancer [3] extends token pairs to token tuples: a user can
swap any two non-coinciding sets of supported tokens, such that the swap invari-
ant is maintained. In all AMM implementations, token balances are represented
as integers: consequently, they are subject to rounding errors [1]. AMM plat-
forms frequently implement a governance logic, which allow “governance token”
holders to coordinate changes to AMM fee-rates or swap invariant parameters.

AMM platforms like Uniswap [13] and Curve [22] have overtaken centralized
cryptocurrency markets in size and usage. On the one hand, a better under-
standing of AMM design in cases where AMMs host the majority of the token’s
global swap volume is critical [18]. It would be interesting to investigate how our

186 M. Bartoletti et al.

theory can be used to formally explain such behaviours. On the other hand, the
growth of AMMs is making them more attractive for malicious users. Current
research efforts [21,23,28,31] are devoted to understanding vulnerabilities and
attacks, which we plan to investigate formally, exploiting our theory.

This paper, together with our work on formalizing another DeFi archetype
called lending pool [20], is the first step towards a general theory of DeFi. We
believe that a general theory encompassing interactions between different DeFi
archetypes is crucial to be able to reason about their structural, economic and
security aspects, as typical DeFi applications operate within a wider ecosystem,
composed by a set of collaborating or competing agents, which interact through
possibly separate execution environments.

Acknowledgements. Massimo Bartoletti is partially supported by Conv. Fondazione
di Sardegna & Atenei Sardi project F74I19000900007 ADAM. James Hsin-yu Chiang
is supported by the PhD School of DTU Compute. Alberto Lluch Lafuente is partially
supported by the EU H2020-SU-ICT-03-2018 Project No. 830929 CyberSec4Europe
(cybersec4europe.eu).

References

1. Formal specification of constant product market maker model & implemen-
tation (2018). https://github.com/runtimeverification/verified-smart-contracts/
blob/uniswap/uniswap/x-y-k.pdf

2. Improving frontrunning resistance of x*y=k market makers (2018). https://
ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers/1281

3. Balancer whitepaper (2019). https://balancer.finance/whitepaper/
4. Curve statistics (2020). https://www.curve.fi/dailystats
5. Curve (2020). https://www.curve.fi
6. Makerdao (2020). https://makerdao.com
7. Mooniswap implementation (2020). https://github.com/1inch-exchange/

mooniswap/blob/02dccfab2ddbb8a409400288cb13441763370350/contracts/
Mooniswap.sol

8. Mooniswap whitepaper (2020). https://mooniswap.exchange/docs/
MooniswapWhitePaper-v1.0.pdf

9. Uniswap Documentation: Understanding Returns (2020). https://uniswap.org/
docs/v2/advanced-topics/understanding-returns/

10. Uniswap flash loan implementation (2020). https://github.com/Uniswap/
uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/
UniswapV2Pair.sol#L172

11. Uniswap oracle template (2020). https://github.com/Uniswap/uniswap-
v2-periphery/blob/dda62473e2da448bc9cb8f4514dadda4aeede5f4/contracts/
examples/ExampleOracleSimple.sol

12. Uniswap statistics (2020). https://info.uniswap.org
13. Uniswap token pair implementation (2020). https://github.com/Uniswap/

uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/
UniswapV2Pair.sol

14. Uniswap (2020). https://www.uniswap.org

https://www.cybersec4europe.eu
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers/1281
https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers/1281
https://balancer.finance/whitepaper/
https://www.curve.fi/dailystats
https://www.curve.fi
https://makerdao.com
https://github.com/1inch-exchange/mooniswap/blob/02dccfab2ddbb8a409400288cb13441763370350/contracts/Mooniswap.sol
https://github.com/1inch-exchange/mooniswap/blob/02dccfab2ddbb8a409400288cb13441763370350/contracts/Mooniswap.sol
https://github.com/1inch-exchange/mooniswap/blob/02dccfab2ddbb8a409400288cb13441763370350/contracts/Mooniswap.sol
https://mooniswap.exchange/docs/MooniswapWhitePaper-v1.0.pdf
https://mooniswap.exchange/docs/MooniswapWhitePaper-v1.0.pdf
https://uniswap.org/docs/v2/advanced-topics/understanding-returns/
https://uniswap.org/docs/v2/advanced-topics/understanding-returns/
https://github.com/Uniswap/uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol#L172
https://github.com/Uniswap/uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol#L172
https://github.com/Uniswap/uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol#L172
https://github.com/Uniswap/uniswap-v2-periphery/blob/dda62473e2da448bc9cb8f4514dadda4aeede5f4/contracts/examples/ExampleOracleSimple.sol
https://github.com/Uniswap/uniswap-v2-periphery/blob/dda62473e2da448bc9cb8f4514dadda4aeede5f4/contracts/examples/ExampleOracleSimple.sol
https://github.com/Uniswap/uniswap-v2-periphery/blob/dda62473e2da448bc9cb8f4514dadda4aeede5f4/contracts/examples/ExampleOracleSimple.sol
https://info.uniswap.org
https://github.com/Uniswap/uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol
https://github.com/Uniswap/uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol
https://github.com/Uniswap/uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol
https://www.uniswap.org

A Theory of Automated Market Makers in DeFi 187

15. Curve computation of invariant constant (2021). https://github.com/curvefi/
curve-contract/blob/a1b5a797790d3f5ef12b0e358892a0ce47c12f85/contracts/
pool-templates/base/SwapTemplateBase.vy#L206

16. Curve token pair implementation (2021). https://github.com/curvefi/curve-
contract/blob/a1b5a797790d3f5ef12b0e358892a0ce47c12f85/contracts/pool-
templates/base/SwapTemplateBase.vy

17. Angeris, G., Chitra, T.: Improved price oracles: constant function market mak-
ers. In: ACM Conference on Advances in Financial Technologies (AFT), pp.
80–91. ACM (2020). https://doi.org/10.1145/3419614.3423251. https://arxiv.org/
abs/2003.10001

18. Angeris, G., Evans, A., Chitra, T.: When does the tail wag the dog? Curvature
and market making. arXiv preprint arXiv:2012.08040 (2020)

19. Angeris, G., Kao, H.T., Chiang, R., Noyes, C., Chitra, T.: An analysis of Uniswap
markets. Cryptoeconomic Syst. J. (2019). https://ssrn.com/abstract=3602203

20. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: SoK: lending pools in decentral-
ized finance. In: Workshop on Trusted Smart Contracts. LNCS. Springer (2021, to
appear)

21. Daian, P., et al.: Flash boys 2.0: frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In: IEEE Symposium on Security and
Privacy, pp. 910–927. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00040

22. Egorov, M.: Stableswap - efficient mechanism for stablecoin (2019). https://www.
curve.fi/stableswap-paper.pdf

23. Eskandari, S., Moosavi, S., Clark, J.: SoK: transparent dishonesty: front-running
attacks on blockchain. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M.
(eds.) FC 2019. LNCS, vol. 11599, pp. 170–189. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-43725-1 13

24. Evans, A., Angeris, G., Chitra, T.: Optimal fees for geometric mean market makers
(2021). https://web.stanford.edu/∼guillean/papers/g3m-optimal-fee.pdf

25. Krishnamachari, B., Feng, Q., Grippo, E.: Dynamic curves for decentralized
autonomous cryptocurrency exchanges. arXiv preprint arXiv:2101.02778 (2021)

26. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: A theory of Automated Market
Makers in DeFi. arXiv preprint arXiv:2102.11350 (2021)

27. Mazurkiewicz, A.: Basic notions of trace theory. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354, pp. 285–363. Springer,
Heidelberg (1989). https://doi.org/10.1007/BFb0013025

28. Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: how dark
is the forest? (2021). https://arxiv.org/abs/2101.05511

29. Qin, K., Zhou, L., Livshits, B., Gervais, A.: Attacking the DeFi ecosystem with
flash loans for fun and profit. In: Financial Cryptography (2021, to appear).
https://arxiv.org/abs/2003.03810

30. Wang, D., et al.: Towards understanding flash loan and its applications in DeFi
ecosystem. arXiv preprint arXiv:2010.12252 (2020)

31. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading on
decentralized on-chain exchanges. arXiv preprint arXiv:2009.14021 (2020)

https://github.com/curvefi/curve-contract/blob/a1b5a797790d3f5ef12b0e358892a0ce47c12f85/contracts/pool-templates/base/SwapTemplateBase.vy#L206
https://github.com/curvefi/curve-contract/blob/a1b5a797790d3f5ef12b0e358892a0ce47c12f85/contracts/pool-templates/base/SwapTemplateBase.vy#L206
https://github.com/curvefi/curve-contract/blob/a1b5a797790d3f5ef12b0e358892a0ce47c12f85/contracts/pool-templates/base/SwapTemplateBase.vy#L206
https://github.com/curvefi/curve-contract/blob/a1b5a797790d3f5ef12b0e358892a0ce47c12f85/contracts/pool-templates/base/SwapTemplateBase.vy
https://github.com/curvefi/curve-contract/blob/a1b5a797790d3f5ef12b0e358892a0ce47c12f85/contracts/pool-templates/base/SwapTemplateBase.vy
https://github.com/curvefi/curve-contract/blob/a1b5a797790d3f5ef12b0e358892a0ce47c12f85/contracts/pool-templates/base/SwapTemplateBase.vy
https://doi.org/10.1145/3419614.3423251
https://arxiv.org/abs/2003.10001
https://arxiv.org/abs/2003.10001
http://arxiv.org/abs/2012.08040
https://ssrn.com/abstract=3602203
https://doi.org/10.1109/SP40000.2020.00040
https://www.curve.fi/stableswap-paper.pdf
https://www.curve.fi/stableswap-paper.pdf
https://doi.org/10.1007/978-3-030-43725-1_13
https://doi.org/10.1007/978-3-030-43725-1_13
https://web.stanford.edu/~guillean/papers/g3m-optimal-fee.pdf
http://arxiv.org/abs/2101.02778
http://arxiv.org/abs/2102.11350
https://doi.org/10.1007/BFb0013025
https://arxiv.org/abs/2101.05511
https://arxiv.org/abs/2003.03810
http://arxiv.org/abs/2010.12252
http://arxiv.org/abs/2009.14021

ReGraDa: Reactive Graph Data

Leandro Galrinho1, João Costa Seco1,2(B), Søren Debois3,5,
Thomas Hildebrandt4, H̊akon Norman4,5, and Tijs Slaats4

1 School of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
joao.seco@fct.unl.pt

2 NOVA Laboratory for Computer Science and Informatics (NOVA LINCS),
Caparica, Portugal

3 Computer Science Department, IT University Copenhagen, Copenhagen, Denmark
4 SDPS Section, Department of Computer Science, University of Copenhagen,

Copenhagen, Denmark
5 DCR Solutions (DCRSolutions.net), Copenhagen, Denmark

Abstract. Business processes, data, and run-time control state are all
key elements in the design of enterprise applications. However, the differ-
ent layers for processes, data, and control are usually represented using
different technologies that must be explicitly combined and kept in sync.

We introduce ReGraDa, a process definition and programming lan-
guage inspired by the declarative business process language Dynamic
Condition Response Graphs and targeting the integrated description
of business processes, data and run-time state as reactive graph data.
ReGraDa processes compile directly to a data-centric graph-based sys-
tem (neo4j/cypher), allowing for the database system to manage a pro-
cess without the need for an external execution engine.

The underlying graph structure allows for the definition of native data
relations between data elements that subsumes the integrity guaranties of
relational and the semi-structured data models. Graph relationships are
also used to represent data-dependency and control-flow in the database.

We present the reactive semantics of the language, a translation from
ReGraDa to cypher , evaluate its performance, and briefly discuss future
work and applications.

1 Introduction

Process-aware information systems [4] include both control-flow and data. The
notions of control and data are, however, often treated separately: process mod-
els may refer to specific documents or data values to guide decision making, but
data manipulation is largely handled outside the processes control. Moreover, as
pointed out by several authors [16,17], even among notations that provide bind-
ings for data and computation, it remains cumbersome or impossible to model

Supported by Innovation Fund Denmark (EcoKnow.org & DREAM), Independent
Research Fund Denmark (PAPRiCAS), EU MSCA-RISE BehAPI (ID: 778233), NOVA
LINCS UID/CEC/04516/2013, and GOLEM Lisboa-01-0247-Feder-045917.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 188–205, 2021.
https://doi.org/10.1007/978-3-030-78142-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-78142-2_12

ReGraDa: Reactive Graph Data 189

complex data models and dependencies between data and activities belonging
to multiple instances of processes.

These difficulties hinder both representation and reasoning about the full
process behaviour, and form a practical barrier to adoption of system imple-
mentations based on formal workflow models.

Recent formalisms attempt to address these difficulties in combining data-
modeling and declarative process-modeling, in various ways. The Case Manage-
ment Model and Notation (CMMN) [7] makes data a first class citizen and arbiter
of activity availability. The Object-Centric Behavioural Constraints (OCBC) [17]
formalism cleverly ties together DECLARE and ER-modelling, explaining, e.g.,
how the satisfaction of a response constraint requires the creation of a data
object. Extensions of Petri nets with identifiers [12,18] model the interplay
of information and processes and model the influence of process transitions
in the data model using first-order logic over finite sets. Finally, the Reactive
Semi-structured Data Formalism removes the distinction between “activity” and
“data” in a constraint-based language [13].

The present work advances this research agenda in two directions at once:
First, we introduce graph data and queries, most notably aggregating
queries, into the language of ReSeDa [13] and relaxing the semi-structured data,
resulting in the more general language ReGraDa, short for Reactive Graph
Data. While other data-centric process models use loosely coupled data rela-
tions (values as keys), which provide weak data-integrity guarantees, ReGraDa
provides a declarative definition of processes, graph data modeling, queries, and
reactive computation. We formally define the syntax and semantics of the lan-
guage and then focus on its pragmatics. The formal results on liveness properties
of processes are out of the scope of this work, as they conservatively extend the
results already obtained in ReGraDa.

Second, we provide a high-performance implementation of this lan-
guage via a translation of ReGraDa programs into a contemporary graph
database engine query language, specifically the query language cypher [6] of
the graph database neo4j . The database computation capabilities and reactive
mechanisms (triggers) are strong enough to not only implement the reactive
embedded query language of ReGraDa, but also its process semantics: Process
execution is fully and autonomously realised in the database. We provide an
initial exploratory empirical study of the performance of translated ReGraDa
programs in the latter section of this paper; initial results are encouraging.

ReGraDa (and ReSeDa) are inspired by both the declarative Dynamic
Condition Response (DCR) graph process notation [1,8,15] and the widely used
reactive model of data and behaviour used in spreadsheets [3,14] and provide a
unified specification of data, behaviour, and run-time execution state. However,
ReGraDa differs from DCR Graphs in several ways. Firstly, it introduces a
distinction between input and computation events, here called data elements.
Secondly, ReGraDa allows data elements to be related in a general labelled
graph structure and to be referenced in computation expressions, either directly
or by using graph query expressions. Similarly, control relations (edges) between

190 L. Galrinho et al.

data elements in ReGraDa are dynamic. They are defined between sets of data
elements given by graph query expressions and guarded by boolean expressions
over the graph state.

Overview. We proceed as follows. We present ReGraDa informally by exam-
ple in Sect. 2; then provide formal syntax and semantics in Sect. 3 and 4. In
Sect. 5 we present the translation of ReGraDa to cypher/neo4j . In Sect. 6 we
report on exploratory empirical studies of the performance characteristics of the
translation. Finally, we briefly conclude and provide directions for future work
in Sect. 7.

2 ReGraDa: Programming with Reactive Graph Data

In this section, we informally illustrate the syntax and semantics of ReGraDa
by giving an example of managing authors, books and book loans in a library.

A ReGraDa process defines simultaneously the process, the data and the
control flow of a software system. Consider the process below comprising three
main sections separated by semicolon symbols. The first section (line 1) declares
all instances of data elements in the process, i.e. the nodes of the graph. The
second section (line 3–15) defines control relations. The third section after the
semicolon in line 16 declares data relations, i.e. the edges in the graph data. This
section is initially empty in this example.

1 (createAuthor:Input) [?: { authorName:String }]

2 ;

3 createAuthor -->> {

4 (author:Author) [{ name:@trigger.value.authorName }],

5 (createBook:Input) [?:{ bookTitle:String, isbn:String }]

6 ;

7 createBook -->> {

8 (book:Book) [{bookTitle:@trigger.value.bookTitle,

9 isbn:@trigger.value.isbn,

10 author:author.value.name }]

11 ; ;

12 author -[:WROTE]-> book

13 }

14 ;

15 }

16 ;

Line 1 declares an input data element that accepts values as input of type record
{authorName:String}. Line 3 defines a spawn relation, which is a control rela-
tion that, whenever the input data element in line 1 is executed, triggers the
creation of the elements contained in the sub-process defined in line 4–15. The
sub-process creates two new data elements (line 4–5): author and createBook.
The two data elements are implicitly associated with each other due to a syn-
tactic dependency through a nested spawn relation (lines 7–13). The expression
enclosed in declaration of data element author, of type record, denotes the

ReGraDa: Reactive Graph Data 191

createAuthor:Input
[?authorname]

author:Author
[name]

:Author
("Tolkien")

:Author
("Philip K.

Dick")

:Book
("The Hobbit")

:Book
("Ubik")

createBook:Input
[?]

createBook:Input
[?]

createBook:Input
[?title] book:Book

[title]

[:WROTE]

[:WROTE]

[:author]

[:author]

Fig. 1. Process state after the creation of two authors and two books.

createAuthor
[?authorname] createBook

[?booktitle] loanBook
[?username] !returnBook

[?]
loan

+ %

book
[title]

[:BOOK] [:LOAN]
author
[name]

[:WROTE]

%

createAuthor:Input
[?authorname] createBook:Input

[?booktitle] loanBook:Input
[?username] !returnBook:Input

[?]
loan:Loan

+ %

book:Book
[title]

[:BOOK] [:LOAN]
author:Author

[name]
[:WROTE]

%

Fig. 2. Complete representation of the example.

new value given to the new data element, where @trigger is evaluated once in
a call-by-value strategy (copying the value of the createAuthor data-element
triggering the spawn reaction). Notice that each data element author will be
explicitly associated to all book data elements created by its, implicitly associ-
ated, createBook input data element. From this, we can see that each author
will have a distinct and direct entry point in the system to create their own books
in the database. In our pragmatic approach, the entry points for input data ele-
ments are implemented in a companion system following REST conventions to
identify the target element. Also, notice that the value of name author in the
expression of data element book is associated to the data element statically asso-
ciated with createBook. The sub-process spawned by the rule in line 7, when the
createBook input data element is executed, it introduces a data element book
and a new data relation, with label WROTE, between the data element author
defined in the outer scope and the new data element book. The resulting graph
is a flat structure of data elements, all created at the process’s top level. So, after
executing input data element createAuthor twice – with values ‘‘Tolkien’’
and "Philip K. Dick" – and “adding” one book for each one of the authors,
we can observe that the process now includes the elements visually depicted in
Fig. 1. Notice that the data relation above is introduced between the two newly
created instances of the data elements. ReGraDa also allows for the definitions
of more general control and data relations between sets of data elements, which
are denoted by graph queries.

192 L. Galrinho et al.

To illustrate other control flow constraints we define the input data element
loanBook in the sub-process of each book (line 8), and the sub-process that it
triggers (lines 12–17).

1 (createAuthor:Input) [?: {authorName:String}] ;

2 createAuthor -->> {

3 (author:Author) [{name:@trigger.value.authorName}],

4 (createBook:Input) [?:{bookTitle:String, isbn:String}] ;

5 createBook -->>{

6 (book:Book) [{bookTitle:@trigger.value.bookTitle,

7 isbn:@trigger.value.isbn, author:author.value.name}],

8 (loanBook:Input) [?:{username:String}] ;

9 loanBook -->% loanBook,

10 author -[:WROTE]-> book

11 loanBook -->>{

12 (loan:Loan) [{user:@trigger.value.username}],

13 !(returnBook:Input) [?:()] ;

14 returnBook -->% returnBook,

15 returnBook -->+ loanBook ;

16 loan -[:BOOK]-> book,

17 returnBook -[:LOAN]-> loan

18 } ;

19 } ;

20 } ;

This inner process makes more use of DCR constructs, in particular the
notions of a data element being included, excluded, and pending.

Intuitively, an excluded data element is considered temporarily excluded from
the process: We pretend that it, its contents, and the relations to or from it are
“not there”. The notion of exclusion is dynamic: data elements can switch states
from included to excluded and back again. In the example, the relation -->%

indicates such a dynamic exclusion: Whenever the data element on the left is
executed, the one on the right is so excluded.

Similarly, a data element may become pending as consequence of another
executing via the “response” relation *-->. Intuitively, a pending element must at
some later point execute (or be excluded) in order for the program to terminate.

In this inner process, loanBook is executed given a user’s name, and it
excludes itself from the process (-->%, line 9), thus executing only once until
it is explicitly included again; it also spawns the elements in a sub-process (line
11): a new data element loan that stores the user’s name, and an input data
element returnBook that is used when the user wants to terminate a loan in the
library. Notice that data element returnBook is declared using an exclamantion
mark as annotation. This means that this input data element must be exe-
cuted, or excluded, in order to complete the process. The example also declares
data relations to link data element loan to its corresponding book element. The
sub-process introduces new control relations to self-exclude returnBook, i.e. it
cannot happen twice, and to include loanBook back into the process, allowing
for new loans to happen. Figure 2 depicts the final state in our example. For the

ReGraDa: Reactive Graph Data 193

Fig. 3. Syntax of ReGraDa

sake of space, we omit from this diagram the implicit data dependencies between
data elements that are necessary to implement the reactive computation.

This section illustrates, by example, the dynamic spawning of data and con-
trol elements, and also the dynamic inclusion and exclusion of data elements
in the process. We have omitted the details of how the run-time state of each
data element is represented, i.e. the value assigned to an input data element,
whether an event is included or excluded and whether it is pending or not. This
is explained and made formal in the next two sections.

3 Formal Syntax of ReGraDa

The abstract syntax of ReGraDa is given by the grammar in Fig. 3. In this
grammar, we assume given enumerable sets of names (ranged over by n, a, b, c
and the reserved keyword trigger), of unique data element identifiers (ranged
over by ρ), and labels for data elements and relations (�). We use the notation
x to denote a sequence x1, ..., xn and elide concrete syntax separators and the
number of elements in the sequence. Distinctively, names abstract data elements
in the scope of a process, very much like variables in a program. Identifiers are
global and uniquely denote data elements in a process, like a key of a record in a
database or the memory heap allocated regions. Labels work like classes for data
elements, playing an important role in queries on the graph of data elements.

Analysing the syntax topdown, we have that a ReGraDa process P defines
data, control relations and runtime state simultaneously as seen in the example
using the concrete syntax given in the previous section. It comprises a sequence
D of data element definitions (D), followed by a sequence R of control relation
definitions (R) and a sequence Y of data relation definitions (Y). Both control
and data relation definitions use query expressions over graphs of data elements

194 L. Galrinho et al.

denoting sets of data elements (φ) and expressions (E) that manipulate the usual
set of datatypes, comprising types for unit, strings, numbers, boolean values,
lists, and records.

As exemplified in the previous section, ReGraDa processes define a nested
structure of process definitions (P), via the spawn control relation (φ−[E]→→ P).
Data elements D declare a local identifier (n) in the scope of the current process
definition and its corresponding sub-processes; a label (�), visible globally; and
a unique runtime identifier (ρ), the latter is a runtime constant that is added to
the data elements when they are created.

Data elements can be of one of two kinds: an input data element or a com-
putation data element. Input data elements, such as the createAuthor:Book
element in the previous section, has the form (nρ:�)[?:T]:(h, i, r, v) and define
system entry points of type (T), that can be linked, to web services, web forms,
or any other form of input to the process.

Computation data elements, of the form (nρ:�)[E]:(h, i, r, v), define nodes
in the graph that compute and store values denoted by their expressions E.
Such expression may refer to values stored in other data elements by using
their identifiers or the reserved name @trigger that refers to the data element
triggering a spawn control relation as used in the author and book data elements
in the previous section. Expressions may also explicitly query the graph. For
instance, the expression

1 (authorCount:Stats)[MATCH (l:Author) COUNT(l)]

declares a computation data element that if executed computes the number of
author elements in the graph.

Following the typical structure of Dynamic Condition Response (DCR)
graphs [2,8,9,13], the run-time state of a data element, referred to as the mark-
ing, is defined using the four properties (h, i, r, v) associated to each data element
(and so far ignored in our examples):

1. a boolean value h (executed in the concrete syntax) that signals that the
event was previously executed (happened). A data element can be executed
multiple times, this property only registers the first execution.

2. a boolean i (included) indicating whether the data element is currently
included. A data element not included, also referred to as excluded, is con-
sidered irrelevant: it cannot execute and cannot prevent execution of others;

3. a boolean r (pending) indicating whether the data element is currently pend-
ing. A pending element is required to be subsequently updated (or become
excluded) at some point in the future to let a process reach a final state; and
finally,

4. a value v of any type admissible in the language (value) indicating the current
value of the data element, or the undefined value (⊥) if the data element has
not yet been executed/received a value and has no initial value.

For instance, the createAuthor:Input data element in the previous section will
initially have the state

ReGraDa: Reactive Graph Data 195

1 (createAuthor:Input)[?:{authorName:String}](false,true,false,⊥)

representing that the element has not been executed, is included, is not pending,
and has the value ⊥ because no value has been given yet. After executing it
inputting the value “Tolkien”, the data element will have the state

1 (createAuthor:Input)[?:{authorName:String}](true,true,false,"Tolkien")

Control relations (R) range over a set of six different kinds of relations
stemming from the declarative process model of DCR graphs. All relations are
guarded by a boolean expression E, that may refer all identifiers in scope or use
queries to refer to the global state of the graph.

1. condition (φ−[E]→• φ) (-->* in the concrete syntax), defining that if the
expression E evaluates to true, then the data-elements denoted by the query
on the right-hand side cannot execute unless all data elements denoted by
the query on the left-hand side are either marked not included or executed;

2. milestone (φ−[E]→� φ) (--<>), defining that if the expression E evaluates
to true, then the data elements denoted by the query on the right cannot
execute unless all data elements denoted by the query on the left-hand side
are marked not included or not pending;

3. response (φ•−[E]→φ) (*-->), defining that if the expression E evaluates to
true, then whenever some data element denoted by the query on the left-hand
side executes, all data elements denoted by the query on the right-hand side
become marked pending;

4. inclusion (φ−[E]→+ φ) (-->+), defining that if the expression E evaluates
to true, then whenever some data element denoted by the query on the left-
hand side executes, all data elements denoted by the query on the right-hand
side become marked included;

5. exclusion (φ−[E]→% φ) (-->%), defining that if the expression E evaluates
to true, then whenever some data element denoted by the query on the left-
hand side executes, all data elements denoted by the query on the right-hand
side become excluded; and finally,

6. spawn relation (φ−[E]→→ P) (-->>), defining that if the expression E eval-
uates to true, then whenever some data element denoted by the query on
the left hand side executes, the data elements and rules in the sub-process P
on the right-hand side are instantiated in the current process. The reserved
name trigger denotes the left-hand side element that caused the spawing of
the sub-process, in all expressions in the new elements.

Just like in [8], one important semantic property of data elements is whether
they are enabled or not. We say that a data-element is enabled iff (i) it is included,
(ii) every other element preceding it by a condition is either executed or not
included, (iii) every element preceding it by a milestone is either not included or
not pending. An enabled element may execute, modifying its marking by making
it executed and not pending, and possibly assigning it a new value. This execu-
tion causes toggling the included state of every element succeeding the executed

196 L. Galrinho et al.

one by an inclusion or exclusion, and by making pending all elements succeeding
the executed one by a response relation. In all cases, both for enabledness and
execution, a relation is considered only if it either has no guard, or that guard
evaluates to true.

We already saw examples of the spawn, include and exclude relations con-
straining the loanBook and returnBook input actions in the previous section. As
an example of the guard expression E, we can use a guarded inclusion relation

1 returnBook -[MATCH (l:Loan)-[r:BOOK]->(book)

2 WITH COUNT(l) as n WHERE n<50]->+ loanBook

to only include it if a book has not reached its lifespan, e.g. 50 loans. If the query
returns an empty set of nodes that satisfy the condition, the relation is disabled.

As examples of the condition, milestone and response, consider the relations

1 createAuthor *--> authorCount

2 createAuthor -->* authorCount

3 authorCount --<> createAuthor

The response control relation means that the authorCount computation event
becomes pending when a new author is created, and the reactive semantics of
ReGraDa will then ensure that the author count is updated whenever an author
is added. The condition control relation ensures that the authorCount can not
be executed before any author has been added. Finally, the milestone relation
ensures that a new author cannot be created if authorCount is pending, i.e. it
has not yet been updated after the last creation of an author.

The data relations (Y) of the form φ −[n : �]→ φ create a native data link
between all combinations of nodes resulting from the queries on the left and
right-hand side. Data relations (Y) and, in particular, match expressions (φ)
closely resemble the notation of cypher [6] for node relationships and graph
queries respectively, identifying nodes and relations via patterns (Q), filtering
and aggregating results (ψ). This approach contrasts with, but can encode, the
semi-structured data style of ReSeDa, and the relational schema of approaches
like [17]. For instance, the example given in the previous section introduced
simple data relations like

1 tolkien -[:WROTE]-> hobbit

Where tolkien and hobbit are identifiers denoting data elements. Finally, the
expression language in ReGraDa includes the usual set of constructor and
destructor expressions for all the base datatypes considered. It also includes the
use of match expressions to enable the runtime manipulation of data elements
and their attributes as already illustrated above.

4 Semantics

Following the tradition of DCR graphs [2,8,10,13], we define the semantics of
ReGraDa by means of a transition system, where states are processes com-
prising data elements, the corresponding relations, and including their marking

ReGraDa: Reactive Graph Data 197

information. Each transition, written P
ρ−→ P ′, corresponds to the execution

(i.e. value update) of a data element ρ. The execution of an input data element

P
ρ(v)−−→ P ′ requires a value v to be provided in the transition. To formally define

the transition system, we must first define two auxiliary functions. Section 4.1
defines function enabledP (ρ), that determines, for a given ReGraDa program
state, if a given data element ρ is currently executable (enabled). Section 4.3
defines function effectsP (R) that determines, for given a ReGraDa program
state and a set of control rules R, what are the effects of those rules that allow
us to compute the next state of the process. For the sake of space, we omit the
semantics of expressions, �E �P , and query expressions, �φ�

P
, which are straight-

forwardly defined on the structure of the expression or graph, respectively. We
finally define the two allowed transitions in our semantics.

4.1 Enabledness

For a data element ρ in process P to be enabled it must be the case that (i) the
data element ρ must itself be included; (ii) every data element ρ′ that is a condi-
tion (where E evaluates to true) for ρ must be either excluded or previously exe-
cuted; (iii) every data element ρ′ that is a milestone (where E evaluates to true)
for ρ must be either excluded or not pending. We define function enabledP (ρ),
that checks if the data element ρ is enabled in process P = (D;R;Y).

enabledP (ρ) � ρ[included]
∧ ∀φ−[E]→• φ′ ∈ R. ρ ∈ �φ′�

P
∧ �E �P = true =⇒

(�φ[included]�
P

= �φ[included ∧ executed]�
P
)

∧ ∀φ−[E]→� φ′ ∈ R. ρ ∈ �φ′�
P

∧ �E �P = true =⇒
(�φ[included]�

P
= �φ[included ∧ ¬pending]�

P
)

4.2 Effects

The effect of executing a data element ρ in the context of a global process P can
be computed from the current state and given a value in the case of input data
elements. Effects are gathered by iterating the set of control rules (excluding
conditions and milestones) in the process as defined below

effectsP (ρ) � ∪R∈R effects′
P (R, ρ) with P = D;R;Y

effects′
P (φ•−[E]→φ′, ρ) � {(pend, ρ′) | (ρ, ρ′) ∈ �φ�

P
× �φ′�

P
∧ �E �P = true}

effects′
P (φ−[E]→% φ′, ρ) � {(excl, ρ′) | (ρ, ρ′) ∈ �φ�

P
× �φ′�

P
∧ �E �P = true}

effects′
P (φ−[E]→+ φ′, ρ) � {(incl, ρ′) | (ρ, ρ′) ∈ �φ�

P
× �φ′�

P
∧ �E �P = true}

effects′
P (φ−[E]→→ P ′, ρ) � {(spawn(P ′{ρ/trigger})) | ρ ∈ �φ�

P
∧ �E �P = true}

198 L. Galrinho et al.

4.3 Transitions

Finally, we present below the transition rules that define the complete labelled
transition system. The execution of a computation data element (P

ρ−→ P ′) is
possible from a state where the given element is enabled, and to a state where
the value of the element is refreshed based on the values of other references, given
by function computeP (ρ), and where the effects of the execution are applied by
operation (P ′ � δ).

enabledP (ρ) P ′ = computeP (ρ) δ = effectsP ′(ρ)

P
ρ−−→ P ′ � δ

In the case of an input data element, a transition may occur if the element is
enabled, and to a state where the element’s value is updated (updateP (ρ, v))
to the value v given in the transition label as input, and after applying the
corresponding effects.

enabledP (ρ) P ′ = updateP (ρ, v) δ = effectsP ′(ρ)

P
ρ(v)−−→ P ′ � δ

We omit the definition of function computeP (ρ) which is the straightforward
application of the expression semantics to the enclosed expression in computa-
tion data elements, with relation to other data elements, and the definition of
function updateP (ρ, v) which simply updates the value of the data element with
the incoming value. The application of the effects consists in changing the state
of the given data element and the creation of new elements in the case of spawn
relations, thus providing fresh identifiers and binding the triggering data element
to the new data elements and relations.

(D, (nρ : �)[?:T]:(h, i, p, v));R;Y � (pend, ρ) � (D, (nρ : �)[?:T]:(h, i, t, v));R;Y
(D, (nρ : �)[E]:(h, i, p, v));R;Y � (excl, ρ) � (D, (nρ : �)[E]:(h, f, p, v));R;Y
(D, (nρ : �)[E]:(h, i, p, v));R;Y � (incl, ρ) � (D, (nρ : �)[E]:(h, t, p, v));R;Y

D;R;Y � (spawn(D′;R′;Y ′), ρ) � D,D′σ; R,R′σ; Y , Y ′σ

Substitution σ, used above, replaces the free names of D′ with fresh event iden-
tifiers, assigns new node identifiers and replaces identifier trigger by ρ. The set
of free names of R′ and Y ′, except trigger , is a subset of the free names of D′.

5 From ReGraDa to Cypher

We now define the compilation procedure of ReGraDa to cypher , the query
language of the neo4j database. For want of space, we omit an introduction
cypher here, and refer the reader to the introductory work [6] and the neo4j
official documentation1.
1 https://neo4j.com/.

https://neo4j.com/

ReGraDa: Reactive Graph Data 199

Fig. 4. Toy example illustrating compilation of ReGraDa to cypher

Our encoding uses the native capabilities of the database system as much as
possible to allow for an almost standalone execution of the process and embeds
the reactive behaviour of the process to independent data modifications. Our
approach is to translate a ReGraDa process to a set of update queries and
triggers in the database and let data elements, their properties, and data rela-
tionships act as the data model of an external application to be freely queried
and modified. We next present the compilation procedure that systematically
transforms a simple ReGraDa process into cypher .

The structure of our target code is a list of trigger definitions and a cypher
script, which is a flat list of node and relationship declarations, graph queries and
update commands. To transform the nested structure of ReGraDa processes
into the flat structure of cypher code we resolve all names with a standard
static resolution of names and representing syntactic dependencies with data
relationships between nodes in the database graph.

So, in the general case, a ReGraDa process is translated into a four-part
cypher script containing: (1) a list of queries that is used to fetch and bind
all related nodes from other contexts to be used in local (or inner) definitions,
this list is empty at the top-level; (2) a set of node definitions that map the
definitions in the current process of input and computation data elements; (3) a
set of node relationship definitions that map data dependencies, control relations,
and data relations defined in the current process; and finally, (4) (in the case of
triggers associated to a computation data element), one update command that
(re)evaluates the node’s expression with relation to the nodes it depends on.

We use a simplified example, in Fig. 4, to illustrate the compilation proce-
dure. It contains all main cases of a ReGraDa process (data dependencies,
nested processes, and sub-processes). The cypher code emitted for this example
is presented step by step in this section.

First, the top-level data elements are translated to node definitions that
include the defined name (alpha renamed), their labels, and default values for
the markings. We add an extra field that identifies the source element in the
code (reda_id). Notice that node names are only visible in the current script.

1 CREATE (a_0:A{reda_id="a_0", executed:0, included:true, pending:false})

2 CREATE (b_1:B{reda_id="b_0", executed:0, included:true, pending:false})

Both nodes are initialized without an attribute for its value. This attribute is left
uninitialized since the data elements were not executed and therefore cannot be

200 L. Galrinho et al.

referred or evaluated at this stage. Also, we alpha-renamed names and identifiers
(a_0, b_1) to avoid name clashing between different declaration contexts.

Consider the syntactic dependencies between data elements a and b in Fig. 4,
created by the expression of data element b, and also because a spawns a sub-
process using b. The static resolution of names in ReGraDa is mapped onto
explicit node relations that define a name substitution inside the sub-process in
the spawn relation of line 3 in Fig. 4. Three relationships are needed in neo4j

3 CREATE (a_0)-[:a]->(a_0)

4 CREATE (a_0)-[:a]->(b_1)

5 CREATE (b_1)-[:b]->(a_0)

Lines 3 and 4 mean that node a_0 in this context is the correct substitution for
the free name a in all sub-processes (and expression) of node a_0 and b_1.

The data dependency of b on a is reified into control relations (condition and
response) as follows. Clearly we cannot execute b without first having executed—
and thus gotten a value for—a; and equally clearly, whenever the value of a
changes, we must re-compute b to reflect that change in the value of b. That is,
we add the following condition and response relations:

6 CREATE (a_0)-[:condition]->(b_1)

7 CREATE (a_0)-[:response]->(b_1)

These relations establish the essence of the reactive behaviour of ReGraDa,
similarly to the semantics of ReSeDa. (The mechanics here is akin to spread-
sheet semantics: updating “cell” a forces a recompute of the value of b.)

We next translate the control relation (excludes) on line 3 almost verbatim.

8 CREATE (b_1)-[:excludes]->(a_0)

Other control relations are translated directly to relations between node
instances. This concludes the translation of node and relation top-level declara-
tions. Next, we present the main trigger that checks for the enabledness of data
elements prior to execution, and applies the effects of control relations (inclusion,
exclusion, responses) after a successful execution.

9 CALL apoc.trigger.add(’EVERYWERE’,
10 ’UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties,"executed")
11 as prop WITH prop.node as n WHERE n.executed>0
12

13 CALL apoc.util.validate(
14 n.included=false, "EVENT IS NOT INCLUDED", [])
15 CALL apoc.util.validate(
16 EXISTS((n)<-[:condition]-({included:true, executed:0})),
17 "EVENT HAS A CONDITION UNSATISFIED", [])
18 CALL apoc.util.validate(
19 EXISTS((n)<-[:milestone]-({included:true, pending:true})),
20 "EVENT HAS A MILESTONE UNSATISFIED", [])
21

22 SET n.pending=false WITH n
23 OPTIONAL MATCH (n)-[:response]->(t) SET t.pending = true WITH n
24 OPTIONAL MATCH (n)-[:excludes]->(t) SET t.included = false WITH n
25 OPTIONAL MATCH (n)-[:includes]->(t) SET t.included = true

ReGraDa: Reactive Graph Data 201

26 RETURN 1 ’, {phase:’before’});

The enabledness validation is translated into explicit validations (lines 13–20)
that check if any preceding element (using a relation with tag :condition or
:milestone) is included, and not executed in the case of condition relations
or pending in the case of milestone relations. The effects of execution via the
response, includes and excludes relations are translated to cypher update queries
that search for this kind of relations between node instances and modifies the
marking of the target node accordingly (lines 23–25). The enabledness check and
the subsequent execution of effects is performed here in a way that aborts any
transaction in case of error.

The remaining behaviour, including the spawning of sub-processes is repre-
sented in triggers generated for each one of the data elements statically declared
in the program. Such triggers are fired whenever the associated executed prop-
erty is changed. These triggers contain the compiled code for all the actions that
need to be executed when related nodes are (re)evaluated. Consider the example
of node a_0, compiled from the computation node a in the example. The trigger
is the following

27 CALL apoc.trigger.add(’When a_0 happens’,
28 ’UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties,"executed")
29 as prop WITH prop.node as n WHERE n.reda_id="a_0" AND n.executed>0
30

31 MATCH (a_0)-[:a]->(n)
32 MATCH (b_1)-[:b]->(n)
33 CREATE (c_2:C{reda_id="c_2", executed:0, included:true,
34 pending:false, value_y:n.value})
35 CREATE (a_0)-[:a]->(c_2)
36 CREATE (b_1)-[:b]->(c_2)
37 CREATE (c_2)-[:c]->(c_2)
38 CREATE (b_1)-[:condition]->(c_2)
39 CREATE (b_1)-[:response]->(c_2)
40 CREATE (a_0)-[:condition]->(c_2)
41 CREATE (a_0)-[:response]->(c_2)
42 RETURN 1 ’, {phase:’before’});

This trigger starts by instantiating the free names of the sub-process of a_0,
reifying the nested structure of the process. It queries the nodes that represent
identifiers a and b in this context (lines 31–32). These relations match the rela-
tions created at the top-level (lines 3–5). Line 33 includes the local definition
for data element c, here alpha-renamed to c_2, and includes the partial evalua-
tion of expression {x:a.value+b.value, y:@trigger.value}, in this case for
field y which depends on the triggering data element. Lines 35–37 repeat the
static resolution of names for the inner scope of sub-processes and expressions
as described at the top level. Notice that identifiers a and b cross more than
one syntactic context level and direct links are created at all stages. Lines 38–41
create the control relations created by the sub-process.

The trigger that handles node b is quite simpler since it is not used to spawn
any sub-process. The value of node b depends on the value of node a, so its
trigger basically (re)computes the value of b whenever the node is executed.

202 L. Galrinho et al.

43 CALL apoc.trigger.add(’When b_1 happens’,
44 ’UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties,"executed")
45 as prop WITH prop.node as n WHERE n.reda_id="b_1" AND n.executed>0
46

47 MATCH (a_0)-[:a]->(n)
48 SET n.value=a_0.value+1
49 RETURN 1 ’, {phase:’before’});

Line 47 retrieves the substitution for identifier a_0 in this context and updates
the value attribute of node b_1 (line 45). Notice that each instance of b may be
associated with a different instance of a. We omit the handlers for nodes c_2 and
d_3, that are similar to the handlers of nodes a_0 and b_1 depicted above (lines
27 and 43). Notice also that field x of the record in data element c_2 should be
computed in the corresponding trigger since it depends on other elements.

The resulting target code comprises a set of top-level definitions, and a set
of triggers: a main trigger, and a trigger associated to each definition of data
elements that contains computations or spawns sub-processes.

6 Empirical Experiments

To study the performance and scalability of the resulting code, and thus the
translation strategy presented in this paper, we tested the prototype using thou-
sands of data elements and relationships between them. Note that the number of
triggers is statically determined by the process definition and remains constant
throughout all executions. We designed two case studies for this purpose: an
“expected” program and a worst-case scenario. These programs were developed
to grow linearly in an experiment with twenty-five executions, each one executed
ten times. They were executed using neo4j 4.1.1 with APOC 4.1.0.2, Windows
8.1, and an Intel Core i7-4510U CPU @ 2.00 GHz 2.60 GHz with 8 GB RAM.

The “expected” case scenario consists of a program where nodes and rela-
tionships are split amongst different clusters. This case study starts with only
two data-elements belonging to one cluster, with each further execution adding
an arbitrary number (eighty-seven) of new data-elements that are then split
uniformly into three clusters. Each data-element will either have either no rela-
tionships, acting as spawner input data-elements, or will have a number of rela-
tionships between one and the third of the number of existing data-elements. As
depicted in Fig. 5, the time difference between the request and the response tends
to grow in a somewhat linear to sub-linear fashion with each execution. However,
in the worst-case scenario, where we have one giant cluster where data-elements
are highly dependent on each other, the time difference between the requests
and responses tends to grow in a linear to super-linear fashion, as depicted in
Fig. 6. Pre-determined sequences of requests were used in the tests.

To conclude, triggers are many times the source of performance issues in
database systems. With this in mind, we made every effort to encode all the
reactivity and behavior of ReGraDa into static triggers, remaining constant
in number throughout all execution. There are at most two triggers activated
each time a specific data-element is executed: (i) the trigger regarding that

ReGraDa: Reactive Graph Data 203

Fig. 5. Expected case scenario.

Fig. 6. Worst case scenario.

specific data-element, containing the specific behavior defined in the process; and
(ii) the main_trigger that is always activated despite the data-element being
executed, guaranteeing that the language rules like the enabledness verification
or the application of DCR effects are being followed. With this information and
the results of our case study, we can infer that the main cause for performance
deterioration is the number of control relationships on each node being executed.
This comes from the need to process each of the relations in the main_trigger
to reach the next ReGraDa process state.

7 Conclusions and Future Work

We introduced ReGraDa, a language for REactive GRAph DAta based on the
declarative DCR graph language, and evaluated the language in a prototype
implementation using the graph-database neo4j , with promising performance

204 L. Galrinho et al.

characteristics of the first early tests. As future work we also plan to research the
transfer of DCR results to ReGraDa, e.g. refinement [2] and choreographies [11],
providing guarantees for deadlock freedom by design. Also, we plan to investigate
the use of ReGraDa as target language for multi-instance process mining of
complex ERP and EIM systems and the relation between ReGraDa models
and the recent work in [5].

References

1. Debois, S., Hildebrandt, T., Slaats, T.: Hierarchical declarative modelling with
refinement and sub-processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014.
LNCS, vol. 8659, pp. 18–33. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-10172-9 2

2. Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refinement and reachability:
complexity in dynamic condition-response graphs. Acta Informatica 55(6), 489–
520 (2018)

3. Domingues, M., Seco, J.C.: Type safe evolution of live systems. In: Workshop on
Reactive and Event-based Languages and Systems (REBLS 2015) (2015)

4. Dumas, M., Van der Aalst, W.M., Ter Hofstede, A.H.: Process-Aware Information
Systems: Bridging People and Software Through Process Technology. Wiley, New
York (2005)

5. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data
Semant. (2021)

6. Francis, N., et al.: Cypher: an evolving query language for property graphs. In: Pro-
ceedings of the 2018 International Conference on Management of Data, SIGMOD
2018, New York, pp. 1433–1445. Association for Computing Machinery (2018)

7. Object Management Group. Case Management Model and Notation V 1.1. (2016)
8. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based workflow as dis-

tributed dynamic condition response graphs. In: Post-Proceedings of PLACES
2010, volume 69 of EPTCS, pp. 59–73 (2010)

9. Hildebrandt, T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-
organizational workflows as timed Dynamic Condition Response Graphs. JLAP
82(5), 164–185 (2013)

10. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. arXiv:1110.4161 (2011)

11. Hildebrandt, T.T., Slaats, T., López, H.A., Debois, S., Carbone, M.: Declara-
tive choreographies and liveness. In: Pérez, J.A., Yoshida, N. (eds.) FORTE 2019.
LNCS, vol. 11535, pp. 129–147. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21759-4 8

12. Polyvyanyy, A., van der Werf, J.M.E.M., Overbeek, S., Brouwers, R.: Information
systems modeling: language, verification, and tool support. In: Giorgini, P., Weber,
B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 194–212. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21290-2 13

13. Seco, J.C., Debois, S., Hildebrandt, T.T., Slaats, T.: RESEDA: declaring live event-
driven computations as REactive SEmi-Structured DAta. In: 22nd IEEE Inter-
national Enterprise Distributed Object Computing Conference, EDOC 2018, pp.
75–84 (2018)

14. Sestoft, P.: Spreadsheet Implementation Technology. Basics and Extensions. MIT
Press, Cambridge (2014)

https://doi.org/10.1007/978-3-319-10172-9_2
https://doi.org/10.1007/978-3-319-10172-9_2
http://arxiv.org/abs/1110.4161
https://doi.org/10.1007/978-3-030-21759-4_8
https://doi.org/10.1007/978-3-030-21759-4_8
https://doi.org/10.1007/978-3-030-21290-2_13

ReGraDa: Reactive Graph Data 205

15. Slaats, T.: Flexible Process Notations for Cross-organizational Case Management
Systems. Ph.D. thesis, IT University of Copenhagen, January 2015

16. Su, J., Wen, L., Yang, J.: From data-centric business processes to enterprise process
frameworks. In: 21st IEEE International Enterprise Distributed Object Computing
Conference, EDOC 2017, pp. 1–9 (2017)

17. van der Aalst, W., Artale, A., Montali, M., Tritini, S.: Object-centric behavioral
constraints: integrating data and declarative process modelling. In: DL 2017, Inter-
national Workshop on Description Logics, vol. 1879 (2017)

18. van der Werf, J.M.E.M., Polyvyanyy, A.: The information systems modeling suite.
In: Janicki, R., Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol.
12152, pp. 414–425. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51831-8 22

https://doi.org/10.1007/978-3-030-51831-8_22
https://doi.org/10.1007/978-3-030-51831-8_22

Modelling: Structures and
Implementations

The Structure of Concurrent Process
Histories

Chad Nester(B)

Tallinn University of Technology, Tallinn, Estonia

Abstract. We identify the algebraic structure of the material histories
generated by concurrent processes. Specifically, we extend existing cate-
gorical theories of resource convertibility to capture concurrent interac-
tion. Our formalism admits an intuitive graphical presentation via string
diagrams for proarrow equipments.

1 Introduction

Concurrent systems are abundant in computing, and indeed in the world at large.
Despite the large amount of attention paid to the modelling of concurrency in
recent decades (e.g., [1,10,16–18]), a canonical mathematical account has yet to
emerge, and the basic structure of concurrent systems remains elusive.

In this paper we present a basic structure that captures what we will call
the material aspect of concurrent systems: As a process unfolds in time it leaves
behind a material history of effects on the world, like the way a slug moving
through space leaves a trail of slime. This slime is captured in a natural way by
resource theories in the sense of [4], in which morphisms of symmetric monoidal
categories – conveniently expressed as string diagrams – are understood as trans-
formations of resources.

From the resource theoretic perspective, objects of a symmetric monoidal
category are understood as collections of resources, with the unit object denoting
the empty collection and the tensor product of two collections consisting of
their combined contents. Morphisms are understood as ways to transform one
collection of resources into another, which may be combined sequentially via

This research was supported by the ESF funded Estonian IT Academy research measure
(project 2014-2020.4.05.19-0001).

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 209–224, 2021.
https://doi.org/10.1007/978-3-030-78142-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-78142-2_13

210 C. Nester

composition, and in parallel via the tensor product. For example, the process of
baking bread might generate the following material history:

meaning that the baking process involved kneading dough and baking it in an
oven to obtain bread (and also the oven).

This approach to expressing the material history of a process has many
advantages: It is general, in that it assumes minimal structure; canonical, in
that monoidal categories are well-studied as mathematical objects; and relatively
friendly, as it admits an intuitive graphical calculus (string diagrams). However,
it is unable to capture the interaction between components of a concurrent pro-
cess. For example, consider our hypothetical baking process and suppose that
the kneading and baking of the dough are handled by separate subsystems, with
control of the dough being handed to the baking subsystem once the kneading
is complete. Such interaction of parts is a fundamental aspect of concurrency,
but is not expressible in this framework – we can only describe the effects of the
system as a whole.

We remedy this by extending a given resource theory to allow the decompo-
sition of material histories into concurrent components. Specifically, we augment
the string diagrams for symmetric monoidal categories with corners, through
which resources may flow between different components of a transformation.

Returning to our baking example, we might express the material history of the
kneading and baking subsystems separately with the following diagrams, which
may be composed horizontally to obtain the material history of the baking pro-
cess as a whole.

The Structure of Concurrent Process Histories 211

These augmented diagrams denote cells of a single object double category
constructed from the original resource theory. The corners make this double cat-
egory into a proarrow equipment, which turns out to be all the additional struc-
ture we need in order to express concurrent interaction. From only this structure,
we obtain a theory of exchanges – a sort of minimal system of behavioural types –
that conforms to our intuition about how such things ought to work remarkably
well.

Our approach to these concurrent material histories retains the aforemen-
tioned advantages of the resource-theoretic perspective: We lose no general-
ity, since our construction applies to any resource theory; It is canonical, with
proarrow equipments being a fundamental structure in formal category theory
– although not usually seen in such concrete circumstances; Finally, it remains
relatively friendly, since the string diagrams for monoidal categories extend in a
natural way to string diagrams for proarrow equipments [11].

1.1 Contributions and Related Work

Related Work. Monoidal categories are ubiquitous – if often implicit – in theo-
retical computer science. An example from the theory of concurrency is [15], in
which monoidal categories serve a purpose similar to their purpose here. String
diagrams for monoidal categories seem to have been invented independently a
number of times, but until recently were uncommon in printed material due to
technical limitations. The usual reference is [12]. We credit the resource-theoretic
interpretation of monoidal categories and their string diagrams to [4]. Double
categories first appear in [6]. Free double categories are considered in [5] and
again in [7]. The idea of a proarrow equipment first appears in [22], albeit in a
rather different form. Proarrow equipments have subsequently appeared under
many names in formal category theory (see e.g., [9,20]). String diagrams for dou-
ble categories and proarrow equipments are treated precisely in [11]. We have
been inspired by work on message passing and behavioural types, in particular
[2], from which we have adopted our notation for exchanges.
Contributions. Our main contribution is the resource-theoretic interpretation
of certain proarrow equipments, which we call cornerings, and the observation
that they capture exactly the structure of concurrent process histories. Our
mathematical contributions are minor, most significantly the identification of
crossing cells in the free cornering of a resource theory and the corresponding
Lemma 2, which we believe to be novel. We do not claim the other lemmas of
the paper as significant mathematical contributions. Instead, they serve to flesh
out the structure of the free cornering.

1.2 Organization and Prerequisites

Prerequisites. This paper is largely self-contained, but we assume some familiar-
ity with category theory, in particular with monoidal categories and their string
diagrams. Some good references are [8,14,19].

212 C. Nester

Organization. In Sect. 2 we review the resource-theoretic interpretation of sym-
metric monoidal categories. We continue by reviewing the theory of double cat-
egories in Sect. 3, specialized to the single object case. In Sect. 4 we introduce
cornerings of a resource theory, in particular the free such cornering, and exhibit
the existence of crossing cells in the free cornering. In Sect. 5 we show how the free
cornering of a resource theory inherits its resource-theoretic interpretation while
enabling the concurrent decomposition of resource transformations. In Sect. 6 we
conclude and consider directions for future work.

2 Monoidal Categories as Resource Theories

Symmetric strict monoidal categories can be understood as theories of resource
transformation. Objects are interpreted as collections of resources, with A ⊗ B
the collection consisting of both A and B, and I the empty collection. Arrows
f : A → B are understood as ways to transform the resources of A into those of
B. We call symmetric strict monoidal categories resource theories when we have
this sort of interpretation in mind.

For example, let B be the free symmetric strict monoidal category with
generating objects

{bread, dough, water, flour, oven}

and with generating arrows

mix : water ⊗ flour → dough knead : dough → dough

bake : dough ⊗ oven → bread ⊗ oven

subject to no equations. B can be understood as a resource theory of baking
bread. The arrow mix represents the process of combining water and flour to form
a bread dough, knead represents kneading dough, and bake represents baking
dough in an oven to obtain bread (and an oven).

The structure of symmetric strict monoidal categories provides natural alge-
braic scaffolding for composite transformations. For example, consider the fol-
lowing arrow of B:

(bake ⊗ 1dough); (1bread ⊗ σoven,dough; bake)

of type
dough ⊗ oven ⊗ dough → bread ⊗ bread ⊗ oven

where σA,B : A ⊗ B
∼→ B ⊗ A is the braiding. This arrow describes the transfor-

mation of two units of dough into loaves of bread by baking them one after the
other in an oven.

It is often more intuitive to write composite arrows like this as string dia-
grams: Objects are depicted as wires, and arrows as boxes with inputs and
outputs. Composition is represented by connecting output wires to input wires,

The Structure of Concurrent Process Histories 213

and we represent the tensor product of two morphisms by placing them beside
one another. Finally, the braiding is represented by crossing the wires involved.
For the morphism discussed above, the corresponding string diagram is:

Notice how the topology of the diagram captures the logical flow of resources.
Given a pair of parallel arrows f, g : A → B in some resource theory, both

f and g are ways to obtain B from A, but they may not have the same effect
on the resources involved. We explain by example: Consider the parallel arrows
1dough, knead : dough → dough of B. Clearly these should not be understood
to have the same effect on the dough in question, and this is reflected in B
by the fact that they are not made equal by its axioms. Similarly, knead and
knead ◦ knead are not equal in B, which we understand to mean that kneading
dough twice does not have the same effect as kneading it once, and that in
turn any bread produced from twice-kneaded dough will be different from once-
kneaded bread in our model.

Consider a hypothetical resource theory constructed from B by imposing the
equation knead ◦ knead = knead. In this new setting we understand kneading
dough once to have the same effect as kneading it twice, three times, and so on,
because the corresponding arrows are all equal. Of course, the sequence of events
described by knead is not the one described by knead ◦knead: In the former the
dough has been kneaded only once, while in the latter it has been kneaded twice.
The equality of the two arrows indicates that these two different processes would
have the same effect on the dough involved. We adopt as a general principle in
our design and understanding of resource theories that transformations should
be equal if and only if they have the same effect on the resources involved.

For the sake of further illustration, observe that by naturality of the braiding
maps the following two resource transformations are equal in B:

214 C. Nester

Each transformation gives a method of baking two loaves of bread. On the left,
two batches of dough are mixed and kneaded before being baked one after the
other. On the right, first one batch of dough is mixed, kneaded and baked and
only then is the second batch mixed, kneaded, and baked. Their equality tells
us that, according to B, the two procedures will have the same effect, resulting
in the same bread when applied to the same ingredients with the same oven.

3 Single Object Double Categories

In this section we set up the rest of our development by presenting the theory of
single object double categories, being those double categories D with exactly one
object. In this case D consists of a horizontal edge monoid DH = (DH ,⊗, I), a
vertical edge monoid DV = (DV ,⊗, I), and a collection of cells

where A,B ∈ DH and X,Y ∈ DV . Given cells α, β where the right boundary
of α matches the left boundary of β we may form a cell α|β – their horizontal
composite – and similarly if the bottom boundary of α matches the top boundary
of β we may form α

β – their vertical composite – with the boundaries of the
composite cell formed from those of the component cells using ⊗. We depict
horizontal and vertical composition, respectively, as in:

The Structure of Concurrent Process Histories 215

and

Horizontal and vertical composition of cells are required to be associative and
unital. We omit wires of sort I in our depictions of cells, allowing us to draw
horizontal and vertical identity cells, respectively, as in:

and

Finally, the horizontal and vertical identity cells of type I must coincide – we
write this cell as �I and depict it as empty space, see below on the left – and
vertical and horizontal composition must satisfy the interchange law. That is,
α
β |γ

δ = α|γ
β|δ , allowing us to unambiguously interpret the diagram below on the

right:

Every single object double category D defines strict monoidal categories VD

and HD, consisting of the cells for which the DH and DV valued boundaries
respectively are all I, as in:

and

That is, the collection of objects of VD is DH , composition in VD is vertical
composition of cells, and the tensor product in VD is given by horizontal com-
position:

216 C. Nester

In this way, VD forms a strict monoidal category, which we call the category
of vertical cells of D. Similarly, HD is also a strict monoidal category (with
collection of objects DV) which we call the horizontal cells of D.

4 Cornerings and Crossings

Next, we define cornerings, our primary technical device. In particular we discuss
the free cornering of a resource theory, which we show contains special crossing
cells with nice formal properties. Tersely, a cornering of a resource theory A is a
single object proarrow equipment with A as its vertical cells. Explicitly:

Definition 1. Let A be a symmetric strict monoidal category. Then a cornering
of A is a single object double category D such that:

(i) The vertical cells of D are A. That is, there is an isomorphism of categories
VD ∼= A.

(ii) For each A in A0
∼= DH , there are distinguished elements A◦ and A• of DV

along with distinguished cells of D

called ◦-corners and •-corners respectively, which must satisfy the yanking
equations:

Intuitively, A◦ denotes an instance of A moving from left to right, and A• denotes
an instance of A moving from right to left (see Sect. 5).

Of particular interest is the free cornering of a resource theory:

Definition 2. Let A be a resource theory. Then the free cornering of A, written
�
�A

�
�, is the free single object double category defined as follows:

– The horizontal edge monoid �
�A

�
�H = (A0,⊗, I) is given by the objects of A.

– The vertical edge monoid �
�A

�
�V = (A0 × {◦, •})∗ is the free monoid on the set

A0 × {◦, •} of polarized objects of A – whose elements we write A◦ and A•.
– The generating cells consist of corners for each object A of A as above, subject

to the yanking equations, along with a vertical cell �
�f

�
� for each morphism

f : A → B of A subject to equations as in:

The Structure of Concurrent Process Histories 217

For a precise development of free double categories see [7]. In brief: cells are
formed from the generating cells by horizontal and vertical composition, subject
to the axioms of a double category in addition to any generating equations. The
free cornering is free both in the sense that it is freely generated, and in the
sense that for any cornering D of A there is exactly one double functor �

�A
�
� → D

that sends corner cells to corner cells and restricts to the identity on A ∼= VD.
That is, diagrams in �

�A
�
� have a canonical interpretation in any cornering of A.

Proposition 1. �
�A

�
� is a cornering of A.

Proof. Intuitively V �
�A

�
� ∼= A because in a composite vertical cell every wire

bent by a corner must eventually be un-bent by the matching corner, which by
yanking is the identity. The only other generators are the cells �

�f
�
�, and so any

vertical cell in �
�A

�
� can be written as �

�g
�
� for some morphism g of A. A more

rigorous treatment of corner cells can be found in [11], to the same effect.

��
Before we properly explain our interest in �

�A
�
� we develop a convenient bit of

structure: crossing cells. For each B of �
�A

�
�H and each X of �

�A
�
�V we define a cell

of �
�A

�
� inductively as follows: In the case where X is A◦ or A•, respectively, define

the crossing cell as in the diagrams below on the left and right, respectively:

in the case where X is I, define the crossing cell as in the diagram below on the
left, and in the composite case define the crossing cell as in the diagram below
on the right:

We prove a technical lemma:
Lemma 1. For any cell α of �

�A
�
� we have

218 C. Nester

Proof. By structural induction on cells of �
�A

�
�. For the ◦-corners we have:

and for the •-corners, similarly:

the final base cases are the �
�f

�
� maps:

There are two inductive cases. For vertical composition, we have:

Horizontal composition is similarly straightforward, and the claim follows by
induction. ��
From this we obtain a “non-interaction” property of our crossing cells, similar
to the naturality of braiding in symmetric monoidal categories:

Corollary 1. For cells α of V �
�A

�
� and β of H �

�A
�
�, the following equation holds

in �
�A

�
�:

These crossing cells greatly aid in the legibility of diagrams corresponding
to cells in �

�A
�
�, but also tell us something about the categorical structure of �

�A
�
�,

namely that it is a monoidal double category in the sense of [21]:

Lemma 2. If A is a symmetric strict monoidal category then �
�A

�
� is a monoidal

double category. That is, �
�A

�
� is a pseudo-monoid object in the strict 2-category

VDblCat of double categories, lax double functors, and vertical transformations.

The Structure of Concurrent Process Histories 219

Proof. We give the action of the tensor product on cells:

This defines a pseudofunctor, with the component of the required vertical trans-
formation given by exchanging the two middle wires as in:

Notice that ⊗ is strictly associative and unital, in spite of being only pseudo-
functorial.

��

5 Concurrency Through Cornering

We next proceed to extend the resource-theoretic interpretation of some symmet-
ric strict monoidal category A to its free cornering �

�A
�
�. Interpret elements of �

�A
�
�V

as A-valued exchanges. Each exchange X1 ⊗ · · · ⊗ Xn involves a left participant
and a right participant giving each other resources in sequence, with A◦ indi-
cating that the left participant should give the right participant an instance of
A, and A• indicating the opposite. For example say the left participant is Alice
and the right participant is Bob. Then we can picture the exchange A◦ ⊗B• ⊗C•

as:

Think of these exchanges as happening in order. For example the exchange
pictured above demands that first Alice gives Bob an instance of A, then Bob
gives Alice an instance of B, and then finally Bob gives Alice an instance of C.

We interpret cells of �
�A

�
� as concurrent transformations. Each cell describes a

way to transform the collection of resources given by the top boundary into that
given by the bottom boundary, via participating in A-valued exchanges along
the left and right boundaries. For example, consider the following cells of �

�B
�
�:

220 C. Nester

From left to right, these describe: A procedure for transforming water into noth-
ing by mixing it with flour obtained by exchange along the right boundary,
then sending the resulting dough away along the right boundary; A procedure
for transforming an oven into an oven, receiving flour along the right bound-
ary and sending it out the left boundary, then receiving dough along the left
boundary, which is baked in the oven, with the resulting bread sent out along
the right boundary; Finally, a procedure for turning flour into bread by giving
it away and then receiving bread along the left boundary. When we compose
these concurrent transformations horizontally in the evident way, they give a
transformation of resources in the usual sense, i.e., a morphism of A ∼= V �

�A
�
�:

We understand equality of cells in �
�A

�
� much as we understand equality of

morphisms in a resource theory: two cells should be equal in case the trans-
formations they describe would have the same effect on the resources involved.
In this way, cells of �

�A
�
� allow us to break a transformation into many concur-

rent parts. Note that with the crossing cells, it is possible to exchange resources
“across” cells.

Consider the category H �
�A

�
� of horizontal cells. If the vertical cells V �

�A
�
� are

concerned entirely with the transformation of resources, then our interpretation
tells us that the horizontal cells are concerned entirely with exchange. Just as
isomorphic objects in V �

�A
�
� ∼= A can be thought of as equivalent collections of

resources – being freely transformable into each other – we understand isomor-
phic objects in H �

�A
�
� as equivalent exchanges. For example, There are many ways

for Alice to give Bob an A and a B: Simultaneously, as A ⊗ B; one after the
other, as A and then B; or in the other order, as B and then A. While these are
different sequences of events, they achieve the same thing, and are thus equiv-
alent. Similarly, for Alice to give Bob an instance of I is equivalent to nobody
doing anything. Formally, we have:

Lemma 3. In H �
�A

�
� we have for any A,B of A:

(i) I◦ ∼= I ∼= I•.

The Structure of Concurrent Process Histories 221

(ii) A◦ ⊗ B◦ ∼= B◦ ⊗ A◦ and A• ⊗ B• ∼= B• ⊗ A•.
(iii) (A ⊗ B)◦ ∼= A◦ ⊗ B◦ and (A ⊗ B)• ∼= A• ⊗ B•

Proof. (i) For I ∼= I◦, consider the ◦-corners corresponding to I:

we know that these satisfy the yanking equations:

which exhibits an isomorphism I ∼= I◦. Similarly, I ∼= I•. Thus, we see
formally that exchanging nothing is the same as doing nothing.

(ii) The ◦-corner case is the interesting one: Define the components of our iso-
morphism to be:

and

then for both of the required composites we have:

and so A◦ ⊗ B◦ ∼= B◦ ⊗ A◦. Similarly A• ⊗ B• ∼= B• ⊗ A•. This captures
formally the fact that if Alice is going to give Bob an A and a B, it doesn’t
really matter which order she does it in.

(iii) Here it is convenient to switch between depicting a single wire of sort A⊗B
and two wires of sort A and B respectively in our string diagrams. To this
end, we allow ourselves to depict the identity on A ⊗ B in multiple ways,
using the notation of [3]:

Then the components of our isomorphism (A ⊗ B)◦ ∼= A◦ ⊗ B◦ are:

and

222 C. Nester

and, much as in (ii), it is easy to see that the two possible composites are
both identity maps. Similarly, (A⊗B)• ∼= (A•⊗B•). This captures formally
the fact that giving away a collection is the same thing as giving away its
components.

��
For example, we should be able to compose the cells on the left and right

below horizontally, since their right and left boundaries, respectively, indicate
equivalent exchanges:

Our lemma tells us that there will always be a canonical isomorphism, as above
in the middle, making composition possible.

It is worth noting that we do not have A◦ ⊗ B• ∼= B• ⊗ A◦:

Observation 1. There is a morphism d◦
• : A◦ ⊗B• → B• ⊗A◦ in one direction,

defined by

but there is need not be a morphism in the other direction, and this is not in
general invertible. In particular, H �

�A
�
� is monoidal, but need not be symmetric.

This observation reflects formally the intuition that if I receive some resources
before I am required to send any, then I can send some of the resources that I
receive. However, if I must send the resources first, this is not the case. In this
way, H �

�A
�
� contains a sort of causal structure.

6 Conclusions and Future Work

We have shown how to decompose the material history of a process into con-
current components by working in the free cornering of an appropriate resource
theory. We have explored the structure of the free cornering in light of this inter-
pretation and found that it is consistent with our intuition about how this sort
of thing ought to work. We do not claim to have solved all problems in the
modelling of concurrency, but we feel that our formalism captures the material
aspect of concurrent systems very well.

We find it quite surprising that the structure required to model concurrent
resource transformations is precisely the structure of a proarrow equipment. This
structure is already known to be important in formal category theory, and we
are appropriately intrigued by its apparent relevance to models of concurrency

The Structure of Concurrent Process Histories 223

– a far more concrete setting than the usual context in which one encounters
proarrow equipments!

There are of course many directions for future work. For one, our work is
inspired by the message passing logic of [2], which has its categorical semantics
in linear actegories. Any cornering defines an category – although not quite a
linear actegory – and we speculate that cornerings are equivalent to some class of
actegories, which would connect our work to the literature on behavioural types.
Another direction for future work is to connect our material histories to a theory
of concurrent processes – the slugs to our slime – with the goal of a formalism
accounting for both. The category of spans of reflexive graphs, interpreted as
open transition systems, seems especially promising here [13]. More generally,
we would like to know how the perspective presented here can be integrated into
other approaches to modelling concurrent systems.

References

1. Abramsky, S.: What are the fundamental structures of concurrency? we still don’t
know! CoRR abs/1401.4973 (2014)

2. Cockett, J.R.B., Pastro, C.: The logic of message-passing. Sci. Comput. Program.
74, 498–533 (2009)

3. Cockett, J.R.B., Seely, R.A.G.: Proof theory of the cut rule. In: Landry, E. (ed.)
Categories for the Working Philosopher, pp. 223–261. Oxford University Press,
Oxford (2017)

4. Coecke, B., Fritz, T., Spekkens, R.W.: A mathematical theory of resources. Inf.
Comput. 250, 59–86 (2016)

5. Dawson, R., Paré, R.: What is a free double category like? J. Pure Appl. Algebra
168(1), 19–34 (2002)

6. Ehresmann, C.: Catágories structurées. Annales scientifiques de l’École Normale
Supérieure 80(4), 349–426 (1963)

7. Fiore, M., Paoli, S., Pronk, D.: Model structures on the category of small double
categories. Algebraic Geometric Topol. 8(4), 1855–1959 (2008)

8. Fong, B., Spivak, D.I.: Seven Sketches in Compositionality: An Invitation to
Applied Category Theory (2018)

9. Grandis, M., Pare, R.: Adjoint for double categories. Cahiers de Topologie et
Géométrie Différentielle Catégoriques 45(3), 193–240 (2004)

10. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

11. Myers, D.J.: String Diagrams For Double Categories and Equipments. arXiv e-
prints (2016)

12. Joyal, A., Street, R.: The geometry of tensor calculus, I. Adv. Math. 88(1), 55–112
(1991)

13. Katis, P., Sabadini, N., Walters, R.F.C.: Span(Graph): a categorical algebra of
transition systems. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 307–
321. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0000479

14. Mac Lane, S.: Categories for the Working Mathematician. Springer, New York
(1971). https://doi.org/10.1007/978-1-4612-9839-7

15. Meseguer, J., Montanari, U.: Petri nets are monoids. Inf. Comput. 88(2), 105–155
(1990)

https://doi.org/10.1007/BFb0000479
https://doi.org/10.1007/978-1-4612-9839-7

224 C. Nester

16. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

17. Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

18. Petri, C.A.: Communication with automata (1966)
19. Selinger, P.: A survey of graphical languages for monoidal categories. In: New

Structures for Physics, pp. 289–355. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12821-9 4

20. Shulman, M.: Framed bicategories and monoidal fibrations. Theory Appl. Cate-
gories 20(18), 650–738 (2008)

21. Shulman, M.A.: Constructing symmetric monoidal bicategories. arXiv e-prints
(2010)

22. Wood, R.J.: Abstract pro arrows I. Cahiers de Topologie et Géométrie Différentielle
Catégoriques 23(3), 279–290 (1982)

https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-3-642-12821-9_4

A Clean and Efficient Implementation of
Choreography Synthesis for Behavioural

Contracts

Davide Basile(B) and Maurice H. ter Beek

Formal Methods and Tools Lab, ISTI–CNR, Pisa, Italy
{davide.basile,maurice.terbeek}@isti.cnr.it

Abstract. The Contract Automata Tool is an open-source tool for the
specification, composition and synthesis of coordination of service con-
tracts, including functionalities to deal with modalities and configura-
tions. We discuss an implementation of the abstract parametric synthesis
algorithm firstly introduced in our COORDINATION 2019 paper, com-
prehending most permissive controller, orchestration and choreography
synthesis. The tool’s source code has been redesigned and refactored in
Java 8, and we show the resulting gain in computational efficiency.

Keywords: Service Computing · Contract Automata · Controller
Synthesis · Orchestration · Choreography

1 Introduction

Orchestration and choreography are two coordination policies for service com-
position [14,16,40]. The specifications of services can be provided as behavioural
contracts [5] that expose the interface to other services and are used to compute
contract-based coordination policies.

Contract automata [10] formalise behavioural service contracts in terms of
service offer actions and service request actions that need to match to achieve
agreement among a composition of contracts. Modalities are used to indicate
when an action must be matched (necessary) and when it can be withdrawn
(permitted) in the synthesised coordination [6]. Composing contracts and syn-
thesising a coordination, by refining a spurious composition, are the two main
operations supporting contracts. Synthesis builds upon results from supervisory
control theory [17,26,41] for synthesising the most permissive controller (mpc for
short), duly revisited for synthesising orchestrations and choreographies in [9].
We are aware of only one other approach to coordinating services by supervi-
sory control theory [2]. Contract automata have been equipped with a proof-of-
concept tool [7] to show the feasibility of the proposed theoretical approach.

Motivation. According to a recent survey on formal methods among high-
profile experts [23], the debate between “leaving the development of professional
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 225–238, 2021.
https://doi.org/10.1007/978-3-030-78142-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_14&domain=pdf
http://orcid.org/0000-0002-7196-6609
http://orcid.org/0000-0002-2930-6367
https://doi.org/10.1007/978-3-030-78142-2_14

226 D. Basile and M. H. ter Beek

tools to industry” and “academia should invest effort to develop and consolidate
usable tools” has no clear winner. In support of the latter, there is a shared
belief that “academia should invest effort to develop and consolidate usable
tools” because “this is the only way to provide technological transfer to indus-
try, [as] in most cases efficient implementation requires to know a bit about the
underlying theory”. Indeed, according to [21,24], tool deficiencies (e.g., ease of
use) are rated as one of the top obstacles for the adoption of formal methods by
industry. However, to achieve this industrial transfer, in [30] it is recommended
that “universities need to find ways to incentives industrial collaboration by
adjusting its system of academic and career credits” and “research support and
funding agencies need to actively encourage tool development and maintenance
beyond prototyping” and “develop flexible funding schemes (in-cash or in-kind)
to support the engineering work that is necessary to transform a prototype imple-
mentation into a demonstrable implementation”. In support of the former, quite
some academics believe that “we should not spend time on polishing the things
that matter for acceptance in industry, such as user interfaces, have round-the-
clock available help desks, liability, etc.”, because “there is no business case for
long term support of (academic) tools; industry needs stability and performance,
academics need to innovate”. In fact, it is evident that few research groups man-
age to work for decades on one tool and have it applied successfully in industry.
We note, however, a gap between going beyond prototyping (e.g., by providing
well-designed, clean and efficient implementations) and going as far as providing
industry-ready tools (e.g., with help desks, industrial certification and floating
licenses). Indeed, as also reported in [23], “the tools we develop should be usable
(and extensible) by researchers in our own community” and “effort should be
devoted to open-source community efforts”. To this aim, we present a clean
and efficient implementation of theoretical results presented in [9], providing an
open-source tool [18] beyond the prototypical level, which can be reused as an
API (and extended) by other researchers and developers in service coordination,
rather than an off-the-shelf tool, ready to be adopted in industry.

Contribution. In this paper, we discuss improvements in the design and imple-
mentation of the contract automata tool [18]. It has been redesigned according to
the principles of model-based systems engineering (MBSE for short) [29,42] and
those of writing clean and readable code [15,36], which are known to improve reli-
ability and understandability and facilitate maintainability and reuse. The tool
has moreover been refactored using lambda expressions and Java Streams as
available in Java 8 [25,43], exploiting parallelism. We are not aware of any other
synthesis algorithm that uses big data-like parallel operations as Java Streams.
The implementation of the abstract parametric synthesis algorithm from [9] and
the mpc, orchestration and choreography synthesis are presented. We recompute
the contracts of the case study in [9] to demonstrate the gain in computational
efficiency of the new implementation, and we briefly address the gain in code
readability and maintainability.

A Clean and Efficient Implementation of Choreography Synthesis 227

Outline. The paper is organised as follows. In Sect. 2, we briefly discuss the
tool’s new design. In Sect. 3, we recall theoretical results on the abstract syn-
thesis algorithm. In Sect. 4, we present in detail the refactored synthesis imple-
mentation and discuss its adherence to the specification. In Sect. 5, we evaluate
the improvement, both in absolute terms and in performance gain. In Sect. 6, we
present related work whilst Sect. 7 concludes the paper.

2 Design

The tool’s architecture has been redesigned with the MBSE tool Sparx Enterprise
Architect1 (EA for short) and Eclipse. EA allows to import Eclipse projects to
generate documentation and UML diagrams. The UML class diagram concerning
the main package of the tool, displayed in Fig. 1, has been generated by EA. For
readability, only fields that are relevant for this paper are visible for each class.

Fig. 1. The class diagram of the contract automata tool [18]

The standard UML class diagram is self-explanatory. The input/output func-
tionalities are grouped in a stand-alone class MSCAIO, used by the application.
1 https://sparxsystems.com/products/ea/.

https://sparxsystems.com/products/ea/

228 D. Basile and M. H. ter Beek

The core of the implementation resides in the class MSCA that contains meth-
ods for composing and synthesising contracts, discussed below. The decorator
pattern is used for the class FMCA, which adds the functionality of synthesising
an orchestration for a specific configuration (called a product, cf. [6]).

Another package of the tool, family, concerns the aforementioned functional-
ities, discussed in [6], regarding the possibility of synthesising an orchestration of
a product line (also called family) of service contracts, where each configuration
is in a (partial) ordering relation with other configurations. The functionalities
of this package have not been refactored in Java 8 yet, and do not concern the
contribution discussed in this paper. The repository is available at [18].

The GUI Application. One of the advantages of adopting a widely used lan-
guage such as Java is the availability of many resources. In particular, we imple-
mented a GUI application, publicly available in [19]. This application is import-
ing and using both our CAT library discussed in this paper and the mxGraph
library [37] that provides features for displaying interactive diagrams and graphs.
We specialised the GraphEditor example of the library to develop the GUI of the
tool. We wish to emphasise the separation of concerns between the tool’s usabil-
ity for end users, addressed by the GUI [19], and the usability of the API offered
to other developers, addressed in this paper and available in [18]. Developers can
use our library as back-end to other software, and efficiency and clean design of
the implementation are our primary concern. Nevertheless, being able to graph-
ically visualise the computed contracts has been helpful for experimenting new
developments in the theory of contract automata.

3 Specification

In this section, we recall the specification of the abstract synthesis algorithm
from [9] that will be useful to provide some evidence that the implementation in
Sect. 4 adheres with the specification. This is a fix-point computation where at
each iteration the set of transitions of the automaton is refined (pruning predicate
φp) and a set of forbidden states R is computed (forbidden predicate φf). The
synthesis is parametric on these two predicates, which provide information on
when a transition has to be pruned from the synthesised automaton or a state has
to be deemed forbidden. The syntheses of mpc, orchestration and choreography
are obtained by instantiating these two predicates. We refer to MSCA as the set
of (modal service) contract automata, where the set of states is denoted by Q and
the set of transitions by T (with T� denoting the set of necessary transitions).
For an automaton A, the predicate Dangling(A) contains those states that are
not reachable from the initial state or that cannot reach any final state.

Definition 1 (Abstract synthesis [9]). Let A be an MSCA, and let K0 = A
and R0 = Dangling(K0). Given two predicates φp, φf : T × MSCA × Q → Bool ,
we let the abstract synthesis function f(φp,φf) : MSCA × 2Q → MSCA × 2Q be
defined as follows:

A Clean and Efficient Implementation of Choreography Synthesis 229

f(φp,φf)(Ki−1, Ri−1) = (Ki, Ri), with

TKi = TKi−1 \ { t ∈ TKi−1 | φp(t, Ki−1, Ri−1) = true }
Ri = Ri−1 ∪ { q | (q −→) = t ∈ T �

A , φf (t, Ki−1, Ri−1) = true } ∪ Dangling(Ki)

The abstract controller is defined in Eq. 1 below as the least fixed point (cf.
Theorem 5.2 [9]) where, if the initial state belongs to R

(φp,φf)
s , then the controller

is empty, otherwise it is the automaton with the set of transitions TK(φp,φf)
s

and

without states in R
(φp,φf)
s .

(K(φp,φf)
s , R

(φp,φf)
s) = sup({ fn

(φp,φf)
(K0, R0) | n ∈ N }) (1)

4 Implementation

The implementation has been refactored in Java 8, the latest major feature
release2 including lambda expressions and streaming API. Streams are used for
big data-style processing of data structures, incorporating MapReduce-like oper-
ations [20]. Streams can be easily parallelised, abstracting from the underlying
realisation with parallel threads. Although a parallel stream can be obtained
with a simple method (parallelStream()), if not carefully used issues may be
encountered, e.g., race conditions. Indeed, the usage of Java 8 Streams is cur-
rently under investigation [31–33]. Based on the analysis of 34 Java projects, two
important findings listed in [33] are: “Stream parallelization is not widely used”,
and “Although streams feature performance improving parallelism, developers
tend to struggle with using streams efficiently”. This seems to confirm the find-
ing of [35], “indicating the difficulty of reasoning [on] concurrent execution by
programmers”, while in [31,32], focusing on evaluating refactoring, it is noted
that “using streams efficiently requires many subtle considerations”.

In our implementation, parallel streams are carefully used to speed-up the
computation of the set of transitions and forbidden states at each iteration. We
both provide an informal argument on the correctness of our implementation
below, confirmed by testing our implementation on the case studies in [9] and [6],
as well as experimental evidence on the efficiency of the new implementation in
Sect. 5. We start by discussing the parametric synthesis method below.

Lines 2–3 show the two parameters of the method. Both predicates take three
arguments: the transition under scrutiny, the set of transitions and the set of
forbidden states computed so far. Lines 5–6 are used to store references to the
transitions, states and initial state, which could be lost during the synthesis.
Initially, the set of forbidden states R is composed of dangling states (line 7).
A Boolean flag update is used to flag when the least fixed point is reached. At
each iteration (lines 9–20), the set of transitions is refined with a parallel stream
filtering away those transitions satisfying the pruning predicate (lines 11–13).

2 https://www.oracle.com/java/technologies/java8.html.

https://www.oracle.com/java/technologies/java8.html

230 D. Basile and M. H. ter Beek

Similarly, the set R is updated by adding dangling states due to pruned tran-
sitions (line 14). Source states of transitions satisfying the forbidden predicate
are computed using a parallel stream (considering also transitions previously
pruned) and added to R (lines 15–18). Finally, when the fixed point is reached
the dangling transitions are removed (line 21), and if the initial state is not
forbidden (line 25) the synthesised MSCA is returned (line 26).

1 public MSCA synthesis(
2 TriPredicate<MSCATransition, Set<MSCATransition>, Set<CAState>> pruningPred,
3 TriPredicate<MSCATransition, Set<MSCATransition>, Set<CAState>> forbiddenPred)
4 {
5 Set<MSCATransition> trbackup = new HashSet<MSCATransition>(this.getTransition());
6 Set<CAState> statesbackup= this.getStates(); CAState init = this.getInitial();
7 Set<CAState> R = new HashSet<CAState>(this.getDanglingStates(statesbackup,init)); //R0
8 boolean update=false;
9 do{ final Set<CAState> Rf = new HashSet<CAState>(R);

10 final Set<MSCATransition> trf= new HashSet<MSCATransition>(this.getTransition())
11 if (this.getTransition().removeAll(this.getTransition().parallelStream()
12 .filter(x->pruningPred.test(x,trf, Rf))
13 .collect(Collectors.toSet()))) //Ki
14 R.addAll(this.getDanglingStates(statesbackup,init));
15 R.addAll(trbackup.parallelStream()
16 .filter(x->forbiddenPred.test(x,trf, Rf))
17 .map(MSCATransition::getSource)
18 .collect(Collectors.toSet())); //Ri
19 update=Rf.size()!=R.size()|| trf.size()!=this.getTransition().size();
20 } while(update);
21 this.removeDanglingTransitions();
22 if (R.contains(init)) return null;
23 return this;
24 }

Correctness. We provide an informal argument on the adherence of the imple-
mentation with respect to the specification provided in Sect. 3. Thanks to the
high-level constructs provided by Java, this is quite straightforward since the
distance between the implementation and the specification is narrow.

As already stated, the fix-point computation is implemented as a simple
do while loop, where the Boolean variable update (line 19) is used to check
that the computed sets have not been modified by the last iteration. This is
done by simply checking that their size has not changed. Indeed, only instruc-
tions for removing transitions or adding states to R are invoked at each iter-
ation. The functional interface TriPredicate is used to type both pruning
and forbidden predicates as functions taking three arguments and returning a
Boolean. The set R0 of Definition 1 is computed by the instruction in line 7,
using the method getDanglingStates that implements the predicate Dangling.
This method basically performs a forward and backward visit of the automaton.
Here the correspondence with Definition 1 is obtained by simply observing that
K0 = A. Indeed, the predicate Dangling of Definition 1 takes as arguments the
automaton to which the dangling states are computed. In the implementation,
such automaton is the object this to which the method getDanglingStates is
invoked (basically, Ki in Definition 1 is the object this).

The instructions in lines 11–12 perform the set difference on the set of tran-
sitions, by removing the transitions satisfying the pruning predicate. This is
basically the same as Definition 1. As already stated, the computation of the set

A Clean and Efficient Implementation of Choreography Synthesis 231

of forbidden states R starts in line 14 by adding the dangling states. In case no
transition has been removed, the set of dangling states is unchanged.

Sources of transitions satisfying the forbidden predicate are added in lines 15–
18. Here there is a slight divergence from Definition 1: the abstract synthesis
algorithm only checks the forbidden predicate on necessary transitions. Since
the notion of necessary transition varies depending on whether we are synthe-
sising an mpc, an orchestration or a choreography, in the implementation this
check will be implemented by the forbidden predicate passed as argument to the
synthesis method (see below). Due to the well-known state-explosion problem,
it is expected that, for an average composition, the set of transitions is not of
a small size. Thus, parallel streams are used to efficiently process each element
separately and independently from the other threads, with no concurrency issues.

Instructions in lines 21–22 finalise the automaton to be returned as discussed
in Sect. 3.

Mpc Synthesis. Concerning the synthesis of the mpc below, the property
of agreement is enforced, i.e., no request shall be left unmatched. Thus, a
state is forbidden if it has an outgoing uncontrollable request. Indeed, in the
mpc synthesis, necessary requests are uncontrollable, according to the standard
notion of uncontrollability in supervisory control theory, called urgent in contract
automata.
1 public MSCA mpc(){
2 return synthesis((x,t,bad) -> bad.contains(x.getTarget()) || x.getLabel().isRequest(),
3 (x,t,bad) -> !t.contains(x) && x.isUrgent());
4 }

The synthesis of the mpc is obtained by instantiating the pruning and for-
bidden predicates. The pruning predicate checks if a transition has a forbidden
target state or is a request (line 2). The forbidden predicate selects source states
of necessary transitions (i.e., urgent) that have been previously removed (line 3).

Orchestration Synthesis. The synthesis of the orchestration below is similar
to the one of the mpc, apart from the different notion of necessary request.

1 public MSCA orchestration(){
2 return synthesis((x,t,bad) -> bad.contains(x.getTarget())|| x.getLabel().isRequest(),
3 (x,t,bad) -> x.isUncontrollableOrchestration(t, bad));
4 }

In the orchestration, necessary requests are semi-controllable (line 3): basi-
cally, a necessary request becomes uncontrollable if there exists no execution
in which that request is matched, otherwise it is controllable. Intuitively, in an
orchestration of service contracts the order (among possible interleavings) in
which the necessary requests are matched does not matter, as long as there
exists at least one execution in which the match takes place. The orchestrator is
in charge of driving the services towards executions in agreement [9].

232 D. Basile and M. H. ter Beek

Choreography Synthesis. The orchestration assumes the presence of an
implicit orchestrator driving the executions toward safe behaviour. In a chore-
ography, instead, contract automata are supposed to be able to interact safely
on their own, without resorting to a central orchestrator. To do so, the property
to be enforced is called strong agreement, i.e., all requests and offers have to be
matched (this property is also referred to as absence of orphan messages). A prop-
erty called branching condition must hold: automata must be able to send offers
independently from the state of other automata. In the choreographic framework,
requests are always permitted, whereas offers can also be necessary. Necessary
offers use semi-controllability for choreographies, which is weaker than uncon-
trollability yet stronger than the semi-controllable notion used in the synthesis
of orchestration. Indeed, compared to orchestrations, an additional constraint
must hold: the transitions matching the necessary offer must share the same
source state. This is because the automata must be able to interact correctly by
only using local information.

1 public MSCA choreography(){
2 MSCA aut; MSCATransition toRemove= null;
3 Set<String> violatingBC = new HashSet<>();
4 do {
5 aut=this.clone().synthesis((x,t,bad)->!x.getLabel().isMatch()||bad.contains(x.getTarget())
6 ||violatingBC.contains(x),(x,t,bad) -> x.isUncontrollableChoreography(t, bad));
7 if (aut==null) break;
8 final Set<MSCATransition> trf = aut.getTransition();
9 toRemove=(aut.getTransition().parallelStream()

10 .filter(x->!x.satisfiesBranchingCondition(trf, new HashSet<CAState>()))
11 .findAny().orElse(null));
12 } while (violatingBC.add(toRemove));
13 return aut;
14 }

The choreography synthesis algorithm iteratively calls the synthesis method
using semi-controllability for choreographies in the forbidden predicate and
strong agreement in the pruning predicate (lines 5–6). After reaching the fixed
point, a transition that violates the branching condition is non-deterministically
selected (lines 9–11). Depending on which transition is selected and removed,
different choreographies can be obtained. The synthesis abstracts away from the
way in which transitions violating the branching condition are selected. Notably,
removing only one such transition at each synthesis invocation allows to remove
a smaller number of transitions than, for example, removing all of them at the
first iteration. The iteration continues until there are no transitions violating
the branching condition. An alternative implementation could contain only one
call to the synthesis method, similarly to the orchestration and mpc methods. It
would suffice to only use the instructions in lines 6–7 by moving the branching
condition check in line 10 inside the pruning predicate in line 5. In this way,
transitions violating the branching condition would be pruned at each step of
the called synthesis algorithm, and this method would compute a smaller, possi-
bly empty choreography. The specification did not fix any strategy for selecting
which transition violating the branching condition should be pruned and when.
This indeed could be decided according to different criteria.

A Clean and Efficient Implementation of Choreography Synthesis 233

Table 1. Improvement in computational runtime (ms) of the current tool version [18].
All experiments run on a machine with Processor Intel(R) Core(TM) i7-8500Y CPU at
1.50 GHz, 1601 Mhz, 2 Core(s), 4 Logical Processor(s), 16 GB RAM, 64-bit Windows 10.

composition orchestration choreography

runtimecurrent runtime runtimecurrent runtime runtimecurrent runtime
in [9] runtime speedup in [9] runtime speedup in [9] runtime speedup

A1 65594 1312 49.99x 715216 2872 249.03x – – –

A2 66243 1006 65.85x – – – 459311 1604 286.35x

5 Evaluation

A rough measure of the improvement for what concerns code readability and
maintainability can be obtained by comparing the lines of source code (LOC
for short) with those used in the previous prototypical implementation [22]. The
previous choreography synthesis used 211 LOC, while the current implementa-
tion uses only 14 (choreography) + 24 (synthesis) LOC. Similarly, the previous
orchestration synthesis used 178 LOC, which have been refactored in 2 (orches-
tration) + 24 (synthesis) LOC. The synthesis method is factorised for orches-
tration, choreography and mpc, which was not possible before, so reducing code
duplication. Finally, UML diagrams (cf. Fig. 1) provide the benefits of graphical
documentation of the architecture of the tool that was not previously available.

To evaluate the gain in efficiency of the current implementation [18], we
compare its performance with that of the previous implementation [22], which
was programmed using quick incremental patches over the years and without
parallelism. In [9], the previous implementation was applied to a case study, with
the performances reported in Examples 2.5, 3.4 and 4.6 and recalled in Table 1.
Table 1 also reports the data of applying the current implementation and the
speedup, showcasing the improvement obtained thanks to redesigning the tool,
cleaning the code and refactoring the algorithms by using parallel streams.

6 Related Work

The literature offers several approaches to the problem of synthesising a chore-
ography of interacting components, with supporting tools. Recently, a tool chain
for choreographic design has been proposed in [28]. Choreographies are designed
using a kind of BPMN2 Choreography Diagrams, but equipped with a formal
semantics. The operation of closure at the semantic level is used to insert miss-
ing behaviour, which can be suggested as amendments to be validated by a
human. Our approach is completely automatised. Our choreography synthesis
is based on the synthesis of the mpc that refines the composition by removing
rather than adding behaviour. The composition can be computed automatically,
starting from local components, to represent all their possible interactions inde-
pendently from the selected communication pattern (e.g., non-blocking output,
blocking output). The composition could also be the starting point, in this case

234 D. Basile and M. H. ter Beek

representing a global choreography to be realised, if possible. Our algorithm is
non-deterministic and accounts for necessary and permitted actions.

In [3], the synthesis of so-called coordination delegates is discussed. Coordi-
nation delegates are used to enforce the behaviour prescribed by a choreography
designed as a BPMN2 Choreography Diagram, and are additional components
that interact with each other and with the services identified by the choreogra-
phy to enforce the prescribed behaviour. A mature tool for software development
according to this proposal is presented in [4]. Similarly, in [38], BPMN2 Chore-
ography Diagrams are used to automatically derive a conformant choreography-
based software architecture. Informal diagrams are mapped to coloured Petri
nets, specifying the coordination logic. Coordination delegates are synthesised
to fulfill the inferred coordination logic that is needed to enforce the realisability
of the choreography. They communicate with the participants they are super-
vising or among themselves. These delegates are synthesised using the approach
described in [12] to either relax or restrict the original behaviour. This is obtained
by introducing extra communications performed by the delegates.

These approaches to the synthesis of coordination delegates are similar to
the synthesis of distributed controllers in [34], which studies the fundamental
problem of supervisory control synthesis for local controllers interacting among
them through a coordinator.

Compared to the above work, our approach to choreography synthesis does
not introduce any intermediate component, nor additional behaviour. This is not
the case for our orchestration synthesis that assumes the presence of an orches-
trator dictating the overall execution by interacting with local components. Since
contract automata are composable and our synthesised choreography is again a
contract automaton, we conjecture that similar results could be obtained by
(i) partitioning the composition, (ii) separately synthesising a choreography for
each partition, and (iii) computing the orchestration of the composition of the
choreographies. The conditions under which such partitions can be computed
to obtain non-empty choreographies need to be investigated, perhaps exploiting
existing research on requirements splitting for supervisory control synthesis [27].

A static analyser for Go programs that uses a global session graph synthesis
tool to detect communication deadlocks is discussed in [39]. From Go programs,
communicating finite state machines (CFSM for short) are extracted, and used to
synthesise a global choreography that represents deadlock-freeness in the original
program. Our synthesised choreography has also been interpreted in the frame-
work of CFSM [11], and the composition of contract automata enables to proceed
bottom-up by composing local components into a choreography. Notably, if such
choreography cannot be realised by composing local components, our algorithm
automatically detects which portion of behaviour is to be pruned, if possible, to
synthesise a deadlock-free choreography. We conjecture that this result could be
used to suggest amendments to the original Go program.

The authors of this paper have gained experience in applying other tools for
controller synthesis, viz., CIF 3 [13] and Uppaal Stratego [8]. It would be

A Clean and Efficient Implementation of Choreography Synthesis 235

interesting to investigate an encoding of the coordination syntheses discussed in
this paper in the tools discussed in this section, to draw a comparison.

Since our implementation is cleanly designed, efficient and implemented in
a widely used language in few lines of code, we hope that it will be exploited
in other tools as a further option to the synthesis problem for orchestration,
choreographies and most permissive controllers.

7 Conclusion

We have presented recent improvements in the contract automata tool. The
source code has been redesigned using MBSE techniques, and refactored in
Java 8 exploiting parallel streams, including the novel choreography synthesis.
The correspondence between the formal specification and the implementation is
discussed. The obtained improvements are emphasised by comparisons with the
previous tool version.

Future Work. In the future, we would like to formally prove that the imple-
mentation respects its specification using, e.g., the theorem prover KeY [1] that
adopts specifications written in Java Modeling Language. While this is the state-
of-the-art for Java, there is no support for Java Streams and lambda expressions
to date, leaving this as a long-term goal. Also, the current version of our tool
supports product lines of orchestrations but not of choreographies, which we plan
to investigate, together with real-time support. Our approach refines a spurious
composition to a choreography, in the style of controller synthesis. As discussed in
Sect. 6, other approaches propose to add additional behaviour during synthesis.
A full-fledged comparison with other approaches is a matter of future investi-
gation. It is also interesting to exploit the compositionality offered by contract
automata to combine choreography and orchestration synthesis with the goal of
maximising the set of contracts that can correctly interact whilst minimising the
overhead of the orchestration.

Acknowledgments. We acknowledge funding from the MIUR PRIN 2017FTXR7S
project IT MaTTerS (Methods and Tools for Trustworthy Smart Systems).

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book: From Theory to Practice. LNCS,
vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Atampore, F., Dingel, J., Rudie, K.: Automated service composition via supervi-
sory control theory. In: Proceedings of the 13th International Workshop on Discrete
Event Systems (WODES 2016), pp. 28–35. IEEE (2016). https://doi.org/10.1109/
WODES.2016.7497822

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1109/WODES.2016.7497822
https://doi.org/10.1109/WODES.2016.7497822

236 D. Basile and M. H. ter Beek

3. Autili, M., Inverardi, P., Perucci, A., Tivoli, M.: Synthesis of distributed and adapt-
able coordinators to enable choreography evolution. In: de Lemos, R., Garlan, D.,
Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-Adaptive Systems III.
Assurances. LNCS, vol. 9640, pp. 282–306. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-74183-3 10

4. Autili, M., Salle, A.D., Gallo, F., Pompilio, C., Tivoli, M.: CHOReVOLUTION:
service choreography in practice. Sci. Comput. Program. 197 (2020). https://doi.
org/10.1016/j.scico.2020.102498

5. Bartoletti, M., Cimoli, T., Zunino, R.: Compliance in behavioural contracts: a brief
survey. In: Bodei, C., Ferrari, G.-L., Priami, C. (eds.) Programming Languages
with Applications to Biology and Security. LNCS, vol. 9465, pp. 103–121. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25527-9 9

6. Basile, D., et al.: Controller synthesis of service contracts with variability. Sci.
Comput. Program. 187 (2020). https://doi.org/10.1016/j.scico.2019.102344

7. Basile, D., ter Beek, M.H., Gnesi, S.: Modelling and analysis with featured modal
contract automata. In: Proceedings of the 22nd International Systems and Software
Product Line Conference (SPLC 2018), vol. 2, pp. 11–16. ACM (2018). https://
doi.org/10.1145/3236405.3236408

8. Basile, D., ter Beek, M.H., Legay, A.: Strategy synthesis for autonomous driv-
ing in a moving block railway system with Uppaal Stratego. In: Gotsman, A.,
Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 3–21. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-50086-3 1

9. Basile, D., ter Beek, M.H., Pugliese, R.: Synthesis of orchestrations and choreogra-
phies: bridging the gap between supervisory control and coordination of services.
Log. Methods Comput. Sci. 16(2) (2020). https://doi.org/10.23638/LMCS-16(2:
9)2020

10. Basile, D., Degano, P., Ferrari, G.L.: Automata for specifying and orchestrating
service contracts. Log. Methods Comput. Sci. 12(4:6), 1–51 (2016). https://doi.
org/10.2168/LMCS-12(4:6)2016

11. Basile, D., Degano, P., Ferrari, G.L., Tuosto, E.: Relating two automata-based
models of orchestration and choreography. J. Log. Algebr. Meth. Program. 85(3),
425–446 (2016). https://doi.org/10.1016/j.jlamp.2015.09.011

12. Basu, S., Bultan, T.: Automated choreography repair. In: Stevens, P., W ↪asowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 13–30. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49665-7 2

13. ter Beek, M.H., Reniers, M.A., de Vink, E.P.: Supervisory controller synthesis for
product lines using CIF 3. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part
I. LNCS, vol. 9952, pp. 856–873. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47166-2 59

14. ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Web service composition approaches:
from industrial standards to formal methods. In: Proceedings of the 2nd Interna-
tional Conference on Internet and Web Applications and Services (ICIW 2007).
IEEE (2007). https://doi.org/10.1109/ICIW.2007.71

15. Boswell, D., Foucher, T.: The Art of Readable Code. O’Reilly, Sebastopol (2011)
16. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-

mun. ACM 60(4), 64–72 (2017). https://doi.org/10.1145/2983528
17. Caillaud, B., Darondeau, P., Lavagno, L., Xie, X. (eds.): Synthesis and Control of

Discrete Event Systems. Springer, New York (2002). https://doi.org/10.1007/978-
1-4757-6656-1

18. https://github.com/davidebasile/ContractAutomataLib

https://doi.org/10.1007/978-3-319-74183-3_10
https://doi.org/10.1007/978-3-319-74183-3_10
https://doi.org/10.1016/j.scico.2020.102498
https://doi.org/10.1016/j.scico.2020.102498
https://doi.org/10.1007/978-3-319-25527-9_9
https://doi.org/10.1016/j.scico.2019.102344
https://doi.org/10.1145/3236405.3236408
https://doi.org/10.1145/3236405.3236408
https://doi.org/10.1007/978-3-030-50086-3_1
https://doi.org/10.23638/LMCS-16(2:9)2020
https://doi.org/10.23638/LMCS-16(2:9)2020
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.1016/j.jlamp.2015.09.011
https://doi.org/10.1007/978-3-662-49665-7_2
https://doi.org/10.1007/978-3-319-47166-2_59
https://doi.org/10.1007/978-3-319-47166-2_59
https://doi.org/10.1109/ICIW.2007.71
https://doi.org/10.1145/2983528
https://doi.org/10.1007/978-1-4757-6656-1
https://doi.org/10.1007/978-1-4757-6656-1
https://github.com/davidebasile/ContractAutomataLib

A Clean and Efficient Implementation of Choreography Synthesis 237

19. https://github.com/davidebasile/ContractAutomataApp
20. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

Commun. ACM 51(1), 107–113 (2008). https://doi.org/10.1145/1327452.1327492
21. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H., Fantechi, A.: Comparing

formal tools for system design: a judgment study. In: Proceedings of the 42nd
International Conference on Software Engineering (ICSE 2020), pp. 62–74. ACM
(2020). https://doi.org/10.1145/3377811.3380373

22. https://github.com/davidebasile/ContractAutomataLib/blob/old-backup/src/
FMCA/FMCA.java#L1200 . Lines 1200–1378 contain the orchestration synthesis,
lines 1385–1596 the choreography synthesis (the utility methods are not counted)

23. Garavel, H., Beek, M.H., van de Pol, J.: The 2020 expert survey on formal methods.
In: ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 3–69.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2 1

24. Gleirscher, M., Marmsoler, D.: Formal methods in dependable systems engineering:
a survey of professionals from Europe and North America. Empir. Softw. Eng.
25(6), 4473–4546 (2020). https://doi.org/10.1007/s10664-020-09836-5

25. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concur-
rency in Practice. Addison-Wesley, Amsterdam (2006)

26. Goorden, M.A., et al.: The road ahead for supervisor synthesis. In: Pang, J.,
Zhang, L. (eds.) SETTA 2020. LNCS, vol. 12153, pp. 1–16. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-62822-2 1

27. Goorden, M., van de Mortel-Fronczak, J., Reniers, M., Fokkink, W., Rooda, J.: The
impact of requirement splitting on the efficiency of supervisory control synthesis.
In: Larsen, K.G., Willemse, T. (eds.) FMICS 2019. LNCS, vol. 11687, pp. 76–92.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27008-7 5

28. Guanciale, R., Tuosto, E.: PomCho: a tool chain for choreographic design. Sci.
Comput. Program. 202 (2021). https://doi.org/10.1016/j.scico.2020.102535

29. Henderson, K., Salado, A.: Value and benefits of model-based systems engineering
(MBSE): evidence from the literature. Syst. Eng. 24(1), 51–66 (2021). https://doi.
org/10.1002/sys.21566

30. Huisman, M., Gurov, D., Malkis, A.: Formal methods: from academia to industrial
practice. A travel guide. arXiv:2002.07279 [cs.SE], February 2020. https://arxiv.
org/abs/2002.07279

31. Khatchadourian, R., Tang, Y., Bagherzadeh, M.: Safe automated refactoring for
intelligent parallelization of Java 8 streams. Sci. Comput. Program. 195 (2020).
https://doi.org/10.1016/j.scico.2020.102476

32. Khatchadourian, R., Tang, Y., Bagherzadeh, M., Ahmed, S.: Safe automated refac-
toring for intelligent parallelization of Java 8 streams. In: Proceedings of the 41st
International Conference on Software Engineering (ICSE 2019), pp. 619–630. IEEE
(2019). https://doi.org/10.1109/ICSE.2019.00072

33. Khatchadourian, R., Tang, Y., Bagherzadeh, M., Ray, B.: An empirical study on
the use and misuse of Java 8 streams. In: Wehrheim, H., Cabot, J. (eds.) FASE
2020. LNCS, vol. 12076, pp. 97–118. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45234-6 5

34. Komenda, J., Masopust, T., van Schuppen, J.H.: Supervisory control synthesis of
discrete-event systems using a coordination scheme. Automatica 48(2), 247–254
(2012). https://doi.org/10.1016/j.automatica.2011.07.008

https://github.com/davidebasile/ContractAutomataApp
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/3377811.3380373
https://github.com/davidebasile/ContractAutomataLib/blob/old-backup/src/FMCA/FMCA.java#L1200
https://github.com/davidebasile/ContractAutomataLib/blob/old-backup/src/FMCA/FMCA.java#L1200
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/s10664-020-09836-5
https://doi.org/10.1007/978-3-030-62822-2_1
https://doi.org/10.1007/978-3-030-27008-7_5
https://doi.org/10.1016/j.scico.2020.102535
https://doi.org/10.1002/sys.21566
https://doi.org/10.1002/sys.21566
http://arxiv.org/abs/2002.07279
https://arxiv.org/abs/2002.07279
https://arxiv.org/abs/2002.07279
https://doi.org/10.1016/j.scico.2020.102476
https://doi.org/10.1109/ICSE.2019.00072
https://doi.org/10.1007/978-3-030-45234-6_5
https://doi.org/10.1007/978-3-030-45234-6_5
https://doi.org/10.1016/j.automatica.2011.07.008

238 D. Basile and M. H. ter Beek

35. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes – a comprehensive
study on real world concurrency bug characteristics. In: Proceedings of the 13th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2008), pp. 329–339. ACM (2008). https://doi.
org/10.1145/1346281.1346323

36. Martin, R.C.: Clean Code. Prentice Hall, Upper Saddle River (2008)
37. https://jgraph.github.io/mxgraph/java/index.html
38. Najem, T.: A formal semantics for supporting the automated synthesis of

choreography-based architectures. In: Proceedings of the 13th European Con-
ference on Software Architecture (ECSA 2019), vol. 2, pp. 51–54. ACM (2019).
https://doi.org/10.1145/3344948.3344949

39. Ng, N., Yoshida, N.: Static deadlock detection for concurrent go by global session
graph synthesis. In: Proceedings of the 25th International Conference on Com-
piler Construction (CC 2016), pp. 174–184. ACM (2016). https://doi.org/10.1145/
2892208.2892232

40. Peltz, C.: Web services orchestration and choreography. IEEE Comput. 36(10),
46–52 (2003). https://doi.org/10.1109/MC.2003.1236471

41. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control. Optim. 25(1), 206–230 (1987). https://doi.org/10.
1137/0325013

42. Tockey, S.: How to Engineer Software: A Model-Based Approach. Wiley, Hoboken
(2019)

43. Warburton, R.: Java 8 Lambdas: Pragmatic Functional Programming. O’Reilly,
New York (2014)

https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/1346281.1346323
https://jgraph.github.io/mxgraph/java/index.html
https://doi.org/10.1145/3344948.3344949
https://doi.org/10.1145/2892208.2892232
https://doi.org/10.1145/2892208.2892232
https://doi.org/10.1109/MC.2003.1236471
https://doi.org/10.1137/0325013
https://doi.org/10.1137/0325013

A Practical Tool-Chain for the
Development of Coordination Scenarios
Graphical Modeler, DSL, Code Generators and

Automaton-Based Simulator

Eva Maria Kuehn(B)

Faculty of Informatics, Compilers and Languages Group, TU Wien, Vienna, Austria
eva.kuehn@tuwien.ac.at

http://www.complang.tuwien.ac.at/eva/

Abstract. Coordination scenarios have high demands on concurrency
and interaction. However, these are typical sources for flaws in both
design and implementation. A modeling approach enables reasoning
about distributed algorithms and finding deficiencies right from the
beginning. The Peer Model has been introduced as a modeling tool for
distribution, concurrency and blackboard-based collaboration and coor-
dination, relying on known foundations like tuple spaces, Petri Nets and
Actor Model. A runtime system exists that serves Java developers for
prototyping, but still a feasible tool-chain was missing, like for most aca-
demic systems.

This paper presents a practical new tool-chain for the Peer Model con-
sisting of a graphical modelling tool, building on a drawing program that
exports XML. A translator parses the XML and translates it into a newly
developed domain specific language that is the basis for code generation.
One target is a new, formal automaton-based runtime written in the Go
programming language. It allows systematic simulation runs of user mod-
els. The demo shows a peer competition scenario, where several players
play a game, a global state holds the players’ scores, and in addition each
peer maintains a decentralized state. Before taking a move in the game, a
peer asserts its current local state to be the same like the global one. If this
is the case, it carries out its action and distributes the information about
it to all other players for further verification. The scenario captures core
coordination mechanisms found in blockchain systems.

Keywords: Peer Model · tool-chain · coordination modelling ·
coordination simulation

1 Introduction to the Peer Model Tool-Chain

The Peer Model [17,18] is a modelling notation that relies on know concepts
from Petri Nets [5,14,23,24], tuple spaces [11,12] and the Actor model [7]. Dis-
tributed Peers collaborate with each other by asynchronous message sending
(cf. Actor model). The behaviour of a Peer is indeterministic and modelled by
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 239–254, 2021.
https://doi.org/10.1007/978-3-030-78142-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-78142-2_15

240 E. M. Kuehn

means of wirings which relate to transitions in Petri Nets. All wirings of a Peer
run concurrently and synchronize themselves via transactional operations on two
tuple spaces: one is termed PIC (Peer input container) and the other one POC
(Peer output container).

The Peer Model supports domain specific abstractions as higher-level mod-
eling constructs which lead to easy to understand models, like automatic flow
correlation [15,18], abstraction of asynchronous message sending [15,18], timing
constraints for all resources [15], and transactions [16]. The original specification
of the Peer Model can be found in [17].

Targeted application areas are scenarios with high concurrency and decen-
tralized coordination. Some selected application examples are:

Smart Contracts which realize distributed application logic on a blockchain.
They were made popular by Ethereum [1], which introduced a new language
termed “Solidity”. The result must be deterministic, meaning that eventually
all blockchain nodes must achieve a consensus on the result. Also, the execution
must terminate. A smart contract holds an internal state and is triggered by
an external event. It forms an automatized, formalized contract among multiple
parties based on complex conditions.

Complex coordination patterns [15] like distributed, heterogeneous transac-
tions, distributed consensus algorithms, distributed voting, collaboration, load
balancing, load clustering and peer clustering.

Embedded systems especially in the domain of traffic management systems
(train [13], truck, and air), and other autonomous cyber physical systems.

So far, a Java-based runtime system has been developed for the Peer Model
in the context of a diploma thesis [8] and a doctoral thesis [9] which also added
a security model to the Peer Model. This system is open source and can be used
by system developers who are experienced in Java programming. However there
are the following drawbacks: There is no tool support yet for graphical model-
ing, and a formal analysis tool is still missing. The motivation of this work was
therefore to provide a practical tool-chain for the modeling and analysis of com-
plex coordination scenarios with the Peer Model. It consists of the components
highlighted in gray color in Fig. 1.

Fig. 1. Peer Model Tool-Chain.

Peer Model Tool-Chain 241

As front end serves a graphical drawing program1, for which dedicated shapes
were designed for all Peer Model artefacts. An extended language notation is
introduced that supports types for Peer Model artefacts to enable their reuse as
patterns [15,19]. Moreover it provides context properties, a notation for range,
for all and exists expressions, and the specification of configurations. Developers
employ the new shapes to model coordination scenarios.

The resulting XML model is parsed and transformed into an intermediate
format on which a model transformation algorithm (MTA) is applied. The MTA
interprets the newly introduced language concepts and statically resolves them
for the code generators. These form the next step in the tool-chain. The here
considered code generator translates the model into Go code that is understood
by the Peer Model Concurrent State Automate System written in the Go pro-
gramming language, termed the PM-Go-Automaton for short. This is a new for-
mal analysis tool, based on state machines (see Sect. 3). Other code generators
comprise the compilation into the XML-based PM-DSL (Peer Model Domain
Specific Language), and also into LaTeX drawings that can be easily included
into publications. Planned for the future are code generators for the existing
Java runtime system, as well as for the Event-B-based [6] verification system for
the Peer Model, which is currently under development [20].

According to our proposal of a hybrid verification approach [10] also further
target systems will be considered in future work. Basically the hybrid verification
approach suggests to integrate several verification tools in the Peer Model tool-
chain. Each Peer Model is a complete model from which also production code for
the Java runtime can be generated. It does not suppress important information,
which is sometimes the case with abstract models. Therefore, one can formulate
assertions and invariants based on the (respectively extended) Peer Model query
language, as proposed in [21], and map them to the most suitable verification
tool with a focus to verify certain properties of the system. For example, timed
automate [4] will be used to reason about timing properties, for which Event-B
is less suited, and Colored Petri Net tools [3] shall be exploited to verify deadlock
and reachability properties.

2 Peer Model in a Nutshell

This section summarizes the already published concepts of the Peer Model (see
Sect. 2.1) and describes the newly introduced features (see Sect. 2.2).

2.1 Core Concepts

The Peer Model serves for the modelling of coordination logic as concurrent,
timed, distributed flows. Its design was influenced by the tuple space paradigm
to achieve a high decoupling of components, by Petri Nets that inspired the
modelling of concurrency by means of wirings, and by the Actor Model that

1 The open source tool Draw.io [2] was selected, that can export XML.

242 E. M. Kuehn

motivated asynchronously communicating Peers that implement a behaviour.
The main artefacts are: Peer, entry, container, wiring, link and service.

Peer. A peer is a named resource with behaviour. It possesses two tuple
spaces, termed containers, that store tuples, termed entries.

Entry. An entry is a typed message with properties. A property has a name
and a value. Entries consist of user and system properties (e.g., ttl is the time-
to-live, fid is a flow identifier, and type denotes the entry type).

Container. The Peer’s containers are termed peer-in-container (PIC) and
peer-out-container (POC). Containers represent the system state. They support
transactional operations to read, take, create and delete entries.

Wiring. Wirings model the Peer’s behaviour. A wiring specifies a transac-
tion on containers. It consists of links which are either guards or actions, and an
internal container (WIC) to temporarily hold entries retrieved by guard links.

Link. A link issues space operations on containers. The source of a guard is
either the PIC or the POC of the peer, and its target is the WIC; for actions it is
the other way round. Link kinds are named after their operation on the source:
READ and TAKE links select entries from source and write them to target,
whereby the TAKE links also remove the entries from the target. DELETE
links remove entries from the target. CREATE links create new entries and write
them to the target. NOOP links do not access entries. The specification of which
entries are to be selected or created consists of an entry type, an entry count (an
exact number, an interval, or the keyword ALL), and a query on entry properties
and variables. Assignments between entry properties and user variables serve to
either set entry properties or to pass entry properties between links. The scope
of user variables, which start with $ and are written in lower case, is the current
wiring instance. System variables start with $$ and are written in upper case
(e.g. $PID is the identifier of the local Peer, and $FID holds the current flow
identifier). Finally, a link possesses properties; e.g., ttl defines how long a link
shall wait until it can be fulfilled (default=infinite), mandatory defines if the
link is obligatory (default=on), flow says if the flow correlation shall be applied
(default=on), and dest on an action link asynchronously delivers all entries via
an i/o Peer to the Peer denoted by the property value. All links are numbered.

Service. In between guard and action execution, wirings may call a service.
It encapsulates application logic which is considered as “black box” from point
of view of the Peer Model.

The operational semantics is that all wirings of a peer run concurrently. A
wiring executes sequentially in the specified order: guards, the optional service,
and actions. If a mandatory link cannot be fulfilled then the current wiring exe-
cution fails, a rollback takes place and depending on the repeat count property
of the wiring, a next instance of this wiring is started. Further properties of a
wiring are ttl (maximum allowed execution time for this wiring instance) and
tts (time to wait until the next wiring instance may start).

Peer Model Tool-Chain 243

2.2 Newly Introduced Concepts

For more modelling convenience, in this paper, the following new modelling
concepts are introduced. They are implemented by the Translator component of
the tool-chain (see Sect. 3):

Types. Abstract types for entries, wirings, Peers and the Peer Model Meta
Model (PMMM).

User-defined wiring, Peer and PMMM properties. So far, only entries
had user-defined properties. This concept is extended to wirings, Peers and the
PMMM. In type declarations, default property values can be specified.

Configuration. Instantiation of a PMMM, defining the required Peers,
based on Peer types, and properties for all artefacts.

INIT entry. As a convention, a system entry of type INIT is written into
the PIC of each instantiated Peer. This serves to signal a Peer that it has been
started and is useful if it has to carry out initializations.

Reference data type. An array data type, using # as access operator,
provides indirect referencing of user-defined properties.

RANGE, FORALL, and EXISTS. With RANGE it is possible to iterate
within a range over the array type, using an INDEX. FORALL and EXISTS are to
be used in queries; they also use an INDEX that iterates over an interval, and
translate to AND respectively to OR expressions.

3 Implementation of the Toolchain

Design Principles: The leading principles were: A graphical user interface shall
be supported to make the Peer Model more usable. An existing tool shall be
employed for implementing the graphical modeller. The tool-chain shall be prac-
tical and realizable with “one woman’s power” in reasonable time, like the
already developed PM-Go-Automaton. The PM-Go-Automaton should not have
to be changed, i.e. all new concepts (see Sect. 2.2) must be translated to the core
concepts (see Sect. 2.1) that the PM-Go-Automaton can execute. A domain spe-
cific language shall be provided, termed the PM-DSL, represented as XML.

Graphical Modelling Tool: The requirements on the drawing program were that
it is easy to use, provides an open source license, allows the definition of shapes,
and can export the designed user models as readable XML code where dedicated
shapes can be identified. Eventually, draw.io was selected, where shapes can
be tagged to make their recognition in the XML code possible. For each core
and newly introduced Peer Model artefact a shape was designed. However, for
practical reasons, the originally proposed graphical notation [17] of the Peer
Model – where links are arcs connecting PIC and WIC, respectively WIC and
POC, and where link features are specified as labels on these arcs – had to
adapted, because this could not be realized by means of draw.io shapes. Instead,
a link is now represented by a box that specifies the link’s features as a form
to be filled in. This form also denotes the PIC or the POC, and by means of
an unlabelled arc it is connected to the WIC of the wiring to which it belongs.

244 E. M. Kuehn

All elements of the link are grouped and tagged, so they can be identified as
belonging together in the XML.

One draw.io file represents one PMMM type including several configura-
tions of it. It consists of several drawing sheets (tabs), following certain naming
conventions. E.g., the name of a drawing containing a Peer Type must start
with “PeerType:” followed by the type name of the Peer; analogously the pre-
fixes “EntryTypes:”, “WiringTypes:”, “PmmmType:”, and “Config:” were intro-
duced. The layout with many drawing sheets contributes to structure the model.

Translator: The translator is written in Java and consists of three parts, where
parsers respectively code generators can be exchanged by means of the builder
design pattern.

XML Parser. There are two parsers supported so far: One reads the XML
exported by draw.io, and the other one the XML-based PM-DSL and translates
it to an internal data representation.

Model Transformation Algorithm (MTA). The MTA operates on the
internal data representation and consist of several passes: recognition of tokens,
type evaluation, and transformation of the newly introduced modelling concepts.

Code Generator. Finally, code for the target runtime system is generated.
Three code generators have been developed so far: One compiles the model into
Go code for the PM-Go-Automaton, one generates PM-DSL (which in turn can
be parsed by the respective XML Parser), and one produces LaTeX code –
representing the model in the original Peer Model graphical notation – that is
useful for inclusion in publications.

The generated PM-DSL code of the Peer type Player and its GameOver
wiring (see Fig. 6) is shown in Fig. 2 and the Go code (for one Peer instance, and
with comments stripped) in Fig. 3; at “. . .” are the other wirings of this Peer
(type) generated. Note that without the tool-chain, developers would have to
write this Go code manually, but now they can either use the graphical interface
or the PM-DSL to specify their models.

<PeerType name="Player">
<Wiring name="gameOver" service="Watch">
<Guard number="1" container="PIC" op="TAKE" entryType="matchball" count="1">
<Query>EXISTS INDEX.1 IN 1..PMMM.nPlayers -> scores#INDEX.1 >= PMMM.max</Query>

</Guard>
<Action number="1" container="POC" op="TAKE" entryType="matchball" count="1">
<VarPropsSetGet>gameOverFlag=true;</VarPropsSetGet>
<PropsDefinition>dest=PMMM.gameController</PropsDefinition>

</Action>
</Wiring>
...

</PeerType>

Fig. 2. PM-DSL code snippet.

Peer Model Tool-Chain 245

p = NewPeer("player")
w = NewWiring("gameOver")
w.AddServiceWrapper("SID_Watch", NewServiceWrapper(Watch, "Watch"))
w.AddGuard("", PIC, TAKE,

Query{Typ: SEtype("matchball"), Count: IVal(1),
Sel: XValP(XVal(XVal(IArrayLabel(DynArrayRef("scores", IVal(1))), GREATER_EQUAL, IVal(10)),

OR, XVal(IArrayLabel(DynArrayRef("scores", IVal(2))), GREATER_EQUAL, IVal(10))),
OR, XVal(IArrayLabel(DynArrayRef("scores", IVal(3))), GREATER_EQUAL, IVal(10)))},

LProps{},
EProps{},
Vars{})

w.AddSin(TAKE, Query{Typ: SVal("*"), Count: IVal(ALL)}, "SID_Watch", LProps{}, EProps{}, Vars{})
w.AddScall("SID_Watch", LProps{}, EProps{}, Vars{})
w.AddSout(Query{Typ: SVal("*"), Count: IVal(ALL)}, "SID_Watch", LProps{}, EProps{}, Vars{})
w.AddAction("", POC, TAKE,

Query{Typ: SEtype("matchball"), Count: IVal(1)},
LProps{"dest": SUrl("arbiter"), "commit": BVal(true)},
EProps{"gameOverFlag": BVal(true)},
Vars{})

...
p.AddWiring(w)
...
ps.AddPeer(p)

Fig. 3. Go code snippet.

PM-Go-Automaton: The PM-Go-Automaton is written in the Go programming
language (“Golang2” for short). Golang supports convenient mechanisms to pro-
gram concurrency, like go routines, mutexes, channels. This was the reason why
it was chosen to implement the highly concurrent state machines of the PM-Go-
Automaton.

The entire Peer Model specification [17] is mapped to formal state automata,
so there is a separation into a framework that implements the concurrent state
machines, the Peer Model specification and the application model. This way
changes and extensions in either part can be carried out independently. A con-
troller component coordinates the concurrency of the re-entrant machines, which
support leave and enter mechanisms. At least if a machine waits for an event,
e.g. an entry to arrive in a PIC, it gives up its control. The controller selects
the next machine according to a configurable execution mode. E.g. it may take
the machine that waits longest for execution; check specification-defined waiting
conditions; repeatedly perform indeterministic simulation runs; or try out all
possible inter-leavings defined by the possible leave-points up to a configurable
bound. These different modi are helpful in finding bugs in the user model at an
early design stage. At the moment it is possible to model run-time assertions [21]
manually; in future work it is planned to support a declarative notation for asser-
tions and invariants, based on the existing query syntax of the Peer Model.

Implementation Notes: Some implementation facts: Currently, the Translator
consists of 23K LOCs written in Java, and the PM-Go-Automaton (framework
and Peer Model specification) has 24,5K LOCs written in Golang. The generated
Go code for the Peer Competition example has 2,2K LOCs.

2 https://golang.org/.

https://golang.org/

246 E. M. Kuehn

4 Use Case Example

As demonstrator, a game has been invented, where concurrent peers catch and
throw a matchball. Whoever receives the ball next is indeterministic. Every ball
catching/throwing gives a plus point and whoever reaches a defined high score
first is the winner. Every move is broadcasted to all peers in the network who
build up their own view of the network-wide “truth”. The score of each peer is
recorded on the matchball which represents the global state. In addition, each
peer updates its own local statistics, based on the broadcasted game moves. This
local view serves to verify, whether the global state of the matchball is correct.

This example reflects basic mechanisms found in blockchain applications:
Every peer verifies the truth on its own and does the next game move only if
its verification succeeds. For this it uses a runtime assertion [21] the violation of
which causes the system to stop, as no move is possible any more3. Many games
may run concurrently, using different matchballs. The correlation of Players’
actions with the right game is accomplished with the flow concept of the Peer
Model: Entries belonging to the same game are stamped with the same flow
identifier (fid). A wiring transaction treats only entries with compatible flow.

Figures 4, 5, 6 and 7, which are drawn with the new draw.io shapes for the
Peer Model, present the Player Peer. In addition there is an Arbiter Peer (see
Appendix A2, Fig. 8), and an exchangeable Broadcaster Peer (not shown, as it
is not part of the use case). The Arbiter Peer’s responsibilities are to init itself
(see wiring init), to start the game (see wiring startGame), to recognize the
end of the game (see wiring endGame) and then to decide about the winner (see
wiring decision). There is one decision wiring for each player that checks if this
very player is the winner. Note that the fid is needed to correlate the matchball
with the individual statistics of the Players and with the result.

Figure 4 declares entry and types entries that are used by and/or shared
between the Peers: matchball (global game state that is passed around),
createGame (created by the Arbiter Peer who starts the game and creates a
flow id), gameInfo (info about a new game sent by the Arbiter Peer to all Player
Peers), winner (result about who has won the game), actionInfo (sent by each
Player Peer to all other Peers, saying is has taken a game move), statistics
(local view of each Player Peer on the game, i.e. the current scores of all Peers),
and decide (used by the Arbiter Peer for the decision about the winner).

Figure 5 and Fig. 6 specify the Player Peer type. Wirings are either directly
modeled, or configured based on wiring types. As convention, each Peer receives
a system entry termed INIT in its PIC at the beginning. The Player Peer just
removes this entry (see deleteInit wiring) There is a concurrent and competing
doGameAction wiring for each possible next player. This models the indetermin-
ism of who will get the ball next. Specifically mentioned must also be guard 1
of this wiring, where the runtime assertion that verifies local versus global state
is modeled. Note the usage of the flow id (fid) to correlate all components of a
game. The wiring playerInit creates a local entry for the Peer’s statistics. Every

3 E.g., in case of Byzantine errors [22], the assertion might be violated.

Peer Model Tool-Chain 247

Fig. 4. Entry Types.

Fig. 5. Peer Type “Player”.

time a Peer receives an actionInfo entry, it updates its bookkeeping (see wiring
statistics). There is a concurrent statistics wiring for each Player, respon-
sible to update the control counter for this very Player. Finally, the gameOver
checks the matchball, if there exists one Player who has reached a certain high
score, which is configured as property max in the Peer Model Meta Model.

Figure 7 shows the Peer Model Meta Model (PMMM) type. It defines a
default max of 100. It also shows a PMMM configuration for up to 5 Player
Peers and a high score of 5. The property nPlayers holds the actual number of
players and is set to 3. For each Player an array property termed players is set
in the PMMM.4 The Arbiter Peer configuration defines the number of balls and
the player who gets the matchball first.

5 Evaluation

Simulation Runs: For the evaluation, a simulation run of the Peer Competition
use case is shown in Appendix A1. The game was carried out with three players,
three matchballs and a high score of five. Please note that there is no limit
for the amount of players, matchballs and the maximum to be reached that the
simulation is able to cope with. The wiring traces, produced by “Watch” services,
show the Players’ moves, and the final global state of the entire system, which
consists of the PIC and POC containers of all Peers. This way, it is possible to
verify, if the output reflects an allowed result. Due to the indeterminism of map
access to data structures (e.g. like machine controls, container entries etc.) and

4 gameInfo serves only to make game runs more appealing by giving the players real
names.

248 E. M. Kuehn

Fig. 6. Wiring Types for Player.

Peer Model Tool-Chain 249

Fig. 7. PMMM Type (left) and Configuration (right).

the concurrent modelling of the machines in the PM-Go-Automaton, the result
of a simulation run is not deterministic – another simulation run will result in
other winners of the game. In addition, there exists a “model-checking” mode
that systematically tries out all possible interleavings of the machines of the PM-
Go-Automaton. These interleavings are determined by the enter/leave points of
the re-entrant machines.

Variety of Application Possibilities: The Peer Model is a useful and feasible
methodology that – as a proof-of-concept – has been employed to model a vari-
ety of use cases, reaching from embedded systems to enterprise scenarios in
research as well as industrial scenarios. The Peer Model examples published in
our papers so far, were verified with the PM-Go-Automaton, which has proven
to be helpful to detect bugs in the designs. The graphical modeller of the new
tool-chain has been tested already in several scenarios, like a simplified triage
scenario of a hospital, a client/server pattern, some factory 4.0 scenarios, an
armed gate, a producer/consumer pattern, and currently a blockchain use case
is under development.

Graphical Modeller versus PM-DSL or Go Code: Whether developers prefer
a graphical notation over a code-based one, depends on his/her educational
background. In [20] we found out, that there was a slight preference for the
(original) graphical notation of the Peer Model over an Event-B notation, which
addressed rather mathematically oriented developers.

In any case, a graphical notation is a contribution that developers can discuss
their models with their end users (clients). Even if a non-expert, like a client, will
not be able to model a use case by him/herself, he/she can understand graphical
models to a certain degree so that the communication between developer and
end user is eased this way: For sure, this will not be possible with PM-DSL or
Go code or any other notation that requires programming experience.

Usability and Scalability of Designs. The usability and scalability of models
primarily depends on the semantics of the Peer Model modelling constructs
themselves. The objective of its domain specific abstractions was to gain models
without unnecessary, low-level “ballast” (see [18]). This means that models are

250 E. M. Kuehn

compact and therefore it was possible to depict the entire and complete model
of the peer competition use case including its configuration in this paper. E.g.,
the correlation of data belonging to one workflow can be simply achieved by
stamping the related entries with a flow identifier. A wiring will only consider
entries with compatible flows, i.e. belonging to the same workflow. For example,
in the peer competition, many matchballs can be around, each representing a
separate game that does not interfere with the other ones: The Statistics wiring
in Fig. 6 correlates the current action info with the right local book-keeping entry
termed statistics; The DoGameAction wiring in Fig. 6 correlates the matchball
with the local statistics and the next action carried out by the player (by setting
the flow id property on the actionInfo entry in Action 1).

An analysis how good designs with the Peer Model’s (original) graphical nota-
tion scale is given in [18]. Especially when it comes to more dynamic scenarios,
the Peer Model is advantageous. The here introduced types for Peer Model arte-
facts also contribute to the scalability of designs, as well as the fact that the
model is structured into many diagrams in the draw.io file. In the future, also
the pattern-based concept proposed in [19] will be implemented.

With regard to usability, the number of concepts that a developer must
learn play a major role [25]. There are only 14 draw.io shapes that a devel-
oper must comprehend, whereby, however, for convenience the single concept of
a link has been explicitly “flatted” into 6 separate shapes for (PIC/POC/NOOP
× action/guard), which gives 6 shapes instead of 1.

6 Conclusion and Future Work

The contribution of this work is a new tool-chain and an improved modelling
notation for the Peer Model, which is translated by a model transformation
algorithm to code for the simulator. The objective is to support the design of
complex coordination algorithms involving high concurrency and many Peers.
The new tool-chain has been demonstrated by means of an example whose full
specification is given in the paper. Currently we apply the tool-chain for the
verification of smart contracts of blockchain applications, as well as for consensus
protocols on the infrastructure layer.

In future work the methodology shall be extended by invariants, hybrid ver-
ification tools and more sophisticated pattern support. Also planned are the
visualization of the results of simulation runs, and in the long-term of the run-
time behaviour of a Peer Model by showing the states of the containers and how
entries are moved between them.

Peer Model Tool-Chain 251

Appendix

A1: Simulation Run

player#1_playerInit_SID_Watch_SIC____M8: WATCH:
<Id=e90, type=gameInfo, fid=‘‘f1">

player#1_doGameAction#3_SID_Watch_SIC____M16: WATCH:
<Id=e86, type=matchball, fid=‘‘f1", gameOverFlag=false, scores#1=0, scores#2=0, scores#3=0, startTime=46>
<Id=e123, type=statistics, accountant=‘‘player#1", ctrls#1=0, ctrls#2=0, ctrls#3=0, fid=‘‘f1">

player#2_playerInit_SID_Watch_SIC____M22: WATCH:
<Id=e92, type=gameInfo, fid=‘‘f1">

player#3_playerInit_SID_Watch_SIC____M31: WATCH:
<Id=e94, type=gameInfo, fid=‘‘f1">

player#3_doGameAction#3_SID_Watch_SIC____M30: WATCH:
<Id=e126, type=matchball, fid=‘‘f1", gameOverFlag=false, scores#1=1, scores#2=0, scores#3=0, startTime=46>
<Id=e204, type=statistics, accountant=‘‘player#3", ctrls#1=0, ctrls#2=0, ctrls#3=0, fid=‘‘f1">

player#1_playerInit_SID_Watch_SIC____M8: WATCH:
<Id=e158, type=gameInfo, fid=‘‘f2">

player#1_doGameAction#1_SID_Watch_SIC____M11: WATCH:
<Id=e103, type=matchball, fid=‘‘f2", gameOverFlag=false, scores#1=0, scores#2=0, scores#3=0, startTime=58>
<Id=e217, type=statistics, accountant=‘‘player#1", ctrls#1=0, ctrls#2=0, ctrls#3=0, fid=‘‘f2">

player#2_playerInit_SID_Watch_SIC____M22: WATCH:
<Id=e160, type=gameInfo, fid=‘‘f2">

player#3_playerInit_SID_Watch_SIC____M31: WATCH:
<Id=e162, type=gameInfo, fid=‘‘f2">

player#1_playerInit_SID_Watch_SIC____M8: WATCH:
<Id=e175, type=gameInfo, fid=‘‘f3">

player#1_doGameAction#2_SID_Watch_SIC____M12: WATCH:
<Id=e115, type=matchball, fid=‘‘f3", gameOverFlag=false, scores#1=0, scores#2=0, scores#3=0, startTime=73>
<Id=e254, type=statistics, accountant=‘‘player#1", ctrls#1=0, ctrls#2=0, ctrls#3=0, fid=‘‘f3">

player#2_playerInit_SID_Watch_SIC____M22: WATCH:
<Id=e177, type=gameInfo, fid=‘‘f3">

player#3_playerInit_SID_Watch_SIC____M31: WATCH:
<Id=e179, type=gameInfo, fid=‘‘f3">

player#2_doGameAction#2_SID_Watch_SIC____M25: WATCH:
<Id=e257, type=matchball, fid=‘‘f3", gameOverFlag=false, scores#1=1, scores#2=0, scores#3=0, startTime=73>
<Id=e364, type=statistics, accountant=‘‘player#2", ctrls#1=0, ctrls#2=0, ctrls#3=0, fid=‘‘f3">

player#3_doGameAction#3_SID_Watch_SIC____M30: WATCH:
<Id=e207, type=matchball, fid=‘‘f1", gameOverFlag=false, scores#1=1, scores#2=0, scores#3=1, startTime=46>
<Id=e391, type=statistics, accountant=‘‘player#3", ctrls#1=1, ctrls#2=0, ctrls#3=1, fid=‘‘f1">

player#1_doGameAction#2_SID_Watch_SIC____M12: WATCH:
<Id=e220, type=matchball, fid=‘‘f2", gameOverFlag=false, scores#1=1, scores#2=0, scores#3=0, startTime=58>
<Id=e418, type=statistics, accountant=‘‘player#1", ctrls#1=1, ctrls#2=0, ctrls#3=0, fid=‘‘f2">

player#2_doGameAction#2_SID_Watch_SIC____M25: WATCH:
<Id=e367, type=matchball, fid=‘‘f3", gameOverFlag=false, scores#1=1, scores#2=1, scores#3=0, startTime=73>
<Id=e550, type=statistics, accountant=‘‘player#2", ctrls#1=1, ctrls#2=1, ctrls#3=0, fid=‘‘f3">

...
player#3_doGameAction#2_SID_Watch_SIC____M34: WATCH:

<Id=e1934, type=matchball, fid=‘‘f1", gameOverFlag=false, scores#1=4, scores#2=4, scores#3=4, startTime=46>
<Id=e2026, type=statistics, accountant=‘‘player#3", ctrls#1=3, ctrls#2=4, ctrls#3=4, fid=‘‘f1">

player#2_gameOver_SID_Watch_SIC____M18: WATCH:
<Id=e2029, type=matchball, fid=‘‘f1", gameOverFlag=false, scores#1=4, scores#2=4, scores#3=5, startTime=46>

*** SYS INFO ------ SYSTEM TTL 100000 exceeded -- CLOCK=101189
*** SYS INFO ------ Controler EXIT -- CLOCK=101189

-------------------- SPACE at CLOCK=101189 --------------------
arbiter_POC updateEvtTime=2083 = {

<Id=e1540, type=matchball, endTime=1735, fid=‘‘f3", gameOverFlag=true, scores#1=2, scores#2=5, scores#3=2, startTime=73>,
<Id=e1730, type=matchball, endTime=1920, fid=‘‘f2", gameOverFlag=true, scores#1=5, scores#2=3, scores#3=2, startTime=58>,
<Id=e2029, type=matchball, endTime=2080, fid=‘‘f1", gameOverFlag=true, scores#1=4, scores#2=4, scores#3=5, startTime=46>,
<Id=e1825, type=winner, fid=‘‘f3", id=‘‘player#2", who=‘‘!!! the winner is Martina !!!">,
<Id=e1976, type=winner, fid=‘‘f2", id=‘‘player#1", who=‘‘!!! the winner is Geri !!!">,
<Id=e2127, type=winner, fid=‘‘f1", id=‘‘player#3", who=‘‘!!! the winner is EvaMaria !!!">}

player#1_POC updateEvtTime=2029 = {
<Id=e1944, type=statistics, accountant=‘‘player#1", ctrls#1=5, ctrls#2=3, ctrls#3=2, fid=‘‘f2">,
<Id=e1766, type=statistics, accountant=‘‘player#1", ctrls#1=2, ctrls#2=5, ctrls#3=2, fid=‘‘f3">,
<Id=e2089, type=statistics, accountant=‘‘player#1", ctrls#1=4, ctrls#2=4, ctrls#3=5, fid=‘‘f1">}

player#2_POC updateEvtTime=2044 = {
<Id=e1949, type=statistics, accountant=‘‘player#2", ctrls#1=5, ctrls#2=3, ctrls#3=2, fid=‘‘f2">,
<Id=e1771, type=statistics, accountant=‘‘player#2", ctrls#1=2, ctrls#2=5, ctrls#3=2, fid=‘‘f3">,
<Id=e2096, type=statistics, accountant=‘‘player#2", ctrls#1=4, ctrls#2=4, ctrls#3=5, fid=‘‘f1">}

player#3_POC updateEvtTime=2057 = {
<Id=e1958, type=statistics, accountant=‘‘player#3", ctrls#1=5, ctrls#2=3, ctrls#3=2, fid=‘‘f2">,
<Id=e1778, type=statistics, accountant=‘‘player#3", ctrls#1=2, ctrls#2=5, ctrls#3=2, fid=‘‘f3">,
<Id=e2103, type=statistics, accountant=‘‘player#3", ctrls#1=4, ctrls#2=4, ctrls#3=5, fid=‘‘f1">}

252 E. M. Kuehn

A2: Arbiter Peer Type

Fig. 8. Peer Type “Arbiter” (above) and Wiring Types for Arbiter (below).

References

1. Ethereum. https://www.ethereum.org/. Accessed 01 Apr 2019
2. Flowchart marker and online diagram software (draw.io). https://app.diagrams.

net/. Accessed 20 Feb 2020
3. GreatSPN 3, Universita di Torino, http://www.di.unito.it/greatspn/
4. UPPAAL 4.015, Uppsala University Sweden (2019). https://uppaal.org/
5. High-level Petri Nets - Concepts, Definitions and Graphical Notation. Tech. rep.,

Final Draft International Standard ISO IEC 15909, V. 4.7.1 (2000)

https://www.ethereum.org/
https://app.diagrams.net/
https://app.diagrams.net/
http://www.di.unito.it/greatspn/
https://uppaal.org/

Peer Model Tool-Chain 253

6. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

7. Agha, G.A.: ACTORS: A Model Of Concurrent Computation in Distributed Sys-
tems. MIT Press (1990)

8. Cejka, S.: Enabling scalable collaboration by introducing platform-independent
communication for the Peer Model. Master’s thesis, TU Wien (2019)

9. Craß, S.: Secure coordination through fine-grained access control for space-based
computing middleware. Ph.D. thesis, TU Wien (2020)

10. Elaraby, N., Kühn, E., Messinger, A., Radschek, S.T.: Towards a hybrid verification
approach. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol.
11176, pp. 367–386. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
04771-9 27

11. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

12. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM (CACM) 35(2), 96–107 (1992)

13. Group, E.E.U.: Hybrid ertms/etcs level 3: principles. Technical Report, Ref:
16E042, version 1A, Hybrid-ERTMS-ETCS-Level-3 (2017)

14. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. Int. J. Softw. Tool Technol. Trans-
fer (STTT) 9, 213–254 (2007)

15. Kuehn, E.: Reusable coordination components: reliable development of cooperative
information systems. Int. J. Cooperative Inf. Syst. 25(4), 1740001:1–1740001:32
(2016)

16. Kühn, E.: Flexible transactional coordination in the peer model. In: Dastani, M.,
Sirjani, M. (eds.) FSEN 2017. LNCS, vol. 10522, pp. 116–131. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68972-2 8

17. Kuehn, E.: Peer Model: Agile Middleware and Programming Model for the coordi-
nation of parallel and distributed flows. Tech. rep, TU Wien, Institute of Computer
Languages (2012)

18. Kühn, E., Craß, S., Joskowicz, G., Marek, A., Scheller, T.: Peer-based programming
model for coordination patterns. In: De Nicola, R., Julien, C. (eds.) COORDINA-
TION 2013. LNCS, vol. 7890, pp. 121–135. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38493-6 9

19. Kuehn, E., Craß, S., Schermann, G.: Extending a peer-based coordination model
with composable design patterns. In: 23rd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, PDP. IEEE (2015)

20. Kühn, E., Radschek, S.T.: An initial user study comparing the readability of a
graphical coordination model with event-B Notation. In: Cerone, A., Roveri, M.
(eds.) SEFM 2017. LNCS, vol. 10729, pp. 574–590. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-74781-1 38

21. Kuehn, E., Radschek, S.T., Elaraby, N.: Distributed coordination runtime asser-
tions for the Peer Model. In: Di Marzo Serugendo, G., Loreti, M. (eds.) COORDI-
NATION 2018. LNCS, vol. 10852. pp. 200–219, Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-92408-3 9

22. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)

23. Petri, C.A.: Kommunikation mit automaten. Ph.D. thesis, Technische Hochschule
Darmstadt (1962)

https://doi.org/10.1007/978-3-030-04771-9_27
https://doi.org/10.1007/978-3-030-04771-9_27
https://doi.org/10.1007/978-3-319-68972-2_8
https://doi.org/10.1007/978-3-642-38493-6_9
https://doi.org/10.1007/978-3-642-38493-6_9
https://doi.org/10.1007/978-3-319-74781-1_38
https://doi.org/10.1007/978-3-319-74781-1_38
https://doi.org/10.1007/978-3-319-92408-3_9
https://doi.org/10.1007/978-3-319-92408-3_9

254 E. M. Kuehn

24. Ratzer, A.V., et al.: CPN tools for editing, simulating, and analysing coloured petri
nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp.
450–462. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44919-1 28

25. Scheller, T., Kuehn, E.: Automated measurement of API usability: the API con-
cepts framework. Inf. Softw. Technol. 61, 145–162 (2015)

https://doi.org/10.1007/3-540-44919-1_28

Microservices

Microservice Dynamic Architecture-Level
Deployment Orchestration

Lorenzo Bacchiani1(B), Mario Bravetti1,2, Saverio Giallorenzo1,2,
Jacopo Mauro3, Iacopo Talevi1, and Gianluigi Zavattaro1,2

1 Università di Bologna, Bologna, Italy
lorenzo.bacchiani2@unibo.it

2 Focus Team, Inria, Sophia Antipolis, France
3 University of Southern Denmark, Odense, Denmark

Abstract. We develop a novel approach for run-time global adapta-
tion of microservice applications, based on synthesis of architecture-level
reconfiguration orchestrations. More precisely, we devise an algorithm for
automatic reconfiguration that reaches a target system Maximum Com-
putational Load by performing optimal deployment orchestrations. To
conceive and simulate our approach, we introduce a novel integrated timed
architectural modeling/execution language based on an extension of the
actor-based object-oriented Abstract Behavioral Specification (ABS) lan-
guage. In particular, we realize a timed extension of SmartDeployer, whose
ABS code annotations make it possible to express architectural properties.
Our Timed SmartDeployer tool fully integrates time features of ABS and
architectural annotations by generating timed deployment orchestrations.
We evaluate the applicability of our approach on a realistic microservice
application taken from the literature: an Email Pipeline Processing Sys-
tem. We prove its effectiveness by simulating such an application and by
comparing architecture-level reconfiguration with traditional local scaling
techniques (which detect scaling needs and enact replications at the level
of single microservices). Our comparison results show that our approach
avoids cascading slowdowns and consequent increased message loss and
latency, which affect traditional local scaling.

1 Introduction

Inspired by service-oriented computing, microservices structure software appli-
cations as highly modular and scalable compositions of fine-grained and loosely-
coupled services [16,22]. These features support modern software engineering
practices, like continuous delivery/deployment [28] and application autoscal-
ing [7]. A significant problem in these practices consists of the automated deploy-
ment of the microservice application: optimal distribution of the fine-grained
components over the available Virtual Machines (VMs), and dynamic reconfig-
uration to cope, e.g., with positive or negative peaks of user requests.

Although these practices are already beneficial, they can be further improved
by exploiting the interdependencies within an architecture (interface functional
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 257–275, 2021.
https://doi.org/10.1007/978-3-030-78142-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-78142-2_16

258 L. Bacchiani et al.

dependences), instead of focusing on the single microservice. Indeed, w.r.t. tra-
ditional local scaling techniques, architecture-level dynamic deployment orches-
tration can:

– Avoid “domino” effects of unstructured scaling, i.e. single services scaling one
after the other (cascading slowdowns) due to local workload monitoring.

– Quickly restore an acceptable performance in terms of message loss and
latency.

In this paper, we first introduce a novel integrated timed architectural model-
ing/execution language based on an extension of the actor-based object-oriented
Abstract Behavioral Specification (ABS) language [4]. The extension that we
devise crucially exploits the double nature of ABS, which is both a process alge-
bra (it has a probabilistic/timed formal semantics) and a programming language
(it is compiled and executed, e.g. with the Erlang backend). In particular, we
realize a timed extension of SmartDeployer [13,14], whose ABS code annota-
tions make it possible to express: architectural properties of the modeled dis-
tributed system (global architectural invariants and allowed reconfigurations),
of its VMs (their characteristics and the resource they provide) and of its soft-
ware components/services (their resource/functional requirements). Such anno-
tations are read by SmartDeployer that, at compile-time, checks them for satisfi-
ability (accounting for requirements and architectural invariants) and synthesizes
deployment orchestrations that build the system architecture and each of its spec-
ified reconfigurations. SmartDeployer generates optimal deployment and unde-
ployment code by using ABS itself as an orchestration language and by making it
available via methods with conventional names. Such methods can be invoked by
theABS code of services, thus realizing run-time adaptation.Herewe introduce the
Timed SmartDeployer tool that fully realizes the integration between timed ABS
execution language and architectural annotations by generating timed deployment
orchestrations. Such orchestrations also manage time aspects, dynamically setting
VM speeds (based on virtual cpu cores that are actually being used) and overall
startup time for the deployed architectural reconfiguration.

One of our main motivations in having a model encompassing architectural
invariants/reconfigurations is to anticipate at the modeling level deployment
orchestration related issues. This indeed fosters an approach where analysis of
the consequences of deployment decisions are available early on: Timed Smart-
Deployer checks (at compile-time) the synthesizability of deployment orchestra-
tions that, at run-time, will ensure the system to be always capable of adapting
in case of positive/negative peaks of user requests. On the contrary run-time
deployment decisions, if left to loosely-coupled reactive scaling policies, could
lead to a chaotic behavior in the system.

Moreover, in this paper we contribute an algorithm for architecture-level
run-time adaptation that overcomes the shortcomings of the traditional local
scaling approach. We could conceive and simulate it thanks to the above archi-
tectural modeling/execution language. Such an algorithm finds application in
the context of cloud-computing platforms endowed with orchestration engines.
The algorithm reaches, by performing global reconfigurations, a target system

Microservice Dynamic Architecture-Level Deployment Orchestration 259

Maximum Computational Load (MCL), i.e. the maximum supported frequency
for inbound requests. The idea is that, by monitoring at run-time the inbound
workload, our algorithm causes the system to be always in the reachable con-
figuration that better fits such a workload (and that has the minimum number
of deployed microservice instances). In particular, global reconfigurations are
targeted at guaranteeing a given increment (or decrement) of the system MCL.
Moreover, we show how such an overall system MCL can be computed by the
MCL of single service instances. In turn, they are mathematically calculated
based on: the microservice data rate (we use, e.g., real data in [32] for Nginx
servers) and the role it plays in the application architecture (which determines
the mean number and size of its requests for each incoming message). As we will
see, the timed features of deployment orchestrations synthesized by our Timed
SmartDeployer tool are essential to model, in an MCL consistent way, adapta-
tion actions enacted by our algorithm (dynamic speed of VMs and their overall
startup time).

Finally, we evaluate the applicability of our approach on a realistic microser-
vice application: an Email Pipeline Processing System taken from Iron.io [23]. Its
model is built by considering: static aspects of the architecture (annotations) and
ABS code modeling the behavior of services. We simulate system execution using
inbound traffic inspired to two different real datasets in [24,29], representing the
frequency of emails entering the system. In order to show the effectiveness of
our architecture-level adaptation algorithm, we compare it with traditional local
scaling techniques. In particular, we produce two ABS programs: one implement-
ing our algorithm (using 4 Timed SmartDeployer synthesized orchestrations) and
one just dealing with scaling needs at the level of single microservices. Our com-
parison results show that our algorithm actually avoids cascading slowdowns
and consequent increased message loss and latency that affect traditional local
scaling. The obtained code fully exploits the expressive power of ABS, e.g. using
both its timed and probabilistic features.1

Wrapping up the novel contributions of this paper (e.g. compared to our pre-
vious work in [13,14]) are: (i) a novel integrated timed architectural modeling/ex-
ecution language based on a timed extension of SmartDeployer that, differently
from the previous version, exploits timed instructions of ABS to automatically
generate timed deployment orchestrations, (ii) an architecture-level run-time
adaptation algorithm that reaches any target system MCL, (iii) mathematical
calculation of service MCL and MCL-based scaling configurations and (iv) ABS
code implementing system service execution/scaling mechanism for the Email
Pipeline Processing System [23].

The paper is structured as follows. In Sect. 2 we briefly recall the microservice
model, the ABS language and the SmartDeployer tool. Then, in Sect. 3 we
present the Email Processing Pipeline case study, mathematical calculation of
system properties like MCL, and we introduce the novel timed architectural

1 Complexity of our ABS process algebraic models is also witnessed by the fact that
they led us to discover an error in the Erlang backend: it caused interferences in
time evolution between unrelated VMs (it was solved thanks to our code).

260 L. Bacchiani et al.

modeling/execution language based on our Timed SmartDeployer. In Sect. 4, we
present our global scaling algorithm and its mathematical foundations. Finally,
in Sect. 5 we present simulation of our case study, discussing comparison results,
and in Sect. 6 we conclude the paper and discuss related work.

2 Preliminaries

In this section we present the microservice model, as formalized in [13,14], the
ABS language [4] and the SmartDeployer tool [13,14].

2.1 The Microservice Model

The work in [13,14] formalizes component-based software systems (where compo-
nents are deployed on VMs) and the automated deployment problem: synthesis of
deployment orchestrations that reach a given target system configuration. In par-
ticular, the deployment life-cycle of each component type is formalized by means
of a finite-state automaton, whose states denote a deployment stage. Each state
is associated with a set of provided ports (operations exposed by the component
that can be used by other components) and a set of required ports (operations
of other components needed for the component to work in that deployment
stage). More specifically, [13,14] consider the case of microservices: components
whose deployment life cycle consists of just two phases: (i) creation, which entails
mandatorily establishing initial connections, via so-called strongly required ports,
with already available microservices, and (ii) subsequent optional binding/un-
binding, via so-called weakly required ports, with other microservices. The two
phases make it possible to manage circular dependencies among microservices.
These concepts are inspired by Docker Compose [20], a language for defining
multi-container Docker applications, that makes it possible for users to spec-
ify different relationships among microservices using, e.g. the depends on (resp.
external links) modalities that impose (resp. do not impose) a specific startup
order, in the same way as strong (resp. weak) dependencies.

In addition [13,14] consider resource/cost-aware deployments modeling the
memory and computational resources: number of virtual CPU cores (vCores in
Azure), sometimes simply called virtual CPUs as in Amazon EC2 and Kuber-
netes [25]. In particular, both microservice specifications and VM descriptions
are enriched with the amount of resources they, respectively, need and supply.

A microservice deployment orchestration is a program in an orchestration
language that includes primitives for (i) creating/removing a certain microser-
vice together with its strongly required bindings and (ii) adding/removing weak-
required bindings between some created microservices. Given an initial microser-
vice system, a set of available VMs and a new target set of microservices to be
deployed, the optimal deployment problem is the problem of finding the deploy-
ment orchestration that: satisfies core and memory requirements, leads to a new
system configuration including target microservices and optimizes resource usage
in case of multiple solutions.

Microservice Dynamic Architecture-Level Deployment Orchestration 261

Differently from the case of components with arbitrary deployment life-
cycles [18], the optimal deployment problem has been shown to be decidable for
microservices. In particular, [13,14] present a constraint-solving algorithm whose
result is the new system configuration, i.e. the microservices to be deployed,
their distribution over the VMs and the bindings to be established among their
strong/weak require and provide ports.

2.2 Abstract Behavioral Specification Language

Abstract Behavioral Specification [4] is an actor-based object-oriented specifi-
cation language (a process algebra) offering algebraic user-defined data types,
side effect-free functions and immutable data. The ABS toolchain [5] makes it
possible to write ABS process algebraic models by conveniently using a program-
ming language syntax and to execute them by means, e.g., of the ABS Erlang
backend. ABS objects are organized into Concurrent Object Groups (COGs) rep-
resenting software components or services. Objects belonging to different COGs
communicate with each other using asynchronous method calls [12], expressed
as object!method(...) instructions. Asynchronicity is realized by means of the
future mechanism: asynchronous method calls return a future that can be used
to wait for the result using the await statement. Timed ABS is an extension to
the ABS core language that introduces a notion of abstract time. In particular,
evolution of time in ABS is modeled by means of discrete time: during execution
system time is expressed as the number of time units that have passed since
system start. The modeler decides what a time unit represents for a specific
application. Such a feature makes it possible to perform simulations analysing
the time-related behavior of systems. Timed ABS has also probabilistic features
that allow modelers to create uniform distributions, e.g. the average number of
attachments per email in our case study.

To represent VMs (and simulate them, e.g., inside the Erlang backend) ABS
introduces the notion of Deployment Component (DC) as a location where a
COG can be deployed. As VMs, ABS DCs are associated with several kinds of
resources. In particular virtual cpu speed is represented in ABS by the DC speed :
it models the amount of computational resource per time unit a DC can supply
to the hosted COGs. This resource is consumed by ABS instructions that are
marked with the Cost tag, e.g. [Cost: 30] instruction. COG instructions tagged
with a cost consume the hosting DC computational resource still available for
the current time unit (the instruction above consumes 30 from the DC speed
resource): if not enough computational resource is left in the current time unit,
then the instruction terminates its execution in the next one.

Concerning the microservice model, in ABS we represent microservice types
as classes and instances as objects, each executed in an independent COG. More-
over, we represent strong dependencies as mandatory parameters required by
class constructors: such parameters contain the references to the objects cor-
responding to the microservices providing the strongly required ports. Weak
required ports are expressed by means of specific methods that allow an existing
object to receive the references to the objects providing them.

262 L. Bacchiani et al.

2.3 SmartDeployer

SmartDeployer implements the algorithm described at the end of Sect. 2.1 to
perform automated deployment of microservice applications, i.e. synthesis of
deployment orchestrations that reach a given target system configuration. In
particular, it exploits the constraint solver Zephyrus2 [3]. The input to Smart-
Deployer is expressed by means of an ABS source file from which it extracts:

– ABS annotations [SmartDeployCost : JSONstring] to classes representing
microservice types. They describe, in JSON format, the functional depen-
dencies (provided and weak/strong required ports) and the resources (num-
ber of cores, amount of memory) they need.

– A global [SmartDeployCloudProvider : JSONstring] ABS annotation. It
defines, in JSON format, the types of Deployment Components and their
associated resources (e.g. number of cores, amount of memory, speed).

– A global [SmartDeploy : JSONstring] ABS annotation. It describes,
in JSON format, the desired properties of the target configuration, e.g.
microservice types (possibly with multiple instances) we want to be included
in such configuration.

In output it produces the synthesized deployment orchestration: the set of orches-
tration language instructions (expressed as ABS code) that cause the system to
reach a deployment configuration with the desired properties. It also produces
the undeployment orchestration to undo such deployment operations.

3 Timed Architectural Modeling/Execution Language

In this section we introduce our integrated timed architectural modeling/exe-
cution language based on the novel Timed SmartDeployer tool. Our tool fully
realizes the integration between timed ABS execution language and architectural
annotations by generating timed deployment orchestrations. For ease of presen-
tation, we make use of a case study: the Email Pipeline Processing System taken
from Iron.io [23]. With its help we introduce the concept of microservice Multi-
plicative Factor (MF) and Maximum Computational Load (MCL). We show that
in our integrated timed language it is possible to model microservice MCL in a
way that is consistent with timed deployment orchestrations. As we will see in
Sect. 4, this allows us to give a mathematical foundation to the calculation of: the
base system configuration and the target ones used by Timed SmartDeployer to
synthesize scaling orchestrations (global adaptation algorithm). We present the
necessary modeling steps and calculations in a conceptual/mathematical way, so
that they can be applied to any other microservice application.

3.1 Case Study and Timed Characteristics of Microservice Systems

In Fig. 1 (similar to that in [13,14]) we show the Email Pipeline Processing
System of [23]: it is composed of 12 types of microservices, each one having its

Microservice Dynamic Architecture-Level Deployment Orchestration 263

Fig. 1. Microservice Architecture for the Email Processing Pipeline Case Study.

own load balancer. The latter is used to distribute requests over a set of instances
(connected to weakly required ports) that are incremented/decremented at need.

Recall that in our approach we consider virtual CPU cores, both for machines
(providing them) and for microservices (requiring them), see Sect. 2.1. In par-
ticular, in our case study, we assume microservices to be deployed on Amazon
EC2 VMs of type large, xlarge, 2xlarge and 4xlarge. They respectively provide
2, 4, 8 and 16 virtual CPU cores (following the Azure vCore terminology), simply
called vCPUs in Amazon EC2. Notice that we model computational resources
supplied by VMs (and required by microservices) by means of virtual cores with
some specified speed, as commonly done by cloud providers to abstract under-
lying hardware. The cloud provider itself takes care of mapping virtual cores
into physical ones by delegating to the runtime (the VM/OS) the scheduling of
instructions to make maximal use of real processors. Each microservice type is
characterized by a number of required virtual cores. Assigning such a number to
obtain some expected microservice performance (e.g., an expected throughput)
is a problem orthogonal to that investigated in this paper. While in practice
this is usually done as guesswork informed by the experience of the program-
mers/operators (as in our case), techniques like instruction counting [10] and
profiling [11] can help in providing objective estimations of the required cores.

The case study architecture can be divided into four pipelines analyzing
different parts of an email. Messages enter the system through the MessageRe-
ceiver, which forwards them to the MessageParser. This microservice, in turn,
extracts data from the email and routes them to a proper sub-pipeline. Once
each email component is processed, entailing a specific working time, analysis
data is collected by the MessageAnalyzer that produces an analysis report.

Based on system architecture, we observe that each microservice type is also
characterized by: (i) a Maximum Computational Load (MCL), i.e. the maximum
number of requests that a microservice instance of that type can handle within
a second and (ii) a Multiplicative Factor (MF) i.e. the mean number of requests
that a single email entering the system generates for that microservice type.

264 L. Bacchiani et al.

From a timing viewpoint, considering microservice type MCL and MF is
important because it allows us to calculate the minimum number of instances of
that type needed to guarantee a given overall system MCL sys MCL, i.e.2

Ninstances = � sys MCL · MF

MCL
�

As we will see in Sect. 4, this is an important system timed characteristic that
plays a fundamental role in our global adaptation algorithm.

3.2 Microservice MF and MCL Calculation

The MF of a microservice type is determined from the case study architecture,
i.e. from the role played by the microservice and the email part it receives. As
a consequence it is strictly related to the (average) structure of emails entering
the system. In particular we estimate an email to have: (i) A single header. (ii)
A set of links (treated collectively as a single information, received by the Link-
Analyser). (iii) A single text body (received by the TextAnalyser), which is split,
on average, into Nblocks = 2.5 text blocks (individually analysed by Sentiment-
Analyser). (iv) on average Nattachments = 2 attachments (individually sent to the
attachment sub-pipeline starting with the VirusScanner), each having average
size of sizeattachment = 7MB and containing a virus with probability PV = 0.25
(which determines whether a virus scan report is sent to the MessageAnalyser
or, in case of no virus, the attachment is forwarded to the AttachmentManager).

The average numbers above are estimated ones: the MF of microservices can
be easily recomputed in case different numbers are considered. In particular, MFs
are calculated as follows. Since emails have a single header, a set of links that
are sent together and a single text body, the microservices that analyze these
elements, i.e. HeaderAnalyser, LinkAnalyser and TextAnalyser, have MF = 1.
As text blocks and attachments are individually sent, each of them generates a
request to the Sentiment Analyser and the Virus Scanner, therefore they have
MF = Nblocks and MF = Nattachments respectively. The microservices that follow
the VirusScanner in the architecture, i.e. AttachmentManager, ImageAnalyzer,
ImageRecognizer and NSFWDetector have a MF equal to the number of virus-
free attachments, which can be computed as MF = Nattachments · (1 − PV). Finally,
the MF of the MessageAnalyser is the sum of the email parts (1 header, 1 set of
links, 1 text body and Nattachments attachments).

The MCL of a microservice is computed as follows:

MCL = 1/(
sizerequest
data rate

+ pf)

where sizerequest is the average request size of the microservice in MB. Moreover,
data rate is the microservice rate in MB/sec for managing request data. We
determine such a value, based on the number of microservice requested cores,
from Nginx server data in [32] (considering Nginx servers with that number of
2 �x� is the ceil function that takes as input a real number and gives as output the

least integer greater than or equal to x.

Microservice Dynamic Architecture-Level Deployment Orchestration 265

vCPUs). Finally, pf is a penalty factor that expresses an additional amount of
time that a microservice needs to manage its requests: e.g. the ImageRecognizer,
which needs Machine Learning techniques to fulfill its tasks.

We compute microservice sizerequest as follows. For all microservices receiving
attachments, but the MessageAnalyser we have:

sizerequest = Nattach per req · sizeattachment

where Nattach per req = Nattachments for microservices receiving entire emails and
Nattach per req = 1 for the others. For HeaderAnalyser, LinkAnalyser and Text-
Analyser we consider sizerequest to be neglectable, thus (since their pf is also 0)
their MCL is infinite. Concerning MessageAnalyser request size, we compute the
average size of the MF requests that en email entering the system generates
(since we consider only attachments to have a non-negligible size), i.e.

sizerequest MA =
Nattachments · (1 − PV) · sizeattachment

MF
.

3.3 Timed SmartDeployer

Our timed architectural modeling/execution language fully integrates timed ABS
and architectural annotations thanks to the novel Timed SmartDeployer. Such a
tool extends SmartDeployer [13] with synthesis of timed deployment orchestra-
tions: they additionally encompass dynamic management of overall Deployment
Component (DC) startup time and DC speed (computational resources per time
unit, see Sect. 2.2), based on the number of DC virtual cores that are actually
used by some microservice after enacting the synthesized deployment sequence.
As we will show, this allows us to correctly model time (microservice MCL).

The original SmartDeployer implicitly handles time by simply assigning all
properties of DCs, copying them from annotations. The effect of this on timed
ABS was to statically assign a speed and a startup time to each DC. Concerning
speed, this caused microservices, deployed in a DC with unused cores, to unre-
alistically proceed faster: as if they could exploit the computational power of
unused cores. Our solution is to dynamically evaluate, during orchestration, the
number of DC cores that are actually used by deployed services, and to adjust
each DC speed to: speed - speed per core · unused cores. Concerning startup time,
since in synthesized orchestrations DCs are sequentially created, in timed ABS
the overall startup time turned out to be the sum of that of individual DCs.
To have a more realistic modeling of virtual machine provisioning (where VMs
are contemporaneously acquired), our solution is to dynamically set such a time
to the maximum of their startup time. The above was realized by automati-
cally synthesizing orchestrations, whose language additionally includes (w.r.t.
SmartDeployer) two primitives explicitly managing time aspects

– One to decrement the speed of a DC: decrementResources(. . .) in ABS.
– One to set overall the startup time of created DCs: duration(. . .) in ABS.

266 L. Bacchiani et al.

3.4 Modeling Service MCL

We now show how Time SmartDeployer allows us to correctly simulate the ser-
vice MCL we want to model (see Sect. 3.2), independently of the VM (DC) in
which it is deployed. An example is considering, as we do in our case study,
the ABS time unit to be 1/30 s and setting VMs to supply 5 speed per core. In
the ABS code of a service we implement its MCL by using the Cost instruction
tag (see Sect. 2.2). E.g., for the ImageRecognizer, which requires 6 cores to be
deployed, we obtain the MCL of 91 requests per second as follows:
1 class ImageRecognizer () implements ImageRecognizerInterface {
2 Int mcl = 91;
3 String recognizeImage(String image , ImageRecognizer_LoadBalancerInterface balancer){
4 [Cost: 5 * 6 * 30 / mcl] balancer!removeMessage();
5 Int category = random (9);
6 return "Category Recognized: " + toString(category);}}

where the method recognizeImage(...) is executed at each request.
Due to our SmartDeployer timed extension, the amount of VM speed used by

ImageRecognizer is always 5 · 6 (speed per core · cores required), independently of
the VM in which it is deployed: i.e. ImageRecognizer can use up to 5 · 6 compu-
tational resources per time unit. The Cost tag above causes each request to con-
sume speed per core · cores required · 30/MCL computational resources. There-
fore, since MCL/30 is the ImageRecognizer MCL expressed in requests per time
unit, this realizes the desired (deployment independent) service MCL.

4 Global Run-Time Adaptation

In this section, we present our algorithm for global run-time adaptation, which
is totally independent from the case study (and from the ABS language itself).

4.1 Calculation of Scaling Configurations

We consider a base B system configuration, see Table 1, which guarantees a sys-
tem MCL of 60 emails/sec. In the corresponding column of Table 1 we present
the number of instances for each microservice type, calculated according to
the formula in Sect. 3.1. Moreover, we consider four incremental configurations
Δ1, Δ2, Δ3 and Δ4, synthesized via Timed SmartDeployer, each adding a
number of instances to each microservice type, see Table 1. Those incremental
configurations are used as target configurations for deployment/undeployment
orchestration synthesis in order to perform run-time architecture-level recon-
figuration. As shown in Table 2, Δ1, Δ2, Δ3 and Δ4 are used, in turn, to
build (summing up them element-wise as arrays) the incremental configurations
Scale1,Scale2,Scale3 and Scale4 that guarantee an additional system MCL of
+60, +150, +240 and +330 emails/sec, respectively.

The reason for not considering our Scales as monolithic blocks and defining
them as combinations of the Δ incremental configurations is the following. Let us
suppose the system to be, e.g., in a B+Scale1 configuration and the increase in
incoming workload to require the deployment of Scale2 and the undeployment of

Microservice Dynamic Architecture-Level Deployment Orchestration 267

Table 1. Base B (60 emails
sec

) and incremental Δ configurations.

Microservice B Δ1 Δ2 Δ3 Δ4 Microservice B Δ1 Δ2 Δ3 Δ4

Message Receiver 1 +1 +0 +1 +1 Virus Scanner 1 +1 +2 +1 +2

Message Parser 1 +1 +0 +1 +1 Attachment Manager 1 +0 +1 +0 +1

Header Analyser 1 +0 +0 +0 +0 Image Analyser 1 +0 +1 +0 +1

Link Analyser 1 +0 +0 +0 +0 NSFW Detector 1 +1 +2 +1 +2

Text Analyser 1 +0 +0 +0 +0 Image Recognizer 1 +1 +2 +1 +2

Sentiment Analyser 2 +1 +3 +2 +2 Message Analyser 1 +1 +2 +1 +2

Table 2. Incremental Scale configurations.

Scale 1 (+60 emails
sec

) Scale 2 (+150 emails
sec

) Scale 3 (+240 emails
sec

) Scale 4 (+330 emails
sec

)

Δ1 Δ1 + Δ2 Δ1 + Δ2 + Δ3 Δ1 + Δ2 + Δ3 + Δ4

Scale1. If we had not introduced Δ configurations and we had synthesized orches-
trations directly for Scale configurations, we would have needed to perform an
undeployment of Scale1 followed by a deployment of Scale2. With Δ configu-
rations, instead, we can simply additionally deploy Δ2. Moreover, notice that
dealing with such an incoming workload increase by naively deploying another
Scale1 additional configuration, besides the already deployed one, would not
lead the system MCL to be increased of another +60 emails/sec. This is because
the maximum number of email per seconds that can be handled by individ-
ual microservices composing the obtained B+2·Scale1 configuration would be
unbalanced. Such an effect worsens if the system incoming workload keeps slowly
increasing and further additional Scale1 configurations are deployed. Since Scale1
for some microservices (AttachmentManager, ImageAnalyser) does not provide
additional instances, such microservices would eventually become the bottleneck
of the system and the system MCL would no longer increase. Moreover, Δ con-
figurations yield, w.r.t. monolithic Scale ones, a finer granularity that makes
SmartDeployer orchestration synthesis faster.

For each microservice type, the number of additional instances considered in
Tables 1 and 2 for the Scale configurations have been calculated as follows. Given
the additional system MCL to be guaranteed, the number Ndeployed of instances
of that microservice already deployed and its MF and MCL, we have:

Ninstances = � (base MCL + additional MCL) · MF

MCL
− Ndeployed�

In the following section we will present the algorithm for global adapta-
tion. The algorithm is based on the principles described here, i.e. it has the
following invariant property: if N Scale configurations are considered (N = 4
in our case study) and are indexed in increasing order of additional system
MCL they guarantee, the system configuration reached after adapting to the
monitored inbound workload is either B or B + (n · ScaleN) + scale, for some
scale ∈ {Scale1,Scale2, . . . ,ScaleN} and n ≥ 0. The invariant property indeed

268 L. Bacchiani et al.

shows, as we explained above, that the deployment of sequences of the same Scale
configuration is not allowed, except for sequences of ScaleN. This is because, the
biggest configuration ScaleN should be devised, for the system being monitored,
in such a way that the inbound workload rarely yields to additional scaling needs.
Moreover, even if a sequence of ScaleN occurs, the system would be sufficiently
balanced. This is because, differently from smaller Scale configurations, ScaleN
is assumed to add, at least, an instance for each microservice having non-infinite
MCL (as for Scale4 in our case study).

4.2 Scaling Algorithms

For comparison purposes, we realized two algorithms, for local and global adap-
tation. In both of them we use a scaling condition on monitored inbound work-
load involving two constants called K and k. K is used to leave a margin under
the guaranteed MCL, so to make sure that the system can handle the inbound
workload. k is used to prevent fluctuations, i.e. sequences of scale up and down.

The condition for scaling up is (inbound workload + K) − total MCL > k and
the one for scaling down is total MCL − (inbound workload + K) > k. The inter-
pretation of such conditions changes, depending on whether they are used for
the local or global adaptation algorithm. In the case of local adaptation the con-
ditions are applied by monitoring a single microservice type: inbound workload
is the number of requests per second received by the microservice load balancer
and total MCL is the MCL of a microservice instance of that type (calculated as
explained in Sect. 3.2) multiplied by the number of deployed instances. In the
case of global adaptation the conditions are applied by monitoring the whole
system: inbound workload is the number of requests (emails in our case study)
per second entering the system and total MCL is the system MCL.

Concerning global adaptation, we have a single monitor that periodically exe-
cutes (e.g. every 10 s in our case study) the code excerpt below. The code uses
constants numScales, representing the number of Scale configurations (4 in our
case study), and scaleComponents: an array3 of numScales elements (correspond-
ing to Table 2 in our case study) that stores in each position an array representing
a Scale configuration (i.e. specifying, for each microservice, the number of addi-
tional instances to be deployed). Moreover, the code uses the variables sys MCL,
containing the current system MCL (assumed to be initially set to the B con-
figuration MCL, see Table 1 in our case study), and deployedDeltas: an array
of numScales numbers that keeps track of the number of currently deployed Δ
incremental configurations (assumed to be initially empty, i.e. with all 0 val-
ues). Both variables are updated by the code in case of scaling. First of all the
code applies the above described scale up/down conditions. Then it loops, start-
ing from the B configuration in variable config (an array that stores, for each
microservice, the number of instances we currently consider), and selecting Scale
configurations to add to config, until a configuration c is found such that its

3 The ABS instructions nth(a, i) and length(a) retrieve the i-th element and the length
of the a array, respectively.

Microservice Dynamic Architecture-Level Deployment Orchestration 269

system MCL satisfies sys MCL − (inbound workload + K) ≥ 0. The system MCL
of a configuration c is calculated with method mcl, which yields

min1≤i≤length(config) nth(config, i−1) · MCLi/MFi

with MCLi/MFi denoting the MCL/MF of the i-th microservice. More precisely
the algorithm uses an external loop updating variables config and configDeltas
according to the incremental Scale selected by the internal loop: configDeltas
is an array with the same structure of deployedDeltas, which is initially empty
and, every time a Scale configuration is selected, is updated by incrementing the
amount of corresponding Δ configurations (as described in Table 2 in our case
study). The internal loop selects a Scale configuration by looking for the first
one that, added to config, yields a candidate configuration whose system MCL
satisfies the condition above. If such Scale configuration is not found then it just
selects the last (the biggest) Scale configuration (Scale4 in our case study), thus
implementing the invariant presented in Sect. 4.1.
1 if((inbound_workload +kbig)-sys_MCL >k || (sys_MCL -(inbound_workload+kbig)>k){
2 List <Int > configDeltas = this.createEmpty(numScales);
3 List <Int > config = baseConfig;
4 sys_MCL = this.mcl(config);
5 Bool configFound = sys_MCL -(inbound_workload +kbig) >=0;
6 while(! configFound) {
7 List <Int > candidateConfig = baseConfig;
8 Int i = -1;
9 while(i<numScales -1 && !configFound){

10 i=i+1;
11 candidateConfig = this.vectorSum(config ,nth(scaleComponents ,i));
12 sys_MCL = this.mcl(candidateConfig);
13 configFound = sys_MCL -(inbound_workload +kbig) >=0;}
14 config = candidateConfig;
15 configDeltas = this.addDeltas(i,configDeltas);}
16 this.reconfigureSystem(deployedDeltas ,configDeltas);
17 deployedDeltas = configDeltas ;}

Finally, as we show in the method reconfigureSystem below, given the target
Δ configurations configDeltas to be reached and the current deployedDeltas ones,
we perform the difference between them so to find the Δ orchestrations that
have to be (un)deployed.
1 Unit reconfigureSystem(List <Int > deployedDeltas , List <Int > configDeltas) {
2 Int i = 0;
3 while(i<numScales) {
4 Int diff = nth(configDeltas ,i)-nth(deployedDeltas ,i);
5 Rat num = abs(diff);
6 while(num >0) {
7 if (diff >0) {nth(orchestrationDeltas ,i)!deploy ();}
8 else {nth(orchestrationDeltas ,i)!undeploy ();}
9 num = num -1;}

10 i = i+1;}}

We use methods deploy/undeploy of the object in the position i−1 of the array
orchestrationDeltas to execute the orchestration of the i-th Δ configuration. In our
model such an orchestration is the ABS code generated by Timed SmartDeployer
at compile-time: it makes use of ABS primitives duration(. . .) and decremen-
tResources(. . .) to dynamically set, respectively, the overall startup time to the
maximum of those of deployed DCs and the speed of such DCs accounting for
the virtual cores actually being used (by decrementing the DC static speed, see
Sect. 3.3). In this way we are guaranteed that each microservice always preserves
the desired fixed MCL we want to model (see Sect. 3.4). Moreover, we remind
that, besides speed, also constraints related to other resources (memory) are
considered in the SmartDeployer synthesis process.

270 L. Bacchiani et al.

5 Simulation with ABS

In this section we present simulation results obtained with our ABS programs [1]
modeling local and global scaling (via Timed SmartDeployer orchestrations) for
our case study. Such programs encompass, besides static aspects of the case
study architecture (annotations), also the code representing service/adaptation
behavior under an inboud workload: they fully implement what we explained in
Sects. 3 and 4. In particular, we implement by means of monitoring services:
our algorithm for global adaptation (a single system monitor) and the one for
local adaptation (a monitor for each load balancer) by just detecting scaling
needs and enacting replications at the level of single microservices. Monitors are
implemented by dedicated ABS services that run on a separate (simulated) VM.
For these services we do not model the computing resources: we assume that
monitors are part of the deployment infrastructure, which is also responsible for
enacting the scaling strategies (as it happens, e.g., with Kubernetes autoscaling).

To make scaling operations realistic, it is important to explicitly represent
VM overall startup time and, within load balancers, request queues of a fixed size.
This explicit management not only provides a realistic model, but is also crucial
for preventing the system from over-loading. Indeed, without these queues, the
system wouldn’t refuse any message and when the inbound workload grows up,
it would overload the system with no possibility of restoring acceptable perfor-
mances even if scaling actions occur. Moreover, queues allow us to model message
loss and to use it for comparing the behavior of local and global scaling. In our
modeling, we assume microservices not to fail and messages to be eventually
delivered unless the receiver queue is overloaded (in this case they are dropped).

We decided to test our approach using both a real diurnal load pattern
inspired to that in [24], see Fig. 2a, and part of an IMAPS email traffic simi-
lar to that in [29] (accounting for the fact that here email attachments are also
considered), see Fig. 3a. We implemented such inbound workloads by means of
an email generating service. The ABS code is executed with the Erlang backend.

5.1 Simulation Results

We compare the simulation of our approach based on global scaling with the
classical one (based on local scaling) by focusing on the following aspects: (i)
latency comparison, (ii) message loss comparison and (iii) number of microser-
vices comparison.

The first metric to be analyzed, in order to evaluate the performance of our
new scaling approach, is the latency. We consider the latency as the average
time for completely processing an email that enters the system. As shown by
Figs. 2b and 3b (the latter considers monitoring time to be 40 min instead of
10 s), our approach, represented by the red dashed line, is outperforming the
classical one. Considering the different peaks of incoming messages present in
the chosen workloads, it is clear the extent of the improvement introduced by
our new approach: our global adaptation makes the system adapt much faster
than the classic approach. This is caused by the ability of the global adaptation
strategy of detecting in advance the scaling needs of all system microservices.

Microservice Dynamic Architecture-Level Deployment Orchestration 271

(a) Diurnal Load Pattern (b) Latency Comparison

(c) Loss Comparison (d) Number of Microservices

Fig. 2. Comparison results under the real diurnal load pattern.

The above observation is confirmed by analyzing system message loss.
Observing Figs. 2c and 3c, it is possible to see that our approach always stops los-
ing messages earlier than the classic approach. This means that message queues
start to empty and latency can start to decrease.

Finally, comparing the number of deployed microservices helps to have a
deeper understanding of the reasons why the global adaptation performs better.
As shown by Figs. 2d and 3d (where we also label the diagram with the structure
of configurations in the case of global scaling), our approach reaches the target
configuation, needed to handle the maximum inbound workload, faster than the
classical approach. As expected this increments the adaptation responsiveness to
higher workloads. The local adaptation slowness in reaching such a target config-
uration is caused by a scaling chain effect : local monitors periodically check the
workload, thus single services scale one after the other. Hence, w.r.t. global adap-
tation, in which microservices in the target configuration are deployed together,
the number of instances grows slower. For example, considering the attachment
pipeline in Fig. 1, the first microservice to become a bottleneck is the VirusScan-
ner : it starts losing messages, which will never arrive to the AttachmentManager.
Therefore, this component will not perceive the increment in the inbound emails
until the VirusScanner will be replicated, thus causing a scaling chain effect
that delays adaptation. This is the main cause for the large deterioration in per-
formances observed. On the other hand, the local approach requires, in total,
less resources: this is particularly visible in Fig. 2d. Due, however, to optimal
resource allocation of SmartDeployer reconfigurations, this does not necessarily
imply a significant increase in VM costs.

272 L. Bacchiani et al.

(a) IMAPS Email Traffic (b) Latency Comparison

(c) Loss Comparison (d) Number of Microservices

Fig. 3. Comparison results under the IMAPS email traffic.

6 Related Work and Conclusion

We introduced an integrated timed architectural modeling/execution language
that correctly deals with service Maximum Computational Load (MCL). More-
over, we proposed a novel global scaling algorithm that optimally chooses deploy-
ment orchestrations, so to keep the system in a configuration that better fits the
inbound workload (with the minimum number of instances). Finally, we per-
formed a comparison between our global scaling algorithm and a classical local
one by simulating, under two real workloads, a microservice application.

We now discuss related literature by first comparing with our previous work.
In [13,14] initial ideas about applying SmartDeployer generated orchestrations to
the case study of [23] were discussed, but (apart from annotations modeling static
aspects of the architecture) no actual ABS code implementing system service exe-
cution/scaling mechanism was presented. Moreover, [13,14] draft some scaling
configurations just for exemplifying the idea of global adaptation via deployment
orchestrations (without presenting any actual scaling algorithm). Such manually
drafted scaling configurations are completely different from those here presented
in Sect. 4.1, which are precisely calculated (based on service MCL) via a formula
yielding the additional number of instances. As explained in Sect. 4.1, the novel
idea of relying on service MCL (and to its mathematical evaluation, see Sect. 3.2)
makes it possible to effectively use such configurations in the context of a global
scaling algorithm that is guaranteed to reach any target system MCL. Finally,
here we introduce the novel non-monolithic Δ scales and provide the imple-
mentation of the global scaling algorithm. Such algorithm avoids bottlenecks by

Microservice Dynamic Architecture-Level Deployment Orchestration 273

keeping the system balanced (w.r.t. microservice instance number), thanks to
the ability of the novel Timed SmartDeployer of correctly dealing with service
MCL, see Sect. 3.4.

We then consider additional related work on SmartDeployer. While [19] just
exemplifies the execution of deployment orchestrations for a specific system
reconfiguration and [9] additionally deals with selection among different scal-
ing actions based on human suggestions, we devise: a general methodology for
designing a set of deployment orchestrations based on target incremental system
MCLs (hence having a mathematical foundation) and an auto-scaling algorithm
that makes human intervention unneeded. Moreover, w.r.t. [9,19], we correctly
model real aspects such as deployment time and MCL-preserving core-based VM
speed computation (thanks to our Timed SmartDepoyer) and we also test the
effectiveness of our algorithm, by comparing it with classical local adaptation.

Regarding related work on auto-scaling, there are several solutions [6,8,21,25]
supporting the automatic system reconfiguration, by incrementing or decrement-
ing of the number of instances at the service/container level, when some condi-
tions (e.g., CPU average load greater than 80%) are met. Our work shows how
we can go beyond such local horizontal scaling policies (analyzed, e.g., in [15]).

A strand of work sees the predictive capabilities of machine learning applied
to auto-scaling. Below, we cite a few relevant examples, but we point the inter-
ested reader to the survey in [30] for a more comprehensive view on the field. In
[27] a scheduling system is proposed, which is based on deep reinforcement learn-
ing. There, the scheduler interacts with the deployment environment to learn
scheduling strategies without any prior knowledge of both the environment and
the services. Similarly, [26] attacks the problem of defining optimal thresholds
for scaling policies with a reinforcement-learning algorithm that automatically
and dynamically adjusts the thresholds without user configuration. Finally, [2]
proposes an approach that uses a predictive autoscaling model trained on a
dataset generated from simulations of reactive rule-based autoscaling. W.r.t.
work on workload prediction, such as [2], our global adaptation algorithm abil-
ity of detecting in advance service scaling needs is not based on guessing work-
load by means of logged data, but on mathematically calculating service MCL
from system MCL (thanks to service Multiplicative Factor and current number
of instances, see formula in Sect. 3.1). The two approaches are, thus, orthogo-
nal: our approach avoids the negative consequences of the scaling chain effect,
but it just passively waits for the triggering event (significant increment in the
inbound workload). The integration of machine learning techniques with our
approach could further soften the impact of such an event leading to a better
Quality of Service (e.g. latency and message loss).

Concerning future work, besides realizing the above described integration,
we plan to improve system simulation by accounting for failures (e.g., network
partitioning, computing hardware failures) and their impact on the deployed
system. To this aim, we could evaluate the system following the practice of
Chaos Engineering [17], simulating the failures in ABS and making sure that
the available resources are enough to guarantee a given level or robustness and

274 L. Bacchiani et al.

resilience. Moreover, to improve the portability of our approach, we also plan to
base our system modeling using a workflow language/notation that also includes
data flow besides standard control flow, such as BPMN [31]. This will make it
possible to automatically calculate microservice MCL and Multiplicative Factor
according to formulae such as those used in our case study.

References

1. Code repository for the email processing examples. https://github.com/
LBacchiani/ABS-Simulations-Comparison

2. Abdullah, M., Iqbal, W., Mahmood, A., Bukhari, F., Erradi, A.: Predictive
autoscaling of microservices hosted in fog microdata center. IEEE Syst. J. 1–12
(2021)

3. Ábrahám, E., Corzilius, F., Johnsen, E.B., Kremer, G., Mauro, J.: Zephyrus2: on
the fly deployment optimization using SMT and CP technologies. In: Fränzle, M.,
Kapur, D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 229–245. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47677-3 15

4. ABS. ABS documentation. http://docs.abs-models.org/
5. ABS. ABS toolchain. https://abs-models.org/laboratory/
6. Amazon. Amazon cloudwatch. https://aws.amazon.com/cloudwatch/
7. Amazon. AWS auto scaling. https://aws.amazon.com/autoscaling/
8. Apache. Apache mesos. http://mesos.apache.org/
9. Bezirgiannis, N., de Boer, F., de Gouw, S.: Human-in-the-loop simulation of cloud

services. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 143–158. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-67262-5 11

10. Binder, W., Hulaas, J., Camesi, A.: Continuous bytecode instruction counting for
CPU consumption estimation. In: Third International Conference on the Quanti-
tative Evaluation of Systems-(QEST 2006), pp. 19–30. IEEE (2006)

11. Binder, W., Hulaas, J., Moret, P., Villazón, A.: Platform-independent profiling in
a virtual execution environment. Softw. Prac. Experience 39(1), 47–79 (2009)

12. Bravetti, M., Carbone, M., Zavattaro, G.: Undecidability of asynchronous session
subtyping. Inf. Comput. 256, 300–320 (2017)

13. Bravetti, M., Giallorenzo, S., Mauro, J., Talevi, I., Zavattaro, G.: Optimal and
automated deployment for microservices. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 351–368. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-16722-6 21

14. Bravetti, M., Giallorenzo, S., Mauro, J., Talevi, I., Zavattaro, G.: A formal
approach to microservice architecture deployment. Microservices, pp. 183–208.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31646-4 8

15. Bravetti, M., Gilmore, S., Guidi, C., Tribastone, M.: Replicating web services for
scalability. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp.
204–221. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78663-
4 15

16. Bravetti, M., Zavattaro, G.: On the expressive power of process interruption and
compensation. Math. Struc. Comput. Sci. 19(3), 565–599 (2009)

17. Casey Rosenthal, N.J.: Chaos Engineering. O’Reilly Media Inc, 1 edition (2020)

https://github.com/LBacchiani/ABS-Simulations-Comparison
https://github.com/LBacchiani/ABS-Simulations-Comparison
https://doi.org/10.1007/978-3-319-47677-3_15
http://docs.abs-models.org/
https://abs-models.org/laboratory/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/autoscaling/
http://mesos.apache.org/
https://doi.org/10.1007/978-3-319-67262-5_11
https://doi.org/10.1007/978-3-319-67262-5_11
https://doi.org/10.1007/978-3-030-16722-6_21
https://doi.org/10.1007/978-3-030-16722-6_21
https://doi.org/10.1007/978-3-030-31646-4_8
https://doi.org/10.1007/978-3-540-78663-4_15
https://doi.org/10.1007/978-3-540-78663-4_15

Microservice Dynamic Architecture-Level Deployment Orchestration 275

18. Di Cosmo, R., Zacchiroli, S., Zavattaro, G.: Towards a formal component model
for the cloud. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 156–171. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 11

19. de Gouw, S., Mauro, J., Zavattaro, G.: On the modeling of optimal and automatized
cloud application deployment. J. Logical Algebraic Methods Programm. 107, 108–
135 (2019)

20. Docker. Docker compose documentation. https://docs.docker.com/compose/
21. Docker. Docker swarm. https://docs.docker.com/engine/swarm/
22. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. Present and

Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

23. Fromm, K.: Thinking Serverless! How New Approaches Address Modern
Data Processing Needs. https://urlread.acloud.guru/thinking-serverless-how-new-
approaches-address-urlmodern-data-processing-needs-part-1-af6a158a3af1

24. Gan, Y., et al.: An open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2019, pp. 3–18, New York (2019)

25. Hightower, K., Burns, B., Beda, J.: Kubernetes: Up and Running Dive into the
Future of Infrastructure. O’Reilly Media Inc, 1st edition (2017)

26. Horovitz, S., Arian, Y.: Efficient cloud auto-scaling with sla objective using q-
learning. In: 2018 IEEE 6th International Conference on Future Internet of Things
and Cloud (FiCloud), pp. 85–92. IEEE (2018)

27. Huang, J., Xiao, C., Wu, W.: Rlsk: a job scheduler for federated kubernetes clusters
based on reinforcement learning. In: 2020 IEEE International Conference on Cloud
Engineering (IC2E), pp. 116–123. IEEE (2020)

28. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. Addison-Wesley Professional (2010)

29. Karamollahi, M., Williamson, C.: Characterization of IMAPS email traffic. In: 27th
IEEE International Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems, MASCOTS 2019, Rennes, France, October
21–25, pp. 214–220. IEEE Computer Society (2019)

30. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling tech-
niques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–
592 (2014)

31. OMG. Business Process Model and Notation (BPMN), Version 2.0. http://www.
omg.org/spec/BPMN/2.0 (2011)

32. Rawdat, A.: Testing the performance of nginx and nginx plus web
servers (2017). https://www.nginx.com/blog/testing-the-performance-of-nginx-
and-nginx-plus-web-servers/

https://doi.org/10.1007/978-3-642-33826-7_11
https://doi.org/10.1007/978-3-642-33826-7_11
https://docs.docker.com/compose/
https://docs.docker.com/engine/swarm/
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://urlread.acloud.guru/thinking-serverless-how-new-approaches-address-urlmodern-data-processing-needs-part-1-af6a158a3af1
https://urlread.acloud.guru/thinking-serverless-how-new-approaches-address-urlmodern-data-processing-needs-part-1-af6a158a3af1
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/

Jolie and LEMMA: Model-Driven
Engineering and Programming Languages

Meet on Microservices

Saverio Giallorenzo1,2(B) , Fabrizio Montesi3 , Marco Peressotti3 ,
Florian Rademacher4 , and Sabine Sachweh4

1 Universitá di Bologna, Bologna, Italy
saverio.giallorenzo2@unibo.it
2 Inria, Sophia Antipolis, France

3 University of Southern Denmark, Odense, Denmark
{fmontesi,peressotti}@imada.sdu.dk

4 University of Applied Sciences and Arts Dortmund, Dortmund, Germany
{florian.rademacher,sabine.sachweh}@fh-dortmund.de

Abstract. In microservices, Model-Driven Engineering (MDE) has
emerged as a powerful methodology for architectural design. Indepen-
dently, the community of programming languages has investigated new
linguistic abstractions for effective microservice development. Here, we
present the first preliminary study of how the two approaches can cross-
pollinate, taking the LEMMA framework and the Jolie programming
language as respective representatives. We establish a common ground
for comparing the two technologies in terms of metamodels, discuss prac-
tical enhancements that can be derived from the comparison, and present
some directions for future work that arise from our new viewpoint.

1 Introduction

In microservices, applications emerge as compositions of independently-
executable components (microservices, or briefly, services), which communicate
via message passing [12]. Building microservice systems poses a series of chal-
lenges for both design and development, which has motivated two prolific strands
of research.

On the side of design, Model-Driven Engineering (MDE) [17] has become
a prominent methodology for the specification of service architectures [2].
Frameworks such as LEMMA, MicroBuilder, and MDSL offer modelling lan-
guages to design service components that abstract from concrete implementa-
tions [21,32,33].

On the side of development, new linguistic abstractions for programming
languages are emerging as powerful tools to effectively express the configura-
tion and coordination of microservices. Ballerina and Jolie are examples of such

Work partially supported by Independent Research Fund Denmark, grant no. 0135-
00219.
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 276–284, 2021.
https://doi.org/10.1007/978-3-030-78142-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_17&domain=pdf
http://orcid.org/0000-0002-3658-6395
http://orcid.org/0000-0003-4666-901X
http://orcid.org/0000-0002-0243-0480
http://orcid.org/0000-0003-0784-9245
https://doi.org/10.1007/978-3-030-78142-2_17

MDE and Programming Languages Meet on Microservices 277

languages [27,29]. In particular, Jolie incorporates ideas from process calculi to
ease the programming of workflows and it offers “polyglot” constructs to integrate
services written in foreign languages (e.g., Java) [25,27].

So far, results on microservices by the MDE and programming communi-
ties have evolved prolifically, yet separately. This is unfortunate since previous
research showed great potential in combining programming language and MDE
techniques [6,11,13]. In part, we deem this phenomenon due to the few opportu-
nities the two communities have to interact. Case in point, the authors come from
the different two communities and met only recently, at the last two editions of
the International Conference on Microservices (an event organised specifically to
bridge sub-communities of traditional fields that share an interest in microser-
vices). Seminars from both parts evidenced that MDE methodologies and pro-
gramming languages for microservices share a common conceptual foundation
that has never been properly made precise nor leveraged [16,30].

This article is the first step towards bridging conceptually MDE frame-
works and programming languages for microservices. As grounding, we take
LEMMA [31,32] and Jolie [27] as respective representatives of the two
approaches.

The main challenge is that MDE frameworks come with specifications—
like LEMMA’s metamodels [31,32]—distant from those given for programming
languages—some parts of Jolie are described by using process calculi [19,26], and
for others there is a reference implementation [1,24]. To address this, we develop
the first conceptual metamodel of the Jolie language, drawing from our experi-
ence with its formalisations [10,19,26] and reference implementation [1,24].

Having metamodels for both Jolie (from this paper) and LEMMA (from
[31,32]) allows for comparing them. We identify some key shared concepts and
differences. Interestingly, the differences are complementary perspectives on com-
mon concerns, providing fertile ground for future evolutions of both approaches:
we sketch extensions of LEMMA induced by Jolie, and vice versa.

The common footing we establish brings us closer to an ecosystem that coher-
ently combines MDE and programming abstractions to offer a tower of abstrac-
tions [23] that supports a step-by-step refinement process from the abstract
specification of a microservice architecture (MSA) to its implementation.

2 A Structured Comparison of Jolie and LEMMA

The conceptual metamodels of Jolie (new in this article) and LEMMA (a sim-
plification of the metamodel in [32]) are respectively displayed in Fig. 1a and
b, in UML format. As a basis for comparison, we classify their elements in
the three categories commonly found in characterisation and specifications of
(micro)services in [3,14,35]: Application Programming Interfaces (APIs) 1© and
Access Points 2©, which, combined, define the public contract of a microservice,
and the private internal behaviour 3© that a microservice enacts. We proceed by
explaining the metamodels and our comparison following these categories.

278 S. Giallorenzo et al.

2.1 Application Programming Interfaces (APIs)

APIs—originally introduced to provide hardware independence to pro-
grams [8]—specify what functionalities a microservice offers to clients [12].
Besides loosing coupling, APIs contribute to technology agnosticism, especially
when minimising the assumptions made on the technologies used to implement
behaviours.

Domain Modelling Language

Technology
Modelling
Language

Service Modelling Language

Mapping
Modelling
Language

Deployments Behaviours

TypesInterfaces

Module

Service

1

*

*

*

1

1

Basic Type
Native Type

Refinement

1
1

1
1

1

1

Node
1 *

11

Cardinality

1

1

Port

1..*

1 1

*

location: String
protocol: Value

1

1

1

Behaviour
1 1...n Java

Javascript

Jolie

Workflow
Operator

Sequence

Parallel

External
Choice

Guarded
Replication

1

*

Forward

1 *

1

1..*

1

*

InputPort

aggregates: OutputPort
redirects: Redirect

1

*
1

*

Interface

1

1

Courier
Behaviour

Redirect

request: Type

OneWay
Operation

RequestResponse
Operation

request: Type
response: Type

Type

SYNCHRONOUS
ASYNCHRONOUS

«enumeration»
CommType

INFRASTRUCTURE
UTILITY
FUNCTIONAL

«enumeration»
MType

Interface

Operation

RefOP

RefMicroservice

Type

PrimitiveType

Bounded
Context

Complex
Type

Data
Structure

List

Field

DDD
Pattern

Complex
Type

Mapping
Field

Mapping

Microservice
Mapping

Technology
Type

Property Pointcut JoinPointType
Data

Format

Protocol TechnologyAspect

Endpoint
addresses: String[1..*]

1 *

1 *

*1

1..*

1

1 *

1 1

1

1

1..* *

*

*

*

super
0..1

*

0..10..1

*

1

1*

1

0..1

11

*

1..*
1

0..1

*
1 1

1..* 1..*

0..1
*

Parameter
exPattern: ExPattern

commType: CommType

Microservice
type: MType

IN
OUT

«enumeration»
ExPattern

*

OutputPort

1
1

1 1 1

1

2

2

2

3

3

1

1

1

1

1..*

Fig. 1. Core meta-models of Jolie (a) and LEMMA (b).

Jolie conceptualises APIs into Interfaces. An Interface is a collection of Oper-
ations, each having its own name and being either: a OneWay operation, where
the sender delivers its message to the service but does not wait for it to be
processed by the service’s behaviour; or a RequestResponse operation, where
the sender delivers its message and waits for the receiving service’s behaviour
to reply with a response. Operations include types for the data structures that
can be exchanged through them. A Jolie Type is a tree-shaped data type made
of two components: (i) a Basic Type that describes the type of the root of the
tree and (ii) a set of Nodes that define the fields of the data structure. Basic
Types include a Native Type (primitives like boolean, integer, char, string) and
a Refinement that specifies further restrictions on the native type [18]. Nodes
are arrays with specified ranges of lengths (Cardinality). Jolie data types, and
thus interfaces, are technology agnostic: they model Data Transfer Objects that
build on native types generally available in most architectures [9].

LEMMA captures APIs as characterising components of a given Microser-
vice though its Service Modelling Language [32]. Conceptually, a Microservice
is a composition of Interfaces, each clustering one or more Operations. LEMMA
distinguishes three types of microservices. Functional and utility ones realise
domain-specific business logic and reusable generic functionality, respectively.

MDE and Programming Languages Meet on Microservices 279

Infrastructure microservices provide technical capabilities, e.g., for service dis-
covery [4]. In LEMMA, a microservice operation is a collection of Parameters,
each defined by an exchange pattern (either incoming or outgoing), a commu-
nication type (synchronous or asynchronous), and a Type, expressed in the
Domain Modelling language. Types can specify some Domain-Driven Design
(DDD) semantics in the form of DDD patterns, e.g., the Entity pattern [15]
which defines the identifying traits of the Type’s inhabitants, e.g., a Person with
a name and birthdate but uniquely identified by its social security number.

From the above descriptions—also remarked with the colours of the parti-
tions in Fig. 1a and b, tagged with 1©—APIs are captured similarly in Jolie
and LEMMA: they both attribute a paradigm to each operation, either request-
response/synchronous or notification/asynchronous, although Jolie at the level
of operations and LEMMA at the level of parameters. Types in the two models
differ, but, besides LEMMA’s DDD semantics, the differences are mostly tech-
nical. We exploit the vicinity of views on APIs between Jolie and LEMMA to
propose in Sect. 3 an extension of Jolie that captures DDD patterns of LEMMA’s
Types. At the conceptual level, Jolie and LEMMA interpret API design from
different perspectives. Jolie defines APIs as reusable artefacts, separately from
services (a service can then refer to API definitions). In LEMMA, APIs are part
of a service definition. This difference makes for an interesting point for building
a reference metamodel for microservices, as discussed in Sect. 3.

2.2 Access Points

When a microservice implements an API, it must make a technological commit-
ment on where and how its clients can interact with the API. Access points fulfil
this need, complementing the public APIs of a microservice with the specification
and configuration of the technologies used to (i) format data (how data are struc-
tured/marshalled for transmission, e.g., JSON); and (ii) transmit data (where
microservices can contact each other and how data are transported among them,
e.g., an IP address). Access points are the main elements that increase coupling
between microservices, as providers expect clients to include in their technology
stacks the technologies used at providers’ access points.

Jolie integrates the Port concept (cf. Fig. 1a) to support access point defini-
tion and configuration. A Jolie Port determines the location of an access point in
the form of a URI [5] and associates it with a protocol. Furthermore, a Port clus-
ters one or more Jolie Interfaces, which define the operations available at that
access point (and also complete the public contract of the given microservice).

Jolie distinguishes between InputPorts and OutputPorts (cf. Fig. 1a). Input-
Ports expose a public contract to clients while OutputPorts define access points
used in behaviours (cf. Sect. 2.3) to invoke other microservices.

LEMMA provides the Endpoint concept (cf. Fig. 1b) to model locations and
technologies of access points, as part of a microservice API. To cope with tech-
nology heterogeneity in MSA [28], LEMMA treats technology information as a
dedicated concern in microservice modelling. Indeed, it provides two modelling

280 S. Giallorenzo et al.

languages to (i) organise technology information in dedicated technology mod-
els; and (ii) assign this information to service models within dedicated mapping
models. In the context of access points, technology models cluster Protocols and
DataFormats (cf. Fig. 1b) and make them available to mapping models for deter-
mining the technical endpoint characteristics.

Both Jolie and LEMMA support the specification of inbound access points:
Jolie InputPorts and LEMMA Endpoints include the definition of the technolog-
ical choices that define the location and the data formats of access points. How-
ever, Jolie and LEMMA differ in how they describe outbound access points: (i)
Jolie uses OutputPorts to specify, in behaviours, the interaction with the access
points of other microservices. (ii) LEMMA uses the RefMicroservice concept to
specify dependencies among microservices—LEMMA leaves to model processors
how to interpret RefMicroservices, e.g., defining deployment precedence.

2.3 Behaviours

Behaviours specify the internal business logic of a microservice, including when
the microservice accepts requests from clients and when it invokes other microser-
vices. Jolie allows developers to use Java, JavaScript or Jolie Behaviours to
express the behaviour of microservices. Jolie Behaviours are a fragment of
the Jolie Language (herein, Jolie Behavioural Language), where microservice
behaviours are first-class citizens that, starting from the basic service invocation,
one can compose into complex behaviours via high-level workflow operators such
as Sequence, Parallel, and Guarded Replication. The choice of these operators
comes from process calculi and the study of core languages for service-oriented
computing [20,27]. In this sense, the Jolie Behavioural Language is a full-fledged
specification language for microservices behaviour and, borrowing LEMMA’s
conceptual organisation, the Jolie Interpreter as its default technology.

LEMMA does not support (yet) complete specifications of microservice
behaviours. However, one can use LEMMA’s malleable technology modelling
language in this direction, defining a suite of technology aspects for declaring
general behaviours (e.g., that a microservice is guarded by a circuit breaker) and
programming new code generators to produce microservice skeletons.

3 Cross-Fertilisation and Conclusion

The conceptual similarities between Jolie and LEMMA regarding APIs, Access
Points and Behaviours identified in this work open the door to cross-fertilisation.

Behaviours in LEMMA. As discussed in Sect. 2.3, LEMMA does not support
complete and general specifications of microservice behaviours. We propose to
extend LEMMA with hosting of languages for programming behaviours like the
Jolie Behavioural Language. In general, one can envision a suite of such guest
languages that users can select from or extend. The snippet below illustrates a
typical instance of this scenario where a programmer extends a microservice spec-
ification with a behaviour for operation1. To this end, the programmer imports a

MDE and Programming Languages Meet on Microservices 281

behaviour modelling language and a suitable technology for it, in this case, the
Jolie Behavioural Language and the Jolie Interpreter.
import microservices from "example.services" as ExampleServices
import behaviour_language from "jolie.behaviour_language" as jolie
import technology from "jolie.technology" as jolie_interpreter

@behaviour_language(jolie)
@technology(jolie_interpreter)
ExampleServices::org.example.Microservice {

operation1() { /∗ programmed using the given behavioural language ∗/ }
}

This requires a conceptual and technological infrastructure for language inte-
gration in some regards similar to quotation [7,22]: APIs modelled in LEMMA
need to be rendered available to the guest language and aspects of behaviour
interaction and composition need to be made available to LEMMA. This observa-
tion suggests that this integration infrastructure could be founded over the core
concepts and behaviour operators for service-oriented programming of process
calculi that already constitute the foundation of the Jolie Behavioural Language.

DDD Patterns in Jolie. As mentioned in Sect. 2.1, we can augment LEMMA’s
Types with DDD semantics, i.e., constraints imposed by the domain on data
structures. Equipping Jolie with such a feature can increase its expressiveness in
useful ways, which we discuss briefly below. Comment annotations can capture
DDD patterns in Jolie. For example, we can express the Entity pattern (cf.
Sect. 2.1) via the annotation @entity below, which associates the property identity

of the pattern with two sub-nodes of the Person type (SSN and country):
/// @entity { identity = [SSN, country] }
type Person { SSN: string, country: string(length(3)), name: string }

An immediate result is using DDD patterns to improve documentation, by
attaching plain-text explanations of the intended usage of types—in unison with
the additional constraints expressed by refinements (cf. length(3) above). More
advanced integrations can elevate DDD patterns at the level of types, opening
the door to runtime and static utilities. For instance, we can have operations
“governed” by the semantics of patterns, e.g., to verify entity equality through a
unique assertEquals operation that checks equality of the components defined in
the identity annotation of the entity’s type. Similarly, patterns can indicate static
constraints on types, e.g., there cannot be two Persons, identified by SSN and
country, whose names differ. Pattern-aware execution engines can enforce static
constraints at runtime, e.g., keeping track of the (privacy-preserving) “signature”
of each identified entity and its correlated immutable values.

Reference Metamodel . Jolie and LEMMA are in remarkable conceptual proxim-
ity despite their distant origins—namely Programming Languages and MDE.
This close match in their conceptual foundations hints at the existence of a ref-
erence metamodel for MSAs to be uncovered. This reference metamodel should
identify the main concepts of MSA including their basic properties and relation-
ships to each other. Furthermore, it should emerge from the analysis of various

282 S. Giallorenzo et al.

existing, yet fragmented bodies of MSA knowledge ranging from pattern collec-
tions, over best practices and reference solutions for certain challenges in MSA,
to more formal approaches like metamodels for programming and modelling lan-
guages. Recent efforts in the area of software deployment automation [34] reveal
the potential of reference metamodels as they (i) reify and organise knowledge
about a specific subject area; (ii) enable the comparison and reasoning about
alternative approaches to the same issue; and (iii) allow identification of migra-
tion paths and cost estimation for technology choices. We believe that a reference
metamodel for MSAs would be valuable to organise efforts and unify the great
number of ad-hoc solutions for recurring challenges and the heterogeneity of
MSAs.

References

1. Jolie website (2020). https://www.jolie-lang.org
2. Ameller, D., Burgués, X., Collell, O., Costal, D., Franch, X., Papazoglou, M.P.:

Development of service-oriented architectures using model-driven development: a
mapping study. Inf. Softw. Technol. 62, 42–66 (2015)

3. Andrews, T., et al.: Business process execution language for web services (2003)
4. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures

using microservices: an experience report. In: Celesti, A., Leitner, P. (eds.) ESOCC
Workshops 2015. CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-33313-7_15

5. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform Resource Identifier (URI):
Generic syntax. RFC 3986, RFC Editor (2005)

6. Butting, A., Eikermann, R., Kautz, O., Rumpe, B., Wortmann, A.: Modeling lan-
guage variability with reusable language components. In: SPLC 2018, p. 65–75.
Association for Computing Machinery, New York (2018)

7. Cheney, J., Lindley, S., Radanne, G., Wadler, P.: Effective quotation: relating
approaches to language-integrated query. In: PEPM, pp. 15–26. ACM (2014)

8. Cotton, I.W., Greatorex Jr, F.S.: Data structures and techniques for remote com-
puter graphics. In: Proceedings of the December 9–11, 1968, fall joint Computer
Conference, Part I, pp. 533–544 (1968)

9. Daigneau, R.: Service Design Patterns, 1st edn. Addison-Wesley, Boston (2012)
10. Dalla Preda, M., Gabbrielli, M., Guidi, C., Mauro, J., Montesi, F.: Interface-based

service composition with aggregation. In: De Paoli, F., Pimentel, E., Zavattaro,
G. (eds.) ESOCC 2012. LNCS, vol. 7592, pp. 48–63. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33427-6_4

11. Deantoni, J.: Modeling the behavioral semantics of heterogeneous languages and
their coordination. In: 2016 Architecture-Centric Virtual Integration (ACVI), pp.
12–18 (2016)

12. Dragoni, N.: Microservices: yesterday, today, and tomorrow. In: Present and Ulte-
rior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-67425-4_12

13. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In:
LDTA 2012. Association for Computing Machinery, New York (2012)

14. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Pearson
Education, New Delhi (2005)

https://www.jolie-lang.org
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-642-33427-6_4
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12

MDE and Programming Languages Meet on Microservices 283

15. Evans, E.: Domain-Driven Design, 1st edn. Addison-Wesley, Boston (2004)
16. Fernando, A., et al.: Ballerina and Jolie: connecting two frontiers of microservice

programming. In: Microservices 2020 (2020)
17. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Comput-

ing. Wiley, Hoboken (2003)
18. Freeman, T., Pfenning, F.: Refinement types for ML. In: Proceedings of the ACM

SIGPLAN 1991 Conference on Programming Language Design and Implementa-
tion, pp. 268–277 (1991)

19. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: Dynamic error handling in service
oriented applications. Fundam. Informaticae 95(1), 73–102 (2009)

20. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: a calculus
for service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006). https://doi.org/10.
1007/11948148_27

21. Kapferer, S., Zimmermann, O.: Domain-driven service design. In: Dustdar, S. (ed.)
SummerSOC 2020. CCIS, vol. 1310, pp. 189–208. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64846-6_11

22. McCarthy, J.: Recursive functions of symbolic expressions and their computation
by machine, part I. Commun. ACM 3(4), 184–195 (1960)

23. Milner, R.: The tower of informatic models. From semantics to Computer Science
(2009)

24. Montesi, F.: JOLIE: a Service-oriented Programming Language. Master’s thesis,
University of Bologna, Department of Computer Science (2010). http://amslaurea.
cib.unibo.it/1226/

25. Montesi, F.: Process-aware web programming with Jolie. Sci. Comput. Program.
130, 69–96 (2016)

26. Montesi, F., Carbone, M.: Programming services with correlation sets. In: Kappel,
G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp.
125–141. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25535-
9_9

27. Montesi, F., Guidi, C., Zavattaro, G.: Service-Oriented Programming with Jolie,
pp. 81–107. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7518-
7_4

28. Newman, S.: Building Microservices: Designing Fine-Grained Systems, 1st edn.
O’Reilly, Beijing (2015)

29. Oram, A.: Ballerina: A Language for Network-Distributed Applications, 1st edn.
O’Reilly, Boston (2019)

30. Rademacher, F.: A non-intrusive approach to extend microservice modeling lan-
guages with architecture pattern support. In: Microservices 2020 (2020)

31. Rademacher, F., Sachweh, S., Zündorf, A.: Aspect-oriented modeling of technology
heterogeneity in Microservice Architecture. In: 2019 IEEE International Conference
on Software Architecture (ICSA), pp. 21–30. IEEE (2019)

32. Rademacher, F., Sorgalla, J., Wizenty, P., Sachweh, S., Zündorf, A.: Graphical
and textual model-driven microservice development. In: Microservices, pp. 147–
179. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31646-4_7

33. Terzić, B., Dimitrieski, V., Kordić, S., Milosavljević, G., Luković, I.: Development
and evaluation of microBuilder: a model-driven tool for the specification of REST
microservice software architectures. Enterpr. Inf. Syst. 12(8–9), 1034–1057 (2018)

https://doi.org/10.1007/11948148_27
https://doi.org/10.1007/11948148_27
https://doi.org/10.1007/978-3-030-64846-6_11
https://doi.org/10.1007/978-3-030-64846-6_11
http://amslaurea.cib.unibo.it/1226/
http://amslaurea.cib.unibo.it/1226/
https://doi.org/10.1007/978-3-642-25535-9_9
https://doi.org/10.1007/978-3-642-25535-9_9
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1007/978-3-030-31646-4_7

284 S. Giallorenzo et al.

34. Wurster, M., et al.: The essential deployment metamodel: a systematic review of
deployment automation technologies. SICS Softw. Intens. Cyber-Phys. Syst. 63–75
(2019). https://doi.org/10.1007/s00450-019-00412-x

35. Zimmermann, O.: Microservices tenets. Comput. Sci. Res. Dev. 32(3), 301–310
(2017)

https://doi.org/10.1007/s00450-019-00412-x

SCAFI-WEB: A Web-Based Application for
Field-Based Coordination Programming

Gianluca Aguzzi(B), Roberto Casadei , Niccolò Maltoni, Danilo Pianini ,
and Mirko Viroli

Alma Mater Studiorum–Università di Bologna, Cesena, Italy
{gianluca.aguzzi,roby.casadei,niccolo.maltoni,

danilo.pianini,mirko.viroli}@unibo.it

Abstract. Field-based coordination is a model for expressing the coor-
dination logic of large-scale adaptive systems, composing functional
blocks from a global perspective. As for any coordination model, a proper
toolchain must be developed to support its adoption across all develop-
ment phases. Under this point of view, the ScaFi toolkit provides a
coordination language (field calculus) as a DSL internal in the Scala

language, a library of reusable building blocks, and an infrastructure
for simulation of distributed deployments. In this work, we enrich such
a toolchain by introducing ScaFi-Web, a web-based application allow-
ing in-browser editing, execution, and visualisation of ScaFi programs.
ScaFi-Web facilitates access to the ScaFi coordination technology by
flattening the learning curve and simplifying configuration and require-
ments, thus promoting agile prototyping of field-based coordination spec-
ifications. In turn, this opens the door to easier demonstrations and
experimentation, and also constitutes a stepping stone towards moni-
toring and control of simulated/deployed systems.

Keywords: Field-based coordination · Aggregate Programming ·
Online Playground

1 Introduction

Emerging trends such as the Internet of Things (IoT) and Cyber-Physical Sys-
tems (CPS) foster a vision of large-scale coordinated systems of situated devices
that operate in a dynamic environment and seamlessly collaborate to reach
global goals. When designing such systems, one key engineering challenge is
mapping the intended global and adaptive behaviour that the system should
exhibit to the local behaviour and interaction of its components. To tackle
this issue, research often looked at nature for inspiration: (bio)chemistry [34],
ecosystems [36], ethology [30], and fields in physics [24,25]. Accordingly, sev-
eral approaches in the literature proposed the idea of programming coordina-
tion and adaptation through reusable abstractions [13,20] and interaction struc-
tures [1,22,23]. Recently, aggregate computing [8] has emerged as a paradigm,
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 285–299, 2021.
https://doi.org/10.1007/978-3-030-78142-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_18&domain=pdf
http://orcid.org/0000-0001-9149-949X
http://orcid.org/0000-0002-8392-5409
http://orcid.org/0000-0003-2702-5702
https://doi.org/10.1007/978-3-030-78142-2_18

286 G. Aguzzi et al.

stemming from field-based coordination [33], fostering a top-down and global-
to-local approach to the specification of the collective adaptive behaviour of a
system. The idea is to exploit the (computational) field abstraction – a “col-
lective” data structure mapping any device of the system to a corresponding
value – to program the system as a whole; namely, the program expressing
the behaviour of the collective takes the form of a composition of functions
from input fields (e.g., sensor fields) to output fields (e.g., value and actua-
tion fields) [5]. Aggregate programming is supported by several various domain-
specific languages (DSL), including Proto [7], a Scheme-based DSL; Protelis [28],
a Java-interoperable stand-alone DSL; FCPP [2], a lightweight native implemen-
tation; and ScaFi [18], a modern Scala-based DSL.

Language-based approaches often enjoy solid formal foundations and demon-
strable properties [33], but in turn require the user a potentially steep learning
curve which includes learning a paradigm, a language, and a development toolset.
In the case of languages for distributed systems, a further element of complexity
exists: programs should be executed on a network of devices. Due to the costs
and impracticality of real deployments, a typical approach for studying, testing,
and developing applications with distributed programming languages consists in
using simulators. However, this introduces further practical issues to the setup
of a development environment; such accidental complexity could hinder accessi-
bility.

Along the line of pioneering platforms such as Web Proto [31], this paper
presents ScaFi-Web, an online playground for the ScaFi aggregate program-
ming DSL, featuring an intuitive web-based graphical user interface (GUI), an
integrated simulation environment with zero-configuration overhead from the
user, and a guided tour of the key language features. The paper continues as fol-
lows: Sect. 2 discusses motivation and related work; Sect. 3 provides background
on ScaFi and field calculus; Sect. 4 covers the ScaFi-Web platform (the tool
at the core of this contribution) and its use cases; finally, Sect. 5 presents the
conclusions and points out directions for future work.

2 Motivation and Related Work

Learning a new language may not be trivial, especially when it involves learning
new paradigms and/or new development tools. The literature on learning com-
putational concepts suggests that two key elements for effectively introducing
novel programming concepts are simplicity and visibility [12], intended, respec-
tively, as the number of interacting parts that should be understood to realise
how the system works, and as the possibility to isolate and inspect such parts.
Also, in [11] four critical dimensions are identified:

1. orientation, namely finding out what a programming language is for and
which class of problems it applies well to;

2. understanding of the notional machine, namely understanding how changes
in the program affect results;

ScaFi-Web 287

3. notation, namely getting acquainted with the syntax and the underlying
semantics; and finally

4. pragmatics, including all skills related to assemble and use an environment
supporting development, testing, and debugging.

To tackle the problem, it is common practice to provide graphical tools that
enable the user to kickstart a project. Typically, however, these tools have pre-
requisites (runtimes, editors, integrated development environments, plugins, cus-
tom software modules) that require an investment of time and effort to begin the
learning process. This initial investment, usually easily tolerated by the experi-
enced practitioner or the committed learner, could be costly enough to discour-
age occasional users from experimenting with a novel tool or language. For this
reason, all major modern general-purpose languages have adopted the strategy
of providing web-based programming playgrounds with the sole prerequisite of
a modern web browser, using no third-party tool at all. A purely browser-based
tool has several advantages over a classic application:

– portability – experimentation can happen from any device equipped with
a modern browser, thus including devices usually not supported by classic
development stacks (gaming consoles, smart TVs, set-top boxes, and the like),
as well as niche operating systems;

– future-proofness – any future software environment with a standard-compliant
web browser will be able to run the application;

– zero-permission – the absence of any part to be locally installed implies that
the experimentation can happen entirely in userspace, while very often a
correct local installation of a runtime environment should be performed by a
system administrator;

– zero-time experimentation – executing a simple experiment is as easy as open-
ing a browser tab and typing the program, as opposed to manually using
compilers or starting a stand-alone application.

Well-designed web playgrounds hide many of the issues related to the pragmatics
of learning a language, postponing them and hence allowing developers to focus
on other dimensions first. Also, by presenting a carefully designed learning path
of increasingly complex exercises and examples, these platforms increase simplic-
ity and favour the understanding of the notional machine, ultimately promoting
self-orientation as well. Examples of web playgrounds for modern programming
languages include Kotlin Koans1, ScalaFiddle2, and Rust Playground3.

Web Proto [31] pioneered the approach for languages dedicated to distributed
systems by providing:

– an online editor,
– an interpreter for the Proto [7] language for spatial computing based on

emscripten4,
1 https://play.kotlinlang.org/koans.
2 https://scalafiddle.io/.
3 https://play.rust-lang.org/.
4 https://emscripten.org/.

https://play.kotlinlang.org/koans
https://scalafiddle.io/
https://play.rust-lang.org/
https://emscripten.org/

288 G. Aguzzi et al.

– an in-browser simulated environment, and
– the possibility to share code between different users.

Unfortunately though, Proto is no longer maintained (as it has been replaced
by Protelis [28]5, which has no web environment at the time of writing); and
Web Proto, to the best of our knowledge, is no longer reachable, and there is no
plan to deploy it again. The approach proposed in Web Proto inspired the tool at
the centre of this paper: ScaFi-Web, which directly supports modern aggregate
programming tools like ScaFi (see Sect. 3), provides a cleaner and clever web-
based technical solution (see Sect. 4), and has well-defined pedagogical use cases
(see Sect. 4.2). Unlike Web Proto, which is a JavaScript re-implementation
of Proto, this project fully reuses the mainline ScaFi code through transpila-
tion into a browser-compatible target, considerably reducing maintenance and
enabling feature parity with the classic version. Indeed, the DSL and the sim-
ulator provided by ScaFi have been successfully brought into the JavaScript

world leveraging Scala.js, with no special changes or disruptive adaptations
of the original code. Furthermore, while Web Proto was designed to support
only one language, several ScaFi-Web components (primarily, the visualisa-
tion section) are agnostic to the aggregate language of choice, in the spirit of
supporting different languages and platforms (distributed or simulated) in the
future.

3 The ScaFi Aggregate Programming Toolchain

ScaFi
6 (Scala Field) is a modular Scala-based toolchain for aggregate com-

puting. It provides (i) a DSL implementation of the field calculus [18,33] designed
to simplify embedding in common general-purpose languages; (ii) a library of
reusable aggregate behaviour functions; (iii) simulation support for logical net-
worked systems driven by ScaFi programs (aggregate systems), through an
internal engine or a plug-in for the Alchemist simulator [27,35]; and (iv) an
actor-based platform [17] to deploy aggregate systems in real-world clusters.
ScaFi has been used as a framework for experimenting with new field calcu-
lus constructs [19] and for building decentralised algorithms and applications
in large-scale computing scenarios ranging from trust-based collaborative sys-
tems [15] to resource coordination in IoT and edge computing [16]. In a typical
aggregate application development workflow, a developer iteratively constructs
a ScaFi program, performs a set of simulations and tests to evaluate how the
system performs in a range of target environments, iterates until sufficient con-
fidence on correctness is achieved, and finally deploys the program to a set of
nodes running an aggregate computing middleware (such as the ScaFi actor-
based platform), when further maintenance, monitoring, and control is generally
required. ScaFi, with respect to other aggregate programming languages, bene-
fits from being an internal DSL, enabling reuse of the toolchain available for its
host language (Scala).
5 https://bit.ly/3uRZYgp.
6 https://scafi.github.io.

https://bit.ly/3uRZYgp
https://scafi.github.io

ScaFi-Web 289

3.1 Field Calculus and the ScaFi DSL

Field Calculus. The field calculus [5] is a core language that captures the essen-
tial aspects for programming self-organising systems. In this language, programs
– also called field programs or aggregate programs – consist of expressions that
conceptually manipulate distributed state. The distributed state is modelled by
the computational field abstraction, which is essentially a map from any device
of a system domain to computational values. For instance, globally querying a
“temperature sensor” in a sensor network would yield a field of temperatures,
which maps each device with the corresponding temperature that it read. The
field calculus is based on a minimal set of operators such as the following.

– Stateful field evolution: expression rep(e1){(x) => e2} describes a field
evolving in time. e1 imposes the initial field value, and function (x) => e2
declares how the field changes at each execution.

– Neighbour interaction: expression nbr{e} builds a neighbouring field, a view
of the field values in the surroundings of each device where neighbours are
mapped to their evaluations of e.

– Domain partitioning : expression if(e0){e1}{e2} splits the computational
field into two non-communicating zones hosting isolated subcomputations:
e1 where e0 is true, and e2 where e0 is false.

System Model and Execution Model. The logical structure of an aggregate
system merely consists of a network of nodes connected through a neighbouring
relationship. The network semantics of the field calculus [5] defines what local
execution protocol any device belonging to the aggregate system should follow
so that an aggregate program leads to the designed collective behaviour. The
basic idea is that any device should “continuously” sense, coordinate, and act
over its local context. Therefore, every device performs asynchronous rounds of
execution, where each round consists of the following steps:

1. context gathering—the device retrieves sensor data, messages from neigh-
bours, and its previous state;

2. computation—the device evaluates the aggregate program, which yields an
output as well as a coordination message – called an export – meant to be
shared with neighbours;

3. context action—the device runs actuations and broadcasts the export to its
neighbours.

Following this protocol, a collective execution of a field program can lead to
self-organising behaviour, in a powerful, emergent way—cf. the channel example
in Sect. 3.2.

The ScaFi Aggregate Programming Language. The ScaFi DSL imple-
ments a field calculus variant, called FScaFi [18], in which nbr does not directly
yield a computational field but rather must be evaluated while folding over neigh-
bourhoods (through a function foldhood, described next). The core language
constructs are captured in Scala through the following trait:

290 G. Aguzzi et al.

trait Constructs {
def nbr[A](expr: => A): A
def rep[A](init: =>A)(fun: (A) => A): A
def foldhood[A](init: => A)(aggr: (A, A) => A)(expr: => A): A
// Contextual, but foundational
def mid(): ID
def sense[A](name: LSNS): A
def nbrvar[A](name: NSNS): A

}

In particular, mid is a built-in sensor that provides the identifier (ID) of the
running node, whereas sense and nbrvar are two operators included for inter-
acting with the environment. The former abstracts a local sensor queries (e.g.,
the value of a temperature sensor), and the latter instead produces a field of local
sensor readings that are relative to neighbours. A typical example of nbrvar is
nbrRange, an “environmental sensor” that creates a field of distances mapping
every neighbour with its relative distance from the running node. Moreover, the
field calculus if expression became branch in Scala, because if is a reserved
keyword. Now, we provide a brief tutorial on ScaFi. As a very trivial example,
a local value such as

true

can be used to represent a uniform and constant field in the system (indeed, any
node evaluates such expression to true). Using rep, we can evolve state, e.g., to
implement a local round counter:

rep(0){ _ + 1 } // _ + 1 is a Scala shorthand for function x => x + 1

This code snippet describes a field that starts from 0 and then evolves by increas-
ing by one. To pass from purely local to global computations, we need devices
to interact. This is possible by combining the nbr and foldhood operators:

foldhood(mid()) { Math.min } { nbr(mid()) }

The foldhood operator accepts three arguments: (i) an initial value (ii) an
accumulator, i.e. a strategy used to combine a neighbour’s value to the partial
accumulation, and (iii) an expression to be evaluated against any neighbour.
In this example, we gather the neighbours’ IDs, folding over them to take the
minimum ID in the neighbourhood. We can combine rep and foldhood to build
fields progressively constructed and refined by coordination of all the nodes. For
instance, expression

rep(mid()){ minId => foldhood(minId) { Math.min } { nbr(mid()) } }

represents a gossip process that will produce a field eventually tending to the
minimum ID of the whole system.

The key idea of aggregate computing is to find recurrent patterns and then
use the functional abstraction to create reusable building blocks [32]. One of

ScaFi-Web 291

these is G, which generalises gradient computations [4] to allow propagation of
information form a node outwards:

G[F](source: Boolean, field: F, accumulator: F => F, metric: Metric)

G diffuses information by accumulating field data while ascending a poten-
tial field centred where source is true. Graphically, Fig. 1 shows the operator
behaviour. On top of G, we can build other significant functions as distanceTo
(i.e., a self-healing version of the Bellman-Ford algorithm [26]),

def distanceTo(source: Boolean, metric: Metric = nbrRange): Double = {
val field = if(source){ 0.0 } { Double.PositiveInfinity }
G(source, field, _ + metric(), metric)

}

and distanceBeetwen (i.e. the network-propagated self-healing minimum dis-
tance between source and target nodes):

def distanceBetween(source: Boolean,target: Boolean,
metric: Metric = nbrRange

): Double =
G(source, distanceTo(target, metric), v => v, metric = metric)

Finally, using only this subset of operators, it is possible to build non-trivial
examples, such as the self-healing channel explained below.

Fig. 1. Evolution in time of G. Red color marks the source node. The links express a
neighbour relation between nodes. The time flows from the left to the right. Initially, the
source node computes its value as f (initial value). The potential field will be created
following the metric passed. Step by step, f will be shared through the accumulator
function.

3.2 The Channel Example

A paradigmatic example of aggregate computing is the channel, an algorithm
yielding a self-healing Boolean field that is (eventually) true along the minimal
hop-by-hop path from a source to a target device (as identified also by Boolean

292 G. Aguzzi et al.

Fig. 2. ScaFi-Web (https://scafi.github.io/web) running the channel example.

fields). Self-healing field means that the channel structure recovers itself after
failures, without human interaction. This can be used e.g. for navigating people
or streaming information towards target locations. An implementation leverages
distance estimations (based on gradients [4]) and the triangular inequality:

distanceTo(source) + distanceTo(target) <= distanceBetween(source,target)

Changes to the inputs (source and target fields, topology, neighbours’ mes-
sages with distance estimates) affect local outputs, which then affect neighbours’,
and ultimately the global response of the system—effectively steering the emer-
gent, self-organising (i.e. global patterns emerge from local node’s interactions)
behaviour of the aggregate. More details on this example can be found in [6].
Figure 2 shows a snapshot of a channel simulation in ScaFi-Web.

3.3 ScaFi Programming in Practice

Programming in ScaFi requires building a model of the system, writing a field-
based program assuming that model, and finally deploying and running the cor-
responding application. However, setting up a (simulated) system requires famil-
iarity with a set of tools and notions, including: build automation and depen-
dency management tools (such as SBT or Gradle) to import ScaFi modules as
dependencies, integrated-development environments (such as IntelliJ Idea) for
editing programs, library and framework APIs for configuring and integrating
several components. In particular, some boilerplate code or configuration files
may be needed: the program expressing the system behaviour, the structure of
the simulated system, the dynamics of the simulated system (cf. scheduling, fail-
ure injection, interaction) and the environment, simulation parameters (e.g., for

https://scafi.github.io/web

ScaFi-Web 293

reproducibility and control of scenarios), as well as inspection and visualisation
aspects (e.g., of the graphical evolution of the system and the data produced by
its components).

Therefore, any support reducing the gap from the aggregate specification
to a graphical representation of a running system can be useful to promote
accessibility, learning, and experimentation—hence motivating ScaFi-Web.

4 ScaFi-Web

ScaFi-Web
7 is an online playground for learning the ScaFi toolkit, experi-

menting with it, and monitoring executions in a browser. It features:

– an interactive editor for writing ScaFi programs;
– a guided tour of the most prominent features, kickstarting development;
– a set of increasingly complex examples;
– an in-browser simulated network of devices hosting the execution;
– visualisation, inspection, and interaction tools integrated with the simulated

environment.

Besides flattening the learning curve of a novel paradigm and allowing first-
hand experimentation with zero configuration, ScaFi-Web also provides a step-
ping stone towards a monitoring and control system for aggregate computing
deployments. In the following sections, we explain the architecture in detail, moti-
vating design choices and exposing some relevant use cases and opportunities.

4.1 Architecture Details

javascript interpreter

scala.js

aggregate programhtml rendering

scafi core scafi simulator scafi web

in-browser executor
transcompilation service /compile

/getCodescala.js compiler + linker

Fig. 3. Architecture of ScaFi-Web, with the involved technologies.

ScaFi-Web finds its novelty in the capability of running the whole aggre-
gate program inside the runtime of the browser. Most modern browsers can exe-
cute a limited number of code targets, mostly JavaScript and WebAssembly
7 https://scafi.github.io/web.

https://scafi.github.io/web

294 G. Aguzzi et al.

(WASM) [29]. Scala, the language hosting the ScaFi DSL, primarily targets
the Java Virtual Machine (JVM), whose execution on browser platform was
deprecated8 years ago and is no longer supported.

To be able to execute ScaFi code (and thus Scala code) client-locally, a
transcompilation from Scala to one of the aforementioned languages is required;
JavaScript has been selected as the only web target currently supported by
the Scala native compiler9. User-written Scala code can be transcompiled into
JavaScript on-the-fly and injected into the simulator, leveraging the scalac
compiler with Scala.js [21]. The Scala compiler, however, currently requires
to be executed in a JVM, and hence off-browser (despite being written mostly
in Scala, there is no JavaScript version of scalac at the time of writing).
Consequently, the ScaFi-Web architecture has been designed with two com-
ponents: a frontend hosting the interpreter, simulator, and user interface; and
a transcompilation service, in charge of producing JavaScript code for the
aggregate specifications written in Scala.

Transcompilation Service. The remote service instance, depicted on the
left of Fig. 3, exposes the transcompilation service via RESTful HTTP APIs.
The route /compile accepts POST requests containing the ScaFi code to be
transcompiled. Leveraging the Scala compiler, it creates a REST resource iden-
tified by a UUID with the transpiled JavaScript code. The identifier returned
to the client can be used on the /getCode/{UUID} API via GET requests to
download the transpiled code.

The service is platform-agnostic and can be executed on all operating systems
and runtimes that can host a JVM. To simplify the deployment of ScaFi-Web

instances, the service has been made publicly available10 in a containerised [14]
fashion as a Docker image, deployable on any compatible container runtime.

Client Interface. Client-side, a Single-Page Application (SPA) was imple-
mented to manage (i) programs execution, (ii) simulation management, and
(iii) page rendering. The interface, as visible in Fig. 2, is structured in three
parts, each exposing a different logical control.

On the left, a configuration panel enables control of the network shape and
device sensors, enabling users to design their own deployment configurations.
Moving on the central part, an editor is available to fiddle with the provided
examples or write fresh new code. Editing can be performed in two flavours:
simplified (selected by default), or advanced.

In simplified mode, inspired by the interaction typical of REPL inter-
preters [10], the editor hides all the boilerplate code, allowing for a very
straightforward hands-on with the core language mechanisms. In advanced mode,
instead, these details are exposed, bridging the gap towards full-fledged devel-
opment environments.
8 http://openjdk.java.net/jeps/289.
9 https://archive.is/SaV6B.

10 https://hub.docker.com/r/gianlucaaguzzi/scafi-web.

http://openjdk.java.net/jeps/289
https://archive.is/SaV6B
https://hub.docker.com/r/gianlucaaguzzi/scafi-web

ScaFi-Web 295

Finally, the program can be executed with the controls available on the right-
most section of the page. Pressing the play button causes the application to tran-
spile under-the-hood the code in the editor (by leveraging the aforementioned
remote service), injecting the resulting JavaScript in the browser-hosted ScaFi

simulator.

4.2 Usage Scenarios

Learning and Education. Web-based playgrounds are a trending way to
experiment with languages, they are well accepted as they lower the adoption
and learning curves. ScaFi-Web guides the user to an understanding of field-
based coordination by (i) exposing an environment with minimal requirements (a
modern browser); (ii) including a tour of its functions; (iii) presenting a sequence
of guided examples of increasing complexity that can be simulated immediately;
(iv) providing simplified access to the simulated sensors and actuators (e.g. for
controlling movement and colour of devices).

Fast Prototyping. Programming complex coordination logic is challenging,
even with paradigms that promote collective behaviour abstractions to first-
class: robust specifications usually result from an iterative, incremental process
where ScaFi programs are progressively refined. Simulation has a key role in this
development workflow, as it allows for observing and controlling the software in a
variety of scenarios (different network structures, dynamics, and perturbations)
without the issues related to actual deployment. ScaFi-Web supports this kind
of workflow, by providing an out-of-the-box web-based simulation environment
with zero installation overhead.

4.3 Roadmap to Monitoring and Control of Deployed Systems

The monitoring and control of distributed systems is a prominent practical
issue. In the context of field-based coordination, automated runtime verifica-
tion approaches have been recently investigated, whereby spatial or temporal
logics are mapped to field calculus programs to directly encode the behaviour
of decentralised monitors [3]. However, these techniques are complementary to
monitoring and control activities carried out by humans, which may need remote
frontends to inspect and act over a running system. The ScaFi-Web’s fron-
tend has been designed to be adaptable to different backends; indeed, the UI
is completely separated from the underlying aggregate execution system (called
Support in ScaFi-Web). We plan to evolve ScaFi-Web into a platform for
remote monitoring and control of aggregate systems. In particular, we aim to:

1. define a middleware in charge of both retrieving values from the different
nodes in the system, injecting aggregate code and sending well-defined com-
mands;

2. create a new Support able to communicate with the aforementioned middle-
ware (e.g. via WebSocket);

296 G. Aguzzi et al.

MiddlewareUI Distributed
support

node data

command
scripts Hybrid System

Simulator

node data

command
scripts

Local
support

Fig. 4. This figure shows the logical components currently available (yellow) and those
that have to be developed to support a full-fledged monitoring and control solution.
Notice the separation between UI and support (Notation: nodes with dotted border
are purely simulated.)

3. create a Support-to-UI component that understands and manages the aggre-
gate computing languages of the new Support;

4. establish a simulation-to-middleware component that can inspect the overall
system status;

5. realise tests upon real systems;
6. introduce the opportunity to orchestrate hybrid real-virtual systems, in which

real devices can interact with virtual devices managed by a simulation plat-
form.

Figure 4 summarises the general idea of the final product. With the proposed
architecture, it will be possible to inject new behaviours by either specific com-
mands (e.g. move the alpha node to X,y) or by injecting new aggregate programs
(e.g. to verify a property at runtime, as in [3]). Finally, given the hybrid nature of
the system, it can be interesting to spawn new simulated nodes at runtime. This
can be useful, for instance, to improve the performance of programs performing
density-sensitive operations [9] when executing in low-device-density conditions.

5 Conclusion and Future Work

In this paper, we have presented ScaFi-Web, a web-based playground and
frontend for simulated aggregate computing systems, enabling seamless and uni-
versal access to the ScaFi aggregate programming toolchain. It provides an
environment with zero-installation overhead and pedagogical support for learn-
ing, exploratory testing, and easy application deployment.

As a future work, we would like to extend ScaFi-Web with out-of-the-box
support for monitoring and control of deployed systems. Additionally, it would

ScaFi-Web 297

be nice to provide a graphical DSL allowing the creation of aggregate specifi-
cations by the composition of algorithmic blocks, hence simplifying application
development.

References

1. Arbab, F.: A behavioral model for composition of software components. Obj. Logi-
ciel Base données Réseaux 12(1), 33–76 (2006). https://doi.org/10.3166/objet.12.
1.33-76

2. Audrito, G.: FCPP: an efficient and extensible field calculus framework. In: IEEE
International Conference on Autonomic Computing and Self-Organizing Systems,
ACSOS 2020, Washington, DC, USA, 17–21 August 2020, pp. 153–159. IEEE
(2020). https://doi.org/10.1109/ACSOS49614.2020.00037

3. Audrito, G., Casadei, R., Damiani, F., Stolz, V., Viroli, M.: Adaptive distributed
monitors of spatial properties for cyber–physical systems. J. Syst. Softw. 175,
110908 (2021). https://doi.org/10.1016/j.jss.2021.110908

4. Audrito, G., Casadei, R., Damiani, F., Viroli, M.: Compositional blocks for optimal
self-healing gradients. In: 11th IEEE SASO 2017, pp. 91–100. IEEE Computer
Society (2017). https://doi.org/10.1109/SASO.2017.18

5. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus
of computational fields. ACM Trans. Comput. Log. 20(1), 5:1–5:55 (2019). https://
doi.org/10.1145/3285956

6. Bachrach, J., Beal, J., McLurkin, J.: Composable continuous-space programs for
robotic swarms. Neural Comput. Appl. 19(6), 825–847 (2010). https://doi.org/10.
1007/s00521-010-0382-8

7. Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator
networks. IEEE Intell. Syst. 21(2), 10–19 (2006). https://doi.org/10.1109/MIS.
2006.29

8. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the Internet of Things.
Computer 48(9), 22–30 (2015). https://doi.org/10.1109/MC.2015.261

9. Beal, J., Viroli, M., Pianini, D., Damiani, F.: Self-adaptation to device distribution
in the Internet of Things. ACM Trans. Auton. Adapt. Syst. 12(3), 12:1–12:29
(2017). https://doi.org/10.1145/3105758

10. van Binsbergen, L.T., Merino, M.V., Jeanjean, P., van der Storm, T., Combemale,
B., Barais, O.: A principled approach to REPL interpreters. In: Proceedings of the
2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software. ACM, November 2020. https://
doi.org/10.1145/3426428.3426917

11. du Boulay, B.: Some difficulties of learning to program. J. Educ. Comput. Res.
2(1), 57–73 (1986). https://doi.org/10.2190/3lfx-9rrf-67t8-uvk9

12. du Boulay, B., O’Shea, T., Monk, J.: The black box inside the glass box: presenting
computing concepts to novices. Int. J. Hum. Comput. Stud. 51(2), 265–277 (1999).
https://doi.org/10.1006/ijhc.1981.0309

13. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
DEECO: an ensemble-based component system. In: CBSE 2013, pp. 81–90. ACM
(2013). https://doi.org/10.1145/2465449.2465462

14. Butzin, B., Golatowski, F., Timmermann, D.: Microservices approach for the Inter-
net of Things. In: 21st IEEE ETFA 2016, pp. 1–6. IEEE (2016). https://doi.org/
10.1109/ETFA.2016.7733707

https://doi.org/10.3166/objet.12.1.33-76
https://doi.org/10.3166/objet.12.1.33-76
https://doi.org/10.1109/ACSOS49614.2020.00037
https://doi.org/10.1016/j.jss.2021.110908
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956
https://doi.org/10.1007/s00521-010-0382-8
https://doi.org/10.1007/s00521-010-0382-8
https://doi.org/10.1109/MIS.2006.29
https://doi.org/10.1109/MIS.2006.29
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1145/3105758
https://doi.org/10.1145/3426428.3426917
https://doi.org/10.1145/3426428.3426917
https://doi.org/10.2190/3lfx-9rrf-67t8-uvk9
https://doi.org/10.1006/ijhc.1981.0309
https://doi.org/10.1145/2465449.2465462
https://doi.org/10.1109/ETFA.2016.7733707
https://doi.org/10.1109/ETFA.2016.7733707

298 G. Aguzzi et al.

15. Casadei, R., Aldini, A., Viroli, M.: Towards attack-resistant aggregate computing
using trust mechanisms. Sci. Comput. Program. (2018). https://doi.org/10.1016/
j.scico.2018.07.006

16. Casadei, R., Tsigkanos, C., Viroli, M., Dustdar, S.: Engineering resilient collabora-
tive edge-enabled IoT. In: 2019 IEEE International Conference on Services Com-
puting (SCC), pp. 36–45, July 2019. https://doi.org/10.1109/SCC.2019.00019

17. Casadei, R., Viroli, M.: Programming actor-based collective adaptive systems. In:
Ricci, A., Haller, P. (eds.) Programming with Actors. LNCS, vol. 10789, pp. 94–
122. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00302-9 4

18. Casadei, R., Viroli, M., Audrito, G., Damiani, F.: FScaFi : a core calculus for
collective adaptive systems programming. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12477, pp. 344–360. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61470-6 21

19. Casadei, R., Viroli, M., Audrito, G., Pianini, D., Damiani, F.: Engineering collec-
tive intelligence at the edge with aggregate processes. Eng. Appl. Artif. Intell. 97,
104081 (2021). https://doi.org/10.1016/j.engappai.2020.104081

20. Denti, E., Natali, A., Omicini, A.: Programmable coordination media. In: Garlan,
D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282, pp. 274–288.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63383-9 86

21. Doeraene, S.: Cross-platform language design in scala.js (keynote). In: Erdweg, S.,
d. S. Oliveira, B.C. (eds.) Proceedings of the 9th ACM SIGPLAN International
Symposium on Scala, SCALA@ICFP 2018, St. Louis, MO, USA, 28 September
2018, p. 1. ACM (2018). https://doi.org/10.1145/3241653.3266230

22. Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos,
J.L.: Description and composition of bio-inspired design patterns: a complete
overview. Nat. Comput. 12, 43–67 (2013). https://doi.org/10.1007/s11047-012-
9324-y

23. Frey, S., Diaconescu, A., Menga, D., Demeure, I.: A holonic control architecture for
a heterogeneous multi-objective smart micro-grid. In: 2013 IEEE 7th International
Conference on Self-Adaptive and Self-Organizing Systems. IEEE, September 2013.
https://doi.org/10.1109/saso.2013.11

24. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applica-
tions with the TOTA middleware. In: PerCom 2004, pp. 263–276. IEEE Computer
Society (2004). https://doi.org/10.1109/PERCOM.2004.1276864

25. Mamei, M., Zambonelli, F., Leonardi, L.: Co-fields: towards a unifying approach
to the engineering of swarm intelligent systems. In: Petta, P., Tolksdorf, R., Zam-
bonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 68–81. Springer, Hei-
delberg (2003). https://doi.org/10.1007/3-540-39173-8 6

26. Mo, Y., Dasgupta, S., Beal, J.: Robustness of the adaptive bellman-ford algorithm:
global stability and ultimate bounds. IEEE Trans. Autom. Control. 64(10), 4121–
4136 (2019). https://doi.org/10.1109/TAC.2019.2904239

27. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with Alchemist. J. Simul. (2013). https://doi.org/10.1057/jos.2012.
27

28. Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate programming. In:
Proceedings of the 30th Annual ACM Symposium on Applied Computing, Sala-
manca, Spain, 13–17 April 2015, pp. 1846–1853. ACM (2015). https://doi.org/10.
1145/2695664.2695913

29. Rossberg, A., et al.: Bringing the web up to speed with webassembly. Commun.
ACM 61(12), 107–115 (2018). https://doi.org/10.1145/3282510

https://doi.org/10.1016/j.scico.2018.07.006
https://doi.org/10.1016/j.scico.2018.07.006
https://doi.org/10.1109/SCC.2019.00019
https://doi.org/10.1007/978-3-030-00302-9_4
https://doi.org/10.1007/978-3-030-61470-6_21
https://doi.org/10.1007/978-3-030-61470-6_21
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1007/3-540-63383-9_86
https://doi.org/10.1145/3241653.3266230
https://doi.org/10.1007/s11047-012-9324-y
https://doi.org/10.1007/s11047-012-9324-y
https://doi.org/10.1109/saso.2013.11
https://doi.org/10.1109/PERCOM.2004.1276864
https://doi.org/10.1007/3-540-39173-8_6
https://doi.org/10.1109/TAC.2019.2904239
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1145/3282510

ScaFi-Web 299

30. Trianni, V., Nolfi, S., Dorigo, M.: Evolution, self-organization and swarm robotics.
In: Blum, C., Merkle, D. (eds.) Natural Computing Series, pp. 163–191. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-74089-6 5

31. Usbeck, K., Beal, J.: Web Proto: aggregate programming for everyone. In: 7th
IEEE SASOW, 2013, pp. 17–18. IEEE Computer Society (2013). https://doi.org/
10.1109/SASOW.2013.12

32. Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient col-
lective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul.
28(2), 16:1–16:28 (2018)

33. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From dis-
tributed coordination to field calculus and aggregate computing. J. Log. Algebraic
Methods Program. 109 (2019). https://doi.org/10.1016/j.jlamp.2019.100486

34. Viroli, M., Casadei, M.: Biochemical tuple spaces for self-organising coordination.
In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp.
143–162. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02053-
7 8

35. Viroli, M., Casadei, R., Pianini, D.: Simulating large-scale aggregate mass with
alchemist and Scala. In: Proceedings of FedCSIS 2016. Annals of Computer Science
and Information Systems, vol. 8, pp. 1495–1504. IEEE (2016). https://doi.org/10.
15439/2016F407

36. Zambonelli, F., et al.: Developing pervasive multi-agent systems with nature-
inspired coordination. Pervasive Mob. Comput. 17, 236–252 (2015). https://doi.
org/10.1016/j.pmcj.2014.12.002

https://doi.org/10.1007/978-3-540-74089-6_5
https://doi.org/10.1109/SASOW.2013.12
https://doi.org/10.1109/SASOW.2013.12
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1007/978-3-642-02053-7_8
https://doi.org/10.1007/978-3-642-02053-7_8
https://doi.org/10.15439/2016F407
https://doi.org/10.15439/2016F407
https://doi.org/10.1016/j.pmcj.2014.12.002
https://doi.org/10.1016/j.pmcj.2014.12.002

Author Index

Aguzzi, Gianluca 285
Audrito, Giorgio 149

Bacchiani, Lorenzo 90, 257
Balzer, Stephanie 23
Bartoletti, Massimo 168
Bartolo Burlò, Christian 106
Basile, Davide 225
Bianchini, Riccardo 134
Bravetti, Mario 90, 257

Casadei, Roberto 149, 285
Chiang, James Hsin-yu 168
Cutner, Zak 80

Dagnino, Francesco 41, 134
Debois, Søren 188
Dezani-Ciancaglini, Mariangiola 41

Francalanza, Adrian 106

Galrinho, Leandro 188
Giallorenzo, Saverio 257, 276
Giannini, Paola 41
Giunti, Marco 121

Hildebrandt, Thomas 188

Johnsen, Einar Broch 3

Kamburjan, Eduard 3
Kuehn, Eva Maria 239

Lange, Julien 90
Lluch-Lafuente, Alberto 168

Maltoni, Niccolò 285
Mauro, Jacopo 257
Montesi, Fabrizio 276
Mota, João 121

Nester, Chad 209
Norman, Håkon 188

Peressotti, Marco 276
Pfenning, Frank 23
Pianini, Danilo 285

Rademacher, Florian 276
Ravara, António 121
Ricci, Alessandro 149

Sachweh, Sabine 276
Saffrich, Hannes 61
Sano, Chuta 23
Scalas, Alceste 106
Schlatte, Rudolf 3
Seco, João Costa 188
Slaats, Tijs 188

Talevi, Iacopo 257
Tapia Tarifa, Silvia Lizeth 3
ter Beek, Maurice H. 225
Thiemann, Peter 61
Trubiani, Catia 106
Tuosto, Emilio 106

Viroli, Mirko 149, 285

Yoshida, Nobuko 80

Zavattaro, Gianluigi 90, 257

	Foreword
	Preface
	Organization
	Let it Flow: Reactive Computations for Consistent-by-Design Distributed Applications (Abstract of Invited Talk)
	Contents
	Tutorial
	Modeling and Analyzing Resource-Sensitive Actors: A Tutorial Introduction
	1 Introduction
	2 The ABS Language
	2.1 A Simple ABS Model

	3 Specifying Time and Resource Behavior
	3.1 Example: Phone Services on New Year's Eve

	4 Advanced Synchronization Patterns
	4.1 Coordinating Multiple Processes via Object State
	4.2 Synchronizing on Multiple Processes via Futures

	5 Visualizations via the Model API
	5.1 Exporting Objects and Methods
	5.2 Adding a Custom Visualization

	6 Record and Replay of Simulations
	7 Case Studies and Other Analysis Tools
	A Installing the ABS Compiler
	References

	Communications: Types and Implemenations
	Manifestly Phased Communication via Shared Session Types
	1 Introduction
	2 Background
	2.1 Linear Session Types
	2.2 Shared Session Types

	3 Equi-Synchronizing Rules Out Phasing
	4 Subtyping
	5 Phasing
	5.1 Subsynchronizing Constraint

	6 Metatheory
	6.1 Process Typing
	6.2 Processes and Configuration
	6.3 Configuration Typing
	6.4 Dynamics
	6.5 Theorems

	7 Related Work
	8 Conclusion
	References

	Deconfined Global Types for Asynchronous Sessions
	1 Introduction
	2 A Core Calculus for Multiparty Sessions
	3 Configuration Types
	4 Type System
	5 An Algorithm for Input/Output Matching
	6 Conclusion and Future Work
	References

	Relating Functional and Imperative Session Types
	1 Introduction
	2 Motivation
	3 VGR: Imperative Session Types
	4 Linear Functional Session Types
	5 Translation: Imperative to Functional
	6 Translation: Functional to Imperative
	6.1 Untyped Translation
	6.2 Typed Backwards Translation

	7 Related Work
	8 Conclusion
	References

	Safe Session-Based Asynchronous Coordination in Rust
	1 Introduction
	2 Overview
	3 Evaluation
	4 Related and Future Work
	References

	A Session Subtyping Tool
	1 Introduction
	2 Session Subtyping
	2.1 Session Types and Their Automata Representation
	2.2 Synchronous Session Subtyping
	2.3 Asynchronous Session Subtyping
	2.4 Fair Asynchronous Session Subtyping

	3 Main Functionalities of the Tool
	3.1 Extensibility of the Tool
	3.2 Configuration of Tool Algorithms

	4 Conclusion
	References

	Towards Probabilistic Session-Type Monitoring
	1 Introduction
	2 Methodology
	2.1 Probabilistic Session Types (PSTs)
	2.2 Monitoring Sessions

	3 The Tool
	4 Conclusions and Discussion
	4.1 Related Work
	4.2 Future Work

	References

	Java Typestate Checker
	1 Introduction
	2 Related Work
	3 Motivating Example
	4 What Is the Tool Good For?
	5 Future Work
	References

	Asynchronous Global Types in Co-logic Programming
	1 Introduction
	2 Global Types for Asynchronous Sessions
	3 Co-logic Programming
	4 Query Language
	5 Prolog Implementation
	6 Conclusion
	References

	Large-Scale Decentalised Systems
	Tuple-Based Coordination in Large-Scale Situated Systems
	1 Introduction
	2 Background and Related Work
	2.1 Tuple-Based Coordination in Pervasive Systems and Space(-Time)
	2.2 Spatial Tuples

	3 A Model for Spatiotemporal Tuple-Based Coordination
	3.1 Requirements
	3.2 Computational Space-Time Model
	3.3 Specifications for Spatio-Temporal Tuple Operators
	3.4 Spatiotemporal Tuple-Based Coordination

	4 Spatiotemporal Tuples as Aggregate Processes
	4.1 Aggregate Processes
	4.2 Implementing Spatiotemporal Tuples via Aggregate Processes

	5 Evaluation
	5.1 Simulation-Based Evaluation
	5.2 Case Study: Rescue Scenario with Breadcrumbs

	6 Conclusion and Future Work
	References

	A Theory of Automated Market Makers in DeFi
	1 Introduction
	2 A Formal Model of Automated Market Makers
	2.1 AMM States
	2.2 AMM Semantics

	3 Structural Properties of AMMs
	4 Properties of AMM Incentives
	4.1 Exchange Rates
	4.2 General Properties of Swap Invariants
	4.3 The Arbitrage Game
	4.4 Incentivizing Deposits and Swaps

	5 Related Work
	6 Conclusions
	References

	ReGraDa: Reactive Graph Data
	1 Introduction
	2 ReGraDa: Programming with Reactive Graph Data
	3 Formal Syntax of ReGraDa
	4 Semantics
	4.1 Enabledness
	4.2 Effects
	4.3 Transitions

	5 From ReGraDa to Cypher
	6 Empirical Experiments
	7 Conclusions and Future Work
	References

	Modelling: Structures and Implementations
	The Structure of Concurrent Process Histories
	1 Introduction
	1.1 Contributions and Related Work
	1.2 Organization and Prerequisites

	2 Monoidal Categories as Resource Theories
	3 Single Object Double Categories
	4 Cornerings and Crossings
	5 Concurrency Through Cornering
	6 Conclusions and Future Work
	References

	A Clean and Efficient Implementation of Choreography Synthesis for Behavioural Contracts
	1 Introduction
	2 Design
	3 Specification
	4 Implementation
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	A Practical Tool-Chain for the Development of Coordination Scenarios
	1 Introduction to the Peer Model Tool-Chain
	2 Peer Model in a Nutshell
	2.1 Core Concepts
	2.2 Newly Introduced Concepts

	3 Implementation of the Toolchain
	4 Use Case Example
	5 Evaluation
	6 Conclusion and Future Work
	References

	Microservices
	Microservice Dynamic Architecture-Level Deployment Orchestration
	1 Introduction
	2 Preliminaries
	2.1 The Microservice Model
	2.2 Abstract Behavioral Specification Language
	2.3 SmartDeployer

	3 Timed Architectural Modeling/Execution Language
	3.1 Case Study and Timed Characteristics of Microservice Systems
	3.2 Microservice MF and MCL Calculation
	3.3 Timed SmartDeployer
	3.4 Modeling Service MCL

	4 Global Run-Time Adaptation
	4.1 Calculation of Scaling Configurations
	4.2 Scaling Algorithms

	5 Simulation with ABS
	5.1 Simulation Results

	6 Related Work and Conclusion
	References

	Jolie and LEMMA: Model-Driven Engineering and Programming Languages Meet on Microservices
	1 Introduction
	2 A Structured Comparison of Jolie and LEMMA
	2.1 Application Programming Interfaces (APIs)
	2.2 Access Points
	2.3 Behaviours

	3 Cross-Fertilisation and Conclusion
	References

	ScaFi-Web: A Web-Based Application for Field-Based Coordination Programming
	1 Introduction
	2 Motivation and Related Work
	3 The ScaFi Aggregate Programming Toolchain
	3.1 Field Calculus and the ScaFi DSL
	3.2 The Channel Example
	3.3 ScaFi Programming in Practice

	4 ScaFi-Web
	4.1 Architecture Details
	4.2 Usage Scenarios
	4.3 Roadmap to Monitoring and Control of Deployed Systems

	5 Conclusion and Future Work
	References

	Author Index

