®

Check for
updates

A Performance Assessment of Free-to-Use
Vulnerability Scanners - Revisited

Ricardo Aratjo', Anténio Pinto®#, and Pedro Pinto?®)

! Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
riaraujo@ipvc.pt
2 CIICESI, ESTG, Politécnico do Porto, Porto, Portugal
apinto@inesctec.pt
3 Instituto Politécnico de Viana do Castelo IPVC, ISMAI & INESC TEC,
Viana do Castelo and Porto, Portugal
pedropinto@estg.ipvc.pt
4 CRACS & INESC TEC, Porto, Portugal

Abstract. Vulnerability scanning tools can help secure the computer
networks of organisations. Triggered by the release of the Tsunami vul-
nerability scanner by Google, the authors analysed and compared the
commonly used, free-to-use vulnerability scanners. The performance,
accuracy and precision of these scanners are quite disparate and vary
accordingly to the target systems. The computational, memory and net-
work resources required be these scanners also differ. We present a recent
and detailed comparison of such tools that are available for use by organ-
isations with lower resources such as small and medium-sized enterprises.

Keywords: Vulnerability scanning - Comparison + Open source *
Tsunami

1 Introduction

Hackers are launching more sophisticated attacks on every possible weakness of
computer networks and systems [19]. Vulnerability scanning tools are automated
tools that scan applications and networks, trying to identify security vulnerabil-
ities, such as outdated or non-patched software. On the one hand, a systematic
vulnerability scanning procedure tends to be more efficient in protecting an organ-
isation [4], be it a manual or an automated test. On the other, a manual security
testing requires more resources (human and financial), hampering its adoption
in small and medium-sized enterprises (SMEs). As an alternative, open source or
free-to-use automated vulnerability scanning tools may be used by organisations
to better improve their cybersecurity resilience, even in the case of SMEs.

The detection efficiency of vulnerability scanning tools is heavily dependent on
their vulnerability database. A large database will enable a more thorough detec-
tion. New vulnerabilities are discovered frequently, which means that these tools
© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021

A. Jgsang et al. (Eds.): SEC 2021, IFIP AICT 625, pp. 53-65, 2021.
https://doi.org/10.1007/978-3-030-78120-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78120-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-78120-0_4

54 R. Aradjo et al.

are only efficient if they maintain a steady pace of updates to their vulnerability
databases. One would expect that, if such a tool is developed by a large company
or organisation, its vulnerability database would also be a large one, it would see
frequent updates and would be a single tool that would be sufficient for SMEs. We
assume that SMEs will have a small in-house support team with only a periodic
availability to pursue vulnerability assessments.

More recently, the Tsunami'! vulnerability scanner was made open source by
Google and, despite being clearly marked as a non-official product, it triggered
the assessment work described herein. In short, the authors focused on answering
the following questions:

— Q1: What is the most efficient, free-to-use, vulnerability scanning tool cur-
rently available?

— Q2: How does Tsunami compare to similar tools currently available?

— Q3: Is Tsunami well suited to be used by SMEs?

This paper is organised in sections. Section 2 presents the related work, clar-
ifying the differences from the work herein to theirs. Section 3 presents the tech-
nical features of the selected vulnerability scanners and the test-bed designed
to compare and assess them. Section 4 compares the selected tools and presents
results and our analysis. Finally, Sect. 5 concludes the work.

2 Related Work

There are research works that focus on comparing tools that evaluate a specific
type of vulnerability, such as web application scanning tools. Examples being
[3,8-10,13,15,16]. Others focus on one specific problem, such as SQL injection
attacks [2].

In [20], the authors compare free and commercial off the shelf vulnerabil-
ity scanning tools. Despite assessing a large set of such tools and considering
both functionality and the possibility of correlating the outcomes of the tools
with additional information. While valid research at the time, it is now mostly
outdated. Some of the referenced tools are no longer available.

In [12], the authors also present a large quantitative comparison of vulner-
ability scanning tools. Their focus was on the direct output of the tools or, in
other words, the number of vulnerabilities these tools identify. They focused
on functionality and on accuracy. Our work differs by focusing on tools to be
usable by SMEs. Moreover, newer tools were launched, not available at the time,
some being open source and free-to-use tools. Additionally, they did not perform
resource usage comparison. They conclude that some tools are better at detect-
ing vulnerabilities of Windows systems, others at detecting vulnerabilities of
Linux systems.

In a more recent work [14], the authors presented a performance-based com-
parison between two tools: Nessus and Retina. They selected these two because
they considered them as the most used free vulnerability scanning tools. Of the

! https://github.com/google/tsunami-security-scanner.

https://github.com/google/tsunami-security-scanner

Comparison of Vulnerability Scanners 55

two, Retina has now been discontinued by its developer, which issued a notifi-
cation stating its end of life by December 31, 2019. We aim to perform a similar
work to the one of Kushe but being a more up to date, more complete and more
thorough one.

Similar work was presented in [5], where the authors opted for comparing a
dedicated, hardware-based commercial tool against a open source, free-to-use,
software-based tool. While they conclude that the commercial solution is faster at
presenting results, they did not assess the efficiency in their findings. Moreover,
it was a small comparison of just two tools.

In [11], the author questioned the performance of vulnerability scanning tools
as a method to remedy the security issues these tools identify. He concludes that
manual effort will always be needed to reach a complete accuracy. Moreover, the
author concludes that the remediation guidelines outputted by the tools is very
cumbersome to address.

In our work, we focused on the use of larger spectrum vulnerability scanning
tools as these would require less time and resources to implement, while still
being able to detect web application vulnerabilities. Moreover, the research works
that compare vulnerability scanning tools have not been revisited recently.

3 Experimentation and Setup

A Vulnerability Scanner is a standalone application or program using a Graphical
User Interface (GUI) or a Command Line Interface (CLI) with procedures to
detect vulnerabilities and exploits in a given machine that is being analysed.
These procedures and their effectiveness depends on multiple factors such as
Operating System (OS), installed programs, existing services, their versions and
configurations. Thus, the scanners rely on signatures of known vulnerabilities
and exploits and either maintain them in a local database that maybe updated
online or require a set of detection plugins or scripts that must be installed before
scanning.

Given the research questions Q1 and Q2, the selected set of tools to analyse
was narrowed to the following: OpenVAS [1], Nessus [18], Nexpose [17], and
Tsunami [6]. Tsunami has been made available on GitHub in June of 2020.
To answer all the three questions, a test-bed was designed and setup and the
features of the selected scanners were compared.

3.1 Scanners Technical Features

Table 1 presents the selected vulnerability scanners and their main properties
regarding their license, the availability of their source code, their mode of opera-
tion and the update process of their vulnerability lists. All selected vulnerability
scanners are free-to-use. Nessus Essentials is free for personal use but limits scan-
ning to 16 different IPs. Nexpose offers a 1 year trial, after which turns into a paid
tool. Nexpose was included in the current analysis to detect if there is a signif-
icant difference between free-to-use and paid scanners. OpenVAS and Tsunami

56 R. Aradjo et al.

provide their versions as open source. OpenVAS, Nessus and Nexpose use a GUI
while Tsunami operates in the CLI environment. Regarding the update process,
OpenVAS, Nessus and Nexpose have a local database with the vulnerabilities
signatures that are updated online, while Tsunami uses detection plugins.

Table 1. Selected vulnerability scanners

License and source code | Operation | Vulnerabilities list update
Free to | Trial |Open |GUI|CLI | Local DB | Online DB | Plugins or
use period | source scripts
OpenVAS | x X
Nessus (x)
Nexpose | (x) X
Tsunami | x X X X

The output of the selected vulnerability scanners is a PDF file with a non-
standard organisation containing a set of potential vulnerabilities identified by
a Common Vulnerabilities and Exposures (CVE) identification. The list of these
vulnerabilities and their CVE ID is maintained publicly [7]. Each CVE record
comprises the identification number, a description, and at least one public ref-
erence. These CVE records are sent to National Vulnerability Database (NVD)
that extends their classification with additional information, severity scores and
impact ratings. The severity scores are expressed by Common Vulnerability Scor-
ing System (CVSS), an open framework used for communicating the character-
istics and severity of vulnerabilities. The score is obtained by using three metric
groups: Base, Temporal, and Environmental. The Base metrics produce a score
ranging from 0 to 10, which can then be modified by the scoring of the Temporal
and of the Environmental metrics.

3.2 Test-Bed Design and Setup

A test-bed was setup in order to test and evaluate all the vulnerability scan-
ning tools identified in Sect. 3.1. The test-bed topology is depicted in Fig.1 and
comprises multiple virtual machines hosted on a laptop with an Intel core i7-
4710HQ CPU @ 2.50 GHz processor, 12GB of RAM, a 256 GB SSD, running
the Windows 10 64bit OS. The use of virtualisation was selected in order to
produce comparable results. The VirtualBox 6.1 was the adopted virtualisation
solution. Five virtual machines were deployed, one to act as the scanner, and the
remaining 4 to act as targets. Kali Linux was selected due to the simple instal-
lation process of the required tools for scanning. In order to minimise impacts
of the installation of the tools, after the initial setup of the Kali Linux OS, a
snapshot was taken and all tools were installed over that initial snapshot. This
was made to maintain the same exact configuration on the system, prior to each

Comparison of Vulnerability Scanners 57

tool installation. While the tests were executed, the target virtual hosts were
disconnected from the Internet.

M3
M1 M2 Windows 10 M4
Ubuntu desktop Ubuntu 14.04 enterprise evaluation Windows 2008
20.04 Server 2004 R2 Server
IP: 10.0.0.1 /24 IP: 10.0.0.2 /24 IP: 10.0.0.3 /24 IP: 10.0.0.4 /24

Kali 2020.4
IP: 10.0.0.254 /24

Fig. 1. Test-bed topology

The targets were selected in order to be as diverse as possible. Of the 4 virtual
machines, two were Linux-based and two were Windows-based. Each set of two
machines per platform were selected to represent a client version and a server
version of each platform. Android targets were also considered at the beginning
but, because the first tests showed that, due to strict firewall configurations, no
result were reported by the selected tools, Android targets were dropped. Thus,
the set of target virtual machines comprised:

— a Ubuntu Desktop 20.04 (as M1);

— a Ubuntu Server 14.04 (as M2);

— a Windows 10 Enterprise (as M3);
— a Windows 2008 R2 Server (as M4).

Of note is the fact that the M1 and M3 targets are standard installations of
the respective OS, whereas M2 and M4 were deployed using metasploitable, ver-
sion 32. The metasploitable virtual machines are ones that are specifically setup
with older software in order to have a large number of security vulnerabilities.
As our focus was also on assessing the detection capabilities of the scanning
tools, the later virtual machines were considered as the most relevant to test.
These were tested without modifications or configurations, aside from disabling
the MySQL server of M2 and enabling ping replies on M4. MySQL was disabled
because to the excessive time taken by the Tsunami password brute-forcing with

2 https://github.com/rapid7/metasploitable3.

https://github.com/rapid7/metasploitable3

58 R. Aradjo et al.

Ncrack. Ping was enabled to ease the use of scanning tools that first checked the
targets liveliness with a ping request.

A bash script was developed in order to monitor and record the execution
time (duration), RAM memory and CPU usage on the Kali virtual machine, in
a systematic way. For the network usage monitoring, on the same Kali virtual
machine, and whenever a vulnerability scan was started, the tcpdump com-
mand was executed with arguments to identify the packets sent by the Kali
virtual machine to the target machine, i.e. using 10.0.0.154 as the source IP and
10.0.0.X as the destination IP, where the “X” is the IP address of each target
presented in Fig. 1.

4 Results and Analysis

Using the topology shown in Fig. 1, four vulnerability scanning tasks were exe-
cuted per each of the four target machines, and per each of the four vulnerability
scanners. In total, 64 vulnerability scans were conducted. Average and standard
deviation values were obtained per each scanner.

The preliminary results shown that Tsunami was the fastest, using the least
resources. Upon further evaluation, we came to the conclusion that, currently,
the Tsunami tool does not contain enough vulnerability detection plugins and
because of this, it detects almost no vulnerabilities and requires low resources
to do so. This reasoning motivated us to not include T'sunami in the figures of
this section.

Figure 2 shows the average duration of the performed scan tasks. Here, one
can observe that the standard targets (M1 and M3) are scanned fastest by all
tools due to having the least vulnerabilities and the least services available
through the network. On the other hand, M2 and M4, being metasploitable-
based targets, took the most time to scan. Other observation that can be made
is that, of the three shown, Nessus was the fastest one and OpenVAS was the
slowest one. OpenVAS took almost 5 times more to scan M4 when compared to
the other tools.

Figure 3 a) shows the average network usage in terms of the number of pack-
ets, per second, sent by the Kali machine to the target machines. All vulnerability
scanning tools report more network usage when scanning the M2 target, which
runs a metasploitable Ubuntu Server. This is expected as this target is the one
with the most services available through the network. When comparing tools,
OpenVAS is the tool that uses more network resources, followed by the Nessus
tool.

Figure 3 b) shows the average CPU used by the Kali machine during execu-
tion of the different tools. The tool that uses most CPU is the OpenVAS. This
was expected as this tool also used more network resources and took the most
time to complete. Nonetheless, the overall CPU usage of all tools is very low,
maxing below 3,5%. Worthy of note, and because of being so low average values,
is the fact that this resulted was the one that has shown the greater standard
deviation.

Comparison of Vulnerability Scanners 59

5000
4500
4000
3500
3000
2500
2000
1500
1000 -

Seconds

500 —
| — - —_
Nessus Nexpose Openvas

EM1 EM2 mM3 = M4

Fig. 2. Scan duration in seconds

Figure 3 c) shows the average memory used by the Kali machine during exe-
cution of the different tools. One conclusion that can be made is that all tools
use a similar amount of memory independently of the scanned target. The tool
that requires the most amount of memory is Nexpose, using almost four times
the memory needed by the other two tools.

Table 2. Vulnerability identification results for M2

Vulnerability CVSS | Nessus | Nexpose | OpenVAS
CVE-2010-1574 | 10 (v2) FP
CVE-2015-3306 | 10 (v2) TP TP
CVE-2015-5377 |9.8 FP
CVE-2017-3167 |9.8 FP FP
CVE-2017-3169 |9.8 FP
CVE-2017-7679 |9.8 FP
CVE-2018-1312 |9.8 TP
CVE-2018-5337 |9.8 FP
CVE-2018-5341 |9.8 FP
CVE-2019-12815 | 9.8 TP
CVE-2017-9788 |9.1 FP
CVE-2016-5387 | 8.1 TP
CVE-2017-15715 | 8.1 TP

Tables 2 and 3 show the vulnerability identification results achieved by the
different tools. In this tables, only vulnerabilities with an assigned CVE identifi-
cation were considered. Vulnerabilities with an assigned CVE identification are
published online and known by all vulnerability scanner tools, thus becoming a
ground truth to which results of others tools can be compared. A list comprising
all vulnerabilities reported by all tools, separated by target (M2 and M4), was

60

Packets/Sec

Percentage

Percentage

. Araijo et al.

250

200

150

100

Nessus Nexpose Openvas

EM1 EM2 mM3 mM4

(a) Network usage in packets per second
3,50%

3,00%
2,50%
2,00%

1,50%

1,00%
0150% i i . i ﬁ
0,00%

Nessus Nexpose Openvas

EM1 EM2 mM3 mM4

(b) CPU usage in percentage
90%

80%

70%
60%
50%
40%
30%
20%
© 1
0%

Nessus Nexpose Openvas

EM1 mM2 mM3 mM4

(c) RAM usage in percentage

Fig. 3. Network, CPU and RAM usage

Comparison of Vulnerability Scanners 61

compiled. The real presence of each vulnerability was then manually confirmed.
In order to avoid such manual verification to become cumbersome, the full list of
vulnerabilities was reduced to the ones that presented a score above 7.5, based
on CVSS in version 3, plus the ones that presented a maximum score of 10,
independently of the CVSS version.

Table 3. Vulnerability identification results for M4

Vulnerability CVSS | Nessus | Nexpose | OpenVAS
CVE-2010-0219 |10 (v2) TP
CVE-2010-1574 |10 (v2) FP
CVE-2012-2688 | 10 (v2) TP

CVE-2015-1635 |10 (v2) TP TP
CVE-2017-7213 | 10 (v2) TP
CVE-2015-5377 | 9.8 FP
CVE-2015-8249 | 9.8 TP
CVE-2017-11346 | 9.8 TP
CVE-2017-3167 | 9.8 FP FP
CVE-2017-3169 | 9.8 TP

CVE-2017-7668 | 9.8 TP

CVE-2017-7679 | 9.8 TP

CVE-2018-5337 | 9.8 FP
CVE-2018-5338 | 9.8 TP
CVE-2018-5339 | 9.8 TP
CVE-2018-5341 | 9.8 FP
CVE-2020-10189 | 9.8 TP

CVE-2017-5648 | 9.1 TP
CVE-2017-9788 | 9.1 TP

CVE-2016-10012 | 7.8 TP

In order to better evaluate the vulnerability scanning tools, both accuracy
and precision of the detected vulnerabilities was analysed. For this specific anal-
ysis, only M2 and M4 related results were considered. Reason being that these
were the ones that had multiple identifiable vulnerabilities. The reader should
recall that M1 and M3 are standard, recent and fully updated installations of
Ubuntu and Windows 10, respectively.

Equations 1 and 2 were used to calculate accuracy and precision, respectively.
These equations consider the number of True Positives (TP), False Positives (FP)
and False Negatives (FN). TP being the number of vulnerabilities identified that
are really present in the target. FP being the number of vulnerabilities identified
that are not present in the target. FN being the number of vulnerabilities that
are present in the target but not identified.

TP
ACCUI‘&CY (%) = m(xl@()) (1)

62 R. Aradjo et al.

TP
~ TP+ FP

In a more straightforward way, with Eq.1 we expect to evaluate if a tool is
capable of detecting all available vulnerabilities within a target. i.e. its accuracy.
With Eq.2 we expect to evaluate if a tool only detects existing vulnerabilities
and not false ones, i.e. its precision. The results shown in Fig. 4 resulted from cal-
culating these equations from the data of the vulnerability identification results
shown in Tables 2 and 3. From these results, the overall obtained accuracy is at
most 50% for the case of the M4 scan with OpenVAS, this means that multiple
vulnerabilities were not detected by all tools. In terms of accuracy we can see
that OpenVAS and Nessus performed better for M4, a Windows machine, while
Nexpose was more accurate for M2, a Ubuntu machine. In terms of precision,
the overall better performing tools was OpenVAS with 100% accuracy for M2,
and almost 80% for M4. The least precise tool was Nexpose, with 50% accuracy
for both M2 and M4.

After evaluating the performance, resource usage, accuracy and precision of
the selected vulnerability scanning tools, conclusions regarding the three ques-
tions listed in Sect. 1 can be drawn.

Precision (%) (x100) (2)

— Q1: What is the most efficient, free-to-use, vulnerability scanning tool cur-
rently available?

The correct answer to Q1 seems to be that there is no one tool that can be
classified as the best at all evaluated criteria. For instance, while OpenVAS is the
tool that uses more CPU and network resources and takes the most time, it is also
the one that uses less memory and has a better overall precision. Nonetheless, in
terms of accuracy it is better when scanning Windows-based targets, and not so
good when scanning Linux-based targets. Nexpose, for instance, has an average
precision of 50% for both Linux and Windows-based targets but, when analysing
its accuracy, the results show very poor overall results.

— Q2: How does Tsunami compare to similar tools currently available?

In its present state, Tsunami cannot be considered as a candidate substitute
to other tools such as Nessus, Nexpose or OpenVAS. The key reason being the
currently lack of openly available detection plugins. Tsunami architecture is plu-
gin oriented, where each plugin will detect the presence of a specific vulnerability.
When the authors stated this work, the number of plugins available was almost
nonexistent, meaning that Tsunami was unable to detect any vulnerability that
were present in the targets. The author believe that, in the future, Tsunami may
become a relevant candidate if its authors release a number of detection plugins
comparable to the remaining tools.

— Q3: Is Tsunami well suited to be used by SME’s?

Comparison of Vulnerability Scanners 63

100%
90%
80%
70%

B 60%
8
S 50%
2
9 40%
30%
20%
o |
Nessus Nexpose Openvas
EM2 mM4
(a) Accuracy
100%
90%
80%
70%
[
Ef) 60%
S 50%
2
K3 40%
30%
20%
10%
0%

Nessus Nexpose Openvas
M2 mM4

(b) Precision

Fig. 4. Comparison of detection capabilities

The short answer to this question is no, at the moment it can not. Despite
being open source and free-to-use, their current lack of detection plugins plus its
mode of operation, makes it unsuitable for use in SMEs that do not have human
resources capable of developing their own plugins for Tsunami. Moreover, the
way the results are reported by Tsunami (JSON format) make it best suited for
use in automatic assessments of a development pipeline in a product development
life cycle.

5 Conclusions

Organisations may benefit from a systematic and periodic vulnerability assess-
ment using free-to-use scanning tools. Using automated vulnerability scanning
tools also reduces the required human, technical and financial resources when
compared to manual penetration testing. With the release of Tsunami, yet

64 R. Aradjo et al.

another free-to-use vulnerability scanning tool, the authors decided to perform
an updated evaluation of the existing similar tools. The evaluation considered
both the performance of the tools, but also their accuracy and precision.

The obtained results show that OpenVAS was the tool that achieved the best
overall precision and the best accuracy when scanning Windows-based systems.
Nexpose was the tool that achieved the best accuracy when scanning Linux-
based systems. In terms of CPU, memory and network usage, the results differ
greatly from tool to tool but a common trait, of requiring more resources to
scan systems with more vulnerabilities, was also identified. The authors also
concluded that Tsunami, by having a very small detection capabilities, is still
far from the detection capabilities of the other free-to-use tools.

The manual confirmation of vulnerabilities reported by all tools was focused
on the critical ones, with a CVSS above 7.5. As future work, the authors will
proceed with the manual confirmation of all vulnerabilities reported by all tools
to have a better understanding of both the accuracy and the precision of the
evaluated tools.

References

1. Aksu, M.U., Altuncu, E., Bicakci, K.: A first look at the usability of openvas
vulnerability scanner. In: Workshop on Usable Security (USEC) 2019. NDSS (2019)

2. Ali, A.B.M., Abdullah, M.S., Shakhatreh, A.Y.I., Alostad, J.: SQL-injection vul-
nerability scanning tool for automatic creation of SQL-injection attacks. Procedia
Comput. Sci. 3, 453-458 (2011)

3. Amankwah, R., Chen, J., Kudjo, P.K., Towey, D.: An empirical comparison of
commercial and open-source web vulnerability scanners. Softw. Pract. Exp. 50(9),
1842-1857 (2020)

4. Austin, A., Williams, L.: One technique is not enough: a comparison of vulnerabil-
ity discovery techniques. In: 2011 International Symposium on Empirical Software
Engineering and Measurement, pp. 97-106. IEEE (2011)

5. Chimmanee, S., Veeraprasit, T., SriphREw, K., Hemanidhi, A.: A performance
comparison of vulnerability detection between netclarity auditor and open source
nessus. In: Proceeding of the 3rd European Conference of Communications
(ECCOM 2012), pp. 280-285 (2012)

6. Cimpanu, C.: Google open sources Tsunami vulnerability scanner. ZDNet, July
2020. https://www.zdnet.com/article/google-open-sources-tsunami-vulnerability-
scanner/

7. The MITRE Corporation: Common Vulnerabilities and Exposures (CVE). https://
cve.mitre.org/. Accessed 10 Feb 2020

8. Daud, N.I., Bakar, K.A.A., Hasan, M.S.M.: A case study on web application vulner-
ability scanning tools. In: 2014 Science and Information Conference, pp. 595-600.
IEEE (2014)

9. Doupé, A., Cova, M., Vigna, G.: Why Johnny can’t Pentest: an analysis of black-
box web vulnerability scanners. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010.
LNCS, vol. 6201, pp. 111-131. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14215-4_7

https://www.zdnet.com/article/google-open-sources-tsunami-vulnerability-scanner/
https://www.zdnet.com/article/google-open-sources-tsunami-vulnerability-scanner/
https://cve.mitre.org/
https://cve.mitre.org/
https://doi.org/10.1007/978-3-642-14215-4_7
https://doi.org/10.1007/978-3-642-14215-4_7

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Comparison of Vulnerability Scanners 65

Fonseca, J., Vieira, M., Madeira, H.: Testing and comparing web vulnerability
scanning tools for SQL injection and XSS attacks. In: 13th Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC 2007), pp. 365-372. IEEE
(2007)

Holm, H.: Performance of automated network vulnerability scanning at remediat-
ing security issues. Comput. Secur. 31(2), 164-175 (2012)

Holm, H., Sommestad, T., Almroth, J., Persson, M.: A quantitative evaluation of
vulnerability scanning. Inf. Manag. Comput. Secur. 19(4), 231-247 (2011)

Kals, S., Kirda, E., Kruegel, C., Jovanovic, N.: Secubat: a web vulnerability scan-
ner. In: Proceedings of the 15th International Conference on World Wide Web, pp.
247-256 (2006)

Kushe, R.: Comparative study of vulnerability scanning tools: Nessus vs Retina.
Secur. Future 1(2), 69-71 (2017)

Mburano, B., Si, W.: Evaluation of web vulnerability scanners based on owasp
benchmark. In: 2018 26th International Conference on Systems Engineering
(ICSEng), pp. 1-6. IEEE (2018)

Qiangian, W., Xiangjun, L.: Research and design on web application vulnerability
scanning service. In: 2014 IEEE 5th International Conference on Software Engi-
neering and Service Science, pp. 671-674. IEEE (2014)

Rapid7: Free Nexpose Community 1-Year Trial. https://www.rapid7.com/info/
nexpose-community

Tenable: Nessus Vulnerability Assessment Tool. https://www.tenable.com/
products/nessus. Accessed 10 Feb 2020

Wang, Y., Yang, J.: Ethical hacking and network defense: choose your best
network vulnerability scanning tool. In: 2017 31st International Conference on
Advanced Information Networking and Applications Workshops (WAINA), pp.
110-113 (2017)

Welberg, S.: Vulnerability management tools for cots software-a comparison.
Hg. v. University of Twente (2008). https://research.utwente.nl/files/5101819/
Vulnerability_management_tools_for_ COTS_software_-_a_comparison_v2.1.pdf

https://www.rapid7.com/info/nexpose-community
https://www.rapid7.com/info/nexpose-community
https://www.tenable.com/products/nessus
https://www.tenable.com/products/nessus
https://research.utwente.nl/files/5101819/Vulnerability_management_tools_for_COTS_software_-_a_comparison_v2.1.pdf
https://research.utwente.nl/files/5101819/Vulnerability_management_tools_for_COTS_software_-_a_comparison_v2.1.pdf

	A Performance Assessment of Free-to-Use Vulnerability Scanners - Revisited
	1 Introduction
	2 Related Work
	3 Experimentation and Setup
	3.1 Scanners Technical Features
	3.2 Test-Bed Design and Setup

	4 Results and Analysis
	5 Conclusions
	References

