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Abstract. The web is the most wide-spread digital system in the world
and is used for many crucial applications. This makes web application secu-
rity extremely important and, although there are already many security
measures, new vulnerabilities are constantly being discovered. One rea-
son for some of the recent discoveries lies in the presence of intermediate
systems—e.g. caches, message routers, and load balancers—on the way
between a client and a web application server. The implementations of such
intermediaries may interpret HTTP messages differently, which leads to a
semantically different understanding of the same message. This so-called
semantic gap can cause weaknesses in the entire HTTP message process-
ing chain.

In this paper we introduce the header whitelisting (HWL) approach
to address the semantic gap in HTTP message processing pipelines. The
basic idea is to normalize and reduce an HTTP request header to the
minimum required fields using a whitelist before processing it in an inter-
mediary or on the server, and then restore the original request for the
next hop. Our results show that HWL can avoid misinterpretations of
HTTP messages in the different components and thus prevent many
attacks rooted in a semantic gap including request smuggling, cache poi-
soning, and authentication bypass.
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1 Introduction

When the web was created more than 30 years ago, no one had imagined that it
would evolve into a global system used by billions of people for nearly every aspect
of their daily lives. Due to the ever-growing number of users, web servers need to
be offloaded to meet performance and scalability requirements. This is often real-
ized by intermediate systems such as caches, which store static resources, or load
balancers, which distribute requests across different server instances [10].
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However, these various HTTP-based entities involved in the message pro-
cessing pipeline can also induce problems. Web applications often suffer from
differences in the processing of HTTP messages. It can lead to serious security
vulnerabilities if the processing elements in the processing chain interpret the
same message differently [4,31]. In this context, the HTTP header fields take
on an important role, as they are essential for interpreting an HTTP message.
Unfortunately, in practice they are not handled consistently by HTTP imple-
mentations, which can lead to, e.g., different perceptions of the syntactic valid-
ity or caching behavior of an HTTP message. Moreover, an HTTP header can
include standardized and non-standardized header fields; both are permitted by
the HTTP standard [12]. However, non-standardized header fields are ignored
by some components, while having a decisive role for others, especially when it
comes to access privileges. If the components are not complementing each other
well, unintentional behavior can occur, which can consequently be abused by a
malicious user.

The underlying problem of different processing and interpretation of HTTP
messages by different processing units within a processing pipeline is called
“semantic gap” [4,31]. Although this issue has been known for a long time,
new types of semantic gap attacks are continuously being discovered [2]. Also,
current security mechanisms like WAFs can only partly mitigate this threat (see
Sect. 4). Therefore, attackers nowadays have a good chance to exploit a semantic
gap for malicious purposes.

This paper presents a novel protection means that specifically addresses the
semantic gap problem. Our analysis of known semantic gap vulnerabilities shows
that most of them result from inconsistent processing of HTTP request header
fields. We therefore suggest normalizing and filtering request header fields before
they are processed by HTTP components. By passing only those header fields
that are required by a particular intermediary and that can be reliably processed,
attacks involving broken, malformed, or non-standardized header fields can be
prevented. This can be used to defend against not only known attacks but also
potential zero-day exploits, as is already being done for malware [28,35]. We
provide the following main contributions:

1. The semantic gap in HTTP message processing is defined, known attacks that
exploit the semantic gap are analyzed, and they are categorized according to
their causes.

2. The concept of header whitelisting (HWL) is introduced as a measure to mit-
igate the semantic gap. A prototype implementation is presented and evalu-
ated, showing effective protection against known attacks.

The remainder of this paper is structured as follows: Sect. 2 details the seman-
tic gap in the context of HTTP-based software systems. Further foundations in
terms of real-world attacks are presented in Sect. 3 followed by Sect. 4, which
reviews the related work of proposed measures against these attacks. In Sect. 5
the HWL approach is introduced and its prototype implementation is described.
In Sect. 6, we experimentally evaluate the effectiveness of HWL with respect to
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semantic gap attack evasion. The paper closes with a discussion in Sect. 7 and a
conclusion with an outlook on future work in Sect. 8.

2 Semantic Gaps in HTTP Message Processing

Even though the HTTP protocol is specified in RFC standards, HTTP-based
software systems tend to suffer from semantic differences when processing HTTP
messages, which is summarized by the term semantic gap. Within the scope of
this work, the semantic gap is defined as inconsistent processing of HTTP mes-
sages inside a pipeline between the actual application logic and the intermedi-
aries. Such a behaviour can have serious consequences, as will be discussed in
more detail in Sect. 3.

We identified three main causes of inconsistent HTTP message processing.
The first one is ambiguous wording within the HTTP standard. It is gener-
ally forbidden, e.g., to include more than one header field with identical field
name in HTTP messages. However, the HTTP standard leaves room for well-
known exceptions. This ambiguity leads to widely varying HTTP implementa-
tions. Some may reject a request with duplicate header fields. Others will accept
such requests and consider either the first or the last one and either ignore or
remove the other instance. Furthermore, no limit is defined for the length of the
header fields [12]. Both aspects can lead to a wide range of vulnerabilities, such
as Request Smuggling or HTTP Header Oversize.

Another cause of inconsistent HTTP message processing is improper HTTP
implementations. This is especially relevant for parsing the HTTP header. There
are implementations that allow invalid syntax and ignore the affected header
fields. Others clean up requests from invalid header fields, which in turn can
affect subsequent HTTP-processing components. And yet other implementations
completely reject requests with invalid syntax. If an intermediary and a server
handle invalid meta characters in HTTP header fields differently, this can be
exploited, e.g., to cause a denial-of-service.

A final major cause for a semantic gap is different HTTP versions used by
the components involved or different specifications for the same version. For the
widely used HTTP/1.1, e.g., there exists the outdated RFC 2616 [11] and the
current RFC 7230 [12]. This results in implementations that conform to the out-
dated version, while others conform to the latest standard. Developers and server
providers are certainly aware of this fact. Nonetheless, it is possible that there is
still software in use that refers to the deprecated specification. This can be criti-
cal since RFC 2616 does, e.g., not explicitly forbid trailing whitespaces in header
field names, while RFC 7230 requires the HTTP message to be rejected in this
case. Accordingly, this can lead to HTTP Desync attacks. Another example is
the line folding option that allows to span a header field value over multiple lines.
This is supported in RFC 2616, but is deprecated in RFC 7230. It was demon-
strated that this can be exploited for Request Smuggling. Additionally, there
are also discrepancies between different HTTP versions. It has been shown, e.g.,
that a client can cause various types of denial-of-service attacks in cases where an
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intermediary supports HTTP/2 while the web server uses HTTP/1.1 [15]. This is
due to header compression in HTTP/2, which is not supported in HTTP/1.1. In
this case, a client sends header fields to the intermediary via HTTP/2 compres-
sion. Since these header fields are transmitted to the web server via HTTP/1.1,
they must be decompressed and can be significantly larger. Therefore, there is
an increased server load, which can lead to other connections being blocked.

In summary, there are many causes of semantic gaps in an HTTP message
processing pipeline. These cannot be solved right away or easily, as it would
require harmonizing all HTTP implementations to one single unambiguous spec-
ification. This is unrealistic considering how many HTTP-based software compo-
nents are available and in use in the wild. As we will emphasize in the subsequent
Sect. 3, effective means are nonetheless urgently required for web application
developers and providers to cope with the security threats and risks stemming
from semantic gaps rooted vulnerabilities.

3 Attacks Rooted in a Semantic Gap

In recent years, the semantic gap has been the root for many serious threats
in web-based layered software systems that consist of various intermediaries. In
this section, we provide an overview of semantic gap vulnerabilities in HTTP
message processing as defined in Sect. 2. Attacks based on semantic gaps in other
application layers, such as processing multiple cookies [3], are out of scope.

The Response Splitting attack [23] was one of the first vulnerabilities to
exploit a semantic gap to perform web cache poisoning. Here, an attacker takes
advantage of a parsing issue that occurs when carriage return (CR) and line
feed (LF) characters are not sanitized or escaped properly. If a web server then
reflects a value of the request in the response, an attacker can exploit both issues
by sending a request with CR and LF characters in conjunction with a malicious
response hidden in a header field value. The reflected malicious input forces the
returned response to be interpreted as two responses. The second response, which
is completely under the attacker’s control, is then stored by the cache, effectively
poisoning it with the attacker’s malicious payload.

The Request Smuggling attack [27] exploits a semantic gap in parsing more
than one Content-Length header fields—although forbidden according to RFC
7230 [12]—to smuggle a hidden request through an intermediary. With this
technique, a malicious client can provoke a web cache poisoning if two inter-
mediaries (one of these a cache) pick different Content-Length header fields
and therefore read different amounts of the payload. The ambiguous interpre-
tation of Content-Length header fields can also be applied to hide malicious
requests from security intermediaries such as WAFs, Intrusion Detection Sys-
tems (IDS) or access control mechanisms. In a rather new variant of Request
Smuggling, called HTTP Desync attack [22] similar effects can be achieved using
the Transfer-Encoding or non-standardized headers like X-Forwarded-Host.

The Host of Trouble (HoT) attack [4] is another attack that aims to poison
web caches or bypass security policies, e.g. in a WAF. Unlike Request Smuggling,
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this attack uses duplicate Host header fields. Although the presence of more than
one Host header field is not compliant with RFC 7230, Chen et al. [4] uncovered
many real-world HTTP implementations that ignore this requirement.

The Cache-Poisoned Denial of Service (CPDoS) attack [31] exploits semantic
gaps to deny access to web resources by poisoning the cache with error pages.
The three CPDoS attack variants HTTP Header Oversize (HHO), HTTP Meta
Character (HMC), and HTTP Method Override (HMO) were introduced that
exploit the mismatch between header size limits, meta character handling, and
the method override header respectively. The authors showed in empirical studies
that millions of web sites were vulnerable to CPDoS. Nathan Davison presented
another variant of CPDoS by using the Hop-by-Hop header mechanism [7].

The Web Cache Deception (WCD) attack [14] aims to disclose sensitive infor-
mation with the help of a cache. This can be achieved in cases where caches
decide whether to store responses based on the URL and consider URLs with
suffixes such as .css or .png as static. The attacker appends such suffixes to
URLs of resources containing confidential information, which is then stored in
the cache. In a 2020 analysis of the Alexa Top 5K, Mirheidari et al. found 340
web sites vulnerable to WCD attacks [30].

In addition to the attacks mentioned above, new attacks that exploit a seman-
tic gap are published very frequently, e.g. [2]. Also, we found that some of
the reported vulnerabilities can be exploited in different ways. For example,
the X-Original-URL and X-Rewrite-URL header fields can be used for CPDoS
attacks or the Hop-by-Hop mechanism can be used to cause Request Smuggling.

Table 1. List of attacks that exploit a semantic gap in the processing of HTTP mes-
sages inside a pipeline between the actual application logic and intermediate systems

Attack Semantic gap Embedment

Response splitting Meta character handling URL

Request smuggling Content-Length, Transfer-Encoding, X-Forwarded-Host,

X-Host, X-Forwarded-Server, X-Forwarded-Scheme,

X-Original-URL, X-Rewrite-URL, Meta character handling

Header

Host-of-trouble Host header Header

CPDoS HHO Header size limit Header

HMC Meta character handling Header

HMO Method overriding headers, e.g. X-HTTP-Method-Override,

X-HTTP-Method, X-Method-Override

Header

Others X-Original-URL, X-Rewrite-URL Header

Hop-by-Hop Connection header Header

WCD URL parsing URL

This overview of attacks based on a semantic gap emphasizes their high rel-
evance, especially when considering the flourishing number of attack variants.
Their impact on real applications highlights the urgent need for efficient mitiga-
tion. As we already pointed out in Sect. 2, there is no easy way to eliminate the
root cause of semantic gaps. However, as the summary view of Table 1 shows,
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in many cases the processing of the HTTP header is the starting point for the
attacks. This suggests that a broad range of semantic gap based attacks can be
mitigated by treating the HTTP header in some suitable manner. Before elab-
orating this observation further, we will first review the literature on proposed
countermeasures to identify possible approaches to mitigate such vulnerabilities.

4 Related Work

Most of the literature about the attacks discussed in Sect. 3 also suggests miti-
gation measures. WCD attacks may be prevented if HTTP responses contain
proper caching directives. A further proposed measure is to put static files
into a separate directory and configure the web server or cache to only allow
caching of the contents of this directory. In general, invalid URL paths should
be handled with an error response [14]. CPDoS attacks can be avoided by
configuring a cache in a way that HTTP responses with certain error status
codes are not stored. Additionally, the no-store directive in error responses
by the server application could prevent the cache from storing them [31]. A
more stricter HTTP parsing could help to mitigate Request Smuggling [27].
To this end, e.g., a proof-of-concept implementation exists that hooks into a
server’s socket functions, monitors HTTP messages, and closes the connection
if HTTP violations are detected [24]. This approach in particular enforces valid
formatting of header fields and adds special treatment to the Content-Length
and Transfer-Encoding headers. While this helps to mitigate a broad range of
Request Smuggling attacks and other attacks based on invalid meta characters,
cache poisoning, Hop-by-Hop and Host-of-Trouble vulnerabilities are not pre-
vented. Also, the usage of HTTP/2 mitigates Request Smuggling issues due to
the use of binary frames and streams [22]. Hop-by-Hop vulnerabilities are pre-
vented by this as well, since the Connection header field is not used in HTTP/2.
However, this does not solve vulnerabilities based on non-standardized header
fields or HoT. Response Splitting can be avoided by validating input from the
client, especially in query parameters, and by removing special characters from a
string before including it in a response header value [23]. To prevent Host header
field attacks, Chen et al. recommend to ensure compliance with RFC 7230 [4].
According to them, the attack is the result of incorrect implementations. They
refer to the latest HTTP/1.1 specification which should, in contrast to RFC
2616, define more clearly how to deal with ambiguities of the host. For mitigat-
ing access control vulnerabilities, access restrictions should be defined through
the web application and for each resource separately [29].

Web application firewalls (WAFs) are intermediaries that intend to prevent
many different types of attacks against web applications. They can be operated
in different ways, such as a (transparent) reverse proxy [19], a network bridge
[21], embedded in the web application [9] or as a cloud service [20]. Different mea-
sures can be included in a WAF, for example input validation, protocol enforce-
ment, authorization or cookie signatures [6,8,16]. There are whitelist, blacklist
or hybrid models that can be applied to define rules for HTTP traffic [5]. Sev-
eral WAFs provide default configurations that include mitigations against many
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attacks including the OWASP Top Ten [32]. This gives WAF users a basic level of
protection and certainly prevents several types of attacks. Nevertheless, it does
not provide absolute protection. Basically WAFs are also intermediaries that can
be subject to semantic differences. There are reports about bypassing WAF rules,
for instance by using Request Smuggling techniques [25] or non-standardized
header fields [1]. Consequently, WAFs are also affected by the semantic gap.
Another problem is the restrained use due to the complexity and required effort
of configuring and updating WAF configurations [33].

In summary, the measures proposed in the literature are very fragmented and
only apply to a specific type of attack. Hence, a comprehensive protection against
semantic gap attacks is hard to achieve and requires to careful adopt all of the
discussed countermeasures specifically tailored for each environment. As such,
this is very error-prone and cannot always be implemented consistently for the
complete processing chain. Mirheidari et al. take this line and suggest that there
should be a different view of web application security [30]. They recommend not
to focus on individual HTTP components but to have a holistic view of the entire
system. We encourage this perspective as well and assume that the semantic gap
is an important factor for the security of web applications regarding all HTTP
components involved. We present such a more holistic approach to mitigating
semantic gap attacks in the following section.

5 Header Whitelisting

As we noted in Sect. 3, almost all known semantic gap attacks have their roots
in HTTP header parsing ambiguities (see Table 1). This suggests that many
of the attacks can be thwarted by a strictly standard compliant message pars-
ing. Since a comprehensive consistent implementation is a practically hopeless
endeavor given the large number of different HTTP components that exist in
practice, other approaches are required to counter the attacks. By introducing
the so-called header whitelisting (HWL) we suggest that a specialized security
intermediate normalizes the header using the HTTP standard as a baseline and
reduces it to the minimum header fields required for processing by a particular
component in the processing pipeline. In this paper we focus on attacks that are
based on malicious request header fields. Therefore our approach is only applied
to the request header.

Whitelisting is used for some time for various types of security mecha-
nisms [34]. Network firewalls use whitelists to filter network traffic [17], for
example. Spam filters use domain name server whitelists (DNSWL) that pro-
vide a list of trusted mail servers and IP addresses [26]. Header Whitelisting, as
we introduce it in this paper, means that a request is transformed to consist only
of required—and preferably standardized—header field names with expected
header field values. When HWL is applied in front of an HTTP-processing entity,
this entity will only receive HTTP requests whose headers are reduced to the
fields it knows and minimally needs. As a result, requests containing malformed
header entries are rejected or the affected entries are removed by HWL before
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Fig. 1. Basic architecture of an HWL equipped HTTP-based software system. Inter-
mediate systems and/or the web server are wrapped by HWL proxies tailoring the
upstream HTTP message as individually required by each HWL-protected component.

they reach actual processing nodes. In addition, reducing the amount of header
entries to the minimum necessary ensures that unknown or hidden functionality
cannot be exploited. This is especially important if e.g. web frameworks are used
in the application, as these contain a large number of functions and standard
behaviors that are often neither known nor needed, but can potentially be used
for attacks.

5.1 Architecture

Since every component that processes HTTP requests may process header fields
differently, the idea is to isolate single components separately from invalid and
needless header fields. This can be achieved by applying HWL to some or all
of the components in the message processing pipeline, each with an individual
whitelist (see Fig. 1). An HWL Proxy is introduced that can be wrapped around
intermediaries and/or the application logic running on the server, enforcing an
individual whitelist for each wrapped component. It consists of three core mod-
ules. The Incoming module receives the requests and applies header whitelisting.
This means, it checks whether the HTTP header fields match with the config-
ured whitelist and consequently removes all header fields that are not listed.
The resulting request containing only whitelisted header fields is then forwarded
to the protected component. The Outgoing module receives back the processed
request from the protected component and restores the original request respect-
ing modifications that are possibly done by the component. This request is then
forwarded to the next HTTP component in the chain. Note that in case the HWL
Proxy is deployed in front of a web application server, the Outgoing module is not
required, because the server is the last instance that receives an HTTP request
and therefore does not forward it further. The Session module handles the link-
ing between a request in the Incoming module to the corresponding request in
the Outgoing module and temporarily stores the removed header fields.

Our approach requires to modify a request before it enters and before it
leaves a HWL-protected component. A request received by the HWL Proxy will
be normalized and customized according to the underlying whitelist. After the
request has been processed by the component, the HWL Proxy restores the
original request and sends it to the next hop on the path. This can not be
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Fig. 2. HWL Proxy implementation showing the different processing steps for HTTP
requests. Essential steps for the header whitelisting are highlighted in grey.

realized with a common proxy architecture, as common proxies only process
a request or response once. Hence, to implement a proof-of-concept common
proxies including most of the WAFs could not be used as starting point. We
therefore implemented the HWL Proxy as a separate application. By this, it can
be deployed as an extension to existing intermediaries and server applications.

5.2 Implementation

The HWL Proxy is implemented in Go and is available as open source1. Note
that its standard http library was not used because it is subject to vulnerabilities
as well [2]. Figure 2 shows an overview of the implementation.

Whitelist Specification. The whitelist for the HWL Proxy is defined as an
array of item objects, specified in a JSON format. In a real-world scenario,
this whitelist would be created by the operators of the intermediaries or web
server, who are conscious about which header fields are required. The whitelist
items contain a string parameter key which represents the header field name. In
addition, each whitelist item can contain an optional second string parameter
val. This can be used to specify an allowed header field value or range of values
with a regular expression. If this parameter is not specified, any value allowed
by the HTTP specification is accepted. An example whitelist that only accepts
Host, Connection and Content-Length header fields may be specified as follows:

[

{"key": "host"},

{"key": "connection", "val": "(close|keep -alive )"},

{"key": "content -length", "val": "\\d+"}

]

1 https://github.com/digital-security-lab/hwl-proxy.

https://github.com/digital-security-lab/hwl-proxy
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HTTP Request Processing. The header of a received HTTP request is read
in and then parsed and verified according to the RFC 7230. Specifically, the
syntax of the request line, the following header fields, and the end of the header
section is validated. If a violation of the standard is found, the HWL Proxy
sends a 400 Bad Request error response back to the client and closes the con-
nection. This might occur, e.g., if the header contains invalid meta characters or
if the header section is not terminated properly with a blank line. Otherwise, the
whitelist is applied to the request header. The Incoming module iterates through
all header fields and appends the current one to the list of whitelisted header
fields, if it matches one of the specified items contained in the whitelist. Other-
wise, it is added to the list of non-whitelisted header fields. Note that whitelisted
header fields that appear multiple times in the original request but did not cause
an error during request validation are also included multiple times in the list of
whitelisted header fields. As mentioned in Sect. 2, RFC 7230 generally prohibits
the use of duplicate header fields, thus the HWL Proxy takes care of this require-
ment. However, since exceptions are allowed an operator can explicitly specify
expected duplicates in the whitelist configuration.

The header fields that are not whitelisted are kept in a temporary ses-
sion so that the Outgoing module can access them later to reconstruct the
original request. After the header whitelisting has been applied, the body of
the HTTP request is processed (if any). If the whitelisted header fields con-
tain a valid Transfer-Encoding: chunked or Content-Length header field, the
body is read in accordingly. In case both of these header fields are present, the
Content-Length header field is removed to avoid HTTP Desync attacks. If none
of these header fields is present, no body is expected. As for the header parsing,
in case any violation is detected, the HWL Proxy sends a 400 Bad Request error
response directly to the client and closes the connection. Finally, the normalized
and whitelisted HTTP request is delivered to the wrapped component.

The reception and verification of the HTTP header in the Outgoing module
are identical to the according steps in the Incoming module. This applies also to
the body. However, since the body parsing depends on the occurrence of certain
header fields such as Content-Length and Transfer-Encoding, the body is
received before attaching the non-whitelisted header fields to ensure the body
always maintains the same size and encoding. After processing the body the non-
whitelisted header field names are each compared with the header field names of
the request received from the intermediary. A non-whitelisted header field is not
appended to the request when the same header field was set by the intermediary.
This is done to prevent duplicates that may occur in case the intermediary
appended a header field that was already included in the original request received
by the client.

The final step of this module is to forward the request containing the request
line, the whitelisted header fields including the modifications made by the inter-
mediary and the non-whitelisted header fields with the mentioned exceptions.
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Table 2. List of the developed and analyzed test cases including the attacks and the
software that were used within the test environment (<SP>: whitespace character).

ID Attack type Causing header Intermediary Web server

TC1 Request Smuggling Content-Length ATS 7.1.2 NodeJS 4.1.2

TC2 Request Smuggling Transfer-Encoding + <SP> ATS 7.1.2 NodeJS 4.1.2

TC3 Request Smuggling X-Rewrite-Url NGINX 1.1.15 Symfony 3.4.0

TC4 CPDoS X-Original-Url Varnish 6.3.1 Symfony 3.4.0

TC5 CPDoS X-HTTP-Method-Override Varnish 6.3.1 Play 1.5.0

TC6 Hop-by-Hop Connection Varnish 3.0.0 NodeJS 4.1.2

TC7 HoT Host ATS 7.1.2 Rails 5.2.0

Table 3. Test results for all seven test cases with all possible test setups (�: HWL
disabled, �: HWL enabled,

À
: attack prevented

Á
: attack succeeded)

Intermediary Server TC1 TC2 TC3 TC4 TC5 TC6 TC7

� � Á Á Á Á Á Á Á

� � À À À À À Á À

� � À À Á Á Á À Á

� � À À À À À À À

HTTP Response Processing. As discussed and argued in the beginning of
this section, HWL is applied to HTTP requests only. Therefore, the Incoming
and Outgoing modules forward the unmodified response to previous HTTP com-
ponent in the processing chain.

6 Evaluation

To evaluate our HWL approach, we recreated the attacks presented in Sect. 3
caused by irregularities in header fields in a lab environment, deployed our solu-
tion, and evaluated the effect of header whitelisting. The test environment con-
sists of a web server, one intermediary and a client. This was implemented using
three virtual server instances running Ubuntu 16.04 LTS. Different proxies and
server application software were installed and configured in accordance with the
original attack description. In total we created seven different test cases repre-
senting different attack constellations (see Table 2). Attacks that are not covered
here are discussed in Sect. 7.

For each test case, an attack vector was created that causes a malicious
behavior. Furthermore, it was defined what response would be expected and
what response represents an unintentional behavior. Intermediary and web server
software were selected that are vulnerable to the respective attack type.

As shown in Table 3, the seven test cases were executed and analyzed in four
different setups with and without header whitelisting deployed at the interme-
diate and server to illustrate the effect of HWL on the attack. Every test case
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is defined by a certain request or sequence of requests. A simple command line
application was developed as the client. It sends sequences of HTTP requests
specified in text files and stores requests and received responses into result files
for subsequent analysis. The requests sent were logged to ensure that the test was
executed correctly, while the logged responses were used to distinguish between
legitimate requests and successful or averted attacks.

Table 3 also shows the results of all combinations from the seven test cases
and the four setups. The first setup (HWL Proxy deployed but not enabled) illus-
trates that all attacks were successfully replicated in our lab and that the HWL
Proxy does not interfere with communication when disabled. The other three
setups include at least one component—i.e., either the intermediary, the server
or both—with header whitelisting enabled. The attacks in all seven test cases
except from TC6 were prevented when HWL was applied at least on the web
server. When HWL was applied on the intermediary only, the attacks in TC1,
TC2 and TC6 were prevented. When HWL was applied to both intermediary
and web server, all seven attacks were prevented successfully.

Through this experimental evaluation, we can show that the proposed HWL
approach is an effective countermeasure against all seven attacks considered
in the test cases. These tested attacks span all known attacks that can be
traced back to irregularities in the header. Thus, HWL can be considered as
the first approach that mitigates a broad variety of semantic gap attacks includ-
ing Request Smuggling, Host-of-Trouble, and CPDoS. Although this is no guar-
antee that unknown attacks will also be prevented, the test results show that
previously unknown request header attacks can be thwarted by HWL’s request
header normalization and minimization when the server and all intermediaries
are wrapped by an HWL Proxy.

7 Discussion

As the evaluation shows, HWL is a promising new approach to closing most of the
publicly known – and possibly some not yet known – semantic gaps in an HTTP
message processing chain. These strengths, limitations, and other considerations
are discussed below.

Strengths. The main objective of the proposed approach has been achieved.
All attacks considered were successfully prevented by whitelisting and normal-
izing request header fields. Even if whitelisting was only applied to either the
intermediary or the web server, some attacks could still be prevented. The best
protection is achieved when HWL is applied to both the intermediaries and the
server.

Another advantage of the HWL Proxy comes from its architecture, as it can
be wrapped around arbitrary HTTP components. This eliminates ambiguities
when parsing HTTP messages without having to change every single implemen-
tation.
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HWL also potentially helps to prevent unknown attacks related to a semantic
gap. The risk that new vulnerabilities based on semantic gaps can be successfully
exploited is mitigated by HWL by transforming the HTTP request header to a
minimal and standards-compliant equivalent before processing by potentially
vulnerable HTTP components.

Limitations. An obvious limitation of the proposed HWL is its restriction to
attacks that target request header fields. The semantic gap, however, can occur
in all parts of HTTP messages. Web Cache Deception, e.g., occurs when the
query string of a URL is manipulated. Also, Response Splitting is rather caused
by query parameters than by request header fields. However, most of the known
semantic gaps relate to request header fields (see Table 1) and for these HWL
provides a first coherent protection mechanism.

The evaluation presented in Sect. 6 omits those attacks that are not related to
the HTTP header, as preventing them is not the scope of this paper (see Sect. 3).
Furthermore, only those CPDoS attacks were included that are due to certain
non-standardized header fields. The HMC CPDoS variant is covered by test case
TC2, which includes an invalid space character to achieve Request Smuggling.
The HHO CPDoS variant was excluded, because it cannot be prevented by the
HWL Proxy implementation described in Sect. 5. This would require the consid-
eration of the header size, which may be included to the whitelist specification
in future work.

Today CDN services are commonly used intermediaries for improving the
performance of web applications. However, they were not included in the test
cases for evaluation. The main reason is that the attacks considered, such as
Request Smuggling, could not be recreated with the available services, as they
have already applied patches against such attack vectors. Nevertheless, vulnera-
ble CDNs will behave similar to the caches in our test environment and therefore
should benefit from the use of HWL likewise.

Vulnerabilities. The introduced HWL Proxy is a novel component that may
contain vulnerabilities in itself. Parsing errors may occur, e.g., which provide an
additional attack surface for semantic gaps. This can be avoided by considering
language-theoretic security approaches, which aim to make input validation more
secure and advise against ad hoc methods [13]. When this is reliably applied to
the HWL Proxy, robust message parsing is propagated to the components that
the HWL Proxy protects.

In addition, an implementation of the HWL Proxy may be vulnerable to
denial-of-service (DoS) attacks, especially if requests with many non-whitelisted
header fields must be processed frequently. Depending on the implementation,
this can lead to a heavy load on the HWL Proxy. Our current HWL Proxy pro-
totype implementation does not restrict header field processing and is therefore
potentially vulnerable to DoS attacks.
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Whitelist Specification. The whitelist is a determining factor in the effec-
tiveness of HWL. An incorrect whitelist configuration can lead to false-positives
and thus to malfunction of the processing pipeline and the entire application.
Furthermore, a cache may not work properly in case relevant header fields are
not included in the whitelist. However, we assume that the risk here is lower
compared to WAFs that are typically more complex [33]. A further measure
to avoid false-positives can be to monitor the traffic in the testing phase when
deploying the HWL Proxy in order to detect too restrictive policies.

There are concepts for WAFs to create rules autonomously during the test
phase of applications [33,36]. This could be transferred to the header whitelisting
as well. The HWL Proxy may learn which header fields are actually used and
automatically create an appropriate whitelist.

Similar to WAFs, a default configuration for the whitelist proxy should be
provided. For instance, a default whitelist could be created that contains all
header fields from the IANA Message Header registry [18]. These are standard-
ized in RFC documents and should therefore not be critical in most cases while
providing a broad compatibility.

Deployment. In future work, it could be considered to standardize the whitelist
approach. It may even be added to existing HTTP libraries. The only require-
ment to ensure its effectiveness is that the header whitelisting is applied before
any header is processed.

Another option is to provide the HWL Proxy as Software-as-a-Service in
a cloud. As this is already common for WAFs operated by e.g. CloudFront,
Cloudflare or Akamai, this can be realized similarly for the header whitelisting.
This requires only an appropriate routing and the possibility for a customer to
configure the whitelist.

8 Conclusion and Outlook

In this paper, we presented and categorized attacks on Web applications that
exploit the semantic gap of HTTP interpretation. Based on the observation
that many of these attacks are based on malicious HTTP request headers, we
introduced the concept of Header Whitelisting. The idea of this approach is to
filter all but a predefined set of HTTP headers before HTTP intermediaries and
HTTP servers. The evaluation of the prototype implementation showed that all
tested attacks could be prevented successfully.

In the future, it is conceivable to standardize such a mechanism and to include
it to actual HTTP-based software systems. In addition, the performance of this
approach should be thoroughly investigated to identify implementation strategies
with the least performance impact. Finally, advanced features like automatic
whitelist generation, access control lists or processing of response headers shall
be considered.
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