
Prioritise the Best Variation

Wen Kokke1(B) and Ornela Dardha2

1 University of Edinburgh, Edinburgh, UK
wen.kokke@ed.ac.uk

2 University of Glasgow, Glasgow, UK
ornela.dardha@glasgow.ac.uk

Abstract. Binary session types guarantee communication safety and
session fidelity, but alone they cannot rule out deadlocks arising from
the interleaving of different sessions. In Classical Processes (CP) [53]—a
process calculus based on classical linear logic—deadlock freedom is guar-
anteed by combining channel creation and parallel composition under the
same logical cut rule. Similarly, in Good Variation (GV) [39,54]—a lin-
ear concurrent λ-calculus—deadlock freedom is guaranteed by combining
channel creation and thread spawning under the same operation, called
fork. In both CP and GV, deadlock freedom is achieved at the expense
of expressivity, as the only processes allowed are tree-structured. Dardha
and Gay [19] define Priority CP (PCP), which allows cyclic-structured
processes and restores deadlock freedom by using priorities, in line with
Kobayashi and Padovani [34,44]. Following PCP, we present Priority GV
(PGV), a variant of GV which decouples channel creation from thread
spawning. Consequently, we type cyclic-structured processes and restore
deadlock freedom by using priorities. We show that our type system is
sound by proving subject reduction and progress. We define an encoding
from PCP to PGV and prove that the encoding preserves typing and is
sound and complete with respect to the operational semantics.

Keywords: Session types · π-calculus · Functional programming ·
Deadlock freedom · GV · CP

1 Introduction

Session types [29,30,47] are types for protocols. Regular types ensure functions
are used according to their specification. Session types ensure communication
channels are used according to their protocols. Session types have been studied in
many settings. For instance, in the π-calculus [29,30,47], a foundational calculus
for communication and concurrency, and in concurrent λ-calculi [26], including
the focus of our paper: Good Variation [39,54, GV].

Supported by the EU HORIZON 2020 MSCA RISE project 778233 “Behavioural Appli-
cation Program Interfaces” (BehAPI).

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 100–119, 2021.
https://doi.org/10.1007/978-3-030-78089-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-78089-0_6

Prioritise the Best Variation 101

GV is a concurrent λ-calculus with binary session types, where each channel
is shared between exactly two processes. Binary session types guarantee two
crucial properties communication safety—e.g., if the protocol says to transmit
an integer, you transmit an integer—and session fidelity—e.g., if the protocol
says send, you send. A third crucial property is deadlock freedom, which ensures
that processes do not have cyclic dependencies—e.g., when two processes wait
for each other to send a value. Binary session types alone are insufficient to rule
out deadlocks arising from interleaved sessions, but several additional techniques
have been developed to guarantee deadlock freedom in session-typed π-calculus
and concurrent λ-calculus.

In the π-calculus literature, there have been several attempts at develop-
ing Curry-Howard correspondences between session-typed π-calculus and linear
logic [27]: Caires and Pfenning’s πDILL [9] corresponds to dual intuitionistic
linear logic [4], and Wadler’s Classical Processes [53, CP] corresponds to classi-
cal linear logic [27, CLL]. Both calculi guarantee deadlock freedom, which they
achieve by restricting structure of processes and shared channels to trees, by
combing name restriction and parallel composition into a single construct, cor-
responding to the logical cut. This ensures that two processes can only com-
municate via exactly one series of channels, which rules out interleavings of ses-
sions, and guarantees deadlock freedom. There are many downsides to combining
name restriction and parallel composition, such as lack of modularity, difficulty
typing structural congruence and formulating label-transition semantics, which
have led to various approaches to decoupling these constructs. Hypersequent
CP [37,38,41] and Linear Compositional Choreographies [14] decouple them,
but maintain the correspondence to CLL and allow only tree-structured pro-
cesses. Priority CP [20, PCP] weakens the correspondence to CLL in exchange
for a more expressive language which allows cyclic-structured processes. PCP
decouples CP’s cut rule into two separate constructs: one for parallel compo-
sition via a mix rule, and one for name restriction via a cycle rule. To restore
deadlock freedom, PCP uses priorities [34,44]. Priorities encode the order of
actions and rule out bad cyclic interleavings. Dardha and Gay [20] prove cycle-
elimination for PCP, adapting the cut-elimination proof for classical linear logic,
and deadlock freedom follows as a corollary.

CP and GV are related via a pair of translations which satisfy simulation [40],
and which can be tweaked to satisfy reflection. The two calculi share the same
strong guarantees. GV achieves deadlock freedom via a similar syntactic restric-
tion: it combines channel creation and thread spawning into a single operation,
called “fork”, which is related to the cut construct in CP. Unfortunately, as with
CP, this syntactic restriction has its downsides.

Our aim is to develop a more expressive version of GV while maintaining
deadlock freedom. While process calculi have their advantages, e.g., their suc-
cinctness, we chose to work with GV for several reasons. In general, concurrent λ-
calculi support higher-order functions, and have a capability for abstraction not
usually present in process calculi. Within a concurrent λ-calculus, one can derive
extensions of the communication capabilities of the language via well-understood

102 W. Kokke and O. Dardha

extensions of the functional fragment, e.g., we can derive internal/external choice
from sum types. Concurrent λ-calculi maintain a clear separation between the
program which the user writes and the configurations which represent the state
of the system as it evaluates the program. However, our main motivation is that
results obtained for λ-calculi transfer more easily to real-world functional pro-
gramming languages. Case in point: we easily adapted the type system of PGV
to Linear Haskell [6], which gives us a library for deadlock-free session-typed
programming [36]. The benefit of working specifically with GV, as opposed to
other concurrent λ-calculi, is its relation to CP [53], and its formal properties,
including deadlock freedom. We thus pose our research question for GV:

RQ: Can we design a more expressive GV which guarantees deadlock
freedom for cyclic-structured processes?

We follow the line of work from CP to Priority CP, and present Priority GV
(PGV), a variant of GV which decouples channel creation from thread spawn-
ing, thus allowing cyclic-structured processes, but which nonetheless guarantees
deadlock freedom via priorities. This closes the circle of the connection between
CP and GV [53], and their priority-based versions, PCP [20] and PGV. We make
the following main contributions:

(Sect. 2) Priority GV. We present Priority GV (Sect. 2, PGV), a session-
typed functional language with priorities, and prove subject reduction (The-
orem 1) and progress (Theorem 2). We addresses several problems in the
original GV language, most notably: (a) PGV does not require the pseudo-
type S�; and (b) its structural congruence is type preserving. PGV answers
our research question positively as it allows cyclic-structured binary session-
typed processes that are deadlock free.
(Sect. 3) Translation from PCP to PGV. We present a sound and com-
plete encoding of Priority CP [20] in PGV (Sect. 3). We prove the encoding
preserves typing (Theorem 4) and satisfies operational correspondence (The-
orems 5 and 6). To obtain a tight correspondence, we update PCP, moving
away from commuting conversions and reduction as cut elimination towards
reduction based on structural congruence, as it is standard in process calculi.

2 Priority GV

We present Priority GV (PGV), a session-typed functional language based on
GV [39,54] which uses priorities à la Kobayashi and Padovani [34,45] to enforce
deadlock freedom. Priority GV offers a more fine-grained analysis of communi-
cation structures, and by separating channel creation form thread spawning it
allows cyclic structures. We illustrate this with two programs in PGV, exam-
ples 1 and 2. Each program contains two processes—the main process, and the
child process created by spawn—which communicate using two channels. The
child process receives a unit over the channel x/x′, and then sends a unit over the
channel y/y′. The main process does one of two things: (a) in example 1, it sends

Prioritise the Best Variation 103

a unit over the channel x/x′, and then waits to receive a unit over the channel
y/y′; (b) in Example 2, it does these in the opposite order, which results in a
deadlock. PGV is more expressive than GV: Example 1 is typeable and guaran-
teed deadlock-free in PGV, but is not typeable in GV [53] and not guaranteed
deadlock-free in GV’s predecessor [26]. We believe PGV is a non-conservative
extension of GV, as CP can be embedded in a Kobayashi-style system [22].

Example 1 (Cyclic Structure).

let (x, x′) = new in
let (y, y′) = new in

spawn

⎛
⎝

let ((), x′) = recv x′ in
let y = send ((), y) in
wait x′; close y

⎞
⎠ ;

let x = send ((), x) in
let ((), y′) = recv y′ in
close x;wait y′

Example 2 (Deadlock).

let (x, x′) = new in
let (y, y′) = new in

spawn

⎛
⎝

let ((), x′) = recv x′ in
let y = send ((), y) in
wait x′ close y

⎞
⎠ ;

let ((), y′) = recv y′ in
let x = send ((), x) in
close x wait y′

Session Types. Session types (S) are defined by the following grammar:

S ::= !oT.S | ?oT.S | endo
! | endo

?

Session types !oT.S and ?oT.S describe the endpoints of a channel over which
we send or receive a value of type T , and then proceed as S. Types endo

! and
endo

? describe endpoints of a channel whose communication has finished, and
over which we must synchronise before closing the channel. Each connective in
a session type is annotated with a priority o ∈ N.

Types. Types (T , U) are defined by the following grammar:

T ,U ::= T × U | 1 | T + U | 0 | T �p,q U | S

Types T × U , 1, T + U , and 0 are the standard linear λ-calculus product type,
unit type, sum type, and empty type. Type T �p,q U is the standard linear
function type, annotated with priority bounds p, q ∈ N ∪ {⊥,�}. Every session
type is also a type. Given a function with type T �p,q U , p is a lower bound on
the priorities of the endpoints captured by the body of the function, and q is an
upper bound on the priority of the communications that take place as a result
of applying the function. The type of pure functions T � U , i.e., those which
perform no communications, is syntactic sugar for T ��,⊥U .

Environments. Typing environments Γ , Δ associate types to names. Environ-
ments are linear, so two environments can only be combined as Γ ,Δ if their
names are distinct, i.e., fv(Γ) ∩ fv(Δ) = ∅.

Γ ,Δ ::= ∅ | Γ , x : T

104 W. Kokke and O. Dardha

Duality. Duality plays a crucial role in session types. The two endpoints of
a channel are assigned dual types, ensuring that, for instance, whenever one
program sends a value on a channel, the program on the other end is waiting
to receive. Each session type S has a dual, written S. Duality is an involutive
function which preserves priorities:

!oT.S = ?oT.S ?oT.S = !oT.S endo
! = endo

? endo
? = endo

!

Priorities. Function pr(·) returns the smallest priority of a session type. The
type system guarantees that the top-most connective always holds the smallest
priority, so we simply return the priority of the top-most connective:

pr(!oT.S) = o pr(?oT.S) = o pr(endo
!) = o pr(endo

?) = o

We extend the function pr(·) to types and typing contexts by returning the
smallest priority in the type or context, or � if there is no priority. We use �
and � to denote the minimum and maximum:

minpr(T × U) = minpr(T) � minpr(U)
minpr(T + U) = minpr(T) � minpr(U)
minpr(T �p,q U) = p
minpr(Γ , x : A) = minpr(Γ) � minpr(A)

minpr(1) = �
minpr(0) = �
minpr(S) = pr(S)
minpr(∅) = �

Terms. Terms (L, M , N) are defined by the following grammar:

L,M,N ::= x | K | λx.M | M N
| () | M ;N | (M,N) | let (x, y) = M in N
| inl M | inr M | case L {inl x 	→ M ; inr y 	→ N} | absurd M

K ::= link | new | spawn | send | recv | close | wait

Let x, y, z, and w range over variable names. Occasionally, we use a, b, c, and
d. The term language is the standard linear λ-calculus with products, sums, and
their units, extended with constants K for the communication primitives.

Constants are best understood in conjunction with their typing and reduc-
tion rules in Figs. 1 and 2. Briefly, link links two endpoints together, forward-
ing messages from one to the other, new creates a new channel and returns
a pair of its endpoints, and spawn spawns off its argument as a new thread.
The send and recv functions send and receive values on a channel. However,
since the typing rules for PGV ensure the linear usage of endpoints, they also
return a new copy of the endpoint to continue the session. The close and
wait functions close a channel. We use syntactic sugar to make terms more
readable: we write let x = M in N in place of (λx.N) M , λ().M in place of
λz.z;M , and λ(x, y).M in place of λz.let (x, y) = z in M . We recover fork as
λx.let (y, z) = new () in spawn (λ().x y); z.

Prioritise the Best Variation 105

Internal and External Choice. Typically, session-typed languages feature
constructs for internal and external choice. In GV, these can be defined in terms
of the core language, by sending or receiving a value of a sum type [39]. We use
the following syntactic sugar for internal (S ⊕o S′) and external (S &o S′) choice
and their units:

S ⊕o S′ � !o(S + S′).endo+1
!

S &o S′ � ?o(S + S′).endo+1
?

⊕o{} � !o0.endo+1
!

&o{} � ?o0.endo+1
?

As the syntax for units suggests, these are the binary and nullary forms of the
more common n-ary choice constructs ⊕o{li : Si}i∈I and &o{li : Si}i∈I , which
one may obtain generalising the sum types to variant types. For simplicity, we
present only the binary and nullary forms.

Similarly, we use syntactic sugar for the term forms of choice, which combine
sending and receiving with the introduction and elimination forms for the sum
and empty types. There are two constructs for binary internal choice, expressed
using the meta-variable � which ranges over {inl, inr}. As there is no introduc-
tion for the empty type, there is no construct for nullary internal choice:

select � � λx.let (y, z) = new in close (send (� y, x)); z
offer L {inl x 	→ M ; inr y 	→ N} �

let (z, w) = recv L in wait w; case z {inl x 	→ M ; inr y 	→ N}
offer L {} � let (z, w) = recv L in wait w;absurd z

Operational Semantics. Priority GV terms are evaluated as part of a config-
uration of processes. Configurations are defined by the following grammar:

φ ::= • | ◦ C,D, E ::= φ M | C ‖ D | (νxx′)C

Configurations (C, D, E) consist of threads φ M , parallel compositions C ‖ D,
and name restrictions (νxx′)C. To preserve the functional nature of PGV, where
programs return a single value, we use flags (φ) to differentiate between the main
thread, marked •, and child threads created by spawn, marked ◦. Only the main
thread returns a value. We determine the flag of a configuration by combining
the flags of all threads in that configuration:

• + ◦ = • ◦ + • = • ◦ + ◦ = ◦ (• + • is undefined)

The use of ◦ for child threads [39] overlaps with the use of the meta-variable
o for priorities [20]. Both are used to annotate sequents: flags appear on the
sequent in configuration typing, and priorities in term typing. To distinguish the
two symbols, they are typeset in a different font and a different colour.

106 W. Kokke and O. Dardha

Fig. 1. Operational semantics for PGV.

Values (V , W), evaluation contexts (E), thread evaluation contexts (F), and
configuration contexts (G) are defined by the following grammars:

V ,W ::= x | K | λx.M | () | (V,W) | inl V | inr V
E ::= � | E M | V E

| E;N | (E,M) | (V,E) | let (x, y) = E in M
| inl E | inr E | case E {inl x 	→ M ; inr y 	→ N} | absurd E

F ::= φ E
G ::= � | G ‖ C | (νxy)G
We factor the reduction relation of PGV into a deterministic reduction on

terms (−→M) and a non-deterministic reduction on configurations (−→C), see

Prioritise the Best Variation 107

Fig. 1. We write −→+
M and −→+

C for the transitive closures, and −→�
M and −→�

C
for the reflexive-transitive closures.

Term reduction is the standard call-by-value, left-to-right evaluation for GV,
and only deviates from reduction for the linear λ-calculus in that it reduces
terms to values or ready terms waiting to perform a communication action.

Configuration reduction resembles evaluation for a process calculus: E-Link,
E-Send, and E-Close perform communications, E-LiftC allows reduction
under configuration contexts, and E-LiftSC embeds a structural congruence ≡.
The remaining rules mediate between the process calculus and the functional lan-
guage: E-New and E-Spawn evaluate the new and spawn constructs, creating
the equivalent configuration constructs, and E-LiftM embeds term reduction.

Structural congruence satisfies the following axioms: SC-LinkSwap allows
swapping channels in the link process. SC-ResLink allows restriction to applied
to link which is structurally equivalent to the terminated process, thus allowing
elimination of unnecessary restrictions. SC-ResSwap allows swapping chan-
nels and SC-ResComm states that restriction is commutative. SC-ResExt
is the standard scope extrusion rule. Rules SC-ParNil, SC-ParComm and
SC-ParAssoc state that parallel composition uses the terminated process as
the neutral element; it is commutative and associative.

While our configuration reduction is based on the standard evaluation for
GV, the increased expressiveness of PGV allows us to simplify the relation on
two counts. (a) We decompose the fork construct. In GV, fork creates a new
channel, spawns a child thread, and, when the child thread finishes, it closes
the channel to its parent. In PGV, these are three separate operations: new,
spawn, and close. We no longer require that every child thread finishes by
returning a terminated channel. Consequently, we also simplify the evaluation of
the link construct. Intuitively, evaluating link causes a substitution: if we have
a channel bound as (νxy), then link (w, x) replaces all occurrences of y by w.
However, in GV, link is required to return a terminated channel, which means
that the semantics for link must create a fresh channel of type end!/end?. The
endpoint of type end! is returned by the link construct, and a wait on the other
endpoint guards the actual substitution. In PGV, evaluating link simply causes
a substitution. (b) Our structural congruence is type preserving. Consequently,
we can embed it directly into the reduction relation. In GV, this is not the case,
and subject reduction relies on proving that if ≡−→C ends up in an ill-typed
configuration, we can rewrite it to a well-typed configuration using ≡.

Typing. Figure 2 gives the typing rules for PGV. Typing rules for terms are
at the top of Fig. 2. Terms are typed by a judgement Γ �p M : T stating that
“a term M has type T and an upper bound on its priority p under the typing
environment Γ”. Typing for the linear λ-calculus is standard. Linearity is ensured
by splitting environments on branching rules, requiring that the environment
in the variable rule consists of just the variable, and the environment in the
constant and unit rules are empty. Constants K are typed using type schemas,
and embedded using T-Const (mid of Fig. 2). The typing rules treat all variables

108 W. Kokke and O. Dardha

Fig. 2. Typing rules for PGV.

Prioritise the Best Variation 109

as linear resources, even those of non-linear types such as 1. However, the rules
can easily be extended to allow values with unrestricted usage [53].

The only non-standard feature of the typing rules is the priority annotations.
Priorities are based on obligations/capabilities used by Kobayashi [34], and sim-
plified to single priorities following Padovani [44]. The integration of priorities
into GV is adapted from Padovani and Novara [45]. Paraphrasing Dardha and
Gay [20], priorities obey the following two laws: (i) an action with lower priority
happens before an action with higher priority; and (ii) communication requires
equal priorities for dual actions.

In PGV, we keep track of a lower and upper bound on the priorities of a
term, i.e., while evaluating the term, when does it start communicating, and
when does it finish. The upper bound is written on the sequent, whereas the
lower bound is approximated from the typing environment. Typing rules for
sequential constructs enforce sequentially, e.g., the typing for M ;N has a side
condition which requires that the upper bound of M is smaller than the lower
bound of N , i.e., M finishes before N starts. The typing rule for new ensures
that both endpoints of a channel share the same priorities. Together, these two
constraints guarantee deadlock freedom.

To illustrate this, let’s go back to the deadlocked program in Example 2.
Crucially, it composes the terms below in parallel. While each of these terms
itself is well-typed, they impose opposite conditions on the priorities, so their
composition is ill-typed. (We omit the priorities on end! and end?.)

y′ : ?o
′
1.end? �o′

recv y′ : 1 × end?

x : !o1.end!, y
′ : end? �p let x = send ((), x) in . . . : 1 o′ < o

x : !o1.end!, y
′ : ?o

′
1.end? �p let ((), y′) = recv y′ in let x = send ((), x) in . . . : 1

x′ : ?o1.end? �o recv x′ : 1 × end?

y : !o
′
1.end!, x

′ : end? �q let y = send ((), y) in . . . : 1 o < o′

y : !o
′
1.end!, x

′ : ?o1.end? �q let ((), x′) = recv x′ in let y = send ((), y) in . . . : 1

Closures suspend communication, so T-Lam stores the priority bounds of the
function body on the function type, and T-App restores them. For instance,
λx.send (x, y) is assigned the type A �o,o S, i.e., a function which, when
applied, starts and finishes communicating at priority o.

send : A × !oA.S ��,o S

x : A �⊥ x : A x : A, y : !oA.S �⊥ y : !oA.S

x : A, y : !oA.S �⊥ (x, y) : A × !oA.S

x : A, y : !oA.S �o send (x, y) : S

y : !oA.S �⊥ λx.send (x, y) : A �o,o S

Typing rules for configurations are at the bottom of Fig. 2. Configurations
are typed by a judgement Γ �φ C stating that “a configuration C with flag φ is
well typed under typing environment Γ”. Configuration typing is based on the

110 W. Kokke and O. Dardha

standard typing for GV. Terms are embedded either as main or as child threads.
The priority bound from the term typing is discarded, as configurations contain
no further blocking actions. Main threads are allowed to return a value, whereas
child threads are required to return the unit value. Sequents are annotated with
a flag φ, which ensures that there is at most one main thread.

While our configuration typing is based on the standard typing for GV, it
differs on two counts: (i) we require that child threads return the unit value, as
opposed to a terminated channel; and (ii) we simplify typing for parallel compo-
sition. In order to guarantee deadlock freedom, in GV each parallel composition
must split exactly one channel of the channel pseudo-type S� into two endpoints
of type S and S. Consequently, associativity of parallel composition does not
preserve typing. In PGV, we guarantee deadlock freedom using priorities, which
removes the need for the channel pseudo-type S�, and simplifies typing for paral-
lel composition, while restoring type preservation for the structural congruence.

Subject Reduction. Unlike with previous versions of GV, structural congru-
ence, term reduction, and configuration reduction are all type preserving.

We must show that substitution preserves priority constraints. For this, we
prove Lemma 1, which shows that values have finished all their communication,
and that any priorities in the type of the value come from the typing environment.

Lemma 1. If Γ �p V : T , then p = ⊥, and minpr(Γ) = minpr(T).

Lemma 2 (Substitution).
If Γ , x : U ′ �p M : T and Θ �q V : U ′, then Γ ,Θ �p M{V/x} : T .

Lemma 3 (Subject Reduction, −→M).
If Γ �p M : T and M −→M M ′, then Γ �p M ′ : T .

Lemma 4 (Subject Congruence, ≡).
If Γ �φ C and C ≡ C′, then Γ �φ C′.

Theorem 1 (Subject Reduction, −→C).
If Γ �φ C and C −→C C′, then Γ �φ C′.

Progress and Deadlock Freedom. PGV satisfies progress, as PGV config-
urations either reduce or are in normal form. However, the normal forms may
seem surprising at first, as evaluating a well-typed PGV term does not neces-
sarily produce just a value. If a term returns an endpoint, then its normal form
contains a thread which is ready to communicate on the dual of that endpoint.
This behaviour is not new to PGV. Let us consider an example, adapted from
Lindley and Morris [39], in which a term returns an endpoint linked to an echo
server. The echo server receives a value and sends it back unchanged. Consider
the program which creates a new channel, with endpoints x and x′, spawns off
an echo server listening on x, and then returns x′:

• let (x, x′) = new in
spawn (λ().echox);x′

echox � let (y, x) = recv x in
let x = send (y, x) in close x

Prioritise the Best Variation 111

If we reduce the above program, we get (νxx′)(◦ echox ‖ • x′). Clearly, no
more evaluation is possible, even though the configuration contains the thread
◦ echox, which is blocked on x. In Corollary 1 we will show that if a term does
not return an endpoint, it must produce only a value.

Actions are terms which perform communication actions and which synchro-
nise between two threads. Ready terms are terms which perform communication
actions, either by themselves, e.g., creating a new channel or thread, or with
another thread, e.g., sending or receiving. Progress for the term language is
standard for GV, and deviates from progress for linear λ-calculus only in that
terms may reduce to values or ready terms:

Definition 1 (Actions). A term acts on an endpoint x if it is send (V, x),
recv x, close x, or wait x. A term is an action if it acts on some endpoint x.

Definition 2 (Ready Terms). A term L is ready if it is of the form E[M],
where M is of the form new, spawn N , link (x, y), or M acts on x. In the
latter case, we say that L is ready to act on x.

Lemma 5 (Progress, −→M). If Γ �p M : T and Γ contains only session
types, then: (a) M is a value; (b) M −→M N for some N ; or (c) M is ready.

Canonical forms deviate from those for GV, in that we opt to move all ν-
binders to the top. The standard GV canonical form, alternating ν-binders and
their corresponding parallel compositions, does not work for PGV, since multiple
channels may be split across a single parallel composition.

A configuration either reduces, or it is equivalent to configuration in nor-
mal form. Crucial to the normal form is that each term Mi is blocked on the
corresponding channel xi, and hence no two terms act on dual endpoints. Fur-
thermore, no term Mi can perform a communication action by itself, since those
are excluded by the definition of actions. Finally, as a corollary, we get that
well-typed terms which do not return endpoints return just a value:

Definition 3 (Canonical Forms). A configuration C is in canonical form if
it is of the form (νx1x

′
1) . . . (νxnx′

n)(◦ M1 ‖ · · · ‖ ◦ Mm ‖ • N) where no term
Mi is a value.

Lemma 6 (Canonical Forms). If Γ �• C, there exists some D such that
C ≡ D and D is in canonical form.

Definition 4 (Normal Forms). A configuration C is in normal form if it is of
the form (νx1x

′
1) . . . (νxnx′

n)(◦ M1 ‖ · · · ‖ ◦ Mm ‖ • V) where each Mi is ready
to act on xi.

Theorem 2 (Progress, −→C). If ∅ �• C and C is in canonical form, then
either C −→C D for some D; or C ≡ D for some D in normal form.

112 W. Kokke and O. Dardha

Proof (Sketch). Our proof follows that of Kobayashi [34, theorem 2]. We apply
Lemma 5 to each thread. Either we obtain a reduction, or each child thread is
ready and the main thread ready or a value. We pick the ready term L with
the smallest priority bound. If L contains new, spawn, or a link, we apply E-
New, E-Spawn, or E-Link. Otherwise, L must be ready on some xi. Linearity
guarantees there is some thread L′ which acts on x′

i. If L′ is ready, priority
typing guarantees it is ready on x′

i, and we apply E-Send or E-Close. If L′ is
not ready, it must be the main thread returning a value. We move L into the ith

position and repeat until we either find a reduction or reach normal form.

Corollary 1. If ∅ �φ C, C �−→C, and C contains no endpoints, then C ≡ φ V
for some value V .

It follows immediately from Theorem 2 and Corollary 1 that a term which
does not return an endpoint will complete all its communication actions, thus
satisfying deadlock freedom.

3 Relation to Priority CP

We present a correspondence between Priority GV and an updated version of
Priority CP [20, PCP], which is Wadler’s CP [53] with priorities. This corre-
spondence connects PGV to (a relaxed variant of) classical linear logic.

3.1 Revisiting Priority CP

Types. (A, B) in PCP correspond to linear logic connectives annotated with
priorities o ∈ N. Typing environments, duality, and the priority function pr(·)
are defined as expected.

A,B ::= A ⊗o B | A `o B | 1o | ⊥o | A ⊕o B | A &o B | 0o | �o

Processes. (P , Q) in PCP are defined by the following grammar.

P ,Q ::= x↔y | (νxy)P | (P ‖ Q) | 0
| x[y].P | x[].P | x(y).P | x().P
| x
 inl.P | x
 inr.P | x � {inl : P ; inr : Q} | x � {}

Processes are typed by sequents P � Γ , which correspond to the one-sided
sequents in classical linear logic. Differently from PGV, in PCP we do not need
to store the greatest priority on the sequent, as, due to the absence of higher-
order functions, we cannot compose processes sequentially.

Prioritise the Best Variation 113

PCP decomposes cut into T-Res and T-Par rules—corresponding to cycle
and mix rules, respectively—and guarantees deadlock freedom by using priority
constraints, e.g.,, as in T-Send.

T-Res
P � Γ , x : A, y : A⊥

(νxy)P � Γ

T-Par
P � Γ Q � Δ

P ‖ Q � Γ , Δ

T-Send
P � Γ , y : A, x : B o < minpr(Γ , A, B)

x[y].P � Γ , x : A ⊗o B

The main change we make to PCP is removing commuting conversions and
defining an operational semantics based on structural congruence. Commuting
conversions are necessary if we want our reduction strategy to correspond exactly
to cut elimination. However, from the perspective of process calculi, commuting
conversions behave strangely: they allow an input/output action to be moved
to the top of a process, thus potentially blocking actions which were previously
possible. This makes CP, and Dardha and Gay’s PCP [20], non-confluent. As
Lindley and Morris [39] show, all communications that can be performed with
the use of commuting conversions, can also be performed without them, using
structural congruence.

In particular for PCP, commuting conversions break our intuition that an
action with lower priority occurs before an action with higher priority. To cite
Dardha and Gay [20] “if a prefix on a channel endpoint x with priority o is
pulled out at top level, then to preserve priority constraints in the typing rules
[..], it is necessary to increase priorities of all actions after the prefix on x” by
o + 1. One benefit of removing commuting conversions is that we no longer need
to dynamically change the priorities during reduction, which means that the
intuition for priorities holds true in our updated version of PCP. Furthermore,
we can safely define reduction on untyped processes, which means that type and
priority information is erasable!

We prove closed progress for our updated PCP.

Theorem 3 (Progress, =⇒). If P � ∅, then either P = 0 or there exists a
Q such that P =⇒ Q.

3.2 Correspondence Between PGV and PCP

We illustrate the relation between PCP and PGV by defining a translation from
PCP to PGV. The translation on types is defined as follows:

�A ⊗o B� = !o�A�.�B�
�A ⊕o B� = �A� ⊕o �B�

�1o� = endo
!

�0o� = ⊕o{}
�A `o B� = ?o�A�.�B�
�A &o B� = �A� &o �B�

�⊥o� = endo
?

��o� = &o{}

114 W. Kokke and O. Dardha

There are two separate translations on processes. The main translation, �·�M ,
translates processes to terms:

�x↔y�M = link (x, y)
�(νxy)P �M = let (x, y) = new in �P �M

�P ‖ Q�M = spawn (λ().�P �M); �Q�M

�0�M = ()
�x[].P �M = close x; �P �M

�x().P �M = wait x; �P �M

�x[y].P �M = let (y, z) = new in let x = send (z, x) in �P �M

�x(y).P �M = let (y, x) = recv x in �P �M

�x
 inl.P �M = let x = select inl x in �P �M

�x
 inr.P �M = let x = select inr x in �P �M

�x � {inl : P ; inr : Q}�M = offer x {inl x 	→ �P �M ; inr x 	→ �Q�M}
�x � {}�M = offer x {}
Unfortunately, the operational correspondence along �·�M is unsound, as it

translates ν-binders and parallel compositions to new and spawn, which can
reduce to their equivalent configuration constructs using E-New and E-Spawn.
The same goes for ν-binders which are inserted when translating bound send to
unbound send. For instance, the process x[y].P is blocked, but its translation
uses new and can reduce. To address this issue, we use a second translation, �·�C,
which is equivalent to �·�M followed by reductions using E-New and E-Spawn:

�(νxy)P �C = (νxy)�P �C

�P ‖ Q�C = �P �C ‖ �Q�C

�x[y].P �C = (νyz)(◦ let x = send (z, x) in �P �M)
�x
 inl.P �C = (νyz)(◦ let x = close (send (inl y, x)); z in �P �M)
�x
 inr.P �C = (νyz)(◦ let x = close (send (inr y, x)); z in �P �M)
�P �C = ◦�P �M , if none of the above apply

Typing environments are translated pointwise, and sequents P � Γ are trans-
lated as �Γ � �◦ �P �C, where ◦ indicates a child thread. Translated processes do
not have a main thread. The translations �·�M and �·�C preserve typing, and the
latter induces a sound and complete operational correspondence.

Lemma 7 (Preservation, �·�M). If P � Γ , then �Γ � �p �P �M : 1.

Theorem 4 (Preservation, �·�C). If P � Γ , then �Γ � �◦ �P �C.

Lemma 8. For any P , either:

– ◦ �P �M = �P �C; or
– ◦ �P �M −→+

C �P �C, and for any C, if ◦ �P �M −→C C, then C −→�
C �P �C.

Prioritise the Best Variation 115

Theorem 5 (Operational Correspondence, Soundness, �·�C). If P � Γ
and �P �C −→C C, there exists a Q such that P =⇒+ Q and C −→�

C �Q�C.

Theorem 6 (Operational Correspondence, Completeness, �·�C). If P � Γ
and P =⇒ Q, then �P �C −→+

C �Q�C.

4 Related Work and Discussion

Deadlock Freedom and Progress. Deadlock freedom and progress are well
studied properties in the π-calculus. For the ‘standard’ typed π-calculus, an
important line of work starts from Kobayashi’s approach to deadlock free-
dom [33], where priorities are values from an abstract poset. Kobayashi [34] sim-
plifies the abstract poset to pairs of naturals, called obligations andcapabilities.
Padovani simplifies these further to a single natural, called a priority [44], and
adapts obligations/capabilities to session types [43].

For the session-typed π-calculus, Dezani et al. [25] guarantee progress by
allowing only one active session at a time. Dezani [24] introduces a partial order
on channels, similar to Kobayashi [33]. Carbone and Debois [11] define progress
for session typed π-calculus in terms of a catalyser which provides the missing
counterpart to a process. Carbone et al. [10] use catalysers to show that progress
is a compositional form of lock-freedom and can be lifted to session types via the
encoding of session types to linear types [18,21,35]. Vieira and Vasconcelos [51]
use single priorities and an abstract partial order to guarantee deadlock freedom
in a binary session-typed π-calculus and building on conservation types.

While our work focuses on binary session types, it is worth to discuss related
work on Multiparty Session Types (MPST). The line of work on MPST starts
with Honda et al. [31], which guarantees deadlock freedom within a single ses-
sion, but not for session interleaving. Bettini et al. [7] follow a technique similar
to Kobayashi’s for MPST. The main difference with our work is that we asso-
ciate priorities with communication actions, where Bettini et al. [7] associate
them with channels. Carbone and Montesi [13] combine MPST with chore-
ographies and obtain a formalism that satisfies deadlock freedom. Deniélou
and Yoshida [23] introduce multiparty compatibility which generalises duality
in binary session types. They synthesise safe and deadlock-free global types
from local types leveraging LTSs and communicating automata. Castellani et
al. [16] guarantee lock freedom, a stronger property than deadlock freedom,
for MPST with internal delegation, where participants in the same session are
allowed to delegate tasks to each other, and internal delegation is captured by
the global type. Scalas and Yoshida [46] provide a revision of the foundations for
MPST, and offer a less complicated and more general theory, by removing dual-
ity/consistency. The type systems is parametric and type checking is decidable,
but allows for a novel integration of model checking techniques. More protocols
and processes can be typed and are guaranteed to be free of deadlocks.

Neubauer and Thiemann [42] and Vasconcelos et al. [49,50] introduce the
first functional language with session types. Such works did not guarantee dead-
lock freedom until GV [39,53]. Toninho et al. [48] present a translation of

116 W. Kokke and O. Dardha

simply-typed λ-calculus into session-typed π-calculus, but their focus is not on
deadlock freedom.

Ties with Logic. The correspondence between logic and types lays the foun-
dation for functional programming [54]. Since its inception by Girard [27], linear
logic has been a candidate for a foundational correspondence for concurrent
programs. A correspondence with linear π-calculus was established early on by
Abramsky [1] and Bellin and Scott [5]. Many years later, several correspondences
between linear logic and the π-calculus with binary session types were proposed.
Caires and Pfenning [9] propose a correspondence with dual intuitionistic linear
logic, while Wadler [53] proposes a correspondence with classical linear logic.
Both guarantee deadlock freedom as a consequence of cut elimination. Dardha
and Gay [20] integrate Kobayashi and Padovani’s work on priorities [34,44] with
CP, loosening its ties to linear logic in exchange for expressivity. Dardha and
Pérez [22] compare priorities à la Kobayashi with tree restrictions à la CP, and
show that the latter is a subsystem of the former. Balzer et al. [2] introduce
sharing at the cost of deadlock freedom, which they restore using an approach
similar to priorities [3]. Carbone et al. [12,15] give a logical view of MPST
with a generalised duality. Caires and Pérez [8] give a presentation of MPST in
terms of binary session types and the use of a medium process which guarantee
protocol fidelity and deadlock freedom. Their binary session types are rooted in
linear logic. Ciobanu and Horne [17] give the first Curry-Howard correspondence
between MPST and BV [28], a conservative extension of linear logic with a non-
commutative operator for sequencing. Horne [32] give a system for subtyping and
multiparty compatibility where compatible processes are race free and deadlock
free using a Curry-Howard correspondence, similar to the approach in [17].

Conclusion. We answered our research question by presenting Priority GV,
a session-typed functional language which allows cyclic communication struc-
tures and uses priorities to ensure deadlock freedom. We showed its relation to
Priority CP [20] via an operational correspondence.

Future Work. Our formalism so far only captures the core of GV. In future
work, we plan to explore recursion, following Lindley and Morris [40] and
Padovani and Novara [45], and sharing, following Balzer and Pfenning [2] or
Voinea et al. [52].

Acknowledgements. The authors would like to thank Simon Fowler, April
Gonçalves, and Philip Wadler for their comments on the manuscript.

References

1. Abramsky, S.: Proofs as processes. Theor. Comput. Sci. 135(1), 5–9 (1994).
https://doi.org/10.1016/0304-3975(94)00103-0

2. Balzer, S., Pfenning, F.: Manifest sharing with session types. Proc. ACM Program.
Lang. 1(ICFP), 37:1–37:29 (2017). https://doi.org/10.1145/3110281

https://doi.org/10.1016/0304-3975(94)00103-0
https://doi.org/10.1145/3110281

Prioritise the Best Variation 117

3. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session
types. In: Caires, L. (ed.) ESOP 2019. LNCS, vol. 11423, pp. 611–639. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17184-1 22

4. Barber, A.: Dual intuitionistic linear logic (1996). https://www.lfcs.inf.ed.ac.uk/
reports/96/ECS-LFCS-96-347/ECS-LFCS-96-347.pdf

5. Bellin, G., Scott, P.J.: On the π-calculus and linear logic. Theor. Comput. Sci.
135(1), 11–65 (1994). https://doi.org/10.1016/0304-3975(94)00104-9

6. Bernardy, J.P., Boespflug, M., Newton, R.R., Jones, S.P., Spiwack, A.: Linear
Haskell: practical linearity in a higher-order polymorphic language. In: Proceedings
of POPL, vol. 2, pp. 1–29 (2018). https://doi.org/10.1145/3158093

7. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 33

8. Caires, L., Pérez, J.A.: Multiparty session types within a canonical binary theory,
and beyond. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp.
74–95. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8 6

9. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

10. Carbone, M., Dardha, O., Montesi, F.: Progress as compositional lock-freedom. In:
Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 49–64.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43376-8 4

11. Carbone, M., Debois, S.: A graphical approach to progress for structured communi-
cation in web services. In: Proceedings of ICE. Electronic Proceedings in Theoreti-
cal Computer Science, vol. 38, pp. 13–27 (2010). https://doi.org/10.4204/EPTCS.
38.4

12. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coherence gen-
eralises duality: a logical explanation of multiparty session types. In: Proceedings
of of CONCUR. LIPIcs, vol. 59, pp. 33:1–33:15. Leibniz-Zentrum für Informatik
(2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.33

13. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Proceedings of POPL, pp. 263–274 (2013). https://doi.
org/10.1145/2480359.2429101

14. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. Distrib. Com-
put. 31(1), 51–67 (2018). https://doi.org/10.1007/978-3-662-44584-6 5

15. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types
as coherence proofs. In: Proceedings of CONCUR. LIPIcs, vol. 42, pp. 412–426.
Leibniz-Zentrum für Informatik (2015). https://doi.org/10.1007/s00236-016-0285-
y

16. Castellani, I., Dezani-Ciancaglini, M., Giannini, P., Horne, R.: Global types with
internal delegation. Theor. Comput. Sci. 807, 128–153 (2020). https://doi.org/10.
1016/j.tcs.2019.09.027

17. Ciobanu, G., Horne, R.: Behavioural analysis of sessions using the calculus of struc-
tures. In: Mazzara, M., Voronkov, A. (eds.) PSI 2015. LNCS, vol. 9609, pp. 91–106.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41579-6 8

18. Dardha, O.: Recursive session types revisited. In: Proceedings of BEAT. Electronic
Proceedings in Theoretical Computer Science, vol. 162, pp. 27–34 (2014). https://
doi.org/10.4204/EPTCS.162.4

https://doi.org/10.1007/978-3-030-17184-1_22
https://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/ECS-LFCS-96-347.pdf
https://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/ECS-LFCS-96-347.pdf
https://doi.org/10.1016/0304-3975(94)00104-9
https://doi.org/10.1145/3158093
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-662-43376-8_4
https://doi.org/10.4204/EPTCS.38.4
https://doi.org/10.4204/EPTCS.38.4
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.1145/2480359.2429101
https://doi.org/10.1145/2480359.2429101
https://doi.org/10.1007/978-3-662-44584-6_5
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1007/978-3-319-41579-6_8
https://doi.org/10.4204/EPTCS.162.4
https://doi.org/10.4204/EPTCS.162.4

118 W. Kokke and O. Dardha

19. Dardha, O., Gay, S.J.: A new linear logic for deadlock-free session-typed processes.
In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 91–109.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2 5

20. Dardha, O., Gay, S.J.: A new linear logic for deadlock-free session typed pro-
cesses. In: Proceedings of FoSSaCS (2018). http://www.dcs.gla.ac.uk/∼ornela/
publications/DG18-Extended.pdf

21. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: Proceedings
of PPDP, pp. 139–150. ACM (2012). https://doi.org/10.1145/2370776.2370794

22. Dardha, O., Pérez, J.A.: Comparing type systems for deadlock-freedom (2018).
https://arxiv.org/abs/1810.00635

23. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp.
174–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-
2 18

24. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On progress for structured
communications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp.
257–275. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78663-
4 18

25. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session types
for object-oriented languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 328–352. Springer, Heidelberg (2006). https://doi.org/10.1007/11785477 20

26. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.
Funct. Program. 20(1), 19–50 (2010). https://doi.org/10.1017/S0956796809990268

27. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/
10.1016/0304-3975(87)90045-4

28. Guglielmi, A.: A system of interaction and structure. ACM Trans. Comput. Log.
8(1), 1 (2007). https://doi.org/10.1145/1182613.1182614

29. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

30. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

31. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of POPL, vol. 43, no. 1, pp. 273–284. ACM (2008). https://doi.org/
10.1145/2827695

32. Horne, R.: Session subtyping and multiparty compatibility using circular sequents.
In: Proceedings of CONCUR. LIPIcs, vol. 171, pp. 12:1–12:22. Leibniz-Zentrum
für Informatik (2020). https://doi.org/10.4230/LIPIcs.CONCUR.2020.12

33. Kobayashi, N.: A partially deadlock-free typed process calculus. ACM Trans. Pro-
gram. Lang. Syst. 20(2), 436–482 (1998). https://doi.org/10.1145/276393.278524

34. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Her-
manns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11817949 16

35. Kobayashi, N.: Type systems for concurrent programs (2007)
36. Kokke, W., Dardha, O.: Deadlock-free session types in Linear Haskell (2021).

https://arxiv.org/abs/2103.14481

https://doi.org/10.1007/978-3-319-89366-2_5
http://www.dcs.gla.ac.uk/~ornela/publications/DG18-Extended.pdf
http://www.dcs.gla.ac.uk/~ornela/publications/DG18-Extended.pdf
https://doi.org/10.1145/2370776.2370794
https://arxiv.org/abs/1810.00635
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-540-78663-4_18
https://doi.org/10.1007/978-3-540-78663-4_18
https://doi.org/10.1007/11785477_20
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/1182613.1182614
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695
https://doi.org/10.4230/LIPIcs.CONCUR.2020.12
https://doi.org/10.1145/276393.278524
https://doi.org/10.1007/11817949_16
https://arxiv.org/abs/2103.14481

Prioritise the Best Variation 119

37. Kokke, W., Montesi, F., Peressotti, M.: Better late than never: a fully-abstract
semantics for classical processes. Proc. ACM Program. Lang. 3(POPL) (2019).
https://doi.org/10.1145/3290337

38. Kokke, W., Montesi, F., Peressotti, M.: Taking linear logic apart. In: Proceedings of
Linearity & TLLA. Electronic Proceedings in Theoretical Computer Science, vol.
292, pp. 90–103. Open Publishing Association (2019). https://doi.org/10.4204/
EPTCS.292.5

39. Lindley, S., Morris, J.G.: A semantics for propositions as sessions. In: Proceedings
of ESOP, pp. 560–584 (2015). https://doi.org/10.1007/978-3-662-46669-8 23

40. Lindley, S., Morris, J.G.: Talking bananas: structural recursion for session types.
In: Proceedings of ICFP. ACM (2016). https://doi.org/10.1145/2951913.2951921

41. Montesi, F., Peressotti, M.: Classical transitions (2018). https://arxiv.org/abs/
1803.01049

42. Neubauer, M., Thiemann, P.: An implementation of session types. In: Jayaraman,
B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 56–70. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24836-1 5

43. Padovani, L.: From lock freedom to progress using session types. In: Proceedings
of PLACES. vol. 137, pp. 3–19. Electronic Proceedings in Theoretical Computer
Science (2013). https://doi.org/10.4204/EPTCS.137.2

44. Padovani, L.: Deadlock and lock freedom in the linear π-calculus. In: Proceedings of
CSL-LICS, pp. 72:1–72:10. ACM (2014). https://doi.org/10.1145/2603088.2603116

45. Padovani, L., Novara, L.: Types for deadlock-free higher-order programs. In: Graf,
S., Viswanathan, M. (eds.) FORTE 2015. LNCS, vol. 9039, pp. 3–18. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19195-9 1

46. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. Proc. ACM
Program. Lang. 3(POPL) (2019). https://doi.org/10.1145/3290343

47. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7 118

48. Toninho, B., Caires, L., Pfenning, F.: Functions as session-typed processes. In:
Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 346–360. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-28729-9 23

49. Vasconcelos, V., Ravara, A., Gay, S.: Session types for functional multithreading.
In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 497–511.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 32

50. Vasconcelos, V.T., Gay, S.J., Ravara, A.: Type checking a multithreaded functional
language with session types. Theor. Comput. Sci. 368(1–2), 64–87 (2006). https://
doi.org/10.1016/j.tcs.2006.06.028

51. Torres Vieira, H., Thudichum Vasconcelos, V.: Typing progress in communication-
centred systems. In: De Nicola, R., Julien, C. (eds.) COORDINATION 2013.
LNCS, vol. 7890, pp. 236–250. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38493-6 17

52. Voinea, A.L., Dardha, O., Gay, S.J.: Resource sharing via capability-based multi-
party session types. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS,
vol. 11918, pp. 437–455. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-34968-4 24

53. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2–3), 384–418 (2014).
https://doi.org/10.1017/S095679681400001X

54. Wadler, P.: Propositions as types. Commun. ACM 58(12), 75–84 (2015). https://
doi.org/10.1145/2699407

https://doi.org/10.1145/3290337
https://doi.org/10.4204/EPTCS.292.5
https://doi.org/10.4204/EPTCS.292.5
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2951913.2951921
https://arxiv.org/abs/1803.01049
https://arxiv.org/abs/1803.01049
https://doi.org/10.1007/978-3-540-24836-1_5
https://doi.org/10.4204/EPTCS.137.2
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1007/978-3-319-19195-9_1
https://doi.org/10.1145/3290343
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/978-3-642-28729-9_23
https://doi.org/10.1007/978-3-540-28644-8_32
https://doi.org/10.1016/j.tcs.2006.06.028
https://doi.org/10.1016/j.tcs.2006.06.028
https://doi.org/10.1007/978-3-642-38493-6_17
https://doi.org/10.1007/978-3-642-38493-6_17
https://doi.org/10.1007/978-3-030-34968-4_24
https://doi.org/10.1007/978-3-030-34968-4_24
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1145/2699407
https://doi.org/10.1145/2699407

	Prioritise the Best Variation
	1 Introduction
	2 Priority GV
	3 Relation to Priority CP
	3.1 Revisiting Priority CP
	3.2 Correspondence Between PGV and PCP

	4 Related Work and Discussion
	References

