
Kirstin Peters
Tim A. C. Willemse (Eds.)

LN
CS

 1
27

19

41st IFIP WG 6.1 International Conference, FORTE 2021
Held as Part of the 16th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2021
Valletta, Malta, June 14–18, 2021, Proceedings

Formal Techniques
for Distributed Objects,
Components, and Systems

Lecture Notes in Computer Science 12719

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Kirstin Peters • Tim A. C. Willemse (Eds.)

Formal Techniques
for Distributed Objects,
Components, and Systems
41st IFIP WG 6.1 International Conference, FORTE 2021
Held as Part of the 16th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2021
Valletta, Malta, June 14–18, 2021
Proceedings

123

Editors
Kirstin Peters
TU Darmstadt
Darmstadt, Germany

Tim A. C. Willemse
Eindhoven University of Technology
Eindhoven, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-78088-3 ISBN 978-3-030-78089-0 (eBook)
https://doi.org/10.1007/978-3-030-78089-0

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4281-0074
https://orcid.org/0000-0003-3049-7962
https://doi.org/10.1007/978-3-030-78089-0

Foreword

The 16th International Federated Conference on Distributed Computing Techniques
(DisCoTec 2021) took place during June 14–18, 2021. It was organized by the
Department of Computer Science at the University of Malta, but was held online due to
the abnormal circumstances worldwide affecting physical travel. The DisCoTec series
is one of the major events sponsored by the International Federation for Information
Processing (IFIP), the European Association for Programming Languages and Systems
(EAPLS) and the Microservices Community. It comprises three conferences:

– COORDINATION, the IFIP WG 6.1 23rd International Conference on Coordination
Models and Languages;

– DAIS, the IFIP WG 6.1 21st International Conference on Distributed Applications
and Interoperable Systems;

– FORTE, the IFIP WG 6.1 41st International Conference on Formal Techniques for
Distributed Objects, Components, and Systems.

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to sys-
tems research issues. As is customary, the event also included several plenary sessions
in addition to the individual sessions of each conference, which gathered attendants
from the three conferences. These included joint invited speaker sessions and a joint
session for the best papers from the three conferences. Associated with the federated
event, four satellite events took place:

– DisCoTec Tool, a tutorial session promoting mature tools in the field of distributed
computing;

– ICE, the 14th International Workshop on Interaction and Concurrency Experience;
– FOCODILE, the 2nd International Workshop on Foundations of Consensus and

Distributed Ledgers;
– REMV, the 1st Robotics, Electronics, and Machine Vision Workshop.

I would like to thank the Program Committee chairs of the different events for their
help and cooperation during the preparation of the conference, and the Steering
Committee and Advisory Boards of DisCoTec and its conferences for their guidance
and support. The organization of DisCoTec 2021 was only possible thanks to the
dedicated work of the Organizing Committee, including Caroline Caruana and Jasmine
Xuereb (publicity chairs), Duncan Paul Attard and Christian Bartolo Burlo (workshop
chairs), Lucienne Bugeja (logistics and finances), and all the students and colleagues
who volunteered their time to help. I would also like to thank the invited speakers for
their excellent talks. Finally, I would like to thank IFIP WG 6.1, EAPLS and the
Microservices Community for sponsoring this event, Springer’s Lecture Notes in
Computer Science team for their support and sponsorship, EasyChair for providing the

reviewing framework, and the University of Malta for providing the support and
infrastructure to host the event.

June 2021 Adrian Francalanza

vi Foreword

Preface

This volume contains the papers presented at the 41st IFIP WG 6.1 International
Conference on Formal Techniques for Distributed Objects, Components, and Systems
(FORTE 2021), held as one of three main conferences of the 16th International Fed-
erated Conference on Distributed Computing Techniques (DisCoTec 2021), during
June 14–18, 2021. The conference was hosted by the University of Malta but took
place online due to the ongoing COVID-19 pandemic.

FORTE is a well-established forum for fundamental research on theory, models,
tools, and applications for distributed systems, with special interest in

– Software quality, reliability, availability, and safety
– Security, privacy, and trust in distributed and/or communicating systems
– Service-oriented, ubiquitous, and cloud computing systems
– Component- and model-based design
– Object technology, modularity, and software adaptation
– Self-stabilization and self-healing/organizing
– Verification, validation, formal analysis, and testing of the above

The Program Committee received a total of 26 submissions, written by authors from
18 different countries. Of these, 13 papers were selected for inclusion in the scientific
program. Each submission was reviewed by at least three Program Committee mem-
bers with the help of 20 external reviewers in selected cases. The selection of accepted
submissions was based on electronic discussions via the EasyChair conference man-
agement system.

As Program Committee, we actively contributed to the selection of the keynote
speakers for DisCoTec 2021:

– Gilles Fedak, iExec, France
– Mira Mezini, Technical University of Darmstadt, Germany
– Alexandra Silva, University College London, UK

This year DisCoTec also included a tutorial session of four invited tutorials. This
volume includes the following tutorial papers:

– Tutorial: Designing Distributed Software in mCRL2
– Better Late than Never or: Verifying Asynchronous Components at Runtime

We wish to thank all the authors of submitted papers, all the members of the Pro-
gram Committee for their thorough evaluations of the submissions, and the external
reviewers who assisted the evaluation process. We are also indebted to the Steering
Committee of FORTE for their advice and suggestions. Last but not least, we thank the
DisCoTec general chair, Adrian Francalanza, and his organization team for their hard,

effective work in providing an excellent environment for FORTE 2021 and all other
conferences and workshops, in spite of the pandemic troubles.

June 2021 Kirstin Peters
Tim A. C. Willemse

viii Preface

Organization

Program Committee

Luís Soares Barbosa University of Minho, Portugal
Jiří Barnat Masaryk University, Czech Republic
Pedro R. D’Argenio Universidad Nacional de Córdoba, Argentina
Mila Dalla Preda University of Verona, Italy
Wan Fokkink Vrije Universiteit Amsterdam, Netherlands
Daniele Gorla University of Rome “La Sapienza”, Italy
Artem Khyzha Tel Aviv University, Israel
Barbara König University of Duisburg-Essen, Germany
Bas Luttik Eindhoven University of Technology, Netherlands
Stephan Merz Inria, France
Roland Meyer TU Braunschweig, Germany
Mohammadreza Mousavi University of Leicester, UK
Thomas Neele Royal Holloway, University of London, UK
Ana-Maria Oprescu University of Amsterdam, Netherlands
Catuscia Palamidessi Inria, France
Kirstin Peters TU Darmstadt, Germany
Anna Philippou University of Cyprus, Cyprus
Jorge A. Pérez University of Groningen, Netherlands
Anne Remke WWU Münster, Germany
Kristin Yvonne Rozier Iowa State University, USA
Cristina Seceleanu Mälardalen University, Sweden
Maurice H. ter Beek ISTI-CNR, Italy
Simone Tini University of Insubria, Italy
Rob van Glabbeek Data61 - CSIRO, Australia
Björn Victor Uppsala University, Sweden
Georg Weissenbacher Vienna University of Technology, Austria
Tim A. C. Willemse Eindhoven University of Technology, Netherlands

Additional Reviewers

Backeman, Peter
Bunte, Olav
Crafa, Silvia
Genest, Blaise
Helfrich, Martin
Horne, Ross
Jehl, Leander
Kempa, Brian
Khakpour, Narges
Labella, Anna

Mallet, Frederic
Mazzanti, Franco
Mennicke, Stephan
Montesi, Fabrizio
Neves, Renato
Padovani, Luca
Ponce-De-Leon, Hernan
Ryan, Megan
van den Heuvel, Bas
Wijs, Anton

Contents

Full Papers

On Bidirectional Runtime Enforcement . 3
Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir

A Multi-agent Model for Polarization Under Confirmation Bias
in Social Networks . 22

Mário S. Alvim, Bernardo Amorim, Sophia Knight, Santiago Quintero,
and Frank Valencia

A Formalisation of SysML State Machines in mCRL2. 42
Mark Bouwman, Bas Luttik, and Djurre van der Wal

How Adaptive and Reliable is Your Program? . 60
Valentina Castiglioni, Michele Loreti, and Simone Tini

Branching Place Bisimilarity: A Decidable Behavioral Equivalence
for Finite Petri Nets with Silent Moves . 80

Roberto Gorrieri

Prioritise the Best Variation . 100
Wen Kokke and Ornela Dardha

Towards Multi-layered Temporal Models: A Proposal to Integrate Instant
Refinement in CCSL . 120

Mathieu Montin and Marc Pantel

A Case Study on Parametric Verification of Failure Detectors. 138
Thanh-Hai Tran, Igor Konnov, and Josef Widder

p with Leftovers: A Mechanisation in Agda . 157
Uma Zalakain and Ornela Dardha

Short and Journal-First Papers

Supervisory Synthesis of Configurable Behavioural Contracts
with Modalities. 177

Davide Basile, Maurice H. ter Beek, Pierpaolo Degano, Axel Legay,
Gian-Luigi Ferrari, Stefania Gnesi, and Felicita Di Giandomenico

Off-the-Shelf Automated Analysis of Liveness Properties for Just
Paths: (Extended Abstract) . 182

Mark Bouwman, Bas Luttik, and Tim Willemse

Towards a Spatial Model Checker on GPU . 188
Laura Bussi, Vincenzo Ciancia, and Fabio Gadducci

Formal Verification of HotStuff . 197
Leander Jehl

Tutorials

Better Late Than Never or: Verifying Asynchronous Components
at Runtime . 207

Duncan Paul Attard, Luca Aceto, Antonis Achilleos,
Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen

Tutorial: Designing Distributed Software in mCRL2 226
Jan Friso Groote and Jeroen J. A. Keiren

Author Index . 245

xii Contents

Full Papers

On Bidirectional Runtime Enforcement

Luca Aceto1,2 , Ian Cassar2,3 , Adrian Francalanza3(B) ,
and Anna Ingólfsdóttir2

1 Gran Sasso Science Institute, L’Aquila, Italy
2 Department of Computer Science, ICE-TCS,

Reykjav́ık University, Reykjav́ık, Iceland
3 Department of Computer Science, University of Malta, Msida, Malta

adrian.francalanza@um.edu.mt

Abstract. Runtime enforcement is a dynamic analysis technique that
instruments a monitor with a system in order to ensure its correctness as
specified by some property. This paper explores bidirectional enforcement
strategies for properties describing the input and output behaviour of a
system. We develop an operational framework for bidirectional enforce-
ment and use it to study the enforceability of the safety fragment of
Hennessy-Milner logic with recursion (sHML). We provide an automated
synthesis function that generates correct monitors from sHML formulas,
and show that this logic is enforceable via a specific type of bidirectional
enforcement monitors called action disabling monitors.

1 Introduction

Runtime enforcement (RE) [18,32] is a dynamic verification technique that uses
monitors to analyse the runtime behaviour of a system-under-scrutiny (SuS) and
transform it in order to conform to some correctness specification. The seminal
work in RE [11,27,32,33,37] models the behaviour of the SuS as a trace of
arbitrary actions. Crucially, it assumes that the monitor can either suppress
or replace any trace action and, whenever possible, insert additional actions
into the trace. This work has been effectively used to implement unidirectional
enforcement approaches [5,9,19,28] that monitor the trace of outputs produced
by the SuS as illustrated by Fig. 1(a). In this setup, the monitor is instrumented
with the SuS to form a composite system (represented by the dashed enclosure in
Fig. 1) and is tasked with transforming the output behaviour of the SuS to ensure
its correctness. For instance, an erroneous output β of the SuS is intercepted by

This work was partly supported by the projects “TheoFoMon: Theoretical Foun-
dations for Monitorability” (nr.163406-051),“Developing Theoretical Foundations for
Runtime Enforcement” (nr.184776-051) and “MoVeMnt: Mode(l)s of Verification and
Monitorability” (nr.217987-051) of the Icelandic Research Fund, by the Italian MIUR
project PRIN 2017FTXR7S IT MATTERS “Methods and Tools for Trustworthy Smart
Systems”, by the EU H2020 RISE programme under the Marie Sk�lodowska-Curie
grant agreement nr. 778233, and by the Endeavour Scholarship Scheme (Malta), part-
financed by the European Social Fund (ESF) - Operational Programme II – 2014–2020.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 3–21, 2021.
https://doi.org/10.1007/978-3-030-78089-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_1&domain=pdf
http://orcid.org/0000-0002-2197-3018
http://orcid.org/0000-0002-5845-3753
http://orcid.org/0000-0003-3829-7391
http://orcid.org/0000-0001-8362-3075
https://doi.org/10.1007/978-3-030-78089-0_1

4 L. Aceto et al.

the monitor and transformed into β′, to stop the error from propagating to the
surrounding environment.

Fig. 1. Enforcement instrumentation setups.

Despite its merits, unidirectional enforcement lacks the power to enforce
properties involving the input behaviour of the SuS. Arguably, these properties
are harder to enforce: unlike outputs, inputs are instigated by the environment
and not the SuS itself, meaning that the SuS possesses only partial control over
them. Moreover, even when the SuS can control when certain inputs can be
supplied (e.g., by opening a communication port, or by reading a record from a
database etc.), the environment still determines the provided payload.

Broadly, there are two approaches to enforce bidirectional properties at run-
time. Several bodies of work employ two monitors attached at the output side
of each (diadic) interacting party [12,17,26]. As shown in Fig. 1(b), the extra
monitor is attached to the environment to analyse its outputs before they are
passed on as inputs to the SuS. While this approach is effective, it assumes that
a monitor can actually be attached to the environment (which is often inacces-
sible).

By contrast, Fig. 1(c) presents a less explored bidirectional enforcement app-
roach where the monitor analyses the entire behaviour of the SuS without the
need to instrument the environment. The main downside of this alternative setup
is that it enjoys limited control over the SuS’s inputs. As we already argued, the
monitor may be unable to enforce a property that could be violated by an input
action with an invalid payload value. In other cases, the monitor might need to
adopt a different enforcement strategy to the ones that are conventionally used
for enforcing output behaviour in a unidirectional one.

This paper explores how existing monitor transformations—namely, sup-
pressions, insertions and replacements—can be repurposed to work for bidirec-
tional enforcement, i.e., the setup in Fig. 1(c). Since inputs and outputs must
be enforced differently, we find it essential to distinguish between the monitor’s
transformations and their resulting effect on the visible behaviour of the compos-
ite system. This permits us to study the enforceability of properties defined via
the safety subset sHML of the well-studied branching-time logic μHML [8,31,36]
(a reformulation of the modal μ-calculus [29]). Our contributions are:

(i) A general instrumentation framework for bidirectional enforcement (Fig. 4)
that is parametrisable by any system whose behaviour can be modelled as
a labelled transition system. The framework subsumes the one presented in
previous work [5] and differentiates between input and output actions.

On Bidirectional Runtime Enforcement 5

Fig. 2. The syntax and semantics for sHML, the safety fragment of µHML.

(ii) A novel definition formalising what it means for a monitor to adequately
enforce a property in a bidirectional setting (Definitions 2 and 6). These
definitions are parametrisable with respect to an instrumentation relation,
an instance of which is given by our enforcement framework of Fig. 4.

(iii) A new result showing that the subclass of disabling monitors suffices to
bidirectionally enforce any property expressed as an sHML formula (The-
orem 1). A by-product of this result is a synthesis function (Definition 8)
that generates a disabling monitor for any sHML formula.

Full proofs and additional details can to be found at [6,13].

2 Preliminaries

The Model. We assume a countable set of communication ports a, b, c ∈Port,
a set of values v, w ∈Val, and partition the set of actions Act into inputs
a?v ∈ iAct, and outputs a!v ∈oAct where iAct∪oAct=Act. Systems are
described as labelled transition systems (LTSs); these are triples 〈Sys,Act ∪
{τ} ,→〉 consisting of a set of system states, s, r, q ∈Sys, a set of visible
actions, α, β ∈Act, along with a distinguished silent action τ /∈Act (where
μ∈Act∪ {τ}), and a transition relation, −→ ⊆ (Sys × (Act ∪ {τ}) × Sys).
We write s

μ−−→ r in lieu of (s, μ, r) ∈ →, and s
α=⇒ r to denote weak transitions

representing s(τ−→)∗· α−−→ r where r is called the α-derivative of s. For con-
venience, we use the syntax of the regular fragment of value-passing CCS [23]
to concisely describe LTSs. Traces t, u ∈ Act∗ range over (finite) sequences
of visible actions. We write s

t=⇒ r to denote a sequence of weak transitions
s

α1==⇒ . . .
αn==⇒ r where t = α1 . . . αn for some n ≥ 0; when t = ε, s

ε=⇒ r means
s

τ−→*r. Additionally, we represent system runs as explicit traces that include
τ -actions, tτ , uτ ∈ (Act∪ {τ})∗ and write s

μ1...μn−−−−−→ r to denote a sequence of
strong transitions s

μ1−−→ . . .
μn−−→ r. The function sys(tτ) returns a canonical

system that exclusively produces the sequence of actions defined by tτ . E.g.,
sys(a?3.τ.a!5) produces the process a?x.τ.a!5.nil. We consider states in our sys-
tem LTS modulo the classic notion of strong bisimilarity [23,38] and write s ∼ r
when states s and r are bisimilar.

6 L. Aceto et al.

The Logic. The behavioral properties we consider are described using sHML [7,
22], a subset of the value passing μHML [24,36] that uses symbolic actions of the
form (p,c) consisting of an action pattern p and a condition c. Symbolic actions
abstract over concrete actions using data variables x, y, z ∈ DVar that occur
free in the constraint c or as binders in the pattern p. Patterns are subdivided
into input (x)?(y) and output (x)!(y) patterns where (x) binds the information
about the port on which the interaction has occurred, whereas (y) binds the
payload; bv(p) denotes the set of binding variables in p whereas fv(c) represents
the set of free variables in condition c. We assume a (partial) matching func-
tion match(p, α) that (when successful) returns a substitution σ mapping bound
variables in p to the corresponding values in α; by replacing every occurrence
(x) in p with σ(x) we get the matched action α. The filtering condition, c, is
evaluated wrt. the substitution returned by successful matches, written as cσ⇓v
where v ∈ {true, false}.

Whenever a symbolic action (p, c) is closed, i.e., fv(c)⊆bv(p), it denotes
the set of actions �(p, c)� def= { α ∃σ · match(p, α) = σ and cσ⇓ true }. Following
standard value-passing LTS semantics [23,34], our systems have no control over
the data values supplied via inputs. Accordingly, we assume a well-formedness
constraint where the condition c of an input symbolic action, ((x)?(y),c), can-
not restrict the values of binder y, i.e., y /∈ fv(c). As a shorthand, whenever a
condition in a symbolic action equates a bound variable to a specific value we
embed the equated value within the pattern, e.g., ((x)!(y), x= a ∧ y = 3) and
((x)?(y),x = a) become (a!3,true) and (a?(y),true); we also elide true conditions,
and just write (a!3) and (a?(y)) in lieu of (a!3,true) and (a?(y),true).

Figure 2 presents the sHML syntax for some countable set of logical vari-
ables X,Y ∈ LVar. The construct

∧
i∈I ϕi describes a compound conjunction,

ϕ1∧ . . . ∧ϕn, where I = {1, .., n} is a finite set of indices. The syntax also permits
recursive properties using greatest fixpoints, max X.ϕ, which bind free occur-
rences of X in ϕ. The central construct is the (symbolic) universal modal opera-
tor, [p, c]ϕ, where the binders bv(p) bind the free data variables in c and ϕ. We
occasionally use the notation () to denote “don’t care” binders in the pattern
p, whose bound values are not referenced in c and ϕ. We also assume that all
fixpoint variables, X, are guarded by modal operators.

Formulas in sHML are interpreted over the system powerset domain where
S∈P(Sys). The semantic definition of Fig. 2, �ϕ, ρ�, is given for both open and
closed formulas. It employs a valuation from logical variables to sets of states,
ρ ∈ (LVar → P(Sys)), which permits an inductive definition on the structure
of the formulas; ρ′ = ρ[X �→ S] denotes a valuation where ρ′(X) = S and
ρ′(Y) = ρ(Y) for all other Y �= X. The only non-standard case is that for the
universal modality formula, [p, c]ϕ, which is satisfied by any system that either
cannot perform an action α that matches p while satisfying condition c, or for
any such matching action α with substitution σ, its derivative state satisfies the
continuation ϕσ. We consider formulas modulo associativity and commutativity
of ∧, and unless stated explicitly, we assume closed formulas, i.e., without free
logical and data variables. Since the interpretation of a closed ϕ is independent

On Bidirectional Runtime Enforcement 7

of the valuation ρ we write �ϕ� in lieu of �ϕ, ρ�. A system s satisfies formula ϕ
whenever s∈ �ϕ�, and a formula ϕ is satisfiable, when �ϕ� �= ∅.

We find it convenient to define the function after, describing how an sHML
formula evolves in reaction to an action μ. Note that, for the case ϕ = [p, c]ψ,
the formula returns ψσ when μ matches successfully the symbolic action (p, c)
with σ, and tt otherwise, to signify a trivial satisfaction. We lift the after
function to (explicit) traces in the obvious way, i.e., after(ϕ, tτ) is equal to
after(after(ϕ, μ), uτ) when tτ = μuτ and to ϕ when tτ = ε. Our definition
of after is justified vis-a-vis the semantics of Fig. 2 via Proposition 1; it will play
a role in defining our notion of enforcement in Sect. 4.

Definition 1. We define the function after : (sHML×Act∪{τ})→ sHML as:

after(ϕ,α) def=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ if ϕ ∈ {
tt,ff

}

after(ϕ′{ϕ/X}, α) if ϕ = max X.ϕ′
∧

i∈I after(ϕi, α) if ϕ =
∧

i∈I ϕi

ψσ if ϕ = [p, c]ψ and ∃σ·(match(p, α)=σ ∧ cσ⇓ true)
tt if ϕ = [p, c]ψ and �σ·(match(p, α)=σ ∧ cσ⇓ true)

after(ϕ, τ) def= ϕ �

Proposition 1. For every system state s, formula ϕ and action α, if s∈ �ϕ�

and s
α=⇒s′ then s′ ∈ �after(ϕ,α)�. ��

Example 1. The safety property ϕ1 repeatedly requires that every input request
that is made on a port that is not b, cannot be followed by another input on the
same port in succession. However, following this input it allows a single output
answer on the same port in response, followed by the logging of the serviced
request by outputting a notification on a dedicated port b. We note how the
channel name bound to x is used to constrain sub-modalities. Similarly, values
bound to y1 and y2 are later referenced in condition y3 = (log, y1, y2).

ϕ1
def= max X.[((x)?(y1), x�=b)]([(x?())]ff ∧ [(x!(y2))]ϕ′

1)

ϕ′
1

def= ([(x!())]ff ∧ [(b!(y3), y3=(log, y1, y2))]X)

Consider the systems sa, sb and sc (where scls
def= (b?z.if z=cls then nil else X)).

sa
def= rec X.((a?x.y := ans(x).a!y.b!(log, x, y).X) + scls) sc

def= a?y.sa

sb
def= rec X.((a?x.y := ans(x).a!y.(a!y.b!(log, x, y).sa + b!(log, x, y).X)) + scls)

sa implements a request-response server that repeatedly inputs values (for some
domain Val) on port a, a?x, for which it internally computes an answer and
assigns it to the data variable y, y := ans(x). It then outputs the answer on
port a in response to each request, a!y, and finally logs the serviced request by
outputting the triple (log, x, y) on port b, b!(log, x, y). It terminates whenever it
inputs a close request cls from port b, i.e., b?z when z = cls.

8 L. Aceto et al.

Fig. 3. Bidirectional enforcement via suppression, insertion and replacement.

Systems sb and sc are similar to sa but define additional behaviour: sc
requires a startup input, a?y, before behaving as sa, whereas sb occasionally
provides a redundant (underlined) answer prior to logging a serviced request.
Using the semantics of Fig. 2, one can verify that sa ∈ �ϕ1�, sc /∈ �ϕ1� because

of sc
a?v1.a?v2======⇒, and sb /∈ �ϕ1� since we have sb

a?v1.a!ans(v1).a!ans(v1)===============⇒ (for some
values v1 and v2). �

3 A Bidirectional Enforcement Model

Bidirectional enforcement seeks to transform the entire (visible) behaviour of
the SuS in terms of input and output actions; this contrasts with unidirectional
approaches that only modify output traces. In this richer setting, it helps to
differentiate between the transformations performed by the monitor (i.e., inser-
tions, suppressions and replacements), and the way they can be used to affect
the resulting behaviour of the composite system. In particular, we say that an
action that can be performed by the SuS has been disabled when it is no longer
visible in the resulting composite system (consisting of the SuS and the moni-
tor). Dually, a visible action is enabled when the composite system can execute it
while the SuS cannot. SuS actions are adapted when either their payload differs
from that of the composite system, or when the action is rerouted through a
different port.

We argue that implementing action enabling, disabling and adaptation dif-
fers according to whether the action is an input or an output; see Fig. 3. Enforc-
ing actions instigated by the SuS—such as outputs—is more straightforward.
Figure 3(a), (b) and (c) resp. state that disabling an output can be achieved by
suppressing it, adapting an output amounts to replacing the payload or redirect-
ing it to a different port, whereas output enabling can be attained via an inser-
tion. However, enforcing actions instigated by the environment such as inputs

On Bidirectional Runtime Enforcement 9

is harder. In Fig. 3(d), we propose to disable an input by concealing the input
port. Since this may block the SuS from progressing, the instrumented monitor
may additionally insert a default input to unblock the system, Fig. 3(e). Input
adaptation, Fig. 3(f), is also attained via a replacement (applied in the opposite
direction to the output case). Inputs can also be enabled (when the SuS is unable
to carry them out), Fig. 3(g), by having the monitor accept the input in question
and then suppress it: from the environment’s perspective, the input would be
effected.

Syntax

m, n ∈ Trn ::= (p, c, p).m | i∈I mi (I is a finite index set) | recX.m | X

Dynamics

eSel
mj

γ γ−−−−→ nj

i∈I mi
γ γ−−−−→ nj

j∈I eRec
m{rec X.m/X} γ γ−−−−→ n

recX.m
γ γ−−−−→ n

eTrn
match(p, γ) = σ cσ ⇓ true γ =πσ

(p, c, π).m
γ γ−−−−→ mσ

Instrumentation

biTrnO s
b!w−−−→ s m

(b!w) (a!v)−−−−−−−→ n

m[s] a!v−−→ n[s]
biTrnI m

(a?v) (b?w)−−−−−−−−→ n s
b?w−−−→ s

m[s] a?v−−−→ n[s]

biDisO s
a!v−−→ s m

(a!v) •−−−−−→ n

m[s] τ−−→ n[s]
biDisI m

• (a?v)−−−−−−→ n s
a?v−−−→ s

m[s] τ−−→ n[s]

biEnO m
• (a!v)−−−−−→ n

m[s] a!v−−→ n[s]
biEnI m

(a?v) •−−−−−−→ n

m[s] a?v−−−→ n[s]
biAsy s

τ−−→ s

m[s] τ−−→ m[s]

biDef
s

a!v−−→ s m
a!v−−→ ∀ b∈Port, w∈Val · m

• b!w−−−−→
m[s] a!v−−→ id[s]

Fig. 4. A bidirectional instrumentation model for enforcement monitors.

Figure 4 presents an operational model for the bidirectional instrumentation
proposal of Fig. 3 in terms of (symbolic) transducers1. Transducers, m,n∈Trn,
are monitors that define symbolic transformation triples, (p,c,π), consisting of an
action pattern p, condition c, and a transformation action π. Conceptually, the
action pattern and condition determine the range of system (input or output)

1 These transducers were originally introduced in [5] for unidirectional enforcement.

10 L. Aceto et al.

actions upon which the transformation should be applied, while the transforma-
tion action specifies the transformation that should be applied. The symbolic
transformation pattern p is an extended version of those definable in symbolic
actions, that may also include •; when p = •, it means that the monitor can act
independently from the system to insert the action specified by the transfor-
mation action. Transformation actions are possibly open actions (i.e., actions
with possibly free variable such as x?v or a!x) or the special action •; the lat-
ter represents the suppression of the action specified by p. We assume a well-
formedness constraint where, for every (p, c, π).m, p and π cannot both be •, and
when neither is, they are of the same type i.e., an input (resp. output) pattern
and action. Examples of well-formed symbolic transformations are (•,true,a?v),
((x)!(y),true,•) and ((x)!(y),true,a!v).

The monitor transition rules in Fig. 4 assume closed terms, i.e., every
transformation-prefix transducer of the form (p, c, π).m must obey the constraint(
fv(c)∪ fv(π)∪ fv(m)

) ⊆bv(p) and similarly for recursion variables X and
rec X.m. Each transformation-prefix transducer yields an LTS with labels of the

form γ�γ′, where γ, γ′ ∈ (Act∪ {•}). Intuitively, transition m
γ�γ′

−−−−→ n denotes
the way that a transducer in state m transforms the action γ into γ′ while transi-
tioning to state n. The transducer action α�β represents the replacement of α by
β, α�α denotes the identity transformation, whereas α�• and •�α respectively
denote the suppression and insertion transformations of action α. The key tran-
sition rule in Fig. 4 is eTrn. It states that the transformation-prefix transducer
(p, c, π).m transforms action γ into a (potentially) different action γ′ and reduces
to state mσ, whenever γ matches pattern p, i.e., match(p, γ)=σ, and satisfies con-
dition c, i.e., cσ ⇓ true. Action γ′ results from instantiating the free variables in π
as specified by σ, i.e., γ′=πσ. The remaining rules for selection (eSel) and recur-
sion (eRec) are standard. We employ the shorthand notation m �γ−−→ to mean

�γ′, n such that m
γ�γ′
−−−→n. Moreover, for the semantics of Fig. 4, we can encode

the identity monitor, id, as rec Y.((x)!(y), true, x!y).Y +((x)?(y), true, x?y).Y . As
a shorthand notation, we write (p, c).m instead of (p, c, π).m when all the bind-
ing occurrences (x) in p correspond to free occurrences x in π, thus denoting an
identity transformation. Similarly, we elide c whenever c = true.

The first contribution of this work lies in the new instrumentation relation
of Fig. 4, linking the behaviour of the SuS s with that of a monitor m: the term
m[s] denotes their composition as a monitored system. Crucially, the instrumen-
tation rules in Fig. 4 give us a semantics in terms of an LTS over the actions
Act∪ {τ}, in line with the LTS semantics of the SuS. Following Fig. 3(b), rule
biTrnO states that if the SuS transitions with an output b!w to s′ and the
transducer can replace it with a!v and transition to n, the adapted output can be
externalised so that the composite system m[s] transitions over a!v to n[s′]. Rule
biDisO states that if s performs an output a!v that the monitor can suppress, the
instrumentation withholds this output and the composite system silently tran-
sitions; this amounts to action disabling as outlined in Fig. 3(a). Rule biEnO is
dual, and it enables the output a!v on the SuS as outlined in Fig. 3(c): it aug-

On Bidirectional Runtime Enforcement 11

ments the composite system m[s] with an output a!v whenever m can insert a!v,
independently of the behaviour of s.

Rule biDef is analogous to standard rules for premature monitor termina-
tion [1,20–22], and accounts for underspecification of transformations. We, how-
ever, restrict defaulting (termination) to output actions performed by the SuS
exclusively, i.e., a monitor only defaults to id when it cannot react to or enable
a system output. By forbidding the monitor from defaulting upon unspecified
inputs, the monitor is able to block them from becoming part of the composite
system’s behaviour. Hence, any input that the monitor is unable to react to, i.e.,
m �a?v�γ−−−−−→, is considered as being invalid and blocked by default. This technique
is thus used to implement Fig. 3(d). To avoid disabling valid inputs unnecessar-
ily, the monitor must therefore explicitly define symbolic transformations that
cover all the valid inputs of the SuS. Note, that rule biAsy still allows the SuS to
silently transition independently of m. Following Fig. 3(f), rule biTrnI adapts
inputs, provided the SuS can accept the adapted input. Similarly, rule biEnI
enables an input on a port a as described in Fig. 3(g): the composite system
accepts the input while suppressing it from the SuS. Rule biDisI allows the
monitor to generate a default input value v and forward it to the SuS on a port
a, thereby unblocking it; externally, the composite system silently transitions to
some state, following Fig. 3(e).

Example 2. Consider the following action disabling transducer md, that repeat-
edly disables every output performed by the system via the branch (()!(), •).Y .
In addition, it limits inputs to those on port b via the input branch (b?()).Y ;
inputs on other ports are disabled since none of the relevant instrumentation
rules in Fig. 4 can be applied.

md
def= rec Y.(b?()).Y + (()!(), •).Y

When instrumented with sc from Example 1, md blocks its initial input, i.e.,
we have md[sc] �α−−→ for any α. In the case of sb, the composite system md[sb]
can only input requests on port b, such as the termination request md[sb] b?cls−−−→
md[nil].

mdt
def= rec X.(((x)?(y1), x�=b).(((x1)?(), x1 �= x).id+(x!(y2)).m′

dt)+ (b?()).id)

m′
dt

def= (x!(),•).md + (()?()).id + (b!(y3), y3=(log, y1, y2)).X

By defining branch (b?()).id, the more elaborate monitor mdt (above) allows the
SuS to immediately input on port b (possibly carrying a termination request).
At the same time, the branch prefixed by ((x)?(y1), x�=b) permits the SuS to
input the first request via any port x �= b, subsequently blocking inputs on the
same port x (without deterring inputs on other ports) via the input branch
((x1)?(), x1 �= x).id. In conjunction to this branch, mdt defines another branch
(x!(y2)).m′

dt to allow outputs on the port bound to variable x. The continuation
monitor m′

dt then defines the suppression branch (x!(),•).md by which it dis-
ables anyredundant response that is output following the first one. Since it also

12 L. Aceto et al.

defines branches (b!(y3), y3=(log, y1, y2)).X and (()?()).id, it does not affect log
events or further inputs that occur immediately after the first response.

When instrumented with system sc from Example 1, mdt allows the compos-
ite system to perform the first input but then blocks the second one, permitting
only input requests on channel b, e.g., mdt[sc]

a?v−−→ · b?cls−−−→ id[nil]. It also disables
the first redundant response of system sb while transitioning to md, which pro-
ceeds to suppress every subsequent output (including log actions) while blocking
every other port except b, i.e., mdt[sb] a?v−−−→ · a!w==⇒ · τ−→ md[b!(log, v, w).sa]

τ−→
md[sa] �a?v−−−→ (for every port a where a�=b and any value v). Rule iDef allows
it to default when handling unspecified outputs, e.g., for system b!(log, v, w).sa
the composite system can still perform mdt[b!(log, v, w).sa]

b!(log,v,w)−−−−−−→ id[sa].

mdet
def= rec X.(((x)?(y1), x�=b).m′

det + (b?()).id)

m′
det

def= rec Y1.(•, x?vdef).Y1 + (x!(y2)).m′′
det + ((x1)?(), x1 �= x).id

m′′
det

def= rec Y2.
(
(x!(), x �= b,•).Y2+(b!(y3), y3=(log, y1, y2)).X+(()?()).id

)

Monitor mdet (above) is similar to mdt but instead employs a loop of suppres-
sions (underlined in m′′

det) to disable further responses until a log or termination
input is made. When composed with sb, it permits the log action to go through:

mdet[sb] a?v−−−→ · a!w==⇒ · τ−→ m′′
det[b!(log, v, w).sb]

b!(log,v,w)−−−−−−−→ mdet[sb].

mdet also defines a branch prefixed by the insertion transformation (•, x?vdef)
(underlined in m′

det) where vdef is a default input domain value. This permits
the instrumentation to silently unblock the SuS when this is waiting for a request
following an unanswered one. In fact, when instrumented with sc, mdet not only
forbids invalid input requests, but it also (internally) unblocks sc by supplying
the required input via the added insertion branch. This allows the composite sys-
tem to proceed, as shown below (where s′

a
def= y := ans(vdef).a!y.b!(log, vdef, y).sa):

mdet[sc]
a?v−−−→ rec Y.((•, a?vdef).Y + (a!(y2)).m′′

det + (b?()).id)[sa]
τ−−−→ rec Y.((•, a?vdef).Y + (a!(y2)).m′′

det + (b?()).id)[s′
a]

a!ans(vdef).b!(log,vdef,y)===============⇒ mdet[sa] �

Although in this paper we mainly focus on action disabling monitors, using
our model one can also define action enabling and adaptation monitors.

Example 3. Consider now transducers me and ma below:

me
def= ((x)?(y), x�=b, •).(•, x!ans(y)).(•, b!(log, y, ans(y))).id

ma
def= rec X.(b?(y), a?y).X + (a!(y), b!y).X.

Once instrumented, me first uses a suppression to enable an input on any port
x �= b (but then gets discarded). It then automates a response by inserting an

On Bidirectional Runtime Enforcement 13

answer followed by a log action. Concretely, when composed with r ∈ {sb, sc}
from Example 1, the execution of the composite system can only start as follows,
for some channel name c �= b, values v and w = ans(v):

me[r]
c?v−−→ (•, c!w).(•, b!(log, v, w)).id[r] c!w==⇒ (•, b!(log, v, w)).id[r]

b!(log,v,w)−−−−−−→ id[r].

By contrast, ma uses action adaptation to redirect the inputs and outputs from
the SuS through port b: it allows the composite system to exclusively input values
on port b forwarding them to the SuS on port a, and dually allowing outputs
from the SuS on port a to rerout them to port b. As a result, a composite system

can only communicate on port b. E.g., ma[sc]
b?v1−−−→ ma[sa]

b?v2.b!w2.b!(log,v2,w2)==============⇒
ma[sa] and ma[sb]

b?v1.b!w1.b!(log,v1,w1)==============⇒ ma[sb]. �

4 Enforcement

We are concerned with extending the enforceability result obtained in prior
work [5] to the extended setting of bidirectional enforcement. The enforceability
of a logic rests on the relationship between the semantic behaviour specified by
the logic on the one hand, and the ability of the operational mechanism (that of
Sect. 3 in this case) to enforce the specified behaviour on the other.

Definition 2 (Enforceability [5]). A formula ϕ is enforceable iff there exists
a transducer m such that m adequately enforces ϕ. A logic L is enforceable iff
every formula ϕ ∈ L is enforceable. �

Since we have limited control over the SuS that a monitor is composed with,
“m adequately enforces ϕ” should hold for any (instrumentable) system. In [5]
we stipulate that any notion of adequate enforcement should at least entail
soundness.

Definition 3 (Sound Enforcement [5]). Monitor m soundly enforces a sat-
isfiable formula ϕ, denoted as senf(m,ϕ), iff for every state s∈Sys, it is the
case that m[s]∈ �ϕ�. �

Example 4. Although showing that a monitor soundly enforces a formula should
consider all systems, we give an intuition based on sa, sb, sc for formula ϕ1 from
Example 1 (restated below) where sa ∈ �ϕ1� (hence �ϕ1� �= ∅) and sb, sc /∈ �ϕ1�.

ϕ1
def= max X.[((x)?(y1), x�=b)]([(x?())]ff ∧ [(x!(y2))]ϕ′

1)

ϕ′
1

def= ([(x!())]ff ∧ [(b!(y3), y3=(log, y1, y2))]X)

Recall the transducers me, ma, md, mdt and mdet from Example 2:

– me is unsound for ϕ1. When composed with sb, it produces two consec-

utive output replies (underlined), meaning that me[sb]/∈�ϕ1�: me[sb]
t1e==⇒

id[sb] where t1e
def= c?v1.c!ans(v1).b!(log, v1, ans(v1)).a?v2.a!w2.a!w2. Similarly,

14 L. Aceto et al.

me[sc]/∈�ϕ1� since the me[sc] executes the erroneous trace with two consecu-
tive inputs on port a (underlined): c?v1.c!ans(v1).b!(log, v1, ans(v1)).a?v2.a?v3.
This demonstrates that me[sc] can still input two consecutive requests on port
a (underlined). Either one of these counter examples disproves senf(me, ϕ1).

– ma turns out to be sound for ϕ1 because once instrumented, the resulting
composite system is adapted to only interact on port b. In fact we have
ma[sa],ma[sb],ma[sc]∈�ϕ1�. Monitors md, mdt and mdet are also sound for
ϕ1. Whereas, md prevents the violation of ϕ1 by also blocking all input ports
except b, mdt and mdet achieve the same goal by disabling the invalid con-
secutive requests and answers that occur on a specific port (except b). �

By itself, sound enforcement is a weak criterion because it does not regulate
the extent to which enforcement is applied. More specifically, although md from
Example 2 is sound, it needlessly modifies the behaviour of sa even though sa
satisfies ϕ1: by blocking the initial input of sa, md causes it to block indefinitely.
The requirement that a monitor should not modify the behaviour of a system
that satisfies the property being enforced can be formalised using a transparency
criterion.

Definition 4 (Transparent Enforcement [5]). A monitor m transparently
enforces a formula ϕ, tenf(m,ϕ), iff for all s ∈ Sys, s∈�ϕ� implies m[s] ∼ s. ��
Example 5. As argued earlier, sa suffices to disprove tenf(md, ϕ1). Monitor
ma from Example 3 also breaches Definition 4: although sa ∈ �ϕ1�, we have
ma[sa]�∼sa since for any value v and w, sa

b?v−−−→ · b!w−−−→ but ma[sa]
b?v−−−→ · �b!w−−−→.

By contrast, monitors mdt and mdet turn out to satisfy Definition 4 as they only
intervene when it becomes apparent that a violation will occur. For instance, they
only disable inputs on a specific port, as a precaution, following an unanswered
request on the same port, and they only disable the redundant responses that
are produced after the first response to a request. �

By some measures, Definition 4 is still a relatively weak requirement since
it only limits transparency requirements to well-behaved systems, and disre-
gards enforcement behaviour for systems that violate a property. For instance,
consider monitor mdt from Example 2 and system sb from Example 1. At
runtime sb can exhibit the following invalid behaviour: sb

t1==⇒ b!(log, v, w).sa
where t1

def= a?v.a!w.a!w. In order to rectify this violating behaviour wrt. for-
mula ϕ1, it suffices to use a monitor that disables one of the responses in t1,
i.e., a!w. Following this disabling, no further modifications are required since
the SuS reaches a state that does not violate the remainder of the formula ϕ1,
i.e., b!(log, v, w).sa∈�after(ϕ1, t

′
1)�. However, when instrumented with mdt, this

monitor does not only disable the invalid response, namely mdt[sb] a?v.a!w.=====⇒
md[b!(log, v, w).sa], but subsequently disables every other action by reaching
md, md[b!(log, v, w).sa]

τ−→ md[sa]. To this end, we introduce the novel require-
ment of eventual transparency.

On Bidirectional Runtime Enforcement 15

Definition 5 (Eventually Transparent Enforcement). Monitor m
enforces property ϕ in an eventually transparent way, evtenf(m,ϕ), iff for all
systems s, s′, traces t and monitors m′, m[s] t=⇒ m′[s′] and s′ ∈ �after(ϕ, t)�
imply m′[s′] ∼ s′. �

Example 6. We have already argued why mdt does not adhere to eventual
transparency via the counterexample sb. This is not the case for mdet.
Although the universal quantification over all systems and traces make
it hard to prove this property, we get an intuition of why this is the
case from sb: when mdet[sb] a?v1.a!w1======⇒ · τ−→ m′′

det[b!(log, v1, w1).sa] we
have b!(log, v1, w1).sa ∈ �after(ϕ1, a?v1.a!w1)� and that m′′

det[b!(log, v1, w1).sa] ∼
b!(log, v1, w1).sa. �

Corollary 1. For all monitors m∈Trn and properties ϕ∈sHML, evtenf(m,ϕ)
implies tenf(m,ϕ). ��

Along with Definition 3 (soundness), Definition 5 (eventual transparency)
makes up our definition for “m (adequately) enforces ϕ”. From Corollary 1, it
follows that is definition is stricter than the one given in [5].

Definition 6 (Adequate Enforcement). A monitor m (adequately) enforces
property ϕ iff it adheres to (i) soundness, Definition 3, and (ii) eventual trans-
parency, Definition 5. �

5 Synthesising Action Disabling Monitors

Although Definition 2 enables us to rule out erroneous monitors that purport to
enforce a property, the universal quantifications over all systems in Definitions
3 and 5 make it difficult to prove that a monitor does indeed enforce a property
correctly in a bidirectional setting. Establishing that a formula is enforceable,
Definition 6, involves a further existential quantification over a monitor that
enforces it correctly. Moreover, establishing the enforceability of a logic entails
yet another universal quantification, on all the formulas in the logic.

We address these problems through an automated synthesis procedure that
produces an enforcement monitor for every sHML formula. We also show that
the synthesised monitors are correct, according to Definition 6. For a unidirec-
tional setting, it has been shown that monitors that only administer omissions
are expressive enough to enforce safety properties [5,19,25,32]. Analogously, for
our bidirectional case, we restrict ourselves to action disabling monitors and
show that they can enforce any property expressed in terms of sHML.

Our synthesis procedure is compositional, meaning that the monitor synthesis
of a composite formula is defined in terms of the enforcement monitors gener-
ated from its constituent sub-formulas. Compositionality simplifies substantially
our correctness analysis of the generated monitors (e.g., we can use standard
inductive proof techniques). In order to ease a compositional definition, our syn-
thesis procedure is defined in terms of a variant of sHML called sHMLnf: it is

16 L. Aceto et al.

a normalised syntactic subset of sHML that is still as expressive as sHML [2].
An automated procedure to translate an sHML formula into a corresponding
sHMLnf one (with the same semantic meaning) is given in [2,5].

Definition 7 (sHML Normal Form). The set of normalised sHML formu-
las is generated by the following grammar:

ϕ,ψ ∈ sHMLnf ::= tt | ff | ∧
i∈I [pi, ci]ϕi | X | max X.ϕ .

In addition, sHMLnf formulas are required to satisfy the following conditions:

1. Every branch in
∧

i∈I [pi, ci]ϕi, must be disjoint, i.e., for every i, j ∈ I, i �= j
implies �(pi, ci)�∩ �(pj , cj)� = ∅.

2. For every max X.ϕ we have X ∈ fv(ϕ). �

In a (closed) sHMLnf formula, the basic terms tt and ff can never appear
unguarded unless they are at the top level (e.g., we can never have ϕ∧ff or
max X0. . . . max Xn.ff). Modal operators are combined with conjunctions into
one construct

∧
i∈I [pi, ci]ϕi that is written as [p0, c0]ϕ0∧ . . . ∧[pn, cn]ϕn when

I =
{
0, . . . , n

}
and simply as [p0, c0]ϕ when | I | = 1. The conjunct modal

guards must also be disjoint so that at most one necessity guard can satisfy
any particular visible action. Along with these restrictions, we still assume that
sHMLnf fixpoint variables are guarded, and that for every ((x)?(y), c), y /∈ fv(c).

Example 7. The formula ϕ3 defines a recursive property stating that, following
an input on port a (carrying any value), prohibits that the system outputs a
value of 4 (on any port), unless the output is made on port a with a value that
is not equal to 3 (in which cases, it recurses).

ϕ3
def= max X.[((x1)?(y1), x1=a)]

(
[((x2)!(y2), x2=a ∧ y2 �=3)]X

∧ [((x3)!(y3), y3=4)]ff

)

ϕ3 is not an sHMLnf formula since its conjunction is not disjoint (e.g., the action
a!4 satisfies both branches). Still, we can reformulate ϕ3 as ϕ′

3 ∈ sHMLnf:

ϕ′
3

def= max X.[((x1)?(y1), x1=a)]
(

[((x4)!(y4), x4=a ∧ y4 �=4)]X
∧ [((x4)!(y4), x4=a ∧ y4=4)]ff

)

where x4 and y4 are fresh variables. �

Our monitor synthesis function in Definition 8 converts an sHMLnf formula
ϕ into a transducer m. This conversion also requires information regarding the
input ports of the SuS, as this is used to add the necessary insertion branches
that silently unblock the SuS at runtime. The synthesis function must therefore
be supplied with this information in the form of a finite set of input ports
Π ⊂Port, which then relays this information to the resulting monitor.

On Bidirectional Runtime Enforcement 17

Definition 8. The synthesis function �− � : sHMLnf × Pfin(Port)→Trn is
defined inductively as:

�X,Π �
def= X � tt,Π �

def= �ff,Π �
def= id �max X.ϕ,Π �

def= recX.�ϕ,Π �

�ϕ=
∧

i ∈ I

[(pi, ci)]ϕi,Π �
def= recY.

(
∑

i∈I

{
dis(pi, ci, Y,Π) if ϕi=ff
(pi, ci).�ϕi,Π � otherwise

)

+ def(ϕ)

where dis(p, c,m,Π) def=

{ (p, c, •).m if p = (x)!(y)
∑

b∈ Π

(•, c{b/x}, b?vdef).m if p = (x)?(y) and

def(
∧

i ∈ I

[((xi)?(yi), ci)]ϕi∧ψ) def=

⎧
⎨

⎩

(()?()).id when I=∅
((x)?(y),

∧

i∈I

(¬ci{x/xi, y/yi})).id otherwise

where ψ has no conjuncts starting with an input modality, variables x and y
are fresh, and vdef is a default value. �

The definition above assumes a bijective mapping between formula variables
and monitor recursion variables. Normalised conjunctions,

∧
i ∈ I [pi, ci]ϕi, are

synthesised as a recursive summation of monitors, i.e., rec Y.
∑

i∈I mi, where Y
is fresh, and every branch mi can be one of the following:

(i) when mi is derived from a branch of the form [pi, ci]ϕi where ϕi �=ff, the
synthesis produces a monitor with the identity transformation prefix, (pi, ci),
followed by the monitor synthesised from the continuation ϕi, i.e.,�ϕi,Π �;

(ii) when mi is derived from a violating branch of the form [pi, ci]ff, the synthesis
produces an action disabling transformation via dis(pi, ci, Y,Π).

Specifically, in clause (ii) the dis function produces either a suppression trans-
formation, (pi, ci, •), when pi is an output pattern, (xi)!(yi), or a summation of
insertions,

∑
b∈Π(•, ci{b/xi}, b?vdef).mi, when pi is an input pattern, (xi)?(yi).

The former signifies that the monitor must react to and suppress every match-
ing (invalid) system output thus stopping it from reaching the environment. By
not synthesising monitor branches that react to the erroneous input, the latter
allows the monitor to hide the input synchronisations from the environment. At
the same time, the synthesised insertion branches insert a default domain value
vdef on every port a∈ Π whenever the branch condition ci{b/xi} evaluates to
true at runtime. This stops the monitor from blocking the resulting composite
system unnecessarily.

This blocking mechanism can, however, block unspecified inputs, i.e., those
that do not satisfy any modal necessity in the normalised conjunction. This
is undesirable since the unspecified actions do not contribute towards a safety
violation and, instead, lead to its trivial satisfaction. To prevent this, the default
monitor def(ϕ) is also added to the resulting summation. Concretely, the def
function produces a catch-all identity monitor that forwards an input to the
SuS whenever it satisfies the negation of all the conditions associated with modal
necessities for input patterns in the normalised conjunction. This condition is

18 L. Aceto et al.

constructed for a normalised conjunction of the form
∧

i∈I [((xi)?(yi), ci)]ϕi ∧ψ
(assuming that ψ does not include further input modalities). Otherwise, if none
of the conjunct modalities define an input pattern, every input is allowed, i.e.,
the default monitor becomes (()?()).id, which transitions to id after forwarding
the input to the SuS.

Example 8. Recall (the full version of) formula ϕ1 from Example 1.

ϕ1
def= max X.[((x)?(y1), x�=b)]([((x1)?(), x1=x)]ff ∧ [((x2)!(y2), x2=x)]ϕ′

1)

ϕ′
1

def= ([((x3)!(), x3=x)]ff ∧ [((x4)!(y3), x4=b ∧ y3=(log, y1, y2))]X)

For any arbitrary set of ports Π, the synthesis of Definition 8 produces the
following monitor.

mϕ1

def= rec X.rec Z.(((x)?(y1), x�=b).rec Y1.m
′
ϕ1

) + ((xdef)?(), xdef = b).id

m′
ϕ1

def=
∑

a∈ Π

(•, a=x, a?vdef).Y1+((x2)!(y2), x2=x).rec Y2.m
′′
ϕ1

+((xdef)?(), xdef �=x).id

m′′
ϕ1

def=((x3)!(), x3=x,•).Y2+((x4)!(y3), x4=b ∧ y3=(log, y1, y2)).X+(()?()).id

Monitor mϕ1 can be optimised by removing redundant recursive constructs such
as rec Z. that are introduced mechanically by our synthesis. �

Monitor mϕ1 from Example 8 (with �ϕ1,Π � = mϕ1) is very similar to mdet

of Example 2, differing only in how it defines its insertion branches for unblocking
the SuS. For instance, if we consider Π = {b, c}, �ϕ1,Π � would synthesise two
insertion branches, namely (•, b = x, b?vdef) and (•, c = x, c?vdef). By contrast,
mdet attains the same result more succinctly via the single insertion branch
(•, x?vdef). Importantly, our synthesis provides the witness monitors needed to
show enforceability.

Theorem 1 (Enforceability). sHML is bidirectionally enforceable using the
monitors and instrumentation of Fig. 4. ��

6 Conclusions and Related Work

This work extends the framework presented in the precursor to this work [5] to
the setting of bidirectional enforcement where observable actions such as inputs
and outputs require different treatment. We achieve this by:

1. augmenting substantially our instrumentation relation (Fig. 4);
2. refining our definition of enforcement to incorporate transparency over vio-

lating systems (Definition 6); and
3. providing a more extensive synthesis function (Definition 8) that is proven

correct (Theorem 1).

On Bidirectional Runtime Enforcement 19

Future work. There are a number of possible avenues for extending our work. One
immediate step would be the implementation of the monitor operational model
presented in Sect. 3 together with the synthesis function described in Sect. 5.
This effort should be integrated it within the detectEr tool suite [10,14–16].
This would allow us to assess the overhead induced by our proposed bidirec-
tional monitoring [4]. Another possible direction would be the development of
behavioural theories for the transducer operational model presented in Sect. 3,
along the lines of the refinement preorders studied in earlier work on sequence
recognisers [3,20,21]. Finally, applications of the theory, along the lines of [30]
are also worth exploring.

Related work. As we discussed already in the Introduction, most work on RE
assumes a trace-based view of the SuS [32,33,39], where few distinguish between
actions with different control profiles (e.g., inputs versus outputs). Although
shields [28] can analyse both input and output actions, they still perform uni-
directional enforcement and only modify the data associated with the output
actions. The closest to our work is that by Pinisetty et al. [35], who consider
bidirectional RE, modelling the system as a trace of input-output pairs. How-
ever, their enforcement is limited to replacements of payloads and their setting
is too restrictive to model enforcements such as action rerouting and the closing
of ports. Finally, Lanotte et al. [30] employ similar synthesis techniques and cor-
rectness criteria to ours (Definitions 3 and 4) to generate enforcement monitors
for a timed setting.

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: A framework for param-
eterized monitorability. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS,
vol. 10803, pp. 203–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89366-2 11

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.:
Determinizing monitors for HML with recursion. J. Log. Algebraic Methods Pro-
gram. 111, (2020). https://doi.org/10.1016/j.jlamp.2019.100515

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: The Best
a Monitor Can Do. In: CSL. LIPIcs, vol. 183, pp. 7:1–7:23. Schloss Dagstuhl (2021).
https://doi.org/10.4230/LIPIcs.CSL.2021.7

4. Aceto, L., Attard, D.P., Francalanza, A., Ingólfsdóttir, A.: On benchmarking for
concurrent runtime verification. FASE 2021. LNCS, vol. 12649, pp. 3–23. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-71500-7 1

5. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On Runtime Enforcement
via Suppressions. In: CONCUR. vol. 118, pp. 34:1–34:17. Schloss Dagstuhl (2018).
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34

6. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On bidirectional
enforcement. Technical report Reykjavik University (2020). http://icetcs.ru.is/
theofomon/bidirectionalRE.pdf

7. Aceto, L., Ingólfsdóttir, A.: Testing Hennessy-Milner logic with recursion. In:
Thomas, W. (ed.) FoSSaCS 1999. LNCS, vol. 1578, pp. 41–55. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-49019-1 4

https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1016/j.jlamp.2019.100515
https://doi.org/10.4230/LIPIcs.CSL.2021.7
https://doi.org/10.1007/978-3-030-71500-7_1
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
http://icetcs.ru.is/theofomon/bidirectionalRE.pdf
http://icetcs.ru.is/theofomon/bidirectionalRE.pdf
https://doi.org/10.1007/3-540-49019-1_4

20 L. Aceto et al.

8. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, NY, USA (2007)

9. Alur, R., Černý, P.: Streaming Transducers for Algorithmic Verification of Single-
pass List-processing Programs. In: POPL, pp. 599–610. ACM (2011). https://doi.
org/10.1145/1926385.1926454

10. Attard, D.P., Francalanza, A.: A monitoring tool for a branching-time logic. In:
Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 473–481. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46982-9 31

11. Bielova, N., Massacci, F.: Do you really mean what you actually enforced?-edited
automata revisited. J. Inf. Secur. 10(4), 239–254 (2011). https://doi.org/10.1007/
s10207-011-0137-2

12. Bocchi, L., Chen, T.C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring net-
works through multiparty session types. TCS 669, 33–58 (2017)

13. Cassar, I.: Developing Theoretical Foundations for Runtime Enforcement. Ph.D.
thesis, University of Malta and Reykjavik University (2021)

14. Cassar, I., Francalanza, A., Aceto, L., Ingólfsdóttir, A.: eAOP: an aspect oriented
programming framework for Erlang. In: Erlang. ACM SIGPLAN (2017)

15. Cassar, I., Francalanza, A., Attard, D.P., Aceto, L., Ingólfsdóttir, A.: A Suite of
Monitoring Tools for Erlang. In: RV-CuBES. Kalpa Publications in Computing,
vol. 3, pp. 41–47. EasyChair (2017)

16. Cassar, I., Francalanza, A., Said, S.: Improving Runtime Overheads for detectEr.
In: FESCA. EPTCS, vol. 178, pp. 1–8 (2015)

17. Chen, T.-C., Bocchi, L., Deniélou, P.-M., Honda, K., Yoshida, N.: Asynchronous
distributed monitoring for multiparty session enforcement. In: Bruni, R., Sassone,
V. (eds.) TGC 2011. LNCS, vol. 7173, pp. 25–45. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30065-3 2

18. Falcone, Y., Fernandez, J.-C., Mounier, L.: Synthesizing Enforcement Monitors
w.r.t. the safety-progress classification of properties. In: Sekar, R., Pujari, A.K.
(eds.) ICISS 2008. LNCS, vol. 5352, pp. 41–55. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89862-7 3

19. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at
runtime? J. Softw. Tools Technol. Transf. 14(3), 349 (2012)

20. Francalanza, A.: Consistently-Detecting Monitors. In: CONCUR. LIPIcs, vol.
85, pp. 8:1–8:19. Dagstuhl, Germany (2017). https://doi.org/10.4230/LIPIcs.
CONCUR.2017.8

21. Francalanza, A.: A theory of monitors. Inf. Comput 104704 (2021). https://doi.
org/10.1016/j.ic.2021.104704

22. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Monitorability for the Hennessy-
Milner logic with recursion. Formal Methods Syst. Des. 51(1), 87–116 (2017)

23. Hennessy, M., Lin, H.: Proof systems for message-passing process algebras. Formal
Aspects Comput. 8(4), 379–407 (1996). https://doi.org/10.1007/BF01213531

24. Hennessy, M., Liu, X.: A modal logic for message passing processes. Acta Inf.
32(4), 375–393 (1995). https://doi.org/10.1007/BF01178384

25. van Hulst, A.C., Reniers, M.A., Fokkink, W.J.: Maximally permissive controlled
system synthesis for non-determinism and modal logic. Discr. Event Dyn. Syst.
27(1), 109–142 (2017)

26. Jia, L., Gommerstadt, H., Pfenning, F.: Monitors and blame assignment for higher-
order session types. In: POPL, pp. 582–594. ACM, NY, USA (2016)

27. Khoury, R., Tawbi, N.: Which security policies are enforceable by runtime moni-
tors? A survey. Comput. Sci. Rev. 6(1), 27–45 (2012). https://doi.org/10.1016/j.
cosrev.2012.01.001

https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1007/978-3-319-46982-9_31
https://doi.org/10.1007/s10207-011-0137-2
https://doi.org/10.1007/s10207-011-0137-2
https://doi.org/10.1007/978-3-642-30065-3_2
https://doi.org/10.1007/978-3-540-89862-7_3
https://doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1007/BF01213531
https://doi.org/10.1007/BF01178384
https://doi.org/10.1016/j.cosrev.2012.01.001
https://doi.org/10.1016/j.cosrev.2012.01.001

On Bidirectional Runtime Enforcement 21

28. Könighofer, B., et al.: Shield synthesis. Formal Methods Syst. Des. 51(2), 332–361
(2017). https://doi.org/10.1007/s10703-017-0276-9

29. Kozen, D.C.: Results on the propositional µ-calculus. Theor. Comput. Sci. 27,
333–354 (1983)

30. Lanotte, R., Merro, M., Munteanu, A.: Runtime enforcement for control system
security. In: CSF, pp. 246–261. IEEE (2020). https://doi.org/10.1109/CSF49147.
2020.00025

31. Larsen, K.G.: Proof systems for satisfiability in Hennessy-Milner logic with recur-
sion. Theor. Comput. Sci. 72(2), 265–288 (1990). https://doi.org/10.1016/0304-
3975(90)90038-J

32. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for run-
time security policies. J. Inf. Secur. 4(1), 2–16 (2005). https://doi.org/10.1007/
s10207-004-0046-8

33. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies.
ACM Trans. Inf. Syst. Secur. 12(3), 19:1–19:41 (2009)

34. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. I. Inf. Comput.
100(1), 1–40 (1992). https://doi.org/10.1016/0890-5401(92)90008-4

35. Pinisetty, S., Roop, P.S., Smyth, S., Allen, N., Tripakis, S., Hanxleden, R.V.: Run-
time enforcement of cyber-physical systems. ACM Trans. Embed. Comput. Syst.
16(5s), 1–25 (2017)

36. Rathke, J., Hennessy, M.: Local model checking for value-passing processes
(extended abstract). In: Abadi, M., Ito, T. (eds.) TACS 1997. LNCS, vol. 1281,
pp. 250–266. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0014555

37. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, New
York, NY, USA (2009)

38. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, New York, NY, USA (2011)

39. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. (TIS-
SEC) 3(1), 30–50 (2000)

https://doi.org/10.1007/s10703-017-0276-9
https://doi.org/10.1109/CSF49147.2020.00025
https://doi.org/10.1109/CSF49147.2020.00025
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1007/s10207-004-0046-8
https://doi.org/10.1007/s10207-004-0046-8
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1007/BFb0014555

A Multi-agent Model for Polarization
Under Confirmation Bias in Social

Networks

Mário S. Alvim1(B), Bernardo Amorim1, Sophia Knight2, Santiago Quintero3,
and Frank Valencia4,5

1 Department of Computer Science, UFMG, Belo Horizonte, Brazil
msalvim@dcc.ufmg.br

2 Department of Computer Science, University of Minnesota Duluth, Duluth, USA
3 LIX, École Polytechnique de Paris, Paris, France

4 CNRS-LIX, École Polytechnique de Paris, Paris, France
5 Pontificia Universidad Javeriana Cali, Cali, Colombia

Abstract. We describe a model for polarization in multi-agent systems
based on Esteban and Ray’s standard measure of polarization from eco-
nomics. Agents evolve by updating their beliefs (opinions) based on an
underlying influence graph, as in the standard DeGroot model for social
learning, but under a confirmation bias; i.e., a discounting of opinions of
agents with dissimilar views. We show that even under this bias polar-
ization eventually vanishes (converges to zero) if the influence graph is
strongly-connected. If the influence graph is a regular symmetric circula-
tion, we determine the unique belief value to which all agents converge.
Our more insightful result establishes that, under some natural assump-
tions, if polarization does not eventually vanish then either there is a
disconnected subgroup of agents, or some agent influences others more
than she is influenced. We also show that polarization does not neces-
sarily vanish in weakly-connected graphs under confirmation bias. We
illustrate our model with a series of case studies and simulations, and
show how it relates to the classic DeGroot model for social learning.

Keywords: Polarization · Confirmation bias · Multi-agent systems ·
Social networks

1 Introduction

Distributed systems have changed substantially in the recent past with the advent
of social networks. In the previous incarnation of distributed computing [22] the

Mário S. Alvim and Bernardo Amorim were partially supported by CNPq, CAPES
and FAPEMIG. Santiago Quintero and Frank Valencia were partially supported by
the ECOS-NORD project FACTS (C19M03).

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 22–41, 2021.
https://doi.org/10.1007/978-3-030-78089-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-78089-0_2

A Multi-agent Model for Polarization Under Confirmation Bias 23

emphasis was on consistency, fault tolerance, resource management and related
topics; these were all characterized by interaction between processes. What marks
the new era of distributed systems is an emphasis on the flow of epistemic infor-
mation (facts, beliefs, lies) and its impact on democracy and on society at large.

Indeed in social networks a group may shape their beliefs by attributing
more value to the opinions of outside influential figures. This cognitive bias is
known as authority bias [32]. Furthermore, in a group with uniform views, users
may become extreme by reinforcing one another’s opinions, giving more value
to opinions that confirm their own preexisting beliefs. This is another common
cognitive bias known as confirmation bias [4]. As a result, social networks can
cause their users to become radical and isolated in their own ideological circle
causing dangerous splits in society [5] in a phenomenon known as polarization [4].

There is a growing interest in the development of models for the analy-
sis of polarization and social influence in networks [6,8,9,12,14,15,19,20,28,
31,34,35,37]. Since polarization involves non-terminating systems with multiple
agents simultaneously exchanging information (opinions), concurrency models
are a natural choice to capture the dynamics of polarization.

The Model. In fact, we developed a multi-agent model for polarization in [3],
inspired by linear-time models of concurrency where the state of the system
evolves in discrete time units (in particular [27,33]). In each time unit, the
agents update their beliefs about the proposition of interest taking into account
the beliefs of their neighbors in an underlying weighted influence graph. The
belief update gives more value to the opinion of agents with higher influence
(authority bias) and to the opinion of agents with similar views (confirmation
bias). Furthermore, the model is equipped with a polarization measure based
on the seminal work in economics by Esteban and Ray [13]. The polarization is
measured at each time unit and it is 0 if all agents’ beliefs fall within an interval
of agreement about the proposition. The contributions in [3] were of an experi-
mental nature and aimed at exploring how the combination of influence graphs
and cognitive biases in our model can lead to polarization.

In the current paper we prove claims made from experimental observations
in [3] using techniques from calculus, graph theory, and flow networks. The
main goal of this paper is identifying how networks and beliefs are structured,
for agents subject to confirmation bias, when polarization does not disappear.
Our results provide insight into the phenomenon of polarization, and are a step
toward the design of robust computational models and simulation software for
human cognitive and social processes.

The closest related work is that on DeGroot models [9]. These are the stan-
dard linear models for social learning whose analysis can be carried out by linear
techniques from Markov chains. A novelty in our model is that its update func-
tion extends the classical update from DeGroot models with confirmation bias.
As we shall elaborate in Sect. 5 the extension makes the model no longer lin-
ear and thus mathematical tools like Markov chains do not seem applicable.
Our model incorporates a polarization measure in a model for social learning

24 M. S. Alvim et al.

and extends classical convergence results of DeGroot models to the confirmation
bias case.

Main Contributions. The following are the main theoretical results established
in this paper. Assuming confirmation bias and some natural conditions about
belief values: (1) If polarization does not disappear then either there is discon-
nected subgroup of agents, or some agent influences others more than she is
influenced, or all the agents are initially radicalized (i.e., each individual holds
the most extreme value either in favor or against of a given proposition). (2)
Polarization eventually disappears (converges to zero) if the influence graph is
strongly-connected. (3) If the influence graph is a regular symmetric circulation
we determine the unique belief value all agents converge to.

Organization. In Sect. 2 we introduce the model and illustrate a series of examples
and simulations, uncovering interesting new insights and complex characteristics
of the believe evolution. The theoretical contributions (1–3) above are given in
Sects. 3 and 4. We discuss DeGroot and other related work in Sects. 5 and 6. Full
proofs can be found in the corresponding technical report [2]. An implementation
of the model in Python and the simulations are available on Github [1].

2 The Model

Here we refine the polarization model introduced in [3], composed of static and
dynamic elements. We presuppose basic knowledge of calculus and graph theory
[11,38].

Static Elements of the Model. Static elements of the model represent a
snapshot of a social network at a given point in time. They include the following
components:

– A (finite) set A = {0, 1, . . . , n−1} of n ≥ 1 agents.
– A proposition p of interest, about which agents can hold beliefs.
– A belief configuration B:A→[0, 1] s.t. each value Bi is the instantaneous con-

fidence of agent i ∈ A in the veracity of proposition p. Extreme values 0 and
1 represent a firm belief in, respectively, the falsehood or truth of p.

– A polarization measure ρ:[0, 1]A→R mapping belief configurations to real
numbers. The value ρ(B) indicates how polarized belief configuration B is.

There are several polarization measures described in the literature. In this
work we adopt the influential measure proposed by Esteban and Ray [13].

Definition 1 (Esteban-Ray Polarization). Consider a set Y = {y0, y1, . . . ,
yk−1} of size k, s.t. each yi ∈ R. Let (π, y) = (π0, π1, . . . , πk−1, y0, y1, . . . ,
yk−1) be a distribution on Y s.t. πi is the frequency of value yi ∈ Y in
the distribution.1 The Esteban-Ray (ER) polarization measure is defined as
ρER(π, y) = K

∑k−1
i=0

∑k−1
j=0 π1+α

i πj |yi − yj |, where K>0 is a constant, and typi-
cally α≈1.6.
1 W.l.o.g. we can assume the values of πi are all non-zero and add up to 1.

A Multi-agent Model for Polarization Under Confirmation Bias 25

The higher the value of ρER(π, y), the more polarized distribution (π, y) is.
The measure captures the intuition that polarization is accentuated by both
intra-group homogeneity and inter-group heterogeneity. Moreover, it assumes
that the total polarization is the sum of the effects of individual agents on
one another. The measure can be derived from a set of intuitively reasonable
axioms [13].

Note that ρER is defined on a discrete distribution, whereas in our model a
general polarization metric is defined on a belief configuration B:A→[0, 1]. To
apply ρER to our setup we convert the belief configuration B into an appropriate
distribution (π, y).

Definition 2 (k-bin polarization). Let Dk be a discretization of the inter-
val [0, 1] into k>0 consecutive non-overlapping, non-empty intervals (bins)
I0, I1, . . . , Ik−1. We use the term borderline points of Dk to refer to the end-
points of I0, I1, . . . , Ik−1 different from 0 and 1. We assume an underlying dis-
cretization Dk throughout the paper.

Given Dk and a belief configuration B, define the distribution (π, y) as fol-
lows. Let Y = {y0, y1, . . . , yk−1} where each yi is the mid-point of Ii, and let πi

be the fraction of agents having their belief in Ii. The polarization measure ρ of
B is ρ(B) = ρER(π, y).

Notice that when there is consensus about the proposition p of interest,
i.e., when all agents in belief configuration B hold the same belief value, we
have ρ(B) = 0. This happens exactly when all agents’ beliefs fall within the
same bin of the underlying discretization Dk. The following property is an easy
consequence from Definition 1 and Definition 2.

Proposition 1 (Zero Polarization). Let Dk = I0, I1, . . . , Ik−1 be the dis-
cretization of [0, 1] in Definition 2. Then ρ(B) = 0 iff there exists m ∈
{0, . . . , k−1} s.t. for all i ∈ A, Bi ∈ Im.

Dynamic Elements of the Model. Dynamic elements formalize the evolution
of agents’ beliefs as they interact over time and are exposed to different opinions.
They include:

– A time frame T ={0, 1, 2, . . .} representing the discrete passage of time.
– A family of belief configurations {Bt:A→[0, 1]}t ∈ T s.t. each Bt is the belief

configuration of agents in A w.r.t. proposition p at time step t ∈ T .
– A weighted directed graph I:A × A→[0, 1]. The value I(i, j), written Ii,j ,

represents the direct influence that agent i has on agent j, or the weight i
carries with j. A higher value means stronger weight. Conversely, Ii,j can
also be viewed as the trust or confidence that j has on i. We assume that
Ii,i = 1, meaning that agents are self-confident. We shall often refer to I
simply as the influence (graph) I.
We distinguish, however, the direct influence Ii,j that i has on j from the
overall effect of i in j’s belief. This effect is a combination of various factors,

26 M. S. Alvim et al.

including direct influence, their current opinions, the topology of the influence
graph, and how agents reason. This overall effect is captured by the update
function below.

– An update function μ:(Bt, I)�→Bt+1 mapping belief configuration Bt at time
t and influence graph I to new belief configuration Bt+1 at time t+1. This
function models the evolution of agents’ beliefs over time. We adopt the fol-
lowing premises.

(i) Agents present some Bayesian reasoning: Agents’ beliefs are updated
in every time step by combining their current belief with a correction term
that incorporates the new evidence they are exposed to in that step –i.e.,
other agents’ opinions. More precisely, when agent j interacts with agent
i, the former affects the latter moving i’s belief towards j’s, proportion-
ally to the difference Bt

j−Bt
i in their beliefs. The intensity of the move is

proportional to the influence Ij,i that j carries with i. The update func-
tion produces an overall correction term for each agent as the average of all
other agents’ effects on that agent, and then incorporates this term into the
agent’s current belief.2 The factor Ij,i allows the model to capture author-
ity bias [32], by which agents’ influences on each other may have different
intensities (by, e.g., giving higher weight to an authority’s opinion).

(ii) Agents may be prone to confirmation bias: Agents may give more
weight to evidence supporting their current beliefs while discounting evi-
dence contradicting them, independently from its source. This behavior in
known in the psychology literature as confirmation bias [4], and is captured
in our model as follows. When agent j interacts with agent i, the update
function moves agent i’s belief toward that of agent j, proportionally to the
influence Ij,i of j on i, but with a caveat: the move is stronger when j’s
belief is similar to i’s than when it is dissimilar.

The premises above are formally captured in the following update-function.

Definition 3 (Confirmation-bias). Let Bt be a belief configuration at time
t ∈ T , and I be an influence graph. The confirmation-bias update-function is
the map μCB:(Bt, I) �→ Bt+1 with Bt+1 given by Bt+1

i = Bt
i + 1/|Ai|

∑
j∈Ai

βt
i,j Ij,i (Bt

j − Bt
i), for every agent i ∈ A, where Ai = {j ∈ A | Ij,i>0} is the

set of neighbors of i and βt
i,j = 1−|Bt

j−Bt
i | is the confirmation-bias factor of i

w.r.t. j given their beliefs at time t.

The expression 1/|Ai|
∑

j∈Ai
βt

i,j Ij,i (Bt
j − Bt

i) in Definition 3 is a correction
term incorporated into agent i’s original belief Bt

i at time t. The correction is
the average of the effect of each neighbor j ∈ Ai on agent i’s belief at that time
step. The value Bt+1

i is the resulting updated belief of agent i at time t+1.
The confirmation-bias factor βt

i,j lies in the interval [0, 1], and the lower
its value, the more agent i discounts the opinion provided by agent j when
2 Note that this assumption implies that an agent has an influence on himself, and

hence cannot be used as a “puppet” who immediately assumes another’s agent’s
belief.

A Multi-agent Model for Polarization Under Confirmation Bias 27

Fig. 1. Influence graphs and evolution of beliefs and polarization for Example 1.

incorporating it. It is maximum when agents’ beliefs are identical, and minimum
they are extreme opposites.

Remark 1 (Classical Update: Authority Non-Confirmatory Bias). In this paper
we focus on confirmation-bias update and, unless otherwise stated, assume the
underlying function is given by Definition 3. Nevertheless, in Sects. 4 and 5 we
will consider a classical update μC :(Bt, I)�→Bt+1 that captures non-confirmatory
authority-bias and is obtained by replacing the confirmation-bias factor βt

i,j in
Definition 3 with 1. That is, Bt+1

i = Bt
i+1/|Ai|

∑
j∈Ai

Ij,i (Bt
j−Bt

i). (We refer
to this function as classical because it is closely related to the standard update
function of the DeGroot models for social learning from Economics [9]. This
correspondence will be formalized in Sect. 5.)

2.1 Running Example and Simulations

We now present a running example and several simulations that motivate our
theoretical results. Recall that we assume Ii,i = 1 for every i ∈ A. For simplic-
ity, in all figures of influence graphs we omit self-loops.

In all cases we compute the polarization measure (Definition 2) using a dis-
cretization Dk of [0, 1] for k = 5 bins, each representing a possible general
position w.r.t. the veracity of the proposition p of interest: strongly against,
[0, 0.20); fairly against, [0.20, 0.40); neutral/unsure, [0.40, 0.60); fairly in favour,
[0.60, 0.80); and strongly in favour, [0.80, 1].3 We set parameters α = 1.6, as

3 Recall from Definition 2 that our model allows arbitrary discretizations Dk –i.e.,
different number of bins, with not-necessarily uniform widths– depending on the
scenario of interest.

28 M. S. Alvim et al.

suggested by Esteban and Ray [13], and K = 1000. In all definitions we let
A = {0, 1, . . . , n−1}, and i, j ∈ A be generic agents.

As a running example we consider the following hypothetical situation.

Example 1 (Vaccine Polarization). Consider the sentence “vaccines are safe” as
the proposition p of interest. Assume a set A of 6 agents that is initially extremely
polarized about p: agents 0 and 5 are absolutely confident, respectively, in the
falsehood or truth of p, whereas the others are equally split into strongly in
favour and strongly against p.

Consider first the situation described by the influence graph in Fig. 1a. Nodes
0, 1 and 2 represent anti-vaxxers, whereas the rest are pro-vaxxers. In particular,
note that although initially in total disagreement about p, Agent 5 carries a lot
of weight with Agent 0. In contrast, Agent 0’s opinion is very close to that of
Agents 1 and 2, even if they do not have any direct influence over him. Hence
the evolution of Agent 0’s beliefs will be mostly shaped by that of Agent 5. As
can be observed in the evolution of agents’ opinions in Fig. 1d, Agent 0 moves
from being initially strongly against to being fairly in favour of p around time
step 8. Moreover, polarization eventually vanishes (i.e., becomes zero) around
time 20, as agents reach the consensus of being fairly against p.

Now consider the influence graph in Fig. 1b, which is similar to Fig. 1a, but
with reciprocal influences (i.e., the influence of i over j is the same as the influ-
ence of j over i). Now Agents 1 and 2 do have direct influences over Agent 0,
so the evolution of Agent 0’s belief will be partly shaped by initially opposed
agents: Agent 5 and the anti-vaxxers. But since Agent 0’s opinion is very close to
that of Agents 1 and 2, the confirmation-bias factor will help keeping Agent 0’s
opinion close to their opinion against p. In particular, in contrast to the situation
in Fig. 1d, Agent 0 never becomes in favour of p. The evolution of the agents’
opinions and their polarization is shown in Fig. 1e. Notice that polarization van-
ishes around time 8 as the agents reach consensus but this time they are more
positive about (less against) p than in the first situation.

Finally, consider the situation in Fig. 1c obtained from Fig. 1a by inverting
the influences of Agent 0 over Agent 1 and Agent 2 over Agent 4. Notice that
Agents 1 and 4 are no longer influenced by anyone though they influence others.
Thus, as shown in Fig. 1f, their beliefs do not change over time, which means that
the group does not reach consensus and polarization never disappears though it
is considerably reduced. ��
The above example illustrates complex non-monotonic, overlapping, convergent,
and non-convergent evolution of agent beliefs and polarization even in a small
case with n = 6 agents. Next we present simulations for several influence graph
topologies with n = 1000 agents, which illustrate more of this complex behav-
ior emerging from confirmation-bias interaction among agents. Our theoretical
results in the next sections bring insight into the evolution of beliefs and polar-
ization depending on graph topologies.

In all simulations we limit execution to T time steps varying according to the
experiment. A detailed mathematical specification of simulations can be found
in the corresponding technical report [2].

A Multi-agent Model for Polarization Under Confirmation Bias 29

Fig. 2. Depiction of different initial belief configurations used in simulations.

Fig. 3. The general shape of influence graphs used in simulations, for n = 6 agents.

We consider the following initial belief configurations, depicted in Fig. 2: a
uniform belief configuration with a set of agents whose beliefs are as varied
as possible, all equally spaced in the interval [0, 1]; a mildly polarized belief
configuration with agents evenly split into two groups with moderately dissimilar
inter-group beliefs compared to intra-group beliefs; an extremely polarized belief
configuration representing a situation in which half of the agents strongly believe
the proposition, whereas half strongly disbelieve it; and a tripolar configuration
with agents divided into three groups.

As for influence graphs, we consider the following ones, depicted in Fig. 3:

– A C-clique influence graph Iclique in which each agent influences every other
with constant value C = 0.5. This represents a social network in which all
agents interact among themselves, and are all immune to authority bias.

– A circular influence graph Icirc representing a social network in which agents
can be organized in a circle in such a way each agent is only influenced by
its predecessor and only influences its successor. This is a simple instance of
a balanced graph (in which each agent’s influence on others is as high as the
influence received, as in Definition 9 ahead), which is a pattern commonly
encountered in some sub-networks.

– A disconnected influence graph Idisc representing a social network sharply
divided into two groups in such a way that agents within the same group
can considerably influence each other, but not at all the agents in the other
group.

– An unrelenting influencers influence graph Iunrel representing a scenario in
which two agents exert significantly stronger influence on every other agent
than these other agents have among themselves. This could represent, e.g.,
a social network in which two totalitarian media companies dominate the

30 M. S. Alvim et al.

Fig. 4. Evolution of belief and polarization under confirmation bias. Horizontal axes
represent time. Each row contains all graphs with the same influence graph, and each
column all graphs with the same initial belief configuration. Simulations of circular
influences used n = 12 agents, the rest used n = 1 000 agents.

news market, both with similarly high levels of influence on all agents. The
networks have clear agendas to push forward, and are not influenced in a
meaningful way by other agents.

We simulated the evolution of agents’ beliefs and the corresponding polar-
ization of the network for all combinations of initial belief configurations and
influence graphs presented above. The results, depicted in Fig. 4, will be used
throughout this paper to illustrate some of our formal results. Both the Python
implementation of the model and the Jupyter Notebook containing the simula-
tions are available on Github [1].

A Multi-agent Model for Polarization Under Confirmation Bias 31

Fig. 5. Belief convergence to borderline value 1/2. Polarization does not converge to 0
with equal-length 2 bins (Fig. 5b) and but it does with 3 equal-length bins (Fig. 5c).

3 Belief and Polarization Convergence

Polarization tends to diminish as agents approximate a consensus, i.e., as they
(asymptotically) agree upon a common belief value for the proposition of inter-
est. Here and in Sect. 4 we consider meaningful families of influence graphs that
guarantee consensus under confirmation bias. We also identify fundamental prop-
erties of agents, and the value of convergence. Importantly, we relate influence
with the notion of flow in flow networks, and use it to identify necessary condi-
tions for polarization not converging to zero.

3.1 Polarization at the Limit

Proposition 1 states that our polarization measure on a belief configuration (Def-
inition 2) is zero exactly when all belief values in it lie within the same bin of the
underlying discretization Dk = I0 . . . Ik−1 of [0, 1]. In our model polarization
converges to zero if all agents’ beliefs converge to a same non-borderline value.
More precisely:

Lemma 1 (Zero Limit Polarization). Let v be a non-borderline point of Dk

such that for every i ∈ A, limt→∞ Bt
i = v. Then limt→∞ ρ(Bt) = 0.

To see why we exclude the k−1 borderline values of Dk in the above lemma,
assume v ∈ Im is a borderline value. Suppose that there are two agents i and
j whose beliefs converge to v, but with the belief of i staying always within Im

whereas the belief of j remains outside of Im. Under these conditions one can
verify, using Definition 1 and Definition 2, that ρ will not converge to 0. This
situation is illustrated in Fig. 5b assuming a discretization D2 = [0, 1/2), [1/2, 1]
whose only borderline is 1/2. Agents’ beliefs converge to value v = 1/2, but

32 M. S. Alvim et al.

polarization does not converge to 0. In contrast, Fig. 5c illustrates Lemma 1 for
D3 = [0, 1/3), [1/3, 2/3), [2/3, 1].4

3.2 Convergence Under Confirmation Bias in Strongly Connected
Influence

We now introduce the family of strongly-connected influence graphs, which
includes cliques, that describes scenarios where each agent has an influence over
all others. Such influence is not necessarily direct in the sense defined next, or
the same for all agents, as in the more specific cases of cliques.

Definition 4 (Influence Paths). Let C ∈ (0, 1]. We say that i has a direct
influence C over j, written i

C→j, if Ii,j = C.
An influence path is a finite sequence of distinct agents from A where each

agent in the sequence has a direct influence over the next one. Let p be an influ-
ence path i0i1 . . . in. The size of p is |p| = n. We also use i0

C1→ i1
C2→ . . .

Cn→ in to
denote p with the direct influences along this path. We write i0

C�p in to indicate
that the product influence of i0 over in along p is C = C1 × . . . ×Cn.

We often omit influence or path indices from the above arrow notations when
they are unimportant or clear from the context. We say that i has an influence
over j if i�j.

The next definition is akin to the graph-theoretical notion of strong connec-
tivity.

Definition 5 (Strongly Connected Influence). We say that an influence
graph I is strongly connected if for all i, j ∈ A such that i	=j, i�j.

Remark 2. For technical reasons we assume that, initially, there are no two
agents i, j ∈ A such that B0

i = 0 and B0
j = 1. This implies that for every

i, j ∈ A: β0
i,j>0 where β0

i,j is the confirmation bias of i towards j at time 0 (See
Definition 3). Nevertheless, at the end of this section we will address the cases
in which this condition does not hold.

We shall use the notion of maximum and minimum belief values at a given
time t.

Definition 6 (Extreme Beliefs). Define maxt = maxi ∈ A Bt
i and mint =

maxi ∈ A Bt
i .

4 It is worthwhile to note that this discontinuity at borderline points matches real
scenarios where each bin represents a sharp action an agent takes based on his current
belief value. Even when two agents’ beliefs are asymptotically converging to a same
borderline value from different sides, their discrete decisions will remain distinct.
E.g., in the vaccine case of Example 1, even agents that are asymptotically converging
to a common belief value of 0.5 will take different decisions on whether or not to
vaccinate, depending on which side of 0.5 their belief falls. In this sense, although
there is convergence in the underlying belief values, there remains polarization w.r.t.
real-world actions taken by agents.

A Multi-agent Model for Polarization Under Confirmation Bias 33

It is worth noticing that extreme agents – i.e., those holding extreme beliefs–
do not necessarily remain the same across time steps. Figure 1d illustrates this
point: Agent 0 goes from being the one most against the proposition of interest
at time t = 0 to being the one most in favour of it around t = 8. Also, the third
row of Fig. 4 shows simulations for a circular graph under several initial belief
configurations. Note that under all initial belief configurations different agents
alternate as maximal and minimal belief holders.

Nevertheless, in what follows will show that the beliefs of all agents, under
strongly-connected influence and confirmation bias, converge to the same value
since the difference between mint and maxt goes to 0 as t approaches infinity.
We begin with a lemma stating a property of the confirmation-bias update: The
belief value of any agent at any time is bounded by those from extreme agents in
the previous time unit.

Lemma 2 (Belief Extremal Bounds). For every i ∈ A, mint ≤ Bt+1
i ≤

maxt.

The next corollary follows from the assumption in Remark 2 and Lemma 2.

Corollary 1. For every i, j ∈ A, t ≥ 0: βt
i,j>0.

Note that monotonicity does not necessarily hold for belief evolution. This
is illustrated by Agent 0’s behavior in Fig. 1d. However, it follows immediately
from Lemma 2 that min· and max· are monotonically increasing and decreasing
functions of t.

Corollary 2 (Monotonicity of Extreme Beliefs). maxt+1 ≤ maxt and
mint+1 ≥ mint for all t ∈ N.

Monotonicity and the bounding of max·, min· within [0, 1] lead us, via the
Monotonic Convergence Theorem [38], to the existence of limits for beliefs of
extreme agents.

Theorem 1 (Limits of Extreme Beliefs). There are U,L ∈ [0, 1] s.t.
limt→∞ maxt = U and limt→∞ mint = L.

We still need to show that U and L are the same value. For this we prove
a distinctive property of agents under strongly connected influence graphs: the
belief of any agent at time t will influence every other agent by the time t+|A|−1.
This is precisely formalized below in Lemma 3. First, however, we introduce
some bounds for confirmation-bias, influence as well as notation for the limits in
Theorem 1.

Definition 7 (Min Factors). Define βmin = mini,j∈A β0
i,j as the minimal

confirmation bias factor at t = 0. Also let Imin be the smallest positive influence
in I. Furthermore, let L = limt→∞ mint and U = limt→∞ maxt.

Notice that since mint and maxt do not get further apart as the time t
increases (Corollary 2), mini,j ∈ A βt

i,j is a non-decreasing function of t. Therefore
βmin acts as a lower bound for the confirmation-bias factor in every time step.

34 M. S. Alvim et al.

Proposition 2. βmin = mini,j∈A βt
i,j for every t > 0.

The factor βmin is used in the next result to establish that the belief of agent
i at time t, the minimum confirmation-bias factor, and the maximum belief at t
act as bound of the belief of j at t+|p|, where p is an influence path from i and
j.

Lemma 3 (Path bound). If I is strongly connected:

1. Let p be an arbitrary path i
C�p j. Then B

t+|p|
j ≤ maxt + Cβ

|p|
min/|A||p|(Bt

i −
maxt).

2. Let mt ∈ A be an agent holding the least belief value at time t and p be a path
such that mt �p i. Then B

t+|p|
i ≤ maxt−δ, with δ = (Iminβmin/|A|)|p| (U−L).

Next we establish that all beliefs at time t+|A|−1 are smaller than the max-
imal belief at t by a factor of at least ε depending on the minimal confirmation
bias, minimal influence and the limit values L and U .

Lemma 4. Suppose that I is strongly-connected.

1. If Bt+n
i ≤ maxt − γ and γ ≥ 0 then Bt+n+1

i ≤ maxt − γ/|A|.

2. B
t+|A|−1
i ≤ maxt − ε, where ε is equal to (Iminβmin/|A|)|A|−1 (U − L).

Lemma 4(2) states that max· decreases by at least ε after |A|−1 steps. There-
fore, after m(|A| − 1) steps it should decrease by at least mε.

Corollary 3. If I is strongly connected, maxt+m(|A|−1) ≤ maxt−mε for ε in
Lemma 4.

We can now state that in strongly connected influence graphs extreme beliefs
eventually converge to the same value. The proof uses Corollary 1 and Corollary 3
above.

Theorem 2. If I is strongly connected then limt→∞ maxt = limt→∞ mint.

Combining Theorem 2, the assumption in Remark 2 and the Squeeze Theo-
rem, we conclude that for strongly-connected graphs, all agents’ beliefs converge
to the same value.

Corollary 4. If I is strongly connected then for all i, j ∈ A, limt→∞ Bt
i =

limt→∞ Bt
j .

The Extreme Cases. We assumed in Remark 2 that there were no two agents
i, j s.t. Bt

i = 0 and Bt
j = 1. Theorem 3 below addresses the situation in which

this does not happen. More precisely, it establishes that under confirmation-bias
update, in any strongly-connected, non-radical society, agents’ beliefs eventually
converge to the same value.

A Multi-agent Model for Polarization Under Confirmation Bias 35

Definition 8 (Radical Beliefs). An agent i ∈ A is called radical if Bi = 0
or Bi = 1. A belief configuration B is radical if every i ∈ A is radical.

Theorem 3 (Confirmation-Bias Belief Convergence). In a strongly con-
nected influence graph and under the confirmation-bias update-function, if B0 is
not radical then for all i, j ∈ A, limt→∞ Bt

i = limt→∞ Bt
j. Otherwise for every

i ∈ A, Bt
i = Bt+1

i ∈ {0, 1}.

We conclude this section by emphasizing that belief convergence is not guar-
anteed in non strongly-connected graphs. Figure 1c from the vaccine example
shows such a graph where neither belief convergence nor zero-polarization is
obtained.

4 Conditions for Polarization

We now use concepts from flow networks to identify insightful necessary con-
ditions for polarization never disappearing. Understanding the conditions when
polarization does not disappear under confirmation bias is one of the main con-
tributions of this paper.

Balanced Influence: Circulations. The following notion is inspired by the
circulation problem for directed graphs (or flow network) [11]. Given a graph
G = (V,E) and a function c:E→R (called capacity), the problem involves finding
a function f :E→R (called flow) such that: (1) f(e) ≤ c(e) for each e ∈ E; and
(2)

∑
(v,w)∈ E f(v, w) =

∑
(w,v)∈ E f(w, v) for all v ∈ V . If such an f exists it

is called a circulation for G and c.
Thinking of flow as influence, the second condition, called flow conserva-

tion, corresponds to requiring that each agent influences others as much as is
influenced by them.

Definition 9 (Balanced Influence). We say that I is balanced (or a circu-
lation) if every i ∈ A satisfies the constraint

∑
j ∈ A Ii,j =

∑
j ∈ A Ij,i.

Cliques and circular graphs, where all (non-self) influence values are equal,
are balanced (see Fig. 3b). The graph of our vaccine example (Fig. 1) is a circu-
lation that it is neither a clique nor a circular graph. Clearly, influence graph I
is balanced if it is a solution to a circulation problem for some G = (A,A × A)
with capacity c:A × A→[0, 1].

Next we use a fundamental property from flow networks describing flow con-
servation for graph cuts [11]. Interpreted in our case it says that any group of
agents A⊆A influences other groups as much as they influence A.

Proposition 3 (Group Influence Conservation). Let I be balanced and
{A,B} be a partition of A. Then

∑
i∈A

∑
j∈B Ii,j =

∑
i∈A

∑
j∈B Ij,i.

We now define weakly connected influence. Recall that an undirected graph
is connected if there is path between each pair of nodes.

36 M. S. Alvim et al.

Definition 10 (Weakly Connected Influence). Given an influence graph I,
define the undirected graph GI = (A, E) where {i, j} ∈ E if and only if Ii,j>0
or Ij,i>0. An influence graph I is called weakly connected if the undirected
graph GI is connected.

Weakly connected influence relaxes its strongly connected counterpart. How-
ever, every balanced, weakly connected influence is strongly connected as implied
by the next lemma. Intuitively, circulation flows never leaves strongly connected
components.

Lemma 5. If I is balanced and Ii,j>0 then j�i.

Conditions for Polarization. We have now all elements to identify conditions
for permanent polarization. The convergence for strongly connected graphs (The-
orem 3), the polarization at the limit lemma (Lemma 1), and Lemma 5 yield the
following noteworthy result.

Theorem 4 (Conditions for Polarization). Suppose that limt→∞ ρ(Bt)	=0.
Then either: (1) I is not balanced; (2) I is not weakly connected; (3) B0 is
radical; or (4) for some borderline value v, limt→∞ Bt

i = v for each i ∈ A.

Hence, at least one of the four conditions is necessary for the persistence of
polarization. If (1) then there must be at least one agent that influences more
than what he is influenced (or vice versa). This is illustrated in Fig. 1c from
the vaccine example, where Agent 2 is such an agent. If (2) then there must be
isolated subgroups of agents; e.g., two isolated strongly-connected components
the members of the same component will achieve consensus but the consensus
values of the two components may be very different. This is illustrated in the
fourth row of Fig. 4. Condition (3) can be ruled out if there is an agent that is
not radical, like in all of our examples and simulations. As already discussed, (4)
depends on the underlying discretization Dk (e.g., assuming equal-length bins if
v is borderline in Dk it is not borderline in Dk+1, see Fig. 5.).

Reciprocal and Regular Circulations. The notion of circulation allowed us
to identify potential causes of polarization. In this section we will also use it to
identify meaningful topologies whose symmetry can help us predict the exact
belief value of convergence.

A reciprocal influence graph is a circulation where the influence of i over j is
the same as that of j over i, i.e., Ii,j = Ij,i. Also a graph is (in-degree) regular
if the in-degree of each nodes is the same; i.e., for all i, j ∈ A, |Ai| = |Aj |.

As examples of regular and reciprocal graphs, consider a graph I where
all (non-self) influence values are equal. If I is circular then it is a regular
circulation, and if I is a clique then it is a reciprocal regular circulation. Also we
can modify slightly our vaccine example to obtain a regular reciprocal circulation
as shown in Fig. 6.

A Multi-agent Model for Polarization Under Confirmation Bias 37

Fig. 6. Influence and evolution of beliefs and polar.

The importance of regularity and reciprocity of influence graphs is that their
symmetry is sufficient to the determine the exact value all the agents converge to
under confirmation bias: the average of initial beliefs. Furthermore, under classi-
cal update (see Remark 1), we can drop reciprocity and obtain the same result.
The result is proven using Lemma 5, Theorem 3, Corollary 5, the squeeze theo-
rem and by showing that

∑
i ∈ A Bt

i =
∑

i ∈ A Bt+1
i using symmetries derived

from reciprocity, regularity, and the fact that βt
i,j = βt

j,i.

Theorem 5 (Consensus Value). Suppose that I is regular and weakly con-
nected. If I is reciprocal and the belief update is confirmation-bias, or if the influ-
ence graph I is a circulation and the belief update is classical, then limt→∞ Bt

i =
1/|A|

∑
j∈A B0

j for every i ∈ A.

5 Comparison to DeGroot’s Model

DeGroot proposed a very influential model, closely related to our work, to reason
about learning and consensus in multi-agent systems [9], in which beliefs are
updated by a constant stochastic matrix at each time step. More specifically,
consider a group {1, 2, . . . , k} of k agents, s.t. each agent i holds an initial (real-
valued) opinion F 0

i on a given proposition of interest. Let Ti,j be a non-negative
weight that agent i gives to agent j’s opinion, s.t.

∑k
j=1 Ti,j = 1. DeGroot’s

model posits that an agent i’s opinion F t
i at any time t ≥ 1 is updated as

F t
i =

∑k
j =1 Ti,jF

t−1
i . Letting F t be a vector containing all agents’ opinions at

time t, the overall update can be computed as F t+1 = TF t, where T = {Ti,j} is
a stochastic matrix. This means that the t-th configuration (for t ≥ 1) is related
to the initial one by F t = T tF 0, which is a property thoroughly used to derive
results in the model.

When we use classical update (as in Remark 1), our model reduces to DeG-
root’s via the transformation F 0

i = B0
i , and Ti,j = 1/|Ai| Ij,i if i	=j, or

Ti,j = 1−1/|Ai|
∑

j ∈ Ai
Ij,i otherwise. Notice that Ti,j≤1 for all i and j, and,

by construction,
∑k

j =1 Ti,j = 1 for all i. The following result is an immediate
consequence of this reduction.

Corollary 5. In a strongly connected influence graph I, and under the classical
update function, for all i, j ∈ A, limt→∞ Bt

i = limt→∞ Bt
j.

38 M. S. Alvim et al.

Unlike its classical counterpart, however, the confirmation-bias update (Def-
inition 3) does not have an immediate correspondence with DeGroot’s model.
Indeed, this update is not linear due the confirmation-bias factor βt

i,j =
1−|Bt

j−Bt
i |. This means that in our model there is no immediate analogue of

the relation among arbitrary configurations and the initial one as the relation in
DeGroot’s model (i.e., F t = T tF 0). Therefore, proof techniques usually used in
DeGroot’s model (e.g., based on Markov properties) are not immediately appli-
cable to our model. In this sense our model is an extension of DeGroot’s, and
we need to employ different proof techniques to obtain our results.

6 Conclusions and Other Related Work

We proposed a model for polarization and belief evolution for multi-agent sys-
tems under confirmation-bias. We showed that whenever all agents can directly
or indirectly influence each other, their beliefs always converge, and so does
polarization as long as the convergence value is not a borderline point. We also
identified necessary conditions for polarization not to disappear, and the conver-
gence value for some important network topologies. As future work we intend
to extend our model to model evolution of beliefs and measure polarization in
situations in which agents hold opinions about multiple propositions of interest.

Related Work. As mentioned in the introduction and discussed in detail in
Sect. 5, the closest related work is on DeGroot models for social learning [9].
We summarize some other relevant approaches put into perspective the novelty
of our approach.

Polarization. Polarization was originally studied as a psychological phe-
nomenon in [26], and was first rigorously and quantitatively defined by econo-
mists Esteban and Ray [13]. Their measure of polarization, discussed in Sect. 2,
is influential, and we adopt it in this paper. Li et al. [20], and later Proskurnikov
et al. [31] modeled consensus and polarization in social networks. Like much
other work, they treat polarization simply as the lack of consensus and focus
on when and under what conditions a population reaches consensus. Elder’s
work [12] focuses on methods to avoid polarization, without using a quantitative
definition of polarization. [6] measures polarization but purely as a function of
network topology, rather than taking agents’ quantitative beliefs and opinions
into account, in agreement with some of our results.

Formal Models. Ŝırbu et al. [37] use a model that updates probabilistically to
investigate the effects of algorithmic bias on polarization by counting the number
of opinion clusters, interpreting a single opinion cluster as consensus. Leskovec
et al. [14] simulate social networks and observe group formation over time.

The Degroot models developed in [9] and used in [15] are closest to ours.
Rather than examining polarization and opinions, this work is concerned with
the network topology conditions under which agents with noisy data about an
objective fact converge to an accurate consensus, close to the true state of the

A Multi-agent Model for Polarization Under Confirmation Bias 39

world. As already discussed the basic DeGroot models do not include confirma-
tion bias, however [7,17,23,25,36] all generalize DeGroot-like models to include
functions that can be thought of as modelling confirmation bias in different ways,
but with either no measure of polarization or a simpler measure than the one we
use. [24] discusses DeGroot models where the influences change over time, and
[16] presents results about generalizations of these models, concerned more with
consensus than with polarization.

Logic-Based Approaches. Liu et al. [21] use ideas from doxastic and dynamic
epistemic logics to qualitatively model influence and belief change in social net-
works. Seligman et al. [34,35] introduce a basic “Facebook logic.” This logic
is non-quantitative, but its interesting point is that an agent’s possible worlds
are different social networks. This is a promising approach to formal model-
ing of epistemic issues in social networks. Christoff [8] extends facebook logic
and develops several non-quantitative logics for social networks, concerned with
problems related to polarization, such as information cascades. Young Pederson
et al. [28–30] develop a logic of polarization, in terms of positive and negative
links between agents, rather than in terms of their quantitative beliefs. Hunter
[19] introduces a logic of belief updates over social networks where closer agents
in the social network are more trusted and thus more influential. While beliefs in
this logic are non-quantitative, there is a quantitative notion of influence between
users.

Other Related Work. The seminal paper Huberman et al. [18] is about deter-
mining which friends or followers in a user’s network have the most influence on
the user. Although this paper does not quantify influence between users, it does
address an important question to our project. Similarly, [10] focuses on finding
most influential agents. The work on highly influential agents is relevant to our
finding that such agents can maintain a network’s polarization over time.

References

1. Alvim, M.S., Amorim, B., Knight, S., Quintero, S., Valencia, F.: (2020). https://
github.com/Sirquini/Polarization

2. Alvim, M.S., Amorim, B., Knight, S., Quintero, S., Valencia, F.: A multi-agent
model for polarization under confirmation bias in social networks, Technical report.
arXiv preprint (2021)

3. Alvim, M.S., Knight, S., Valencia, F.: Toward a formal model for group polarization
in social networks. In: Alvim, M.S., Chatzikokolakis, K., Olarte, C., Valencia, F.
(eds.) The Art of Modelling Computational Systems: A Journey from Logic and
Concurrency to Security and Privacy. LNCS, vol. 11760, pp. 419–441. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-31175-9 24

4. Aronson, E., Wilson, T., Akert, R.: Social Psychology, 7th edn. Prentice Hall,
Upper Saddle River (2010)

5. Bozdag, E.: Bias in algorithmic filtering and personalization. Ethics Inf. Technol.
15, 209–227 (2013). https://doi.org/10.1007/s10676-013-9321-6

https://github.com/Sirquini/Polarization
https://github.com/Sirquini/Polarization
https://doi.org/10.1007/978-3-030-31175-9_24
https://doi.org/10.1007/s10676-013-9321-6

40 M. S. Alvim et al.

6. Calais Guerra, P., Meira Jr, W., Cardie, C., Kleinberg, R.: A measure of polariza-
tion on social media networks based on community boundaries. In: Proceedings of
the 7th International Conference on Weblogs and Social Media, ICWSM 2013, pp.
215–224 (2013)

7. Cerreia-Vioglio, S., Corrao, R., Lanzani, G., et al.: Robust Opinion Aggregation
and its Dynamics. IGIER, Università Bocconi (2020)

8. Christoff, Z., et al.: Dynamic logics of networks: information flow and the spread of
opinion. Ph.D. thesis, Institute for Logic, Language and Computation, University
of Amsterdam (2016)

9. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)
10. DeMarzo, P.M., Vayanos, D., Zwiebel, J.: Persuasion bias, social influence, and

unidimensional opinions. Q. J. Econ. 118(3), 909–968 (2003)
11. Diestel, R.: Graph Theory, 5th edn. Springer, Heidelberg (2015). https://doi.org/

10.1007/978-3-662-53622-3
12. Elder, A.: The interpersonal is political: unfriending to promote civic discourse

on social media. Ethics Inf. Technol. 22, 15–24 (2019). https://doi.org/10.1007/
s10676-019-09511-4

13. Esteban, J.M., Ray, D.: On the measurement of polarization. Econometrica 62(4),
819–851 (1994)

14. Gargiulo, F., Gandica, Y.: The role of homophily in the emergence of opinion
controversies. arXiv preprint arXiv:1612.05483 (2016)

15. Golub, B., Jackson, M.O.: Naive learning in social networks and the wisdom of
crowds. Am. Econ. Jo.: Microecon. 2(1), 112–49 (2010)

16. Golub, B., Sadler, E.: Learning in social networks. Available at SSRN 2919146
(2017)

17. Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence, models,
analysis and simulation. J. Artif. Soc. Soc. Simul. 5(3), 2 (2002)

18. Huberman, B.A., Romero, D.M., Wu, F.: Social networks that matter: Twitter
under the microscope. arXiv preprint arXiv:0812.1045 (2008)

19. Hunter, A.: Reasoning about trust and belief change on a social network: a formal
approach. In: Liu, J.K., Samarati, P. (eds.) ISPEC 2017. LNCS, vol. 10701, pp.
783–801. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72359-4 49

20. Li, L., Scaglione, A., Swami, A., Zhao, Q.: Consensus, polarization and clustering
of opinions in social networks. IEEE J. Sel. Areas Commun. 31(6), 1072–1083
(2013)

21. Liu, F., Seligman, J., Girard, P.: Logical dynamics of belief change in the com-
munity. Synthese 191(11), 2403–2431 (2014). https://doi.org/10.1007/s11229-014-
0432-3

22. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers, Boston
(1996)

23. Mao, Y., Bolouki, S., Akyol, E.: Spread of information with confirmation bias in
cyber-social networks. IEEE Trans. Netw. Sci. Eng. 7(2), 688–700 (2020)

24. Moreau, L.: Stability of multiagent systems with time-dependent communication
links. IEEE Trans. Autom. Control 50(2), 169–182 (2005)

25. Mueller-Frank, M.: Reaching consensus in social networks. IESE Research Papers
D/1116, IESE Business School (2015)

26. Myers, D.G., Lamm, H.: The group polarization phenomenon. Psychol. Bull. 83,
602 (1976)

27. Nielsen, M., Palamidessi, C., Valencia, F.D.: Temporal concurrent constraint pro-
gramming: denotation, logic and applications. Nord. J. Comput. 9(1), 145–188
(2002)

https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/s10676-019-09511-4
https://doi.org/10.1007/s10676-019-09511-4
http://arxiv.org/abs/1612.05483
http://arxiv.org/abs/0812.1045
https://doi.org/10.1007/978-3-319-72359-4_49
https://doi.org/10.1007/s11229-014-0432-3
https://doi.org/10.1007/s11229-014-0432-3

A Multi-agent Model for Polarization Under Confirmation Bias 41

28. Pedersen, M.Y.: Polarization and echo chambers: a logical analysis of balance and
triadic closure in social networks (2019)

29. Pedersen, M.Y., Smets, S., Ågotnes, T.: Analyzing echo chambers: a logic of strong
and weak ties. In: Blackburn, P., Lorini, E., Guo, M. (eds.) LORI 2019. LNCS, vol.
11813, pp. 183–198. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
662-60292-8 14

30. Pedersen, M.Y., Smets, S., Ågotnes, T.: Further steps towards a logic of polariza-
tion in social networks. In: Dastani, M., Dong, H., van der Torre, L. (eds.) CLAR
2020. LNCS (LNAI), vol. 12061, pp. 324–345. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-44638-3 20

31. Proskurnikov, A.V., Matveev, A.S., Cao, M.: Opinion dynamics in social networks
with hostile camps: consensus vs. polarization. IEEE Trans. Autom. Control 61(6),
1524–1536 (2016)

32. Ramos, V.J.: Analyzing the Role of Cognitive Biases in the Decision-Making Pro-
cess. IGI Global, Hershey (2019)

33. Saraswat, V.A., Jagadeesan, R., Gupta, V.: Foundations of timed concurrent con-
straint programming. In: LICS, pp. 71–80. IEEE Computer Society (1994)

34. Seligman, J., Liu, F., Girard, P.: Logic in the community. In: Banerjee, M., Seth,
A. (eds.) ICLA 2011. LNCS (LNAI), vol. 6521, pp. 178–188. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-18026-2 15

35. Seligman, J., Liu, F., Girard, P.: Facebook and the epistemic logic of friendship.
CoRR abs/1310.6440 (2013)

36. Sikder, O., Smith, R., Vivo, P., Livan, G.: A minimalistic model of bias, polarization
and misinformation in social networks. Sci. Rep. 10, 1–11 (2020)

37. Ŝırbu, A., Pedreschi, D., Giannotti, F., Kertész, J.: Algorithmic bias amplifies
opinion polarization: a bounded confidence model. arXiv preprint arXiv:1803.02111
(2018)

38. Sohrab, H.H.: Basic Real Analysis, 2nd edn. Birkhauser, Basel (2014)

https://doi.org/10.1007/978-3-662-60292-8_14
https://doi.org/10.1007/978-3-662-60292-8_14
https://doi.org/10.1007/978-3-030-44638-3_20
https://doi.org/10.1007/978-3-030-44638-3_20
https://doi.org/10.1007/978-3-642-18026-2_15
http://arxiv.org/abs/1803.02111

A Formalisation of SysML State
Machines in mCRL2

Mark Bouwman1(B), Bas Luttik1, and Djurre van der Wal2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
m.s.bouwman@tue.nl

2 University of Twente, Enschede, The Netherlands

Abstract. This paper reports on a formalisation of the semi-formal
modelling language SysML in the formal language mCRL2, in order to
unlock formal verification and model-based testing using the mCRL2
toolset for SysML models. The formalisation focuses on a fragment of
SysML used in the railway standardisation project EULYNX. It com-
prises the semantics of state machines, communication between objects
via ports, and an action language called ASAL. It turns out that the
generic execution model of SysML state machines can be elegantly spec-
ified using the rich data and process languages of mCRL2. This is a big
step towards an automated translation as the generic model can be con-
figured with a formal description of a specific set of state machines in a
straightforward manner.

1 Introduction

The importance of correct specifications is evident for safety-critical systems
such as those in the railway domain. At the same time, due to the increasing
use of digital technology in those systems, specifications are getting more and
more complex and harder to get completely correct. To cope with the complex-
ity, railway engineers are gradually adopting a model-based system engineering
approach for the development of their systems. EULYNX1, an initiative of a con-
sortium of thirteen European railway infrastructure managers, uses SysML to
specify a standard for interfaces between the various components of a signalling
system (signal, point, level crossing, interlocking, etc.).

The use of SysML for system requirements specification is a big step forward
for the railway domain as it is significantly more precise than natural language.
SysML has a fairly intuitive graphical syntax, which allows railway engineers to
understand and use it without extensive training. Still, SysML is semi-formal : it
has a well-defined syntax, but its semantics is informal and not firmly grounded
in mathematics. As a consequence, system behaviour specified by a SysML model
is not directly amenable to the more thorough kind of analysis that genuine
formal methods offer.

1 See https://eulynx.eu.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 42–59, 2021.
https://doi.org/10.1007/978-3-030-78089-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_3&domain=pdf
https://eulynx.eu
https://doi.org/10.1007/978-3-030-78089-0_3

A Formalisation of SysML State Machines in mCRL2 43

The aim of the FormaSig2 project, a collaboration of the Dutch and German
railway infrastructure managers, Eindhoven University of Technology and the
University of Twente, is to formalise the aforementioned EULYNX standard to
the extent that delivered components conforming to the standard provably sat-
isfy a collection of safety properties. The idea is to associate with each EULYNX
SysML model a formal mCRL2 model [5,6]. Then mCRL2’s model checker can
be used to establish that the model satisfies the required safety properties, and
automated model-based test technology can be used to reliably test compliance
to the model of actual implementations (see Fig. 1). In a first case study, we have
demonstrated the viability of this idea. We took the EULYNX SysML model of
the Point interface, associated an mCRL2 model with it, used the mCRL2 model
checker to analyse its correctness and used the model-based test tool JTorX [2]
to check conformance of a SysML simulator of Point [4].

Fig. 1. FormaSig: using a formal mCRL2 model to establish that implementations
conforming to the EULYNX standard satisfy properties.

The EULYNX standard is under development, and it is likely that also in the
future it will be subject to changes. Hence, it is impractical to rely on manual
translations from the EULYNX SysML models to mCRL2. To facilitate that
model-checking and model-based test techniques will become an integral aspect
of maintaining the standard, it is imperative that the translation from EULYNX
SysML to mCRL2 is automated. Another benefit of having a automated trans-
lation is that, as its correctness can be rigorously examined, the likelihood of
introducing mistakes in the formalised model is reduced.

How EULYNX SysML models are meant to be interpreted is specified in
the EULYNX modelling standard. So far FormaSig delivers an interpretation of
EULYNX SysML. Going forward, FormaSig also aims to increase precision of
the modelling standard and become the official interpretation.

Implementing an automated translation from SysML to mCRL2 is, however,
a nontrivial undertaking, most notably hampered by the lack of a complete and
comprehensive formal semantics for SysML and the complexity of the informally
described SysML execution model. Furthermore, also due to the lack of a fixed
formal semantics, there are many dialects of SysML. A particular variation point
is the action language, the language used to specify guards and the effects of

2 Formal Methods in Railway Signaling Infrastructure Standardization Processes.

44 M. Bouwman et al.

transitions. In EULYNX SysML all communication is performed via ports, which
are referenced as variables in the action language. The action language itself is
ASAL, which is tied to the PTC Windchill tool3.

The main contribution of this paper is to present a formalisation of the
informal semantics of EULYNX SysML state machines directly in mCRL2. Our
formalisation consists of three parts. The first part is a generic, comprehensive
formalisation of the operational semantics of UML state machines, which form
the basis of EULYNX SysML state machines. This part involves formalising
the notion of state hierarchy and transition selection. The second part adds an
interpretation of the particular communication mechanism via ports that is used
in EULYNX SysML. The third part defines an execution model for the ASAL
action language. In this paper, we generalise to a class of action languages that
reference ports as variables. The resulting mCRL2 specification can straightfor-
wardly be turned into an actual formal model interpreting a particular EULYNX
SysML interface by populating the relevant data types with some static details
from the SysML model and generating a suitable number of instantiations of
predefined processes. For the latter, we have implemented a tool that is dis-
cussed in a companion paper [22]. The resulting mCRL2 specification can be
model-checked and used for model-based testing and serve as the formal model
central to FormaSig idea (see Fig. 1).

The semantics of UML/SysML state machines has been formalised in pre-
ceding academic work. A number of papers describe a translation from UML
state machines to PROMELA (the input language of the SPIN model checker)
[11–13,18,21]. Our formalisation of transition selection draws inspiration from
[13]. In [14] a structural operational semantics is presented along with a custom
verification tool USM2C. The AVATAR [19] tool offers a SysML-style environ-
ment with particular focus on verifying security properties; it offers translation
to UPPAAL and ProVerif. Other translations and formalisations include a trans-
lation from xUML class diagrams and state machines to mCRL2 [7,8], a trans-
lation from SysML BDDs and state machines to NuSMV [23], a formalisation of
UML state machines using structured graph transformations [10] and a formali-
sation of UML state machines in Object-Z [9]. In [20] a translation is given from
sequence diagrams to mCRL2. Our approach to formalisation differs from earlier
work by specifying the generic semantics in the target formal language which
can be instantiated with a specific configuration. Moreover, our formalisation
includes a communication mechanism using ports.

The OMG organisation, which manages the UML and SysML standards, has
also released “Precise Semantics of UML State Machines (PSSM)” [17], which
gives an informal but very precise semantics. Our formalisation differs in at least
one way from PSSM. We do not create completion events in order to prevent
cluttering the event queue. Instead, transitions relying on a completion event
have completion of the source state as an extra guard. PSSM also provides an
extensive compliance test suite. In the future we would like to make a version

3 https://www.ptc.com/en/products/windchill/integrity/.

https://www.ptc.com/en/products/windchill/integrity/

A Formalisation of SysML State Machines in mCRL2 45

of our model that adheres to PSSM and measure the effect of completion events
on the state space.

This rest of the paper is organised as follows. In Sect. 2 we present the visual
syntax of state machines and a summary of the run-to-completion semantics;
this section can be skipped by readers familiar with state machines. In Sect. 3
we give a quick introduction to mCRL2. From Sect. 4 to Sect. 6 we go into the
details of the formalisation. We conclude the paper in Sect. 7.

2 An Informal Introduction to UML State Machines

Fig. 2. Example showing all state machine constructs supported in EULYNX SysML.

Figure 2 shows an example of a state machine, with names of the various con-
structions added in blue. In this section, we briefly discuss the informal semantics
of each construction as in the UML standard [16].

The basic constituents of state machines are states and transitions. Initial
states, choice states, final states, junctions, forks and joins are also called pseu-
dostates. The UML state machine formalism derives its expressiveness from these
the possibility to have states and transitions nested within states, and even have
transitions cross state border. Transitions may have a trigger, a guard and an
effect. The trigger of a transition (which is optional) is an event ; it can be a
change event (notation when(x)) or a timeout event (notation after(x)).

The modeller can define behaviour that is executed upon entering or exiting
a simple or composite state. Exit behaviour is executed before the effect of a
transition, entry behaviour is executed after the effect of a transition. Simple
and composite states can also have internal transitions, which do not change
state (see, e.g., the state Failed in Fig. 2).

46 M. Bouwman et al.

Junctions and choice vertices allow more concise specification of transitions
that induce the same behaviour. The choice vertex c1 in Fig. 2 combines two
transitions from Checking which share the common behaviour A:=1. Junctions
serve a similar purpose (see junction j1 in Fig. 2) with the difference that for
junctions the guards of outgoing transitions need to be checked before taking
a transition to the junction, whereas for choice vertices the guards are checked
when arriving at the vertex.

A state can contain other states, in which case it is called a composite state
and the states it encloses are called substates. A composite state can have a
final state (see, e.g., the state Failed in Fig. 2). Transitions from the border of
a composite state can be fired regardless of the current substate, except when
the transition does not have a trigger, in which case the current substate of the
composite state must be a final state. A composite state may also have multiple
parallel regions. Each region has an initial state and can perform local transitions
independently of other regions. A transition ending at the border of a composite
state with parallel regions will let each region start from its initial state. A fork
indicates that a transition ends on specific states in multiple regions. Conversely,
a join can begin from specific states in parallel regions.

Due to the presence of composite states, a state machine is not just in a single
state but in a collection of states, a state configuration. A state configuration is
stable when it does not contain pseudostates. Transitions are specified on states;
a state machine may combine several transitions (as is the case with joins, forks
and junctions) to perform a bigger step from one state configuration to another,
which we will call a step. Events that occur are stored in an event pool until
they are dispatched. A step is enabled when the specified trigger (if any) is in
the event pool and all guards of transitions involved in the step evaluate to
true. State machines have run-to-completion semantics: a state machine selects
a step to execute and will completely finish executing the behaviour of the step
and entry and exit behaviour before it considers performing a new step. Parallel
regions may start a step simultaneously when both steps have the same trigger;
in that case the state machine performs a multi-step.

3 Introduction to mCRL2

The mCRL2 toolset is designed to model and analyse concurrent and distributed
systems. The mCRL2 language is an ACP-style process algebra and contains a
rich data language based on abstract data types. The semantic interpretation of
an mCRL2 model is a Labelled Transition System (LTS). By translating from
SysML to mCRL2 we indirectly associate an LTS to the SysML model. The
toolset contains tools for the verification of parametrised modal μ-calculus for-
mulas, bisimulation reduction, counterexample generation, simulation and visu-
alisation. To aid the reader in understanding the mCRL2 snippets in following
sections, we will cover some basics using an example unrelated to the contents of
this paper. For more information on mCRL2 we refer to https://mcrl2.org and
[6].

https://mcrl2.org

A Formalisation of SysML State Machines in mCRL2 47

The mCRL2 language has some primitive data types built in, such as integers,
natural numbers and booleans, including common operations on them. Users
can also define their own data types and operations. The code below shows
an example. The sort Place has one constructor, Coordinates, with projection
functions X and Y. Equations are treated as rewrite rules; terms that match the
left hand side will be rewritten to the right hand side.
sort Place = struct Coordinates(X:Nat , Y: Nat);
map computeManhattanDistance: Place#Place -> Nat;
var p1, p2:Place;
eqn computeManhattanDistance(p1,p2) = abs(X(p1)-X(p2))+abs(Y(p1)-Y(p2));

The process definition below specifies the behaviour of the Point process; it
can perform three actions: move, invite and respond. The sum operator rep-
resents a non-deterministic choice over all values of the quantified data domain.
Summations over infinite data domains can be restricted by adding a condition.
In the example below a condition is used to restrict a point process to move to
any place on a 10 by 10 grid.
act move: Nat; invite , respond , meet: Place;
proc Point(p:Place) = sum new:Place. (X(new) < 10 && Y(new) < 10)

-> move(computeManhattanDistance(p,new)). Point(new)
+ invite(p).Point(p) + sum new:Place. respond(new).Point(new);

The initial process expression specifies the initial state of the labelled tran-
sition associated with the specification. The example below specifies a parallel
composition of two Point processes wrapped in a communication and an allow
operator. Both Point processes can perform a move action, which is allowed
by the allow operator. The invite and respond actions are not allowed and
hence blocked. However, the two processes can synchronize on a multi-action
invite|respond, which is transformed to a meet action by the communication
operator, which is allowed by the allow operator. The labelled transition system
(sometimes referred to as the state space) associated with this specification will
have exactly 10.000 states, representing every combination of coordinates.
init allow ({move ,meet}, comm({ invite|respond -> meet},

Point(Coordinates (1 ,1))|| Point(Coordinates (2 ,3))));

4 The Operational Semantics of State Machines

In Sect. 2 we already gave a rough sketch of the execution semantics of state
machines. In this section we treat the semantics of UML state machines and
its formalisation in mCRL2, including the role of the action language and some
mCRL2 snippets that are illustrative of the formalisation. The model itself is
available on GitHub [3]. In Sect. 5 we extend the UML semantics with EULYNX
SysML specific communication over ports. In Sect. 6 we detail how to complete
the model with a configuration and touch on the subject of verification.

4.1 Strategy to Formalisation

Our goal is to generically describe the semantics of state machines in mCRL2
achieving a high degree of modularity. There are several choices to be made

48 M. Bouwman et al.

(e.g., with respect to the granularity of interleaving, run-to-completion seman-
tics, syntax and semantics of the action language) and we want to set up our
specification in such a way that parts of it can be easily modified or replaced. A
particular concern is that the specific details of a concrete state machine to be
translated are separated from the generic semantics.

Due to our modular setup it is rather straightforward to configure the generic
model with a specific set of communicating state machines. The user needs to
do two things: 1) define the semantics of the action language and 2) encode
the structure of the state machines in an mCRL2 data type and pass it as a
parameter to the generic state machine process.

4.2 Abstract Action Language

The UML standard [16] is not prescriptive of the action language used to specify
guards and the effect of transitions. In this paper we abstract from any particular
action language.

Let Instruction be a sort containing all action language expressions, which
we will also refer to as a behaviour. Let VarName be a sort containing all variable
names. It is assumed that variables range over elements of a sort Value.

In order to formalise the action language semantics it may be necessary
to include additional data structures, e.g., a program stack or a valuation of
local variables. To encapsulate such additional data structures we introduce the
notion of execution frame, represented by the mCRL2 sort ExcFrame, which will
be assumed to consist of all data necessary to execute programs of the action
language. We do not assume that execution of behaviour is atomic, we allow
that two components interleave their execution of behaviour when they are both
taking a transition. We abstract from the granularity of interleaving and simply
allow an execution frame e to make a step to an execution frame e′, where e′

may still have behaviour waiting to be executed.
To define the semantics of the action language the user needs to add equations

for the following mappings. We assume a subset of action language expressions
represent predicates, which can be evaluated using checkPredicate.
sort VarValuePair = struct VarValuePair(getVariable:VarName , getValue:Value);

Instructions = List(Instruction);
map initializeExcFrame: Instructions #(VarName -> Value) -> ExcFrame;

executeExcFrameCode: ExcFrame -> ExcFrame;
checkPredicate: Instructions #(VarName -> Value) -> Bool;
isFinished: ExcFrame -> Bool;
getValuation: ExcFrame -> VarName -> Value;
getVariableUpdates: ExcFrame -> List(VarValuePair);
resetVariableUpdates: ExcFrame -> ExcFrame;

The mapping getVariableUpdates is assumed to retrieve all updates to vari-
ables that occurred during the execution of the execution frame. This field is
needed for deriving change events, described in Sect. 4.5.

4.3 Representing State Machines in mCRL2

We assume that StateName and CompName have been declared as mCRL2 enu-
meration sorts, enumerating, respectively, all state names and all state machine

A Formalisation of SysML State Machines in mCRL2 49

identifiers occurring in the SysML model under consideration. These two sorts
are part of the configuration in the model as they need to be instantiated.

We proceed by introducing the sort StateInfo, which is an example of
mCRL2’s facility to define structured sorts. By means of a structured sort, data
can be concisely aggregated. An element of the sort StateInfo is either a triple
with constructor SimpleState or with constructor CompositeState, both with
projection functions parent, entryAction and exitAction, or it stores a single
data element together with a constructor (JoinVertex, JunctionVertex, etc.).
StateInfo = struct SimpleState(parent: StateName , entryAction: Instructions ,

exitAction: Instructions) | CompositeState(parent: StateName ,
entryAction: Instructions , exitAction: Instructions)

| JoinVertex(parent: StateName) | JunctionVertex(parent: StateName)
| ForkVertex(parent: StateName) | InitialState(parent: StateName)
| FinalState(parent: StateName) | ChoiceVertex(parent: StateName);

The parent of a state is stored to represent the hierarchy of states induced by
composite states. A state’s parent is the first enclosing composite state. We
assume that the sort StateName has a special element root; states that are not
enclosed in a composite state have root as their parent.

Our framework supports change events and timeout events, see the defini-
tion of the sort Event below. The event type none is used as placeholder for
transitions without a trigger. Time is currently not modelled explicitly in our
framework, even though mCRL2 does support it. Explicit timing would result
in a significantly larger state space, while it is not relevant for the properties
that need to be verified in the context of EULYNX. Instead, transitions with a
timeout event as trigger can fire non-deterministically. The generation of change
events is discussed in Sect. 4.5.
Event = struct none | ChangeEvent(getTriggerExpr:Instructions) | TimeoutEvent

The sort Transition (given below) is used to specify the transitions of a state
machine. The Boolean internal is used to differentiate between selfloops and
internal transitions, the latter do not induce entry and/or exit behaviour.
Transition = struct Transition(source:StateName , trigger:Event ,

guard:Instructions , effect:Instructions , target:StateName , internal:Bool);

We also define the sort StateMachine, which aggregates all the information we
need of a state machine.
StateMachine = struct StateMachine(

transitions:List(Transition),initialState:StateName ,states:List(StateName),
stateInfo: StateName -> StateInfo , initialValuation: VarName -> Value);

The initialState designates the initial state in the root of the state machine
(i.e. the initial state that is not contained in a composite state). The projection
functions states and stateInfo retrieve which states are present in the state
machine and the associated StateInfo, respectively. Note that functions can be
partial in mCRL2, the function stateInfo only needs to be defined for the state
names that occur in that state machine.

Due to the hierarchy of states a state machine is ‘in’ a collection of states, a
state configuration. A state configuration can be represented as a tree structure
where the top node is not enclosed in a composite state. Parallel regions introduce

50 M. Bouwman et al.

nodes with multiple children. The mCRL2 excerpt below gives the definition of
state configurations in the model.
StateConfig =

struct StateConfig(rootState:StateName ,substates:List(StateConfig));

An example configuration of the state machine depicted in Fig. 2 is
StateConfig(Booting ,[StateConfig(Initial2 ,[]), StateConfig(Initial3 ,[])]).

4.4 Step Selection and Execution

As explained in Sect. 2, state machines make a step from one state configura-
tion to another. Such a step could consist of multiple transitions, as is the case
with junctions, joins and forks. We could in theory perform step selection by
performing a reachability search across the transitions. We anticipate that this
will make step selection computationally expensive. Instead, we opt to prepro-
cess Transitions into Steps. The definition of Step is given below, as well as
the mapping that derives Steps from Transitions. The effect of the step is a
ComposedBehaviour. It allows us to create a partially ordered set of behaviours,
which is needed for defining steps in the context of parallel regions (see Fig. 3).
sort Step = struct Step(source: StateConfig , trigger: Event ,

guard: List(Instructions),effect: ComposedBehaviour , target: StateConfig ,
internal: Bool , arrowEnd: StateName);

ComposedBehaviour = List(InstructionOrPar);
InstructionOrPar = struct Instruction(getInstruction:Instruction)

| ParBehaviours(parBehaviours:List(ComposedBehaviour));
map transitionsToSteps: StateMachine -> List(Step);

The mCRL2 code specifying the transformation from Transitions to Steps
consists of over 200 lines. Avoiding too much detail we illustrate what transfor-
mations are done. The first transformation is to create a Step object for every
Transition by adding the ancestors to the source and target state.

We deal with forks by combining the outgoing transitions. The transition to
the fork is changed by adding the guards of the outgoing transitions. The effects
of the outgoing transitions are put in parallel (See Fig. 3). Note that in the case
of a fork the step does not have a single arrowEnd; we assume that StateName
has a special element multiple which will be used in the case of forks.

Similarly, we deal with joins by combining incoming steps and their guards.
For steps ending on a composite state we add the initial state in the target.
For steps from composite states there are two options: if the step has a change
event as trigger then we do not add a substate to the source (step is enabled
regardless of the substate); if the step does not have a trigger we require that
all the parallel regions of the composite state are in a final state.

We remove junctions by introducing a step for each path over the junction.
Given a state configuration and a set of steps we can reason about which

steps are enabled for firing. We will go over the restrictions for firing steps that
are checked in different data equations.

The most basic requirement for selecting a step is that the source of
the step must match the current state configuration. This is checked by

A Formalisation of SysML State Machines in mCRL2 51

Fig. 3. Example steps to and from a fork.

filterPossible, defined below. The helper function getAllStatesConfig
returns the set of all states that are in a state configuration. The helper function
containsPseudoState checks whether a state configuration contains a pseu-
dostate. Due to the run-to-completion semantics we only select a new step when
we have reached a stable state configuration (i.e. a state configuration without
pseudostates). For this reason we add the condition that if the current state
configuration contains a pseudostate then we will only consider transitions from
the pseudostate.
map filterPossible: List(Step)# StateConfig#StateMachine -> List(Step);

matchState:StateConfig#StateConfig -> Bool;
var sc, sc1 , sc2: StateConfig; step: Step; steps: List(Step);

sm:StateMachine;
eqn filterPossible ([], sc, sm) = [];

filterPossible(step |> steps , sc, sm) = filterPossible(steps ,sc,sm)
++ if(matchState(sc,source(step))

&& (containsPseudoState(sc,sm)=> containsPseudoState(source(step),sm)),
[step], []);

matchState(sc1 ,sc2) = (getAllStatesConfig(sc2)- getAllStatesConfig(sc1))=={};

Another requirement is that the guard evaluates to true and the trigger matches
the current event that is being processed. These two checks are performed by
filterEnabled.
filterEnabled: List(Step)#Event -> List(Step);

Another rule is that steps for which the source is lower (i.e. more deeply nested)
in the state hierarchy have a higher priority than steps for which the source is
higher in the state hierarchy. The mapping filterPriority selects the steps
with the highest priority among the input. Note that there may be multiple
steps on the same priority level.
filterPriority: List(Step) -> List(Step);

As mentioned earlier, a state machine can also perform a multi-step if multiple
steps with the same trigger event are enabled in parallel regions. To be more
precise: the state machine selects a multi-step consisting of the maximal set of
non-conflicting steps, where non-conflicting means that no two steps in the set
exit the same state. The mapping multiStepPossibilities computes all such
multi-steps given a set of steps.
multiStepPossibilities: List(Step) -> List(List(Step));

52 M. Bouwman et al.

Due to the way we have constructed Steps the target field of a transition is not
always a complete state configuration. We leave out parallel regions in defining
transitions when they do not actively contribute. If we were to include all the
parallel regions in the source and target of Steps we would have to compute
all variations. To construct the new state configuration computeNextState takes
the target of a transition and adds the parallel regions of the current state
configuration that are unaffected (i.e. not exited).
computeNextState: StateConfig#Step -> StateConfig;

computeNextState recurses through the tree structure of the target state config-
uration. At each level it copies over unaffected regions. It is unaffected when the
region was not present in the source of the step (it was not an active participant
of the step) and it is not exited by the step.

The behaviour of performing a step, i.e. an instance of Instructions, is the
behaviour of the step itself combined with possible exit and entry behaviour.
For internal transitions no state is entered or exited. The snippet below shows
the definition of determineBehaviourStep.
map getEntryBehaviour: StateMachine#StateConfig#Step -> ComposedBehaviour;

getExitBehaviour: StateMachine#StateConfig#Step -> ComposedBehaviour;
determineBehaviourStep: StateMachine#Step#StateConfig -> ComposedBehaviour;

var sm: StateMachine; cur: StateConfig; st: Step;
eqn (! internal(st)) -> determineBehaviourStep(sm,st,cur) =

getExitBehaviour(sm,cur ,st) ++ effect(st) ++ getEntryBehaviour(sm,cur ,st);
internal(st) -> determineBehaviourStep(sm,st,cur) = effect(st);

Both getEntryBehaviour and getExitBehaviour compute the new state con-
figuration after firing the transition and which states are entered/exited; subse-
quently they determine the order in which behaviour needs to be executed and
construct a ComposedBehaviour. The order of composing entry behaviours is
outside-in (top level states first) and the order of composing exit behaviours is
inside-out (nested states first). To determine the order both functions recurse
through the new state configuration. Behaviour of states that are entered/exited
that are on the same level (parallel regions) is put in parallel.

We use a mapping computeExecutionOptions to compute all the options for
what behaviour from a ComposedBehaviour can be executed next. If the head
of the composed behaviour is a sequential composition of instructions it will
return one execution option with all instructions up to the end of the composed
behaviour or up to a parallel composition (whatever comes first). If the head of
the composed behaviour is a parallel composition then we get multiple options
corresponding to each parallel branch.
sort ExecutionOption = struct ExecutionOption(getCodeToExecute :Instructions ,

getRemainingBehavior:ComposedBehavior);
map computeExecutionOptions: ComposedBehavior -> List(ExecutionOption);

4.5 Change Events

A change event is generated when the content of a when(x) trigger becomes true.
When a variable is updated we need to check which change events need to be

A Formalisation of SysML State Machines in mCRL2 53

generated. For this purpose we introduce the sort Monitor. A monitor stores an
action language expression and the last evaluation. When we update a variable
we can check which change events are generated using deriveChangeEvents.
The mapping updateMonitors updates the valuation stored in the monitors.
sort Monitor = struct Monitor(getExpression:Instructions , getValuation:Bool);
map deriveChangeEvents: List(Monitor)#(VarName -> Value) -> List(Event);

updateMonitors: List(Monitor)#(VarName -> Value) -> List(Monitor);
var vars: VarName -> Value; mon: Monitor; mons: List(Monitor);
eqn deriveChangeEvents(mon |> mons ,vars) =

if(checkPredicate(getExpression(mon),vars) && !getValuation(mon),
[ChangeEvent(getExpression(mon))], []) ++ deriveChangeEvents(mons ,vars);

deriveChangeEvents ([], vars) = [];

4.6 StateMachine Process

The state machine process uses the data operations that we described in earlier
sections and uses them to specify the observable actions of a single state machine,
which will be visible in the LTS associated to the mCRL2 model. For now we will
present a slightly simplified version, which we will extend when we incorporate
SysML specific communication in Sect. 5. Below we present the parameters of
the process and the declaration of the observable actions (which includes the
parameters of those actions).
act discardEvent: Event; selectMultiStep: Event#List(Step);

executeStep: Step; executeBehaviour;
proc StateMachine(ID:CompName , SM:StateMachine , sc:StateConfig ,

eq:List(Event), steps:Set(Transition), behav:ComposedBehaviour ,
mon:List(Monitor), vars:VarName -> Value , exc:ExcFrame) = ...

The UML standard does not define in what order events are processed. We have
opted to process events in FIFO order, hence event queue is a list of events. The
StateMachine process consists of one big alternative composition where each
summand performs one action and then recurses (with updated parameters).

The observable actions are chosen to reflect decisions in the run-to-completion
cycle. When both steps and behav are empty a new multi-step should be consid-
ered. If no step is enabled by the head of the event queue the process can perform
a discardEvent action and remove it from the event queue. Alternatively, we
can select a multi-step with a selectMultiStep action. We can now perform a
executeStep action to start executing one of the selected steps, which updates
sc and puts the composed behaviour of the step in behav. The process selects one
of the execution options calculated by computeExecutionOptions and initializes
an ExcFrame which is stored in exc. The process calls executeExcFrameCode
and performs an executeBehaviour action until the execution frame is finished.
Every time code is executed (and thus possibly variables are updated), it is
checked whether change events can be derived. When the execution frame is
finished we compute a new execution option. When the execution of behav is
finished we select a next step from steps. When there are no more steps to
execute the process is ready to select a new multi-step.

As an example, consider the summand that performs the executeStep. Note
that mCRL2 allows for an abbreviated, assignment-like syntax in which only

54 M. Bouwman et al.

the to be updated parameters need to be mentioned in a recursive call; all other
parameters of the process remain the same.
+ (# behavior_to_execute == 0) ->

sum next_step:Step. (next_step in steps) -> executeStep(next_step)
.StateMachine(steps = steps - {next_step},

behav = determineBehaviourStep(SM,next_step ,sc),
sc = computeNextState(sc,next_step))

Depending on the kind of analysis that will be performed on the resulting LTS
we might want different observable actions. If we would want to verify something
regarding the state configuration we might want to add a self loop signalling the
current state configuration. Alternatively, we might want to hide some actions
by renaming them to τ , indicating that they are unobservable.

5 SysML Specific Communication

Specific to EULYNX SysML is that there are ports over which communication
takes place. Internal Block Diagrams (IBDs) describe the interfaces of compo-
nents by specifying the ports of components and their connections.

This paper focuses on the semantics of a set of communicating state machines.
For the semantics of IBDs we refer the reader to [22]. Here we assume that
we have the following communication structure. Each component has a set of
ports, which are subdivided in input and output ports. An output port can
be connected to multiple input ports. Both input and output ports need not
be connected at all, in which case they interact with the environment. One
more assumption on the action language is that ports are treated as variables:
changing the variable associated to an output port leads to a communication,
which updates the variable associated to the input port of the receiver.

The sort Component extends state machines with extra information. The sort
Channel models the connections between ports. Both sorts are defined below.
The sort CompName defines a finite enumeration of identifiers for components.
CompPortPair = struct CompPortPair(getComp: CompName , getPort: VarName);
Component = struct Component(SM: StateMachine , in_ports: List(VarName),

out_ports:List(VarName));
Channel = struct Channel(sender: CompPortPair , receivers: List(CompPortPair));

To take into account communication between state machines, we modify the
StateMachine process of Sect. 4.6 by replacing the state machine parameter
with a comp parameter, adding a parameter oq and adding two extra actions:
act sendComp ,receiveComp: CompPortPair#Value;
proc StateMachine (...,comp:Component , oq:List(VarValuePair)) = ...

When executing an execution frame we check whether there are updates to
output ports and store those updates in output queue oq. When oq is not empty
it can perform a sendComp action, communicating the update. At any point in
time the process can receive messages via a receiveComp action. The summand
related to receiving messages is given below.
sum v:Value ,p:VarName. receiveComp(CompPortPair(ID ,p),v)

.StateMachine(vars = vars[p -> v],
eq = eq ++ deriveChangeEvents(mon , vars[p->v]),
mon = updateMonitors(mon ,vars[p -> v]))

A Formalisation of SysML State Machines in mCRL2 55

We want to ensure that when a value is sent on an output port, it is received by
all (and only) connected input ports. This is enforced by the Messaging process
and the allow and communication operators in the initialization process (both
given below). When the number of components in a configuration is n then the
allow operator and Messaging process should be extended with the ability to
perform a send with up to n − 1 receive actions.
proc Messaging(channels: List(Channel)) =

sum ch:Channel , v:Value. (ch in channels) ->
((# receivers(ch) == 1) -> receiveI(sender(ch),v)|sendI(receivers(ch).0,v)

+ (# receivers(ch) == 2) -> receiveI(sender(ch),v)|sendI(receivers(ch).0,v)
|sendI(receivers(ch).1,v)

). Messaging ();
init allow ({ selectMultiStep , discardEvent , executeStep , executeBehaviour ,

send|receive , send|receive|receive},
comm({ sendComp|receiveI -> send , sendI|receiveComp -> receive},

MessagingIntermediary|| Environment
|| StateMachine (...)|| StateMachine (...) ...));

The central idea is that individual components need not know how ports are con-
nected. Instead, the Messaging provides a ‘meeting place’ with which the sender
and receivers synchronize. As an example, suppose some component C1 sends
some value v on port P1 that should be received by two receivers C2 and C3 on
ports P2 and P3, respectively. The Messaging process and the StateMachine
process of the sender and the two receivers can perform the multi-action
sendComp(C1,P1,v)| receiveI(C1,P1,v)|sendI(C2,P2,v)
|sendI(C3,P3,v)| receiveComp(C2,P2,v)| receiveComp(C3,P3,v).

This is transformed by the communication operator to send(C1,Port1,v)
|receive(C2,Port2,v)|receive(C3,Port3,v).

Ports that are not connected to any other port are exposed to the envi-
ronment, i.e. adjacent systems not included in the model. Input ports exposed
to the environment can expect inputs at any moment in time. We model the
environment with the Environment process, which can always send messages to
ports in envInputs and receive messages from ports in envOutputs. Note that
a connection between the environment and an exposed port must also be passed
to the Messaging process.
Environment(envInputs:List(CompPortPair), envOutputs:List(CompPortPair)) =

sum inp:CompPortPair , v:Value. (inp in envInputs)
-> sendComp(CompPortPair(Environment ,getPort(inp)),v). Environment ()

+ sum out:CompPortPair , v:Value. (out in envOutputs)
-> receiveComp(CompPortPair(Environment ,getPort(out)),v). Environment ();

6 Creating a Configuration and Model Checking

In the previous sections, we have discussed the generic parts of the mCRL2
model; in this section, we describe how to configure the model with a specific
configuration and touch on the subject of model checking.

First, the enumerations StateName, CompName and VarName need to be
instantiated. The action language needs to be defined: the sorts Value and
Instruction need to be defined. Also the semantics of the action language need

56 M. Bouwman et al.

to be defined by extending the sort ExcFrame and giving defining equations for
the mappings listed in Sect. 4.2. Finally, the initial process expression needs to
be given, in accordance with the structure described in Sect. 5. The Environment
and Messaging processes must be given appropriate parameters. For every state
machine a process expression StateMachineInit(c,x) needs to be added, where
c is a CompName and x is a Component object.

The model available on GitHub [3] contains an example configuration. This
configuration contains just one component named C1 with the state machine of
Fig. 2. The initial valuation of C1 gives controller state the string “booted”
as initial value and sets reactor ready to true. There is one channel: component
C1 has an output port m, which is open to the environment.

We can use the mCRL2 model checker to verify properties expressed in the
expressive parametrised first-order modal μ-calculus. For instance, we can verify
that we always eventually reach the state Booted. We need to capture this prop-
erty in a μ-calculus formula using the action labels of the model. Note that when
C1 enters the state Booted, it sends a message on port m to the environment, so
the desired property is expressed by the following formula:
mu X. [true]X || <send(CompPortPair(C1,m),Value_String(STR_booted))
|receive(CompPortPair(Environment ,m),Value_String(STR_booted))> true.

Using the mCRL2 toolset we can check the formula, which does not hold
for the model. The toolset produces a counterexample file containing the part of
state space that (dis)proves the formula. In this case we get a lasso shaped coun-
terexample with a loop between the states Booting and Failed. The labels on the
transitions in the trace are the same as in the mCRL2 model (selectMultiStep,
executeStep, executeBehaviour and send|receive).

7 Discussion and Conclusion

One of the main benefits of our generic formalisation of the semantics of SysML
in mCRL2 is that that it facilitates a straightforward automated translation.
To have an automated translation from SysML to mCRL2 we only need to
implement a tool that extracts the configuration data from a SysML model and
prints the mCRL2 code as described in Sect. 6. Such a tool has recently been
built and is discussed in a companion paper (see [22]).

Another benefit of directly formalizing in mCRL2 (compared to formalising
in plain mathematics) is that the mCRL2 toolkit acts as an IDE. The parser
and type checker of the editor root out the most obvious mistakes. Moreover, the
model can be simulated when provided with a configuration of a simple set of
state machines. This provides an additional way of verifying whether the seman-
tics is as intended. There is still room for improvement of the mCRL2 toolset
though: subtle mistakes in data equations can be hard to debug. Debugging
techniques such as breakpoints and being able to step through term rewriting
would be beneficial in this regard.

The statespace induced by a SysML model is potentially infinite as event
queues can grow without bound. This happens when incoming messages trig-
ger change events faster than the receiving component can process the events.

A Formalisation of SysML State Machines in mCRL2 57

Since mCRL2 has an explicit-state model checker verification is no longer pos-
sible when the state space is infinite, though symbolic tools are in development
[15]. The state space can be restricted by bounding the event queue, disallow-
ing reception of messages until some events are processed. The downside of
this approach is that the model ‘loses’ behaviour that could be analysed during
model-checking. We leave it for future work to implement more sophisticated
bounded event pools such as, e.g., the controlled buffers used in [1].

We reckon that significant optimization can be done to reduce the state
space. One such optimization possibility was discovered in a case study of the
EULYNX Point interface [4]. In our model all updates to variables are stored in
the vars parameter of the StateMachine process. This is not always necessary;
only when a variable is read in an action language expression do we really need
to store the value. In particular, the variables associated to output ports are
rarely referenced by the state machine. We could add a referencedVariables
field to state machines and adjust the semantics to only remember the value of
variables that are actually referenced. This would reduce the state space whilst
preserving the behaviour modulo strong bisimilarity.

The UML standard does not give guidelines about the degree of interleaving
in the execution of action language expressions. This ambiguity affects both
the interleaving between state machines and the interleaving between parallel
behaviours in a step. We would like to be able to generate mCRL2 models with
varying interleaving models. The finest mode could break behaviour execution
down to single instructions (such as looking up the value of a variable) and
would allow the most detailed analysis. The coarsest mode could implement
a run-to-completion semantics for parallel behaviour, reducing the state space.
This variation can be realised by modifying the ExecuteExcFrameCode mapping.

Evidence provided by the mCRL2 toolkit (dis)proving properties is presented
as an LTS with labels from the mCRL2 model. In the future we would like to
improve usability by converting these evidence LTSs to UML sequence diagrams.
This may not always be possible (or beneficial) as the evidence LTS may contain
the entire state space. We reckon that some common evidence structures such
as simple traces and lassos are well suited for conversion to sequence diagrams.

Concluding, we have shown how we have formalised the semantics of (SysML)
state machines directly in mCRL2. The generic mCRL2 model is flexible and
could be adjusted for a wide range of action languages. The step to an automated
translation using our model is small and has been achieved in FormaSig.

Acknowledgement. FormaSig and, by extension, this work are fully funded by Pro-
Rail and DB Netz AG. The vision presented in this article does not necessarily reflect
the strategy of DB Netz AG or ProRail, but reflects the personal views of the authors.

We also thank the anonymous reviewers for their constructive suggestions, which
led to improvements of the paper.

58 M. Bouwman et al.

References

1. Abdelhalim, I., Schneider, S., Treharne, H.: An integrated framework for checking
the behaviour of fUML models using CSP. Int. J. Softw. Tools Technol. Transf.
15(4), 375–396 (2013). https://doi.org/10.1007/s10009-012-0243-0

2. Belinfante, A.: JTorX: Exploring Model-Based Testing. Ph.D. thesis, University of
Twente, Enschede, Netherlands (2014). http://purl.utwente.nl/publications/91781

3. Bouwman, M.: mCRL2 model capturing the generic semantics of EULYNX SysML.
https://github.com/markuzzz/SysML-to-mCRL2

4. Bouwman, M., van der Wal, D., Luttik, B., Stoelinga, M., Rensink, A.: What is
the point: formal analysis and test generation or a railway standard. In: Baraldi,
P., Di Maio, F., Zio, E. (eds.) Proceedings of ESREL2020-PSAM15, pp. 921–928.
Research Publishing, Singapore (2020). https://doi.org/10.3850/978-981-14-8593-
0 4410-cd

5. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems - improve-
ments in expressivity and usability. In: Vojnar, T., Zhang, L. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2019). Lecture
Notes in Computer Science, vol. 11428, pp. 21–39. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17465-1 2

6. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press (2014)

7. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J.: Towards
model checking executable UML specifications in mCRL2. ISSE 6(1–2), 83–90
(2010). https://doi.org/10.1007/s11334-009-0116-1

8. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J., dos Santos,
O.M.: Automated verification of executable UML models. In: Aichernig, B.K.,
de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. Lecture Notes in Computer
Science, vol. 6957, pp. 225–250. Springer, Cham (2010). https://doi.org/10.1007/
978-3-642-25271-6 12

9. Kim, S., Carrington, D.A.: A formal model of the UML metamodel: the UML state
machine and its integrity constraints. In: Bert, D., Bowen, J.P., Henson, M.C.,
Robinson, K. (eds.) ZB 2002: Formal Specification and Development in Z and B.
ZB 2002. Lecture Notes in Computer Science, vol. 2272, pp. 497–516. Springer,
Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45648-1 26

10. Kuske, S.: A Formal Semantics of UML State Machines Based on Structured Graph
Transformation. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185,
pp. 241–256. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45441-
1 19

11. Latella, D., Majzik, I., Massink, M.: Automatic verification of a behavioural subset
of UML statechart diagrams using the SPIN model-checker. Formal Asp. Comput.
11(6), 637–664 (1999). https://doi.org/10.1007/s001659970003

12. Lilius, J., Paltor, I.: vUML: a tool for verifying UML models. In: The 14th IEEE
International Conference on Automated Software Engineering, ASE 1999, Cocoa
Beach, Florida, USA, 12–15 October 1999, pp. 255–258. IEEE Computer Society
(1999). https://doi.org/10.1109/ASE.1999.802301

13. Lilius, J., Paltor, I.P.: The semantics of UML state machines (1999)
14. Liu, S., Liu, Y., André, É., Choppy, C., Sun, J., Wadhwa, B., Dong, J.S.: A formal

semantics for complete UML state machines with communications. In: Johnsen,
E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 331–346. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38613-8 23

https://doi.org/10.1007/s10009-012-0243-0
http://purl.utwente.nl/publications/91781
https://github.com/markuzzz/SysML-to-mCRL2
https://doi.org/10.3850/978-981-14-8593-0_4410-cd
https://doi.org/10.3850/978-981-14-8593-0_4410-cd
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/s11334-009-0116-1
https://doi.org/10.1007/978-3-642-25271-6_12
https://doi.org/10.1007/978-3-642-25271-6_12
https://doi.org/10.1007/3-540-45648-1_26
https://doi.org/10.1007/3-540-45441-1_19
https://doi.org/10.1007/3-540-45441-1_19
https://doi.org/10.1007/s001659970003
https://doi.org/10.1109/ASE.1999.802301
https://doi.org/10.1007/978-3-642-38613-8_23

A Formalisation of SysML State Machines in mCRL2 59

15. Neele, T., Willemse, T.A.C., Groote, J.F.: Solving parameterised boolean equation
systems with infinite data through quotienting. In: Bae, K., Ölveczky, P.C. (eds.)
FACS 2018. LNCS, vol. 11222, pp. 216–236. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02146-7 11

16. Object Managament Group: OMG Unified Modeling Language, version 2.5.1
(2017). https://www.omg.org/spec/UML/

17. Object Managament Group: Precise Semantics of UML State Machines (PSSM),
version 1.0 (2019). https://www.omg.org/spec/PSSM/

18. Lilius, J., Paltor, I.P.: Formalising UML state machines for model checking. In:
France, R., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 430–444. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-46852-8 31

19. Pedroza, G., Apvrille, L., Knorreck, D.: AVATAR: A SysML environment for
the formal verification of safety and security properties. In: 11th Annual Inter-
national Conference on New Technologies of Distributed Systems, NOTERE 2011,
Paris, France, 9–13 May 2011, pp. 1–10. IEEE (2011). https://doi.org/10.1109/
NOTERE.2011.5957992

20. Remenska, D., et al.: From UML to process algebra and back: an automated
approach to model-checking software design artifacts of concurrent systems. In:
Brat, G., Rungta, N., Venet, A. (eds.) NASA Formal Methods. NFM 2013. LNCS,
vol. 7871, pp. 244–260. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38088-4 17

21. Schäfer, T., Knapp, A., Merz, S.: Model checking UML state machines and collab-
orations. Electron. Notes Theor. Comput. Sci. 55(3), 357–369 (2001). https://doi.
org/10.1016/S1571-0661(04)00262-2

22. van der Wal, D., Bouwman, M., Stoelinga, M., Rensink, A.: On capturing the
EULYNX railway standard with an internal DSL in Java. In: preparation for sub-
mission (2021)

23. Wang, H., Zhong, D., Zhao, T., Ren, F.: Integrating model checking with SysML
in complex system safety analysis. IEEE Access 7, 16561–16571 (2019). https://
doi.org/10.1109/ACCESS.2019.2892745

https://doi.org/10.1007/978-3-030-02146-7_11
https://doi.org/10.1007/978-3-030-02146-7_11
https://www.omg.org/spec/UML/
https://www.omg.org/spec/PSSM/
https://doi.org/10.1007/3-540-46852-8_31
https://doi.org/10.1109/NOTERE.2011.5957992
https://doi.org/10.1109/NOTERE.2011.5957992
https://doi.org/10.1007/978-3-642-38088-4_17
https://doi.org/10.1007/978-3-642-38088-4_17
https://doi.org/10.1016/S1571-0661(04)00262-2
https://doi.org/10.1016/S1571-0661(04)00262-2
https://doi.org/10.1109/ACCESS.2019.2892745
https://doi.org/10.1109/ACCESS.2019.2892745

How Adaptive and Reliable is Your
Program?

Valentina Castiglioni1(B) , Michele Loreti2 , and Simone Tini3

1 Reykjavik University, Reykjavik, Iceland
valentinac@ru.is

2 University of Camerino, Camerino, Italy
michele.loreti@unicam.it

3 University of Insubria, Como, Italy
simone.tini@uninsubria.it

Abstract. We consider the problem of modelling and verifying the
behaviour of systems characterised by a close interaction of a program
with the environment . We propose to model the program-environment
interplay in terms of the probabilistic modifications they induce on a set
of application-relevant data, called data space. The behaviour of a sys-
tem is thus identified with the probabilistic evolution of the initial data
space. Then, we introduce a metric, called evolution metric, measuring
the differences in the evolution sequences of systems and that can be
used for system verification as it allows for expressing how well the pro-
gram is fulfilling its tasks. We use the metric to express the properties
of adaptability and reliability of a program, which allow us to identify
potential critical issues of it w.r.t. changes in the initial environmental
conditions. We also propose an algorithm, based on statistical inference,
for the evaluation of the evolution metric.

1 Introduction

With the ever-increasing complexity of the digital world and diffusion of IoT
systems, cyber-physical systems, and smart devices, we are witnessing the rise
of software applications, henceforth programs, that must be able to deal with
highly changing operational conditions, henceforth environment. Examples of
such programs are the software components of unmanned vehicles, (on-line) ser-
vice applications, the devices in a smart house, etc., which have to interact with
other programs and heterogeneous devices, and with physical phenomena like
wind, temperature, etc. Henceforth, we use the term system to denote the com-
bination of the environment and the program acting on it. Hence, the behaviour
of a system is the result of the program-environment interplay.

This work has been partially supported by the IRF project “OPEL” (grant No. 196050-
051) and by the PRIN project “IT-MaTTerS” (grant No. 2017FTXR7S).

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 60–79, 2021.
https://doi.org/10.1007/978-3-030-78089-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_4&domain=pdf
http://orcid.org/0000-0002-8112-6523
http://orcid.org/0000-0003-3061-863X
http://orcid.org/0000-0002-3991-5123
https://doi.org/10.1007/978-3-030-78089-0_4

How Adaptive and Reliable is Your Program? 61

The main challenge in the analysis and verification of these systems is then
the dynamical and, sometimes, unpredictable behaviour of the environment. The
highly dynamical behaviour of physical processes can only be approximated in
order to become computationally tractable and it can constitute a safety haz-
ard for the devices in the system (like, e.g., an unexpected gust of wind for
a drone that is autonomously setting its trajectory to avoid obstacles); some
devices or programs may appear, disappear, or become temporarily unavailable;
faults or conflicts may occur (like, e.g., in a smart home the program responsible
for the ventilation of a room may open a window causing a conflict with the
program that has to limit the noise level); sensors may introduce some measure-
ment errors; etc. The introduction of uncertainties and approximations in these
systems is therefore inevitable.

In the literature, we can find a wealth of proposals of stochastic and proba-
bilistic models, as, e.g., Stochastic Hybrid Systems [8,28] and Markov Decision
Processes [32], and ad hoc solutions for specific application contexts, as, e.g.,
establishing safety guarantees for drones flying under particular circumstances
[26,41]. Yet, in these studies, either the environment is not explicitly taken into
account or it is modelled only deterministically. In addition to that, due to the
variety of applications and heterogeneity of systems, no general formal frame-
work to deal with these challenges has been proposed so far. The lack of concise
abstractions and of an automatic support makes the analysis and verification of
the considered systems difficult, laborious, and error prone.

Our Contribution. With this paper we aim at taking a first step towards a solu-
tion of the above-mentioned challenges, with a special focus on verification, by
developing the tools for the verification of the ability of programs to adjust their
behaviour to the unpredictable environment. Formally, we introduce two mea-
sures allowing us to assess how well a given program can perform under pertur-
bations in the environmental conditions. We call these two measures adaptability
and reliability. As an example, consider a drone that is autonomously flying along
a given trajectory. In this setting, a perturbation can be given by a gust of wind
that moves the drone out of its trajectory. We will say that the program con-
trolling the drone is adaptable if it can retrieve the initial trajectory within a
suitable amount of time. In other words, we say that a program is adaptable if
no matter how much its behaviour is affected by the perturbations, it is able
to react to them and regain its intended behaviour within a given amount of
time. On the other hand, it may be the case that the drone is able to detect
the presence of a gust of wind and can oppose to it, being only slightly moved
from its initial trajectory. In this case, we say that the program controlling the
drone is reliable. Hence, reliability expresses the ability of a program to maintain
its intended behaviour (up-to some reasonable tolerance) despite the presence of
perturbations in the environment.

In order to measure the adaptability and reliability of a program, we need
to be able to express how well it is fulfilling its tasks. The systems that we
are considering are strongly characterised by a quantitative behaviour, given
by both the presence of uncertainties and the data used by program and envi-

62 V. Castiglioni et al.

ronment. It seems then natural, and reasonable, to quantify the differences in
the behaviour of systems by means of a metric over data. However, in order to
informally discuss our proposal of a metric semantics for the kind of systems
that we are considering, we need first to explain how the behaviour of these
systems is defined, namely to introduce our general formal model for them. Our
idea is to favour the modelling of the program-environment interplay over pre-
cise specifications of the operational behaviour of a program. In the last decade,
many researchers have focused their studies on formal models capturing both the
qualitative and quantitative behaviour of systems: Probabilistic Automata [34],
Stochastic Process Algebras [5,16,27], Labelled Markov Chains and Stochastic
Hybrid Systems [8,28]. A common feature of these models is that the (quanti-
tative, labelled) transitions expressing the computation steps directly model the
behaviour of the system as a whole.

In this paper we take a different point of view : we propose to model the
behaviour of program and environment separately, and then explicitly represent
their interaction in a purely data-driven fashion. In fact, while the environmental
conditions are (partially) available to the program as a set of data, allowing it to
adjust its behaviour to the current situation, the program is also able to use data
to (partially) control the environment and fulfil its tasks. It is then natural to
model the program-environment interplay in terms of the changes they induce on
a set of application-relevant data, henceforth called data space. This feature will
allow for a significant simplification in modelling the behaviour of the program,
which can be isolated from that of the environment. Moreover, as common to
favour computational tractability [1,2], we adopt a discrete time approach.

We can then study the behaviour of the system as a whole by analysing how
data evolve in time. In our model, a system consists in three distinct compo-
nents: 1. a process P describing the behaviour of the program, 2. a data state d
describing the current state of the data space, and 3. an environment evolution
E describing the effect of the environment on d. As we focus on the interaction
with the environment, we abstract from the internal computation of the program
and model only its activity on d. At each step, a process can read/update values
in d and E applies on the resulting data state, providing a new data state at the
next step. To deal with the uncertainties, we introduce probability at two levels:
(i) we use the discrete generative probabilistic model [24] to define processes,
and (ii) E induces a continuous distribution over data states. The behaviour of
the system is then entirely expressed by its evolution sequence, i.e., the sequence
of distributions over data states obtained at each step. Given the novelties of
our model, as a side contribution we show that this behaviour defines a Markov
process.

It is now reasonable to define our metric semantics in terms of a (time-
dependent) distance on the evolution sequences of systems, which we call the
evolution metric. The evolution metric will allow us to: 1. verify how well a pro-
gram is fulfilling its tasks by comparing it with its specification, 2. compare the
activity of different programs in the same environment, 3. compare the behaviour
of one program w.r.t. different environments and changes in the initial condi-

How Adaptive and Reliable is Your Program? 63

tions. The third feature will allow us to measure the adaptability and reliability
of programs. The evolution metric will consist of two components: a metric on
data states and the Wasserstein metric [39]. The former is defined in terms
of a (time-dependent) penalty function allowing us to compare two data states
only on the base of the objectives of the program. The latter lifts the metric
on data states to a metric on distributions on data states. We then obtain a
metric on evolution sequences by considering the maximal of the Wasserstein
distances over time. We provide an algorithm for the estimation of the evolution
sequences of systems and thus for the evaluation of the evolution metric. Fol-
lowing [37], the Wasserstein metric is evaluated in time O(N log N), where N is
the (maximum) number of samples. We already adopted this approach in [11] in
the context of finite-states self-organising collective systems, without any notion
of environment or data space.

As an example of application, we use our framework to model a simple smart-
room scenario. We consider two programs: the thermostat of a heating system,
and an air quality controller. The former has to keep the room temperature
within a desired comfort interval. The latter has to keep the quality of the
air above a given threshold. We use our algorithm to evaluate the differences
between two systems having the same programs but starting from different initial
conditions. Finally, we apply it to measure the adaptability and reliability of the
considered programs.

2 Background

Measurable Spaces. A σ-algebra over a set Ω is a family Σ of subsets of Ω s.t.
Ω ∈ Σ, and Σ is closed under complementation and under countable union. The
pair (Ω,Σ) is called a measurable space and the sets in Σ are called measurable
sets, ranged over by A,B, For an arbitrary family Φ of subsets of Ω, the
σ-algebra generated by Φ is the smallest σ-algebra over Ω containing Φ. In
particular, we recall that given a topology T over Ω, the Borel σ-algebra over
Ω, denoted B(Ω), is the σ-algebra generated be the open sets in T . Given two
measurable spaces (Ωi, Σi), i = 1, 2, the product σ-algebra Σ1 × Σ2 is the σ-
algebra on Ω1 × Ω2 generated by the sets {A1 × A2 | Ai ∈ Σi}.

Given measurable spaces (Ω1, Σ1), (Ω2, Σ2), a function f : Ω1 → Ω2 is said to
be Σ1-measurable if f−1(A2)∈Σ1 for all A2∈Σ2, with f−1(A2)={ω∈Ω1|f(ω) ∈
A2}.

Probability Spaces. A probability measure on a measurable space (Ω,Σ) is a
function μ : Σ → [0, 1] such that: i) μ(Ω) = 1, ii) μ(A) ≥ 0 for all A ∈ Σ,
and iii) μ(

⋃
i∈I Ai) =

∑
i∈I μ(Ai) for every countable family of pairwise disjoint

measurable sets {Ai}i∈I ⊆ Σ. Then (Ω,Σ, μ) is called a probability space.

Notation. With a slight abuse of terminology, we shall henceforth use the term
distribution in place of the term probability measure.

64 V. Castiglioni et al.

We let Δ(Ω,Σ) denote the set of all distributions over (Ω,Σ). For ω ∈ Ω, the
Dirac distribution δω is defined by δω(A) = 1, if ω ∈ A, and δω(A) = 0, otherwise,
for all A ∈ Σ. For a countable set of reals (pi)i∈I with pi ≥ 0 and

∑
i∈I pi = 1, the

convex combination of the distributions {μi}i∈I ⊆ Δ(Ω,Σ) is the distribution∑
i∈I pi · μi in Δ(Ω,Σ) defined by (

∑
i∈I pi · μi)(A) =

∑
i∈I piμi(A), for all

A ∈ Σ. A distribution μ ∈ Δ(Ω,Σ) is called discrete if μ =
∑

i∈I pi · δωi
, with

ωi ∈ Ω, for some countable set of indexes I. In this case, the support of μ is
supp(μ) = {ωi | i ∈ I}.

The Wasserstein Hemimetric. A metric on a set Ω is a function m : Ω × Ω →
R

≥0 s.t. m(ω1, ω2) = 0 iff ω1 = ω2, m(ω1, ω2) = m(ω2, ω1), and m(ω1, ω2) ≤
m(ω1, ω3)+m(ω3, ω2), for all ω1, ω2, ω3 ∈ Ω. We obtain a hemimetric by relaxing
the first property to m(ω1, ω2) = 0 if ω1 = ω2, and by dropping the requirement
on symmetry. A (hemi)metric m is l-bounded if m(ω1, ω2) ≤ l for all ω1, ω2 ∈ Ω.
For a (hemi)metric on Ω, the pair (Ω,m) is a (hemi)metric space.

In order to define a hemimetric on distributions we use the Wasserstein lifting
[39]. We recall that a Polish space is a separable completely metrisable topolog-
ical space.

Definition 1 (Wasserstein hemimetric). Consider a Polish space Ω and
let m be a hemimetric on Ω. For any two distributions μ and ν on (Ω,B(Ω)),
the Wasserstein lifting of m to a distance between μ and ν is defined by

W(m)(μ, ν) = inf
w∈W(μ,ν)

∫

Ω×Ω

m(ω, ω′)dw(ω, ω′)

where W(μ, ν) is the set of the couplings of μ and ν, namely the set of joint
distributions w over the product space (Ω ×Ω,B(Ω ×Ω)) having μ and ν as left
and right marginal, respectively, namely w(A×Ω) = μ(A) and w(Ω×A) = ν(A),
for all A ∈ B(Ω).

Despite the Wasserstein distance was originally given on metrics, the Wasser-
stein hemimetric given above is well-defined. A formal proof of this can be found
in [19] and the references therein.

Notation. As elsewhere in the literature, we use the term metric in place of
hemimetric.

3 The Model

In this section, we introduce the three components of our systems, namely the
data space, the process describing the behaviour of the program, and the environ-
ment evolution describing the effects of the environment. The following example
perfectly embodies the kind of program-environment interactions we are inter-
ested in.

How Adaptive and Reliable is Your Program? 65

Example 1. We consider a smart-room scenario in which the program should
guarantee that both the temperature and the air quality in the room are in
a given comfort zone. The room is equipped with a heating system and an air
filtering system. Both are equipped with a sensor and an actuator. In the heating
system the sensor is a thermometer that reads the room temperature, while
the actuator is used to turn the heater on or off. Similarly, in the air filtering
system the sensor perceives the air quality, giving a value in [0, 1], while the
actuator activates the air exchangers. The environment models the evolution of
temperature and air quality in the room, as described by the following stochastic
difference equations, with sample time interval Δτ = 1:

T (τ + 1) = T (τ) + a(e(τ)) · (Te − T (τ)) + h(τ) · b · (Th − T (τ)) (1)
Ts(τ) = T (τ) + nt(τ) (2)

A(τ + 1) = A(τ) + e(τ) · q+ · (1 − A(τ)) − (1 − e(τ)) · q− · A(τ) (3)
As(τ) = A(τ) + na(τ) (4)

Above, T (τ) and A(τ) are the room temperature and air quality at time τ , while
Ts(τ) and As(τ) are the respective values read by sensors, which are obtained
from the real ones by adding noises nt(τ) and na(τ), that we assume to be
distributed as Gaussian (normal) distributions N (0, υ2

t) and N (0, υ2
a), resp., for

some suitable υ2
t and υ2

a. Then, h(τ) and e(τ) represent the state of the actuators
of the heating and air filtering system, respectively. Both take value 1 when the
actuator is on, and 0 otherwise. Following [2,23,31], the temperature dynamics
depends on two (non negative) values, a(e(τ)) and b, giving the average heat
transfer rates normalised w.r.t. the thermal capacity of the room. In detail,
a(e(τ)) is the heat loss rate from the room (through walls, windows, etc.) to the
external ambient for which we assume a constant temperature Te. In our case,
this value depends on e(τ), since the loss rate increases when the air exchangers
are on. Then, b is the heat transfer rate from the heater, whose temperature is
the constant Th, to the room. The air quality dynamics is similar: when the air
exchangers are off, the air quality decreases with a rate q−, while it increases of
a rate q+ when they are on.

Modelling the Data Space. We define the data space by means of a finite set of
variables Var representing: i) environmental conditions (pressure, temperature,
humidity, etc.,); ii) values perceived by sensors (unavoidably affected by impre-
cision and approximations); iii) state of actuators (usually elements in a discrete
domain). For each x ∈ Var we assume a measurable space (Dx,Bx), with Dx ⊆ R

the domain of x and Bx the Borel σ-algebra on Dx. Without loosing generality,
we can assume that Dx is either a finite set or a compact subset of R. Notably,
Dx is a Polish space. As Var is a finite set, we can always assume it to be ordered,
i.e., Var = {x1, . . . , xn} for some n ∈ N.

Definition 2 (Data space). We define the data space over Var, notation DVar,
as the Cartesian product of the variables domains, namely DVar = ×n

i=1
Dxi

.
Then, as a σ-algebra on DVar we consider the the product σ-algebra BDVar =×n

i=1
Bxi

.

66 V. Castiglioni et al.

Example 2. The data space for the system in Example 1 is defined on the vari-
ables T , Ts, h, A, As and e. Their domains are DT = DTs

= [tm, tM], for suitable
values tm < tM , DA = DAs

= [0, 1], and Dh = De = {0, 1}.

When no confusion arises, we will use D and BD in place of DVar and BDVar ,
respectively. The elements in D are the n-ples of the form (v1, . . . , vn), with
vi ∈ Dxi

, which can be also identified by means of functions d : Var → R from
variables to values, with d(x) ∈ Dx for all x ∈ Var. Each function d identifies
a particular configuration of the data in the data space, and it is thus called a
data state.

Definition 3 (Data state). A data state is a mapping d : Var → R from state
variables to values, with d(x) ∈ Dx for all x ∈ Var.

For simplicity, we shall write d ∈ D in place of (d(x1), . . . ,d(xn)) ∈ D. Since
program and environment interact on the basis of the current values of data, we
have that at each step there is a data state d that identifies the current state of
the data space on which the next computation step is built. Given a data state
d, we let d[x = v] denote the data state d′ associating v with x, and d(y) with
any y �= x.

Modelling Processes. We introduce a simple process calculus allowing us to spec-
ify programs that interact with a data state d in a given environment. We assume
that the action performed by a process at a given computation step is determined
probabilistically, according to the generative probabilistic model [24].

Definition 4 (Syntax of processes). We let P be the set of processes P
defined by:

P ::= (e → x).P ′ | if [e] P1 else P2 | ∑
i∈I pi · Pi | P1‖pP2 | A

e ::= v ∈ V | x ∈ Var | opk(e1, . . . , ek)

where, V ⊆ R countable, p, p1, . . . weights in [0, 1]∩Q, I is finite, A ranges over
process variables, opk indicates a measurable operator R

k → R, and · denotes
a finite sequence of elements. We assume to have a single definition A

def
= P for

each process variable A. Moreover, we require that
∑

i∈I pi = 1 for any process∑
i∈I pi · Pi.

Process (e → x).P evaluates the sequence of expressions e with the current
data state d and assigns the results �e�d to the sequence of variables x. We may
use

√
to denote the prefix (∅ → ∅). Process if [e] P1 else P2 behaves either as

P1 when �e�d = �, or as P2 when �e�d = ⊥. Then,
∑n

i=1 pi · Pi is the genera-
tive probabilistic choice: process Pi has probability pi to move. The generative
probabilistic interleaving construct P1‖pP2 lets the two argument processes to
interleave their actions, where at each step P1 moves with probability p and P2

with probability 1−p. Process variables allow us to specify recursive behaviours
by means of equations of the form A

def
= P . To avoid Zeno behaviours we assume

How Adaptive and Reliable is Your Program? 67

that all occurrences of process variables appear guarded by prefixing constructs
in P . We assume the standard notions of free and bound process variables. A
program is then a closed process, i.e., a process without free variables.

Formally, actions performed by a process can be abstracted in terms of the
effects they have on the data state, i.e., via substitutions of the form θ = [xi1 ←
vi1 , . . . , xik

← vik
], also denoted x ← v if x = xi1 , . . . , xik

and v = vi1 , . . . , vik
.

Since in Definition 4 operations opk are assumed to be measurable, we can model
the effects as BD-measurable functions θ : D → D s.t. θ(d) := d[x = v] whenever
θ = x ← v. We denote by Θ the set of effects. The behaviour of a process can
then be defined by means of a function pstep : P × D → Δ(Θ × P) that given a
process P and a data state d yields a discrete distribution over Θ ×P. Function
pstep is defined as follows:

(PR1) pstep((e → x).P ′,d) = δ(x←�e�d,P ′)

(PR2) pstep(if [e] P1 else P2,d) =

{
pstep(P1,d) if �e�d = 1
pstep(P2,d) if �e�d = 0

(PR3) pstep(
∑

i pi · Pi,d) =
∑

i pi · pstep(Pi,d)
(PR4) pstep(P1‖pP2,d) = p · (pstep(P1,d)‖pP2) + (1 − p) · (P1‖ppstep(P2,d))

(PR5) pstep(A,d) = pstep(P,d) (if A
def
= P).

In rule (PR4), for π ∈ Δ(Θ×P), we let π‖pP (resp. P‖pπ) denote the distribution
π′ ∈ Δ(Θ × P) s.t.: π′(θ, P ′) = π(θ, P ′′), whenever P ′ = P ′′‖pP (resp. P ′ =
P‖pP

′′), and 0, otherwise.

Proposition 1 (Properties of process semantics). Let P ∈ P and d ∈ D.
Then pstep(P,d) is a discrete distribution with finite support.

Example 3. We define a program to control the smart-room scenario of Exam-
ple 1. In detail, we want to guarantee that the temperature in the room is in the
interval Z = [tmin, tmax] ⊆ DT , while the air quality is above a given threshold
qa ∈ DA. The following process AT

off (resp. AT
on) turns the heating system on

(resp. off) when the temperature acquired by the sensor goes under tmin − εt

(resp. over tmax + εt). The use of the tolerance εt guarantees that the heating
system is not repeatedly turned on/off.

AT
off

def
= if [Ts < tmin − εt] (1 → h).AT

on else
√

.AT
off

AT
on

def
= if [Ts > tmax + εt] (0 → h).AT

off else
√

.AT
on .

The behaviour of program components controlling the air filtering system is
similar and implemented by the following processes AA

off and AA
on :

AA
off

def
= if [As ≤ qa − εa] (1 → e).AA

on else
√

.AA
off

AA
on

def
= if [As > qa + εa] (0 → e).AA

off else
√

.AA
on .

The composition of the programs is given by the process P = AT
off ‖0.5 AA

off .

68 V. Castiglioni et al.

Modelling the Environment. We model the action of the environment by a map-
ping E , called environment evolution, taking a data state to a distribution over
data states.

Definition 5 (Environment evolution). An environment evolution is a map
E : D → Δ(D,BD) s.t. for each D ∈ BD the mapping d �→ E(d)(D) is BD-
measurable.

Due to the interaction with the program, the probability induced by E at
the next time step depends only on the current state of the data space. It is
then natural to assume that the behaviour of the environment is modelled as a
discrete time Markov process.

Example 4. For our smart-room scenario, the environment evolution E can be
derived directly from Eqs. (1)–(4). Notice that, in this case, randomness follows
from the Gaussian noises associated with the temperature and air quality sensors.

Modelling System’s Behaviour. We use the notion of configuration to model the
state of the system at each time step.

Definition 6 (Configuration). A configuration is a triple c = 〈P,d〉E , where
P is a process, d is a data state and E is an environment evolution. We denote
by CP,D,E the set of configurations defined over P,D and E.

When no confusion arises, we shall write C in place of CP,D,E .
Let (P, ΣP) be the measurable space of processes, where ΣP is the power set

of P, and (D,BD) be the measurable space of data states. As E is fixed, we can
identify C with P×D and equip it with the product σ-algebra ΣC = ΣP ×BD: ΣC
is generated by the sets {〈P,D〉E | P ∈ ΣP ,D ∈ BD}, where 〈P,D〉E = {〈P,d〉E |
P ∈ P,d ∈ D}.

Notation. For μP ∈ Δ(P, ΣP) and μD ∈ Δ(D,BD) we let μ = 〈μP , μD〉E
denote the product distribution on (C, ΣC), i.e., μ(〈P,D〉E) = μP(P) · μD(D) for
all P ∈ ΣP and D ∈ BD. If μP = δP for some P ∈ P, we shall denote 〈δP , μD〉E
simply by 〈P, μD〉E .

We aim to express the behaviour of a system in terms of the changes on data.
We start with the one-step behaviour of a configuration, in which we combine the
effects on the data state induced by the activity of the process (given by pstep)
and the subsequent action by the environment. Formally, we define a function
cstep that, given a configuration, yields a distribution on (C, ΣC) (Definition 7
below). Then, we use cstep to define the multi-step behaviour of configuration
c as a sequence SC

c,0,SC
c,1, . . . of distributions on (C, ΣC). To this end, we show

that cstep is a Markov kernel (Proposition 3 below). Finally, to abstract from
processes and focus only on data, from the sequence SC

c,0,SC
c,1, . . ., we obtain a

sequence of distributions SD
c,0,SD

c,1, . . .on (D,BD) called the evolution sequence
of the system (Definition 9 below).

How Adaptive and Reliable is Your Program? 69

Definition 7 (One-step semantics). Function cstep : C → Δ(C, ΣC) is
defined for all configurations 〈P,d〉E ∈ C by

cstep(〈P,d〉E) =
∑

(θ,P ′)∈supp(pstep(P,d))

pstep(P,d)(θ, P ′) · 〈P ′, E(θ(d))〉E . (5)

The next result follows by E(θ(d)) ∈ Δ(D,BD) (Definition 5), which ensures
that 〈P ′, E(θ(d))〉E ∈ Δ(C, ΣC), and pstep(P,d) is a discrete distribution in
Δ(Θ × P) (Proposition 1).

Proposition 2. For any configuration c ∈ C, cstep(c) is a distribution on
(C, ΣC).

Since cstep(c) ∈ Δ(C, ΣC) for each c ∈ C, we can rewrite cstep : C × ΣC →
[0, 1], so that for each configuration c ∈ C and measurable set C ∈ ΣC , cstep(c)(C)
denotes the probability of reaching in one step a configuration in C starting from
c. We can prove that cstep is the Markov kernel of the Markov process modelling
our system. This follows by Proposition 2 and by proving that for each C ∈ ΣC ,
the mapping c �→ cstep(c)(C) is ΣC-measurable for all c ∈ C.

Proposition 3. The function cstep is a Markov kernel.

Hence, the multi-step behaviour of configuration c can be defined as a time
homogeneous Markov process having cstep as Markov kernel and δc as initial
distribution.

Definition 8 (Multi-step semantics). Let c ∈ C be a configuration. The
multi-step behaviour of c is the sequence of distributions SC

c,0,SC
c,1, . . . on (C, ΣC)

defined inductively as follows:

SC
c,0(C) = δc(C), for all C ∈ ΣC

SC
c,i+1(C) =

∫

C
cstep(b)(C)d(SC

c,i(b)), for all C ∈ ΣC .

We can prove that SC
c,0,SC

c,1, . . . are well defined, namely they are distributions
on (C, ΣC). The proof follows by an easy induction based on Proposition 3.

Proposition 4. For any c ∈ C, all SC
c,0,SC

c,1, . . . are distributions on (C, ΣC).

As the program-environment interplay can be observed only in the changes
they induce on the data states, we define the evolution sequence of a configuration
as the sequence of distributions over data states that are reached by it, step-by-
step.

Definition 9 (Evolution sequence). The evolution sequence of c = 〈P,d〉E
is a sequence SD

c ∈ Δ(D,BD)ω of distributions over D such that SD
c =

SD
c,0 . . . SD

c,n . . . if and only if for all i ≥ 0 and for all D ∈ BD, SD
c,i(D) =

SC
c,i(〈P,D〉E).

70 V. Castiglioni et al.

4 Towards a Metric for Systems

We aim at defining a distance over the systems described in the previous section,
called the evolution metric, allowing us to do the following:

1. Verify how well a program is fulfilling its tasks.
2. Establish whether one program behaves better than another one in an envi-

ronment.
3. Compare the interactions of a program with different environments.

These three objectives can be naturally obtained thanks to the possibility of
modelling the program in isolation from the environment typical of our model,
and to our purely data-driven system semantics. Intuitively, since the behaviour
of a system is entirely described by its evolution sequence, the evolution metric m
will indeed be defined as a distance on the evolution sequences of systems. How-
ever, in order to obtain the proper technical definition of m, some considerations
are due.

Firstly, we notice that in most applications the tasks of the program can be
expressed in a purely data-driven fashion. We can identify a set of parameters
of interest such that, at any time step, any difference between them and the
data actually obtained can be interpreted as a flaw in system behaviour. We
use a penalty function ρ to quantify these differences. From the penalty function
we can obtain a distance on data states, namely a 1-bounded hemimetric mD

expressing how much a data state d2 is worse than a data state d1 according
to parameters of interests. Secondly, we recall that the evolution sequence of a
system consists in a sequence of distributions over data states. Hence, we use
the Wasserstein metric to lift mD to a distance W(mD) over distributions over
data states. Informally, with the Wasserstein metric we can express how much
worse a configuration is expected to behave w.r.t. another one at a given time.
Finally, we need to lift W(mD) to a distance on the entire evolution sequences
of systems. For our purposes, a reasonable choice is to take the maximum over
time of the pointwise (w.r.t. time) Wasserstein distances (see Remark 1 below
for further details on this choice).

A Metric on Data States. We start by proposing a metric on data states, seen as
static components in isolation from processes and environment. To this end, we
introduce a penalty function ρ : D → [0, 1], a continuous function that assigns
to each data state d a penalty in [0, 1] expressing how far the values of the
parameters of interest in d are from their desired ones (hence ρ(d) = 0 if d
respects all the parameters). Since some parameters can be time-dependent, so
is ρ: at any time step τ , the τ -penalty function ρτ compares the data states
w.r.t. the values of the parameters expected at time τ .

Example 5. We recall, from Example 2, that DT = [tm, tM] and DA = [0, 1].
The task of our program is to keep the value of T within the comfort zone
Z = [tmin, tmax], for some tmin, tmax, and that of A above a threshold qa ∈ DA

(cf. Example 3). Hence, we define a penalty function that assigns the penalty

How Adaptive and Reliable is Your Program? 71

0 if the value of T is in Z and that of A is greater or equal to qa, otherwise it
is proportional to how much T and A are far from Z and qa, respectively. We
let ρτ (d) = max{ρT (d(T)), ρA(d(A))}, where ρT (t) is 0 if t ∈ [tmin, tmax] and

max{t−tmax,tmin−t}
max{tM −tmax,tmin−tm} otherwise, while ρA(q) = max{0, qa − q}.

A formal definition of the penalty function is beyond the purpose of this
paper, also due to its context-dependent nature. Besides, notice that we can
assume that ρ already includes some tolerances w.r.t. the exact values of the
parameters in its evaluation, and thus we do not consider them. The (timed)
metric on data states is then defined as the asymmetric difference between the
penalties assigned to them by the penalty function.

Definition 10 (Metric on data states). For any time step τ , let ρτ : D →
[0, 1] be the τ -penalty function on D. The τ -metric on data states in D, mD

ρ,τ : D×
D → [0, 1], is defined, for all d1,d2 ∈ D, by mD

ρ,τ (d1,d2) = max{ρτ (d2) −
ρτ (d1), 0}.

Notice that mD
ρ,τ (d1,d2) > 0 iff ρτ (d2) > ρτ (d1), i.e., the penalty assigned to

d2 is higher than that assigned to d1. For this reason, we say that mD
ρ,τ (d1,d2)

expresses how worse d2 is than d1 w.r.t. the objectives of the system. It is not
hard to see that for all d1,d2,d3 ∈ D we have mD

ρ,τ (d1,d2) ≤ 1, mD
ρ,τ (d1,d1) =

0, and mD
ρ,τ (d1,d2) ≤ mD

ρ,τ (d1,d3) + mD
ρ,τ (d3,d2), thus ensuring that mD

ρ,τ is a
1-bounded hemimetric.

Proposition 5. Function mD
ρ,τ is a 1-bounded hemimetric on D.

Lifting mD
ρ,τ to Distributions. The second step to obtain the evolution metric

consists in lifting mD
ρ,τ to a metric on distributions on data states. Among the

several notions of lifting in the literature (see [33] for a survey), we opt for that
of Wasserstein, since: i) it preserves the properties of the ground metric; ii) it
allows us to deal with discrete and continuous measures; iii) it is computationally
tractable via statistical inference. According to Definition 1, the Wasserstein
lifting of mD

ρ,τ to a distance between two distributions μ, ν ∈ Δ(D,BD) is defined
by

W(mD
ρ,τ)(μ, ν) = inf

w∈W(μ,ν)

∫

D×D
mD

ρ,τ (d,d′)dw(d,d′).

The Evolution Metric. We now need to lift W(mD
ρ,τ) to a distance on evolution

sequences. To this end, we observe that the evolution sequence of a configuration
includes the distributions over data states induced after each computation step.
Thus, the time step between two distributions is determined by the program.
However, it could be the case that the changes on data induced by the environ-
ment can be appreciated only along wider time intervals. Our running example is
a clear instance of this situation: while we can reasonably assume that the dura-
tion of the computation steps of the thermostat is of the order of a millisecond,

72 V. Castiglioni et al.

the variations in the temperature that can be detected in the same time interval
are indeed negligible w.r.t. the program’s task. A significant temperature rise or
drop can be observed only in longer time. To deal with this kind of situations,
we introduce the notion of observation times, namely a discrete set OT of time
steps at which the modifications induced by the program-environment interplay
give us useful information on the evolution of the system. Hence, a comparison
of the evolution sequences based on the differences in the distributions reached
at the times in OT can be considered meaningful. Moreover, considering only the
differences at the observation times will favour the computational tractability of
the evolution metric.

We define the evolution metric as a sort of weighted infinity norm of the tuple
of the Wasserstein distances between the distributions in the evolution sequences.
As weight we consider a non-increasing function λ : OT → (0, 1] expressing how
much the distance at time τ affects the overall distance between configurations
c1 and c2. We refer to λ as to the discount function, and to λ(τ) as to the discount
factor at time τ .

Definition 11 (Evolution metric). Assume a set OT of observation times
and a discount function λ. Let ρ be a penalty function and let mD

ρ,τ be the metric
on data states defined on it. Then, the λ-evolution metric over ρ and OT is the
mapping mλ

ρ,OT : C × C → [0, 1] defined, for all configurations c1, c2 ∈ C, by

mλ
ρ,OT(c1, c2) = sup

τ∈OT
λ(τ) · W(mD

ρ,τ)
(
SD

c1,τ ,SD
c2,τ

)
.

Since mD
ρ,τ is a 1-bounded hemimetric (Proposition 5) and lifting W preserves

such a property, we can easily derive the same property for mλ
OT.

Proposition 6. Function mλ
ρ,OT is a 1-bounded hemimetric on C.

Notice that if λ is a strictly non-increasing function, then it specifies how
much the distance of future events is mitigated and, moreover, it guarantees
that to obtain upper bounds on the evolution metric only a finite number of
observations is needed.

Remark 1. Usually, due to the presence of uncertainties, the behaviour of a sys-
tem can be considered acceptable even if it differs from its intended one up-to a
certain tolerance. Similarly, the properties of adaptability and reliability that we
aim to study will check whether a program is able to perform well in a perturbed
environment up-to a given tolerance. In this setting, the choice of defining the
evolution metric as the pointwise maximal distance in time between the evo-
lution sequences of systems is natural and reasonable: if in the worst case (the
maximal distance) the program keeps the parameters of interest within the given
tolerance, then its entire behaviour can be considered acceptable. However, with
this approach we have that a program is only as good as its worst performance,
and one could argue that there are application contexts in which our evolution
metric would be less meaningful. For these reasons, we remark that we could

How Adaptive and Reliable is Your Program? 73

have given a parametric version of Definition 11 and defining the evolution met-
ric in terms of a generic aggregation function f over the tuple of Wasserstein
distances. Then, one could choose the best instantiation for f according to the
chosen application context. The use of a parametric definition would have not
affected the technical development of our paper. However, to keep the notation
and presentation as simple as possible, we opted to define mλ

ρ,OT directly in the
weighted infinity norm form. A similar reasoning applies to the definition of the
penalty function that we gave in Example 5.

5 Estimating the Evolution Metric

In this section we show how the evolution metric can be estimated via statistical
techniques. Firstly, we show how we can estimate the evolution sequence of a
given configuration c. Then, we evaluate the distance between two configurations
c1 and c2 on their estimated evolution sequences.

Computing Empirical Evolution Sequences. To compute the empirical evolution
sequence of a configuration c the following function Est can be used.

1: function Est(c, k, N)
2: ∀i : (0 ≤ i ≤ k) : Ei ← ∅
3: counter ← 0
4: while counter < N do
5: (c0, . . . , ck) ← Sim(c, k)
6: ∀i : Ei ← Ei, ci
7: counter ← counter + 1
8: end while
9: return E0, . . . , Ek

10: end function

Function Est(c, k,N) invokes N times
function Sim, i.e., any simulation algo-
rithm sampling a sequence of config-
urations c0, . . . , ck, modelling k steps
of a computation from c = c0. Then,
the sequence E0, . . . , Ek is computed,
where Ei is the tuple c1i , . . . , c

N
i of con-

figurations observed at time i in each
of the N sampled computations.

Each Ei can be used to estimate the distribution SC
c,i. For any i, with 0 ≤ i ≤

k, we let ŜC,N
c,i be the distribution s.t. for any C ∈ ΣC we have ŜC,N

c,i (C) = |Ei∩C|
N .

Finally, we let ŜD,N
c = ŜD,N

c,0 . . . ŜD,N
c,k be the empirical evolution sequence s.t. for

any measurable set of data states D ∈ BD we have ŜD,N
c,i (D) = ŜC,N

c,i (〈P,D〉E).
Then, by applying the weak law of large numbers to the i.i.d samples, we get
that when N goes to infinite both ŜC,N

c,i and ŜD,N
c,i converge weakly to SC

c,i and
SD

c,i respectively:

lim
N→∞

ŜC,N
c,i = SC

c,i lim
N→∞

ŜD,N
c,i = SD

c,i. (6)

The tool and the scripts of the examples are available (in Python) at https://
github.com/quasylab/spear.

Example 6. We apply our simulation to the heating system from Sect. 3, with
initial configuration c1 = 〈P, {T = 5.0, Ts = 5.0, h = 0, A = 0.5, As = 0.5, e =
0}〉E , where P is the process in Example 3, and [tmin, tmax] = [15, 20]. In Fig. 1
the probability distribution of the temperature after 50 steps is reported.

https://github.com/quasylab/spear
https://github.com/quasylab/spear

74 V. Castiglioni et al.

Fig. 1. Estimated distribution of the temperature after 50 steps with N = 102, N = 103

and N = 104. As comfort zone we consider the interval [15, 20].

Computing Distance Between Two Configurations. Function Est allows us to
collect independent samples at each time step i from 0 to a deadline k. These
samples can be used to estimate the distance between two configurations c1 and
c2. Following a similar approach to [37], to estimate the Wasserstein distance
W(mD

ρ,i) between two (unknown) distributions SD
c1,i and SD

c2,i we can use N

independent samples {c11, . . . , c
N
1 } taken from SC

c1,i and �·N independent samples
{c12, . . . , c

	·N
2 } taken from SC

c2,i. After that, we exploit the i-penalty function ρ

and we consider the two sequences of values: {ωj = ρi(d
j
1)|〈P j

1 ,dj
1〉E1 = cj

1}
and {νh = ρi(dh

2)|〈Ph
2 ,dh

2 〉E2 = ch
2}. We can assume, without loss of generality,

that these sequences are ordered, i.e., ωj ≤ ωj+1 and νh ≤ νh+1. The value
W(mD

ρ,i)(SD
c1,i,SD

c2,i) can be approximated as 1
	N

∑	N
h=1 max{νh − ω
 h

� �, 0}. The
next theorem, based on results in [37,40], ensures that the larger the number of
samplings the closer the gap between the estimated value and the exact one.

Theorem 1. Let SC
c1,i,SC

c2,i ∈ Δ(C, ΣC) be unknown, and ρ be a penalty func-
tion. Let {ωj = ρi(d

j
1)} and {νh = ρi(dh

2)} be the ordered sequences obtained
from independent samples taken from SC

c1,i and SC
c2,i, respectively. Then, it holds,

a.s., that W(mD
ρ,i)(SD

c1,i,SD
c2,i) = limN→∞ 1

	N

∑	N
h=1 max{νh − ω
 h

� �, 0}.

The outlined procedure is realised by functions Dist and CompW in Fig. 2.
The former takes as input the two configurations to compare, the penalty func-
tion (seen as the sequence of the i-penalty functions), the discount function λ,
the bounded set OT if observation times, and the parameters N and � used to
obtain the samplings of computation. Function Dist collects the samples Ei of
possible computations during the observation period [0,maxOT], where maxOT

denotes the last observation time. Then, for each i ∈ OT, the distance at time
i is computed via the function CompW(E1,i, E2,i, ρi). As the penalty function
allows us to reduce the evaluation of the Wasserstein distance in R

n to its evalua-
tion on R, due to the sorting of {νh | h ∈ [1, . . . , �N]} the complexity of function
CompW is O(�N log(�N)) (cf. [37]).

Example 7. We change the initial value of the air quality in the configuration
c1 in Example 6, and consider c2 = 〈P, {T = 5.0, Ts = 5.0, h = 0, A = 0.3, As =
0.3, e = 0}〉E . Figure 3a shows the variation in time of the distance between c1
and c2.

How Adaptive and Reliable is Your Program? 75

Fig. 2. Functions used to estimate the evolution metric on systems.

6 Adaptability and Reliability of Programs

In this section we exploit the evolution metric to study some dependability
properties of programs, which we call adaptability and reliability, w.r.t. a data
state and an environment. Both notions entail the ability of the process to induce
a similar behaviour in systems that start from similar initial conditions. They
differ in how time is considered.

The notion of adaptability imposes some constraints on the long term
behaviour of systems, disregarding their possible initial dissimilarities. Given
the thresholds η1, η2 ∈ [0, 1) and an observable time τ̃ , we say that a program P
is adaptable w.r.t. a data state d and an environment evolution E if whenever
P starts its computation from a data state d′ that differs from d for at most
η1, then we are guaranteed that the distance between the evolution sequences of
the two systems after time τ̃ is bounded by η2.

Definition 12 (Adaptability). Let τ̃ ∈ OT and η1, η2 ∈ [0, 1). We say that
P is (τ̃ , η1, η2)-adaptable w.r.t. the data state d and the environment evolution
E if ∀d′ ∈ D with mD

ρ,0(d,d′) ≤ η1 it holds mλ
{τ∈OT|τ≥τ̃}(〈P,d〉E , 〈P,d′〉E) ≤ η2.

We remark that one can always consider the data state d as the ideal model
of the world used for the specification of P , and the data state d′ as the real
world in which P has to execute. Hence, the idea behind adaptability is that
even if the initial behaviour of the two systems is quite different, P is able to
reduce the gap between the real evolution and the desired one within the time
threshold τ̃ . Notice that being (τ̃ , η1, η2)-adaptable for τ̃ = min{τ | τ ∈ OT} is
equivalent to being (τ, η1, η2)-adaptable for all τ ∈ OT.

The notion of reliability strengthens that of adaptability by bounding the
distance on the evolution sequences from the beginning. A program is reliable if
it guarantees that small variations in the initial conditions cause only bounded
variations in its evolution.

Definition 13 (Reliability). Let η1, η2 ∈ [0, 1). We say that P is (η1, η2)-
reliable w.r.t. the data state d and the environment evolution E if ∀d′ ∈ D with
mD

ρ,0(d,d′) ≤ η1 it holds mλ
OT(〈P,d〉E , 〈P,d′〉E) ≤ η2.

76 V. Castiglioni et al.

Fig. 3. Examples of the evaluation of the evolution metric (assuming λ being the
constant 1).

We can use our algorithm to verify adaptability and reliability of a given
program. Given a configuration 〈P,d〉E , a set OT of observation times and a
given threshold η1 ≥ 0, we can sample M variations {d1, . . . ,dM} of d, s.t. for
any i, mD

ρ,0(d,di) ≤ η1. Then, for each sampled data state we can estimate the
distance between c = 〈P,d〉E and ci = 〈P,di〉E at the different time steps in
OT, namely mλ

{τ∈OT|τ≥τ̃}(c, ci) for any τ̃ ∈ OT. Finally, for each τ̃ ∈ OT , we
let lτ̃ = maxi{mλ

{τ∈OT|τ≥τ̃}(c, ci)}. We can observe that, for the chosen η1, each
lτ̃ gives us a lower bound to the τ̃ -adaptability of the program. Similarly, for
τmin = minOT τ , lτmin gives a lower bound for its reliability.

Example 8. Figure 3b shows the evaluation of lτ for the program P in the con-
figuration c1 from Example 6 with parameters M = 100 and η1 = 0.2. Observe
that the initial perturbation is not amplified and after 12 steps it is almost
absorbed. In particular, our program is (12, 0.2, η2)-adaptable w.r.t. the data
state and the environment evolution in Example 6, for any η2 ≥ 0.05 + e12W,
where e12W is the approximation error e12W = |W(mD

ρ,12)(ŜD,1000
c1,12 , ŜD,10000

c2,12) −
W(mD

ρ,12)(SD
c1,12,SD

c2,12)|. We refer the interested reader to [36, Corollary 3.5,
Equation (3.10)] for an estimation of e12W.

7 Concluding Remarks

As a first step for future research we will provide a simple logic, defined in the
vein of Signal Temporal Logic (STL) [30], that can be used to specify require-
ments on the evolution sequences of a system. Our intuition is that we can exploit
the evolution metric, and the algorithm we have proposed, to develop a quan-
titative model checking tool for this type of systems. Moreover, we would like
to enhance the modelling of time. Firstly we could relax the timing constraints
on the evolution metric by introducing a time tolerance and defining a stretched
evolution metric as a Skorokhod-like metric [35], as those used for conformance
testing [18]. Then, we could provide an extension of our techniques to the case
in which also the program shows a continuous time behaviour.

How Adaptive and Reliable is Your Program? 77

The use of metrics for the analysis of systems stems from [17,22,29] where, in
a process algebraic setting, it is argued that metrics are indeed more informative
than behavioural equivalences when quantitative information on the behaviour
is taken into account. The Wasserstein lifting has then found several success-
ful applications: from the definition of behavioural metrics (e.g., [7,12,20]), to
privacy [9,10,15] and machine learning (e.g., [4,25,38]). Usually, one can use
behavioural metrics to quantify how well an implementation (I) meets its speci-
fication (S). In [14] the authors do so by setting a two players game with weighted
choices, and the cost of the game is interpreted as the distance between I and S.
Hence the authors propose three distance functions: correctness, coverage, and
robustness. Correctness expresses how often I violates S, coverage is its dual,
and robustness measures how often I can make an unexpected error with the
resulting behaviour still meeting S. A similar game-based approach is used in
[13] to define a masking fault-tolerant distance. Briefly, a system is masking fault-
tolerant if faults do not induce any observable behaviour in the system. Hence,
the proposed distance measures how many faults are tolerated by I while being
masked by the states of the system. Notice that the notion of robustness from
[14] and the masking fault-tolerant distance from [13] are quite different from
our reliability. In fact, we are not interested in counting how many times an
error occurs, but in checking whether the system is able to regain the desired
behaviour after the occurrence of an error.

Systems showing an highly dynamic behaviour are usually modelled as
Stochastic Hybrid Systems (SHSs) (see, e.g., [6,8]), which allow for combining
in a single model the discrete, continuous and probabilistic features of systems.
Our model clearly belongs to a subclass of SHSs. However, as previously out-
lined, our approach differs from that of SHSs since we model the program, the
environment and their interaction (the data state) as three distinct components.
This choice allows us to study the behaviour of the program by means of the
evolution metric. It would be interesting to investigate if, and how, our method
can be extended to the general class of SHSs.

We remark here that our objective in this paper was to provide some tools
for the analysis of the interaction of a given program with the environment, and
not for the synthesis of a program. However, for programs that are controllers,
some metric-based approaches have been proposed for their synthesis [3,21].
We will then study whether our approach can be combined with some learning
techniques in order to design and synthesise robust controllers.

References

1. Abate, A., D’Innocenzo, A., Benedetto, M.D.D.: Approximate abstractions of
stochastic hybrid systems. IEEE Trans. Automat. Contr. 56(11), 2688–2694 (2011)

2. Abate, A., Katoen, J., Lygeros, J., Prandini, M.: Approximate model checking of
stochastic hybrid systems. Eur. J. Control. 16(6), 624–641 (2010)

3. Abate, A., Prandini, M.: Approximate abstractions of stochastic systems: a ran-
domized method. In: Proceedings of CDC-ECC 2011, pp. 4861–4866 (2011)

4. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: Proceedings of ICML 2017, pp. 214–223 (2017)

78 V. Castiglioni et al.

5. Bernardo, M., Nicola, R.D., Loreti, M.: A uniform framework for modeling non-
deterministic, probabilistic, stochastic, or mixed processes and their behavioral
equivalences. Inf. Comput. 225, 29–82 (2013)

6. Bloom, H.A.P., Lygeros, J. (eds.): Stochastic Hybrid Systems: Theory and Safety
Critical Applications. Lecture Notes in Control and Information Sciences, vol. 337.
Springer, Heidelberg (2006). https://doi.org/10.1007/11587392

7. Breugel, F.: A behavioural pseudometric for metric labelled transition systems. In:
Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 141–155.
Springer, Heidelberg (2005). https://doi.org/10.1007/11539452 14

8. Cassandras, C.G., Lygeros, J. (eds.): Stochastic Hybrid Systems. Control Engi-
neering, vol. 24, 1st edn. CRC Press, Boca Raton (2007)

9. Castiglioni, V., Chatzikokolakis, K., Palamidessi, C.: A logical characterization of
differential privacy via behavioral metrics. In: Bae, K., Ölveczky, P.C. (eds.) FACS
2018. LNCS, vol. 11222, pp. 75–96. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-02146-7 4

10. Castiglioni, V., Chatzikokolakis, K., Palamidessi, C.: A logical characterization of
differential privacy. Sci. Comput. Program. 188, 102388 (2020)

11. Castiglioni, V., Loreti, M., Tini, S.: Measuring adaptability and reliability of large
scale systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477,
pp. 380–396. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-
6 23

12. Castiglioni, V., Loreti, M., Tini, S.: The metric linear-time branching-time spec-
trum on nondeterministic probabilistic processes. Theor. Comput. Sci. 813, 20–69
(2020)

13. Castro, P.F., D’Argenio, P.R., Demasi, R., Putruele, L.: Measuring masking fault-
tolerance. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019, Part II. LNCS, vol.
11428, pp. 375–392. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17465-1 21

14. Cerný, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. Theor. Com-
put. Sci. 413(1), 21–35 (2012)

15. Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized bisimulation
metrics. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp.
32–46. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6 4

16. Ciocchetta, F., Hillston, J.: Bio-PEPA: an extension of the process algebra PEPA
for biochemical networks. Electron. Notes Theor. Comput. Sci. 194(3), 103–117
(2008)

17. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled
Markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004)

18. Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the
skorokhod metric. Formal Methods Syst. Design 50(2–3), 168–206 (2017)

19. Faugeras, O.P., Rüschendorf, L.: Risk excess measures induced by hemi-metrics.
Probab. Uncertain. Quant. Risk 3(1), 1–35 (2018). https://doi.org/10.1186/
s41546-018-0032-0

20. Gebler, D., Larsen, K.G., Tini, S.: Compositional bisimulation metric reasoning
with probabilistic process calculi. Log. Methods Comput. Sci. 12(4) (2016)

21. Ghosh, S., Bansal, S., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Tomlin, C.: A
new simulation metric to determine safe environments and controllers for systems
with unknown dynamics. In: Proceedings of HSCC 2019, pp. 185–196 (2019)

22. Giacalone, A., Jou, C.C., Smolka, S.A.: Algebraic reasoning for probabilistic con-
current systems. In: Proceedings of IFIP Work, Conference on Programming, Con-
cepts and Methods, pp. 443–458 (1990)

https://doi.org/10.1007/11587392
https://doi.org/10.1007/11539452_14
https://doi.org/10.1007/978-3-030-02146-7_4
https://doi.org/10.1007/978-3-030-02146-7_4
https://doi.org/10.1007/978-3-030-61470-6_23
https://doi.org/10.1007/978-3-030-61470-6_23
https://doi.org/10.1007/978-3-030-17465-1_21
https://doi.org/10.1007/978-3-030-17465-1_21
https://doi.org/10.1007/978-3-662-44584-6_4
https://doi.org/10.1186/s41546-018-0032-0
https://doi.org/10.1186/s41546-018-0032-0

How Adaptive and Reliable is Your Program? 79

23. Girard, A., Gößler, G., Mouelhi, S.: Safety controller synthesis for incrementally
stable switched systems using multiscale symbolic models. IEEE Trans. Automat.
Contr. 61(6), 1537–1549 (2016)

24. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified
models of probabilistic processes. Inf. Comput. 121(1), 59–80 (1995)

25. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of Wasserstein GANs. In: Proceedings of Advances in Neural Information
Processing Systems, pp. 5767–5777 (2017)

26. Heredia, G., et al.: Control of a multirotor outdoor aerial manipulator. In: Pro-
ceedings of IROS 2014, pp. 3417–3422. IEEE (2014)

27. Hillston, J., Hermanns, H., Herzog, U., Mertsiotakis, V., Rettelbach, M.: Stochastic
process algebras: integrating qualitative and quantitative modelling. In: Proceed-
ings of International Conference on Formal Description Techniques 1994. IFIP, vol.
6, pp. 449–451 (1994)

28. Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems. In:
Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 160–173. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-46430-1 16

29. Kwiatkowska, M., Norman, G.: Probabilistic metric semantics for a simple language
with recursion. In: Penczek, W., Sza�las, A. (eds.) MFCS 1996. LNCS, vol. 1113, pp.
419–430. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61550-4 167

30. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

31. Malhame, R., Yee Chong, C.: Electric load model synthesis by diffusion approxima-
tion of a high-order hybrid-state stochastic system. IEEE Trans. Automat. Contr.
30(9), 854–660 (1985)

32. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics. Wiley, USA (2005)

33. Rachev, S.T., Klebanov, L.B., Stoyanov, S.V., Fabozzi, F.J.: The Methods of Dis-
tances in the Theory of Probability and Statistics. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-1-4614-4869-3

34. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1995)

35. Skorokhod, A.V.: Limit theorems for stochastic processes. Theory Probab. Appl.
1, 261–290 (1956)

36. Sriperumbudur, B.K., Fukumizu, K., Gretton, A., Schölkopf, B., Lanckriet,
G.R.G.: On the empirical estimation of integral probability metrics. Electron. J.
Stat. 6, 1550–1599 (2021)

37. Thorsley, D., Klavins, E.: Approximating stochastic biochemical processes with
Wasserstein pseudometrics. IET Syst. Biol. 4(3), 193–211 (2010)

38. Tolstikhin, I.O., Bousquet, O., Gelly, S., Schölkopf, B.: Wasserstein auto-encoders.
In: Proceedings of ICLR 2018 (2018)

39. Vaserstein, L.N.: Markovian processes on countable space product describing large
systems of automata. Probl. Peredachi Inf. 5(3), 64–72 (1969)

40. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71050-9

41. Virágh, C., Nagy, M., Gershenson, C., Vásárhelyi, G.: Self-organized UAV traffic in
realistic environments. In: Proceedings of IROS 2016, pp. 1645–1652. IEEE (2016)

https://doi.org/10.1007/3-540-46430-1_16
https://doi.org/10.1007/3-540-61550-4_167
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-1-4614-4869-3
https://doi.org/10.1007/978-3-540-71050-9

Branching Place Bisimilarity:
A Decidable Behavioral Equivalence

for Finite Petri Nets with Silent Moves

Roberto Gorrieri(B)

Dipartimento di Informatica—Scienza e Ingegneria, Università di Bologna,
Mura A. Zamboni 7, 40127 Bologna, Italy

roberto.gorrieri@unibo.it

Abstract. Place bisimilarity ∼p is a behavioral equivalence for finite
Petri nets, proposed in [1] and proved decidable in [13]. In this paper
we propose an extension to finite Petri nets with silent moves of the
place bisimulation idea, yielding branching place bisimilarity ≈p, follow-
ing the intuition of branching bisimilarity [6] on labeled transition sys-
tems. We prove that ≈p is a decidbale equivalence relation. Moreover, we
argue that it is strictly finer than branching fully-concurrent bisimilarity
[12,22], essentially because ≈p does not consider as unobservable those
τ -labeled net transitions with pre-set size larger than one, i.e., those
resulting from multi-party interaction.

1 Introduction

Place bisimilarity, originating from an idea by Olderog [19] (under the name of
strong bisimilarity) and then refined by Autant, Belmesk and Schnoebelen [1],
is a behavioral equivalence over finite Place/Transition Petri nets (P/T nets,
for short), based on relations over the finite set of net places, rather than over
the (possibly infinite) set of net markings. This equivalence does respect the
expected causal behavior of Petri nets; in fact, van Glabbeek proved in [7] that
place bisimilarity is slightly finer than structure preserving bisimilarity [7], in
turn slightly finer than fully-concurrent bisimilarity [3]. Place bisimilarity was
proved decidable in [13] and, to date, it is the only sensible behavioral equivalence
which was proved decidable over finite Petri nets (with the exception of net
isomorphism).

This paper aims at extending the place bisimulation idea to Petri nets with
silent transitions. To this aim, we take inspiration from branching bisimilarity,
proposed in [6] over labeled transition systems [8,16] (LTSs, for short), a behav-
ioral relation more appropriate than weak bisimilarity [17], as it better respects
the timing of choices.

The main problem we had to face was to properly understand if and when
a silent net transition can be really considered as potentially unobservable. In
fact, while in the theory of sequential, nondeterministic systems, modeled by
means of LTSs, all the τ -labeled transitions can, to some extent, be abstracted
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 80–99, 2021.
https://doi.org/10.1007/978-3-030-78089-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-78089-0_5

Branching Place Bisimilarity 81

away, in the theory of Petri nets (and of distributed systems, in general), it is
rather questionable whether this is the case. For sure a silent net transition with
pre-set and post-set of size 1 may be abstracted away, as it represents some
internal computation, local to a single sequential component of the distributed
system. However, a τ -labeled net transition with pre-set of size 2 or more, which
models a multi-party interaction, is really observable: since to establish the syn-
chronization it is necessary to use some communication infrastructure, for sure
one observer can see that such a synchronization takes place. This is, indeed,
what happens over the Internet: a communication via IP is an observable event,
even if the actual content of the message may be unobservable (in case it is
encrypted).

For this reason, our definition of branching place bisimulation considers as
potentially unobservable only the so-called τ -sequential transitions, i.e., those
silent transitions whose pre-set and post-set have size 1. We prove that branch-
ing place bisimilarity ≈p is an equivalence relation, where the crucial step in
this proof is to prove that the relational composition of two branching place
bisimulations is a branching place bisimulation. Of course, ≈p is rather discrim-
inating if compared to other behavioral semantics; in particular, we conjecture
that it is strictly finer than branching fully-concurrent bisimilarity [12,22], essen-
tially because the latter may also abstract w.r.t. silent transitions that are not
τ -sequential (and also may relate markings of different size).

The main contribution of this paper is to show that ≈p is decidable for finite
P/T nets. The proof idea is as follows. As a place relation R ⊆ S × S is finite if
the set S of places is finite, there are finitely many place relations for a finite net.
We can list all these relations, say R1, R2, . . . Rn. It is decidable whether a place
relation Ri is a branching place bisimulation by checking two finite conditions
over a finite number of marking pairs: this is a non-obvious observation, as a
branching place bisimulation requires that the place bisimulation game holds for
the infinitely many pairs m1 and m2 which are bijectively related via Ri (denoted
by (m1,m2) ∈ R⊕

i). Hence, to decide whether m1 ≈p m2, it is enough to check,
for i = 1, . . . n, whether Ri is a branching place bisimulation and, in such a case,
whether (m1,m2) ∈ R⊕

i .
The paper is organized as follows. Section 2 recalls the basic definitions about

Petri nets. Section 3 recalls the main definitions and results about place bisimi-
larity. Section 4 introduces branching place bisimilarity and proves that it is an
equivalence relation. Section 5 shows that ≈p is decidable. Finally, in Sect. 6 we
discuss the pros and cons of branching place bisimilarity, and describe related
literature and some future research.

2 Basic Definitions

Definition 1 (Multiset). Let N be the set of natural numbers. Given a finite
set S, a multiset over S is a function m : S → N. The support set dom(m)
of m is {s ∈ S

∣
∣ m(s) �= 0}. The set of all multisets over S, denoted by

M (S), is ranged over by m. We write s ∈ m if m(s) > 0. The multiplicity

82 R. Gorrieri

of s in m is given by the number m(s). The size of m, denoted by |m|, is the
number

∑

s∈S m(s), i.e., the total number of its elements. A multiset m such
that dom(m) = ∅ is called empty and is denoted by θ. We write m ⊆ m′ if
m(s) ≤ m′(s) for all s ∈ S. Multiset union ⊕ is defined as follows: (m⊕m′)(s)
= m(s) + m′(s). Multiset difference
 is defined as follows: (m1
 m2)(s) =
max{m1(s)−m2(s), 0}. The scalar product of a number j with m is the multiset
j ·m defined as (j ·m)(s) = j ·(m(s)). By si we also denote the multiset with si as
its only element. Hence, a multiset m over S = {s1, . . . , sn} can be represented
as k1 · s1 ⊕ k2 · s2 ⊕ . . . ⊕ kn · sn, where kj = m(sj) ≥ 0 for j = 1, . . . , n. �

Definition 2 (Place/Transition net). A labeled Place/Transition Petri net
(P/T net for short) is a tuple N = (S,A, T), where

• S is the finite set of places, ranged over by s (possibly indexed),
• A is the finite set of labels, ranged over by � (possibly indexed), and
• T ⊆ (M (S) \ {θ}) × A ×M (S) is the finite set of transitions, ranged over by

t (possibly indexed).

Given a transition t = (m, �,m′), we use the notation:

• •t to denote its pre-set m (which cannot be empty) of tokens to be consumed;
• l(t) for its label �, and
• t• to denote its post-set m′ of tokens to be produced.

Hence, transition t can be also represented as •t
l(t)−→ t•. �

Graphically, a place is represented by a little circle and a transition by a little
box. These are connected by directed arcs, which may be labeled by a positive
integer, called the weight, to denote the number of tokens consumed (when the
arc goes from a place to the transition) or produced (when the arc goes form
the transition to a place) by the execution of the transition; if the number is
omitted, then the weight default value is 1.

Definition 3 (Marking, P/T net system). A multiset over S is called a
marking. Given a marking m and a place s, we say that the place s contains
m(s) tokens, graphically represented by m(s) bullets inside place s. A P/T net
system N(m0) is a tuple (S,A, T,m0), where (S,A, T) is a P/T net and m0 is a
marking over S, called the initial marking. We also say that N(m0) is a marked
net. �

Definition 4 (Enabling, firing sequence, transition sequence, reachable
marking). Given a P/T net N = (S,A, T), a transition t is enabled at m,
denoted by m[t〉, if •t ⊆ m. The execution (or firing) of t enabled at m produces
the marking m′ = (m
•t)⊕t•. This is written m[t〉m′. A firing sequence starting
at m is defined inductively as follows:

• m[ε〉m is a firing sequence (where ε denotes an empty sequence of transitions)
and

Branching Place Bisimilarity 83

• if m[σ〉m′ is a firing sequence and m′[t〉m′′, then m[σt〉m′′ is a firing sequence.

If σ = t1 . . . tn (for n ≥ 0) and m[σ〉m′ is a firing sequence, then there
exist m1, . . . ,mn+1 such that m = m1[t1〉m2[t2〉 . . . mn[tn〉mn+1 = m′, and
σ = t1 . . . tn is called a transition sequence starting at m and ending at m′.

The definition of pre-set and post-set can be extended to transition sequences
as follows: •ε = θ, •(tσ) = •t ⊕ (•σ
 t•), ε• = θ, (tσ)• = σ• ⊕ (t•
 •σ).

The set of reachable markings from m is [m〉 = {m′ ∣
∣ ∃σ.m[σ〉m′}. Note

that the reachable markings can be countably infinitely many. �

Definition 5 (P/T net with silent moves, τ-sequential). A P/T net N =
(S,A, T) such that τ ∈ A, where τ is the only invisible action that can be used
to label transitions, is called a P/T net.

A transition t ∈ T is τ -sequential if l(t) = τ and |t•| = 1 = |•t|. A P/T net
N is τ -sequential if ∀t ∈ T if l(t) = τ , then t is τ -sequential. �

Definition 6 (Idling transitions, τ-sequential (acyclic) transition
sequence). Given a P/T net N = (S,A, T) with silent moves, the set of idling
transitions is I(S) = {i(s)

∣
∣ s ∈ S, i(s) = (s, τ, s)}. In defining silent transition

sequences, we take the liberty of using also the fictitious idling transitions, so
that, e.g., if σ = i(s1)i(s2), then s1 ⊕ s2[σ〉s1 ⊕ s2. Given a transition sequence
σ, its observable label o(σ) is computed inductively as:

o(ε) = ε

o(tσ) =

{

l(t)o(σ) if l(t) �= τ

o(σ) otherwise.
A transition sequence σ = t1t2 . . . tn (where n ≥ 1 and some of the ti can be

idling transitions) is τ -1-sequential if l(ti) = τ , |t•i | = 1 = |•ti| for i = 1, . . . , n,
and t•i = •ti+1 for i = 1, . . . , n − 1, so that o(σ) = ε and |σ•| = 1 = |•σ|.

A transition sequence σ = σ1σ2 . . . σk is τ -k-sequential if σi is τ -1-sequential
for i = 1, . . . , k, •σ = •σ1 ⊕ •σ2 ⊕ . . . ⊕ •σk and σ• = σ•

1 ⊕ σ•
2 ⊕ . . . ⊕ σ•

k, so that
o(σ) = ε and |σ•| = k = |•σ|. We say that σ is τ -sequential if it is τ -k-sequential
for some k ≥ 1.

A τ -1-sequential σ = t1t2 . . . tn is acyclic if •σ = m0[t1〉m1[t2〉m2

. . . mn−1[tn〉mn = σ• and mi �= mj for all i �= j, with i, j ∈ {1, 2, . . . , n}. A
τ -k-sequential σ = σ1σ2 . . . σk is acyclic if σi is acyclic and τ -1-sequential for
i = 1, . . . , k. We say that σ is an acyclic τ -sequential transition sequence if it is
acyclic and τ -k-sequential for some k ≥ 1. �

Remark 1 (Acyclic τ-sequential transition sequence). The definition of
acyclic τ -1-sequential transition sequence is a bit non-standard as it may
allow for a cycle when the initial marking and the final one are the same.
For instance, σ = i(s)i(s) is cyclic, while the apparently cyclic subsequence
σ′ = i(s) is actually acyclic, according to our definition. Note that, given a
τ -1-sequential transition sequence σ, it is always possible to find an acyclic
τ -1-sequential transition sequence σ′ such that •σ = •σ′ and σ• = σ′•. For
instance, if •σ = m0[t1〉m1[t2〉m2 . . . mn−1[tn〉mn = σ• and the only cycle

84 R. Gorrieri

is given by mi[ti+1〉mi+1 . . . mj−1[tj〉mj with mi = mj and i ≥ 1, then
σ′ = t1t2 . . . titj+1 . . . tn is acyclic and •σ = •σ′ and σ• = σ′•.

Note also that, given a τ -k-sequential transition sequence σ = σ1σ2 . . . σk,
it is always possible to find an acyclic τ -k-sequential transition sequence σ′ =
σ′
1σ

′
2 . . . σ′

k, where σ′
i is the acyclic τ -1-sequential transition sequence correspond-

ing to σi for i = 1, 2, . . . , k, in such a way that •σ = •σ′ and σ• = σ′•.
Finally, note that, given two markings m1 and m2 of equal size k, it is decidable
whether there exists an acyclic τ -k-sequential transition σ such that •σ = m1

and σ• = m2. �

Definition 7 (Interleaving Bisimulation). Let N = (S,A, T) be a P/T net.
An interleaving bisimulation is a relation R ⊆ M (S) × M (S) such that if
(m1,m2) ∈ R then

• ∀t1 such that m1[t1〉m′
1, ∃t2 such that m2[t2〉m′

2 with l(t1) = l(t2) and
(m′

1,m
′
2) ∈ R,

• ∀t2 such that m2[t2〉m′
2, ∃t1 such that m1[t1〉m′

1 with l(t1) = l(t2) and
(m′

1,m
′
2) ∈ R.

Two markings m1 and m2 are interleaving bisimilar, denoted by m1 ∼int m2, if
there exists an interleaving bisimulation R such that (m1,m2) ∈ R. �

Interleaving bisimilarity was proved undecidable in [15] for P/T nets hav-
ing at least two unbounded places, with a proof based on the comparison
of two sequential P/T nets (i.e., nets not offering any concurrent behavior).
Hence, interleaving bisimulation equivalence is undecidable even for the sub-
class of sequential finite P/T nets. Esparza observed in [5] that all the non-
interleaving bisimulation-based equivalences (in the spectrum ranging from inter-
leaving bisimilarity to fully-concurrent bisimilarity [3]) collapse to interleaving
bisimilarity over sequential P/T nets. Hence, the proof in [15] applies to all these
non-interleaving bisimulation equivalences as well.

Definition 8 (Branching interleaving bisimulation). Let N = (S,A, T) be
a P/T net with silent moves. A branching interleaving bisimulation is a relation
R ⊆ M (S) × M (S) such that if (m1,m2) ∈ R then

• ∀t1 such that m1[t1〉m′
1,

– either l(t1) = τ and ∃σ2 such that o(σ2) = ε, m2[σ2〉m′
2 with (m1,m

′
2) ∈ R

and (m′
1,m

′
2) ∈ R,

– or ∃σ, t2 such that o(σ) = ε, l(t1) = l(t2), m2[σ〉m[t2〉m′
2 with (m1,m) ∈

R and (m′
1,m

′
2) ∈ R,

• and, symmetrically, ∀t2 such that m2[t2〉m′
2.

Two markings m1 and m2 are branching interleaving bisimilar, denoted
m1 ≈bri m2, if there exists a branching interleaving bisimulation R that relates
them. �

Branching Place Bisimilarity 85

This definition is not a rephrasing on nets of the original definition on LTSs
in [6], rather of a slight variant called semi-branching bisimulation [2,6], which
gives rise to the same equivalence relation as the original definition but has better
mathematical properties. Branching interleaving bisimilarity ≈bri is the largest
branching interleaving bisimulation and also an equivalence relation. Of course,
also branching interleaving bisimilarity is undecidable for finite P/T nets.

3 Place Bisimilarity

We now present place bisimulation, introduced in [1] as an improvement of strong
bisimulation, a behavioral relation proposed by Olderog in [19] on safe nets
which fails to induce an equivalence relation. Our definition is formulated in a
slightly different way, but it is coherent with the original one. First, an auxiliary
definition.

Definition 9 (Additive closure). Given a P/T net N = (S,A, T) and a place
relation R ⊆ S × S, we define a marking relation R⊕ ⊆ M (S) × M (S), called
the additive closure of R, as the least relation induced by the following axiom
and rule.

(θ, θ) ∈ R⊕
(s1, s2) ∈ R (m1,m2) ∈ R⊕

(s1 ⊕ m1, s2 ⊕ m2) ∈ R⊕

�

Note that, by definition, two markings are related by R⊕ only if they have
the same size; in fact, the axiom states that the empty marking is related to
itself, while the rule, assuming by induction that m1 and m2 have the same size,
ensures that s1 ⊕ m1 and s2 ⊕ m2 have the same size.

Proposition 1 For each relation R ⊆ S × S, if (m1,m2) ∈ R⊕, then |m1| =
|m2|. �

Note also that there may be several proofs of (m1,m2) ∈ R⊕, depending on
the chosen order of the elements of the two markings and on the definition of R.
For instance, if R = {(s1, s3), (s1, s4), (s2, s3), (s2, s4)}, then (s1 ⊕ s2, s3 ⊕ s4) ∈
R⊕ can be proved by means of the pairs (s1, s3) and (s2, s4), as well as by means
of (s1, s4), (s2, s3). An alternative way to define that two markings m1 and m2

are related by R⊕ is to state that m1 can be represented as s1 ⊕s2 ⊕ . . .⊕sk, m2

can be represented as s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
k and (si, s

′
i) ∈ R for i = 1, . . . , k. In fact,

a naive algorithm for checking whether (m1,m2) ∈ R⊕ would simply consider
m1 represented as s1 ⊕ s2 ⊕ . . . ⊕ sk and then scan all the possible permutations
of m2, each represented as s′

1 ⊕ s′
2 ⊕ . . . ⊕ s′

k, to check that (si, s
′
i) ∈ R for

i = 1, . . . , k. Of course, this naive algorithm is in O(k!).

Example 1. Consider R = {(s1, s3), (s1, s4), (s2, s4)}, which is not an equivalence
relation. Suppose we want to check that (s1 ⊕ s2, s4 ⊕ s3) ∈ R⊕. If we start by
matching (s1, s4) ∈ R, then we fail because the residual (s2, s3) is not in R.
However, if we permute the second marking to s3 ⊕ s4, then we succeed because
the required pairs (s1, s3) and (s2, s4) are both in R. �

86 R. Gorrieri

Nonetheless, the problem of checking whether (m1,m2) ∈ R⊕ has polynomial
time complexity because it can be considered as an instance of the problem of
finding a perfect matching in a bipartite graph, where the nodes of the two
partitions are the tokens in the two markings, and the edges are defined by
the relation R. In fact, the definition of the bipartite graph takes O(k2) time
(where k = |m1| = |m2|) and, then, the Hopcroft-Karp-Karzanov algorithm [14]
for computing the maximum matching has worst-case time complexity O(h

√
k),

where h is the number of the edges in the bipartire graph (h ≤ k2) and to check
whether the maximum matching is perfect can be done simply by checking that
the size of the matching equals the number of nodes in each partition, i.e., k.
Hence, in evaluating the complexity of the algorithm in Sect. 5, we assume that
the complexity of checking whether (m1,m2) ∈ R⊕ is in O(k2

√
k).

Proposition 2 [10]. For each place relation R ⊆ S × S, the following hold:

1. If R is an equivalence relation, then R⊕ is an equivalence relation.
2. If R1 ⊆ R2, then R⊕

1 ⊆ R⊕
2 , i.e., the additive closure is monotone.

3. If (m1,m2) ∈ R⊕ and (m′
1,m

′
2) ∈ R⊕, then (m1 ⊕ m′

1,m2 ⊕ m′
2) ∈ R⊕, i.e.,

the additive closure is additive. �

Proposition 3 [10]. For each family of place relations Ri ⊆ S×S, the following
hold:

1. ∅⊕ = {(θ, θ)}, i.e., the additive closure of the empty place relation is a sin-
gleton marking relation, relating the empty marking to itself.

2. (IS)⊕ = IM , i.e., the additive closure of the identity relation on places IS =
{(s, s)

∣
∣ s ∈ S} is the identity relation on markings IM = {(m,m)

∣
∣ m ∈

M (S)}.
3. (R⊕)−1 = (R−1)⊕, i.e., the inverse of an additively closed relation R is the

additive closure of its inverse R−1.
4. (R1 ◦R2)⊕ = (R⊕

1)◦ (R⊕
2), i.e., the additive closure of the composition of two

place relations is the compositions of their additive closures. �

Definition 10 (Place Bisimulation). Let N = (S,A, T) be a P/T net. A
place bisimulation is a relation R ⊆ S × S such that if (m1,m2) ∈ R⊕ then

• ∀t1 such that m1[t1〉m′
1, ∃t2 such that m2[t2〉m′

2 with (•t1, •t2) ∈ R⊕, l(t1) =
l(t2), (t•1, t

•
2) ∈ R⊕ and (m′

1,m
′
2) ∈ R⊕,

• ∀t2 such that m2[t2〉m′
2, ∃t1 such that m1[t1〉m′

1 with (•t1, •t2) ∈ R⊕, l(t1) =
l(t2), (t•1, t

•
2) ∈ R⊕ and (m′

1,m
′
2) ∈ R⊕.

Two markings m1 and m2 are place bisimilar, denoted by m1 ∼p m2, if there
exists a place bisimulation R such that (m1,m2) ∈ R⊕. �

Proposition 4 [1,13]. For each P/T net N = (S,A, T), relation ∼p ⊆ M (S)×
M (S) is an equivalence relation. �

Branching Place Bisimilarity 87

By Definition 10, place bisimilarity can be defined as follows:
∼p=

⋃{R⊕ ∣
∣ R is a place bisimulation}.

By monotonicity of the additive closure (Proposition 2(2)), if R1 ⊆ R2, then
R⊕

1 ⊆ R⊕
2 . Hence, we can restrict our attention to maximal place bisimulations

only:
∼p=

⋃{R⊕ ∣
∣ R is a maximal place bisimulation}.

However, it is not true that
∼p= (

⋃{R
∣
∣ R is a maximal place bisimulation})⊕

because the union of place bisimulations may not be a place bisimulation, so that
its definition is not coinductive. We illustrate this fact by means of the following
example.

Fig. 1. A simple net

Example 2 Consider the simple P/T net in Fig. 1, with S = {s1, s2, s3}. It
is rather easy to realize that there are only two maximal place bisimulations,
namely:

R1 = IS = {(s1, s1), (s2, s2), (s3, s3)} and
R2 = (R1 \ I{s1,s2}) ∪ {(s1, s2), (s2, s1)} = {(s1, s2), (s2, s1), (s3, s3)},

only one of which is an equivalence relation. However, note that their union R =
R1∪R2 is not a place bisimulation. In fact, on the one hand (s1⊕s1, s1⊕s2) ∈ R⊕,
but, on the other hand, these two markings do not satisfy the place bisimulation
game, because s1 ⊕ s1 is stuck, while s1 ⊕ s2 can fire the a-labeled transition,
reaching s3. �

4 Branching Place Bisimilarity

Now we define a variant of place bisimulation, which is insensitive, to some
extent, to τ -sequential transitions, i.e., τ -labeled transitions whose pre-set and
post-set have size one. This relation is inspired to (semi-)branching bisimulation
[2,6], a behavioral relation defined over LTSs. In its definition, we use τ -sequential
transition sequences, usually denoted by σ, which are sequences composed of τ -
sequential transitions in T ∪I(S), i.e., τ -sequential net transitions and also idling
transitions.

Definition 11 (Branching place bisimulation). Given a P/T net N =
(S,A, T), a branching place bisimulation is a relation R ⊆ S × S such that
if (m1,m2) ∈ R⊕

88 R. Gorrieri

1. ∀t1 such that m1[t1〉m′
1

(i) either t1 is τ -sequential and ∃σ,m′
2 such that σ is τ -sequential, m2[σ〉m′

2,
and (•t1, •σ) ∈ R, (•t1, σ•) ∈ R, (t•1, σ

•) ∈ R and (m1
 •t1,m2
 •σ) ∈
R⊕;

(ii) or there exist σ, t2,m,m′
2 such that σ is τ -sequential, m2[σ〉m[t2〉m′

2,
l(t1) = l(t2), σ• = •t2, (•t1, •σ) ∈ R⊕, (•t1, •t2) ∈ R⊕ (t•1, t

•
2) ∈ R⊕,

and moreover, (m1
 •t1,m2
 •σ) ∈ R⊕;
2. and, symmetrically, ∀t2 such that m2[t2〉m′

2
(i) either t2 is τ -sequential and ∃σ,m′

1 such that σ is τ -sequential, m1[σ〉m′
1,

and (•σ, •t2) ∈ R, (σ•, •t2) ∈ R, (σ•, t•2) ∈ R and (m1
 •σ,m2
 •t2) ∈
R⊕;

(ii) or there exist σ, t1,m,m′
1 such that σ is τ -sequential, m1[σ〉m[t1〉m′

1,
l(t1) = l(t2), σ• = •t1, (•σ, •t2) ∈ R⊕, (•t1, •t2) ∈ R⊕ (t•1, t

•
2) ∈ R⊕,

and moreover, (m1
 •σ,m2
 •t2) ∈ R⊕.

Two markings m1 and m2 are branching place bisimulation equivalent,
denoted by m1 ≈p m2, if there exists a branching place bisimulation R such
that (m1,m2) ∈ R⊕. �

Note that, in the either case, by additivity of R⊕ (cf. Proposition 2(3)), from
(m1
 •t1,m2
 •σ) ∈ R⊕ and (•t1, σ•) ∈ R, we get (m1,m

′
2) ∈ R⊕, as well as,

from (t•1, σ
•) ∈ R we get (m′

1,m
′
2) ∈ R⊕. Similarly for the or case.

Proposition 5 For each P/T net N = (S,A, T), the following hold:

(i) The identity relation IS is a branching place bisimulation.
(ii) The inverse relation R−1 of a branching place bisimulation R is a branching

place bisimulation.

Proof. Case (i) is obvious. For case (ii), assume (m2,m1) ∈ (R−1)⊕ and
m2[t2〉m′

2. By Proposition 3(3), we have that (m2,m1) ∈ (R⊕)−1 and so
(m1,m2) ∈ R⊕. Since R is a branching place bisimulation, we have that

(i) either t2 is τ -sequential and ∃σ,m′
1 such that σ is τ -sequential, m1[σ〉m′

1,
and (•σ, •t2) ∈ R, (σ•, •t2) ∈ R, (σ•, t•2) ∈ R and, moreover, (m1
 •σ,m2

•t2) ∈ R⊕;

(ii) or there exist σ, t1,m,m′
1 such that σ is τ -sequential, m1[σ〉m[t1〉m′

1, l(t1) =
l(t2), σ• = •t1, (•σ, •t2) ∈ R⊕, (•t1, •t2) ∈ R⊕ (t•1, t

•
2) ∈ R⊕, and (m1

•σ,m2
 •t2) ∈ R⊕.

Summing up, if (m2,m1) ∈ (R−1)⊕ and m2[t2〉m′
2 (the case when m1 moves

first is symmetric, and so omitted), then

(i) either t2 is τ -sequential and ∃σ,m′
1 such that σ is τ -sequential, m1[σ〉m′

1, and
(•t2, •σ) ∈ R−1, (•t2, σ•) ∈ R−1, (t•2, σ

•) ∈ R−1 and (m2
 •t2,m1
 •σ) ∈
(R−1)⊕;

(ii) or there exist σ, t1,m,m′
1 such that σ is τ -sequential, m1[σ〉m[t1〉m′

1, l(t1) =
l(t2), σ• = •t1, (•t2, •σ) ∈ (R−1)⊕, (•t2, •t1) ∈ (R−1)⊕ (t•2, t

•
1) ∈ (R−1)⊕,

and, moreover, (m2
 •t2,m1
 •σ) ∈ (R−1)⊕;

so that R−1 is a branching place bisimulation, indeed. �

Branching Place Bisimilarity 89

Much more challenging is to prove that the relation composition of two
branching place bisimulations is a branching place bisimulation. We need a tech-
nical lemma first.

Lemma 1 Let N = (S,A, T) be a P/T net, and R be a place bisimulation.

1. For each τ -sequential transition sequence σ1, for all m2 such that (•σ1,m2) ∈
R⊕, a τ -sequential transition sequence σ2 exists such that m2 = •σ2 and
(σ•

1 , σ
•
2) ∈ R⊕;

2. and symmetrically, for each τ -sequential transition sequence σ2, for all m1

such that (m1,
•σ2) ∈ R⊕, a τ -sequential transition sequence σ1 exists such

that m1 = •σ1 and (σ•
1 , σ

•
2) ∈ R⊕.

Proof. By symmetry, we prove only case 1, by induction on the length of σ1.

Base case: σ1 = ε. In this trivial case, •σ1 = θ and so the only possible m2 is θ
as well. We just take σ2 = ε and all the required conditions are trivially satisfied.

Inductive case: σ1 = δ1t1, where t1 ∈ T ∪ I(S). Hence, by inductive hypothesis,
for each m2 such that (•δ1,m2) ∈ R⊕, we know that there exists a δ2 such that
m2 = •δ2 and (δ•

1 , δ
•
2) ∈ R⊕.

If t1 = i(s), then we have to consider two subcases:

• if s ∈ δ•
1 , then •δ1t1 = •δ1 and δ1t

•
1 = δ•

1 . Hence, we can take σ2 = δ2 and all
the required conditions are trivially satisfied;

• if s �∈ δ•
1 , then •δ1t1 = •δ1⊕s and δ1t

•
1 = δ•

1⊕s. Then, ∀s′ such that (s, s′) ∈ R,
we can take σ2 = δ2i(s′), so that (•δ1t1, •δ2i(s′)) ∈ R⊕, (δ1t•1, δ2i(s

′)•) ∈ R⊕,
as required.

Also if t1 ∈ T , we have consider two subcases:

• If s1 = •t1 ∈ δ•
1 , then, since (δ•

1 , δ
•
2) ∈ R⊕, there exists s2 ∈ δ•

2 such that
(s1, s2) ∈ R and (δ•

1
 s1, δ
•
2
 s2) ∈ R⊕. Then, by Definition 11, it follows

that to the move s1
τ−→ s′

1:
(i) Either there exist σ, s′

2 such that σ is τ -sequential, s2[σ〉s′
2, (s1, s′

2) ∈ R
and (s′

1, s
′
2) ∈ R.

In this case, we take σ2 = δ2σ, so that (•δ1t1, •δ2σ) ∈ R⊕ (because
•δ1t1 = •δ1 and •δ2σ = •δ2), and (δ1t•1, δ2σ

•) ∈ R⊕ (because δ1t
•
1 =

(δ•
1
 s1) ⊕ s′

1 and δ2σ
• = (δ•

2
 s2) ⊕ s′
2), as required.

(ii) Or there exist σ, t2, s, s
′
2 such that σt2 is τ -sequential, σ• = •t2,

s2[σ〉s[t2〉s′
2, (s1, s) ∈ R and (s′

1, s
′
2) ∈ R.

In this case, we take σ2 = δ2σt2, so that (•δ1t1, •δ2σt2) ∈ R⊕, and,
moreover, (δ1t•1, δ2σt•2) ∈ R⊕, as required.

• If s1 = •t1 �∈ δ•
1 , then, for each s2 such that (s1, s2) ∈ R, we follow the same

step as above (by Definition 11), and so we omit this part of the proof.

90 R. Gorrieri

Proposition 6. For each P/T net N = (S,A, T), the relational composition
R1 ◦ R2 of two branching place bisimulations R1 and R2 is a branching place
bisimulation.

Proof. Assume (m1,m3) ∈ (R1 ◦ R2)⊕ and m1[t1〉m′
1. By Proposition 3(4), we

have that (m1,m3) ∈ (R1)⊕ ◦ (R2)⊕, and so m2 exists such that (m1,m2) ∈ R⊕
1

and (m2,m3) ∈ R⊕
2 .

As (m1,m2) ∈ R⊕
1 and R1 is a branching place bisimulation, if m1[t1〉m′

1,
then

(i) either t1 is τ -sequential and ∃σ,m′
2 such that σ is τ -sequential, m2[σ〉m′

2, and
(•t1, •σ) ∈ R1, (•t1, σ•) ∈ R1, (t•1, σ

•) ∈ R1 and (m1
 •t1,m2
 •σ) ∈ R⊕
1 ;

(ii) or there exist σ, t2,m,m′
2 such that σ is τ -sequential, m2[σ〉m[t2〉m′

2, l(t1) =
l(t2), σ• = •t2, (•t1, •σ) ∈ R⊕

1 , (•t1, •t2) ∈ R⊕
1 (t•1, t

•
2) ∈ R⊕

1 , and moreover,
(m1
 •t1,m2
 •σ) ∈ R⊕

1 .

Let us consider case (i), i.e., assume that to the move m1[t1〉m′
1, m2 replies

with m2[σ〉m′
2 such that (•t1, •σ) ∈ R1, (•t1, σ•) ∈ R1, (t•1, σ

•) ∈ R1 and, more-
over, (m1
 •t1,m2
 •σ) ∈ R⊕

1 . Since (m2,m3) ∈ R⊕
2 , there exists a submarking

m ⊆ m3 such that (•σ,m) ∈ R⊕
2 and (m2
 •σ,m3
 m) ∈ R⊕

2 . By Lemma
1, there exists a τ -sequential transition sequence σ′ such that m = •σ′ and
(σ•, σ′•) ∈ R⊕

2 . Hence, m3[σ′〉m′
3, where m′

3 = (m3
 •σ′) ⊕ σ′•.
Summing up, to the move m1[t1〉m′

1, m3 can reply with m3[σ′〉m′
3, in such

a way that (•t1, •σ′) ∈ R1 ◦ R2, (•t1, σ′•) ∈ R1 ◦ R2, (t•1, σ
′•) ∈ R1 ◦ R2 and,

moreover, (m1
 •t1,m3
 •σ′) ∈ (R1 ◦ R2)⊕, (by Proposition 3(4)), as required.
Let us consider case (ii), i.e., assume that to the move m1[t1〉m′

1, m2 replies
with m2[σ〉m[t2〉m′

2, where σ is τ -sequential, l(t1) = l(t2), σ• = •t2, and
(•t1, •σ) ∈ R⊕

1 , (•t1, •t2) ∈ R⊕
1 , (t•1, t

•
2) ∈ R⊕

1 , and moreover, (m1
 •t1,m2

•σ) ∈ R⊕

1 .
Since (m2,m3) ∈ R⊕

2 , there exists a submarking m ⊆ m3 such that (•σ,m) ∈
R⊕

2 and (m2
 •σ,m3
 m) ∈ R⊕
2 . By Lemma 1, there exists a τ -sequential

transition sequence σ′ such that m = •σ′ and (σ•, σ′•) ∈ R⊕
2 . Hence, m3[σ′〉m′,

where m′ = (m3
 •σ′) ⊕ σ′• and, moreover, (m,m′) ∈ R⊕
2 .

Since (m,m′) ∈ R⊕
2 , σ• = •t2 and (σ•, σ′•) ∈ R⊕

2 , there exists m = σ′• ⊆ m′

such that (•t2,m) ∈ R⊕
2 and (m
 •t2,m′
 m) ∈ R⊕

2 . Hence, by Definition 11,
to the move •t2[t2〉t•2, m can reply as follows:

(a) Either t2 is τ -sequential and ∃σ such that σ is τ -sequential, m = •σ, m[σ〉σ•,
and (•t2, •σ) ∈ R2, (•t2, σ•) ∈ R2, (t•2, σ

•) ∈ R2 and (m
•t2,m′
•σ) ∈ R⊕
2 .

In this case, to the move m1[t1〉m′
1, m3 can reply with m3[σ′〉m′[σ〉m′

3, with
m′

3 = (m′
 •σ)⊕σ•, such that (•t1, •σ′σ) ∈ (R1 ◦R2)⊕ (because (•t1, •σ) ∈
R⊕

1 , σ′• = •σ and (•σ, •σ′) ∈ R⊕
2), (•t1, σ′σ•) ∈ (R1 ◦ R2)⊕ (because

(•t1, •t2) ∈ R1, σ′• = •σ and (•t2, σ•) ∈ R2), (t•1, σ
′σ′•) ∈ (R1 ◦ R2)⊕

(as (t•1, t
•
2) ∈ R1 and (t•2, σ

•) ∈ R2), and, moreover, (m1
 •t1,m3
 •σ′σ) ∈
(R1 ◦ R2)⊕.

(b) or ∃σ, t3,m such that σ is τ -sequential, m = •σ, m[σ〉m[t3〉t•3, l(t2) = l(t3),
m = σ• = •t3, (•t2, •σ) ∈ R⊕

2 , (•t2, •t3) ∈ R⊕
2 (t•2, t

•
3) ∈ R⊕

2 , and (m

•t2,m′
 •σ) ∈ R⊕

2 .

Branching Place Bisimilarity 91

Fig. 2. Some simple nets with silent moves

In this case, to the move m2[σ〉m[t2〉m′
2, m3 replies with m3[σ′〉m′[σ〉

m′′[t3〉m′
3, with m′

3 = (m′
 •σ) ⊕ t•3, such that σ is τ -sequential, •σ = σ′•,
and therefore (•σt2,

•σ′σt3) ∈ R⊕
2 (because •σt2 = •σ, •σ′σt3 = •σ′ and

(•σ, •σ′) ∈ R⊕
2), and (σt•2, σ′σt•3) ∈ R⊕

2 (because σt•2 = t•2, σ′σt•3 = t•3 and
(t•2, t

•
3) ∈ R⊕

2).
Summing up, to the move m1[t1〉m′

1, m3 can reply with m3[σ′〉m′[σ〉
m′′[t3〉m′

3, such that (•t1, •σ′σ) ∈ (R1 ◦R2)⊕ (as (•t1, •σ) ∈ R⊕
1 , •σ′σ = •σ′

and (•σ, •σ′) ∈ R⊕
2), (•t1, •t3) ∈ (R1 ◦ R2)⊕ (as (•t1, •t2) ∈ R⊕

1 , and
(•t2, •t3) ∈ R⊕

2), (t•1, t
•
3) ∈ (R1 ◦ R2)⊕ (because (t•1, t

•
2) ∈ R⊕

1 , and (t•2, t
•
3) ∈

R⊕
2), and (m1
 •t1,m3
 •σ′σ) ∈ (R1 ◦R2)⊕ (because (m1
 •t1,m2
 •σ) ∈

R⊕
1 and (m2
 •σ,m3
 •σ′) ∈ R⊕

2).

The case when m2 moves first is symmetric, and so omitted. Hence, R1 ◦ R2 is
a branching place bisimulation, indeed. �

Theorem 1. For each P/T net N = (S,A, T), relation ≈p ⊆ M (S) ×M (S) is
an equivalence relation.

Proof. Direct consequence of Propositions 5 and 6. �

Proposition 7 (Branching place bisimilarity is finer than branching
interleaving bisimilarity). For each P/T net N = (S,A, T), m1 ≈p m2

implies m1 ≈bri m2.

Proof. If m1 ≈p m2, then (m1,m2) ∈ R⊕ for some branching place bisimulation
R. Note that R⊕ is a branching interleaving bisimilarity, so that m1 ≈bri m2. �

Example 3. Consider the nets in Fig. 2. Of course, s1 ≈p s2, as well as s1 ≈p s4.
However, s2 �≈p s5, because s2 cannot respond to the non-τ -sequential move
s5

τ−→ θ. For the same reason, s2 �≈p s6. Note that silent transitions that are not
τ -sequential are not considered as unobservable. �

By Definition 11, branching place bisimilarity can be defined as follows:
≈p=

⋃{R⊕ ∣
∣ R is a branching place bisimulation}.

By monotonicity of the additive closure (Proposition 2(2)), if R1 ⊆ R2, then
R⊕

1 ⊆ R⊕
2 . Hence, we can restrict our attention to maximal branching place

bisimulations only:

92 R. Gorrieri

Fig. 3. Some branching place bisimilar nets

∼p=
⋃{R⊕ ∣

∣ R is a maximal branching place bisimulation}.
However, it is not true that

∼p= (
⋃{R

∣
∣ R is a maximal place bisimulation})⊕, because the union of

branching place bisimulations may be not a branching place bisimulation.

Example 4. Consider the nets in Fig. 3. It is easy to realize that s1⊕s2 ≈p s3⊕s5,
because R1 = {(s1, s3), (s2, s5), (s1, s4)} is a branching place bisimulation. In
fact, to the move t1 = s1 ⊕ s2

a−→ s1 ⊕ s2, s3 ⊕ s5 replies with s3 ⊕ s5[σ〉s4 ⊕
s5[t2〉s3 ⊕ s5, where σ = t i(s5) (with t = (s3, τ, s4) and i(s5) = (s5, τ, s5)) and
t2 = (s4 ⊕ s5, a, s3 ⊕ s5), such that (•t1, •t2) ∈ R⊕

1 and (t•1, t
•
2) ∈ R⊕

1 . Then, to
the move s3 ⊕ s5[t〉s4 ⊕ s5, s1 ⊕ s2 can reply by idling with s1 ⊕ s2[σ′〉s1 ⊕ s2,
where σ′ = i(s1), and (•σ′, •t) ∈ R⊕

1 , (σ′•, •t) ∈ R⊕
1 and (σ′•, t•) ∈ R⊕

1 .
Note that also the identity relation IS , where S = {s1, s2, s3, s4, s5} is a

branching place bisimulation. However, R = R1 ∪ IS is not a branching place
bisimulation, because, for instance, (s1 ⊕ s2, s3 ⊕ s2) ∈ R⊕, but these two mark-
ings are clearly not equivalent, as s1 ⊕ s2 can do a, while s3 ⊕ s2 cannot.

Similarly, one can prove that s1⊕s2 ≈p s6⊕s8 because R2 = {(s1, s6), (s2, s8),
(s1, s7), (s2, s9)} is a branching place bisimulation. �

5 Branching Place Bisimilarity is Decidable

In order to prove that ≈p is decidable, we first need a technical lemma which
states that it is decidable to check if a place relation R ⊆ S × S is a branching
place bisimulation.

Lemma 2. Given a P/T net N = (S,A, T) and a place relation R ⊆ S × S, it
is decidable if R is a branching place bisimulation.

Proof. We want to prove that R is a branching place bisimulation if and only if
the following two conditions are satisfied:

1. ∀t1 ∈ T , ∀m such that (•t1,m) ∈ R⊕

(a) either t1 is τ -sequential and there exists an acyclic τ -sequential σ such
that m = •σ, (•t1, σ•) ∈ R and (t•1, σ

•) ∈ R;

Branching Place Bisimilarity 93

(b) or there exist an acyclic τ -sequential σ and t2 ∈ T , with σ• = •t2, such
that m = •σ, l(t1) = l(t2), (•t1, •t2) ∈ R⊕ and (t•1, t

•
2) ∈ R⊕.

2. ∀t2 ∈ T , ∀m such that (m, •t2) ∈ R⊕

(a) either t2 is τ -sequential and there exists an acyclic τ -sequential σ such
that m = •σ, (σ•, •t2) ∈ R and (σ•, t•2) ∈ R;

(b) or there exist an acyclic τ -sequential σ and t1 ∈ T , with σ• = •t1, such
that m = •σ, l(t1) = l(t2), (•t1, •t2) ∈ R⊕ and (t•1, t

•
2) ∈ R⊕.

The implication from left to right is obvious: if R is a branching place bisim-
ulation, then for sure conditions 1 and 2 are satisfied, because, as observed in
Remark 1, if there exists a suitable τ -sequential transition sequence σ, then there
exists also a suitable acyclic τ -sequential σ′ such that •σ = •σ′ and σ• = σ′•.
For the converse implication, assume that conditions 1 and 2 are satisfied; then
we have to prove that the branching place bisimulation game for R holds for all
pairs (m1,m2) ∈ R⊕.

Let q = {(s1, s′
1), (s2, s

′
2), . . . , (sk, s′

k)} be any multiset of associations that
can be used to prove that (m1,m2) ∈ R⊕. So this means that m1 = s1⊕s2⊕ . . .⊕
sk, m2 = s′

1 ⊕ s′
2 ⊕ . . . ⊕ s′

k and that (si, s
′
i) ∈ R for i = 1, . . . , k. If m1[t1〉m′

1,
then m′

1 = m1
 •t1 ⊕ t•1. Consider the multiset of associations p = {(s1, s′
1),

. . . , (sh, s′
h)} ⊆ q, with s1 ⊕ . . . ⊕ sh = •t1. Note that (•t1, s′

1 ⊕ . . . ⊕ s′
h) ∈ R⊕.

Therefore, by condition 1,

(a) either t1 is τ -sequential and there exists an acyclic τ -sequential σ such that
m = •σ, (•t1, σ•) ∈ R and (t•1, σ

•) ∈ R;
(b) or there exist an acyclic τ -sequential σ and t2 ∈ T , with σ• = •t2, such that

m = •σ, l(t1) = l(t2), (•t1, •t2) ∈ R⊕ and (t•1, t
•
2) ∈ R⊕.

In case (a), since •σ ⊆ m2, also m2[σ〉m′
2 is firable, where m′

2 = m2
 •σ ⊕ σ•,
so that (•t1, σ•) ∈ R, (t•1, σ

•) ∈ R and, finally, (m1
 •t1,m2
 •σ) ∈ R⊕,
as required. Note that the last condition holds because, from the multiset q of
matching pairs for m1 and m2, we have removed those in p. In case (b), since
•σ ⊆ m2, also m2[σ〉m[t2〉m′

2 is firable, where m′
2 = m2
 •σ ⊕ t•2, so that

l(t1) = l(t2), (•t1, •t2) ∈ R⊕, (t•1, t
•
2) ∈ R⊕ and, finally, (m1
•t1,m2
•σ) ∈ R⊕,

as required.
If m2[t2〉m′

2, then we have to use an argument symmetric to the above, where
condition 2 is used instead. Hence, we have proved that conditions 1 and 2 are
enough to prove that R is a branching place bisimulation.

Finally, observe that the set T is finite and, for each t1 ∈ T , the number
of markings m such that (•t1,m) ∈ R⊕ and (m, •t1) ∈ R⊕ is finite as well.
More precisely, this part of the procedure takes O(q · (n+p−1)!

(n−1)!·p! · (p2
√

p)) time
where q = |T |, n = |S| and p is the least number such that |•t| ≤ p for all
t ∈ T , because the distribution of p tokens over n places is given by the binomial
coefficient

(
n+p−1

p

)

= (n+p−1)!
(n−1)!·p! and checking if such a marking of size p is related

to •t1 takes O(p2
√

p) time.

94 R. Gorrieri

Moreover, for each pair (t1,m) satisfying the condition (•t1,m) ∈ R⊕, we
have to check conditions (a) and (b), each checkable in a finite amount of time. In
fact, for case (a), we have to check if there exists a place s such that (•t1, s) ∈ R
and (t•1, s) ∈ R, which is reachable from m by means of an acyclic τ -1-sequential
transition sequence σ; this condition is decidable because we have at most n
places to examine and for each candidate place s, we can check whether a suitable
acyclic τ -1-sequential σ exists. Similarly, in case (b) we have to consider all the
transitions t2 such that (•t1, •t2) ∈ R⊕ and (t•1, t

•
2) ∈ R⊕ and check if at least

one of these is reachable from m by means of an acyclic τ -sequential transition
sequence σ such that •σ = m and σ• = •t2 and the existence of such a σ is
decidable. Therefore, in a finite amount of time we can decide if a given place
relation R is actually a branching place bisimulation. �

Theorem 2 (Branching place bisimilarity is decidable). Given a P/T
net N = (S,A, T), for each pair of markings m1 and m2, it is decidable whether
m1 ≈p m2.

Proof. If |m1| �= |m2|, then m1 �≈p m2 by Proposition 1. Otherwise, let |m1| =
k = |m2|. As |S| = n, the set of all the place relations over S is of size 2n. Let
us list such relations as: R1, R2, . . . , R2n . Hence, for i = 1, . . . , 2n, by Lemma 2
we can decide whether Ri is a branching place bisimulation and, in such a case,
we can check whether (m1,m2) ∈ R⊕

i in O(k2
√

k) time. As soon as we found
a branching place bisimulation Ri such that (m1,m2) ∈ R⊕

i , we stop concluding
that m1 ≈p m2. If none of the Ri is a branching place bisimulation such that
(m1,m2) ∈ R⊕

i , then we can conclude that m1 �≈p m2. �

6 Conclusion and Future Research

Place bisimilarity [1] is the only decidable [13] behavioral equivalence for P/T
nets which respects the expected causal behavior, as it is slightly finer than
structure preserving bisimilarity [7], in turn slightly finer than fully-concurrent
bisimilarity [3]. Thus, it is the only equivalence for which it is possible (at least,
in principle) to verify algorithmically the (causality-preserving) correctness of
an implementation by exhibiting a place bisimulation between its specification
and implementation.

It is sometimes argued that place bisimilarity is too discriminating. In partic-
ular, [1] and [7] argue that a sensible equivalence should not distinguish markings
whose behaviors are patently the same, such as marked Petri nets that differ only
in their unreachable parts. As an example, consider the net in Fig. 4, discussed
in [1]. Clearly, markings s1 and s4 are equivalent, also according to all the behav-
ioral equivalences discussed in [7], except for place bisimilarity. As a matter of
fact, a place bisimulation R containing the pair (s1, s4) would require also the
pairs (s2, s5) and (s3, s6), but then this place relation R cannot be a place bisim-
ulation because (s2,⊕s3, s5 ⊕ s6) ∈ R⊕, but s2 ⊕ s3 can perform c, while this
is not possible for s5 ⊕ s6. Nonetheless, we would like to argue in favor of place
bisimilarity, despite this apparent paradoxical example.

Branching Place Bisimilarity 95

Fig. 4. Two non-place bisimilar nets

As a matter of fact, our interpretation of place bisimilarity is that this equiva-
lence is an attempt of giving semantics to unmarked nets, rather than to marked
nets, so that the focus shifts from the common (but usually undecidable) ques-
tion When are two markings equivalent? to the more restrictive (but decidable)
question When are two places equivalent? A possible (preliminary, but not accu-
rate enough) answer to the latter question may be: two places are equivalent if,
whenever the same number of tokens are put on these two places, the behavior
of the marked nets is the same. If we reinterpret the example of Fig. 4 in this
perspective, we clearly see that place s1 and place s4 cannot be considered as
equivalent because, even if the markings s1 and s4 are equivalent, nonetheless
the marking 2 · s1 is not equivalent to the marking 2 · s4, as only the former can
perform the trace abc.

A place bisimulation R considers two places s1 and s2 as equivalent if
(s1, s2) ∈ R, as, by definition of place bisimulation, they must behave the same
in any R-related context. Back to our example in Fig. 4, if (s1, s4) would belong
to R, then also (2 · s1, 2 · s4) should belong to R⊕, but then we discover that
the place bisimulation game does not hold for this pair of markings, so that R
cannot be a place bisimulation.

Moreover, if we consider the duality between the process algebra FNM (a
dialect of CCS, extended with multi-party interaction) and P/T nets, proposed
in [9], we may find further arguments supporting this more restrictive interpre-
tation of net behavior. In fact, an unmarked P/T net N can be described by
an FNM system of equations, where each equation defines a constant Ci (whose
body is a sequential process term ti), representing place si. Going back to the
nets in Fig. 4, according to this duality, the constant C1 for place s1 is not equiv-
alent (in any reasonable sense) to the constant C4 for place s4 because these two
constants describe all the potential behaviors of these two places, which are
clearly different! Then, the marked net N(m0) is described by a parallel term
composed of as many instances of Ci as the tokens that are present in si for m0,
encapsulated by a suitably defined restriction operator (νL)−. Continuing the
example, it turns out that (νL)C1 is equivalent to (νL)C4 because the mark-
ings s1 and s4 are equivalent, but (νL)(C1|C1) is not equivalent to (νL)(C4|C4)
because the markings 2 · s1 is not equivalent to the marking 2 · s4, as discussed
above.

96 R. Gorrieri

Furthermore, on the subclass of BPP nets (i.e., nets whose transitions have
singleton pre-set), place bisimilarity specializes to team bisimilarity [10], which
is unquestionably the most appropriate behavioral equivalence for BPP nets,
as it coincides with structure-preserving bisimilarity [7], hence matching all the
relevant criteria expressed in [7] for a sensible behavioral equivalence.

Finally, there are at least the following three important technical differences
between place bisimilarity and other coarser, causality-respecting equivalences,
such as fully-concurrent bisimilarity [3].

1. A fully-concurrent bisimulation is a complex relation – composed of cum-
bersome triples of the form (process, bijection, process) – that must contain
infinitely many triples if the net system offers never-ending behavior. (Indeed,
not even one single case study of a system with never-ending behavior has
been developed for this equivalence.) On the contrary, a place bisimulation is
always a very simple finite relation over the finite set of places. (And a simple
case study is described in [13].)

2. A fully-concurrent bisimulation proving that m1 and m2 are equivalent is a
relation specifically designed for the initial markings m1 and m2. If we want
to prove that, e.g., n ·m1 and n ·m2 are fully-concurrent bisimilar (which may
not hold!), we have to construct a new fully-concurrent bisimulation to this
aim. Instead, a place bisimulation R relates those places which are considered
equivalent under all the possible R-related contexts. Hence, if R justifies that
m1 ∼p m2 as (m1,m2) ∈ R⊕, then for sure the same R justifies that n · m1

and n · m2 are place bisimilar, as also (n · m1, n · m2) ∈ R⊕.
3. Finally, while place bisimilarity is decidable [13], fully-concurrent bisimilarity

is undecidable on finite P/T nets [5].

The newly defined branching place bisimilarity is the only extension of the
place bisimilarity idea to P/T nets with silent moves that has been proved decid-
able, even if the time complexity of the decision procedure we have proposed is
exponential in the size of the net.

Of course, this behavioral relation may be subject to the same criticisms
raised to place bisimilarity and also its restrictive assumption that only τ -
sequential transitions can be abstracted away can be criticized, as its appli-
cability to real case studies may appear rather limited. In the following, we try
to defend our point of view.

First, on the subclass of BPP nets, branching place bisimilarity coincides with
branching team bisimilarity [12], a very satisfactory equivalence which is actu-
ally coinductive and, for this reason, also very efficiently decidable in polynomial
time. Moreover, on the subclass of finite-state machines (i.e., nets whose transi-
tions have singleton pre-set and singleton, or empty, post-set), branching team
bisimilarity has been axiomatized [11] on the process algebra CFM [9], which
can represent all (and only) the finite-state machines, up to net isomorphism.

Second, we conjecture that branching place bisimilarity does respect the
causal behavior of P/T nets. In particular, we conjecture that branching fully-

Branching Place Bisimilarity 97

concurrent bisimilarity [12,22] (which is undecidable) is strictly coarser than ≈p,
because it may equate nets whose silent transitions are not τ -sequential (and also
may relate markings of different size). For instance, consider the net in Fig. 5.
Of course, the markings s1⊕s3 and s5⊕s6 are branching fully-concurrent bisim-
ilar: to the move s1 ⊕ s3[t1〉s2 ⊕ s3, where t1 = (s1, τ, s2), s5 ⊕ s6 can reply with
s5 ⊕ s6[t2〉s7 ⊕ s8, where t2 = (s5 ⊕ s6, τ, s7 ⊕ s8) and the reached markings are
clearly equivalent. However, s1 ⊕ s3 �≈p s5 ⊕ s6 because s1 ⊕ s3 cannot reply to
the move s5 ⊕ s6[t2〉s7 ⊕ s8, as t2 is not τ -sequential (i.e., it can be seen as the
result of a synchronization), while t1 is τ -sequential.

Fig. 5. Two branching fully-concurrent P/T nets

We already argued in the introduction that it is very much questionable
whether a synchronization can be considered as unobservable, even if this idea
is rooted in the theory of concurrency from the very beginning. As a matter of
fact, in CCS [17] and in the π-calculus [18,24], the result of a synchronization is
a silent, τ -labeled (hence unobservable) transition. However, the silent label τ is
used in these process algebras for two different purposes:

• First, to ensure that a synchronization is strictly binary: since the label τ
cannot be used for synchronization, by labeling a synchronization transition
by τ any further synchronization of the two partners with other parallel com-
ponents is prevented (i.e., multi-party synchronization is disabled).

• Second, to describe that the visible effect of the transition is null: a τ -labeled
transition can be considered unobservable and can be abstracted away, to
some extent.

Nonetheless, it is possible to modify slightly these process algebras by intro-
ducing two different actions for these different purposes. In fact, the result of a
binary synchronization can be some observable label, say λ (or even λ(a), if the
name of the channel a is considered as visible), for which no co-label exists, so
that further synchronization is impossible. While the action τ , that can be used

98 R. Gorrieri

as a prefix, is used to denote some local, internal (hence unobservable) computa-
tion. In this way, a net semantics for these process algebras (in the style of, e.g.,
[9]) would generate τ -sequential P/T nets, that are amenable to be compared
by means of branching place bisimilarity.

As a final comment, we want to discuss an apparently insurmountable limi-
tation of our approach. In fact, the extension of the place bisimulation idea to
nets with silent transitions that are not τ -sequential seems very hard, or even
impossible. Consider again the two P/T nets in Fig. 5. If we want that s1 ⊕ s3
be related to s5 ⊕ s6, we need to include the pairs (s1, s5) and (s3, s6). If the
marking s5 ⊕ s6 silently reaches s7 ⊕ s8, then s1 ⊕ s3 can respond by idling (and
in such a case we have to include the pairs (s1, s7) and (s3, s8)) or by perform-
ing the transition s1

τ−→ s2 (and in such a case we have to include the pairs
(s2, s7) and (s3, s8)). In any case, the candidate place relation R should be of
the form {(s1, s5), (s3, s6), (s3, s8), . . .}. However, this place relation cannot be a
place bisimulation of any sort because, on the one hand, (s1 ⊕ s3, s5 ⊕ s8) ∈ R⊕

but, on the other hand, s1 ⊕ s3 can eventually perform a, while s5 ⊕ s8 is stuck.
Nonetheless, this negative observation is coherent with our intuitive interpre-

tation of (branching) place bisimilarity as a way to give semantics to unmarked
nets. In the light of the duality between P/T nets and the FNM process algebra
discussed above [9], a place is interpreted as a sequential process type (and each
token in this place as an instance of a sequential process of that type, subject
to some restriction); hence, a (branching) place bisimulation essentially states
which kinds of sequential processes (composing the distributed system repre-
sented by the Petri net) are to be considered equivalent. In our example above,
it makes no sense to consider place s1 and place s5 as equivalent, because the
corresponding FNM constants C1 and C5 have completely different behavior: C5

can interact (with C6), while C1 can only perform some internal, local transition.
Future work will be devoted to find more efficient algorithms for checking

branching place bisimilarity. One idea could be to build directly the set of maxi-
mal branching place bisimulations, rather than to scan all the place relations to
check whether they are branching place bisimulations, as we did in the proof of
Theorem 2.

Acknowledgements. The anonymous referees are thanked for their useful comments
and suggestions.

References

1. Autant, C., Belmesk, Z., Schnoebelen, P.: Strong bisimilarity on nets revisited. In:
Aarts, E.H.L., van Leeuwen, J., Rem, M. (eds.) PARLE 1991. LNCS, vol. 506, pp.
295–312. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54152-7 71

2. Basten, T.: Branching bisimilarity is an equivalence indeed!. Inf. Process. Lett.
58(3), 141–147 (1996)

3. Best, E., Devillers, R., Kiehn, A., Pomello, L.: Concurrent bisimulations in Petri
nets. Acta Inf. 28(3), 231–264 (1991)

https://doi.org/10.1007/3-540-54152-7_71

Branching Place Bisimilarity 99

4. Desel, J., Reisig, W.: Place/transition petri nets. In: Reisig, W., Rozenberg, G.
(eds.) ACPN 1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 15

5. Esparza, J.: Decidability and complexity of Petri net problems — an introduction.
In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6 20

6. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (1996)

7. Glabbeek, R.J.: Structure preserving bisimilarity, supporting an operational petri
net semantics of CCSP. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct
System Design. LNCS, vol. 9360, pp. 99–130. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-23506-6 9

8. Gorrieri, R., Versari, C.: Introduction to Concurrency Theory. TTCSAES.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21491-7

9. Gorrieri, R.: Process Algebras for Petri Nets: The Alphabetization of Distributed
Systems. EATCS Monographs in Computer Science, Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-55559-1

10. Gorrieri, R.: Team bisimilarity, and its associated modal logic, for BPP nets. Acta
Informatica 1–41 (2020). https://doi.org/10.1007/s00236-020-00377-4

11. Gorrieri, R.: Team equivalences for finite-state machines with silent moves. Inf.
Comput. 275 (2020). https://doi.org/10.1016/j.ic.2020.104603

12. Gorrieri, R.: Causal semantics for BPP nets with silent moves. Fundam. Inform.
(2020, to appear)

13. Gorrieri, R.: Place bisimilarity is decidable, indeed!, arXiv:2104.01392, April 2021
14. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite

graphs. SIAM J. Comput. 2(4), 225–231 (1973)
15. Janc̆ar, P.: Undecidability of bisimilarity for Petri nets and some related problems.

Theoret. Comput. Sci. 148(2), 281–301 (1995)
16. Keller, R.: Formal verification of parallel programs. Commun. ACM 19(7), 561–572

(1976)
17. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
18. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Inf. Comput.

100(1), 1–77 (1992)
19. Olderog, E.R.: Nets, Terms and Formulas, Cambridge Tracts in Theoretical Com-

puter Science 23. Cambridge University Press (1991)
20. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)

GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

21. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall (1981)
22. Pinchinat, S.: Des bisimulations pour la sémantique des systèmes réactifs, Génie

logiciel [cs.SE]. Ph.D. thesis, Institut National Polytechnique de Grenoble - INPG
(1993)

23. Reisig, W.: Petri Nets: An Introduction, EATCS Monographs in Theoretical Com-
puter Science, Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-
69968-9

24. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press (2001)

https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/978-3-319-23506-6_9
https://doi.org/10.1007/978-3-319-23506-6_9
https://doi.org/10.1007/978-3-319-21491-7
https://doi.org/10.1007/978-3-319-55559-1
https://doi.org/10.1007/s00236-020-00377-4
https://doi.org/10.1016/j.ic.2020.104603
http://arxiv.org/abs/2104.01392
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9

Prioritise the Best Variation

Wen Kokke1(B) and Ornela Dardha2

1 University of Edinburgh, Edinburgh, UK
wen.kokke@ed.ac.uk

2 University of Glasgow, Glasgow, UK
ornela.dardha@glasgow.ac.uk

Abstract. Binary session types guarantee communication safety and
session fidelity, but alone they cannot rule out deadlocks arising from
the interleaving of different sessions. In Classical Processes (CP) [53]—a
process calculus based on classical linear logic—deadlock freedom is guar-
anteed by combining channel creation and parallel composition under the
same logical cut rule. Similarly, in Good Variation (GV) [39,54]—a lin-
ear concurrent λ-calculus—deadlock freedom is guaranteed by combining
channel creation and thread spawning under the same operation, called
fork. In both CP and GV, deadlock freedom is achieved at the expense
of expressivity, as the only processes allowed are tree-structured. Dardha
and Gay [19] define Priority CP (PCP), which allows cyclic-structured
processes and restores deadlock freedom by using priorities, in line with
Kobayashi and Padovani [34,44]. Following PCP, we present Priority GV
(PGV), a variant of GV which decouples channel creation from thread
spawning. Consequently, we type cyclic-structured processes and restore
deadlock freedom by using priorities. We show that our type system is
sound by proving subject reduction and progress. We define an encoding
from PCP to PGV and prove that the encoding preserves typing and is
sound and complete with respect to the operational semantics.

Keywords: Session types · π-calculus · Functional programming ·
Deadlock freedom · GV · CP

1 Introduction

Session types [29,30,47] are types for protocols. Regular types ensure functions
are used according to their specification. Session types ensure communication
channels are used according to their protocols. Session types have been studied in
many settings. For instance, in the π-calculus [29,30,47], a foundational calculus
for communication and concurrency, and in concurrent λ-calculi [26], including
the focus of our paper: Good Variation [39,54, GV].

Supported by the EU HORIZON 2020 MSCA RISE project 778233 “Behavioural Appli-
cation Program Interfaces” (BehAPI).

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 100–119, 2021.
https://doi.org/10.1007/978-3-030-78089-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-78089-0_6

Prioritise the Best Variation 101

GV is a concurrent λ-calculus with binary session types, where each channel
is shared between exactly two processes. Binary session types guarantee two
crucial properties communication safety—e.g., if the protocol says to transmit
an integer, you transmit an integer—and session fidelity—e.g., if the protocol
says send, you send. A third crucial property is deadlock freedom, which ensures
that processes do not have cyclic dependencies—e.g., when two processes wait
for each other to send a value. Binary session types alone are insufficient to rule
out deadlocks arising from interleaved sessions, but several additional techniques
have been developed to guarantee deadlock freedom in session-typed π-calculus
and concurrent λ-calculus.

In the π-calculus literature, there have been several attempts at develop-
ing Curry-Howard correspondences between session-typed π-calculus and linear
logic [27]: Caires and Pfenning’s πDILL [9] corresponds to dual intuitionistic
linear logic [4], and Wadler’s Classical Processes [53, CP] corresponds to classi-
cal linear logic [27, CLL]. Both calculi guarantee deadlock freedom, which they
achieve by restricting structure of processes and shared channels to trees, by
combing name restriction and parallel composition into a single construct, cor-
responding to the logical cut. This ensures that two processes can only com-
municate via exactly one series of channels, which rules out interleavings of ses-
sions, and guarantees deadlock freedom. There are many downsides to combining
name restriction and parallel composition, such as lack of modularity, difficulty
typing structural congruence and formulating label-transition semantics, which
have led to various approaches to decoupling these constructs. Hypersequent
CP [37,38,41] and Linear Compositional Choreographies [14] decouple them,
but maintain the correspondence to CLL and allow only tree-structured pro-
cesses. Priority CP [20, PCP] weakens the correspondence to CLL in exchange
for a more expressive language which allows cyclic-structured processes. PCP
decouples CP’s cut rule into two separate constructs: one for parallel compo-
sition via a mix rule, and one for name restriction via a cycle rule. To restore
deadlock freedom, PCP uses priorities [34,44]. Priorities encode the order of
actions and rule out bad cyclic interleavings. Dardha and Gay [20] prove cycle-
elimination for PCP, adapting the cut-elimination proof for classical linear logic,
and deadlock freedom follows as a corollary.

CP and GV are related via a pair of translations which satisfy simulation [40],
and which can be tweaked to satisfy reflection. The two calculi share the same
strong guarantees. GV achieves deadlock freedom via a similar syntactic restric-
tion: it combines channel creation and thread spawning into a single operation,
called “fork”, which is related to the cut construct in CP. Unfortunately, as with
CP, this syntactic restriction has its downsides.

Our aim is to develop a more expressive version of GV while maintaining
deadlock freedom. While process calculi have their advantages, e.g., their suc-
cinctness, we chose to work with GV for several reasons. In general, concurrent λ-
calculi support higher-order functions, and have a capability for abstraction not
usually present in process calculi. Within a concurrent λ-calculus, one can derive
extensions of the communication capabilities of the language via well-understood

102 W. Kokke and O. Dardha

extensions of the functional fragment, e.g., we can derive internal/external choice
from sum types. Concurrent λ-calculi maintain a clear separation between the
program which the user writes and the configurations which represent the state
of the system as it evaluates the program. However, our main motivation is that
results obtained for λ-calculi transfer more easily to real-world functional pro-
gramming languages. Case in point: we easily adapted the type system of PGV
to Linear Haskell [6], which gives us a library for deadlock-free session-typed
programming [36]. The benefit of working specifically with GV, as opposed to
other concurrent λ-calculi, is its relation to CP [53], and its formal properties,
including deadlock freedom. We thus pose our research question for GV:

RQ: Can we design a more expressive GV which guarantees deadlock
freedom for cyclic-structured processes?

We follow the line of work from CP to Priority CP, and present Priority GV
(PGV), a variant of GV which decouples channel creation from thread spawn-
ing, thus allowing cyclic-structured processes, but which nonetheless guarantees
deadlock freedom via priorities. This closes the circle of the connection between
CP and GV [53], and their priority-based versions, PCP [20] and PGV. We make
the following main contributions:

(Sect. 2) Priority GV. We present Priority GV (Sect. 2, PGV), a session-
typed functional language with priorities, and prove subject reduction (The-
orem 1) and progress (Theorem 2). We addresses several problems in the
original GV language, most notably: (a) PGV does not require the pseudo-
type S�; and (b) its structural congruence is type preserving. PGV answers
our research question positively as it allows cyclic-structured binary session-
typed processes that are deadlock free.
(Sect. 3) Translation from PCP to PGV. We present a sound and com-
plete encoding of Priority CP [20] in PGV (Sect. 3). We prove the encoding
preserves typing (Theorem 4) and satisfies operational correspondence (The-
orems 5 and 6). To obtain a tight correspondence, we update PCP, moving
away from commuting conversions and reduction as cut elimination towards
reduction based on structural congruence, as it is standard in process calculi.

2 Priority GV

We present Priority GV (PGV), a session-typed functional language based on
GV [39,54] which uses priorities à la Kobayashi and Padovani [34,45] to enforce
deadlock freedom. Priority GV offers a more fine-grained analysis of communi-
cation structures, and by separating channel creation form thread spawning it
allows cyclic structures. We illustrate this with two programs in PGV, exam-
ples 1 and 2. Each program contains two processes—the main process, and the
child process created by spawn—which communicate using two channels. The
child process receives a unit over the channel x/x′, and then sends a unit over the
channel y/y′. The main process does one of two things: (a) in example 1, it sends

Prioritise the Best Variation 103

a unit over the channel x/x′, and then waits to receive a unit over the channel
y/y′; (b) in Example 2, it does these in the opposite order, which results in a
deadlock. PGV is more expressive than GV: Example 1 is typeable and guaran-
teed deadlock-free in PGV, but is not typeable in GV [53] and not guaranteed
deadlock-free in GV’s predecessor [26]. We believe PGV is a non-conservative
extension of GV, as CP can be embedded in a Kobayashi-style system [22].

Example 1 (Cyclic Structure).

let (x, x′) = new in
let (y, y′) = new in

spawn

⎛
⎝

let ((), x′) = recv x′ in
let y = send ((), y) in
wait x′; close y

⎞
⎠ ;

let x = send ((), x) in
let ((), y′) = recv y′ in
close x;wait y′

Example 2 (Deadlock).

let (x, x′) = new in
let (y, y′) = new in

spawn

⎛
⎝

let ((), x′) = recv x′ in
let y = send ((), y) in
wait x′ close y

⎞
⎠ ;

let ((), y′) = recv y′ in
let x = send ((), x) in
close x wait y′

Session Types. Session types (S) are defined by the following grammar:

S ::= !oT.S | ?oT.S | endo
! | endo

?

Session types !oT.S and ?oT.S describe the endpoints of a channel over which
we send or receive a value of type T , and then proceed as S. Types endo

! and
endo

? describe endpoints of a channel whose communication has finished, and
over which we must synchronise before closing the channel. Each connective in
a session type is annotated with a priority o ∈ N.

Types. Types (T , U) are defined by the following grammar:

T ,U ::= T × U | 1 | T + U | 0 | T �p,q U | S

Types T × U , 1, T + U , and 0 are the standard linear λ-calculus product type,
unit type, sum type, and empty type. Type T �p,q U is the standard linear
function type, annotated with priority bounds p, q ∈ N ∪ {⊥,�}. Every session
type is also a type. Given a function with type T �p,q U , p is a lower bound on
the priorities of the endpoints captured by the body of the function, and q is an
upper bound on the priority of the communications that take place as a result
of applying the function. The type of pure functions T � U , i.e., those which
perform no communications, is syntactic sugar for T ��,⊥U .

Environments. Typing environments Γ , Δ associate types to names. Environ-
ments are linear, so two environments can only be combined as Γ ,Δ if their
names are distinct, i.e., fv(Γ) ∩ fv(Δ) = ∅.

Γ ,Δ ::= ∅ | Γ , x : T

104 W. Kokke and O. Dardha

Duality. Duality plays a crucial role in session types. The two endpoints of
a channel are assigned dual types, ensuring that, for instance, whenever one
program sends a value on a channel, the program on the other end is waiting
to receive. Each session type S has a dual, written S. Duality is an involutive
function which preserves priorities:

!oT.S = ?oT.S ?oT.S = !oT.S endo
! = endo

? endo
? = endo

!

Priorities. Function pr(·) returns the smallest priority of a session type. The
type system guarantees that the top-most connective always holds the smallest
priority, so we simply return the priority of the top-most connective:

pr(!oT.S) = o pr(?oT.S) = o pr(endo
!) = o pr(endo

?) = o

We extend the function pr(·) to types and typing contexts by returning the
smallest priority in the type or context, or � if there is no priority. We use �
and � to denote the minimum and maximum:

minpr(T × U) = minpr(T) � minpr(U)
minpr(T + U) = minpr(T) � minpr(U)
minpr(T �p,q U) = p
minpr(Γ , x : A) = minpr(Γ) � minpr(A)

minpr(1) = �
minpr(0) = �
minpr(S) = pr(S)
minpr(∅) = �

Terms. Terms (L, M , N) are defined by the following grammar:

L,M,N ::= x | K | λx.M | M N
| () | M ;N | (M,N) | let (x, y) = M in N
| inl M | inr M | case L {inl x 	→ M ; inr y 	→ N} | absurd M

K ::= link | new | spawn | send | recv | close | wait

Let x, y, z, and w range over variable names. Occasionally, we use a, b, c, and
d. The term language is the standard linear λ-calculus with products, sums, and
their units, extended with constants K for the communication primitives.

Constants are best understood in conjunction with their typing and reduc-
tion rules in Figs. 1 and 2. Briefly, link links two endpoints together, forward-
ing messages from one to the other, new creates a new channel and returns
a pair of its endpoints, and spawn spawns off its argument as a new thread.
The send and recv functions send and receive values on a channel. However,
since the typing rules for PGV ensure the linear usage of endpoints, they also
return a new copy of the endpoint to continue the session. The close and
wait functions close a channel. We use syntactic sugar to make terms more
readable: we write let x = M in N in place of (λx.N) M , λ().M in place of
λz.z;M , and λ(x, y).M in place of λz.let (x, y) = z in M . We recover fork as
λx.let (y, z) = new () in spawn (λ().x y); z.

Prioritise the Best Variation 105

Internal and External Choice. Typically, session-typed languages feature
constructs for internal and external choice. In GV, these can be defined in terms
of the core language, by sending or receiving a value of a sum type [39]. We use
the following syntactic sugar for internal (S ⊕o S′) and external (S &o S′) choice
and their units:

S ⊕o S′ � !o(S + S′).endo+1
!

S &o S′ � ?o(S + S′).endo+1
?

⊕o{} � !o0.endo+1
!

&o{} � ?o0.endo+1
?

As the syntax for units suggests, these are the binary and nullary forms of the
more common n-ary choice constructs ⊕o{li : Si}i∈I and &o{li : Si}i∈I , which
one may obtain generalising the sum types to variant types. For simplicity, we
present only the binary and nullary forms.

Similarly, we use syntactic sugar for the term forms of choice, which combine
sending and receiving with the introduction and elimination forms for the sum
and empty types. There are two constructs for binary internal choice, expressed
using the meta-variable � which ranges over {inl, inr}. As there is no introduc-
tion for the empty type, there is no construct for nullary internal choice:

select � � λx.let (y, z) = new in close (send (� y, x)); z
offer L {inl x 	→ M ; inr y 	→ N} �

let (z, w) = recv L in wait w; case z {inl x 	→ M ; inr y 	→ N}
offer L {} � let (z, w) = recv L in wait w;absurd z

Operational Semantics. Priority GV terms are evaluated as part of a config-
uration of processes. Configurations are defined by the following grammar:

φ ::= • | ◦ C,D, E ::= φ M | C ‖ D | (νxx′)C

Configurations (C, D, E) consist of threads φ M , parallel compositions C ‖ D,
and name restrictions (νxx′)C. To preserve the functional nature of PGV, where
programs return a single value, we use flags (φ) to differentiate between the main
thread, marked •, and child threads created by spawn, marked ◦. Only the main
thread returns a value. We determine the flag of a configuration by combining
the flags of all threads in that configuration:

• + ◦ = • ◦ + • = • ◦ + ◦ = ◦ (• + • is undefined)

The use of ◦ for child threads [39] overlaps with the use of the meta-variable
o for priorities [20]. Both are used to annotate sequents: flags appear on the
sequent in configuration typing, and priorities in term typing. To distinguish the
two symbols, they are typeset in a different font and a different colour.

106 W. Kokke and O. Dardha

Fig. 1. Operational semantics for PGV.

Values (V , W), evaluation contexts (E), thread evaluation contexts (F), and
configuration contexts (G) are defined by the following grammars:

V ,W ::= x | K | λx.M | () | (V,W) | inl V | inr V
E ::= � | E M | V E

| E;N | (E,M) | (V,E) | let (x, y) = E in M
| inl E | inr E | case E {inl x 	→ M ; inr y 	→ N} | absurd E

F ::= φ E
G ::= � | G ‖ C | (νxy)G
We factor the reduction relation of PGV into a deterministic reduction on

terms (−→M) and a non-deterministic reduction on configurations (−→C), see

Prioritise the Best Variation 107

Fig. 1. We write −→+
M and −→+

C for the transitive closures, and −→�
M and −→�

C
for the reflexive-transitive closures.

Term reduction is the standard call-by-value, left-to-right evaluation for GV,
and only deviates from reduction for the linear λ-calculus in that it reduces
terms to values or ready terms waiting to perform a communication action.

Configuration reduction resembles evaluation for a process calculus: E-Link,
E-Send, and E-Close perform communications, E-LiftC allows reduction
under configuration contexts, and E-LiftSC embeds a structural congruence ≡.
The remaining rules mediate between the process calculus and the functional lan-
guage: E-New and E-Spawn evaluate the new and spawn constructs, creating
the equivalent configuration constructs, and E-LiftM embeds term reduction.

Structural congruence satisfies the following axioms: SC-LinkSwap allows
swapping channels in the link process. SC-ResLink allows restriction to applied
to link which is structurally equivalent to the terminated process, thus allowing
elimination of unnecessary restrictions. SC-ResSwap allows swapping chan-
nels and SC-ResComm states that restriction is commutative. SC-ResExt
is the standard scope extrusion rule. Rules SC-ParNil, SC-ParComm and
SC-ParAssoc state that parallel composition uses the terminated process as
the neutral element; it is commutative and associative.

While our configuration reduction is based on the standard evaluation for
GV, the increased expressiveness of PGV allows us to simplify the relation on
two counts. (a) We decompose the fork construct. In GV, fork creates a new
channel, spawns a child thread, and, when the child thread finishes, it closes
the channel to its parent. In PGV, these are three separate operations: new,
spawn, and close. We no longer require that every child thread finishes by
returning a terminated channel. Consequently, we also simplify the evaluation of
the link construct. Intuitively, evaluating link causes a substitution: if we have
a channel bound as (νxy), then link (w, x) replaces all occurrences of y by w.
However, in GV, link is required to return a terminated channel, which means
that the semantics for link must create a fresh channel of type end!/end?. The
endpoint of type end! is returned by the link construct, and a wait on the other
endpoint guards the actual substitution. In PGV, evaluating link simply causes
a substitution. (b) Our structural congruence is type preserving. Consequently,
we can embed it directly into the reduction relation. In GV, this is not the case,
and subject reduction relies on proving that if ≡−→C ends up in an ill-typed
configuration, we can rewrite it to a well-typed configuration using ≡.

Typing. Figure 2 gives the typing rules for PGV. Typing rules for terms are
at the top of Fig. 2. Terms are typed by a judgement Γ �p M : T stating that
“a term M has type T and an upper bound on its priority p under the typing
environment Γ”. Typing for the linear λ-calculus is standard. Linearity is ensured
by splitting environments on branching rules, requiring that the environment
in the variable rule consists of just the variable, and the environment in the
constant and unit rules are empty. Constants K are typed using type schemas,
and embedded using T-Const (mid of Fig. 2). The typing rules treat all variables

108 W. Kokke and O. Dardha

Fig. 2. Typing rules for PGV.

Prioritise the Best Variation 109

as linear resources, even those of non-linear types such as 1. However, the rules
can easily be extended to allow values with unrestricted usage [53].

The only non-standard feature of the typing rules is the priority annotations.
Priorities are based on obligations/capabilities used by Kobayashi [34], and sim-
plified to single priorities following Padovani [44]. The integration of priorities
into GV is adapted from Padovani and Novara [45]. Paraphrasing Dardha and
Gay [20], priorities obey the following two laws: (i) an action with lower priority
happens before an action with higher priority; and (ii) communication requires
equal priorities for dual actions.

In PGV, we keep track of a lower and upper bound on the priorities of a
term, i.e., while evaluating the term, when does it start communicating, and
when does it finish. The upper bound is written on the sequent, whereas the
lower bound is approximated from the typing environment. Typing rules for
sequential constructs enforce sequentially, e.g., the typing for M ;N has a side
condition which requires that the upper bound of M is smaller than the lower
bound of N , i.e., M finishes before N starts. The typing rule for new ensures
that both endpoints of a channel share the same priorities. Together, these two
constraints guarantee deadlock freedom.

To illustrate this, let’s go back to the deadlocked program in Example 2.
Crucially, it composes the terms below in parallel. While each of these terms
itself is well-typed, they impose opposite conditions on the priorities, so their
composition is ill-typed. (We omit the priorities on end! and end?.)

y′ : ?o
′
1.end? �o′

recv y′ : 1 × end?

x : !o1.end!, y
′ : end? �p let x = send ((), x) in . . . : 1 o′ < o

x : !o1.end!, y
′ : ?o

′
1.end? �p let ((), y′) = recv y′ in let x = send ((), x) in . . . : 1

x′ : ?o1.end? �o recv x′ : 1 × end?

y : !o
′
1.end!, x

′ : end? �q let y = send ((), y) in . . . : 1 o < o′

y : !o
′
1.end!, x

′ : ?o1.end? �q let ((), x′) = recv x′ in let y = send ((), y) in . . . : 1

Closures suspend communication, so T-Lam stores the priority bounds of the
function body on the function type, and T-App restores them. For instance,
λx.send (x, y) is assigned the type A �o,o S, i.e., a function which, when
applied, starts and finishes communicating at priority o.

send : A × !oA.S ��,o S

x : A �⊥ x : A x : A, y : !oA.S �⊥ y : !oA.S

x : A, y : !oA.S �⊥ (x, y) : A × !oA.S

x : A, y : !oA.S �o send (x, y) : S

y : !oA.S �⊥ λx.send (x, y) : A �o,o S

Typing rules for configurations are at the bottom of Fig. 2. Configurations
are typed by a judgement Γ �φ C stating that “a configuration C with flag φ is
well typed under typing environment Γ”. Configuration typing is based on the

110 W. Kokke and O. Dardha

standard typing for GV. Terms are embedded either as main or as child threads.
The priority bound from the term typing is discarded, as configurations contain
no further blocking actions. Main threads are allowed to return a value, whereas
child threads are required to return the unit value. Sequents are annotated with
a flag φ, which ensures that there is at most one main thread.

While our configuration typing is based on the standard typing for GV, it
differs on two counts: (i) we require that child threads return the unit value, as
opposed to a terminated channel; and (ii) we simplify typing for parallel compo-
sition. In order to guarantee deadlock freedom, in GV each parallel composition
must split exactly one channel of the channel pseudo-type S� into two endpoints
of type S and S. Consequently, associativity of parallel composition does not
preserve typing. In PGV, we guarantee deadlock freedom using priorities, which
removes the need for the channel pseudo-type S�, and simplifies typing for paral-
lel composition, while restoring type preservation for the structural congruence.

Subject Reduction. Unlike with previous versions of GV, structural congru-
ence, term reduction, and configuration reduction are all type preserving.

We must show that substitution preserves priority constraints. For this, we
prove Lemma 1, which shows that values have finished all their communication,
and that any priorities in the type of the value come from the typing environment.

Lemma 1. If Γ �p V : T , then p = ⊥, and minpr(Γ) = minpr(T).

Lemma 2 (Substitution).
If Γ , x : U ′ �p M : T and Θ �q V : U ′, then Γ ,Θ �p M{V/x} : T .

Lemma 3 (Subject Reduction, −→M).
If Γ �p M : T and M −→M M ′, then Γ �p M ′ : T .

Lemma 4 (Subject Congruence, ≡).
If Γ �φ C and C ≡ C′, then Γ �φ C′.

Theorem 1 (Subject Reduction, −→C).
If Γ �φ C and C −→C C′, then Γ �φ C′.

Progress and Deadlock Freedom. PGV satisfies progress, as PGV config-
urations either reduce or are in normal form. However, the normal forms may
seem surprising at first, as evaluating a well-typed PGV term does not neces-
sarily produce just a value. If a term returns an endpoint, then its normal form
contains a thread which is ready to communicate on the dual of that endpoint.
This behaviour is not new to PGV. Let us consider an example, adapted from
Lindley and Morris [39], in which a term returns an endpoint linked to an echo
server. The echo server receives a value and sends it back unchanged. Consider
the program which creates a new channel, with endpoints x and x′, spawns off
an echo server listening on x, and then returns x′:

• let (x, x′) = new in
spawn (λ().echox);x′

echox � let (y, x) = recv x in
let x = send (y, x) in close x

Prioritise the Best Variation 111

If we reduce the above program, we get (νxx′)(◦ echox ‖ • x′). Clearly, no
more evaluation is possible, even though the configuration contains the thread
◦ echox, which is blocked on x. In Corollary 1 we will show that if a term does
not return an endpoint, it must produce only a value.

Actions are terms which perform communication actions and which synchro-
nise between two threads. Ready terms are terms which perform communication
actions, either by themselves, e.g., creating a new channel or thread, or with
another thread, e.g., sending or receiving. Progress for the term language is
standard for GV, and deviates from progress for linear λ-calculus only in that
terms may reduce to values or ready terms:

Definition 1 (Actions). A term acts on an endpoint x if it is send (V, x),
recv x, close x, or wait x. A term is an action if it acts on some endpoint x.

Definition 2 (Ready Terms). A term L is ready if it is of the form E[M],
where M is of the form new, spawn N , link (x, y), or M acts on x. In the
latter case, we say that L is ready to act on x.

Lemma 5 (Progress, −→M). If Γ �p M : T and Γ contains only session
types, then: (a) M is a value; (b) M −→M N for some N ; or (c) M is ready.

Canonical forms deviate from those for GV, in that we opt to move all ν-
binders to the top. The standard GV canonical form, alternating ν-binders and
their corresponding parallel compositions, does not work for PGV, since multiple
channels may be split across a single parallel composition.

A configuration either reduces, or it is equivalent to configuration in nor-
mal form. Crucial to the normal form is that each term Mi is blocked on the
corresponding channel xi, and hence no two terms act on dual endpoints. Fur-
thermore, no term Mi can perform a communication action by itself, since those
are excluded by the definition of actions. Finally, as a corollary, we get that
well-typed terms which do not return endpoints return just a value:

Definition 3 (Canonical Forms). A configuration C is in canonical form if
it is of the form (νx1x

′
1) . . . (νxnx′

n)(◦ M1 ‖ · · · ‖ ◦ Mm ‖ • N) where no term
Mi is a value.

Lemma 6 (Canonical Forms). If Γ �• C, there exists some D such that
C ≡ D and D is in canonical form.

Definition 4 (Normal Forms). A configuration C is in normal form if it is of
the form (νx1x

′
1) . . . (νxnx′

n)(◦ M1 ‖ · · · ‖ ◦ Mm ‖ • V) where each Mi is ready
to act on xi.

Theorem 2 (Progress, −→C). If ∅ �• C and C is in canonical form, then
either C −→C D for some D; or C ≡ D for some D in normal form.

112 W. Kokke and O. Dardha

Proof (Sketch). Our proof follows that of Kobayashi [34, theorem 2]. We apply
Lemma 5 to each thread. Either we obtain a reduction, or each child thread is
ready and the main thread ready or a value. We pick the ready term L with
the smallest priority bound. If L contains new, spawn, or a link, we apply E-
New, E-Spawn, or E-Link. Otherwise, L must be ready on some xi. Linearity
guarantees there is some thread L′ which acts on x′

i. If L′ is ready, priority
typing guarantees it is ready on x′

i, and we apply E-Send or E-Close. If L′ is
not ready, it must be the main thread returning a value. We move L into the ith

position and repeat until we either find a reduction or reach normal form.

Corollary 1. If ∅ �φ C, C �−→C, and C contains no endpoints, then C ≡ φ V
for some value V .

It follows immediately from Theorem 2 and Corollary 1 that a term which
does not return an endpoint will complete all its communication actions, thus
satisfying deadlock freedom.

3 Relation to Priority CP

We present a correspondence between Priority GV and an updated version of
Priority CP [20, PCP], which is Wadler’s CP [53] with priorities. This corre-
spondence connects PGV to (a relaxed variant of) classical linear logic.

3.1 Revisiting Priority CP

Types. (A, B) in PCP correspond to linear logic connectives annotated with
priorities o ∈ N. Typing environments, duality, and the priority function pr(·)
are defined as expected.

A,B ::= A ⊗o B | A `o B | 1o | ⊥o | A ⊕o B | A &o B | 0o | �o

Processes. (P , Q) in PCP are defined by the following grammar.

P ,Q ::= x↔y | (νxy)P | (P ‖ Q) | 0
| x[y].P | x[].P | x(y).P | x().P
| x
 inl.P | x
 inr.P | x � {inl : P ; inr : Q} | x � {}

Processes are typed by sequents P � Γ , which correspond to the one-sided
sequents in classical linear logic. Differently from PGV, in PCP we do not need
to store the greatest priority on the sequent, as, due to the absence of higher-
order functions, we cannot compose processes sequentially.

Prioritise the Best Variation 113

PCP decomposes cut into T-Res and T-Par rules—corresponding to cycle
and mix rules, respectively—and guarantees deadlock freedom by using priority
constraints, e.g.,, as in T-Send.

T-Res
P � Γ , x : A, y : A⊥

(νxy)P � Γ

T-Par
P � Γ Q � Δ

P ‖ Q � Γ , Δ

T-Send
P � Γ , y : A, x : B o < minpr(Γ , A, B)

x[y].P � Γ , x : A ⊗o B

The main change we make to PCP is removing commuting conversions and
defining an operational semantics based on structural congruence. Commuting
conversions are necessary if we want our reduction strategy to correspond exactly
to cut elimination. However, from the perspective of process calculi, commuting
conversions behave strangely: they allow an input/output action to be moved
to the top of a process, thus potentially blocking actions which were previously
possible. This makes CP, and Dardha and Gay’s PCP [20], non-confluent. As
Lindley and Morris [39] show, all communications that can be performed with
the use of commuting conversions, can also be performed without them, using
structural congruence.

In particular for PCP, commuting conversions break our intuition that an
action with lower priority occurs before an action with higher priority. To cite
Dardha and Gay [20] “if a prefix on a channel endpoint x with priority o is
pulled out at top level, then to preserve priority constraints in the typing rules
[..], it is necessary to increase priorities of all actions after the prefix on x” by
o + 1. One benefit of removing commuting conversions is that we no longer need
to dynamically change the priorities during reduction, which means that the
intuition for priorities holds true in our updated version of PCP. Furthermore,
we can safely define reduction on untyped processes, which means that type and
priority information is erasable!

We prove closed progress for our updated PCP.

Theorem 3 (Progress, =⇒). If P � ∅, then either P = 0 or there exists a
Q such that P =⇒ Q.

3.2 Correspondence Between PGV and PCP

We illustrate the relation between PCP and PGV by defining a translation from
PCP to PGV. The translation on types is defined as follows:

�A ⊗o B� = !o�A�.�B�
�A ⊕o B� = �A� ⊕o �B�

�1o� = endo
!

�0o� = ⊕o{}
�A `o B� = ?o�A�.�B�
�A &o B� = �A� &o �B�

�⊥o� = endo
?

��o� = &o{}

114 W. Kokke and O. Dardha

There are two separate translations on processes. The main translation, �·�M ,
translates processes to terms:

�x↔y�M = link (x, y)
�(νxy)P �M = let (x, y) = new in �P �M

�P ‖ Q�M = spawn (λ().�P �M); �Q�M

�0�M = ()
�x[].P �M = close x; �P �M

�x().P �M = wait x; �P �M

�x[y].P �M = let (y, z) = new in let x = send (z, x) in �P �M

�x(y).P �M = let (y, x) = recv x in �P �M

�x
 inl.P �M = let x = select inl x in �P �M

�x
 inr.P �M = let x = select inr x in �P �M

�x � {inl : P ; inr : Q}�M = offer x {inl x 	→ �P �M ; inr x 	→ �Q�M}
�x � {}�M = offer x {}
Unfortunately, the operational correspondence along �·�M is unsound, as it

translates ν-binders and parallel compositions to new and spawn, which can
reduce to their equivalent configuration constructs using E-New and E-Spawn.
The same goes for ν-binders which are inserted when translating bound send to
unbound send. For instance, the process x[y].P is blocked, but its translation
uses new and can reduce. To address this issue, we use a second translation, �·�C,
which is equivalent to �·�M followed by reductions using E-New and E-Spawn:

�(νxy)P �C = (νxy)�P �C

�P ‖ Q�C = �P �C ‖ �Q�C

�x[y].P �C = (νyz)(◦ let x = send (z, x) in �P �M)
�x
 inl.P �C = (νyz)(◦ let x = close (send (inl y, x)); z in �P �M)
�x
 inr.P �C = (νyz)(◦ let x = close (send (inr y, x)); z in �P �M)
�P �C = ◦�P �M , if none of the above apply

Typing environments are translated pointwise, and sequents P � Γ are trans-
lated as �Γ � �◦ �P �C, where ◦ indicates a child thread. Translated processes do
not have a main thread. The translations �·�M and �·�C preserve typing, and the
latter induces a sound and complete operational correspondence.

Lemma 7 (Preservation, �·�M). If P � Γ , then �Γ � �p �P �M : 1.

Theorem 4 (Preservation, �·�C). If P � Γ , then �Γ � �◦ �P �C.

Lemma 8. For any P , either:

– ◦ �P �M = �P �C; or
– ◦ �P �M −→+

C �P �C, and for any C, if ◦ �P �M −→C C, then C −→�
C �P �C.

Prioritise the Best Variation 115

Theorem 5 (Operational Correspondence, Soundness, �·�C). If P � Γ
and �P �C −→C C, there exists a Q such that P =⇒+ Q and C −→�

C �Q�C.

Theorem 6 (Operational Correspondence, Completeness, �·�C). If P � Γ
and P =⇒ Q, then �P �C −→+

C �Q�C.

4 Related Work and Discussion

Deadlock Freedom and Progress. Deadlock freedom and progress are well
studied properties in the π-calculus. For the ‘standard’ typed π-calculus, an
important line of work starts from Kobayashi’s approach to deadlock free-
dom [33], where priorities are values from an abstract poset. Kobayashi [34] sim-
plifies the abstract poset to pairs of naturals, called obligations andcapabilities.
Padovani simplifies these further to a single natural, called a priority [44], and
adapts obligations/capabilities to session types [43].

For the session-typed π-calculus, Dezani et al. [25] guarantee progress by
allowing only one active session at a time. Dezani [24] introduces a partial order
on channels, similar to Kobayashi [33]. Carbone and Debois [11] define progress
for session typed π-calculus in terms of a catalyser which provides the missing
counterpart to a process. Carbone et al. [10] use catalysers to show that progress
is a compositional form of lock-freedom and can be lifted to session types via the
encoding of session types to linear types [18,21,35]. Vieira and Vasconcelos [51]
use single priorities and an abstract partial order to guarantee deadlock freedom
in a binary session-typed π-calculus and building on conservation types.

While our work focuses on binary session types, it is worth to discuss related
work on Multiparty Session Types (MPST). The line of work on MPST starts
with Honda et al. [31], which guarantees deadlock freedom within a single ses-
sion, but not for session interleaving. Bettini et al. [7] follow a technique similar
to Kobayashi’s for MPST. The main difference with our work is that we asso-
ciate priorities with communication actions, where Bettini et al. [7] associate
them with channels. Carbone and Montesi [13] combine MPST with chore-
ographies and obtain a formalism that satisfies deadlock freedom. Deniélou
and Yoshida [23] introduce multiparty compatibility which generalises duality
in binary session types. They synthesise safe and deadlock-free global types
from local types leveraging LTSs and communicating automata. Castellani et
al. [16] guarantee lock freedom, a stronger property than deadlock freedom,
for MPST with internal delegation, where participants in the same session are
allowed to delegate tasks to each other, and internal delegation is captured by
the global type. Scalas and Yoshida [46] provide a revision of the foundations for
MPST, and offer a less complicated and more general theory, by removing dual-
ity/consistency. The type systems is parametric and type checking is decidable,
but allows for a novel integration of model checking techniques. More protocols
and processes can be typed and are guaranteed to be free of deadlocks.

Neubauer and Thiemann [42] and Vasconcelos et al. [49,50] introduce the
first functional language with session types. Such works did not guarantee dead-
lock freedom until GV [39,53]. Toninho et al. [48] present a translation of

116 W. Kokke and O. Dardha

simply-typed λ-calculus into session-typed π-calculus, but their focus is not on
deadlock freedom.

Ties with Logic. The correspondence between logic and types lays the foun-
dation for functional programming [54]. Since its inception by Girard [27], linear
logic has been a candidate for a foundational correspondence for concurrent
programs. A correspondence with linear π-calculus was established early on by
Abramsky [1] and Bellin and Scott [5]. Many years later, several correspondences
between linear logic and the π-calculus with binary session types were proposed.
Caires and Pfenning [9] propose a correspondence with dual intuitionistic linear
logic, while Wadler [53] proposes a correspondence with classical linear logic.
Both guarantee deadlock freedom as a consequence of cut elimination. Dardha
and Gay [20] integrate Kobayashi and Padovani’s work on priorities [34,44] with
CP, loosening its ties to linear logic in exchange for expressivity. Dardha and
Pérez [22] compare priorities à la Kobayashi with tree restrictions à la CP, and
show that the latter is a subsystem of the former. Balzer et al. [2] introduce
sharing at the cost of deadlock freedom, which they restore using an approach
similar to priorities [3]. Carbone et al. [12,15] give a logical view of MPST
with a generalised duality. Caires and Pérez [8] give a presentation of MPST in
terms of binary session types and the use of a medium process which guarantee
protocol fidelity and deadlock freedom. Their binary session types are rooted in
linear logic. Ciobanu and Horne [17] give the first Curry-Howard correspondence
between MPST and BV [28], a conservative extension of linear logic with a non-
commutative operator for sequencing. Horne [32] give a system for subtyping and
multiparty compatibility where compatible processes are race free and deadlock
free using a Curry-Howard correspondence, similar to the approach in [17].

Conclusion. We answered our research question by presenting Priority GV,
a session-typed functional language which allows cyclic communication struc-
tures and uses priorities to ensure deadlock freedom. We showed its relation to
Priority CP [20] via an operational correspondence.

Future Work. Our formalism so far only captures the core of GV. In future
work, we plan to explore recursion, following Lindley and Morris [40] and
Padovani and Novara [45], and sharing, following Balzer and Pfenning [2] or
Voinea et al. [52].

Acknowledgements. The authors would like to thank Simon Fowler, April
Gonçalves, and Philip Wadler for their comments on the manuscript.

References

1. Abramsky, S.: Proofs as processes. Theor. Comput. Sci. 135(1), 5–9 (1994).
https://doi.org/10.1016/0304-3975(94)00103-0

2. Balzer, S., Pfenning, F.: Manifest sharing with session types. Proc. ACM Program.
Lang. 1(ICFP), 37:1–37:29 (2017). https://doi.org/10.1145/3110281

https://doi.org/10.1016/0304-3975(94)00103-0
https://doi.org/10.1145/3110281

Prioritise the Best Variation 117

3. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session
types. In: Caires, L. (ed.) ESOP 2019. LNCS, vol. 11423, pp. 611–639. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17184-1 22

4. Barber, A.: Dual intuitionistic linear logic (1996). https://www.lfcs.inf.ed.ac.uk/
reports/96/ECS-LFCS-96-347/ECS-LFCS-96-347.pdf

5. Bellin, G., Scott, P.J.: On the π-calculus and linear logic. Theor. Comput. Sci.
135(1), 11–65 (1994). https://doi.org/10.1016/0304-3975(94)00104-9

6. Bernardy, J.P., Boespflug, M., Newton, R.R., Jones, S.P., Spiwack, A.: Linear
Haskell: practical linearity in a higher-order polymorphic language. In: Proceedings
of POPL, vol. 2, pp. 1–29 (2018). https://doi.org/10.1145/3158093

7. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 33

8. Caires, L., Pérez, J.A.: Multiparty session types within a canonical binary theory,
and beyond. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp.
74–95. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8 6

9. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

10. Carbone, M., Dardha, O., Montesi, F.: Progress as compositional lock-freedom. In:
Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 49–64.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43376-8 4

11. Carbone, M., Debois, S.: A graphical approach to progress for structured communi-
cation in web services. In: Proceedings of ICE. Electronic Proceedings in Theoreti-
cal Computer Science, vol. 38, pp. 13–27 (2010). https://doi.org/10.4204/EPTCS.
38.4

12. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coherence gen-
eralises duality: a logical explanation of multiparty session types. In: Proceedings
of of CONCUR. LIPIcs, vol. 59, pp. 33:1–33:15. Leibniz-Zentrum für Informatik
(2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.33

13. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Proceedings of POPL, pp. 263–274 (2013). https://doi.
org/10.1145/2480359.2429101

14. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. Distrib. Com-
put. 31(1), 51–67 (2018). https://doi.org/10.1007/978-3-662-44584-6 5

15. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types
as coherence proofs. In: Proceedings of CONCUR. LIPIcs, vol. 42, pp. 412–426.
Leibniz-Zentrum für Informatik (2015). https://doi.org/10.1007/s00236-016-0285-
y

16. Castellani, I., Dezani-Ciancaglini, M., Giannini, P., Horne, R.: Global types with
internal delegation. Theor. Comput. Sci. 807, 128–153 (2020). https://doi.org/10.
1016/j.tcs.2019.09.027

17. Ciobanu, G., Horne, R.: Behavioural analysis of sessions using the calculus of struc-
tures. In: Mazzara, M., Voronkov, A. (eds.) PSI 2015. LNCS, vol. 9609, pp. 91–106.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41579-6 8

18. Dardha, O.: Recursive session types revisited. In: Proceedings of BEAT. Electronic
Proceedings in Theoretical Computer Science, vol. 162, pp. 27–34 (2014). https://
doi.org/10.4204/EPTCS.162.4

https://doi.org/10.1007/978-3-030-17184-1_22
https://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/ECS-LFCS-96-347.pdf
https://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/ECS-LFCS-96-347.pdf
https://doi.org/10.1016/0304-3975(94)00104-9
https://doi.org/10.1145/3158093
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-662-43376-8_4
https://doi.org/10.4204/EPTCS.38.4
https://doi.org/10.4204/EPTCS.38.4
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.1145/2480359.2429101
https://doi.org/10.1145/2480359.2429101
https://doi.org/10.1007/978-3-662-44584-6_5
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1007/978-3-319-41579-6_8
https://doi.org/10.4204/EPTCS.162.4
https://doi.org/10.4204/EPTCS.162.4

118 W. Kokke and O. Dardha

19. Dardha, O., Gay, S.J.: A new linear logic for deadlock-free session-typed processes.
In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 91–109.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2 5

20. Dardha, O., Gay, S.J.: A new linear logic for deadlock-free session typed pro-
cesses. In: Proceedings of FoSSaCS (2018). http://www.dcs.gla.ac.uk/∼ornela/
publications/DG18-Extended.pdf

21. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: Proceedings
of PPDP, pp. 139–150. ACM (2012). https://doi.org/10.1145/2370776.2370794

22. Dardha, O., Pérez, J.A.: Comparing type systems for deadlock-freedom (2018).
https://arxiv.org/abs/1810.00635

23. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp.
174–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-
2 18

24. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On progress for structured
communications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp.
257–275. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78663-
4 18

25. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session types
for object-oriented languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 328–352. Springer, Heidelberg (2006). https://doi.org/10.1007/11785477 20

26. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.
Funct. Program. 20(1), 19–50 (2010). https://doi.org/10.1017/S0956796809990268

27. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/
10.1016/0304-3975(87)90045-4

28. Guglielmi, A.: A system of interaction and structure. ACM Trans. Comput. Log.
8(1), 1 (2007). https://doi.org/10.1145/1182613.1182614

29. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

30. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

31. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of POPL, vol. 43, no. 1, pp. 273–284. ACM (2008). https://doi.org/
10.1145/2827695

32. Horne, R.: Session subtyping and multiparty compatibility using circular sequents.
In: Proceedings of CONCUR. LIPIcs, vol. 171, pp. 12:1–12:22. Leibniz-Zentrum
für Informatik (2020). https://doi.org/10.4230/LIPIcs.CONCUR.2020.12

33. Kobayashi, N.: A partially deadlock-free typed process calculus. ACM Trans. Pro-
gram. Lang. Syst. 20(2), 436–482 (1998). https://doi.org/10.1145/276393.278524

34. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Her-
manns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11817949 16

35. Kobayashi, N.: Type systems for concurrent programs (2007)
36. Kokke, W., Dardha, O.: Deadlock-free session types in Linear Haskell (2021).

https://arxiv.org/abs/2103.14481

https://doi.org/10.1007/978-3-319-89366-2_5
http://www.dcs.gla.ac.uk/~ornela/publications/DG18-Extended.pdf
http://www.dcs.gla.ac.uk/~ornela/publications/DG18-Extended.pdf
https://doi.org/10.1145/2370776.2370794
https://arxiv.org/abs/1810.00635
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-540-78663-4_18
https://doi.org/10.1007/978-3-540-78663-4_18
https://doi.org/10.1007/11785477_20
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/1182613.1182614
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695
https://doi.org/10.4230/LIPIcs.CONCUR.2020.12
https://doi.org/10.1145/276393.278524
https://doi.org/10.1007/11817949_16
https://arxiv.org/abs/2103.14481

Prioritise the Best Variation 119

37. Kokke, W., Montesi, F., Peressotti, M.: Better late than never: a fully-abstract
semantics for classical processes. Proc. ACM Program. Lang. 3(POPL) (2019).
https://doi.org/10.1145/3290337

38. Kokke, W., Montesi, F., Peressotti, M.: Taking linear logic apart. In: Proceedings of
Linearity & TLLA. Electronic Proceedings in Theoretical Computer Science, vol.
292, pp. 90–103. Open Publishing Association (2019). https://doi.org/10.4204/
EPTCS.292.5

39. Lindley, S., Morris, J.G.: A semantics for propositions as sessions. In: Proceedings
of ESOP, pp. 560–584 (2015). https://doi.org/10.1007/978-3-662-46669-8 23

40. Lindley, S., Morris, J.G.: Talking bananas: structural recursion for session types.
In: Proceedings of ICFP. ACM (2016). https://doi.org/10.1145/2951913.2951921

41. Montesi, F., Peressotti, M.: Classical transitions (2018). https://arxiv.org/abs/
1803.01049

42. Neubauer, M., Thiemann, P.: An implementation of session types. In: Jayaraman,
B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 56–70. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24836-1 5

43. Padovani, L.: From lock freedom to progress using session types. In: Proceedings
of PLACES. vol. 137, pp. 3–19. Electronic Proceedings in Theoretical Computer
Science (2013). https://doi.org/10.4204/EPTCS.137.2

44. Padovani, L.: Deadlock and lock freedom in the linear π-calculus. In: Proceedings of
CSL-LICS, pp. 72:1–72:10. ACM (2014). https://doi.org/10.1145/2603088.2603116

45. Padovani, L., Novara, L.: Types for deadlock-free higher-order programs. In: Graf,
S., Viswanathan, M. (eds.) FORTE 2015. LNCS, vol. 9039, pp. 3–18. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19195-9 1

46. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. Proc. ACM
Program. Lang. 3(POPL) (2019). https://doi.org/10.1145/3290343

47. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7 118

48. Toninho, B., Caires, L., Pfenning, F.: Functions as session-typed processes. In:
Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 346–360. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-28729-9 23

49. Vasconcelos, V., Ravara, A., Gay, S.: Session types for functional multithreading.
In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 497–511.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 32

50. Vasconcelos, V.T., Gay, S.J., Ravara, A.: Type checking a multithreaded functional
language with session types. Theor. Comput. Sci. 368(1–2), 64–87 (2006). https://
doi.org/10.1016/j.tcs.2006.06.028

51. Torres Vieira, H., Thudichum Vasconcelos, V.: Typing progress in communication-
centred systems. In: De Nicola, R., Julien, C. (eds.) COORDINATION 2013.
LNCS, vol. 7890, pp. 236–250. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38493-6 17

52. Voinea, A.L., Dardha, O., Gay, S.J.: Resource sharing via capability-based multi-
party session types. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS,
vol. 11918, pp. 437–455. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-34968-4 24

53. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2–3), 384–418 (2014).
https://doi.org/10.1017/S095679681400001X

54. Wadler, P.: Propositions as types. Commun. ACM 58(12), 75–84 (2015). https://
doi.org/10.1145/2699407

https://doi.org/10.1145/3290337
https://doi.org/10.4204/EPTCS.292.5
https://doi.org/10.4204/EPTCS.292.5
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2951913.2951921
https://arxiv.org/abs/1803.01049
https://arxiv.org/abs/1803.01049
https://doi.org/10.1007/978-3-540-24836-1_5
https://doi.org/10.4204/EPTCS.137.2
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1007/978-3-319-19195-9_1
https://doi.org/10.1145/3290343
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/978-3-642-28729-9_23
https://doi.org/10.1007/978-3-540-28644-8_32
https://doi.org/10.1016/j.tcs.2006.06.028
https://doi.org/10.1016/j.tcs.2006.06.028
https://doi.org/10.1007/978-3-642-38493-6_17
https://doi.org/10.1007/978-3-642-38493-6_17
https://doi.org/10.1007/978-3-030-34968-4_24
https://doi.org/10.1007/978-3-030-34968-4_24
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1145/2699407
https://doi.org/10.1145/2699407

Towards Multi-layered Temporal Models:
A Proposal to Integrate Instant Refinement in CCSL

Mathieu Montin1,2(B) and Marc Pantel2

1 INRIA, Team Veridis, University of Lorraine, LORIA, Team MOSEL,
Nancy, France

mathieu.montin@loria.fr
2 IRIT, ENSEEIHT, INPT, Team ACADIE, Toulouse, France

Abstract. For the past 50 years, temporal constraints have been a key
driver in the development of critical systems, as ensuring their safety
requires their behaviour to meet stringent temporal requirements. A well
established and promising approach to express and verify such tempo-
ral constraints is to rely on formal modelling languages. One such lan-
guage is CCSL, first introduced as part of the MARTE UML profile,
which allows the developer, through entities called clocks, to abstract
any system into events on which constraints can be expressed, and then
assessed using TimeSquare, a tool which implements its operational
semantics. By nature, CCSL handles horizontal separation (component
based design at one step in the system development) of concerns through
the notion of clocks, but does not yet take into account the other major
separation of concerns used in modern system development: vertical sep-
aration, also called refinement in the literature (relations between the
various steps of the system development). This paper proposes an app-
roach to extend CCSL with a notion of refinement in order to handle
temporal models relying on both vertical and horizontal parts. Our pro-
posal relies on the notion of multi-layered time to provide two new CCSL
relations expressing two different yet complementary notions of refine-
ment. Their integration with the other CCSL constructs is discussed
and their use is illustrated while the relevance and future impacts of this
extended version of CCSL is detailed.

Keywords: CCSL · Refinement · Temporal constraints

1 Introduction

1.1 Ubiquity of Complex Systems

Software engineering as a discipline has been developed since the middle of the
20th century. The overall consensus is that the 1960s, and especially the 1968
convention held in Marktoberdorf, Germany [2] paved the way to where software
engineering stands now: present in every single field and company, as well as in

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 120–137, 2021.
https://doi.org/10.1007/978-3-030-78089-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_7&domain=pdf
http://orcid.org/0000-0003-2219-9359
http://orcid.org/0000-0001-7591-0402
https://doi.org/10.1007/978-3-030-78089-0_7

Towards Multi-layered Temporal Models 121

our everyday life. While we believe that the future induced by this evolution
will be bright, it can only be so provided we have the ability to validate and
verify the software being made, in other words, to assess that it satisfies its user
requirements.

This need is especially potent when considering critical systems, the failure
of which could have significant negative impacts on human lives. These critical
systems usually rely on various interactions with other entities: other software
through logical interfaces, human beings through user interfaces and the outside
world through both sensors, which provide the software with data, and actuators,
which control various physical mechanisms. The software from the last category
are called cyber physical systems (CPS) [6]. The actuators in these systems have
their output constantly adjusted using the data received from their sensors, and
such adjustments must usually be done in real time, thus inducing various hard
temporal constraints. These critical systems are especially present in fields such
as aeronautics, cars, railway, space exploration, energy transformation, health-
care and factory automation, which means they have the potential to be of huge
size and complexity, and their modelling usually needs to be heterogeneous.

1.2 Heterogeneous Modelling

Complexity of description is a major issue in the development and especially in
the verification of such software. This complexity, as described in the theory of
complex systems [15] is wide and encompasses a large number of possible cases.
It was first called algorithmic complexity [7] by its inventors Kolmogorov and
Chaitin and was originally related to the size of the simplest algorithm in a given
language that can implement the system. This notion is nowadays wider, as the
system in question can either be huge in size, and provide a sophisticated service,
composed of numerous small size elements which are required to interact with one
another in a correct manner, or simply display a very complex behaviour which
translates into a deep conceptual challenge for the developers. Such complexity
is very concrete, especially in CPS where it can often be found in its various
incarnations.

While developing and assessing such complex systems, the notion of sepa-
ration of concerns becomes mandatory, as first introduced by Dijsktra himself
in [5]. A concern is a specific element of a system that must be handled during
its development. As for separation of concerns, while the name being somewhat
self-explanatory, it hides a higher level of complexity depending on the nature
of the concerns that are separated from others. Indeed, these concerns can be
of various nature: functional, physical, logical, abstraction, human, sociological,
ergonomic, psychological, economical, ethical. . . and can refer to various macro-
scopic elements: provided service, provided quality of service. . . including the
process, methods and tools for the development itself.

There are three main kinds of separation of concerns that are usually called
horizontal, transversal and vertical. Horizontal separation of concerns (also called
Component Based Design) consists in applying a divide and conquer strategy
that splits a problem in sub-problems recursively until reaching problems that

122 M. Montin and M. Pantel

are small enough to be solved efficiently. The complexity of the remaining com-
ponents is reduced as their size is small, however they usually mix different issues
to be solved: security, functionality, performance. . . The second kind of separa-
tion, called transversal, corresponds to Aspect Oriented Engineering. It proposes
to isolate each of the previous issues to handle them separately with the most
appropriate tools. The third kind is called vertical separation: it consists in sep-
arating a given development into different steps from an abstract specification
to a concrete implementation through a process usually called refinement.

1.3 Handling Vertical and Horizontal Separation over Temporal
Constraints

Our work revolves around the handling of the behavioural aspect of a system
development, that is, the specific aspect-oriented subpart of a system concern-
ing temporal constraints over its behaviour. These temporal constraints are not
absolute in our work, which means there will be no mention of worst-case execu-
tion time (WCET) in this work, but rather they are relative from one component
to another. The word “component” is not used lightly: this indeed corresponds
to the various components horizontal separation has revealed and defined, and
the way these components interact time-wise with one another. This horizontal
description is usually expressed using languages such as CCSL, which will be
described in more details in Sect. 2.3. This language relies on a notion of time
and time structure that will be summarized in Sect. 2.1. However, this kind of
description do not handle vertical separation, which means temporal constraints
between layers of refinement cannot be expressed. In this paper, we propose a
way to express such constraints, and we motivate the need for such expressive-
ness. A first step in that direction consists in using a multi-layered time structure
that will be described in more details in Sect. 2.2. Then, new CCSL relations
can be defined between several layers of refinement, thus allowing relations to
be cross-specifications. We call the first new relation 1-N refinement, which is
described in Sect. 5, while the second relation, called 1-1 refinement, is depicted
in Sect. 6. Both these relations will be formally defined, illustrated by examples,
and integrated to CCSL through properties of preservation with existing CCSL

relations. An example of system which could benefit from such a multi-layered
temporal description is depicted in Sect. 3.

2 Theoretical Ground

This section presents the state-of-the-art elements that we rely on in this work.
They consist of common notions about time, as well as one of our previous works
regarding multi-layered temporal structures and basic notions about CCSL.

2.1 Time, Partial Orders and Time Structures

In order to model the temporal relations between instants in the execution of
complex systems, the usual approach is to use strict partial orders which allow

Towards Multi-layered Temporal Models 123

some instants to be coincident and some others to be unrelated, as opposed to
total orders where all instants must be related one way or another. A strict
partial order is a mathematical structure composed of four entities, which are
the following:

– A set of instants, I.
– A first relation over the elements of I, _≈_, called coincidence.
– A second relation over the elements of I, _<_, called precedence.
– A proof that _≈_ and _<_ satisfy the properties of strict partial ordering.

The last element of this structure ties all the others together. By giving the
right properties to the relations, it also gives them the intended semantics, that
is: _<_ is a strict precedence between elements of I and _≈_ is a relation of
equivalence between its elements. These properties are as follows:

1. _≈_ is an equivalence relation
• _≈_ is reflexive ∈ I : i ≈
• _≈_ is transitive ∀(i, j, k) ∈ I3 : i ≈ j ∧ j ≈ k ⇒ j ≈
• _≈_ is symmetrical ∀(i, j) ∈ I2 : i ≈ j ⇒ j ≈ i

2. _<_ is irreflexive towards _≈_ ∀(i, j) ∈ I2 : i < j ⇒ ¬ i ≈ j
3. _<_ is transitive ∀(i, j, k) ∈ I3 : i < j ∧ j < k ⇒ j < k
4. _<_ respects _≈_

• on the left ∀(i, j, k) ∈ I3 : i ≈ j ∧ i < k ⇒ j < k
• on the right ∀(i, j, k) ∈ I3 : i ≈ j ∧ k < i ⇒ k < j

As an example of modelling with such structure, let us consider Alice and
her usual morning routine: Alice gets up, after which she either takes a bath
first followed by eating or vice versa. She always sings while in the bath. After
that, she takes off for work. The two possible traces depicting her behaviour over
a single day are shown in Fig. 1. They consist of the following possible events:
getting up (u), bathing (b), singing (s), eating (e) and taking off (o).

Fig. 1. Both possible behaviours

These possible behaviours can be merged using a time structure [16], with
an underlying partial order, that is depicted on Fig. 2. The events b and e are
concurrent and are not linked by any of the two relations composing the strict
partial order. The blue vertical dashed line represents coincidence (when events
occur simultaneously) while the red arrows represent precedence (one occurs
strictly before the other). Note that, while we arbitrary chose to represent e
before b, it does not mean that e precedes b, and e could equally have been
placed somewhere else between u and o.

124 M. Montin and M. Pantel

Fig. 2. Alice’s morning routine time structure

2.2 Multi-layered Time Structures

Such time structures naturally embed a notion of horizontal separation. Indeed,
each of the events it contains is, by definition, separated from the others, regard-
less of the origin of said events. In other words, whether these events come from
the same system or from different systems that are being coordinated is not rel-
evant. However, all these events are from the same step in the development, in
other words, they are from the same layer of refinement. This level of observation
is fundamental when dealing with such systems because a trace or a time struc-
ture only takes into account observable events. For instance, in Alice’s morning
routine, one did not chose to represent details about her different activities, such
as the way she showers (from hair to toes) or the sequence of songs she sings
while doing so. These more precise events could have been depicted in another
time structure. In a previous work [10], we showed that, should we assign a
partial order to any of these depictions (any of these levels of refinement), then
these partial orders ((<c,≈c) and (<a,≈a)) would be related with one another
in a certain formal manner, as follows:

Let Ω be the set of all sets: ∀I ∈ Ω,∀(<c, <a,≈c,≈a) ∈ (I × I)4 :
(<c,≈c) <r (<a,≈a)

d⇐⇒

∀(i, j) ∈ I :

⎛
⎜⎜⎝

i <c j ⇒ i <a j ∨ i ≈a j (1)
i <a j ⇒ i <c j (2)
i ≈c j ⇒ i ≈a j (3)
i ≈a j ⇒ i ≈c j ∨ i <c j ∨ j <c i (4)

⎞
⎟⎟⎠

In this definition, the level annotated by the index c is the lowest (the more
concrete) level of observation and a is the highest (the more abstract). We state
what it means for a pair of relations to refine another pair of relations. We can
only compare pairs of relations that are bound to the same underlying set of
instants. This relation is composed of four predicates, each of which indicates
how one of the four relations is translated into the other level of observation.

Towards Multi-layered Temporal Models 125

• Precedence abstraction: If a strictly precedes b in the lower level, then it can
either be coincident to it in the higher level or still precede it. This means
that a distinction which is visible at a lower level can either disappear at a
higher one or remain visible, depending on the behaviour of the refinement
for these instants – Equation (1)

• Precedence embodiment: If a strictly precedes b in the higher level, then it can
only precede it in the lower level. This means that the distinction between
these instants already existed in the higher level and thus cannot be lost when
refining. Looking closer at a system preserves precedence between instants –
Equation (2)

• Coincidence abstraction: If a is coincident to b in the lower level, they stay
coincident in the higher level. Looking at the system from a higher point of
view cannot reveal temporal distinction between events – Equation (3)

• Coincidence embodiment: If a is coincident to b in the higher level then these
instants cannot be independent in the lower level; they will still be related
but nothing can be said on the nature of this relation – Equation (4)

2.3 Horizontal Constraints with CCSL

A time structure, such as the one depicted in Fig. 1 displays relations between
the occurrences of events. A time structure can either be seen as a specification,
depicting how occurrences of events should be related, or as a temporal imple-
mentation of an informal specification depicting how the instants are bound to
one another to respect a certain set of relations. Said relations can be expressed
informally, but it is usually preferred to use a formal modelling language ded-
icated to this purpose. CCSL [1] is such a language, that was defined in the
MARTE [13] UML [12] profile. It proposes various relations and expressions to
bind events (that are named clocks in the language) with one another. Consid-
ering two clocks c1 and c1, here are the CCSL relations that will be used in the
rest of the paper to illustrate our contribution:

126 M. Montin and M. Pantel

These definitions were first introduced in [3] and were mechanized in a pre-
vious work [9]. Note that the precedence and causality definitions have been
simplified for the purpose of this paper, as there are more constraints to the
binding function f (it has to be bijective for instance). These additional con-
straints are naturally taken into account in the formal mechanized counterpart
of this work. All details can be found in [8].

3 An Example of Multi-layered Modelling

This theoretical ground provides us with the following expressiveness: it is pos-
sible to specify the behaviour of several sub-parts of a given system, as well as
several parts from different systems. It is also possible to compare orders with
one another towards the notion of refinement, but it is not yet possible to express
constraints and properties between events coming from different layers of refine-
ment. This section proposes a simple example as to why this is relevant, after
which solutions will be proposed.

3.1 The Deadlock Petrinet

Petri nets [14] are considered by many as the assembler of concurrent system,
and their semantics is well known in the field. Let us consider the Petrinet on
Fig. 3a, usually used as a toy example for teaching purposes.

Towards Multi-layered Temporal Models 127

Fig. 3. The Deadlock Petrinet

This net, however simple, is very interesting because it allows a state of
deadlock to be reached. It consists of two processes, initially in the Idle state,
that can execute two tasks: the first one requires the use of the resource A,
then the resource B after which, both resources are freed, and the second task
is similar, although the resources are required in the opposite order. Both these
tasks can be done by any of the two processes, a possibly infinite number of
time, as long as both resources are freed when the second process begins the
other task. If both processes require the use of their first resource concurrently,
a deadlock state is reached because both processes will endlessly wait for the
resource that is currently retained by the other process. A possible execution of
this net resulting in a deadlock is depicted in Fig. 3b. After two cycles of the
first task and one cycle of the second one, resource B is required by a process
while resource A is required by the second one, hence the deadlock.

3.2 A Functional View of the System

As surprising as it may seem, writing constraints on this system to forbid the
deadlock case is not trivial. In CCSL for instance, it is not easy to forbid inter-
twining of events. In this specific example, although it is possible, expressing
that an occurrence of UseB should never occur between an occurrence of UseA
and UseAB – and vice versa – requires a long list of constraints.

An easier way of expressing such constraints arises when considering the
abstract function the deadlock-free runs of this systems fulfil. In this case, such
a function is simple: the net should execute both tasks an arbitrary number of
times, in an arbitrary order, regardless of the resources actually used in these
tasks. Such a behaviour can be depicted as an automaton, shown on Fig. 4a,
with a possible execution of the system shown on Fig. 4b.

128 M. Montin and M. Pantel

Fig. 4. A functional representation of the Deadlock net

3.3 Binding the Two Levels of Description

The interesting aspect of this second system is that it does not allow any faulty
behaviour, which the first one does. Should we synchronize these systems, we
would be able to forbid such deadlocked runs. The usual manner to coordinate
systems with one another is to compose them horizontally, as seen in Sect. 2.3.
However, this implicitly means that both systems are part of a global system
whose behaviour has to be specified. In this case, this is not true because they
do not live in the same level of observation. The second one can be seen as a
specification while the first one can be seen as a possible implementation of said
specification. In other words, expressing the fact that the Deadlock net should
behave as an instantiation – a more concrete implementation – of the automa-
ton should ensure the correctness of its behaviour. This means that constraints
between layers of refinement need to be expressed in such cases. Both levels
should have their own layer of time, and both these layers should satisfy the
relation depicted in Sect. 2.2. In each of these layers, constraints specific to each
system can be written and expressed using CCSL. The remaining step is to
allow the definition of inter-layers constraints, binding each abstract clock with
concrete clocks that refine the event it represents. In our example, this would
mean expressing that both UseA and UseAB should refine Task1 while UseB
and UseBA should refine Task2, which the following sections will make possible.

4 Stakes of the Approach

On the Combination of CCSLand Refinement. In Sect. 2.2 we summarized a
previous work on the modelling of refinement which proposes to handle the
different layers of refinement by assigning each of them a separate partial order
and ordering these orders with a specific relation. CCSL is itself based on partial
orders which means both our notion of refinement and CCSL share the same
formalism, which allows us to mix them together to assess how CCSL would
behave when combined with refinement.

On Preservation over Instants. Before starting the investigation on this conjunc-
tion, it is important to note that the notion of refinement depicted in Sect. 2.2 is
fundamentally between partial orders. In that regard, it preserves by nature any

Towards Multi-layered Temporal Models 129

required property over these, because it has been defined in that purpose. For
instance, the strict precedence between instants is preserved through embodi-
ment using the second equation, while the coincidence between instants is pre-
served through abstraction as depicted by the third equation. In other words,
there is no need to prove that our refinement relation preserves the right prop-
erties in terms of instants ordering, because it does so by definition.

On Preservation over Clocks. However, these preservations are natural in terms
of relations between instants, yet not for relations between clocks. This means
that it would be a mistake to assume that, by nature, relations between clocks
should be preserved by the use of our relation of refinement. This makes the fol-
lowing question relevant: are there some properties between clocks which, when
specified at a given level of refinement, could be transferred into another level
of refinement without additional requirements? Sects. 5 and 6 aim at answering
this question after introducing refinement relations between clocks.

An Example of What to Expect. Let us take an example of what to expect here:
at a given level of refinement, we know that subclocking is transitive. This means
that, given three clocks c1, c2 and c3, if we know that c1 	 c2 and c2 	 c3 then
we can deduce c1 	 c3. In other words, the property c1 	 c3 does not need to
be given as an additional constraint, because it is deducible from the rest of
the context. In the following sections, we try to assess such assumptions, but in
various levels of refinement.

Refinement Between Clocks. In order to establish such properties, we need to
express what it means for clocks to refine one another. In that purpose, we pro-
pose two different relations of refinement between clocks, both of which bind
clocks from different levels of refinement. The first one, depicted in Sect. 5 con-
siders a refinement with an arbitrary number of refined ticks for a given abstract
event, whereas Sect. 6 depicts a more constrained form of refinement, where a
single concrete tick is allowed. These two notions are motivated both by their
own expressiveness and by the various CCSL relations they preserve.

Temporal Context. We consider, for the remaining of this paper, two layers
of refinement characterized by two partial orders (<c,≈c) and (<a,≈a). We
assume that these partial orders satisfy (<c,≈c) <r (<a,≈a). In that context,
whenever a CCSL relation will be mentioned, it will be prefixed with the layer
of refinement in which it is defined. For instance, if a clock c1 precedes a clock
c2 in the abstract layer of refinement, it will be written c1 ≺a c2. Usually, the
level of abstraction of each clock will also be written, in which case the previous
relation becomes ca1 ≺a ca2 . In this context, preservation properties toward
other existing CCSL constructs can and will be discussed. As a side node, every
result that is given afterwards has been mechanized and proved using the Agda

proof assistant [11], even though said mechanization will not be detailed in this
paper. The full development is provided in the first author PhD report [8].

130 M. Montin and M. Pantel

5 A First Generic CCSL Relation of Refinement

5.1 Definition of 1-N Refinement

Intuition. 1-N refinement aims at modelling the most common, unconstrained
relation of refinement. In that purpose, each abstract clock can be refined by
several concrete clocks, while each concrete event must be abstracted by a single
abstract clock. In addition, each tick of the abstract clock can be refined by a
strictly positive number of ticks for each of its concrete clocks. These number of
ticks can vary throughout the execution of the system. The following example
and definition will emphasize and capture these informal requirements.

Example. Let us consider the following situation: a worker is driving nails in a
plank of wood. In the abstract level, we consider driving the nail as an atomic
action, while in the more concrete level we consider hitting the nail with the
hammer the atomic action. Depending on how strong the worker is, it might
take him a few strikes for each nail to be driven in the plank, and each nail
could be driven in a different number of strikes. In this case, the clock Strikingc
is a 1-N refinement of the clock Drivinga, as shown on Fig. 5, where the blue
rectangles are the equivalence classes from the abstract point of view. Note that,
although this picture is very similar to the ones in Sect. 2.3, both clocks are here
coming from different levels of abstraction.

Fig. 5. An example of 1-N refinement

Definition. As a formalization of the previous example and intuition, we define
a relation of 1-N refinement between clocks, with C being the set of all clocks:

This definition is composed of two parts as follows:

– Any tick of the abstract clock is refined by a tick of the concrete clock. These
two ticks are coincident from the abstract point of view.

– Any tick of the concrete clock is a refinement of a tick of the abstract clock.
These two ticks are coincident in terms of the abstract partial order.

The required unicity of the abstraction in terms of ticks is a direct conse-
quence of this definition. Indeed, should we take two abstract ticks of the same
concrete ticks, they are coincident from the abstract point of view by transitiv-
ity of the abstract coincidence, since both are coincident with the concrete tick.

Towards Multi-layered Temporal Models 131

Moreover, clocks are subsets of totally ordered instants which means that two
coincident instants of the same clock are in fact propositionally equal, which
ensures the required unicity. Such a property, along with others, is part of the
formal counterpart of this work.

5.2 1-N Refinement and Coincidence-Based CCSL Relations

We experiment how 1-N refinement behaves when combined with CCSL notions
related to coincidence, that is subclocking, equality, exclusion and union.

Subclocking. As coincidence between instants is preserved through abstraction,
one would expect subclocking to be preserved as well. This has been proven to
hold, which lead to the following theorem:

Equality. Since equality between clocks is a case of double subclocking, equality
is also preserved through abstraction, which leads to the following theorem:

Exclusion. Refining excluded clocks cannot create coincident instants, which
means the refined clocks are excluded as well. This makes sense because the
abstract excluded clocks have ticks that are all in different equivalence classes
regarding abstract coincidence and the refined instants are still in these classes
and thus cannot be coincident even from the lower point of view. This leads to
the following theorem:

Multiple Concrete Clocks. When two clocks refine the same one, it means that
these two clocks track events that are part of the events tracked by the clock
being refined. Thus, it is natural to assume that the union of these clocks is still
a refinement of the abstract clock. In CCSL, the union of two clocks is simply
the union of their ticks, which leads to the following theorem:

Multiple Abstract Clocks. On the other hand, when a clock is a refinement of
two clocks, this means that the event it tracks is deduced from two entities,
leading us to assume that these entities are in fact the same. And indeed, our
formalism implies such clock equality, showing that our clock refinement is not
symmetrical, as expected. Here is the related theorem:

132 M. Montin and M. Pantel

5.3 1-N Refinement and Precedence-Based CCSL Relations

While 1-N refinement preserves CCSL notions related to coincidence, as depicted
in Sect. 5.2, investigating its impact on notions based on precedence (precedence,
causality and alternation) is not as fruitful since proving the refinement is not
sufficient for these relations to be transported. Figure 6 shows two examples
where these relations are not preserved. On these pictures, the two levels of
abstraction are represented, as well as two clocks per level. The brown arrows
represent the abstraction of an event while the orange ones show an embodiment
of such event, following the relation of refinement between these clocks. The
functions fa and fc are the binding functions of the precedences from both levels.
Note that the instants i, j, k, l are not suffixed because they do not belong to
any specific level of abstraction, or rather, they belong to both.

Fig. 6. 1-N refinement and precedence

Abstraction of Precedence. Figure 6a shows an example where a concrete prece-
dence (cc1 ≺c cc2) is not preserved through abstraction (¬(ca1 ≺a ca2)). This
happens because two instants that precede one another in the concrete level (in
this case fc(k) and fc(l)) might be two instances of the same abstract event.
In this case two events that precede one another in this abstract level (i and j)
might actually be mapped to the same abstract event by the precedence function
fa we are trying to build, which should be injective.

Embodiment of Precedence. Figure 6b shows an example where an abstract prece-
dence (ca1 ≺a ca2) is not preserved through embodiment (¬(cc1 ≺c cc2)). This
happens for a similar reason that invalidates the injectivity of the function fc.

Causality and Alternation. Since alternation is a specific case of precedence
and causality is a less constrained case of precedence, both of these relations
are necessarily not preserved through abstraction nor embodiment as well. The
reason is that a tick can be refined by several ticks of the same clock, thus
possibly compromising the injectivity of the binding function. Should we forbid
such behaviour, more relations could be preserved, which leads to 1-1 refinement.

Towards Multi-layered Temporal Models 133

6 A Second Specific CCSL Relation of Refinement

6.1 Definition of 1-1 Refinement

Intuition. 1-N refinement does not provide an immediate preservation of
coincidence-based CCSL relations, because it depicts a situation where such
relations simply are not propagated from one level to the next. As stated before,
the underlying reason of such a limitation does not lie in our ability to model
refinement, but rather in the arbitrary number of ticks each concrete clock can
have bound to a single abstract tick. By changing the number of ticks, relations
around precedence are naturally not preserved because they rely on the bijec-
tivity of the binding function. 1-1 refinement is meant to preserve the number of
ticks through refinement. Each abstract clock can still be refined by an arbitrary
number of concrete clocks, although each abstract tick can now only be refined
by a single tick of each concrete clocks.

Example. Going back at our example from Sect. 5.1, we can imagine that the
worker can now drive nails more efficiently: he manages to do so in only one strike
but it requires an increased accuracy, which is now considered a new concrete
step for the purposes of this example. This new situation is depicted on Fig. 7.

Fig. 7. An example of 1-1 refinement

Definition. This example leads to the definition of a relation of 1-1 refinement,
which only differs from 1-N refinement by the uniqueness of the refined ticks:

6.2 1-1 Refinement and Coincidence-Based CCSL Relations

Since unique existence implies existence, 1-1 refinement is trivially a specific case
of 1-N refinement, which means that any theorem regarding 1-N refinement and
coincidence-based CCSL relation shown in Sect. 5.2 still holds for 1-1 refinement.

6.3 1-1 Refinement and Precedence-Based CCSL Relations

The main goal of the 1-1 refinement is to provide CCSL with a notion of clock
refinement which naturally preserves precedence-related relations. In this section
we investigate to what extent this preservation is guaranteed.

134 M. Montin and M. Pantel

Embodiment of Causality. Causality is not preserved through embodiment, even
with 1-1 refinement, and for a very concrete reason, which is that abstract coin-
cidence can basically be transformed into any relation in the concrete level. Let
us take four clocks cc1 , cc2 , ca1 and ca2 such that cc1 �1−1 ca1 and cc2 �1−1 ca2 .
If we have ca1 �a ca2 this means that for a tick i of ca2 we have a tick j of
ca1 such that f(i) = j and i ≤a j. It is thus possible that i ≈a j which, in the
concrete level, can be transformed into j ≺c i which invalidates preservation of
causality through embodiment.

Embodiment of Precedence. Precedence, however, does not exhibit this kind of
possibility, and is preserved directly through embodiment, leading to the follow-
ing theorem:

Abstraction of Precedence and Causality. Causality and precedence are both
preserved in term of causality through abstraction. In other words, causality
is fully preserved while precedence becomes causality, leading to the following
theorem:

1-1 Refinement and Alternation. Since precedence is transformed into causality
through abstraction, we cannot expect alternation to be preserved in the process.
As for embodiment, Fig. 8 gives us an example as to why it does not hold either.
Indeed, in the concrete level we can see that both fc(k) and fc(l) precede k,
invalidating alternation.

Fig. 8. Alternation and embodiment

Towards Multi-layered Temporal Models 135

7 Additional Relations of Refinement

An interesting question would be to assess whether other refinement relations
would be relevant both in terms of expressiveness and in terms of direct preserva-
tion of properties, as even 1-1 refinement does not ensure the preservation of all
CCSL constructs. This section briefly (and informally) explores this question.

1-X Refinement. 1-X refinement could mean both of the following ideas: either
X is set and each abstract tick is refined by X ticks of the concrete clock, or X is
not set in which case each abstract tick must be refined by the same number of
concrete ticks. In the second case, the first ticks of the abstract clocks fixes X,
after which the clocks behaves as in the first case, which makes both of them very
similar. Both cases are a special case of 1-N refinement and could be modelled
as such, although they would not improve the number of direct properties that
are preserved, since they both change the overall number of ticks of the clocks.
Thus 1-X refinement seems moderately relevant.

N-N Refinement. The notions of 1-1 and 1-N refinement revolves around the
number of possible ticks rather than on the number of possible clocks. In both
cases, these refinements are actually 1-N in terms of clocks. Although a N-N
refinement in terms of clocks is easy to imagine (and is actually currently sup-
ported by considering the union of the N abstract clocks) it is hard to picture
what a N-N refinement in terms of ticks would mean. This could mean that any
number of ticks of the concrete clock would stand for any number of abstract
ticks, which does not seem reasonable nor relevant when thinking in terms of
concrete vs abstract. This could require further inspection but 1-1 and 1-N refine-
ment as presented seem to capture the essence of behavioural refinement.

8 Conclusion

8.1 Assessments

We propose an extension of the CCSL modelling language in order to enable
refinement checking between models. We provide two new CCSL relations
expressing the expected refinement between two clocks: 1-1 refinement and 1-N
refinement. These relations are different from the others CCSL relations because
they build a bridge between clocks coming from two different specifications rather
than a bridge between clocks from the same specification. Each of these differ-
ent specifications must correspond to a given level of refinement in the sense
that their partial order should comply with the relation of refinement which was
defined in Sect. 2.2. This extends the spectrum of CCSL through the expression
of relations between models at the various development steps.

This extended CCSL can be used in multiple ways. It allows the developer
to compare CCSL models in terms of refinement. It also provides a wide area
of experimentation around refinement, since 1-1 refinement is more constrained

136 M. Montin and M. Pantel

but directly preserves most CCSL relation while 1-N refinement is more permis-
sive but only preserves the main ones. Inside this range, our formal framework
enables the definition and proof of preservation of other intermediate refinement
relations less constraining than the 1-1 and preserving more properties than the
1-N. Moreover, this context can directly be used throughout the development
of time critical systems using the classical top down design where a concrete
model must refine an abstract one, in other words the concrete implementation
must comply with the abstract specification. Finally, this work can be used to
make explicit a common behaviour between various concrete models in the same
way inheritance captures common aspects between different classes in object
oriented design, ultimately enabling their synchronisation through this common
behavioural interface.

In the process of adding refinement to CCSL, we investigated how CCSL

operators behave when coupled with the new relations of clock refinement. These
preservation properties have been mathematically proven in our formal frame-
work that is thoroughly depicted in [8]. This investigation was fruitful when deal-
ing with CCSL notions which are bound to coincidences using 1-N refinement,
in the sense that refinement is fairly regular towards coincidence. It was even
more fruitful when considering 1-1 refinement, which was designed to preserve
properties of precedence, and which succeeded at doing so. These preservation
properties are fundamental regarding the confidence we have in capturing the
essence of refinement between clocks in a multi-layered temporal context.

8.2 Perspectives

TimeSquare [4] is an operational semantics for CCSL that provides us with
a modelling environment with associated simulation and verification tools. It
is based on a single partial order on which clocks are built conforming to a
given specification. The main perspective for our work would be to enrich both
the official version of CCSL and TimeSquare with our notions of refinement,
so that actual engineers could design their multi-layered models in CCSL and
verify them using TimeSquare. This requires to extend the core of the tool to
handle multiple partial orders instead of one.

Our work could be used to specify relations between systems whose
behaviours are similar, in the sense that they refine the same specification. We
would like to emphasize and validate this aspect of our work through examples
in that direction.

Our approach could be used on a wider range of case studies including more
complex industrial size ones that would probably emphasize the relevance of our
approach in modelling the behaviour of complex systems.

References

1. André, C., Mallet, F.: Clock Constraints in UML/MARTE CCSL. Research Report
RR-6540, INRIA (2008)

Towards Multi-layered Temporal Models 137

2. Buxton, J.N., Randell, B.: Software Engineering Techniques: Report of a Confer-
ence Sponsored by the NATO Science Committee, Rome, Italy, 27–31 October
1969, Brussels, Scientific Affairs Division, NATO (1970)

3. Deantoni, J., André, C., Gascon, R.: CCSL denotational semantics. Research
Report RR-8628 (2014)

4. DeAntoni, J., Mallet, F.: TimeSquare: treat your models with logical time. In:
Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 34–41. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30561-0_4

5. Dijkstra, E.W.: On the Role of Scientific Thought, pp. 60–66. Springer, New York
(1982). https://doi.org/10.1007/978-1-4612-5695-3_12

6. Lee, E.A.: Cyber physical systems: design challenges. In: 11th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2008),
Orlando, Florida, USA, 5–7 May 2008, pp. 363–369. IEEE Computer Society
(2008). https://doi.org/10.1109/ISORC.2008.25

7. Li, M., Vitányi, P.M.B.: An introduction to Kolmogorov Complexity and Its Appli-
cations. Texts and Monographs in Computer Science. Springer, New York (1993).
https://doi.org/10.1007/978-1-4757-3860-5

8. Montin, M.: A formal framework for heterogeneous systems semantics. Ph.D. thesis
(2020). http://montin.perso.enseeiht.fr/these.pdf

9. Montin, M., Pantel, M.: Mechanizing the denotational semantics of the clock con-
straint specification language. In: Abdelwahed, E.H., Bellatreche, L., Golfarelli, M.,
Méry, D., Ordonez, C. (eds.) MEDI 2018. LNCS, vol. 11163, pp. 385–400. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00856-7_26

10. Montin, M., Pantel, M.: Ordering strict partial orders to model behavioral refine-
ment. In: Derrick, J., Dongol, B., Reeves, S. (eds.) Proceedings 18th Refinement
Workshop, Refine@FM 2018. EPTCS, vol. 282, Oxford, UK, 18 July 2018, pp.
23–38 (2018). https://doi.org/10.4204/EPTCS.282.3

11. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden, September 2007

12. (OMG), O.M.G.: Unified modeling language, December 2017. https://www.omg.
org/spec/UML/About-UML/

13. (OMG), O.M.G.: UML profile for MARTE, April 2019. https://www.omg.org/
spec/MARTE/About-MARTE/

14. Petri, C.A.: Kommunikation mit Automaten. Dissertation, Schriften des IIM 2,
Rheinisch-Westfälisches Institut für Instrumentelle Mathematik an der Universität
Bonn, Bonn (1962)

15. Thurner, S., Hanel, R., Klimek, P.: Introduction to the Theory of Complex Systems.
Oxford University Press, Oxford (2018)

16. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2_31

https://doi.org/10.1007/978-3-642-30561-0_4
https://doi.org/10.1007/978-1-4612-5695-3_12
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1007/978-1-4757-3860-5
http://montin.perso.enseeiht.fr/these.pdf
https://doi.org/10.1007/978-3-030-00856-7_26
https://doi.org/10.4204/EPTCS.282.3
https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/spec/MARTE/About-MARTE/
https://www.omg.org/spec/MARTE/About-MARTE/
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31

A Case Study on Parametric Verification
of Failure Detectors

Thanh-Hai Tran1(B), Igor Konnov2, and Josef Widder2

1 TU Wien, Vienna, Austria
tran@forsyte.at

2 Informal Systems, Vienna, Austria

Abstract. Partial synchrony is a model of computation in many dis-
tributed algorithms and modern blockchains. Correctness of these algo-
rithms requires the existence of bounds on message delays and on the rel-
ative speed of processes after reaching Global Stabilization Time (GST).
This makes partially synchronous algorithms parametric in time bounds,
which renders automated verification of partially synchronous algorithms
challenging. In this paper, we present a case study on formal verification
of both safety and liveness of a Chandra and Toueg failure detector that
is based on partial synchrony. To this end, we specify the algorithm and
the partial synchrony assumptions in three frameworks: TLA+, Ivy, and
counter automata. Importantly, we tune our modeling to use the strength
of each method: (1) We are using counters to encode message buffers
with counter automata, (2) we are using first-order relations to encode
message buffers in Ivy, and (3) we are using both approaches in TLA+.
By running the tools for TLA+ (TLC and APALACHE) and counter
automata (FAST), we demonstrate safety for fixed time bounds. This
helped us to find the inductive invariants for fixed parameters, which
we used as a starting point for the proofs with Ivy. By running Ivy, we
prove safety for arbitrary time bounds. Moreover, we show how to ver-
ify liveness of the failure detector by reducing the verification problem
to safety verification. Thus, both properties are verified by developing
inductive invariants with Ivy. We conjecture that correctness of other
partially synchronous algorithms may be proven by following the pre-
sented methodology.

Keywords: Failure detectors · TLA+ · Counter automata · FAST ·
Ivy

1 Introduction

Distributed algorithms play a crucial role in modern infrastructure, but they are
notoriously difficult to understand and to get right. Network topologies, message
delays, faulty processes, the relative speed of processes, and fairness conditions
might lead to behaviors that were neither intended nor anticipated by algorithm

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 138–156, 2021.
https://doi.org/10.1007/978-3-030-78089-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-78089-0_8

A Case Study on Parametric Verification of Failure Detectors 139

designers. Hence, many specification and verification techniques for distributed
algorithms [14,22,27,29] have been developed.

Verification techniques for distributed algorithms usually focus on two mod-
els of computation: synchrony [31] and asynchrony [19,20]. Synchrony is hard
to implement in real systems, while many basic problems in fault-tolerant dis-
tributed computing are unsolvable in asynchrony.

Partial synchrony lies between synchrony and asynchrony, and escapes their
shortcomings. To guarantee liveness properties, proof-of-stake blockchains [9,35]
and distributed algorithms [8,11] assume time constraints under partial syn-
chrony. That is the existence of bounds Δ on message delay, and Φ on the rela-
tive speed of processes after some time point. This combination makes partially
synchronous algorithms parametric in time bounds. While partial synchrony is
important for system designers, it is challenging for verification.

We thus investigate verification of distributed algorithms under partial syn-
chrony, and start with the specific class of failure detectors: a Chandra and Toueg
failure detector [11]. This is a well-known algorithm under partial synchrony that
provides a service that can be used to solve many problems in fault-tolerant dis-
tributed computing.

Contributions. In this paper, we do parametric verification of both safety and
liveness of the Chandra and Toueg failure detector in case of unknown bounds Δ
and Φ. In this case, both Δ and Φ are arbitrary, and the constraints on message
delay and the relative speeds hold in every execution from the start.

1. We extend the cutoff results in [34] for partial synchrony. In a nutshell, a
cutoff for a parameterized algorithm A and a property φ is a number k such
that φ holds for every instance of A if and only if φ holds for instances with
k processes [7,16]. While the cutoff results [34] are for synchrony or asyn-
chrony, our results are for partial synchrony. Hence, we verify the Chandra
and Toueg failure detector under partial synchrony by checking instances with
two processes.

2. We introduce the encoding techniques to efficiently specify the failure detector
based on our cutoff results. These techniques can tune our modeling to use
the strength of the tools: FAST, Ivy, and model checkers for TLA+.

3. We demonstrate how to reduce the liveness properties Eventually Strong
Accuracy, and Strong Completeness to safety properties.

4. We check the safety property Strong Accuracy, and the mentioned liveness
properties on instances with fixed parameters by using FAST, and model
checkers for TLA+.

5. To verify cases of arbitrary bounds Δ and Φ, we find and prove inductive
invariants of the failure detector with the interactive theorem prover Ivy. We
reduce the liveness properties to safety properties by applying the mentioned
techniques. While our specifications are not in the decidable theories that
Ivy supports, Ivy requires no additional user assistance to prove most of our
inductive invariants.

Related work. Research papers about partially synchronous algorithms, includ-
ing papers about failure detectors [1,2,24] contain manual proofs and no formal

140 T.-H. Tran et al.

specifications. Without these details, proving those distributed algorithms with
interactive theorem provers [13,29] is impossible. To test a candidate I for an
inductive invariant with fixed parameters, system designers can apply probabilis-
tic random checking with TLA+ and TLC [23]. However, this approach randomly
explores a subset of the execution space. Hence, it can show a counterexam-
ple to induction, but cannot prove that I is an inductive invariant. We prove
inductive invariants in small cases with the model checker APALACHE [18].
System designers can use timed automata [3] and parametric verification frame-
works [4,25,26] to specify and verify timed systems. In the context of timed sys-
tems, we are aware of only one paper about verification of failure detectors [5].
In this paper, the authors used three tools, namely UPPAAL [25], mCRL2 [10],
and FDR2 [30] to verify small instances of a failure detector based on a log-
ical ring arrangement of processes. Their verification approach required that
message buffers were bounded, and had restricted behaviors in the specifica-
tions. Moreover, they did not consider the bound Φ on the relative speed of
processes. In contrast, there are no restrictions on message buffers, and no ring
topology in the Chandra and Toueg failure detector. Moreover, our work is to
verify the Chandra and Toueg failure detector in case of arbitrary bounds. In
recent years, automatic parameterized verification techniques [14,19,31] have
been introduced for distributed systems, but they are designed for synchronous
and/or asynchronous models. Interactive theorem provers have been used to
prove correctness of distributed algorithms recently. For example, researchers
proved safety of Tendermint consensus with Ivy [17].

Structure. In Sect. 2, we summarize the Chandra and Toueg failure detector,
and the cutoff results in [34]. In Sect. 3, we extend the cutoff results in [34] for
partial synchrony. Our encoding technique is presented in Sect. 4. In Sect. 5, we
present how to reduce the mentioned liveness properties to safety ones. Exper-
iments for small Δ and Φ are described in Sect. 6. Ivy proofs for parametric Δ
and Φ are discussed in Sect. 7.

2 Preliminaries

This section describes the Chandra and Toueg failure detector [11], and the cutoff
results [34] that we can extend to this failure detector under partial synchrony.

A failure detector can be seen as an oracle to get information about crash
failures in the distributed system. A failure detector usually guarantees some of
the following properties [11] (numbers 1..N denote the process identifiers):

– Strong Accuracy: No process is suspected before it crashes.
G(∀p, q ∈ 1..N : (Correct(p) ∧ Correct(q)) ⇒ ¬Suspected(p, q))

– Eventual Strong Accuracy: There is a time after which correct processes are
not suspected by any correct process.

FG(∀p, q ∈ 1..N : (Correct(p) ∧ Correct(q)) ⇒ ¬Suspected(p, q))
– Strong Completeness: Eventually every crashed process is permanently sus-

pected by every correct process.
FG(∀p, q ∈ 1..N : (Correct(p) ∧ ¬Correct(q)) ⇒ Suspected(p, q))

A Case Study on Parametric Verification of Failure Detectors 141

Algorithm 1. The eventually perfect failure detector algorithm in [11]
1: Every process p ∈ 1..N executes the following :
2: for all q ∈ 1..N do � Initalization step
3: timeout [p, q] ··= default-value
4: suspected [p, q] ··= ⊥
5: Send “alive” to all q ∈ 1..N � Task 1: repeat periodically
6: for all q ∈ 1..N do � Task 2: repeat periodically
7: if suspected [p, q] = ⊥ and not hear q during last timeout [p, q] ticks then
8: suspected [p, q] ··= �
9: if suspected [p, q] then � Task 3: when receive “alive” from q

10: timeout [p, q] ··= timeout [p, q] + 1
11: suspected [p, q] ··= ⊥

where F and G are operators in LTL (linear temporal logic), predicate
Suspect(p, q) refers to whether process p suspects process q in crashing, and
predicate Correct(p) refers to whether process p is correct. However, process p
might crash later (and not recover). A crashed process p satisfies ¬Correct(p).

Algorithm 1 presents the pseudo-code of the failure detector of [11]. A system
instance has N processes that communicate with each other by sending-to-all
and receiving messages through unbounded N2 point-to-point communication
channels. A process performs local computation based on received messages (we
assume that a process also receives the messages that it sends to itself). In one
system step, all processes may take up to one step. Some processes may crash,
i.e., stop operating. Correct processes follow Algorithm 1 to detect crashes in
the system. Initially, every correct process sets a default value for a timeout of
each other, i.e. how long it should wait for others and assumes that no processes
have crashed (Line 4). Every correct process p has three tasks: (i) repeatedly
sends an “alive” message to all (Line 5), and (ii) repeatedly produces predictions
about crashes of other processes based on timeouts (Line 6), and (iii) increases
a timeout for process q if p has learned that its suspicion on q is wrong (Line 9).
Notice that process p raises suspicion on the operation of process q (Line 6)
by considering only information related to q: timeout [p, q] , suspected [p, q], and
messages that p has received from q recently.

Algorithm 1 does not satisfy Eventually Strong Accuracy under asynchrony
since there exists no bound on message delay, and messages sent by correct
processes might always arrive after the timeout expired. Liveness of the failure
detector is based on the existence of bounds Δ on the message delay, and Φ on
the relative speed of processes after reaching the global stabilization at some
time point T0 [11]. There are many models of partial synchrony [11,15]. In this
paper, we focus only on the case of unknown bounds Δ and Φ because other
models might call for abstractions. In this case, T0 = 1, and both parameters Δ
and Φ are arbitrary. Moreover, the following constraints hold in every execution:

– Constraint 1: If message m is placed in the message buffer from process q to
process p by some Send(m, p) at a time s1 ≥ 1, and if process p executes a

142 T.-H. Tran et al.

Receive(p) at a time s2 with s2 ≥ s1 + Δ, then message m must be delivered
to p at time s2 or earlier.

– Constraint 2: In every contiguous time interval [t, t + Φ] with t ≥ 1, every
correct process must take at least one step.

These constraints make the failure detector parametric in Δ and Φ.
Moreover, Algorithm 1 is parameterized by the initial value of the timeout.

If a default value of the timeout is too small, there exists a case in which sent
messages are delivered after the timeout expired. It violates Strong Accuracy.

In [34], Thanh-Hai et al. defined a class of symmetric point-to-point dis-
tributed algorithms that contains the failure detector [11], and proved cutoffs
on the number of processes for this class under asynchrony. These cutoff results
guarantee that analyzing instances with two processes is sufficient to reason
about the correctness of all instances of the Chandra and Toueg failure detector
under asynchrony. In the following section, we will generalize this result to par-
tial synchrony, which allows us to verify the mentioned properties on the failure
detector by checking instances with only two processes.

3 Cutoffs of the Failure Detector

In this section, we extend the cutoffs of symmetric point-to-point distributed
algorithms in [34] for partial synchrony.

Notice that time parameters in partial synchrony only reduce the execution
space compared to asynchrony. Hence, we can formalize the system behaviors
under partial synchrony by extending the formalization of the system behaviors
under asynchrony in [34] with the notion of time, message ages, time constraints
under partial synchrony. (Our formalization is left for the full report [32].)

In a nutshell, our cutoff results for the symmetric point-to-point class allow us
to verify the mentioned properties on the failure detector under partial synchrony
by checking small instances with one and/or two processes. Intuitively, the proofs
of our cutoffs are based on the following observations:

– The global transition system and the desired property are symmetric [34].
– Let G2 and GN be two instances of a symmetric point-to-point algorithm with

2 and N processes, respectively. By [34], two instances G2 and GN are trace
equivalent under a set of predicates in the desired property.

– We will now discuss that the constraints maintain partial synchrony. Let πN

be an execution in GN . We construct an execution π2 in G2 by applying
the index projection to πN (formally defined in [34]). Intuitively, the index
projection discards processes 3..N as well as their corresponding messages
and buffers. Moreover, for every k, � ∈ {1, 2}, the index projection preserves
(i) at which point in time process k takes a step, and (ii) what action process
k takes at a time t ≥ 0, and (iii) messages from process k to process �.
Figure 1 demonstrates an execution in G2 that is constructed based on a given
execution in G3 with the index projection. Observe that Constraints 1 and 2
are maintained in this projection.

A Case Study on Parametric Verification of Failure Detectors 143

Fig. 1. Given execution in G3, construct an execution in G2 by index projection.

Fig. 2. Construct an execution in G3 based on a given execution in G2.

– Let π2 be an execution in G2. We construct an execution πN in GN based on
π2 such that all processes 3..N crash from the beginning, and π2 is an index
projection of πN [34]. For example, Fig. 2 demonstrates an execution in G3

that is constructed based on an given execution in G2. If Constraints 1 and 2
hold on π2, these constraints also hold on πN .

4 Encoding the Chandra and Toueg Failure Detector

In this section, we first discuss why it is sufficient to verify the failure detector
by checking a system with only one sender and one receiver by applying the
cutoffs presented in Sect. 3. Next, we introduce two approaches to encoding the
message buffer, and an abstraction of in-transit messages that are older than Δ
time-units. Finally, we present how to encode the relative speed of processes with
counters over natural numbers. These techniques allow us to tune our models to
the strength of the verification tools: FAST, Ivy, and model checkers for TLA+.

4.1 The System with One Sender and One Receiver

We discussed our cutoff results in Sect. 3. These results allow us to verify the
Chandra and Toueg failure detector under partial synchrony by checking only
instances with two processes. In the following, we discuss the model with two
processes, and formalize the properties with two-process indexes. By process
symmetry, it is sufficient to verify Strong Accuracy, Eventually Strong Accuracy,
and Strong Completeness by checking the following properties.

G((Correct(1) ∧ Correct(2)) ⇒ ¬Suspected(2, 1)) (1)
FG((Correct(1) ∧ Correct(2)) ⇒ ¬Suspected(2, 1)) (2)

FG((¬Correct(1) ∧ Correct(2)) ⇒ Suspected(2, 1)) (3)

144 T.-H. Tran et al.

We can take a further step towards facilitating verification of the failure
detector. First, every process typically has a local variable to store messages that
it needs to send to itself, instead of using a real communication channel. Hence,
we can assume that there is no delay for those messages, and that each correct
process never suspects itself. Second, local variables in Algorithm 1 are arrays
whose elements correspond one-to-one with a remote process, e.g., timeout [2, 1]
and suspected [2, 1]. Third, communication between processes is point-to-point.
When this is not the case, one can use cryptography to establish one-to-one
communication. Hence, reasoning about Properties 1–3 requires no information
about messages from process 1 to itself, local variables of process 1, and messages
from process 2.

Due to the above characteristics, it is sufficient to consider process 1 as
a sender, and process 2 as a receiver. In detail, the sender follows Task 1 in
Algorithm 1, but does nothing in Task 2 and Task 3. The sender does not need
the initialization step, and local variables suspected and timeout. In contrast,
the receiver has local variables corresponding to the sender, and follows only
the initialization step, and Task 2, and Task 3 in Algorithm 1. The receiver can
increase its waiting time in Task 1, but does not send any message.

4.2 Encoding the Message Buffer

Algorithm 1 assumes unbounded message buffers between processes that produce
an infinite state space. Moreover, a sent message might be in-transit for a long
time before it is delivered. We first introduce two approaches to encode the
message buffer based on a logical predicate, and a counter over natural numbers.
The first approach works for TLA+ and Ivy, but not for counter automata
(FAST). The latter is supported by all mentioned tools, but it is less efficient
as it requires more transitions. Then, we present an abstraction of in-transit
messages that are older than Δ time-units. This technique reduces the state
space, and allows us to tune our models to the strength of the verification tools.

Encoding the Message Buffer with a Predicate. In Algorithm 1, only
“alive” messages are sent, and the message delivery depends only on the age of
in-transit messages. Moreover, the computation of the receiver does not depend
on the contents of its received messages. Hence, we can encode a message buffer
by using a logical predicate existsMsgOfAge(x). For every k ≥ 0, predicate
existsMsgOfAge(k) refers to whether there exists an in-transit message that is k
time-units old. The number 0 refers to the age of a fresh message in the buffer.

It is convenient to encode the message buffer’s behaviors in this approach.
For instance, Formulas 4 and 5 show constraints on the message buffer when a
new message is sent:

existsMsgOfAge′(0) = � (4)
∀x ∈ N . x > 0 ⇒ existsMsgOfAge′(x) = existsMsgOfAge(x) (5)

A Case Study on Parametric Verification of Failure Detectors 145

Fig. 3. The message buffer after increasing message ages in case of buf = 6

where existsMsgOfAge′ refers to the value of existsMsgOfAge in the next state.
Formula 4 implies that a fresh message has been added to the message buffer.
Formula 5 ensures that other in-transit messages are unchanged.

Another example is the relation between existsMsgOfAge and existsMsgOfAge′

after the message delivery. This relation is formalized with Formulas 6–9. For-
mula 6 requires that there exists an in-transit message in existsMsgOfAge that
can be delivered. Formula 7 ensures that no old messages are in transit after
the delivery. Formula 8 guarantees that no message is created out of thin air.
Formula 9 implies that at least one message is delivered.

∃x ∈ N . existsMsgOfAge(x) (6)
∀x ∈ N . x ≥ Δ ⇒ ¬existsMsgOfAge′(x) (7)
∀x ∈ N . existsMsgOfAge′(x) ⇒ existsMsgOfAge(x) (8)
∃x ∈ N . existsMsgOfAge′(x) 	= existsMsgOfAge(x) (9)

This encoding works for TLA+ and Ivy, but not for FAST, because the input
language of FAST does not support functions.

Encoding the Message Buffer with a Counter. In the following, we present
an encoding technique for the buffer that can be applied in all tools TLA+, Ivy,
and FAST. This approach encodes the message buffer with a counter buf over
natural numbers. The kth bit refers to whether there exists an in-transit message
with k time-units old.

In this approach, message behaviors are formalized with operations in Pres-
burger arithmetic. For example, assume Δ > 0, we write buf′ = buf + 1 to add
a fresh message in the buffer. Notice that the increase of buf by 1 turns on the
0th bit, and keeps the other bits unchanged.

To encode the increase of the age of every in-transit message by 1, we simply
write buf′ = buf × 2. Assume that we use the least significant bit (LSB) first
encoding, and the left-most bit is the 0th bit. By multiplying buf by 2, we have
updated buf′ by shifting to the right every bit in buf by 1. For example, Fig. 3
demonstrates the message buffer after the increase of message ages in case of
buf = 6. We have buf′ = buf × 2 = 12. It is easy to see that the 1st and 2nd

bits in buf are on, and the 2nd and 3rd bits in buf′ are on.
Recall that Presburger arithmetic does not allow one to divide by a variable.

Therefore, to guarantee the constraint in Formula 8, we need to enumerate all
constraints on possible values of buf and buf′ after the message delivery. For
example, assume buf = 3, and Δ = 1. After the message delivery, buf′ is either
0 or 1. If buf = 2 and Δ = 1, buf′ must be 0 after the message delivery.

146 T.-H. Tran et al.

Fig. 4. The increase of message ages with the abstraction of old messages. In the case
(a), we have Δ = 2, buf = 6, and buf′ = 4. In the case (b), we have Δ = 2, buf = 5,
and buf′ = 6.

Importantly, the number of transitions for the message delivery depends on the
value of Δ.

To avoid the enumeration of all possible cases, Formula 8 can be rewrit-
ten with bit-vector arithmetic. However, bit-vector arithmetic are currently not
supported in all verification tools TLA+, FAST, and Ivy.

The advantage of this encoding is that when bound Δ is fixed, every con-
straint in the system behaviors can be rewritten in Presburger arithmetic. Thus,
we can use FAST, which accepts constraints in Presburger arithmetic. To specify
cases with arbitrary Δ, the user can use TLA+ or Ivy.

Abstraction of Old Messages. Algorithm 1 assumes underlying unbounded
message buffers between processes. Moreover, a sent message might be in transit
for a long time before it is delivered. To reduce the state space, we develop
an abstraction of in-transit messages that are older than Δ time-units; we call
such messages “old”. This abstraction makes the message buffer between the
sender and the receiver bounded. In detail, the message buffer has a size of Δ.
Importantly, we can apply this abstraction to two above encoding techniques for
the message buffer.

In partial synchrony, if process p executes Receive at some time point from
the Global Stabilization Time, every old message sent to p will be delivered
immediately. Moreover, the computation of a process in Algorithm 1 does not
depend on the content of received messages. Hence, instead of tracking all old
messages, our abstraction keeps only one old message that is Δ time-units old,
does not increase its age, and throws away other old messages.

In the following, we discuss how to integrate this abstraction into the encod-
ing techniques of the message buffer. We demonstrate our ideas by showing the
pseudo-code of the increase of message ages. It is straightforward to adopt this
abstraction to the message delivery, and to the sending of a new message.

Figure 4(a) presents the increase of message ages with this abstraction in a
case of Δ = 2, and buf = 6. Unlike Fig. 3, there exists no in-transit message that
is 3 time-units old in Fig. 4(a). Moreover, the message buffer in Fig. 4(a) has a
size of 3. In addition, buf′ has only one in-transit message that is 2 time-units
old. We have buf′ = 4 in this case. Figure 4(b) demonstrates another case of
Δ = 2, buf = 5, and buf′ = 6.

A Case Study on Parametric Verification of Failure Detectors 147

Fig. 5. Encoding the increase of message ages with a counter buf, and the abstraction
of old messages.

Formally, Fig. 5 presents the pseudo-code of the increase of message ages that
is encoded with a counter buf, and the abstraction of old messages. There are
three cases. In the first case (Line 1), there exist no old messages in buf, and we
simply set buf′ = buf × 2. In other cases (Lines 3 and 4), buf contains an old
message. Figure 4(a) demonstrates the second case (Line 3). We subtract 2Δ+1

to remove an old message with Δ+1 time-units old from the buffer. Figure 4(b)
demonstrates the third case (Line 4). In the third case, we also need to remove
an old message with Δ + 1 time-units old from the buffer. Moreover, we need to
put an old message with Δ time-units old to the buffer by adding 2Δ.

Now we discuss how to integrate the abstraction of old messages in the encod-
ing of the message buffer with a predicate. Formulas 10–13 present the relation
between existsMsgOfAge and existsMsgOfAge′ when message ages are increased
by 1, and this abstraction is applied. Formula 10 ensures that no fresh message
will be added to existsMsgOfAge′. Formula 11 ensures that the age of every mes-
sage that is until (Δ − 2) time-units old will be increased by 1. Formulas 12–13
are introduced by this abstraction. Formula 12 implies that if there exists an
old message or a message with (Δ − 1) time-units old in existsMsgOfAge, there
will be an old message that is Δ time-units old in existsMsgOfAge′. Formula 13
ensures that there exists no message that is older than Δ time-units old.

¬existsMsgOfAge′(0) (10)
∀x ∈ N . (0 ≤ x ≤ Δ − 2)

⇒ existsMsgOfAge′(x + 1) = existsMsgOfAge(x) (11)
existsMsgOfAge′(Δ) = existsMsgOfAge(Δ) ∨ existsMsgOfAge(Δ − 1) (12)
∀x ∈ N . x > Δ ⇒ existsMsgOfAge′(x) = ⊥ (13)

4.3 Encoding the Relative Speed of Processes

Recall that we focus on the case of unknown bounds Δ and Φ. In this case, every
correct process must take at least one step in every contiguous time interval
containing Φ time-units [15].

To maintain this constraint on executions generated by the verification tools,
we introduced two additional control variables sTimer and rTimer for the sender
and the receiver, respectively. These variables work as timers to keep track of how
long a process has not taken a step, and when a process can take a step. Since
these timers play similar roles, we here focus on rTimer. In our encoding, only
the environment can update rTimer. To schedule the receiver, the environment

148 T.-H. Tran et al.

non-deterministically executes one of two actions: (i) resets rTimer to 0, and
(ii) if rTimer < Φ, increases rTimer by 1. Moreover, the receiver must take a step
whenever rTimer = 0.

5 Reduce Liveness Properties to Safety Properties

To verify the liveness properties Eventually Strong Accuracy and Strong Com-
pleteness with Ivy, we first need to reduce them to safety properties. Intuitively,
these liveness properties are bounded; therefore, they become safety ones. This
section demonstrates how to reduce Eventually Strong Accuracy to a safety one.

By cutoffs discussed in Sect. 3, it is sufficient to verify Eventually Strong
Accuracy on the Chandra and Toueg failure detector by checking the following
property on instances with 2 processes.

FG((Correct(1) ∧ Correct(2)) ⇒ ¬Suspected(2, 1)) (14)

In the failure detector [11], the receiver suspects the sender only if its waiting
time reaches the timeout (see Line 6 in Algorithm 1). To reduce Formula 14 to a
safety property, we found a specific guard g for timeout such that if timeout ≥ g
and the sender is correct, then waitingtime < g. Hence, it is sufficient to verify
Formula 14 by checking the following property.

G
(
timeout ≥ g ⇒ ((Correct(1) ∧ Correct(2)) ⇒ ¬Suspected(2, 1))

)

6 Experiments for Small Δ and Φ

In this section, we describe our experiments with TLA+ and FAST. We ran the
following experiments on a virtual machine with Core i7-6600U CPU and 8GB
DDR4. Our specifications can be found at [33].

6.1 Model Checkers For TLA+: TLC and APALACHE

In our work, we use TLA+ [22] to specify the failure detector with both encoding
techniques for the message buffer, and the abstraction in Sect. 4. Then, we use
the model checkers TLC [36] and APALACHE [18] to verify instances with
fixed bounds Δ and Φ, and the GST T0 = 1. This approach helps us to search
constraints in inductive invariants in case of fixed parameters. The main reason
is that counterexamples and inductive invariants in case of fixed parameters, e.g.,
Δ ≤ 1 and Φ ≤ 1, are simpler than in case of arbitrary parameters. Hence, if a
counterexample is found, we can quickly analyze it, and change constraints in
an inductive invariant candidate. After obtaining inductive invariants in small
cases, we can generalize them for cases of arbitrary bounds, and check with
theorem provers, e.g., Ivy (Sect. 7).

TLA+ offers a rich syntax for sets, functions, tuples, records, sequences,
and control structures [22]. Hence, it is straightforward to apply the encoding

A Case Study on Parametric Verification of Failure Detectors 149

Fig. 6. Sending a new message in TLA+ in case of Δ > 0

techniques and the abstraction presented in Sect. 4 in TLA+. For example, Fig. 6
represents a TLA+ action SSnd for sending a new message in case of Δ > 0.
Variables ePC and sPC are program counters for the environment and the
sender, respectively. Line 1 is a precondition, and refers to that the environment
is in subround Send. Lines 2–3 say that if the sender is active in subround Send,
the counter buf ′ is increased by 1. Otherwise, two counters buf and buf ′ are
the same (Line 4). Line 5 implies that the environment is still in the subround
Send, but it is now the receiver’s turn. Line 6 guarantees that other variables
are unchanged in this action. (The details are left for the full report [32].)

Now we present the experiments with TLC and APALACHE. We used these
tools to verify (i) the safety property Strong Accuracy, and (ii) an inductive
invariant for Strong Accuracy, and (iii) an inductive invariant for a safety prop-
erty reduced from the liveness property Strong Completeness in case of fixed
bounds, and GST = 1 (initial stabilization). The structure of the inductive
invariants verified here are very close to one in case of arbitrary bounds Δ
and Φ.

Table 1 shows the results in verification of Strong Accuracy in case of the ini-
tial stabilization, and fixed bounds Δ and Φ. Table 1 shows the experiments with
the three tools TLC, APALACHE, and FAST. The column “#states” shows
the number of distinct states explored by TLC. The column “#depth” shows
the maximum execution length reached by TLC and APALACHE. The column
“buf” shows how to encode the message buffer. The column “LOC” shows the
number of lines in the specification of the system behaviors (without comments).
The symbol “-” (minus) refers to that the experiments are intentionally missing
since FAST does not support the encoding of the message buffer with a predi-
cate. The abbreviation “pred” refers to the encoding of the message buffer with
a predicate. The abbreviation “cntr” refers to the encoding of the message buffer
with a counter. The abbreviation “TO” means a timeout of 6 h. In these exper-
iments, we initially set timeout = 6 × Φ + Δ, and Strong Accuracy is satisfied.
The experiments show that TLC finishes its tasks faster than the others, and
APALACHE prefers the encoding of the message buffer with a predicate.

Table 2 summarizes the results in verification of Strong Accuracy with the
tools TLC, APALACHE, and FAST in case of the initial stabilization, and
small bounds Δ and Φ, and initially timeout = Δ+1. Since timeout is initialized
with a too small value, there exists a case in which sent messages are delivered
after the timeout expires. The tools reported an error execution where Strong

150 T.-H. Tran et al.

Table 1. Showing strong accuracy for fixed parameters.

Δ Φ buf TLC APALACHE FAST

Time #states Depth LOC Time Depth Time LOC

1 2 4 Pred 3 s 10.2 K 176 190 8m 176 - -

2 cntr 3 s 10.2 K 176 266 9m 176 16 m 387

3 4 4 pred 3 s 16.6 K 183 190 12m 183 - -

4 cntr 3 s 16.6 K 183 487 35m 183 TO 2103

5 4 *5 pred 3 s 44.7 K 267 190 TO 222 - -

6 cntr 3 s 44.7 K 267 487 TO 223 TO 2103

Table 2. Violating strong accuracy for fixed parameters.

Δ Φ buf TLC APALACHE FAST

Time #states Depth Time Depth Time

1 2 4 pred 1 s 840 43 11 s 42 -

2 cntr 1 s 945 43 12 s 42 10 m

3 4 4 pred 2 s 1.3 K 48 15 s 42 -

4 cntr 2 s 2.4 K 56 16 s 42 TO

5 20 20 pred TO 22.1 K 77 1 h 15m 168 -

Accuracy is violated. In these experiments, APALACHE is the winner. The
abbreviation “TO” means a timeout of 6 h. The meaning of other columns and
abbreviations is the same as in Table 1.

Table 3 shows the results in verification of inductive invariants for Strong
Accuracy and Strong Completeness with TLC and APALACHE in case of the
initial stabilization, and slightly larger bounds Δ and Φ. The message buffer was
encoded with a predicate in these experiments. In these experiments, inductive
invariants hold, and APALACHE is faster than TLC in verifying them.

As one sees from the tables, APALACHE is fast at proving inductive invari-
ants, and at finding a counterexample when a desired safety property is violated.
TLC is a better option in cases where a safety property is satisfied.

In order to prove correctness of the failure detector in cases where parameters
Δ and Φ are arbitrary, the user can use the interactive theorem prover TLA+

Table 3. Proving inductive invariants with TLC and APALACHE.

Δ Φ Property TLC APALACHE

Time #states Time

1 4 40 Strong accuracy 33 m 347.3 M 12 s

2 4 10 Strong completeness 44 m 13.4 M 17 s

A Case Study on Parametric Verification of Failure Detectors 151

Fig. 7. Sending a new message in FAST in case of Δ > 0

Proof System (TLAPS) [12]. A shortcoming of TLAPS is that it does not
provide a counterexample when an inductive invariant candidate is violated.
Moreover, proving the failure detector with TLAPS requires more human effort
than with Ivy. Therefore, we provide Ivy proofs in Sect. 7.

6.2 FAST

A shortcoming of the model checkers TLC and APALACHE is that parameters
Δ and Φ must be fixed before running these tools. FAST is a tool designed to
reason about safety properties of counter systems, i.e. automata extended with
unbounded integer variables [6]. If Δ is fixed, and the message buffer is encoded
with a counter, the failure detector becomes a counter system. We specified the
failure detector in FAST, and made experiments with different parameter values
to understand the limit of FAST: (i) the initial stabilization, and small bounds
Δ and Φ, and (ii) the initial stabilization, fixed Δ, but unknown Φ.

Figure 7 represents a FAST transition for sending a new message in case of
Δ > 0. Line 2 describes the (symbolic) source state of the transition, and region
incMsgAge is a set of configurations in the failure detector that is reachable
from a transition for increasing message ages. Line 3 mentions the (symbolic)
destination state of the transition, and region sSnd is a set of configurations in
the failure detector that is reachable from a transition named “SSnd Active” for
sending a new message. Line 4 represents the guard of this transition. Line 5 is
an action. Every unprimed variable that is not written in Line 5 is unchanged.

The input language of FAST is based on Presburger arithmetics for both
system and properties specification. Hence, we cannot apply the encoding of the
message buffer with a predicate in FAST.

Tables 1 and 2 described in the previous subsection summarize the experi-
ments with FAST, and other tools where all parameters are fixed. Moreover, we
ran FAST to verify Strong Accuracy in case of the initial stabilization, Δ ≤ 4,
and arbitrary Φ. FAST is a semi-decision procedure; therefore, it does not ter-
minate on some inputs. Unfortunately, FAST could not prove Strong Accuracy
in case of arbitrary Φ, and crashed after 30 min.

7 Ivy Proofs for Parametric Δ and Φ

While TLC, APALACHE, and FAST can automatically verify some instances
of the failure detector with fixed parameters, these tools cannot handle cases

152 T.-H. Tran et al.

with unknown bounds Δ and Φ. To overcome this problem, we specify and prove
correctness of the failure detector with the interactive theorem prover Ivy [28].
In the following, we first discuss the encoding of the failure detector, and then
presents the experiments with Ivy.

The encoding of the message buffer with a counter requires that bound Δ is
fixed. We here focus on cases where bound Δ is unknown. Hence, we encode the
message buffer with a predicate in our Ivy specifications.

In Ivy, we declare relation existsMsgOfAge(X : num). Type num is inter-
preted as integers. Since Ivy does not support primed variables, we need an
additional relation tmpExistsMsgOfAge(X : num). Intuitively, we first compute
and store the value of existsMsgOfAge in the next state in tmpExistsMsgOfAge,
then copy the value of tmpExistsMsgOfAge back to existsMsgOfAge. We do not
consider the requirement of tmpExistsMsgOfAge as a shortcoming of Ivy since it
is still straightforward to transform the ideas in Sect. 4 to Ivy.

Figure 2 represents how to add a fresh message in the message buffer in Ivy.
Line 1 means that tmpExistsMsgOfAge is assigned an arbitrary value. Line 2
guarantees the appearance of a fresh message. Line 3 ensures that every in-
transit message in existsMsgOfAge is preserved in tmpExistsMsgOfAge. Line 4
copies the value of tmpExistsMsgOfAge back to existsMsgOfAge.

Algorithm 2. Adding a fresh message in Ivy
1: tmpExistsMsgOfAge(X) ··= ∗;
2: assume tmpExistsMsgOfAge(0);
3: assume forall X : num . 0 < X → existsMsgOfAge(X) = tmpExistsMsgOfAge(X);
4: existsMsgOfAge(X) ··= tmpExistsMsgOfAge(X);

Importantly, our specifications are not in decidable theories supported by
Ivy. In Formula 11, the interpreted function “ + ” (addition) is applied to a
universally quantified variable x.

The standard way to check whether a safety property Prop holds in an Ivy
specification is to find an inductive invariant IndInv with Prop, and to (inter-
actively) prove that Indinv holds in the specification. To verify the liveness
properties Eventually Strong Accuracy, and Strong Completeness, we reduced
them into safety properties by applying a reduction technique in Sect. 5, and
found inductive invariants containing the resulted safety properties. These induc-
tive invariants are the generalization of the inductive invariants in case of fixed
parameters that were found in the previous experiments.

Table 4 shows the experiments on verification of the failure detector with Ivy
in case of unknown Δ and Φ. The symbol � refers to that the initial value of time-
out is arbitrary. The column “#lineI” shows the number of lines of an inductive
invariant, and the column “#strengthening steps” shows the number of lines of
strengthening steps that we provided for Ivy. The meaning of other columns is
the same as in Table 1. While our specifications are not in the decidable theories

A Case Study on Parametric Verification of Failure Detectors 153

Table 4. Proving inductive invariants with Ivy for arbitrary Δ and Φ.

Property timeoutinit Time LOC #lineI #strengthening

steps

1 Strong accuracy = 6 × Φ + Δ 4 s 183 30 0

2 Eventually strong accuracy = � 4 s 186 35 0

3 Strong completeness = 6 × Φ + Δ 8 s 203 111 0

4 ≥ 6 × Φ + Δ 22 s 207 124 15

5 = � 44 s 207 129 0

supported in Ivy, our experiments show that Ivy needs no user-given strength-
ening steps to prove most of our inductive invariants. Hence, it took us about
4 weeks to learn Ivy from scratch, and to prove these inductive invariants.

The most important thing to prove a property satisfied in an Ivy specification
is to find an inductive invariant. Our inductive invariants use non-linear integers,
quantifiers, and uninterpreted functions. (The inductive invariants in Table 4 are
given in the full report [32].)

8 Conclusion

We have presented verification of both safety and liveness of the Chandra and
Toeug failure detector by using the verification tools: model checkers for TLA+

(TLC and APALACHE), counter automata (FAST), and the theorem prover
Ivy. To do that, we first prove the cutoff results that can apply to the failure
detector under partial synchrony. Next, we develop the encoding techniques to
efficiently specify the failure detector, and to tune our models to the strength of
the mentioned tools. We verified safety in case of fixed parameters by running the
tools TLC, APALACHE, and FAST. To cope with cases of arbitrary bounds Δ
and Φ, we reduced liveness properties to safety properties, and proved inductive
invariants with desired properties in Ivy. While our specifications are not in the
decidable theories supported in Ivy, our experiments show that Ivy needs no
additional user assistance to prove most of our inductive invariants.

Modeling the failure detector in TLA+ helps us understand and find induc-
tive invariants in case of fixed parameters. Their structure is simpler but similar
to the structure of parameterized inductive invariants. We found that the TLA+

Toolbox [21] has convenient features, e.g., Profiler and Trace Exploration. A
strong point of Ivy is in producing a counterexample quickly when a property
is violated, even if all parameters are arbitrary. In contrast, FAST reports no
counterexample in any case. Hence, debugging in FAST is very challenging.

While our specification describes executions of the Chandra and Toueg fail-
ure detector, we conjecture that many time constraints on network behaviors,
correct processes, and failures in our inductive invariants can be reused to prove
other algorithms under partial synchrony. We also conjecture that correctness
of other partially synchronous algorithms may be proven by following the pre-
sented methodology. For future work, we would like to extend the above results

154 T.-H. Tran et al.

for cases where GST is arbitrary. It is also interesting to investigate how to
express discrete partial synchrony in timed automata [3], e.g., UPPAAL [25].

Acknowledgments. Supported by Interchain Foundation (Switzerland) and the Aus-
trian Science Fund (FWF) via the Doctoral College LogiCS W1255.

References

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implement-
ing omega in systems with weak reliability and synchrony assumptions. Distrib.
Comput. 21(4), 285–314 (2008)

2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Consensus with
Byzantine failures and little system synchrony. In: International Conference on
Dependable Systems and Networks (DSN), pp. 147–155. IEEE (2006)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

4. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM
2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32759-9 6

5. Atif, M., Mousavi, M.R., Osaiweran, A.: Formal verification of unreliable failure
detectors in partially synchronous systems. In: Proceedings of the 27th ACM Sym-
posium on Applied Computing (SAC), pp. 478–485 (2012). https://doi.org/10.
1145/2245276.2245369

6. Bardin, S., Leroux, J., Point, G.: FAST extended release. In: Ball, T., Jones, R.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 63–66. Springer, Heidelberg (2006). https://
doi.org/10.1007/11817963 9

7. Bloem, R., et al.: Decidability of Computing Theory. Morgan & Claypool Publish-
ers (2015). https://doi.org/10.2200/S00658ED1V01Y201508DCT013

8. Bravo, M., Chockler, G., Gotsman, A.: Making Byzantine consensus live. In: DISC.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

9. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. arXiv
preprint arXiv:1807.04938 (2018)

10. Bunte, O.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar, T.,
Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

11. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

12. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: The TLA+ proof system: build-
ing a heterogeneous verification platform. In: Cavalcanti, A., Deharbe, D., Gaudel,
M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255, p. 44. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-14808-8 3

13. Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., Vanzetto, H.:
TLA+ proofs. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol.
7436, pp. 147–154. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32759-9 14

14. Drăgoi, C., Widder, J., Zufferey, D.: Programming at the edge of synchrony. In:
Proceedings of the ACM on Programming Languages 4 (OOPSLA), pp. 1–30 (2020)

https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1145/2245276.2245369
https://doi.org/10.1145/2245276.2245369
https://doi.org/10.1007/11817963_9
https://doi.org/10.1007/11817963_9
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
http://arxiv.org/abs/1807.04938
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-642-14808-8_3
https://doi.org/10.1007/978-3-642-32759-9_14
https://doi.org/10.1007/978-3-642-32759-9_14

A Case Study on Parametric Verification of Failure Detectors 155

15. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

16. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL, pp. 85–94 (1995)
17. Galois, I.: Ivy proofs of tendermint. https://github.com/tendermint/spec/tree/

master/ivy-proofs. Accessed December 2020
18. Konnov, I., Kukovec, J., Tran, T.H.: TLA+ model checking made symbolic. In:

Proceedings of the ACM on Programming Languages 3 (OOPSLA), pp. 1–30 (2019)
19. Konnov, I., Lazić, M., Veith, H., Widder, J.: Para2: parameterized path reduc-

tion, acceleration, and SMT for reachability in threshold-guarded distributed algo-
rithms. Formal Methods Syst. Design 51(2), 270–307 (2017)

20. Konnov, I., Lazić, M., Veith, H., Widder, J.: A short counterexample property for
safety and liveness verification of fault-tolerant distributed algorithms. In: POPL,
pp. 719–734 (2017)

21. Kuppe, M.A., Lamport, L., Ricketts, D.: The TLA+ toolbox. arXiv preprint
arXiv:1912.10633 (2019)

22. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

23. Lamport, L.: Using TLC to check inductive invariance (2018)
24. Larrea, M., Arevalo, S., Fernndez, A.: Efficient algorithms to implement unreliable

failure detectors in partially synchronous systems. In: Jayanti, P. (ed.) DISC 1999.
LNCS, vol. 1693, pp. 34–49. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48169-9 3

25. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transfer 1(1–2), 134–152 (1997)

26. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-
checker for petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00768-2 6

27. Lynch, N.A., Tuttle, M.R.: An Introduction to Input/Output Automata. Labora-
tory for Computer Science, Massachusetts Institute of Technology (1988)

28. McMillan, K.L.: Ivy. https://microsoft.github.io/ivy/. Accessed December 2020
29. McMillan, K.L., Padon, O.: Ivy: a multi-modal verification tool for distributed

algorithms. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp.
190–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8 12

30. Roscoe, A.W.: Understanding Concurrent Systems. Springer, Cham (2010)
31. Stoilkovska, I., Konnov, I., Widder, J., Zuleger, F.: Verifying safety of synchronous

fault-tolerant algorithms by bounded model checking. In: Vojnar, T., Zhang, L.
(eds.) TACAS 2019. LNCS, vol. 11428, pp. 357–374. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17465-1 20

32. Tran, T.H., Konnov, I., Widder, J.: FORTE2021-FD. https://github.com/
banhday/forte2021-fd. Accessed April 2021

33. Tran, T.H., Konnov, I., Widder, J.: Specifications of the Chandra and
Toueg failure detector in TLA+, and Ivy. https://zenodo.org/record/4687714#.
YHcBeBKxVH4. Accessed April 2021

34. Tran, T.-H., Konnov, I., Widder, J.: Cutoffs for symmetric point-to-point dis-
tributed algorithms. In: Georgiou, C., Majumdar, R. (eds.) NETYS 2020. LNCS,
vol. 12129, pp. 329–346. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-67087-0 21

https://github.com/tendermint/spec/tree/master/ivy-proofs
https://github.com/tendermint/spec/tree/master/ivy-proofs
http://arxiv.org/abs/1912.10633
https://doi.org/10.1007/3-540-48169-9_3
https://doi.org/10.1007/3-540-48169-9_3
https://doi.org/10.1007/978-3-642-00768-2_6
https://doi.org/10.1007/978-3-642-00768-2_6
https://microsoft.github.io/ivy/
https://doi.org/10.1007/978-3-030-53291-8_12
https://doi.org/10.1007/978-3-030-17465-1_20
https://github.com/banhday/forte2021-fd
https://github.com/banhday/forte2021-fd
https://zenodo.org/record/4687714#.YHcBeBKxVH4
https://zenodo.org/record/4687714#.YHcBeBKxVH4
https://doi.org/10.1007/978-3-030-67087-0_21
https://doi.org/10.1007/978-3-030-67087-0_21

156 T.-H. Tran et al.

35. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: BFT con-
sensus with linearity and responsiveness. In: PODC, pp. 347–356 (2019)

36. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1007/3-540-48153-2_6

π with Leftovers: A Mechanisation
in Agda

Uma Zalakain(B) and Ornela Dardha

University of Glasgow, Glasgow, Scotland
u.zalakain.1@research.gla.ac.uk, ornela.dardha@glasgow.ac.uk

Abstract. Linear type systems need to keep track of how programs use
their resources. The standard approach is to use context splits specifying
how resources are (disjointly) split across subterms. In this approach,
context splits redundantly echo information which is already present
within subterms. An alternative approach is to use leftover typing [2,23],
where in addition to the usual (input) usage context, typing judgments
have also an output usage context: the leftovers. In this approach, the
leftovers of one typing derivation are fed as input to the next, threading
through linear resources while avoiding context splits. We use leftover
typing to define a type system for a resource-aware π-calculus [26,27], a
process algebra used to model concurrent systems. Our type system is
parametrised over a set of usage algebras [20,34] that are general enough
to encompass shared types (free to reuse and discard), graded types (use
exactly n number of times) and linear types (use exactly once). Linear
types are important in the π-calculus: they ensure privacy and safety of
communication and avoid race conditions, while graded and shared types
allow for more flexible programming. We provide a framing theorem for
our type system, generalise the weakening and strengthening theorems
to include linear types, and prove subject reduction. Our formalisation
is fully mechanised in about 1850 lines of Agda [37].

Keywords: Pi-calculus · Linear types · Leftover typing ·
Concurrency · Mechanisation · Agda

1 Introduction

The π-calculus [26,27] is a computational model for communication and con-
currency that boils concurrent processing down to the sending and receiving of
data over communication channels. Notably, it features channel mobility: chan-
nels themselves are first class values and can be sent and received. Kobayashi et
al. [22] introduced a typed version of the π-calculus with linear channel types,

This work is supported by the EU HORIZON 2020 MSCA RISE project 778233
“Behavioural Application Program Interfaces” (BehAPI).

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 157–174, 2021.
https://doi.org/10.1007/978-3-030-78089-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_9&domain=pdf
http://orcid.org/0000-0002-3268-9338
http://orcid.org/0000-0001-9927-7875
https://doi.org/10.1007/978-3-030-78089-0_9

158 U. Zalakain and O. Dardha

where channels must be used exactly once. Linearity in the π-calculus guarantees
privacy and safety of communication and avoids race conditions.

More broadly, linearity allows for resource-aware programming and more
efficient implementations [35], and it inspired unique types (as in Clean [4]),
and ownership types (as in Rust [24]). A linear type system must keep track
of what resources are used in which parts of the program, and guarantee that
they are neither duplicated nor discarded. To do so, the standard approach is to
use context splits: typing rules for terms with multiple subterms add an extra
side condition specifying what resources to allocate to each of the subterms.
The typing derivations for the subterms must then use the entirety of their
allocated resources. A key observation here is that each subterm already knows
about the resources it needs. Context splits contain usage information that is
already present in the subterms. Moreover, the subterms cannot be typed until
the context splits have been defined. On top of that, using binary context splits
means that typing rules with n subterms require n − 1 context splits, which
considerably clutters the type system.

An alternative approach is leftover typing, a technique used to formulate
intuitionistic linear logic [23] and to mechanise the linear λ-calculus [2]. Leftover
typing changes the shape of the typing judgments and includes a second leftover
output context that contains the resources that were left unused by the term.
As a result, typing rules thread the resources through subterms without needing
context splits: each subterm uses the resources it needs, and leaves the rest for
its siblings. The first subterm in this chain of resources immediately knows what
resources it has available.

In this paper, we use leftover typing to define for the first time a resource-
aware type system for the π-calculus, and we fully mechanise our work in Agda
[37]. All previous work on mechanisation of linear process calculi uses context
splits instead [8,15,16,18,33]. We will further highlight the benefits of leftover
typing as opposed to context splits in contributions and the rest of the paper.

Below we present two alternative typing rules for parallel composition in the
linear π-calculus: the one on the left uses context splits, while the one on the
right does not, and uses leftover typing instead:

Γ :=Δ⊗ Ξ Δ � P Ξ � Q

Γ � P ‖Q

Γ � P � Δ Δ � Q � Ξ

Γ � P ‖ Q � Ξ

Contributions and Structure of the Paper

1. Leftover typing for resource-aware π-calculus. Our type system uses
leftover typing to model the resource-aware π-calculus (Sect. 4.3) and satisfies
subject reduction (Theorem 5). In addition to making context splits unneces-
sary, leftover typing allows for a framing theorem (Theorem 1) to be stated
and is naturally associative, making type safety properties considerably easier
to reason about (Sect. 5). Thanks to leftover typing, we can now state weak-
ening (Theorem 2) and strengthening (Theorem 3) for the whole framework,

π with Leftovers: a Mechanisation in Agda 159

not just the shared fragment. This give a uniform and complete presentation
of all the meta-theory for the resource-aware π-calculus.

2. Shared, graded and linear unified π-calculus. We generalise resource
counting to a set of usage algebras that can be mixed within the same type
system. We do not instantiate our type system to only work with linear
resources, instead we present an algebra-agnostic type system, and admit
a mix of user-defined resource aware algebras [20,34] (Sect. 4.1). Any partial
commutative monoid that is decidable, deterministic, cancellative and has a
minimal element is a valid such algebra. Multiple algebras can be mixed in
the type system—usage contexts keep information about what algebra to use
for each type (Sect. 4.2). In particular, this allows for type systems combining
linear (use exactly once), graded (exact number of n times) and shared (free
to reuse and discard) types under the same framework.

3. Full mechanisation in Agda. The formalisation of the π-calculus with
leftover typing, from the syntax to the semantics and the type system, has
been fully mechanised in Agda in about 1850 lines of code, and is publicly
available at [37]. We have fully mechanised all meta-theory and the details
of a proof of subject reduction can be found in our extended paper [36] and
repository [37].

We use type level de Bruijn indices [11,14] to define a syntax of π-calculus
processes that is well scoped by construction: every free variable is accounted
for in the type of the process that uses it (Sect. 2). We then provide an opera-
tional semantics for the π-calculus, prior to any typing (Sect. 3). This operational
semantics is defined as a reduction relation on processes. The reduction rela-
tion tracks at the type level the channel on which communication occurs. This
information is later used to state the subject reduction theorem. The reduction
relation is defined modulo structural congruence—a relation defined on processes
that acts as a quotient type to remove unnecessary syntactic minutiae introduced
by the syntax of the π-calculus. We then define an interface for resource-aware
algebras (Sect. 4.1) and use it to parametrise a type system based on leftover
typing (Sect. 4.3). Finally, we present the meta theoretical properties of our type
system in Sect. 5.

Notation. Data type definitions (N) use double inference lines and index-free
synonyms (Nat) as rule names for ease of reference. Constructors (0 and 1+)
are used as inference rule names. We maintain a close correspondence between
the definitions presented in this paper and our mechanised definitions in Agda:
inference rules become type constructors, premises become argument types and
conclusions return types. Universe levels and universe polymorphism are omitted
for brevity—all our types are of type SET. Implicit arguments are mentioned in
type definitions but omitted by constructors.

N : SET
======= Nat

0 : N
n : N

1+n : N

We use colours to further distinguish the different entities in this paper.
TYPES are blue and uppercased, with indices as subscripts, constructors are

160 U. Zalakain and O. Dardha

orange, functions are teal, variables are black, and some constructor names are
overloaded—and disambiguated by context.

2 Syntax

In order to mechanise the π-calculus syntax in Agda, we need to deal with bound
names in continuation processes. Names are cumbersome to mechanise: they are
not inherently well scoped, one has to deal with alpha-conversion, and inserting
new variables into a context entails proving that their names differ from all other
names in context. To overcome these challenges, we use de Bruijn indices [11],
where a natural number n (aka index) is used to refer to the variable introduced
n binders ago. That is, binders no longer introduce names; terms at different
depths use different indices to refer to the same binding.

While de Bruijn indices are useful for mechanisation, they are not as read-
able as names. To overcome this difficulty and demonstrate the correspondence
between a π-calculus that uses names and one that uses de Bruijn indices, we
provide conversion functions in both directions and prove that they are inverses
of each other up to α-conversion. Further details can be found in our extended
paper [36] and repository [37].

Definition 1 (Var and Process). A variable reference occurring under n
binders can refer to n distinct variables. We introduce the indexed family of
types [14] VARn: for all naturals n, the type VARn has n distinct elements. We
index processes according to their depth: for all naturals n, a process of type
PROCESSn contains free variables that can refer to n distinct elements. Every
time we go under a binder, we increase the index of the continuation process,
allowing the variable references within to refer to one more thing.

n : N

VARn : SET
============ Var

n : N
0 : VAR1+n

x : VARn

1+x : VAR1+n

n : N

PROCESSn : SET
================= Process

PROCESSn ::= 0 (inaction)
| ν PROCESS1+n (restriction)
| PROCESSn ‖PROCESSn (parallel)
| VARn () PROCESS1+n (input)
| VARn 〈VARn 〉 PROCESSn (output)

Process 0 denotes the terminated process, where no further communications
can occur; process ν P creates a new channel and binds it at index 0 in the
continuation process P ; process P ‖Q composes P and Q in parallel; process

π with Leftovers: a Mechanisation in Agda 161

x () P receives data along channel x and makes that data available at index 0
in the continuation process P ; process x 〈 y 〉 P sends variable y over channel x
and continues as process P .

Example 1 (The courier system).
We present a courier system that consists of three roles: a sender, who wants

to send a package; a receiver, who receives the package sent by the sender; and
a courier, who carries the package from the sender to the receiver.

sendx

send y

recv z
carry
x y z

x

y

z

Our courier system is defined by four π-calculus processes composed in parallel
instantiating the above three roles: we have two sender processes, send x and
send y, sending data over channels x and y, respectively; one receiver process,
recv z, which receives over channel z the data sent from each of the senders –
hence receives twice; and a courier process carry x y z, which synchronises com-
munication among the senders and the receiver. The courier process first receives
data from the two senders along its input channels x and y, and then sends the
two received bits of data to the receiver along its output channel z.

The sender and receiver roles are defined below, parametrised by the channels
on which they operate. The sender creates a new channel to be sent as data, and
sends it over channel c, and then terminates. Processes send x and send y are an
instantiation of send c. The receiver receives data twice on a channel c and then
terminates. The receiver process recv z is an instantiation of recv c.

send c = ν (1+c 〈 0 〉0) recv c = c () (1+c) ()0

The courier role is defined below as carry x y z. It sequentially receives on
the two input channels x and y, instantiated as in0 and in1, and then outputs
the two pieces of received data on the output channel z, instantiated as out.
Finally, we create three communication channels and compose all four processes
together: the first channel is shared between the one sender and the courier,
the second between the other sender and the courier, and the third between the
receiver and the courier. The result is the courier system defined below.

carry in0 in1 out = in0 () (1+ in1) () (1+1+ out) 〈 1+0 〉 (1+1+ out) 〈 0 〉0
system = ν (send 0 ‖ ν (send 0 ‖ ν (recv 0 ‖ carry (1+1+0) (1+0) 0)))

We continue this running example in Sect. 4.3, where we provide typing
derivations for the above processes and use a mix of linear, graded and shared
typing to type the courier system.

162 U. Zalakain and O. Dardha

3 Operational Semantics

Thanks to our well-scoped grammar in Sect. 2, we now define the semantics of
our language on the totality of the syntax.

Definition 2 (Unused). We consider a variable i to be unused in P
(UNUSEDi P) if none of the inputs nor the outputs refer to it. UNUSEDi P is
defined as a recursive predicate on P , incrementing i every time we go under a
binder, and using i�≡x (which unfolds to the negation of propositional equality
on Var, i.e. i≡x → ⊥) to compare variables.

Definition 3 (StructCong). We define the base cases of a structural con-
gruence relation ∼= as follows:

P ∼=Q : SET
============ StructCong

comp-assoc : P ‖ (Q ‖ R)∼= (P ‖Q) ‖ R

comp-sym : P ‖ Q∼= Q ‖ P comp-id : P ‖0n ∼=P

scope-end : ν 01+n
∼=0n

uQ : UNUSED0 Q

scope-ext : ν (P ‖ Q)∼= (ν P) ‖ lower0 Q uQ

scope-comm : ν ν P ∼=ν ν exchange0 P

The first three rules (comp−*) state associativity, symmetry, and 0 as being the
neutral element of parallel composition, respectively. The last three (scope−*)
state garbage collection, scope extrusion and commutativity of restrictions,
respectively. In scope-ext the side condition UNUSEDi Q makes sure that i
is unused in Q (see Definition 2). The function loweri Q uQ traverses Q decre-
menting every index greater than i. In scope-comm the function exchangei P
traverses P (of type PROCESS1+1+n) and swaps variable references i and 1+i.
In all the above, i is incremented every time we go under a binder.

Definition 4 (Equals). We lift the relation StructCong ∼= and close it
under equivalence and congruence in � . This relation is structurally congruent
under a context C[·] [31] and is reflexive, symmetric and transitive.

Definition 5 (Reduces). The operational semantics of the π-calculus is defined
as a reduction relation −→c indexed by the channel c on which communication
occurs. We keep track of channel c so we can state subject reduction (Theorem 5).

π with Leftovers: a Mechanisation in Agda 163

n : N

CHANNELn : SET
================== Channel

internal : CHANNELn

i : VARn

external i : CHANNELn

c : CHANNELn P Q : PROCESSn

P −→c Q : SET
===================================== Reduces

i j : VARn P : PROCESS1+n Q : PROCESSn

comm : i ()P ‖ i 〈 j 〉Q−→external i lower0 (P [0 → 1+j]) uP ′ ‖ Q

red : P −→c P ′

par red : P ‖ Q−→c P ′ ‖Q

red : P −→c Q

res red : ν P −→dec c ν Q

eq1 : P �P ′ red : P ′ −→c Q′ eq2 : Q′ �Q

struct eq red : P −→c Q

We distinguish between channels that are created inside the process (internal),
and channels that are created outside (external i), where i is the index of the
channel variable. In rule comm, parallel processes reduce when they communi-
cate over a common channel with index i. As a result of that communication,
the continuation of the input process P has all the references to its most imme-
diate variable substituted with references to 1+j, the variable sent by the output
process i 〈 j 〉Q. After this substitution, P [0 → 1+j] is lowered—all variable ref-
erences are decreased by one (and we derive the proof UNUSED0 (P [0 → 1+j])).
Reduction is closed under parallel composition (rule par), restriction (rule res)
and structural congruence (rule struct)—notably, not under input nor output, as
doing so would not preserve the sequencing of actions [31]. Rule res uses dec to
decrement the index of channel c as we wrap processes P and Q inside a binder.
It is defined as expected below:

dec internal = internal
dec (external 0) = internal
dec (external (1+n)) = external n

4 Resource-Aware Type System

In Sect. 4.1 we characterise a usage algebra for our type system. It defines how
resources are split in parallel composition and consumed in input and output.
We define typing and usage contexts in Sect. 4.2. We provide a type system for
a resource-aware π-calculus in Sect. 4.3.

4.1 Multiplicities and Capabilities

In the linear π-calculus each channel has an input and an output capability,
and each capability has a given multiplicity of 0 (exhausted) or 1 (available).

164 U. Zalakain and O. Dardha

We generalise over this notion by defining an algebra for multiplicities [20,34]
that is satisfied by linear, graded and shared types alike. We then use pairs of
multiplicities as usage annotations for a channel’s input and output capabilities.

Definition 6 (Algebra). A usage algebra is a ternary relation x := y · z that
is partial (as not any two multiplicities can be combined), deterministic and
cancellative (to aid equational reasoning) and associative and commutative (fol-
lowing directly from subject congruence for parallel composition). In addition,
we ask that the leftovers can be computed so that we can automatically update
the usage context every time input and output occurs—this is purely for usabil-
ity. It has a neutral element ·-0 that is absorbed on either side, and that is also
minimal (so that new resources cannot arbitrarily spring into life). It has an
element ·-1 that is used to count inputs and outputs. Below we define such an
algebra as a record ALGEBRAC on a carrier C. (We use ∀ for universal quan-
tification. The dependent product ∃ uses the value of its first argument in the
type of its second. The type DEC P is a witness of either P or P → ⊥, where
⊥ is the empty type with no constructors.)

:= · : C → C → C → SET
·-unique : ∀xx′yz → x′ := y · z → x := y · z → x′ ≡ x

·-uniquel : ∀xyy′z → x := y′ · z → x := y · z → y′ ≡ y

·-assoc : ∀xyzuv → x := y · z → y :=u · v → ∃w (x :=u ·w × w := v · z)
·-comm : ∀xyz → x := y · z → x := z · y
·-computer : ∀xy → DEC (∃z (x := y · z))
·-0 : C

·-idl : ∀x → x := ·-0 ·x
·-minl : ∀yz → ·-0 := y · z → y ≡ ·-0
·-1 : C

We sketch the implementation of linear, graded and shared types as instances
of our usage algebra below. Their use in typing derivations is illustrated in
Example 3.

carrier operation

linear
0 : Lin
1 : Lin

0 := 0 · 0
1 := 1 · 0
1 := 0 · 1

graded
0 : Gra
1+ : Gra → Gra

∀x y z
→ x≡ y + z
→ x := y · z

shared ω : Sha ω :=ω ·ω

4.2 Typing Contexts

We use indexed sets of usage algebras to allow several usage algebras to coexist
in our type system with leftovers (Sect. 4.3).

π with Leftovers: a Mechanisation in Agda 165

Definition 7 (Algebras). An indexed set of usage algebras is a type IDX
of indices that is nonempty (∃IDX) together with an interpretation USAGE
of indices into types, and an interpretation ALGEBRAS of indices into usage
algebras of the corresponding type.

IDX : SET
∃IDX : IDX
USAGE : IDX → SET
ALGEBRAS : (idx : IDX) → ALGEBRAUSAGEidx

We keep typing contexts (PRECTX) and usage contexts (CTX) separate.
The former are preserved throughout typing derivations; the latter are trans-
formed as a result of input, output, and context splits.

Definition 8 (Type and PreCtx: types and typing contexts). A type is either
a unit type (1), or a channel type (C[t ; x]).

TYPE : SET
============ Type

1 : TYPE
t : TYPE

idx : IDX
x : USAGE2

idx

C[t ; x] : TYPE

The unit type 1 serves as a base case for types. The type C[t ; x] of a channel
determines what type t of data and what usage annotations x are sent over that
channel—we use the notation C2 to stand for a C×C pair of input and out-
put multiplicities, respectively. This channel notation aligns with [t] chan(iy,oz),
where y, z are the input and output multiplicities, respectively [21]. Henceforth,
we use
∅ to denote the multiplicity pair ·-0 , ·-0,
i for the pair ·-1 , ·-0,
o for
·-0 , ·-1, and
for ·-1 , ·-1. This notation was originally used in the linear π-
calculus [22,31]. A typing context PRECTXn is a length-indexed list of types
that is either empty ([]) or the result of appending a type t : TYPE to an existing
context (γ,t).

Definition 9 (Idxs and Ctx: contexts of indices and usage contexts). A context
of indices IDXSn is a length-indexed list that is either empty ([]) or the result
of appending an index i : IDX to an existing context (idxs,i). A usage context
is a context CTXidxs indexed by a context of indices idxs : IDXSn that is either
empty ([]) or the result or appending a usage annotation pair u : USAGE2

idx

with index idx : IDX to an existing context (Γ ,u).

4.3 Typing with Leftovers

We present a resource-aware type system for the π-calculus based on leftover typ-
ing [2], a technique that, in addition to the usual typing context PRECTXn and
(input) usage context CTXidxs, adds an extra (output) usage context CTXidxs

to the typing rules. This output context contains the leftovers (the unused mul-
tiplicities) of the process being typed. These leftovers can then be used as input
to another typing derivation.

166 U. Zalakain and O. Dardha

Leftover typing inverts the information flow of usage annotations so that
it is the typing derivations of subprocesses which determine how resources are
allocated. As a result, context split proofs are no longer necessary. Leftover
typing also allows framing to be stated, and weakening and strengthening to
cover linear types too.

Our type system is composed of two typing judgments: one for variable ref-
erences (Definition 10) and one for processes (Definition 11). Both judgments are
indexed by a typing context γ, an input usage context Γ , and an output usage
context Δ (the leftovers). The typing judgement for variables γ ; Γ �i t ; y �Δ
asserts that “index i in typing context γ is of type t, and subtracting y at position
i from input usage context Γ results in leftovers Δ”. The typing judgement
for processes γ ;Γ � P � Δ asserts that “process P is well typed under typing
context γ, usage input context Γ and leftovers Δ”.

Definition 10 (VarRef: typing variable references). The VarRef typing rela-
tion for variable references is presented below.

γ : PRECTXn i : VARn

t : TYPE
idx : IDX
y : USAGE2

idx

idxs : IDXSn

Γ Δ : CTXidxs

γ ;Γ �i t ; y �Δ : SET
=== VarRef

x := y ·2 z

0 : γ , t ; Γ , x�0 t ; y � Γ , z

v : γ ;Γ �i t ; x � Δ

1+ v : γ , t′ ; Γ , x′ �1+i t ; x � Δ , x′

We lift the operation x := y · z and its algebraic properties to an operation
(xl , xr) := (yl , yr) ·2 (zl , zr) on pairs of multiplicities. The base case 0 splits the
usage annotation x of type USAGE2

idx into y and z (the leftovers). Note that the
remaining context Γ is preserved unused as a leftover. This splitting x := y ·2 z is
as per the usage algebra provided by the developer for the index idx. In our Agda
implementation, x := y ·2 z is actually a trivially satisfiable implicit argument if
x := y ·2 z is inhabited and an unsatisfiable argument otherwise. The inductive
case 1+ appends the type t′ to the typing context, and the usage annotation x′

to both the input and output usage contexts.

Example 2 (Variable reference). egVar defines a variable reference 1+0 with type
C[1 ;
i] and usage
i. We must show that this variable is well typed in an
environment with a typing context γ = [] , C[1 ;
i] ,1 and a usage context Γ =
[] ,
,
#. The VarRef constructors are completely determined by the variable
index 1+ 0 in the type. The constructor 1+ steps under the outermost variable
in the context, preserving its usage annotation
from input to output. The
constructor 0 asserts that the next variable is of type C[1 ;
i], and that the
usage annotation
can be split such that
:=
i ·
o — using ·-computer to
automatically fulfill the proof obligation.

egVar : ([] , C[1 ;
i] ,1) ; ([] ,
,
#)�1+0 C[1 ;
i] ;
i � ([] ,
o ,
#)
egVar = 1+0

π with Leftovers: a Mechanisation in Agda 167

Definition 11 (Types: typing processes). The Types typing relation for the
resource-aware π-calculus processes is presented below. For convenience, we reuse
the constructor names introduced for the syntax in Sect. 2.

γ : PRECTXn P : PROCESSn

idxs : IDXSn

Γ Δ : CTXidxs

γ ;Γ � P � Δ : SET
=== Types

0 : γ ; Γ �0 � Γ

t : TYPE x : USAGE2
idx y : USAGEidx′

cont : γ ,C[t ; x] ; Γ , (y , y)� P � Δ ,
∅
ν t x y cont : γ ; Γ � ν P �Δ

chan : γ ;Γ �i C[t ; x] ;
i �Ξ
cont : γ , t ; Ξ , x� P � Θ ,
∅

chan () cont : γ ;Γ � i ()P � Θ

chan : γ ;Γ �i C[t ; x] ;
o �Δ
loc : γ ; Δ�j t ;x � Ξ
cont : γ ; Ξ � P � Θ

chan 〈 loc 〉 cont : γ ;Γ � i 〈 j 〉P �Θ

l : γ ; Γ �P �Δ
r : γ ;Δ� Q� Ξ

l ‖ r : γ ; Γ �P ‖Q� Ξ

The inaction process in rule 0 does not change usage annotations. The scope
restriction in rule ν expects three arguments: the type t of data being transmit-
ted; the usage annotation x of what is being transmitted; and the multiplicity y
given to the channel itself. This multiplicity y is used for both input and output,
so that they are balanced. The continuation process P is provided with the new
channel with usage annotation y , y, which it must completely exhaust. The input
process in rule () requires a channel chan at index i with usage
i available,
such that data with type t and usage x can be sent over it. Note that the index i
is determined by the syntax of the typed process. We use the leftovers Ξ to type
the continuation process, which is also provided with the received element—of
type t and multiplicity x—at index 0. The received element x must be com-
pletely exhausted by the continuation process. Similarly to input, the output
process in rule 〈 〉 requires a channel chan at index i with usage
o available,
such that data with type t and usage x can be sent over it. We use the leftover
context Δ to type the transmitted data, which needs an element loc at index j
with type t and usage x, as per the type of the channel chan. The leftovers Ξ
are used to type the continuation process. Note that both indices i and j are
determined by the syntax of the typed process. Parallel composition in rule ‖
uses the leftovers of the left-hand process to type the right-hand process. Indeed,
Theorem 4 shows that an alternative rule where the resources are first threaded
through Q is admissible too.

Example 3 (Typing derivation (Continued)). We provide the typing derivation
for the courier system defined in Example 1. For the sake of simplicity, we instan-
tiate these processes with concrete variable references before typing them.

168 U. Zalakain and O. Dardha

The receiver defined by the recv process receives data along the channel with
index 0, which needs to be of type C[t ; u] for some t and u. After receiving
twice, the process ends: we must not be left with any unused multiplicities, thus
u =
∅. We will use graded types to keep track of the exact number of times
communication happens. Whatever the input multiplicity of the channel, we
will consume 2 of it and leave the remaining as leftovers. The sender defined by
the send process sends data along the channel with index 0, which needs to be
of type C[t ; u] for some t and u. We instantiate t (the type of data that the
sender sends) to the trivial channel C[1 ; ω]. As per the type of the process recv,
u =
∅. We will transmit once, thus use 1+0 output multiplicity, and leave the
rest as leftovers. Agda can uniquely determine the arguments required by the ν
constructor.

recvwt : γ ,C[t ;
∅] ; Γ , (1+1+l , r)� recv 0 � Γ , (l , r)
recvwt = 0 () (1+0) ()0
sendwt : γ ,C[C[1 ; ω] ;
∅] ; Γ , (l , 1+r)� send 0 � Γ , (l , r)
sendwt = ν ·-0 (1+0 〈 0 〉0)

Dually, the courier defined by the carry process expects input multiplicities
for the channels shared with send and output multiplicities for the channel shared
with recv. We can now compose these processes in parallel and type the courier
system.

carrywt : γ ,C[t ;
∅] ,C[t ;
∅] , C[t ;
∅]
;Γ , (1+lx , rx) , (1+ly , ry) , (lz , 1+1+rz)
� carry (1+1+0) (1+0) 0
�Γ , (lx , rx) , (ly , ry) , (lz , rz)

carrywt = (1+1+0) () (1+1+0) () (1+1+0) 〈 1+0 〉 (1+1+0) 〈 0 〉0
systemwt : [] ; [] � system � []
systemwt = ν (sendwt ‖ ν (sendwt ‖ ν (recvwt ‖ carrywt)))

5 Meta-Theory

We have mechanised subject reduction for our π-calculus with leftovers in 850
lines of Agda code. The meta-theory of resource-aware type systems often
needs to reason on typing derivations modulo associativity in the allocation of
resources. For type systems using context splitting side conditions, this means
applying associativity lemmas to recompute context splits; for type systems using
leftover typing it does not. As an example, the proof that comp-asssoc pre-
serves typing proceeds by deconstructing the input derivation into P ‖ (Q ‖ R)
and reassembling it as (P ‖ Q) ‖ R without the need of any extra reasoning.

All the reasoning carried out in our type safety proofs is based on the alge-
braic properties introduced in Sect. 4.1 – the exception to this is ·-computer,
only there for the user’s convenience. We lift the operation x := y ·2 z and its

π with Leftovers: a Mechanisation in Agda 169

algebraic properties to an operation Γ :=Δ⊗ Ξ on usage contexts that have
the same underlying context of indices. The algebraic properties of the algebras
allow us to see a typing derivation γ ; Γ � P � Δ as a unique arrow from Γ to Δ,
and to freely compose and reason with arrows with the same typing context and
a matching output and input usage contexts.

Leftover typing also allows us to state a framing theorem showing that adding
or subtracting arbitrary usage annotations to the input and output usage con-
texts preserves typing – one can understand a typing derivation independently
from its unused resources. With framing one can show that comp-comm pre-
serves typing: in P ‖ Q the typing of P and Q is independent of one another.

Theorem 1 (Framing). Let γ ;Γl � P � Ξl. Let Δ be such that Γl :=Δ⊗ Ξl.
Then for any Γr and Ξr where Γr :=Δ⊗ Ξr it holds that γ ; Γr �P �Ξr.

Leftover typing allows weakening and strengthening to acquire a more general
form where linear variables can freely be added or removed from context too –
as long as they are added and removed to and from both the input and output
contexts.

Theorem 2 (Weakening). Let insi insert an element into a context at posi-
tion i. Let P be well typed in γ ; Γ �P � Ξ. Then, lifting every variable greater
than or equal to i in P is well typed in insi t γ ; insi x Γ � lifti P � insi x Ξ.

Theorem 3 (Strengthening). Let deli delete the element at position i from
a context. Let P be well typed in γ ; Γ � P � Ξ. Let i be a variable not in P , such
that uP : UNUSEDi P . Then lowering every variable greater than i in P is
well typed in deli γ ; deli Γ � loweri P uP �deli Ξ.

Subject congruence states that structural congruence (Definition 4) preserves
the well-typedness of a process.

Theorem 4 (Subject Congruence). Let P and Q be processes. If P �Q
and γ ; Γ �P � Ξ, then γ ;Γ � Q� Ξ.

Finally, subject reduction states that reducing on a channel c (Definition 5)
preserves the well-typedness of a process—after consuming
from c if c is an
external channel. Below we use Γ �i x � Δ to stand for γ ;Γ �i t ; x � Δ for some
γ and t.

Theorem 5 (Subject Reduction). Let γ ;Γ � P � Ξ and P −→c Q. If c is
internal, then γ ; Γ �Q� Ξ. If c is external i and Γ �i
� Δ, then γ ; Δ� Q� Ξ.

We refer to our extended paper [36] and repository [37] for a more detailed
account of the mechanised proofs.

170 U. Zalakain and O. Dardha

6 Conclusions, Related and Future Work

Extrinsic Encodings. Extrinsic encodings define a syntax (often well-scoped)
and a runtime semantics prior to any type system. This allows one to talk about
ill-typed terms, and defers the proof of subject reduction to a later stage. To
the best of our knowledge, leftover typing makes its appearance in 1994, when
Ian Mackie first uses it to formulate intuitionistic linear logic [23]. Allais [2] uses
leftover typing to mechanise in Agda a bidirectional type system for the linear λ-
calculus. He proves type preservation and provides a decision procedure for type
checking and type inference. In this paper, we follow Allais [2] and apply leftover
typing to the π-calculus for the first time. We generalise the usage algebra,
leading to linear, graded and shared type systems. Drawing from quantitative
type theory (by McBride and Atkey [3,25]), in our work we too are able to
talk about fully consumed resources — e.g., we can transmit
∅ multiplicities
of a fully exhausted channel. Recent years have seen an increase in the efforts
to mechanise resource-aware process algebras, but one of the earliest works is
the mechanisation of the linear π-calculus in Isabelle/HOL by Gay [15]. Gay
encodes the π-calculus with linear and shared types using de Bruijn indices,
a reduction relation and a type system posterior to the syntax. However, in
his work typing rules demand user-provided context splits, and variables with
consumed usage annotations are erased from context. We remove the demand
for context splits, preserve the ability to talk about consumed resources, and
adopt a more general usage algebra. Orchard et al. introduce Granule [28], a
fully-fledged functional language with graded modal types, linear types, indexed
types and polymorphism. Modalities include exact usages, security levels and
intervals; resource algebras are pre-ordered semirings with partial addition. The
authors provide bidirectional typing rules, and show the type safety of their
semantics. The work by Goto et al. [18] is, to the best of our knowledge, the
first formalisation of session types which comes along with a mechanised proof
of type safety in Coq. The authors extend session types with polymorphism and
pattern matching. They use a locally-nameless encoding for variable references, a
syntax prior to types, and an LTS semantics that encodes session-typed processes
into the π-calculus. Their type system uses reordering of contexts and extrinsic
context splits, which are not needed in our work.

Intrinsic Encodings. Intrinsic encodings merge syntax and type system. As a
result, one can only ever talk about well-typed terms, and the reduction relation
by construction carries a proof of subject reduction. Significantly, by merging the
syntax and static semantics of the object language one can fully use the expres-
sive power of the host language. Thiemann formalises in Agda the MicroSession
(minimal GV [16]) calculus with support for recursion and subtyping [33]. As
Gay does in [15], context splits are given extrinsically, and exhausted resources
are removed from typing contexts altogether. The runtime semantics are given
as an intrinsically typed CEK machine with a global context of session-typed
channels. In their recent paper, Ciccone and Padovani mechanise a dependently-
typed linear π-calculus in Agda [8]. Their intrinsic encoding allows them to

π with Leftovers: a Mechanisation in Agda 171

leverage Agda’s dependent types to provide a dependently-typed interpretation
of messages—to avoid linearity violations the interpretation of channel types
is erased. Message input is modeled as a dependent function in Agda, and as
a result message predicates, branching, and variable-length conversations can
be encoded. In contrast to our work, their algebra is on the multiplicities 0, 1,
ω, and top-down context splitting proofs must be provided. In another recent
work, Rouvoet et al. provide an intrinsic type system for a λ-calculus with session
types [30]. They use proof relevant separation logic and a notion of a supply and
demand market to make context splits transparent to the user. Their separation
logic is based on a partial commutative monoid that need not be deterministic
nor cancellative. Their typing rules preserve the balance between supply and
demand, and are extremely elegant. They distill their typing rules even further
by modelling the supply and demand market as a state monad.

Other Work. Castro et al. [6] provide tooling for locally-nameless representations
of process calculi in Coq, where de Bruijn indices are less popular than in Agda
or Idris. They use their tool to help automate proofs of subject reduction for a
type system with session types. Orchard and Yoshida [29] embed a small effecftul
imperative language into the session-typed π-calculus, showing that session types
are expressive enough to encode effect systems. Based on contextual type theory,
LINCX [17] extends the linear logical framework LLF [7] by internalising the
notion of bindings and contexts. The result is a meta-theory in which HOAS
encodings with both linear and dependent types can be described. The developer
obtains for free an equational theory of substitution and decidable typechecking
without having to encode context splits within the object language. Further
work on mechanisation of the π-calculus [1,5,12,13,19], focuses on non-linear
variations, differently from our range of linear, graded and shared types.

Conclusions and Future Work. We provide a well-scoped syntax and a semantics
for the π-calculus, extrinsically define a type system on top of the syntax capable
of handling linear, graded and shared types under the same unified framework
and show subject reduction. We avoid extrinsic context splits by defining a type
system based on leftover typing [2]. As a result, theorems like framing, weakening
and strengthening can now be stated also for the linear π-calculus. Our work is
fully mechanised in around 1850 lines of code in Agda [37].

As future work we intend to expand our framework to include infinite
behaviour by adding process replication, which is challenging, as to prove sub-
ject congruence one needs to uniquely determine the resources consumed by a
process—e.g., by adding type annotations to the syntax. Orthogonally, we aim
to investigate making our typing rules bidirectional which would allow us to pro-
vide a decision procedure for type checking processes in a given set of algebras.
Finally, we will use our π-calculus with leftovers as an underlying framework
on top of which we can implement session types, via their encodings into linear
types [9,10,32] and other advanced type theories.

172 U. Zalakain and O. Dardha

Acknowledgments. We want to thank Erika Kreuter, Wen Kokke, James Wood,
Guillaume Allais, Bob Atkey, and Conor McBride for their valuable suggestions.

References

1. Affeldt, R., Kobayashi, N.: A Coq Library for Verification of Concurrent Programs.
Electron. Notes Theor. Comput. Sci. 199, 17–32 (2008). https://doi.org/10.1016/
j.entcs.2007.11.010

2. Allais, G.: Typing with leftovers - a mechanization of intuitionistic multiplicative-
additive linear logic. In: Types for Proofs and Programs, TYPES. LIPIcs, vol. 104,
pp. 1:1–1:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://
doi.org/10.4230/LIPIcs.TYPES.2017.1

3. Atkey, R.: Syntax and semantics of quantitative type theory. In: Logic in Computer
Science, LICS, pp. 56–65. ACM (2018). https://doi.org/10.1145/3209108.3209189

4. Barendsen, E., Smetsers, S.: Uniqueness typing for functional languages with graph
rewriting semantics. Math. Struct. Comput. Sci. 6(6), 579–612 (1996)

5. Bengtson, J.: The pi-calculus in nominal logic, vol. 2012 (2012). https://www.isa-
afp.org/entries/Pi Calculus.shtml

6. Castro, D., Ferreira, F., Yoshida, N.: EMTST: engineering the meta-theory of
session types. TACAS 2020. LNCS, vol. 12079, pp. 278–285. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45237-7 17

7. Cervesato, I., Pfenning, F.: A linear logical framework. In: Logic in Computer
Science, LICS, pp. 264–275. IEEE Computer Society (1996). https://doi.org/10.
1109/LICS.1996.561339

8. Ciccone, L., Padovani, L.: A dependently typed linear π-calculus in Agda. In:
PPDP 2020: 22nd International Symposium on Principles and Practice of Declar-
ative Programming, pp. 8:1–8:14. ACM (2020). https://doi.org/10.1145/3414080.
3414109

9. Dardha, O.: Recursive session types revisited. In: Carbone, M. (ed.) Workshop on
Behavioural Types, BEAT. EPTCS, vol. 162, pp. 27–34 (2014). https://doi.org/
10.4204/EPTCS.162.4

10. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. Inf. Comput. 256,
253–286 (2017). https://doi.org/10.1016/j.ic.2017.06.002. Extended version of [10]

11. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
In: Indagationes Mathematicae (Proceedings), vol. 75, pp. 381–392. Elsevier (1972)

12. Deransart, P., Smaus, J.: Subject reduction of logic programs as proof-theoretic
property, vol. 2002 (2002). http://danae.uni-muenster.de/lehre/kuchen/JFLP/
articles/2002/S02-01/JFLP-A02-02.pdf

13. Despeyroux, J.: A higher-order specification of the π-Calculus. In: van Leeuwen, J.,
Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS 2000. LNCS, vol. 1872,
pp. 425–439. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44929-
9 30

14. Dybjer, P.: Inductive families. Formal Asp. Comput. 6(4), 440–465 (1994). https://
doi.org/10.1007/BF01211308

15. Gay, S.J.: A framework for the formalisation of pi calculus type systems in
Isabelle/HOL. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol.
2152, pp. 217–232. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44755-5 16

https://doi.org/10.1016/j.entcs.2007.11.010
https://doi.org/10.1016/j.entcs.2007.11.010
https://doi.org/10.4230/LIPIcs.TYPES.2017.1
https://doi.org/10.4230/LIPIcs.TYPES.2017.1
https://doi.org/10.1145/3209108.3209189
https://www.isa-afp.org/entries/Pi_Calculus.shtml
https://www.isa-afp.org/entries/Pi_Calculus.shtml
https://doi.org/10.1007/978-3-030-45237-7_17
https://doi.org/10.1109/LICS.1996.561339
https://doi.org/10.1109/LICS.1996.561339
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.4204/EPTCS.162.4
https://doi.org/10.4204/EPTCS.162.4
https://doi.org/10.1016/j.ic.2017.06.002
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2002/S02-01/JFLP-A02-02.pdf
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2002/S02-01/JFLP-A02-02.pdf
https://doi.org/10.1007/3-540-44929-9_30
https://doi.org/10.1007/3-540-44929-9_30
https://doi.org/10.1007/BF01211308
https://doi.org/10.1007/BF01211308
https://doi.org/10.1007/3-540-44755-5_16
https://doi.org/10.1007/3-540-44755-5_16

π with Leftovers: a Mechanisation in Agda 173

16. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.
Funct. Program. 20(1), 19–50 (2010). https://doi.org/10.1017/S0956796809990268

17. Georges, A.L., Murawska, A., Otis, S., Pientka, B.: LINCX: a linear logical frame-
work with first-class contexts. In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp.
530–555. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54434-
1 20

18. Goto, M.A., Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: An extensible app-
roach to session polymorphism. Math. Struct. Comput. Sci. 26(3), 465–509 (2016).
https://doi.org/10.1017/S0960129514000231

19. Honsell, F., Miculan, M., Scagnetto, I.: pi-calculus in (Co)inductive-type the-
ory. Theor. Comput. Sci. 253(2), 239–285 (2001). https://doi.org/10.1016/S0304-
3975(00)00095-5

20. Jung, R., et al.: Iris: monoids and invariants as an orthogonal basis for concurrent
reasoning. In: Rajamani, S.K., Walker, D. (eds.) Symposium on Principles of Pro-
gramming Languages, POPL 2015, pp. 637–650. ACM (2015). https://doi.org/10.
1145/2676726.2676980

21. Kobayashi, N.: Type systems for concurrent programs (2007). http://www.kb.ecei.
tohoku.ac.jp/∼koba/papers/tutorial-type-extended.pdf

22. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the Pi-Calculus. In: Sym-
posium on Principles of Programming Languages, POPL, pp. 358–371. ACM Press
(1996). https://doi.org/10.1145/237721.237804

23. Mackie, I.: Lilac: a functional programming language based on linear logic. J. Funct.
Program. 4(4), 395–433 (1994). https://doi.org/10.1017/S0956796800001131

24. Matsakis, N.D., II, F.S.K.: The rust language. In: High Integrity Language Technol-
ogy, HILT, pp. 103–104. ACM (2014). https://doi.org/10.1145/2663171.2663188

25. McBride, C.: I got plenty o’ Nuttin’. In: Lindley, S., McBride, C., Trinder, P., San-
nella, D. (eds.) A List of Successes That Can Change the World. LNCS, vol. 9600,
pp. 207–233. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30936-
1 12

26. Milner, R.: Communicating and Mobile Systems - The Pi-calculus. Cambridge
University Press, Cambridge (1999)

27. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Parts I and II.
Inf. Comput. 100(1), 1–40 (1992). https://doi.org/10.1016/0890-5401(92)90008-4

28. Orchard, D., Liepelt, V., III, H.E.: Quantitative program reasoning with graded
modal types. Proc. ACM Program. Lang. 3(ICFP), 110:1–110:30 (2019). https://
doi.org/10.1145/3341714

29. Orchard, D.A., Yoshida, N.: Using session types as an effect system. In: Gay,
S., Alglave, J. (eds.) Programming Language Approaches to Concurrency- and
Communication-cEntric Software, PLACES 2015. EPTCS, vol. 203, pp. 1–13
(2015). https://doi.org/10.4204/EPTCS.203.1

30. Rouvoet, A., Poulsen, C.B., Krebbers, R., Visser, E.: Intrinsically-typed defini-
tional interpreters for linear, session-typed languages. In: Certified Programs and
Proofs, CPP, pp. 284–298. ACM (2020). https://doi.org/10.1145/3372885.3373818

31. Sangiorgi, D., Walker, D.: The Pi-Calculus - A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

32. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming. In: European Conference on Object-
Oriented Programming, ECOOP. LIPIcs, vol. 74, pp. 24:1–24:31. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.ECOOP.
2017.24

https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1007/978-3-662-54434-1_20
https://doi.org/10.1007/978-3-662-54434-1_20
https://doi.org/10.1017/S0960129514000231
https://doi.org/10.1016/S0304-3975(00)00095-5
https://doi.org/10.1016/S0304-3975(00)00095-5
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
https://doi.org/10.1145/237721.237804
https://doi.org/10.1017/S0956796800001131
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1145/3341714
https://doi.org/10.1145/3341714
https://doi.org/10.4204/EPTCS.203.1
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

174 U. Zalakain and O. Dardha

33. Thiemann, P.: Intrinsically-typed mechanized semantics for session types, pp. 19:1–
19:15 (2019). https://doi.org/10.1145/3354166.3354184

34. Turon, A.J., Thamsborg, J., Ahmed, A., Birkedal, L., Dreyer, D.: Logical relations
for fine-grained concurrency. In: Giacobazzi, R., Cousot, R. (eds.) Symposium on
Principles of Programming Languages, POPL 2013, pp. 343–356. ACM (2013).
https://doi.org/10.1145/2429069.2429111

35. Wadler, P.: Linear types can change the world! In: Programming Concepts and
Methods, p. 561. North-Holland (1990)

36. Zalakain, U., Dardha, O.: π with leftovers: a mechanisation in Agda. CoRR
abs/2005.05902 (2020). https://arxiv.org/abs/2005.05902

37. Zalakain, U., Dardha, O.: Typing the linear π-Calculus – formalisation in Agda
(2021). https://github.com/umazalakain/typing-linear-pi

https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/2429069.2429111
https://arxiv.org/abs/2005.05902
https://github.com/umazalakain/typing-linear-pi

Short and Journal-First Papers

Supervisory Synthesis of Configurable
Behavioural Contracts with Modalities

Davide Basile1(B) , Maurice H. ter Beek1 , Pierpaolo Degano2 ,
Axel Legay3 , Gian-Luigi Ferrari2 , Stefania Gnesi1 ,

and Felicita Di Giandomenico1

1 ISTI–CNR, Pisa, Italy
davide.basile@isti.cnr.it

2 University of Pisa, Pisa, Italy
3 UCLouvain, Louvain-la-Neuve, Belgium

Abstract. Service contracts characterise the desired behavioural com-
pliance of a composition of services, typically defined by the fulfilment of
all service requests through service offers. Contract automata are a for-
malism for specifying behavioural service contracts. Based on the notion
of synthesis of the most permissive controller from Supervisory Control
Theory, a safe orchestration of contract automata can be computed that
refines a composition into a compliant one. This short paper summarises
the contributions published in [8], where we endow contract automata
with two orthogonal layers of variability: (i) at the structural level, con-
straints over service requests and offers define different configurations of a
contract automaton, depending on which requests and offers are selected
or discarded; and (ii) at the behavioural level, service requests of differ-
ent levels of criticality can be declared, which induces the novel notion of
semi-controllability. The synthesis of orchestrations is thus extended to
respect both the structural and the behavioural variability constraints.
Finally, we show how to efficiently compute the orchestration of all config-
urations from only a subset of these configurations. A recently redesigned
and refactored tool supports the developed theory.

Extended Abstract

A contract automaton [4] represents a single service (a principal) or a multi-party
composition of services [2,11]. Each principal’s goal is to reach an accepting state
by matching its service request actions with corresponding service offer actions of
other principals. An orchestration is synthesised from the principals to only allow
finite executions in agreement, i.e., each request action a is fulfilled by an offer
action a. Technically, such an orchestration is synthesised as the most permissive
controller (mpc) known from Supervisory Control Theory (SCT) [15,23].

Automata A1 and A2 in Fig. 1(left) interact on a service action a. Their
composition A1 ⊗ A2 in Fig. 1(right) models two possible ways to fulfill service
request a from A1 by matching it with a service offer a of A2, represented as

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 177–181, 2021.
https://doi.org/10.1007/978-3-030-78089-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_10&domain=pdf
http://orcid.org/0000-0002-7196-6609
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0002-8070-4838
http://orcid.org/0000-0003-2287-8925
http://orcid.org/0000-0003-3548-5514
http://orcid.org/0000-0002-0139-0421
http://orcid.org/0000-0002-8760-7299
https://doi.org/10.1007/978-3-030-78089-0_10

178 D. Basile et al.

(a, a). Assume that a must be matched with a to obtain agreement, and that for
some reason the state � is to be avoided in favour of state �. In most automata-
based formalisms, including the contract automata of [4,7], this is typically not
allowed by the notion of uncontrollability, and thus the resulting mpc is empty.

Fig. 1. Two automata A1 and A2 and a possible composition A1 ⊗ A2

In [8], we introduce a way to express that a must eventually be matched,
rather than always, by defining contract automata in which it is possible to
orchestrate the composition of A1 and A2 such that the result is similar to the
composition A1⊗A2 depicted in Fig. 1 but without state �, i.e., a is only matched
with a after the occurrence of an unmatched service offer b of A2, i.e., (•, b).

Technically, in [8] we extend contract automata with action modalities to
distinguish permitted from necessary service requests (borrowed from [7]). Per-
mitted and necessary request actions differ in that the latter must be fulfilled,
while the former may also be omitted. As in [7], we assume service offer actions to
be always permitted because a service contract may always withdraw its offers
that are not needed to reach an agreement. Furthermore, we endow contract
automata with two orthogonal variability mechanisms.

The first variability mechanism concerns constraints operating on the entire
service contract, i.e., at the structural level, to define different configurations.
This is important because services are typically reused in configurations that vary
over time and need to be adapted to changing environments. Such configurations
are characterised by which service actions are mandatory and which forbidden.
The valid configurations are those respecting all structural constraints. We follow
the well-established paradigm of Software Product Line Engineering (SPLE),
which aims at efficiently managing a family of highly configurable systems to
allow for mass customisation [1,22]. To compactly represent a product line, i.e.,
the set of valid product configurations, we use a so-called feature constraint,
a propositional formula ϕ whose atoms are features [10,16,19] and we identify
features as service actions (offers as well as requests). Usually, in SPLE, each
feature is either selected or discarded to configure a product, i.e., all variability
is resolved and the interpretation of the atoms of ϕ is total. Instead, we consider
as valid those products (called sub-families in SPLE terms) that are defined by
a partial assignment satisfying ϕ. This enables to synthesise the orchestration of
an entire product line by considering a few valid products only (those such that
their union contains all possible behaviour of the product line’s orchestration),
rather than computing all the valid ones (and retaining unnecessary complexity
due to duplicated behaviour). This is one of the main results of [8].

The second variability mechanism is defined inside service contracts, i.e., at
the behavioural level, to declare necessary request actions to be either urgent or
lazy . These modalities drive the orchestrator to fulfill all the occurrences of an

Supervisory Synthesis of Configurable Behavioural Contracts with Modalities 179

urgent action, which is the classical notion of uncontrollability from SCT, while
it is required to fulfill at least one occurrence of lazy actions, which is the novel
notion of semi-controllability useful for orchestration synthesis. The simplistic
example above has no urgent action; the only necessary one is the lazy request a.
Intuitively, the matching of a lazy request may be delayed whereas this is not
the case for urgent requests. Obviously, a must not be forbidden, either directly
or because it is not part of any valid configuration.

To effectively use the variability mechanisms, we refine the classical synthesis
algorithm from SCT [23]. We compute the orchestrations of a single valid config-
uration, i.e., including all mandatory and none of the forbidden actions, besides
fulfilling all the necessary and the maximal number of permitted requests (i.e., if
the orchestration were to fulfill another permitted request, then one of the other
requirements would no longer be fulfilled).

Summarising, the main contributions of [8] are as follows:

1. A novel formalism for behavioural service contracts, called Featured Modal
Contract Automata (FMCA), which offers support for both structural and
behavioural variability not available before in the literature.

2. The new notion of semi-controllability (related to lazy actions), which refines
both the notion of controllability (related to permitted actions) and that
of uncontrollability (related to urgent actions) as used in classical synthesis
algorithms from SCT. This new notion is fundamental to handle different
service requests in the orchestration synthesis for FMCA.

3. A revised algorithm for synthesising an orchestration of services for a single
valid product configuration. Each FMCA A is a pair made of an automaton
and a feature constraint ϕ, which is related to the automaton in the following
way. The labels on the arcs of the automaton identify the actions for requests
and offers, a subset of which corresponds to all features in ϕ. The FMCA A is
said to respect a product p whenever all features declared mandatory (forbid-
den, respectively) by p correspond to actions that are reachable (unreachable,
respectively) from the initial state of A.

4. An algorithm to compute the orchestration of an entire product line by joining
the orchestrations of a small selected subset of valid product configurations,
without computing the orchestration for each of its valid product configu-
rations. Since the number of valid product configurations is known to be
exponential in the number of features [13], only using few of them greatly
improves performance and guarantees scalability of the novel framework of
contract automata presented in [8]. The algorithm is thus more efficient than
the standard ones available in the literature (e.g., cf. [12]).

5. The open-source prototypical Contract Automata Tool [5] extended to include
FMCA is briefly surveyed and evaluated (cf. [6] for more details of the FMCA
tool). It exploits FeatureIDE [21], an open-source framework for feature-
oriented software development based on Eclipse, offering a variety of feature
model editing and management tools.

The research on the formalism and its associated tool has evolved since [8].
As reported in [3], the tool has recently been redesigned according to the princi-

180 D. Basile et al.

ples of model-based systems engineering [18,24] and of writing clean and read-
able code [14,20], and it has been refactored using lambda expressions and Java
Streams as available in Java 8 [17,25], exploiting parallelism. Also, the abstract
parametric synthesis algorithm from [9] has been implemented. The current ver-
sion is available at https://github.com/davidebasile/ContractAutomataTool and
previous implementations are still available in other branches of the repository.

References

1. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37521-7

2. Bartoletti, M., Cimoli, T., Zunino, R.: Compliance in behavioural contracts: a brief
survey. In: Bodei, C., Ferrari, G.-L., Priami, C. (eds.) Programming Languages
with Applications to Biology and Security. LNCS, vol. 9465, pp. 103–121. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25527-9 9

3. Basile, D., ter Beek, M.H.: A clean and efficient implementation of choreography
synthesis for behavioural contracts. In: Damiani, F., Dardha, O. (eds.) COOR-
DINATION 2021. LNCS, vol. 12717 (2021). https://doi.org/10.1007/978-3-030-
78142-2 14

4. Basile, D., Degano, P., Ferrari, G.L.: Automata for specifying and orchestrating
service contracts. Log. Meth. Comput. Sci. 12(4), 1–51 (2016). https://doi.org/10.
2168/LMCS-12(4:6)2016

5. Basile, D., Degano, P., Ferrari, G.-L., Tuosto, E.: Playing with our CAT and
communication-centric applications. In: Albert, E., Lanese, I. (eds.) FORTE 2016.
LNCS, vol. 9688, pp. 62–73. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-39570-8 5

6. Basile, D., Di Giandomenico, F., Gnesi, S.: FMCAT: supporting dynamic service-
based product lines. In: SPLC, pp. 3–8. ACM (2017). https://doi.org/10.1145/
3109729.3109760

7. Basile, D., Di Giandomenico, F., Gnesi, S., Degano, P., Ferrari, G.L.: Specifying
variability in service contracts. In: VaMoS, pp. 20–27. ACM (2017). https://doi.
org/10.1145/3023956.3023965

8. Basile, D., ter Beek, M.H., Degano, P., Legay, A., Ferrari, G.L., Gnesi, S., Di
Giandomenico, F.: Controller synthesis of service contracts with variability. Sci.
Comput. Program. 187 (2020). https://doi.org/10.1016/j.scico.2019.102344

9. Basile, D., ter Beek, M.H., Pugliese, R.: Synthesis of orchestrations and choreogra-
phies: bridging the gap between supervisory control and coordination of services.
Log. Methods Comput. Sci. 16(2) (2020). https://doi.org/10.23638/LMCS-16(2:
9)2020

10. Batory, D.S.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005). https://doi.org/10.1007/11554844 3

11. ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Web service composition approaches:
from industrial standards to formal methods. In: ICIW. IEEE (2007). https://doi.
org/10.1109/ICIW.2007.71

12. ter Beek, M.H., Reniers, M.A., de Vink, E.P.: Supervisory controller synthesis for
product lines using CIF 3. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9952, pp. 856–873. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47166-2 59

https://github.com/davidebasile/ContractAutomataTool
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-319-25527-9_9
https://doi.org/10.1007/978-3-030-78142-2_14
https://doi.org/10.1007/978-3-030-78142-2_14
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.1007/978-3-319-39570-8_5
https://doi.org/10.1007/978-3-319-39570-8_5
https://doi.org/10.1145/3109729.3109760
https://doi.org/10.1145/3109729.3109760
https://doi.org/10.1145/3023956.3023965
https://doi.org/10.1145/3023956.3023965
https://doi.org/10.1016/j.scico.2019.102344
https://doi.org/10.23638/LMCS-16(2:9)2020
https://doi.org/10.23638/LMCS-16(2:9)2020
https://doi.org/10.1007/11554844_3
https://doi.org/10.1109/ICIW.2007.71
https://doi.org/10.1109/ICIW.2007.71
https://doi.org/10.1007/978-3-319-47166-2_59
https://doi.org/10.1007/978-3-319-47166-2_59

Supervisory Synthesis of Configurable Behavioural Contracts with Modalities 181

13. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010). https://doi.
org/10.1016/j.is.2010.01.001

14. Boswell, D., Foucher, T.: The Art of Readable Code. O’Reilly, Sebastopol (2011)
15. Caillaud, B., Darondeau, P., Lavagno, L., Xie, X. (eds.): Synthesis and Control

of Discrete Event Systems. Springer, Dordtrecht (2002). https://doi.org/10.1007/
978-1-4757-6656-1

16. Czarnecki, K., W ↪asowski, A.: Feature diagrams and logics: there and back again.
In: SPLC, pp. 23–34. IEEE (2007). https://doi.org/10.1109/SPLINE.2007.24

17. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concur-
rency in Practice. Addison-Wesley, Upper Saddle River (2006)

18. Henderson, K., Salado, A.: Value and benefits of model-based systems engineering
(MBSE): evidence from the literature. Syst. Eng. 24(1), 51–66 (2021). https://doi.
org/10.1002/sys.21566

19. Mannion, M.: Using first-order logic for product line model validation. In: Chastek,
G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45652-X 11

20. Martin, R.C.: Clean Code. Prentice Hall, Upper Saddle River (2008)
21. Meinicke, J., Thüm, T., Schröter, R., Benduhn, F., Leich, T., Saake, G.: Mastering

Software Variability with FeatureIDE. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-61443-4

22. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-28901-1

23. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event pro-
cesses. SIAM J. Control Optim. 25(1), 206–230 (1987). https://doi.org/10.1137/
0325013

24. Tockey, S.: How to Engineer Software: A Model-Based Approach. Wiley, Chichester
(2019)

25. Warburton, R.: Java 8 Lambdas: Pragmatic Functional Programming. O’Reilly,
New York (2014)

https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1007/978-1-4757-6656-1
https://doi.org/10.1007/978-1-4757-6656-1
https://doi.org/10.1109/SPLINE.2007.24
https://doi.org/10.1002/sys.21566
https://doi.org/10.1002/sys.21566
https://doi.org/10.1007/3-540-45652-X_11
https://doi.org/10.1007/978-3-319-61443-4
https://doi.org/10.1007/978-3-319-61443-4
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1137/0325013
https://doi.org/10.1137/0325013

Off-the-Shelf Automated Analysis of
Liveness Properties for Just Paths

(Extended Abstract)

Mark Bouwman, Bas Luttik, and Tim Willemse(B)

Eindhoven University of Technology, Eindhoven, The Netherlands
{m.s.bouwman,s.p.luttik,t.a.c.willemse}@tue.nl

Abstract. Recent work by van Glabbeek and coauthors suggests that
the liveness property for Peterson’s mutual exclusion algorithm, which
states that any process wanting to enter the critical section will even-
tually enter it, cannot be analysed in CCS and related formalisms. In
our article, we explore the formal underpinning of this suggestion and its
ramifications. In particular, we show that the liveness property for Peter-
son’s algorithm can be established convincingly with the mCRL2 toolset,
which has a conventional ACP-style process-algebra based specification
formalism.

1 Introduction

A process-algebraic specification of a distributed algorithm or system typically
includes unrealistic finite or infinite computations in which progress in some
component halts. Their mere presence often sits in the way of a proof that
the algorithm or system satisfies a set of desirable liveness properties. The go-
to solution is to exclude these unrealistic computations from consideration by
imposing additional assumptions such as progress and fairness (see [7] for a
comprehensive overview).

For the analysis of so-called fair schedulers—of which Peterson’s mutual
exclusion algorithm is an example—one should, however, use such fairness
assumptions cautiously, as fair schedulers themselves are intended to realise the
very aspect of fairness in a system. In [6], Van Glabbeek and Höfner propose just-
ness as a criterion that is just strong enough to exclude unrealistic computation
of fair schedulers:

“Once a transition is enabled that stems from a set of parallel components,
one (or more) of these components eventually partake in a transition” [7].

The semantics of process calculi are usually defined by associating with every
expression a labelled transition system. Thus, the semantic mapping is forgetful
with respect to the notion of component, which is crucial for the definition of
which computations are just. To facilitate reasoning about liveness properties

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 182–187, 2021.
https://doi.org/10.1007/978-3-030-78089-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-78089-0_11

Off-the-Shelf Automated Analysis of Liveness Properties 183

of processes specified in process calculi while taking justness into account, two
solutions are proposed in the literature: In [4], the definition of just path uses
that the states of the labelled transition system associated with an expression of
the calculus (by its structural operational semantics) are themselves expressions
of the calculus; hence, these expressions reflect component information. In [5],
the operational semantics is revised so that it yields a labelled transition system
enriched with a concurrency relation that reflects component information; the
notion of just path is then formulated referring to the concurrency relation.

The disadvantage of both the aforementioned definitions of just path is that
they preclude the use of state-of-the-art verification technology for process calculi
that has been developed over the past two decades relying firmly on the forgetful
semantic mapping to labelled transition systems. Our aim, in [1], is to present
a method by which the mCRL2 toolset [2] can be used to verify that all just
paths associated with an mCRL2 specification satisfy a liveness property, and
to establish its correctness. Our method does not require an adaptation of the
mCRL2 toolset itself. Instead, it relies on a disciplined use of labels in an mCRL2
process specification, by which from the label it can be inferred exactly which
components contribute to the execution of the transition with that label. Then
a justness assumption can be built into the μ-calculus formula expressing the
liveness property. In the remainder of this article we first summarise the main
ideas regarding the disciplined use of labels in the mCRL2 process specification,
and then we discuss how to formalise liveness for all just paths in the μ-calculus.

2 Label-Based Justness for mCRL2

In mCRL2 a process is specified as a parallel composition of sequential compo-
nents. The language has a flexible mechanism, inherited from ACP, to define
interaction between those components. One can, e.g., specify that if one compo-
nent can execute a transition labelled with a and another component can execute
a transition labelled with b, then the two components may synchronise, resulting
in a transition labelled with c. This is achieved by including the specification of
a so-called communication function, expressing that labels a and b communicate
to c. (In contrast, the language CCS has a fixed communication function that
only allows transitions labelled with complementary labels (a and ā) to syn-
chronise and the resulting transition is always labelled with the special label τ .)
The flexibility to specify a communication function is crucial to our definition
of justness, because it allows one to encode in the label c which components are
contributing to the interaction it represents.

Our formalisation of the notion of just path in the context of an mCRL2
specification, which is inspired by the formalisation in [5], assumes that the
following two mappings are defined:

1. npc associates with every label a set of necessary participants, i.e., components
that participate in the interaction; and

2. afc associates with every label a set of affected components, i.e., components
that are thought to be affected by the interaction.

184 M. Bouwman et al.

The pair (npc, afc) is called a component assignment for the specification.
The distinction between necessary participant and affected component is

important when, for example, modelling shared variables in process calculi. Since
process calculi adhere strictly to the message passing paradigm, shared variables
should be modelled as separate components. As pointed out in [4], to get a real-
istic notion of justness (e.g., for a model of Peterson’s algorithm), the activity of
reading the value of the variable should, however, not be treated as affecting the
component representing the shared variable. To facilitate this, we partition the
set of labels used in the mCRL2 specification into a set S of signals and a set
A of actions. Transitions labelled by signals are special in that they should not
change state; this is a property that needs to be established for the mCRL2 spec-
ification at hand. Moreover, the communication function should respect signals
in the sense that it should not yield a signal, unless it was applied exclusively to
signals.

For a correct definition of just path, it is important that the component
assignment truly reflects the component structure; such a component assign-
ment we shall call consistent. It is not possible to associate a consistent compo-
nent assignment with every mCRL2 specification, but in [1] we give fairly liberal
sufficient conditions that ensure that a consistent component assignment does
indeed exist. Roughly, these conditions require that the sets of labels occurring
in components are disjoint, that the component assignment assigns each such
label to the correct component, and that the communication function is con-
sistent with the component assignment. It is worth reiterating that the flexible
communication mechanism of mCRL2 is crucial for the latter. We refer to [1]
for the formalities. It is also argued in [1], that Peterson’s algorithm for mutual
exclusion can be modelled by an mCRL2 specification for which there exists a
consistent component assignment.

Finally, as argued in [5], justness is used to specify which paths represent a
complete computation of the system. The distinction between blocking and non-
blocking actions is relevant for determining when a computation is complete.
Blocking actions are not entirely under the control of the specified system; their
execution may depend on interaction with the environment. A non-blocking
action is assumed to be completely under the control of the system. Complete
computations may therefore only end in a state in which only blocking actions
are enabled.

We now proceed to define the notion of just path. First, to define the notion of
path we refer to the labelled transition system associated with an mCRL2 specifi-
cation. A path in this transition system is a finite or infinite alternating sequence
s0a1s1a2s2 · · · of states and actions, starting with a state and if it is finite also
ending with a state, such that si

ai+1−→ si+1 for all relevant i. Furthermore, we
say that an action a is enabled in a state s if there exists s′ such that s

a−→ s′.
The component assignment for the mCRL2 specification induces a concurrency
relation on labels: we define that λ1 �• λ2 if, and only if, npc(λ1) ∩ afc(λ2) = ∅.
This concurrency relation is used to define the notion of just path.

Off-the-Shelf Automated Analysis of Liveness Properties 185

Definition 1. Let B ⊆ A be a set of blocking actions. A path π is B-just if for
every action a /∈ B that is enabled in some state s on π, an action a′ occurs in
the suffix of π starting at s such that a ��• a′.

Indeed, the above formalisation of a just path captures the essence of the informal
definition. For every action transition involving some set of parallel components
that is enabled at some point on the path, ultimately some other transition is
executed by a set of parallel components interfering with those enabling the first
transition.

3 Off-the-Shelf Verification of Liveness

Due to the nature of justness, which ‘dynamically’ checks for enabledness of
actions along a path, and their future elimination, it is not obvious whether
one can express liveness properties restricted to just paths only, in a suitable
modal logic. In spite of this dynamic nature, we show that the modal μ-calculus
(supported by mCRL2) can be used to express typical liveness properties under
justness.

As an illustration, Table 1 displays a template formula asserting (the vio-
lation of) the property a-b-liveness, stating that on all just paths, an action
a is inevitably followed by action b. This template formula can be instanti-
ated by a user wishing to carry out a liveness verification of an algorithm: it
only requires information concerning which labels are designated as signals. As
a result, mCRL2 can also be used to verify liveness properties of algorithms
such as Peterson’s.1 As a bonus, counterexamples [3] can be provided in case of
liveness violations.

Notice that the template formula asserts the existence of a just path violating
the liveness property, which is conceptually simpler than the dual problem of
asserting that the liveness property holds true on all just paths. A just path
constitutes a violation to our liveness property exactly when (1) this path has a
prefix leading to a state, reached by an a-labelled transition, and (2) along the
just suffix of this path action b never takes place.

Formula violate simply characterises the set of states satisfying property (1),
i.e., those states admitting paths in which an a-action enters a state admitting
a path satisfying property (2). The states that meet the latter property are
represented by formula invariant, characterising exactly those states that allow
for a b-free just path. The justness of that path is captured by the fact that,
along that path, each enabled, non-blocking action λ is eliminated along that
path. The latter is expressed by elim(λ), asserting that there is a finite b-free
path consisting of actions that do not interfere with λ, and an action λ′, which
does interfere with λ, leads to a state again satisfying invariant. It is a property
of the transition system associated with mCRL2 specifications with a consistent
component assignment that on this finite path towards the action interfering

1 The mCRL2 sources can be found in the academic example directory of the mCRL2
repository, see https://github.com/mCRL2org/mCRL2, revision b45856d9a.

https://github.com/mCRL2org/mCRL2

186 M. Bouwman et al.

Table 1. Template formula that characterises the set of states that admit a just path
violating a-b-liveness. The user provides the sets A and B = A \ B, the relation �•

and the pair of actions a and b to instantiate/generate the formula for checking a
transition system associated with an mCRL2 specification with a consistent component
assignment. Note that the modality 〈λ〉φ asserts that there is a λ-labelled transition
leading to a state satisfying φ. The fixed points indicate that one is interested in the
least (μ) or largest (ν) set of states satisfying the formula.

violate = μW. (〈a〉invariant ∨ ∨

λ∈A
〈λ〉W)

invariant = νY.
∧

λ∈B
(〈λ〉� ⇒ elim(λ))

elim(λ) = μQ. (
∨

λ′∈#λ\{b}
〈λ′〉Y ∨ ∨

λ′∈A\(#λ∪{b})
〈λ′〉Q)

where #λ = {λ′ | λ ��• λ′}

with λ, all other enabled non-blocking actions remain enabled so long as no
action interfering with them is executed.

Theorem 1. For an mCRL2 specification with a consistent component assign-
ment it holds that all just paths starting in state s satisfy a-b-liveness iff
s /∈ �violate�.

References

1. Bouwman, M., Luttik, B., Willemse, T.: Off-the-shelf automated analysis of liveness
properties for just paths. Acta Informatica 57, 551–590 (2020). https://doi.org/10.
1007/s00236-020-00371-w

2. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

3. Cranen, S., Luttik, B., Willemse, T.A.C.: Evidence for fixpoint logic. In: CSL. Vol-
ume 41 of LIPIcs, pp. 78–93. Schloß Dagstuhl - Leibniz-Zentrum für Informatik
(2015)

4. Dyseryn, V., van Glabbeek, R.J., Höfner, P.: Analysing mutual exclusion using
process algebra with signals. In: Peters, K., Tini, S. (eds.) Proceedings of
EXPRESS/SOS 2017. Volume 255 of EPTCS, pp. 18–34 (2017)

5. Glabbeek, R.: Justness. In: Bojańczyk, M., Simpson, A. (eds.) FoSSaCS 2019. LNCS,
vol. 11425, pp. 505–522. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17127-8 29

https://doi.org/10.1007/s00236-020-00371-w
https://doi.org/10.1007/s00236-020-00371-w
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17127-8_29
https://doi.org/10.1007/978-3-030-17127-8_29

Off-the-Shelf Automated Analysis of Liveness Properties 187

6. van Glabbeek, R.J., Höfner, P.: CCS: it’s not fair! - fair schedulers cannot be imple-
mented in CCS-like languages even under progress and certain fairness assump-
tions. Acta Informatica 52(2–3), 175–205 (2015). https://doi.org/10.1007/s00236-
015-0221-6

7. van Glabbeek, R.J., Höfner, P.: Progress, justness, and fairness. ACM Comput.
Surv. 52(4), 69:1–69:38 (2019)

https://doi.org/10.1007/s00236-015-0221-6
https://doi.org/10.1007/s00236-015-0221-6

Towards a Spatial Model Checker on
GPU

Laura Bussi1, Vincenzo Ciancia2(B), and Fabio Gadducci1

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
laura.bussi@phd.unipi.it,fabio.gadducci@unipi.it

2 Istituto di Scienza e Tecnologie dell’Informazione, CNR, Pisa, Italy
vincenzo.ciancia@isti.cnr.it

Abstract. The tool VoxLogicA merges the state-of-the-art library of
computational imaging algorithms ITK with the combination of declara-
tive specification and optimised execution provided by spatial logic model
checking. The analysis of an existing benchmark for segmentation of
brain tumours via a simple logical specification reached very high accu-
racy. We introduce a new, GPU-based version of VoxLogicA and present
preliminary results on its implementation, scalability, and applications.

Keywords: Spatial logics · Model checking · GPU computation

1 Introduction and Background

Spatial and Spatio-temporal model checking have gained an increasing interest in
recent years in various application domains, including collective adaptive [11,12]
and networked systems [5], runtime monitoring [4,15,17], modelling of cyber-
physical systems [20] and medical imaging [3,13]. Introduced in [7], VoxLogicA
(Voxel-based Logical Analyser)1 caters for a declarative approach to (medical)
image segmentation, supported by spatial model checking. A spatial logic is
defined, tailored to high-level imaging features, such as regions, contact, texture,
proximity, distance. Spatial operators are mostly derived from the Spatial Logic
of Closure Spaces (SLCS, see Fig. 1). Models of the spatial logic are (pixels
of) images, with atomic propositions given by imaging features (e.g. colour,
intensity), and spatial structure obtained via adjacency of pixels. SLCS features
a modal operator near, denoting adjacency of pixels, and a reachability operator
ρ φ1[φ2], holding at pixel x whenever there is a path from x to a pixel y satisfying
φ1, with all intermediate points, except the extremes, satisfying φ2.

Research partially supported by the MIUR Project PRIN 2017FTXR7S “IT- MaT-
TerS” and by POR FESR Toscana 2014–2020 As. 1 - Az. 1.1.5 – S.A. A1 N. 7165
project STINGRAY. The authors are thankful to: Raffaele Perego, Franco Maria Nar-
dini and the HPC-Lab at ISTI-CNR for a powerful GPU used in early development;
Gina Belmonte, Diego Latella, and Mieke Massink, for fruitful discussions. The authors
are listed in alphabetical order, having equally contributed to this work.
1 VoxLogicA: see https://github.com/vincenzoml/VoxLogicA.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 188–196, 2021.
https://doi.org/10.1007/978-3-030-78089-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_12&domain=pdf
https://github.com/vincenzoml/VoxLogicA
https://doi.org/10.1007/978-3-030-78089-0_12

Towards a Spatial Model Checker on GPU 189

Fig. 1. SLCS syntax. Atomic propositions p correspond to image properties (e.g. inten-
sity, colour); boolean operators act pixel-wise; the near operator N denotes pixel adja-
cency (using 8-adjacency : the pixels having a vertex in common with a given one).

The main case study of [7] is brain tumour segmentation for radiotherapy,
using the BraTS 2017 public dataset of medical images [2]. An high-level specifi-
cation for glioblastoma segmentation was proposed and tested using VoxLogicA,
resulting in a procedure that competes in accuracy with state-of-the-art tech-
niques. In [6], also an accurate specification for nevus segmentation was pre-
sented. This paper introduces a novel development in the direction of taking
advantage of Graphical Processing Units: high-performance, massively parallel
computational devices. GPU computing differs from the multi-core paradigm
of modern CPUs in many respects: the execution model is Single Instruction
Multiple Data; the number of computation cores is high; the memory model is
highly localised and synchronisation among parallel threads is very expensive.
Each GPU core performs the same operation on different coordinates (a single
pixel, in our case). The dimension of the problem (e.g. the size of an image) is
provided to the GPU when the program (kernel) is launched, yet the number of
threads does not scale with the problem size, being bounded by the number of
computing units in the GPU. Currently, such a number is in the order of thou-
sands, whereas the problem size may include millions of tasks. The problems that
benefit the most of such architecture are the inherently massively parallel ones.
In that case, the main issue is to minimise read/write operations from and to
the GPU memory, and to turn a problem into a highly parallel implementation.

A substantial redesign is thus required to port existing algorithms to GPUs.
VoxLogicA-GPU implements the core logical primitives of VoxLogicA on GPU,
sharing motivation with a recent trend on implementing formal methods on GPU
[8,16,18,21,22]. This paper aims to describe the tool architecture, including
asynchronous execution of logical primitives on GPU and garbage collection,
and to demonstrate a consistent efficiency improvement. In doing so, we had
to overcome two major issues: implementing connected component labelling on
GPUs and minimising the number of (computationally expensive) CPU ↔ GPU
memory transfers. Our current results are very encouraging, obtaining a (task-
dependent) speed-up of one or two orders of magnitude.

2 Functional Description and Implementation

VoxLogicA-GPU2 is a global, explicit state model checker, aiming at high effi-
ciency and maximum portability. It is implemented in FSharp, using the NET

2 VoxLogicA-GPU is Free and Open Source software. Its source code is currently avail-
able at https://github.com/vincenzoml/VoxLogicA/tree/experimental-gpu.

https://github.com/vincenzoml/VoxLogicA/tree/experimental-gpu

190 L. Bussi et al.

Core infrastructure, and the General-Purpose GPU computing library OpenCL3.
The choice of OpenCL is motivated by portability to different GPU brands.
VoxLogicA-GPU is a command line tool, accepting as input a text file describing
the analysis, and a number of input images. The text file contains a set of logic
formulas and parametrised, non-recursive macro abbreviations. As in [7], the
tool expands macros, identifies the ground formulas (that is, without variables),
and constructs a directed acyclic graph of tasks and dependencies. Such a graph
is equivalent to the syntax tree, but it enjoys maximal sharing : no sub-formula is
ever computed twice. In the CPU version, the tasks run in parallel on the avail-
able CPU cores, yielding a speed-up proportional to the degree of parallelism
of the task graph and to the number of cores. In the GPU version, the tasks
are currently executed asynchronously with respect to the main CPU execution
thread, but sequentially: so-called out-of-order execution is left for future work.

The focus of this first release of VoxLogicA-GPU is on the design of a free
and open source GPU-based infrastructure, with proven scalability. Thus, devel-
opment has been narrowed to a core implementation that is powerful enough to
reach the stated objectives, although not as feature-complete as VoxLogicA. In
particular, the implemented primitives are those of SLCS plus basic arithmetics,
and computation is restricted to 2D and integer-valued images. Implementation-
wise, VoxLogicA-GPU is a command-line tool. It takes only one parameter, a text
file containing the specification to be executed, i.e., a sequence of commands.
Five commands are currently implemented: let, load, save, print, import.
The model checking algorithm of VoxLogicA-GPU is shared with VoxLogicA.
After parsing, parametric macros are expanded, while at the same time (to
avoid explosion of the syntax tree) the aforementioned task graph is computed.
A major issue is that each task allocates a memory area proportional to the
size of the input image to store its results, thus garbage collection is required.
The current strategy is a simple reference counting, as the number of reverse
dependencies of each task (i.e. the tasks taking the given one as argument) is
known before execution, and no task is created at run time. This problem is
more relevant to the GPU implementation: as a GPU memory is usually smaller
than a CPU one, and GPU buffers are explicitly allocated by the programmer,
large formulas can easily lead to Out of Memory errors at run time. If a refer-
ence counter turns to 0, no more tasks take the given one as an input, and the
pointer referencing the buffer can be disposed. As no pointer longer refers that
GPU memory area, this can be reused. A task is an operator of the language
or an output instruction. The semantics of the former is delegated to the GPU
implementation of the VoxLogicA API, defining the core type Value, which is
instantiated as a shorthand for a type called GPUImage. Such type represents
a computation, asynchronously running on a GPU, whose purpose is to fill an
image buffer. GPUImage contains a pointer to a buffer stored in the GPU, its
imaging features, and an OpenCL event (an handle to the asynchronous compu-
tation). The latter is used to wait for termination before transferring the results

3 FSharp: see https://fsharp.org. NET Core: see https://dotnet.microsoft.com. OpenCL:
see https://www.khronos.org/opencl. ITK: see https://itk.org.

https://fsharp.org
https://dotnet.microsoft.com
https://www.khronos.org/opencl
https://itk.org

Towards a Spatial Model Checker on GPU 191

to the CPU and to make task dependencies explicit to the GPU for proper
sequencing. Since commands, parameters, and results must be transferred from
the CPU to the GPU and back, keeping pointers to GPU buffers minimises this
overhead, allowing for the reuse of partial results. Thus, data is transferred only
at the beginning of the computation and when retrieving results to be saved to
disk. The model checker is responsible for decreasing reference counts after each
task terminates, and for scheduling garbage collection when a reference counter
reaches 0. Each operator is implemented in a small module running on CPU,
whose only purpose is to prepare memory buffers and launch one or more ker-
nels (i.e. functions running on GPU). As in VoxLogicA, the reachability operator
ρ φ1[φ2] is implemented using connected components labelling.

2.1 Connected Components Labelling in VoxLogicA-GPU

We designed a simple algorithm for connected component labelling, biased
towards implementation simplicity, although efficient enough for our proto-
type. Similarly to the classic result in [19], the algorithm exploits the pointer
jumping technique4: see Algorithm 1 for the pseudo-code of the kernels (ter-
mination checking is omitted) and Fig. 2 for an example. After initialisation,
mainIteration is iterated. By pointer jumping, it converges in logarithmic time
with respect to the number of pixels N , but it may fail to correctly label con-
nected components with corners in specific directions (see Fig. 2, Iteration 13).
Then reconnect is called, checking if there are two adjacent pixels with different
labels, and changing one of them (deterministically chosen) so that the two labels
now coincide The way reconnect changes the image ensures that mainIteration
will restart and will be enabled to converge again. The termination condition
is reached when reconnect does not change the image, which requires a global
check on its input and output. For checking termination we adopted a reduce-
type operation5: it takes log(N) iterations, since it divides the image size at each
iteration until a single-pixel image containing a boolean flag is obtained. If the
termination condition is false, the algorithm restarts from mainIteration6. In
most cases, reconnect is called a very small number of times before convergence,
and the total number of iterations is in the order of log(N) (see [10] for details).

4 Pointer jumping or path doubling is a design technique for parallel algorithms that
operate on pointer structures, such as linked lists and directed graphs. It allows an
algorithm to follow paths with a time complexity that is logarithmic with respect
to the length of the longest path. It does this by “jumping” to the end of the path
computed by neighbors. See https://en.wikipedia.org/wiki/Pointer jumping.

5 See e.g. https://en.wikipedia.org/wiki/MapReduce.
6 Since checking termination takes log(N) iterations, instead of waiting for
mainIteration to converge, reconnect is called each k iterations (k = 8 in the current
implementation, which experimentally proved to be a reasonable compromise).

https://en.wikipedia.org/wiki/Pointer_jumping
https://en.wikipedia.org/wiki/MapReduce

192 L. Bussi et al.

Algorithm 1: Pseudocode for connected components labelling
1 initialization(start: image of bool, output: image of int × int)
2 // parallel for on GPU
3 for (i, j) ∈ Coords do
4 if start(i,j) then
5 output(i, j) = (i, j) // null otherwise

6 mainIteration(start: image of bool, input, output: image of int × int)
7 // parallel for on GPU
8 for (i, j) ∈ Coords do
9 if start(i,j) then

10 (i′, j′) = input(i, j) // pointer jumping
11 output(i, j) = maxNeighbour(input, i′, j′)
12 reconnect(start: image of bool, input, output: image of int × int)
13 // parallel for on GPU
14 for (i, j) ∈ Coords do
15 if start(i,j) then
16 (i′, j′) = input(i, j)
17 (a, b) = maxNeighbour(input, i, j)
18 (c, d) = input(i′, j′)
19 if (a, b) > (c, d) then
20 output(i′, j′) = (a, b) // Requires atomic write

3 Preliminary Evaluation

This section illustrates the scalability results obtained in our preliminary tests7.
Experiments have been executed on a machine equipped with an Intel Core
i9-9900K and a NVIDIA RTX 3080 GPU. This is indicative of the attainable
speed-up as both CPU and GPU are current, high-end (workstation-oriented)
devices. It is important to remark that CPU and GPU execution times are sub-
ject to high variability. Indeed, a highly parallel test may run about 8 times
faster on CPU with 16 cores (a current high-end desktop workstation) than a
machine with 2 cores (a current travelling laptop), as witnessed by the law on
theoretical speed-up given by parallel machines [14]. Since the range of current
CPUs is highly variable, so are the execution times in our tests. This fact also
explains the different speedup in our tests comparing CPU and GPU on sequen-
tial and parallel tasks (see Fig. 3 and Fig. 4). In the parallel test, all the 16 cores
of the chosen CPU are exploited, thus the CPU is more efficient.

We built two kinds of large formulas for stressing the tool: sequential
(i.e. of shape f(g(. . . (x)))) and “parallel” ones, where the operators are com-
posed in order to maximise parallelism. More precisely, formulas are writ-
ten in order to have many independent sub-formulas (i.e., having shape
f(g(. . . , . . .), h(. . . , . . .))). In the CPU implementation, such sub-formulas can
be computed in parallel, up to the number of available cores. Note again that
7 All the tests we present, and the script to run them, are available in the source code

repository https://github.com/vincenzoml/VoxLogicA/tree/experimental-gpu.

https://github.com/vincenzoml/VoxLogicA/tree/experimental-gpu

Towards a Spatial Model Checker on GPU 193

Fig. 2. CC-labelling of a 2048 × 2048 pixels image in 24 iterations. Different colours
represent different labels. Reconnect is called every 8 main iterations. Iteration 13: the
main iterations converged; the image does not change until iteration 16 (reconnect).
Iteration 17: label propagation after reconnect. Iteration 24: termination.

Fig. 3. Execution times for the sequential test.

maximising CPU usage entails a smaller speedup for the GPU. Figure 3 and 4
report execution times for each type of test. Each row reports the number of tasks
to execute (i.e., the number of nodes in the directed acyclic graph described in
Sect. 2), and the obtained speed-up for the two GPU algorithms. In all cases,
VoxLogicA-GPU achieves a relevant speed-up. The CPU version performs better
on very small formulas, due to the overhead needed to set up GPU computation.
The version with garbage collection is much slower than the version without.
This is due to garbage collection being run in the current implementation as
soon as reference counts reach 0, and recall that memory deallocation and real-
location is particularly expensive on GPUs. Obvious improvements are expected
by scheduling garbage collection to be run only when a memory usage threshold
is reached. However, we plan to design a garbage collector which is more specific
to the execution patterns of a model checker. We also carried out a preliminary
assessment of the brain tumour segmentation case study of [7]. Given the current
restrictions of VoxLogicA-GPU to 2D images and the core logical primitives (see
Sect. 2), it is only possible to use a simplified dataset and specification, obtaining
too small tasks for interesting measurements. We omit the full results (see [10]),
but we note that a mild speed-up was obtained: this is interesting, as the CPU
version uses a state-of-the-art imaging library designed for high efficiency.

194 L. Bussi et al.

Fig. 4. Execution times for the parallel test.

4 Conclusions and Future Work

Our preliminary evaluation of spatial model checking on GPU is encouraging:
large formulas benefit most, with significant speedups. Connected components
labelling will be a focus for future work: indeed, the topic is very active, and
our simple, proof-of-concept algorithm might well be replaced by state-of-the-art
procedures (see e.g. the recent [1]). The currently attained speed-up can be used,
for instance, for interactive calibration of parameters or for automated parame-
ter optimisation, e.g. using gradient descent algorithms. However, given the peak
performance of recent GPUs, our results are just the tip of the iceberg of what
can be achieved. Future work will concentrate on fully exploiting more powerful
GPUs, using out-of-order execution to permit the execution of more indepen-
dent tasks at the same time, and taking into account GPU-specific architectural
features (memory banking, number of channels, etc.). Making VoxLogicA-GPU
feature-complete with respect to VoxLogicA is also a goal. In this respect, we
remark that although in this work we decided to go through the “GPU-only”
route, future developments will also consider a hybrid execution mode with some
operations executed on the CPU, so that existing primitives in VoxLogicA can
be run in parallel with those that have a GPU implementation. Usability of
VoxLogicA-GPU would be greatly enhanced by a user interface. However, under-
standing modal logical formulas is generally considered a difficult task, and cog-
nitive/human aspects may become predominant with respect to technological
concerns. Formal methods could be used to mitigate such concerns (see e.g. [9]).

Towards a Spatial Model Checker on GPU 195

References

1. Allegretti, S., Bolelli, F., Grana, C.: Optimized block-based algorithms to label
connected components on GPUs. IEEE Trans. Parallel Distrib. Syst. 31(2), 423–
438 (2020)

2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with
expert segmentation labels and radiomic features. Sci. Data 4, 1–13 (2017)

3. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial
logics and model checking for medical imaging. Softw. Tools Technol. Transf. 22(2),
195–217 (2020). https://doi.org/10.1007/s10009-019-00511-9

4. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitoring mobile and spatially
distributed cyber-physical systems. In: Talpin, J., Derler, P., Schneider, K. (eds.)
MEMOCODE 2017, pp. 146–155. ACM (2017)

5. Bartocci, E., Gol, E., Haghighi, I., Belta, C.: A formal methods approach to pat-
tern recognition and synthesis in reaction diffusion networks. IEEE Trans. Control
Netw. Syst. 5(1), 308–320 (2016)

6. Belmonte, G., Broccia, G., Ciancia, V., Latella, D., Massink, M.: Feasibility of
spatial model checking for nevus segmentation. In: Bliudze, S., Semini, L. (eds.)
FORMALISE@ICSE 2021 (2021, to appear)

7. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: VoxLogicA: a spatial model
checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 281–298. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17462-0 16

8. Berkovich, S., Bonakdarpour, B., Fischmeister, S.: GPU-based runtime verification.
In: IPDPS 2013, pp. 1025–1036. IEEE Computer Society (2013)

9. Broccia, G., Milazzo, P., Ölveczky, P.C.: Formal modeling and analysis of safety-
critical human multitasking. Innovations Syst. Softw. Eng. 15(3–4), 169–190
(2019). https://doi.org/10.1007/s11334-019-00333-7

10. Bussi, L., Ciancia, V., Gadducci, F.: A spatial model checker in GPU (extended
version). CoRR abs/2010.07284 (2020)

11. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 46

12. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model checking of vehicular movement in public transport systems. Softw.
Tools Technol. Transf. 20(3), 289–311 (2018). https://doi.org/10.1007/s10009-018-
0483-8

13. Grosu, R., Smolka, S., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.:
Learning and detecting emergent behavior in networks of cardiac myocytes. Com-
mun. ACM 52(3), 97–105 (2009)

14. Gustafson, J.L.: Reevaluating Amdahl’s law. Commun. ACM 31(5), 532–533
(1988)

15. Ma, M., Bartocci, E., Lifland, E., Stankovic, J., Feng, L.: SaSTl: spatial aggregation
signal temporal logic for runtime monitoring in smart cities. In: ICCPS 2020, pp.
51–62. IEEE (2020)

16. Neele, T., Wijs, A., Bošnački, D., van de Pol, J.: Partial-order reduction for GPU
model checking. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS,
vol. 9938, pp. 357–374. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46520-3 23

https://doi.org/10.1007/s10009-019-00511-9
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.1007/s11334-019-00333-7
https://doi.org/10.1007/978-3-319-47166-2_46
https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.1007/978-3-319-46520-3_23
https://doi.org/10.1007/978-3-319-46520-3_23

196 L. Bussi et al.

17. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties with SSTL. Log. Methods
Comput. Sci. 14(4), 2:1–2:38 (2018)

18. Osama, M., Wijs, A.: Parallel SAT simplification on GPU architectures. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 21–40. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17462-0 2

19. Shiloach, Y., Vishkin, U.: An O(logn) parallel connectivity algorithm. J. Algo-
rithms 3(1), 57–67 (1982)

20. Tsigkanos, C., Kehrer, T., Ghezzi, C.: Modeling and verification of evolving cyber-
physical spaces. In: Bodden, E., Schäfer, W., van Deursen, A., Zisman, A. (eds.)
ESEC/FSE 2017, pp. 38–48. ACM (2017)

21. Wijs, A., Bošnački, D.: Many-core on-the-fly model checking of safety properties
using GPUs. Softw. Tools Technol. Transf. 18(2), 169–185 (2016). https://doi.org/
10.1007/s10009-015-0379-9

22. Wijs, A., Neele, T., Bošnački, D.: GPUexplore 2.0: unleashing GPU explicit-state
model checking. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 694–701. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 42

https://doi.org/10.1007/978-3-030-17462-0_2
https://doi.org/10.1007/s10009-015-0379-9
https://doi.org/10.1007/s10009-015-0379-9
https://doi.org/10.1007/978-3-319-48989-6_42
https://doi.org/10.1007/978-3-319-48989-6_42

Formal Verification of HotStuff

Leander Jehl(B)

University of Stavanger, Stavanger, Norway
leander.jehl@uis.no

Abstract. HotStuff is a recent algorithm for repeated distributed con-
sensus used in permissioned blockchains. We present a simplified version
of the HotStuff algorithm and verify its safety using both Ivy and the
TLA Proof Systems tools.

We show that HotStuff deviates from the traditional view-instance
model used in other consensus algorithms and instead follows a novel tree
model to solve this fundamental problem. We argue that the tree model
results in more complex verification tasks than the traditional view-
instance model. Our verification efforts provide initial evidence towards
this claim.

1 Introduction

The advent of blockchain technology has significantly increased interest in
Byzantine Fault Tolerant (BFT) systems. BFT systems tolerate arbitrary misbe-
havior of a fraction of participating nodes. Therefore, these systems build a key
component for recent permissioned [2,23] and federated [17] blockchain systems.
However, BFT algorithms are notoriously difficult to design or implement and
thus have been the subject of numerous efforts in formal methods [1,13,14,22]

In this paper we verify safety properties of the HotStuff [23] algorithm using
both the TLA Proof System (TLAPS) [5] and the recent Ivy tool [18]. The
HotStuff algorithm is used in the Diem, formerly libra blockchain, and was, to
the best of our knowledge, not previously formally verified. Drawing inspiration
from blockchain technology, the HotStuff algorithm presents a novel paradigm
in consensus algorithms, replacing views and instances with a tree model. We
show that this new paradigm complicates the verification of safety properties
compared to the more traditional view-instance model. We find that the need
to ensure the tree structure and a reachability or ancestor predicate for the tree
model in inductive invariants complicates verification. The different nature of
the formal frameworks used allows us to address this issue in different ways.
Additionally, our efforts led us to discover a simplified version of the HotStuff
protocol, which restricts the use of reachability to the safety properties and
removes it from the algorithm.

In addition to contributing to the formal verification and better understand-
ing of the HotStuff algorithm and its novel paradigm, this work also presents a
case study and comparison of the two verification systems, TLAPS and Ivy. Both
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 197–204, 2021.
https://doi.org/10.1007/978-3-030-78089-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-78089-0_13

198 L. Jehl

of these aim to make formal verification available to practitioners and engineers
and at least the TLA+ model checker is actively used in industry [19]. Thus, our
comparison of the recent Ivy tool with more mature TLAPS forms an important
evaluation of that system. We are not aware of a previous use of the Ivy tool
that did not involve the original authors.

2 View-Instance and Tree Model for Repeated Consensus

This section presents the different paradigms used to implement repeated con-
sensus. Repeated consensus is a fundamental problem in distributed computing.
The problem requires processes to maintain an append-only log in the presence
of faults. Repeated consensus allows to implement arbitrary objects in a fault
tolerant manner, by maintaining a log of deterministic operations, applied to the
object. This state machine approach [21] is widely deployed in the cloud, e.g. in
Zookeeper [10], but also builds the basis for recent blockchain systems.

A common model for algorithms solving repeated consensus (e.g. [3,16]) is,
what we call the view-instance model. As shown in Fig. 1, this model uses a
matrix of possibly infinitely many slots (or fields), each indexed by two integers,
instance and view. In each slot a value can be proposed by a leader and com-
mitted by the processes. We say that the slot is committed. Since fault tolerant
consensus is impossible to solve in an asynchronous system [6], some slots may
remain uncommitted, or even without a proposed value, e.g. due to leader failure
or network partitions. Indeed, in some algorithms, such as FlexiblePaxos [9] or
PBFT [3], slots have a preassigned leader that may fail. In such cases, values
may be committed in additional slots, using higher views. The instances rep-
resent the entries in the distributed log. If a value is committed in one slot, it
is adopted for that instance. Algorithms thus need to ensure, that values com-
mitted in different slots belonging to one instance are the same. This property
forms the main safety condition for algorithm using the view-instance model.

The view-instance model has advantages both for algorithm design and per-
formance. For algorithm design, the slots belonging to one instance can be viewed
as solving a single instance of the consensus problem. Most prominently the
Paxos algorithm has been presented in this way [16]. Similarly, the safety con-
dition stated above can be applied to a single instance. Thus, in the formal
verification of these algorithms, a common approach is to first validate the algo-
rithm in a single instance [14,15] and subsequently extend the model to cover
multiple instances [4,20]. Additionally, the view-instance model allows optimiza-
tions that apply operations across instances. For example a new view may be
started simultaneously in all instances [16].

Tree Model: HotStuff [23] introduces a new way to implement repeated consen-
sus, that organizes slots in a rooted tree, as shown in Fig. 2. We call this the tree
model. If a slot is committed, the slot and its ancestors are used as the current
prefix of the log. Thus, the depths of slots in the tree-model corresponds to the
instance in the view-instance model. If a slot cannot be committed, the processes
can try to commit one of its descendants instead. Alternatively, a new slot can

Formal Verification of HotStuff 199

Fig. 1. View-instance matrix with pro-
posed and committed slots.

Fig. 2. Slots with parent relation in the
tree model.

be proposed at the same depth. To distinguish slots at the same depth, the tree
model uses rounds, similar to views in the view-instance model. E.g. if a slot was
not proposed at a certain depth, a new slot can be proposed at the same depth,
but with a larger round. Different from views, rounds do not restart for every
depth, but instead the round of a slot is larger than the round of its parent. The
core safety property in the tree model is that any two committed slots are on
the same branch of the tree, or equivalent for two committed slots, one is the
ancestor of the other.

The advantage of the tree model is that it is not necessary to ensure that
different slots commit the same value. Thus, this model is suited to allow simple
leader change procedures, since it is not necessary to ensure that the new leader
proposes the same value as an old leader. Indeed, leader change with linear
communication complexity is the main contribution of the HotStuff protocol.
An additional advantage is that not every slot has to be actually committed, as
long as a descendant of the slot is eventually committed. Similar to the view-
instance model, the tree model allows specific optimizations. HotStuff spreads
the process of committing a slot over the slot’s descendants.

The verification of an algorithm in the tree model poses some novel chal-
lenges. First, the existing approach to first prove safety of a single instance and
then extend this proof to multiple instance does not apply. Second, in the tree
model, the safety property, and in some cases also the algorithm contain a reach-
ability predicate. Reachability on finite graphs, i.e. the transitive closure of the
neighbor relation, cannot be expressed in first order logic [12].

3 Simplified HotStuff Algorithm

We now present our simplified version of the HotStuff algorithm and explain how
it differs from HotStuff [23]. As common in BFT algorithms, HotStuff assumes
3f+1 processes, of which at most f may be faulty. Faulty processes may stop but
also violate the protocol. However, faulty nodes cannot subvert cryptographic
primitives. Especially, a digital signature scheme is used to authenticate mes-
sages, preventing impersonation of correct (non-faulty) processes.

200 L. Jehl

The algorithm contains the following two operations. The leader of a round
may propose new slots. If the followers accept the proposed slot they sign it. The
leader collects these signatures into a certificate, containing 2f + 1 signatures.
We say that a slot is certified, if there exists a certificate for that slot. The root
slot has a certificate at startup. Slots are propagated using reliable broadcast [8],
ensuring that either all or none of the correct nodes receive it.

To correctly propose a slot, it needs to include the signature of the leader,
and the round in which it is proposed. Additionally, the slot must specify its
parent and contain a certificate for that parent slot. Thus, any slot that has a
child is certified. Finally, the slot’s round must be bigger than its parent’s round.

Two rules govern whether a correct process signs a slot. Rule 1 allows pro-
cesses to only sign in increasing rounds. E.g. after signing in round 3, a correct
process would no longer sign a slot in round 2. For Rule 2, processes maintain a
locked slot l and only sign a new slot snew, if the round of the parent of snew is
greater or equal to the round of l.

parent(snew).round
?≥ l.round (Rule 2)

The lock l of every process is initially set to the root of the tree. On signing a
new slot snew a process checks whether the grandparent of snew has a higher
round than the process’s current lock l. If that is the case, l is updated to said
grandparent.

A slot s is committed, if it has a grandchild sgc, which is certified, and no
rounds are omitted between s and sgc: s.round + 2 = sgc.round. In practice, on
receiving a new slot, processes check whether its great-grand parent is commit-
ted. For example, in Fig. 2, slot d does not commit slot a, because round 2 was
omitted between them. However, if slot e is certified, slot c will be committed.

The two rules stated guarantee safety. To propose a slot that can be signed
by all correct processes, a new leader collects the last certificate (with highest
round) from 2f + 1 processes, selects the one with the highest round among
them, and uses the certified slot as parent in a new proposal.

3.1 Original HotStuff

Here we explain how the original HotStuff algorithm differs from our simplified
version presented above. We refer the reader to [23] for an in depth specification
of the original algorithm. Original HotStuff does not require the parent of a
new slot to be certified. Instead of a certificate for its parent, the slot includes
a certificate for one of its ancestors. Thus, HotStuff has a more complex tree
structure with each slot specifying both a link to its parent and a link to a
certified ancestor. It is these ancestor links that correspond to parent links in
our simplified version.

To be able to commit a slot in original HotStuff, parent and certified links
must point to the same slot, resulting in the same condition as in our simplified
version. Thus, during normal operation and when original HotStuff can commit
slots, it is identical to our simplified version.

Formal Verification of HotStuff 201

The removal of uncertified parent links significantly simplifies Rule 2. The
original rule is as follows, where parentc(s) is the certified ancestor of s.

ancestor(l, snew) ∨ parentc(snew).round > l.round (ORule 2)

4 Verification

In the following we report on our effort to verify safety of simplified HotStuff in
both TLAPS and Ivy. Models and proofs are available online [11]. We mainly
focus on our experience with these tools, their ease of use, as perceived by us
and how we modelled the ancestor relationship.

Ivy is a recent tool for the verification of distributed algorithms [18]. The default
tactic in Ivy, used to verify safety properties, is a proof of an inductive invariant
using an SMT solver. To avoid the SMT solver diverging, Ivy requires the spec-
ification to be written in uninterpreted first order logic. This prohibits the use
of interpreted theories, e.g. integers. The required rewriting is quite straightfor-
ward. For example, instead of using integers, we require that rounds are totally
ordered and use an intersection property on sets of processes, instead of process
counts [20].

Additionally, Ivy requires that the verification condition must lie in a decid-
able logical fragment called FAU [7]. This requires the elimination of certain
functions and quantifier combinations in the model. On submitting a model, Ivy
checks if the given model lies within FAU and if not, specifies which functions
or formulas violate conditions. Given a verification condition in FAU, Ivy either
proves the invariant, or produces a counterexample to inductivity. Counterex-
amples can be ruled out through additional invariants.

Violations through functions can be removed by replacing functions with
relations. For example, we had to rewrite the function relating a proposed slot
to its parent. Violations through quantifier combinations are more difficult to
remove. Following Padon et al. [20], resolving this issue requires to introduce new
relations into the model. Understanding which relations we could add required
a good understanding of our model and the quantifier restrictions it implies. For
example consider the following condition expressing that for a given slot z and
process n, there exists a slot s in a higher round, which n has signed and which
is not a descendant of z:

∃s ∈ Slot : s.round > z.round ∧ ¬ancestor(z, s) ∧ signed(n, s) (1)

If z or n are free variables or under universal quantification, this expression does
violate FAU in our model. Realizing that we could existentially quantify over
rounds, we introduced two predicates, signedIn(N,R) and signedAncIn(N,R, S)

202 L. Jehl

and replaced Expression (1) with the following, that specifies that n has signed
a slot in some round r but has not signed an ancestor of z in round r:

∃r ∈ Rounds : r > z.round ∧ signedIn(n, r) ∧ ¬signedAncIn(n, r, z) (2)

To model the ancestor relation we included this relation as predicate in our
model and update it whenever a new slot is added to the tree. This is similar to
the signedIn and signedAncIn relations added to express invariants in FAU. The
drawback with this approach is that it requires many invariants to be added. We
were able to prove that our ancestor relation can be implemented by checking
parent links of individual slots inside a while loop.

Our finished model contains 36 auxiliary invariants, 18 or which are only
concerned with the tree structure and ancestor relation. While developing the
proof, we struggled with long running times in Ivy. In some cases the tool timed
out, without a proof or counterexample. After a decomposition and some final
simplification, however, Ivy verifies our proof in a few seconds.

The complexity of our model is significantly larger than what we found in
consensus algorithms using the instance-view model. For example, to verify both
Paxos or Multipaxos, the authors of the Ivy tool required only 4 auxiliary invari-
ants. While some complexity may be due to our inexperience, we believe this
also shows an increased complexity of the tree model.

One of the main advantages with Ivy was that it was easy to modularize or
refactor our model. After several such refactorings, the proof was still running,
or at least easy to reestablish.

HotStuff in TLA+. Based on our experience in Ivy we specified simplified Hot-
Stuff in TLA+ and proved safety using TLAPS. We also verified the safety
condition for small instances of our model using the TLC model checker. In
using TLAPS, we benefited from an active and helpful user group.

In TLA+ we could use both integers and functions, where our Ivy model uses
totally ordered sets and relations. While the availability of integers made little
difference, the ability to use functions significantly simplified the formulation of
the model and the inductive invariant.

TLA+ and TLAPS allowed us to define the ancestor relation inductively.
However, we were unable to apply lemmas about the ancestor relation to primed
variables. This however was necessary to use the ancestor relation in the induc-
tive invariant. Instead, we discovered Rule 2, which allowed us to formulate both
the model and the inductive invariant without the notion of ancestry. The ances-
tor relation thus only appears in the safety property, which we prove follows from
the inductive invariant.

Again we found that the verification was quite complex, due to the com-
plex safety condition in the tree model, but also due to the need to ensure a
correct tree structure in the inductive invariant. In total our proof amounts to
approximately 1000 lines, plus additional 200 lines to prove properties about the
ancestor relation. For comparison, previous work proved safety of Paxos [15] and
Multi-Paxos [4] in around 500 lines.

Formal Verification of HotStuff 203

5 Conclusion

We have presented the tree model for repeated consensus and a simplified version
of the HotStuff algorithm. The advantages of the model, especially similarity to
techniques from permissionless blockchains encourages further investigation.

Our verification efforts using both Ivy and TLAPS highlight both advantages
and disadvantages of these tool and suggest that the tree model may result in
more complex verification tasks, than the traditional view-instance model.

References

1. Dillig, I., Tasiran, S. (eds.): CAV 2019. LNCS, vol. 11561. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4

2. Buchman, E.: Tendermint: Byzantine fault tolerance in the age of blockchains.
Ph.D. thesis (2016)

3. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

4. Chand, S., Liu, Y.A., Stoller, S.D.: Formal verification of multi-paxos for dis-
tributed consensus. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 119–136. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 8

5. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: Verifying safety properties
with the TLA+ proof system. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS
(LNAI), vol. 6173, pp. 142–148. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14203-1 12

6. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM (JACM) 32(2), 374–382 (1985)

7. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 25

8. Hadzilacos, V., Toueg, S.: Fault-Tolerant Broadcasts and Related Problems, pp.
97–145. ACM Press/Addison-Wesley Publishing Co., New York (1993)

9. Howard, H., Malkhi, D., Spiegelman, A.: Flexible paxos: Quorum intersection
revisited. In: 20th International Conference on Principles of Distributed Systems
(OPODIS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

10. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: Wait-free coordination
for internet-scale systems. In: USENIX Annual Technical Conference, vol. 8 (2010)

11. Jehl, L.: Verifying simplified hotstuff (2021). https://doi.org/10.5281/zenodo.
4711071

12. Kolaitis, P.G.: On the expressive power of logics on finite models. In: Finite Model
Theory and Its Applications, pp. 27–123. Springer, Heidelberg (2007). https://doi.
org/10.1007/3-540-68804-8 2

13. Konnov, I., Veith, H., Widder, J.: SMT and POR beat counter abstraction: param-
eterized model checking of threshold-based distributed algorithms. In: Kroening,
D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 85–102. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 6

14. Peleg, D. (ed.): DISC 2011. LNCS, vol. 6950. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-24100-0

https://doi.org/10.1007/978-3-030-25540-4
https://doi.org/10.1007/978-3-319-48989-6_8
https://doi.org/10.1007/978-3-319-48989-6_8
https://doi.org/10.1007/978-3-642-14203-1_12
https://doi.org/10.1007/978-3-642-14203-1_12
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.5281/zenodo.4711071
https://doi.org/10.5281/zenodo.4711071
https://doi.org/10.1007/3-540-68804-8_2
https://doi.org/10.1007/3-540-68804-8_2
https://doi.org/10.1007/978-3-319-21690-4_6
https://doi.org/10.1007/978-3-642-24100-0
https://doi.org/10.1007/978-3-642-24100-0

204 L. Jehl

15. Lamport, L., Merz, S., Doligez, D.: Paxos.tla (2014). https://github.com/tlaplus/
tlapm/blob/master/examples/paxos/Paxos.tla

16. Lamport, L., et al.: Paxos made simple. ACM SIGACT News 32(4), 18–25 (2001)
17. Lokhava, M., et al.: Fast and secure global payments with stellar. In: Proceedings

of the 27th ACM Symposium on Operating Systems Principles, SOSP (2019)
18. McMillan, K.L., Padon, O.: Ivy: a multi-modal verification tool for distributed

algorithms. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp.
190–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8 12

19. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How amazon web services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

20. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable rea-
soning about distributed protocols. In: Proceedings of the ACM on Programming
Languages 1(OOPSLA) (2017)

21. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

22. Vukotic, I., Rahli, V., Esteves-Veŕıssimo, P.: Asphalion: trustworthy shielding
against byzantine faults. Proc. ACM Program. Lang. 3(OOPSLA), 1–3 (2019)

23. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: BFT con-
sensus with linearity and responsiveness. In: Proceedings of the 2019 ACM Sym-
posium on Principles of Distributed Computing, PODC 2019. ACM (2019)

https://github.com/tlaplus/tlapm/blob/master/examples/paxos/Paxos.tla
https://github.com/tlaplus/tlapm/blob/master/examples/paxos/Paxos.tla
https://doi.org/10.1007/978-3-030-53291-8_12

Tutorials

Better Late Than Never or: Verifying
Asynchronous Components at Runtime

Duncan Paul Attard1,2(B) , Luca Aceto2,3 , Antonis Achilleos2 ,
Adrian Francalanza1 , Anna Ingólfsdóttir2 , and Karoliina Lehtinen4

1 University of Malta, Msida, Malta
{duncan.attard.01,afra1}@um.edu.mt

2 Reykjavík University, Reykjavík, Iceland
{duncanpa17,luca,antonios,annai}@ru.is

3 Gran Sasso Science Institute, L’Aquila, Italy
luca.aceto@gssi.it

4 CNRS, Aix-Marseille University and University of Toulon, LIS,
Marseille, France

lehtinen@lis-lab.fr

Abstract. This paper presents detectEr, a runtime verification tool for
monitoring asynchronous component systems. The tool synthesises exe-
cutable monitors from properties expressed in terms of the safety frag-
ment of the modal μ-calculus. In this paper, we show how a number
of useful properties can be flexibly runtime verified via the three forms
of instrumentation—inline, outline, and offline—offered by detectEr to
cater for specific system set-up constraints.

Keywords: Runtime verification · Instrumentation · Monitoring

1 Do You Want to Know a Secret

In the Cockaigne of software development, programs are verified using a smor-
gasbord of pre-deployment techniques, and executed only when their correct-
ness is ascertained. Reality, however, tells a different story. Mainstream verifi-
cation practices, including testing [47], only reveal the presence of errors [29].
Exhaustive approaches like model checking [41] are laborious to use, e.g. building
effective program models is non-trivial, and known to suffer from state explo-
sion problems [27]. Other methods such as type systems [48] are intentionally
lightweight to prevent disrupting the software development lifecycle; this, in turn,
limits their precision since type-based analyses occasionally rule out well-behaved

Supported by the doctoral student grant (No: 207055-051) and the MoVeMnt project
(No: 217987-051) under the Icelandic Research Fund, the BehAPI project funded by the
EU H2020 RISE under the Marie Skłodowska-Curie action (No: 778233), the ENDEAV-
OUR Scholarship Scheme (Group B, national funds), and the MIUR project PRIN
2017FTXR7S IT MATTERS.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 207–225, 2021.
https://doi.org/10.1007/978-3-030-78089-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_14&domain=pdf
http://orcid.org/0000-0002-2448-5394
http://orcid.org/0000-0002-2197-3018
http://orcid.org/0000-0002-1314-333X
http://orcid.org/0000-0003-3829-7391
http://orcid.org/0000-0001-8362-3075
http://orcid.org/0000-0003-1171-8790
https://doi.org/10.1007/978-3-030-78089-0_14

208 D. P. Attard et al.

programs. Present-day software poses even more challenges. Static verification
often relies on having access to the program source code, which is not necessarily
available when software is constructed from libraries or components subject to
third-party restrictions. Moreover, modern applications are increasingly devel-
oped in decentralised fashion, where the constituent parts are not always known
pre-deployment. This tends to increase both the complexity of software and
the resources required to verify it, while at the same time, decreasing the time
available to conduct its verification. Lately, with the availability of large data
volumes, cutting-edge software components rely on machine learning to adapt
their behaviour without the need to be explicitly programmed. Analysing these
types of software artifacts statically is difficult, not least because their internal
representation is notoriously hard to understand.

Although the proverbial correctness cake cannot be had and eaten, slices
of it may still be savoured after the program has been deployed. In certain
cases, post-deployment techniques such as Runtime Verification (RV) [20,37]
can be used instead of, or in tandem with, static techniques to increase cor-
rectness assurances about a program or System under Scrutiny (SuS). RV uses
monitors—computational entities consisting of logically-distinct instrumenta-
tion and analysis units—to observe the execution of the SuS. Analysers, i.e.,
sequence recognisers [13], are typically synthesised automatically from formal
descriptions of correctness properties expressed in a specification logic.

When devising a RV tool, substantial effort is focussed on the specification
language that is used to describe correctness properties, and the synthesis proce-
dure which generates the analysis that runtime checks these properties [6,20,45].
Arguably, less attention is given to the instrumentation aspect, particularly, how
the SuS is equipped to run with monitors, and the manner in which the com-
putation of the SuS is extracted and reported for analysis. There is no one-size-
fits-all solution to these challenges. For instance, inline instrumentation—the de
facto technique employed by state-of-the-art RV [20,34]—relies on access to the
program source or unobfuscated binary, thus obliging the RV monitors to be
expressed in the same language as that of the SuS. The hallmark of a flexible
RV tool is, therefore, its ability to support various instrumentation techniques
to cater for the different scenarios where RV is used. The RV tool should also
provide a common interface for describing what properties should be verified,
agnostic of the underlying instrumentation mechanism dealing with the techni-
calities of how the verification is performed. This contributes to lowering the
learning curve of the tool and facilitate its adoption.

This paper presents the RV tool detectEr that addresses the analysis and
instrumentation aspects of runtime monitoring. Our tool targets asynchronous
component systems. It automatically synthesises correct analyser code from
properties expressed in terms of the monitorable safety fragment of the modal
μ-calculus. Since the correctness of the synthesised analysers is studied in prior
work (see [1,5,17,39]), our account elaborates on the usability and instrumenta-
tion aspects of the tool. detectEr, developed on top of the Erlang [15,26] ecosys-
tem, supports three instrumentation methods to cater for different SuS set-ups:

Better Late Than Never or: Verifying Asynchronous Components at Runtime 209

Fig. 1. Our calculator server and its abstraction in terms of symbolic actions

Inline: targets programs written in the Erlang language;
Outline: accommodates program binaries that are compiled for and run on the

Erlang Virtual Machine (EVM), but whose source code is unavailable;
Offline: analyses recorded runs of programs that may execute outside the EVM.

We show how, from the same correctness specifications, detectEr is able to run-
time monitor system components using these different instrumentation methods.

The paper is structured as follows. Section 2 introduces our running example
that captures the typical interaction between concurrent processes, along with
useful properties one may wish to runtime check on such systems. Sections 3 and
4 focus on the specification logic used by detectEr and how this is synthesised
into executable analysis code. Section 5 summarises the role the instrumentation
has with respect to the runtime analysis, and the mechanism detectEr employs
to identify the SuS components in need of monitoring. Sections 6–8 overview the
three instrumentation methods mentioned above, while Sect. 9 concludes.

2 A Day in the Life

We consider an idiomatic calculator server that handles client requests for arith-
metic computation. Our server can be naturally expressed as an actor (pro-
cess) [12] that blocks, and waits for client requests sent as asynchronous mes-
sages. These messages are addressed to the server using its unique process ID
(PID), and deposited in its mailbox that buffers multiple client requests. The
server unblocks upon consuming a message from the mailbox. In our client-server
protocol, messages contain the type of operation to be executed on the server, its
arguments (if applicable), and the client PID to whom the corresponding server
reply is addressed.

210 D. P. Attard et al.

Our calculator server is implemented as the Erlang module, calc_server, in
Fig. 1a. The server logic is encapsulated in the function loop(Tot) that is forked
to execute as an independent process by the launcher invoking start(), line 1.
Processes in Erlang are forked via the built-in function spawn(), parametrised
on line 1 by the module name, calc_server, the name of the function to spawn,
loop, and the list of arguments accepted by loop, [0]. The server process reads
messages from its mailbox (line 3), and pattern-matches against the three types
of operations requested by clients, Clt: (i) addition (add) and multiplication
(mul) requests carry the operands A1 and A2, lines 4 and 8, and, (ii) stop (stp)
requests that carry no arguments, line 12. Pattern variables Clt, A1 and A2 in
Fig. 1a are instantiated to concrete data in client request messages via pattern
matching. Every request fulfilled by the server results in a corresponding reply
that is sent to the PID of the client instantiated in variable Clt, lines 5, 9 and
13. Server replies carry the status tag, ok or bye, and the result of the requested
operation. Parameter Tot of loop() is used by the server to track the number
of client requests serviced, and is returned in reply to a stp request. The server
loops on add and mul requests, incrementing Tot before recursing, lines 6 and
10; a stp request does not loop and terminates the server computation.

In the sequel, we focus on a system set-up consisting of one server and client to
facilitate our exposition. The forked loop(Tot) function for some initial service
count Tot induces a server runtime behaviour that can be abstractly described
by the state transition model in Fig. 1b. Transitions between the states of Fig. 1b
denote the computational steps that produce (visible) program events (e.g. event
Srv:Clt ! {bye , Tot } that carries the concrete payload values Srv, Clt and Tot).
There are a number of correctness properties we would like such behaviour to
observe. For instance, we do not control the value Tot that the server loop is
launched with and, therefore, could require the invariant

“The service request count returned on shutdown is never negative.” (P1)

Similarly, one would expect the safety properties

“Replies are always sent to the client indicated in the request” (P2)

and “A request for adding two numbers always returns their sum” to hold,
amongst others. The properties are data-dependent, which makes them hard
to ascertain using static techniques such as type systems. Besides properties
that reason on data, the implementation in Fig. 1a is expected to comply with
control properties, such as,

“Client requests are never serviced more than once”, (P3)

that describe the message exchanges between the server and client processes. All
these properties are hard to ascertain without access to the source code.

Better Late Than Never or: Verifying Asynchronous Components at Runtime 211

3 I Want to Tell You

We overview the detectEr specification syntax, sHML [4,10,38], which is the
safety logical fragment of the modal μ-calculus [43,44], and show how a selection
of the properties in Sect. 2 can be formally specified in this logic.

The Logic. Specifications in sHML are defined over the states of transition
models (such as the one of Fig. 1b), and are generated from the following gram-
mar:

ϕ ∈ sHML ::= tt (truth) | ff (falsehood) | x (fix-point variable)

| ∧
i∈I [pi, ci]ϕi (conj. necessities) | maxx.ϕ (max. fix-point)

sHML expresses recursive properties as maximal fix-point formulae maxx.ϕ,
that bind free occurrences of x in ϕ. A central construct to sHML is the universal
modal operator, [p, c]ϕ. To handle reasoning over event data, sHML modalities
are augmented with symbolic actions [10], consisting of event patterns p ∈ Pat,
and decidable constraints, c ∈ BExp. This is similar to how sets of actions are
expressed in tools such as CADP [40] and mCRL 2 [22]. The pattern p contains
data variables, A,B, . . . ∈ Var, that bind free data variables in c, along with
any other free variables in constraints of the continuation ϕ. The pair (p, c)
describes a concrete set of actions, a ∈ Act (i.e., program events). An action a
is in this set when: (i) p matches the shape of a, and maps the variables in p to
the payload data in a as the substitution σ, and (ii) the instantiated constraint
cσ of p also holds. A state Q of the SuS (model) satisfies [p, c]ϕ if the following
holds: whenever Q transitions to state Q′ with action a that is included in the
set described by (p, c) with σ, then Q′ must satisfy the instantiated continuation
formula ϕσ.

The logical variant [4,10] we use for detectEr combines necessities and
conjunctions into one construct,

∧
i∈I [pi, ci]ϕi, to denote [p1, c1]ϕ1 ∧ . . . ∧

[pn, cn]ϕn, I = {1, . . . , n} being a finite index set. Conjunctions assume that
every pair (pi, ci) describes a disjoint set of actions to facilitate the generation
of deterministic monitors [35,36]. detectEr supports the five action patterns of
Table 1 that capture the lifecycle of, and interactions between the processes of
the SuS. A fork action is exhibited by a process when it creates a child process;
its dual, init, is exhibited by the corresponding child upon initialisation. Pro-
cess exit actions signal termination, while send and recv describe interaction.
The labelled state transition model of Fig. 1b uses the actions send and recv
from Table 1.

Example 1. Recall the SuS behaviour in Fig. 1b. Formula ϕ0 with symbolic
action (p, c) describes a property requiring that a state does not exhibit an
output event that consists of 〈Ack ,Tot〉, acknowledged with bye AND A NEG-
ATIVE TOTAL, Tot .

∧
[

pattern p
︷ ︸︸ ︷
Srv:Clt ! 〈Ack ,Tot〉,

constraint c
︷ ︸︸ ︷
Ack = bye ∧ Tot < 0] ff (ϕ0)

212 D. P. Attard et al.

Table 1. Trace event actions capturing the behaviour exhibited by the SuS

Action a Action pattern p Variables Description

forkinit P1 →P2, M:F (A)

P1 ←P2, M:F (A)

P1 PID P1 of the parent process forking P2

P2 PID P2 of the child process forked by P1

M:F (A) Function signature forked by P1

exit P1 ��Dat P1 PID P1 of the terminated process
Dat Exit data, e.g. termination reason, etc.

send P1:P2 !Req P1 PID P1 of the process issuing the request
P2 PID P2 of the recipient process
Req Request payload, e.g. integers, tuples, etc.

recv P2 ?Req P2 PID P2 of the recipient process
Req Request payload, e.g. integers, tuples, etc.

The universal modality states that, for any event satisfying the symbolic action
(p, c) from a state Q, the state Q′ it transitions to must then satisfy the continu-
ation formula. No state can satisfy the continuation ff, and formula ϕ0 can only
be satisfied when Q does not exhibit the event described by (p, c). All the states
in Fig. 1b trivially satisfy this property (as there are no outgoing state transi-
tions on (p, c) of formula ϕ0) with the exception of Q3. If this state exhibits
the concrete event pid1:pid2 ! 〈bye ,−1〉, it matches the pattern p, yielding the
substitution σ = {Srv �→ pid1,Clt �→ pid2,Ack �→ bye,Tot �→ −1}. As cσ also
holds, then we can conclude that Q3 violates formula ϕ0. The formula ϕ1 below
extends ϕ0 to one that is invariant for any state reachable from the current state;
this formalises property P1 from Sect. 2.

maxx.
∧ (

1
︷ ︸︸ ︷
[Srv ?Req, �]x,

2
︷ ︸︸ ︷
[Srv:Clt ! 〈Ack ,Tot〉, Ack = bye ∧ Tot < 0]ff,

[Srv:Clt ! 〈Ack ,Ans〉, Ack = ok ∨ (Ack = bye ∧ Ans ≥ 0)]
︸ ︷︷ ︸

3

x

)

(ϕ1)

Whereas 2 corresponds to formula ϕ0, 1 and 3 cover the other possible actions
produced in Fig. 1b, recursing on the fix-point variable x. �

Note that the formula variables Srv, Clt, Tot , etc. in Example 1 are different to
the program variables of Fig. 1a bearing the same name. In our setting, program
behaviour is observed as events, and formulae variables are used to pattern-
match and reason about data in these events. We adopt the convention of naming
formulae and program variables identically, merely to indicate the link between
program and event data to readers.

The Tool. The syntax used by detectEr deviates minimally from sHML. Con-
cretely, the comma symbol delimiting patterns and constraints is dropped in

Better Late Than Never or: Verifying Asynchronous Components at Runtime 213

favour of the when keyword, whereas vacuous constraints, i.e., when �, may
be omitted. The tool also supports a shorthand notation for patterns to specify
atomic values directly; these are implicitly matched against action data, e.g. sub-
formula 2 from Example 1 can be abbreviated to [Srv:Clt ! 〈bye ,Tot〉 when Tot <
0] . Moreover, redundant data variables can be replaced by the ‘don’t care’ pat-
tern, (_), that matches arbitrary data values. This sugaring enables us to rewrite
ϕ1 from Example 1 as:

maxx.
∧ (

[_?_]x, [_:_! 〈bye ,Tot〉 when Tot < 0]ff,
[_:_! 〈Ack ,Ans〉 when Ack = ok ∨ (Ack = bye ∧ Tot ≥ 0)]x

)

Example 2. Property P2 from Sect. 2 describes a fragment of the client-server
interaction, asserting that server replies are always addressed to the clients issu-
ing them. Unlike ϕ1, this property induces data dependency across nested for-
mulae.

maxx.
∧

⎛

⎝

1
︷ ︸︸ ︷
[Srv1 ? 〈Clt1 ,_〉] ∧

(
2

︷ ︸︸ ︷
[Srv2:Clt2 !_ when Srv1 = Srv2 ∧ Clt1 	= Clt2]ff,
[Srv2:Clt2 !_ when Srv1 = Srv2 ∧ Clt1 = Clt2]
︸ ︷︷ ︸

3

x

)

⎞

⎠

(ϕ2)

P2 can be formalised as the formula ϕ2, where the data dependency is expressed
via the binders Srv1 and Clt1 in 1 , which are then used in the constraint of
sub-formulae 2 and 3 . The constraint Srv1 = Srv2 scopes our reasoning to
a single server instance. Formula ϕ2 is violated when Clt1 	= Clt2 (since the
continuation would need to satisfy ff), and recurs on x otherwise. Recall that
the aforementioned comparisons between variable instantiations is possible since
the substitution σ obtained from matching the symbolic action of modality 1

extends to the context of sub-formulae 2 and 3 . �

Example 3. Property P3 specifies a control aspect of the client-server interaction,
demanding that requests issued by clients are never serviced more than once.
Formula ϕ3 expresses this requirement via a guarded fix-point that recurs on x
for sequences of send-recv actions; this captures normal server operation that
corresponds to sub-formulae 1 followed by 2 , and then 4 followed by 2 .

∧
1

︷ ︸︸ ︷
[_?_] maxx.

∧

(

[Srv1:Clt1 !_]
︸ ︷︷ ︸

2

∧
(

3
︷ ︸︸ ︷
[Srv2:Clt2 !_ when Srv1 = Srv2 ∧ Clt1 = Clt2]ff,
[_?_]
︸ ︷︷ ︸

4

x

)) (ϕ3)

Formula ϕ3 is violated when a send action matched by 2 is followed by a second
send action that is matched by 3 . The constraint Clt1 = Clt2 in sub-formula 3

ensures that duplicate send actions concern the same recipient. �

214 D. P. Attard et al.

Our earlier formula ϕ2 of Example 2 does not account for the case where the
server interacts with more than one client. It disregards the possibility of other
interleaved events, that are inherent to concurrent settings where processes are
unable to control when messages are received. For instance, while sub-formula 1

matches an initial recv action, a second recv action (e.g. due to a second client
C2 that interacts with the server) matches neither 2 nor 3 . This does not reflect
the requirement of our original property P2. The problem can be addressed by
augmenting formulae with clauses that ‘eat up’ non-relevant actions.

maxx.
∧

⎛

⎜
⎜
⎝

[Srv1 ? 〈Clt1 ,_〉]
1

︷ ︸︸ ︷
maxy.

∧

⎛

⎝
[Srv2:Clt2 !_ when Srv1 = Srv2 ∧ Clt1 	= Clt2]ff,
[Srv2:Clt2 !_ when Srv1 = Srv2 ∧ Clt1 = Clt2]x,
[_?_] y
︸ ︷︷ ︸

2

⎞

⎠

⎞

⎟
⎟
⎠

As the refinement of ϕ2 above shows however, this bloats specifications, which
is why we chose to scope our exposition to a single client-server set-up for the
benefit of readers. Introducing the nested maximal fix-point 1 and sub-formula
2 filters recv actions by recursing on variable y; the rest of ϕ2 is unaltered.

4 What Goes on

Often, post-deployment verification techniques such as RV, do not have access to
the entire execution graph of a SuS, e.g. the transition model in Fig. 1b. Instead,
these are limited to the trace of (program) events that is generated by the cur-
rent execution of the SuS. For instance, an execution might generate the trace of
events ‘pid1 ? 〈pid2 , stp〉 . pid1:pid2 ! 〈bye ,−1〉’, that corresponds to the (finite)
path traversal Q0 → Srv ? 〈Clt , stp〉 → Q3 → Srv:Clt ! 〈bye ,Tot〉 → Q4 in the
transition model of Fig. 1b. In traces, events consist of concrete values instead of
variable placeholders, e.g. pid1 instead of Srv, etc. This limitation can be prob-
lematic when verifying specifications that reason about entire SuS transition
models, e.g. properties expressed in the μ-calculus [11,43,44], CTL [19,41], and
other branching-time logics. Recent studies show that finite traces suffice to ade-
quately verify a practically-useful subset of these properties, as long as the ver-
ification is confined to either determining satisfaction or violation [1,5,7,38,39]
(not both). This is more commonly referred to as specification monitorability [39].
sHML, used in Sect. 3 to encode properties P1–P3, has been shown to be a
maximally-expressive subset of the μ-calculus for the runtime analysis of viola-
tions. This means that (i) any program that violates a property expressed as a
sHML formula can be detected at runtime, (ii) any μ-calculus property whose
violations can be detected at runtime can be expressed as a sHML formula.

From Specification to Analysis. detectEr synthesises automata-like analy-
sers in Erlang from sHML; these inspect trace events incrementally and reach
irrevocable verdicts. An analyser flags a rejection verdict when it processes a

Better Late Than Never or: Verifying Asynchronous Components at Runtime 215

trace exhibiting the program behaviour that violates a property of interest—
crucially, it never flags verdicts associated with the satisfaction of the prop-
erty [1,7,39]. Intuitively, this is because the trace observed at runtime can never
provide enough information to rule out the existence of violating behaviour in
other execution branches of the program. The synthesised analyser code embeds
this reasoning: when a trace event is not included in the set of actions denoted
by the symbolic action of a necessity modality, an inconclusive verdict is flagged.

Our synthesis translates a sHML specification to Erlang code encoded as a
higher-order function, tasked with the analysis of trace events. This function
accepts an event as input, and returns a new function of the same kind that
performs the residual analysis following the event just processed. The synthesis,
�−�, that maps sHML constructs to Erlang syntax is as follows:

�ff� � (fun (_) → io:format("Rejection") end) ()

�max x. ϕ� � (fun x() → �ϕ� end) () �x� � x()

�
∧

i∈I

[pi, ci]ϕi� �

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

fun(p1) when c1 → �ϕ1�
...
(pn) when cn → �ϕn�

(_) → (fun (_) → io:format("Stopped") end) ()
end

In �−�, ff is translated into an anonymous function that flags rejection, mod-
elling formula violations; tt is not synthesised into analysis code since it can
never be violated. Maximal fix-point formulae are translated to named functions
that can be referenced by �x�. The conjunction of necessities,

∧
i∈I [pi, ci]ϕi,

maps naturally to a sequence of function clauses, where the pattern pi matches
the shape of the trace event, and the constraint ci—expressed as an Erlang
guard [26]—operates on variables bound in pi and those instantiated in the
parent function scope. Inconclusive verdicts are modelled via the catch-all
clause (_) that matches any events other than those described by the clauses,
fun(pi) when ci. The order of clauses in Erlang does matter, and affects our syn-
thesis in two ways: (i) it conveniently allows us to handle the inconclusive verdict
case using a catch-all clause at the end of function definitions; (ii) the mutually-
exclusive symbolic actions in a necessity conjunction allows us to synthesise them
in the order specified, without affecting the commutativity of conjunctions. Note
that the synthesis applies the generated functions, i.e., (), to unfold them once.

Figure 2 depicts the behaviour of the analyser that is synthesised from for-
mula ϕ2 of Example 2. It consists of two states, Q0, Q1, the rejection verdict
state ✗, and the inconclusive verdict state ? . The transition from Q0 to Q1

in Fig. 2 corresponds to the modality [Srv1 ? 〈Clt1 ,_〉] , 1 in formula ϕ2, while
the transitions between Q1 and ✗, Q1 and Q0 express sub-formulae 2 and 3 .
The auxiliary transitions from states leading to ? correspond to the catch-all
(_) clause inserted by the synthesis for conjuncted necessities. Figure 2 illus-
tratively labels these transitions by the complement of the set of actions from

216 D. P. Attard et al.

Fig. 2. Abstract model of the analyser synthesised from formula ϕ2

a given state. For example, the symbolic action set Pat \ {_? 〈_,_〉} from Q0

to ? matches anything but recv events; recv events are, in turn, matched by
Srv1 ? 〈Clt1 ,_〉 labelling the transition between Q0 and Q1. Verdict irrevocability,
a prevalent RV requirement [6], is modelled by the detectEr synthesis in terms of
final states (✗ and ? in Fig. 2). The analysis stops when a final state is reached.

Specification, in Practice. detectEr processes sHML formulae specified in
plain text files. The syntax follows the one given in Sect. 3, albeit with two
adaptations: (i) the keyword and is used in lieu of

∧
, and, (ii) we adopt the

Erlang operators for writing boolean constraint expressions, e.g. =:= instead of
=, andalso instead of ∧, orelse instead of ∨, etc. Analysers resulting from the
synthesis, �−�, are compiled to binaries to be packaged with the SuS executables.

5 The Magical Mystery Tour

Instrumentation is central to RV. It refers to the extraction of the computation
of interest in the form of a sequence of trace events from an executing program,
and its reporting to the runtime analysis discussed in Sect. 3. Formulae can be
rendered unverifiable at runtime when the program events they assume cannot
be extracted and reported by the instrumentation. The instrumentation also
plays a role in dropping extraneous events that can infiltrate the trace being
observed and potentially, interfere with the analysis.

What to Monitor. We provide the meta keywords with and monitor to target
the SuS component of interest for a particular specification. The with keyword
picks out the signature of the function that is forked whereas the monitor keyword
defines the property to be analysed. For example, to runtime verify the behaviour
of the calculator server of Fig. 1a against formula ϕ2, we write:

with
calc_server : loop(_)

monitor

maxx.
∧

⎛

⎝
[Srv1 ? 〈Clt1 ,_〉] ∧

(
[Srv2:Clt2 !_ when Srv1 = Srv2 ∧ Clt1 	= Clt2]ff,
[Srv2:Clt2 !_ when Srv1 = Srv2 ∧ Clt1 = Clt2]x

)
⎞

⎠

(ϕ′
2)

Better Late Than Never or: Verifying Asynchronous Components at Runtime 217

Fig. 3. Inline, outline and offline instrumentation methods offered by detectEr

From an instrumentation standpoint, with establishes the set of trace events
corresponding to the SuS component it targets, thus enabling the specification
to abstract from the events generated by other components. This helps to keep
the size of specifications compact whenever possible. In using with, formula ϕ′

2

need not account for superfluous events (e.g. those of another server component)
that tend to make the specification exercise tedious and error-prone.

How to Monitor. detectEr offers three instrumentation methods, inline
(Sect. 6), outline (Sect. 7), and offline (Sect. 8), to cater for different situations
where the RV is conducted. These methods are depicted by the three set-ups of
Fig. 3 that are instantiated with our calculator server, labelled by S, and its par-
ent launcher process, labelled by L. Inlining statically instruments system com-
ponents with the analyser, AS, which then executes as part of the SuS. Outline
instrumentation decouples the SuS components from the extraction and analy-
sis of trace events by way of the tracing infrastructure provided by the EVM.
The offline set-up extends the latter notion to a SuS that (possibly) executes
outside the EVM, mirroring the same architecture of Fig. 3b to enjoy the same
outline arrangement (elided from Fig. 3c). The with keyword directs detectEr to
instrument the analyser code over the relevant SuS components regardless of
the instrumentation method used, to ensure that the same set of trace events
is reported to the runtime analysis. This makes the analysers generated by our
synthesis of Sect. 4 agnostic of the underlying instrumentation.

6 Come Together

Inlining [34] is the most efficient instrumentation method detectEr offers. While
it assumes access to the source code of the SuS, it carries advantages such as

218 D. P. Attard et al.

Fig. 4. Instrumentation pipeline for inlined program monitoring via weaving

low runtime overhead [31,32] and immediate detections [20]. detectEr instru-
ments invocations to synthesised analysers via code injection by manipulating
the program abstract syntax tree (AST). This procedure is depicted in Fig. 4.
In step 1 , the Erlang program source code is preprocessed and parsed into the
corresponding AST, step 2 . The Erlang compilation pipeline includes a parse
transformation phase [26], step 3 , that offers an optional hook to allow the AST
to be processed externally, prior to code generation. Our custom-built weaver
leverages this mechanism to transform the program AST in step 4 and produce
the modified AST in step 5 ; this is subsequently compiled by the Erlang com-
piler into the program binary, step 6 . The compilation phase depends on the
detectEr core modules and analyser binaries, as does the SuS, once it executes.

Instrumentation, in One Go. Step 4 in Fig. 4 performs two transformations
on the program AST. The first transformation initialises an analyser. It weaves
code instructions that store the function encoding of the synthesised analyser
(refer to Sect. 4) in the process dictionary (PD) of the instrumented process
(PDs are process-local, mutable key-value stores with which Erlang actors are
initialised). The weaver identifies spawn() calls that carry the function signature
to be executed as a process. It then replaces the spawn() call with a counterpart
which accepts an anonymous wrapper function that (i) stores the analyser func-
tion in the PD, and, (ii) applies the function specified inside the original spawn()
call. Figure 5a recalls the function start() that forks our calculator server loop,
line 1. The corresponding weaved version of its AST—given as Erlang code for
illustration in Fig. 5a—performs the initialisation of (i) and (ii). Line 3 contains
(omitted) boilerplate logic that determines whether a particular spawn() call
should be instrumented. The meta keyword with from Sect. 5 is used to this end:
it results in the synthesis of auxiliary code that enables the weaver to effect
this judgement. For example, the specification ‘with calc_server:loop(_). . . ’
of formula ϕ′

2 informs the weaver to initialise the analyser only for the function
name loop forked by the invocation of spawn() on line 1 in Fig. 5a. In line 8, the
encoding of the analyser function, AnlFun0, is stored in the PD. The signature
used in the original spawn() call on line 1 is applied on line 10, where Mod0,

Better Late Than Never or: Verifying Asynchronous Components at Runtime 219

Fig. 5. Transformations to the AST of the calc_server program (shown as code)

Fun0, and Args0 are respectively instantiated to values calc_server, loop, and
[0] by the boilerplate logic on line 3 (omitted).

The second transformation decorates the program AST with calls at points
of interest: these correspond to the actions catalogued in Table 1. Each call con-
structs an intermediate trace event description that is dispatched to the analyser.
Lines 9 and 12 in Fig. 5a construct events init and fork, and dispatch them to
the analyser using the function anl:dsp() exposed by the core detectEr modules.
The events recv and send are analogously handled on lines 4 and 6 in Fig. 5b.

Our weaver performs the two transformations outlined above regardless of
whether monitoring is required by the SuS. This induces a modular design where
the SuS is weaved once, while the analyser binaries may be independently regen-
erated, e.g. to refine or add sHML specifications. Updates in these binaries can
afterwards be put into effect by restarting the weaved SuS. To determine whether
to analyse a trace event, the dispatcher implementation anl:dsp() internally
checks against the PD whether an analyser function has been initialised for
the instrumented process. When the analyser function is initialised, anl:dsp()
applies the function to the event, and saves the resulting unfolded analyser
function back to the PD; otherwise, anl:dsp() discards the event. An irrevoca-
ble verdict is reached by the analyser function once its application to an event
returns the internal value that encodes ✗ or ? .

Weaving makes it difficult to extract exit trace events, since abnormal ter-
mination due to crashes cannot be easily anticipated. This limits the ability to
runtime check correctness properties concerning process termination. An instru-
mentation approach via external observation easily sidesteps this restriction.

7 Tell Me What You See

Outlining externalises the acquisition and analysis of SuS trace events. It relies
on the tracing infrastructure provided by the EVM [26], and supports any soft-

220 D. P. Attard et al.

ware component that is developed for the EVM ecosystem, e.g. Erlang, Elixir [42]
and Clojerl [33]. Figure 3b in Sect. 5 shows the outlined set-up for our calculator
server example. Outlining uses tracers, actor processes tasked with the handling
of trace events exhibited by the SuS. Tracers register with the EVM tracing
infrastructure to be notified of process events in connection to the actions of
Table 1. Our outlining algorithm instruments tracers on-demand, depending on
what processes need to be analysed. This approach departs considerably from
inline instrumentation in Sect. 6, and rather than weaving the SuS statically,
outlining defers the decision of what to instrument until runtime.

While outline instrumentation tends to induce higher runtime overhead, it
offers a number of benefits over inlining. It takes a non-invasive approach that
leverages the EVM to trace components without modification, making it easy
to enable and disable the runtime analysis without the need of restarts or rede-
ployments. By decoupling the SuS and tracer components, outlining induces a
degree of partial failure—a faulty analyser does not compromise the running
system, nor does a crashed system component affect the external tracer. As a
result of this arrangement, exit trace events can be detected, giving us the full
expressiveness with respect to the system actions of Table 1. The implementation
of an adequate outline monitoring set-up comes with its own set of challenges.
For example, the instrumentation should be engineered to scale in line with the
SuS, while the runtime analysis of trace events is underway. It has to contend
with the race conditions (e.g. trace event reordering) that arise from the asyn-
chronous execution of the SuS and tracer components. Scalability requires the
instrumentation to explicitly manage garbage collection, where redundant tracer
processes are discarded to minimise resource consumption. Inline instrumenta-
tion is spared these complications since the analysis logic is weaved directly in
SuS processes. Although our outline instrumentation algorithm handles these
aspects, we refrain from providing further detail in this presentation. Interested
readers are encouraged to consult [8] for more details.

Instrumentation, as We Go. The EVM tracing infrastructure enables pro-
cesses to register their interest in receiving trace event messages from other pro-
cesses. Erlang provides the built-in function trace(), that processes may invoke
to enable and disable process tracing dynamically at runtime. Our tracers from
Fig. 3b leverage this functionality to fork other tracers, and scale the RV set-up
as the SuS executes. We configure the EVM tracing to automatically assign the
tracer of an already-traced SuS process to the children it forks [26]. Using this as
a default setting allows us to analyse groups of processes as one component. The
with keyword guides the targeting of which processes tracers need to track and
analyse. By contrast to inlining—where the set of trace events of a component
is implicitly determined as a byproduct of weaving—outlining must actively iso-
late processes from a group to assign dedicated tracers. Recall the specification
‘with calc_server:loop(_). . . ’ of formula ϕ′

2. This instructs our outline instru-
mentation to set up an independent tracer process for the calculator server loop
forked by spawn() on line 1 in Fig. 5a.

Better Late Than Never or: Verifying Asynchronous Components at Runtime 221

Fig. 6. Outline instrumentation for the calculator server (analysers omitted)

Tracers are programmed to react to fork and exit events in the trace.
Figure 6 illustrates how the process creation sequence of the SuS is exploited
to instrument a dedicated tracer for our calculator server. A tracer instruments
other tracers whenever it encounters fork events. The initial RV configuration is
shown in Fig. 6a, where the root tracer, TL, is assigned to the launcher process,
L, in step 1 . L forks the server function loop() to execute as the process S
which is automatically assigned the same tracer TL, as steps 2 both indicate.
Subsequently, TL instruments a new tracer, TS, when it processes the fork trace
event due to L in step 3 . The data carried by fork contains the PID of the forked
process (see Table 1) that designates the SuS process to be instrumented, S, in
this case. At this point, TS takes over the tracing of S from the root tracer TL by
invoking trace() to handle S independently of TL, steps 4 and 5 . TS resumes
its analysis of S, receiving the init event in step 7 ; this is followed by recv
in step 9 as a result of the service request issued by the client, C, in step 8 .
In a similar way, the service reply sent by the server to C in step 10 results in
send being exhibited by S and received by TS in step 11 . Process L eventually
exits after the fork completes, step 12 . The ensuing exit event in step 13 is
interpreted by the root tracer TL as the cue to self-terminate in step 14 . This
garbage collection measure maintains the lowest possible runtime overhead.

8 I’m Only Sleeping

We extend the notion of outline instrumentation to the offline case where the
SuS may potentially run outside the EVM. To support offline instrumentation,
detectEr implements a middleware that emulates the EVM tracing infrastruc-
ture, while preserving the configuration mentioned in Sect. 7, i.e., where forked
system processes automatically inherit the tracer assigned to their parent. This
enables detectEr to employ the same outline instrumentation algorithm for offline
monitoring. Offline set-ups are generally the slowest in terms of verdict detec-
tion, by comparison to the inline and outline forms of instrumentation. This

222 D. P. Attard et al.

stems from the dependence outline instrumentation has on the timely availabil-
ity of pre-recorded runtime traces that are subject to external software entities
such as files, databases, and the SuS itself. However, the outline set-up and
SuS can reside on different hardware since they are mutually detached. Such an
arrangement makes overhead issues secondary.

Figure 3c from Sect. 5 overviews our offline arrangement. It mirrors the set-
up in Fig. 3b: the only difference lies in how the offline tracing infrastruc-
ture obtains events. Our Log Tracer component in Fig. 3c exposes a trace()
function, providing the same EVM feature subset relevant to outlining. The
implementation relies on log files as the medium through which the SuS can
communicate trace events to the offline set-up. It can process log files with
complete system executions, or actively monitor files for changes to dynami-
cally dispatch events to tracers while the SuS executes and writes events to
file. Offline tracing supports the event actions in Table 1; these carry the event
data and are assumed to follow a pre-defined format. For instance, the offline
event description fork(pid1, pid2, {calc_server, loop, [0]}) is mapped to
the action pid1 → pid2, calc_server:loop([0]) by the Log Tracer of Fig. 3c.
Our file-based approach to collecting SuS events is motivated by the fact that
file logging is widely-adopted in practice, and is offered by popular frameworks
such as Lager [21] for Erlang, Log4J 2 [16] for Java [46], and the Python [49]
logging facility. Besides logging, events may also be extracted from the SuS via
other tracing frameworks, e.g. DTrace [23], LTTng [28], and OpenJ9 Trace [30].

9 Here, There and Everywhere

This paper presents detectEr, a RV tool that analyses program correctness post-
deployment against properties expressed in a logic that has been traditionally
used for static verification [14,22,40]. Sects. 5–8 describe how detectEr can flex-
ibly runtime check the same specifications via three instrumentation methods.
The tool can be found at https://duncanatt.github.io/detecter.

Future Work. We intend to asses the merits of our three instrumentation
methods in terms of the multi-faceted overhead metrics proposed by [9]. We
also plan to extend detectEr to handle sHML specifications where conjunctions
and universal modalities can be treated as separate logical constructs [3,4,17,
18,24,25,39]. This facilitates the composition of properties via conjunctions, e.g.
formulae ϕ1–ϕ3 from Sect. 3 can be combined as ϕ1 ∧ ϕ2 ∧ ϕ3 to synthesise one
global monitor. Although detectEr focusses on properties that are known to be
runtime monitorable, new results argue that monitoring can be systematically
extended to the entire class of regular properties, albeit, with possibly weakened
detection guarantees [2,7]. We aim to incorporate these results within this tool.

https://duncanatt.github.io/detecter

Better Late Than Never or: Verifying Asynchronous Components at Runtime 223

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: Monitoring for silent
actions. In: FSTTCS. LIPIcs, vol. 93, pp. 7:1–7:14 (2017)

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: A framework for param-
eterized monitorability. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS,
vol. 10803, pp. 203–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89366-2_11

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.: On
the complexity of determinizing monitors. In: Carayol, A., Nicaud, C. (eds.) CIAA
2017. LNCS, vol. 10329, pp. 1–13. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60134-2_1

4. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.:
Determinizing monitors for HML with recursion. JLAMP 111, 100515 (2020)

5. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adven-
tures in monitorability: from branching to linear time and back again. Proc. ACM
Program. Lang. 3(POPL), 52:1–52:29 (2019)

6. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: An opera-
tional guide to monitorability with applications to regular properties. Softw. Syst.
Model. 20(2), 335–361 (2021). https://doi.org/10.1007/s10270-020-00860-z

7. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: The best
a monitor can do. In: CSL. LIPIcs, vol. 183, pp. 7:1–7:23 (2021)

8. Aceto, L., Attard, D.P., Francalanza, A., Ingólfsdóttir, A.: A choreographed outline
instrumentation algorithm for asynchronous components. CoRR abs/2104.09433
(2021)

9. Aceto, L., Attard, D.P., Francalanza, A., Ingólfsdóttir, A.: On benchmarking for
concurrent runtime verification. FASE 2021. LNCS, vol. 12649, pp. 3–23. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-71500-7_1

10. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On runtime enforcement
via suppressions. In: CONCUR. LIPIcs, vol. 118, pp. 34:1–34:17 (2018)

11. Aceto, L., Ingólfsdóttir, A.: Testing Hennessy-Milner logic with recursion. In:
Thomas, W. (ed.) FoSSaCS 1999. LNCS, vol. 1578, pp. 41–55. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-49019-1_4

12. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor compu-
tation. JFP 7(1), 1–72 (1997)

13. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.
2(3), 117–126 (1987). https://doi.org/10.1007/BF01782772

14. Andersen, J.R., et al.: CAAL: concurrency workbench, Aalborg edition. In:
Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp.
573–582. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9_33

15. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

16. ASF: Log4J 2 (2021). https://logging.apache.org/log4j/2.x
17. Attard, D.P., Francalanza, A.: A monitoring tool for a branching-time logic. In:

Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 473–481. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46982-9_31

18. Attard, D.P., Francalanza, A.: Trace partitioning and local monitoring for asyn-
chronous components. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017. LNCS, vol.
10469, pp. 219–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66197-1_14

https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-60134-2_1
https://doi.org/10.1007/978-3-319-60134-2_1
https://doi.org/10.1007/s10270-020-00860-z
https://doi.org/10.1007/978-3-030-71500-7_1
https://doi.org/10.1007/3-540-49019-1_4
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/978-3-319-25150-9_33
https://logging.apache.org/log4j/2.x
https://doi.org/10.1007/978-3-319-46982-9_31
https://doi.org/10.1007/978-3-319-66197-1_14
https://doi.org/10.1007/978-3-319-66197-1_14

224 D. P. Attard et al.

19. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

20. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5_1

21. Basho: Lager (2021). https://github.com/basho/lager
22. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,

T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1_2

23. Cantrill, B.: Hidden in plain sight. ACM Queue 4(1), 26–36 (2006)
24. Cassar, I., Francalanza, A., Attard, D.P., Aceto, L., Ingólfsdóttir, A.: A suite of

monitoring tools for Erlang. In: RV-CuBES, vol. 3, pp. 41–47. Kalpa Publications
in Computing (2017)

25. Cassar, I., Francalanza, A., Said, S.: Improving runtime overheads for detectEr.
In: FESCA. EPTCS, vol. 178, pp. 1–8 (2015)

26. Cesarini, F., Thompson, S.: Erlang Programming: A Concurrent Approach to Soft-
ware Development. O’Reilly Media, Sebastopol (2009)

27. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1–30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-
6_1

28. Desnoyers, M., Dagenais, M.R.: The LTTng tracer: a low impact performance and
behavior monitor for GNU/Linux. Technical report, École Polytechnique de Mon-
tréal (2006)

29. Dijkstra, E.W.: Chapter I: notes on structured programming, p. 1–82. Academic
Press Ltd. (1972)

30. Eclipse/IBM: Openj9 (2021). https://www.eclipse.org/openj9
31. Erlingsson, Ú.: The inlined reference monitor approach to security policy enforce-

ment. Ph.D. thesis, Cornell University (2004)
32. Erlingsson, Ú., Schneider, F.B.: SASI enforcement of security policies: a retrospec-

tive. In: NSPW, pp. 87–95 (1999)
33. Facorro, J.: Clojerl language (2021). http://clojerl.org
34. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying run-

time verification tools. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol.
11237, pp. 241–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03769-7_14

35. Francalanza, A.: Consistently-detecting monitors. In: CONCUR. LIPIcs, vol. 85,
pp. 8:1–8:19 (2017)

36. Francalanza, A.: A theory of monitors. Inf. Comput. 104704 (2021). https://doi.
org/10.1016/j.ic.2021.104704

37. Francalanza, A., et al.: A foundation for runtime monitoring. In: Lahiri, S., Reger,
G. (eds.) RV 2017. LNCS, vol. 10548, pp. 8–29. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67531-2_2

38. Francalanza, A., Aceto, L., Ingolfsdottir, A.: On verifying Hennessy-Milner logic
with recursion at runtime. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS,
vol. 9333, pp. 71–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23820-3_5

39. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Monitorability for the Hennessy-
Milner logic with recursion. FMSD 51(1), 87–116 (2017). https://doi.org/10.1007/
s10703-017-0273-z

https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://github.com/basho/lager
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://www.eclipse.org/openj9
http://clojerl.org
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1007/s10703-017-0273-z

Better Late Than Never or: Verifying Asynchronous Components at Runtime 225

40. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89–107 (2013). https://doi.org/10.1007/s10009-012-0244-z

41. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

42. Jurić, S.: Elixir in Action. Manning (2019)
43. Kozen, D.: Results on the propositional μ-calculus. In: Nielsen, M., Schmidt, E.M.

(eds.) ICALP 1982. LNCS, vol. 140, pp. 348–359. Springer, Heidelberg (1982).
https://doi.org/10.1007/BFb0012782

44. Larsen, K.G.: Proof systems for satisfiability in Hennessy-Milner logic with recur-
sion. TCS 72(2&3), 265–288 (1990)

45. Leucker, M., Schallhart, C.: A brief account of runtime verification. JLAP 78(5),
293–303 (2009)

46. Loy, M., Niemeyer, P., Leuck, D.: Learning Java: An Introduction to Real-World
Programming with Java. O’Reilly Media, Sebastopol (2020)

47. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley, Hoboken
(2011)

48. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
49. Python: Logging Facility for Python (2021). https://docs.python.org/3/library/

logging.html

https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/BFb0012782
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html

Tutorial: Designing Distributed Software
in mCRL2

Jan Friso Groote and Jeroen J. A. Keiren(B)

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

{J.F.Groote,J.J.A.Keiren}@tue.nl

Abstract. Distributed software is very tricky to implement correctly as
some errors only occur in peculiar situations. For such errors testing is
not effective. Mathematically proving correctness is hard and time con-
suming, and therefore, it is rarely done. Fortunately, there is a technique
in between, namely model checking, that, if applied with skill, is both
efficient and able to find rare errors.

In this tutorial we show how to create behavioural models of paral-
lel software, how to specify requirements using modal formulas, and how
to verify these. For that we use the mCRL2 language and toolset (www.
mcrl2.org/). We discuss the design of an evolution of well-known mutual
exclusion protocols, and how model checking not only provides insight
in their behaviour and correctness, but also guides their design.

Keywords: Model checking · Parallel software · Distributed software ·
mCRL2 toolset · Counterexamples

1 Introduction

Whoever designed parallel or distributed software and protocols must have found
out how hard it is to get such software correct.1 Distributed software defies
testing, as some errors only occur very rarely, easily less than once in a million
of runs. Yet, if such errors occur the software can go awry, with effects that
range from confused internal administration, via crashing of the software, to
losing control over safety-critical hardware.

The theoretical solution is to prove the correctness, for instance using asser-
tional methods that have been under development since the advent of the first
electronic computers [1]. These days these methods are supported by proof check-
ers such as Coq [3] and Isabelle [27], or integrated automatic provers for algo-
rithms such as Dafny [24]. These techniques are unprecedented in locating soft-
ware faults and are unbeatable if it comes to delivering correct software. However,
1 In this paper, for the sake of brevity, we generally refer to parallel or distributed

software just using the term distributed software. The techniques discussed in this
paper apply equally in both situations.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 226–243, 2021.
https://doi.org/10.1007/978-3-030-78089-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_15&domain=pdf
http://orcid.org/0000-0003-2196-6587
http://orcid.org/0000-0002-5772-9527
www.mcrl2.org/
www.mcrl2.org/
https://doi.org/10.1007/978-3-030-78089-0_15

Tutorial: Designing Distributed Software in mCRL2 227

they have two important disadvantages. Proving the correctness of software can
be very hard, as the proof may require tricky combinatorial arguments, and
detailed bookkeeping. More importantly, it is very time consuming to provide a
proof, even for a core algorithm, or a small distributed protocol. The net result of
this is that proving correctness of actual software is hardly ever used in practical
software development.

Fortunately, there is a method in between, namely model checking of models
of the software. The idea is to use an abstract modelling language to model the
essence of the distributed algorithm or protocol. Potential modelling languages
with a powerful supporting model checking toolset are mCRL2 [18], LNT [14] and
FDR3 [15] as they support behaviour with parallelism as well as all commonly
used data types. Standard programming languages such as Java and C++ are
less suitable for this purpose, as they are too versatile, and do not allow for
concise mathematical formulation of protocols and algorithms. Domain Specific
Languages to define automata based controllers such as ASD [23] and Dezyne [4]
are suitable alternatives, with the advantage that they allow for code generation,
but these languages generally provide limited verification possibilities.

Only formulating models of distributed algorithms already substantially
improves the quality of a subsequent implementation. The reason is that mod-
els are more concise than implementations, and models tend to be studied and
discussed more thoroughly than programs. Unfortunately, models still tend to
contain errors and therefore, more needs to be done to increase the quality.

Improving the quality of software models further can be done by providing
alternative independent views on the software and then comparing all views very
precisely [8]. The probability to make the same mistake in all views is the product
of the probabilities of making this mistake in each of the views. With a number
of views the error probability drops dramatically, and error probabilities of 10−10

are attainable. In engineering such an approach is common where reliability is
obtained due to redundancy. Even checking light-weight properties can already
make a substantial difference [28].

We only discuss one such alternative view, namely formulating compact prop-
erties on the model and proving them using model checking. Other views are
making alternative models, independently making an implementation, specify-
ing tests, and carrying out field tests. The more alternative views, the higher the
quality of the result, provided they are very precisely compared to each other.
Formulating correctness and proving this with a proof checker is also a valid
alternative view.

We use the modal mu-calculus with data as it is unsurpassed in expressivity
[7,18]. Fairness can be expressed using alternating fixed-points, and, by using
data, complex behaviour of the model can be tracked and analysed with modal
formulas. Alternative property languages, such as CTL/LTL can be translated
linearly to the modal mu-calculus with data [10].

Throughout this tutorial, we use mutual exclusion protocols for shared mem-
ory to illustrate the use of mCRL2. Such protocols are commonly studied using
model checking tools. Even performance evaluation of mutual exclusion protocols
has been studied using interactive Markov chains in CADP [25]. Mutual exclu-

228 J. F. Groote and J. J. A. Keiren

sion algorithms in the presence of time were verified using UPPAAL [9]. Note
that recently mutual exclusion protocols modelled in process algebra became the
topic of a more in-depth discussion. Some authors argue that mutual exclusion
cannot be accurately captured using process algebra without extending the lan-
guage due to fairness and justness problems [13]. Others argue that justness and
fairness can be obtained on a case-by-case basis using the mu-calculus [6].

In this tutorial we first describe mCRL2 and the modal mu-calculus very com-
pactly. Subsequently, we focus on the functional correctness of mutual exclusion
protocols for shared memory and traverse through the development of such pro-
tocols, repeatedly identifying and repairing problems. We show how counterex-
amples help in identifying and understanding problems [31]. The modelling and
analysis techniques described generalize to distributed algorithms in a straight-
forward way, using processes to model communication channels instead of shared
variables. We thus hope that this tutorial will help in understanding how mCRL2
can be used to develop correct distributed algorithms and effectively obtain
insight in their behaviour, which goes far beyond showing that they terminate
with the right response.

2 mCRL2 Primer

In this section we give a concise description of mCRL2 and the modal mu-
calculus. More information is available in [18]. The language mCRL2 is based
on process algebra [2,26]. The modal mu-calculus is based on Hennessy-Milner
logic [22] and fixed point equations [7].

Process algebraic modelling centers around the notion of an action, typically
denoted as a, b, c. . ., representing some atomic activity of a modelled entity,
such as a program. Sending a message, writing a variable or printing some text
are typical examples. If actions must happen at exactly the same time we denote
them as multi-actions. By writing a|b it is indicated that actions a and b happen
at the same instant in time. Actions and multi-actions have the same properties,
and therefore we generally only speak about actions in the sequel.

Using the sequential composition operator (.) actions can be put in sequence
and the choice operator (+) expresses that the behaviour of either the left or the
right operand can be done. A typical example is a.b + c.d saying it is possible
to do either an a followed by a b or a c followed by a d.

Processes are specified by recursive equations. The equation proc P=a.P

indicates that the process P can infinitely often do an a action. Using init P it
is expressed that process P is the behaviour defined by the specification.

Actions and processes can carry data, and all common data types are avail-
able. The process equation

proc Adder(n:Nat)=sum m:Nat.add(m).Adder(n+m)

is an example. The sum indicates the choice over all natural numbers. This
process can perform one of the actions add(m) for every number m and continues
with the behaviour Adder(n+m). Behaviour can be executed conditionally on

Tutorial: Designing Distributed Software in mCRL2 229

data using the if-then-else operator b->p<>q where b is a boolean expression
and p and q are processes.

Processes are put in parallel using the parallel operator (||). Two paral-
lel processes can communicate by synchronising their actions. This is denoted
using the communication operator , expressing that
if action a_s and a_r can happen simultaneously in processes p and q, these
actions can happen together as a. We use the convention to write _s for send,
and _r , after an action if they will be used for a communication. If actions a_s
and a_r carry data they can only synchronise to a if the data in both actions are
equal. Then a will have this data as parameter as well. To enforce that actions
a_s and a_r must communicate, the allow operator is used. The process allow
(a,p) expresses that only action a is allowed to happen in process p and all
other actions are blocked.

The modal mu-calculus is an extension of propositional logic. Hence, we can
use connectives such as &&, || and ! representing and, or and not, respectively.
Writing <a>phi expresses that an action a can be done after which phi holds,
and [a]phi expresses that if an action a is done, then phi must hold afterwards.
Instead of an action a we can use true to represent any action, and !a to repre-
sent any action but a. We can use a Kleene star to indicate arbitrary sequences
of actions. So, <!a*>phi indicates that it is possible to do a sequence of actions
in which a does not occur such that afterwards phi holds. The formula [true

*]phi expresses that phi is valid after each sequence of actions. All actions can
carry data, and quantification over data using exists and forall is possible.

Using the minimal fixed point operator mu X.phi and the maximal fixed
point operator nu X.phi recursive properties can be specified. By nu X.<a>X

we express that an infinite sequence of actions a must be possible. The formula
mu X.[!a]X&&<true>true says that the action a must be done on every path
within a finite number of steps. Using nested fixed points fairness properties can
be expressed.

The fixed point variables can also use data. To express that the total value
offered to the adder will never exceed some maximum M the following formula
can be used:

nu X(n:Nat=0).forall m:Nat.[add(m)]X(n+m) &&

[!exists m:Nat.add(m)]X(n) &&

val(n<M)

Here the variable n, initially equal to 0, sums up all values of m occuring in
actions add(m). The box modality with the exists expresses that whenever an
action different from add is done, then checking proceeds with an unaltered
parameter n. The condition n<M guarantees that the sum n never exceeds M. The
keyword val is needed to let the parser distinguish between modal formulas and
data expressions.

230 J. F. Groote and J. J. A. Keiren

3 Mutual Exclusion

In this tutorial we study the mutual exclusion problem as we expect most of our
readers to be familiar with it. This allows us to focus on how the mCRL2 toolset
helps us to model and understand solutions for such a problem. The techniques
we describe are equally applicable in other problem domains.

Dijkstra describes the mutual exclusion problem as follows [11]:

“[. . .] consider N computers, each engaged in a process which, for our
aims, can be regarded as cyclic. In each of the cycles a so-called ‘critical
section’ occurs and the computers have to be programmed in such a way
that at any moment only one of these N cyclic processes is in its critical
section.”

The first solution to the mutual exclusion problem has been known since
1959. It was first described by Dijkstra [12], who attributed it do Dekker. In this
paper Dijkstra also shows two simpler solutions and discusses their incorrectness.
A first solution for N processes is due to Dijkstra [11] and only much later the
well-known solution by Peterson appeared [30].

From Sect. 3.1 onward we model Dijkstra’s algorithms in increasing complex-
ity. Subsequently, we investigate Peterson’s mutual exclusion algorithm.

Requirements. Before modelling solutions, we ask ourselves what the properties
are that a mutual exclusion protocol should have. In order to understand the
requirements it is necessary to understand that we model mutual exclusion using
three phases. First, a wish to enter the critical section is indicated, second access
is granted indicated by enter, after which the process indicates that it left the
critical section using leave.

Mutual exclusion. At any moment only one of the processes is in its critical
section.

Always eventually request. Every process can always eventually wish to enter
its critical section.

Eventual access. Whenever a process indicates a wish to enter its critical
section, it is guaranteed to eventually get access to its critical section. This
property is also referred to as starvation freedom.

Bounded overtaking. There is an absolute bound B such that, whenever a
process indicates it wants to enter its critical section, at most B processes
can enter their critical section, before this process enters its critical section.

It is natural to formulate mutual exclusion as a property. But mutual exclusion
is insufficient, as it can easily be guaranteed by never letting a process enter the
critical section. For a properly functioning mutual exclusion protocol the second
and third properties are equally important. The last one is interesting especially
in systems where execution of programs is not necessarily fair.

Memory Model. We assume that the mutual exclusion protocols are implemented
on a platform with shared memory where variables are written and read atomi-
cally in some interleaved fashion by the parallel programs.

Tutorial: Designing Distributed Software in mCRL2 231

3.1 A Naive Algorithm for Mutual Exclusion

For two processes a naive solution of the mutual exclusion problem is Algorithm 1
suggested by Dijkstra [12]. It uses two global Boolean variables flag [i] in which
process i indicates that it is in its critical section. The algorithm, for process
i now proceeds as follows. It first blocks until the flag of process 1−i becomes
false using busy waiting. Once flag [1−i] is false, the other process is not in its
critical section. It then sets its own flag to true and enters its critical section.
Once the work in the critical section is complete, it sets its flag to false.

Data: Global variables flag [0],flag [1] : B
Init: flag [0] := false; flag [1] := false
while flag [1−i] do /* Busy waiting */ end
flag [i] := true;
/* Critical section */
flag [i] := false;

Algorithm 1: A naive mutual exclusion algorithm for process i.

Below we go through a few steps to model this algorithm in mCRL2.

Shared Variables. A shared variable can be modelled as process that carries the
current value of the variable as a parameter. It can perform a read action, in
which it sends the current value of its parameter. Also, it can perform a write
action for each possible value that can be stored in the variable. The array flag
is modelled by the following process.
proc Flag(i:Nat, b:Bool)=

sum b’:Bool. set_flag_r(i, b’).Flag(i, b’) +
get_flag_s(i, b).Flag(i, b);

The name of the process is Flag. The parameter i:Nat describes the index
in the array, and b:Bool gives the current value of the variable. Using sum b’:

Bool.set_flag_r(i,b’).Flag(i,b’) we model that the process can receive
any new value b’ from another process, and store it to parameter b. The action
get_flag_s(i, b).Flag(i, b) allows to send the current value to any process
that requests the value.

Modelling the Busy Waiting Loop. The effect of the busy waiting loop is that
the process can only continue when the guard becomes false, i.e., when flag [1−i]
has value false. We could model the busy waiting loop explicitly by a recursive
process. However, in mCRL2, an action that participates in a communication
blocks until the actions it communicates with can also be performed. We can
model this loop by using get_flag_r(1-i, false), that is, reading false from
the flag of the other process. Since a subtraction results in an integer instead of
a natural number, we need to add an explicit type conversion here, and write
get_flag_r(Int2Nat(1-i), false). As i is either 0 or 1, this is guaranteed
to be natural number.

232 J. F. Groote and J. J. A. Keiren

Model. We now combine this into an mCRL2 model. First, we define the
behaviour of process i.
proc Mutex(i:Nat) =

get_flag_r(Int2Nat(1-i), false).
set_flag_s(i, true).
enter(i).
leave(i).
set_flag_s(i, false).
Mutex();

Note that the process is the sequential composition of the busy waiting loop,
setting the flag of process i to true using set_flag_s(i, true), entering the
critical section using action enter(i), leaving it using leave(i), and setting the
flag to false again. At the end of the algorithm we write Mutex() to model that
the critical section can repeatedly be entered. Writing Mutex() without param-
eters is a shorthand that leaves the current value of the parameters unchanged.
Here it is thus equivalent to writing Mutex(i).

The system as a whole consists of two instances of Mutex and two shared
variables, synchronising on get_flag and set_flag.
init allow({enter, leave, get_flag, set_flag},

comm({get_flag_r | get_flag_s -> get_flag,
set_flag_r | set_flag_s -> set_flag},

Mutex(0) || Mutex(1) || Flag(0,false) || Flag(1,false)));

Here, the operator comm specifies that, get_flag_r and get_flag_s can
synchronise. The result is named get_flag. It does the same for set_flag_r

and set_flag_s. Writing spec-
ifies that we are only interested in the result of the communication, essentially
enforcing synchronisation. We also allow the actions enter and leave that are
local to the processes, and hence do not participate in any synchronisation.

Verification. Now that we have a model of this first mutual exclusion algorithm,
we focus on its correctness. How can we formalize the mutual exclusion property
using the mu-calculus? Observe that we explicitly modelled entering and leaving
the critical section. Process i is therefore in its critical section if it performed
an enter(i) action, but has not yet done the corresponding leave(i). Mutual
exclusion is then violated if we see two enter actions without an intermediate
leave. This is captured in the following mu-calculus formula.
[true*][exists i1:Nat.enter(i1)]

[!(exists i2:Nat.leave(i2))*][exists i3:Nat.enter(i3)]false

This formula expresses that invariantly ([true*]), after a process enters
its critical section ([exists i1:Nat.enter(i1)]), as long as no leave action
happened ([!(exists i2:Nat.leave(i2))*]), another process is not allowed
to enter its critical section ([exists i3:Nat.enter(i3)]false).

We entered the model and the property in mcrl2ide, which is mCRL2’s
IDE that supports most basic uses of the mCRL2 toolset. A screenshot is shown
in Fig. 1. By clicking the ‘Verify’ button (green triangle) of the mutual exclu-
sion property, the tools will verify whether the property holds. In this case, it
finds that the property is violated, and the ‘Verify’ button changes into a red

Tutorial: Designing Distributed Software in mCRL2 233

Fig. 1. Screenshot of mCRL2ide with naive mutual exclusion algorithm.

‘C’. By clicking the red ‘C’, the tool shows a counterexample. In this case, the
counterexample is the one shown in Fig. 2.

Fig. 2. Counterexample of the mutual exclusion property for the naive algorithm.

This counterexample is a trace where two processes execute an enter action
without an intermediate leave. If we check the counterexample, it is immedi-
ately clear what is going on. Both processes check simultaneously that the other
process is not in its critical section, concluding they can proceed to their critical
section. Then, process 1 sets its flag and enters its critical section, immediately
followed by process 0.

3.2 Fixing the Naive Algorithm

The problem with the naive algorithm is that each process first checks if the
other process is in its critical section, and then sets its own flag. If this is done
simultaneously, the processes do not observe that the other process is entering

234 J. F. Groote and J. J. A. Keiren

the critical section at the same time. We could potentially resolve this issue by
first setting the flag, expressing the intent to enter the critical section, and then
only proceed into the critical section if the flag of the other process is false. The
improved algorithm is shown in Algorithm 2. It also stems from [12].

Data: Global variables flag [0],flag [1] : B
flag [i] := true;
while flag [1−i] do /* Busy waiting */ end
/* Critical section */
flag [i] := false;

Algorithm 2: Improved naive mutual exclusion algorithm for process i.

Model. The change in the mCRL2 model is equally simple. We only exchange
the first two lines of the Mutex process, which now becomes the following.
proc Mutex(i:Nat) =

set_flag_s(i, true).
get_flag_r(Int2Nat(1-i), false).
enter(i).
leave(i).
set_flag_s(i, false).
Mutex();

Verification. Changing the order of the program fixed the algorithm as it now
satisfies the mutual exclusion property. So, we investigate the requirement that
every process can always eventually wish to enter its critical section.

If process i sets its flag to true this means that it expresses the wish to
enter its critical section. The property can then be expressed by saying that
invariantly, for all processes i there is a path to a state in which process i can
set its flag to true. This is expressed in the mu-calculus as follows.
[true*]forall i:Nat.val(i<=1) => <true*><wish(i)|set_flag(i, true)>true

Recall that [true*]phi is valid if phi holds in all reachable states. We express
the property for all processes i using forall i:Nat with val(i<=1). The remain-
ing formula <true*><set_flag(i, true)>true expresses that there is a path
to a state in which set_flag(i, true) can happen.

When we verify this property, it turns out that it does not hold. The coun-
terexample is shown in Fig. 3.

Fig. 3. Counterexample showing that a process cannot always eventually wish to enter.

This counterexample shows that if both processes wish to enter the critical
section, they end up in a state in which at least one of the processes can never

Tutorial: Designing Distributed Software in mCRL2 235

request access to its critical section again. A closer inspection reveals that both
processes are waiting for the other process’ flag to become false before being
able to proceed into a critical section. Hence, the processes are stuck in a typical
deadlock situation, and therefore neither process has a path to a state in which
it can request to enter the critical section again.

3.3 Dekker’s Algorithm

To resolve the deadlock in the previous mutual exclusion algorithm, Dekker’s
solution is to give priority to one of the two processes whenever both processes
want to enter their critical section. We present it as Algorithm 3 [12].

Data: Global variables flag [0],flag [1] : B and turn : N
flag [i] := true;
while flag [1−i] do

if turn �= i then
flag [i] := false;
while flag [1−i] do /* Busy waiting */ end
flag [i] := true;

end
end
turn := 1−i;
/* Critical section */
flag [i] := false;

Algorithm 3: Dekker’s algorithm for process i.

The idea behind the algorithm is as follows. First, compared to the previ-
ous attempts, the meaning of global Boolean variables flag [i] changes, and now
indicates whether process i wishes to access its critical section. Second, a new
shared variable turn, which is 0 initially, indicates which process has priority
when both processes want to enter their critical section.2 The key idea now is
that, while the other process 1−i wishes to enter its critical section, process i
checks whether the other process has priority. If so, process i sets its flag to false,
and then waits until process 1−i leaves its critical section and sets its flag to
false. Then process i resets its flag to true and continues as before.

Model. To model this algorithm in mCRL2, we have to decide how to deal with
the outer loop and the if-clause. We first model the outer while-loop.

In more general terms, we want to model a program S1;while b do S2 end;S3

in mCRL2. The most straightforward way to model this is to have two separate
processes that are executed sequentially. The first process performs the behaviour
of S1 and hands execution over to the second process. The second process eval-
uates b. If b is true it executes the behaviour of S2 and then executes itself,
repeating the behaviour. Otherwise it executes the behaviour of S3.
2 In [12], variables LA and LB are used as flags, and a Boolean variable AP is used

in the place of turn.

236 J. F. Groote and J. J. A. Keiren

An if-then clause if b then S1 end; S2 can be modelled directly into the
if-then-else construct b->p<>q of mCRL2. In this case p is the translation of
S1;S2 and q is the translation of S2. Note that both for the loop and the if-then
clause, if the condition contains shared variables, their values must first be read.3

The outer loop of the algorithm is modelled as follows.
proc Dekker_outer_loop(i:Nat) =

sum flag_other:Bool.get_flag_r(other(i), flag_other).
flag_other -> (sum turn: Nat.get_turn_r(turn).

(turn != i) -> (set_flag_s(i, false).
get_turn_r(i).
set_flag_s(i, true).
Dekker_outer_loop(i)

)
<> Dekker_outer_loop(i)

)
<> (set_turn_s(other(i)).

enter(i).
leave(i).
set_flag_s(i, false).
Dekker(i);

);

Note that the shared variable flag of the other process is read, and its value
is stored in flag_other. If the guard of the outer loop is true (flag_other
->), the loop is entered. In the body of the loop the turn variable is read, and
it is decided whether the if-clause must be entered. In the body of the if the
flag for this process is set to false, allowing the other process to enter its critical
section. The process waits until the other process leaves its critical section. Note
that here we use the construct we previously introduced for the busy waiting
loop. Subsequently, the flag of this process is set to true, and the while loop is
repeated.

If the guard of the outer loop is false, we jump to the else part starting
with the lower <> symbol, from where the rest of the process is similar to our
previous algorithms.

For the complete model, we also need a process modelling the global variable
turn. This is done in a similar way as for the global array flag , where the variable
is set and read using actions set_turn and get_turn, which are the results of
synchronising set_turn_r and set_turn_s, and get_turn_s and get_turn_r.
The parallel composition must be extended with the process modelling turn, as
well as with an increased number of synchronising actions, and is given below.
Some aspects of this process expression are explained in the next part on verifi-
cation.
init allow({wish|set_flag, enter, leave,

get_flag, set_flag, get_turn, set_turn},
comm({get_flag_r | get_flag_s -> get_flag,

set_flag_r | set_flag_s -> set_flag,
get_turn_r | get_turn_s -> get_turn,
set_turn_r | set_turn_s -> set_turn},

Dekker(0) || Dekker(1) || Flag(0,false) || Flag(1,false) || Turn(0)));

3 Note that, alternatively, the multi-actions in mCRL2 could be used to combine
fetching the value and evaluating the condition, see, e.g., [5].

Tutorial: Designing Distributed Software in mCRL2 237

Verification. As the algorithm keeps the same logic guarding the critical section
as before, mutual exclusion is still satisfied. This is easily verified using the modal
formula given earlier.

However, to verify that we can always eventually request access to the critical
section we need to be more careful. So far, we assumed that when a process sets
its flag, this corresponds to expressing the wish to enter the critical section.
However, as in Dekker’s algorithm there are multiple places where the flag is
set to true, we do not have this nice one-to-one correspondence. We therefore
amend the model with an action wish(i) that makes the wish explicit the first
time the process sets its flag. The main process therefore becomes the following.
proc Dekker(i:Nat) =

wish(i)|set_flag_s(i, true).
Dekker_outer_loop(i);

We here use a multi-action to model that wish and set_flag happen simul-
taneously. The set of allowed actions needs to be extended with wish|set_flag.
We also need to modify the property to check for a such a multi-action instead
of just the set_flag, hence the formula for always eventual request becomes
the following.
[true*]forall i:Nat.val(i<=1) => <true*><wish(i)|set_flag(i, true)>true

This formula holds for Dekker’s algorithm.
We now look at the property of eventual access. This says that, whenever a

process wishes to enter its critical section, it inevitably ends up in the critical
section. This can be formulated using the following mu-calculus formula.
[true*]forall i:Nat.val(i<=1)

=> [exists b:Bool.wish(i)|set_flag(i,b)]mu X.([!enter(i)]X && <true>true)

The formula says that invariantly, for every valid process i, when i wishes
to enter its critical section ([exists b:Bool.wish(i)|set_flag(i,b)]), an
enter(i) action inevitably happens within a finite number of steps (mu X.([!

enter(i)]X && <true>true)). The conjunction <true>true ensures that the
last part of the formula does not hold trivially in a deadlock state. Note that
we know that wish(i) always appears simultaneously with a set_flag(i,b)

because of the initialisation of the process. Using a bit more information of the
model, we could observe that we never have wish(i)|set_flag(i,false), so
we could simplify the corresponding modality to [wish(i)|set_flag(i,true)].
Here we choose not to in order to keep the requirement as general as possible. Ver-
ifying the property yields false, and we get the counterexample shown in Fig. 4.

Fig. 4. Counterexample of the eventual access property for Dekker’s algorithm.

238 J. F. Groote and J. J. A. Keiren

The counterexample is interesting. It describes the scenario where process 0
requests access to its critical section, by setting the flag. It then checks the guard
of the outer loop, which is false, and sets turn := 1 just before the critical section.
Next, process 1 indicates it wants to access the critical section. Since flag [0] is
true, process 1 enters the outer loop, and since turn = 1, it will not enter into
the if-statement, so it will keep cycling here until flag [0] becomes false. What
we see here is that, because process 1 is continuously cycling through the outer
loop, process 0 never gets a chance to actually enter into its critical section. This
is a typical fairness issue.

We could try to alter the formula in such a way that unfair paths such as
in the counterexample satisfy the property, and are thus, essentially, ignored. In
this case, we can do so by saying that each sequence not containing an enter(

i) action ends in an infinite sequence of get_flag and get_turn actions. This
results in the following formula.
[true*]forall i:Nat.val(i<=1) =>

[exists b:Bool . wish(i)|set_flag(i,b)]
nu X.mu Y.

([!enter(i) && !(exists i1:Nat.get_flag(i1, true) || get_turn(i1))]Y &&
[exists i1:Nat.get_flag(i1, true) || get_turn(i1)]X)

Unfortunately, if we verify this property, we find it also does not hold. We
get a different counterexample, which is shown in Fig. 5.

Fig. 5. Counterexample of the eventual access property under fairness for Dekker’s
algorithm.

What we see is that after process 1 wishes to enter its critical section, pro-
cess 0 can come and enter the critical section infinitely many times, preventing
process 1 from entering the critical section. A closer inspection reveals that this
is because, to allow process 0 to enter, process 1 sets its flag to false, and then
waits until process 0’s flag becomes false. However, again, since we do not have
any fairness guarantees, after setting its flag to false, process 0 can immediately
request access to its critical section again, before process 1 observes that the flag
became false.

Tutorial: Designing Distributed Software in mCRL2 239

We could, of course, try to change the property once more to exclude also this
unfair execution, or investigate whether the counterexample is a ‘just’ execution,
and thus indicates a real issue with Dekker’s algorithm. However, instead we
change our focus to Peterson’s mutual exclusion protocol, as it is simpler, and
therefore easier to analyse.

3.4 Peterson’s Mutual Exclusion Algorithm

Some of the issues in Dekker’s algorithm, particularly regarding eventual access,
are alleviated by Peterson’s mutual exclusion protocol [30]. We previously pre-
sented a model of this algorithm in [16]. We describe this in Algorithm 4.

Data: Global variables flag [0],flag [1] : B and turn : N
flag [i] := true;
turn := 1−i;
while flag[1−i] ∧ turn = 1−i do /* Busy waiting */ end
/* Critical section */
flag [i] := false;

Algorithm 4: Peterson’s algorithm for process i.

In Algorithm 4, the turn variable is used differently from Dekker’s algorithm.
When a process requests access to the critical section by setting its flag, it will
behave politely, and let the other process go first. It waits until either the other
process does not ask for access to the critical section, i.e. flag [1−i] is false, or
the other process arrived later, in which case turn = i.

Model. Peterson’s algorithm can be modelled in mCRL2 using the same princi-
ples we have used before. The structure of the initialization is completely anal-
ogous to that of the previous models. A single process executing Peterson’s
algorithm can be modelled as follows.
proc Process(i:Nat) =

wish(i)|set_flag_s(i, true).
set_turn_s(other(i)).
(get_flag_r(other(i), false) + get_turn_r(i)).
enter(i).
leave(i).
set_flag_s(i, false).
Process(i);

Note that we use the fact that the negation of the guard of the loop is
¬flag [1−i]∨ turn=i, hence we can still use communicating actions to block until
the guard becomes false.

Verification. This model satisfies all properties we investigated so far, including
eventual access. This confirms the intuition we presented when introducing the
algorithm. Let us now switch our attention to bounded overtaking, which we
have not investigated yet.

Bounded overtaking says that if one process indicates its wish to enter, other
processes can enter the critical section at most B times before this process is
allowed to enter. It can be expressed as follows.

240 J. F. Groote and J. J. A. Keiren

[true*] forall i:Nat.[exists b:Bool.wish(i)|set_flag(i,b)]
(nu Y(n:Nat = 0).val(n<=B) &&

[!(exists i1:Nat.enter(i1))]Y(n) &&
[enter(other(i))]Y(n+1))

In this formula, for all processes i, whenever process i wishes to enter its
critical section, we start to count the number of times the other process enters
its critical section using the parameter n. All actions other than enter maintain
the current value. Meanwhile, the property asserts that n<=B, i.e., the bound is
satisfied.

Intuitively, we may expect that whenever a process wishes to enter its critical
section, the other process may enter once first. However, if we check bounded
overtaking with B=1, we get the counterexample shown in Fig. 6.

Fig. 6. Counterexample: Peterson does not satisfy bounded overtaking for B=1.

Let us take a close look at the counterexample. First, process 1 wishes to
enter its critical section; it sets its flag, sets the turn to 0 and then checks the
flag of process 0, which is currently false. At this point, process 1 is allowed to
enter its critical section. However, before process 1 enters, process 0 also wishes
to enter its critical section, and sets its flag. Subsequently, process 1 actually
enters the critical section, sets the turn to process 0, and only then process 0
sets the turn to 1, ultimately allowing process 1 to enter a second time. Hence,
because process 0 is stalled after setting its flag, but before setting the turn to
process 1, process 1 can overtake process 0 and enter a second time.

This leads to the question of whether overtaking for higher values of B is
also possible. By reverifying the formula for B = 2, we find that the formula is
valid. Bounded overtaking for Peterson’s mutual exclusion protocol is limited to
at most 1 times.

In [16] we investigated a version of Peterson’s algorithm where, initially, one
of the flags is set to true instead of false. This alternative initialisation was, at
some point, described on Wikipedia [29]. It turns out that, also for that version,
all four properties discussed above hold. However, as process 0 will set the turn
to 1 when it wants to enter the critical section, it will need the cooperation of
process 1 to be allowed to enter for the first time.

This raises the question whether our properties are sufficient to cover the
desired properties of mutual exclusion protocols. In particular one might want
to verify the property that a process can always eventually request entry, with-
out the other process having to perform any action. This is done by the following

Tutorial: Designing Distributed Software in mCRL2 241

formula, which distinguishes Peterson’s algorithm with and without correct ini-
tialisation.
[true*]forall i:Nat.val(i<=1) =>

<!(wish(other(i))|set_flag(other(i), true)*>
<wish(i)|set_flag(i, true)>true

4 Epilogue

We went through several versions of mutual exclusion algorithms and showed
that their correctness can be formulated and investigated using modal formulas.
Although it requires skill and experience to write down process algebraic spec-
ifications, and in particular modal formulas with data, they provide a powerful
pair of tools to investigate and design protocols and distributed algorithms. We
used it to study and design many systems varying from games [19,20] to core
protocols for embedded systems [21].

When the systems that are modelled become more complex, the state space
grows, and verification of modal formulas becomes more time consuming, up to
a point where the state space cannot be handled by contemporary tools. It
turns out that the style of modelling has a substantial influence on how complex
systems can become. In [17] 7 different specification guidelines are presented to
keep the state space small.

References

1. Apt, K.R., Olderog, E.: Fifty years of Hoare’s logic. Formal Aspects Comput. 31(6),
751–807 (2019). https://doi.org/10.1007/s00165-019-00501-3

2. Bergstra, J.A., Klop, J.W.: The algebra of recursively defined processes and the
algebra of regular processes. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172,
pp. 82–94. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-13345-3 7

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

4. van Beusekom, R., et al.: Formalising the Dezyne modelling language in mCRL2.
In: Petrucci, L., Seceleanu, C., Cavalcanti, A. (eds.) FMICS/AVoCS -2017. LNCS,
vol. 10471, pp. 217–233. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-67113-0 14

5. Bouwman, M., Luttik, B., Schols, W., Willemse, T.A.C.: A process algebra with
global variables. In: Dardha, O., Rot, J. (eds.) Proceedings Combined 27th Interna-
tional Workshop on Expressiveness in Concurrency and 17th Workshop on Struc-
tural Operational Semantics, EXPRESS/SOS 2020, and 17th Workshop on Struc-
tural Operational Semantics. EPTCS, vol. 322, pp. 33–50 (2020). https://doi.org/
10.4204/EPTCS.322.5

6. Bouwman, M., Luttik, B., Willemse, T.A.C.: Off-the-shelf automated analysis
of liveness properties for just paths. Acta Informatica 57(3–5), 551–590 (2020).
https://doi.org/10.1007/s00236-020-00371-w

https://doi.org/10.1007/s00165-019-00501-3
https://doi.org/10.1007/3-540-13345-3_7
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-67113-0_14
https://doi.org/10.1007/978-3-319-67113-0_14
https://doi.org/10.4204/EPTCS.322.5
https://doi.org/10.4204/EPTCS.322.5
https://doi.org/10.1007/s00236-020-00371-w

242 J. F. Groote and J. J. A. Keiren

7. Bradfield, J.C., Stirling, C.: Modal mu-calculi. In: Blackburn, P., van Benthem,
J.F.A.K., Wolter, F. (eds.) Handbook of Modal Logic, Studies in Logic and Practi-
cal Reasoning, vol. 3, pp. 721–756. North-Holland (2007). https://doi.org/10.1016/
s1570-2464(07)80015-2

8. van den Brand, M., Groote, J.F.: Software engineering: redundancy is key. Sci.
Comput. Program. 97, 75–81 (2015). https://doi.org/10.1016/j.scico.2013.11.020

9. Cicirelli, F., Nigro, L., Sciammarella, P.F.: Model checking mutual exclusion algo-
rithms using Uppaal. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P.,
Prokopova, Z. (eds.) Software Engineering Perspectives and Application in Intel-
ligent Systems. AISC, vol. 465, pp. 203–215. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-33622-0 19

10. Cranen, S., Groote, J.F., Reniers, M.A.: A linear translation from CTL* to the first-
order modal µ-calculus. Theor. Comput. Sci. 412(28), 3129–3139 (2011). https://
doi.org/10.1016/j.tcs.2011.02.034

11. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9), 569 (1965). https://doi.org/10.1145/365559.365617

12. Dijkstra, E.W.: Over de sequentialiteit van procesbeschrijvingen (Undated, 1962
or 1963)

13. Dyseryn, V., van Glabbeek, R.J., Höfner, P.: Analysing mutual exclusion using
process algebra with signals. In: Peters, K., Tini, S. (eds.) Proceedings Combined
24th International Workshop on Expressiveness in Concurrency and 14th Work-
shop on Structural Operational Semantics, EXPRESS/SOS 2017, Berlin, Germany,
4th September 2017. EPTCS, vol. 255, pp. 18–34 (2017). https://doi.org/10.4204/
EPTCS.255.2

14. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89–107 (2013). https://doi.org/10.1007/s10009-012-0244-z

15. Gibson-Robinson, T., Armstrong, P.J., Boulgakov, A., Roscoe, A.W.: FDR3: a
parallel refinement checker for CSP. Int. J. Softw. Tools Technol. Transf. 18(2),
149–167 (2016). https://doi.org/10.1007/s10009-015-0377-y

16. Groote, J.F., Keiren, J.J.A., Luttik, B., de Vink, E.P., Willemse, T.A.C.: Modelling
and analysing software in mCRL2. In: Arbab, F., Jongmans, S.-S. (eds.) FACS
2019. LNCS, vol. 12018, pp. 25–48. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-40914-2 2

17. Groote, J.F., Kouters, T.W.D.M., Osaiweran, A.: Specification guidelines to avoid
the state space explosion problem. Softw. Test. Verification Reliab. 25(1), 4–33
(2015). https://doi.org/10.1002/stvr.1536

18. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Sys-
tems. MIT Press (2014). https://mitpress.mit.edu/books/modeling-and-analysis-
communicating-systems

19. Groote, J.F., de Vink, E.P.: Problem solving using process algebra considered
insightful. In: Katoen, J.-P., Langerak, R., Rensink, A. (eds.) ModelEd, TestEd,
TrustEd. LNCS, vol. 10500, pp. 48–63. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-68270-9 3

20. Groote, J.F., Wiedijk, F., Zantema, H.: A probabilistic analysis of the game of the
goose. SIAM Rev. 58(1), 143–155 (2016). https://doi.org/10.1137/140983781

21. Groote, J.F., Willemse, T.A.C.: A symmetric protocol to establish service level
agreements. Log. Methods Comput. Sci. 16(3) (2020). https://lmcs.episciences.
org/6812

22. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137–161 (1985). https://doi.org/10.1145/2455.2460

https://doi.org/10.1016/s1570-2464(07)80015-2
https://doi.org/10.1016/s1570-2464(07)80015-2
https://doi.org/10.1016/j.scico.2013.11.020
https://doi.org/10.1007/978-3-319-33622-0_19
https://doi.org/10.1007/978-3-319-33622-0_19
https://doi.org/10.1016/j.tcs.2011.02.034
https://doi.org/10.1016/j.tcs.2011.02.034
https://doi.org/10.1145/365559.365617
https://doi.org/10.4204/EPTCS.255.2
https://doi.org/10.4204/EPTCS.255.2
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/s10009-015-0377-y
https://doi.org/10.1007/978-3-030-40914-2_2
https://doi.org/10.1007/978-3-030-40914-2_2
https://doi.org/10.1002/stvr.1536
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://doi.org/10.1007/978-3-319-68270-9_3
https://doi.org/10.1007/978-3-319-68270-9_3
https://doi.org/10.1137/140983781
https://lmcs.episciences.org/6812
https://lmcs.episciences.org/6812
https://doi.org/10.1145/2455.2460

Tutorial: Designing Distributed Software in mCRL2 243

23. Hopcroft, P.J., Broadfoot, G.H.: Combining the box structure development method
and CSP for software development. Electron. Notes Theor. Comput. Sci. 128(6),
127–144 (2005). https://doi.org/10.1016/j.entcs.2005.04.008

24. Leino, K.R.M., Wüstholz, V.: The Dafny integrated development environment. In:
Dubois, C., Giannakopoulou, D., Méry, D. (eds.) Proceedings 1st Workshop on
Formal Integrated Development Environment, F-IDE 2014, Grenoble, France, 6
April 2014. EPTCS, vol. 149, pp. 3–15 (2014). https://doi.org/10.4204/EPTCS.
149.2

25. Mateescu, R., Serwe, W.: Model checking and performance evaluation with CADP
illustrated on shared-memory mutual exclusion protocols. Sci. Comput. Program.
78(7), 843–861 (2013). https://doi.org/10.1016/j.scico.2012.01.003

26. Milner, R.: Communication and concurrency. PHI Series in Computer Science.
Prentice Hall, Upper Saddle River (1989)

27. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

28. Osaiweran, A., Schuts, M., Hooman, J.: Experiences with incorporating formal
techniques into industrial practice. Empir. Softw. Eng. 19(4), 1169–1194 (2014).
https://doi.org/10.1007/s10664-013-9251-2

29. Peterson’s algorithm, May 17. https://en.wikipedia.org/wiki/Peterson
30. Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process. Lett.

12(3), 115–116 (1981). https://doi.org/10.1016/0020-0190(81)90106-X
31. Wesselink, W., Willemse, T.A.C.: Evidence extraction from parameterised boolean

equation systems. In: Benzmüller, C., Otten, J. (eds.) Proceedings of the 3rd Inter-
national Workshop on Automated Reasoning in Quantified Non-Classical Logics
(ARQNL 2018) affiliated with the International Joint Conference on Automated
Reasoning (IJCAR 2018), Oxford, UK, July 18, 2018. CEUR Workshop Proceed-
ings, vol. 2095, pp. 86–100. CEUR-WS.org (2018). http://ceur-ws.org/Vol-2095/
paper6.pdf

https://doi.org/10.1016/j.entcs.2005.04.008
https://doi.org/10.4204/EPTCS.149.2
https://doi.org/10.4204/EPTCS.149.2
https://doi.org/10.1016/j.scico.2012.01.003
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/s10664-013-9251-2
https://en.wikipedia.org/wiki/Peterson
https://doi.org/10.1016/0020-0190(81)90106-X
http://ceur-ws.org/Vol-2095/paper6.pdf
http://ceur-ws.org/Vol-2095/paper6.pdf

Author Index

Aceto, Luca 3, 207
Achilleos, Antonis 207
Alvim, Mário S. 22
Amorim, Bernardo 22
Attard, Duncan Paul 207

Basile, Davide 177
Bouwman, Mark 42, 182
Bussi, Laura 188

Cassar, Ian 3
Castiglioni, Valentina 60
Ciancia, Vincenzo 188

Dardha, Ornela 100, 157
Degano, Pierpaolo 177
Di Giandomenico, Felicita 177

Ferrari, Gian-Luigi 177
Francalanza, Adrian 3, 207

Gadducci, Fabio 188
Gnesi, Stefania 177
Gorrieri, Roberto 80
Groote, Jan Friso 226

Ingólfsdóttir, Anna 3, 207

Jehl, Leander 197

Keiren, Jeroen J. A. 226
Knight, Sophia 22
Kokke, Wen 100
Konnov, Igor 138

Legay, Axel 177
Lehtinen, Karoliina 207
Loreti, Michele 60
Luttik, Bas 42, 182

Montin, Mathieu 120

Pantel, Marc 120

Quintero, Santiago 22

ter Beek, Maurice H. 177
Tini, Simone 60
Tran, Thanh-Hai 138

Valencia, Frank 22
van der Wal, Djurre 42

Widder, Josef 138
Willemse, Tim 182

Zalakain, Uma 157

	Foreword
	Preface
	Organization
	Contents
	Full Papers
	On Bidirectional Runtime Enforcement
	1 Introduction
	2 Preliminaries
	3 A Bidirectional Enforcement Model
	4 Enforcement
	5 Synthesising Action Disabling Monitors
	6 Conclusions and Related Work
	References

	A Multi-agent Model for Polarization Under Confirmation Bias in Social Networks
	1 Introduction
	2 The Model
	2.1 Running Example and Simulations

	3 Belief and Polarization Convergence
	3.1 Polarization at the Limit
	3.2 Convergence Under Confirmation Bias in Strongly Connected Influence

	4 Conditions for Polarization
	5 Comparison to DeGroot's Model
	6 Conclusions and Other Related Work
	References

	A Formalisation of SysML State Machines in mCRL2
	1 Introduction
	2 An Informal Introduction to UML State Machines
	3 Introduction to mCRL2
	4 The Operational Semantics of State Machines
	4.1 Strategy to Formalisation
	4.2 Abstract Action Language
	4.3 Representing State Machines in mCRL2
	4.4 Step Selection and Execution
	4.5 Change Events
	4.6 StateMachine Process

	5 SysML Specific Communication
	6 Creating a Configuration and Model Checking
	7 Discussion and Conclusion
	References

	How Adaptive and Reliable is Your Program?
	1 Introduction
	2 Background
	3 The Model
	4 Towards a Metric for Systems
	5 Estimating the Evolution Metric
	6 Adaptability and Reliability of Programs
	7 Concluding Remarks
	References

	Branching Place Bisimilarity: A Decidable Behavioral Equivalence for Finite Petri Nets with Silent Moves
	1 Introduction
	2 Basic Definitions
	3 Place Bisimilarity
	4 Branching Place Bisimilarity
	5 Branching Place Bisimilarity is Decidable
	6 Conclusion and Future Research
	References

	Prioritise the Best Variation
	1 Introduction
	2 Priority GV
	3 Relation to Priority CP
	3.1 Revisiting Priority CP
	3.2 Correspondence Between PGV and PCP

	4 Related Work and Discussion
	References

	Towards Multi-layered Temporal Models:
	1 Introduction
	1.1 Ubiquity of Complex Systems
	1.2 Heterogeneous Modelling
	1.3 Handling Vertical and Horizontal Separation over Temporal Constraints

	2 Theoretical Ground
	2.1 Time, Partial Orders and Time Structures
	2.2 Multi-layered Time Structures
	2.3 Horizontal Constraints with CCSL

	3 An Example of Multi-layered Modelling
	3.1 The Deadlock Petrinet
	3.2 A Functional View of the System
	3.3 Binding the Two Levels of Description

	4 Stakes of the Approach
	5 A First Generic CCSL Relation of Refinement
	5.1 Definition of 1-N Refinement
	5.2 1-N Refinement and Coincidence-Based CCSL Relations
	5.3 1-N Refinement and Precedence-Based CCSL Relations

	6 A Second Specific CCSL Relation of Refinement
	6.1 Definition of 1-1 Refinement
	6.2 1-1 Refinement and Coincidence-Based CCSL Relations
	6.3 1-1 Refinement and Precedence-Based CCSL Relations

	7 Additional Relations of Refinement
	8 Conclusion
	8.1 Assessments
	8.2 Perspectives

	References

	A Case Study on Parametric Verification of Failure Detectors
	1 Introduction
	2 Preliminaries
	3 Cutoffs of the Failure Detector
	4 Encoding the Chandra and Toueg Failure Detector
	4.1 The System with One Sender and One Receiver
	4.2 Encoding the Message Buffer
	4.3 Encoding the Relative Speed of Processes

	5 Reduce Liveness Properties to Safety Properties
	6 Experiments for Small and
	6.1 Model Checkers For TLA+: TLC and APALACHE
	6.2 FAST

	7 Ivy Proofs for Parametric and
	8 Conclusion
	References

	 with Leftovers: A Mechanisation in Agda
	1 Introduction
	2 Syntax
	3 Operational Semantics
	4 Resource-Aware Type System
	4.1 Multiplicities and Capabilities
	4.2 Typing Contexts
	4.3 Typing with Leftovers

	5 Meta-Theory
	6 Conclusions, Related and Future Work
	References

	Short and Journal-First Papers
	Supervisory Synthesis of Configurable Behavioural Contracts with Modalities
	References

	Off-the-Shelf Automated Analysis of Liveness Properties for Just Paths
	1 Introduction
	2 Label-Based Justness for mCRL2
	3 Off-the-Shelf Verification of Liveness
	References

	Towards a Spatial Model Checker on GPU
	1 Introduction and Background
	2 Functional Description and Implementation
	2.1 Connected Components Labelling in VoxLogicA-GPU

	3 Preliminary Evaluation
	4 Conclusions and Future Work
	References

	Formal Verification of HotStuff
	1 Introduction
	2 View-Instance and Tree Model for Repeated Consensus
	3 Simplified HotStuff Algorithm
	3.1 Original HotStuff

	4 Verification
	5 Conclusion
	References

	Tutorials
	Better Late Than Never or: Verifying Asynchronous Components at Runtime
	1 Do You Want to Know a Secret
	2 A Day in the Life
	3 I Want to Tell You
	4 What Goes on
	5 The Magical Mystery Tour
	6 Come Together
	7 Tell Me What You See
	8 I'm Only Sleeping
	9 Here, There and Everywhere
	References

	Tutorial: Designing Distributed Software in mCRL2
	1 Introduction
	2 mCRL2 Primer
	3 Mutual Exclusion
	3.1 A Naive Algorithm for Mutual Exclusion
	3.2 Fixing the Naive Algorithm
	3.3 Dekker's Algorithm
	3.4 Peterson's Mutual Exclusion Algorithm

	4 Epilogue
	References

	Author Index

