
PolyDNN
Polynomial Representation of NN

for Communication-Less SMPC Inference

Philip Derbeko(B) and Shlomi Dolev(B)

Department of Computer Science, Ben-Gurion University of the Negev, Beersheba,
Israel

dolev@cs.bgu.ac.il

Abstract. The structure and weights of Deep Neural Networks (DNN)
typically encode and contain very valuable information about the dataset
that was used to train the network. One way to protect this information
when DNN is published is to perform an interference of the network
using secure multi-party computations (MPC). In this paper, we suggest
a translation of deep neural networks to polynomials, which are easier to
calculate efficiently with MPC techniques. We show a way to translate
complete networks into a single polynomial and how to calculate the
polynomial with an efficient and information-secure MPC algorithm. The
calculation is done without intermediate communication between the
participating parties, which is beneficial in several cases, as explained
in the paper.

Keywords: Privacy · DNN · Data publishing · Data sharing

1 Introduction

Deep Neural Networks (DNN) are the state-of-the-art form of Machine Learning
techniques these days. They are used for speech recognition, image recognition,
computer vision, natural language processing, machine translation, and many
other tasks. Similar to other Machine Learning (ML) methods, DNN is based on
finding patterns in the data and, as such, the method embeds information about
the data into a concise and generalized model. Subsequently, the sharing of the
DNN model also reveals private and valuable information about the data.

In this paper, we first suggest approximating a trained neural network with
a single (possibly nested) polynomial. We present a nested polynomial approach
to speed up the calculation of the polynomial on a single node. The essence
of the idea is to nest the polynomial approximation of each layer within the
approximation of the next layer, such that a single polynomial (or arithmetic
circuit) will approximate not only a single network unit, but a few layers or even

This work was partially supported by the Lynne and William Frankel Center for Com-
puter Science, by the Rita Altura Trust Chair in Computer Science, a grant from the
Ministry of Science and Technology, Israel.

c© Springer Nature Switzerland AG 2021
S. Dolev et al. (Eds.): CSCML 2021, LNCS 12716, pp. 317–324, 2021.
https://doi.org/10.1007/978-3-030-78086-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78086-9_24&domain=pdf
https://doi.org/10.1007/978-3-030-78086-9_24


318 P. Derbeko and S. Dolev

the entire network. We discuss an efficient, (perfect information theoretically
secure) secret-sharing MPC calculation of the polynomial calculation of DNN.
Lastly, we compare the MPC calculation of the neural network itself with a
calculation of polynomial representation.

Our main contribution in this research is an optimization of (communication-
less) MPC calculations of a shared DNN by approximating neighboring layers
by a single polynomial, and in some cases, the entire network. An additional
contribution is a nesting of a multi-layer polynomial to reduce the redundant
calculations of the intermediate layers.

Previous relevant research is covered in Sect. 2. Section 3 and Sect. 4 dis-
cuss polynomial approximation of DNN on a single computing node. A secure,
communication-less multi-party computation, which is presented in Sect. 5.
Section 6 summarizes the techniques to obtain blind execution of DNN. Empir-
ical experiments are described in Sect. 7 and, lastly, the paper is concluded in
Sect. 8. Details are excluded from this version and can be found in [6].

2 Previous Work

Distributed MPC protocols are built for fixed-point arithmetic, and many times
even for limited range values. Thus, the main issue in calculating the neural net-
work activation with secure multi-party computations algorithms is the transla-
tion of activation functions from floating-point arithmetic to fixed-point.

Approximation of neural network units’ activation function with fixed-point
arithmetic and without MPC was considered before in [9,10], where polynomial
functions were suggested for approximation. CryptoDL [10] showed an imple-
mentation of Convolutional Neural Networks (CNN) over encrypted data using
homomorphic encryption (HE). The paper has shown approximation of CNN
activation functions by low-degree polynomials due to the high-performance
overhead of higher degree polynomials.

A calculation of neural networks with secure multi-party computations was
considered in [12]. Their experiments showed that the polynomial approximation
of the sigmoid function requires at least a 10-degree polynomial, which causes
a considerable performance slow-down with garbled circuit protocol. The work
had a limitation for two participating parties and the algorithm was shown to
be limiting in terms of performance and the practical size of the network.

CrypTFlow [11] is a system that converts TensorFlow (TF) code automat-
ically into secure multi-party computation protocol. The most salient charac-
teristic of CrypTFlow is the ability to automatically translate the code into
MPC protocol, where the specific protocol can be easily changed and added.
The optimized three-party computational protocol is specifically targeted for
NN computation and speeds up the computation. This approach is similar to
the holistic approach of [1].

SecureNN [15] proposed arguably the first practical three-party secure com-
putations, both for training and for activation of DNN and CNN. The impres-
sive performance improvement over then, state-of-the-art, results is achieved by



PolyDNN 319

replacing garbled circuits and oblivious transfer protocols with secret sharing
protocols. The replacement also allowed information security instead of compu-
tational security. Despite being efficient, the protocols require ten communica-
tion rounds for ReLu calculation of a single unit not counting share distribution
rounds.

A different approach at speeding up performance was made by [5], which con-
centrated on two-party protocols. The work showed a mixed protocol framework
based on Arithmetic sharing, Boolean sharing, and Yao’s garbled circuit (ABY).
Each protocol was used for its specific ability, and the protocols are mixed to
provide a complete framework for neural networks activation functions.

3 Neural Network as Polynomial Functions in a Single
Node Case

We show how to approximate functions that are a typical part of DNNs, by
polynomials. We focus on the most commonly used functions in neural networks.

Weighted Sum of the Unit Input. Given neuron inputs X1, . . . , Xn, the
weighted sum is a multiplication of inputs with the corresponding weights S =∑n

i=1 wiXi−b, where b is a bias of the neuron which is a polynomial of degree 1.

Common Activation Functions. Most of the research approximating DNN
activation functions focused on these few common functions:
ReLu (ReLu(x) = max(0, x)), Leaky ReLu (similar to ReLu but LReLu(x) =
0.01x if x ≤ 0), Sigmoid

(
σ(x) = 1

1+e−x

)
, TANh

(
tanh(x) = e2x−1

e2x+1

)
, SoftMax

(used for multi-class prediction σ(xi) = exi
∑k

i=1 exi
). All those functions can be

approximated with a polynomial using various different methods, for example [1,
10,12,13,16]. Our optimization method is agnostic to a specific approximation
method.

Differently from the most of the research approaches, which minimized
the degree of the approximating polynomial, our communication-less approach
allows us to use a higher degree polynomials. In our previous research [7] we
have shown that 30-degree Chebyshev polynomials achieve good results.

Max and Mean Pooling. Max and Mean pooling compute the corresponding
functions of a set of units. Those functions are frequently used in CNN following
the convolution layers. Previous works [16] suggested replacing max-pooling with
a scaled mean-pooling, which is trivially represented by a polynomial. However,
this requires the replacement to be done during the training stage, while we
focus on a post-training stage.



320 P. Derbeko and S. Dolev

In this paper, we have used a simple and practical approximation of max
function is:

m′(x, y) =
x + y

2
+ ((x − y)2)1/2. (1)

Notice that the function provides an approximation near any values of x and
y, which is an advantage over Taylor or Chebyshev approximations, that are
developed according to a specific point. Despite its simplicity, Eq. 1 provides a
relatively good approximation.

Notice that using a two-variable function for the max pooling layer of k inputs
requires chaining of the max functions:

max(x1, x2, . . . xk) = max(x1,max(x2, . . . , max(xk−1, xk))).

Alternatively, the optimization sequence is interrupted at the max-pooling
layer, which will require an MPC protocol for the max function calculation, for
example [15].

4 Multiple Layers Approximation

We have discussed the approximation of DNN functions by polynomials. The
approximation exists for all the common functions. This makes it possible to
combine multiple layers into a single polynomial function according to the con-
nectivity of the layers.

One example of a network that can be approximated by a single polynomial
function is auto-decoder where hidden layers are dense layers with (commonly)
ReLu or sigmoid activation.

The idea is to create a polynomial for the “flow” of the data in the network
instead of approximating every single neural unit with a polynomial. As an
example, consider the network in Fig. 1.

Fig. 1. A small example network with an input layer on the left, two dense hidden
layers U1 and U2, and an output layer on the right consisting of a single unit. Each
layer utilizes ReLu or sigmoid activation functions, or any other function that can be
approximated by a polynomial.

The network consists of an input layer (I) on the left, two dense hidden layers
(U1 and U2), and one output layer O, which is implemented by the softmax
function. The units are marked as uli where l is the hidden layer number and i



PolyDNN 321

is the number of the unit in the layer. We assume that the activation functions
of the hidden layers are ReLu (or any other function that can be approximated
by a polynomial function).

Consider a unit u11. It calculates the function which is approximated by the
polynomial. Assume that ReLu activation functions are approximated using a
polynomial of d-degree.

ReLu(
∑

i

wiIi) ≈ P11 = Pol11(
∑

i

wiIi). (2)

Unit u21 receives P11 and P12 as inputs and calculates the “nested” polynomial
function:

P21 = Pol21(
∑

i

wiP1i). (3)

In general, assuming dense layers, the nested polynomials are defined as:

Plj = Pollj(
∑

i

wiP(l−1)i). (4)

In this simple case, the result of networks evaluation can be calculated by
evaluating two polynomials of d2-degree: P21 and P22, and calculating the output
layer function of their output. Overall, by approximating softmax by Polsm we
get the following polynomial for the entire network:

DNN(x) = Polsm (wo
1P21 + wo

2P22)
= Polsm

(
wo

1Pol21(w
21
1 P11 + w21

2 P12) + wo
2Pol22(w

22
1 P11 + w22

2 P12)
)

= Polsm
(
wo

1Pol21(w
21
1 Pol11(w

11
1 I1 + w11

2 I2) + w21
2 Pol12(w

12
1 I1 + w12

2 I2))
+ wo

2Pol22(w
22
1 Pol11(w

11
1 I1 + w11

2 I2) + w22
2 Pol12(w

12
1 I1 + w12

2 I2))
)

(5)
Notice that P11 and P12 were calculated twice as they are used as inputs for
both U21 and U22 units.

5 Communication-Less MPC for Polynomial Calculations

The goal of MPC calculations in the considered setup is to protect the published
model from exposure to participating cloud providers. The model is trained by
the data provider and has two components: architecture, which includes the
layout, type, and interconnection of the neural units, as well as the weights
of the input, which were refined during the training of the network, i.e. back-
propagation phase.

Our goal is to protect the weights that were obtained by a costly process of
training. While the architecture also might hold ingenious insights, it is consid-
ered less of a secret and may be exposed to the cloud providers.

Even though the described algorithm is agnostic to the specific MPC proto-
col, it is better to use a protocol that can support k > 2 parties, provides perfect



322 P. Derbeko and S. Dolev

information theoretical security and is efficient for a polynomial calculations in
terms of communication rounds to enable usage of high-degree polynomials.

A number of MPC protocols answer those requirements [2,4]. These MPC
protocols based on Shamir secret sharing [14] can cope with a minority of semi-
honest parties and even with a third of the malicious parties. BGW protocol [2]
provides a perfect security and [4] provides statistical security with any desirable
certainty. In our case, the input is not a multi-variable that is secret-shared, but
rather the weights and coefficients of the network are the secrets.

Clear-Text Inputs. In a simpler scenario, the input is revealed to all partici-
pating parties. In this case, the secrets are the weights of the trained network.
The input values are then can be considered as numerical constants for the MPC
calculation and thus, communication rounds can be eliminated completely, see
BGW [2] algorithm where additive “gates” are calculated locally without any
communication.

Given a secret-share of coefficient a: s = [s1, s2]. The polynomial p(x) can be
calculated as p(x) = p1(x)+p2(x), where p1(x) and p2(x) use the corresponding
secret share.

Secret-Shared Inputs. In the second scenario, the input values are protected
as well, and thus, they are distributed by the secret share. As the input values are
raised to polynomial degree k, the secret share is done on the set of values: X =
[x, x2, . . . xk]. Multiplication of secret shares requires communication rounds in
a general case, still when secret sharing every element of X it is possible to
eliminate the communications all-together using techniques from [3] or [8].

6 Distributed Communication-Less Secure Interference
for Unknown DNN

The last two sections, Sect. 4 and Sect. 5, provide all the required building blocks
for communication-less MPC for common DNNs. In Sect. 4 we showed how a
given, pre-trained network can be approximated with a single polynomial, in
most common cases. As a side-note, as the neural network activation functions
are not limited to a specific set, there might be networks that cannot be approx-
imated. However, the majority of networks use a rather small set of functions
and architectures.

Once the network is presented by a single polynomial, Sect. 5 shows that it
can be calculated without a single communication round (apart from the input
distribution and output gathering) when the inputs are revealed, or with half
the communication rounds when the inputs are secret.

Taken together, those two results enable a somewhat surprising outcome: the
data owner can train DNN models, pre-process, and share them with multiple
cloud providers. The providers then can collaboratively calculate interference of
the network on common or secret-shared inputs without ever communicating



PolyDNN 323

with each other. Thus, reducing the attack surface even further even for multi-
layer networks.

7 Experiments

All tests were performed on the Fashion database of MNIST, which contains a
training set of 60,000 and a testing set of 10,000 28 × 28 images of 10 fashion
categories. The task is a multi-class classification of a given image. Experiments
on larger datasets and different types of DNN are planned for extended version
of the paper.

To solve the problem we have used a non-optimized neural network with two
dense hidden layers: one of 300 units and the second one with 100 units. The
output layer is a softmax layer with ten units and batch normalization layers
before each activation layer.

The performed experiments were done on a pre-trained model. The model was
loaded and translated into polynomial as described above automatically. This
enables us to perform translation for any pre-trained network, similarly in spirit
to [11]. Both the original model and polynomial representation were executed on
the same inputs. The outputs are compared for different classification (divided
by a total number of test inputs).

Figure 7 shows the difference in accuracy of the network with different
degrees. As can be seen, the accuracy improves with the degree of the poly-
nomial approximation, however the improvement flattens at around d = 30.

The computation costs are increasing linearly with the polynomial degree
(data not shown), where the original ReLu is similar to d = 1 degree polynomial.
Thus, it makes sense to choose the lowest degree that still provides consistent
and accurate results.

Fig. 2. Accuracy of DNN and polyno-
mial approximation averaged over 10
runs of 500 examples each.

Fig. 3. Relative difference in results
between polynomial approximation
and the DNN model as a function of
polynomial degree.

8 Conclusions

In this paper, we have presented a way to reduce and ultimately eliminate the
number of communication rounds in the secure multi-party computation of DNN



324 P. Derbeko and S. Dolev

models. We believe that this optimization method can enable more efficient
DNN calculations and further progress in the process of privacy-preserving data
sharing.

The above optimization of DNN evaluation targets the inference phase, which
is done after the DNN-based model is shared and distributed across cloud
providers. The network is not trained anymore, but only queried by the clients.
At this phase, the performance issues do not impact the data owners, which could
be resource-limited end-devices, but rather are relevant for the cloud providers
that have as much larger resources.

References

1. Agrawal, N., Shamsabadi, A.S., Kusner, M.J., Gascón, A.: Quotient: two-party
secure neural network training and prediction. In: CCS 2019 (2019)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988 (1988)

3. Berend, D., Bitan, D., Dolev, S.: Polynomials whose secret shares multiplication
preserves degree for 2-CNF circuits over a dynamic set of secrets. IACR Cryptol.
ePrint Arch. 2019, 1192 (2019)

4. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: STOC 1988 (1988)

5. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

6. Derbeko, P., Dolev, S.: Polydnn: Polynomial representation of NN for
communication-less SMPC inference (2021)

7. Derbeko, P., Dolev, S., Gudes, E.: Deep neural networks as similitude models for
sharing big data. In: 2019 IEEE International Conference on Big Data (Big Data),
Los Angeles, CA, USA, 9–12 December 2019, pp. 5728–5736. IEEE (2019)

8. Dolev, S., Doolman, S.: Blindly follow: sits CRT and FHE for DCLSMPC of
DUFSM. Cryptology ePrint Archive, Report 2021/410 (2021). https://eprint.iacr.
org/2021/410

9. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing,
J.R.: CryptoNets: applying neural networks to encrypted data with high through-
put and accuracy. In: ICML (2016)

10. Hesamifard, E., Takabi, H., Ghasemi, M.: CryptoDL: deep neural networks over
encrypted data. CoRR, abs/1711.05189 (2017)

11. Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A., Sharma, R.: Crypt-
flow: secure tensorflow inference (2019)

12. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19–38, May 2017

13. Rouhani, B.D., Riazi, M.S., Koushanfar, F.: DeepSecure: scalable provably-secure
deep learning. In: DAC (2018)

14. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
15. Wagh, S., Gupta, D., Chandran, N.: SecureNN: efficient and private neural network

training. IACR Crypt. ePrint Arch. 2018, 442 (2018)
16. Xie, P., Bilenko, M., Finley, T., Gilad-Bachrach, R., Lauter, K.E., Naehrig, M.:

Crypto-Nets: neural networks over encrypted data. ArXiv, abs/1412.6181 (2014)

https://eprint.iacr.org/2021/410
https://eprint.iacr.org/2021/410

	PolyDNN Polynomial Representation of NN for Communication-Less SMPC Inference
	1 Introduction
	2 Previous Work
	3 Neural Network as Polynomial Functions in a Single Node Case
	4 Multiple Layers Approximation
	5 Communication-Less MPC for Polynomial Calculations
	6 Distributed Communication-Less Secure Interference for Unknown DNN
	7 Experiments
	8 Conclusions
	References




