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Preface

CSCML, the International Symposium on Cyber Security Cryptography and Machine
Learning, is an international forum for researchers, entrepreneurs, and practition-
ers in the theory, design, analysis, implementation, or application of cyber security,
cryptography, and machine learning systems and networks, and, in particular, of
conceptually innovative topics in these research areas.

Information technology has become crucial to our everyday lives, an indispensable
infrastructure of our society and therefore a target for attacks by malicious parties.
Cyber security is one of the most important fields of research these days because of
these developments. Two of the (sometimes competing) fields of research, cryptology
and machine learning, are the most important building blocks of cyber security.

Topics of interest for CSCML include cyber security design; secure software devel-
opment methodologies; formal methods, semantics and verification of secure systems;
fault tolerance, reliability, and availability of distributed secure systems; game-theoretic
approaches to secure computing; automatic recovery self-stabilizing and self-organizing
systems; communication, authentication, and identification security; cyber security for
mobile systems and the Internet of Things; cyber security of corporations; security and
privacy for cloud, Edge and Fog computing; cryptocurrency; blockchain; cryptography;
cryptographic implementation analysis and construction; secure multi-party compu-
tation; privacy-enhancing technologies and anonymity; post-quantum cryptology and
security; machine learning and big data; anomaly detection and malware identification;
business intelligence and security; digital forensics, digital rights management; trust
management and reputation systems; and information retrieval, risk analysis, and DoS.

The 5thCSCML took place during July 8–9, 2021, inBeer-Sheva, Israel. The keynote
speakers were Steve Blank, serial entrepreneur and one of the founding fathers of Sili-
con Valley; Bruce Schneier, Fellow of the Harvard Kennedy School of Government and
internationally renowned security technologist; and Nir Zuk, founder and CTO of Palo
Alto Networks. This year the conference was organized in cooperation with the Interna-
tional Association for Cryptologic Research (IACR) and selected papers will appear in
a dedicated special issue of the Information and Computation Journal. This volume con-
tains 22 contributions selected by the ProgramCommittee from 48 submissions, and also
includes 13 short papers (of at most 8 pages). All submitted papers were read and eval-
uated by Program Committee members, assisted by external reviewers. We are grateful
to the EasyChair system in assisting the reviewing process. The support of Ben-Gurion
University of the Negev (BGU), in particular BGU-NHSA, the BGU Lynne andWilliam
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Frankel Center for Computer Science, the BGU Cyber Security Research Center, and
the Department of Computer Science, and IBM is also gratefully acknowledged.

March 2021 Shlomi Dolev
Oded Margalit
Benny Pinkas

Alexander Schwarzmann
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Iddo Bentov, Pavel Hubáček, Tal Moran, and Asaf Nadler

Game of Drones - Detecting Spying Drones Using Time Domain Analysis . . . . . 128
Ben Nassi, Raz Ben-Netanel, Adi Shamir, and Yuval Elovici



xii Contents

Privacy Vulnerability of NeNDS Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . 145
Eyal Nussbaum and Michael Segal

Lawful Interception in WebRTC Peer-To-Peer Communication . . . . . . . . . . . . . . . 153
Assaf Wagner and Rami Puzis

Hierarchical Ring Signatures Immune to Randomness Injection Attacks . . . . . . . 171
Łukasz Krzywiecki, Mirosław Kutyłowski, Rafał Rothenberger,
and Bartosz Drzazga

Theoretical Aspects of a Priori On-Line Assessment of Data Predictability
in Applied Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Sergey Frenkel

Randomly Rotate Qubits, Compute and Reverse for Weak Measurements
Resilient QKD and Securing Entanglement: (Extended Abstract) . . . . . . . . . . . . . 196

Dor Bitan and Shlomi Dolev

Warped Input Gaussian Processes for Time Series Forecasting . . . . . . . . . . . . . . . 205
Igor Vinokur and David Tolpin

History Binding Signature: (Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Shlomi Dolev and Matan Liber

Effective Enumeration of Infinitely Many Programs that Evade Formal
Malware Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Vasiliki Liagkou, Panagiotis E. Nastou, Paul Spirakis,
and Yannis C. Stamatiou

DNS-Morph: UDP-Based Bootstrapping Protocol for Tor . . . . . . . . . . . . . . . . . . . 244
Rami Ailabouni, Orr Dunkelman, and Sara Bitan

Polynomial Time k-Shortest Multi-criteria Prioritized
and All-Criteria-Disjoint Paths: (Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . 266

Yefim Dinitz, Shlomi Dolev, and Manish Kumar

Binding BIKE Errors to a Key Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Nir Drucker, Shay Gueron, and Dusan Kostic

Fast and Error-Free Negacyclic Integer Convolution Using Extended
Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Jakub Klemsa



Contents xiii

Efficient Secure Ridge Regression from Randomized Gaussian Elimination . . . . 301
Frank Blom, Niek J. Bouman, Berry Schoenmakers, and Niels de Vreede

PolyDNN Polynomial Representation of NN for Communication-Less
SMPC Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Philip Derbeko and Shlomi Dolev

Use of Blockchain for Ensuring Data Integrity in Cloud Databases . . . . . . . . . . . 325
Yakov Vainshtein and Ehud Gudes

Invited Talk: The Coming AI Hackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Bruce Schneier

Turning HATE into LOVE: Compact Homomorphic Ad Hoc Threshold
Encryption for Scalable MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Leonid Reyzin, Adam Smith, and Sophia Yakoubov

Fully Dynamic Password Protected Secret Sharing: Simplifying PPSS
Operation and Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Akif Patel and Moti Yung

Early Detection of In-Memory Malicious Activity Based on Run-Time
Environmental Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Dorel Yaffe and Danny Hendler

Software Integrity and Validation Using Cryptographic Composability
and Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Donald Beaver

Efficient Generic Arithmetic for KKW: Practical Linear MPC-in-the-Head
NIZK on Commodity Hardware Without Trusted Setup . . . . . . . . . . . . . . . . . . . . . 414

David Heath, Vladimir Kolesnikov, and Jiahui Lu

Trust and Verify: A Complexity-Based IoT Behavioral Enforcement
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

Kyle Haefner and Indrakshi Ray

Using a Neural Network to Detect Anomalies Given an N-gram Profile . . . . . . . . 451
Byunggu Yu and Junwhan Kim

Meta-X: A Technique for Reducing Communication in Geographically
Distributed Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

Foto Afrati, Shlomi Dolev, Shantanu Sharma, and Jeffrey D. Ullman



xiv Contents

Blindly Follow: SITS CRT and FHE for DCLSMPC of DUFSM
(Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Shlomi Dolev and Stav Doolman

Implementing GDPR in Social Networks Using Trust and Context . . . . . . . . . . . . 497
Nadav Voloch, Ehud Gudes, and Nurit Gal-Oz

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505



Programmable Bootstrapping Enables
Efficient Homomorphic Inference of Deep

Neural Networks

Ilaria Chillotti, Marc Joye(B), and Pascal Paillier

Zama, Paris, France

Abstract. In many cases, machine learning and privacy are perceived
to be at odds. Privacy concerns are especially relevant when the involved
data are sensitive. This paper deals with the privacy-preserving inference
of deep neural networks.

We report on first experiments with a new library implementing a vari-
ant of the TFHE fully homomorphic encryption scheme. The underlying
key technology is the programmable bootstrapping. It enables the homo-
morphic evaluation of any function of a ciphertext, with a controlled level
of noise. Our results indicate for the first time that deep neural networks
are now within the reach of fully homomorphic encryption. Importantly,
in contrast to prior works, our framework does not necessitate re-training
the model.

Keywords: Fully homomorphic encryption · Programmable
bootstrapping · Data privacy · Machine learning · Deep neural
networks

1 Introduction

Machine learning algorithms are extremely useful in many areas but the type of
data that they deal with is often sensitive. Typical examples include algorithms
for the detection of certain genetic diseases from DNA samples or the ones used
for face recognition or email classification, to name a few. The processed data con-
tain private information about users and could be used in many ways, from target
advertising to blackmail or even threat in some cases. This is why it is essential
to protect the data being used in machine learning applications. Privacy require-
ments are also pushed by recent regulations companies dealing with user’s data
must comply with, like the GDPR (General Data Protection Regulation) [14] in
Europe or the CCPA (California Consumer Privacy Act) [8] in the US.

Fully Homomorphic Encryption. Cryptographic techniques are methods of choice
when it comes to the protection of data. But traditional encryption algorithms
merely protect data while it is in transit or at rest. Indeed, one limitation and
structural property of traditional encryption schemes is that data first needs to
be decrypted prior to being processed. As discussed earlier, this is not suited for
c© Springer Nature Switzerland AG 2021
S. Dolev et al. (Eds.): CSCML 2021, LNCS 12716, pp. 1–19, 2021.
https://doi.org/10.1007/978-3-030-78086-9_1
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machine learning applications. With traditional encryption schemes, the privacy
control lies in the hands of the recipient of the encrypted data. A fundamentally
different approach is to rely on fully homomorphic encryption (FHE), first posed
as a challenge in 1978 [26] and only solved in 2009 in a breakthrough result by Gen-
try [15]. In contrast to traditional encryption schemes, fully homomorphic encryp-
tion schemes allow the recipient to directly operate on encrypted data.

Controlling the Noise. At the core of Gentry’s result resides the technique of boot-
strapping. All known instantiations of fully homomorphic encryption schemes
produce noisy ciphertexts. Running homomorphic operations on these cipher-
texts in turn increases the noise level in the resulting ciphertext. At some point,
the noise present in a ciphertext may become too large and the ciphertext is
no longer decryptable. A homomorphic encryption scheme supporting a prede-
termined noise threshold is termed leveled. Bootstrapping is a generic technique
that allows refreshing ciphertexts. It therefore enables one to turn leveled homo-
morphic encryption schemes into fully homomorphic encryption schemes, and
so to make them evaluate any possible function on ciphertexts. The key idea
behind bootstrapping is to homomorphically evaluate the decryption circuit.

The works that followed Gentry’s publication were aimed at proposing new
schemes or at improving the bootstrapping in order to make FHE more effi-
cient in practice. The most famous constructions are DGHV [11], BGV [5],
GSW [16], and their variants. While the constructions that were successively
proposed made the bootstrapping more practical, it still constituted the bottle-
neck (each bootstrapping taking a few minutes). A much faster bootstrapping,
based on a GSW-type scheme, was later devised by Ducas and Micciancio [13],
reducing the bootstrapping time to a sub second. Their technique was further
improved and refined, which led to the development of the TFHE scheme [10].

Our Techniques and Contributions. This paper builds on the state-of-the-art
TFHE scheme and extends the TFHE techniques to homomorphically evaluate
deep neural networks. TFHE can operate in two modes: leveled and bootstrapped.
The leveled mode supports linear combinations and a predetermined number of
(external) products. The operations evaluated in this mode make the noise always
grow. The leveled mode can be used to evaluate small-depth circuits. As for the
bootstrapped mode, it enables a fine control of the noise by reducing it to a given
level whenever it exceeds a certain threshold. Further, as will be shown, the boot-
strapped mode is programmable and therefore enables the evaluation of more
complex functions. For problems involving circuits of large depth, only the boot-
strapped mode is applicable. Deep neural networks belong to that case.

Earlier works attempted to evaluate neural networks using fully homomorphic
encryption.Cryptonets [12]was thefirst initiative towards this goal.Theywereable
to perform a homomorphic inference over 5 layers against the MNIST dataset [21].
In order to limit the noise growth, the standard activation function was replaced
with the square function. A number of subsequent works have adopted a similar
approach and improved it in various directions. Among them, it is worth men-
tioning the results of the iDASH competition [17]. The winning solutions of the
homomorphic encryption track of the last editions (namely, [2,19] for 2018 and [18]
for 2019) have all in common to rely on leveled homomorphic encryption.
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Leveled solutions are however inherently limited in the type of tasks they
can perform. In particular, in the case of neural networks, they can only accom-
modate networks with a moderate number of layers. In this paper, we want to
emphasize that depth is not necessarily an issue and that deep neural networks
can actually be evaluated homomorphically. For a specialized type of networks,
this was already pointed out in a paper by Bourse et al. [4]; specifically, for
discretized neural networks whose signals are restricted to the set {−1, 1} and
where the activation function is the sign function. Central to their scalable con-
struction is an adaptation of the TFHE scheme so as to enable the evaluation
of the sign function during a bootstrapping step. In a recent work, Boura et
al. [3] investigated the applicability of fully homomorphic encryption for clas-
sical deep neural networks. They simulated the effect of noise propagation by
adding a noise value drawn from a normal distribution to intermediate values,
while evaluating the model in the clear. These experiments were carried out with
models making use of the standard ReLU activation function but also with mod-
els making use of FHE-friendly variants thereof. Similar experiments were run
by replacing max-pooling layers with FHE-friendly average-pooling layers. As a
conclusion of their study, the authors of [3] recommend to favor FHE-friendly
operations as they appear to be usually more resilient to noise perturbations.

This paper departs from previous works. We do not seek to design new oper-
ations or to modify the topology in order to make a given neural network more
amenable to an FHE-based implementation. On the contrary, we stick to the
original neural network model. This presents the tremendous advantage of not
requiring to re-train a new model. As the operations and topology are unchanged,
the already trained model can be used as is. The efforts to train a neural net-
work should not be overlooked. This is a costly and time-consuming operation.
Furthermore, in many cases, producing a new model is not even possible as
this implies having access to the training dataset, which may demand the prior
approval of the data owners or of some regulatory authorities.

In our approach, the evaluation of complex functions is achieved thanks to a
combination of programmable bootstrapping techniques and leveled operations.
Being programmable means that any function (including non-linear functions) of
an input ciphertext can be obtained as the output of the bootstrapping. Inter-
estingly, the resulting ciphertext features a controlled level of noise. The process
can therefore be iterated over and over. So, in the case of machine learning appli-
cations, the depth of neural networks can be arbitrarily large. Our techniques
are efficient and directly operate on words of a chosen size.

2 Preliminaries

2.1 Torus and Torus Polynomials

The letter ‘T’ in TFHE refers to the real torus T = R/Z, that is, the set of real
numbers modulo 1. Any two elements of T can be added modulo 1: (T,+) forms
an abelian group. But T is not a ring as the internal product × of torus elements
is not defined. The external product • between integers and torus elements is
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however well defined. Given k ∈ Z and t ∈ T, the element k • t ∈ T is defined as
k • t = t+ · · ·+t (k times) if k ≥ 0 and k • t = (−k) • (−t) if k < 0. Mathematically,
T is endowed with a Z-module structure.

Polynomials can as well be defined over the torus. As will become apparent,
they allow for cryptographic operations otherwise not feasible. Let Φ := Φ(X)
denote the M -th cyclotomic polynomial and let N denote its degree. For
performance reasons, M is chosen as a power of 2, in which case it turns
out that N = M/2 and Φ(X) = XN + 1. Consider the polynomial rings
RN [X] := R[X]/(XN + 1) and ZN [X] := Z[X]/(XN + 1). This defines the
ZN [X]-module TN [X] := RN [X]/ZN [X] = T[X]/(XN + 1). Elements of TN [X]
can therefore be seen as polynomials modulo XN +1 with coefficients in T. Being
a ZN [X]-module, elements in TN [X] can be added together and (externally) mul-
tiplied by polynomials of ZN [X].

Vectors are viewed as row matrices and are denoted with bold letters. Ele-
ments in Z or T are denoted with roman letters while polynomials are denoted
with calligraphic letters. B is the integer subset {0, 1} and, for N a power of 2,
BN [X] is the subset of polynomials in ZN [X] with coefficients in B. For a vector
z ∈ (Z/qZ)n, its norm ‖z‖ is defined as the shortest norm among the equivalent
classes of z ∈ (Z/qZ)n in Z

n. A polynomial in ZN [X] can be identified with a
vector in Z

N : to a polynomial 𝓅 = p0 + p1 X + · · · + pN−1 XN−1 is associated
the vector (p0, p1, . . . , pN−1). The norm of a polynomial is defined as the norm
of its associated vector.

2.2 Probability Distributions

Two probability distributions will be used: the uniform distribution and the
normal (a.k.a. Gaussian) distribution. They are respectively denoted by 𝒰 and 𝒩.

When the uniform distribution 𝒰 is defined over an interval [a, b], it is writ-
ten 𝒰([a, b]). Discrete intervals are indicated by double brackets; e.g., �a, b�. The
normal distribution is parametrized by its mean μ and its variance σ2 and is
written as 𝒩(μ, σ2). A normal distribution over the real numbers induces a dis-
cretized normal distribution over Z: to a real value X ∈ R corresponds an integer
value Z = �X q�.

If 𝒟 is a distribution over a space S then s ← 𝒟(S) indicates that s is chosen
at random in S according to 𝒟; s

$← S is a shorthand for s ← 𝒰(S).

3 Discretized TFHE

The LWE assumption over the torus (cf. Definition 1, Appendix A) essentially
says that a torus element r ∈ T constructed as r =

∑n
j=1 sj • aj + e cannot

be distinguished from a random torus element r ∈ T, even if the torus vector
(a1, . . . , an) is given. Torus element r =

∑n
j=1 sj • aj + e can therefore be used

as a random mask to conceal a “plaintext message” μ ∈ T so as to form a
ciphertext c = (a1, . . . , an, r + μ) ∈ T

n+1, where s = (s1, . . . , sn) ∈ B
n plays

the role of the private encryption key. The noise e is sampled from a normal
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error distribution χ = 𝒩(0, σ2). In the same way, the GLWE assumption (cf.
Definition 2, Appendix A) gives rise to an encryption mechanism for polynomials
of TN [X]: the encryption of µ ∈ TN [X] under key 𝓼 = (𝓈1, . . . , 𝓈k) ∈ BN [X]k

being given by 𝓬 = (𝒶1, . . . ,𝒶k, 𝓇+µ) ∈ TN [X]k+1 with 𝓇 =
∑k

j=1 𝓈j •𝒶j+ℯ. The
noise ℯ is sampled from a normal error distribution χ = 𝒩(0, σ2) over RN [X];
namely, over polynomials of RN [X] with coefficients drawn in 𝒩(0, σ2).

As already pointed out in [10], LWE-based ciphertexts can be viewed as a
special instance of GLWE-based ciphertexts for (k,N) = (n, 1). Indeed, when
N = 1, it turns out that RN [X] = R, ZN [X] = Z, and TN [X] = T. Hence, to
keep the presentation as general as possible, we will stick to the GLWE setting;
LWE-based encryption being a particular case.

In the most generic setting, ciphertexts 𝓬 = (𝒶1, . . . ,𝒶k, 𝓇+µ) are vectors of
polynomials over TN [X]. These polynomials can in turn be regarded as vectors
over T. In a practical implementation, torus elements are represented with a
finite precision (typically, 32 or 64 bits). Let Ω denote the bit-precision—for
example, Ω = 32 if the ciphertext components are represented with a precision
of 32 bits. In this case, torus elements are restricted to elements of the form∑Ω

i=1 ti • 2−i (mod 1) with ti ∈ {0, 1}. Essentially, the effect of working with a
finite precision boils down to replacing T with the submodule

T̂ := q−1
Z/Z ⊂ T where q = 2Ω

and doing computations in T̂N [X] := T̂[X]/(XN + 1). Viewing 1
q as an element

in T̂N [X], any polynomial µ ∈ T̂N [X] can be written as

µ = µ • 1
q for some µ ∈ ẐN [X]

where ẐN [X] := (Z/qZ)[X]/(XN + 1).

3.1 Encoding/Decoding Messages

The input messages, prior to encryption, can be in any format. The role of
the encoding/decoding process is to make them compatible with the encryption
scheme.

It is useful to introduce some terminology and notation. An element µ ∈
ẐN [X] entering the encryption algorithm is referred to as the plaintext. It
matches a cleartext m in a certain finite message space ℳ. The correspon-
dence between cleartexts and plaintexts is given by a message encoding function
Encode; the reverse operation is the decoding function Decode. It is required
that, for any cleartext m ∈ ℳ, the relation Decode(Encode(m)) = m holds.

Let µ = μ0+μ1 X+· · ·+μN−1 XN−1 ∈ ẐN [X] be a plaintext. Because cipher-
texts are noisy and the noise is added to the right (i.e., less significant position),
only the upper bits of μi are used to encode cleartext messages. In order to suc-
cessfully complete, certain homomorphic operations demand some of the leading
bits of μi to be provisioned and set to 0. In the most general case, we let � ≥ 0
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denote the number of these bits (called padding bits) and ω ≥ 1 the number of
bits that are actually used to represent input cleartexts so that � + ω ≤ Ω. We
define p = 2�+ω. Parameter ω is referred to as the message bit-precision and
parameter p as the message modulus. The coefficients μi of plaintext polynomial
µ ∈ ẐN [X] are therefore of the form μi = 2Ω−(�+ω)(νi mod 2ω) for some νi, as
shown in Fig. 1.

μi = 0 · · · 0 νi 0 · · · · · · 0

� bits ω bits Ω − (� + ω) bits

Fig. 1. Plaintext representation.

For an arbitrary element x = xH
q
p ± xL ∈ Z/qZ with 0 ≤ xL ≤ q

2p , we
define the function Upper that returns the value of xH

q
p . It is specified as

Upper : Z/qZ → Z/qZ, x �→ Upper(x) with

Upperq,p(x) =
q

p

⌊
p lift(x)

q

⌉

(mod q)

where the function lift lifts elements of Z/qZ to Z. The function Upper naturally
extends to polynomials of ẐN [X] by applying it coefficient-wise.

In particular, for q = 2Ω and p = 2�+ω, the function reads as Upperq,p(x) =

2Ω−(�+ω)
⌊ 2�+ω lift(x)

2Ω

⌉
(mod q). Note that if x = xH 2Ω−(�+ω) ± xL ∈ Z/qZ

with 0 ≤ xL ≤ 2Ω−(�+ω)−1 then Upperq,p(x) = xH 2Ω−(�+ω).

3.2 Description

We are now ready to present the implementation of TFHE encryption with a
finite representation precision. We write GLWE the corresponding encryption
algorithm in the general case. The LWE encryption algorithm coincides with
the particular case (k,N) = (n, 1).

KeyGen(1λ) On input security parameter λ, define a pair of integers (k,N)
with k ≥ 1 and N a power of 2. Define also a normal error distribution χ =
𝒩(0, σ2) over RN [X]. Sample uniformly at random a vector 𝓼 = (𝓈1, . . . , 𝓈k) $←
BN [X]k. The plaintext space is 𝒫N [X] = ( q

pZ/qZ)[X]/(XN + 1) ⊂ ẐN [X] =
(Z/qZ)[X]/(XN + 1) where q = 2Ω and the message modulus is p = 2�+ω,
with Ω ≥ � + ω.
The public parameters are pp = {k,N, σ, p, q} and the private key is sk = 𝓼.
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Encryptsk(µ) The encryption of a plaintext µ ∈ 𝒫N [X] is given by

𝓬 ← GLWE𝓼(µ) := (𝒶1, . . . ,𝒶k,𝒷) ∈ ẐN [X]k+1

with {
µ∗ = µ + ℯ (mod (q,XN + 1))
𝒷 =

∑k
j=1 𝓈j 𝒶j + µ∗ (mod (q,XN + 1))

for a random polynomial vector (𝒶1, . . . ,𝒶k) $← ẐN [X]k and a discrete noise
ℯ = �ℯ q� for some ℯ ← RN [X] whose coefficients are sampled in 𝒩(0, σ2).

Decryptsk(𝓬) To decrypt 𝓬 = (𝒶1, . . . ,𝒶k,𝒷), use private key 𝓼 = (𝓈1, . . . , 𝓈k),
compute in ẐN [X]

µ∗ = 𝒷 −
k∑

j=1

𝓈j 𝒶j (mod (q,XN + 1)) ,

and output Upperq,p(µ∗).

Correctness. Let p = 2�+ω, q = 2Ω and µ = μ0 + · · · + μN−1 XN−1 with μi =
q
p (νi mod 2ω) for some νi; see Sect. 3.1. It can be verified that if 𝓬 ← Encrypt𝓼(µ)
then Decrypt𝓼(𝓬) = µ, provided that ‖ℯ‖∞ < q

2p = 2Ω−(−�+ω)−1. Note that the
same holds true even if some of the � leading bits of the μi’s are non-zero.

In certain applications, it is acceptable that the decryption algorithm does
not recover the exact initial plaintext but a close approximation thereof. In this
case, the requirement becomes Decrypt𝓼(𝓬) ≈ µ and the condition on the bound
of ‖ℯ‖∞ can be relaxed.

3.3 Leveled Operations

FHE enables directly performing operations on ciphertexts. Depending on the
type of operation, the resulting noise level increases more or less.

Addition. Clearly, GLWE ciphertexts are homomorphic with respect to the addi-
tion. Let 𝓬1 ← GLWE𝓼(µ1) and 𝓬2 ← GLWE𝓼(µ2) with 𝓬1,𝓬2 ∈ ẐN [X]k+1 be
the respective encryptions of plaintexts µ1,µ2 ∈ 𝒫N [X]; i.e.,

𝓬i =
(
𝒶(i)
1 , . . . ,𝒶(i)

k ,𝒷i

)
(i ∈ {1, 2})

with 𝒷i =
∑k

j=1 𝓈j 𝒶
(i)
j + µi + ℯi. Then 𝓬3 = 𝓬1 + 𝓬2 =

(
𝒶(1)
1 + 𝒶(2)

1 , . . . ,𝒶(1)

k +
𝒶(2)

k ,𝒷1 + 𝒷2

)
is a GLWE encryption of (µ1 + µ2) ∈ 𝒫N [X], provided that the

resulting noise ℯ3 = ℯ1 + ℯ2 keeps small.

Scalar Multiplication. By extension, GLWE ciphertexts are homomorphic with
respect to the multiplication by a constant. Let K ∈ Z≥0 and 𝓬 ← GLWE𝓼(µ) =
(𝒶1, . . . ,𝒶k,𝒷) with 𝒷 =

∑k
j=1 𝓈j 𝒶j +µ+ℯ. Then, for K ≥ 0, K ·𝓬 = 𝓬+ · · ·+𝓬

(K times) is an encryption of K · µ ∈ 𝒫N [X], provided that K · ℯ keeps small. If
K < 0 then K · 𝓬 = (−K) · (−𝓬). More generally, if 𝒦 ∈ ZN [X] then 𝒦 · 𝓬 is an
encryption of 𝒦 · µ ∈ 𝒫N [X], provided that 𝒦 · ℯ keeps small.
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External Product. GLWE ciphertexts do not support a native internal multipli-
cation which, in practice, means that two GLWE ciphertexts cannot be directly
multiplied. In order to perform a multiplication, a clever matrix-based approach
put forward in the GSW construction [16] can be used. By analogy, we write
GGSW the corresponding encryption algorithm in the general case; the particu-
lar case (k,N) = (n, 1) is denoted by GSW.

With the previous GLWE notation, let parameters B = 2β and 
 with β, 
 ≥ 1
and such that 
β ≤ Ω. Define also the vector g = (2Ω−β , 2Ω−2β , . . . , 2Ω−�β). The
GGSW encryption of a plaintext 𝓂 ∈ ZN [X] with respect to a GLWE encryption
key 𝓼 ∈ BN [X]k is defined as

𝒞𝒞𝒞 ← GGSW𝓼(𝓂) := 𝒵𝒵𝒵 + 𝓂 · GGGᵀ ∈ ẐN [X](k+1)�×(k+1)

where

𝒵𝒵𝒵 ←

⎛

⎜
⎝

GLWE𝓼(0)
...

GLWE𝓼(0)

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
(k + 1)
 rows

is a matrix containing on each row a fresh GLWE encryption of 0 and where

GGG
ᵀ

= IIIk+1 ⊗ g
ᵀ

= diag( g
ᵀ
, . . . , g

ᵀ

︸ ︷︷ ︸
k+1

) ∈ ZN [X](k+1)�×(k+1)

is the so-called gadget matrix [23], with IIIk+1 the identity matrix of size k + 1.
It is worth noting that any element d in Z/qZ, viewed as an integer in

�− q
2 , q

2

�
,

can always be approximated by a signed-digit radix-B expansion of size 
 as

d ≈ q

�∑

i=1

di B−i =
�∑

i=1

di 2Ω−iβ = g−1(d) g
ᵀ

where g−1(d) := (d1, . . . , d�) ∈ Z
� with digits di ∈ �−B

2 , B
2

�
and with an approx-

imation error that is bounded by
∣
∣g−1(d) gᵀ − d

∣
∣ ≤ q/(2B�) = 2Ω−β�−1.

By extension, for a polynomial 𝓅 = p0 + · · · + pN−1 XN−1 ∈ ẐN [X] whose
coefficients are viewed as integers in

�− q
2 , q

2

�
, the decomposition g−1(𝓅) ∈

ZN [X]� is defined as g−1(𝓅) =
∑N−1

j=0 g−1(pj)Xj . Clearly, it holds that
∥
∥g−1(𝓅) gᵀ − 𝓅

∥
∥

∞ ≤ 2Ω−β�−1. Finally, for a vector of k + 1 polynomials, 𝓹 =
(𝓅1, . . . ,𝓅k+1) ∈ ẐN [X]k+1, the decomposition GGG−1(𝓹) ∈ ZN [X](k+1)� is defined
as GGG−1(𝓹) = (g−1(𝓅1), . . . , g−1(𝓅k+1)) and

∥
∥GGG−1(𝓹)GGGᵀ − 𝓹

∥
∥

∞ ≤ 2Ω−β�−1.
Interestingly, the gadget decomposition of GLWE ciphertexts gives rise to an

external product [10] with GGSW ciphertexts. Specifically, for plaintexts 𝓂1 ∈
ZN [X] and µ2 ∈ 𝒫N [X], if 𝒞1𝒞1𝒞1 ← GGSW𝓼(𝓂1) and 𝓬2 ← GLWE(µ2) then their
external product, denoted by �, is given by
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A little algebra shows that

𝓬3 = GGG−1(𝓬2) (𝒵𝒵𝒵 + 𝓂1 · GGGᵀ
) = GGG−1(𝓬2)𝒵𝒵𝒵

︸ ︷︷ ︸
=GLWE𝓼(0)

+𝓂1 · GGG−1(𝓬2)GGG
ᵀ

︸ ︷︷ ︸
≈𝓂1 𝓬2

is a GLWE encryption of 𝓂1 µ2 ∈ 𝒫N [X], provided that the resulting noise
(including the approximation error) keeps small.

The CMux Gate. Starting from the external product, a new leveled operation
can be defined: the ‘controlled’ multiplexer or CMux [10, § 3.4]. A CMux acts as a
selector according to a bit—but over encrypted data. It takes as input two GLWE
ciphertexts 𝓬0 and 𝓬1, respectively encrypting plaintexts 𝓊0 and 𝓊1 ∈ 𝒫N [X],
and a GGSW ciphertext 𝒞𝒞𝒞 encrypting a bit b. The result is a GLWE ciphertext
𝓬′ encrypting 𝓊b, provided that the resulting noise keeps small. The CMux gate
is given by:

It plays a central role in the performance of homomorphic computations and,
especially, inside the bootstrapping.

4 Programmable Bootstrapping

The programmable bootstrapping is an extension of the bootstrapping tech-
nique that allows resetting the noise to a fixed level while—at the same time—
evaluating a function on the input ciphertext.

In this section, we first explain in detail how to perform the regular boot-
strapping. We then proceed with the programmable bootstrapping and show how
to evaluate any function expressed as a look-up table. When f is the identity
function, that coincides with a regular bootstrapping.

4.1 Blind Rotation

As aforementioned, Gentry’s bootstrapping boils down to homomorphically
decrypt a ciphertext using a homomorphic encryption of its own decryption
key, with the goal of reducing the noise the ciphertext contains.

Intuition. Consider an LWE ciphertext c ← LWEs(μ) = (a1, . . . , an, b) ∈
(Z/qZ)n+1 where aj

$← Z/qZ and b =
∑n

j=1 sj aj + μ∗ with μ∗ = μ + e for
some discrete noise e = �e q� with e ← 𝒩(0, σ2). Ciphertext c is an encryption of
plaintext μ ∈ 𝒫 = q

pZ/qZ under the secret key s = (s1, . . . , sn) ∈ B
n. It can be

decrypted using s in two steps as μ∗ ← b − ∑n
j=1 sj aj and μ ← Upperq,p(μ∗).

In order to bootstrap, one way to look at the decryption (without the round-
ing) is to see that

−μ∗ = −b +
∑n

j=1 sj aj (mod q)
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and to put this value at the exponent of X to get the monomial X−μ∗
. Note

that there are q possible values for μ∗. The rough idea (more technical details
are given later) is then to build a polynomial—that we call test polynomial—
such that each one of its coefficients encodes the noise-free value corresponding
to μ∗ (namely, μ = Upperq,p(μ∗)), for all the possible μ∗ ’s. Specifically, if we
suppose for a moment that the test polynomial is the degree-q polynomial 𝓋 =
v0+v1 X+· · ·+vq−1 Xq−1 then its ith coefficient is set to vi = Upperq,p(i mod q).
By rotating the test polynomial of μ∗ positions, the value of μ moves to the
constant coefficient position. This is illustrated in Fig. 2. It then remains to
extract it.

µ· · · · · · µ · · · · · ·X−μ∗
• =

position corresponding to μ∗

test polynomial

Fig. 2. Rotating the test polynomial.

Of course, this rotation is done homomorphically (hence the name blind
rotation) and since X−μ∗ · 𝓋 is a polynomial, this is where GLWE encryption
comes into play.

Polynomials used in GLWE are defined modulo XN + 1. This means that X
as a multiplicative element of ZN [X] is of order 2N . However, as appearing in the
LWE encryption, μ∗ is defined modulo q. It therefore needs to be rescaled modulo
2N . As a consequence, instead of using the relation −μ∗ = −b +

∑n
j=1 sj aj

(mod q), we have to rely on the approximation

−μ̃∗ = −b̃ +
∑n

j=1 sj ãj (mod 2N) ,

where b̃ =
⌊ 2N(b mod q)

q

⌉
and ãj =

⌊ 2N(aj mod q)
q

⌉
. This approximation may gener-

ate a small additional error that adds to the noise. We call this additional error
drift. It depends on both the size n of the input LWE and the ring size N used
in GLWE during the rotation. The impact of the drift on the result can be dealt
with by a careful choice of the parameters. In particular, a smaller value for n
or a larger value for N is expected to decrease the resulting drift.

Also, because the test polynomial 𝓋 lies in ẐN [X] and thus has N coefficients,
at most N values for μ̃∗ can be encoded. This is addressed by ensuring that the
most significant bit of μ̃∗ is set to 0; that is, parameter � ≥ 1 (see Sect. 3.1).
In this case, μ̃∗ can take at most N possible values and the test polynomial is
formed as 𝓋 = v0 + · · · + vN−1 XN−1 with

vi = Upperq,p

(
q

2N i mod q
)

.
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Implementation. It remains to explain how to compute the product between
X−μ̃∗

and the test polynomial 𝓋 under GLWE encryption. It turns out that
such a computation can be computed as a succession of CMux gates [10, § 4.3].

An accumulator ACC is initialized with a GLWE encryption of X−b̃ ·𝓋. It is
then updated in a for-loop where, at iteration i (for 1 ≤ i ≤ n) it is multiplied by
Xsi ãi . The multiplication is performed thanks to the CMux operation, ACC ←
CMux(bsk[i],ACC,X ãi · ACC). Here, bsk[i] ← GGSW𝓼′(si) (for i = 1, . . . , n),
are the bootstrapping keys; i.e., a list of GGSW encryptions of the elements of
the secret key s under some encryption key 𝓼′ ∈ BN [X]k. The output of the
blind rotation is ACC ← GLWE𝓼′(X−μ̃∗ · 𝓋). More details about this procedure
are provided in Appendix B.1.

Sample Extraction. The remaining step of the bootstrapping consists in extract-
ing the constant coefficient of 𝓊 := X−μ̃∗ · 𝓋 as a LWE ciphertext of μ. This
is an easy operation—called sample extraction—which is performed by simply
extracting some of the coefficients of the GLWE ciphertext. See Appendix B.2.

Key Switching. The loop is almost closed. With the above procedure, input
ciphertext c ← LWEs(μ) ∈ (Z/qZ)n+1 and resulting output ciphertext c′ ←
LWEs′(μ) ∈ (Z/qZ)kN+1 both encrypt plaintext μ but make use of different
keys and have a different format.

In order to convert c′ back to the original setting, an operation called key
switching can be performed. The key-switching technique is classical in FHE.
See Appendix B.3 for a detailed description.

4.2 Look-Up Table Evaluation

In the previous section, the blind rotation is used to perform a bootstrapping.
Surprisingly, the same technique can be adapted so as to evaluate a function at
the same time. The function is evaluated as a look-up table that is encoded in
the test polynomial.

Specifically, suppose we intend to evaluate—over encrypted data—an arbi-
trary function f with domain 𝒟 and image ℐ, f : 𝒟 → ℐ, x �→ y = f(x).
We assume we are given the encoding functions Encode: 𝒟 → Z/qZ and
Encode′ : ℐ → Z/qZ, and the matching decoding functions Decode and Decode′,
as specified in Sect. 3.1.

We showed in the previous section that selecting for the test polynomial 𝓋 =
v0 + · · · + vN−1 XN−1 with vi = Upperq,p

(
q

2N i mod q
)

transforms a ciphertext
of μ into another ciphertext of μ with a lesser noise.

Consider now the following diagram
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and suppose we define a look-up table as pairs (i, T [i]) for 0 ≤ i ≤ N − 1 with

T [i] = Encode′ ◦f ◦ Decode ◦Upperq,p

(
q

2N i mod q
)

.

As the diagram suggests, we program the test polynomial as

𝓋 = v0 + · · · + vN−1 XN−1 with vi = T [i] ,

the rest of the process described in Sect. 4.1 remains unchanged. Doing so, up to
the drift, an input ciphertext of μ (encoding some value x ∈ 𝒟) will be trans-
formed into a ciphertext of a value encoding f(x). Furthermore, being the output
of a bootstrapping, the resulting ciphertext enjoys a low level of noise. The whole
process is what we call programmable bootstrapping.

Remark 1. As explained, the regular bootstrapping requires an encoding param-
eter � ≥ 1 (cf. Sect. 4.1). This condition can be lifted in the programmable
bootstrapping when the entries of the look-up table are negacyclic; i.e., when
T [i + N ] ≡ −T [i] (mod 2N). In that case, 2N values are actually programmed.

5 Application to Neural Networks

All the tools that we need are now on the table. In this section, we apply them
in order to evaluate homomorphically neural networks.

Neural networks (NN) were originally built in computer science by analogy
to the human brain in order to solve complex problems that machines were not
able to solve before. The neural networks can be trained and then used to classify
objects, detect diseases, do face recognition, and so on.

The different layers in a neural network are typically aimed at successively
extracting discriminating features or patterns from the input data. The number
of layers and the type of operations that is performed in each layer depend on
the task the neural network is trying to achieve.

We review below a number of layers that are commonly used to build neural
networks. The list is non-exhaustive. Our techniques are generic and support
all known types of layers. Each layer receives inputs from the previous layer,
performs some computations, and produces outputs. The outputs then flow to
the next layer as inputs. Two types of layers are distinguished when working
over encrypted data:

– layers that can be evaluated homomorphically using leveled operations; and
– layers involving non-linear or more complex operations, in which case one or

several programmable bootstrappings (PBS) are required.

We note that the first type of layers may also resort to bootstrap operations on
some intermediate values whenever the noise exceeds a certain threshold.
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5.1 Layers Without PBS

Dense/Linear Layer. A (fully connected) dense layer computes the dot product
between the inputs and a matrix of weights. A bias vector can be added. An acti-
vation function is then applied component-wise to produce the outputs. When
there is no activation function, a dense layer is also called linear layer.

When evaluated homomorphically, the weights and the bias vector are pro-
vided in the clear. The evaluation of a dense layer (the activation excepted) thus
consists of a series of multiplications by constants and additions, which are all
leveled operations.

The activation functions are treated in the next section (see activation layer).

Convolution Layer. A convolution layer convolves the input layer with a con-
volution kernel (a.k.a. filter) that is composed of a tensor of weights so as to
produce a tensor of outputs. Biases can be added to the outputs. Moreover, an
activation function can be applied to the outputs.

The filters are provided in the clear. Hence, as for the dense layer, the homo-
morphic evaluation of a convolution layer (without activation) consists of a series
of multiplications by constants and additions.

Addition Layer. An addition layer performs component-wise additions. Over
encrypted data, those are leveled operations.

Flatten Layer. A flatten layer reshapes its input into a lower-dimensional array
so that it can for example be fed into a subsequent dense layer.

Over encrypted data, the flattening function simply consists in rearranging
the input ciphertexts. No homomorphic operation is required.

Global Average Pooling Layer. A global average pooling layer computes the
average of the components of its inputs. Specifically, if n denotes the number of
components and ai denotes the value of component i, the global average pooling
function computes

(∑n
i=1 ai

)
/n.

In a homomorphic evaluation, the global average pooling can be reduced to
the computation of the sum

∑n
i=1 ai. The division by n is then performed in the

next programmable bootstrapping—e.g., in a dense layer or a convolution layer—
by dividing the weights by the same quantity. Hence, the sole homomorphic
operation required to evaluate a global average pooling layer is the addition of
ciphertexts, which is a leveled operation.

5.2 Layers with PBS

Activation Layer: ReLU. An activation layer is used to inject non-linearity in the
neural networks. It is crucial in the learning. There are many activation functions
that can be used in an activation layer. One of the most popular activation
functions is the Rectified Linear Unit (ReLU) function. Other commonly used
activations include the sigmoid function or the hyperbolic tangent function.
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As detailed in Sect. 4, the homomorphic evaluation of an activation function
(as any function) can be performed via a programmable bootstrapping (PBS),
with the outputs of the function encoded inside the test polynomial.

Max-Pooling Layer. A max-pooling layer extracts a fixed-size subset of compo-
nents from the inputs and computes their maximum.

At first sight, as the max function is multivariate (i.e., it takes multiple argu-
ments on input), it is unclear how it can be evaluated homomorphically. With
two arguments, the max function can however be expressed using the [univari-
ate] ReLU function, max(x, y) = y + ReLU(x − y). Hence, from Encrypt(x)
and Encrypt(y), their maximum can be evaluated as Encrypt(max(x, y)) =
Encrypt(y) + Encrypt(ReLU(z)) with Encrypt(z) = Encrypt(x) − Encrypt(y).
This requires a couple of addition/subtraction of ciphertexts plus the homo-
morphic evaluation of a ReLU function, the cost of which is one PBS. When
there are more than two arguments, the basic relation max(x1, . . . , xk−1, xk) =
max(yk, xk) with yk = max(x1, . . . , xk−1) can be used. For a series of k com-
ponents (x1, . . . , xk), the homomorphic evaluation of the max-pooling function
thus amounts to (k − 1) PBS.

6 Experimental Results and Benchmarks

We conducted a series of numerical experiments to assess the performance. We
report below results against the MNIST dataset [21], which contains 28 × 28
images of handwritten digits. For testing purposes, we designed depth-20, 50, 100
neural networks, respectively noted NN-20, NN-50 and NN-100. These networks
all include dense and convolution layers with activation functions; every hidden
layer possesses at least 92 active neurons.

Parameter Sets. The overall targeted security levels are 80 bits and 128 bits. The
selected cryptographic parameters are defined by (k,N, σ) for GLWE encryption
and (n, σ) for LWE encryption. The word-size is Ω = 64 bits.

Table 1. Cryptographic parameters.

Security level GLWE LWE

k N σ n σ

80 bits I 1 1024 2−40 542 2−21

II 1 2048 2−60 592 2−23

128 bits III 1 4096 2−62 938 2−23

The different parameter sets I, II & III in Table 1 meet at least the claimed
security level and were validated using the lwe-estimator (https://bitbucket.
org/malb/lwe-estimator/) [1]. They can be used for the homomorphic inference
of networks requiring a maximal precision of 8 bits up to 12 bits.

https://bitbucket.org/malb/lwe-estimator/
https://bitbucket.org/malb/lwe-estimator/


Programmable Bootstrapping 15

Performance Analysis. Experiments were performed on three different types of
machines, respectively referred to as PC, AWS, and AWS2:

– a personal computer with 2.6 GHz 6-Core Intel® Core™ i7 processor,
– a 3.00 GHz Intel® Xeon® Platinum 8275CL processor with 96 vCPUs hosted

on AWS, and
– as above but with 8 NVIDIA® A100 Tensor Core GPUs.

Table 2. Performance comparison (computed from 1000 runs).

(a) Results in the clear.

Run-time
Accuracy

PC AWS

NN-20 0.17 ms 0.19 ms 97.5 %

NN-50 0.20 ms 0.30 ms 95.4 %

NN-100 0.33 ms 0.46 ms 95.2 %

(b) Results over encrypted data.

Run-time
Accuracy

PC AWS AWS2

80-bit security :

NN-20 (I) 12.49 s 2.85 s 0.69 s 97.2 %

(II) 30.04 s 6.19 s 2.10 s 97.5%

NN-50 (I) 26.71 s 5.90 s 1.73 s 93.4 %

(II) 71.71 s 13.00 s 5.27 s 95.1%

NN-100 (I) 46.61 s 11.18 s 3.46 s 87.3 %

(II) 108.73 s 24.13 s 10.24 s 91.1%

128-bit security :

NN-20 (III) 115.52 s 21.17 s 7.53 s 97.1%

NN-50 (III) 233.55 s 43.91 s 18.89 s 94.7%

NN-100 (III) 481.61 s 81.47 s 37.65 s 83.0%

For reference, Table 2a lists the run-time and accuracy for an unencrypted
inference. They were measured using ONNX Runtime [24]. The run-time and accu-
racy over encrypted data for different settings are presented in Table 2b. These
clearly indicate the importance of the parameter choice and the different trade-
offs that can be obtained. In particular, for a given security level, a larger value
for parameter N increases the accuracy (at the expense of more processing). It is
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important to note that the given times correspond to the evaluation of a single
inference run independently; in particular, the times are not amortized over a
batch of inferences.

7 Conclusion

We presented a general framework for the evaluation of deep neural networks
using fully homomorphic encryption. Our approach scales efficiently with the
number of layers while providing good accuracy results. To do so we employ a
versatile combination of encoding methods and of programmable bootstrapping
techniques. To the best of our knowledge, our results set new records in the
homomorphic inference of deep neural networks.

The practicality of our framework invites further works. First, it would be
interesting to know the impact of the use of specialized hardware in our frame-
work. We believe that several orders of magnitude in the processing times could
be gained in that way. Another interesting work would be to investigate how to
extend our techniques to the homomorphic training of neural networks or, more
generally, to other intensive machine-learning tasks.

Acknowledgments. We are grateful to our colleagues at Zama for their help and
support in running the experiments.

Availability. The library implementing our extended version of TFHE has been devel-

oped in Rust. It is available as an open-source project on GitHub at URL https://

github.com/zama-ai/concrete.

A Complexity Assumptions Over the Real Torus

In 2005, Regev [25] introduced the learning with errors (LWE) problem. General-
izations and extensions to ring structures were subsequently proposed in [22,27].
The security of TFHE relies on the hardness of torus-based problems [6,9]: the
LWE assumption and the GLWE assumption [5,20] over the torus.

Definition 1 (LWE problem over the torus). Let n ∈ N and let s =
(s1, . . . , sn) $← B

n. Let also χ be an error distribution over R. The learning with
errors (LWE) over the torus problem is to distinguish the following distributions:

– 𝒟0 =
{
(a, r) | a $← T

n, r
$← T

}
;

– 𝒟1 =
{
(a, r) | a = (a1, . . . , an) $← T

n, r =
∑n

j=1 sj • aj + e, e ← χ
}
.

Definition 2 (GLWE problem over the torus). Let N, k ∈ N with N a
power of 2 and let 𝓼 = (𝓈1, . . . , 𝓈k) $← BN [X]k. Let also χ be an error distribution
over RN [X]. The general learning with errors (GLWE) over the torus problem
is to distinguish the following distributions:

https://github.com/zama-ai/concrete
https://github.com/zama-ai/concrete
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– 𝒟0 =
{
(𝓪, 𝓇) | 𝓪 $← TN [X]k, 𝓇 $← TN [X]

}
;

– 𝒟1 =
{
(𝓪, 𝓇) | 𝓪 = (𝒶1, . . . ,𝒶k) $← TN [X]k, 𝓇 =

∑k
j=1 𝓈j • 𝒶j + ℯ, ℯ ← χ

}
.

The decisional LWE assumption (resp. the decisional GLWE assumption)
asserts that solving the LWE problem (resp. GLWE problem) is infeasible for
some security parameter λ, where n := n(λ) and χ := χ(λ) (resp. N := N(λ),
k = k(λ), and χ := χ(λ)).

B Algorithms

We use the notations of Sect. 4. The input of the (programmable) bootstrapping
is an LWE ciphertext c ← LWEs(μ) = (a1, . . . , an, b) ∈ (Z/qZ)n+1 that encrypts
a plaintext μ ∈ Z/qZ under the secret key s = (s1, . . . , sn) ∈ B

n.

B.1 Blind Rotation

The secret key bits sj used to encrypt the input LWE ciphertext cannot be
revealed. They are instead provided as bootstrapping keys; i.e., encrypted under
some encryption key 𝓼′ ∈ BN [X]k: bsk[j] ← GGSW𝓼′(sj) for all j = 1, . . . , n.

We then have:

Algorithm 1: Blind rotation.

ACC ← (0, . . . , 0,X−b̃ · 𝓋)
for i = 1 to n do

ACC ← CMux(bsk[i],ACC,X ãi · ACC)
end for

return ACC

At the end of the loop, ACC contains a GLWE encryption of X−μ̃∗ · 𝓋 under
key 𝓼′.

B.2 Sample Extraction

The sample extraction algorithm extracts the constant coefficient μ of polynomial
𝓊 ∈ ẐN [X] in GLWE ciphertext 𝓬′ as a LWE ciphertext of μ. In more detail,
let 𝓼′ = (𝓈′

1, . . . , 𝓈
′
k) ∈ BN [X]k with 𝓈′

j = s′
j,0 + · · · + s′

j,N−1 XN−1 for 1 ≤
j ≤ k. Parsing 𝓬′ ← GLWE𝓼′(𝓊) ∈ ẐN [X]k as (𝒶′

1, . . . ,𝒶
′
k,𝒷′) with 𝒶′

j =
a′

j,0 + · · ·+ a′
j,N−1 XN−1 for 1 ≤ j ≤ k and 𝒷′ = b′

0 + · · ·+ b′
N−1 XN−1, it can be

verified that c′ := (a′
1,0,−a′

1,N−1, . . . ,−a′
1,1, . . . , a

′
k,0,−a′

k,N−1, . . . ,−a′
k,1, b

′
0) ∈

(Z/qZ)kN+1 is a LWE encryption of μ under the key s′ = (s′
1, . . . , s

′
kN ) ∈ B

kN

where s′
l+1+(j−1)N := s′

j,l for 1 ≤ j ≤ k and 0 ≤ l ≤ N − 1.



18 I. Chillotti et al.

B.3 Key Switching

The key switching technique can be used to switch encryption keys in different
parameter sets [7, § 1.2]. Its implementation requires key-switching keys, i.e.,
LWE encryptions of the key bits of s′ with respect to the original key s. Assume
we are given the key-switching keys ksk[i, j] ← LWEs

(
s′

i · q

Bj
KS

)
for all 1 ≤ i ≤ kN

and 1 ≤ j ≤ 
KS, for some parameters B := BKS and 
 := 
KS defining a gadget
decomposition (see Sect. 3.3). Adapting [10, § 4.1] teaches that, on input LWE
ciphertext c′ ← LWEs′(μ) = (a′

1, . . . , a
′
kN , b′) ∈ (Z/qZ)kN+1 under the key

s′ = (s1, . . . , skN ) ∈ B
kN ,

c′′ := (0, . . . , 0, b′) −
kN∑

i=1

�KS∑

j=1

a′
i,j ksk[i, j] ∈ (Z/qZ)n+1

where (a′
i,1, . . . , a

′
i,�KS

) = g−1(a′
i) is an LWE encryption of μ under key s, provided

that the resulting noise keeps small.
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Abstract. Malware designers have become increasingly sophisticated
over time, crafting polymorphic and metamorphic malware employing
obfuscation tricks such as packing and encryption to evade signature-
based malware detection systems. Therefore, security professionals use
machine learning-based systems to toughen their defenses – based on
malware’s dynamic behavioral features. However, these systems are sus-
ceptible to adversarial inputs. Some malware designers exploit this vul-
nerability to bypass detection. In this work, we develop two approaches
to evade machine learning-based classifiers. First, we create a Genera-
tive Adversarial Networks (GAN) based method, which we call ‘Malware
Evasion using GAN’ (MEGAN) and the extended version ‘Malware Eva-
sion using GAN with Reduced Perturbation (MEGAN-RP).’ Second, we
develop a novel reinforcement learning-based approach called ‘Malware
Evasion using Reinforcement Agent (MERA).’ We generate adversarial
malware that simultaneously minimizes the recall of a target classifier
and the amount of perturbation needed in the actual malware to evade
detection. We evaluate our work against 13 different BlackBox detec-
tion models – all of which use dynamic presence-absence of API calls
as features. We observe that our approaches reduce the recall of almost
all BlackBox models to zero. Further, MERA outperforms all the other
models and reduces True Positive Rate (TPR) to zero against all tar-
get models except the Decision Tree (DT) – with minimum perturbation
in 6 out of 13 target models. We also present experimental results on
adversarial retraining defense and its evasion for GAN based strategies.

Keywords: Adversarial machine learning · Evasion attacks · API call
sequence · Dynamic analysis

1 Introduction

The AV-TEST [2] report shows that over 350K new malicious programs (mal-
ware) and Potentially Unwanted Applications (PUAs) are registered every day.
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As the malware are evolving every day, signature-based threat detection and
mitigation are no longer fully effective. Signatures detect known threats, but
with more than 100K new unknown variants striking every day, using signa-
tures is no longer sufficient. Modern malware employs many techniques to evade
detection. Malware creators use packers and smart coding methods like meta-
morphism and polymorphism, making it even harder for anti-virus programs to
match the signatures and quarantine the file.

Zeus [24] is an example of automated mutation engines that changed mal-
ware features such as filenames or hashes and modified their code after each
execution to evade detection by signature-based methods. In 2017, 97% of new
malware samples used polymorphic techniques [34] thereby evading detection by
signature-based tools.

Security professionals are now developing machine learning-based intrusion
or malware detection systems to circumvent the problems faced by signature-
based tools. They train models to learn static features extracted from executable
or dynamic features obtained by observing behavior while executing malware
within a sandbox. Static features are obtained without executing the binary
and include API import list, different section names, the SUID bit, etc. Static
feature-based classifiers do not always perform well against polymorphic and
metamorphic viruses, as most of the binary is densely packed and encrypted.
Dynamic features of a binary file include API call sequences, network capture,
memory footprint, etc. Dynamic features based classifiers overcome the limita-
tions of the static analysis based classifiers. However, machine learning classifiers’
susceptibility to adversarial attacks is a well-known issue in which an adversary
trains a machine learning model to modify a malware so that the classifier mis-
classifies the malware as benign.

In this paper, we present an extension of our previous work [12] where
we showed how to generate adversarial malware from an existing one – with-
out changing the functionality while evading any classifier that uses API call
sequences as features. However, in [12], we did not impose any constraint on the
number of perturbations made to the original binary keeping the functionality
intact. The main goal was to evade the machine learning classifiers. However,
more perturbations lead to an enlarged size of the binary, limiting its use as
payload in many scenarios. In this work, we take a different approach and also
minimize the perturbations while generating adversarial malware. The main con-
tributions of this work are as follows:

– Using GAN and Reinforcement learning to generate adversarial PE
malware automatically - We demonstrate using GAN (Generative Adver-
sarial Network) and a novel approach using RL (Reinforcement Learning)
to systematically and automatically craft PE32 malware capable of evading
detection by API call presence-absence based classifiers with minimal modi-
fication.
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– Develop methods for minimizing the perturbation in the original
malware while generating adversarial malware - Modifying a malware
is a complicated and tricky task as there is generally a constraint on the
amount of perturbation possible in any malware file to keep its malicious
behavior intact. Our method improves against previous work by minimizing
the amount of perturbation required to generate the adversarial malware.

– Demonstration of technique to limit modifications only to modifi-
able features – In reality, every malware, whether PE32 or not, is associated
with a list of modifiable and non-modifiable features. Our RL method limits
the modifications to a particular set of modifiable features.

– Evaluation of our techniques against previous work – We compare and
contrast the results of previous work MALGAN [17]. We propose improved
evasion techniques MEGAN-RP and RL based approach MERA.

– A test framework to evaluate the performance of malware classifiers in the
presence of adversarial samples.

The rest of the paper is organized as follows: In Sect. 2, we describe our
problem statement. We explain adversarial learning background with defenses
against adversarial attacks in Sect. 3. Section 4 describes related work. In Sect. 5,
we discuss the proposed method’s design and implementation. Section 6 consists
of our evaluation results and observations. Section 7 concludes the paper with
ideas about possible future work and the scope of improvements.

2 Problem Statement

Let �M be a set of feature vectors for a collection of malware and C be a trained
malware classifier on dynamic API call presence or absence as binary features.
Let each �m ∈ �M be correctly classified by C. We have to propose a systematic
approach to generate a set of adversarial malware features given by

�M ′ = {�m′ = �m + �δ | C(�m′) �= C(�m) ∀ �m ∈ �M} (1)

with minimal perturbation |�δ|l1 such that �δ corresponds to a feasible change in
actual malware feature vector without changing the functionality of the original
malware.The adversary can queryC with input�x for the labelC(�x). The adversary
has the list of API calls whose presence or absence are used as features in C.

3 Adversarial Learning Background

Researchers have shown that many machine learning models for data classifi-
cation can be misled by crafting adversarial inputs in recent years. Adversarial
inputs are specially crafted feature vectors by introducing a small change to a real
input vector. The change does not affect the intrinsic nature of the information
– but enough to misdirect the machine learning model towards misclassification.
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Suppose the target is a binary classifier C. Adversary is capable of querying
C for the label C(�x) for any input �x. Since labels do not contain any information
about the underlying probability distribution of C, the adversary is weak. The out-
put label C(�x) is the class index with the highest posterior probability. Let Ci(�x)
be the ith component of the probability vector then the output is expressed as:

C(�x) = argmax
i∈{0,1}

Ci(�x) (2)

The goal of adversary is to produce a minimally modified vector �x∗ for input �x
such that:

�x∗ = �x + arg min|�z|l1 {�z : C(�x + �z) �= C(�x)} = �x + δ�x (3)

Studies [20,25] show that adversarial examples are used to fool the classifiers.
Papernot et al. [28] consider an attacker who has access only to the output of
the target model. The adversary has no information about the target model’s
internal parameters or architecture, such as the number of layers, type of layers,
number of neurons in layers, and the training data used to train the target model.
The attack is performed in a full BlackBox setting. The adversary generates a
synthetic dataset and labels it by querying the labels from the target model. Due
to adversarial examples’ transferable characteristics, if the adversary crafts an
adversarial example for a substitute model, the same adversarial sample may also
be misclassified by the target model. They successfully craft adversarial examples
for 84.24% samples. On further calibration, they achieve misclassification rates
up to 97%.

Researchers also have been working on defenses to adversarial attacks. The
most successful defenses are adversarial training and defensive distillation.

– Adversarial training: The intuition is if a model is misclassifying examples
of particular distribution, add samples from that distribution to the model’s
training set. Suppose we generate many adversarial examples and train the
target model on a combination of adversarial examples and original examples.
In that case, the target model becomes robust to adversarial examples to some
extent. However, this defense only works well against white-box attacks due to
gradient masking [31]. Our work tests the robustness of this defense strategy
in the field of malware classification.

– Defensive distillation: Papernot et al. [27] propose a knowledge distillation
strategy as a defense against adversarial examples for image data sets. In this
method, they train one model with the softmax layer as the output layer.
The temperature of the softmax layer is kept high so that the distribution is
smooth. The first model’s probabilities are given as input to the second model
and the same data set used to train the first model. The second model uses the
value of temperature hyper-parameter for softmax layer as 1 for producing
hard labels. This defense strategy is not used in this work.
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4 Related Work

There is a lot of work in the field of adversarial learning for image [19], audio
[33], text [10] and malware [1,13,17] data sets. However, generating adversarial
examples for malware classifiers is different than image, speech, or text classifiers.
Szegedy et al. [15] present an adversarial attack on GoogLeNet, which is trained
on ImageNet. To generate an adversarial image, the authors add a small vector
to an image input prepared using Fast Gradient Sign Method (FGSM). But even
a small change in any PE binary file can make the file corrupt or non-functional
or change its malicious functions. When generating adversarial malware, there
is an additional constraint on the amount and type of perturbation added to
the existing malware file. In addition to generating adversarial samples, we also
need to preserve the malicious functionality in generated samples. Hence for the
API call presence-absence-based feature set, we only consider changes that add
additional API calls. These additions must be made so that they neither change
the programs’ original internal states nor do the additional API calls have any
real effect on the program state.

Goodfellow et al. [14] first propose generative adversarial networks (GAN)
in 2014. This framework is used to generate artificial training samples. They
iteratively train a generative model G, which tries to learn real training data
distribution. They iteratively train a discriminative model D, which estimates
the probability that a sample is not fake, which G generates. The objective
of training G is to mislead D into classifying fake as a real sample. The aim of
training D is to resist getting misled. Initially, D properly distinguishes real from
counterfeit, but after every iteration of training G, it gets worse at discerning real
from fake. After each iteration, G gets better in generating samples to mislead
the discriminator. This framework corresponds to a mini-max adversarial game.
They show that a unique solution exists for arbitrary G and D. G eventually
learns the distribution for real training data, and D can no longer distinguish
real data from fake by more than the probability of a head in a coin toss, i.e., 1

2 .
This entire system is trained with back-propagation if neural networks are used
as generators and discriminators.

Hu et al. [17] propose a GAN based method to generate adversarial mal-
ware examples in a BlackBox setting called MALGAN. They use PE files in the
data set consisting of a 160-dimensional binary vector based on system-level API
calls. The target model is a trained BlackBox classifier oracle O. The adversary
queries O for any sample input �x to get the label O(�x). The discriminator is
trained to mimic the characteristics of the target model O. A generative net-
work is trained to minimize the substitute detector’s malicious probabilities for
generated adversarial examples. The authors reduce the TPR of machine learn-
ing models for adversarial examples to 0.16%, while the original BlackBox had
a TPR of 93% for initial samples. They also show that the adversarial train-
ing defense performs inadequately against their attack. Even after MALGAN
is retrained, it again reduces TPR to almost zero for BlackBox models used in
their work. Perturbation using MALGAN is restricted to adding new API calls
only. This work successfully creates adversarial malware but does not quantify
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the amount of perturbation added to the binaries. Since there is no constraint
on the amount of perturbation; as a result, a malware with 40 API calls can
end up with extra 150 API calls in its adversarial form. Our work overcomes
this limitation by putting a penalty on the amount of perturbation. Our work
ensures that a generated adversarial malware functionality preserving and as
little different in size and features from the original.

Mnih et al. [23] introduce the first deep Q-learning model to learn con-
trol policies directly from high-dimensional sensory input using reinforcement
learning.

Fang et al. [13] propose a reinforcement learning framework named DQEAF
(Deep Q-network to Evade Antimalware engines Framework). Binary features
extracted from raw bytes of PE files are fed as input to the target classifier.
The agent’s list of valid actions includes appending random bytes to the end
of the PE file, appending a random library with random functions to the IAT,
appending a random section to the section table, and removing a signature from
the certificate table of the Data Directory. They achieve an evasion rate ranging
from 17.5% to 75% for different malware families. Other studies using RL like
Anderson et al. [1] work also use a similar approach; raw sequences of bytes are
converted to input vector using hashing trick. Their method also fails to preserve
the functionality of malware files in some cases. Mnih et al. [23] introduce the first
deep Q-learning model to learn control policies directly from high-dimensional
sensory input using reinforcement learning.

Among these previous work, we observe that Hu et al. [17] approach MAL-
GAN has a hidden assumption that the adversary also knows the list of fea-
tures used in the target BlackBox classifier. In our work, make this assumption
explicit. In the past RL-based studies [1,13] use static features such as raw bytes
of PE as input to the target classifier. Polymorphic and metamorphic programs
with obfuscation can easily evade such classifiers. Modifying raw bytes of binary
often fails to preserve functionality [1]. Also, these RL-based works lack promis-
ing results. Our DQN-based work MERA uses dynamic API calls as features
for target models. None of the previous work in this field put any constraint on
the amount of perturbation that is to be added to malware features. Our work
MEGAN-RP and MERA minimizes the probability of detection by the target model
while reducing the size of perturbation required to generate adversarial malware.
Our work is the first study to use dynamic API call presence as features and
generate adversarial malware using Reinforcement Learning to the best of our
knowledge.

5 Design and Implementation

In this work, we implement adversarial attack strategies against 13 different
malware classifiers as target models that use a list of dynamic system-level API
calls extracted during samples’ execution as features. We present two different
GAN and RL-based approaches – MEGAN, MEGAN-RP, and MERA to achieve
the same objective. We assume a target model as a BlackBox. The only knowl-
edge about the target model that the adversary has is a list of API calls used
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by the models. However, the adversary does not know the learning algorithms
and the internal parameters of the target model. We train a substitute detector
that tries to mimic the target model. Suppose the ground truth labels of the
substitute detector’s training set input are the assigned labels queried from the
target model. In that case, the substitute detector will try to mimic the tar-
get model. The substitute detector will encapsulate partial characteristics of the
target model after sufficient training data is fed. Also, we get the probability
of a sample being malware using a substitute detector. Figure 1 shows the key
highlights of our previous and extended work. This section is subcategorized as
follows.

Fig. 1. Overview of our work

5.1 Data Set Collection and Features Extraction

We collect 43,902 PE files consisting of 27,655 malicious PE executable and
16,247 benign PE executable files from public sources like VirusShare [32] and
Malwr [21]. Cuckoo sandbox [11] is set up on a system with 3.4 GHz Intel Core
i7 processor, 32 GB RAM and 3 TB hard drive. We configure cuckoo to submit
the sample for execution in a controlled environment. We extract the JSON
file, which is generated after the sample’s execution in the cuckoo sandbox. The
JSON report contains information about the behavior of the analysed executable.
Three parallel instances of Cuckoo Virtualized Windows 7 32-bit Environment
are run to analyse execution for a duration of a maximum of 180 s each. The User
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Account Control (UAC) and firewall are disabled in the snapshot to leave the
machine susceptible to malware exploitation to the full extent. Each cuckoo
VM is assigned 1 core and 4 GB RAM to evade sandbox environment checks
by malware. All the generated JSON reports for malware and benign are put
together in a folder. Then we parse each JSON report file using a python script
and create a summarised custom JSON report file which looks like:

1 HANDLE CreateFi leA (
2 LPCSTR FileName ,
3 DWORD DesiredAccess ,
4 DWORD ShareMode ,
5 LPSECURITY ATTRIBUTES Secur i tyAt t r ibut e s ,
6 DWORD Creat i onDi spos i t i on ,
7 DWORD FlagsAndAttributes ,
8 HANDLE TemplateFi le
9 ) ;

We traverse all custom JSON report files and extract the list of all invoked
API calls A. The total number of invoked API calls is 327 in our data set. We
randomly split the dataset into two equal parts, namely the BlackBox dataset
(BBdataset) and the GAN/RL dataset (RLdataset) such that the ratio of malware
to benign files remains the same in both parts. We further do a label-based
70%−30% stratified split of BBdataset into BlackBox train dataset BBtrain and
BlackBox test dataset BBtest. We take a zero vector of length len(A) and set the
ith index of API denoted by A[i] present in the report file. We fit a Random Forest
[3] model on the entire BlackBox dataset to extract all API calls of importance.
The adversary uses the same API calls irrespective of their importance in the
GAN/RL training data set. We sort the features in non-increasing order of their
importance and select the top 200 API calls for use as features throughout this
study. The average number of API calls present per binary is approximately 64
API calls in our final data set.

5.2 Target BlackBox Models

We train 13 different classifiers namely Decision Tree (DT) [29], Logistic Regres-
sion (LR) [16], Gaussian Naive Bayes (GNB) [5], Linear Support Vector Classifier
(LSVC) [8], RBF Support Vector Classifier (RBF-SVC) [9], Multilayer Percep-
tron (MLP) [30], Keras Neural Network (Keras) [18], Random Forest (RF), Bag-
ging using DT (BAG) [4], Adaptive Boosting using DT (AdaB) [22], Gradient
Boosting (GB) [6], eXtreme Gradient Boosting (XGB) [26] and Voting Classifier
(Vote) [7]. The inputs for all the target models are 200 – dimensional binary
vectors based on the most crucial system-level API calls present in the Black-
Box dataset. The ratio of malware to benign PE files in the dataset is approx
3:2. Malware samples come from a variety of families including Backdoor, Virus,
Trojan, PWS, Worm and Rootkit etc.
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5.3 Malware Evasion Using GAN (MEGAN) and MEGAN
with Reduced Perturbation (MEGAN-RP)

Our implementation MEGAN is similar to the existing approach MALGAN [17]
with some modification, as we have already discussed in Sect. 4. MEGAN uses
200 API calls as features, but MALGAN uses only 160 API calls. MALGAN
uses a small 20-dimensional noise vector that restricts the generator to generate
adversarial examples of different types, so MEGAN overcomes this by using a 50-
dimensional uniform noise vector. MALGAN uses no activation in hidden layers,
which allows it to learn linear mappings only. Still, MEGAN uses Leaky Rectified
Linear Unit (Leaky RELU) as an activation function with tuned hyper-parameter
α to introduce non-linearity. Our study finds that MALGAN and MEGAN do not
reduce the perturbation required to generate adversarial samples. We claim that
MEGAN with Reduced Perturbation (MEGAN-RP) overcomes this shortcoming
using a custom loss for training GAN given by the Eq. 4.

LossGAN =
B∑

i=1

BCE(yitrue
, yipred) ×

B∑

i=1

200∑

j=1

oij

B∑

i=1

200∑

j=1

xij

(4)

where, BCE is Binary Cross Entropy, B is Batch Size (Default 128), yitrue

is ground truth label for sample �xi, yipred
is predicted label for sample �xi, xij

is value of jth feature of sample �xi, and oij is value of jth feature of generator
output �oi.

MEGAN-RP is an extension of MEGAN, which minimizes the required per-
turbation for malware to get an adversarial sample. We do not add any extra
custom loss layer, so there are no changes in the GAN’s trainable parameters. We
keep almost the same neural network architecture for both MALGAN and MEGAN-RP,
except the activation functions in the hidden layer. In the case of MALGAN, the
activation function used by the last layer is sigmoid, whereas, in our work, we use
ReLu as an activation function. So we properly compare both approaches and
validate our claim that MEGAN-RP is better at simultaneously minimizing both
TPR and the required perturbation for adversarial examples than MALGAN.

As mentioned in our problem statement, we need to ensure any change in the
feature vector to generate an adversarial feature vector, which must correspond
to a possible change in the actual PE binary file, which also preserves the PE file’s
malicious functionality. Towards that objective, we know that the highest layer in
Keras does an element-wise max operation between two tensors. Also, it does not
cause any issues with gradient backpropagation. The use of the Sigmoid layer and
malware sample batch �X as input to the last maximum layer of generator ensures
that the output batch of generator �O contains real-valued vectors with values
ranging from [0,1]. Furthermore, all the features which are present in malware
input �xi ∈ �X will be present in the adversarial output �oi ∈ �O. Thus we adhere
to the restriction of additive modification only. The generated output batch and
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a fresh batch of benign samples are fed to the discriminator with labels obtained
by queries from the target model. This helps the discriminator to mimic the
behavior of the target model. The generated output batch is still a collection of
real-valued vectors. To extract the final binary adversarial output, we round off
the values of features in the vector. We use Adam optimizer with a learning rate
of 0.001 in all neural network models. Binary cross entropy is the loss function
used in the generator and discriminator of MALGAN and MEGAN-RP. For
MEGAN-RP, binary cross-entropy is used as the discriminator loss function,
and a custom loss function defined by Eq. 4 is used for the generator. The idea
behind this loss function is that the number of present APIs in the input batch �X
should be close to the number of present APIs in the output batch �O. We know
that the ratio of the sum of the values of the generated real-valued adversarial
output batch �O to the sum of the values of input batch �X denoted by Ω will
always be greater than or equal to 1. If perturbation −→ 0 then Ω −→ 1 i.e.
Custom Loss −→ BCE. We scale the Binary cross-entropy loss for an entire
batch by Ω. To minimize the total loss, GAN will try to minimize BCE and Ω
simultaneously. The Algorithm 1 describes the whole process of MEGAN and
MEGAN-RP training. This algorithm is based upon MALGAN work.

Algorithm 1: Training MEGAN and MEGAN-RP
1 while not converged do
2 Sample two batches of malware M1 and M2 from GANdataset;
3 Generate two batches of noise Z1 ∼ uniform[0 ,1) and

Z2 ∼ uniform[0 ,1) ;
4 Generate adversarial examples M′

1 from the generator for [M1,Z1] ;
5 Sample a minibatch of benignware B from GANdataset;
6 Label M′

1 and B using the target BlackBox detector and feed this to
discriminator;

7 Update the discriminator’s weights θd by descending along the
gradient ∇θd

LD;
8 Label [M2,Z2] as BENIGN and feed this into generator input to train

GAN;
9 Update the generator’s weights θg by descending along the gradient

∇θg
LG;

10 end

5.4 Malware Evasion Using Reinforcement Agents

We propose a novel framework named Malware Evasion using Reinforcement
Agents (MERA), which uses deep Q-Learning to generate adversarial malware.
The target BlackBox classifiers are the same classifiers we used for MALGAN,
MEGAN, and MEGAN-RP. The threat model is the same for GAN based mod-
els and MERA. The dataset division is also the same except we now refer to
GANdataset as RLdataset. RL involves making random as well as informed deci-
sions using a trained agent. We generate adversarial examples using a trained
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agent and an untrained agent to compare MERA-Trained effectiveness with
MERA-Random. Reinforcement learning (RL) is an area of machine learning that
focuses on training software agents to take actions in an interactive environment
to maximize a cumulative reward conception. The agents learn by trial and error.
Rewards and penalties control the behavior of learning in response to an action.

Adversarial Malware Generation as Deep Q-Learning Problem. For-
mally a reinforcement learning problem is expressed by a 5-tuple given by

RL Problem : (State, Action, Reward, Transition Dynamics, Discount Factor)

We formulate the task of adversarial malware generation as a Deep Q-Learning
problem in the following way:

– Assumption: We have a substitute classifier C, which uses binary feature
vector of system-level API calls and can give the probability of a sample �x
being malware.

– C(�x) : Probability of sample �x being malware.
– Agent: Agents are functions that take the next action after interpreting the

reward for reaching the current state. The model we train is the agent.
– State(St): The state of a malware sample �x is the current binary feature

vector of API calls �x′ obtained after modifications to original malware �x by
taking actions. The indices of St, which are equal to 1, correspond to API calls
present in malware’s current state. We keep taking action until the current
state of malware is classified as benign by the target BlackBox model.

– Action(At): An integer denoting the best possible API call to include in
current state. All possible actions include API calls indices that can be set in
the current malware state feature vector St. Our work uses 200 API calls as
features, so At ∈ [0, 200).

– Next state(St+1): State obtained by setting index At in St to 1 i.e. Do
St[At] = 1. Clearly each step adds one API call to the current state of malware
in hopes of making it benign.

– Reward(Rt+1): A reward is a feedback from the environment to an agent
as interpretation for quality of action At in current state St. A high positive
reward means the action was good, and a high negative reward means the
action was bad. Suppose a vital component of the reward function is the differ-
ence in the probability of a current state being malware and the probability of
the next state being malware. In that case, the agent will favor actions that lead
to states and actions that minimize the current state’s probability of fetching
positive rewards. As the probabilities are very small, we scale this by a large
number α = 100. We also put a penalty on the number of actions taken to reach
the goal state. This ensures the generation of adversarial samples with reduced
perturbation. The final reward function can be expressed as:

Rt+1 = α(C(St) − C(St+1)) −

200∑

i=1

Sti

200∑

i=1

xi

(5)
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– Transition Dynamics: The transition function constitute a mapping
between action taken in a particular state to the resulting state i.e.
δ(St, At) −→ St+1

– Discount Factor(γ): Discount factor γ ∈ [0, 1) is a value that specifies the
importance of the future rewards. A discount factor of 1 means the future
rewards at any state is just as important as immediate rewards. After all,
future rewards are just an estimation, so there is always an element of uncer-
tainty. Hence we always keep γ < 1.

– Q-value(Qπ(St, At)): It is defined as maximum expected achievable reward
if the agent takes an action At in current state St under a policy π. It is
expressed as a combination of immediate reward and discounted future reward
for the next state.

Qπ(St, At) = Rt+1 + γ max
At+1

Q(St+1, At+1) (6)

Training Substitute Detectors. We know that the adversary can only query a
particular malware sample’s label but not the probabilities assigned to each class
to come up with the label. We need a substitute detector C such that C(�x) gives
the probability of a sample �x being malware as per our assumption in Sect. 5.
We engineered the reward function given by Eq. 5 on top of this assumption.
We separate the malware and benign portion of our RLdataset as RLmalware and
RLbenign respectively. We do a 60%–40% split of RLmalware into RLSubstitute and
RLTraining where RLTraining is used to train RL agent for generating adversarial
malware samples. We combine the RLSubstitute and RLbenign samples and name
it Cdataset. We again do a 85%–15% split of Cdataset into Ctrain and Cvalidation

respectively. The training of substitute detector C should be such that the classi-
fication boundary learned by C should mimic the target model’s behavior. For this
purpose, we do not use the ground truth labels from dataset Ctrain and Cvalidation.
Instead, we use the labels obtained from the target model. Since there are 13 tar-
get models, we train different substitute detectors for each of them. The substi-
tute detector is a soft voting classifier using 3 base classifiers, which produce the
highest validation TPR, namely Multilayer Perceptron (MLP), eXtreme Gradient
Boosting (XGB), and Random Forest (RF).

Environment Preparation. We prepare a stochastic environment. The envi-
ronment is responsible for laying the path for the agent. Our environment has many
equally likely initial states. The set of possible initial states is the set of all the mal-
ware feature vectors from any dataset. For training the agent Sinitial ∈ RLmalware

and during evaluation Sinitial ∈ BBtestmalware
. When the environment receives

an action At in the current state St, it updates its current state by performing
St[At] = 1, equivalent to adding one more API call to the current state. Internally,
the environment fetches current and previous states’ probabilities as malware from
a substitute detector and calculates the reward function given by Eq. 5. According
to the target model, the label for the current state decides the termination flag’s
value. The next state, reward, and termination flag are sent to the agent. After the
end of an episode, the environment resets and returns to one of its initial states,
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i.e., a new random real malware is selected to learn. The observation dimension
and the action dimension is equal to the number of API calls used as features. The
termination flag is set if the current state is classified as benign by the target model,
or no API call is left to add. Since we can set all the 200 indices in a feature vector
if there is an adversarial sample for a malware input.

6 Evaluation Results

In this work, we use the BlackBox training and testing dataset for evaluation
using the two metrics TPR (True Positive Rate) and Perturbation Percentage
(Δ). TPR is also called the recall or probability of detection. A good target
model should have a high true positive rate indicating it can detect most mal-
ware. Throughout this section, we denote the true positive rate percent using
TPR. Original TPR refers to the TPR of the target model on real malware.
Adversarial TPR refers to the TPR of the target model in the presence of adver-
sarial examples and real samples. Perturbation Percentage (Δ) is the ratio of
the number of extra API calls in the adversarial dataset to a total number of
API calls in a real dataset as shown in Eq. 7.

Δ =

n∑

i=1

d∑

j=1

oij −
n∑

i=1

d∑

j=1

xij

n∑

i=1

d∑

j=1

xij

× 100% (7)

The lower its value, the better the adversarial dataset. For an input malware
feature matrix �Xn×d and the corresponding adversarial malware feature matrix
�On×d.

We first train our target models on the original BlackBox dataset and calcu-
late original TPR for all the 13 target models. Table 1 shows the original train
and test the TPR score for all the target BlackBox models.

Table 1. Original TPR for BlackBox target model

Model Keras MLP LR GNB DT RF AdaBoost

Train TPR 100 94.73 89.93 87.08 100 100 89.44
Test TPR 93.62 92.39 90.32 87.85 89.66 93.93 90.27
Model Grad Boost XGrad Boost Bagging Linear SVC RBF-SVC Vote -

Train TPR 91.8 97.73 99.04 89.74 92.95 95.81 -

Test TPR 92.12 93.27 91.95 90.18 91.99 93.31 -
where MLP = Multilayer Perceptron, LR = Logistic Regression, GNB = Gaus-
sian Naive Bayes,
RF = Random Forest, AdaBoost = Adaptive Boosted, Grad Boost = Gradient
Boosted,
XGrad Boost = eXtreme Gradient Boosted, Linear SVC = Linear Support Vec-
tor Classifier,
RBF-SVC = Radial Basis Function SVC, DT = Decision Tree, Vote = Hard
Voting
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For evaluating our approach MEGAN and MEGAN-RP, we perform experiments in
two modes – mode-I and mode-II. In the first step, mode-I, we train GAN to gen-
erate adversarial examples and evade the target model trained using the original
BlackBox dataset. In our previous work [12], we have proven adversarial retrain-
ing as a defense mechanism to protect the machine learning classifiers against such
evasion. Hence, in mode-II, we retrain our target model on the combination of the
original dataset and the corresponding adversarial dataset generated by GAN in
mode-I.Also, inmode-II,we evadedetectionagainst adversarial retrainingdefense
mechanism using the same GAN to generate adversarial examples putting a con-
straint on the number of perturbations for MEGAN and MEGAN-RP. To evaluate
our novel approach MERA, we perform experiments only in mode -I. Though we per-
form experiments formode-II,MERA fails to evade the defensemechanism.Hence,
we didn’t present the results and taken as a future directive.

Table 2. Experimental results for Mode-I

Target models Train TPR, Test TPR
MALGAN MEGAN MEGAN-RP MERA-Trained MERA-Random

Keras DNN 0.02, 0.04 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00
MLP 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00
LR 0.00, 0.00 0.00, 0.00 0.00, 0.04 0.00, 0.00 0.00, 0.00
GNB 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00
DT 51.10, 50.22 24.03, 20.64 46.77, 45.64 16.28, 15.58 21.72, 21.04
RF 0.00, 0.00 0.04, 0.04 3.38, 2.60 0.00, 0.00 0.00, 0.00
AdaBoost 0.00, 0.00 0.00, 0.00 0.02, 0.04 0.00, 0.00 0.00, 0.00
GradBoost 0.00, 0.00 0.30, 0.35 0.00, 0.00 0.00, 0.00 0.00, 0.00
XGB 0.02, 0.00 0.04, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00
Bagging 1.06, 1.23 2.32, 2.11 2.55, 2.29 0.00, 0.00 0.00, 0.00
Linear SVC 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00
RBF SVC 0.00, 0.00 0.06, 0.04 0.02, 0.04 0.00, 0.00 0.00, 0.00
Vote 0.00, 0.00 0.06, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00
Target models Train Δ, Test Δ

MALGAN MEGAN MEGAN-RP MERA-Trained MERA-Random

Keras DNN 102.75, 106.38 101.62, 105.14 30.96, 31.75 48.00, 47.84 98.60, 99.81
MLP 76.11, 79.13 85.05, 88.24 41.40, 42.72 42.60, 44.55 84.73, 86.94
LR 101.07, 104.69 87.86, 91.09 25.32, 25.79 35.34, 36.80 78.26, 89.95
GNB 148.26, 153.12 132.15, 136.65 44.40, 45.66 9.27, 9.67 27.69, 28.72
DT 130.59, 134.81 71.95, 74.94 98.46, 101.90 51.28, 45.91 68.64, 62.77
RF 138.61, 143.14 125.58, 129.65 64.87, 67.39 90.14, 87.42 105.86, 103.19
AdaBoost 96.41, 99.88 92.05, 95.36 19.18, 19.80 32.92, 35.29 70.26, 76.67
GradBoost 80.70, 83.78 112.35, 116.34 73.62, 76.12 49.71, 50.68 85.90, 89.52
XGB 110.68, 114.43 116.13, 120.04 96.39, 99.77 75.17, 74.30 100.71, 100.85
Bagging 128.76, 133.00 96.75, 100.18 51.92, 53.62 35.40, 32.40 53.32, 51.25
Linear SVC 90.55, 93.98 90.97, 94.08 29.28, 29.94 37.42, 39.07 61.53, 62.43
RBF SVC 89.33, 92.66 81.38, 84.37 52.71, 54.70 86.61, 87.86 114.61, 117.97
Vote 94.23, 97.79 83.18, 86.22 61.52, 63.51 53.23, 53.11 88.48, 89.77
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Table 2 shows the experimental results for mode-I. From Table 2, we observe
that in the mode-I experiment, when the target model is trained using the original
dataset for Keras, MLP, LR, RF, AdaBoost, Linear SVC, RBF SVC, and hard
voting classifiers, MEGAN-RP outperforms MERA-Trained and MALGAN in
perturbation percentage on BlackBox training and testing set. MEGAN-RP and
MERA-Trained produce comparable results for these eight classifiers. For GNB,
GradBoost, XGB, and Bagging classifiers MERA-Trained outperforms MEGAN-
RP and MALGAN in perturbation percentage on BlackBox training and testing
set. None of the models can reduce TPR to zero in the DT classifier, i.e., DT Black-
Box is harder to fool. However, MERA-Trained and MERA-Random are imple-
mented so that TPR must reduce to zero even with high perturbation because
they can add all possible API calls to make the malware benign if needed. Non-
zero TPR for MERA models implies that some malware remains malware in any
modified state. According to DT, certain API calls indices, which, if set, make the
sample malware regardless of other features’ presence or absence.

Table 3. New adversarial TPR after retraining BlackBox target model

Model Train TPR Test TPR
MALGAN MEGAN MEGAN-RP MALGAN MEGAN MEGAN-RP

Keras 100 99.98 100 100 100 100
MLP 100 100 100 99.96 99.91 100
LR 99.92 99.77 99.97 99.96 99.69 99.97
DT 100 100 100 100 100 100
RF 100 100 100 100 100 100
Adaboost 99.98 99.96 99.94 99.91 99.96 99.87
XGB 100 100 100 100 100 100
Bagging 100 100 100 100 100 100
Linear SVC 99.77 99.87 99.79 99.87 99.78 99.69
GNB 100 100 100 100 100 100
GradBoost 100 100 100 100 100 100
RBF SVC 100 100 100 99.87 100 100
Vote 100 100 100 100 100 100

The target BlackBox applies adversarial training defense against trained
GAN. So we retrain target classifiers with the help of combining the original
BlackBox dataset and adversarial examples dataset generated during the mode-
I experiment. Table 3 shows the adversarial TPR for the retrained target models.
We experiment with mode-II by retraining the GAN to bypass the Adversarial
defense strategy of BlackBox.

Table 4 shows the experimental results for the mode-II phase. From Table 4,
we observe that in Keras, MLP, LR, GNB, AdaBoost, Bagging, Linear SVC,



Adversaries Strike Hard 35

RBF SVC, and hard voting classifiers, all three GANs can defeat adversarial
training defense with MEGAN outperforming the other two. For the DT classi-
fier, none of the three GANs can defeat adversarial training defense with much
success. In the RF classifier, MEGAN trades off TPR with perturbation and
beats adversarial training defense to a great extent. For GradBoost classifier
MalGAN and MEGAN defeat adversarial training defense, whereas MEGAN-
RP reduces the TPR to approximately 50% in adversarial defense mode. In XGB
classifier MALGAN and MEGAN defeat adversarial training defense.

Table 4. Experimental results for Mode-II

Target models Train TPR, Test TPR Train Δ, Test Δ

MALGAN MEGAN MEGAN-RP MALGAN MEGAN MEGAN-RP

Keras DNN 1.06, 1.54 3.25, 2.82 0.00, 0.00 74.56, 76.77 50.62, 52.52 69.53, 71.55
MLP 0.00, 0.00 0.00, 0.00 0.00, 0.00 119.57, 123.47 73.95, 76.30 91.77, 94.74
LR 0.85, 0.66 0.21, 0.09 0.02, 0.00 90.17, 93.32 40.75, 42.02 55.76, 57.58
GNB 19.36, 17.08 18.68, 16.77 5.35, 5.37 54.56, 56.65 87.35, 90.45 1.54, 1.58
DT 95.11, 95.47 50.51, 48.64 71.84, 70.33 72.42, 75.05 99.44, 102.69 71.92, 74.34
RF 0.00, 0.00 15.02, 14.61 57.41, 54.45 119.37, 123.63 105.08, 108.96 76.94, 79.47
AdaBoost 0.00, 0.04 0.04, 0.00 0.04, 0.00 95.71, 98.77 94.09, 97.26 22.23, 22.79
GradBoost 0.02, 0.00 8.63, 7.00 50.47, 49.52 110.64, 114.44 51.42, 53.48 22.85, 23.53
XGB 0.70, 0.84 16.06, 13.60 84.11, 80.55 126.82, 131.02 75.67, 78.07 9.52, 9.75
Bagging 3.00, 3.30 25.58, 23.72 2.17, 2.64 80.68, 83.54 88.73, 91.89 49.76, 51.41
Linear SVC 0.00, 0.00 0.04, 0.00 0.00, 0.00 98.65, 101.99 93.43, 96.71 53.15, 54.16
RBF SVC 0.24, 0.31 0.04, 0.04 0.04, 0.04 90.82, 93.85 56.11, 57.88 27.99, 28.41
Vote 0.02, 0.00 0.02, 0.00 1.55, 1.54 102.93, 106.14 75.72, 78.12 20.10, 20.32

The overall observations from the evaluation of mode-I and mode-II exper-
iments are that all strategies reduce the TPR of the target model to almost
zero except for the Decision Tree. MEGAN outperforms MALGAN in 8 out of
13 and produces comparable results in 3 out of 13 target BlackBox classifiers.
MERA-Random never beats MERA-Trained on any metric, which implies that
the RL agent is successfully exploiting the collected experiences. MEGAN-RP
outperforms all other strategies for 6 out of 13 target BlackBox classifiers, so
MEGAN-RP is the best among GAN-based strategy. MERA-Trained beats all
other strategies for 6 and comparable to MEGAN-RP in 1 (MLP) out of the 13
target BlackBox model, so MERA-Trained is the best strategy. All the strategies
applied in mode-II experiments successfully defeat adversarial training defense
by BlackBox for 9 out of 13 target BlackBox classifiers, so we infer that adver-
sarial training defense is not foolproof.

7 Conclusion and Future Work

This work investigates five (MALGAN, MEGAN, MEGAN-RP, MERA-Trained,
and MERA-Random) different attack strategies against 13 BlackBox classifiers.
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All methods successfully generate adversarial malware, and we propose changes
in MALGAN to include the idea of minimal perturbation works. Our MEGAN-
RP approach with proposed changes works best among all GAN models. Also,
we suggest a novel deep Q-Learning based approach MERA performs as good
as existing state-of-the-art MEGAN-RP. Our work starts with malware analysis
and ends at adversarial malware feature generation. Our future work includes
converting these features back to malware using the idea of IAT hooking. Using
a partially overlapping set of features between BlackBox and GAN/RL training,
Reinforcement Learning-based approach to fool API sequence-based BlackBox
classifiers. This work demonstrates that a large class of machine learning mal-
ware classifiers based on API call sequences are not effective against adversarial
attacks.
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Abstract. We show how multiple data-owning parties can collabora-
tively train several machine learning algorithms without jeopardizing
the privacy of their sensitive data. In particular, we assume that every
party knows specific features of an overlapping set of people. Using a
secure implementation of an advanced hidden set intersection protocol
and a privacy-preserving Gradient Descent algorithm, we are able to
train a Ridge, LASSO or SVM model over the intersection of people in
their data sets. Both the hidden set intersection protocol and privacy-
preserving LASSO implementation are unprecedented in literature.

Keywords: Secure multi-party computation · Secure set intersection ·
Gradient descent · Privacy-preserving LASSO regression

1 Introduction

Over the last two decades, the data mining community has seen a rapid growth
in the use of privacy-preserving approaches to a wide range of machine learn-
ing problems including association rule mining [19,40], clustering [18,22,37],
classification [10,38,39,42] and regression [20,29] problems. In this article, we
concentrate on the training phase of classification and regression models and
investigate the setting where sensitive data is partitioned over multiple parties.

In particular, we implemented the Gradient Descent approach with a secure
multi-party computation (MPC) platform, yielding a secure and flexible solu-
tion, suitable for various machine learning algorithms. Federated machine learn-
ing has proven successful for certain machine learning methods in case of
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horizontally-partitioned data1, but a secure method like MPC is especially
needed in case the data is vertically partitioned.

Although most known privacy-preserving solutions assume horizontally- par-
titioned data, in several domains it is very common for the data to be vertically
partitioned. For example in the health domain, where many different organisa-
tions collect data on patients during their patient life cycle. Think of hospitals,
pharmacies, general practitioners, health care providers, and many different med-
ical specialists. Analysing these vertically-distributed medical data is important
for improving health care, estimating the effect of medication, etc.

We propose a two-step approach. In the first step, which we call hidden set
intersection, a secret-shared table is constructed that contains the attributes
of all samples that occur in the data set of every party. In the second step,
the Gradient Descent algorithm is performed on the secret-shared table, using
MPC. In this way, parties are able to securely link partitioned data for training
a machine learning model, without ever leaking sensitive attribute information,
e.g. identities of people or bank account numbers.

After an overview of related work, we describe the two steps in more detail, and
illustrate the broad usage of the Gradient Descent algorithm. Then, we explain
the chosen MPC platform, the way we securely implemented the Gradient Descent
algorithm and the way we used this algorithm to implement several regression and
classification algorithms. Finally, we share some performance results.

1.1 Related Work

Various work has been done on secure set intersection, starting with [12], and
more recently [26]. Although these works find the intersection of two sets of iden-
tifiers, and the circuit-based private set intersection [27] even enables secure com-
putations on the intersection, the presented protocols do not involve obtaining
attribute information from overlapping items. Labeled private set intersection [5]
does incorporate attribute information, but only from one party, and more impor-
tantly the set intersection needs to be revealed. We contribute to existing literature
by presenting a secure inner join protocol; in particular, the protocol takes multi-
ple identifier-attributes arrays as input and returns an array with, for every iden-
tifier in the overlap, a row that contains the corresponding attributes from both
input arrays. However, we would like to mention a recent development known as
“private-ID and streaming private secret shared set intersection” [4], giving a sim-
ilar solution for two parties, which could possibly be extended to multiple parties,
like our solution.

After securely computing the set intersection, including all attributes, the
next challenge is to train a classification or regression model on this hidden data.
Gradient descent approaches are widely applicable to optimization problems. In

1 Data is said to be horizontally partitioned, if every partition contains all features
(columns) of a non-overlapping selection of samples (rows). Alternatively, every par-
tition of a vertically-partitioned data set contains a non-overlapping selection of
features for all samples.
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this work, we specifically target their application to Ridge and LASSO regression
problems and to the support-vector machine (SVM) classifier problem. Ridge and
LASSO regression both generalize the ordinary least squares linear regression
problem, where the best solution to a (noisy) linear system of equations is found.
Both methods introduce a specific regularization function to this objective in
order to make certain solutions more favourable (e.g. give zero weight to some
attributes). An SVM looks for the hyperplane that best separates the records in
the data with respect to their (binary) labels. The formal definitions are provided
later in this paper.

Both in the classical and privacy-preserving setting, Ridge regression is typ-
ically solved in either of two ways: by solving the normal equations or by min-
imizing the objective function in a more general fashion, e.g. by application
of Gradient Descent algorithm. The privacy-preserving implementations [2,3,6–
8,15,17,24] all train a Ridge regression model by solving the normal equations,
which boils down to matrix inversion. The matrix inversion can be implemented
more efficiently by first performing a Cholesky [6,24], LDLT [6] or LU decom-
position [3]. Privacy is often preserved by using homomorphic encryption (HE)
techniques [7,8,15], optionally enhanced with packing [1,17], yet there are also
implementations with secret-sharing [2,3] and garbled circuits (GC) [24].

The works of [6,13,14,17,23] all present privacy-preserving Gradient Descent
solutions for training Ridge regression models. In [13], the authors extent the pio-
neering two-phase approach of [24] to vertically-partitioned data and improve the
running time of the second phase by using a conjugate Gradient Descent algo-
rithm instead of a Cholesky decomposition. Sequentially, [14] improve over [13] by
designing an ad-hoc second phase that computes the ridge regression model over
encrypted coefficients, thereby reducing the communication complexity. Finally,
the authors of [6] train a linear regressionmodel via a variation of the standardGra-
dient Descent method, namely conjugate Gradient Descent. Privacy is preserved
via HE [6,14,17] and GC [13].

Considering the body of research on Ridge regression with secure multi-party
computation techniques, surprisingly little attention has been given to privacy-
preserving implementations of LASSO. To the best of the authors’ knowledge, no
researchers have looked into MPC-implementations of LASSO. In this respect, our
work presents the first MPC-implementation for training the LASSO regression
model.

Support-vector machines (SVM) received an increasing amount of attention
[21,28,33,34,41,43,44]. Several works [21,33,41,43,44] focus on secure compu-
tation of the Gram matrix. This approach often allows application of the ker-
nel trick, so that not only the linear SVM but also non-linear SVM can be
trained [21,33]. Instead, [34] describe a privacy-preserving proximal support vec-
tor machine. Proximal SVM solves an approximation of the SVM dual problem,
resulting in a much faster algorithm.

1.2 Outline

This paper is structured as follows. In Sect. 2, we present our hidden set inter-
section protocol. In Sect. 3 we present a secure protocol for the gradient descent
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algorithm, allowing to securely train several classification and regression mod-
els. The experimental results are described in Sect. 4. Finally, we address the
implications of our work and possibilities for follow-up in Sect. 5.

2 Hidden Set Intersection

In case of vertically-partitioned data, we first need to construct a secret table
of the intersection with the proper attributes. We assume that the parties are
not willing to share the identifiers in their databases, making it much harder
to securely construct a hidden, shared table that contains all information of the
intersection of their identifiers. See Fig. 1 for an illustration of the envisioned
hidden table. After the secret table has been constructed, any machine learning
method can be executed on this table securely.

Fig. 1. Illustration of hidden set intersection. Two parties that both have a database
(top left and right table), wish to securely construct a hidden table that contains all
attributes of the identifiers that occur in both their databases (bottom table).

There are several variations for generating a hidden table. We present one
such variation that is most suitable for the MPC platform and setting that we
consider. For simplicity assume that we have only two parties, each having only
one attribute. At first sight, the second party will obtain an encrypted table
of size |B|, with zeros at the overlapping identifiers. As the machine learning
algorithm should touch all table elements, one would like to minimise the table
size. Therefore, we first need to securely eliminate the rows that belong to non-
overlapping items, such that the number of rows of the table will equal the
cardinality of the intersection (and not the size of one of the original databases).

We use an additively homomorphic encryption system [.], where the first party
holds the decryption key. Let A be the set of identities known to the first party,
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an let αi denote the attributes of identity i ∈ A that are known to the first party.
Similarly, let B be the set of identities known to the second party and let βj denote
the attributes of identity j ∈ B that are known to the second party.

To deal with A’s attribute α, we introduce a second polynomial q, such that
q(i) = αi, i ∈ A, just as in labeled PSI [5]. In this way, the second party can
construct the encrypted table (p(j), q(j), βj), j ∈ B. The rows with p(j) = 0
form the encrypted table that we are looking for. The protocol below describes
a secure way of eliminating the rows with p(j) �= 0, such that the second party
obtains an encrypted table of size |A ∩ B|.

1. The [p(j)], which are the (additively homomorphic) encrypted p-evaluations,
are multiplicatively blinded by the second party (to avoid learning elements
outside the intersection), and the [q(j)] are additively blinded with large
random numbers rj to [q(j)+rj ]. The |B| encrypted blinded pairs are returned
to the first party, in random order.

2. The first party decrypts the p-evaluations, and learns |A ∩ B| = |{j ∈ B |
p(j) = 0}|, but not the elements because of the random permutation.

3. The first party returns the re-randomised (because the second party might rec-
ognize them) encryptions of [q(k) + rk], k ∈ A ∩ B, and an encrypted binary
matrix Δ of size |A∩B|× |B| that denotes the intersecting positions (Δkj = 1,
if and only if, the k-th overlapping identifier equals second party’s identifier j).

4. Using the encrypted matrix (and its own random permutation), the second
party can compute [rk] =

∏|B|
j=1[Δkj ]rj and [βk] =

∏|B|
j=1[Δkj ]βj , for k ∈ A∩B.

The second party uses the encrypted blinding number [rk] to unblind the
previous obtained [q(k) + rk], and obtain the encrypted [αk].

We use standard techniques to achieve security in the semi-honest model: the
second party only receives encrypted values, and all values towards the first party
are either additively, or multiplicatively, blinded by sufficiently large random
numbers.

Although the protocol is presented in a two-party setting, it could be
extended to multiple parties, by using threshold decryption. E.g., with three
parties, the third party could construct an encrypted table, given two oblivious
polynomial evaluations [p1(j)] and [p2(j)], and combining it to [p1(j) + p2(j)],
which is an encrypted zero, only when the identifier is in all three data sets
(with very large probability), and constructing two indicator matrices Δ1 and
Δ2 next.

Given the encrypted table, held by one party, one can construct an additively
secret-shared version, using fresh random numbers and the additively homomor-
phic encryption scheme (with threshold decryption). By resharing these additive
shares as Shamir secret-sharings, one then obtains a Shamir secret-shared table.
In the next section we show how a gradient descent algorithm can be trained on
the Shamir secret-shared table using the MPyC framework (see Sect. 3.4).
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3 Secure Gradient Descent

In this section, we introduce regression and classification problems and explain
how the Gradient Descent algorithm can solve these problems.

3.1 Regression

A basic linear regression problem boils down to the following question: for a
known matrix X ∈ R

n×m, where n is the number of samples and m is the
number of features, and vector y ∈ R

n×1 (output data), can we find a weight
vector w such that the equality Xw = y is satisfied? In general the system is
over-determined and there exists no solution. Instead, one aims to find w such
that some function of the approximation error vector Xw−y (and possibly some
other arguments) is minimized.

Traditionally, researches focused on minimizing the �2-norm ‖Xw − y‖22;
this is known as (ordinary) least squares linear regression (OLS). Alternatively
to OLS, we implemented Ridge and LASSO, that favor solutions with zero-
valued entries because of a regularization term. Both methods have different
regularization terms in the minimization objective

F (w) =
1
n

‖Xw − y‖22 + f(w). (1)

– If f(w) = λ‖w‖22 =
∑n

i=1 w2
i , λ > 0, then this is known as Ridge regres-

sion [16]. This model is well-suited for mathematical analysis by the (almost
everywhere) differentiability of the �2-norm.

– If f(w) = λ‖w‖1 =
∑n

i=1 |wi|, λ > 0, then this is known as the “least absolute
shrinkage and selection operator” (LASSO regression) [36]. LASSO aims to
perform better variable selection then Ridge regression, yet it is harder to
analyze.

The parameter λ is used to balance the approximation error versus the penalty
incurred by the regularization function. Note that both methods reduce to OLS
if λ is set to zero.

3.2 Classification

Support-vector machine (SVM) is a linear classification method [35]. The prob-
lem is similar as for regression, only now our output data is divided into two
categories, i.e. y ∈ {−1, 1}. To classify, one wants to find a weight vector w
such that the hyper-plane w · x = 0 divides the samples into the two categories.
The hard margin method aims to minimize the weight vector such that every
sample xi above the line w · x = 1 is classified as 1, and every sample under
the line w · x = −1 is classified as −1. In other words, it minimizes ||w||2 with
the constraint that yi(w · xi) ≥ 1 for i = 1, . . . , n. Unfortunately, no feasible
solution to this problem exists if the two categories are not linearly separa-
ble. As such, the soft margin method tries to minimize the hinge loss function
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h(x, y,w) = max(0, 1 − y(w · x)) for every sample. Now, if a sample xi lies on
the correct side of the margin, the hinge loss for that sample equals zero and no
penalty is incurred. If the sample lies on the wrong side of the margin, the hinge
loss is proportional to the distance from the margin. We want to minimize

F (w) =
1
n

n∑

i=1

h(xi, yi,w) + λ||w||22, (2)

where λ is the hyper-parameter that controls the trade-off between a large margin
and a small hinge loss.

3.3 Gradient Descent Approach

Gradient Descent (GD) is a general optimization algorithm that finds a local
minimum of an objective function. The algorithm computes updates of the gra-
dient function determined by a specific model. As such, GD is a secure building
block for many different models, the models discussed here, but also Logistic
Regression for example. GD comes in different forms. We have implemented GD
such that it can be used for Batch, Mini-Batch and Stochastic GD. For these
algorithms, the difference lies in the number of samples used in each update, the
so-called batch size B. Let n be the total number of samples, then the number of
iterations (nr iters) equals B

n , where B = 1 for Stochastic, B = b for mini-batch
and B = n for batch. Let θ be the learning rate, initialize θ0 = 1/max(XT X)
and let l(θ) be the update function for the learning rate. The algorithm for GD
that we used in our implementation is described in Algorithm 1. In addition to
the normal GD, we have also implemented the SAG [30] algorithm that incor-
porates the average of past gradients in the update. For our regression methods
we have the following gradient functions (calc gradient):

Algorithm 1. Gradient Descent Algorithm
1: procedure GD(X, y, B, nr epoch, model, *params)
2: for epoch in 1:nr epoch do
3: X ′, y′ = permute data(X, y)
4: θ = l(θ0)
5: for iter in 1 : nr iters do
6: X ′

s = X ′[nr iters ∗ B : (nr iters + 1) ∗ B, ] � Subset X ′ and y′

7: y′
s = y′[nr iters ∗ B : (nr iters + 1) ∗ B]

8: g = calc gradient(X ′
s, y

′
s, w, n, model,*params)

9: w = w − θg
return w

– For Ridge Regression, we find as a gradient for (1)

∇(F (w)) =
2
n

XT (Xw − y) +
2λ

n
w.
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– Because of the �1-norm in (1), the objective function for LASSO is non-
differentiable. We therefore apply a proximal gradient method known as
Iterative Soft Thresholding Algorithm (ISTA) [9]; meaning that we compute
g(w) := 2

nXT (Xw−y) then apply the following update to wt: wt+1 := Sλ(g),
where the i-th component (Sλ(g))i of Sλ(g) is given by

Sλ(gi) :=

⎧
⎪⎨

⎪⎩

gi − λ, if gi > λ,

0, if |gi| ≤ λ, and
gi + λ, if gi < −λ.

(3)

The function S(·) is the soft-threshold function.
– For SVM, one may see that the hinge loss in (2) is not differentiable. We

therefore compute the subgradient

∇F (w) = − 1
n

n∑

i=1

[h(xi, yi,w) = 0] · yi · xi + 2λw, (4)

that incurs an additional penalty for samples that have non-zero hinge loss.

3.4 MPyC

For the implementation of our algorithms, the MPyC framework [31] is used
within a semi-honest security model. This framework is based on threshold
Shamir secret sharing [32] and built in Python. For an m-party computation,
the framework tolerates a dishonest minority of up to t passively corrupt parties,
m ≥ 1 and 0 ≤ t ≤ (m − 1)/2. Note that this provides security only if m ≥ 3.

MPyC provides secure (secret-shared) number types that can be used for
computation. Some mathematical operations such as addition and multiplica-
tion can be done with basic Python operators through operator overloading.
Moreover, the framework provides functions to efficiently compute other (more
complex) operations, such as calculating the in-product and secure comparisons.
Matrix and vector operations are used to effectively implement the Gradient
Descent algorithms.

Although most operations of the Gradient Descent algorithm are additions
and multiplications, it is worthwhile to consider secure implementation of the
soft-thresholding function Sλ from Eq. (3). The value of Sλ(gi) is computed
from one of three functions, depending on the value of gi. Disclosing gi would
reveal the gradient and therefore reveal some information about the input data,
which is clearly undesirable. Therefore, we compute Sλ(gi) as in Algorithm 2,
leveraging the MPyC implementation of a secure comparison to securely cover all
cases without explicitly indicating which branch was taken. A similar approach
allows one to securely compute the SVM hinge loss in Eq. (4).

4 Performance

In this section, we give a brief account on the accuracy and speed of our privacy-
preserving Gradient Descent implementation for training a Ridge and LASSO



46 T. Veugen et al.

Algorithm 2. Secure soft thresholding
1: procedure SoftThresholding(λ, g)
2: for i in 0 : len(g) do
3: ge g = mpyc.ge(g[i], 0) � secret-shared bit indicating (g[i] >= 0)
4: sign g = 2 ∗ ge g − 1 � sign of g[i], assumes value 1 if g[i] == 0
5: abs g = sign g ∗ g[i]
6: gtrLambda = mpyc.ge(abs g, λ) � secret-shared bit indicating (|g[i]| >= λ)
7: S[i] = gtrLambda ∗ (g[i] − sgn g ∗ λ)

return S

regression model, and a SVM classification model. Here, we define the accuracy
of a model as the ratio of the objective values of (1) the privacy-preserving
implementation using fixed-point arithmetic, and (2) the equivalent plain-text
implementation of the model, using floating-point arithmetic.

4.1 Run-Time

For every test, three parties are simulated by running the script in three inde-
pendent processes on a single Linux server. As such, the communication costs
are negligible and the speed test mainly captures the computational effort for
each party.

The data set for every test was loaded, or generated by the Python package
scikit-learn [25]. Every model was iteratively trained with our privacy-preserving
Gradient Descent implementation until the �2-norm of the difference between the
old and the new weight vector became less than 0.01.

For a numerical evaluation of the computational effort, we used scikit-learn’s
make regression module to generate artificial data sets that are specifically
designed for training and testing regression models. By generating data sets of
various sizes and subsequently training a Ridge model on this data, we were able
to assess the impact of the number of samples, and the number of features, see
Fig. 2. Our tests show that the time needed to train the model scales linearly in
the number of samples and sub-linearly in the number of features. This conclu-
sion also holds for LASSO regression and SVM classification. We omitted the
plain-text running times, which were only a few seconds.

The hidden set intersection protocol scales linearly in the number of parties,
and in the number of features (attributes). However, as the hidden set intersec-
tion protocol takes O(|A| · |B|) exponentiations of homomorphically encrypted
values, it doesn’t scale linearly, but quadratically in the number of samples.
Preliminary results show that the execution time of hidden set intersection
is still low, compared to secure LASSO regression for databases up to 10, 000
records [11].

4.2 Accuracy

Ridge Regression. The accuracy of the trained Ridge regression model was
tested with the scikit-learn diabetes data set. This data set contains 442 samples
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(a) Computational effort for fixed number of features (bottom=1, top=20) as func-
tion of the number of samples.

(b) Computational effort for fixed number of samples (bottom=100, top=2000) as
function of the number of features.

Fig. 2. Computational effort (in seconds) for training a Ridge regression model on
artificial data sets of various sizes. The computational effort increases linearly in the
number of samples and sub-linearly in the number of features.
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with 10 features each. The features assume real values in the interval (−0.2, 0.2),
whereas the targets y assume integer values in the interval [25, 346]. Of this set,
a random selection of 398 samples was used to train the models and the other
samples were used for testing. With λ = 10−2, our privacy-preserving trained
model scored an objective value of 4777.064 on the test data, equal to the plain-
text trained model that also scored 4777.064. Additionally, the R2 scores for
the training set, R2

plain = 0.2879 and R2
MPC = 0.2879 were equal. Hence, the

accuracy of the two implementations is very similar.

LASSO Regression. LASSO regression was tested with the same data set as
Ridge, the scikit-learn diabetes data set. Outcomes were found to equal the
plain-text variant. Important to note is that the weight vector was also similar,
with the same coefficients set to zero. The R2 scores are similar for both training
and test set. In addition to the diabetes data set, we have also tested a data
set with Gaussian Noise, created with a generator function from scikit-learn for
regression. Again outcomes are equal in plain-text.

SVM Classification. The accuracy of the trained SVM model was tested with
the scikit-learn breast cancer data set. This data set contains 569 samples with
30 features each, divided into two categories (212 vs. 357 samples). We scaled
the data set such that the features are in the interval (−3.1, 12.1) and the targets
are in the set {−1, 1}. Of this data set, a random selection of 512 samples was
used to train the models, and the other samples were used for testing. With
λ = 10−3, using batch GD, our privacy-preserving trained model scored an
objective value of 14554.2 on the test data, whereas the plain-text trained model
scored 14502.0. The ratio of 1.0035 shows that the two implementations are very
similar in accuracy. Furthermore, 96.4% of the test data was predicted correctly
by the trained model.

5 Conclusions and Future Work

We presented a two-phase solution that allows multiple collaborating parties to
train various regression and classification models without disclosing their data.
In the first phase, using a novel MPC implementation, the parties construct a
hidden table that contains data of all people that occur in the intersection of all
their databases. In the second phase, the hidden table facilitates the training of
several regression and classification models. Particularly, we presented the first
privacy-preserving training of a LASSO regression model. All these implementa-
tions are build on a modular, privacy-preserving implementation of the Gradient
Descent algorithm, which allows for easy extension to many more optimization
problems, including but not limited to: non-linear SVM, Logistic Regression and
Neural Networks.
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Abstract. Principal component analysis (PCA) is one of the most popu-
lar linear dimensionality reduction techniques in machine learning. In this
paper, we try to present a method for performing PCA on encrypted data
using a homomorphic encryption scheme. In a client-server model where
the server performs computations on the encrypted data, it (server) does
not require to perform any matrix operations like multiplication, inver-
sion, etc. on the encrypted data. This reduces the number of computa-
tions significantly since matrix operations on encrypted data are very com-
putationally expensive. For our purpose, we used the CKKS homomor-
phic encryption scheme since it is most suitable for machine learning tasks
allowing approximate computations on real numbers. We also present the
experimental results of our proposed Homomorphic PCA (HPCA) algo-
rithm on a few datasets. We measure the R2 score on the reconstructed
data and use it as an evaluation metric for our HPCA algorithm.

Keywords: Homomorphic encryption · Principal Component Analysis
(PCA) · CKKS scheme · Goldschmidt’s Algorithm

1 Introduction

With the rise of outsourcing of computational tasks through cloud computing
and services, quintillion bytes of data are produced every day. Data analytics
performed on these data provide several insights to the clients at the same to
the cloud servers. This has raised several privacy issues and concerns among
individuals, organizations, and government officials. With ever-increasing privacy
issues, performing machine learning tasks on encrypted data has become the
need of the hour. Several privacy-preserving machine learning tasks have been
accomplished using fully homomorphic encryption (FHE) schemes and secure
multiparty computations (MPC) based schemes, demonstrating their potential.
Due to the interactive nature of MPC-based schemes, people started looking for
FHE-based schemes as an alternative.

Gentry in [12,13] provided the construction of a leveled-HE scheme. Then the
construction was converted to a FHE scheme using bootstrapping that allowed
an arbitrary number of computations on the ciphertext. However, the scheme
was not efficient to be used in practice. Various improvements have been made
since then, and FHE schemes have become efficient and practical. One such
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scheme that was introduced recently is the CKKS [7] homomorphic encryption
scheme. CKKS scheme supports approximate arithmetic over encrypted data. It
supports computations on real and complex values, which makes it most suitable
for machine learning tasks. Application of CKKS scheme in various machine
learning techniques have been already demonstrated in [2,3,8,10,14–16].

This paper focuses on using the CKKS homomorphic encryption scheme to
perform principal component analysis (PCA) - a popular linear dimensional-
ity reduction technique. Dimensionality reduction techniques transform higher
dimensional data into a representation with a few intrinsic dimensions while
retaining the original data’s properties. When used as input to a machine learn-
ing model, such a low dimensional representation reduces the model’s complexity
and makes it simpler. For this reason, dimensionality reduction has numerous
applications in fields such as data visualization, data compression, noise removal,
pre-processing technique. Few attempts have been made in the past to perform
PCA on encrypted data. Lu et al. in [19] and Rathee et al. in [22] performed PCA
using the BGV scheme. However, both of them performed PCA on categorical
datasets with relatively fewer attributes (≤20). Also, they provided experimen-
tation results for the first principal component only. In [19] and [22] computing
subsequent principal components requires communication between the client and
the server because the client computes the eigenvalue. This makes their algorithm
interactive.

Contributions

In this paper, we propose a technique to perform PCA using the CKKS homo-
morphic encryption scheme. Unlike in [19,22] where they converted the real
dataset to an integer dataset through appropriate scaling, we take advantage of
using the CKKS scheme that can handle real numbers. We also propose a sub-
ciphertext packing technique in which every vector is packed as a sub-ciphertext
within a ciphertext. The length of the sub-ciphertext is almost equal to the size
of the vector. The primary advantage of using such a packing technique is that
most of the operations become polynomial in the sub-ciphertext length rather
than polynomial in ciphertext’s length. Since the sub-ciphertext length is almost
the same as that of the original vector, computations become polynomial in the
initial vector’s length.

We compute the norm of vectors homomorphically, which makes our algo-
rithm non-interactive for computing subsequent principal components. Our pro-
posed Homomorphic PCA (HPCA) algorithm does not require performing any
matrix operations like matrix-vector multiplication and matrix-matrix multipli-
cation on encrypted data, significantly reducing computations.

We provide an implementation of our HPCA algorithm in SEAL-Python [24]
(A python binding for SEAL [23] library). Other than just categorical datasets
with a few dimensions, we provide experimentation results on higher-dimensional
datasets. Also, we perform computations to find more than just one principal
component as opposed to in [19,22] which only considered the computation of
the first principal component. We also measure the R2 score of the reconstructed



54 S. Panda

data as an evaluation metric for our HPCA algorithm. We do not use bootstrap-
ping in our HPCA algorithm implementation because it is not provided as an
API in the SEAL library. Instead, we re-encrypt some of the encrypted param-
eters to eliminate noise in them. The re-encryption procedure could be ideally
replaced by bootstrapping without making any changes in other parts. However,
the algorithm’s runtime may increase since bootstrapping in the CKKS scheme
is a costlier operation than re-encryption.

2 Preliminaries

2.1 CKKS Homomorphic Encryption Scheme

The CKKS (Cheon-Kim-Kim-Song) scheme [7] is a leveled homomorphic encryp-
tion scheme that relies on the hardness of RLWE (Ring Learning With Errors)
problem for its security. Unlike other HE schemes, CKKS supports approximate
arithmetic on real and complex numbers with predefined precision. The main
idea behind the CKKS scheme is that it treats noise generated upon decryption
as an error in computation for real numbers. This makes it an ideal candidate for
performing machine learning tasks where most of the computations are approx-
imate. With the use of bootstrapping technique as mentioned in [6] and [5], the
CKKS scheme becomes a FHE (fully homomorphic encryption) scheme.

Let N = φ(M) be the degree of the M -th cyclotomic polynomial ΦM (X). If
N is chosen as a power of 2 then M = 2N and the M -th cyclotomic polynomial
ΦM (X) = XN + 1. Let R = Z[X]/ΦM (X) = Z[X]/(XN + 1) be the ring of
polynomials defined for the plaintext space. Let Rq = R/qR = Zq[X]/(XN +1)
be the residue ring defined for the ciphertext space. Let H be a subspace of CN

which is isomorphic to C
N/2. Let σ : R → σ(R) ⊆ H be a canonical embedding.

Let π : H → C
N/2 be a map that projects a vector from a subspace of CN to

C
N/2.

The CKKS scheme provides the following operations:

KeyGen(N). Let s(X) ∈ Zq[X]/(XN + 1) be the secret polynomial and
p(X) = (−a(X) · s(X) + e(X), a(X)) be the public polynomial where a(X) ∈
Zq[X]/(XN + 1) is a polynomial chosen uniformly random and e(X) ∈
Zq[X]/(XN + 1) is a small noisy polynomial. Let r(x) = (−a(X) · s(X) + b ·
s(X)2 + e(X), a(X)) be the relinearisation key where b ∈ Zq is a large integer.

Encode(z). To encode a message vector z ∈ C
N/2 to a message polynomial

m(X) ∈ R, we first expand the message vector z from C
N/2 to H by applying

π−1(z). Then we appropriately scale the vector by multiplying a scaling factor
Δ followed by random rounding to �Δ · π−1(z)�. Scaling is done to achieve pre-
defined precision since precision bits may be lost due to rounding. To obtain the
message polynomial we apply the inverse of canonical embedding σ−1 and get
m(X) = σ−1(�Δ · π−1(z)�) ∈ R.



Principal Component Analysis Using CKKS Homomorphic Scheme 55

Decode(m(X)). To decode a message polynomial m(X) ∈ R to a mes-
sage vector z ∈ C

N/2, we first apply the canonical embedding σ to get
z = �Δ · π−1(z)� ∈ H. Then we divide it by the scaling factor Δ to obtain
Δ−1�Δ · π−1(z)� ≈ π−1(z). To obtain the message vector, we project the vector
using π and get π(π−1(z)) = z ∈ C

N/2.

Encrypt(m(X), p(X)). To obtain the ciphertext polynomial c(X) correspond-
ing to the message polynomial m(X) ∈ R, we apply the RLWE encryption
and get c(X) = (c0(X), c1(X)) = (m(X), 0) + p(X) = (m(X) − a(X) · s(X) +
e(X), a(X)) ∈ (Zq[X]/(XN + 1))2.

Decrypt(c(X), s(X)). To obtain the message polynomial corresponding to the
ciphertext polynomial c(X) ∈ (Zq[X]/(XN +1)), we apply the RLWE decryption
using the secret polynomial s(X) and get m(X) ≈ c0(X) + c1(X) · s = m(X) +
e(X)

Apart from the above operations, it also provides specialised ciphertext oper-
ations which include:

Multiply(c(X), c′(X)). Multiplication of two ciphertexts c(X) and c′(X) gen-
erates a ciphertext cm(X) = (c0c′

0, c
′
0c1 + c0c

′
1, c

′
0c

′
1) = (c0(X), c1(X), c2(X)).

Then ciphertext is relinearised and modulus is switched subsequently.

Relinearise(cm (X), r(X)). Relinearisation reduces the size of the cipher-
text after multiplication of two ciphertexts. Let cm(X) = (c0(X), c1(X), c2(X))
be the resultant ciphertext after multiplication of two ciphertexts. After
relinearisation, we obtain the ciphertext cr(X) = (c0(X), c1(X)) +
�b−1 · c2(X) · r(X)�mod(q)

Modulus Switching (c(X)). Modulus switching is rescaling of the ciphertext
after multiplication in the RNS system. In addition to rescaling (dividing by
scale and rounding), we the take ciphertext modulus of the next prime in the
chain (lower level). The ciphertext obtained after modulus switching cs(X) =
�Δ−1 · c(X)�mod(ql−1) = � ql−1

ql
· c(X)�mod(ql−1).

Some other operations that are also supported by CKKS scheme are:

– add(c(X), c′(X)) - to add 2 ciphertext polynomials.
– rotate left(c(X), i) - to rotate the ciphertext polynomial by i positions left.
– rotate right(c(X), i) - to rotate the ciphertext polynomial by i positions right.

2.2 Principal Component Analysis (PCA)

Principal component analysis (PCA) is an unsupervised dimensionality linear
reduction technique. The PCA method searches for dimensions along which vari-
ance is maximized and from which one can reconstruct the original data with
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minimal reconstruction error. Let u be the dimension that maximizes the vari-
ance of a vector x after projection in that direction. So, PCA could be formulated
as maximization of variance problem:

max
u

1
n

n∑

i=1

(uT xi − uT μ)2

max
u

1
n

uT Σu

subject to ‖u‖ = 1

(1)

where Σ =
n∑

i=1

(xi − μ)(xi − μ)T is the covariance matrix and μ =
n∑

i=1

ui is the

mean vector.
From the above formulation, it is evident that the solution to the maxi-

mization problem would be the largest eigenvector of the covariance matrix Σ.
To find the largest eigenvector, we use an iterative technique called the Power
method. The power method finds the dominant eigenvector of a given matrix
A by repeatedly multiplying a random vector u. As the number of iterations i
increases, the product Aiu converges to the largest eigenvector.

Algorithm 1. First principal component (Power Method)
Input: X : Data Matrix of row vectors.
Output: λ, w: Largest eigenvalue and corresponding eigenvector of X.

w
$← R

d

for i = 1 to t do
s =

∑

x∈X

xT (x · w)

λ = ‖s‖
w = s

‖s‖
end for
return λ, w

In Algorithm 1, instead of using covariance matrix Σ, we use the sum of the
outer product of xi’s. In this approach, we do not require to store the covariance
matrix Σ and only store a vector. Also, we are not required to perform any
matrix operations, which could be useful for us in the homomorphic setting.

If we desire to find subsequent (2nd, 3rd, · · · lth largest) eigenvectors then we
need to use the Eigen shift procedure. The Eigen shift procedure would remove
the largest eigenvalue and corresponding eigenvector from A.

By combining the Eigen shift procedure with the power method, we would
be able to find out l largest eigenvectors of covariance matrix Σ, which would
be the top l principal components of the given data matrix X.
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Algorithm 2. Eigen Shift Procedure
Input: Σ : Covariance Matrix, λ: Largest eigen value of Σ, w: Eigen vector corre-

sponding to λ.
Output: Σ′: Shifted covariance Matrix

Σ′ ← Σ − λ · wT w
return Σ′

2.3 Goldschmidt’s Algorithm

Goldschmidt’s algorithm [4,20] is an iterative algorithm that finds the value of a
fraction. To find the value of the fraction a0/b0, it multiplies a series of variables
r0, r1, · · · to both numerator (a0) and denominator (b0) such that the value of the
resultant denominator converges to 1 and the value of the resultant numerator
tends to the desired result.

a0

b0
=

a0

b0
· r0
r0

· r1
r2

· · · rα

rα
, b0 · r0 · r1 · · · rα → 1

An initial guess of value the r0 ≈ 1/b0 is required. An good approximation of r0
is considered to be when 3/4 ≤ r0b0 ≤ 3/2. The successive values of the fraction
after each iteration are estimated as:

ai

bi
=

ai−1

bi−1
· ri−1

ri−1
, and ri = 2 − bi ∀i = 1, 2, · · · , α

Algorithm 3. Top l principal component (Power Method)
Input: X : Data Matrix of row vectors.
Output: Λ, W : Largest l-eigenvalues and corresponding eigenvectors of X.

W ← {}
Λ ← {}
for components = 1 to l do

r
$← R

d

for i = 1 to t do
s1 =

∑

x∈X

xT (x · r)

s2 =
∑

w∈W,λ∈Λ

λwT (w · r)

s = s1 − s2
λ = ‖s‖
r = s

‖s‖
end for
W ← W ∪ r
Λ ← Λ ∪ λ

end for
return Λ, W
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Using Goldschmidt’s algorithm, we can find the square root and its inverse
simultaneously. The fused multiply-add version of Goldschmidt’s algorithm [27]
is mentioned in Algorithm 4.

Algorithm 4. Goldschmidt’s Algorithm
Input: val
Output: x: The square root of val, h: The inverse square root of val.

y ≈ 1/
√

val
x ← val · y
h ← y/2
for i = 1 to l do

r ← 0.5 − xh
x ← x + xr
h ← h + hr

end for
return x, 2h

2.4 R2 Score

R2, also known as the coefficient of determination measures the goodness of
fit of a model. It computes the amount of variance captured by the dependent
variables in a model. Let yi be a true output value and y′

i be the corresponding
output predicted by the model. Then the coefficient of determination (R2 score)
is defined as:

R2 = 1 − SSres

SStotal
(2)

where SSres =
∑
i

(yi − y′
i)

2 is the sum of squares of residuals and SStotal =
∑
i

(yi − ȳ)2 is the total variance.

3 Vector Operations

3.1 Norm and Inversion by Norm

Computing the norm of a vector requires a square root operation to be per-
formed. Since we can not perform square root directly on ciphertext, we use
Goldschmidt’s algorithm to find the square root of a number as mentioned in
[4]. The advantage of using Goldschmidt’s algorithm is that along with the square
root, it also finds the inverse of the square root, which is precisely what we need.
But the Goldschmidt’s algorithm requires a good initial approximation of 1√

x

for faster convergence.
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We could use a good initial guess for 1√
x

using the fast inverse square root
algorithm [18,26]. But such approximations are difficult to realize in the homo-
morphic setting because it requires conversion from IEEE representation (single
and double precision floating point) to integer and vice-versa. Instead, we use
a linear approximation of 1√

x
in a given interval and use it as an initial guess

for Newton’s method. Then we perform few iterations of Newton’s method to
improve our guess.

For computing Newton’s method on 1√
x

we have f(x) = x−2 − b. The deriva-
tive would be f ′(x) = −2x−3. In each iteration, the update would be:

xi+1 = xi − f(xi)
f ′(xi)

=⇒ xi+1 =
xi

2
(−bx2

i + 3) (3)

For linear approximation of 1√
x
, we use constrained linear regression which

is formulated as the following minimization problem:

min
w

1
n

n∑

i=1

(yi − wT xi)2

subject to yi − wT xi ≥ 0 ∀ i = {1, 2, · · · n}
(4)

The additional constraints yi −wT xi ≥ 0 ∀i are necessary because 1√
x

would
have a positive and a negative value. The constraint ensures that the initial guess
is a positive value and Newton’s method doesn’t diverge towards the negative
value. The minimization problem in Eq. 4 is solved using SLSQP (Sequential
Least Squares Quadratic Programming) solver.

3.2 Ciphertext Packing

We consider all vectors as row vectors and thus consider only row-wise packing
of vectors in a ciphertext. We partition the number of ciphertext slots equally
among all the vectors such that the number of zeros present in each partition is
the same. Let d be the dimension of each vector and N be the total number of
ciphertext slots. Then the number of partitions in the ciphertext would be N/k
where k is a factor of N larger than d. In this paper, we consider N to be a power
of 2. So finding k would be equivalent to calculating the closet power of 2 greater
than d. This can be done very efficiently using binary search in O(log log(N))
steps.

Suppose u1, u2, · · · uj are the vectors to be packed in a ciphertext where
j = N/k. Let z = k − d be the number of trailing zeros for each vector. Then
the vectors u1, u2, · · · uj would packed in a ciphertext as:

c = [u′
1, u

′
2, · · · , u′

j ] (5)

where u′
i = Ciphertext (ui|| 0, 0, · · · , 0︸ ︷︷ ︸

z times

), ∀ i = {1, 2, · · · , j}.
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Each vector, along with trailing zeros, could be thought of as a sub-ciphertext
of size k. Instead of partitioning the number of ciphertext slots into N/d� parti-
tions, we instead preferred N/k partitions because the former doesn’t guarantee
equipartition of ciphertext slots among all vectors. If there are many vectors,
then the last vector would spill over to the next ciphertext leaving behind trail-
ing zeros at the end of each ciphertext which is not ideal for our operations.
Hence, we distribute the zeros equally among all the vectors packed in a cipher-
text.

If a particular row vector needs to be packed in an entire ciphertext, then the
row vector is appended with z = k − d trailing zeros to form a sub-ciphertext.
This sub-ciphertext would be then be repeated in each partition. For example,
let v be a vector that has to be packed into an entire ciphertext. Then the
sub-ciphertext v′ = Ciphertext (v|| 0, 0, · · · , 0︸ ︷︷ ︸

z times

). Then the ciphertext would be:

c = [v′, v′, · · · , v′]

In [19], each vector was packed into a separate ciphertext, whereas in [22] the
entire dataset was packed into a single ciphertext. Our sub-ciphertext packing
technique is somewhat in between those two packing techniques. Partitioning
the ciphertext into sub-ciphertext helps to achieve an overall reduction in oper-
ations. The operations that were earlier polynomial in the length of ciphertext
(both in [19] and [22]) now would become polynomial in the length of sub-
ciphertext, which is almost equal to the vector’s length. Another advantage of
using sub-ciphertext packing is that it provides much parallelism as operations
are performed independently on each ciphertext.

3.3 Vector Operations on Ciphertext and Sub-ciphertexts

Sum of Elements. Since we consider the size of ciphertext to be a power of 2,
to add all the elements in a ciphertext homomorphically, we need to rotate the
ciphertext by increasing power of 2 and add it to itself.

Algorithm 5. Sum(c)
Input: c : Ciphertext.
Output: c′: Sum of all the elements in ciphertext c.

temp ← Ciphertext()
c′ ← c
for i = 0 to log(N) − 1 do

temp ← rotate left(c′, 2i)
c′ ← c′+ temp

end for
return c′
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Partial Sum of Ciphertext. Partial sum of a ciphertext is the sum of all the
elements within a sub-ciphertext for every sub-ciphertext in any given cipher-
text. Suppose c = [u′

1, u
′
2, · · · , u′

j ] is a ciphertext and u′
i = (ui||0, 0, · · · , 0)

be a sub-ciphertext. Then partial sum of c would result in a ciphertext c′ =

[Su1, Su2, · · · , Suj ] where Sui =

(
k∑

q=1
uiq,

k∑
q=1

uiq, · · · ,
k∑

q=1
uiq

)
.

Algorithm 6. Partial Sum(c)
Input: c : Ciphertext.
Output: c′: Co-ordinate wise sum of all sub-ciphertexts in c.

init ← Ciphertext(1, 1, · · · ||0, 0, · · · ) {1st half is all 1’s and 2nd half is all 0’s}
c′ ← Ciphertext(c)
for i = log (k) − 1 to 0 do

temp ← rotate right(init, 2i)
s1 ← multiply(init, c′)
s2 ← multiply(temp, c′)
s2 ← rotate left(s2, 2i)
c′ ← add(s1, s2)
if i > 0 then

temp ← rotate left(temp, 2i + 2i−1)
init ← multiply(temp, init)

end if
end for
for i = 0 to log (k) do

temp ← rotate right(c′, 2i)
c′ ← add(c′, temp)

end for
return c′

Let c = [(1, 2, 3, 4), (2, 3, 4, 5)] be a ciphertext with j = 2 sub-ciphertexts.
Then the partial sum of ciphertext would be c′ = [(10, 10, 10, 10), (14, 14, 14, 14)].

Lemma 1. Let k be the size of sub-ciphertext. Then the multiplicative depth
required by the Algorithm 6 is log(k).

Sum of Sub-ciphertexts. Addition of all the sub-ciphertexts is the coordinate-
wise sum of all sub-ciphertexts in a ciphertext. Suppose c = [u′

1, u
′
2, · · · , u′

j ]
is a ciphertext with j sub-ciphertexts. Then the sum of all sub-ciphertexts in

ciphertext c would result in a ciphertext c′ = [
j∑

i=1

u′
i1,

k∑
i=1

u′
i2, · · · ,

k∑
i=1

u′
ij ]

Let c = [(1, 2, 3, 4), (2, 3, 4, 5)] be a ciphertext with j = 2 sub-ciphertexts.
Then the sum of sub-ciphertexts would be c′ = [(1 + 2, 2 + 3, 3 + 4, 4 + 5), (1 +
2, 2 + 3, 3 + 4, 4 + 5)] = [(3, 5, 7, 9), (3, 5, 7, 9)].
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Algorithm 7. Sub Sum(c)
Input: c : Ciphertext.
Output: c′: Coordinate-wise sum of all sub-ciphertexts in c.

temp ← Ciphertext()
c′ ← c
for i = 0 to log(j) − 1 do

temp ← rotate left(c′, 2i · k)
c′ ← c′+ temp

end for
return c′

Inner Product. Let v be ciphertext packed with a vector in all its sub-
ciphertexts. The inner product of v and a ciphertext c packed with j sub-
ciphertexts can be found by multiplying each element co-ordinate wise and then
performing a partial sum on the resultant ciphertext.

Algorithm 8. InnerProduct (c, v)
Input: c : Ciphertext, v : Vector packed in an entire Ciphertext.
Output: c′: Inner product of j vectors with v.

c′ ← multiply(c, v)
c′ ← Partial Sum(c′)
return c′

Lemma 2. Let k be the size of each sub-ciphertext. Then the multiplicative depth
of Algorithm 8 is log k + 1.

4 Homomorphic Evaluations

After defining all the vector operations and ciphertext packing technique, we
will now move forward and describe the methods for performing PCA using
CKKS homomorphic scheme. This section would first define the homomorphic
version of Goldschmidt’s algorithm and the power iteration method essential for
performing PCA. Finally, we bundle together all the methods to produce a single
method for performing PCA homomorphically.

4.1 Homomorhpic Goldschmidt’s Algorithm

Goldschmidt’s algorithm [27] is an iterative algorithm that computes the square
root and its inverse simultaneously. It converges faster than Newton’s method.
Similar to newton’s method, Goldschmidt’s algorithm also requires a good initial
approximation (of 1√

x
) for faster convergence. We use Algorithm 9 to obtain a

good initial approximation of 1√
x
.
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Approximation of 1√
x
. Algorithm 9 provides us with an initial approximation

of 1√
x
. It is a homomorphic adaptation of the fast square root inverse algorithm

[18]. The approach is similar to the one in [18] where we first find a linear
approximation of 1√

x
and then use that as an initial guess for newton’s method

and improve upon our approximation in a few iterations.

Algorithm 9. InvNormApprox(norm)
Input: norm : Ciphertext with sum of squares.
Output: guess: Approximate inverse of norm of c.

neg half ← Ciphertext(-0.5) {A ciphertext with all its entries as -0.5}
three half ← Ciphertext(1.5) {A ciphertext with all its entries as 1.5}
guess ← linear approx(norm)
for i = 1 to iterations do

sq ← multiply(sq, square(guess))
sq ← multiply(multiply(guess, neg half), sq)
temp ← multiply(three half, guess)
guess ← add(temp, sq)

end for
return guess

Lemma 3. Let l1 be the number of iterations in Algorithm 9. Then the multi-
plicative depth of Algorithm 9 is 3l1 + 1

Lemma 4. Let l1, l2 be the number of iterations in Algorithms 9 and 10 respec-
tively. Let k be the size of the sub-ciphertext. Then the multiplicative depth of
Algorithm 10 is log k + 3(l1 + l2) + 2.

4.2 Homomorphic Power Method

The homomorphic power method computes the top l principal components of the
data matrix X homomorphically. It finds the largest eigenvector of the covariance
matrix and uses the Eigen shift procedure to find the subsequent eigenvectors.
It uses Algorithm 10 to compute the norm and its inverse.

Lemma 5. Let l1, l2, l3 be the number of iterations in Algorithms 9, 10, 11
respectively. Let k be the size of the sub-ciphertext and l be the number principal
components. Then the multiplicative depth of the Algorithm 11 is ll3(2 log(k) +
3(l1 + l2) + 7)

4.3 Homomorphic PCA

We perform PCA (principal component analysis) homomorphically using Algo-
rithm 12. In Algorithm 12, the client first computes the mean vector and sub-
tracts the mean vector from all other vectors to center the data matrix about
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Algorithm 10. Goldschmidt(c)
Input: c : Ciphertext,
Output: x: Norm of c, h: Inverse of norm of c

half ← Ciphertext(0.5) {A ciphertext with all its entries as 0.5}
neg one ← Ciphertext(-1.0) {A ciphertext with all its entries as -1.0}
norm ← Re encrypt(Partial sum(square(c)))
y ← Re encrypt(InvNormApprox(norm))
x ← multiply(norm, y)
h ← multiply(norm, half)
for i = 1 to iterations do

temp r ← multiply(multiply(x, h), neg one)
r ← add(temp r, half)
x ← add(x, multiply(x, r))
h ← add(h, multiply(h, r))
if depth(x) ≤ 2 then

x ← Re encrypt(x)
h ← Re encrypt(h)

end if
end for
two ← Ciphertext(2.0) {A ciphertext with all its entries as 2.0}
h ← multiply(h, two)
return x, h

Algorithm 11. PowerMethod(X)
Input: X: Ciphertext packing of the original data matrix
Output: W : Top l principal components of X

W ← {}
Λ ← {}
neg one ← Ciphertext(-1.0) {A ciphertext with all its entries as -1.0}
for components = 1 to l do

r
$← R

d

for i = 1 to iterations do
s1 ← ∑

x∈X

multiply(x, InnerProduct(x, r))

s1 ← SubSum(s1)
s1 ← Re encrypt(s1)
s2 ← ∑

λ∈Λ;w∈W

multiply(λ, multiply(w, InnerProduct(w, r))

s2 ← Re encrypt(s2)
s2 ← multiply(s2, neg one)
s ← add(s1, s2)
eig val, eig inv ← Goldschmidt(s)
r ← Re encrypt(multiply(eig inv, s))

end for
W ← W ∪ r
Λ ← Λ ∪ eig val

end for
return W



Principal Component Analysis Using CKKS Homomorphic Scheme 65

its mean. Then, the original data’s principal components are obtained from
the server using Algorithm 11 by performing computations on encrypted data.
Finally, the principal components are multiplied by the client to get the lower
dimensional representation of the original data.

Algorithm 12. HPCA(X)
Input: X : Data Matrix with row vectors
Output: X red: Reduced data matrix with k principal components of X

Server:
Recieve X ′ from Client.
W ← PowerMethod(X ′)
Send W to Client.
Client:
X tmp ← X− mean(X)
X ′ ← Encrypt(X tmp)
Send X ′ to Server.
Receive W from Server.
W ← Decrypt(W )
X red ← X tmp · W
return X red

5 Implementation Details and Results

We implemented all the procedures described in this paper using Python. We
used SEAL-Python [24] (A python binding for Microsoft SEAL library [23]) for
the implementation of the CKKS scheme. All the experiments were run on a
machine with Intel R© CoreTM i5-7200U CPU @ 2.50 GHz having 4 cores. The
machine ran on 64-bit Ubuntu 20.04.2 LTS with a memory of 7.6 GiB and
a disk capacity of 1 TB. We conducted experiments on seven datasets. Four
of them were categorical datasets - air quality [11], Parkinsons telemonitoring
[25], winequailty-red [9] and winequality-white [9]. The other three were image
datasets - MNIST handwritten digits [17], Fashion-MNIST [28] and Yale face
database [1]. We computed each dataset’s first few principal components and
verified our HPCA algorithm’s efficiency by computing the R2 score on the
reconstructed data. R2 score gives a measure of the variance captured in the
reconstructed data and provides the goodness of fit.

Datasets were scaled appropriately so that eigenvalues are small enough to
be handled properly. The Yale database was converted from three channels to
a single channel and then resized from 195 × 231 pixels to 16 × 16 pixels using
bicubic interpolation. Similarly, the MNIST handwritten and Fashion-MNIST
datasets were resized from 28 × 28 pixels to 16 × 16 by trimming the images’
outer boundaries as they contain 0’s only. We also conducted few experiments
by eliminating the last five features of the Parkinsons telemonitoring dataset
to make the number of features exact power of 2 (from 21 to 16). For linear
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approximation of 1√
x
, we considered the interval [0.001, 750] and obtained the

coefficients for the line y = ax + b as a = −0.00019703 and b = 0.14777278
using SLSQP solver. The negative slope illustrates the decreasing trend of 1√

x

function. The values for number of iterations l1, l2 and l3 for Algorithms 9, 10
and 11 were fixed to be 2, 4, 4 respectively.

5.1 Parameter Selection

We did not use bootstrapping in our implementation as it is not provided as an
inbuilt API in the SEAL library. Instead, we re-encrypted some of the parameters
to get rid of the noise in them. Re-encryptions are used to be ideally replaced
by bootstrapping without making changes to any other part of the algorithm.
We ensured that we do not have to re-encrypt any ciphertext from the input,
making the number of re-encryptions independent of the dataset. For this, we
observe that the maximum depth required by each ciphertext is log(k) + 2 in
Algorithm 11. To further reduce the number of re-encryptions, we also restricted
the re-encryption of eigenvectors. For this, we require a maximum depth of
log(k) + 3 in Algorithm 11. So, the maximum depth used was log(k) + 3.

Re-encryption could be thought of as a server sending a ciphertext back to
the client in public-key setting. The client re-encrypts the ciphertext and sends
it back to the server. This would require some bytes of communication between
the server and the client. For N = 16384, we communicate about 128 KB and
for N = 32768, we communicate about 256 KB of information in a single round
trip. Using Lemma 6, we compute the total communication cost between the
client and server as shown in Table 1.

Lemma 6. Let l2, l3 be the number of iterations of Algorithms 10, 11 respec-
tively. Let l be the number of principal components and z be the maximum
depth used. Then the number of re-encryptions required by Algorithm 12 is
l(l3(5 +  3l2

z �))

Table 1. Communication cost for re-encryption

N z l Re-encryptions Bits communicated (in MB)

16384 7 2 72 9.009

16384 8 2 56 7.007

32768 11 4 112 14.014

32768 11 5 140 17.517

32768 11 6 168 21.021

In all of our experiments, we used the polynomial modulus degree (N) of
16384 and 32768. This gave us a total of 438, 881 bits respectively for coefficient
modulus to achieve 128-bit security. The scale was chosen to be 240 to achieve
20 bits of precision after the decimal point.
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5.2 Results

We computed the first few principal components for each dataset. Then we
measured the R2 score of the reconstructed data to use it as an evaluation metric.
We also compared the results obtained by performing PCA on un-encrypted data
to verify the efficiency of our HPCA algorithm. An R2 score between 0.3–0.7 is
considered a good fit for the original data. We also measured the total time taken
by all the procedures on different datasets. Table 2 summarizes all the results
obtained after experimentation on different datasets1.

Table 2. Performance of HPCA (Homomorphic PCA) algorithm on different datasets

Dataset d k N j = N
2k n l Depth R2 Score

(Encrypted)

R2 Score (Un-

encrypted)

Time Taken

(in mins)

MNIST 256 256 32768 64 100 4 11 0.15667 0.3320 9.2965

256 256 32768 64 200 4 11 0.1410 0.4124 12.9907

Fashion-MNIST 256 256 32768 64 100 4 11 0.4199 0.5013 9.2878

256 256 32768 64 200 4 11 0.4111 0.4762 12.9968

Yale 256 256 32768 64 165 4 11 0.5292 0.5191 11.0622

256 256 32768 64 165 5 11 0.5729 0.6012 15.3264

256 256 32768 64 165 6 11 0.5790 0.6758 19.8646

Winequailty-white 11 16 16384 512 4898 2 7 0.2517 0.25502 2.4066

11 16 32768 1024 4898 2 11 0.2544 0.25502 5.2634

Winequailty-red 11 16 16384 512 1599 2 7 0.1487 0.20001 1.4447

11 16 32768 1024 1599 2 11 0.1463 0.20001 2.8728

Air Quality 13 16 16384 512 9357 2 7 0.6012 0.6062 3.3823

13 16 32768 1024 9357 2 11 0.6054 0.6062 8.6394

Parkinsons 16 16 16384 512 9357 2 7 0.1509 0.1604 2.2068

21 32 16384 256 9357 2 8 0.14488 0.1604 5.4160

16 16 32768 1024 9357 2 11 0.1506 0.1604 5.8734

From Table 2 we observe that our HPCA algorithm can capture variance
to a considerable amount in different datasets. It does not perform well on the
MNIST dataset, with a significant difference between the R2 score on encrypted
and unencrypted data. It performs moderately well on Fashion-MNIST and
winequality-red datasets. But it performs pretty well on the Yale face database,
air quality, winequality-white and Parkinson’s telemonitoring datasets. The
datasets on which our HPCA algorithm’s performance on encrypted data are
similar to that of PCA on un-encrypted data are the datasets that either have
a considerable difference between their successive eigenvalues of the variance is
captured by the first few principal components. Figure 1 shows the first 4 eigen-
faces obtained by the HPCA algorithm. Figure 2 shows how an image looks after
reconstruction using a few principal components.

1 Time taken mentioned in Table 2 doesn’t take into account the communication time
required for re-encryption.
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Fig. 1. First four eigenfaces for Yale face Database obtained using HPCA algorithm

Fig. 2. Reconstruction of a image from Yale face database using principal components
obtained from HPCA algorithm

6 Conclusion and Future Work

This paper presents the HPCA algorithm that performs PCA on encrypted data
using CKKS homomorphic encryption scheme. Our HPCA algorithm does not
require any matrix operations and doesn’t require us to store the original data’s
covariance matrix. This reduces the memory and computational requirements
significantly. Calculation of the norm and its inverse are the most computa-
tionally heavy operations in the HPCA algorithm. Most of the previous works,
including [22] and [19] do not compute norm or its inverse homomorphically.
Instead, the client is required to calculate the norm after decryption. This makes
their algorithm interactive in nature for computing subsequent principal com-
ponents. We tried to overcome this problem and tried to reduce the client’s
computational burden by evaluating the norm and its inverse homomorphically
on the client-side. With the use of bootstrapping, our algorithm would become
totally non-interactive.

Numerical stability of various algorithms could be studied as appropriate
scaling of data is required for obtaining the first few principal components. Iter-
ative algorithms like the power method accumulate noise after each iteration.
This seems to be the major drawback of our HPCA algorithm, which restricts
us from computing only the first few principal components. It would be inter-
esting to learn how noise grows for each component of the HPCA algorithm
with each iteration and how it affects the maximum number of principal compo-
nents found in a given setting. Other alternatives of power method like gradient
descent could also be used instead. Finally, we measure the R2 score of the recon-
structed data for different datasets to demonstrate our algorithm’s efficiency.
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The R2 score obtained from our HPCA algorithm is almost comparable to the
R2 score obtained on most of the datasets without encryption. The implemen-
tation of all the algorithms can be found in [21]. A parallelized version of HPCA
could also be developed to achieve faster runtime.

Acknowledgement. We would like to sincerely thank all the anonymous reviewers
for their valuable feedback and Dr. Kannan Srinathan for providing the necessary
motivation.
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Abstract. We present a tool for detecting a new type of bad smell in
software code and describe how it was used to find critical security bugs,
some of which exist in Linux code for many years and are still present in
current distributions. Our tool applies state-of-the-art formal methods
and static analysis techniques to scan the execution paths of programs.
In this scan, the tool detects conditions that may lead to calling cer-
tain functions with strange combinations of arguments, called Abnormal
Argument Case (AAC) in this paper. These conditions are presented to
the developers as they often point at potential bugs and security vul-
nerabilities. The paper explains how the tool works and describes an
empirical evaluation of its performance.

1 Introduction

In light of several cases of (intentional?) software bugs with serious security impli-
cations that has been recently discovered [11], we show a way to preemptively
find a new type of code smells that can point developers to possible software
vulnerabilities.

The term “code smells” was coined by Kent Beck in the late 90s to describe
certain patterns in computer programs that indicate a potential for problems [2].
In this paper, we focus on a specific type of smell that we call Abnormal Argu-
ment Case (AAC) or, more commonly, “Strange Arguments”. An AAC occurs
when the arguments to a function are such that the function behaves in a qual-
itatively different way than usual. This is potentially harmful because the caller
may not have considered the specific conditions that may drive the software to
the AAC and therefore, may not have considered the abnormal behaviour of the
function. Think, for example, of a program that calls the method realloc with a
data-dependent argument. It may happen that the programmers have not con-
sidered the fact that, under some conditions, the data may be such that realloc
is called with argument zero. In this case, the programmer may have wrongly
treated the case where realloc returns NULL as an indication that there is a
memory allocation error and did not consider that realloc actually frees the
space when the new allocation size is zero.

Note that bad smells are usually reported to the programmers for manual
analysis. Then, the programmer, when shown the AAC conditions, may notice
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that the problem may occur not only when the allocation size is zero, but also
when it has overflowed to be small.

In this paper we describe a tool, called DepthStAr, that we have developed for
identifying AACs. Our tool is based on the angr open-source python framework
for analyzing binaries [13]. We use angr ’s support of state-of-the-art symbolic
and concolic execution techniques and other static analysis tools to search for
conditions that lead to strange combinations of arguments. Specifically, our tool
takes a binary and analyzes conditions that may lead to suspicious invocation
of certain functions, as described above. When such conditions are found, the
tool generates a report to the programmers that points them to the suspected
vulnerability.

We report on two success stories:

1. DepthStAr found known and new bugs in the libcurl client-side URL transfer
library;

2. DepthStAr pointed at a potential for buffer overrun in a program bundled in
most, if not all, Linux distributions, potentially allowing unintended access
to privileged operation.

All but one of the AACs we found in libcurl where previously found and fixed by
others. One was listed as a CWE. This indicates that the AACs that we find are
considered harmful by the programmers and by the community. The fact that
we found two new AACs shows that our tool is capable of identifying risks that
were not discovered by other tools. We obfuscated the details of the second AAC
and have informed the developers of our findings as a responsible disclosure (to
prevent malicious misuse of our work). We will publish all the details once the
vulnerability is mitigated.

The structure of our paper is: In Sect. 2 we describe the goals of our work; in
Sect. 3 we explain the bad code smells idea; in Sect. 4 we show the methodology
we are using; in Sect. 5 we describe the implementation of our approach; in Sect. 6
we evaluate the results of DepthStAr; in Sect. 7 we give a high-level arguments
on why our approach is a powerful to get practical results; and in Sect. 8 we
summarize the work and suggest directions for future research.

2 Goals

The following list is the set of goals that we designated for our work:

– Identification of common simple and indicative patterns (bad code smells) in
software which in many cases are directly associated with potential security
weakness.

– Design and build a practical method to help developers easily detect those
bad smells and fix them without much effort.

– Make the solution as generic and flexible as possible: we want it to be
amenable for further heuristics and improvements, and propose flexible inter-
faces to developers.
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A tool like DepthStAr that involves a human’s review to examine weaknesses
has to be committed to two evaluation goals in order to be effective:

1. A low percentage of false positives. For practical reasons, the “bad smell”
needs to be indicative enough so that the tool will not waste much human
time on false positive alerts, that is, cases where an AAC occurs but no actual
problem or vulnerability in the code exists.

2. Have improvement over manual human review. It is a seemingly possible
claim that if we introduce a human-in-the-loop, then the same human can
manually go over all the calls to the functions in the AACs and check if there
is a weakness or vulnerability around them.

We achieve both these goals using the angr [13] framework to filter out irrelevant
cases. Specifically, before pointing users’ attention to a code, we run an advanced
analysis that filters out a significant portion of the false alarms. In Sect. 6 we
relate to these two goals using the statistics of the evaluation. We bring statistics
on how many of the reported AACs by our tool were actually weaknesses or
vulnerabilities and how many of the calls to key functions in the code were
reported as an AAC.

3 Pattern Description

We identify some specific key functions that when called with certain combi-
nations of arguments, behave qualitatively different than usual. Alternatively,
the behavior can be expected, but the call itself does not make sense and, in
most cases, is part of an execution path that the developer has not considered.
An example of the latter is the call to the library function malloc with zero as
a size argument. The function behaves just as expected, allocates no memory
and returns a NULL pointer. Nevertheless, the programmer could have missed
such an odd case and treated the returned value as an indication of a regular
allocation error. We denote such key functions and vulnerable arguments as an
Abnormal Argument Case (AAC). The vulnerable value of an AAC is often an
edge value for the parameter domain. A typical example is a zero argument to
an unsigned int parameter caused by an integer overflow.

For comparison, the static code analysis tool lint points the programmer to
things that are legal C code but do things that might be different than what the
programmer meant ( if (x=0) instead of if x==0 for example, or even suggest
changing to if 0==x). In a similar way, our tool focuses developer’ attention
the critical places. These places often coincide with other, much more complex,
security weaknesses. Thus pointing programmers at AACs often open the gate
for locating other types of vulnerabilities and bugs. For example, in glibcrypt, a
heap overflow vulnerability was recently found [14]. This issue occurred because
of an integer wrapped, which is of the type of bugs found when examining AACs.
This shows that detailed examination of AACs is a practical way to find all kind
of vulnerabilities rooted in the bug that lead to the strange call.
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4 Methodology

Symbolic execution is a technique that introduces symbolic, non-concrete val-
ues to the program’s input. The symbolic values then propagate to other parts
of the program. Upon reaching conditional branches, symbolic execution uses
Satisfiability Modulo Theories (SMT) solvers to solve the conditions (i.e., path
constraints) and continue execution only on satisfiable paths. One of the key
advantages of this method is the ease of data flow analysis it provides. For
example, consider a case where sensitive data reaches non-authorized regions in
memory. Symbolic execution is a useful tool to detect such an issue because it
can analyze the dependency of the data in the non-authorized regions. In our
case, given some function vfunc and some vulnerable value varg, if the function
call vfunc(varg) is considered a security weakness, then the general use of sym-
bolic execution to detect this weakness is as follows: during symbolic execution,
for each symbolic state s from which the program is about to make a function
call func(arg), we check the satisfiability of the following constraint:

πs ∧ func = vfunc ∧ arg = varg

where πs is the path constraint corresponds to the state s (see Sect. 4.1). An
example of such work is [1].

Although symbolic execution might help find abnormal values in key function
arguments with the method described above, there are many different approaches
to how we make practical use of the technique to find full exploitable vulnera-
bilities without it becoming computationally too hard. Much research has been
done to automate such processes. We propose to involve a human review in
the process rather than trying to automate the whole process, which might be
impractical. Empirically speaking, a simple glance from the original programmer
on our tool’s output often makes the difference when trying to understand the
security weakness’s root cause. The involvement of the human review might be
in the end or at the middle of the analysis pipeline. This approach seeks to take
advantage of symbolic execution’s ability to formalize data flow correctly and
the programmer’s semantic understanding of his or her application.

1 vo i d d o t a s k w i t h r e s t ( i n t r e s t t i m e ) {
2 t ime t s t a r t i t e r , b e g i n t a s k , e nd t a s k ;
3 i n t w o r k r e s t r a t i o ;
4 wh i l e (1 ) {
5 s t a r t i t e r = t ime (NULL ) ;
6 s l e e p ( r e s t t i m e ) ;
7 s t a r t t a s k = t ime (NULL ) ;
8 /∗ l ong t a s k ∗/
9 end t a s k = t ime (NULL ) ;

10 wo r k r e s t r a t i o = ( end t a s k − s t a r t t a s k ) /
11 ( s t a r t t a s k − s t a r t i t e r ) ;
12 i f ( w o r k r e s t r a t i o < 5) { r e t u r n ; }
13 }}
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In the example above, if the function will be called with argument
rest time 0, the time difference between the tasks will also be zero, and a division
by zero error will occur. A full report detecting the divide-by-zero bug generated
by a fully-automated symbolic execution tool would require an in-depth analysis
of the data flow between the sleep and time functions, correct characterization
of the environment, and much more complex analysis than is actually needed. A
much simpler to obtain output, looking for possible call to sleep (0) and alerting
the programmer of the detected AAC, would have the same effect. Note that in
the example above, the computational complexity of the analysis is sourced in
the need to model physical processes, such as passage of time, in order to cor-
rectly identify the problem. The complexity of the analysis could also be rooted
in cryptography functions, or even in a complex data structure.

4.1 A Formal Outline of the Algorithm

Below, we define some terms in order to formalize the potential security weak-
nesses and the algorithm for their detection.

A symbolic state s is defined by the instruction pointer IPs and by a mix of
symbolic and concrete values of memory regions and registers.

For a symbolic state s, the path constraints πs is defined as the conjunction
of all the conditions that must be met along the symbolic execution path in
order for a state s to be reached.

A single-value AAC instance is defined by:

1. Target function: The key function we identify.
2. Vulnerable parameter: The index of the critical parameter.
3. Vulnerable value: The value which is considered a potential weakness, when

passed as the vulnerable parameter to the target function.

More generally, AACs can also be defined for any target function with param-
eters p1, p2, . . . , pn and any predicate of the form:

pred : Dom(p1) × · · · × Dom(pn) → Boolean

This definition allows us to detect more general scenarios. Imagine, for exam-
ple, that a memory allocation function realloc from (new size , orig size ) is
being used. In this function, a case where value passed as the new size argu-
ment, and the value passed as the orig size argument are equal, is an apparent
AAC. This case cannot be described with a single-value AAC, but it can be
easily described with the predicate based generalization. Another example is the
call fopen(””, ”w+”). Meaning, opening a file with an empty name and creat-
ing it if it does not exist. This call is, of course, not legal and returns a NULL
pointer, as expected. The error code is then set to the value ENOENT which
means “No such file or directory” which may lead to misinterpreting the error
and eventually to incorrect behavior.

We focused on single-valued AACs in our tool and in the paper because
they are more common and because they are easier to explain and to be used
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by programmers. Practically speaking, in order to implement a test on a new,
general AAC, even given our tool, one needs a firm grasp of the angr framework.
As we set a goal to build a simple method for developers to use our approach,
we bring only the simple-to-create AACs. Creating a single-value AAC requires
the user to supply our tool with the three primitive parameters specified in
the definition. A symbolic state s where the next instruction to be executed is a
function call F (a1, . . . , an) will be considered a detection of an AAC = (TF, pred)
if the conjunction of the following is satisfiable:

– F = TF , meaning that the called function is the target function of the AAC.
– pred(a1, . . . , an) = true.
– πs.

Given an AAC instance, a verification function V FAAC on a state s will be
a predicate which returns true if and only if s is a detection of the instance.
A report about an AAC includes The source function from which the symbolic
execution began, the call and jump trace of history of the reached state, the
path constraint πs, and the symbolic or concrete values of the passed critical
arguments.

The general algorithm we propose:

Algorithm 1: AAC Detection
initialization;
for function f in the binary do

for AAC do
set a break-point at the target function (TF) of the AAC1;

end
symbolic execute(start from=f)

end

1When at break-point on s a detection report is generated if V FAAC(s) is true.

4.2 Suggested Workflow to Find Exploitable Security Weaknesses

As stated in Sect. 2, we aimed at building a flexible solution. This means keep-
ing the general API simple: a user only needs to specify an AAC as described in
Sect. 4.1, and (optionally) a point to start execution from (otherwise, all func-
tions will be considered as starting points). Because of this flexibility, our app-
roach can be effectively applied several times in order to detect real exploitable
security weaknesses after the detection of a bad smell: The first time will detect
an AAC. Thus, The same API can help one find a possible input to the program
such that the AAC detection state will be reached. The entry point should be
modified to an actual entry point of the binary (main function or some exported
function in case of shared libraries), and a new AAC should be added: this will
usually be the source function, from which the execution began, with arguments
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that are case dependent and are up to the developer - this is the part where the
human review can be used within the analysis pipeline. As stated in Sect. 4, from
our experience, this part takes, for a skilled programmer, around 15 min, even in
large-scale systems even when the human reviewer is not the original developer.
The second run’s goal is to reduce the AAC location’s depth relative to the entry
point. If the case is detected when the execution begins from the entry point, we
can be sure that it is reachable and, if it points to some vulnerability, it is also
exploitable.

5 Implementation

5.1 The angr Framework

The angr [13] package is an open-source, binary analysis, Python library and
software framework. It was initially designed to solve CTF (Capture The Flag)
puzzles. It was later extended with functionalities that implement the state-of-
the-art symbolic execution and concolic execution techniques, as well as other
static analysis features such as control flow graph (CFG) and data flow graph
(DFG) generation. Those capabilities make angr a very useful tool for research
and development in the area of binary analysis techniques, as it can help imple-
ment novel approaches and techniques without spending time and efforts on
implementing infrastructure and known algorithms.

5.2 Implementation Details

The main functions of angr that we used are:

– The CLE loader: Can load different binary types, resolve and load their
imported libraries and provide process’ memory abstraction to imitate real
OS’s loader.

– CFG generation: This allows to generate a Control Flow Graph (CFG),
including indirect jump resolution. Moreover, this allows function identifi-
cation by their source object, construction of an object for each function and
building and sorting them into a comfortable data structure. This is done by
applying heuristics and reasonable assumptions to keep the process short.

– Identification of regions in the binary that belong to the main object and are
not loaded from libraries. This helps us to only start the analysis from the
functions of the software we are testing, rather than wasting time on verifying
library functions.

– Event based break points: angr has a state plugin called inspect. It allows set-
ting breakpoints on the symbolic execution, based on various events (memory
read/write, register read/write, call/return from functions etc.). We leverage
this ability for intercepting symbolic execution at function calls and test the
satisfiability of a detection.

– Solver engine: angr is using the Z3 SMT solver [10] to solve constraints,
and Z3 has an API which angr can use to send specific queries within some
symbolic state context.
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During the implementation of our tool, several bugs of angr were discovered,
reported and quickly patched by the angr team.

In addition, we implemented an exploration technique, i.e., an angr extension,
which is responsible for bounding the time and space consumed by the execution.
This is done by two configurable parameters:

1. Timeout: Maximum time in seconds that each execution is allowed to run.
Every source function from which execution begins, we consider a new exe-
cution for the timeout. Execution is terminated upon timeout.

2. States Limit: Maximum number of active states. Execution is terminated
upon this limit reach.

Solving SAT problems is NP-Hard problem, so expecting to have an efficient
algorithm is not realistic. On the other hand, our work showed that we do get
practical solutions to our needs. The two parameters above are just an initial
demonstration of how heuristics be used to make practical progress. We believe
that there is much more to it and leave this for future research.

For example, we changed the above parameters according to logical consid-
erations. When a function called “main” was executed, we turned on aggressive
mode. This means that we increased the parameters specified above by a factor
of ten. The idea behind this mode is that we want to go deeper in the execution
tree when we start from the “main” function because it is more likely that nor-
mal execution will go deeper when starting from this function. For this reason,
we are willing to spend more time and space once on every binary we test.

6 Evaluation

We set three empirically-measurable requirements to our work:

1. Low percentage of false positives. That is, cases where an AAC is reported
but no actual problem was present in the code should be avoided.

2. Have improvement over manual human review. We test this by showing
the ratio between the detections reported and the verifications made by
DepthStAr.

3. The ability to detect security weaknesses or vulnerabilities in common open-
source software, that have not been detected before.

In this section, we show the evaluation of DepthStAr and use it to explain how
it was able to meet the requirements set above. In Table 1, are the parameters
that measure the first two requirements. The table shows that the number of
verifications had to be made by our tool is significantly larger than the amount
of detections. Thus, it would be very impractical to imitate these results with
manual review of all the key functions. Moreover, we see that the number of
total detections sums up to a few on each binary that is tested. Detections, out
of which, a none negligible amount turns out to be real problems in the code. The
AAC reports, produced by DepthStAr, are detailed and have much information
about the case. This gives the programmer the ability to review an AAC quickly,
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and it turns the classification of one as a false positive into a matter of minutes.
For this reason, even a ratio of one true positive on six detections, as it is in the
libcurl -7.75.0 test case, is acceptable.

Table 1. Top-level data on the analysis

Binary Number Number Number

of verifications of detections of true positives

libcurl v7.50.1 2742 9 8

libcurl -7.75.0 764 6 1

– 29 1 1

6.1 Rediscovery of Known Weaknesses in libcurl

We tested our tool on a previous version of the cURL tool library, called libcurl,
version 7.50.1. This, to test if it finds some weaknesses we already knew were
there, and maybe others that were already patched but we were not aware of.
In Table 2 are some of the memory-related security weaknesses and bad smells
our tool detected.

Table 2. AACs detected in libcurl v7.50.1

Function AAC Time (Sec.)a Constraint Jump

size depthb

curl easy escape realloc with size 0 1.5 4 4

curl easy escape malloc with size 0 <0.5 1 1

AddFormData memcpy with size 0 2 7 4

Curl ssl init certinfo calloc with size 0 0.5 2 2

alloc addbyterc realloc with size 0 0.5 3 3

Curl ftp parselistd realloc with size 0 2 3 4
aExecuted on a computer cluster with an allocation of 100 GB of memory and
16 CPU cores. Time from the beginning of the function execution.
bNumber of jumps (calls and returns) along the path.
cThis AAC led to a listed CWE-415 [7].
dThis AAC is present in the current version of libcurl and discussed in Sect. 6.2.

Except for the last one, all of the cases we detected were fixed in the code
and are no longer present in the current version of libcurl. Some of the cases
were denoted as weaknesses and patched. The rest were refactored without spe-
cial documentation as exploitable security weaknesses. This addresses the first
requirement presented in the beginning of this section. It shows that the AACs
almost always point towards a piece of code that should ideally be patched or
refactored. Another takeaway from Table 2 is that all of the detected cases were
detected in a relatively low-depth in the execution tree. This supports the claim
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in Sect. 5.2 that introducing an improvement in the path selection algorithm
can lead to better results, reaching deeper states of execution. Section 6.3 dis-
cusses the current scaling capabilities and limitations from the perspective of
the dimensions of the states tree.

6.2 Newly Detected Weaknesses

We achieved our major success story using DepthStAr while testing one of the
most common programs, bundled in most, if not all, Linux distributions for many
years. This program frequently interacts with the kernel and sensitive data, and
thus its compromise might constitute some severe risks to the vulnerable sys-
tems. We will not reveal the name of the program out of responsible disclosure
considerations. A call to malloc was detected, with a size argument that can
potentially have an integer overflow and wrap to a small integer, thus allocating
a too-small buffer and then copying user-controlled data into it, potentially over-
flowing from its boundaries and forming severe security exposure. The function
below is a paraphrased2 version of the original function present in the program
we tested. It is called upon almost every execution of the main program. The
argument to this function is passed directly from user input.

1 r e t t y p e func ( cha r ∗ arg ) ) {
2 . . .
3 va r = ma l l o c (CONST∗ s t r l e n ( a rg ) ) ;
4 . . .
5 copy ( var , u s e r d a t a ) ;
6 . . .
7 }

We also tested DepthStAr on the most recent libcurl version - libcurl -7.75.0.
We wanted to test and compare the old version to the previous one in terms of
the number of detected AACs. The tool’s results on the latest version confirm
that few detections are left and that good, actively maintained software should
strive to reduce the number of such cases.

1 char ∗tmp = r e a l l o c ( f i n f o −>b data ,
2 f i n f o −>b s i z e + FTP BUFFER ALLOCSIZE ) ;
3 i f ( tmp) { /∗ . . . ∗/ }
4 e l s e { /∗ . . . ∗/ goto f a i l ; }
5 /∗ . . . ∗/
6 f a i l : /∗ Clean up any a l l o c a t e d memory ∗/
7 i f ( p a r s e r−> f i l e d a t a ) {
8 C u r l f i l e i n f o c l e a n u p ( pa r s e r−> f i l e d a t a ) ;
9 pa r s e r−> f i l e d a t a = NULL ;

10 }

Above are the relevant parts of the code from the recent libcurl version. We
see a standard-issue when a call to realloc with size argument 0 is possible. If
2 To make it harder to find the program.
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such a call happens in the code shown above, the call to the realloc function will
free the block passed in the first argument and return NULL. The return value
will lead the calling code to fail and to eventually freeing the block once again.

6.3 Synthetic Evaluation

To show how our method scales, we tailored a code where the complexity of
looking for AAC increases. The idea behind these test cases is to gradually
increase the level of difficulty and test the code’s properties the time-to-detection
depends on. The difficulty is measured by the dimensions of the states tree; depth
and total number of states. We show and discuss the performance of DepthStAr
as a function of these two parameters.

0 10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

Depth

T
im

e
(S
ec
.)

Fig. 1. Time to detection as a function of state’s depth

1 i n t main ( i n t argc , cha r ∗ argv [ ] ) {
2 i n t number , depth = a t o i ( a rgv [ 1 ] ) ;
3 f o r ( i n t i = 0 ; i < depth ; i ++){
4 number = rand ( ) % 100 ;
5 i f ( number > 50){ e x i t ( 0 ) ; }
6 }
7 mal l oc ( number ) ;
8 }

In Fig. 1 are the results of DepthStAr, tested on a code where the states tree
goes increasingly deeper, but not wider. This is achieved with the code above.
We use the random function as a method of introducing a fresh symbolic integer
on each iteration. This could also be user input or anything that is unknown at
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static time. The graph’s linearity shows that in our implementation, detecting
AACs that reside at deep states can be done without increasing the run-time (by
more than the time it takes to reach the deep state). This supports the claim that
applying heuristics and improving the path selection algorithm will be beneficial
to our method. Such algorithms will artificially turn tested programs to be more
alike to the above code, meaning a branch will be cut off when it is not likely or
impossible to lead to an AAC.

1 i n t func ( i n t depth ){
2 i f ( depth == 3){ r e t u r n 1 ; }
3 i f ( depth == 1){ r e t u r n 0 ; }
4 i n t number = rand ( ) % 100 ;
5 r e t u r n number > 50 ? func ( depth / 2) : func ( depth − 1 ) ;
6 }

In Fig. 2 are the results of DepthStAr, tested on a code where the states tree
goes increasingly deeper and wider. This is achieved using the code above. The
graph shows the performance when the states tree grows exponentially to the
normal execution length (depth). We see that the time it takes to detect all the
AACs, unsurprisingly, grows together with the number of states. Nevertheless,
detecting some low-depth AACs is still practical and is not damaged by the
growing number of states. This indicates that our method can scale for even
large programs. In such, it will manage to detect not all, but some, of the AACs
in them.

0 10 20 30 40 50
0

250

500

750

1,000

1,250

1,500

Depth

T
im

e
(S
ec
.)

Average Detection Time
Minimum Detection Time

Fig. 2. Time to detection as a function of state’s depth
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7 A More General Take Away

In this paper we discussed a specific type of bad smells and its detection. Many
other studies have been made in the field of symbolic execution improvement [6]
and their practical application to automate the process of vulnerability detec-
tion [3,5,8]. Attempts also has been made to automate the exploit generation
process on some vulnerabilities [9]. This is often achieved by applying sophisti-
cated heuristics in the path selection algorithm of symbolic execution. The goal
of this heuristics is to explore states that are deeper and more likely to be vul-
nerable [4]. An interesting debate regarding the scientific efforts in this field is
whether it should focus on these automation techniques rather than on finding
bad smells. We give some high-level arguments on why we believe our approach,
of detecting bad smells in code and pointing the developer in the right direc-
tion, is the right way to get practical results. As discussed in Sect. 4, there are
numerous challenges for fully-automatic tools to get practical results. Among
them are the use of cryptographic functions, physical properties like time and
sensory information, complex data structures, obfuscation, packers, and many
others. We argue that it is more practical to identify the points of complexity
and correctly delegate them to a human-in-the-loop. The reason being that many
of those difficulties are relatively simple for a human being to overcome. Many
times, human look at problem with abstractions that allow them to put aside
details that are not relevant for solving the problem. As said above, these details
may significantly complicate things for solvers.

An example of this phenomenon can be observed in an unrelated topic: chess
engines. In Fig. 3, we see an odd chess situation. All of the black pieces are locked-
up on the board’s left side and cannot move unless the white player moves the
pawn on c6. In addition, there are three black bishops outside the locked zone.
Even beginner chess players would recognize immediately that the black bishops
cannot checkmate the white king because they cannot “see” the light squares.
Thus, this position is completely drawn. On the contrary, chess engines give black
18 points (equivalent to being up two queens) of advantage in this position. This
is because in order to realize black could never use his material advantage to
wtn the game if white plays the optimal moves (only with the king), the engine
needs to go very deep into the game tree.

That is not to say that an attempt to automate processes is by any way
a mistake, only that we should not underestimate the human mind’s potential
contribution to this automation. The best way, to our approach, is the correct
co-operation between the automating techniques and a human-in-the-loop—each
one, solving the challenges that are best suited to it.
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Fig. 3. Chess example. Taken from [12]

8 Conclusion

In this study, we have shown that using symbolic execution techniques and iden-
tifying simple, but critical bad smells in code, it is possible to detect vulner-
abilities. We give multiple examples of such bad smells throughout this paper
and explain how they can be harmful. We propose a practical method, using
symbolic execution, to quickly detect those bad smells. DepthStAr is a tool we
implemented on top of the angr binary analysis framework. Thanks to angr ’s
state-of-the-art symbolic execution techniques, together with robust support for
loading binaries and analyzing them, we were able to implement our approach
simply and practically. We report a success story achieved by DepthStAr while
testing our tool on one of the most common Linux programs bundled in almost
every Linux distribution in the world. Our tool detected a bad smell, which led
us to learn and report a potential buffer overflow vulnerability in the software,
leading to almost unlimited writing of user-controlled data to the program’s
heap. We also report another detection of previously unknown potential weak-
ness in the library of the commonly used Linux cURL program and compare the
results to detections of our tool on some older versions of the library.
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comments and suggestions. Specifically, we wish to thank the reviewer that pointed us
to the acute need to avoid false positive alarms when a human is involved in the loop.
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9. Lu, K., Walter, M.T., Pfaff, D., Nümberger, S., Lee, W., Backes, M.: Unleashing
use-before-initialization vulnerabilities in the Linux kernel using targeted stack
spraying. In: NDSS (2017)

10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

11. Novet, J.: Solar winds hack has shaved 23 percent from software company’s stock
this week (2020). https://www.cnbc.com/2020/12/16/solarwinds-hack-triggers-
23percent-stock-haircut-this-week-so-far.html

12. Penrose, R.: Chess problem computers can’t solve? (2017). https://www.
consciousentities.com/2017/03/chess-problem-computers-cant-solve/

13. Shoshitaishvili, Y., et al.: Sok:(state of) the art of war: Offensive techniques in
binary analysis. In: 2016 IEEE Symposium on Security and Privacy (SP), pp.
138–157. IEEE (2016)

14. taviso@google.com: gpg: heap buffer overflow in libgcrypt (2021). https://bugs.
chromium.org/p/project-zero/issues/detail?id=2145. Accessed 19 Feb 2021

https://doi.org/10.1109/SANER48275.2020.9054797
https://curl.se/docs/CVE-2016-8618.html
https://curl.se/docs/CVE-2016-8618.html
https://doi.org/10.1109/ARES.2013.59
https://doi.org/10.1109/ARES.2013.59
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.cnbc.com/2020/12/16/solarwinds-hack-triggers-23percent-stock-haircut-this-week-so-far.html
https://www.cnbc.com/2020/12/16/solarwinds-hack-triggers-23percent-stock-haircut-this-week-so-far.html
https://www.consciousentities.com/2017/03/chess-problem-computers-cant-solve/
https://www.consciousentities.com/2017/03/chess-problem-computers-cant-solve/
https://bugs.chromium.org/p/project-zero/issues/detail?id=2145
https://bugs.chromium.org/p/project-zero/issues/detail?id=2145


Robust Multivariate Anomaly-Based
Intrusion Detection System
for Cyber-Physical Systems

Aneet Kumar Dutta(B), Rohit Negi, and Sandeep Kumar Shukla

C3i Center, Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur, India

{aneet,rohit,sandeeps}@cse.iitk.ac.in

Abstract. Cyber-physical critical infrastructures such as power plants
are no longer air-gapped. Due to IP-Convergence, the control systems
and sensor/actuator communication networks are often directly or indi-
rectly connected to the Internet. While network intrusion detection can
provide certain cyber defense capabilities, that is not sufficient due to
covert attacks or insider attacks. Therefore, in recent years, a lot of
research is being carried out to detect intrusion by observing anomalies in
the plants’ physical dynamics. In this work, we propose a robust anomaly
detection mechanism based on a semi-supervised machine learning tech-
nique allowing us near real-time localization of attacks. Deep neural net-
work architecture is used to detect anomaly – based on reconstruction
error. We demonstrate our method’s efficacy on the SWaT dataset. Our
method outperforms other existing anomaly detection techniques with
an AUC score of 0.9275.

Keywords: SWaT dataset · Neural networks · Robustness ·
Localization · Autoencoder · Denoising autoencoder · Vulnerabilty ·
Cyber-physical system · Industrial control system · SCADA ·
MODBUS · Intrusion detection system

1 Introduction

According to the NIST Cyber Security Framework (CSF) [11], a critical indus-
trial control system (ICS) must implement five functions for cybersecurity –
identify, protect, detect, respond, and recover. One of the basic assumptions for
security-in-depth is that while protective security controls must be implemented,
one cannot exclude the possibility of attackers circumventing protection such as
strong authentication, firewall, network intrusion detection systems (NIDS), host
intrusion detection systems (HIDS) etc., as none of these are infallible. There-
fore, detecting an ongoing cyber attack must be the next line of defense. While
NIDS, HIDS, etc., also are meant to detect intrusion, there are other indicators
of an attack in an ICS – in the form of anomalies in the plant’s physical dynam-
ics under control. Suppose that the NIDS or HIDS cannot detect the attack due
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to evasive techniques used by an attacker. In that case, changes in the physical
dynamics will be unavoidable if that is an attacker’s goal. Standard bad data
detection techniques such as χ2-test might also fail to detect slowly encroaching
changes if the attacker plans the attack to hide the changes in the dynamics
within the noise margins.

Other than changes in the plant’s actual dynamics, an attacker may manip-
ulate the sensors or inject false data into the industrial protocols carrying sensor
data to the controllers for the controllers to make erroneous state estimation and
control. Therefore, it is essential to detect anomalies in the sensor measurements
at the controllers or at the SCADA in real-time and localize which sensor mea-
surements are anomalous to swiftly alert the security engineers for immediate
response actions.

Traditional intrusion detection systems (IDS) consist of rules [1–3] designed
to check whether the system dynamics’ safety properties are violated. The IDS in
Industrial Control System (ICS) generally models the system’s behavior because
the system follows the proper laws of physics. These systems are large and com-
plex, consisting of many physical parameters measured by devices called sensors
and manipulated by actuators. Therefore, manually identifying rules to model
the behavior of these complex systems is not scalable. The data-driven approach
[4–6,9,10,13,14] helps us in sketching the behavior of ICS and understanding the
underlying dynamics of the system. In real-time, when the system’s functioning
deviates from the modeled behavior beyond a predetermined threshold, it is
considered an anomaly. The proposed models are both univariate and multivari-
ate. However, the assumptions of outlier-free training data and entire training
data belonging to a normal class persists. Therefore, these IDS cannot guarantee
robustness essential for a practical scenario.

The main contributions of this paper are:

1. We propose a multivariate model to detect anomalies in the behavior such
that our detection models can be implemented in resource constrained
devices.

2. The proposed intrusion detection model is robust and is not affected by the
presence of outliers in the training data.

3. Our method retrofits to the existing infrastructure of an ICS.
4. Our method allows real-time localization of the attack points enabling isola-

tion of the victim sections of the infrastructure and enabling containment of
damages.

2 Threat Model

This paper considers the communication link between the PLC and SCADA to
be the threat vector due to vulnerable industrial communication protocols like
MODBUS. Since command injection, false data injection, replay, and MITM
attacks are possible in such systems, it will enable an attacker to change their
state. The attack scenarios generated are by manipulating the sensor and actu-
ator values in the data packets communicated between the PLC and SCADA
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(false data injection attacks). So, any number of sensors or actuators or combi-
nations of sensors or actuators can be modified, which implies that the number
of classes of attack scenarios that can be constructed is 2d − 1 where d is the
dimension of the state vector.

3 Proposed Methodology

Considering the behavioral characteristics of the cyber-physical systems, it has a
stochastic behavior abiding by laws of physics. The problem of intrusion detec-
tion in a stochastic system is about detecting or observing unusual or unde-
sired behavior. So, intrusion detection in a cyber-physical system can be gen-
eralized as an anomaly detection problem. Rather than treating our anomaly
detection mechanism as a classification problem, our paper finds the reason for
the anomaly, which helps us to pinpoint the targeted variables and isolating the
compromised section of the system enabling minimization of the damages to the
system.

3.1 Anomaly Detection Algorithm-Denoising Autoencoder (DAE)

The reason for choosing the neural network architecture called Autoencoder can
be summarized as follows:

– The Autoencoder is trained in an unsupervised setting that does not require
any output label y. Since there is a scarcity of labeled data in the cyber-
physical system, the Autoencoder satisfies this constraint.

– The Autoencoder enables us to learn the stochastic behavior of the cyber-
physical system because the latent features determined by the Autoencoder
can model the functioning of the cyber-physical system accurately.

– Autoencoder can transform non-linear dimensionality reduction with its non-
linear activation function, which performs better than linear dimensionality
technique like Principal Component Ananlysis (PCA) [8].

For robustifying the Autoencoder, we added Gaussian noise or randomly set
several individual data entries to 0, thus corrupting the data. This method of
adding noise to the training data before training the Autoencoder is known as
Denoising Autoencoder [12]. The advantages of performing the denoising task
are:

– It makes the algorithm robust to outlier/noise in the training data.
– Prevent identity mapping, i.e., merely copying the input to the output.
– Corrupting the input data results in better learning of the latent representa-

tion of the data in lower-dimensional space, resulting in better reconstruction.
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The loss function which is optimized during training the denoising autoen-
coder is:

Φ, Ψ = argminΦ,Ψ ||X − Z||2.
where Φ and Ψ are the encoding and decoding function respectively.

The reconstruction error between the original input X and the reconstructed
input Z is minimized in Denoising autoencoder like an autoencoder, but the
reconstruction is done from the latent representation of the corrupted input X ′

and not original the input X, which prevents the neural network from identity
mapping.

The geometric interpretation behind the Denoising Autoencoder’s robustness
is that the latent representation is the function of X ′ and not of X. The low
dimensional space in which the latent representation of X ′ lies needs to be closer
to the latent representation of X because better encoding of the latent repre-
sentation is necessary for better reconstruction. Ultimately, the loss function
optimized is the difference between the reconstructed input Z and the original
input X and not the corrupted input X ′. Learning the reconstruction from the
corrupted input guarantees robustness of the denoising autoencoder.

Anomaly Score Calculation and Threshold Determination. The anomaly
score (d) is calculated by

d = ||X − Z||2
where X is the test input data and Z is the reconstructed input (ΦoΨ)X.

In the threshold (Θ) determination phase, the Anomaly score (d) is calculated
for a set of normal data and the maximum anomaly score in this phase is the
threshold.

Θ = max{di}
where i ∈ [n + 1,m] where di is the anomaly score corresponding to each data
point, n is the number of data points used during learning the parameter of the
denoising autoencoder and m is the total number of data points used in the
training and threshold determination phase.

3.2 Localization of the Attack Points

The localization of the targeted sensor or actuator is necessary to understand
which set of sensors and actuators of the cyber-physical system is malfunctioning.
The affected zone or variables can be restored with a backup of the desired state,
making the cyber-physical system resilient.

Let Z be the reconstructed data point of the test data, and x̃ be the mean of
the reconstructed data points of the normal data points, which is a vector. The
targeted variable is identified by the following equation:

f =

√∑N
i=1 Zi − x̃

N − 1
k = argmaxm{fm}
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where f is a m ∗ 1 vector where m is the number of features. f contains the
standard deviation of each feature in the reconstructed test data point, and N
is the number of data points in the particular time window. k is the index of the
targeted variable.

4 Experiments and Results

4.1 Dataset

The SWaT dataset [7] {xi, yi}m
i=1, xi ∈ IRd, has m = 449919 and d = 51. The

vector xi consists of reading of actuators and sensors at ith timestamp. It is a
labeled dataset where yi is the label representing the state of the system either
under normal condition or under attack. Since our IDS is designed to work even
with unlabelled data, it does not require the labels. However, as a statistical
information of the dataset, the label identify that 88% of training data points
are normal and rest 12% are under attack. There are total 36 attack scenarios
in this dataset.

4.2 Training Phase

In the training phase of the denoising autoencoder, only data representing nor-
mal behavior is included. There are a total of 395298 data points belonging to
the normal class in the dataset. 70% of these data points, i.e., on 276710, are
utilized for training the denoising autoencoder. On another 15%, the denoising
autoencoder is validated. The rest 15%, i.e., 59000 data points, are used in the
evaluation phase to determine the false-positive rate of our IDS.

Fig. 1 and Fig. 2 is the 2-dimensional plot of the original data point and the
reconstructed data point by the denoising autoencoder after training. The root
mean squared error is 3.455.

Fig. 1. Original Data points after apply-
ing PCA for visualization purpose

Fig. 2. Reconstructed Data points after
applying PCA for visualization purpose



Robust Multivariate Anomaly-Based IDS for CPS 91

4.3 Performance Evaluation Phase

To evaluate our Intrusion Detection model’s performance, we used the attack
scenarios included in the SWaT dataset and the normal data points in the dataset
which are not included in the training phase of the model. The dataset contains
a total of 36 attack scenarios.

Attack Scenario 1
In attack scenario 1, the attacker’s intent is to overflow tank 1. The attacker tar-
geted the actuator MV-101 to remain OPEN and even after the water level rises
above the highest permitted level (800 mm). The level of the tank is indicated
by the sensor LIT-101. Figure 3 shows that the LIT101 value increases even after
reaching its maximum value.

Fig. 3. Sensor reading of
LIT101 when under attack

Fig. 4. Normalized ano-
maly score at each time step

Fig. 5. Standard devia-
tion of all the variables
during attack

The attack started from 1400 time step, and it is seen in Fig. 4 that there
was a sudden peak in the anomaly score above the threshold when the attack
started, from which it can be stated that our IDS is successful in detecting the
attack.

Figure 5 shows that the targeted variable (LIT101) shows the maximum devi-
ation among all the variables, enabling us to localize the attack points in real-
time.

For brevity we are not demonstrating all the 34 attack scenarios detected
successfully.

False Positive Rate
It is observed that there are 287 instances of false positives on 59000 test data
points. Therefore, the false positive rate is 0.4%.

Following Table 1 is the evaluation of denoising autoencoder based IDS
(DAE) on SWaT dataset.

Table 2 shows the AUC score of different anomaly detection techniques when
evaluated over SWaT dataset.
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Table 1. Performance metric of denoising autoencoder based IDS on SWaT dataset

Sensitivity Specificity Precision Accuracy F1-Score AUC Score

0.8847 0.9939 0.9951 0.9301 0.9367 0.9275

Table 2. AUC score of different anomaly detection methods on SWaT dataset in
normal setting

Method DAE (This paper) APAE [13] AE [9] PCA OC-SVM [14] MAD-GAN [4]

AUC 0.9275 0.9136 0.896 0.788 0.801 0.532

4.4 Robustness in the Presence of Adversary During Training

Outliers are introduced in the training data in the form of burst outliers at
random time points.

However, introducing outliers in the training data does not correspond to a
significant drop in the performance of denoising autoencoder based IDS (DAE).
In contrast, it is observed that the presence of outliers in the training data signif-
icantly diminishes the performance of Autoencoder based IDS without denoising
(Table 3).

Table 3. Performance metric comparison between Denoising Autoencoder and Autoen-
coder in the presence of outliers in the training data

Method Sensitivity Specificity Precision Accuracy F1-Score AUC score

DAE (This paper) 0.8359 0.9931 0.9947 0.8975 0.9085 0.908

AE 0.5930 0.6655 0.8163 0.6137 0.6870 0.605

5 Deployment of DAE in Real Time

The proposed IDS is deployed within the host, which runs the SCADA soft-
ware where the IDS can read the sensors and actuators reading in real-time at
each timestamp from the historian server. The memory size needed to store the
denoising autoencoder model developed for the SWaT dataset is 68.6 kB. The
time taken to reconstruct data and compare it with the pre-defined threshold
is 0.4 ms. The general-purpose machines in which the SCADA software operates
have a RAM of 256 MB. Therefore, the proposed IDS is feasible to be deployed
in real infrastructure within the SCADA host to detect attacks in real-time.

6 Conclusion

In this paper we proposed a multivariate robust anomaly-based intrusion detec-
tion system (IDS) that is resistant to outliers, accurate in detecting attacks, has
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low false-positive rates, and can identify the targeted sensor/actuator so that the
targeted variables can be amputated and restored thus making the critical infras-
tructure resilient. Compared with other existing anomaly detection techniques
developed in normal settings, i.e., no outlier is present in the training data, our
proposed denoising-based IDS achieved the highest AUC score of 0.9275.
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Abstract. Password strength meter service enables users to assess
strength of the passwords and assist users in setting stronger passwords
for their accounts. However, passwords are private to the users and
may contain sensitive information about them. Hence, it is important
to query password strength meter service in a privacy preserving man-
ner. To address this, we propose fully homomorphic encryption (FHE)
based privacy preserving password strength meters constructed using
widely studied Markov model and Probabilistic Context Free Grammar
(PCFG) model. These privacy preserving strength meters allow clients
to securely evaluate strength of password by providing end-to-end query
privacy to the users. The primitive operation in these constructions com-
prises of search operation. However, search over large datasets in FHE
domain is expensive and induces worst case complexity. Therefore, our
constructions focus on optimizing search space to suit FHE domain that
improves the efficiency of privacy preserving password strength meter.
Our construction achieves practical performance with accurate guessing
probabilities.

Keywords: Markov model · PCFG model · Privacy · Fully
homomorphic encryption · Password strength.

1 Introduction

Passwords are most widely used means of authentication and are considered to
be most convenient form of authentication for near future [1]. Since end-users
use many passwords on a daily basis, they tend to keep easier passwords with
minor changes across different accounts so that they can remember them easily.
However, keeping passwords with meaningful words or names etc. can make
it easy for an attacker to guess/crack the password [2]. Usually, this kind of
guessing techniques [3–5] rely on probabilistic data distribution models derived
from breached password databases [6]. Retrospectively, these guessing models
can also be used to analyze strengths of passwords too i.e., higher the guessing
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probability, lesser the strength of a password. These models can be leveraged
to develop password strength meters that can be used by users to assess the
strength of the passwords they create.

Passwords are sensitive for users and should be kept private, even from pass-
word strength meters. One leaked password might give away the pattern which
users use to create many other passwords. Hence, a password strength meter
has to be queried in a privacy preserving manner to make sure server doesn’t
learn anything about user’s password. We choose fully homomorphic encryption
(FHE) [7] to develop privacy preserving password strength meters. FHE enables
computations on encrypted data wherein the encrypted password can be sent to
the password strength meter and enable operations on the encrypted password.

Our Contribution: Most notable probabilistic password strength meters in lit-
erature are based on Markov model [8,9] and Context free grammar (CFG) [10].
In this paper, we aim to provide end-to-end query privacy for Markov and
CFG based strength meters using FHE. This enables clients to send encrypted
password to the server for strength analysis and obtain encrypted password
strength scores back. Most important operation in these strength meters is search
over a dictionary of key-value pairs (a sub-string and corresponding guessing
probability). However, a major limitation of FHE is inefficiency to search over
large datasets [11]. To address this, we present modified optimized models with
reduced search space. We provide an empirical analysis of how this optimization
introduce trade-offs in terms of privacy and provide an alternative mechanism
of including honey passwords to mitigate this. Furthermore, we also present a
privacy preserving index search approach that significantly improves the search
functionality.

Related Work: Most recently, [12] explores use of FHE to build privacy pre-
serving strength meters based on NIST standard password strength metering.
Authors study performance of primitive operations involved in password strength
analysis. Search is the primitive component of any password strength meter and
is significant to making password strength meters practical. [12] describes “Dic-
tionary Checker”, a hash-based search primitive to search for entries in tables
stored on the server. This involves sending the plain hashes to server along with
ciphertexts. Additionally, the search method might result in false positives in
search, which can be avoided by using appropriately secure hash function with
larger output. These becomes a significant overhead on the server side.

These password strength meters are not suitable for encrypted domain due
to the computational complexity involved with encrypted search. Complexity of
the search operation in encrypted domain is always worst-case, O(n). Therefore,
search space optimization i.e., reducing “n”, is crucial in making the encrypted
password strength meters practical. We propose search space optimizations to
these existing password strength meters, making them practical to use in FHE
domain. Also, we leverage a much simpler and efficient privacy preserving index
search that is error-free and uses packed ciphertexts when compared to Dictio-
nary checker [12]. All parameters related to FHE are set to give 120-bit security
whereas [12] considers 80-bit security.
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2 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) [7], considered as holy grail of cryptogra-
phy, enables computations on encrypted data without the need for decryption,
thereby preserving privacy of the data. For a set of FHE ciphertexts corre-
sponding to a set of plaintexts, any arbitrary function can be evaluated without
revealing the plaintexts. FHE supports addition and multiplication as primitive
operations and any arbitrary computation can be realized using these operations.

Enc(a+b)=Enc(a) + Enc(b) (1) Enc(a*b)=Enc(a) * Enc(b) (2)

To improve the efficiency of homomorphic operations and to reduce space
complexity, one can leverage homomorphic batching technique [13] where mul-
tiple plaintexts are batched into a single ciphertext, enabling operations to be
performed on component wise plaintexts in Single Instruction Multiple Data
(SIMD) manner.

Of several FHE schemes known in literature, we choose CKKS [14] scheme
implementation from HEAAN [15] library because of its support for floating
point arithmetic over encrypted packed ciphertexts [16].

2.1 Privacy Preserving Search

Privacy preserving search function exhaustively searches for a given encrypted
key string Enc(σ) in unencrypted look up table φ (with key-value pairs {σ, pσ})
and outputs corresponding encrypted score value Enc(pσ). Each key x in look
up table φ, is encoded using binary encoding as a bit l-bit string {x1 . . . xl}. The
input Enc(σ) is encoded as an encrypted bit string {Enc(y1) . . . Enc(yl)}. Note
that, in FHE domain, binary encoding of plaintext is efficient for comparison
dependent applications such as sorting and searching [17].

For each key x in table φ, comparison with encoded encrypted bit string
{Enc(y1) . . . Enc(yl)}, is given by

Enc(comp)i =
∏

k∈[l]

(Enc(yk) ⊕ xk ⊕ 1) (3)

Similarly, the encrypted probability of matched key is given by:

Enc(pσ) =
|φ|∑

i=1

(Enc(comp) ∗ pi) (4)

As we need to iterate exhaustively through the entire table, the complexity
of privacy preserving search is worst case, O(n), where n is size of the list.
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2.2 Privacy Preserving Index Search

Privacy preserving index search [18] retrieves value at index i in the table of
key-value pairs φ (string, score), without actually comparing the target key
with keys in the table. The order of keys in the table is assumed to be public
(or shared to the client) and values are private to the server. On client side, for
alphabet of size Σ, we generate all possible combination strings of length Σ!.
We then generate a vector of same size (Σ!) and set value in the target index
to 1 and remaining to 0. We encrypt this vector into a batched ciphertext and
send it to the server. On server side, we multiply this batched ciphertext with
scores vector in the table. The resultant vector will have the required score at
the target position and the other position will have encryptions of zero. The
target score can be retrieved by rotating the packed ciphertext. .

1. Consider n-grams,
score table for alphabet
Σ = {a, b, c}:

abc Enc(p1)
acb Enc(p2)
bca Enc(p3)
bac Enc(p4)
cab Enc(p5)
cba Enc(p6)

2. Packed cipher-
text to retrive prob-
ability of n-gram
acb

⎡

⎢⎢⎢⎢⎢⎢⎣

Enc(0)
Enc(1)
Enc(0)
Enc(0)
Enc(0)
Enc(0)

⎤

⎥⎥⎥⎥⎥⎥⎦

3. Multiplied
packed ciphertext
with packed score:
⎡

⎢⎢⎢⎢⎢⎢⎣

Enc(p1)
Enc(p2)
Enc(p3)
Enc(p4)
Enc(p5)
Enc(p6)

⎤

⎥⎥⎥⎥⎥⎥⎦
×

⎡

⎢⎢⎢⎢⎢⎢⎣

Enc(0)
Enc(1)
Enc(0)
Enc(0)
Enc(0)
Enc(0)

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

Enc(0)
Enc(p2)
Enc(0)
Enc(0)
Enc(0)
Enc(0)

⎤

⎥⎥⎥⎥⎥⎥⎦

Enc(p2) can be fetched into first slot of the packed ciphertext by performing
rotations.

3 Privacy Preserving Password Strength Meters

In this paper, we consider Markov model and PCFG model for computing pass-
word strength in encrypted domain. The alphabet set we considered for our
models consists of 68 elements (26 lowercase letters, 10 digits and 32 special
characters), in contrast to original dataset which has 95 elements (26 upper-
case letters, 26 lowercase letters, 10 digits, 32 special characters and 1 space).
Markov and PCFG models rely mostly on search operation. As the search oper-
ation in encrypted domain is an exhaustive worst-case search, larger alphabet
size will increase the number of potential passwords, associated n-grams, etc.,
thus, increasing the search space. Hence, to enable efficient password strength
meter in encrypted domain, we consider smaller alphabet size, with 68 alphabets
by replacing uppercase characters with lowercase letters [9,10]. Note that this
makes probability calculation to be conservative by assigning higher guessing
probability for a password enabling users to be more cautious while selecting
passwords.

For experiments, we trained password strength meters on RockYou dataset
(with count) [6] which contains more than 14 Million entries. All experiments
were run on a standard desktop with Intel Xeon Gold CPU clocked at 3.1 Ghz,
16 GB RAM and run on 4 cores. Training Markov and PCFG models have taken
30 mins and 7 h respectively and is done on plain data.
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3.1 Privacy Preserving Markov Model

For any string, the probability of a particular character depends on the previous
characters in that string. The Markov Model utilizes these conditional proba-
bilities to compute the guessing probability of the whole string. Given a string
represented as a sequence of characters s1 . . . sm, the guessing probability of the
string is given by:

P (s1 . . . sm) =
m∏

i=1

P (si|si−n+1 . . . si−1) (5)

In this paper, we compute information scores from probabilities to score
strength of a password as [9,10].

H = − log(p) (6)

In FHE, multiplication of ciphertexts is expensive and usually complexity
of a computation is determined by the multiplicative depth. Using probabilities
for scoring will increase multiplication depth since all probabilities have to be
multiplied to get the final score of the password. Hence, using information scores
is efficient as it requires adding (instead of multiplication) all the information
scores for n-grams or variables to compute overall score of a password. Moreover,
the probabilities can be very small values and can incur additional scaling over-
heads for processing in FHE. Also, floating-point arithmetic in FHE can only
serve efficiently up to a certain precision [19]. Beyond a threshold, error increases
significantly resulting in inaccurate guessing probabilities for passwords.

We assume a client-server model in which client delegates a password strength
computation to a server and obtains password score as result. On the server,
using the breached password dataset, we build a Markov model where each n-
gram has an associated score generated based on the frequency of that n-gram
in the passwords. The server generates n-grams for each of the entry, upto some
suitable value of n. For any queried password x, the scores of the corresponding
sub-strings (n-gram, a sub-string of length n) are fetched from corresponding
n-gram tables and added to result in the guessing score of the password x.

As the n value increases, size of tables becomes huge (for example, for an
alphabet size 68, size of 3-g table is 683), hence the search space also increases. As
search in encrypted domain induces worst case complexity, hence, it is important
to reduce search space.

To reduce the search space, for n-gram tables where n ≥ 3, we sub-divide
them into 3-g tables based on the structure of n-gram to get a set of indepen-
dent tables. This reduces the search space, thereby improving algorithm effi-
ciency. Though the n-grams of the password that are sent to the server are
encrypted, the corresponding structures are sent in plain to enable server to
search in the corresponding structure tables. Considering the case of n = 3, the
original Markov model will have three tables namely 1-g, 2-g and 3-g, where
in each table will have the n-grams along with scores associated with them.
The query for 1-g and 2-g are manageable in encrypted setting, since table
size is 68 and 682(= 4624) for 1-g and 2-g respectively and hence they are not
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Table 1. Passwords distri-
bution for RockYou dataset
using Markov model

Password-type Threshold % in dataset

Very-weak ≤20 0.90

Weak 20–30 27.66

Medium 30–40 44.42

Strong 40–50 17.97

Very-strong ≥50 9.03

Table 2. Passwords distribution for Rock-
You dataset using PCFG and proposed
model

Password-type Original PCFG Proposed method

Threshold Percentage Threshold Percentage

Very-weak ≤20 1.21 ≤25 6.93

Weak 20–30 65.34 25–40 59.24

Medium 30–40 23.05 40–55 24.86

Strong 40–50 6.99 55–70 6.586

Very-strong ≥50 3.4018 ≥70 2.35

modified. The 3-g table however is partitioned based on the structure of 3-g.
This gives us 27(33) tables, one each for a permutation of structures L,D,S,
from L3 to S3. Table 1 gives distribution of passwords in RockYou dataset as
per Markov model using threshold based on scores. We divide passwords into
5 classes {V ery − weak,Weak,Medium, Strong, V ery − Strong}. The scoring
remains same as the original Markov model, only search space is reduced by
dividing 3-g tables into smaller tables using structure information.

The operational flow of the client server model of new Markov strength meter
is described as follows:

– Client extracts n-grams {σ1, . . . σk} from input password x where k is the
number of n-grams for a given string. All the uppercase letters and converted
to lowercase letters.

– Using his publickey, pk, client forms a batched ciphertexts for each of the
n-grams using the privacy preserving indexing search described in Sect. 2.2
and send them to server. For n-grams with n ≥ 3, the client also sends their
corresponding plain structures.

– For 1-g and 2-g ciphertexts, the server performs index search on 1-g and 2-g
table and results in packed ciphertexts that consist of encrypted scores. For
n ≥ 3, the server performs index search for n-grams with corresponding n-
gram tables based on their structures. The server then rotates and adds slots
of these resultant packed ciphertexts to obtain score to the first slot of the
ciphertexts.

– These packed ciphertexts with scores in the first slot are homomorphically
added to obtain final encrypted score of the password.

– The final encrypted score is sent back to the client.

As we are sending structures of n-grams in plaintext to the server, there is
some leakage of password information to the server. To mitigate this, we obfus-
cate n-grams of the actual password by combining them with dummy passwords
(honey passwords). The honey structures obfuscate the actual structures present
in the original password. The computation on server homomorphically evaluates
only the score of the actual password while nullifying the scores of honey pass-
words, without server being able to differentiate between honey or actual pass-
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words. For our experiments, we have selected honey passwords randomly from
RockYou dataset. Table 4 shows performance of query with honey passwords.

(a) Optimized Markov Model (b) Optimized PCFG model

Fig. 1. Optimized Markov and PCFG models

3.2 Privacy Preserving PCFG Model

A Probabilistic Context-Free Grammar (PCFG) consists of probabilities
assigned to the production rules. The probability of an input generation is the
product of the probabilities of the production rules contained in that input.
These probabilities can be viewed as parameters of the model. The soundness of
probabilistic grammar is constrained by context of its training dataset.

To build a PCFG model for a password strength analysis model, consider an
example password, “password123” . Here structure will be L8D3. L8 is a non-
terminal indicating lowercase alphabets followed by its count I.e. 8. Similarly,
next non-terminal is D3 which represents digits followed by its count which is
3. This structure of the password is now assigned to a start symbol as “S− >
L8D3” and this is added as rule to the grammar with count as 1. Then a new rule
is added to grammar to define the non-terminal L8 as “L8− > password” and a
rule for non-terminal D3 as “D3− > 123” with count as 1 for both. Now server
processes all the passwords in similar way and if the structure is already there in
the grammar then the count is simply incremented, otherwise a new rule is added
in the grammar. Once the server completes building the model, the rules with the
same non-terminal are bucketed as one table. The probability for each entry in
the table is calculated as its respective count divided by total of counts of all the
entries in the table. As in the case of Markov model, we calculate corresponding
scores using − log(p). Thus, server obtains the final grammar which acts as a
model for calculating strength of the password.

For any queried password, its structure is first extracted and it is then split
into variables based on this structure. These variables and structures are queried
in corresponding tables stored on the server to retrieve their scores. These indi-
vidual scores are aggregated to obtain the final score of the password.
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Table 3. Query performance for
PCFG model with Honey pass-
word

Query Client side Server side

Time Memory Time Memory

(s) (MB) (s) (MB)

1-password + no Honey 0.2 30 4.2 35

1-password + 4-Honey 1.87 287.7 25.2 390

1-password + 9-Honey 2.46 383.1 36.13 499.9

1-password + 14-Honey 3.6 522 54.9 656.7

1-password + 19-Honey 4.78 658.6 72.2 810.7

Table 4. Query performance for
Markov model with Honey pass-
word

Query Client side Server side

Time Memory Time Memory

(s) (MB) (s) (MB)

1-password + no-Honey 0.37 49 6.4 52

1-password + 4-Honey 3.7 579.8 55.3 819.7

1-password + 9-Honey 5.6 855.6 85.5 1095.7

1-password + 14-Honey 7.5 1104.3 113.6 1344.3

1-password + 19-Honey 9.1 1283.7 135.7 1523.7

In case of encrypted domain, since the search is exhaustive, it becomes expen-
sive to search over huge variable tables. For example, an L8 table could poten-
tially have at-most 268 entries and an exhaustive search can be tedious. We can
improve the efficiency of search operation by reducing the size of these variable
tables. In order to decrease the size of variable tables, we generate intermediate
3-g tables (as in n-gram model 3.1) for each variable table along with the scores.
For usual PCFG case, the size of variable table is at-most 32k (for a structure
with k special characters) where k is the size variable length of that table (For
example, S8 table will have at-most 328 entries). By generating n-gram tables
with n = 3, the size of table is reduced at-most 323 (for a structure k special
characters). To get the probability of a string corresponding to a variable, we
generate 3-g for the string, look up the scores in intermediate 3-g tables and add
scores of each 3-g to obtain score of the whole variable. It is important to note
that in this approach, the scores of the 3-g generated from variable table are
higher, which results in higher overall guessing probability of the password. This
will result in conservative scoring for a given password which is an advantage to
the user.

The operational flow of the client and server (Fig. 1b) is as follows:

– Client extracts structure of the input password and splits the password into
variables and corresponding strings based on the structure. All the uppercase
letters and converted to lowercase letters.

– For each of the strings, if the length is greater than 3, then 3-g are extracted
from the string.

– Using publickey, pk, client forms a batched ciphertext for each of the n-grams
using the privacy preserving indexing search described in Sect. 2.2 and send
them to server along with their plain structures.

– For each of the n-grams, the server computes privacy preserving index search
of the packed ciphertext with server’s n-gram table of corresponding structure.
The server then rotates and adds slots of these resultant packed ciphertexts
to obtain score to the first slot of the ciphertexts.

– These packed ciphertexts with scores in the first slot are homomorphically
added to obtain final encrypted score of the password.

– The final encrypted score is sent back to the client.
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Original PCFG model is first trained on RockYou dataset to get two types
of tables (i) structure table (ii) variable tables. Since we provide structure infor-
mation along with variables query ciphertexts, no separate query ciphertext is
needed for structure table. Variable tables can be very large, hence in our pro-
posed method we divide each variable table into smaller tables of 1-g, 2-g and
3-g using the Markov model on top of the variable table (here we are using n =
3). Table 2 depicts password distribution using the original PCFG and proposed
method. In Table 2, threshold values are different for original PCFG and pro-
posed method because of the following reasons:(1) Minimum score for a password
using PCFG method is 6.9 and proposed method is 8.3. (2) Median of scores for
passwords using PCFG method is 25.68 and proposed method is 35.7. We infer
that this is because of additional 1-g and 2-g generated for each variable table,
hence the rise in threshold values. We note that our scoring mechanism is conser-
vative and helps users to choose stronger passwords. Table 3 shows performance
of query with honey passwords. As mentioned in Sect. 3.1, we obfuscate vari-
ables of the actual password by combining them with dummy passwords (honey
passwords). The honey structures conceal the actual structures present in the
original password.

4 Conclusion and Future Work

In this paper, we constructed privacy preserving password strength meters by
optimizing widely studied n-grams based Markov model and PCFG model. We
modelled our solution to provide end-to-end query privacy for the users using
fully homomorphic encryption. As deploying existing password strength meters
as is in FHE domain exerts computational overhead, we optimize these models
to suit the operational model of FHE and improve efficiency. Since search is
the primitive operation of both these models. To improve the search efficiency,
we also leverage privacy preserving index search that significantly improves the
performance. Moreover, to improve efficiency of search in encrypted domain, we
perform optimizations to reduce search space by revealing certain information
(structures) to the server. We mitigate this by using honey passwords to conceal
structure information. As part of future work, we plan to explore privacy pre-
serving computation of machine learning based password strength meters [20].
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Abstract. Water stress is one of the main environmental constraints
that directly disrupts agriculture and global food supply, thus early and
accurate detection of water stress is necessary in order to maintain high
agricultural productivity. Using an image dataset collected during a ded-
icated experiment, we propose a new method for water stress level clas-
sification using deep learning and digital images only. Classification is
performed in two stages, using a Convolutional Neural Network for spa-
tial feature extraction and a Long Short-Term Memory for temporal fea-
tures extraction. Outperforming all other methods examined, our model
is able to classify five different levels of water stress with 91.7% accuracy
and Mean Absolute Error of 0.1, and to detect changes in water stress
levels during the day.

Keywords: Water stress · Convolutional Neural Network · Long short
Term Memory · Hierarchical classification

1 Introduction

Water limitation is one of the main environmental constraints that adversely
affects agricultural crop production around the world. Precise and rapid detec-
tion of plant water stress is critical for increasing agricultural productivity and
water use efficiency. Numerous studies conducted over the years have attempted
to find effective ways to correctly recognize situations of water stress in order
to determine irrigation regimes [1,5,10,11,14,16]. Water stress detection is cur-
rently done by various methods that are not ideal, as these methods are often
very expensive, destructive and cumbersome. Image processing is an alternative
way to visually recognize water stress levels. Such analysis is non-destructive,
inexpensive and allows examining in an automatic way the spatial variability of
stress level under field conditions.
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In recent years, there has been significant progress in the field of Deep Neu-
ral Networks (DNN), a sub-field of Machine Learning (ML) which has shown
excellent performance in many areas, including computer vision. Convolutional
Neural Network (CNN), a specialized type of DNN designed for images, became
the de facto leading framework for analysis of visual data thanks to its great
performance and its ability to learn relevant features automatically, compared
to classic ML methods where features are hand-engineered. As a result, many
DNN models for agricultural applications have been developed, including models
for water stress detection. Some of them [2–4,8,17,20] use State-of-the-Art CNN
frameworks, such as ResNet [6] and AlexNet [12], for spatial feature extraction
and classification of different water stress levels of various plants photographed
continuously. Few of them [9,13,18,19] combine tools for temporal analysis of
plants images, such as Long Short-Term Memory (LSTM) [7] and Optical Flow,
which consider the plants status over time.

While most of these studies have reported excellent results, some of them have
describe a common dataset splitting, in which images are randomly divided into
train and test sets although plants images taken every few minutes, thus resulting
in information leakage as both train and test sets consist of similar images. In
addition, some studies have used images of plants taken from different distances,
or whose unique background has not been removed. Using these images for water
stress prediction can cause biased results, as the non-uniform distance or non-
uniform background is a unique identifier of each treatment group.

In this paper we propose a new method for water stress level classification
in corn plants using deep learning and digital images only, while utilizing spa-
tial and temporal features of the plants’ images. The classification is performed
in two stages to maintain the hierarchical structure of water stress levels, and
to simplify the classification task. Several countermeasures were applied to pre-
vent any information leakage, as reported earlier, and the proposed model was
evaluated using two datasets.

To the best of our knowledge, this work is the first to take advantage of
the ordinal structure of water stress levels, and the first to use a hierarchical
structured DNN model for water stress level classification.

2 Proposed Approach

2.1 Dataset

For this study, images were collected during a three-month experiment that
have been conducted in a research greenhouse at the Sede Boqer campus of
Ben-Gurion University of the Negev, between October to December 2019. In
this experiment, five groups of corn that were differently irrigated to induce five
different levels of water stress, were examined. In this document we refer to
these groups as groups A-E, where group A has the poorest irrigation treatment
and group E has the best irrigation treatment. Each group was photographed
continuously by a web camera located two meters from the center of each group,
such that in each image four clusters of corn plants were observed (see Fig. 3).
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As an exploratory data analysis, the average image of each treatment group was
calculated by averaging the value of each pixel across all relevant observations, as
presented in Fig. 1. Several visual differences between the groups can be observed
(especially between groups A and B compared to the other groups), and general
group characteristics can be learned from this statistic feature. As detailed in
Sect. 3, this analysis can explain some of the model results.

To maintain uniformity and avoid information leakage as introduced earlier,
segmentation was applied to all images in order to remove any characteristic that
is not related to the plant itself. Segmentation was done using Otsu’s method
[15], which is commonly used to perform automatic image thresholding.

(a) (b)

(c) (d)

(e)

Fig. 1. Average images of groups A-E, represented by (a)-(e) respectively. Calculated
by averaging the pixel values across all observations of each group.

2.2 Proposed Method

Unlike previous methods, the proposed model is based on two distinctions: 1)
Water stress level classification should not be considered as a standard clas-
sification task, as water stress levels hold an ordinal relationship, thus form an
ordered set (the error of classifying a plant from group A to group B is less severe
than the error of classifying it to group D). 2) Differences between well irrigated
groups to ill irrigated groups might eclipse the subtle differences between sim-
ilar irrigation treatments, and should be treated with a “divide and conquer”
approach to increase attention to details.
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Utilizing the above two distinctions, the proposed model consists of two clas-
sification stages. In the first stage, given an image of a plant and its history
(represented by a sequence of images, as detailed below), the model performs
a general classification into one of two options -“good irrigation treatment” or
“poor irrigation treatment”, each represents about half of the groups in the
dataset.

In the second stage, the model performs a specific classification into treat-
ment groups, given the classification results of the first stage. For example, a
plant classified in the first stage as a plant with poor irrigation treatment, will
be classified in the second stage into one of the groups A, B or C. The hierarchical
architecture allows gradual image classification, thus narrows the model’s sam-
ple space at each stage to facilitate the final classification. Figure 2 summarizes
the model structure.

Assuming that water stress cannot be optimally detected by considering a
plant’s current state only, the proposed model predicts the water stress level of
a plant given its history. Formally put, the model predicts y(xt|xt−τ , xt−2τ , ...,
xt−S∗τ ) instead of y(xt), where y is the label (group) of image x at time t, given
a sequence of images of length S taken at different days.

Both classification stages are performed using a classifier (“CLS” in Fig. 2)
consisting of two main modules – a CNN module and an LSTM module. The base
network of the CNN module, ResNet50 [6], was retrained with ImageNet weights
as initial weights to extract spatial features and create various feature maps. Then,
these feature maps are processed by the LSTM module to extract latent tempo-
ral features of the sequence. The LSTM’s output is then processed by two fully-
connected layers, where the latter is used for final prediction. All three classifiers
(one in the first stage, two in the second stage) have the same structure, but each
is completely independent and learns different features relevant to its task.

3 Results

For model evaluation and to avoid biased conclusions, we have used a cross-
validation technique and averaged the results; each image in the dataset was
split into 4 separate images, where in every round, a different set consisting of
three of the four split images was selected for training, and the remaining set
was used for validation (see Fig. 3). This division ensured robustness to bias, as
there were no images of the same plant across sets, thus prevented information
leakage, in contrast to previous studies.

The proposed hierarchical model resulted in 91.7% accuracy and a Mean
Absolute Error (MAE) of 0.1 on average, with 96.3% success in the first stage,
and 95.1% success in the second stage. Figure 4 shows the average accuracy
of each group in both stages. In total, groups A and B yielded the highest
classification score due to the striking visual differences between them and the
other groups (see Fig. 1). Group C, an intermediate group which is more visually
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Fig. 2. Proposed two-stage model. “CLS” is the CNN-LSTM classifier. All three clas-
sifiers have the same structure, but each is completely independent.

Fig. 3. Example of image splitting to train and test sets. This division ensured robust-
ness to bias, as there were no images of the same plant across sets.

similar to groups D and E (see Fig. 1), had the lowest accuracy in the first
stage, but the highest accuracy in the second stage. Group D, on the other
hand, has the lowest overall accuracy resulting from a low success rate in the
second classification stage. The low accuracy is mainly due to misclassification
of samples of the rightmost plant in the group (which visually differs from the
rest of the group, see Fig. 1d).

Figure 5 shows the average error rate of each group for each of the experimen-
tal days tested, indicating a general trend of error reduction as the experiment
progresses. The error values are not uniform for all test sets, thus some fluctu-
ations can be observed. (in Fig. 1, for example, one can see that the rightmost
plant in group A is visually different from the rest of the group. Therefore, when
this plant is used as a test set, the average error increases slightly on some days).
“Exceptional” values are due to extreme lighting changes resulting from winter
weather.
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Fig. 4. Classification results of each stage of the model, per group.

Fig. 5. Average error rate (1 − accuracy) for each of the experimental days tested.

Figure 6 shows a comparison between the classification results of different
methods reviewed at the beginning of this work, in terms of accuracy and MAE.
As Fig. 6 presents, the proposed model outperformed all other mentioned meth-
ods, including ML-based methods (using the Light Gradient Boosting Machine
algorithm and the features described in [21], with and without time-dependent
features), CNN-only-based methods (using the ResNet50 architecture as base
network) and CNN-LSTM-based methods, and managed to accurately classify
groups that other models failed to classify. Notice that this improvement is due
to a combination of the pre-mentioned classifier together with the hierarchical
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structure of the proposed model. As mentioned in Sect. 2.2, the natural hierar-
chy of the data is highly valuable, and ignoring those class relationships could
reduce performance.

Conversely, a hierarchical classification naturally has a larger capacity (three
CNN-LSTM classifiers, in our case, compared to one), while flat classification
methods are simple and have a lower capacity. As usual, there is a trade-off
between the model’s capacity and its accuracy.

(a) (b)

Fig. 6. (a) Average accuracy of all tested methods per group. (b) Average MAE.
LGBM-T refers to LGBM algorithm (ML-based method) with time-dependent charac-
teristics, CNN-LSTM-H refers to the proposed hierarchical model.

The trained model’s ability to detect changes in plant water status during
the day was also examined, and validated using a different dataset containing
images of corn plants taken at May-June. The average plants’ status predicted
by the model is presented in Fig. 7. As clearly visible, several changes in the plant
water status were detected by the model during the day, when the irrigation levels
predicted at noon were significantly lower than those predicted in the morning
and evening. The changes in plants’ water status predicted by the model are
consistent with known biological changes – at noon the weather is significantly
warmer than morning and evening hours, thus the transpiration rate increases
and the amount of water available to the plant decreases, causing a temporary
water stress situation. The model was able to predict these changes from images
of an entirely different experiment, confirming its reliability and ability to detect
changes in water stress levels. Note that it is very unlikely that the above results
are due to lighting changes only, since in summer the lighting is relatively uniform
throughout the day, and a number of augmentation methods have been adopted
to neutralize the effect of lighting on the model results.
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Fig. 7. Average predicted irrigation treatment of corn images taken from another
experiment, during the day hours. All images were taken from the same treatment
group during the mentioned experiment.

4 Conclusions

This study constitutes a proof of concept for the possibility of detecting water
stress in plants using digital images only, as this study aims to automate the
process of water stress identification, while keeping low equipment costs. Out-
performing all other methods examined throughout this work, the proposed hier-
archical model consisted of a CNN-LSTM classifier, was able to classify five dif-
ferent levels of water stress with 91.7% accuracy and MAE = 0.1, in exchange
for larger model capacity. Using the trained model to detect changes in a plant’s
water stress levels during the day using images from another experiment showed
remarkable performance, consistent with known biological changes. These find-
ings indicate the ability of the proposed method to successfully detect changes
and classify water stress levels of corn plants. Since it does not require spe-
cial architecture beyond splitting the problem into smaller parts, a hierarchical
model may also be useful for other plants and other types of stress and diseases.

For future work, we suggest examining additional photography angles, specif-
ically photographing the canopy of the plant from above, since studies indicate
that this angle is more indicative of water stress. In addition, plants can be exam-
ined under real field conditions, and additional crops could be investigated.
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Abstract. We propose Meshcash, a protocol for implementing a per-
missionless ledger (blockchain) via proofs of work, suitable for use as the
underlying consensus mechanism of a cryptocurrency. Unlike most exist-
ing proof-of-work based consensus protocols, Meshcash does not rely on
leader-election (e.g., the single miner who managed to extend the longest
chain). Rather, we use ideas from traditional (permissioned) Byzantine
agreement protocols in a novel way to guarantee convergence to a con-
sensus from any starting state. Our construction combines a local “hare”
protocol that guarantees fast consensus on recent blocks (but doesn’t, by
itself, imply irreversibility) with a global “tortoise” protocol that guar-
antees irreversibility. Our global protocol also allows the ledger to “self-
heal” from arbitrary violations of the security assumptions, reconverging
to consensus after the assumptions hold again.

Meshcash is designed to be race-free: there is no “race” to generate
the next block and honestly-generated blocks are always rewarded. This
property, which we define formally as a game-theoretic notion, turns out
to be useful in analyzing rational miners’ behavior: we prove (using a
generalization of the blockchain mining games of Kiayias et al.) that race-
free blockchain protocols are incentive-compatible and satisfy linearity of
rewards (i.e., a party receives rewards proportional to its computational
power). Because Meshcash can tolerate a high block rate regardless of
network propagation delays (which will only affect latency), it allows
us to lower both the variance and the expected time between blocks for
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honest miners; together with linearity of rewards, this makes pooled min-
ing far less attractive. Moreover, race-free protocols scale more easily (in
terms of transaction rate). This is because the race-free property implies
that the network propagation delays are not a factor in terms of rewards,
which removes the main impediment to accommodating a larger volume
of transactions.

We formally prove that all of our guarantees hold in the bounded-
delay communication model of Pass, Seeman and shelat, and against a
constant fraction of Byzantine (malicious) miners; not just rational ones.

Keywords: Blockchain · Byzantine agreement · Consensus ·
Scalablility

1 Introduction

The problem of how to achieve a distributed consensus is one that has been
widely studied, both as a theoretic question and as a practical matter. In the
classical formulation of the problem (and the one most studied), the set of par-
ticipating parties are fixed in advance and known to each other. This is a good
model for the problems that motivated Lamport, Shostak and Peace in their sem-
inal paper [14]—how a small number of servers, some of whom may be faulty,
can still provably reach agreement.

Several decades later, with the advent of cryptocurrencies, we have a new
motivation achieving distributed consensus. All currencies, and cryptocurrencies
among them, inherently require consensus—if Charlie believes that Alice paid
Bob, then Dana and Eve should not believe a contradicting claim.

The cryptocurrency setting doesn’t fit neatly into the classical Byzantine
agreement model. First, requiring every participating party to know every other
party in advance is not feasible at “Internet Scale”. In addition, without a trusted
third party, the problem of identity verification on the Internet is notoriously
hard. Together with the impossibility of Byzantine agreement without an honest
majority, it seems that achieving provable consensus is impossible in this setting.
Surprisingly, there is a way to sidestep these barriers—by changing the model to
let participants prove that they possess scarce resources. Indeed, this is precisely
what Nakamoto did with the invention of Bitcoin [20].

1.1 Consensus, Money, and Contracts

The technical descriptions of cryptocurrencies usually specify one intricate pro-
tocol that “solves” multiple problems at once: how to agree on history, what
the currency can do (what is a transaction/smart contract) and the currency’s
monetary policy (e.g., how the coin supply is controlled). However, the solutions
to these problems are, in many ways, independent.
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We can separate the building blocks of a cryptocurrency intro three layers:

1. Ledger: The ledger layer is responsible for generating a consensus on an
“append-only ledger”. The ledger maintains a list of transactions: the protocol
specifies how someone who attaches to the network can retrieve this list.
Although different parties might get slightly different lists, the ledger protocol
should guarantee several properties to be useful for a cryptocurrency:

– Safety (consensus on transaction order): all honest parties must agree on
the set of transactions that appear in the ledger and their order. There
may be disagreement about recent entries in the ledger, but as we look
further back in history the probability of disagreement should go down
exponentially.

– Irreversibility : the ledger cannot be modified—only extended with addi-
tional entries (as with safety, irreversibility is only required to hold for
“sufficiently old” transactions).

– Liveness: the ledger grows over time (i.e., an adversary can’t prevent some
new transactions from eventually being added to the ledger).

– Fairness: the fraction of honest transactions in the ledger is proportional
to the accumulated resources of the honest users. In particular, attackers
cannot force the ledger to include only their own transactions.

This notion of ledger is equivalent to what Pass, Seeman and shelat formally
define as a blockchain [21].

2. Consensus Computer: The consensus computer [17] is a state machine
responsible for transforming an ordered list of transactions into a useful
“state”. At this layer we can define coins, accounts and contracts, and specify
how transactions can manipulate them.

3. Economy: The economy layer describes how coins are created and destroyed
and how monetary policy is determined and implemented. Examples of ques-
tions addressed in this layer are “is the supply of coins is capped?”, “do old
coins expire?” and “how do we allocate the initial distribution of funds?”.

This work focuses on the design of the ledger layer. For the purposes of
this layer, transactions are opaque strings—there is no need to interpret them
in any way. This is an important property, since it allows us to “modularize”
cryptocurrencies—the underlying ledger can replaced without changing the lay-
ers above it.1

1.2 Permissionless Consensus via PoW

In a permissionless distributed consensus protocol (cf. [3]), parties do not have to
ask permission from others in order to join the protocol execution. The challenge
in constructing a permissionless protocol is handling malicious adversaries that
can create an unbounded number of “fake” identities.

1 For optimization purposes, a cryptocurrency built on top of the ledger can add
additional restrictions to prevent clearly invalid transactions from entering the ledger
in the first place, but we ignore that here.
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To solve this problem in Bitcoin, Nakamoto added a new assumption to
the model: the adversary controls less than half of the total computing power
invested in the protocol. At a high level, one can think of the participants in
the Bitcoin protocol (called miners) as “voting” on the consensus value, but
instead of having one vote per miner, each vote must be accompanied by a
Proof of Work (PoW): a proof that computational power was “wasted” in order
to generate that vote. Since we assume honestly-behaved users control a majority
of the computational power, they can cast more votes than the adversary.

The details are, of course, a little more complex. In an Internet-scale proto-
col, it’s infeasible to have every user constantly send “votes” to the entire network
(this would require all users to have extremely high communication bandwidth and
make verification very costly). Instead, Bitcoin employs a “lottery”: one can think
of the PoW as composed of many purchases of lottery tickets. Each purchase costs
little in terms of computational power, but the probability of winning is very low,
so many attempts (and hence, many CPU cycles) are required to find a winning
ticket. The big advantage of this scheme is that only the lottery winner needs to
publish a ticket. Since the cost of verifying a winning ticket is tiny compared to
finding one, both communication and computation costs can be made very low.

1.3 Importance of Incentive-Compatibility

How reasonable is Nakamoto’s assumption? Since cryptocurrencies have become a
widespread phenomenon backed by “real” money, it seems unlikely that a majority
of the computational power is controlled by unconditionally honest parties—at the
sums involved, if parties can gain a significant financial advantage by deviating
from the honest protocol is very likely that most will do so. That is, it seems more
reasonable to model a majority of the parties as rational rather than honest. Thus,
for security to hold—i.e., for honestly-behaving parties to control a majority of the
computational power—we need to ensure that rational parties prefer to behave
honestly. Protocols that satisfy this property are called incentive-compatible.

1.4 Drawbacks of Leader Election

The Bitcoin PoW “lottery” is a special case of what we call a leader-election-
based consensus protocol. In leader-election-based protocols, a single party is
(perhaps implicitly) selected as a “leader” at every time period (in the case of
Bitcoin, the leader is the latest miner to “win” the lottery). Almost all existing
cryptocurrency protocols are based on leader-election (most take an approach
similar to Bitcoin’s). Although it appears to be a mere technical distinction,
it turns out that basing a protocol on leader-election can have negative conse-
quences. In protocols based on leader-election, by definition, only one miner can
“win” at any given time. On the other hand, in the real world the underlying
communication network will have propagation delays (possibly under adversarial
control), so multiple honest parties may believe they have won at the same time.
This kind of collision creates a “race”; if the incentive structure for the protocol is
tied to winning (e.g., in Bitcoin only the winning parties are rewarded), this can
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create incentives to behave maliciously. For example, adversaries can increase
their own probability of winning by using denial-of-service attacks against other
users. Indeed, Bitcoin is known to be vulnerable to several types of “rational”
attacks (such as “selfish mining” [9,10,13,21,23] and “undercutting” [5] attacks).

The risk of rational deviations can severely limit a cryptocurrency in other ways
as well. For example, Bitcoin suffers from centralization of the mining power in the
hands of few large data centers [7,19] as well as scalability barriers w.r.t. high vol-
ume of commerce [6,15,25]. Intuitively, these arise since to increasing the through-
put of transactions (or rewards, in the case of the centralization problem) we must
either increase the frequency of “winning”, in which case we have more races, or
increase communication per win, which in Bitcoin increases the network propaga-
tion delay—again causing more races (see the full version for additional details).

1.5 Our Contributions

In this work, we present a new permissionless ledger protocol that aims to either
solve or mitigate the aforementioned risks.

Leaderless Protocol, Provable Security. The fundamental idea behind
Meshcash is a novel permissionless consensus protocol that is not based on
leader-election. Unlike most alternative permissionless consensus protocols, we
prove our security guarantees with regards to malicious adversaries and in a
semi-synchronous communication model (with bounded delay, cf. [21]). This is
to say, our protocol is robust even against non-rational adversaries, as long as
they do not have too large a fraction of the computation power.

Self-healing Consensus. A long-term protocol that is intended to be used for
decades must take into account even very low-probability events, if the prob-
ability that they occur over the lifetime of the protocol is still significant. For
example, the probability of a massive space-storm that disrupts global com-
munication, or of widespread blackouts, is minuscule for any given day—but
something that is entirely non-negligible over a century.

Violations of common security assumptions fall into this category; e.g., the
bounded delay assumption would fail if communication was sufficiently dis-
rupted, and widespread blackouts might cause a large fraction of honest miners
to drop out of the network until power is restored. Thus, robust cryptocurrency
ledger protocols must be resilient in the face of temporary violations of their
assumptions.

In essence, we gives “two tiers” of security guarantees:

1. As long as the standard security assumptions hold, Meshcash achieves fast
consensus against adversaries controlling up to 1/3 of the hash power, and
consensus about sufficiently old blocks is irreversible against an adversary
controlling up to 1/2 of the hash power. Note that since Meshcash disincen-
tivizes pool mining, a broader distribution of hashpower is more likely (cf.
Sect. 1.5). Thus, when compared to a ledger protocol that tends towards cen-
tralized pools, Meshcash’s security assumption is more conservative even with
an identical hashpower threshold.
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2. Even if the security assumptions are temporarily violated (e.g., the adversary
controls the hash power of the entire network for some period of time), once
the attack is over the protocol can “self-heal”; after a period of “healing
time” that depends on the severity and duration of the violation, all honest
users will converge again to consensus (during the “healing time” we require
slightly stricter security assumptions—the adversary must control less than
1/15 of the network hashpower). Note that irreversibility of consensus on old
blocks continues to hold as long as the total computation power expended by
the adversary after the block publication is less than the total computational
power expended by honest users.

We note that Bitcoin self-heals in a similar manner, but its formal proofs [10,21]
do not offer this analysis, whereas we give a rigorous proof of Meshcash’s self-
healing guarantee.

Ideas from Permissioned Distributed Consensus. One of our main tech-
nical contributions is using ideas from the permissioned Byzantine agreement
literature in order to achieve a consensus on multiple generated blocks in each
time period, rather than having a race to choose the “leader” of the next round.
An example is the use of a “weak coin protocol” to give fast, probabilistic con-
sensus even when honest parties are initially split in their opinions. Weak coins
have been used as black boxes in traditional consensus protocols too. Possibly
of independent interest, we construct a weak-coin protocol with provable guar-
antees based only on PoWs.

Our techniques give a qualitatively different type of permissionless
consensus protocol, and may prove useful to improve scalability and incentive-
compatibility in other ledger designs as well (including those not based on
PoWs).

Semi-permissioned Committee Selection. Another novel contribution, that
may be of independent interest, is a subprotocol used by miners to reach con-
sensus on a “committee” that includes all honest miners who generated valid
blocks in a given time period. This protocol is “semi-permissioned” in that the
number of participants is bounded, but honest parties may not agree on who is
participating. We construct an SPCS protocol in the synchronous model that is
resilient to any fraction of corrupted adversaries. The protocol is based on the
Dolev-Strong synchronous broadcast; a more detailed description appears in the
full version. The goal and underlying ideas are similar to that of Andrychowicz
and Dziembowski [1], but our protocol is simpler.

Race-Freeness. We prove that in the Meshcash protocol, one miner’s success
does not prevent the success of another. This “race-free” property is highly
desirable; we show that it is a sufficient condition for a protocol to be incentive-
compatible (under some simplifying assumptions). Thus, we can show that even
if none of the parties are honest, and the non-malicious participants are merely
rational, honest behavior is an equilibrium for the protocol. This makes the
“honest majority” assumption far more believable in practice.
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Improvements over Bitcoin. Our protocol replaces the single chain of blocks
(in which only one block can be next) with a mesh—a layered directed acyclic
graph (DAG) which allows multiple blocks to coexist in parallel, while the
rewards are still shared proportionally to the work performed. This offers miti-
gating factors for the risks that Bitcoin faces:

– Greatly reduced incentives for pool mining. This risk stems from the
simple fact that the expected time and variance of solving blocks is too high
for a hobbyist miner. For example, if there are 100, 000 miners with equal
hashrate, and the Bitcoin difficulty dictates it takes 10 min on average to solve
a block, then each miner will need to wait for 1 million minutes (slightly less
than 2 years) on average before solving a block. This would obviously be unac-
ceptable from the point of view of the individual miners, as they have running
expenses and their mining equipment may fail before they are ever rewarded.
Therefore, Bitcoin miners have a strong incentive to combine their resources
into centralized pools. This is unhealthy for decentralization, because pools
tend to increase in size over time. As a remedy against the centralization
pressure, many more blocks would get created per unit of time in Meshcash
(e.g., we can easily support 200 blocks in every 10-minute period), and hence
solo-mining or participating in small pools is more feasible compared to Bit-
coin.

– Improved scalability. One of the main barriers to scalability is the effect of
larger block sizes on the network propagation delay. By removing the “race”
aspect of mining, the propagation delay becomes much less relevant, allowing
the system to support larger block sizes (see the full version for more details).

– Incentive-compatible verification. When a Bitcoin miner verifies and
includes certain transactions in a block that she creates, she collects the trans-
action fees as her reward. Other miners should also verify those transactions
and thereby ensure that the chain that they try to extend is valid, even though
they do not collect any rewards for those transactions. Thus, rational miners
can do a cost-benefit analysis, and may decide to skip the verification of trans-
actions in prior blocks [17]. Indeed, this behavior appears to be widespread
among Bitcoin miners, as some miners lost a significant amount of funds due
to the BIP66 softfork [18]. In Meshcash this risk is mitigated because miners
do not engage in tight races against one another, therefore they have plenty
of time to verify the transactions that reside in the blocks that they endorse.
Thus, it is less risky to have transactions with complex scripts in Meshcash
relative to blockchain protocols.

– Incentive-compatible propagation. A rational Bitcoin miner may decline
to re-transmit transactions that were sent to her, thereby increasing the like-
lihood that she will collect more fees when she eventually solves a block [2].
Such a behavior damages the performance of the Bitcoin system from the
point of view of its users, as transactions would become confirmed at a slower
pace overall. Since Meshcash divides the transaction fees among all miners
who created blocks in the recent layers, an individual miner does not gain by
keeping transactions secret.
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– Resistance to bribe attacks. In Bitcoin, rational and malicious parties may
benefit from offering bribes to other miners, by sending in-band messages in
an anonymous fashion [16]. A rational miner may fork a high-value block
by collecting only some of its transactions, to incentivize the next miners to
extend her forked block and earn extra fees by picking up the rest of the
transactions. A malicious adversary may even put a “poisonous” transaction
tx1 in the honest chain and then offer high fees for blocks that include another
transaction that conflicts with tx1, thus bribing rational miners to work on
a fork. In Meshcash, the fees are shared and conflicting transactions in a
layer do not invalidate blocks that reference them, hence these kinds of bribe
strategies are ineffective.

– Resistance to forking. An important property of our protocol (and one
that, to the best of our knowledge, is not satisfied by any previous cryp-
tocurrency) is that forking the mesh is hard even for an attacker with a
constant fraction of the computational power. This makes it much easier to
argue about rational behavior—honest miners know that with high proba-
bility their work will not go to waste. In particular, it makes the standard
selfish-mining attacks moot.

Informally, Meshcash achieves the following guarantees.

Theorem 1 (Security—informal). If the adversary controls less than a q <
1/3 fraction of the computational power then the Meshcash protocol satisfies the
safety, irreversibility, liveness and fairness properties of a permissionless ledger.

Theorem 2 (Self-healing—informal). Regardless of the initial state of the
honest parties, after a sufficiently long period in which the adversary controls a
q < 1

15 fraction of the computational power, the Meshcash protocol will satisfy
the safety, irreversibility, liveness and fairness properties.

For the formal statements see the full version. Note that we expect the secu-
rity of the protocol in practice to be much better than our worst-case analysis
shows—our analysis is optimized for readability and asymptotic results rather
than reducing the constants.

1.6 Related Works

The idea of replacing the blockchain with a DAG is not new; to the best of our
knowledge the earliest consideration of it was in [22]. However, many previous
discussions of DAG-based cryptocurrencies lack formal analysis (most even lack a
full specification). Unsurprisingly, the “devil is in the details”—constructing pro-
tocols that can withstand attack by a malicious adversary that can affect network
messages is highly non-trivial. This is evidenced by the fact that even for Bitcoin,
which is relatively simple and well studied, followup analysis showed vulnerabili-
ties due to network delays [9,10,21]. It should be noted that many cryptocurren-
cies retain the chain topology but replace the PoW element with other kinds of
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Sybil-resistant mechanisms, such as Proof of Stake. Examples of stake-based pro-
tocols include Algorand [11] and Ouroboros [12]. Indeed, [11, Sect. 2] raises the
idea of improving the scalability of Algorand via a DAG topology.

In protocols based on leader election (e.g., GHOST [25], Bitcoin-NG [8]),
consensus is achieved by selecting some “special” party (the leader) in each
round of the protocol. Since only one party can be special in a round, these
protocols all imply some sort of “race”. We note that this is a property of the
consensus protocol, not the reward mechanism; thus, in theory, a leader-election-
based protocol can still be completely race-free according to our definition.

There are far fewer examples of protocols that do not require a leader elec-
tion. The best-known protocols (with formal analysis) are SPECTRE [24] and
PHANTOM [26].

See the full version for a more detailed comparison of related works.

2 Informal Protocol Overview

In this section we provide an overview of Meshcash. The complete protocol is
appears on the full version.

Meshcash is a permissionless ledger protocol; participants in the protocol can
join and leave the protocol at any time.

System Stakeholders. Every participant may play one or more of the following
roles:

– miners are responsible for the security of the system, and participate by
running the Meshcash mining protocol. At a high level, this is very similar to
Bitcoin’s mining—it consists of listening for new blocks on the network while
performing computations to generate blocks (which they then publish).

– validators, receive blocks published by the miners and are responsible for
determining which blocks are valid (i.e., are contained in the ledger) and
their order.

– users publish transactions that they would like to add to the ledger.

Communication Model. In terms of execution, miners and validators in the
Meshcash protocol behave similarly to Bitcoin—the parties are connected via a
“gossip network”. Our assumption is that every two honest parties are connected
via the gossip network with some bounded delay.

Block DAG. In Bitcoin, each block points to one previous block, forming a
chain. In Meshcash, the structure is instead a layered DAG; each block belongs
to a layer (it contains a field that explicitly declares the layer number) and points
to blocks in previous layers.

Types of Block Validity. We classify validity rules into two types: syntactic
and contextual. Syntactic validity is what can be determined entirely by the
contents of the block (and the block’s view—the blocks reachable from it in
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the DAG). This includes things like whether the PoW is valid, and whether the
blocks it points to have valid PoWs.

We call any validity rule that isn’t syntactic a contextual validity rule. This
includes rules that depend on other blocks received later (e.g., the Bitcoin
“longest-chain” rule is contextual, since a block can be invalidated if another,
longer, chain is received by the miner).

Syntactic Validity Rules. The syntactic validity rules are very simple. Like
Bitcoin, we require the PoW to be valid for the block and match the block’s
difficulty level (optionally, as an efficiency optimization, we can also require all
included transactions to be syntactically valid—but in any case we don’t check
conflicts with transactions in other blocks). In addition, we require every block
to point to at least Tmin blocks in the previous layer (where Tmin is a tunable
parameter). This is one of the innovations in our protocol; it makes it much
harder for the adversary to pre-generate blocks in future layers—since to do so
it would have to pre-generate Tmin blocks in every layer; we rely on this heavily
in our proof that the protocol can “self-heal” from an arbitrary adversarial state
(in which the adversary may have pre-computed many blocks).

Contextual Validity Rules. The contextual validity rules are a little more
complex, and the technical heart of the protocol. At a high level, the idea is that
we let every block “vote” about all previous blocks in its view. For exposition
purposes, think of these votes as being explicitly encoded in each block (in the
actual protocol, we will do the encoding implicitly). To decide whether a block
is valid, the validator counts the votes from all (syntactically-valid) blocks in its
view, and takes the majority.

For very recently published blocks, the miners can’t use this strategy (since
not enough subsequent blocks have voted yet). Instead the miners who pub-
lished blocks in the previous layer use local timing information to decide on
validity of the blocks in that layer, and then run a “semi-permissioned” byzan-
tine agreement protocol to reach consensus on their validity. The output of this
local protocol (i.e., the validity of each block in the target layer) is signed by
each miner and published. Validators decide on the validity of recent blocks by
taking a majority of the signed outputs.

If we don’t care about self-healing, the protocol as described above would
suffice. However, if security assumptions fail—even temporarily—the local pro-
tocol is no longer guaranteed to reach consensus (since it requires a majority
of the blocks to be honestly generated in each layer). In this case, by timing
the publication of a block, the adversary could cause honest parties to disagree
about its contextual validity, and then use a “balancing attack” to keep the hon-
est parties evenly split. Balancing requires only a small fraction of the honest
party’s resources, so the split could continue indefinitely even after the security
assumptions hold again.

To overcome this type of attack, we add another condition to the contextual
validity rule: if the “vote margin” is small (i.e., the number of blocks voting for
and against is similar), the miner will “flip a coin” instead of relying on the
vote. The trick is that we will use a weak common coin—that is, with some
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known, constant probability all honest parties will agree on the result of the
coin flip. Intuitively, when the adversary guesses the coin’s value incorrectly, it
will support the “wrong” side and the balancing will fail.

Mining Algorithm. A Meshcash miner uses only syntactic validity in order to
decide which blocks to point to—the miner will point to every syntactically-valid
“head” block it sees (i.e., blocks with in-degree 0). Thus, although the contextual
validity rules are more complex than Bitcoin’s, the mining algorithm is almost
as simple; indeed, we implemented the mining algorithm in just over 100 lines of
python code (the count includes only the top-level algorithm, without e.g., the
local protocol or PoW implementation).2

3 Meshcash Security

Our basic security properties are as defined in [21]:

– consistency : with overwhelming probability (in T ), at any point, the valid
DAGs of two honest players can differ only in the last T blocks;

– future self-consistence: with overwhelming probability (in T ), at any two
points in time r < s the valid DAGs of any honest user at r and s differ
only in the last T blocks (as they appear at time r);

– g-chain-growth: with overwhelming probability (in T ), at any point in the
execution, the valid DAG of honest players grew by at least T blocks in the
last T/g rounds, where g is called the chain-growth of the protocol;

– µ-chain quality : with overwhelming probability (in T ), for any T consecutive
blocks in any valid DAG held by some honest player, the fraction of blocks
that were “contributed by honest players” is at least µ.

3.1 Security Proof Overview

In this section we give an informal overview of our security proof and intuitions.

Consistency (Safety). When security assumptions are satisfied, the set of
blocks in every consecutive range of ldist layers will have an honest majority
except with negligible probability. This follows from the fact that the adversary
cannot pre-generate too many blocks (e.g., as shown in the full version, when
q < 1/3 the adversary can’t have much more than 1

2Tmin blocks of layer i at
starti), hence with high probability the fraction of adversarial blocks in a given
time period cannot be much more than q (e.g., when ldist = 2 and q = 1/3, the
adversary would have less than half of the blocks w.h.p.).

At layer t, the local protocol uses a consensus algorithm between miners who
generated blocks in the past ldist layers to agree on the validity of blocks in
layer t− ldist; this is guaranteed to achieve consensus when the majority of the
blocks are honest.
2 The code can be found on https://github.com/anon444/meshcash.git.

https://github.com/anon444/meshcash.git
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Future Self-consistency (Irreversibility). At a high level, we can view the
global protocol as a voting process: every new block “votes” for or against each
previous block. The irreversibility of the protocol stems from the fact that once
consensus is reached, all honest users will vote in the same direction; this causes
the margin of votes (the difference between positive and negative votes) to
increase linearly with time. Similarly to the Bitcoin race analysis, an adver-
sary can only reverse history by generating enough votes to overturn the current
consensus. However, since the adversary generates blocks at a lower rate than
the honest parties, the probability that this can be done decreases exponentially
with time. We formalize this race analysis in the full version and show that the
vote margin will grow linearly with the number of layers.

Self-healing Irreversibility. The main challenge here is that the adversary
might keep a “reserve” of unpublished blocks and then publish them at a later
date to reverse what seems like a consensus with large margin. However, in order
to reverse the honest users’ consensus about a block A, the adversary’s reserve
must contain “future” blocks (whose layer id is greater than that of block A)—
since only future blocks have a “vote” regarding A.

We show this cannot happen by bounding the adversary’s ability to keep a
large reserve of “future” blocks. In the full version, we show that, irrespective of
the initial conditions, there will be a layer in which the adversary’s future reserve
reaches a steady-state. Additionally, we use the fact that with overwhelming
probability no layer is “too long” to prove that once in a steady state, the
probability that the adversary leaves it is negligible; since in order to generate
enough “future” blocks, the adversary needs a long layer-interval (see the full
version).

When the adversary is in its future reserve steady state, consistency and
future self-consistency are guaranteed (see explanation in the full version). The
idea here is straightforward—once we have achieved consensus in the local pro-
tocol, the honest parties all vote in the same direction, hence the margin will
grow until it reaches the threshold for irreversibility to apply.

Self-healing Consistency. The harder part of the proof is to show that con-
sensus will always (eventually) be achieved, even under active attack. Intuitively,
the difficulty of guaranteeing consensus is due to the adversary’s ability to “play”
with network latency. By sending blocks near the “edge” of a layer, some hon-
est parties would consider the block valid, while others would not. The voting
scheme does not help in this instance, since the honest parties now disagree on
the votes themselves (each vote is a block). Further complicating the analysis is
that the adversary can generate and maintain a “reserve” of valid blocks (for the
current or future layers) that can be used strategically to cause disagreements
among the honest miners on the contents of the layers.

Our main technical theorem that appears in the full version, shows that for
any initial reserve of blocks (here we do not care about whether they are in the
future or the past), the global protocol will eventually arrive at consensus. We do
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this by a case analysis on the adversary’s strategy, showing that the adversary
has to “spend” her reserve in order to keep honest parties from agreement. Since
the adversary’s ability to generate new blocks is limited, either the honest parties
will reach consensus, or the adversary will exhaust her reserve (in which case
the honest parties will also reach consensus).

At a lower level, to show that the adversary must spend blocks from its
reserve, we consider basically the following cases:

Case 1: There is already a large vote margin. In this case, the adversary has to
spend at least that much blocks from her reserve to prevent consensus.

Case 2: The vote margin is small. In this case, some honest parties will use a
coin-flip to choose how they vote, while others might see a large enough
margin that they vote disregarding the coin. If the adversary spends too
few blocks, we show that all parties that disregard the coin will vote in
the same direction, so if the adversary does not guess the outcome of
the coin correctly, all honest parties will agree.

Chain Quality (Fairness), Chain Growth (Liveness) and Race-Freeness.
To show that honestly-generated blocks are always in the consensus (i.e., ensur-
ing optimal (1 − q) chain quality), we need to lower-bound the number of honest
blocks in every layer (since honest blocks are “guaranteed” by the local protocol
to vote for other honest blocks). We can do this when the adversary is in a future
reserve steady-state, by showing that no layer is too short (since the adversary can
only shorten a layer by “dumping” blocks from its future reserve), which implies
that the honest parties have enough time to generate blocks in every layer. Chain
growth also follows from the property that every honestly generated block will be
considered valid, i.e., Meshcash achieves g-chain growth where g is the expected
number of honest blocks in a network round. See the full version for further details.
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Abstract. Drones have created a new threat to people’s privacy. We are
now in an era in which anyone with a drone equipped with a video camera
can use it to invade a subject privacy by filming the subject in his/her pri-
vate space using encrypted First Person View (FPV) channel. Although
many methods have been suggested to detect a nearby drone, they all
suffer from the same shortcoming: they cannot detect what specifically is
being captured and therefore they fail to distinguish between the legiti-
mate use of a drone that does not invade a subject’s privacy (for example,
neighbor’s drone flying and shoot his garden) and illegitimate use (same
drone shooting the subject’s property), where in many cases depends on
the orientation of the drone’s video camera rather than on the drone’s
location. In this paper we present a method that utilizes a flicker in order
to detect whether the drone’s camera is directed towards the private space
by analyzing the encrypted video stream sent from the drone in real time.
We investigate the influence of changing pixels on the transmitted traf-
fic (in a lab setup). We leverage our conclusions and demonstrate how
an interceptor can apply a side-channel attack to detect that a subject
is video streamed by DJI Mavic drone from its encrypted FPV channel
when the subject is located inside a private house.

Keywords: Drones · Cryptanalysis · Side channels

1 Introduction

The proliferation of consumer drones over the last few years [12] has created a
new privacy threat [18]. We are living in an era in which anyone with a drone
equipped with a video camera can invade another individual’s privacy by maneu-
vering the drone to the individual’s house and directing the drone’s camera to
the window of the house in order to film or record the subject in his/her private
space. Many privacy invasion incidents have been reported in the media, and
laws are being updated to deal with this new threat [2,16,21,22,26,34,37].

Video - https://youtu.be/3wEsbafsUxg.
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State of the art drones provide video piloting capabilities, a.k.a. first person
view (FPV), a communication channel designed to (1) stream the video captured
by the drone’s video camera to the operator’s controller in order to present the
video stream to the operator in real-time, and (2) maneuver the drone by trans-
mitting commands from the controller. FPV provides excellent infrastructure
for a malicious operator to invade someone’s privacy without being detected
because: (1) it eliminates the need for a malicious operator to be close to the
drone or to the target by allowing the operator to maneuver the drone to a target
that is located far away from his/her location, (2) its traffic can be encrypted,
and (3) it supports HD resolutions that enable the attacker to obtain high reso-
lution images and close ups (by using video camera’s zooming capabilities) that
captured by the drone far from target point of interest (POI).

Many studies suggested methods for detecting whether a drone is nearby
(e.g., using RADAR, video camera, LiDAR, microphones arrays [18]), however
they all fail to detect what specifically is being captured and therefore they
fail to distinguish between the legitimate use of the drone (e.g., to film a selfie
from the air) and illegitimate use (e.g., to stream the view into the window of
someone’s apartment) that in some cases depends on the orientation of drone’s
video camera rather than on the drone’s location.

In this research we present a method that can be used by an interceptor to
detect whether a particular POI (e.g., his/her house, a subject) is being tracked
by a drone even if the FPV channel is encrypted; in order to accomplish this our
proposed method triggers a physical stimulus that influence the encrypted FPV
channel, sent from the drone to its controller, and can use an interceptor to apply
a side-channel attack to the encrypted video stream in order to detect if a specific
POI is being tracked. We investigate the influence of changing pixels on the
transmitted traffic in a lab setup. We leverage our conclusions and demonstrate
how an interceptor can apply a side-channel attack to detect that a subject
is video streamed by DJI Mavic drone from its encrypted FPV channel when
the subject is located inside a private house We evaluate the required time of
physical stimulus to achieve zero FPR.

This study makes the following contributions: (1) We demonstrate a method
that extracts a targeted POI from encrypted FPV channel and can be used
to distinguish between the legitimate use of a drone that does not invade a
subject’s privacy and illegitimate use the difference between each of the uses
depends on the angle of the video camera and not on the location of the drone
as demonstrated in Fig. 2. (2) We present an external interception model that
utilizes a radio frequency (RF) scanner that was empirically evaluated outside
a lab setup. (3) We present an effective method that analyzes encrypted traffic
without any prior knowledge regarding the cryptography algorithm that is being
used. We only use the length of the cryptogram that can be extracted from the
second layer of the OSI model instead of higher levels of the OSI model that was
used by other studies [15,30] to classify video streams.

The rest of this paper is structured as follow: in Sect. 2 we discuss about pro-
tocols and coding algorithms of video streams. In Sect. 3 we review related works
in two main areas: information leakage from video streams and known methods
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to detect a nearby drone. In Sect. 4 we present adversarial model of an attacker
that performs privacy invasion attack and present an external interception model
for detection of captured POI. In Sect. 5 we investigate the influence of chang-
ing pixels on the transmitted traffic (in a lab setup). In Sect. 6 we evaluate the
performance of our method, and in Sect. 7 we suggest about future work.

2 Background

Modern drones provide video piloting capabilities (FPV channel) based on Wi-
Fi signals, allowing an operator to control a drone using a smartphone [3]. Wi-Fi
signals between the controller and the drone are sent over a secured access point
that is opened by either the drone or the controller (both parties are connected
to the access point). Using dedicated hardware (e.g., a controller with a Wi-Fi
signal range extender) current drone models provide operators the ability to
control a drone using FPV from a distance of 5–7 km over Wi-Fi channels [9,24].

2.1 Video Coding Algorithms

Video encoding [14,23,36] begins with a raw image captured from a camera. The
camera converts analog signals generated from striking photons into a digital
image format. Video is simply a series of such images generally captured five to
120 times per second (referred to as frames per second or FPS). The stream of
raw digital data is then processed by a video encoder in order to decrease the
amount of traffic that is required to transmit a video stream. Video encoders use
two techniques to compress a video: intra-frame coding (spatial compression)
and inter-frame coding (temporal compression).

Intra-frame coding creates an I-Frame, a time periodic reference frame
that is strictly intra-coded. The receiver decodes an I-frame without additional
information. Intra-frame prediction exploits spatial redundancy, i.e., correlation
among pixels within one frame, by calculating prediction values through extrap-
olation from already coded pixels for effective delta coding. The intra-coding
process contains the following stages [14,17]:

1. Color conversion and chroma sub-sampling - The human eye has a lower sen-
sitivity to color information than to dark-bright contrasts. First a conversion
from RGB color space into YUV color components (e.g., YCbCr) is applied,
and then some of the chrominance information of the image is removed. This
is a lossy stage.

2. Partition - The actual frame is divided into non overlapping macroblocks.
3. Transform - A block is represented in the frequency domain.
4. Quantization - This process is applied to the block to remove the insignificant

part (high frequencies) and results in a compressed block with a smaller
amount of information. This is a lossy stage.

5. Entropy coding - Compression algorithms are used to represent the data by
mapping frequently occurring patterns with a few bits and rarely occurring
patterns with many bits (e.g., using Huffman coding).
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Over the years various optimizations have been introduced for each of the
stages, including: (1) dynamic partitioning techniques, (2) novel prediction algo-
rithms and varying the amount of reference frames, (3) different domain trans-
forms, and (4) quantization methods. These optimizations boost the transmis-
sion rate from 1.5 Mbps (MPEG-1) to 150 Mbps (MPEG-4).

Inter-frame coding exploits temporal redundancy by using a buffer of
neighboring frames that contains the last M number of frames, and creates a
delta frame. A delta frame is a description of a frame as a delta of another
frame in the buffer. The receiver decodes a delta frame using a received refer-
ence frame. There are two major types of delta frames: P-Frame and B-Frame.
P-Frames can use data from previous frames to decompress and are more com-
pressible than I-Frames. B-Frames can use both previous and upcoming frames
for data reference to get the greatest amount of data compression. The process
of generating a delta frame consists of applying the following stages to a frame:

1. Partition - dividing the actual frame into non overlapping macroblocks.
2. Reference block matching - finding a similar block in another frame.
3. Motion vector extraction - extracting the difference between the two blocks

by calculating the prediction error.

The order in which I, B, and P-Frames are arranged is specified by a GOP
(group of pictures) structure. A GOP is a collection of successive pictures within
a coded video stream. It usually consists of two I-Frames, one at the beginning
and one at the end. In the middle of the GOP structure, P and B-Frames are
ordered periodically. An example of a GOP structure, with I, P, and B-Frames,
can be seen in Fig. 1. Occasionally B-Frames are not used in real-time streaming
due to delays.

Fig. 1. GOP structure - I,B, and P-Frames

Intra-framing and Inter-framing techniques were integrated into the MPEG-1
standard in the 1990s. Naturally, integrating these techniques into the protocol
creates a variable bitrate (VBR) in the transmission of a video which is influenced
by changes between frames and the content of the frame itself. A frame that can
be represented as a set of prediction blocks of a similar neighboring frame (that
has already been captured and transmitted) requires a smaller amount of data
to be represented. The same thing is also true for video streams with a lot of
redundancy in their frames. On the other hand, a frame with less similarity to
other neighboring frames (e.g., as a result of the movement of several objects)
requires a larger amount of data to be represented as a set of prediction blocks of
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other frames. The same thing is also true for a frame with less redundancy. Even
if the video stream is encrypted at the transport layer (e.g., using TLS), the sizes
of the packets and times of arrival are visible to anyone watching the network.
In terms of cyber security such a coupling between the captured stream and its
cryptogram series can be used to extract meaningful information as described
in Sect. 3.

3 Related Work

Fig. 2. From left to right: (a) a drone boxed in red, two people boxed in blue, and a
window of an organization boxed in yellow, (b) illegitimate use of the drone camera -
filming the organization, (c) a legitimate use for selfie purposes. (Color figure online)

In this section we describe: (1) methods that exploit information leakage of
encrypted video stream to extract insights about the stream, and (2) methods
for nearby drone detection. In the area of video hosting services, several
studies exploited video stream information leakage to classify a video stream
sent from a video hosting service (e.g., YouTube, Netflix, etc.) over Dynamic
Adaptive Streaming over HTTP (DASH) protocols (a.k.a. MPEG-DASH). This
attack model relies on two steps: (A) building a database of reference traces of
video streams, and (B) classifying a query trace of an intercepted video stream
by matching it to the database. Saponas et al. [30] analyzed Slingbox’s encrypted
streams sent over wired and wireless connections to a client installed on a com-
puter, and managed to achieve a 89% accuracy in classifying 26 different movies
by analyzing 40 min of the stream’s bitrate. Schuster et al. [31] classified video
streams sent from Netflix, Amazon, YouTube, and Vimeo by analyzing burst pat-
terns using convolutional neural networks. Reed et al. [27,28] classified Netflix’s
video streams and reached accuracy over 90% by analyzing only eight minutes of
the stream. In a similar area to video hosting services, Liu et al. [15] constructed
robust video signatures using wavelet-based analysis by analyzing traffic sent
over the RTP of a IPTV. In the area of VoIP, Wright et al. showed that VBR
leakage in encrypted VoIP communication can be used for the detection of the
speaker’s language [39] and phrases [38]. White et al. [35] extended this approach
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to extract conversation transcripts. Wampler et al. [33] analyzed packets’ aver-
age inter-arrival time, packets’ average size, average bandwidth, and the number
of received packets in a window, in order to extract hand movement and ambient
light changes from IP camera traffic sent over RTP.

In terms of the attack model, they did not conduct their experiments using
an external RF scanner (NIC in monitor mode), so their attack model requires
a malware installed on the targeted network/computer in order to detect the
video streams.

In the area of drone detection, various methods were introduced over the
last few years to detect a nearby drone [18]. Radar is a traditional method of
detecting drones. However, the case of small consumer drones requires expensive
high-frequency radar systems [10]. Several studies suggested computer vision
techniques to detect a drone by using a camera to analyze motion cues [6,29].
However, these methods suffer from false positive detections due to: (1) the
increasing number of drone models, and (2) the similarities between the move-
ments of drones and birds [6]. In order to distinguish between birds and drones,
several approaches analyzed the noise of the rotors captured by microphones
[6,7]. However, in order to address the challenges arising from the ambient noise
and the distance between the drone to the microphone, very expensive equip-
ment is required [7]. A hybrid method that combines all of the methods discussed
in this section was suggested by [32] in order to improve the accuracy of detec-
tion. However, such a method is very expensive to deploy. Two other studies
proposed a method to detect a consumer/civilian drone controlled using Wi-
Fi signals. The first method [25] analyzes the protocols’ signatures of the Wi-Fi
connection between the drone and its controller. The second method [5] analyzes
the received signal strength (RSS) using a RF scanner (e.g., Wi-Fi receiver).

All of the described methods for drone detection lack the ability to deter-
mine whether the drone was used to invade privacy (by video recording the
subject/target). More specifically, they are unable to understand what exactly
is being recorded by the drone. In crowded areas, the difference between legiti-
mate and illegitimate use is based on the angle of the drone’s camera. Figure 2
presents a legitimate use and illegitimate use of a drone. All of the described
methods [5–7,10,25,29,32] fail to distinguish between the act of taking a selfie
and a privacy invasion attack. Our method does not suffer from the described
problem. In this research we show methods for: (1) determining exactly what is
being recorded, and (2) providing a subject with a proof that they were under
surveillance.

4 Adversary Model and Proposed Detection Scheme

We consider an adversary operator that uses a drone to shot a target (subject
or organization) for:

1. Self entertainment - the attacker considers a privacy invasion attack as an
entertainment and use it to fulfill his/her curiosity. Besides of fulfilling his/her
curiosity, no future damage is being applied to the target.
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2. Malicious Purpose - the attacker uses the drone’s video camera to collect
information about the target for malicious purpose. For example in cases in
which the target is an organization, the malicious purpose can be to break
into an organization (and the drone can be used to count the number of
subjects that leave the building). Another malicious purpose can be to disable
a confidential facility (in which the captured video from the drone is used to
map the organizational assets). In cases of which the target is a subject, the
purpose can be to understand whether the subject is cheating in his wife or
husband by using the drone’s video camera to spy after the subject (as was
shown in [26]).

The interceptor’s goal is to determine whether a target is being captured by a
drone’s video camera. We assume that an interceptor has detected the presence
of a drone nearby (using one of the known methods for drone detection [5–
7,10,25,29,32]) or by analyzing suspicious access points. In addition we assume
that the interceptor owns an RF scanner (e.g., an NIC) that is connected to a
computer with an adequate antenna that captures the traffic being sent from
the drone to the controller. The interceptor triggers a physical stimulus to the
target in a random pattern and analyzes the intercepted traffic in a detection
model. Figure 3 presents proposed detection scheme and the involved parties.

Fig. 3. Adversary model and proposed system

4.1 Detection Model

Algorithm 1 presents target’s detection model. It receives: (1) the intercepted Wi-
Fi stream (that was captured by the NIC); (2) a watermarking pattern (binary
sequence) that was modulated by the physical stimulus, (3) a window for each
bit that was modulated. In addition the algorithm receives (4) begin and (5)
end time of the watermarked pattern (in Epoch representation). First, the inter-
cepted Wi-Fi traffic converted to a bitrate array (line 3). A stableInterval is
being extracted from 4 s before the first physical stimulus begins until the begin-
ning time of the physical stimulus (line 5). A stimulusInterval is being extracted
from the time in which the first physical stimulus begins and 4 s ahead (line 6).
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A stableBitrate and a stimulusBitrate are being calculated by averaging inter-
vals stableInterval and stimulusInterval (lines 8–9). A cutoff is been calcu-
lated as the middle between the stableInterval and stimulusBitrate (line 10).
Each of the pattern bits are extracted from bitrateArray, calculated, and classi-
fied as 0/1 bits using a loop for (lines 11–17). A threshold (cutoff) is calculated
by averaging the bitrate of the Wi-Fi traffic (PCAP file) until the modulation
begins. The algorithm iterates over the bitrate array and appends 1 if the value
is beyond the threshold and 0 if otherwise. Finally, a confidence value between
0–1 is returned by comparing the result to the received pattern (line 18).

Algorithm 1. Privacy Invasion Attack Detection
Input:
1) intercepted-WiFI-Stream // Intercepted by the NIC
2) watermarkingPattern // binary sequence (e.g., 101..01)
3) window // milliseconds for single bit modulating
4) beginPatternTime // begin time of pattern (Epoch)
5) endPatternTime // end time of pattern (Epoch)
Output: Boolean result

1: procedure underDetection?
2: extractedPattern ← “”
3: bitrateArray = extractBitrateArray(intercepted-WiFI-Stream)
4: stableBeginTime = beginPatternTime - 4000
5: stableInterval = bitrateArray.subarray(stableBeginTime, beginPatternTime)
6: endStimulusTime = beginPatternTime + 4000
7: stimulusInterval = bitrateArray.subarray(beginStimulusTime,endStimulusTime)
8: stableBitrate = average(stableInterval)
9: stimulusBitrate = average(stimulusInterval)

10: cutoff = (stumulusBitrate + stableBitrate)/2
11: for (i = beginPatternTime; i ¡ endPatternTime; i = i+window) do
12: interval = bitrateArray.subArray(i,i+window)
13: avg = average(interval)
14: if avg ¿ cutoff then
15: result = result + “1”
16: else
17: result = result + “0”

18: return (watermarkingPattern == extractedPattern)

4.2 Detecting FPV Channels

Many commercial drones provide FPV capabilities over Wi-Fi channels. The
drone/controller exposes a secured access point in which both parties are connect
to using authentication. The FPV channel is sent over Wi-Fi communication and
can be intercepted using a NIC (in monitoring mode). An antenna can be used
by an interceptor in order to extend interception range. DJI Mavic, DJI Spark,
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and Parrot Bebop 2 use Wi-Fi Protected Access II (WPA2) protocols to secure
their networks. Detecting access points of FPV channels can be done by changing
a NIC mode of a laptop to monitoring mode (or using a software defined radio
instead) and using dedicated tools (such as airmon, inSSIDer. etc.), that can even
detect hidden networks, in order to find suspicious access points. After finding
suspicious access points, a specific access point can be found by searching for
known BSSIDs or known MAC IDs of drones. In order to overcome changes of
BSSIDs and MAC IDs, the interceptor can use a method to detect the type of
the drone using forensic analysis applied to the access point communication as
was suggested by Peacock et al. [25]. Another option is to analyze each of the
access points within the range of the target in the detection model without any
filters applied to find a FPV channel.

5 Influence of Physical Stimulus

In this section we investigate the influence of changing pixels on the transmitted
traffic (in a lab setup). All of the methods described in this section make use
of a simple principle that changes in the number of pixels from a frame to a
consecutive frame requires data to encode, therefore changing a large number of
pixels results in more data to encode and causes the bitrate to increase (intra-
frame coding). We show how actions like flickering and changing the locations
of objects can be used by an interceptor to influence the traffic by triggering a
side-channel attack in the real world outside a lab.

5.1 Lab Experiments

Fig. 4. Bitrate of captured Wi-Fi signals of white wall in different resolution

In the preliminary lab experiments described below we assess the influence
of various changes to the pixels on the traffic using a Mavic Pro [8] consumer
drone. The drone was configured to transmit video at a rate of 24 frames per
second (FPS), its default configuration. We took a laptop (Dell Latitude 7480)
that runs Kali Linux with a standard NIC (Intel Dual-Band Wireless-AC 8265
Wi-Fi [13]) that was used for interception. We enabled the monitor mode on
the NIC using airmon-ng [1] and intercepted the encrypted video traffic of the
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Mavic’s AP. The Mavic’s AP uses 802.11n to transfer the data between the
connected parties. From the external interception perspective, we were able to
extract only the second layer (data link layer) meta-data which includes the
following: BSSID, source MAC address, destination MAC address, and packet
length. The payload of the packet is encrypted.

We started by analyzing the Mavic’s traffic when the captured video is steady.
We placed the Mavic in front of a white wall. Figure 4a shows the bitrate of
the traffic that was transmitted from the drone during a period of 240 s and
captured using an NIC using external interception at 1000 ms aggregation at
three different resolutions and rates (720p 30 FPS, 720p 60 FPS, and 2K 30
FPS). As can be seen from the results in Fig. 4, the bitrate is almost fixed for
every resolution over time, however higher resolutions generated higher bitrates.

In the rest of the experiments in this section, we placed the Mavic in front of
a laptop in order to expose the drone to specific images/objects on the monitor.
The experimental setup is presented in Fig. 5.

Fig. 5. Lab Setup - The DJI Mavic was placed in front of a laptop monitor. A second
laptop is being used to intercept the traffic (using its NIC in monitoring mode)

First, we investigated the effect of changing X percent of the captured pixels
on the traffic. We programmed a Python code to present a flickering rectangle on
the screen in the middle of the monitor. We tested the effect of various rectangle
sizes on the traffic that was sent from the drone to the controller using external
interception (the interception laptop was not connected to AP; its NIC was on
monitor mode). The rectangle flickered from white to black, and vice versa, over
a white background for 40 s.

Table 1. Influence of changing the amount of pixels on the traffic

Percentage of changing pixels 0% 1.2% 2.50% 5% 10% 25% 50% 75% 100%

Bitrate (KB) 120 130 135 161 170 230 260 290 320

Delta Bitrate (KB) 0 10 15 41 50 110 140 170 200

Delta Bitrate (%) 0% 8% 13% 34% 42% 92% 117% 142% 167%
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As can be seen from the results presented in Table 1, there is a strong con-
nection between the number of pixels changed and the amount of traffic that
was sent from the drone. This phenomena occurs because a larger amount of
changing pixels results in a larger amount of changing macroblocks. A larger
amount of changing macroblocks means that the encoder must use more data to
encode the delta-frames that increase the amount of traffic. In addition, as the
results show, very small changes (<2.5%) are effectively absorbed and merged
with the background noise.

Next, we aimed to determine the effect of separating the pixels and dividing
them across several objects (rather than centralizing them on one object) on the
amount of traffic generated (given a fixed number of changed pixels). In this series
of experiments we fixed the amount of changing pixels but presented a different
number of rectangles, dividing the fixed number of pixels to form smaller equal
sized rectangles (2, 4, 8, 16, 32), and positioned them in different places on the
monitor. As can be seen from the results presented in Table 2, there is a strong
connection between increasing the number of rectangles and an increase in the
amount of traffic that is required to encode the change. We believe that this phe-
nomena can be explained as follows: dividing a single rectangle (which centralized
the fixed number of pixels) into smaller pieces (thereby dividing the fixed number
of pixels) and separating them from each other on the monitor results in the inter-
section with more macroblocks that change compared to the centralized object.
Therefore, this requires more data to encode and increases the amount of traffic.

Table 2. Influence of dividing an area into pieces on the traffic

Pieces 1 2 4 8 16 32

Bitrate (KB) 250 260 275 300 325 340

Bitrate Delta (KB) 0 10 25 50 75 90

Bitrate Delta (%) 0.00% 4.00% 10.0% 20.0% 30.0% 36.00%

Finally, we assessed whether the objects’ position on the monitor affects the
traffic. In order to do this, we conducted an experiment in which we flickered
a rectangle that is one fourth the size of the screen in four different places on
the monitor: top right, top left, bottom left, and bottom right. As can be seen
from the results presented in Table 3, each of the flickering rectangles had the
same effect on the traffic. Therefore, we believe that when the objects’ size
remains fixed, the location on the monitor has no effect, since the same number
of changing macroblocks are involved.

From this set of experiment we were able to conclude that (1) the larger the
number of pixels changed, the greater the influence on traffic (larger number of
changing macroblocks), and (2) the influence is even greater if the pixels are not
clustered together (intersection with a larger number of macroblocks).

After investigating the effect of the number of pixels changed, the objects’
location on the monitor, and the difference between keeping the pixels centralized
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Table 3. Influence of locating an object on the traffic

White screen Top left Top right Bottom left Bottom left

Bitrate (KB) 120 195 195 195 195

Bitrate Delta (KB) 0 75 75 75 75

Bitrate Delta (%) 0.00% 62.500% 62.500% 62.500% 62.500%

vs. dividing them, we moved on to assess the effect of the object’s color on the
amount of traffic. We conducted an experiment in which we flickered different
colored rectangles (black, green, blue, red, orange, yellow, pink, purple, and
white) in the size on the monitor.

Table 4. Influence of changing colors of an object on the traffic

No Black Red Green Orange Yellow Gray Purple Blue Pink

flicker

RGB value

Bitrate (KB) 100 325 325 325 325 325 325 325 325 325

Delta Bitrate (KB) 0 225 225 225 225 225 225 225 225 225

Delta Bitrate (%) 0% 225% 225% 225% 225% 225% 225% 225% 225% 225%

As can be seen from results presented in Table 4, each color caused the same
effect on the amount of traffic that was sent from the drone. From this experiment
we can conclude that no color significantly outperforms another.

Rather than using the RGB color space, video encoders use different color
spaces to represent a picture including: YCbCr, YCoCg, etc. Video encoders
transform a captured picture from an RGB color space to a luma value (denoted
as Y) and two chroma values. The Y component can be stored with a high reso-
lution or transmitted at a high bandwidth, and the two chroma components can
be bandwidth-reduced, subsampled, compressed, or otherwise treated separately
for improved system efficiency. Considering this information, we then tested the
effect of different brightness levels of the same color on the traffic. To do so, we
conducted an experiment in which we flickered two colors (green and blue) at
five different brightness levels.

Table 5. Influence of brightness level of an object on the traffic

Brightness No flicker 0% 20% 40% 60% 80%

Bitrate (KB) 100 300 300 310 320 350

Bitrate Delta (KB) 0 200 200 210 220 250

Bitrate Delta (%) 0% 200% 200% 210% 220% 250%
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As can be seen from the results presented in Table 5 increasing the level of
brightness of the object increases the amount of traffic sent from the drone to
the controller. The results obtained from the captured traffic was identical for
blue and green colors. From these results, we concluded that brighter shades
outperform darker shades of the same color.

In the next section we leverage our findings to detect privacy invasion attack
against a subject located in a private house.

6 Evaluation

In this section we present the evaluation for target detection in two cases: when
the target is located inside a private house.

We now demonstrate a method to secure a building from privacy invasion
attack using physical stimulus. As was shown in the lab experiments, flickering
objects influence the amount of traffic that is required to encode the flickering
objects over time. Taking this into consideration, we show how a smart-film
(a.k.a. smart glass) can be used as a means of triggering a physical stimulus in
order to detect whether a building is being tracked by a drone. We purchased a
smart film with an RF controller and attached it to a window of a private house
of which we wanted to secure. The smart film switches between two modes:
transparent and white given a radio command sent from its controller.

We wrote a simple Python program that uses a software defined radio
(HackRF) to modulate a given signal using OOK modulation. Each bit of the
signal was modulated using a window of 2 s. For 1 bits we flickered the smart
film, and for 0 bits we switched the smart film to be transparent for the entire
time. We randomly draw the sequence 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0 as
a signal to be modulated using the physical stimulus.

In order to demonstrate an illegitimate use of the drone, we asked an operator
to fly the DJI Mavic and film his neighbor’s garden and private house from the
operator’s property. The default resolution and FPS were picked: 720p and 24
FPS. We connected a parabolic antenna, TP-Link TL-ANT2424B 2.4GHz 24dBi
Grid Parabolic, that we purchased to a laptop and intercepted the outgoing
traffic from the DJI Mavic sent over the access point. We run our Python code
to create a visual stimulus using the smart-film. Figure 6 presents two snapshots
that were taken from the streamed video and the results of applying Algorithm 1
to the intercepted traffic. The peaks in the bitrate correlate to the time at which
the smart-film was flickered. The flicker that was used to modulate the 1 bits
increased the bitrate up to 1.5–2 times, from an average of 300–350 KB up to 450–
570 KB. As can be seen from intercepted traffic, the flicker that was produced
using the smart-film influenced the bitrate in a way that watermarked the bitrate
to the given pattern that was programmed in the Python code.

In order to prove that the physical stimulus is the reason that effects the traf-
fic, we conducted one more experiment in which we streamed the same house for
20 min without any physical stimulus conducted. In addition in order to prove
that this effect cannot be reproduced by another house (that is not the target) we
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Fig. 6. A smart film controlled via a HackRF connected to a laptop

streamed another house (the neighbor’s house) for 20 min. In both cases we inter-
cepted the traffic using the same experimental setup. We applied Algorithm 1
to the intercepted traffic and calculated the false positive rate as a function of
required physical stimulus time of the original signal 111100001111111000000.
As can be seen from the results that presented in Fig. 7, a pattern of 10 s is
sufficient to exclude detection mistakes of filming another target (with a FPR of
0.032). In addition, as can be seen from the result, a pattern of 10 s is sufficient
to exclude mistakes of the same generated pattern without any physical stimulus
made by a coincidence as a result of wind or another physical movement (with
a FPR of 0.027). Figure 7 presents a FPR graph as a function of the required
seconds of physical stimulus.

Fig. 7. FPR as a function physical stimulus time (in seconds)

7 Conclusions and Future Work

In this research we showed methods that use physical stimulus that can be used to
detect whether an object has been captured and is being streamed from a drone
camera to its controller. While many methods were suggested over the last years
to detect the presence of a nearby drone, this research is the first to introduce
methods that distinguish between the legitimate use of a nearby drone that does
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not invade a subject’s privacy and illegitimate use. As Future Work we suggest to:
(1) compare the performance of the suggested method to detect spying drones in
the time domain with the performance of other methods that suggested the use
of frequency domain analysis [4,19] and (2) to examine whether the method can
be applied using infrared flicker, exploiting the fact that a narrow spectrum of
frequencies, the near infrared, is also captured by some CMOS sensors (this fact
was exploited to establish an optical covert channel [11,20]).
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Abstract. Many of the data we collect today can easily be linked to
an individual, household or entity. Unfortunately, using data without
protecting the identity of the data owner can lead to data leaks and
potential lawsuits. To maintain user privacy when a publication of data
occurs many databases employ anonymization techniques, either on the
query results or the data itself. In this paper we examine variant of such
technique, “data perturbation” and discuss its vulnerability. The data
perturbation method deals with changing the values of records in the
dataset while maintaining a level of accuracy over the resulting queries.
We focus on a relatively new data perturbation method called NeNDS [1]
and show a possible partial knowledge privacy attack on this method.

Keywords: Collaborative filtering · Privacy · NeNDS

1 Introduction

Collaborative filtering (CF) is a technique commonly used to build personalized
recommendations on the Web. In collaborative filtering, algorithms are used to
make automatic predictions about a user’s interests by compiling preferences
from several users. Su et al. [2] survey these techniques in depth. In order to
provide personalized information to a user, the CF system needs to be provided
with sufficient information regarding his or her preferences, behavioral charac-
teristics, as well as demographic information of the individual. The accuracy of
the recommendations is dependent largely on how much of this information is
known to the CF system. However, this information can prove to be extremely
dangerous if it falls in the wrong hands. Several methods aimed at hiding and
anonymizing user data have been proposed and studied in an attempt to reduce
the privacy issues of collaborative filtering. These methods include data obfus-
cation, random perturbation, data suppression and others [3–6]. Most of these
methods rely on experimental results alone to show effectiveness, and some have
already been shown to have weaknesses that can be exploited in order to recover
the original user data [7,8].

c© Springer Nature Switzerland AG 2021
S. Dolev et al. (Eds.): CSCML 2021, LNCS 12716, pp. 145–152, 2021.
https://doi.org/10.1007/978-3-030-78086-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78086-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-78086-9_11


146 E. Nussbaum and M. Segal

Parameswaran and Blough [1,3] propose a new data obfuscation technique
dubbed “Nearest Neighbor Data Substitution” (NeNDS). Using this approach,
items in each column of the database are clustered into groups by closeness of
their values, and a substitution algorithm is applied to each group. The algo-
rithm gives each item a new location within the group such that each item’s value
now corresponds to a different row in the original database. The relative close-
ness in values of the substituted items allows for the recommendation system
to maintain a good degree of approximation when the CF algorithm is applied
to obtain recommendations, while the substitution itself offers a level of privacy
by hiding the original values associated with each individual user. Implementa-
tions of NeNDS today can be seen in US patent number 10102398 [9] and in
“BronzeGate”, an obfuscated solution for Oracle’s “GoldenGate” system [10].
The former is based on the same mechanism as NeNDS, while the latter uses
a “furthest neighbor” substitution variation with similar behavior. We detail a
partial knowledge de-anonymization attack on NeNDS, as well as address some
of the shortcomings of this method.

In this paper, we demonstrate the possibility of a privacy attack on the
substituted database by an attacker with partial knowledge of the original data.
Additionally, we highlight a complexity issue with the NeNDS algorithm, and
offer a simpler method for certain data types.

This paper is organized as follows. In the next section we explain the NeNDS
techniques. Section 3 contains the explanations of privacy attack we perform. We
explain how to improve the run time of the original solution in Sect. 4. Finally,
we conclude in Sect. 5.

2 The NeNDS Algorithm

The Nearest Neighbor Data Substitution (NeNDS) technique is a lossless data
obfuscation technique that preserves the privacy of individual data elements by
substituting them with one of their Euclidean space neighbors. NeNDS uses a
permutation-based approach in which groups of similar items undergo permu-
tation. The permutation approach hides the original value of a data item by
substituting it with another data item that is similar to it but not the same.
NeNDs treats each column in the database as a separate dataset. The first step
in NeNDS is the creation of similar sets of items called neighborhoods. These
items contained in each neighborhood are selected in a manner that maintains
Euclidean closeness between neighbors using some distance measuring function
suited to the data. Each data set is divided into a pre-specified number of neigh-
borhoods based on a minimal neighborhood size. The items in each neighborhood
are then permuted in such a way that each item is displaced from its original
position, no two items undergo swapping, and the difference between the values
of the original and the obfuscated items is minimal. The number of neighbors
in each neighborhood is denoted NHsize, with 3 ≤ NHsize ≤ N where N is the
number of items in the dataset (this is due to the fact that NHsize = 1 does not
allow any permutation and NHsize = 2 is the trivial case of swapping between
2 items and easily reversible).
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The substitution process is performed by determining the optimal permuta-
tion set subject to the following conditions:

– No two elements in the neighborhood undergo swapping.
– The elements are displaced from their original position.
– Substitution is not performed between duplicate elements.

The permutation mapping is done by creating a tree depicting all possible per-
mutation paths and selecting the path with the minimal maximum distance
between any 2 substitutions. For example, we look at the case of the neighbor-
hood [75, 77, 82, 70]. The optimal path for substitution would be 75 → 70 →
77 → 82 → 75 with the new neighborhood order being [82, 70, 77, 75] and
the maximal difference between any 2 substituted items being (70 → 77 and
82 → 75). Once the substitutions in each neighborhood is complete, the column
of the original database is replaced with column containing the new item posi-
tions. The detailed algorithm can be found in [3]. Note that this algorithm is
deterministic for any given value of NHsize, and will yield the same permuta-
tions given any original order of the original dataset. However, the root node of
the tree is dependant on the original dataset order, and therefore the original
tree cannot be recreated given the perturbed data order. The first item in the
neighborhood is selected to be the root node, and its child nodes are ordered
left to right by distance from the parent. Each sub-tree for a child node is then
created from the remaining items in the neighborhood in the same manner as
shown in Fig. 1. Selecting a different item as the root node may change the
resulting perturbation, and without this information the reconstruction of the
substitution path is not trivial.

Fig. 1. NeNDS tree algorithm for neighborhood [85, 88, 93, 94, 86]



148 E. Nussbaum and M. Segal

3 Privacy Attack on NeNDS

In this section we will show an attack on a NeNDS permutated database by an
attacker with partial knowledge of the original database, specifically the attacker
knows the original position of at least NHsize − 2 items in each neighborhood.
The attack is performed under the following assumptions:

– The attacker has complete knowledge of the NeNDS algorithm.
– The attacker knows the neighborhood size, NHsize used by the algorithm.
– The attacker can measure the Euclidean distance between the items in the

database.
– The attacker has access to the output permutated database (i.e. the new

positions of all items).

We will show the attack for a single dataset (column), however since the algo-
rithm is performed independently for each dataset, this can be extended to the
entire database. For a given dataset of size n, we define the following notations:

– Let X be the original dataset [x1, x2, . . . , xn].
– Let Y be the NeNDS obfuscated dataset [y1, y2, . . . , yn].
– Let Xp be the original data items in the pth neighborhood, [xp1, xp2, . . . , xpn].
– Let Yp be the obfuscated data items in the pth neighborhood,

[yp1, yp2, . . . , ypn].
– Let up1, up2 be the 2 items in Xp whose original position is unknown to the

attacker.

The attack is successful if the attacker can determine the original position in X
of up1 and up2 for all values of p, 1 ≤ p ≤ n

NHsize
.

The Case of NHsize = 3
We look at the simple case of the minimal neighborhood size, NHsize = 3. In this
case, we have for each value of p the neighborhood [xp1, xp2, xp3]. The attacker
can only know the location of 1 of these items. Assume, without loss of generality,
that the attacker knows the position of xp1, and as such the original dataset to
be [xp1, up1, up2] where both up1 and up2 could be the original positions of xp2

and xp3. We now look at the output neighborhood after the NeNDS algorithm.
Due to the restrictions of the NeNDS algorithm which require each item to be
relocated and do not allow swapping between 2 items, the resulting neighborhood
Yp can only be one of the following permutations:

1. [yp1, yp2, yp3] = [xp2, xp3, xp1].
2. [yp1, yp2, yp3] = [xp3, xp1, xp2].

Any other permutation would entail leaving an item in its original position.
Assume permutation (1). The attacker can determine that the value yp1 could
not have originally been in position up2 since this is the current position of xp1

and the algorithm does not allow swapping between 2 items. Therefore, up2 = xp3

and up1 = xp2. Assume permutation (2). The attacker can determine that the
value yp1 could not have originally been in position up1 for the same reason,
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and reaches the same conclusion - the original order for the neighborhood p is
[xp1, xp2, xp3].

The General Case of any NHsize

In this section we will show that the knowledge of NHsize − 2 original value
positions is enough for an attacker to learn the original positions of all NHsize

values in a neighborhood. We define Lo(x) and Ln(x) for any value x ∈ X to
be the original and new location (row) of that value respectively. Taking some
neighborhood Xp in X, the attacker knows the position Lo(xpi) for NHsize − 2
values in Xp. For 2 values, up1, up2, positions Lo(up1), Lo(up2) remain unknown.
After obfuscation, all new positions Ln(ypi) are known to the attacker. With this
knowledge, since the values in the neighborhood Xp are chosen by their Euclidean
closeness, the attacker learns the 2 values [up1, up2] and their new positions
[Ln(up1), Ln(up2)]. There remain 2 possible original positions Lo(up1), Lo(up2)
between which the attacker cannot distinguish (i.e. each one of the values could
have been at each one of the possible positions originally).

We now examine the new values in Lo(up1), Lo(up2). There are 2 cases: either
1 of the values is up1 or up2, or both values are from the other values in Xp

whose original position is known to the attacker. Note that the case Lo(up1) =
Ln(up2), Lo(up2) = Ln(up1) cannot exist since by definition of the algorithm, no
2 items undergo swapping. We now show the attack for both cases, resulting in
the discovery of the original positions for up1, up2.

Case 1
Assume, without loss of generality, that up1 resides in a position whose original
value is unknown, meaning was either up1 or up2. It is easy to see that Ln(up1) =
Lo(up2) since no item remains in the same position after obfuscation. In addition,
the remaining unknown position is Lo(up1). The attacker now knows the original
position of both previously unknown values.

Case 2
In this case, both Lo(up1) and Lo(up2) now contain values whose original posi-
tion were known to the attacker. We arbitrarily define those positions to be L1

and L2 and their original values u1 and u2 respectively. The attacker can know
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use the following method to backtrack the obfuscation path and find the orig-
inal positions of up1 and up2. We look at the value currently in L1 and denote
this value yp1. This was the item in the obfuscation path immediately before
u1. Lo(yp1) is known to the attacker and contains the value that was in the
obfuscation path before yp1. Denote this value yp2. We now continue this back-
tracking of the path by examining the value in Lo(yp2) and so on until we reach
on of the values up1, up2. Since the path is created using a tree structure which
contains no cycles, the first unknown value we will find must correspond to u2

(as u1 will be that last item found in our backtracking and complete the path).
Assume, without loss of generality, that u2 = up1. The attacker now knows that
L2 = Lo(up1) and vice versa.

4 NeNDS Shortcomings

In addition to being susceptible to partial knowledge reconstruction, the NeNDS
algorithm has an exponential run time which is not suitable for real world appli-
cations. It can be shown the NeNDS algorithm solves the Bottleneck Traveling
Salesman problem (BTSP), which is known to be NP-Complete in the gen-
eral case. For some cases of a defined distance function between values in the
database, such as in the case of one dimensional Euclidean distance, there exists
a polynomial time solution producing the same results as the NeNDS algorithm
(see Algorithm 1 and Fig. 2 as compared to Fig. 1 and Table 1).

Algorithm 1. Linear time algorithm for one dimensional Euclidean distance
BTSP
1. Start at a node at one of the edges of the graph.
2. Travel in one direction selecting the second closest node when possible, and the
closest node when only one remains.
3. Then, travel in the other direction via each node that has not been added to the
path until the originating node has been reached.
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Fig. 2. Bottleneck TSP on linear graph (linear run time) based on same neighborhood
as Fig. 1

In the general case, there are approximation algorithms for BTSP, such as
given by Kao and Sanghi [11] that can be adapted for the case of NeNDS-like
perturbation, giving the same level of privacy while achieving an approximate
level of accuracy.

Table 1. NeNDS transformation result table - same for both algorithms.

Row Original value Transformed value

1 86 93

2 88 85

3 93 94

4 85 86

5 94 88

5 Conclusions

In this paper we have presented a privacy attack on the substituted NeNDS
database by an attacker with partial knowledge of the original data. While this
method claims to maintain privacy unless all but 1 of the values in a neighbor-
hood are known to the attacker, we show that an attacker missing only 2 values
in a neighborhood may also reconstruct the original data before obfuscation.
Additionally as we point out, the NeNDS algorithm can be shown to be NP-
complete for the general distance function between values. While this renders
the method problematic for large neighborhood sizes, we show that a simpler
perturbation algorithm can be used when the data adheres to the one dimen-
sional Euclidean distance function. This allows for larger neighborhoods, which
will require more side knowledge by the attacker.

It would be interesting to continue research into whether our approach can
be generalized for the special case where the attacker knows the position of less
than NHsize − 2 original items in each neighborhood.
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Abstract. Lawful interception is the act of giving law enforcement offi-
cials access to communication between private individuals or organiza-
tions. According to the European Telecommunications Standards Insti-
tute (ETSI), service providers are expected to ensure that the entire con-
tents of communication associated with the target identity being inter-
cepted can be intercepted during the entire period of the lawful autho-
rization, and that the delivery of the interception related information is
reliable.

In traditional telephone networks, authorized surveillance takes place
by duplicating the conversation data at the service provider premises and
forwarding it to law enforcement agencies (LEA). The same approach is
suitable for VoIP communication, as long as the data is transferred via a
mediator located on the service provider’s premises. Today, direct VoIP
communication between clients is the preferred approach due to bet-
ter call quality and reduced network footprint. Although, VoIP service
providers are obliged to provide lawful interception according to ETSI,
the traditional model for lawful interception is no longer applicable for
direct VoIP communication.

In this article, we present a technique to intercept direct VoIP commu-
nication between two clients using the state of the art WebRTC technol-
ogy. This paper addresses an important unmet need of service providers
to enable lawful interception in P2P VoIP calls. The new approach main-
tains high performance without degrading the user experience.

Keywords: Lawful interception · VoIP · WebRTC
P2P communication

1 Introduction

Over the years, telecommunication between clients has progressed from a pub-
lic switched telephone network (PSTN) within a centralized model to voice over
IP (VoIP) telecommunication within a distributed model. Extensive research has
been conducted in order to improve the efficiency of data transportation between
VoIP clients and protect user’s privacy. This, together with efforts to develop an
easy way to share real time media on the Web, contributed to the development of
new alternatives to the traditional telecommunication service providers.
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WebRTC (Web Real-Time Communication) is a standard, which includes a
set of simple APIs, to provide secured and high quality communication between
browsers. The APIs enable to establish a direct connection between browsers and
to transfer streams of data through peer connections. The first public draft of the
WebRTC standard was published in 2011, and a few months later, Chrome1 and
other leading browser manufacturers began to integrate the standard in their
products.

In 2011, Google released a WebRTC open source software package, which
permits sharing data between browsers in a secure manner [3,4]. The main com-
ponents of the software are aimed at providing access to the user’s resources and
easily establishing a secure peer-to-peer connection. In the future, such software
will permit the transfer of structured data as well.

According to law enforcement agency (LEA) requirements [2], as described in
a technical specification document of the European Telecommunications Stan-
dards Institute (ETSI) [1], service providers are expected to ensure that 1) the
entire Content of Communication (CC) of a target identity can be intercepted,
and 2) the meta data of the intercepted communication, a.k.a. Interception
Related Information (IRI) is reliable and accurate. Intercepting of PSTN calls is
fully addressed using standard controls, implemented and supervised by service
providers on their equipment. Similarly, interception of VoIP calls when media
streams are transferred via a mediator is performed by the service provider who
manages the mediator.

However, interception of VoIP calls when media streams are transferred
directly between the clients is largely unresolved. The difference between direct
communication and communication using a mediator is shown in Fig. 1. In this
paper we present an elegant interception scheme of peer-to-peer (P2P) VoIP
calls where media streams are transferred directly between clients. According to
our solution the LEA joins the intercepted conversation as a hidden third party
without the need to wire-tap the service provider’s gateway or control the end
devices at customer premises. We present a practical approach for intercept-
ing P2P VoIP conversations executed using standard WebRTC technology. A
loophole in the original WebRTC specification allows the proposed approach to
integrate well within the existing WebRTC implementations without any amend-
ments to the WebRTC APIs. Lawful Interception of P2P VoIP calls presented
in this paper relies on unsolicited multi-party communication established via
standard browsers supporting WebRTC.

2 Background and Related Work

2.1 Browsers’ Support and Open Source WebRTC Libraries

In this research we focus on VoIP communication supplied by service providers,
which is subject to the regulatory requirements of law authorities. The purpose

1 http://lists.w3.org/Archives/Public/public-webrtc/2011May/0022.html.

http://lists.w3.org/Archives/Public/public-webrtc/2011May/0022.html
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of our research is developing a systemic approach for intercepting VoIP calls, in
which call signaling infrastructure is provided by the service providers, and the
content of the conversation is transferred between the clients’ trusted applica-
tions using a direct communication channel.

The use of public browsers and an open source technology to establish secure
communication poses a challenge for service providers who need to supply inter-
ception for regulatory purposes. This is complicated by the fact that browser
manufacturers are anxious to preserve users’ privacy and obstruct attempts to
hijack network traffic. In this paper we present an application level control for
intercepting the conversation using a public browser and WebRTC, in presence
of the extensive browser security systems and the high security standards of
WebRTC.

In order to avoid arousing the suspicions of the target identity, it is extremely
important that the browser’s typical behavior is maintained during surveillance.
With our proposed interception model, we remain undetectable to users, as long
as they don’t make special efforts to detect network traffic anomalies. For exam-
ple, with network debugging tools, users may be able to determine that a connec-
tion has been made with another peer. However, in normal network conditions,
numerous connections are made during Web browsing. The ability to remain
undetectable, depends on the users expertise to differentiate between the nor-
mal network traffic and the network traffic during the surveillance. This should
be considered by the law enforcement agencies in each case.

(a) Communication via Mediator (b) Direct Communication

Fig. 1. Communication via a mediator vs direct communication

WebRTC technology was used because it eliminates the need for developers
to handle media transfer issues and enables direct media streaming between
clients with ease.
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Our research expands the current standards for the act of lawful interception
for telecommunication over the Internet.

2.2 ETSI Reference Model for Lawful Interception

Lawful interception is the act of giving law enforcement officials access to the
communication between private individuals or organizations. The process is
legally authorized, and communication includes phone calls, email messages, text
messages (SMS), photo messages (MMS), and other types of data interchange.
In 2000, the Internet Engineering Task Force (IETF) decided not to consider
the requirements for wiretapping over the Internet [5]. On the other hand, the
IETF mentioned that mechanisms designed to facilitate or enable wiretapping
facilities for [legal] purposes, should be openly described. Although such stan-
dards and protocols had not been described, in 2001, the technical committee
of the European Telecommunications Standards Institute (ETSI) described the
lawful interception procedure in detail and published a reference model, which
was adopted by the majority of EU countries.

The technical committee of the ETSI organization (TC LI) has published
three standards to define interception for traditional communication and com-
munication over the Internet [6]: handover specification for IP delivery inter-
ception (TS-102-232 [7,8]), service specific details for email services interception
(TS-102-233), and service specific details for Internet access services interception
(TS-102-234).

In a separate document (TS-101-671 [9]), the technical committee describes
a generic handover interface (HI) for the provision of lawful interception for
network operators, access providers, and service providers. The handover spec-
ifications describe three interfaces (see Fig. 2): HI1 describes the administra-
tive functionality (Handover Manager), which enforces integrity and applies an
encryption mechanism if required. HI2 and HI3 describe the interception data:
the Interception Related Information (IRI) and the Content of Communication
(CC), respectively. Mediation Functions (MF) are responsible for receiving the
IRI and CC information within the service provider network.

The MFs are responsible for correlating and formatting the relevant infor-
mation in real-time before delivering it to the LEA over the HI2 and HI3 han-
dover interfaces. All data is transferred to law enforcement agencies via the Law
Enforcement Monitoring Facility (LEMF). According to the LEA requirements,
any service coding or encryption which has been applied to the content of the
communication or to the interception related information, should be removed at
the request of the LEA [1].

2.3 Current Solutions for Intercepting VoIP Calls

Intercepting PSTN calls has been addressed and massive standardization was
provided by the regulatory authorities. In this case, interception is handled by
management controls, implemented and supervised by service providers. Medi-
ation functions are responsible for transferring the intercepted data.
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Fig. 2. Reference model for LI system by ETSI

As the development of the Internet infrastructure progressed, telecommuni-
cations service providers began to investigate the potential of VoIP calls and
develop communication products accordingly. However, the interception of VoIP
calls posed a significant challenge to the LEAs. In traditional telecommunication
systems, service providers are obligated to provide an entry point for authori-
ties, and the call data that is transferred via gateways is duplicated. Hence, the
interception of VoIP calls while media streams are transferred via a mediator
has also been resolved, while the interception of VoIP calls as media streams
that are transferred directly between the clients remains an open problem.

The obligation of service providers to adhere to regulations and the lack
of effective solutions for lawful interception, have delayed advancements in the
development of peer-to-peer VoIP calls as an alternative to PSTN. As a con-
sequence to the refusal of the main standards body of the Internet (IETF) to
be involved in LI [5], and following the ETSI’s publication of a reference model
in 2001, efforts were made to outline a model to intercept telecommunication
conversations over the Internet.

In 2003, Milanović et al. [10] described four basic methods for intercepting
a call in an IP telephone network, based on the H.323 standard, and described
their advantages and disadvantages:
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1. Wiretap on Gateway: In the H.323 standard, a gateway is an adapter
between the H.323 network and other networks. Wiretapping via this gate-
way is suitable for calls between a client in the H.323 system and a client
in a different network. In this case, calls within the H.323 network are not
interceptable.

2. Wiretap Routing on the Gatekeeper: A gatekeeper, in the H.323 stan-
dard, is a Call Administration Control (CAC) service provider. In routing
mode, the Gatekeeper acts as a proxy for both signaling and communication
services. Wiretapping via Gatekeeper interception is applied for all calls, but
it degrades the quality of the call and can be detected by an expert user.

3. Fixed Route Wiretap: This is a different version of the previous method,
which enables the application of filters on the communication properties that
are attached to the signaling packets. However, this method does not resolve
the quality issue and raises new scalability problems.

4. Promiscuous Wiretap: In this method, a device in a promiscuous mode
monitors all of the network traffic. In this case, the device should be connected
to the local area network and configured to forward all of the traffic data.

In other research, also published in 2003, Milanović et al. [11] outlined an
abstract model to support the interception methods for a distributed IP tele-
phony network based on the H.323 standard. The assumption in this model is
that call data is transferred via a gateway and not in a direct mode between
clients. In case of direct peer-to-peer communication, the call data cannot be
intercepted.

In 2004, Cisco published an RFC [12] that described a reference model to
support LI in an IP network, without any limitations for a specific architecture
(centralized versus distributed) or protocol. Device manufacturers essentially
provide the ability to integrate interception in VoIP telecommunication systems.
The architecture model of the Cisco Service Independent Intercept (SII) device
is shown in Fig. 3. According to Cisco, all the devices must be part of the service
provider’s domain. Essentially, this model fails when service provider has no
control over the end devices.

In 2007, Balamurugan et al. [13] discussed the challenges of the interception
of VoIP calls. The authors propose an additional solution to LI which relies
on interception at the gateway. They proposed monitoring architecture for VoIP
networks which based on Session Initiation Protocol (SIP). In their research, they
defined signaling and data delivery functions to transfer SIP and RTP (Real-time
Transport Protocol) packets to the LEA from a gateway in the Communications
Service Provider (CSP) domain.

All LI solutions for VoIP proposed so far rely on a centralized device (gateway,
mediator, etc.) which controls the media stream between clients. Meanwhile, due
to network traffic efficiency and conversation quality, direct P2P communication
has become the preferred approach for VoIP calls. In this case, the call data does
not pass through a mediator, but is routed directly between the clients and the
service providers are unable to intercept it and deliver to LEA using standard
methods.
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Fig. 3. Cisco SII model

3 WebRTC

WebRTC (Web Real-Time Communication) is a standard of the World Wide
Web Consortium (W3C) that provides rich and high quality communication
between browsers via simple APIs. The advantage of WebRTC over other tech-
nologies is its ability to transfer data between standard browsers, with no need
of additional plug-ins. In the rest of this section we discuss the essential details
of WebRTC, putting special focus on P2P voice/video communication and the
relevant security controls.

In 2011, Google released WebRTC 1.02, an open source JavaScript package.
WebRTC’s main components provide web developers access to user’s resources
(camera and microphone) and peer connection infrastructure. The browser has
access to the user resources, and during session initiation, the browser requests
the user’s permission to use his/her resources. If the request is declined, the ses-
sion handshake is cancelled; otherwise, the session continues. For example, user
permission is required when the a Web application requests access to either one of
the client media devices using the getUserMedia API call. However, as the follow-
ing analysis reveals, the peer connection does not require any user permission.

3.1 Connection Initiation

Signaling is used to coordinate communication and send control messages
between clients. In WebRTC, signaling is used to detect peers, initiate the session
2 https://webrtc.org.

https://webrtc.org
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handshake, and exchange session descriptions. The WebRTC signaling process
is based on JSEP (JavaScript Session Establishment Protocol), a new standard
that was developed by the IETF, in order to fully control the signaling process
of the multimedia session. According to the authors of JSEP [14], the new stan-
dard will accomplish the thinking behind WebRTC, leaving the selection of the
signaling process to the application developer as much as possible.

After selecting a signaling mechanism, bidirectional negotiation between
clients takes place in order to configure the session properties. The Session
Description Protocol3 (SDP) is a format to lay out the session parameters.

In WebRTC, all connection management is encapsulated in an RTCPeer-
Connection object. This object is associated with the Interactive Connectivity
Establishment (ICE) service to establish end-to-end connectivity behind NAT
(Network Address Translation). See additional details on WebRTC NAT traver-
sal in Sect. 3.3.

When a client tries establishing a call with another party, he/she creates an
RTCPeerConnection object, in order to deliver SDP offers and media metadata
to the other client. The process of creating a data connection between clients
using a messaging service is shown in Fig. 4.

3.2 Encryption

Encryption is a mandatory feature in WebRTC and is enforced on all compo-
nents, including signaling mechanisms. The encryption protocol used depends
on the channel type. Data streams are encrypted using Datagram Transport
Layer Security (DTLS), which is based on TLS with an asymmetric encryption
methodology, and media streams are encrypted using Secure Real-time Trans-
port Protocol (SRTP). The key exchange process is encrypted with DTLS-SRTP.

3.3 P2P Communication

Peer discovery is the way clients signal their friends. Although, client address
books are not implemented in WebRTC, open source projects such as AppRTC4,
WebRTC.io5, easyRTC6 and other projects are available for this purpose. It is
also possible to implement a local host server using Node.js [15].

The ICE (Interactive Connectivity Establishment) mechanism overcomes the
complexity of initiating peer connections in presence of NAT. First it attempts
using the host’s operating system address. The fallback scenario is to use Session
Traversal Utilities for NAT (STUN) [16] to determine the public IP addresses of
both sides and assist in establishing a P2P connection.

When a direct communication path cannot be found, it is necessary to use a
TURN server (Traversal Using Relays around NAT [17]) which acts as a relay

3 https://tools.ietf.org/html/rfc4566.
4 https://apprtc.appspot.com.
5 https://github.com/webRTC-io/webRTC.io.
6 https://github.com/priologic/easyrtc.

https://tools.ietf.org/html/rfc4566
https://apprtc.appspot.com
https://github.com/webRTC-io/webRTC.io
https://github.com/priologic/easyrtc
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Fig. 4. WebRTC data connection initiation process

for the packets. The client can control some aspects of the relay. Note that even
in case that a TURN server is used as a relay, it may not be under the control
of the service provider and thus, interception at the relay may not be possible.
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3.4 Multi-party Conversations

There are several different architectures suitable for a conference call with mul-
tiple endpoints in an RTP based environment. The following basic topologies for
multiple endpoint RTPs were described in RFC 7667 [18]: point to multipoint
using multicast, point to multipoint using mesh, point to multipoint using a
translator, and point to multipoint using a mixer.

Multicast (see Fig. 5(a)) is a technique supported by device in an IP layer
that enables participants in a group to send a packet with the expectation that
the packet will reach all group participants.

In a mesh topology (see Fig. 5(c)), all nodes are connected to each other.
Although this architecture is theoretically inefficient, it is very easy to use and
has been found to be efficient in conversations between three or four participants
[19]. In this case, all of the data is sent to all of the users simultaneously.

A translator (transport translator or media translator) receives an RTP
stream on one side and generates an individual RTP stream in the other domain.
Transport translators do not modify the RTP stream itself but are concerned
with transport parameters, such as unicast to multicast. In a very simple trans-
port translator, the translator connects multiple endpoints through unicast. This
scenario is called a relay translation (see Fig. 5(b)). The relay forwards all of the
traffic it receives to all other endpoints.

The mixer (see Fig. 5(b)) is a middlebox that aggregates multiple RTP
streams which are part of a session and generates new RTP streams by manipu-
lating the media data. The content that the mixer provides is the mixed aggre-
gate of the data that the mixer received.

The mixer is a sender and receiver of RTP streams. In addition to the regular
connectivity handling, the mixer responds an RTP reports to the incoming and
outgoing stream. For incoming streams, the mixer responds an RTP receiver
reports and for outgoing streams, the mixer generates an RTP sender reports.

(a) Multicast (b) Mixer / Relay Transla-
tor

(c) Mesh

Fig. 5. Multiparty topologies

Multiparty Conversation Session Initiation. In 2006, the IETF published
a specification for creating a conference session between multiple user agents [20].
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The process of initiating a conference call between Alice, Bob, and Carol
starts with an INVITE request sent from Alice to a focus server to create a
conference session.

A focus server is a conference application server, which hosts the SIP confer-
ence and maintains the SIP signaling relationship with each participant in the
conference.

After the conference session has been created, Alice sends a REFER request
in order to join Carol and Bob in the conference.

In WebRTC, a conference session for a small group of users is implemented
in a mesh architecture; for a large group of users, a multipoint conferencing unit
device (MCU) performs the media mixing.

In some cases, the MCU device supports SIP and H.323 protocols as well.
Otherwise, a different server is required for the signaling process.

4 The Interception Model

The interception process begins after the LEA management application sets up
a clean session with the SIP service. The clients’ conversation depends on their
session with the same SIP service.

When Alice wants to initiate a media connection with Bob, the web appli-
cation will ask for her permission to use her local media resources. This is done
using the getUserMedia method. This method is integrated in the browser’s API,
and as a consequence, the browser will display a message dialog box to request
Alice’s permission to use her media resources.

When Alice confirms the media request, the web application can continue on
to send an invitation to Bob.

At this point in the process, the application would ordinarily send a single
invitation to Bob. Instead, our web application will send two invitations. The
first is to Bob and the second is to the LEA.

Both invitations will be sent directly. It is highly recommended to ensure that
the both invitations (to Bob and to the LEA) arrives, before we continue in the
invitations process. This is required in order to prevent from the conversation
to begin, before the LEA has the ability to start the interception process.

When Bob’s web application receives the offer, his web application asks for
permission to use his local media resources.

After Bob confirms the use of the media resources, his web application creates
a response, and designates Alice’s offer. At the same time, Bob’s web application
creates another invitation, and sends it to the LEA.

Bob’s web application then sends the response to Alice, and the VoIP con-
versation begins.

When the LEA receives Alice and Bob’s offers, it can send a confirmation
as a response and continue with the session initiation. The LEA can decide to
confirm both of the offers, to confirm only one of the offers, or to decline both
offers.

The interception model includes the following components:
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4.1 Signaling Services

In practical terms, a signaling service is designed to exchange small messages
between clients. In telecommunication, signaling messages are valuable during
the conversation life cycle for preserving the client’s availability.

There are several alternatives for implementing signaling services:

1. Polling: The user initiates a request to the signaling server, in order to obtain
his/her pending messages. The act of making the request is carried out by
the user, or periodically by the application, according to a predefined business
logic.
This approach is relevant for systems that need to receive the messages at
regular intervals. Polling is thought of as inefficient. When there are a few
messages waiting for a client, most of the requests will be returned with an
empty response.
In terms of telecommunication, this approach means that the caller sends
his/her request to the signaling server and will only get an answer after the
second client pulls the caller’s request and answers it.

2. Push: The user initiates a request to the signaling server and waits until
a message is ready to be flushed. The connection does not have a time-out
limitation, and the client can wait as long as needed. When a message arrives,
the server flushes the data, and the connection remains open and ready to
receive new data.
This approach is efficient in terms of system resources and provides a solution
for real-time systems.
In terms of telecommunication, this approach means that the caller sends
his/her request to the signaling server, and the second client will get the
request in real-time.

3. Long Polling: This approach is a combination of the previous alternatives.
The user initiates a request to the signaling server and waits until a message is
ready to be pulled. If no messages are available, the server holds the response
as long as it can (until a time-out exception occurs, according to the binding
configurations).
When a message arrives, the client pulls the message and closes the connec-
tion. When the connection has been closed (after a message was pulled or
after a time-out exception occurs), the user initiates a new request to the
server and waits.
This approach is relevant for real-time response, but it is inefficient compared
to the push alternative.

In telecommunication systems, only push and long-polling methods are appli-
cable.

4.2 Web Applications

The core of the interception model is the trusted client application. This appli-
cation is a web application, based on WebRTC components.
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Both invitations are sent using RTCPeerConnection WebRTC objects. These
objects generate a local SDP offer and are responsible for sending the invitation
requests to their destination.

When Bob’s web application receives the offer, his web application use the
‘getUserMedia’ method in order to receive a permission to use his local media
resources.

After Bob confirms the use of the media resources, his web application creates
an RTCPeerConnection, which generates an SDP response and designates Alice’s
SDP offer as the remote SDP. At the same time, Bob’s web application creates
another invitation using RTCPeerConnection, and sends it to the LEA.

Bob’s web application then sends the response to Alice, and the VoIP con-
versation begins.

When the LEA receives Alice and Bob’s offers, it can send a confirmation
as a response and continue with the session initiation. The LEA can decide to
confirm both of the offers, to confirm only one of the offers, or to decline both
offers.

The interception model is based on the fact that the client’s conversation
data is sent to the LEA, in addition to the obvious tunnel between the clients.
Our interception approach is based on the secondary invitaions to the LEA.

5 Showcase

5.1 Signaling Services

According to the LEA requirement, a list of the current users connected and the
metadata, in addition to the call content, must be supplied. For this reason, the
use of a flexible signaling server, which can handle the requests of the clients and
the LEA’s regulations, is recommended. For commercial use, Asterisk releases7

are an adequate choice, while for smaller entities Node.js8 with the PeerJS server
extension9 is sufficient.

To fulfill the LEA request regarding the connected users, interception device
manufacturers supply an API. In Asterisk, the ‘show peers’ command is used,
and Node.js with the PeerJS server uses the ‘allow discovery’ option.

Due to the extensive use of signaling messages, signaling services must be
very efficient. In mobile communication systems, signaling services also remain
active while the system is in an idle state, in order to supply a current snapshot of
the devices, including their location and ability to establish a media connection,
at all times.

Both server options described (Asterisk and PeerJS), implement an SDP
that meets the WebRTC requirements. For Asterisk, an additional set of mod-
ules (SRTP, WebSocket, pjproject and others) is required. In addition, a set of

7 http://www.asterisk.org.
8 https://nodejs.org.
9 https://github.com/peers/peerjs-server.

http://www.asterisk.org
https://nodejs.org
https://github.com/peers/peerjs-server
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configuration setups is required before use10. The PeerJS server exposes the SDP
interface originally, and no extra setup is required.

For security reasons, WebRTC requires full encryption of every interaction
during the signaling process. Both servers are capable of securing the hand-
shake and conversation data. The configuration process includes the setup of
the encryption keys and certifications.

5.2 Web Applications

Various packages, that have been created by the developers community and
third parties, can be used to establish WebRTC conversation with a correlation
to SIP servers. The packages include both WebRTC and SIP communication
components and simplify the coding process.

The relevant JavaScript packages are the open source projects, JsSIP11 and
SIP.js12 and the free commercial package, Dubango SIPML513. These packages
use WebSockets to communicate with the SIP server and contain WebRTC com-
ponents to establish VoIP calls using the browser.

Cloning a branch from the SIP.js open source project14 and customizing
the code to meet specific needs is recommended for commercial use. However,
for small and medium sized entities, the PeerJS client with the Peer Server
combination is recommended.

5.3 LEA Management Console

According to the ETSI HI1, a management tool for the LEA is required.
In order to obtain a list of the currently logged in clients, the web application

will consume the SIP service API. Both Asterisk and PeerJS supply an interface
for external clients.

The open source project, CEF (Chromium Embedded Framework15), can be
used in order to accept and manage many sessions with the target identities. This
CEF component is written in C++ and is suitable for use within desktop appli-
cations or service modules. Due to the large volume of connection requests, the
filter application can be allocated in multiple servers and handle many requests
in parallel.

As shown in Fig. 3, the service provider does not serve as a gateway between
the clients for call content in P2P VoIP calls for Cisco’s RFC. However, according
to our model, it is the service provider’s responsibility to host the LEA virtual

10 The detailed tutorial can be found in https://wiki.asterisk.org/wiki/display/AST/
Asterisk+WebRTC+Support.

11 http://jssip.net.
12 http://sipjs.com.
13 https://www.doubango.org/sipml5.
14 https://github.com/onsip/sip.js.
15 https://bitbucket.org/chromiumembedded/cef.
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https://github.com/onsip/sip.js
https://bitbucket.org/chromiumembedded/cef
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clients and ensure their availability. This issue should be considered by the regu-
latory agencies. The proposed component architecture in reference to the Cisco
model is shown in Fig. 6.

According to the Lawful Interception Administration Function, the mediation
device should orchestrate the availability of virtual clients and their connections
to the target identities. The LEA is responsible for the management console and
handling the intercepted identities, and this shall remain in their local domain.

This model describes an interception that has been initiated before the con-
versation begins, during the clients’ handshake. This approach is static and is
not applicable for the request of the LEA to join the conversation when needed.
In the real world, the interception begins after the signaling messages of the
target identity have arrived at the LEA systems and the act of interception has
been approved by the relevant authorities.

As mentioned at the beginning of this section, the SIP is a messaging ser-
vice. Opening a secondary connection to the LEA is also possible during the
conversation. This can be achieved using the SIP mechanism, but it depends on
the development business logic. When a known message arrives at the client, the
web application can trigger the interception process.

Fig. 6. Proposed interception model
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6 Limitation of the Current Work

The Browser. The trusted client application is a crucial characteristic of the
interception model. The model is based on the fact that the user confirmed the
use of his/her media resources for his/her personal use to initiate a hidden session
with the LEA. However, the main idea behind WebRTC, and the technology’s
primary benefit, is the ability to use the browser in order to establish a real-time
media connection. This fact strengthens the hypothesis of the trusted client
application.

We did not discuss the option of hijacking the browser for interception pur-
poses, without obtaining permission to use the media resources, or even without
initiation of the session between the LEA and the target identity.

Trusted Web Application. We assumed a trusted application as a basis to the
interception model. The client application duplicate the data transportaion.
Hence, one of the options to disable the lawful interception is to sabotage the
dupllication code. This could be done by making a local copy of the web aplpi-
cation, and disable the relevant code lines. Signing the application code is one
of the available options to verify a trusted application. However, the ability to
create a trusted web application is not in the scope of this paper.

End-to-End Scrambling and Encryption. A party aware of the possibility of an
interception is able to scramble the data stream on its end provided a match-
ing decoder on the other end. If the scrambler operates on top of the service
provided by the VoIP service provider then the latter, is unable to tap the clear-
text communication. This is the exact same situation we currently have with
regular landline or mobile phone calls. The LEA will be acknowledged of the
communication but will not be able to decipher it.

Network Detection. In our model, the interception is duplicated and sent to
the LEA. An expert user can detect the existance of a running interception
by sniffing the network traffic. As mentioned in Sect. 2, this issue should be
considered by the lawful agencies, according to the interception commonness
and the proficiency of the target identity.

In case the interception is detected, the LEA addresses can be detected and
blocked in any firewall’s black list. For hardened operating systems, whitelist
can prevent eavesdrop to any other destinations.

WebRTC Technology. Another limitation of the current work is the WebRTC
technology itself. After Google released WebRTC 1.0, W3C announced16 that
its groups were working on a new project: ORTC (Object Real-Time Commu-
nication), the next generation of RTC. Although it is aimed primarily at APIs
and exposing features from the lower level of WebRTC’s main components, it
remains unclear whether further security restrictions will be imposed on the

16 https://www.w3.org/community/ortc.

https://www.w3.org/community/ortc
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browser. Furthermore, the implementation described in Sect. 5.2 was evaluated
on a standard browser. It is expected that service providers will consume the
WebRTC technology in a customizable application.

7 Conclusion

Although there are extensive regulations for lawful interception in telecommuni-
cation systems and network traffic, existing regulations for VoIP calls are inad-
equate and have not kept pace with today’s phenomenon of P2P calls.

In this research we introduced a practical model to tackle the obstacle of
lawful interception for P2P VoIP communications. This paper demonstrates the
ability to intercept WebRTC communication, a protocol established by the W3C,
and provides the basis for further discussion by the ETSI organization’s technical
committee and a means of addressing the current lack of regulations for P2P
VoIP calls. We introduce a prototype of an interception model for P2P VoIP calls,
along with a preliminary schematic architectural design. The research shows that
it is possible to intercept WebRTC VoIP calls without being detected by the user
in normal conditions, when no network monitoring is being done. Moreover,
this paper demonstrates the ability to establish a hidden media connection, in
the guise of another legitimate WebRTC media connection. This fact should be
considered by the W3C Privacy Interest Group.

While being an important law-enforcement tool, lawful interception technol-
ogy may be misused to gain unsolicited illegal access to third party communi-
cation infringing basic human rights. This raises significant ethical issues. The
ethics of lawful interception as a whole are not within the scope of this article.
However, service provider applications are trusted and they are the only enti-
ties capable of executing the critical parts of the interception. It is therefore
the obligation of service providers to acknowledge their cooperation with law
enforcement in front of their users. The users, in turn, should not trust spurious
VoIP service providers who may eavesdrop their communication without a court
order.

The need to provide users a high level of security and privacy protection,
along with the regulatory requirements associated with lawful interception, moti-
vated us to develop a balanced solution that considers the interests of all of the
parties involved: the clients, service providers, law enforcement agencies, and the
regulatory organizations. The proposed model accomplishes this, using state of
the art WebRTC technology to enable lawful interception while protecting the
user and ensuring that service providers meet the legal and regulatory require-
ments.

We believe that the rapid development of VoIP technologies, will continue to
provide additional challenges to service providers and regulatory authorities in
the years to come.
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Abstract. We propose a modification of the hierarchical-ring-signature
scheme, which may be regarded as an extension to a regular ring sig-
nature scheme. The scheme is defined over a structure of nodes, where
each node is a root of its own tree, and its anonymity-set spans over all
its leaf nodes. Our modified construction is resistant to an exposure of
randomness from a signing device, on any level of the hierarchy. The pro-
posed scheme is provably secure in a stronger security model, in which
we allow a forger to inject the randomness into the signing device. We
define the scheme to be secure if such an injection, will not give any
advantage to the adversary and does not lead to a fresh forgery. The
proposed scheme can be applied in scenarios with untrusted hardware,
or weak pseudo-random number generators.

Keywords: Ring signature · Hierarchical signature
Schnorr signature · Ephemeral secret setting · Randomness leakage

1 Introduction

A hierarchical-signature scheme (HRS), firstly discussed in [1], and later elabo-
rated in [2], enables a user to sign anonymously a message in a manner similar to
ring-signing. In a regular ring signature scheme, the actual signer is hidden in a
set of other potential signers (ring members), whose public keys were used dur-
ing signature creation. First ring signature constructions proposed results with
signature tuples of the length proportional to the cardinality of the set of public
keys (linear constructions). In those schemes, the computational complexity of
signing procedure is linear in the number of ring members. Hierarchical scheme,
recalled here [1,2] allows for smaller signature lengths and smaller computational
complexity, providing better anonymity at the same time. It has modular con-
struction, and is based on regular signatures and ring signatures. Reusing exist-
ing, well known and analyzed schemes, make subsequent commercial deployment
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easier, as implementors may utilize already tested and verified libraries. Hierar-
chical signature system is build on top of a public repository of signatures. The
users create and upload nodes, each consisting of: a message, a ring-like signature
over that message, a ring, and new public key of that node, updating in this way
a public structure. Members of the ring (potential signers in the node) are signers
of the predecessors of that node, i.e. the set of public keys in the ring consists of
public keys from predecessor nodes. This relation goes recursively to the leaf level
nodes, which are based on public keys certified to particular users registered in the
system. As each ring signature provides anonymity, the set of potential signers of
a given node spans across all of leaves of sub-trees rooted in this node. Addition-
ally, the structure provides a kind of a time-stamping functionality, as subsequent
nodes are created on top of the previous ones.

Problem Statement. Many signature schemes use linear combination of ran-
dom values and long-term secret keys, mutually masking each other, to provide
keys secrecy and produce a non-deterministic output. Such a solution is efficient
if the ephemeral values created for signatures are not predictable to a potential
adversary. As randomness is manageable on a hardware and operating system
level, malicious manufactures or OS implementors can mount successful attacks
on such schemes. These seems to be primarily relevant for schemes deployed on
popular portable devices, smartphones or wearables. The problem of bits leakage
from computation was initially analyzed by Chari et al. [3], and independently by
Goubin and Patarin [4], follwed by e.g. Alwen et al. in [5]. Leaking bits from cryp-
tographic keys was analyzed by Canetti et al. [6], and continued in later works
on memory leakage [7–9]. Memory resets were studied by Canetti et al. in [10].
We refer to [11] for the survey on leakage-resilient cryptography. The problem
for potential ephemeral leakage and setup in untrusted devices was later ana-
lyzed for many fundamental cryptographic schemes, e.g. identification [12–14],
key exchange [15–20], signatures [21–23], or credential systems [24]. However, the
similar problem was not yet addressed for the hierarchical ring constructions.

Contribution. The contribution of the paper is the following:

– We propose a new strong security model for a hierarchical-signature scheme,
introduced in [2], in which we allow the forger to inject ephemeral keys (ran-
dom values used in signing) into the signer device. We define the scheme to
be secure if this will not allow the attacker to forge any new signature in the
hierarchy afterwards.

– We propose a modification to the scheme from [2], which is provably secure in
our stronger model. The proposed scheme provides unconditional anonymity,
as the knowledge of all secret keys of ring members and predecessor nodes,
does not allow to distinguish the actual node signer.

– We test the feasibility of the proposed construction and evaluate its compu-
tational overhead via our proof-of-concept implementation.

Like the original scheme, our modified HRS, can be used to create a secure
bulletin board that can be used for example in e-voting scenarios. The scheme
can be also applied in public tenders, to allow anonymous submissions thus
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preventing discrimination, e.g. based on the company’s country of origin, or
time of market presence. Thanks to the hierarchy, the winner can reveal himself
by signing the disclosure message using the previous offer as the only member
of the ring. If the tender would operate as an auction, the original offer and the
previous bids can be used to send new bids, creating a linear hierarchy that also
acts as a history for all bids of a given user.

Related Work. Ring signatures were introduced by Rivest et al. in [25].
Identity-based ring signatures schemes for different domains were analyzed
in [26–31]. Schemes for linking together ring signatures signed with the same
secret key, were presented in [32] and [33]. Confessable threshold ring signature
scheme, in which the signer can prove its authorship were proposed in [34]. A
stronger notion of unforgeability and anonymity for ring signatures were anal-
ysed in [35]. In [36] and [37] ring signatures of sub-linear sizes, provably secure
without random oracle model were presented. In [38] authors propose ring signa-
tures which do not rely on a trusted setup or the random oracle, with logarithmic
size in the number of ring members. The scheme can be extended into linkable
ring signatures. The first hierarchical scheme from [1], based on non interactive
zero knowledge proof of equality of discrete logarithm, does not provide per-
fect anonymity - users can deny authorship if they expose their private keys.
Subsequent version of hierarchical scheme from [2], based on Schnorr ring signa-
tures [39], proven to be unconditionally anonymous and unforgeable under the
Forking Lemma in ROM, is vulnerable to the ephemeral leakage attacks. Our
modification proposed in this paper address this issue.

Organization of the Paper. In Sect. 2 we recall the original HRS scheme
and describe used notation. In Sect. 3 we define our stronger model with active
malicious forger setting ephemeral values in signing queries. In Sect. 4 we propose
the modified version of HRS and prove its security in our model. Finally, we
present the benchmarks collected from our proof-of-concept implementation of
the scheme.

2 Hierarchical Signature Scheme

2.1 Preliminaries and Notation

Let {xi}n
1 ←$ X denotes that each xi is sampled uniformly at random from the

set X. Let H : {0, 1}∗ → A be a hash function modeled as the Random Oracle
(ROM), which outputs the results from the set A. Let G(1λ) be a group gener-
ation algorithm that takes as an input 1λ, and outputs a tuple G = (q, g,G),
where g denotes a generator of a group 〈g〉 = G of order q. We assume that
computations are done in elliptic curve groups. Public keys and signatures are
elements of a chosen elliptic curve group. The proposed scheme uses a bilin-
ear pairing for verification. The security of the original and the proposed HRS
schemes relies the existence of random oracles, and the intractability of CDH,
GDH in the chosen groups of computation. We recall the required assumptions
below.
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Definition 1 (The discrete logarithm problem (DLP) assumption). For
any probabilistic polynomial time (PPT) algorithm ADLP it holds that:

Pr[ADLP(G, gx) = x | G ←$ G(1λ), x ←$ Z
∗
q ] ≤ εDLP(λ),

where εDLP(λ) is negligible.

Definition 2 (Bilinear Map). Let GT be another group of a prime order q.
We assume that ê : G×G → GT is a bilinear map s.t. following condition holds:
1) Bilinearity: ∀a, b ∈ Z

∗
q ,∀g, g ∈ G: ê(ga, gb) = ê(g, g)ab.

2) Non-degeneracy: ê(g, g) 	= 1.
3) Computability: ê is efficiently computable.

Definition 3 (The computational Diffie-Hellman (CDH) assumption).
For any probabilistic polynomial time (PPT) algorithm ACDH it holds that:

Pr[ACDH(G, gx, gy) = gxy | G ←$ G(1λ), x ←$ Z
∗
q , y ←$ Z

∗
q ] ≤ εCDH(λ),

where εCDH(λ) is negligible.

Definition 4 (The decisional Diffie-Hellman oracle). Let decisional Diffie-
Hellman oracle ODDH be (PPT) algorithm, which for G ←$ G(1λ), x ∈ Z

∗
q , y ∈

Z
∗
q , z ∈ Z

∗
q evaluates like follows:

ODDH(G, gx, gy, gz) =

{
1 if z = xy mod q,

0 if z 	= xy mod q.

Definition 5 (The gap computational Diffie-Hellman (GDH) assump-
tion). For any probabilistic polynomial time (PPT) algorithm AODDH

GDH that has
access to decisional Diffie-Hellman oracle ODDH it holds that:

Pr[AODDH

GDH (G, gx, gy) = gxy | G ←$ G(1λ), x ←$ Z
∗
q , y ←$ Z

∗
q ] ≤ εGDH(λ),

where εGDH(λ) is negligible.

2.2 Definition of Hierarchical-Signature Scheme

A hierarchical-signature scheme is a system build for a group of signers, having
a set of certified public keys L = {pk}, each linked to the corresponding secret
key sk. We assume that the certified public keys identify the users registered in
the system. Let S = {(m,σ, pkn,Y)} denotes a set of nodes in the system. A
node is defined by a tuple (m,σ, pkn,Y), which binds: a message m, a ring-like
signature σ over m, a unique public key pkn, and a set of public keys Y of the
direct predecessor nodes (children). Each node (m,σ, pkn,Y) is a root of its own
tree. Let N = {pkn} denote a set of public keys of all nodes, each corresponding
to its secret key skn. Initially, the set of node key-pairs {(skn, pkn)} is empty,
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and it grows steadily with the construction of new signatures. A signer can
create a new ring-like signature σ over a message m, using a subset Y ⊂ L ∪ N,
s.t. all nodes whose public keys belong to Y, are not mutual predecessors of
each other in S. We call that a non-predecessor-condition for Y, and denote by
T(Y). We say that Y is correct in this case. Each node-signature σ is linked
with a new key pair (skn, pkn) constructed altogether with σ, and with the set
Y. Immediately, after creation, the tuple (m,σ, pkn,Y) is added to the set S,
i.e. S = S ∪ {(m,σ, pkn,Y)}, the public key pkn is added to the set N, i.e.
N = N ∪ {pkn}, and the corresponding skn is kept secret by the node signer.
We denote H = {L,N,S} as a structure of the scheme. Let H0 denote the initial
state of the system only with the registered public keys L = {pk}, but without
signatures. By H1 we denote the system with one node, i.e. one signature added,
H2 with two nodes (signatures), etc. The structure Hi+i is constructed from Hi by
adding just one valid node. Let {Hi}�

0 denote a sequence of structures obtained
from H0 after � subsequent node creations. In Fig. 1 we demonstrate the structure
in which the nodes were added in the order indicated by the message indexes.
Thus H0 has only public keys L, H1 consists of node (m1, σ1, pkn1,Y1), H2 has
two nodes: (m1, σ1, pkn1,Y1) and (m2, σ2, pkn2,Y2), etc. Formally we define the
following:

Fig. 1. HRS example.

Definition 6 (Hierarchical-Ring-Signature Scheme (HRS)). A hiera
rchical-ring-signature scheme is a tuple (ParGen, KeyGen, NRSign, NRVerify),
where:

params ← ParGen(1λ): inputs a security parameter λ, and outputs public param-
eters’ available to all users of the system (we omit them from the rest of the
description).

{(sk, pk)} ← KeyGen(): outputs the set of key-pairs: a secret key sk and the
corresponding public key pk. L = L ∪ {pk}.

(σ, (skn, pkn)) ← NRSign(m,xj ,Y,H): denotes the signing procedure which take
on input: a message m, a secret key xj corresponding to one public key
yj ∈ Y from the structure H, s.t. T(Y). It outputs a signature σ with a pair
(skn, pkn) which define a new node (m,σ, pkn,Y) in H. H = {L,N∪{pkn},S∪
{(m,σ, pkn,Y)}}
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1 / 0 ← NRVerify((m,σ, pkn,Y),H): denotes the verification procedure, which
takes on input: a node (m,σ, pkn,Y), s.t. T(Y) in H. It outputs 1 if the ver-
ification is successful, i.e.: yj corresponds to xj used in NRSign(m,xj ,Y,H)
for σ, and yj ∈ Y ⊂ L ∪ N, s.t. T(Y) in H. It outputs 0 otherwise.

Let Hi+1 ←NRSign Hi denote that Hi+1 is obtained via NRSign for some message
m and a correct set Y:

(σ, (skn, pkn)) ← NRSign(m,xj ,Y,Hi),Hi = {L,Ni,Si}.

Let 1 ←NRVerify {Hi,Hi+1} denote that a node (m,σ, pkn,Y) in structure

Hi+1 = {L,Ni ∪ {pkn},Si ∪ {(m,σ, pkn,Y)}},
that was added by Hi+1 ←NRSign Hi, is verified positively:

1 ← NRVerify(m, (σ, pkn),Y,Hi+1).

Definition 7 (HRS Correctness). HRS is correct if any structure created via
NRSign is recursively verifiable to 1 via NRVerify(), i.e.:

Pr[params ← ParGen(1λ); {(sk, pk)} ← KeyGen(); L = {pk};H0 = {L, ∅, ∅}
{Hi}�

0 : ∀i∈{0,...,�−1}1 ←NRVerify {Hi,Hi+1};Hi+1 ←NRSign Hi] = 1 .

2.2.1 Original HRS Scheme The original HRS scheme from [2], recalled
in the left column of Fig. 2, is based on a ring signatures construction intro-
duced in [39]. Its security is based on Forking Lemma for ring signatures of the
form (R1, . . . , R|Y|, h1, . . . , h|Y|, s), where R1, . . . , R|Y| (Ri 	= Rj) are the ran-
dom values, hi is a hash over m and Ri, while s depends on m, R1, . . . , R|Y|,
h1, . . . , h|Y|, and the private key of the signer corresponding to one of public
keys from Y. If an effective forger exists, it can be used to obtain, with non
negligible probability, two different valid signatures with the same randomness:
(R1, . . . , R|Y|, h1, . . . , h|Y|, s) and (R1, . . . , R|Y|, h′

1, . . . , h
′
|Y|, s

′) s.t. hj 	= h′
j for

some j, and hi = h′
i for all i 	= j. These tuples can be used to break the

underlying assumption (DLP), which contradicts the initial forger existence.
The original HRS construction from [2] uses the regular Schnorr Sign as sub-
procedure in NRSign, which itself is a modified ring signing procedure from [39].
The NRSign creates a tuple R = {(Ri, σi)}|Y|

1 in the following way: a new pair of
private/public keys (skn, pkn) is created; the private key skn is used to produce
a set of a Schnorr signatures σ1 = Sign(R1, skn), . . . , σ|Y| = Sign(R|Y|, skn) over
the nonces R1, . . ., R|Y|; each pair (Ri, σi) is hashed with the message m, to pro-
duce the vector: h1, . . . , h|Y|. The public key pkn is included in the resulting node
(m, ({(Ri, σi)}|Y|

1 , s), pkn,Y). The node can be regarded as a self- certificate, in
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HRS defiidoMemehcs HRS scheme

ParGen(1λ):
G = (q, g, G) ← G(1λ),
H : {0, 1}∗ → Z

∗
q ,

params = (q, g,G, H).

ParGen(1λ):
G = (q, g, G, GT , ê) ← G(1λ),
H : {0, 1}∗ → Z

∗
q , Hg : {0, 1}∗ → G

params = (q, g,G, H, Hg).
KeyGen(): Generate random sk ←$ Z

∗
q ,

compute pk = gsk and output (sk, pk).
KeyGen is the same.

Sign(m, skn):
1. r =←$ Z

∗
q , R = gr .

3. h = H(m, R).
4. s = r + hskn.

5. return σ = (R, s).

modSign(m, skn):
1. r =←$ Z

∗
q , R = gr .

3. h = H(m, R).
4. s = r + hskn.

ĝ = Hg(R, m).
Ŝ = ĝs,

5. return σ = (R, Ŝ).
Verify(m, σ, pkn):

1. h = H(m, R).

2. Output:
1 if gs = Rpknh,
0 otherwise

modVerify(m, σ, pkn):
1. h = H(m, R).

ĝ = Hg(R, m),
2. Output:

1 if ê(Ŝ, g) = ê(ĝ, Rpknh),
0 otherwise.

NRSign(m, xj ,Y,H):
1. (skn, pkn) ← KeyGen().
2. For each yi ∈ Y, i �= j do

ri ←$ Z
∗
q , Ri = gri .

σi = Sign(Ri, skn).
hi = H(m, Ri, σi).

3. rj ←$ Z
∗
q .

4. Rj = grj
∏

i�=j y−hi
i .

5. σj = Sign(Rj , skn).
6. R = {(Ri, σi)}|Y|

1 .
7. hj = H(m, Rj , σj).
8. s =

∑
i�=j ri + rj + xjhj .

9. σ = (R, s).
Return (m, σ, pkn,Y).

modNRSign(m, xj ,Y,H):
1. (skn, pkn) ← KeyGen().
2. For each yi ∈ Y, i �= j do

ri ←$ Z
∗
q , Ri = gri .

σi = modSign(Ri, skn).
hi = H(m, Ri, σi).

3. rj ←$ Z
∗
q .

4. Rj = grj
∏

i�=j y−hi
i .

5. σj = modSign(Rj , skn).
6. R = {(Ri, σi)}|Y|

1 .
7. hj = H(m, Rj , σj).
8. s =

∑
i�=j ri + rj + xjhj .

ĝ = Hg(R, m).
Ŝ = ĝs,

9. σ̂ = (R, Ŝ).
Return (m, σ̂, pkn,Y).

NRVerify((m, σ̂, pkn,Y),H):
1. For each yi ∈ Y do

wi = Verify(Ri, σi, pkn).
hi = H(m, Ri, σi).

2. Output:
1 if (gs =

∏
yi∈Y Riy

hi
i )

and (1 ==
∏

i wi),
0 otherwise.

modNRVerify((m, σ̂, pkn,Y),H):
1. For each yi ∈ Y do

wi = modVerify(Ri, σi, pkn).
hi = H(m, Ri, σi).

2 ĝ = Hg(R, m).
3. Output:

1 if ê(Ŝ, g) = ê(ĝ,
∏

yi∈Y Riy
hi
i )

and (1 ==
∏

i wi),
0 otherwise.

Fig. 2. Modified scheme.
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which the regular signatures σi and the ring value s mutually certify themselves.
The verification procedure NRVerify verifies all signatures σi from the node via
regular Schnorr Verify(Ri, σi, pkn), and subsequently verifies the ring value s
according to [39]. If all the verifications hold, the node is accepted. The verifier
concludes: the node creator is the holder of a one private key corresponding to
one of the public keys from the ring Y, and at the same time it is the holder
of the new pair (skn, pkn). In other words: the ring signature certifies the new
public key pkn of the node. The pair (skn, pkn) becomes a new private/public
key for the creator of the node, and is used to identify that creator later on.
Thus, in Fig. 1, the actual signer of (m5, σ5, pkn5,Y5) could be any holder of the
public key from L = {pk1, . . . , pk9}.

3 New Security Model

3.1 Anonymity Model

The anonymity of the node is the uncertainty about the secret keys used by the
node signer. Intuitively, if the set of the secret keys in L is of the cardinality
n, and the node is a root of a tree with leafs in L of cardinality n, then the
probability of distinguishing which particular user from L did create the node,
should be 1/n. We analyze the model in which the secret keys are known to the
distinguisher.

Definition 8 (Anonymity). Let HRS=(ParGen, KeyGen, NRSign, NRVerify)
is a scheme from Definition 6. We define anonymity experiment ExpAno,λ,�

HRS :

Init stage : Let params ← ParGen(1λ) {(ski, pki)}n
1 ← KeyGen();

L = {pki}n
1 ; H0 = {L, ∅, ∅}. Let the adversary A, be the malicious algorithm

given the set of all keys {(ski, pki)}n
1 .

Challenge stage : A challenger C draws random indexes d ∈ {1, . . . , n}, and
produces {Hi}�

0, s.t the last node in H� was added by user holding (skd, pkd).
Each time Hi is created, the corresponding (skni, pkni) of its last node are
given to A. After that adversary outputs its own index d̂ ← A. The adversary
wins the experiment if d̂ = d.

We define the advantage of A in the experiment ExpAno,λ,�
HRS as:

Adv(A, ExpAno,λ,�
HRS ) = |Pr[d̂ = d] − 1/n|.

We say that the HRS is anonymous if Adv(A, ExpAno,λ,�
HRS ) is negligible in λ, �.

3.2 Strong Unforgeability Model

In this section we propose the new stronger security model for HRS. In this model
we assume that during sign queries, the forger F can inject its own random
values into the signing device. We model it by a specific sign query definition
Or̄

Sign, where r̄ denotes the randomness chosen and adjusted adaptively by F
according to responses from all oracles.
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Definition 9 (Chosen Ephemeral Forgery (CEF)).
Let HRS=(ParGen, KeyGen, NRSign, NRVerify) is a scheme from Definition 6.
We define security experiment ExpCEF,λ,�1,�2

HRS :

Init stage : Let params ← ParGen(1λ) {(ski, pki)}n
1 ← KeyGen(); L = {pki}n

1 ;
H0 = {L, ∅, ∅}.

Hash Oracles : Hash oracles {OH} is a set of oracles to serve queries issued in
the experiment during signature creation and verification. Let �1 denotes the
maximum number of queries to those oracles.

Sign Oracle : Sign oracle Or̄
Sign answers a polynomial number �2 of sign queries

using injected ephemerals r̄. These result with a sequence of structures {Hi}�2
0

over corresponding queried messages M = {mi}�2
1 .

Forger : Let the forger F{OH},Or̄
Sign be the malicious algorithm given access to

the hash and the sign oracles, and the initial structure H0 = {L, ∅, ∅}. F
can interact with Or̄

Sign in a polynomial number (�2 at maximum) of signing
procedures, injecting the ephemerals r̄ each time.

Forgery : F{OH},Or̄
Sign produces a new node containing a signature σ∗ over a

message m∗ with group of public keys Y, s.t. the node was not a result from
previous queries to Or̄

Sign for m∗ and Y:

(m∗, σ∗, pkn∗,Y) ← F{OH},Or̄
Sign , (m∗, σ∗, pkn∗,Y) /∈ {Hi}�2

0 .

We define the advantage of F{OH},Or̄
Sign in the experiment ExpCEF,λ,�1,�2

HRS as the
probability of acceptance of forged node in the NRVerify procedure for any struc-
ture H ∈ {Hi}�2

0 :

Adv(F{OH},Or̄
Sign , ExpCEF,λ,�1,�2

HRS )

= Pr[NRVerify((m∗, σ∗, pkn∗,Y),H) = 1,H ∈ {Hi}�2
0 ].

We say that the scheme HRS is secure if Adv(F{OH},Or̄
Sign , ExpCEF,λ,�1,�2

HRS ) is neg-
ligible for parameters λ, �1, �2.

Theorem 1. The original HRS scheme depicted in the left column of Fig. 2 is
not secure in the proposed CEF model (as of Definition 9).

Proof. Once the forger which has possibility to inject r̄, {r̄i}|Y|
1 used in Sign

and NRSign procedures, it can compute the secret keys: skn = s−r̄
h , and xj =

s−∑|Y|
1 r̄i

hj
. These allows impersonation and signing on behalf of the key holder. �

4 Modified Specific HRS Scheme

The proposed modified modHRS scheme is presented in the right column of
Fig. 2. Our goal is to disable the adversary from solving linear equations: s =
r + sknh (step 4 of Sign), and s =

∑
i�=j ri + rj + xjhj (step 8 of NRSign) for the
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secret skn, xj , and known (leaked or set) values r, {ri}|Y|
0 . In our modification

we use the technique introduced in [12]. Namely, we replace the explicit values
of s in original procedures, with the corresponding values Ŝ = ĝs (step 4b of
modSign, step 8c of modNRSign) for a new generator ĝ = Hg(R,m), unique in
every signature. The corresponding verification is done with pairing function
ê to check equality in the exponents: ê(Ŝ, g) = ê(ĝ, Rpknh) in modVerify, and
ê(Ŝ, g) = ê(ĝ,

∏
yi∈Y Riy

hi
i ) in modNRVerify respectively.

4.1 Unforgeability Analysis

The proof of unforgeability of the proposed scheme is done by contradiction.
Assuming that the advantage of the forger F{OH},Or̄

Sign in ExpCEF,λ,�1,�2
HRS is non-

negligible, we fork the execution of a forgery attempt on a query to the hash
oracle H with the same randomness {Ri}|Y|

1 . Thus we obtain, with non negligible
probability, two different valid signatures: ({Ri}|Y|

1 , h1, . . . , h|Y|, s) and ({Ri}|Y|
1 ,

h′
1, . . . , h

′
|Y|, s

′), s.t. hj 	= h′
j for some j. Those will help us to break the underlying

GDH problem, with non-negligible probability.

Theorem 2. The modified HRS scheme (shown in the right column of Fig. 2)
is unforgeable (as of Definition 9), i.e. Adv(F{OH},Or̄

Sign , ExpCESF,λ,�1,�2
HRS ) is neg-

ligible in λ, �1, �2, for any PPT algorithm F{OH},Or̄
Sign accessing hash and sign

oracles: OH, OHg
, Or̄

Sign.

Proof (Sketch). Suppose there is a forger F{OH},Or̄
Sign for which the advantage

in the experiment ExpCESF,λ,�1,�2
HRS is non-negligible. Then it can be used to create

algorithm AGDH that breaks the GDH for a given instance gα, gβ , computing gαβ

with non-negligible probability.

Init stage : Let params ← G = (q, g,G,GT , ê). Let (gα, gβ) is GDH instance
in G. Set and record random masks {wi}|Y|

1 ←$ Z
∗
q . Set the leaf keys L =

{pkni = (gα)wi}|Y|
1 .

Serving OH Oracles : The OH hash query table is set up with two columns: I
and H, for inputs and outputs respectively. If there is a new query with an
input Ii to oracle, an output Hi is coined at random from Z

∗
q , saved in table

and returned. If the input Ii exists already in the table, the corresponding
Hi is returned.

Serving OHg
Oracle : The table for Hg has three columns: I,H, d, for the input,

the output, and the masked exponent respectively. OHg
is queried a poly-

nomial number �2 times at maximum, and the queries are indexed. At the
beginning we choose a random index j ←$ {1 . . . , �2}. The current query is
denoted by an index i ∈ {1, . . . , �2}.
Case : i 	= j When Ii is a new query to Hg, a random mask di ←$ Z

∗
q is

generated, the output Hi = gdi is computed, the new row (Ii,Hi, di) is
placed into the table, and Hi is returned. If Ii is already registered in
table, the corresponding Hi is returned.
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Case : i = j When Ij is a new query to Hg we output Hj = gβ , the new
row (Ij ,Hj) is placed into the table, and Hj is returned. If Ii is already
registered in table, the corresponding Hi is returned.

Serving Sign Oracle : When the sign oracle Or̄
Sign is invoked, the injected ran-

domness is used to compute: R = gr̄, {Ri = gr̄i}|Y|
1 in modSign, modNRSign.

Subsequently OHg
is invoked to obtain new generators ĝ for those procedures.

We have the following cases:
Case : (R,m) is not j fresh query to OHg

:
For modSign we set (skn, pkn) = (⊥, (gα)w), for a random w we record. We
update N = N ∪ {pkn} and output it to the adversary. We compute Ŝ =
ĝs = ĝr̄ ĝhskn = gdr̄gdhskn = R dpkndh for some value d registered in ROM
table. This computation does not require the knowledge of the secret
key skn. The verification in modVerify holds: ê(Ŝ, g) = ê(gdr̄gdhskn, g) =
ê(ĝ, Rpknh).
For modNRSign we set Ŝ = ĝs = ĝ

∑
i�=j r̄i+r̄j+xjhj = gd

∑
i r̄igdhjxj =

gd
∑

i r̄i · yj
dhj for a value d registered in ROM table. This computation

does not require the knowledge of the secret key xj . The verification in
modNRVerify holds: ê(Ŝ, g) = ê(gd

∑
i r̄i · yj

dhj , g) = ê(ĝ,
∏

yi∈Y Riy
hi
i ).

Case : (R,m) is j fresh query to OHg
: In this case the oracle outputs ⊥

and stop.
Forgery : The forger F{OH},Or̄

Sign queries the above defined oracles, and with non-
negligible probability, we successfully answer his all hash and sign queries,
without outputting ⊥. Moreover, to get the generator for the forgery, it
accesses OHg

, and is given ĝ = gβ with non-negligible probability 1/�2. where
d is a random mask. According to forking lemma [39], we obtain two valid sig-
natures: ({Ri}|Y|

1 , h1, . . . , h|Y|, Ŝ) and ({Ri}|Y|
1 , h′

1, . . . , h
′
|Y|, Ŝ

′), s.t. hk 	= h′
k

for some k. Thus we compute:

Ŝ/Ŝ′ = (ĝrk+xkhk

∏
i�=k

ĝri+xihi)/(ĝrk+xkh′
k

∏
i�=k

ĝri+xihi).

So Ŝ/Ŝ′ = ĝxk(hk−h′
k) = (gβ)αwk(hk−h′

k), where wk is a known random
mask we recorded previously. Therefore we are able to compute gβα =
(Ŝ/Ŝ′)wk(h

′
k−hk) which contradicts the GDH assumption. �

4.2 Anonymity Analysis

Theorem 3. The modified HRS scheme (shown in the right column of Fig. 2)
is anonymous (as of Definition 8), i.e. the advantage Adv(A, ExpAno,λ,�

HRS ) of any
PPT algorithm A is negligible in λ, �.

Proof. First we analyze the anonymity of a node (m,σ, pkn,Y) created for the
set of public keys Y via modNRSign. This is a modified ring signature proce-
dure. Here we paraphrase the original proof from [2], which itself is based on
the anonymity proof from [39]. The key observation here is that the probability
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choices of the real signer in modNRSign are independent from the signer index.
Let (m,σ, pkn,Y) be a valid node created via modNRSign. Let j denotes a poten-
tial node signer, i.e. a holder of one public key from Y. The probability that j
computes the pkn of the questioned node does not depend on j. The probability
that j computes the Ri’s of the questioned node does not depend on j. The prob-
ability that j computes the correct σi = modSign(Ri, skn) for a given Ri and
skn corresponding to pkn, does not depend on j. The probability that j chooses
exactly the only value rj ∈ Zq that leads to the value Rj of σj , does not depend
on j. The probability that j computes the correct σj = modSign(Rj , skn) for a
given Rj and skn corresponding to pkn does not depend on j. Summing up, the
probability that j generates the exact values in the given node does not depend
on j, so it is the same for each member of the ring. Now the above reasoning
can be done for all nodes in a tree rooted in the (m,σ, pkn,Y). Therefore the
set of potential signers has the same cardinality as the set of all paths from
(m,σ, pkn,Y) to the leafs in L for that tree. �

5 Implementation

For a proof-of-concept implementation, the original and the modified HRS were
programmed in Python Charm-Crypto library [40] using SS512 symmetric curve
with a 512-bit base field. Benchmarks were collected on Intel Core i7 7700K
4.4 GHz, running Ubuntu 18.04.3 LTS operating system. Benchmarks in Table 1
are averages from 1000 executions.

Table 1. Operation and time complexity comparison.

NRSign modNRSign NRVerify modNRVerify∗

Operations
(n denotes ring size)

G:mul n− 1 n− 1 3n− 1 3n− 1

G:pow 3n 4n + 1 3n + 1 2n

G:hash - n + 1 - n + 1

Zr:add 2n 2n - -

Zr:mul n + 1 n + 1 - -

Zr:hash 2n 2n 2n 2n

pairing - - - 2(n + 1)

Total time [ms] n = 2 6.9056 10.0233 6.8193 9.2008

n = 3 9.8538 13.0087 9.7360 12.1092

n = 4 12.8420 15.9743 12.6089 15.0134

n = 8 24.5782 27.7796 24.3665 26.7950

n = 16 48.2854 51.5113 47.6071 50.0007

n = 32 95.3582 98.9072 94.0676 96.8479

In Table 2 we collect timings from the verification of an entire tree of the
same topology for both scheme versions. Note, that the verification process can
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be improved: each fresh node entering the system can be automatically verified
by a trusted managing third party. Only valid nodes would be certified and
subsequently added to the system structure. Therefore users, creating new nodes,
would not need to recursively verify the tree themselves, and the structure would
maintain the permanent valid state.

Table 2. Tree verification timings. d denotes depth of the tree and n denotes ring size.

HRS ver. modHRS ver.

Total time [ms] d = 2 n = 2 57.1829 76.4051

n = 3 126.6224 157.6635

n = 4 152.9543 184.2096

n = 8 257.6268 26.7950

n = 16 467.5049 501.1358

d = 5 n = 2 1429.6564 1869.4216

n = 3 3548.5692 4408.6378

n = 4 4259.1884 5150.1035

n = 8 7112.9722 8002.3510

n = 16 12835.1486 13740.8850

Simultaneously to the current proof-of-concept, we are working on the imple-
mentation using WebAssembly (WASM) version of MCL library [41]. That proof-
of-concept will be available on-line, as a fully functional bulletin board system.

6 Conclusion

In this paper we modified the HRS scheme from [2] in such a way, that it becomes
immune to the adversarial randomness setting. The benchmarks collected out
of our proof-of-concept implementations are very promising, showing that the
complexity overhead of the construction is acceptable.
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Abstract. We will call a set of programs a Prediction Tool (PT) that can be
used to solve a particular applied prediction problem, for example, predicting
the volumes of traffic under consideration at certain points in the future. The
goal may be a forecast for the network administrator. We analyze what kind of
information about the predicted data and the predictors should be used to develop
(design) PT. The paper analyzes some principal questions, the solution of which
is essential for specified procedures of choosing a predictor in the prediction
online scheme. This is primarily a question about the properties of predictability
of random sequences, and the required and achievable accuracy of the estimate
of the conditional probability of prediction obtained from past results. Although
some of these issues have been considered in sufficient detail in the literature,
for example, such as the analysis of predictability measures, accuracy metrics,
however, as will be shown, they are more focused on the problems of constructing
specific prediction algorithms than on the choice of ready-made predictors.

It is shown how the specified properties of sequences and probability estimates
affect the quality of the choice of predictors. Based on this analysis, a rule for
choosing a predictor based on the results of previous predictions is formulated.

Keywords: Predictability · Random sequences

1 Introduction

The designer of a forecasting subsystem, for example, a traffic management and/or
network security system, should provide for the possibility of assessing the expected
quality and possible costs of forecasting at every required moment when the forecasting
subsystem is running. This requires a tool for assessing the effectiveness of forecasting
in a given time interval.

Wewill call a set of programs that implement prediction algorithms asPredictionTool
(PT) which can be used to solve a particular applied prediction problem, for example,
predicting the volumes of the traffic at certain points in the future or possible malicious
attacks. The quality of the forecast at some point in time depends on how well the
algorithm used by the predictor based on the data in the past reflects the situation in
the future. In general, these issues are considered as “predictability” ones, by both
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probabilistic-statistical and logical-semantic viewpoint. PT user must perform a forecast
at a given time (e.g., a certain communication session) according to the information
available at the moment, that is online. In general, the users do not know the details of
the prediction algorithm by this predictor, and only information (statistical, in particular)
about the results of its use on certain arrays of the data under consideration (for example,
the volume of network traffic), and they should make a decision on the choice of a
predictor from a suit of available predictors based on this information.

The paper analyzes a number of fundamental issues, the solution of which is essential
for the specified procedure for choosing a predictor in the described online scheme.

This is primarily a question about the properties of the predictability of random
sequences. Although the issues of predictability measures, prediction accuracy metrics,
etc. have been considered in the literature [1–3, 7], they were more focused on the
problem of constructing specific prediction algorithms than on the choice of ready-
made predictors. In [1–3] criteria for the selection of predictors based on comparison
with the so-called “universal” predictor were theoretically substantiated. However, as
the analysis performed has shown, it does not always agree well with the cost criteria
used in practice, especially for binary sequences that naturally arise in the problems of
predicting the direction of changes in values of numerical time series. In Sects. 2 and
3, a rule for choosing a predictor based on the results of previous predictions from a
suit of predictors is formulated. Then it is shown how certain properties (not necessarily
statistical and probabilistic) of sequences can be used (Sects. 4 and 5).

2 Description and Problem Definitions

We will consider data and related to them events as ordered (e.g. on terms “earlier”
or “later”) sequences of their representations (for example, symbolic objects). Let x1,
x2, …, xt… is the specified ordered set. The observer consistently observes the values
x1, x2, …, xt of known types, for example, symbols in some alphabet A. At time t,
having received the values x1, x2 ,…, xt, the observer calculates according to some
rule or algorithm the value bt+1 (in A), which will be received by the element of the
sequence xt+1. To make a decision about the value of xt+1, an observer (PT user) can
use some prediction algorithm (rule) from a set of known and available PT. The task
is to determine the sequence of actions of the observer (with supporting the PT), that
provides an effective solution to the prediction problem.

Currently for solving this problem, there are two kinds of models for predicting data
values from previously known data: probabilistic models and “ontological models” [9,
10]. In the paper we will consider a probabilistic prediction model with an assessment
of the possibility of using certain non-probabilistic characteristics of the predicted data.

Prediction in modern literature [1–3] is understood as the computation of the condi-
tional probability γ(xt+1|x1, x2 ,., xt), defined on all elements of the sequence for which
the natural condition is satisfied

∑
a∈Aγ(xt+1 = a | x1, x2, …, xt) = 1. The function γ()

is also called a predictor.
Formally, a statistical hypothesis is equivalent to a prediction strategy, which is also

a function of the finite sequences and their distributions on A [2]. Note, that the predictor
is also called software products (for example, some modules of cloud MS AWS Azure
ML, Google Cloud ML, etc.), which are used for prediction.
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The subject of research in the field of predictions is both the algorithms used in
software tools and the issues of choosing ready-made prediction software. From the
above, the following two questions arise: (i) how to use the estimated values of γ() for
making a decision, and (ii) what is the required accuracy of the estimate? These questions
can relate to both the estimation algorithm and the application of the estimation results
by a specific predictor (fully or partially known, for example, knowing that the predictor
belongs to a neural network. An example of using of such partial knowledge see in
Sect. 4). In our scheme, we evaluate several predictors at time t, and think about which
one to use for time t + 1. By online prediction we mean that for consecutive units of
time t, our predictor p makes a prediction based on past observations [6].

3 Metrics of Predictability: Related Work

Questions related to the ability of certain datasets to be predicted by predictors of certain
classes will be called Predictability issues. It follows from the above that the main issue
of predictability is the possibility of accurate approximating conditional distributions.
We can talk either about a parametric estimate, when the general form of the paramet-
ric probability distribution is known to which the segment of the sequence belongs,
or a nonparametric estimate of the conditional probability distribution, for example,
according to the Kolmogorov-Smirnov test. However, the approximation of probability
distributions for discrete random sequences is rather difficult [5], which stimulate to deal
with a prediction that is not associated with the explicit probabilistic models of the data.
Therefore, so-called. “Universal schemes” [1, 2, 11], in which predictions are performed
without explicit probabilistic models of sequences, although with certain assumptions
about the probabilistic measures of hypothetical sources generating these sequences, say
about their ergodicity (in our methods, these assumptions are not always necessary - see
below).

The well-known Lempel-Ziv (LZ) compression algorithm [12] is an example of the
universal method. In fact, LZ can act as a predictor by defining xt+1 as the corresponding
leaf in the partial matches tree [1, 11] with the conditional probability induced by the
incremental parsing algorithm. But it is important, that for any method of prediction
there exists such a stationary ergodic process that with probability 1:

, where P′() is an estimation
(by universal prediction scheme), and there is no method whose error goes to 0
for every stationary ergodic time series (when t goes to infinity) [3]. But it also
depends on the definition of the error, which may differ from the trivial probabil-
ity of a wrong prediction. In particular, it was proven [2] that there exists a pre-
diction for which the convergence to 0 of the following Cesaro average is true:

. So, there are no consistent esti-
mates if the consistency is considered in a wide one of the sense, but there are consistent
estimates in the Cesaro average sense.

One of the measures of distributions closeness is the Kullback-Leible (KL) dis-
crepancy. There are sequences for which the error in terms of KL according to Cesaro
(similar to the above) tends to zero as t increases infinitely (for example, the Laplace
predictor for the Bernoulli sequence (see Sect. 4)). Unfortunately, there is no predictor
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with this property for any stationary ergodic source. However, for such sources, there
are predictors for which a weaker property holds: the Cesaro means of errors tends to
zero. That is [1–3, 11]) the predictor γ() is universal for the set of sources � (generated
corresponding sequences) if the Cesaro average-like error convergence to 0 with t→∝
for any ω ∈ �. Thus, when choosing a predictor, in order to achieve at least asymptotic
prediction accuracy on it for a specific data set, a preliminary analysis is required, which
can be associated with instrumental errors analysis. At the same time, the average in the
Cesaro sense, as dependent on past estimates, may not correspond to the user’s situation
at the moment t + 1 of making a new decision, for example, if the cost and time of
choosing a specific predictor, say, in a cloud resource, changes dramatically [13]. One
of the ways to overcome these difficulties is to use models of minimization of “losses”
from erroneous prediction.

3.1 Selection of a Predictor Based on the Model of Losses from Erroneous
Predictions

So, let’s look at what we need to know about the consequences of mispredictions by
predictors in order to assess the effect of predictor property on prediction quality.

We consider predictors (as the program tools) as a set of functions belonging to
some family of one or more classes (for example, neural networks, Gradient-based, etc.
[9]) f = (f1, f2,…): {0,1}t → {0,1}. That is the predictor fp, i = 1, 2, .., is any function.

bt+1 = fp(xt−m,…, xt), which calculates the value of the random sequence predicted
by the predictor fi for the moment t + 1, m is the number of terms in the sequence
preceding t that this predictor uses (p) to obtain prediction bt+1, which is an estimate of
the true value of xt+1. (Note that, for prediction at time t+ 1, not only the previous results
for a given predictor, but also the results of predictions obtained byother predictors before
this time may be used. In this case the problem is close to prediction with experts [6]).
Based on the obtained bt value, the user (or some software solver built into PT) makes
a decision, the error of which may have a certain price.

The loss function l(p, x) for the predictor p for the sequence x is the loss that we
associate with the forecast result (deciding on the value of bt) if it turns out that bt
does not coincide with xt. For example, if the purpose of prediction is to prevent DDoS
attacks, and as a result of an incorrect prediction, the attack was missed, then the losses
are maximum and the value of the loss function should be l(xt, bt) = 1. Otherwise,
l(xt, bt) should be equal to 0. Obviously, this requirement is satisfied by the Hamming
distance H(x, b).

Since the accuracy of the prediction depends on both the characteristics of the predic-
tor and the probabilistic properties of the sequence, and the characteristics of the predic-
tor also usually depend on these probabilistic distributions, the estimation of which, as
noted, can be difficult, as a criterion for the quality of the choice of the predictor in [3] the
so-called “regret” is proposed, which is the difference between some loss function when
using the universal predictor U and, in a sense, the best of the set of predictors. However,
as the performed analysis shows (we do not present it here due to lack of space), there
are many difficulties for its practical implementation, (online, in particular) due to the
asymptotic nature of the accuracy of universal predictors. Thus, for choosing a predictor
by assessing the magnitude of regret it is important to integrate some characteristics of
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the predictor algorithm into the procedure choice, considering the predictor as a “black
box”. Such a possibility exists, for example, in [4], where it is assumed that the predic-
tor algorithm is described as a finite state machine, and asymptotic dependences of the
regret value on the number of states are obtained. Our analysis showed, however, the
complexity of such an assessment, which can be partially overcome by using an online
procedure that uses not only data, which should be predicted by their past values, but
also past results of attempts to apply predictors for this dataset.

4 Model and Procedure for Choosing a Predictor

The stated theoretical results concerning the properties of predictability of random
sequences can be used to somewhat increase the efficiency of working with prediction
tools on-line.

Suppose we use a predictor p, to predict the value of a binary time series at time
t + 1, knowing the predicted values at times {t − M, … t}, where M is the window
size, used for prediction at the moments within (t − M, t). Let the success rate of the
predictor be SRp = Np\M in the window {t − M,…t}, where Np is the number of correct
predictions by the predictor in thewindowof sizeM. Since the predictor (for probabilistic
prediction models) is described by the conditional probability γ (xt+1/xt,..xt−m), then we
will consider the possibility of its representation (expression) in terms of the specified
data segments and measurements.

It is clear thatNp =�i=1,M1(fp(xt−M+i,..xt−M+i+m)= xt−M+i+m+1)), where xt-M+i+m+1
is the true value fp() is the same as in Subsect. 3.1. Then it is easy to see that Np\M is an
empirical estimate of the conditional probability γ().

Suppose now that the sequence in the M-window is a Bernoulli sequence, and we
estimate the Bernoulli parameter using either maximum likelihood estimated value n1/n,
or Laplace estimator (“Laplace smoothing)”, if we can assume the possibility of zero
values of successes (failures) in the considered segment of the sequence).

This represents the estimate γ() (Sect. 2) under the assumption that the considered
sequence is Bernoulli, since knowledge of the estimate θ uniquely generates an optimal
predictor.

Statement 1. For the Hamming loss function the forecast bt, optimal according to the
regret criterion (Sect. 3), of the next value of the binary Bernoulli sequence is achieved
if it is made according to the following rule: bt+1 = 1, if Prob (1|xt) > 1/2, bt+1 = 0, if
Prob (0|xt) = 1 − Prob(1|xt) > 1/2, and this is the deviation of any forecast if Prob (0|xt)
= Prob(1|xt) = 1/2, that is, the forecast “skip”, Where “ skip” means the absence of an
optimal forecast [1, 3].

We will call this predictor “Bernoulli optimal” (BO).
Note that its distribution γ() is the well-known Laplace estimate (n1 + 1)/(n1 + no

+ 2), where n1, no are the numbers of “1” and “0”.
It is possible (and practical) for the proposed technique, a frequency interpretation,

i.e. comparing the number of correct predictions by the given predictor and the optimal
predictor of the Bernoulli sequence. In this case, we considerNp in a window of lengthM
as a characteristic of only a given segment of the data set considered immediately before
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the prediction time point, and we consider the sequence xt−M+i, .. xt−M+i+m as individual
sequence,without assumptions about its belonging to a stochastic ensemble of sequences.
Accordingly, we draw conclusions about the effectiveness of the predictor only in this
time interval, and we get rid of the need to estimate the confidence intervals of the
probabilistic estimates. This is especially important with a relatively small asymmetry
of the sequence segments, with close values of zeros and ones (for example, |1/2 −
θ| < 1/10).

Suppose we used the well-known predictors XGD (eXtreme Gradient Boosting) and
calculated the estimate SRp. At the heart of XGBoost is a gradient boosting decision
tree algorithm that builds a prediction model in the form of an ensemble of predictive
models, usually decision trees. The ensemble is trained sequentially on the input data of
the predicted sequence, in which patterns of a certain length (for example, “0110”) are
selected, followed by the predicted “0” or “1”.

Let us consider our sequence in theM-window (i.e. (t − M, t)) simply as a Bernoulli
sequence, and also use the Bernoulli optimal predictor for prediction. Therefore, we
can talk about the difference between the XGB predictor of a binary sequence fp from
such a simple predictor (BO), both in the estimated value of SR and in the structure of
errors (i.e., in the error ratio “0 instead of 1”(“0→1”) and (“1 instead of 0” (“1→0”))
Obviously, if there is no significant difference between these values, then we can talk
about the inefficiency of the predictor implementing the function fp, since a similar
solution is obtained by a much simpler Bernoulli predictor.

Thus, the current predictor for prediction at time t-M + 1 should be updated for
another if n1 > n0, n1 < np1, np11 > n1/β, or n1 < n0, n0 < np0, np00 > n0/β, where n1,
n0 is the number of zeros and ones in the M-window, np1, np0 is the number of zeros
and ones predicted by fp, np11, np00 is the number of ones and zeros predicted correctly
in the window. Here β = 2 ÷ 5 is selected depending on the received np11, np00, and
reflects a decrease in the imbalance between the errors “1→0”, “0→1” inherent in the
BO.

If these conditions are not met, then the next predictor from the list of available ones
is selected.

Indeed, n1 is a number ones in this window (respectively, for n0). By the BO in a
given window, all bits of the sequence are predicted as ones if ones are more frequent
(n1 > n0), or as zeros, if zeros are more frequent in this window. Therefore, the first
condition means that the predictor fp provides a higher probability of correct prediction
until the last observed moment than BO, and the second means that a certain part of
the predicted zeros (or ones) is the result of the predictive algorithm of the predictor fp,
and not the mechanical conversion of zeros to ones (or ones to zeros), as the Bernoulli
predictor does. The case n1= n0 means that the data is close to randomness, and the use
of tools based only on probabilistic methods is not possible. So, the following scheme
is proposed for choosing a predictor at the moment of working with a PT:

- select a window preceding the next prediction moment of size M time units,
- in this window, the number of correct predictions by this predictor is calculated, both
all and separately the number of correct predictions of zeros and ones,
- these numbers are compared with the number of correct predictions of the predictor
BO, assuming that the sequence in the window is a Bernoulli sequence,
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- if the inequalities are not met, choose another predictor,
- when evaluating a sequence in a window as random, we abandon prediction.

5 “Ontological” Factors in Probabilistic Models of Prediction

Informally, the “ontology” means that we have some other “knowledge” about the data
not necessary related to their probabilistic distribution. For example, let x1, x2,… xt, be
binary, and it is known (based on reliable expert information or based on the theory of data
generation) that the generation of data by hypothetical sources with a high probability
pi is such that after two zeros 00 follows 1, after 01 follows 1, after 10 follows 0, after
11 follows 1. In other words, we singled out the concept of the “triple of binary values”
and the relation “after”. Then the value of the bit after each observed pattern will be
predicted to be correct with a high probability pi.

Definition 1. We will call a predictor “ontology-effective” in the moment t relatively a
given historical data if its algorithm takes into account to some extent the semantics of
the data corresponding to some ontology, namely, the fact that the elements of data sets
can belong to different concepts and classes, and provides the prediction not worse than
optimal Bernoulli predictor.

If SRp does not differ statistically significantly from the success rate calculated under
the assumption that the predictor p is the optimal predictor for the Bernoulli sequence,
then we can conclude that the predictor is ineffective for the ontology using [13]. In this
case, we can also talk about the difference of some predictor p with function fp from a
predictor of the simplest ontology (predictor BO) as by the estimated value SRp, and by
the structure errors the error “0 instead of 1” and “1 instead of 0”).

In fact, the scheme of predictor choice from the previous section can be considered
as a rule of the “ontology-effectiveness” assessment.

Indeed, let a sequence.

xn1 = 11001001000011111101101010100010001000010110100011
00001000110100110001001100011001100010100010111000

is generated by a source with unknown distribution.
In accordance with the set of randomness tests NIST, namely Frequency (Monobit)

Test, Test within a Block, and yet three tests, this sequence is the randomness. That
is, any predictors based on some probabilistic models are not effective, γ() conditional
probability mentioned above will be very small for all next bits.

But let a predictor p be a predictor, the algorithm of which, based on learning (or
using some “oracle”), predicts that after each pattern “11” comes zero. Then, following
this rule, with a probability of 4/6, you can correctly predict the 51st zero, which is
significantly higher than the Bernoulli optimal predictor (an example is the use in [8] of
the XGB algorithm for a binary sequence). Taking into account, that n1 = 43, n0 = 57 it
means that our criterion will give an obvious advantage to this “ontological” approach
over the BO. That is the scheme of the previous Section is an indicator of the necessity
of using a semantical data in the prediction.
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6 Conclusion

The paper proposes, on the basis of analysis of current state-of-the-art of probabilistic
prediction theory, an approach to the choice of predictors at a specific time the period
required to predict future data sequences associated with the functioning of various sys-
tems (e.g., IT systems). A method is proposed for making a decision on the advisability
of choosing a certain predictor at the next step, comparing its quality (accuracy) of
the forecast in the past, with the trivial BO predictor for a binary sequence, according
to which a forecast should be made, considering the sequence as Bernoulli one. Note
that the simplest and most obvious argument for such a comparison is that there is no
need to use an expensive predictor if it does not provide better quality than, in a sense,
elementary!

It is essential that the user, who is not an expert in the field of forecasting, is not
required to compute certain statistical characteristics of observed data, that are more
complex than the simple estimation of the frequencies of events.
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Abstract. Homomorphic encryption (HE) schemes enable the process-
ing of encrypted data and may be used by a user to outsource storage
and computations to an untrusted server. A plethora of HE schemes has
been suggested in the past four decades, based on various assumptions,
which achieve different attributes. In this work, we assume that the user
and server are quantum computers and look for HE schemes of classical
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efficient, information-theoretically secure, perfectly correct, and which
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We suggest an encryption scheme based on random bases and discuss
the homomorphic properties of that scheme. The main advantage of our
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here a novel QKD scheme based on our encryption scheme, which is
resilient against WM-based attacks.

We bring up a new concept we call securing entanglement. We look
at entangled systems of qubits as a resource used for carrying out quan-
tum computations and show how our scheme may be used to guarantee
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1 Introduction

Delegation of computation, while preserving the confidentiality of the data, is a
challenging practical task that has kept researchers busy ever since it was brought
up by Rivest, Adelman, and Dertouzos [RAD78]. Solutions based on Homomor-
phic Encryption (HE, see [AAUC18]) can maintain IT-security only if limited to
support the processing of a non-complete set of functions over the encrypted data.
Fully homomorphic encryption (FHE) schemes, which may support any function,
can only achieve computational security. HE schemes may be classified accord-
ing to their level of security, complexity, and other attributes. If the decryption
algorithm is efficient (i.e., poly-time), the scheme is compact. If the decryption
algorithm requires O(1) time and space, the scheme is fully compact.

In 2014, it was shown by [YPDF14] that it is impossible to construct an
efficient IT-secure quantum FHE (QFHE) scheme. Efficient IT-secure encryption
schemes can be used to homomorphically evaluate only a subset of all possible
functions. Such schemes are quantum homomorphic encryption (QHE) schemes,
e.g., [Lia13,OTF18]. Other works use computationally secure FHE schemes to
construct computationally secure QFHE schemes. E.g., [BJ15,Mah18,Bra18].
Quantum schemes with homomorphic properties are often based on the quantum
one-time pad (QOTP) encryption scheme, suggested in [AMTdW00].

In this work, we assume that both the user and the server can: (a) generate
qubits in the computational basis; (b) manipulate qubits using quantum logic
gates; (c) transmit qubits between each other; (d) measure qubits. We assume
that the information held by the user is classical. We look for QHE schemes that
enable users to delegate classical data to be stored and processed by an untrusted
server and have the following properties: (a) IT-secure; (b) Efficient; (c) Fully
compact; (d) Perfectly correct; (e) Non-interactive. We ask which operations
may be homomorphically applied to encrypted data under these restrictions.
Ambianis et al.’s QOTP scheme, suggested in [AMTdW00], was used to con-
struct QHE scheme that has some of the properties listed above. Several such
schemes are reviewed in the full version of this work [BD19].

Quantum Key Distribution (QKD). Bennett and Brassard [BB84] presented
a quantum scheme (hereafter, BB84) that enables two distant parties, Alice and
Bob, to agree on a random key without relying on any computational hardness
assumptions. The security of these protocols is based on the fact that mea-
surements of a quantum state cause the state to collapse. This phenomenon
enables Alice and Bob to reveal eavesdropping attempts. Various attacks on
QKD schemes have been suggested over the years. These attacks mainly tar-
get weaknesses in the implementation of the scheme and are discussed in, e.g.,
[GLLP04,Wan05,BP12]. A different approach to attack QKD schemes, which
was not previously addressed elsewhere, is based on weak measurements. The
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model of weak measurements, rooted in the work of Aharonov et al. [ABL64],
raises the possibility of gathering a small amount of information regarding the
state while only slightly disturbing it.

Our Contribution. We suggest here a new approach to encrypt and outsource
the storage of classical data while enabling limited IT-secure quantum gate compu-
tations over it. Our scheme supports fully compact IT-secure homomorphic evalu-
ation of several gates, which we show to be useful in several applications – a random
basis QKD scheme and a securing entanglement scheme. We note that while some
of these applications may also be constructed using other existing QHE schemes,
our schemehas safer security implications in the face ofweakmeasurements (WM).
We suggest a WM-based attack on legacy QKD schemes (BB84 and DL04) and
argue that our QKD scheme is resilient to such attacks. Our method is based on
using a specific family of random bases to encrypt classical bits.

We bring up a new concept called securing entanglement. The creation of
entangled systems requires efforts and expenditures. We suggest that, once it
was created, this resource should be secured in the sense that only its rightful
owners will be able to use it. We demonstrate a process of securing entanglement
using our QHE scheme and argue that our method provides safer implications
in the face of weak measurements comparing QOTP based methods.

PaperOrganization. In Sect. 2, we present our random basis encryption scheme
and discuss its homomorphic properties. The concept of securing entanglement is
presented in Sect. 3. In Sect. 4, we describe WM attacks on existing QKD schemes
and present our random basis QKD. Relevant background, further related work,
notations, and proofs may be found in the full version of this work [BD19].

2 The Random Basis Encryption Scheme

Our main intention is encrypting the classical bits 0 and 1 while enabling
some operations to be performed homomorphically over the ciphertext. Typ-
ically, these bits are encoded in quantum computation as the elements |0〉
and |1〉 of the standard basis of H = C

2. Of course, that encoding is by no
means an encryption of the bits. Approaching proper encryption, we take some
random (θ, ϕ) ∈ [0, 2π]2, set |ψ0〉 =

(
cos(θ/2)

eiϕ sin(θ/2)

)
, and think of |ψ0〉 as an

encryption of |0〉 using (θ, ϕ) as the encryption key. The plaintext qubits |0〉
and |1〉 are orthogonal. To maintain orthogonality of the ciphertext, we set
|ψ1〉 =

(
sin(θ/2)

−eiϕ cos(θ/2)

)
to be the encryption of |1〉 using the same key. One may

readily verify that |ψ0〉 and |ψ1〉 are orthogonal. For random (θ, ϕ) ∈ [0, 2π]2,
the elements |ψ0〉 and |ψ1〉 constitute a random orthonormal basis of H, denoted
B(θ,ϕ). We want that encryption to support some homomorphic operations in a
fully compact non-interactive IT-secure way. First, we require supporting homo-
morphic NOT gates. We want |ψ0〉 to be equal (up to a global phase fac-
tor) to NOT |ψ1〉 (and vice versa). A straightforward computation shows that
it compels ϕ = ±π/2. Hence, for (θ, ϕ) ∈ [0, 2π] × {±π

2 }, the random basis

B(
θ,± π

2

) =
{(

cos(θ/2)
±i sin(θ/2)

)
,
(

sin(θ/2)
∓i cos(θ/2)

)}
is NOT -invariant.
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The discussion above gives rise to the RBE scheme presented below.

The Random Basis Encryption (RBE) scheme

Gen (key generation): Uniformly sample (θ, ϕ) ←− [0, 2π] × {±π
2
} and output.

Enc (encryption): On input message b ∈ {0, 1} and a key k = (θ, ϕ):

– Generate the qubit |b〉.
– Let K =

(
cos(θ/2) sin(θ/2)

eiϕ sin(θ/2) −eiϕ cos(θ/2)

)
∈ M2(C) and apply K to |b〉 to obtain

|q〉 = K |b〉 and output |q〉.
Dec (decryption): On input ciphertext |ψ〉 and a key k = (θ, ϕ):

– Let K† denote the conjugate transpose of K and apply K† to |ψ〉.
– Measure K† |ψ〉 and output the outcome of the measurement.

The matrix K is the unitary whose columns are the elements of the random
basis B(θ,ϕ). The encryption algorithm takes the elements of the computational
basis to the elements of B(θ,ϕ). The scheme may be applied bit-wise to a string x
of classical bits to enable outsourcing the storage of x to an untrusted quantum
server. In Gen, the key is chosen from a continuous domain. Implementing this
might be challenging. However, the key space may be made discrete while keeping
the scheme IT-secure and perfectly correct [BD19].

Homomorphic Operations. The RBE scheme can support homomorphic eval-
uation of several quantum gates. This is useful for applications presented below.

The NOT gate. Applying a NOT gate to an element of B(θ,ϕ), we get the other
element of that basis, up to a global phase factor [BD19].

The Hadamard gate. In [BD19], we explain why the Hadamard gate cannot be
applied to the encrypted data homomorphically. However, we construct the D
gate – a quantum gate that uses an ancillary |0〉 qubit and takes elements of
every B(θ,ϕ) to an equally weighted superposition of the elements of B(θ,ϕ). D
is the two-qubit circuit established by first applying a Hadamard to the first
qubit, and then a CNOT gate to that system of two qubits. In [BD19], we prove
that applying a D gate to a tensor product of |0〉 and an element of a random
basis, measuring the second qubit in reference to that same random basis, the
probabilities of obtaining the outcomes zero and one are both 1

2 .

The CNOT gate. In [BD19], we show that the RBE scheme cannot support
homomorphic CNOT gates (even if using ancillary qubits). Nevertheless, by
applying a CNOT gate to the elements of a partially-random basis {|0〉 , |1〉} ⊗
B(θ,ϕ) of H⊗2 we do keep the target-control structure. The elements of such a
basis are |0ψ0〉 , |0ψ1〉 , |1ψ0〉 , |1ψ1〉 . Applying a CNOT gate to these elements,
we leave |0ψb〉 unchanged and interchange |1ψb〉 and |1ψ1−b〉.
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3 Securing Entanglement

Entanglement is an essential resource in quantum computation. Once generated,
it should be guaranteed that only the rightful owners would be able to use
it. In this section, we present a method for securing that important resource
in an IT-secure way, using our scheme. Assume that Alice and Bob are two
scientists working in distant labs and wish to complete a joint task that requires
entanglement. Consider the case in which Alice and Bob can get together and
jointly generate entangled qubits. Having obtained a large number of entangled
qubits, they store them in their labs for future use. Alice and Bob are worried
that other people, say, Eve and Mallory, will break into their labs. Eve will
steal half of each entangled system from Alice’s lab, and Mallory will steal the
corresponding half from Bob’s lab and use the stolen entangled pairs for their
own needs. Alice and Bob are looking for a way to secure their entangled particles
to ensure that no one else can use them. One may suggest that, before leaving
their labs, Alice and Bob use QOTP to (independently) encrypt each half of
each entangled pair. For example, assume that Alice and Bob hold two halves of
an EPR pair, |Φ+〉 = 1√

2

(|0〉A |0〉B + |1〉A |1〉B

)
. Alice picks QOTP keys (a1, a2)

uniformly at random from {0, 1}2, and Bob similarly picks (b1, b2). To secure
the entangled pair, Alice applies Xa1Za2 to her half, and Bob applies Xb1Zb2

to his part. Since the encryption keys were picked uniformly at random and
independently of each other, the density matrix of the new state is equal to the
identity. So it seems like this procedure secures the entangled system in the sense
that, without knowing the encryption keys, the encrypted system contains zero
amount of entanglement. However, if Eve and Mallory steal a large amount of
OTP-encrypted EPR pairs from Alice and Bob, they could guess the encryption
keys for each pair, and their guess is expected to be perfectly correct 1

16 of the
times (on average). In such a situation, it still pays for Eve and Mallory to steal
EPR pairs, as 6.25% of them are expected to be usable.

Alice and Bob can use the RBE scheme to encrypt each half of an EPR pair
using independent random keys θa and θb. This way, if Eve and Mallory steal
the encrypted qubits and try to decrypt them by guessing the keys, their guess is
expected to be correct zero percent of the time. This may make stolen EPR pairs
unusable, and in such a situation, the theft of EPR pairs becomes unprofitable.

4 WM and the Random Basis CNOT QKD Scheme

The BB84 protocol, and most of the QKD schemes that followed it, do not pre-
vent an eavesdropper from gaining information on the key. Instead, these schemes
enable Alice and Bob to detect eavesdropping attempts with high probability.
After invoking the quantum part of the QKD scheme, Alice and Bob invoke clas-
sical privacy amplification (PA) and data reconciliation (DR) procedures. These
procedures are required to reduce the amount of information held by a possibly
undetected eavesdropper, and to correct possible errors in the key. PA and DR
reduce the bandwidth and have time, communication, and computational costs.
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It would be helpful if there was a way of reducing the ability of an eavesdropper
to gain information from the outset, thereby impairing the motivation to attack
the transmission and avoiding these expensive procedures. In this section, we
suggest a new type of attack against two QKD protocols – BB84 and [DL04].
Our attack is based on weak measurements (WM), and it enables the attacker
to control the probability in which Alice and Bob detect her. Our WM attack
allows a tradeoff between the probability of being caught and the amount of
information that can be gained. We introduce our random basis CNOT QKD
scheme based on our RBE scheme. Our scheme, being resilient against such WM
attacks, takes a step towards significantly impairing the motivation of a possible
adversary.

Weak measurements consist of two stages. First, we weakly interact the sub-
ject qubit with an ancillary qubit using a two-qubit gate. Then, we (strongly)
measure the ancillary qubit. The outcome of the measurement of the ancillary
qubit is the outcome of the weak measurement of the subject qubit. This pro-
cess enables imprecisely measuring quantum states, outsmarting the uncertainty
principle. Explicitly, let ε > 0 and denote by Wε the following two-qubit gate

Wε =
√

ε · i · CNOT +
√

1 − ε · I ⊗ I

This gate can be used by Eve to gain information regarding the qubit trans-
mitted from Alice to Bob, leaving but slight indications of her presence. How it
works? It is known that qubits in the computational basis can be cloned using
the CNOT gate and an ancillary |0〉 qubit. If the qubit designated for cloning is
in the computational basis, then performing a CNOT with the ancillary qubit
as the target qubit copies the control qubit to the target qubit without disturb-
ing the control qubit. If the control qubit is not in the computational basis, the
CNOT gate does disturb it. The Wε gate is a linear combination of the identity
operation on two qubits and the CNOT gate. The smaller ε is, the closer Wε is
to the identity operation. If a qubit |ψ〉 is in one of the four states |0〉 , |1〉 , |+〉
or |−〉, we can apply Wε to |ψ〉 and an ancillary |0〉 qubit and then measure
the ancilla. This way, if |ψ〉 is either |0〉 or |1〉 we can gain a small amount of
information regarding |ψ〉 without disturbing it, and if |ψ〉 is either |+〉 or |−〉
then we (get no information but) only slightly disturb the state.

Attacking the BB84 scheme. A brief review of the BB84 scheme may be
found in [BD19]. We now describe a WM-based attack on that scheme. Eve
randomly picks an index j, prepares an ancilla |0〉 qubit, applies Wε to the j’th
qubit transmitted from Alice to Bob and the ancilla, and sends Alice’s qubit to
Bob. Eve measures the ancilla and obtains an outcome e. Next, Eve listens to
the discussion of Alice and Bob over the public channel and finds whether Bob
measured the j’th qubit in the right basis. If so, Eve keeps on listening to find
whether the j’th qubit was used by Alice and Bob for eavesdrop-checking or
not. If not, then the outcome of Bob’s measurement on the j’th qubit is Bob’s
i’th key-bit, and Eve outputs (e, i). In [BD19], we analyze the described attack
and show that it enables Eve to gain an ε

8 advantage in guessing a key-bit while
reducing the risk of getting caught.
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Attacking the DL04 Scheme. In [BD19], we review the DL04 scheme. Below,
we describe a WM-based attack on that scheme. Eve randomly picks an index
j. The j’th qubit is the objective qubit for the attack. Eve prepares an ancilla
|0〉 qubit, applies Wε to the j’th qubit transmitted from Bob to Alice and the
ancilla, and sends Bob’s qubit to Alice. Eve measures the ancilla and obtains an
outcome e1. Next, Eve listens to the measurement outcomes of Alice, announced
over the public channel, and finds whether Alice measured the j’th qubit for
eavesdropping check. If not, then Eve prepares another |0〉 ancilla. Denote by i
the new location of the objective qubit among the qubits that were not measured.
Eve applies Wε to the i’th qubit transmitted from Alice to Bob and the ancilla
and sends the qubit to Bob. Eve measures the (new) ancilla and obtains an
outcome e2, and outputs (e1 ⊕ e2, i). In [BD19], we analyze the described attack
and show that, Eve can get an O(ε2) advantage guessing Alice’s while being
caught with probability ε

4 .

Our CNOT QKD Scheme. The random basis encryption scheme may also
be used to construct a two-stage (random basis) QKD scheme, in which one
participant sends to another information in the form of a string of classical bits.
Suppose Alice holds a string of n classical bits b = b1 . . . bn ∈ {0, 1}n, and wishes
to send b privately to Bob. To this end, Alice and Bob may follow the following
scheme.

The two-stage random basis CNOT -QKD scheme.

1. Bob randomly picks b′ = b′
1 . . . b′

2n from {0, 1}2n.
2. For 1 ≤ i ≤ 2n, Bob uses the random basis encryption scheme to generate

an (independent) encryption |ψb′
i
〉 of b′

i, and transmits |ψb′
i
〉 to Alice.

3. Alice randomly picks n of the qubits received from Bob. She calls Bob
over a public channel, announces the positions of the qubits she chose,
and Bob reveals the keys used for encrypting these qubits.

4. Alice decrypts the n qubits she chose, using the keys obtained at the pre-
vious stage, and announces the outcomes to Bob, which in turn, checks
the correctness of the outcomes to detect possible adversarial eavesdrop-
ping attempts. If the error rate is small enough, they proceed to the next
stage.

5. Alice now uses the n qubits that she did not measure at the previous
stage, and for 1 ≤ i ≤ n, if bi = 1 Alice applies a NOT gate to the i’th
qubit; otherwise, she leaves it unchanged.

6. Alice sends the n qubits that were not measured by her back to Bob, who
decrypts them and obtains a string, b′′.

7. Denote by b̃ ∈ {0, 1}n the n-bit string obtained from b′ after omitting
the n bits chosen by Alice at stage 3. Bob computes b′′ ⊕ b̃ to obtain b.
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The correctness and security of the scheme follow directly from the security
of the RBE scheme. However, unlike the BB84 and DL04 schemes, our scheme is
resilient against WM attacks. The WM attacks described above rely on the fact
that in both the BB84 and DL04 schemes, in 50% of the cases, the objective qubit
is in the standard basis, and in these cases, an adversary can copy and measure
the qubit without disturbing it. The disturbance (and hence, the possibility of
being caught) occurs only when the qubit is in a basis different from the standard
basis. In the WM attacks, the adversary can control the probability of getting
caught by the choice of ε. In our scheme, a qubit is in a non-standard basis 100%
of the time, which may leave no room for this kind of adversarial attempts.
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Abstract. Time series forecasting plays a vital role in system monitor-
ing and novelty detection. However, commonly used forecasting methods
are not suited for handling non-stationarity, while existing methods for
forecasting in non-stationary time series are often complex to implement
and involve expensive computations. We introduce a Gaussian process-
based model for handling of non-stationarity. The warping is achieved
non-parametrically, through imposing a prior on the relative change of
distance between subsequent observation inputs. The model allows the
use of general gradient optimization algorithms for training and incurs
only a small computational overhead on training and prediction. The
model finds its applications in forecasting in non-stationary time series
with either gradually varying volatility, presence of change points, or a
combination thereof. We implement the model in a probabilistic pro-
gramming framework, evaluate on synthetic and real-world time series
data comparing against both broadly used baselines and known state-of-
the-art approaches and show that the model exhibits state-of-the-art
forecasting performance at a lower implementation and computation
cost, enabling efficient applications in diverse fields of system monitoring
and novelty detection..

Keywords: Time series · Probabilistic programming ·
Non-stationarity · Gaussian processes

1 Introduction

Time series play a vital role in system monitoring and novelty detection in
such diverse areas as computational health [11], computer security [1,10,12],
industrial systems monitoring [2], finance [29], and others. Operation planning,
automated control, and incident detection are just some of many applications of
time series forecasting and analysis [5].

Gaussian processes [33] possess properties that make them the approach of
choice in time series forecasting:
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– A Gaussian process works with as little or as much data as available.
– Non-uniformly sampled observations, missing observations, and observation

noise are handled organically.
– Uncertainty of a future observation is predicted along with the mean.

In a basic setting though, a Gaussian process models a stationary time series
with homoscedastic noise. When either the covariance between observations or
the noise vary depending on observations inputs or outputs, predictions produced
by a Gaussian process with a stationary kernel and constant noise variance will
be either biased or overly uncertain, hence handling non-stationarity and het-
eroscedasticity is crucial in many applications. Non-stationarity often arises in
financial time series, where market volatility, affecting forecasting uncertainty,
changes with time [29,48]; heteroscedastic noise is common in vital signs mon-
itoring of patients in intensive care units, where the noise depends on patient
activity and medical interventions [11], both non-stationarity and heteroscedas-
ticity are characteristic for time series of sensor readings in mobile robotics [22].
For forecasting, input-dependent uncertainty can be modelled through either
non-stationarity or heteroscedasticity, or both. In this work we address mod-
elling of input-dependent uncertainty through non-stationarity.

Various approaches have been proposed for handling non-stationarity using
Gaussian processes. When a time series is piecewise stationary, change point
detection is deemed an appropriate model, with a stationary homoscedastic
Gaussian process modelling stretches between consequent change points [8,16,
35]. In cases where the covariance or noise change gradually and smoothly, it is
common to introduce a non-parametric dependency of kernel and noise param-
eters on inputs [18,22,23,30,41,46], however, this makes structural modelling of
time series, which constitutes an important advantage of Gaussian processes and
facilitates introduction of prior knowledge in the model, more challenging.

Another popular way to handle both abrupt and gradual changes in time
series is through mapping of the input space [6,7,14,26,27,37,42]. Covariance
between observations depends on observations inputs as well as on kernel param-
eters, and non-stationarity can be modelled by smoothly modifying observation
inputs (warping the input space). Several methods have been proposed to learn
the input space transformation, and a number of other approaches can be viewed
as employing input space warping for handling non-stationarity. However, many
such approaches either meet difficulties in practical application, or require elab-
orated inference algorithms [6,13,36,43], which may impact the simplicity of use
of Gaussian processes.

In this work we introduce a model for non-parametric warping of input space
for Gaussian processes, suitable in particular for time series forecasting but also
applicable to other domains. The model is easy to implement, imposes only
a small computational overhead on training and prediction, and allows to use
the whole arsenal of Gaussian process kernels to model time series structure
using prior knowledge. We provide a reference implementation of the model and
evaluate the model on a synthetic and real-world data, comparing forecasting
performance with both baseline and state-of-the-art approaches and show that



Warped Input Gaussian Processes for Time Series Forecasting 207

the model exhibits state-of-the-art forecasting performance at a lower implemen-
tation and computation cost.

This work brings the following contributions:

– A novel approach to handling non-stationarity in Gaussian processes.
– A Gaussian process model for forecasting in non-stationary time series.
– A reference implementation of the model within a probabilistic programming

framework.

2 Preliminaries

A Gaussian Process is a collection of random variables, any finite number of
which have (consistent) joint Gaussian distributions. A Gaussian process is fully
specified by its mean function m(x) and covariance, or kernel, function k(x, x′)
and defines a distribution over functions. The mean function is often set to zero,
m(x) ≡ 0. A Gaussian process defines a distribution over functions:

f ∼ GP(m(x), k(x, x′)) (1)

Any finite set of values of function f at inputs xxx follows the multivariate normal
distribution N (μxμxμx, Σxxx) with mean μxμxμx = m(xxx) and covariance matrix Σxxx =
{k(xi, xj)}.

Posterior inference in Gaussian processes can be performed analytically. Let
fff be the observations at inputs xxx. Then the posterior distribution of values fff∗
at inputs xxx∗ is

fff∗|fff ∼ N (μx∗μx∗μx∗ + Σ�
xx∗xx∗xx∗Σ−1

xxx (fff − μxμxμx), Σx∗x∗x∗ − Σ�
xx∗xx∗xx∗Σ−1

xxx Σxx∗xx∗xx∗) (2)

where Σxx∗xx∗xx∗ is the covariance matrix between xxx and x∗x∗x∗.
Kernel functions normally have hyperparameters; we shall write k(x, x′; θ)

to denote that the kernel function x has hyperparameter θ, possibly multidi-
mensional, or omit the hyperparameters when they are clear from the context.
Training a Gaussian process involves choosing θ based on the observations. For
example, the Gaussian, or RBF, kernel has the form

RBF(x, x′; l) = exp
(

− (x − x′)2

2l2

)
(3)

and is parameterized by a single hyperparameter l.
A straightforward way to choose θ is to maximize log marginal likelihood L

of observations (xxx,fff):

L = log p(fff |xxx, θ) = −1
2
|Σ| − 1

2
(fff − μμμ)�Σ−1(fff − μμμ) − n

2
log(2π) (4)

where n is the number of observations.
There is no closed form solution for maximizing L in general, however

gradient-based optimization methods allow to obtain an approximate solution
efficiently.
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3 Warped Input Gaussian Process Model

A major advantage of Gaussian process regression in general, and for applica-
tion to time series in particular, is the explicit inclusion of uncertainty in the
model: both the mean and the variance are predicted at unobserved inputs. How-
ever, perhaps somewhat counterintuitively, the variance, given the kernel and
the kernel’s hyperparameters, does not depend on observed outputs. Indeed, the
covariance matrix in Eq. (2) does not depend on fff .

One way to circumvent this limitation of Gaussian processes is to introduce
non-stationarity into the kernel function, such that the covariance depends on
both the distance between inputs, ||x, x′|| and on inputs themselves. In some
kernels, such as the dot product kernel k(x, x′) = x·x′, non-stationarity is fixed in
the kernel design. In other kernels, non-stationarity comes through dependency
of kernel hyperparameters on the inputs, and the dependency θ(x, x′) itself can
be learned from data [17,27,30]. Related to varying kernel hyperparameters with
inputs is the idea of warping the input space [37]. A stationary kernel depends
on both the distance between inputs and the hyperparameters. Consider, for
example, the RBF kernel (3). Increasing hyperparameter l, customarily called
the length scale, has the same effect on the covariance as decreasing the distance
between x and x′ by the same relative amount. Moving points away from each
other will effectively decrease the length scale and covariance between the points.
Warping of the input space has an intuitive interpretation for time series: the
time runs faster in areas with high output volatility and slower when the output
is stable.

A research problem addressed by different warping methods is how the warp-
ing is represented and what objective should be maximized to learn the optimal
warping for a given problem instance. In what follows, we introduce warping
of the input space of a one-dimensional Gaussian process by imposing a prior
on the distances between adjacent inputs. We train the process by maximizing
the combined log marginal likelihood of the observations under the prior and
of the Gaussian process. The model is trivially extended to a multi-dimensional
Gaussian process where only a single dimension is warped, such a in the case of
a time series where there are multiple predictors but only the time needs to be
warped to account for temporal non-stationarity.

3.1 Model

In a Gaussian process model for handling non-stationarity through displacement
of observation inputs, the choice is of the form of the prior imposed on the
inputs. One option is to impose a Gaussian process prior on the inputs. This is a
rich prior allowing to model complex structured non-stationarity; deep Gaussian
processes [13] is a realization of such prior. However, inference in the presence of
such prior requires special techniques and is computationally expensive. On the
other extreme is imposing an independent Gaussian prior on each input, which
is related to the modelling of input uncertainty [15,28]. [28] show though that
independent input noise may be reduced to independent output noise, and as
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such is not sufficiently expressive for modelling non-stationarity for forecasting.
Here, we propose a prior that is just a single step away from an independent prior
on each input, namely one which corresponds to a 3-diagonal striped covariance
matrix Σ = {σij}, such that σij = 0 ∀|i−j| > 1, which is equivalent to imposing
independent priors on distances between adjacent inputs. An intuition behind
this prior is that the distance between adjacent locations increases, and the
effective length scale decreases, in areas with high volatility, and vice versa in
areas with low volatility. For convenience of inference, we formulate the prior in
terms of relative change of distance between inputs. We exploit the structure of
this prior to specify the model compactly, without having to manipulate the full
covariance matrix of the prior.

Formally, let GP be a one-dimensional Gaussian process. Let also D be a
distribution on R+. Then, given inputs xxx, xi+1 > xi∀i, the generative model for
outputs is

x̃1 = x1 (5)
λi ∼ D

x̃i = x̃i−1 + λi(xi − xi−1) for i > 1
fff ∼ N (μμμx̃̃x̃x, Σx̃̃x̃x)

In words, inputs xxx are transformed (warped) into x̃̃x̃x by stretching or compressing
distances between adjacent inputs xi−1 and xi by relative amounts λi drawn from
D. For brevity, we call the introduced model WGP in the rest of the paper. D
serves as a prior belief on distances between adjacent inputs, relative to the
original distances. Without loss of generality, the mean of D can be assumed to
be 1, so that the mean of the prior belief is that no warping is applied.

3.2 Training

Training of a WGP model is performed by maximizing the log marginal likelihood
LWGP :

LWGP =L +
n∑

i=2

log pD(λi) + C

=L +
n∑

i=2

log pD

(
x̃i − x̃i−1

xi − xi−1

)
+ C

(6)

where L is the log marginal likelihood of the hyperparameters of the Gaussian
Process (4) and C is a normalization constant that does not depend on either
hyperparameters or observations and is not required for training. As with ker-
nel hyperparameters, derivatives of LWGP by both hyperparameters and trans-
formed inputs x̃̃x̃x are readily obtainable analytically or through algorithmic dif-
ferentiation [20].
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3.3 Forecasting

After training, forecasting is virtually identical to that of a regular Gaussian
process, with one exception: for prediction in a new location x∗, the warped
image x̃∗ of the location must be obtained for substituting into (2). The possible
options are:

– Choosing x̃∗ that maximizes LWGP for xxx ◦ x∗ and fff ◦ f∗.
– Setting λ∗ = 1 and, consequently, x̃∗ = x̃n + x∗ − xn.
– Setting λ∗ = λn and x̃∗ = x̃n + (x∗ − xn) x̃n−x̃n−1

xn−xn−1
.

The first option is best aligned with log marginal likelihood maximization
during training but computationally expensive. The last option expresses a
smoothness assumption: the length scale is likely to be similar in adjacent inputs.
We experimented with the three options and found that empirically on synthetic
and real-world datasets predictive accuracy of the third option is virtually indis-
tinguishable from the first one. In the empirical evaluation, we computed the
warped location for forecasting as x̃n + λn(x∗ − xn).

3.4 Modelling Seasonality

Time series are often modelled by combining trend and seasonality, that is,
similarity between nearby observations on one hand and observations at similar
phases of a period on the other hand. In Gaussian processes, kernels based on
the periodic kernel [26] are used to model seasonality. Warping of the input
space would interfere with dependencies induced by the periodic kernel. Consider
monitoring of vital sign time series in intensive care unit [9]: while volatility of
the time series may evolve over time, and warping the time may be adequate for
modelling non-stationarity, observations at the same astronomical time of the
day tend to be similar.

A solution for warping the trend time but keeping the seasonality time
unwarped is to include both original and warped dimension into the input
space. This way, kernel features modelling the trend and thus affected by non-
stationarity are made dependant on the warped time, and those modelling
seasonality—on the original time. Generative model (7) extends (5) by com-
bining xxx and x̃̃x̃x on input to the Gaussian process:

x̃1 = x1 (7)
λi ∼ D

x̃i = x̃i−1 + λi(xi − xi−1) for i > 1
fff ∼ N (μμμx̃◦xx̃◦xx̃◦x, Σx̃◦xx̃◦xx̃◦x)
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Consider, for example, the following kernel, composed of locally periodic and
trend terms:

k(x, x′; θ)=c1RBF(x, x′)Periodic(x, x′)+c2Matern 3
2
(x, x′) (8)

where

RBF(x, x′; l1) = exp
(

− (x − x′)2

2l21

)

Periodic(x, x′; p, l2) = exp

⎛
⎝−

2 sin2
(

π|x−x′|
p

)
l22

⎞
⎠

Matern 3
2
(x, x′; l3)=

(
1 +

√
3|x − x′|

l3

)
exp

(
−

√
3|x − x′|

l3

)

θ = (c1, c2, l1, l2, l3, p)

In this kernel, the RBF and Matern 3
2

components reflect local dependencies
between inputs and hence should be affected by input warping. The Periodic
component, however, expresses dependencies between points at similar phases
of different periods, with the period length p normally known upfront and staying
fixed. Thus, in the presence of warping, the modified kernel k̃(·, ·) must receive
both warped and original inputs and pass appropriate inputs to each of the
components:

k̃((x̃, x), (x̃′, x′); θ) = (9)

c1RBF(x̃, x̃′)Periodic(x, x′)+c2Matern 3
2
(x̃, x̃′)

3.5 Time and Space Complexity

By including the factors λi into the vector of parameters to optimize, we appar-
ently make training and forecasting more expensive computationally. However,
the overhead caused by learning the warping of the inputs is still dominated by
the complexity of training and forecasting of a conventional Gaussian process
and does not increase either time or space complexity.

Indeed, time complexity of Gaussian process forecasting is dominated by
the time required to invert the covariance matrix [33, Sect. 5.3], which is O(n3)
in general [33]. More efficient approaches are available but are limited in their
applicability [4,25,47]. Changing the number of trainable parameters does not
affect the size of the covariance matrix. To compute the gradient, every element
of the covariance matrix Σxxx must be differentiated by the parameters. Reverse-
mode algorithmic differentiation, used ubiquitously, including in our implemen-
tation, scales sublinearly with the number of input dimensions [20]. In addition,
∂Σx̃̃x̃x

∂λi
is a sparse matrix, only σi−1,i depends on λi and hence ∂σj,k

∂λi
= 0 unless

j = i − 1, k = i. Hence, the time complexity of computing the gradient is still
O(n2) and dominated by the complexity of matrix inversion.
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The memory required for training is increased due to the need to store the
derivatives of Σx̃̃x̃x by each of λi, which apparently increases the memory require-
ment from O(n2) to O(n3). However, again, the sparsity of ∂Σx̃̃x̃x

∂λi
makes it possible

to store all derivatives in O(n2) space, keeping the space complexity at O(n2)
as for the conventional Gaussian process. Our implementation leverages sparsity
to preserve O(n2) space complexity.

4 Empirical Evaluation

The empirical evaluation relies on modelling and inference capabilities provided
by differentiable probabilistic programming [19,20]. We implemented WGP using
Infergo [44], a probabilistic programming facility, and GoGP [45], a library for
probabilistic programming with Gaussian processes. The source code, data, and
detailed results of empirical evaluations are available in public Git repository
https://bitbucket.org/dtolpin/wigp. An implementation of LBFGS [24] provided
by Gonum [3] was used for inferring hyperparameters. As a state-of-the-art algo-
rithm for non-stationary Gaussian process regression, we used an implementation
of deep Gaussian processes from https://github.com/SheffieldML/PyDeepGP.
We also compared WGP with the following baselines not directly addressing
non-stationarity:

– most likely heteroscedastic Gaussian process (MLHGP) [22], which uses het-
eroscedasticity to model input-dependent uncertainty and which was orig-
inally evaluated, albeight for general regression rather than out-of-sample
forecasting, on some of the datasets used in this evaluation;

– autoregressive integrated moving average (ARIMA) [5], a broadly used model
for time series forecasting, using Statsmodels [38];

– recurrent neural network (RNN) [21], a deep learning approach to time series,
using PyTorch [31].

We evaluated the model on synthetic and real world data. Two kernels were
employed in the empirical evaluation:

1. A Matern 5
2

kernel, used with both synthetic and real-world data.
2. A weighted sum of Matern 5

2
kernel and a periodic kernel, used with synthetic

data.

The latter kernel was applied to synthetic data generated both with and without
seasonal component, to evaluate influence of prior structural knowledge on one
hand, and possible adverse effect of model misspecification (periodic component
where there is no seasonality in the data) on the other hand. A parameterized
homoscedastic noise term was added to the kernel in all evaluations. Vague log-
normal priors were imposed on kernel hyperparameters.

https://bitbucket.org/dtolpin/wigp
https://github.com/SheffieldML/PyDeepGP
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Table 1. Negative log predictive density on synthetic datasets.

Dataset No warping Warped +periodic Deep GP MLHGP ARIMA RNN

Trend 0.243 ± 0.046 0.218±0.064 0.218 ± 0.062 0.611 ± 0.051 0.266 ± 0.061 0.297 ± 0.168 0.983 ± 0.081

+seasonal −0.258 ± 0.027 −0.303 ± 0.028 −0.358±0.031 0.123 ± 0.065 −0.293 ± 0.080 −0.293 ± 0.098 0.946 ± 0.092

4.1 Synthetic Datasets

Synthetic data was generated by sampling 100 instances from Gaussian processes
with Matern(5/2) kernel, and with a sum of Matern(5/2) and a periodic kernel,
to emulate seasonality in the data. To emulate non-stationarity, log distances
between inputs were sampled from a Gaussian process with an RBF kernel and
then unwarped into equidistant inputs. Samples from the periodic kernel com-
ponent were drawn for equidistant inputs, in accordance with the assumption
that the seasonality period is fixed.

Table 1 provides negative log predictive density (NLPD) for regular,
unwarped, Gaussian process, warped Gaussian process with and without the
periodic component, deep GP, MLHGP, ARIMA, and RNN on the synthetic
dataset. Smaller NLPD means better forecasting accuracy. WGP outperforms
both regular Gaussian process and state-of-the-art methods—deep GP and
MLHGP—by a wide margin on the synthetic dataset. Using a kernel with peri-
odic component on seasonal data improves forecasting, but accounting for non-
stationarity through warping always results in much better accuracy.

Figure 1 shows a typical forecast by regular GP, WGP, and deep GP on a
single instance from the synthetic dataset.

4.2 Real-World Datasets

We used three real-world datasets for the evaluation:

– Marathon—olympic marathon time records for years 1896–2016, obtained
from https://www.kaggle.com/jayrav13/olympic-track-field-results.

– LIDAR—observations from light detection and ranging experiment [39].
– Motorcycle—data from a simulated motorcycle accident [40].

Table 2 compares performance of regular Gaussian process WGP, deep GP,
MLHGP, ARIMA, and RNN on the data sets. WGP shows the best predictive
performance on LIDAR and on Motorcycle data. On the Marathon time series,
deep Gaussian process performs slightly better, apparently due to smoothness of
the data. Figures 2 and 3 shows the forecasts by regular GP, WGP, and deep GP
on the Marathon and Motorcycle datasets. Note that ARIMA and RNN are not
directly applicable to the real-world datasets used in the evaluation because the
datasets are irregularly sampled, that is, the time step at which measurements
are obtained varies over time. However, the irregular sampling is in favor of the
baselines, because in all of the datasets measurements are obtained with higher
frequency in areas of faster change. Still, WGP outperforms these baselines by
a wide margin.

https://www.kaggle.com/jayrav13/olympic-track-field-results
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Fig. 1. Forecasting on an instance from the synthetic dataset.

5 Related Work

Work related to this research is concerned with Gaussian processes for time
series forecasting, non-stationarity in Gaussian process regression, and warping
of the input space for representing non-stationarity, in the order of narrowing
focus. [34] gives an introduction to Gaussian processes for time series modelling,
including handling of non-stationarity through change point detection.

Table 2. Negative log predictive density on real-world datasets.

Dataset No warping Warped Deep GP MLHGP ARIMA RNN

LIDAR −0.310 −0.345 0.237 0.240 0.207 1.249

Marathon 0.157 −0.162 −0.173 −0.118 0.247 0.721

Motorcycle 0.588 0.468 1.191 1.254 2.203 2.405

Non-stationarity in Gaussian processes is attributed to either heteroscedas-
ticity, that is, varying observation noise, or to non-stationarity of the covari-
ance, or to both. Heteroscedasticity [22] is addressed by modelling dependency
of noise on the input and, possibly, output [15]. [46] propose a GP regression
model with a latent variable that serves as an additional unobserved covariate
for the regression. This model allows for heteroscedasticity since it allows the
function to have a changing partial derivative with respect to this unobserved
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Fig. 2. Forecasting on Marathon dataset.

covariate. [18] presents an algorithm to estimate simultaneously both mean and
variance of a non parametric regression problem. The key point is that we are
able to estimate variance locally unlike standard Gaussian process regression or
SVMs. [23] consider regression problems where there is noise on the output, and
the variance of the noise depends on the inputs. They assume that the noise is
a smooth function of the inputs, then it is natural to model the noise variance
using a second Gaussian process, in addition to the Gaussian process governing
the noise-free output value.

Non-stationarity of the covariance is represented through change points. [16]
introduces a new sequential algorithm which focus on the problem of detecting
and locating changepoints. Their algorithm focuses on the problem of making
predictions even when such changes might be present. [35] combine Bayesian
online change point detection with Gaussian processes to create a nonparamet-
ric time series model which can handle change points. The model can be used
to locate change points in an online manner and, unlike other Bayesian online
change point detection algorithms, is applicable when temporal correlations in a
regime are expected. [8] propose an online change detection algorithm which can
handle periodic time series. The algorithm uses a Gaussian process based non-
parametric time series prediction model and monitors the difference between the
predictions and actual observations within a statistical control chart framework
to identify changes. Non-stationary kernel presented in [30] introduce a class of
nonstationary covariance functions for Gaussian process regression. Nonstation-
ary covariance functions allow the model to adapt to functions whose smoothness
varies with the inputs. The class includes a nonstationary version of the Matérn
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Fig. 3. Forecasting on Motorcycle dataset.

stationary covariance, in which the differentiability of the regression function is
controlled by a parameter, freeing one from fixing the differentiability in advance.
[32] demonstrate an approximation that uses the estimated mean of the local
smoothness yields good results and allows one to employ efficient gradient-based
optimization techniques for jointly learning the parameters of the latent and the
observed processes.

The space transformations (warping) technique in [37] introduces a nonpara-
metric approach to global estimation of the spatial covariance structure of a
random function observed repeatedly with a finite number of sampling stations
in the plane. First, they use non-metric multidimensional scaling to transform
the problem into covariance structure, which is expressed in terms of spatial
dispersions, is stationary and isotropic. Then they compute thin plate splines
to provide smooth mappings of the geographic representation of the sampling
stations into their multidimensional scaling representation. [7] propose manifold
Gaussian processes, a novel supervised method that jointly learns a transfor-
mation of the data into a feature space and a GP regression from the feature
space to observed space. The manifold GP is a full GP and allows to learn data
representations, which are useful for the overall regression task. [27] introduces
the novel method represented in two parts, first via a novel class of covariances
(called WaMI-GP) that simultaneously generalizes kernels of “multiple index”
and of tensorized warped GP models and second, by introducing derivative-based
sampling criteria dedicated to the exploration of high variation regions. [13,14]
proposes method based on deep Gaussian process where each layer is modelled as
the output of a multivariate GP, whose inputs are governed by another GP. The
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resulting model is no longer a GP but, instead, can learn much more complex
interactions between data. The method is built from two components. The first
component is variational Gaussian process latent variable model concerned with
propagating uncertainty in Gaussian process latent variable models. The second
one is manifold relevance determination which considers a common latent space
for multiple views. An adapted variational framework allows for strong model
regularization, resulting in rich latent space representations to be learned.

Current work uses warping of the input space to represent non-stationarity.
However, unlike previous research, only observation inputs are transformed
rather than the whole input space, allowing for a simpler representation and
more efficient inference. Due to the non-parametric nature of transformation
employed in this work, the introduced model is applicable to time series both
with change points and with smooth non-stationarities.

6 Conclusion

We introduced a Gaussian process-based model where non-stationarity is han-
dled through non-parametric warping of observation inputs. In application to
time series, the model facilitates forecasting of future observations with vari-
ances depending on outputs, as well as inputs, of past observations, while staying
within the framework of ‘standard’ Gaussian process inference. When the data
is known to possess periodic properties or non-local correlations, these correla-
tions can be encoded in the model while still handling non-stationarity through
warping. The introduced approach to input warping can be used with existing
Gaussian process libraries and algorithms, and there is room for compromise
between accuracy of modelling non-stationarity and computation time.

It still remains an open question to which extent a more expressive warping
may improve the quality of forecasting. Combining the introduced model with
change-point detection may be beneficial in cases of abrupt changes in process
parameters. Still, in cases where simplicity of implementation and robustness
in face of variability in time series are of high priority, the introduced model
appears to provide a practical and efficient solution.
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Abstract. Digital signatures are used to verify the authenticity of dig-
ital messages, that is, to know with a high level of certainty, that a
digital message was created by a known sender and was not altered in
any way. This is usually achieved by using asymmetric cryptography,
where a secret key is used by the signer, and the corresponding public
key is used by those who wish to verify the signed data. In many use-
cases, such as blockchain, the history and order of the signed data, thus
the signatures themselves, are important. In blockchains specifically, the
threat is forks, where one can double-spend its crypto-currency if one
succeeds to publish two valid transactions on two different branches of
the chain. We introduce a single private/public key pair signature scheme
using verifiable random function, that binds a signer to its signature his-
tory. The scheme enforces a single ordered signatures’ history using a
deterministic verifiable chain of signature functions that also reveals the
secret key in case of misbehaviors.

Keywords: Digital signature · Verifiable secret sharing · Verifiable
random function

1 Introduction

Digital signatures are used in a wide variety of applications, from signing software
distributions to verification of online transactions. In some countries, digital
signatures even have legal bindings [6]. One of the key features a digital signature
scheme provides, is preventing the signer from claiming to not have signed a
message, while a valid signature exists [10]. The fact that a signature provides
non-repudiation, i.e., cannot be denied to have been created by the signer, indeed
increases its value to the verifier. For example, in the case of digital currency, the
paid end of a transaction does not want the payer to deny ever signing, moreover
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participating in the transaction. Yet in some cases, this is not enough, since the
signer can claim for the privacy loss of its private key, or in other cases, the
verifier may not know the signature was abused in other ways. Blockchain forks
are a common example, where two versions of a transaction may be published
in two different branches of the chain, leading to double-spending. The general
case is where one signs a series of sequential data, where not only the origin of
the data is to be verified, but also the index of the data in the series. Since there
are many such cases where the signer can gain from successfully signing and
publishing different data versions for the same index in the series, we introduce
punishment for such behavior.

Previous Work. In our previous work [4] we discussed a possible weakness
in permissioned blockchains. In such blockchains, a relatively small number of
players participate in the BFT algorithm [9] used to determine the next trans-
actions to be published on the blockchain. Those players are the permissioned
players (referred by us as nodes), whose copies of the public ledger represent the
current state of the blockchain. The permissionless players (referred by us as the
private users, or simply users) both view and submit transactions only through
the nodes.

It is known that Byzantine consensus can be achieved when up to one-third
of the nodes are faulty. Since this boundary is well known, an adversary may try
to overtake more nodes than the system can tolerate thus putting the blockchain
in a harmful position. We discussed a worst-case scenario where the adversary
may even completely destroy many of the nodes’ copies of the blockchain and
leading to the effective loss of the transactions history, resulting in the loss of
the balances of the users.

We suggested a solution that enables a trustless restoration of the blockchain
in such scenarios. The solution includes users saving their own transactions his-
tory (incoming transactions and payment transactions). The users present their
history of transactions (which we assume are signed in an undeniable collective
signature) to the nodes in case a ledger restoration is needed.

To prevent users from exploiting the lack of information the nodes hold after
an attack, and presenting a partial payments history (resulting in the restora-
tion of a balance greater than they previously had), our solution enforced two
conditions:

• The transactions are indexed with an increasing order to prevent skipping
payments in the presented history.

• Additional information Di is published alongside every transaction Ti to pre-
vent hiding a suffix of the payments history.

The first condition was enforced by making a transaction valid only if it included
index i + 1 when the previously approved transaction of the user was of index
i. The second condition was enforced by setting the additional information Di

to include a verifiable share of the user’s secret key s, used for signing transac-
tions. When a restoration process takes place, any user presenting a transactions
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history up to an index m is forced to present a corresponding proof Pm, also
including a verifiable share of s.

The main idea is that any attempt to hide a suffix of the transactions history
results in publishing enough shares of s that enable the secret’s reconstruction.

Contribution. We leverage from the same incentive for honesty behavior to
make a chain of signatures both sequential and unique. We use verifiable random
functions to create a new signature function for every new index of data to sign.
The way the signature functions are made makes them both secure and binding,
thus, creating a unique sequence after the initial seed is determined.

Using this digital signature we achieve double-spending prevention, which,
in comparison to some other schemes such as [1], has the following properties:

• No need for a “centralized” bank, where coin issuing and verification is per-
formed against.

• Furthermore, there is no interactive per-coin “issuing” process at all, and
once the initial public key is accepted and published, yet we do rely on the
publicity of the transactions.

• This also means that there is no one secret, that if revealed, the whole system
breaks (such as the RSA secret of the bank).

• Given correct propagation/publicity of the transactions (as is the case in
blockchains, for example), framing can be done by all users.

• A user being framed for dishonesty also loses the privacy of its account com-
pletely.

• Although our scheme results in a more “aggressive” outcome for a double-
spender, an honest user is not affected at all, and in an eco-system where this
possible penalty is known to all participants, we can expect fewer attempts
of undesired behavior.

The rest of the paper is structured as follows: In Sect. 2, we briefly describe
verifiable secret sharing, verifiable secret public sharing (our variation of VSS
that was introduced in our previous work), and verifiable random function, which
are our building blocks for our new scheme. In Sect. 3, we introduce our signature
scheme, defining the key generation, signature, and verification algorithms, as
well as discuss the advantages of the scheme. In Sect. 4, we list the conditions a
signature scheme must meet, including unforgeability, security, and correctness
(both of the signature scheme itself and of the key-revealing property of our
scheme). Finally, in Sect. 5, we conclude the scheme introduced in this paper
and its possible usage, as well as shortly discuss possible future lines of work.
Details and proofs are omitted from this extended abstract and can be found
in [5].

2 Preliminaries

We describe the protocols of secret sharing and verifiable secret sharing that our
scheme is based on, as well as our variation of those protocols. We also describe
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verifiable random functions, which we later incorporate with our previous work
to get our result.

2.1 Verifiable Secret Sharing

Shamir [12] introduced Shamir’s secret sharing (SSS) as a method to divide a
secret into parts (shares), which are generated by the secret owner (dealer), and
distributed amongst a group of participants (shareholders). In a (t, n)-threshold
(t-out-of-n) secret sharing scheme, n participants, each holding a share, can
reconstruct the secret only if t or more of them combine their shares. Moreover,
any group of strictly less than t shareholders (including the individual share-
holders themselves), learn nothing about the secret.

Verifiable secret sharing (VSS) was introduced by Chor, Goldwasser, Micali
and Awerbuch [2], as a secret sharing scheme where every participant can verify
that the secret shares are consistent. This is important for preventing a malicious
dealer from sending shares to different participants, which do not define a (single)
secret.

A (t, n)-threshold secret sharing scheme, consists of a probabilistic
polynomial-time algorithm (PPTA) ShareG and a polynomial-time algorithm
(PTA) RecoverG, for some global parameters G. The global parameters
G are clear from the context so we drop G from the notation. The algo-
rithm Share(s) → {(1, s1), (2, s2), . . . , (n, sn)} = S(s) takes a secret key
s as an input, and outputs n shares (1, s1), (2, s2), . . . , (j, sj), . . . , (n, sn)
where j is the share’s index and sj is the share’s value. The algorithms
Recover((a1, sa1), (a2, sa2), . . . , (at, sat

)) → s takes as an input any t valid dis-
tinct shares with share indices {a1, . . . , at} ⊆ [1, n], and outputs the original
secret s. Formally,

∀s.Share(s) → S(s) =⇒ ∀T ′ ∈ {T ⊆ S(s)| |T | = t}, Recover(T ′) = s

To make this scheme verifiable, we introduce two additional PTAs. Com-
mit(c) → C that takes a random coefficient c generated by the user
and outputs a commit C for it, and Verify(s(i), C1, . . . , Ct−1, y) → res ∈
{ACCEPT,REJECT} that takes a share, commits for both of the polyno-
mial’s coefficients, and the public key of the user, and ACCEPTs if the share is
valid or REJECTs otherwise.

We use Feldman’s [7] verifiable secret sharing scheme to define:

• Share(s) = {(i, Pol(i) mod q)|1 ≤ i ≤ n} where Pol(x) = s +
t−1∑

j=1

cjx
j for

some random coefficients 0 < cj < q.
• Recover((a1, sa1), . . . , (at, sat

)) = s using polynomial interpolation.
• Commit(c) = gc mod p
• Verify((i, si), C1, . . . , Ct−1, y) = ACCEPT ⇐⇒ gsi mod p =

g
s+

t−1∑

j=1
cji

j mod q

mod p = gs ·
t−1

Π
j=1

(gcj )i
j

mod p = y ·
t−1

Π
j=1

Cij

j mod p
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Where p is prime, q is prime divisor of (p−1), g is a generator of a subgroup
of order q in the multiplicative group of Z∗

p, such that 1 < g < p and the global
parameters G are p, q and g.

2.2 Verifiable Secret Public Sharing

In the classic secret sharing scenario, one generates shares of the secret s and
deals different shares to different parties. This implies that right away all of the
shares are in the hands of the parties, where each party holds only some of the
shares. Later, when reconstruction is required, the parties combine the shares
and reveal the secret.

In [4] we introduced the concept of Verifiable Secret Public Sharing (VSPS),
i.e., publicly publishing some (verifiable) shares of the secret. In our protocol for
enforcing the reveal of the current balance of a crypto-currency wallet, one grad-
ually publishes shares of the secret key s used for signing transactions. Restoring
the balance of the wallet also involves publishing a share of s. The key idea is
that for every transaction a new SSS polynomial is used, and an honest user
does not surpass the threshold for any single SSS instance (thus not revealing
s). On the other hand, a dishonest user is forced to publish enough shares corre-
sponding to one of the polynomials, so that the threshold is met, and anyone can
restore the signature key s, thus essentially stealing the crypto-currency wallet.

As mentioned in Sect. 1, we proposed adding additional information Di for
every transaction, containing some of the secret shares of s regarding a new poly-
nomial Poli(x) (as well as a share of Poli−1(x)). In addition, balance restoration
involves publishing a proof Pm′ , corresponding to the claimed latest m′th trans-
action. This proof contains an additional share, thus, resulting in the surpassing
of the threshold number of published shares needed for restoring s, corresponding
to Polm′(x) in case Dm was published in the past for some m > m′.

The suggested structure for such Di, Pi is:

• Di = (si(1), si−1(2), Ci1, Ci2, C(i−1)1, C(i−1)2)1
• Pi = (si(v), Ci1, Ci2), for a random 2 < v ≤ q − 1.

In this case, we used a (3, 3)-threshold verifiable secret sharing scheme, meaning
Poli(x) = s + ci1x + ci2x

2, for some random coefficients 0 < ci1, ci2 < q.
One may notice that if the published transactions history is H̄(m) = {Di|1 ≤

i ≤ m}, then the total published shares are {si(1), si(2)|1 ≤ i ≤ m−1}∪{sm(1)}.
This means that publishing Pm′ results in exposing three shares of Polm′(x) if
m′ < m. Yet this publication keeps the number of exposed shares corresponding
Poli(x) under the scheme’s threshold for every 1 ≤ i ≤ m, if m′ = m, thus
keeping s safe.

2.3 Verifiable Random Functions

Verifiable random functions were introduced by Micali, Rabin, and Vadhan [11].
Using a verifiable random function (VRF), given an input x, the holder of a
1 D1 = (s1(1), C11, C12).
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secret key s can compute the value of the pseudo-random function Fs(x) and a
proof ps(x).

Using the proof and the public key y = gs everyone can check that the value
x′ = Fs(x) was indeed computed correctly, yet this information cannot be used
to find the secret key s.

An implementation by Dodis and Yampolskiy [3] defines:

• Fs(x) = e(g, g)
1

x+s

• ps(x) = g
1

x+s

Where e(·, ·) is a bilinear map.
Verification of Fs(x) is done by checking that:

1. e(gxy,ps(x)) = e(g, g)(x+s)· 1
x+s = e(g, g)

2. e(g,ps(x)) = e(g, g)1· 1
x+s = Fs(x)

One may notice that x itself is not used, only in an encrypted form in the
verification process, namely, it is only a function of gx and ps(x).

3 History Binding Signature

We use a similar mathematical technique as the one used in VSPS, but for a
different usage - enforcing a unique sequential signature history. In other words,
we prevent publishing a signature for some message V ′

i , where a signature for a
different message Vi 
= V ′

i was previously published.

Verifiable Secret Share as a Signature. To achieve our desired goal we use a
variant of the additional information Di from our VSPS as a digital signature for
Vi. To define a digital signature scheme we define the Key Generation, Signing i
and Verify i algorithms.

• Key Generation(1n) randomly generates:
1. A secret key sk = (s, c0) ∈R Z

∗
q × Z

∗
q .

2. A corresponding public key pk = (y, C0) = (gs, gc0) ∈ 〈g〉 × 〈g〉.
• Signing i(Vi) computes:

1. The new random coefficient ci = Fs(ci−1) and the corresponding new
polynomial Poli(x) = s + cix = s + Fs(ci−1)x.

2. The proof for the new coefficient ps(ci−1).
3. The commitments for the previous and new coefficients Ci = gci =

gFs(ci−1) mod q, Ci−1 = gci−1 .
4. The corresponding share sH

i (Vi) = Poli(H(Vi)) mod q.
5. For a total signature Signi(Vi) = (sH

i (Vi), Ci, Ci−1,ps(ci−1)).
• Verify i(V ′

i , (s′
i, C

′
i, C

′
i−1,p

′)) returns ACCEPT if and only if the following
checks pass:
1. e(C ′

i−1y,p′) ?= e(g, g).

2. ge(g,p
′) mod q ?= C ′

i.
3. gs

′
i mod p

?= y · C ′H(V ′
i )

i mod p.
where H(·) is a publicly-known collision resistant hash function.
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Fig. 1. By using the previous polynomial coefficient as the input for the verifiable
random function, we get a unique chain of signature functions.

Advantages. One may look at Di, as suggested in our previous scheme, as a
digital signature on the current transaction. Although Di did not incorporate
the data of the actual transaction Ti, it could easily be changed to do so. This
can be done by evaluating the polynomials Poli(x) in H(Ti) instead of some
constant number such as 1 or 2. This, however, is not sufficient, since every new
polynomial is defined by random coefficients, that are up to the user to decide.
To link a polynomial to a predefined index, one can use multiple pre-ordered
secret/public key shares [8]. Using VRF, we replace the method for creating
the next polynomial from a random one to a deterministic (and verifiable) one
and achieve the enforcement of the order of the signatures with a single key pair.
The fact that there can only be one valid Poli(x) per participant (enforced using
Fs(·)) replaces the verification the nodes perform (by keeping track of the user’s
transaction index) (Fig. 1).

4 Conditions for a Valid Signature

We list the conditions for a valid signature scheme:

(a) Unforgeability: for every i ∈ N and for every message V to sign, only the
holder of sk can generate a valid signature Signi(V ).

(b) Security: by viewing H̄(m) = {Signi(Vi)|1 ≤ i ≤ m} for any m ∈ N, one
does not learn additional information on sk.

(c) Correctness (signing): V erifyi(Vi,Signi(Vi))=ACCEPT.
(d) Correctness (key-revealing): if one views H(m) = H̄(m)∪Signm′(V ′

m′) for
some m′ < m and V ′

m′ 
= Vm′ such that Signm′(Vm′)∈ H̄(m), then it can
recover the secret signing key and forge valid signatures.

4.1 Unforgeability

Lemma 1. For every i ∈ N and for every message V to sign,
only the holder of sk can generate a signature Signi(V ′), such that
V erifyi(V ′,Signi(V ))=ACCEPT.
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Man-in-the-Middle Attack. In order to successfully execute such an attack,
one needs to generate sH

i (V ′
i ) for some V ′

i 
= Vi. Under the assumption that H
is second-preimage resistant, such an attack requires evaluating the polynomial
Poli(x) in a new point H(V ′

i ) 
= H(Vi).

Lemma 2. An adversary that views only Poli(V ) for some i ∈ N, where
Poli(0) = s, cannot evaluate Poli(V ′), for any V ′ 
= V .

4.2 Security

We analyze the security of the scheme by going over the published values, a
signer, with the secret signing key sk, publishes.

Lemma 3. For any m ∈ N and for every V1, . . . , Vm, a user that publishes
H̄(m) does not reveal any information about the secret key sk.

4.3 Correctness (Signing)

Lemma 4. For every Vi and a valid signature Signi(Vi), V erifyi(Vi,Signi(Vi))
can be computed and accepts.

4.4 Correctness (Key-Revealing)

We built our scheme in order to prevent a signer from releasing two signatures,
corresponding to the same signing index, for two different messages V 
= V ′.

Lemma 5. A dishonest user that publishes H(m) = H̄(m)∪Signm′(V ′
m′) for

some m′ < m and V ′
m′ 
= Vm′ such that Signm′(Vm′)∈ H̄(m) enables the expo-

sure of sk and the forgery of valid signatures on its behalf (Fig. 2).

Fig. 2. Publishing a signature corresponding to a different value V ′
m′ where a signature

for Vm was already published results in the exposure of s.
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5 Conclusion and Future Work

We introduced a digital signature scheme based on verifiable secret sharing,
where a share of the secret acts as the signature. We used verifiable random
functions to create a random, but verifiable, chain of signature functions, each
corresponding to an index in the signing chain. This property enables the scheme
to provide additional incentive for honesty behavior, by exposing the secret key
of the signer if the chain of signatures is abusively forked. This scheme may
be used in blockchains, to prevent forks in the public ledger and generally in
scenarios where the reliability of the source and uniqueness of versions of data
are required.
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Abstract. The formal study of computer malware was initiated in the
seminal work of Fred Cohen in the mid 80s who applied elements of
the Theory of Computation in the investigation of the theoretical limits
of using the Turing Machine formal model of computation in detecting
viruses. Cohen gave a simple but realistic, formal, definition of the char-
acteristic actions of a computer virus as a Turing Machine that replicates
itself and then proved that constructing a Turing Machine that recog-
nizes viruses (i.e. Turing Machines that act like viruses) is impossible,
by reducing the Halting Problem, which is undecidable, to the problem
of recognizing a computer virus. In this paper we complement Cohen’s
approach along similar lines, based on Recursion Function Theory and
the Theory of Computation. More specifically, after providing a simple
generalization of Cohen’s definition of a computer virus, we show that
the malware/non-malware classification problem is undecidable under
this new definition. Moreover, we show that to any formal system, there
correspond infinitely many, effectively constructible, programs for which
no proof can be produced by the formal system that they are either mal-
ware or non-malware programs. In other words, given any formal system,
one can provide a procedure that generates, systematically, an infinite
number of impossible to classify, within the formal system, programs.
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1 Introduction

In this paper we investigate the problem of classifying programs either as malware
or non-malware based on formal proof systems and their deductive procedures.
Our goal is to study the deductive power of formal systems with respect to the
problem of producing proofs that can characterize all computer programs either
as malware or non-malware. Our work is based on the foundations of computabil-
ity and recursive function theory which, essentially, study problems with respect
to their theoretical solvability based on the universal Turing Machine model of
a mechanical and effective computation [12].

Formal proofs about the impossibility of detecting, in a systematic (i.e. algo-
rithmic) and general way, malicious entities, such as Malware in our case, already
exist for a long time for a very important category of such entities, the com-
puter viruses or malware in general. A virus is a malicious program, a Turing
Machine formally, that operates with an aim to replicate in other programs
(Turing Machines), thus spreading the infection. The formal study of computer
programs which act as viruses and their algorithmic detection was initiated in
the seminal work of Fred Cohen in the mid 80s (see [1,2]). Cohen starts with
a simple, formal, definition of the characteristic actions of a virus. Then, he
proceeds to prove that constructing a Turing Machine that recognizes viruses
(technically, other Turing Machines that act like viruses) is impossible.

More specifically, Cohen defined a virus to be a program, or Turing Machine,
that simply copies itself to other programs, or more formally, injects its transition
function into other Turing Machines’ transition functions (see Definition 1 in
Sect. 2) replicating, thus, itself indefinitely. Then, he proves that the problem of
deciding whether a given Turing Machine halts on a given input, i.e. deciding
the language Lu, can be reduced to the problem of deciding whether a given
Turing Machine is a virus, i.e. Lu = {<M,w> w ∈ L(M)} is reduced to Lv =
{<M> |M is a virus }. Since Lu is undecidable, so must be Lv and, thus, it is
in principle impossible to detect a virus or else we could decide Lu which is,
provably, undecidable.

Following Cohen’s paradigm, we will propose a rather restricted (so as to
be amenable to a theoretical analysis) but reasonable and precise definition of
malware. To this end, we also deploy the Turing Machine theoretical model
of an effective computational procedure to model malware programs. Thus, a
malware is a program, i.e. a Turing Machine, that executes, at some point of its
operation, at least one action from a specific set of actions that characterize mal-
ware behaviour (these actions are called states in the Turing Machine definition).
We remark that simply locating the actions in a program through, e.g. syntac-
tic analysis, is not considered to manifest malware behaviour, in the proposed
model, only their actual execution is considered to manifest such a behaviour.
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Admittedly this is a, rather, restricted malware model since malicious behaviour
can be complex, e.g. in DoS (Denial of Service) attacks or may include several,
combined, steps or Turing Machine states (e.g. Ransomware, which executes
sequences of malicious actions to encrypt files on a victim computer). However,
we chose this simpler model in order to be able to benefit from the rich and
deep results of the Theory of Computation and, thus, provide some first results
based on an established and mature computational model and scientific disci-
pline. Consequently, our goal is to use this, rather restricted but theoretically
manageable and plausible, malware model in order to obtain a malware undecid-
ability result similar to Cohen’s, i.e. there is no algorithm (Turing Machine) that
can detect, systematically, all malware programs that fall under this definition.

The theoretical undecidability of the malware/non-malware classification
problem means that, in general, no algorithm exists that can take as input a
program and decide whether it is a malware or not. Our next step, in this paper,
is to investigate whether it is possible to effectively demonstrate one of the pro-
grams which are not amenable to classification. In other word, our goal is to see
whether it is possible to construct a specific Turing Machine whose classification
status as either malware or non-malware cannot be decided. In the context of
malware, such a Turing Machine would provide evidence of, potentially, hard or
impossible to detect malware. To investigate this possibility, we turn to formal
systems and, in particular, formal systems powerful enough to enable statements
about Turing Machines, such as statements that state whether they halt, given
a particular input, or not. We show that to each consistent formal system, there
corresponds an infinite, recursively enumerable set of Turing Machines for which
there exists no proof, in the formal system, that they are malware and there
exists no proof, in the same formal system, that they are not malware. This is
a humble example of a nature similar to Gödel’s famous, groundstaking, result
about the incompleteness of consistent formal systems in the sense that for each
such system, there exist statements, of a self-referential nature, that neither
themselves nor their negations can be proved within the formal system. In addi-
tion, these self-referential statements are, indeed, true (but not provable), if and
only if the formal system is consistent (see, e.g., [9] for an accessible coverage of
Gödel’s Incompleteness Theorems and their consequences for formal systems).
Inspired by this important consequence of the incompleteness result, we show
that the infinitely many Turing Machines whose malware/non-malware status is
impossible to prove within a consistent formal system, are actually non-malware
but it is impossible to prove it within the formal system by the, purely. for-
mal procedures allowed within the formal system. In other words, we show that
these Turing Machines are non-malware if and only if the formal system used to
classify them as malware or non-malware is consistent.

Before we proceed, we should remark that theoretical impossibility does not
imply impossibility in practice since Turing Machines are idealistic models of com-
puters with unlimited computational resources. However, the finite nature of real
computers and programs renders all undecidable problems decidable by simple
(but highly inefficient in practice) brute force approaches. Thus, theoretical impos-
sibility results may not translate, readily, into impossibility results in practice.
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2 Foundations of Computation Theory

We will assume a basic level of familiarity with the fundamental concepts and
results of Recursive Function Theory. However, for completeness, we will briefly
review Turing Machines and the basic results of the Theory of Computation and
Recursive Function theory (see, e.g., [3–5]). In doing so, we extend in a straight-
forward way the standard Turing Machine model in order to model malware
activity. With respect to the presentation, we follow the exposition in the excel-
lent, classic, book on the subject by Hoprcoft and Ullmann [5]. Before providing
the details, we note that there are other, more practical, computational models
that could be employed but since the theory we deploy concerns the classical
Turing Machine model, we decided to base our results on this model for sim-
plicity. We feel, however, that the results can be extended, with some effort, to
other computational models which are more realistic.

Definition 1 (Turing Machine). A Turing Machine is an octuple, defined as
M = (Q,QMal,Σ ,Γ , δ, q0, B, F ), where Q is a finite set of states, Γ is a finite
set called the tape alphabet, where Γ contains a special symbol B that repre-
sents a blank, Σ is a subset of Γ− {B} called the input alphabet, δ is a partial
function from Q×Γ to Q×Γ× {L,R} called the transition function, q0∈Q is a
distinguished state called the start state, F ⊂ Q, q0 �∈ F , is a set of final states,
and QMal ⊂ Q, QMal ∩ F = ∅, is a distinguished set of states linked to Malware
behaviour. We assume that transitions from states in QMal do not change the
Turing Machine’s tape contents, i.e. they are purely interactions with the exter-
nal environment of the Turing Machine and can affect only the environment.

We should remark that there are three basic assumptions in the definition of a
Turing Machine:

1. The tape can be extended on a need basis, i.e. each time the machine needs
more cells (memory) on the tape, which is assumed to be automatically
extended. In this respect, the memory of a Turing Machine is, virtually, unlim-
ited.

2. Computational steps, i.e. reading of a tape cell, change of state and advance
of the tape head, are executed instantaneously.

3. There are no operation errors during the operation of the machine.

Thus, the Turing Machine is an idealized formal model of a real computer that
abstracts away from construction, technology, and speed details not relevant to
the fundamentals of mechanical or algorithmic computation in order to allow us
to explore the theoretical limits of machines in solving problems.

A Turing Machine can be viewed either as a language acceptor or a function
calculator. The language accepted by a Turing Machine M , denoted by L(M), is
the set of strings in Σ∗ that when given as input to M , lead it to an acceptance
state, i.e. a state in set F . In recursive function theory, these languages are
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also called recursively enumerable. In general, without loss of generality, we can
assume that the Turing Machine, when it accepts an input string, it also halts
i.e. there are no next steps after an accepting state. In this paper, we will not use
Turing Machines that compute functions. However, we should remark, that there
is no loss of generality by confining ourselves to Turing Machines as language
acceptors (see, for instance, the discussion in [5]). Thus, for our purposes, Turing
Machines operate as language acceptors (see below).

In Fig. 1 we see the structure of a Turing Machine, according to Definition 1,
and in Table 1 we see a sample Turing Machine computation.

Fig. 1. The Turing Machine computation model

Table 1. Operation of a TM

q0 q1 q2 q3 q4 q5 q6

0 (q1,#,Δ) (q1,0,Δ) (q3,1,A) (q3,0,A) (q4,0,A) (q5,#,Δ) -(stops)

1 (q5,#,Δ) (q2,1,Δ) (q2,1,Δ) (q3,1,A) (q4,#,A) (q5,#,Δ) -(stops)

# -(hangs) (q4,#,A) (q0,#,Δ) (q6,0,Δ) (q6,#,Δ) -(stops)

Thus, a Turing Machine is, essentially, a theoretical model of a real computer
that allows us to study the power of mechanical, or algorithmic, computation and
its limits. As a consequence, we can also deepen our understanding about which
problems can be solved in principle by mechanical computations.

With respect to the evolution and termination of the computation of a Turing
Machine, we have the following three possibilities:

1. The machine halts in a final state. Then the input string is accepted (i.e. it
belongs to the language accepted by the Turing Machine). There is no loss
of generality in assuming that the Turing Machine halts (i.e. it has no next
move) whenever the input is accepted.
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2. The machine halts in a non-final state. Then the input is rejected (i.e. it does
not belong to the language accepted by the Turing Machine).

3. The machine does not halt at all, i.e. it runs for ever (it has entered an
“infinite loop”, as computer engineers say). Then certainly the input string
is never accepted, i.e. it does not belong to the language accepted by the
Turing Machine, but there is no way (as we will see below) to decide that the
computation will not ever terminate (it is the famous, undecidable, Halting
problem).

With respect to notation, for a given Turing Machine M we denote by <M>
its code, i.e. an encoding of its description elements as stated in Definition 1
using any fixed alphabet, usually the alphabet {0, 1} (binary system) which
since the inception of computing machines was the alphabet of choice due to its
simplicity and efficiency in representing it with electronic states (two such states
suffice). The details of such an encoding can be found in, e.g., [5] but it is really
much like the representation of a program in machine code or assembly, which
are the native programming languages executed by processing units in modern
computers.

One of the major results of Turing’s seminal work on computability was
the existence of a universal Turing Machine, that is a Turing Machine that
takes as input strings which represent other Turing Machines and their inputs
and simulates (executes) them producing their results on their behalf. This is
actually what a modern computer does, taking as an input program descriptions
along with their inputs and producing their outputs by executing them (see,
e.g., [5] for the encoding details).

The main outcome of Turing’s pioneering work was, the formalization of what
a mechanical procedure is using the Turing Machine model. This work gave rise
to the computability theory, that classifies problems according to whether they
can be solved, in principle, by mechanical procedures or Turing Machines. One
of the major results of Alan Turing was the proof that there exist problems that
Turing Machines cannot solve. For instance, the first problem (theoretically,
there are infinitely many such problems) what was shown to be unsolvable by
Turing Machines (i.e. algorithms) is the, so called, Halting problem:

The Halting Problem
Input: A string x = <M,w> which is actually the encoding (description) of a
Turing Machine <M> and its input w.
Output: If the input Turing Machine M halts on w, the output is True. Oth-
erwise, the output is False.

The language corresponding to the Halting problem is Lu = {<M,w> |w ∈
L(M)}. In other words, the language Lu contains all possible Turing Machine-
input pair encodings <M,w> such that w is accepted by M . This is why Lu

is also called universal language since the problem of deciding whether a given
Turing Machine M accepts a given input w is equivalent to deciding whether
<M,w> ∈ Lu. Note that Lu is accepted by a Turing Machine, the universal
one denoted by Mu, that simulates M on w. If w ∈ L(M), then the universal
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Turing Machine will accept the pair <M,w>. However, if the opposite holds
true, then we only know that Mu will not terminate in a final state. What we do
not know, however, is whether Mu will ever stop (in a non-final state of course).
Languages for which Turing Machines exist that accept them and always halt
are called recursive or decidable.

The language Lu was the first language proved to be non-recursive or undecid-
able by Turing, meaning that it is impossible to decide algorithmically whether
a given program halts or not on a given input. The proof relies on a clever
Cantor diagonalisation, self-reference based, argument over all possible Turing
Machines. Such arguments lie in the heart of mathematical logic as well as the-
oretical computer science for proving impossibility or non-existence arguments.

3 Recursive Function Theory

We should stress the fact that Computation and Recursive Function Theory
are computation model independent. The model of computation can be any rea-
sonable model such as the Turing Machine (see Sect. 2), the λ-terms (in the λ-
Calculus), μ-recursive functions as well as, in a more practical perspective, any
real computer programming language. It is not hard to prove that the theoretical
computational power of all these computation models is the same, if we disregard
efficiency issues.

In addition, the computational procedures or programs that can be written
in any computation formalism or real programming language can be enumerated
effectively (see, e.g., [5]). This means that there exists an algorithm which can
list all the programs in a sequence, so that all programs appear at some point
of the enumeration procedure.

A well known result from computability theory states that the number of
arguments in a function (program) is not important, for computability theory,
since arguments can, always, be embedded, in an easy way, in the program
itself, reducing, in this way, the number of arguments. This is formalized in the
following result, which is a simplified form of Kleene’s Smn-theorem (see [6]), for
functions of two arguments.

Theorem 1 (Kleene’s Smn-theorem - simplified form, for two-input
functions). Let g(x, y) be a partial recursive function. Then, there is a total
recursive function σ of one variable, such that fσ(x)(y) = g(x, y) for all x and
y. That is, if σ(x) is considered as the integer (code) representing some TM Mx

then f
(1)
Mx

= g(x, y).

In addition, we will need another result from recursive function theory, namely
the Recursion Theorem which states that every total recursive function that
maps Turing Machine indices on Turing Machine indices has a fixed point. We
state, formally, this theorem below as Theorem 2.

In what follows, we fix a formal system F , e.g. such as Peano’s Arithmetic,
which can, directly, express statements about natural numbers. Our departure
point is the, already, known fact that, given such a formal system, which we
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will denote by F , we can, effectively, construct a Turing Machine M with the
following property: there is no proof in F that M , when started on a specific
input, halts and there is no proof that M , when started on a specific input, does
not halt. The proof can be found in [5], Chap. 8. We will denote by MF such a
Turing Machine (there may be several with this property) whose halting status
in unprovable in F .

Naturally, the details of MF depend on F but the important issue, in our
context, is that MF can be constructed effectively, i.e. algorithmically, but, not
necessarily, efficiently i.e. fast. In what follows we will present the proof of this
fact since some of its elements are crucial in the presentation of our ideas. We,
first, state the Recursion Theorem along with its proof (based on [5]) since it is
crucial for our arguments that follow in Sect. 4.

Theorem 2. For any total recursive function σ there exists an x0 such that
fx0(x) = fσ(x0)(x), for all x.

Proof. For each integer i, we construct a Turing Machine that when given input
x it computes fi(i). Then, it simulates the fi(i)th Turing Machine on x. Let g(i)
be the index of the constructed Turing Machine. By definition

fg(i)(x) = ffi(i)(x) (1)

for all x. Note that g(i) is a total function, i.e. defined everywhere (and, thus,
the TM that computes it always halts) even if fi(i) is not defined, i.e. fi does
not halt with input i. Let j be an index of the function σg, i.e. j is the index
(encoding) of a TM that, when given i as input, computes g(i) and then applies
the function σ on g(i). Thus, for x0 = g(j) the following is derived, after some
manipulations:

fx0(x) = fσ(x0)(x) (2)

for all x. Therefore, x0 is a fixed point of the mapping σ, i.e. the TMs x0 and
σ(x0) compute the same function. �

Based on the Recursion Theorem, the following, central to our approach in
Sect. 4, is proved in [5]:

Theorem 3. Given a formal system F , we can construct a Turing Machine for
which no proof exists in F that it either halts or does not halt.

Proof. Given F , we construct a Turing Machine M that computes a function,
g(i, j), of two inputs as follows:

g(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if there is a proof in F that fi(j) is not defined
(i.e. does not halt) or, in other words if there is
a proof that the ith Turing Machine does not
halt, given input j

undefined, otherwise

(3)
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The Turing Machine M works by enumerating proofs in F . When a proof is
found that states that the ith Turing Machine does not halt when given input
j. Moreover, M can be designed so that if g(i, j) = 1 then it halts, otherwise it
does not halt.

From the Smn-theorem (see Theorem 1), there exists a total function σ on
Turing Machine indices (i.e. codes) such that

fσ(i)(j) = g(i, j). (4)

From Recursion Theorem, we can construct an integer i0 such that

fi0(j) = fσ(i0)(j) = g(i0, j). (5)

However, g(i0, j) = 1 and it is, thus, defined if and only if there exists a proof in
F that states that fi0(j) is not defined. Therefore, if F is consistent, i.e. there
can be no proofs of, both, a statement and its negation, then no proof can exist
in F that the i0-th Turing Machine either halts or does not halt when given a
specific input j. �

The corollary that follows below is not stated in [5] but it is not hard to prove,
as a consequence of Theorem 3.

Corollary 1. For the i0-th Turing machine, denoted by Mi0 , constructed in the
proof of Theorem3 and computing the function fi0(j), it holds that it does not
halt for every input j if and only if F is consistent.

Proof. Let assume that F is consistent and that Mi0 halts for some input j0.
Then, since F is consistent, there can be no proof in F that Mi0 does not halt,
for any input j. According, then, to the definition of g(i, j) in Eq. 3, Theorem 3,
g(i0, j0) is undefined. But since (see Theorem 3) fi0(j0) = g(i0, j0), we arrive
at a contradiction since the left-hand side is defined and the right-hand side is
undefined.

Let us assume, now, that Mi0 does not halt, for every input j. It follows,
since fi0(j) = g(i0, j), that g(i0, j) is undefined for every j. Thus, there is no
proof in F that Mi0 does not halt on input j, for any j. Accordingly, F must be
consistent since, otherwise, it can produce a proof, in F , that Mi0 does not halt
on input j, as everything follows from an inconsistent formal system, leading to
a contradiction, since g(i0, j) is undefined for all j. �

4 Theoretical Impossibility of a Complete formal
Malware/Non-malware Program Classification

In this section we give a simple formal definition of malware following and extend-
ing Cohen’s ideas.

Definition 2 (Formal Malware definition). A Malware is a Turing Machine
that when executed will demonstrate a specific, recognizable, behavior particular
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to malware, as manifested by the execution (not simply the existence in the
Turing Machine’s description) of a specific sequence of actions, e.g. it will publish
secret information about an entity, it will download information illegally etc.,
actions reflected by reaching, during its operation, states in the set QMal (see
Definition 1).

This is similar to Cohen’s definition of a virus since it characterizes Malware
programs according to their visible or manifested behavior. We stress the word
“execution” in order to preclude situations where a false alarm is raised for
a “Malware” program which, merely, contains the states in QMal without ever
invoking them. Such programs, actually, operate normally without ever executing
any actions characteristic to malware behavior.

The Malware Detection Problem
Input: A description of a Turing Machine (program).
Output: If the input Turing Machine behaves like Malware according to Defi-
nition 2 output True. Otherwise, output False.

More formally, if Lb denotes the language consisting of Turing Machine
encodings <M> which are Malware, according to Definition 2, then we want
to decide Lb, i.e. to design a Turing Machine that, given <M>, decides whether
<M> belongs in Lb or not according to this definition.

Let QMal be the set of actions which, when executed, manifest Malware behav-
ior (see Definition 2). We will show that Lu is recursive in Lb. This implies that
if we had a decision procedure for Lb then this procedure could also be used for
deciding Lu which is undecidable. Thus, no decision procedure exists for Lb too.

In [7] the following was proved in a similar context:

Theorem 4 (Theoretical impossibility of detecting Malware). The lan-
guage Lb is undecidable.

Proof. Our proof is similar to Cohen’s proof about the impossibility of detecting
viruses. Note that Rice’s Theorem (see, e.g., [5,10]) is not applicable here since
the Malware Detection Problem we consider does not involve properties of the
languages accepted by Turing Machines but, rather, properties of their operation
(i.e. reachability of a subset of their states, the malware bahaviour related states).
In [7] we consider a detection problem for Turing Machines modeling Panopticons
that involves properties of the accepted languages not their operation specifics.

Let <M,w>, with M=(Q,QMal,Σ ,Γ , δ, q0, B, F ) and QMal ⊂ Q the Mal-
ware states (see Definition 1), be an instance of the Halting problem. We will
show how we can decide whether <M,w> belongs in Lu or not using a hypo-
thetical decision procedure for Lb, i.e. Lu is recursive in Lb.

Given <M,w> we design a Turing Machine Mu−b that modifies the δ func-
tion of M so as when a final state is reached (i.e. a state in the set F of M) a
transition takes place into a state in QMal (any state suits our purpose). That is,
M is a new Turing Machine M ′ containing the actions of M followed by actions
(any of them) described by the states in QMal. Now, M ′ is given as input the
input w of M operating as described above.
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Let us assume that there exists a Turing Machine Mb that decides Lb. Then
we can give it M ′ as input. Suppose that Mb answers that M ′ ∈ Lb. Since QMal

was finally reached, this implies that M halted on w since M ′ initially simulated
M on w. Then we are certain that M halts on w.

Assume, now, that Mb decides that M ′ is not Malware. Then a state in QMal

was never entered, which implies that no halting state is reached by M on w
since QMal in M ′ is reached only from halting states of M , which is simulated
by M ′. Thus, M does not halt on w.

It, thus, appears that M ′ is Malware if and only if M halts on w and, thus, we
have shown that Lu is recursive in Lb. There is a catch, however, that invalidates
this reasoning: if M itself can exhibit the QMal linked Malware behavior in the
first place. Then Malware behavior can be manifested, if states in QMal are ever
executed, without ever M reaching a final state that would trigger M ′ to enter
a state in QMal, by construction.

A solution to this issue is to remove QMal from M , giving this new version
to Mu−b to produce M ′. Thus, we now have the equivalence M ′ is Malware if
and only if M halts on w, completing the proof (see, also, [1]).

More formally, let QMal = {qMal1 , qMal2 , . . . , qMall}, l = |QMal| be the set of
Malware states. We create a new set of “harmless” or “no operation” states P ′ =
{q′

1, q
′
2, . . . , q

′
l} where qMali corresponds to q′

i and vice versa. Then, we replace
the states in QMal by the corresponding states in P ′ everywhere in the definition
elements of M and we also do the corresponding state changes in the δ function
that defines the Turing Machine’s state transitions. This transformation removes
from a potential Malware the actions that if executed would manifest Malware
behavior. We stress, again, the fact the mere existence of Malware actions in the
definition of a Turing Machine is not considered Malware action if they are not
activated at some point of its operation. With this last transformation, M ′ is a
Malware if and only if M halts on w and, thus, Lu is recursive in Lb. �

We now turn to, actually, constructing a particular Turing Machine, which
cannot be classified as malware or non-malware, by purely formal procedures,
within any consistent formal system F .

Theorem 5 (Malware/non-malware classification resistant programs).
Let F be a consistent formal system. Then we can construct a Turing Machine
for which there is no proof in F that it behaves as malware and no proof that it
does not behave as malware.

Proof. Let MF be a Turing Machine whose halting status on any given
input j cannot be proven in F in either direction, i.e. “halts” or “does
not halt”. Such a Turing Machine exists by Theorem3. This is a Turing
Machine like Mi0 which was constructed in Theorem 3. A new Turing Machine,
MMF =(Q,QMal,Σ ,Γ , δ, q0, B, F ), of one input and QMal ⊂ Q, the malware
states, is constructed. It is composed of three parts. The first part is a non-
malware Turing Machine, denoted by Mn the second part is MF , and the third
part is a malware Turing Machine, denoted by Mw.

The construction details of these Turing Machines are not hard but they are
tedious, thus we will provide a rather high level description. The construction
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of MF , given F , has already been described in Sect. 2. With respect to Mn, it
can be any Turing Machine that, simply, does not use any states in QMal, e.g. a
Turing Machine that computes a simple arithmetic function (see, for instance,
Table 1 in Sect. 2). Finally, Mw executes, during its operation, at least one state
in QMal. It is not hard to construct such a Turing Machine, e.g. it can be a
Turing Machine that simply, after leaving the start state, executes one more
step involving a state in QMal before halting (i.e. reaching a final state).

With respect to its operation, MMF , first, activates the first part, i.e. Mn,
which may ignore the input, say j, and operates with its non-Malware behavior,
i.e. it never visits states in QMal during its operation. Then MF is activated with
input j. By construction, MF does not use states in QMal. Finally, the third part,
i.e. Mw, starts operating, exhibiting Malware behaviour by visiting at least one
state in QMal during its operation.

Suppose, now, that a proof exists in F that MMF is a malware, i.e. it exhibits
malware behaviour when activated by reaching states in QMal. By the construc-
tion of MMF , the only way to demonstrate malware behaviour is to activate its
third part, i.e. Mw. This, in turn, can occur only if the second part, i.e. MF ,
halted on input j. Thus, the same proof that MMF is a malware, also, serves as
a proof that MF halts on input j.

Suppose, on the other hand, that a proof exists in F that MMF is not a
malware, i.e. it does not exhibit malware behaviour when activated. By the
construction of MMF , this can happen only if Mw is never activated during the
operation of MMF . In turn, this can happen only if MF does not halt on input j.
Thus, again, the same proof that MMF is not a malware, also, serves as a proof
that MF does not halt on input j. �

From Theorem 5 we have the following corollary:

Corollary 2. To any formal system F , there correspond infinitely many, effec-
tively constructible, Turing Machines for which there is no proof in F that they
behave as malware and no proof that they do not behave so.

Proof. Observe that in the effective, i.e. algorithmic, construction process
described in Theorem 5, Mn can be any of countably many infinite Turing
Machines that simply avoid the states in QMal and Mw can be any of count-
ably many infinite Turing Machines that do not visit states in QMal during their
operation. MF stays fixed (it depends only on F). �

Finally, in the same spirit with Corollary 1 for the Turing Machine Mi0 or MF in
the notation of Theorem 5, we prove the following about MMF which, actually,
shows that MMF , as well as the infinitely many Turing Machines built around
MMF in Corollary 2, is not a malware but no proof exists within the formal
system F if it is consistent.

Corollary 3. For the Turing Machine MMF it holds that it is not a malware if
and only if F is consistent.
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Proof. The proof is, essentially, the same as the proof of Corollary 1, since MMF
contains MF and it is constructed in such a way so that it is not a malware if
and only if MF does not halt on any particular input j. �

5 Discussion and Directions for Further Research

In this paper we addressed the problem of whether it is possible to have a
complete, in principle, classification of all programs either as malware or non-
malware, using suitable formal systems and their proof mechanisms.

Based on Cohen’s pioneering work, we showed that no algorithm exists that
can classify all programs, in general, as malware or non-malware, i.e. the malware
identification problem is undecidable. Further to this result, we showed that to
each formal system, there corresponds a recursively enumerable, infinite, set of
Turing Machines, which depends on the formal system’s details, for which no
proof exists, in the formal system, with respect to whether they are malware or
non-malware.

From Theorem 5 and Corollary 2 it follows that, in principle, there is an
infinity of programs for which a formal classification with respect to whether
they are malware or not is impossible, no matter what formal system is used for
this classification. This implies, that an infinite set of programs exists, which can
be potentially malware, which cannot be proved to be so in any formal system
we may ever devise, no matter how expressive and powerful is. Moreover, the
members of this set are recursively enumerable, i.e. there exists a systematic
way to list them. This, however, may provide the means to malicious parties
to generate programs whose malware status is undecidable, by purely formal
means. It only suffices to know the details of the formal system deployed to
classify programs as malware and non-malware.

Additionally, as Corollary 3 shows, all these programs are, actually, non-
malware programs, unless the formal system, F , deployed for the classification
task is inconsistent. Thus, although these programs are harmless, it is, never-
theless, impossible to classify them as such within any consistent formal system
F . Furthermore, if F is, actually, inconsistent, it is possible that the Turing
Machines constructed in Corollary 2, are malware programs, in view of Corollar-
ies 1 and 3. Thus, the agonizing dilemma may be the following: Is the program
under scrutiny really, a non-malware program, as guaranteed by Corollary 3 or
is it true that the formal system deployed to classify the programs, as malware
or non-malware inconsistent, in which case the guarantee of Corollary 3 is not
valid? We should stress the fact the proving that a given formal system F is
consistent is a notoriously difficult problem. There exist examples of formal sys-
tems proposed in the past (e.g. ML, proposed by Quine in [8]) that were, later,
proved (perhaps unexpectedly) to be inconsistent (ML was proved inconsistent
by Rosser) as well as formal systems extensively used today in mathematics,
whose consistency status is, still, unknown, such as Zermelo-Fraenkel’s set the-
ory with the axiom of choice.

As a next step, the status of the Malware Detection Problem can be pur-
sued under other plausible definitions of malware behaviour either targeting,
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for instance, the behavior (i.e. sequences of specific computational steps) or,
even, the languages that malicious malware Turing Machines may accept (this
approach is pursued in [7]). We believe that the investigation of the decidability
status of any entity recognition problem (such as malware), can be, considerably,
benefitted from a formal definition of the entities’ characteristic behavior using
a computational formalism, such as Turing Machines. Thus, the rich results of
computability and computational complexity theory can lead to the derivation
of interesting findings with respect to the fundamental difficulty of detecting
such entities. Hopefully, our work is one step towards this direction.

We close our paper with the abstract of Ken Thomson’s excellent Turing
Award lecture (see [11]) that summarizes so succinctly our conclusions, i.e. that
no automated solution can be relied on for a complete characterization of all pro-
grams as malware or non-malware: To what extent should one trust a statement
that a program is free of Trojan horses? Perhaps it is more important to trust
the people who wrote the software.

Acknowledgements. We would like to thank the anonymous reviewers for their con-
structive and inspiring comments.
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Abstract. Tor is a popular system for anonymous communication and
censorship circumvention on the web, this puts Tor as a target for attacks
by organizations and governmental bodies whose goal is to hinder users’
ability to connect to it. These attacks include deep packet inspection
(DPI) to classify Tor traffic as well as legitimate Tor client impersonation
(active probing) to expose Tor bridges. As a response to Tor-blocking
attempts, the Tor community has developed Pluggable Transports (PTs),
tools that transform the appearance of Tor’s traffic flow.

In this paper we introduce a new approach aiming to enhance the
PT’s resistance against active probing attacks, as well as white-listing
censorship by partitioning the handshake of the PT from its encrypted
communication. Thus, allowing mixing different PTs, e.g., ScrambleSuit
for the handshake and FTE for the traffic itself. We claim that this sepa-
ration reduces the possibility of marking Tor related communications. To
illustrate our claim, we introduce DNS-Morph: a new method of trans-
forming the handshake data of a PT by imitating a sequence of DNS
queries and responses. Using DNS-Morph, the Tor client acts as a DNS
client which sends DNS queries to the Tor bridge, and receives DNS
responses from it. We implemented and successfully tested DNS-Morph
using one of the PTs (ScrambleSuit), and verified its capabilities.

Keywords: Tor · UDP · DNS · Bootstrapping · Bridge · Pluggable
Transport · Censorship · Circumvention

1 Introduction

Censoring countries continuously try to block their citizens’ connections to Tor,
these attempts began with simple methods like blacklisting Tor’s website [35] so
users would not be able to reach it and download the Tor client software [33], and
got more sophisticated to include actively downloading the Tor nodes (also called
relays) list from the Tor Directory Servers and blacklisting them, deploying
DPI to search for Tor communication characteristics (e.g., Tor’s TLS handshake
cipher suite [46]), as well as active probing (impersonating a Tor client and
connecting to suspicious servers to check whether they run a Tor relay) [1,15,41].
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The Tor community, on the other side, develops methods to bypass these
blocking attempts, mainly Tor Bridges1 and Pluggable Transports (PTs).

Pluggable Transports (PTs) [34] are a generic framework for the development
and the deployment of censorship circumvention techniques. Their main goal is
to obfuscate the connection between a Tor client and a bridge serving as a
Tor entry guard, so it looks benign. The PT consists of two parts as seen in
Fig. 1, one is installed on the Tor client side, and the other is installed on the
bridge’s side. The PT exposes a SOCKS proxy [26] to the Tor client application,
and obfuscates or otherwise transforms the traffic, before forwarding it to the
bridge. On the bridge’s side, the PT Server side exposes a reverse proxy that
accepts connections from PT clients and decodes the obfuscation/transformation
applied to the traffic, before forwarding it to the actual bridge application. Data
transformation/obfuscation and the reverse operations are done by the Transport
Modules/Obfuscation Protocols used by the PT.

Fig. 1. Pluggable transports design

As of Sep. 2017,2 the available and deployed obfuscation protocols in the Tor
Browser are: obfs3 [22], obfs4 [23], ScrambleSuit [47], FTE [40], and meek [17].
These obfuscation protocols can be divided into two groups:

1. Random stream protocols (obfs3, obfs4, and ScrambleSuit). These protocols’
communication is shaped as streams of random bytes that cannot be associ-
ated with any known protocol. These protocols have two phases: a handshake
phase in which the two participating parties securely exchange keys and/or
tickets, and a communication phase, consisting of exchange of encrypted mes-
sages using the established keys.

2. Structured stream protocols (FTE and meek), which try to mimic known
white-listed protocols such as HTTP.

1 Bridge: a relay which is unlisted in the public directory servers lists. The information
needed to connect to a bridge is obtained out-of-Tor (e.g., via BridgeDB [32], an
Email, or in person).

2 Since Sep. 2017, some changes were introduced to Tor: ScrambleSuit is no longer
supported and was replaced by obfs4.
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Censoring countries with active probing capability can expose bridges com-
municating using obfs3. In addition, random stream protocols are of the “look-
like-nothing” protocols, which means that they can be identified and blocked
by a censor using a white-listing strategy, as their fingerprint (including their
handshake) does not fit any known protocol (see for example our experiments
with DPI tools in Sect. 10.3).

On the other hand, structured stream protocols that mimic widely used pro-
tocols, are resistant to white-listing based blocking. However, they do not protect
against active probing [11,18].

Our goal is to improve random stream protocols by using the advantages of
structured stream protocols, while maintaining their protection against active
probing. We believe that the separation of these protocols to a handshake and
communication phase, and encapsulation of their handshake in packets of a
known, widely used, white-listed protocol, will strengthen their ability to avoid
censorship and detection by DPIs.

DNS was chosen as a protocol to encapsulate the handshake and meet the
conditions discussed before for the following reasons:

1. It is one of the most critical protocols of the Internet [25]. Blocking or greatly
interfering with this protocol for any reason will induce unacceptable costs
on the censoring countries.

2. DNS queries can be automatically relayed from one DNS server to another,
until they reach their final destination (recursive DNS queries). This allows
relaying data between several DNS servers as an additional layer of protection
against connections’ tracking and blocking.

3. DNS is a UDP-based protocol. UDP is connection-less and the efforts required
to perform DPI of UDP traffic are significantly higher compared to TCP
traffic.

1.1 Our Contribution

DNS-Morph is implemented as an obfuscation layer for random stream protocols.
This layer encapsulates the protocol handshake in DNS queries and responses in
a way that avoids protocol abnormalities.3

We focus on the handshake phase in this paper because it is the phase DPI
tools and active probes target when searching for Tor traffic and bridges.

In order to show the advantages of DNS-Morph, we implemented it in Python
and integrated it into Tor’s Obfsproxy code [24]. As Obfsproxy works only with
TCP, and our DNS-Morph works with UDP, we added UDP support to Obf-
sproxy.

We tested our design with the ScrambleSuit protocol4 in a censoring envi-
ronment. Success rates, connection timing, and bandwidth are provided in the
experiments Section (Sect. 10).

Our source code is available online [6].
3 Encapsulating the two phases of a protocol into DNS packets will cause high DNS

traffic, which can raise suspicion of DNS tunneling.
4 Similar design should also work for obfs4.
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2 Related Work

Protocol Obfuscation: Five obfuscation protocols are deployed and available
to use with Tor as PTs:

1. Obfs3 [22]: builds an additional layer of encryption over Tor’s TLS connec-
tion in order to hide its unique characteristics. An un-authenticated cus-
tomized Diffie-Hellman handshake [31] is used to exchange encryption keys.
As a result, this protocol is susceptible to active probing attacks.

2. ScrambleSuit [47]: protects against active probing attacks by using out-of-
band exchanged secrets and session tickets for authentication. ScrambleSuit
is also capable of changing its network fingerprint (packet length distribution,
inter-arrival times, etc.). This protocol is the predecessor of obfs4 and is
subject to white-listing based censoring.

3. Obfs4 [23]: has the same features as ScrambleSuit, but utilizes the Elligator
technique [38] for public key obfuscation, and the ntor protocol [13] for one-
way authentication. This results in a faster protocol than ScrambleSuit and
the addition of bridge authentication. This protocol can also be blocked by
white-listing based censoring.

4. Meek [17]: uses a technique called Domain Fronting [4] to relay the Tor traffic
to a Tor bridge through third-party servers (i.e., content delivery networks
(CDNs) like Amazon CloudFront and Microsoft Azure).

5. Format-Transforming Encryption (FTE) [40]: transforms Tor traffic to arbi-
trary standard protocols’ formats using their language descriptions.

Some other PTs are also available but are not integrated in the Tor Browser.
These PTs can be found online [12].

DNS Tunneling: is the act of communicating data of any content inside DNS
queries and responses. Three components are used in DNS Tunneling:

1. Client which sends data in DNS queries and acts like a DNS client.
2. Server which tunnels the client data and sends back DNS responses like a

DNS server. This server usually has a registered domain name.
3. Encapsulation mechanism of data into DNS queries and responses, and a

corresponding decapsulation mechanism for extracting this data from the
DNS queries and responses.

Some of the available DNS tunneling tools are Dnscat [9], Dns2tcp [8], and
iodine [14].

3 Threat Model

Our threat model consists of a nation-state censor that desires to block users
from connecting to Tor. This censor might use DPI to examine session pack-
ets and active probing to check whether suspected servers are Tor bridges or
servers. This censor might also be moving towards a white-listing strategy and
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start blocking access to applications for personal use like Skype [30] or What-
sApp [36]. However, we assume that the censor may not be willing to block funda-
mental services like HTTP, DNS, IMAP, and FTP, as this can break legitimate
communications, thus inducing high economical costs and causing unbearable
collateral damage.

We believe this threat model is realistic as recent reports suggest that some
censoring countries are continuously tightening their Internet control and taking
a comprehensive approach to block all outgoing virtual private networks (VPNs)
traffic [5].

We also assume that the censor does not perform DNS poisoning. This attack
is discussed in Sect. 11.1 (Future Works).

4 Obfsproxy Design

Obfsproxy [24] is an open source software written using Python, and is used by
Tor. This software implements the PT design mentioned before, in addition to
the obfuscation protocols obfs3 and ScrambleSuit.

Due to the fact that our DNS-Morph is integrated into Obfsproxy, we first
describe the Obfsproxy design, and then (in Sect. 5) the modifications done to
support DNS-Morph.

Figure 2 (without the red dashed parts) shows the Obfsproxy high level
design. Each side, the client and the server, consists of two entities: a Tor client
and an Obfsproxy client on the client side, and an Obfsproxy server and a Tor
bridge on the bridge side.

Obfsproxy components have two main layers: a networking layer, responsible
for connections’ establishment, and an obfuscation layer, responsible for the Tor
handshake and the data obfuscation.

The connection between the Tor client and the Tor bridge is composed of
three components:

1. An “Upstream” connection between the Tor client and the Obfsproxy client
on the client side.

2. A “Downstream” connection between the Obfsproxy client and the Obfsproxy
server.

3. An “Upstream” connection between the Obfsproxy server and the Tor bridge
on the bridge side.

The chronological operation flow of a Tor client and a Tor bridge is as follows:

1. Client side: launches an Obfsproxy client, which starts a TCP SOCKS listener
on its upstream connection.
Bridge side: launches Tor bridge and the Obfsproxy server. The Obfsproxy
server starts a TCP listener on its downstream connection. The Tor bridge
starts a TCP listener on its upstream connection.

2. Client side: when the Tor client is launched by the user, it connects to the
SOCKS TCP listener of the Obfsproxy client on its side. Then, the Obfsproxy
client initiates a TCP connection to the Obfsproxy server on the bridge side
(downstream connection).
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3. Bridge side: when the Obfsproxy server receives the downstream connection
request from the Obfsproxy client, it starts its obfuscation layer.

4. Client side: when the downstream TCP connection is established, the client
side initiates its obfuscation layer which commences the handshake between
the Obfsproxy client and server.

5. If the protocol handshake fails then Obfsproxy modules on both sides close
their downstream connection and return to Step 1. If the handshake succeeds,
the Obfsproxy server connects to the Tor bridge (upstream connection) and
starts receiving data from the Obfsproxy client (downstream connection),
decrypting it, and then sending it to the bridge.

At the end of Step 5, the connection between the Tor client and the bridge is
fully functional, and the Tor client is connected to the Tor network through the
Tor bridge.

5 DNS-Morph Design

The fact that the handshake phase and the encrypted data exchange phase are
two separate phases, this allows us to separate them also in the Obfsproxy design
and change properties of each phase without affecting the other one.

We now describe our modifications to the Obfsproxy design to replace its
handshake by a DNS-based once. Our new DNS-Morph design is shown in Fig. 2,
and includes three added components (highlighted in dashed red):

Fig. 2. DNS-Morph design: consists of the Obfsproxy design and the new components
(dashed red): downstream UDP connector, DNS-Morph, and a local DNS server (Color
figure online)
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1. Local DNS server: this is a standard DNS server that receives DNS queries
and returns DNS responses, used for active probing resistance, as explained
in Sect. 8.

2. Downstream UDP connector: the connector sends and receives UDP packets.
The connector also takes care of the reliability functionality (as discussed in
Sect. 6).

3. DNS-Morph component:
(a) Encodes/decodes data to/from Base32 [28].
(b) Chops data into fragments and encapsulates them into DNS queries or

responses.
(c) Decapsulates data fragments from DNS queries or responses, and reassem-

bles these fragments.
(d) Encrypts/decrypts data.
(e) Builds DNS queries and responses.
(f) Communicates with the local DNS server to send and receive queries and

responses.

Our changes to the original Obfsproxy flow of operation in order to support
the DNS-Morph flow of operation are:

1. Downstream connection was changed from TCP to UDP. The Obfsproxy
server listens on port 53 UDP, like a standard DNS server.

2. Obfsproxy client initiates a UDP downstream connection on port 53 to the
server. Using the DNS-Morph module, handshake data is encoded to Base32,
chopped into fragments of length 20–50 characters,5 and encapsulated into
DNS queries of type A (address mapping records).
These queries are sent to the Obfsproxy server using direct or indirect routes:
(a) Direct: Obfsproxy client sends the queries directly to the Obfsproxy

server’s address.
(b) Indirect: Obfsproxy client uses the recursive DNS property and sends the

queries with a domain name registered by the Obfsproxy server operator.
This way the DNS queries travel between different DNS servers until they
reach the Obfsproxy server.

Direct route usage might look anomalous [42, p. 28], hence, we recommend
using the indirect route.

3. The total length in bytes of the handshake data is encoded inside the first
DNS packet, so that the receiving side knows when to stop receiving data,
and start processing it.

4. The Obfsproxy server buffers each DNS query it receives, until the total length
is reached. In order to preserve resemblance to a standard DNS server, the
Obfsproxy server sends the received queries to the local DNS server available
on its side. When a response is received from the DNS server, the Obfsproxy
server sends it back to the Obfsproxy client. When the buffered data forms a

5 [44, p. 251] suggests that the average DNS query length is 36–59 bytes. [19] suggests
that most of the DNS packets that were captured were of size 70–98 bytes (domain
name length of 30–58 bytes).
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complete handshake data, the DNS-Morph module decodes it from Base32,
reassembles it, and forwards it to the obfuscation protocol layer for further
processing.

5. After the Obfsproxy client finishes sending the handshake data, it should
receive handshake data from the Obfsproxy server. As a result, the Obfsproxy
client sends one additional dummy DNS query (contains no protocol hand-
shake data) so that the Obfsproxy server can start sending back its handshake
data as a response to this query. The dummy query is used by the Obfsproxy
client to trigger transmission of the handshake data by the Obfsproxy server
shaped as DNS responses.

6. When the Obfsproxy server sends back its protocol handshake data, it encodes
it to Base32, chops it into fragments of length 20–50 bytes, and encapsu-
lates them into CNAME DNS records. Then sends these records encapsulated
together with A type records as responses to the dummy type A DNS queries
which the Obfsproxy client sent before. Again, the first DNS response packet
will include the total length of the Obfsproxy server sent handshake. The Obf-
sproxy client decapsulates the data from the DNS responses, buffers it, and
keeps sending dummy queries until a complete handshake data is received.
Then, the Obfsproxy client decodes the received handshake data back from
Base32, reassembles it, and forwards it to the obfuscation layer.

7. When the protocol handshake is successfully completed, and tickets and/or
session keys are created, both Obfsproxy sides switch from a UDP down-
stream connection to a TCP connection. The Obfsproxy server side launches
a TCP downstream listener on a port exchanged out-of-band and waits for
the Obfsproxy client to connect back to it. When the TCP connection hap-
pens, the connection between the Tor client and the bridge is fully functional.
In case of a protocol handshake failure, both the Obfsproxy client and server
close their downstream connection, and the Obfsproxy server continues to
behave like a standard DNS server.

6 DNS-Morph Reliability

DNS-Morph depends on UDP, hence, we cannot rely on the network transport
layer to provide reliable data transmission. Therefore, our implementation must
guarantee arrival of the sent packets to the receiver’s obfuscation layer in the
same order that they were sent in, while adding a minimal delay. To achieve this,
we use the methods explained below:

6.1 Received Packets Acknowledgments

The receiver sends an acknowledgment each time it receives a packet. If the
sender does not get an acknowledgment, it means that the packet or its acknowl-
edgment has failed to reach their destination, so the sender must resend the
packet.

We divide the handshake phase into two parts according to the different roles
played by the Obfsproxy client:
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1. Obfsproxy client sends handshake data: each time it sends a DNS
shaped packet, the Obfsproxy server should send back an acknowledgment
in the shape of a valid DNS response to this query.
The Obfsproxy client behaves similarly to the selective repeat protocol using
a window size of 4 packets, with a few modifications due to the randomized
DNS query identifier (ID). Obfsproxy client stores the sent packets in a list
sorted by their sending order. The query ID serves as a search key to the list.
Each time the client receives an acknowledgment it removes the matching
packet from the list. If three acknowledgments are received, but none of them
matches the first packet in the list, then this packet is resent with a new DNS
query ID.

2. Obfsproxy client receives handshake data: as explained before, each
dummy DNS query sent by the Obfsproxy client during this part serves two
purposes, the first is to trigger the Obfsproxy server to send one additional
handshake packet as a response to the dummy DNS query, and the second is to
acknowledge receiving the previous handshake packet sent by the Obfsproxy
server.
During this part, the Obfsproxy client implements the stop and wait protocol :
each time the Obfsproxy client wishes to receive handshake data, it sends a
dummy DNS query and waits a while (discussed later) for the Obfsproxy
server to send its handshake data as a response to this query. If nothing is
received from the Obfsproxy server, then the Obfsproxy client resends the
last DNS packet.6 This procedure is repeated twice (the same packet is sent
at most three times in total), and if no responses are received after that, the
handshake process is terminated (in a failure).
The time the Obfsproxy client waits for a handshake packet before resending
the dummy DNS packet again is calculated by the known weighted average
formula [39, p. 226] for round trip time measuring:

RTT = (α × RTTnew) + ((1 − α) × RTTold)

RTTnew is the newly sampled RTT, RTTold is the previously calculated RTT,
and α = 1/8 as recommended in [29].

6.2 Sorting Received Packets

DNS-Morph adds to each packet a 16-bit identity number, which is encrypted
(as further explained in Sect. 6.3) and then encoded using Base32 to 4 ASCII
characters in start of the packet’s payload. This number is initialized to the
length of the total sent data in the payload of the first DNS packet, and is
increased by one each time a packet is sent, so newly sent packets have a bigger
identity number than the previously sent ones.

Each time a packet is received, the receiver decodes and then decrypts the
DNS-Morph identity bytes of its payload (see Sect. 7 for an example), checks
6 Resending a failed DNS query with the same DNS identifier is a common practice

among DNS resolvers.
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if they form a legal identifying number, and if they do, the packet’s data is
buffered. When the whole handshake data is received, the receiver sorts the
packets according to the identity number and reassembles them back to a real
handshake data, passing it to the obfuscation layer for further processing.

In case of receiving two packets with the same identity number, the receiver
does not buffer the second received packet but acknowledges the sender about
it. This can happen for example because: 1. the first packet’s acknowledgment
failed to reach the sender, so the sender resends the packet. 2. an attacker is
trying to send a packet that contains the same identity number in its payload.

6.3 DNS-Morph Identifiers’ Encryption and Decryption

Encrypting the DNS-Morph identifier inside the encoded data of the DNS
packets relies on an out-of-band shared password (similar to ScrambleSuit and
obfs4) [32].

Our encryption uses 128-bit AES in counter mode. For each identifier, new
key and initialization vector (IV) are created as the output of: HMAC-SHA-
256(shared password, X || handshake data encoded in the current packet) [27],
when X= 0 for Obfsproxy client encryption, X = 1 for Obfsproxy server encryp-
tion, and || means concatenation.

This encryption protects the identifier from being read without the knowledge
of the shared key. This protects DNS-Morph from censoring attacks that identify
the masked Tor connection by saving all DNS traffic between two connecting
entities A and B, extracting the characters that include the identifier, decoding
them, and checking whether:

1. The decoded characters form sequential numbers (identifiers).
2. The decoded characters of the first DNS packet form a number that matches

the total length of the data in all the DNS packets.

6.4 DNS-Morph Multiple Sessions Support

In addition to encrypting the DNS-Morph identifiers, DNS-Morph also supports
multiple clients handshake sessions by adding an encrypted 8-bit session ID to
the packet’s payload. This ID is randomly chosen by the DNS-Morph client and
is encrypted together with the DNS-Morph identifiers using the same keys and
IVs.

7 DNS-Morph Encoded Packets

We show how the encoded handshake data looks inside a DNS query and a DNS
response packets. Consider, for example, handshake data that a ScrambleSuit
client sends to the Obfsproxy server. After encoding this data using Base32
we receive encoded data of 450 characters. This data is chopped to fragments
of length 20–50 characters, the first fragment of the chopped data looks like
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this “ti3zuto4jrz5r22wsu4ar”. To encapsulate this fragment inside a DNS query
packet, we need to add encrypted DNS-Morph identity and session identity to
it. The key and IV for the encryption of the DNS-Morph identity and session
identity are created by:

Key || IV = HMAC-SHA-256(shared password, 0 || ti3zuto4jrz5r22wsu4ar)

After computing the key and the IV, we use them to encrypt the DNS-Morph
identity (which is 450 - the encoded handshake length in characters for the first
packet) and the session identity, which is randomly generated by the client (95
for example).

“enpin” = Encode32(AES − CTRKey||IV (450||95))

After computing the encrypted DNS-Morph ID and the session ID, they are
encoded and then concatenated with “ti3zuto4jrz5r22wsu4ar”, and with the
string “.bridge.domain”, to create the query:

“enpinti3zuto4jrz5r22wsu4ar.bridge.domain”

which is then encapsulated in a DNS packet and sent to the Tor bridge side. The
bridge side, decodes the first 5 characters of the query, decrypts them using the
rest part of the query not including “.bridge.domain”, and the shared password.
Then, it finds out that the length of the encoded handshake to receive for session
95 is 450 characters.

The response packet sent by the Obfsproxy server is a DNS response packet
as generated by the local DNS server.

8 DNS-Morph: Security Analysis

We now discuss the security of our DNS-Morph design. Since DNS-Morph was
built as an additional protection layer for random stream protocols, it inherits
their security properties as a carrier protocol for them. The aim of this section
is to prove that DNS-Morph does not harm the security properties of the encap-
sulated protocol but enhances them.

After DNS-Morph finishes the handshake phase the encapsulated protocol
will still enjoy the same security properties as before, while its handshake security
was enhanced.

We further discuss the security design of DNS-Morph assuming that the
encapsulated protocols satisfy some conditions:

1. They must have a handshake phase.
2. They must be active probing resistant.
3. Their traffic (the handshake and the encrypted data exchange phases) must

be indistinguishable from randomness.
4. They must provide data integrity. Providing data authenticity is recom-

mended but is not a must.
5. The traffic exchanged during the handshake should be as short as possible

without affecting the security properties of the protocol, as it affects the
number of DNS packets exchanged using DNS-Morph (discussed more later).
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8.1 Censor’s DPI Capabilities

We now further elaborate on our assumptions concerning the censor’s capabil-
ities. We assume that the censor has the following DPI capabilities (which are
used to detect DNS tunneling) installed in its ISP infrastructure, either on the
DNS servers themselves, or on dedicated firewall/routers:

1. The DPI mechanism can sort DNS packets by their arrival times, build
a pseudo-session out of them using a 4-tuple (UDP, IPclient, IPserver,
Portserver), and attempt to detect the structure of “a session”.

2. The DPI mechanism can search the DNS packets payload for any structural
data such as counters, flags or words to signal “start”, “stop”, “resend”, etc.

3. The DPI mechanism can consider the length of a DNS query/response and
alert if DNS packets lengths regularities/irregularities are detected. For exam-
ple, alerting about any domain name request longer than 52 characters [7].

4. The DPI mechanism can consider the number of DNS queries/responses for
each 4-tuple or domain name, and alert if this number exceeds a certain
threshold, or if the number of queries and responses differs significantly from
what can be classified as benign behavior.

5. The DPI mechanism can detect irregular DNS packets sequences, e.g., a series
of queries followed by a series of responses.

6. The DPI mechanism can use regular expressions or entropy estimation to
detect suspicious DNS packets payloads.

8.2 DNS-Morph DPI Resistance

We added to DNS-Morph the following counter-measures that defeat the above
DPI threat model, and make it exposure resistant:

1. DNS-Morph can send its packets in an arbitrary order and sort them on the
receiver side, by decrypting the encrypted identifiers.

2. DNS-Morph encodes the encrypted payload inside DNS queries/responses,
and concatenates encrypted packet and session IDs, thus, no structural data
is available in the payload.

3. All the DNS queries/responses of DNS-Morph are of random size between
20–50 bytes, which is the size of a standard DNS query/response [19,44].

4. The number of DNS-Morph exchanged queries/responses depends on the
encapsulated protocol. If we take ScrambleSuit for example, we can make
some modifications, which will not affect the protocol security traits when
DNS-Morph is added, but can reduce the total amount of DNS exchanged
packets to as little as 26 DNS packets, an amount not so far from the number
of DNS packets exchanged when visiting popular websites such as Google
(10–17 packets), YouTube (11–13 packets), and Facebook (24–27 packets),
which are among Alexa’s top 10 global websites for the year 2021 [2].

5. The Obfsproxy server cannot send a DNS response without receiving a DNS
query. A small delay can be added while the Obfsproxy client sends the DNS
queries, which can eliminate DNS sequence abnormalities.
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6. It is hard to use regular expressions in order to check for the “validity” of
domain names without getting a lot of false positives, as many domain names
nowadays can look random (or have a random looking part), due to domain
fronting and load balancing services.
We compare CloudFront domain names with DNS-Morph produced ones in
Sect. 8.5.

8.3 Additional Attacks and Resistance

In addition to using DPI, a censor can tamper with DNS packets payload in
many ways, such as:

1. The censor can change uppercase letters to lowercase, and vice versa. This
change should not affect real DNS as it is case-insensitive, but might affect
encoded and encapsulated data as changing cases changes bytes of the real
data. As discussed in Sect. 9, our method of encoding and decoding data is
resilient to this kind of changes.

2. The censor can change the DNS packet payload data or some of it (e.g.,
DNS poisoning). While deeming DNS poisoning out of this research scope,
it is important to note that DNS poisoning in this context is a denial of
service attack, i.e., it will cause a handshake failure, but will not reveal more
information about the exchanged data than the information that was revealed
by the original handshake.

3. The censor can inject DNS packets in two different ways:
(a) The injected DNS packet contains random data. The receiver will not

consider this packet as a part of the handshake as the possibility of this
data to include an encrypted identifier using the out-of-band keys, is
small.

(b) The injected DNS packet is a replayed packet. This packet will be con-
sidered as a network reliability issue and will not be considered as part
of the exchanged handshake.

4. The censor can observe the DNS responses sent back by the server, and try
to launch an HTTP session to the IP written in these responses in order to
examine if this IP points to a real server. Assuming that the IP returned by
the DNS server is the IP of the DNS-Morph server, this server can run a
simple HTTP server that displays or redirects to a random web-page.

8.4 Active Probing and Replay Attack Resistance

Our new Obfsproxy server acts like a real DNS server. Each time a DNS query
is received, a real DNS response is sent back by a real DNS server. Assuming
that the obfuscated protocol is active probing resistant, the probe will send DNS
packets and receive real DNS responses. If the probe does not know the out-of-
band shared password/key between the real Tor client and bridge, the obfuscated
protocol on the Obfsproxy server side will reject the probe’s handshake request,
while the Obfsproxy server will continue to respond as a real DNS server.
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The same also holds with respect to replay attacks assuming that the obfus-
cated protocol is replay-attack resistant. The obfuscated protocol will reject any
replayed packet, while the Obfsproxy server continues to respond to it as a real
DNS server.

8.5 Domain Names’ Entropy

To show that the domain names used by DNS-Morph have the same entropy
capacity as of regular domain names used in CDNs we have performed a simple
test. We took 32 DNS packets directed at CloudFront services and 36 DNS
packets obtained from a DNS-Morph handshake. We applied gzip and bzip2 to a
file containing only the prefix of the domain names. The compression ratio using
gzip of the CloudFront domain names was 66.5% whereas of the DNS-Morph
domain names was 67.3%. In the case of bzip2, the ratios are 70% and 71.2%,
respectively.

Given the fact that the handshake is done once per session, it is easy to see
that attacks based on estimating the entropy in the domain names are unlikely to
offer high precision due to the small difference in compression rates (suggesting
somewhat related entropy capacity) [45].

9 DNS-Morph Design Considerations

9.1 Choice of DNS

We now discuss various trade-offs we made in DNS-Morph’s design, and explain
our design decisions: First, as mentioned before DNS is an essential Internet
protocol, and its complete blocking is highly unlikely due to the high cost of
doing so, namely, practically disconnecting from the internet. In addition, DNS
supports a variety of query types which gives us more freedom in choosing the
record type that can encapsulate our encoded data.

Following the selection of DNS, we had to use UDP (TCP sessions in DNS
are usually used for zone transfers between DNS servers). This resulted in the
need to add a reliability layer for DNS-Morph as loss of even a single packet
of handshake data on any side causes a handshake failure (discussed more in
Sect. 6).

In addition, the following actions were taken to enable DNS-Morph to mimic
(as much as possible) an ordinary DNS communication:

We decided to add dummy DNS queries/responses which do not carry hand-
shake data on both sides during the handshake phase, in order to prevent
DNS protocol anomalies where the client sends multiple queries, and the server
responds with multiple answers after all the requests were received, or the Obf-
sproxy server sending DNS responses without any sent queries.



258 R. Ailabouni et al.

9.2 Choice of Base32

We chose Base32 for encoding the handshake data which can include any byte
value into characters that follow the domain name system rules [25]:

1. Domain name can include labels and the character “.”.
2. Labels must start and end with a letter or a digit, and have as interior char-

acters only letters, digits, and hyphens.
3. Letters can be any one of the 52 alphabetic characters “A–Z” in uppercase

and “a–z” in lowercase.
4. Digits can be any one of the ten digits “0–9”.

While we could have used Base64 [28] or Base58 [3], DNS is not case sensitive.
In such encodings, a censor can rewrite every single DNS query to a lowercase
one, which does not harm normal DNS requests, but breaks DNS-Morph. These
factors narrow our encoding options to a base that has uppercase letters or
lowercase letters, but not both. Base32 includes the alphabetic characters “A–
Z”, the digits “2–7” and the character “=”, which is suitable for our uses after
changing it to the digit “1”. We also changed the uppercase letters that Base32
produces to lowercase letters inside the DNS queries/responses in order to make
them look more consistent with regular DNS queries/responses. All the letters
on the receiver side are converted back to uppercase before the Base32 decoding
process, which makes our design resistant to attacks like the one described before.

We note that we can also use Base36, which includes the alphabetic charac-
ters “A–Z” and the digits “0–9”. Using Base36 can protect DNS-Morph against
a censor with the ability to spot the lack of the digits “0, 8, 9” from DNS-Morph
packets, as these digits can appear in DNS labels, but are not included in our
modified Base32. However, we decided to not use this for the ease of implemen-
tation. Future works may wish to explore that approach.

9.3 Query Types

In our choice of which DNS query/response types to use for handshake data
encapsulation, we used the following guidelines:

1. The type of the DNS query/response must accept by their definition the
amount and the character set of the data we want to encapsulate inside
them. For example, the type A query can include characters and numbers
(domain names), but the type A response includes 32-bit IPv4 addresses,
thus, encapsulating encoded data that does not look like a valid IPv4 address
inside a type A response is not possible.

2. Using certain DNS query/response packet types must not contradict the gen-
eral DNS query/response types statistics over the Internet.

3. The types of the queries and responses must match.

To send the Obfsproxy client handshake data, we use type A queries, and
receive type A responses from the Obfsproxy server. To send the Obfsproxy server
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handshake data, we use CNAME and A DNS records, which are encapsulated
together in the same DNS packet, and sent as DNS responses for type A DNS
queries. We chose these types because they meet the aforementioned conditions,
and in the same time are widely used on the Internet. The encapsulation of these
records in DNS packets is done using the “dnslib” Python library [10], aiming
to build DNS packets that look as real DNS client/server packets.

9.4 Recursive DNS

Finally, we decided to use the recursive DNS property and send the queries with
a domain name registered by the Obfsproxy server operator, in order to protect
against packets tracking. This also enables to bypass networks’ firewall rules
which forbid a direct DNS packet to be sent outside the network, besides the
network’s own DNS server.

10 Tests and Results

We have implemented our DNS-Morph design using Python, and tested it suc-
cessfully with the ScrambleSuit PT. ScrambleSuit’s handshake, is depicted in
Fig. 3.

Fig. 3. ScrambleSuit’s handshake.

During the handshake, a client and a server generate 4096-bit even private
keys x and y, respectively, and the corresponding public keys X = gx(mod p),
Y = gy(mod p). After exchanging the public keys, they agree on a shared private
key kt = Y x(mod p) = Xy(mod p). Then, using the shared key, the server sends
back an encrypted ticket and a new private key (used by a shortened handshake
version in future handshakes). An out-of-band shared key kB is used to calculate
the MACs and the marks (used to facilitate the localization of the MACs).

10.1 Test Setup

For our experiments, we set up a Tor client in a censoring environment, which
is described in Sect. 10.2. This client connects to a Tor bridge residing at a
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university located in Israel. This Bridge is connected to the Internet using an
ISP not known for any censoring activities. The two sides (the client’s side and
the bridge’s side) had the Obfsproxy software with the DNS-Morph component,
and tried to establish Tor’s first connection between them. We ran 30 connection
attempts in each test, measuring rates of successful handshakes, their timing, and
their bandwidth.

Between connection attempts, all the temporary files and session states gen-
erated by previous attempts (e.g., session tickets) were deleted to ensure that
ScrambleSuit generates everything and behaves the same all the time.
With this setup, we performed three different experiments:

1. “Original Design” tests, to test the original Obfsproxy without DNS-Morph.
This Obfsproxy uses TCP only.

2. “DNS-Morph Direct” tests, to test the Obfsproxy including DNS-Morph. DNS
queries were directly sent from the Obfsproxy client to the Obfsproxy server
address.

3. “DNS-Morph Indirect” tests, to test the Obfsproxy, including DNS-Morph.
DNS queries were sent indirectly to the Obfsproxy server address by other
DNS servers (using recursive DNS queries).

For our “DNS-Morph” tests, we also did one additional type of tests: we
decreased the maximal size of the random padding added to the protocol (see
Fig. 3). ScrambleSuit picks a random padding length of 0–1308 bytes to change
the protocol’s signature. Due to the use of DNS queries, such a protection is
less needed. Thus, we tested the system when the maximal size of the random
padding is at most 100 bytes.

Decreasing the padding length range reduces the maximal total number
of DNS packets (queries and responses) per DNS-Morph handshake from 458
packets to 96 packets and the average total number from 262 packets to 81
packets (the minimal total number stays 26 packets). By doing so, we wanted to
check if the handshake time improves, and if as a result of DNS servers offloading
(DNS-Morph indirect), the handshake success rates will be higher compared to
the first type tests, as DNS servers will be more willing to serve us.

10.2 Client’s Testing Environment

This environment includes an ISP in Israel, which is well known for censoring
Internet browsing for its customers (who seek this type of censorship). Content
censored by this ISP can be pornography, violence, live casting, and videos.
While trying to connect to websites like Google, YouTube, and Facebook, this
ISP asked us to install CA certificates on the client’s machine. Refusing to do
so resulted in blocking client’s access to these websites. Other websites were
simply blocked without even giving the client an option to install certificates
(i.e., Yahoo, Bing, and The Tor Project website).

It is worth mentioning that the certificates needed to be installed by this
ISP are self-signed certificates issued to “Netspark” [21], a company providing
real-time browsing data inspection and web content filtering services.
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Connecting to Tor in this blocking ISP: when trying to connect in the default
method, we encountered failures during different phases such as connecting to
the directory servers, loading relay descriptors, or connecting to the entry relay.
Trying to connect using obfs3 or FTE always failed.

Choosing obfs4 succeeded sometimes and on the other times it failed. Even
on successful attempts a lot of the bridges were blocked.

In conclusion, we suspect that this ISP continuously collects information
about Tor bridges and blocks them.

Results: We performed numerous connection tests during a period of 2
months (January–February 2018). Table 1 summarizes the results of the tests
done on the 10th of February 2018, as a typical example for these results. We
chose to present the results of only one day as all the other days produced similar
results.

Despite the fact that the Tor client was connecting to the Tor bridge using
a censoring ISP, this ISP could not block its connection, not of the original
ScrambleSuit, nor of our DNS-Morph version. This indicates that DNS-Morph
did not harm the original security properties of ScrambleSuit.

The 100% success rates in all the experiments can be explained by the fact
that the client and the server are geographically close.

Table 1. Times and success rates of handshakes.

Time (seconds) Success rate Bandwidth (bytes)

Minimum Maximum Average Median

Original Scramble-

Suit

0.044 0.101 0.087 0.091 100% 4042

Original Scramble-

Suit with DNS-Morph

Direct

0.891 1.813 1.113 0.953 100% 22140

Original Scramble-

Suit with DNS-Morph

Indirect

1.844 2.391 2.171 2.189 100% 24350

Shortened Scramble-

Suit with DNS-Morph

Direct

0.438 0.672 0.542 0.547 100% 6528

Shortened Scramble-

Suit with DNS-Morph

Indirect

0.594 0.798 0.708 0.719 100% 6621

ScrambleSuit - Original: ScrambleSuit with the original padding (0–1308 bytes).

ScrambleSuit - Shortened: ScrambleSuit with a shortened padding (0–100 bytes).

10.3 Deep Packet Inspection Tools

To evaluate DNS-Morph resistance against DPI we chose two open source tools:
nDPI [20] version 2.2.0, and Libprotoident [16] version 2.0.12. We captured the
packets transmitted between the Tor client and the Tor bridge from the previous
tests (Sect. 10) using Wireshark and ran the two tools to analyze them.
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Results: The original Scramblesuit connections were analyzed as “Unknown
TCP” protocol packets by both tools, nDPI and Libprotoident. The DNS-Morph
connections were analyzed by nDPI as ordinary DNS packets for the handshake
phase, and SSL packets for the encrypted data exchange after the handshake was
done. Libprotoident on the other hand analyzed the DNS-Morph connections as
ordinary DNS packets for the handshake phase, and “Unknown TCP” protocol
packets for the encrypted data exchange after the handshake.

11 Summary

In this work we described DNS-Morph, a method to hide PT’s handshake com-
munication in a series of DNS queries and replies. We implemented the system
and checked that it successfully establishes a Tor connection between a Tor client
and a Tor bridge.

The use of DNS offers several layers of security for this process: DNS blocking
(or even strong manipulation) comes at a huge price for the censor, DPI attacks
on DNS are harder to implement, and DNS enjoys an inherent resilience to
blocking attempts due to the nature of recursive DNS queries.

In addition, we have added counter-measures designed to defeat UDP ses-
sions’ tracking mechanisms which, we believe still do not exist today in commer-
cial DPI products.

While we have tested the implementation using the ScrambleSuit handshake,
it is easy to see that this methodology could work with any PT that satisfies
the conditions stated in Sect. 8. As already stated, after the handshake, one can
transform the remainder of the Tor communication to a white-listed protocol
using tools like FTE or meek to maintain white-listed behavior (while enjoying
the security against active probing offered by the protected handshake).

11.1 Future Works

This research can be further developed to include more interesting topics and
answer currently open questions:

– We are aware of the DNS poisoning some countries conduct not only to block
sensitive content but also to promote local websites [37]. An interesting app-
roach is to examine what exactly is done by the censor while performing DNS
poisoning, and whether our DNS-Morph can finish the handshake despite
these DNS poisoning attacks.

– In order to better mimic the behavior of a DNS client (and fulfill one more of
the requirements for building a successful mimicking protocol [43]), a service
can be installed on the client machine to collect data about the user’s browsing
behavior, such as: DNS packets timing, size, DNS client behavior if its query
was not answered, etc. When the DNS-Morph client is started, it can analyze
the collected data to better adapt the specific user and machine behavior.

– More techniques can be applied to DNS-Morph, to improve its resistance
against DPIs, DNS tunneling detectors, and connection tracking:
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• Adding more DNS record types than the currently used ones (A and
CNAME).

• Use an encoding scheme which mimics as best as possible real domain names,
instead of Base32.

• Use multiple DNS servers which collaborate, each accepting some of the
queries of the handshake (and sending back the information). This way, the
tracing of the DNS queries becomes harder (as the number of queries per
DNS server is reduced).
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Abstract. The shortest secure path (routing) problem in communica-
tion networks has to deal with multiple attack layers e.g., man-in-the-
middle, eavesdropping, packet injection, packet insertion, etc. Consider
different probabilities for each such attack over an edge, probabilities
that can differ across edges. Furthermore, a usage of a single shortest
paths (for routing) implies possible traffic bottleneck, which should be
avoided if possible, which we term pathneck security avoidance. Finding
all Pareto–optimal solutions for the multi-criteria single-source single-
destination shortest secure path problem with non-negative edge lengths
might yield a solution with an exponential number of paths. In the first
part of this paper, we study specific settings of the multi-criteria shortest
secure path problem, which are based on prioritized multi-criteria and on
k-shortest secure paths. In the second part, we show a polynomial-time
algorithm that, given an undirected graph G and a pair of vertices (s, t),
finds prioritized multi-criteria 2-disjoint (vertex/edge) shortest secure
paths between s and t. In the third part of the paper, we introduce the
k-disjoint all-criteria-shortest secure paths problem, which is solved in
time O(min(k|E|, |E|3/2)).
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attack over an edge that can differ across edges. We consider these attacks on
the edge as multi-criteria and these criteria (attacks) have some positive weights.
We need to compute the shortest secure path with the least value of total weight.
We study a generalization of the shortest path problem in which multiple paths
should be computed with consideration to multiple criteria. In our scenario, these
criteria values can be proportional to the attack probabilities on the edges. The
application of these paths is mainly in delivering messages via most secure routes.
Similar applications are in the area of transportation networks, social networks,
etc.

The shortest secure path routing algorithms mainly compute the shortest
secure simple path between two nodes, source s and destination t. In our system
setting edges can have positive weight only and no loops exist in the short-
est paths. In practice, while computing the shortest path routing algorithm, in
general, the graph source node always picks the shortest path for routing from
source s and destination t.

Multi-criteria Shortest Paths. Many real-life problems can be represented
as a network, such as transportation networks, biological networks, and commu-
nication networks. In these networks, finding the shortest path resolves many
issues such as routing and the distance between two molecules. In general, for
finding the shortest path, we consider the criterion (objective) of edge weight
(cost), which is called the Shortest Path Problem (SPP) with a single criterion.
A Multi-Criteria Shortest Path Problem (MCSPP) consists of more than one
objective while computing the shortest path between source and destination.

Shortest Secure Paths. The problem of the shortest secure path with respect
to multi-criteria is not well studied. In Oh et al. [8] authors proposed a mech-
anism to find a shortest and secure path by appending the trust weight and
distance weight for each edge. This approach improved the security level prac-
tically but no theoretical bound existed and it is limited for the case of two
criterion while our paper deals with any number of criteria.

k-Shortest Path Problem. The problem of finding the shortest paths in an
edge-weighted graph is an important and well-studied problem in computer sci-
ence. Dijkstra’s sequential algorithm [4] computes the shortest path to a given
destination vertex from every other vertex in O(m+n log n) time. The k -shortest
paths (KSP) asks to compute a set of top k -shortest simple paths from vertex s
to vertex t in a digraph. In 1971, Yen [10] proposed the first algorithm with the
theoretical complexity of O(kn(m + n log n)) for a digraph with n vertices and
m edges.

k-Disjoint Shortest Path Problem. The k-disjoint shortest path problem on
a graph with k source-destination pairs (si, ti) looks for k pairwise node/edge-
disjoint shortest si - ti paths. The k-disjoint shortest path problem is known
to be NP-complete if k is part of the input. The disjoint shortest paths task
was first considered by Eilam-Tzoreff [6]. Eilam-Tzoreff provided a polynomial-
time algorithm for k= 2, based on a dynamic programming approach for the
weighted undirected vertex-disjoint case. This algorithm has a running time of
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O(|V |8). Later, Akhmedov [2] improved the algorithm of Eilam-Tzoreff whose
running time is O(|V |6) for the unit-length case of the 2-Disjoint Shortest Path
and O(|V |7) for the weighted case of the 2-disjoint shortest path. In both cases
Akhmedov [2] considered the undirected vertex disjoint shortest path.

Organization of the Paper. Section 2 presents the reduction of multi-criteria
weight to single weight and describes the first prioritized multi-criteria k-shortest
path algorithm. Section 3 introduces the prioritized multi-criteria 2-disjoint
shortest path algorithm. The k-disjoint all criteria shortest path algorithm is
presented in Sect. 4, with the analysis. Some of details and proofs are omitted
from this extended abstract and can be found in [5].

2 Finding Prioritized Multi-criteria k-Shortest Paths
in Polynomial Time

In this section, we reduce the value of multiple attacks on edges into a single
value, which we call a reduction from multi-criteria weight to single weight.

We consider multi-criteria in weight(cost)-function in a prioritized manner.
In our reduction from multi-criteria to single criterion, we ensemble the weights
of the monotonic (or strictly decreasing) prioritized criteria into one weight. Such
a reduction can be used for computing prioritized multi-criteria shortest path
using Dijkstra shortest path algorithm. Moreover, the reduction we present of the
prioritized multi-criteria can serve also in solving the k-shortest path problem
by using a single criterion and a polynomial generalization of Dijkstra algorithm
to find the k-shortest path algorithm e.g., [10], in polynomial time. The idea is
to combine the different weights into a single “ensembled” weight, such that the
most significant part of the ensembled weight, is the weight of the most important
criteria. Say, using the first most important k1 bits, that suffice to accumulate
the sum of weights, of the most prioritized criterion. The second most important
weight resides in the next k2 bits of the edge weight, and so on and so forth.
Our algorithms deal with any number of criteria/weights. One can view the
prioritized multi-criteria case as using (lexicographic) vector of weights instead
of a single value, where comparison of two weights are performed in lexicographic
order, and additions of weights are done in vector terms. The use of ensembled
weight simplifies the vector operations to a single number operation.

This section studies the following prioritized multi-criteria k-shortest simple
paths problem. The input is an undirected graph G = (V,E), where each edge e
holds vector w̄(e), where w̄(e) = (w1(e), w2(e), ..., wq(e)) and wi(e) is the weight
of e w.r.t. criterion ci, source node s and destination node t, s, t ∈ V , and
integer k. We say that a path P from x to y is the shortest w.r.t. criterion ci, if
ci(P ) =

∑
e∈P wi(e) is minimal among all ci(P ) =

∑
e∈P wi(e) over all paths P

from x to y. A polynomial-time algorithm for solving the problem is presented
in this section.

For multiple criteria, to avoid the exponential number of paths, we reduce the
set of all criteria as a single value for each edge. We reduce the prioritized multi-
criteria by a reduction to a single criterion. Let us define the ensembled edge
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weights as follows. Let Wi =
∑

e∈E wi(e), 1 ≤ i ≤ q. Let li = �log2(Wi + 1)�,
1 ≤ i ≤ q, and let rq = 0, ri =

∑q
j=i+1 li, 0 ≤ i ≤ q − 1. The ensembled weight

of the edge e ∈ E is defined to be EW (e) =
∑q

j=1(2
riwi(e)). As usual we define

the ensembled weight of any path P as EW (P ) =
∑

e∈P EW (e).
The multi-criteria shortest path problem has a rich history, several approx-

imation and heuristic-based algorithms have been proposed to solve it. Instead
of considering the approximation or heuristic approach, we are interested in
problem families for which a polynomial solution exists. For example, (1) if one
criterion is that no edge on the path should weigh more than a given total attack
threshold (T ), then when computing the shortest multi-criteria algorithm, we do
not consider this edge. (2) Another family of multi-criteria is prioritized multi-
criteria where one would like to optimize the first criterion (attack) c1, and
within all solutions that optimize c1, find the optimal solution for the second
criterion (attack) c2, and so on. (3) A combination of the two multi-criteria
above.

Thus, as explained above, to ensemble the weights of the monotonic pri-
oritized criteria into one weight, we use the most important part of an edge
ensemble weight for the most important criteria, and the least important part
of an edge ensemble weight for the least important criteria, and similarly for
criteria in between.

To make sure that the portion of edge weight dedicated to criteria does not
overlap, we assign each portion a span of bits in the ensemble weight of an edge
to suffice for accumulating the criteria weight along the (shortest) path. We can
bound the number of bits needed for accumulating the bound on the shortest
path by summing up all weights of the criteria in all edges in the graph.

Finding the k-shortest paths with the ensemble weights result in that these
are k-shortest paths in the most important criterion c1, as all other criteria do
not compete with the most important part of the weights when computing the
shortest path(s). Thus, the second criterion c2 breaks ties among the paths as
above with the same value of the first criterion. In particular, if the weight of
the heaviest shortest path according to c1 is w1, the selection from the set of the
shortest paths with weight w1 will be according to the second prioritized criterion
c2. If the set of shortest paths with w1 is chosen according to the second criterion
where w2 is the shortest among them, then from the set of paths with weights
w1 and w2, paths with the lightest weight according to the third criterion are
chosen, and so on and so forth.

The ensemble of the criteria weight into one weight implies finding monotonic
multi-criteria k-shortest paths. These paths are not necessarily disjoint (as the
k-shortest simple paths). These paths can be computed in polynomial time as
long as k is fixed [6].

Our approach is based on the generalized Dijkstra algorithm [5] for the multi-
criteria shortest path. Using the Dijkstra algorithm, it is possible to determine
the shortest distance (or the least attack value) between a start node and any
other node in a graph. The idea of the algorithm is to continuously apply the
original Dijkstra algorithm with the precomputed ensembled weight for each
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edge while removing the edges that hold more ensembled weight than Threshold
(T ).

Our approach consists of the following steps: Q is the set of nodes for which
the shortest path has not been found. Initialize the source node with distance
0 and all nodes with distance “infinite”. Reduce the multi-criteria into a single
criterion. At each iteration, the node v, that has the minimum distance value
(sum of weights EW ) to the source, is added to the S, which provides the shortest
path from the source node to the destination node.

For computing the multi-criteria k-shortest simple paths, we use the general-
ized Dijkstra algorithm [5] for computing the shortest path and Yen’s algorithm
[10] for computing k-paths 1.

Theorem 1. The prioritized multi-criteria k-shortest paths problem in an undi-
rected graph can be solved in polynomial time.

Proof. The single criterion k-shortest paths problem is solvable in polynomial
time. We polynomially reduced the multi-criteria weights where criteria are used
in a prioritized manner to the single criterion weight. So prioritized multi-criteria
k-shortest paths problem is also solvable in polynomial time. ��

3 Prioritized Multi-criteria 2-Disjoint (Node/Edge)
Shortest Paths

In this section, we suggest an algorithm solving the 2-shortest paths edge/node
independent problem (see Eilam-Tzoreff [6]) for the case of prioritized criteria
from a single source s to a single destination t in an undirected graph G, where
each edge e holds vector w̄(e), where w̄(e) = (w1(e), w2(e), ..., wq(e)) and wi(e) is
the weight of e w.r.t. criterion ci, source node s and destination node t, s, t ∈ V .
A polynomial time algorithm solving the problem is presented in this section.

We reduce the prioritized multi-criteria case to the case of a single criterion,
similarly to Sect. 2. Further, for finding 2-disjoint shortest paths from s to t, we
use a reduction to the case where two sources and two destinations are given
(described later). Then, we find the 2-disjoint shortest paths in the resulted
graph Ḡ by using the algorithm of Akhmedov [2], which computes the 2-disjoint
shortest paths for two sources and two destinations in time O(|V |7).

Let us describe our reduction. For the edge-disjoint case, it is simple. We add
to G two nodes s1, s2 with dummy edges (s1, s), (s2, s), two nodes t1, t2 with
dummy edges (t, t1), (t, t2), define the weight to be zero for the dummy edges,
and declare s1, s2 to be the sources and t1, t2 to be the destinations instead of
s and t. After finding the 2-disjoint shortest paths in the resulting graph Ḡ, we
return them with the dummy edges removed.

1 Finding k-shortest path can be done using different approaches. Such as by removing
the lightest edge [11] and by removing the already found shortest path(s) [9]. Our
algorithm and reduction from multi-weight to single weight work with both scenarios.
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The reduction for the node-disjoint case is more complicated. We add to G
four nodes s1, s2, t1, t2, which will be the sources and destinations instead of s, t.
If G contains edge (s, t), then we replace it with edge (s′, t′) of the same weight,
and add the dummy edges (s1, s′), (s2, s′), (t′, t1), (t′, t2). For any other edge
(s, v) incident to s, we replace it with edge (sv, v) of the same weight, where
sv is a new node, and add the dummy edges (s1, sv), (s2, sv). Symmetrically, for
any other edge (v, t) incident to t, we replace it with edge (v, tv) of the same
weight, where tv is a new node, and add the dummy edges (tv, t1), (tv, t2). The
weights of all dummy edges are set be 1. Finally, we remove nodes s and t with
no incident edges. After finding the 2-disjoint shortest paths in the resulting
graph Ḡ, we return their abridged variant : with the dummy edges incident to
their end-nodes si and ti shrunken to s and t, respectively.

Let us show the correctness of the latter reduction. A necessary condition for
using the algorithm of Akhmedov is that the terminals quadruple (s1, s2, t1, t2)
is not rigid, where it is called rigid, is if s1, t1 ∈ L(s2, t2) and s2, t2 ∈ L(s1, t1),
where L(si, ti) is the set of all nodes belonging to at least one shortest path
between si and ti. Let us prove that (s1, s2, t1, t2) is not rigid in Ḡ. Assume for
the contradiction, w.l.o.g., that a shortest path P from s1 to t1 in Ḡ contains
two consequent edges (u, s2) and (s2, v). Consider path P ′ obtained from P by
replacing its prefix from s1 to v by edge (s1, v), with weight 1. Path P ′ from s1
to t1 is lighter than P , since the weights of the three removed edges: the first
one of P , (u, s2), and (s2, v), are 1 each,—a contradiction.

Let us show the legality and optimality of the returned solution. Since
the paths returned by the algorithm of Akhmedov are node-disjoint, their
abridged variants are node-disjoint. By the reasons in the proof of non-rigidity of
(s1, s2, t1, t2), the returned paths do not contain any terminal out of s1, s2, t1, t2
as an intermediate node. Therefore, their abridged variants do not contain
dummy edges, and thus are legal paths in G. Let (P ∗

1 , P
∗
2 ) be the optimal pair of

2-disjoint shortest paths from s to t in G. The paths corresponding to them in
Ḡ—obtained from them by the operations in the reduction applied to their first
and last edges—are node-disjoint and have weights greater by 2 than the weights
of P ∗

1 and P ∗
2 . The optimal paths in Ḡ are not worse, and their abridged variants

are by lighter by 2. Therefore, the pair of paths returned by the reduction is not
worse than the pair (P ∗

1 , P
∗
2 ), as required.

The pseudocode of the suggested algorithm appears in the full version [5].
The algorithm correctness, together with the polynomiality of the algorithm of
Akhmedov and of the reduction, implies the following statement.

Theorem 2. The prioritized multi-criteria 2-disjoint shortest paths problem in
an undirected graph can be solved in polynomial time.

4 k-Disjoint All-Criteria-Shortest Paths

This section studies the following k-disjoint all-criteria-shortest paths problem.
The input is a directed graph G = (V,E), q weight functions wi on edge set
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E, 1 ≤ i ≤ q, source node s and destination node t, s, t ∈ V , and integer
k. We say that a path P ∗ from x to y is the shortest w.r.t. criterion ci, if
ci(P ∗) =

∑
e∈P∗ wi(e) is minimal among all ci(P ) =

∑
e∈P wi(e) over all paths

P from x to y. A set of k (edge-)disjoint paths from s to t such that each one
of them is shortest regarding each one of the q criteria is sought for, if exists.
After some analysis, a polynomial algorithm solving the problem is presented
and analyzed. We first reduce the problem to its single criterion version, then
reduce the latter problem to finding k disjoint paths from s to t in a certain
sub-graph of G, if they exist. Finally we present an algorithm for finding them,
if they exist, using known techniques: max-flow finding and flow decomposition.

We assume that each node is reachable from s and that t is reachable from
each node in G; otherwise, the extra nodes could be removed from G. Let dis-
tances di(s, x) and di(y, t), x, y ∈ V , denote the lengths of the shortest paths
from s to x and from y to t, respectively, w.r.t. criterion ci in G. We assume
that there is no negative cycle in G w.r.t. any weight function wi, in order for
the shortest paths to exist. (See, e.g., [3] for the basic information on graph
algorithms).

Let us define the auxiliary aggregated weight w(e) =
∑

i wi(e) for each edge
e ∈ E, and the auxiliary aggregated criterion c(P ) =

∑
e∈P w(e) for each path P

in G. Note that there is no negative cycle in G w.r.t. weight function w, by our
assumption; hence, shortest paths w.r.t. c exist, and thus distances d(s, x) and
d(y, t), x, y ∈ V , w.r.t. w are well defined. Observe that d(s, t) = minP c(P ) =
minP

∑
i ci(P ) ≥ ∑

i minP ci(P ) =
∑

i di(s, t), where each minimum is taken
over all paths P from s to t in G. Moreover, the equality d(s, t) =

∑
i di(s, t)

holds if and only if there exist paths from s to t shortest w.r.t. each criterion ci;
in this case, these paths and only these are shortest w.r.t. criterion c.

As a consequence, we obtain the following reduction from our problem to the
auxiliary single criterion problem. If d(s, t) >

∑
i di(s, t), then no paths from s

to t shortest w.r.t. each criterion ci exist. Checking this could be made via q+ 1
executions of algorithm Dijkstra on G, w.r.t. each criterion ci and w.r.t. criterion
c. Otherwise, the required k disjoint paths are the k-disjoint paths shortest w.r.t.
criterion c, if they exist. In what follows, we present the solution to the single
criterion disjoint shortest k paths problem. The lacking proofs can be found in
the full version of our paper [5].

Lemma 1. 1. Node u belongs to at least one shortest path from s to t if and
only if d(s, u) + d(u, t) = d(s, t).

2. Edge (u, v) belongs to at least one shortest path from s to t if and only if
d(s, u) + w(u, v) + d(v, t) = d(s, t).

Let us define Ṽ as the subset of nodes as in Lemma 1(1) and Ẽ as the subset
of edges as in Lemma 1(2). We denote by G̃ the (sub-)graph (Ṽ , Ẽ).

Lemma 2. 1. Each shortest path from s to t is contained in G̃.
2. Each path from s to t contained in G̃ is shortest.

Lemma 2 establishes a reduction from the single criterion disjoint shortest k
paths problem to finding k disjoint paths from s to t in G̃, if they exist. Finding



Multi-criteria Shortest Paths 273

such paths, if they exist, can be done by known max-flow techniques. Let N be
the flow network (G̃, s, t) with unit capacities of all its edges.

Proposition 1. A set of k disjoint paths from s to t in G̃ exists if and only if
the value of maximal flow in N is at least k.

Proof. The proof to the direction only if is omitted in this version.
direction if Let f0 be an integer (that is 0/1) flow in N of value at least

k. A set P of k disjoint paths from s to t in G̃ is produced by executing the
following triple-phased path-finding routine k times, beginning from f = f0 and
an empty path set P. We denote by Ef the (dynamic) set of edges in N with
the value 1 of flow f .

Phase 1 Set stack S to be empty. Set to v be t and mark it. Choose an edge
(u, v) in Ef and push it into S. Set v to be u, mark it, and continue in the same
way. If we arrived at v = s, go to Phase 3. If we arrived at a marked node v,
suspend Phase 1 and go to Phase 2.

Phase 2 Set z = v. Pop edge (u, v) from S. Unmark u, set f(u, v) = 0, set
v to be u, and continue in the same way. When arrived at v = z, mark v and
resume Phase 1.

Phase 3 Set list P to be empty. Unmark v = s. Pop edge (u, v) from S.
Unmark u, add (u, v) to P , set f(u, v) = 0, set v to be u, and continue in the
same way. Upon arrival at v = t, add P to P.

Let us explain briefly the correctness. After each execution of Phase 2
(removal of a flow cycle), f becomes a correct flow with the same value. After
each execution of Phase 3 (removal of a flow path), f becomes a correct flow
with a value smaller by 1. At Phase 1, since the flow value is non-zero, there
exists at least one edge in Ef entering t. Since flow f is correct, at each node v,
the numbers of edges incoming and outgoing v are equal in Ef . Hence, if there
is an edge outgoing v in Ef , then also an edge incoming v exists in Ef . ��

We conclude that for solving the problem, it is sufficient to find a max-flow in
N , and if the flow value is at least k, execute the path-finding routine presented
in the proof of Proposition 1 k times. The detailed pseudocode of this solution
appears in the full version of our paper [5]. Let us analyse the running time. A
flow either of value k, if such a one exists, or a max-flow, otherwise, in a network
with unit edge capacities can be found in time O(min(k|E|, |E|3/2)) (see [1,7]).
All executions of the path-finding routine together take O(|E|) time, since each
edge is processed in time O(1) in total. Summarizing, the running time bound
is O(min(k|E|, |E|3/2)).
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Abstract. The KEM BIKE is a Round-3 alternative finalist in the NIST
Post-Quantum Cryptography project. It uses the FO �⊥ transformation
so that an instantiation with a decoder that has a DFR of 2−128 will
make it IND-CCA secure. The current BIKE design does not bind the
randomness of the ciphertexts (i.e., the error vectors) to a specific public
key. We propose to change this design, although currently, there is no
attack that leverages this property. This modification can be considered
if BIKE is eventually standardized.

Keywords: BIKE · Post-Quantum Cryptography · NIST ·
QC-MDPC codes · Ciphertext binding

1 Introduction

Bit Flipping Key Encapsulation (BIKE) [3] is a Quasi-Cyclic Moderate-Density
Parity-Check (QC-MDPC) code-based Key Encapsulation Mechanism (KEM).
It is a Round-3 “alternative finalist” in the NIST Post-Quantum Cryptogra-
phy project [15]. Figure 1 illustrates BIKE’s key generation, encapsulation, and
decapsulation flows.

BIKE decapsulation depends on a probabilistic algorithm that is called
“Decode”, which, for every given input, may succeed (and produce m′) or fail
(and output ⊥). Steps 1, 2, and 4 of the encapsulation flow, and steps 2,3 of
the decapsulation flow realize the Fujisaki-Okamoto transformation FO �⊥ [12].
This transformation is required in a KEM with possible decapsulation failures
for achieving IND-CCA security. Reference [8] proves that BIKE is indeed IND-
CCA secure if Decode has a Decoding Failure Rate (DFR) of 2−128, 2−192, 2−256,
for security levels 1, 3, and 5, respectively. BIKE has the following property.

Property 1. Steps 1,2 of the encapsulation are independent of the public key h.

In a multi-user scenario, Property 1 implies that an adversary can select one
errors vector (e0, e1) and use it to produce multiple ciphertexts C for different
public keys. In this context, we mention the IND-CCA KEM schemes FrodoKEM
[2], Kyber [17], Saber [6], SIKE [13], that are selected to Round-3 of the NIST
PQC Standardization Project [15] (as either “finalists” or “alternative finalists”).
The encapsulation procedures of these KEMs blend the public key value with
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(sk, σ, h) $←− Keygen()

1. Generate σ
$←− {0, 1}256

2. sk = (h0, h1)
$←− R2 with wt(h0) = wt(h1) = w odd

3. h = h1h
−1
0

4. Return (sk, σ, h)

(C, K) $←− Encaps(h)

1. Generate a message m
$←− M

2. Compute error vectors (e0, e1) = H(m) with wt(e0, e1) = t and e0, e1 ∈ R.
3. Compute the ciphertext C = (c0, c1) = (e0 + e1h, m ⊕ L(e0, e1))
4. Compute the shared key K = K(m, C)

m = Decaps(sk, σ, h, C)

1. m′ = Decode(sk, C) // Or ⊥ on decoding failure.
2. If ((m′ �=⊥) and (C == ReEncrypt(m′, h))) return K(m′, C)
3. Else return K(σ, C)

Fig. 1. BIKE [3] flows. The block size r and the weights w and t are public parameters
of the scheme. R is the polynomial ring F2[X]/ 〈Xr − 1〉. The Hamming weight of an
element v ∈ R is denoted by wt(v). The ⊕ symbol denotes the exclusive-or operation.

Uniform random sampling from R is denoted by w
$←− R. The key generation outputs

a secret key sk, a random seed σ, and a public key h. The input to the encapsulation
procedure is the public key h. The output is the ciphertext C and the shared key
K. The decapsulation procedure uses the secret key sk, the seed σ, the public key
h and the ciphertext C and (always) outputs a shared key K (which is randomized
on a decoding failure). H : {0, 1}256 −→ {0, 1}2r,K : {0, 1}256+r −→ {0, 1}256,L :
{0, 1}2r −→ {0, 1}256 are (modeled as) some random oracles with respective output
lengths 2r, 256, 256. They can be instantiated in different ways M = {0, 1}256.

the randomness. This binds the randomness used for the encapsulation to the
session keys (private/public key pair). BIKE [3] and NTRU-Prime [4] (also a
Round-3 alternative finalist) use the public key value only after the randomness
is generated and thus possess Property 1 or equivalent. Note that unlike NTRU-
Prime, BIKE may encounter decapsulation failures that can lead to reaction
attacks [9,11,14,16]. This is potentially exploitable if the scheme’s DFR is not
negligible. An interesting discussion on the subject can be found on the PQC
forum [1] where the discussion ends with:

[M. Hamburg] “Hashing the public key or its seed is only: A required
security feature if your system exhibits decryption failures; and A useful
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feature to reduce multi-target concerns if your system has any parameter
sets aimed at class ≤ III.”1

Examples for the rationale behind the multi-key consideration of Kyber and
Frodo are given next. Kyber justifies the discussed binding as follows [5]:

“This tweak has two effects. First, it makes the KEM contributory; the
shared key K does not depend only on input of one of the two parties. The
second effect is a multitarget protection. Consider an attacker who searches
through many values m to find one that is ’likely’ to produce a failure
during decryption. Such a decryption failure of a legitimate ciphertext
would leak some information about the secret key. [...] hashing pk into K̂
ensures that an attacker would not be able to use precomputed values m
against multiple targets.”

The Frodo team [2] defines a new transformation, namely FO⊥′
, that is based

on FO⊥ and states that “following [5], we make the following modifications [..],
denoting the resulting transform FO⊥′

: [..] The computation of r and k also
takes the public key pk as input”.

Remark 1. Binding the randomness or the ciphertext (without randomness) to
the public key is meaningful only if this binding is verified during the decapsu-
lation. In particular, schemes that use the FO [10] transformation, where decap-
sulation includes re-encryption, verify the binding explicitly (when it exists).

This note discusses the technical considerations that are required for avoiding
Property 1 in the context of BIKE, with methods to bind the errors vector to a
specific public key. We view it as a cheap means to diminish the efficiency of any
potential analyses in the multi-key scenario. In this sense, our binding matches
BIKE design to that of FrodoKEM, Kyber, Saber, and SIKE.

2 Specific Proposals for BIKE

Binding the errors to a specific public key can be done in several ways. Some
were mentioned e.g., in [1]: concatenate m to either 1) the public key; 2) the
hash digest of the public key; 3) the seed used to generate part of the public
key (if available) together with its other part. We discuss only options 1 and 2
because option 3 is not applicable for BIKE. Option 3 is possible when part of
the public key can be generated from a small seed. For example, the public key
in some lattice-based schemes (e.g., Kyber) includes a large public matrix that
can be generated from a small seed. By contrast, BIKE public key is generated
entirely from the (secret) private key.

The function H : {0, 1}256 −→ {0, 1}2r is modeled as a random oracle (see [8]
for the details). Its input is a 256 bits seed that H expands into an errors vector
1 Here, we interpret the term “multi-target” as “multi-user”, where multiple users can

use a specific KEM with different keys. We also interpret the term “class” as the
NIST PQC “security level”.
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(sk, σ, h) $←− Keygen()

1. Generate σ
$←− {0, 1}256

2. sk = (h0, h1)
$←− R2 with wt(h0) = wt(h1) = w odd

3. h = h1h
−1
0

4. Return (sk, σ, h)

(C, K) $←− Encaps(h)

1. Generate a message m
$←− M

2. Compute error vectors (e0, e1) = H(fi(m, h)) with wt(e0, e1) = t and e0, e1 ∈
R.

3. Compute the ciphertext C = (c0, c1) = (e0 + e1h, m ⊕ L(e0, e1))
4. Compute the shared key K = K(m, C)

m = Decaps(sk, σ, h, C)

1. m′ = Decode(sk, C) // Or ⊥ on decoding failure.
2. If ((m′ �=⊥) and (C == ReEncrypt(m′, h))) return K(m′, C)

� ReEncrypt uses H(fi(m′, h)) instead of H(m′)
3. Else return K(σ, C)

Fig. 2. Variants of BIKE KEM that bind the errors vector to the public key. The two
options are reflected through the function fi, i = 1, 2, as explained in the text. The
differences are highlighted in red. (Color figure online)

(e0, e1). In the current BIKE instantiation, the expander H is based on AES-
CTR PRF, where the input seed plays the role of an AES key. Applying options
1 or 2 above requires another approach. First, using an extractor f : {0, 1}∗ −→
{0, 1}256 (modeled as a random oracle), to compress the longer input to a 256-bit
uniform random string; and subsequently feeding the result into the expander
H, as before.

To realize options 1 and 2, we use f1 and f2, respectively, as follows

f1 : M × PK −→ {0, 1}256 f2 : M × PK −→ {0, 1}256
(m, pk) �−→ H(m || pk) (m, pk) �−→ H(m || H ′(pk))

Here, H,H ′ : {0, 1}∗ −→ {0, 1}256 are collision-resistant cryptographic hash
functions (e.g., SHA256), and PK is the set of BIKE public keys. With no loss
of generality, we assume that H = H ′. The resulting modified version of BIKE
is illustrated in Fig. 2.

Remark 2. For completeness, we mention the following two obvious options for
f and explain why we do not recommend them for BIKE.
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1. Pad the public key to the nearest multiple of 256 bits boundary, split the
padded string to 256-bit chunks pk1, . . . , pkq (for the appropriate q), and
invoke H(m ⊕ pk1 ⊕ . . . ⊕ pkn) instead of H(m) as in Fig. 1 Step 2. This
approach allows an adversary to control the output of H through the publicly
known pk.

2. Concatenating only 256 bits tail (truncation) of pk to m, i.e., calling
H(m||trunc256(pk)) instead of H(m) in Fig. 1 Step 2. This requires an
assumption that trunc256(pk) is uniformly random (over {0, 1}256). Note that
BIKE public keys are not uniformly random strings, for example, their Ham-
ming weight is always even. Therefore, using the public key’s tail requires
some additional justification.

3 Practical Considerations and the BIKE Additional
Implementation Package

The general definition of BIKE uses abstract random oracle functions H,K,L
[8]. The specification [3] uses a specific instantiation: H is based on the CTR-AES
PRF, while K and L use the standard SHA-384 hash function. The git repository
[7] holds an “Additional implementation” package for BIKE, and offers a full
constant-time software suite as follows: a) a portable C (C99) implementation;
b) an implementation that leverages the AVX2 architecture features, written in
C (with C intrinsics for AVX2 functions); c) an implementation that leverages
the AVX512 architecture features, written in C (with C intrinsics for AVX512
functions).

The AVX512 implementation can also be compiled to use the vector PCLMU
-LQDQ instruction that is available on the Intel IceLake processors. The package
includes testing and invokes the KAT generation utilities provided by NIST. Note
that it is a “stand-alone” suite that does not depend on any external library.
However, it also includes a compilation option that allows the use of OpenSSL
(to consume its AES256 and SHA-384 implementations). The modularity of the
code allows for easy selection of different H,K,L options and for the binding
function f . For example, it possible to choose SHA-512 truncated to 384 bits
instead of SHA-384, or an arbitrary pseudo-random generator for expanding
the (extracted) seed into an errors vector. This code structure makes our build
system flexible and therefore it is easy to switch between the current and the
proposed instantiation through only a compilation flag only.

The sizes of the BIKE public keys are 1541, 3083, and 5122 bytes for Level-1,
3, 5, respectively. We consider the following two options for instantiating f1 and
f2, using SHA384 (which is anyway currently used):

– f1 is the 256 least significant bits of SHA384 hash digest of the input (m || pk).
Here, the input sizes are 1573, 3115, and 5154 bytes require 13, 25, and 41
invocations of the SHA-384 update functions, respectively.

– f2 and H are the 256 least significant bits of the SHA384 hash digest of the
input. When the input to H is pk, the numbers of invocations of the SHA384
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update function are 13, 25, and 41, respectively. The function f2 invokes the
SHA384 update function only once (because the input is of length 64 bytes).

We see that computing f2 requires one additional invocation of the SHA384
update function compared to f1. However, the impact of this difference on the
overall performance of BIKE is negligible. The advantage of using f2 is that the
encapsulator can choose to compute H(pk) only once and reuse the output. This
is valuable in protocols that would use BIKE with static keys. By contrast, using
f1 is more efficient for protocols that use BIKE with ephemeral keys as recom-
mended for BIKE [3] (“BIKE is primarily designed to be used in synchronous
communication protocols (e.g. TLS) with ephemeral keys”). For such usages, we
recommend the use of f1. However, for static keys we recommend f2 because
there is no performance cost.

Table 1. The performance cost of our proposal in 103 cycles, when BIKE is used with
ephemeral keys. Note that the impact on decapsulation is almost negligible.

AVX2 AVX2 SlowDown AVX512 AVX512 SlowDown

Before After Before After

Encaps L1 124 143 1.153 105 121 1.152

Decaps L1 2634 2652 1.007 1197 1213 1.013

Encaps L3 296 325 1.098 237 265 1.118

Decaps L3 7988 8017 1.003 3480 3509 1.008

We implemented our proposed modification in the Additional implementation
of BIKE. This implementation is controlled by the compilation flag BLEND PK,
where the default compilation still follows the current version of BIKE speci-
fication [3]. The code modification is small due to the code modularity of our
package and affects only the sha.h and sha.c files. Table 1 compares the per-
formance with and without our modification, where we observe a slowdown of
up to 15.3% in the encapsulation and up to 1.3% in the decapsulation.

4 Conclusion

We (i.e., the authors of this paper, speaking for themselves and not on behalf
of the BIKE team) propose to modify BIKE to a variant that binds the errors
vector to the public key. The proposed changes to the encapsulation and decap-
sulation flows are easy to make, have a low-performance impact, and are already
demonstrated in our (Additional) implementation package.

Acknowledgments. This research was supported by: NSF-BSF Grant 2018640; NSF
Grant CNS 1906360; The Israel Science Foundation (grant No. 3380/19); The BIU
Center for Research in Applied Cryptography and Cyber Security, and the Center for
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Abstract. With the rise of lattice cryptography, (negacyclic) convo-
lution has received increased attention. E.g., the NTRU scheme inter-
nally employs cyclic polynomial multiplication, which is equivalent to
the standard convolution, on the other hand, many Ring-LWE-based
cryptosystems perform negacyclic polynomial multiplication. A method
by Crandall implements an efficient negacyclic convolution over a finite
field of prime order using an extended Discrete Galois Transform (DGT)
– a finite field analogy to Discrete Fourier Transform (DFT). Compared
to DGT, the classical DFT runs faster by an order of magnitude, how-
ever, it suffers from inevitable rounding errors due to finite floating-
point number representation. In a recent Fully Homomorphic Encryp-
tion (FHE) scheme by Chillotti et al. named TFHE, small errors are
acceptable (although not welcome), therefore we decided to investigate
the application of DFT for negacyclic convolution.

The primary goal of this paper is to suggest a method for fast nega-
cyclic convolution over integer coefficients using an extended DFT. The
key contribution is a thorough analysis of error propagation, as a result
of which we derive parameter bounds that can guarantee even error-free
results. We also suggest a setup that admits rare errors, which allows to
increase the degree of the polynomials and/or their maximum norm at
a fixed floating-point precision. Finally, we run benchmarks with parame-
ters derived from a practical TFHE setup. We achieve around 24× better
times than the generic NTL library (comparable to Crandall’s method)
and around 4× better times than a näıve approach with DFT, with no
errors.

Keywords: Negacyclic convolution · Fast Fourier Transform · Fully
Homomorphic Encryption

1 Introduction

In 1994, Peter Shor discovered efficient quantum algorithms for discrete loga-
rithm and factoring [26], which started the quest to design novel quantum-proof

This work was supported by the Grant Agency of CTU in Prague, grant No. SGS21/
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algorithms, aka. Post-Quantum Cryptography. Since then, there have emerged
many new schemes, which are based on various problems that are believed
to be quantum hard. E.g., supersingular elliptic curve isogeny [18], multivari-
ate cryptography [12], or lattice cryptography [2], in particular Learning With
Errors (LWE) and its variants [21,24]. In addition, many Fully Homomorphic
Encryption (FHE) schemes (e.g. [6,8]) belong to lattice-based ones, including
Gentry’s first-ever FHE scheme [14]. Most notably, the NIST’s Post-Quantum
Cryptography Standardization Program entered the third “Selection Round”
in July 2020 [23], while lattice-based cryptosystems occur among the selected
algorithms.

With the popularity of lattice-based cryptography, the need for its fast imple-
mentation has risen. Besides linear algebra, many schemes require a fast algo-
rithm for cyclic (i.e., mod XN −1) or negacyclic (i.e., mod XN +1) polynomial
multiplication. Some schemes work with polynomial coefficients modulo an inte-
ger (e.g., NTRU [17]), however, our main interest is in the TFHE scheme [8],
where negacyclic multiplication of integer-torus polynomials is performed. Here
the torus refers to reals modulo 1, i.e., the fractional part of a real number. In
practice, torus elements are represented as unsigned integers, which represent
the fraction of 1 uniformly in the interval [0, 1). It follows that integer-torus
polynomial multiplication can be performed with their integer representation.
Also note that TFHE accepts small errors – we prefer to avoid them, but their
impact is not fatal for decryption.

Recently, there have emerged efforts to make TFHE work with multivalued
plaintexts [7], also applications of TFHE for homomorphic evaluation of neu-
ral networks show promising results [5]. In particular, for neural networks, it
holds that they are quite error-tolerant (also verified in [5]), which supports the
acceptability of errors.

Problem Statement. Our goal is to develop a method for fast negacyclic
multiplication of univariate integer polynomials. For this method, we aim to
estimate and tune its parameters in order to provide certain guarantees of its
correctness. As outlined above, we will not focus solely on an error-free case and
we will also accept the scenario, where errors may rarely occur. Last but not
least—as we intend our method also for an FPGA implementation—we derive
all results in a generic manner, i.e., without sticking to a concrete platform,
although we run our tests on an ordinary 64-bit machine.

Related Work. There is a long and rich history of methods for fast multi-
plication over various rings, ranging from Karatsuba’s algorithm [19], through
Fast Fourier Transform (FFT; [9]) to Schönhage-Strassen algorithm [25]. Most
of these methods are based on a similar principle as Bernstein pointed out in his
survey [4].

It was the classical cyclic convolution, which was accelerated by FFT and
Convolution Theorem, and which can be employed for polynomial multiplica-
tion modulo XN − 1, too. On the contrary, polynomial multiplication modulo
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XN +1 (negacyclic convolution) cannot be directly calculated via FFT. One pos-
sible approach was implemented as a part of the TFHE Library [28], although not
discussed in the paper [8]. However, this method suffers from a four-tuple redun-
dancy in its intermediate results. An effective (non-redundant) method for nega-
cyclic convolution has been proposed by Crandall [11] and recently improved by
Al Badawi et al. [3]. In these methods, polynomials are considered over a finite
ring and both authors employed a number-theoretic variant of FFT, named
DGT, which operates on the field GF(p2). On the one hand, DGT calculates
exact results (as opposed to FFT, where rounding errors occur and propagate),
on the other hand, it runs significantly slower as it uses modular arithmetics.

Our Contributions. We propose an efficient algorithm for negacyclic convo-
lution over the reals, for which we derive estimates of bounds on the maximum
error and its variance. Based on our estimates, we show that our method can
be used for an error-free negacyclic convolution over integers. Or—in case we
admit errors—we suggest to relax the estimates in order to achieve higher per-
formance: either in terms of shorter number representation (useful in particular
for FPGA), longer polynomials, or larger polynomial coefficients that can be
processed. Finally, we provide experimental benchmarking results of our imple-
mentation as well as we evaluate its rounding error magnitudes and result cor-
rectness, even with remarkably underestimated parameters.

Paper Outline. In Sect. 2, we provide a brief overview of the required math-
ematical background, i.e., cyclic and negacyclic convolutions, their relation
to modular polynomial multiplication, as well as the Discrete Fourier Trans-
form and Convolution Theorem. Next, in Sect. 3, we revisit a straightforward
FFT-based approach for negacyclic polynomial multiplication, and we propose
a method that avoids the calculation of redundant intermediates. We analyze
error propagation thoroughly in Sect. 4, where we suggest lower bounds on float-
ing point type bit-precision in order to guarantee certain levels of correctness.
In Sect. 5, we discuss the implementation details and we propose a set of testing
parameters with respect to TFHE. Using these parameters, we benchmark our
implementation and we also examine the error magnitude and result correctness.
Finally, we conclude our paper in Sect. 6.

2 Preliminaries

In this section, we briefly recall some basic mathematical concepts related to
convolution and Discrete Fourier Transform.

Cyclic & Negacyclic Convolution. Let f ,g ∈ C
N for some N ∈ N. As

opposed to the classical cyclic convolution defined as

(f ∗ g)k :=
N−1∑

j=0

fjg(k−j) mod N , (1)
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negacyclic convolution adds a factor of −1 with each wrap of the cyclic index at
g, i.e.,

(f ∗̄ g)k :=
N−1∑

j=0

(−1)� k−j
N �fjg(k−j) mod N . (2)

With respect to polynomials, it is easy to verify that the cyclic convolution
calculates the coefficients of a product of two polynomials modulo XN − 1.
Indeed, their coefficients can be considered cyclic since XN = 1. On the other
hand, the negacyclic convolution calculates the coefficients of a product of two
polynomials modulo XN + 1, since XN = −1 adds a factor of −1 with each
wrap.

Convolution Theorem. A relation known as the Convolution Theorem (CT)
states an equality between the Fourier image of convoluted vectors and an ele-
ment-wise (dyadic) product of their respective Fourier images (in the discrete
variant). CT writes as follows:

F(f ∗ g) = F(f) � F(g), (3)

where F(·) stands for the Discrete Fourier Transform (DFT) and � denotes the
dyadic multiplication of two vectors. In fact, DFT is a change of basis, defined
as

F(f)k :=
N−1∑

j=0

fj exp
(
−2πijk

N

)
= Fk, (4)

F−1(F)j =
1
N

N−1∑

k=0

Fk exp
(2πijk

N

)
= fj . (5)

Convolution theorem has gained its practical significance after Fast Fourier
Transform (FFT) was (re)invented1 in 1965 by Cooley & Tukey [9]. As opposed
to a direct calculation of DFT coefficients, which requires O(N2) time, FFT runs
in O(N log N). Next, by the convolution theorem, one can calculate the convo-
lution of two vectors as f ∗ g = F−1

(F(f) � F(g)
)
, which spends O(N log N)

time, compared to O(N2) needed for a direct calculation.

3 Efficient Negacyclic Convolution

First, we describe a method for negacyclic convolution that uses the standard
cyclic convolution and FFT. We identify its redundancy and briefly comment on
possible workarounds. Next, we outline an approach that yields no redundancy
and achieves a 4× better performance than the previous method.

1 Goldstine [15] attributes an FFT-like algorithm to C. F. Gauss dating to around
1805.
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3.1 Redundant Approach

Since (negacyclic) convolution is equivalent to (negacyclic) polynomial modular
multiplication, we switch to the polynomial point of view for now. Interested in
polynomial multiplication modulo XN + 1, we note that X2N − 1 = (XN − 1) ·
(XN + 1). Hence, we can calculate the product first modulo X2N − 1 (via cyclic
convolution of 2N elements) and then only reduce the result modulo XN + 1.
This method can be optimized based on the following observations.

Observation 1 (Redundancy of negacyclic extension). Let p ∈ R[X] be a real-
valued polynomial of degree N − 1, N ∈ N, and let p̄(X) := p(X) − XN · p(X)
be a negacyclic extension of p(X). Then the Fourier image of coeffs(p̄) contains
zeros at eventh positions (indexed from 0). In addition, the remaining coefficients
(at oddth positions) are mirrored and conjugated. I.e.,

F(
coeffs(p̄)

)
= (0, P1, 0, P3, . . . , 0, PN−1, 0, PN−1, . . . , 0, P3, 0, P1). (6)

Note 1. Given N input (real-valued) polynomial coefficients, F(
coeffs(p̄)

)
needs

to calculate 2N complex values, i.e., 4N real values. The redundancy is clearly
in the N complex zeros and in the N/2 complex conjugates.

Observation 2 (Convolution of negacyclic extensions). Let p, q ∈ R[X] be real-
valued polynomials of degree N −1 for some N ∈ N and let p̄, q̄ be their respective
negacyclic extensions. Then it holds

coeffs
(
p · q mod (XN + 1)

)
=

1
2
F−1

(
F(

coeffs(p̄)
) � F(

coeffs(q̄)
))

[0 . . . N − 1].

(7)

By Observation 1, it follows that the dyadic multiplication in (7) can only be
performed at odd positions of the first half, the rest can be copied (with appro-
priate sign). Also note that after F−1, the coefficients are negacyclic, hence we
can only take the first half of the vector. This method is implemented in the
original TFHE Library [28].

Possible Improvements. The clear goal is to omit all calculations leading to
redundant values as outlined in Note 1. Digging deeper into FFT, we deduced
the same initial step as proposed by Crandall [11] in his method for negacyclic
convolution (namely, the folding step). However, without the additional twisting
step, we ended up with a bunch of numbers, from which we were not able to
recover the original values efficiently. Therefore, we decided to adapt the concept
of the method by Crandall.

3.2 Non-redundant Approach

The method for negacyclic polynomial multiplication by Crandall [11] is intended
for polynomials over Zp and it employs internally the Discrete Galois Trans-
form (DGT). DGT is an analogy to DFT, which operates over the field GF(p2)
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for a Gaussian prime number p, whereas DFT operates over C. Note that recently
Al Badawi et al. [3] extended the Crandall’s method for non-Gaussian primes,
too. The Crandall’s method prepends DGT with two steps: folding and twisting.
In the following definition we propose an analogous transformation using DFT.

Definition 1. Let f ∈ R
N for some N ∈ N, N even. We define the Discrete

Fourier Negacyclic Transform (DFNT, denoted F̄) as follows:

F̄(f) := F
((

f [0 . . . N/2 − 1] + i · f [N/2 . . . N − 1]
folding

) �(
ωj
2N

)N/2−1

j=0

twisting

)
, (8)

where ωj
2N = exp

(
2πij
2N

)
and F stands for the ordinary DFT. For the inverse

DFNT, we have

t := F−1(F) � (ω−j
2N )

N/2−1
j=0 , (9)

¯F−1(F) =
[�(t),�(t)

]
. (10)

Note 2. We will refer to DFNT, where DFT is internally calculated via FFT,
as the Fast Fourier Negacyclic Transform (FFNT).

With respect to negacyclic convolution, DFNT has two important properties:

1. given N reals at input, it outputs N/2 complex numbers, i.e., there is no
redundancy, unlike in the previous approach, and

2. it can be used for negacyclic convolution in the same manner as DFT for
cyclic convolution, a theorem follows.

Theorem 1 (Negacyclic Convolution Theorem; NCT). Let f ,g ∈ R
N

for some N ∈ N, N even. It holds

F̄(f ∗̄ g) = F̄(f) � F̄(g). (11)

For a full description of negacyclic convolution over the reals via NCT see
Algorithm 1. Next, we analyze this algorithm from the error propagation point
of view, which allows us to apply this method for negacyclic convolution over
integers, too.

4 Analysis of Error Propagation

Since Algorithm 1 operates implicitly with real numbers (starting N = 4, ω2N ’s
are irrational), there emerge rounding errors provided that we use a standard
finite floating-point representation. In this section, we analyze Algorithm1 from
the error propagation point of view and we derive estimates of the bounds of
errors as well as their variance. Based on our estimates, we derive a bound for
sufficient bit-precision of the employed floating point representation, which guar-
antees error-free convolution over the ring of integers. We also provide an esti-
mate of the bit-precision based on error variance and the 3σ-rule. In addition
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Algorithm 1. Efficient Negacyclic Convolution over R.
Input: f ,g ∈ R

N for some N ∈ N, N even.
Precompute: ωj

2N := exp
(
2πij
2N

)
for j = −N/2 + 1 . . . N/2 − 1.

Output: h ∈ R
N , h = f ∗̄ g.

1: for j = 0 . . . N/2 − 1 do
2: f ′

j = fj + ifj+N/2 // fold
3: g′

j = gj + igj+N/2

4: for j = 0 . . . N/2 − 1 do
5: f ′′

j = f ′
j · ωj

2N // twist

6: g′′
j = g′

j · ωj
2N

7: F = FN/2(f
′′), G = FN/2(g

′′)
8: for j = 0 . . . N/2 − 1 do
9: Hj = Fj · Gj

10: h′′ = F−1
N/2(H)

11: for j = 0 . . . N/2 − 1 do
12: h′

j = h′′
j · ω−j

2N // untwist

13: for j = 0 . . . N/2 − 1 do
14: hj = �(h′

j) // unfold
15: hj+N/2 = �(h′

j)

16: return h

and as a byproduct, we derive all bounds for cyclic convolution, too. First of all,
we revisit the FFT algorithm, as we will refer to it later.

FFT in Brief. FFT [9] is a recursive algorithm, which builds upon the following
observation: for N = n1 · n2 and k = k1 + k2n1, we can write the k-th Fourier
coefficient of an f ∈ C

N as

F(f)k1+k2n1 =
n2−1∑

j2=0

((
n1−1∑

j1=0

fj2+j1n2ω
j1k1
n1

)

F
(
(fj2+j1n2 )

n1−1
j1=0

)
k1

ω−j2k1
N

)
ω−j2k2

n2
, (12)

where
ωj

N = exp
(2πij

N

)
, (13)

while ω’s can be precomputed.

Note 3. There exist two major FFT data paths for N a power of two: the
Cooley-Tukey data path [9] (aka. decimation-in-time), and the Gentleman-Sande
data path [13] (aka. decimation-in-frequency). At this point, let us describe the
decimation-in-time data path, we will discuss their implementation consequences
later in Sect. 5.

For N a power of two, FFT splits its input into two halves and proceeds recur-
sively. Next, it multiplies the results with ω’s, and finally it proceeds adequate
pairs; see (14) and (15).
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At the end of the recursion we have for N = 2:

FFT2 |f0 f1| = |f0 + f1 f0 − f1|. (14)

Next, for N ≥ 4 we have

FFTN (f) :

∣∣∣∣∣∣∣∣∣

f0 f1
f2 f3
...

...
fN−2 fN−1

∣∣∣∣∣∣∣∣∣
n1×n2 = N/2×2

FFTN/2 columns−−−−−−−−−−→
(recursively)

∣∣∣∣∣∣∣∣∣

f ′
0 f ′

1

f ′
2 f ′

3
...

...
f ′

N−2 f ′
N−1

∣∣∣∣∣∣∣∣∣

�

∣∣∣∣∣∣∣∣∣

1 1
1 ω−1·1

N
...

...
1 ω

−1·(N/2−1)
N

∣∣∣∣∣∣∣∣∣
ω

−j2k1
N

−−−→

→

∣∣∣∣∣∣∣∣∣

f ′′
0 f ′′

1

f ′′
2 f ′′

3
...

...
f ′′

N−2 f ′′
N−1

∣∣∣∣∣∣∣∣∣

FFT2 rows−−−−−−→

∣∣∣∣∣∣∣∣∣

f ′′
0 + f ′′

1 f ′′
0 − f ′′

1

f ′′
2 + f ′′

3 f ′′
2 − f ′′

3
...

...
f ′′

N−2 + f ′′
N−1 f ′′

N−2 − f ′′
N−1

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

F0 FN/2

F1 FN/2+1

...
...

FN/2−1 FN−1

∣∣∣∣∣∣∣∣∣

.

(15)

FFT−1 proceeds similarly to the direct transformation with the following excep-
tions:

1. in the second step, it multiplies by ωj2k1
N (i.e., with a positive exponent), and

2. the final result is multiplied by 1/N (only once at the top level).

4.1 Error Propagation Through FFT and FFNT

Let us begin with two lemmas, which provide bounds on the error and variance
of complex multiplication and FFT, respectively. Note that we will assume for
our estimates of variance bounds that the rounding errors are uniformly random
and independent.

Note 4. We will distinguish two types of the maximum norm ‖·‖∞ over CN . For
1. error vectors, and for 2. other complex vectors, we consider:

1. the maximum of real and imaginary parts (i.e., rectangular), and
2. the maximum of absolute values (i.e., circular), respectively.

Lemma 1. Let a, b ∈ C, |a| ≤ A0 and |b| ≤ B0 for some A0, B0 ∈ R
+. Then

|a · b| ≤ A0 · B0, (16)

‖Err(a · b)‖∞ �
√

2 · (
A0 · ‖Err(b)‖∞ + B0 · ‖Err(a)‖∞

)
, and (17)

Var
(
Err(a · b)

)
� 2 · (A2

0 · Var
(
Err(b)

)
+ B2

0 · Var
(
Err(a)

))
, (18)

where we neglected second-order error terms and for (18), we further assumed
that the errors of a and b are independent.
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Proof. Let a = (p+Ep)+i(q+Eq) and b = (r+Er)+i(s+Es), where we denote
the parts’ bounds as |p| ≤ P0 etc. According to Note 4, we split the complex
error into parts – we write for the real part (similarly for the complex part)

Err
(�(a · b)

)
= pEr + rEp − (qEs + sEq) + negl., (19)

which can be bounded as
∣∣Err

(�(a · b)
)∣∣ � P0‖Err(b)‖∞ + R0‖Err(a)‖∞ + Q0‖Err(b)‖∞ + S0‖Err(a)‖∞

� (P0 + Q0)‖Err(b)‖∞ + (S0 + R0)‖Err(a)‖∞. (20)

Since |p + iq| � A0, we can bound P0 + Q0 �
√

2A0 and the result (17) follows,
similarly for (18). �
Lemma 2. Let f ∈ C

N , where N = 2ν for some ν ∈ N, ‖f‖∞ ≤ 2ϕ0 for some
ϕ0 ∈ N, and let χ denote the bit-precision of ω’s as well as all intermediate
values during the calculation of FFTN (f) =: F, represented as a floating point
type. Then

‖F‖∞ ≤ 2ϕ0+ν , (21)

‖Err(F)‖∞ � cH · (√
2 + 1

)ν + cN · 2ν (for ν ≥ 2), and (22)

Var
(
Err(F)

)
� dH · 3ν + dN · 4ν (for ν ≥ 2), (23)

where

cH = 2(
√

2 − 1) · ‖Err(f)‖∞ + (2 −
√

2) · 2ϕ0−χ+1,

dH = 2/3Var
(
Err(f)

) − 8/27 22ϕ0−2χ,

cN = −(2 +
√

2) · 2ϕ0−χ−1,

dN = 1/6 22ϕ0−2χ.

(24)

Proof. We write
FFTN : FFT2 ◦ (�ωN ) ◦ FFTN/2, (25)

from where we derive recurrence relations for the bounds on absolute value, error
and variance.

In each recursion level, the values propagate to a lower level, then they are
multiplied by a complex unit and two such values are added, or subtracted.
Firstly, note that in every level the initial bound on the absolute value is doubled,
hence (21) follows.

Regarding the errors, it is important to note that the final FFT2 acts on two
values, each of which has been previously multiplied by ωj2k1

N , where j2 ranges
in {0, 1}. I.e., one value is multiplied by 1 and only the other is multiplied by
a (mostly) non-trivial complex unit, which is rounded to χ bits of precision, i.e.,
‖Err(ω)‖∞ ≤ 2−χ−1. Putting things together, we get the following recurrence
relations for the bounds on the error and its variance after ν levels, respectively:

Eν =
√

2 · (
1 · Eν−1 + 2ϕ0+ν−1 · 2−χ−1

)
+ Eν−1

=
(√

2 + 1
) · Eν−1 +

√
2 · 2ϕ0+ν−χ−2, (26)
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E2 = (E1 + 2ϕ0+1 · Eω4

=0

) ·
√

2 + E1 = (
√

2 + 1)E1 = 2(
√

2 + 1)E0, and (27)

Vν = 2 · (
12 · Vν−1 + (2ϕ0+ν−1)2 · 1/12 (2−χ)2

)
+ Vν−1

= 3Vν−1 + 1/3 22ϕ0+2ν−2χ−3, (28)
V2 = 3V1 = 6V0, (29)

where in (27), we applied the fact that ω4 is error-free; cf. (13). Also note that the
error more than doubles in each step (while the bound only doubles), therefore
the χ bits of precision are sufficient and rounding errors can be neglected. The
results follow by solving (26) and (27), and (28) and (29), respectively. �

In the following proposition, we bound the error and variance of the result
of cyclic and negacyclic convolution via FFT/FFNT, respectively. For a quick
reference, we provide an overview of these methods in (30) and (31), respectively:

f FFTN−−−→ F

g FFTN−−−→ G
�−→ H

FFT−1
N−−−−→ h = f ∗ g, (30)

f fold−−→ f ′ twist−−−→ f ′′ FFTN/2−−−−−→ F̄

g fold−−→ g′ twist−−−→ g′′ FFTN/2−−−−−→ Ḡ

�−→ H̄
FFT−1

N/2−−−−−→ h′′ untwist−−−−→ h′ unfold−−−−→ h̄ = f ∗̄ g.

(31)

Proposition 1. Let f ,g ∈ R
N , where N = 2ν for some ν ∈ N, ‖f‖∞ ≤ 2ϕ0 and

‖g‖∞ ≤ 2γ0 for some ϕ0, γ0 ∈ N, and let χ denote the bit-precision of ω’s as well
as all intermediate values during the calculation of FFTN (·) and its inverse,
represented as a floating point type. We denote h := FFT−1

N

(
FFTN (f)�FFTN (g)

)

and h̄ := FFNT−1
N

(
FFNTN (f) � FFNTN (g)

)
, while we consider the errors as

‖Err(h)‖∞ = ‖h − f ∗ g‖∞ and ‖Err(h̄)‖∞ = ‖h̄ − f ∗̄ g‖∞, respectively. Then

log‖Err(h)‖∞ � (2ν − 2) · log
(√

2 + 1
)

+ ϕ0 + γ0 − χ + 4, (32)

log Var
(
Err(h)

)
� 4ν + 2ϕ0 + 2γ0 − 2χ − 1 − log(3), and (33)

log‖Err(h̄)‖∞ � (2ν − 4) · log
(√

2 + 1
)

+ ϕ0 + γ0 − χ + 4 + log(3) + 1/2, (34)

log Var
(
Err(h̄)

)
� 4ν + 2ϕ0 + 2γ0 − 2χ − 3. (35)

Proof. Find the proof in Appendix A. �
We apply our estimates of the error and variance bounds in order to derive

two basic parameter setups for convolution over integers: an error-free setup and
a setup with rare errors based on the 3σ-rule; see the following corollary.

Corollary 1. Provided that

χ
(c.)
0 � 2 log

(√
2 + 1

)

≈2.54

·ν + ϕ0 + γ0 + 5 − 2 log
(√

2 + 1
)

≈2.46

, or (36)
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χ
(nc.)
0 � 2 log

(√
2 + 1

)

≈2.54

·ν + ϕ0 + γ0 + 5 + log(3) + 1/2 − 4 log
(√

2 + 1
)

≈2.00

, (37)

we have ‖Err(h)‖∞ � 1/2, or ‖Err(h̄)‖∞ � 1/2, which means an error-free cyclic,
or negacyclic convolution on integers via FFTN , or FFNTN , respectively. I.e.,
for f ,g ∈ Z

N , we have
⌊
FFT−1

N

(
FFTN (f) � FFTN (g)

)⌉
= f ∗ g, or (38)

⌊
FFNT−1

N

(
FFNTN (f) � FFNTN (g)

)⌉
= f ∗̄ g, (39)

respectively, up to negligible probability.
Next, if

χ
(c.)
3σ � 2ν + ϕ0 + γ0 + 1/2 log(6)

≈1.29

, or (40)

χ
(nc.)
3σ � 2ν + ϕ0 + γ0 + log(3) − 1/2

≈1.08

, (41)

we have 3
√

Var
(
Err(h)

)
� 1/2, or 3

√
Var

(
Err(h̄)

)
� 1/2, which estimates the

required floating point type precision for the respective convolution variant based
on the 3σ-rule.

Note 5. In the most common practical setting with the binary64 type as per
IEEE 754 standard [1] (aka. double), we have χ = 53 bits of precision. For the
80-bit variant of the extended precision format (aka. long double), we have
χ = 64 bits of precision.

5 Implementation and Experimental Results

In this section, we briefly comment on how we use the data paths in our imple-
mentation (as outlined in Note 3), we discuss the choice of parameters with
respect to TFHE, and then we focus on the following:

1. benchmarking with other implementations using chosen parameters,
2. performance on long polynomials using both 64-bit double and 80-bit long

double floating point number representations, and
3. error magnitude and correctness of the results.

Implementation Remarks. In our implementation of the Cooley-Tukey data
path [9], we adapted the 4-vector approach from the Nayuki Project [22], which
optimizes the RAM access for the most common 64-bit architectures. In a similar
manner, we implemented the Gentleman-Sande data path [13]. To calculate FFT
properly, both data paths require a specific reordering of their input or output,
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respectively. The reordering is based on bit-reversal of position indexes, counting
from 0. E.g., for 16 elements (4 bits), we exchange the elements at positions
5 ↔ 10, since 5 = 0b0101 and 10 = 0b1010.

Since our goal is solely convolution, i.e., we do not care about the exact order
of the FFT coefficients, the bit-reverse reordering can be omitted, as pointed out
by Crandall and Pomerance [10]. By construction, it follows that the Gentleman-
Sande data path must be used for the direct transformation and the Cooley-
Tukey data path for the inverse.

For benchmarking purposes, we also adopted some code from the TFHE
Library [28] to compare the redundant and non-redundant approaches; cf.
Sects. 3.1 and 3.2, respectively.

Relation to the TFHE Parameters. The main (cryptographic) motivation of
our algorithm for negacyclic convolution over integers is the negacyclic polyno-
mial multiplication in the TFHE scheme [8]. Below we outline a relation of the
TFHE parameters to the parameters of negacyclic convolution via FFNT. As a
result, we suggest a reasonable parameter setup for benchmarking.

In TFHE, negacyclic polynomial multiplication occurs in the bootstrapping
procedure (namely, in the calculation of the external product), where an integer
polynomial is multiplied by a torus polynomial. The coefficients of the right-
hand side (torus) polynomial can be represented as integers scaled to [0, 1) and
bounded by 2 to the power of their bit-precision, denoted by τ . In the left-hand
side (integer) polynomial, the coefficients are bounded by 2γ , where γ is one of
the fundamental TFHE parameters. By construction, the parameter γ is smaller
than τ , namely, γ ≤ τ/l, where l is another TFHE parameter. In a corner case, it
can be γ = 1 and the bound can be hence as low as 20.

Based on our preliminary calculations for multivalue TFHE, we need the
degree of TFHE polynomials to be at least N = 214 for 8-bit plaintexts with 128-
bit security, and the torus precision to be at least τ = 34 (both can be smaller
for shorter plaintexts). Finally, we suggest to run the tests using polynomials
with ϕ0 = γ0 = τ/2 = 17 and N = 210, . . . , 214.

5.1 Benchmarking Results

As a reference for benchmarking of our implementation [20] of negacyclic convo-
lution, we have chosen the NTL Library [27] and the redundant method (as used
in the original TFHE Library [28]; cf. Sect. 3.1), for which we used the same
implementation of FFT as for our non-redundant method. Note that the imple-
mentation by Al Badawi et al. [3] shows similar results to the popular NTL (only
about 1.01–1.2× faster) and they also show that NTL is faster than the concur-
rent FLINT Library [16]. For NTL, we tested both ZZ pX and ZZ pE classes, while
the latter shows slightly better performance, hence we used that for benchmark-
ing. Find the results of our benchmarks in Table 1.

Note 6. During the parameter setup, we silently passed over the fact that χ = 53
(bit-precision of double) is lower than our 3σ-rule estimates for all tested ν’s,
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Table 1. Mean time per negacyclic multiplication of uniformly random polynomials
with ‖p‖∞ ≤ 217 using NTL (similar times as FLINT), FFT2N on negacyclic extension
(implemented in [28]), and FFNTN , both using 64-bit double. Speedup of FFNTN over
FFT2N . Average and maximum rounding errors of FFNTN . 1 000 runs per degree and
method on an Intel Core i7-8550U CPU @ 1.80 GHz.

Degree (N) 210 211 212 213 214

NTL [ms] 0.617 1.258 2.643 6.132 12.771

FFT2N [ms] 0.122 0.230 0.458 0.982 2.277

FFNTN [ms] 0.036 0.069 0.120 0.243 0.541

FFNTN over FFT2N 3.35× 3.33× 3.82× 4.04× 4.21×
FFNTN avg. error [‰] 0.06 0.08 0.12 0.18 0.27

FFNTN max. error [‰] 0.37 0.55 0.98 1.47 1.95

as per (41) in Corollary 1. Indeed, they dictate χ
(nc.)
3σ � 2ν + ϕ0 + γ0 + 1.08 =

55.08 . . . 63.08. For this reason, we reran the scenario with ν = 14 for 1 000-times,
we checked the results for correctness, and we did not detect any error across all
tested polynomials.

5.2 Performance on Long Polynomials

As a reference for other prospective applications of our method, we tested our
code on longer polynomials, too. We provide the performance results using both
64-bit double and 80-bit long double in Fig. 1.
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Fig. 1. Mean time per polynomial multiplication mod XN + 1 and speedup factor of
double over long double. Uniformly random polynomials with ‖p‖∞ ≤ 217, 1 000
measurements.
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5.3 Error Magnitude and Correctness on Long Polynomials

As outlined in Note 6, our experimental setup exceeds the derived theoretical
bounds, even for lower-degree polynomials. Hence, our next goal is to evaluate
the error magnitude as well as to check the correctness of the results. We tested
the following input polynomial scenarios:

1. uniformly random coefficients (bounded as ‖p‖∞ ≤ 2ϕ0), and
2. all coefficients equal to the bound 2ϕ0 .

Find the results of the random polynomial setup in Fig. 2, where we tested both
64-bit double and 80-bit long double implementations.

Regarding the setup with all coefficients equal to the bound, we ran the same
scenarios as for random polynomials, cf. Fig. 2. The only correct results were
obtained for the setup with ‖p‖∞ ≤ 217 and N = 214, regardless the floating
point type in use (either 64-bit, or 80-bit).
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Fig. 2. Median (solid) and Maximum (dashed) rounding errors for uniformly random
polynomials. Erroneous results emphasized by empty red circles. 10 measurements per
degree, bound and floating point type.
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Discussion. We observed a factor ∼ 4× speedup of FFNTN (i.e., the non-
redundant approach) over FFT2N (i.e., the redundant approach). Compared to
NTL, which calculates the coefficients precisely using a number-theoretic trans-
form, our FFT-based method shows by more than an order of magnitude better
results. Even though we ran our tests with underestimated precision, we obtained
correct results for much larger polynomials with uniformly random coefficients.
Note that random-like polynomials occur in TFHE, hence our benchmarking
scenario with random polynomials is representative for the usage with TFHE.

However and to our surprise, the 80-bit floating point type did not calculate
correctly any extra scenario over the 64-bit type. We assume that this is because
the steps in the polynomial degree or in the maximum norm bound are too big
to make the difference between the 53 and 64 bits of their mantissa precision,
respectively.

6 Conclusion

We showed that FFT-based convolution algorithms can significantly outperform
similar algorithms based on number-theoretic transforms, and they can still guar-
antee error-free results in the integer domain. We derived estimates of the lower
bound of the employed floating point type for error-free cyclic and negacyclic
convolutions, as well as we suggested the bounds based on the 3σ-rule.

We suggested a set of testing parameters for negacyclic convolution with
particular respect to the usage with the TFHE Scheme on a multivalue plain-
text space. We ran a benchmark that compares the popular NTL Library, the
approach that is used in the TFHE Library, and our approach. Compared to
the generic NTL Library, which employs a number-theoretic transform, and to
the TFHE Library approach, which calculates redundant intermediate values, we
achieved a speedup of around 24× and 4×, respectively.

Finally, our experiments have shown approximate bounds for practical error-
free results. Namely, we could multiply polynomials without errors up to degree
N = 216 and norm ‖p‖∞ ≤ 220 with uniformly random coefficients, and up to
degree N = 214 with coefficients equal to 217. To conclude, we find our approach
particularly useful for negacyclic integer polynomial multiplication, not only in
TFHE.

Future Directions. Our aim is to implement a version based on the 64-bit
signed integer type instead of double, where we would keep the exponent at one
place for the entire array. Such an approach requires less demanding arithmetics
and it would serve as a proof-of-concept for a propective FPGA implementation.

Acknowledgments. We would like to thank Ahmad Al Badawi for useful comments
and remarks.



Negacyclic Integer Convolution Using Extended Fourier Transform 297

Appendix

A Proof of Proposition 1

Proof. Let us begin with the cyclic convolution. By (30) and Lemma 1 and 2,
we have

‖Err(F � G)‖∞ �
(
c
(f)
H · (√

2 + 1
)ν

�‖Err(F)‖∞

· 2γ0+ν

≥‖G‖∞

+ c
(g)
H · (√

2 + 1
)ν · 2ϕ0+ν

)
·
√

2

=
(√

2 + 1
)ν · 2ν+ϕ0+γ0−χ+2 · (

2 −
√

2
) ·

√
2 =: EH, and

(42)

Var
(
Err(F � G)

)
�

(
d
(f)
N · 22ν

�Var
(
Err(F)

)
· 22γ0+2ν

≥‖G‖2∞

+ d
(g)
N · 22ν · 22ϕ0+2ν

)
· 2

= 2/3 · 24ν+2ϕ0+2γ0−2χ =: VH, (43)

which we apply as the initial error and variance bound to (22) and (23), respec-
tively, together with multiplication by 1/N = 2−ν , which poses the only difference
between FFT−1 and FFT from the error point of view. We neglect other than
leading terms and we get

‖Err(h)‖∞ � 2−ν · 2(
√

2 − 1) · EH

≈ c
(H)
H

·(
√

2 + 1
)ν

�
(√

2 + 1
)2ν−2 · 2ϕ0+γ0−χ+4, and (44)

Var
(
Err(h)

)
� 2−2ν · 1/6 · 22(ϕ0+γ0+2ν)−2χ

= d
(H)
N

·4ν = 1/6 · 24ν+2ϕ0+2γ0−2χ, (45)

and the cyclic results follow.
For the negacyclic convolution, we feed DFT with a folded and twisted input

vector; cf. (31). It enters DFT with error bounded as

‖Err(f ′′)‖∞ � (1 · 0 + 2ϕ0+1/2 · 2−χ−1) ·
√

2 = 2ϕ0−χ. (46)

Regarding variance, it shows that the term with Var
(
Err(f ′′)

)
will be neglected.

Next, we precompute

c
(f ′′)
H = 2(

√
2 − 1) · ‖Err(f ′′)‖∞ + (2 −

√
2) · 2ϕ0+1/2−χ+1

� 6(
√

2 − 1) · 2ϕ0−χ, and (47)

d
(f ′′)
N = 1/6 22(ϕ0+1/2)−2χ, (48)
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and apply into

‖Err(F̄ � Ḡ)‖∞ �
(
c
(f ′′)
H · (√

2 + 1
)ν−1

�‖Err(F̄)‖∞

· 2γ0+1/2+ν−1

≥‖Ḡ‖∞

+ c
(g′′)
H · (√

2 + 1
)ν−1 · 2ϕ0+1/2+ν−1

)
·
√

2

= 3
(√

2 + 1
)ν−2 · 2ν+ϕ0+γ0−χ+2 =: EH̄, and (49)

Var
(
Err(F̄ � Ḡ)

)
�

(
d
(f ′′)
N · 4ν−1

�Var
(
Err(F̄)

)
· 22γ0+1+2ν−2

≥‖Ḡ‖2∞

+ d
(g′′)
N · 4ν−1 · 22ϕ0+1+2ν−2

)
· 2

= 1/3 · 24ν+2ϕ0+2γ0−2χ−1 =: VH̄. (50)

Next, we apply these estimates as the initial error and variance bound into (22)
and (23), respectively, together with multiplication by 2/N = 2−ν+1. We have

‖Err(h′′)‖∞ � 2−ν+1 · 2(
√

2 − 1) · EH̄

≈ c
(H̄)
H

·(
√

2 + 1
)ν−1

≈ 3
(√

2 + 1
)2ν−4 · 2ϕ0+γ0−χ+4, and (51)

Var
(
Err(h′′)

)
� 2−2ν+2 · 1/6 · 2(2ϕ0+2γ0+2+4ν−4)−2χ

= d
(H̄)
N

·4ν−1

1/3 · 24ν+2ϕ0+2γ0−2χ−3, (52)

while in (52), it has shown that the term with VH̄ was not the leading term,
hence it was neglected. By (31) it remains to untwist and unfold, we have

‖Err(h′)‖∞ �
(
1 · 3(

√
2 + 1)2ν−4 · 2ϕ0+γ0−χ+4

�‖Err(h′′)‖∞

+ 22ν+ϕ0+γ0−1

≥‖h′′‖∞

·2−χ−1
) ·

√
2

≈ 3
√

2 · (
√

2 + 1)2ν−4 · 2ϕ0+γ0−χ+4, and (53)

Var
(
Err(h′)

)
� (12 · 1/3 · 24ν+2ϕ0+2γ0−2χ−3

�Var
(
Err(h′′)

)
+ 24ν+2ϕ0+2γ0−2

≥‖h′′‖2∞

·1/12 · 2−2χ) · 2

= 24ν+2ϕ0+2γ0−2χ−3. (54)

Since the unfolding operation does not change the error, the negacyclic results
follow. �
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Abstract. In this paper we present practical protocols for secure ridge
regression. We develop the necessary secure linear algebra tools, using
only basic arithmetic over prime fields. In particular, we will show how to
solve linear systems of equations and compute matrix inverses efficiently,
using appropriate secure random self-reductions of these problems. The
distinguishing feature of our approach is that the use of secure fixed-
point arithmetic is avoided entirely, while circumventing the need for
secure rational reconstruction at any stage as well. In fact, in recent
follow-up works, our results have already been applied and extended to
several other settings.

We demonstrate the potential of our protocols in a standard setting
for information-theoretically secure multiparty computation, tolerating a
dishonest minority of passively corrupt parties. Using the MPyC frame-
work, which is based on threshold secret sharing over finite fields, we
show how to handle large datasets efficiently, achieving practically the
same root-mean-square errors as Scikit-learn. Moreover, our protocols are
designed with the outsourcing scenario in mind, which makes our pro-
tocols much more versatile than existing solutions. In the outsourcing
scenario one does not assume that (any part of) the dataset is held pri-
vately by any of the parties performing the multiparty computation—in
contrast to federated learning, for instance, where the dataset is parti-
tioned either horizontally or vertically between these parties.

1 Introduction

Recent years have seen significant advances in privacy-preserving data mining
and machine learning. Secure multiparty computation (MPC) is a promising type
of cryptographic protocol for enhancing the security and privacy properties of
existing data mining and machine learning algorithms. Handling large datasets,
however, still poses practical challenges due to the overhead incurred by MPC.

Secure regression is a problem that received much attention as the resulting
cryptographic protocols have the potential of handling relatively large datasets,
see, e.g., [DHC04,HFN11,NWI+13,GJJ+18,GSB+17]. When applied to linear
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and ridge regression, the overhead for MPC is limited because of the highly linear
nature of the computation. The bulk of the computation consists of taking dot
products, which can be done securely at low cost in many MPC frameworks.

In this paper we develop particularly efficient m-party protocols for ridge
regression tolerating a dishonest minority of up to t passively corrupt parties,
1 ≤ 2t+1 ≤ m. Using Shamir secret sharing for the underlying secure prime field
arithmetic, we achieve information-theoretic security. Nevertheless we advocate
the use of large prime fields, not because it is required for security, but to allow
for exact arithmetic when solving particular linear systems securely. As we will
show, the overhead for the use of large prime fields does not adversely affect the
overall performance. We thus present a range of practical optimizations, which
are combined into a very competitive solution for secure ridge regression. We
also present experimental results to support our claims.

At this point, we like to stress that well-known results in secure linear alge-
bra ([CD01] and follow-up work) do not apply to our setting. Whereas [CD01]
considers linear algebra over finite fields, which fits well with the fact that most
MPC frameworks “natively” support finite field arithmetic, our results can be
viewed best as secure linear algebra over the rationals, which calls for new pro-
tocols and techniques.

1.1 Approach

Ridge regression (or, Tikhonov regularization) is a classic problem in statistics.
Nowadays, the problem is broadly studied and applied in machine learning, and
many algorithms have been proposed covering various types and dimensions
of input data. The popular tool Scikit-learn, for instance, provides six different
solvers for ridge regression, most of which also use different approaches for sparse
and dense data [PVG+11].

The solver used in the present paper directly uses the closed-form solution for
ridge regression, cf. Eqs. (2) and (3). An alternative approach is to approximate
the solution using an iterative solver, viewing ridge regression as an optimization
problem minimizing (1). Well-known iterative solvers are stochastic gradient
descent and its many variations (e.g., mini-batch gradient descent).

However, there are two major impediments for adopting iterative solvers in
an MPC setting. Firstly, all arithmetic involves real-valued numbers, which needs
to be approximated using secure fixed-point arithmetic (as secure floating-point
arithmetic is simply too expensive). The use of secure fixed-point numbers incurs
a substantial overhead and could lead to numerical stability issues. Secondly,
one needs to control the number of iterations. In an MPC setting, evaluation
of a stopping criterion may form a bottleneck in itself, and fixing the number
of iterations beforehand may demand a high number of iterations (to ensure
convergence for all inputs). The advantage of the iterative approach is that it
generalizes immediately to related machine learning algorithms such as logis-
tic regression and support vector machines. Adapting the computation of the
gradient suffices to solve these problems as well.



Efficient Secure Ridge Regression from Randomized Gaussian Elimination 303

As we show in this paper, there are major advantages to solving the ridge
regression problem directly. It allows us to avoid fixed-point arithmetic entirely.
Issues surrounding rounding errors are limited to the input phase, when real-
valued inputs are converted to integral values using appropriate scaling. From
that point on all computations are exact, using integer arithmetic only. The
main issue left is the growth of the numbers, but we will show that even for huge
datasets, our approach is practical and leads to very competitive results in an
MPC setting.

The closed-form solution is in fact a matrix equation, which can in turn be
solved directly or iteratively, as we will discuss in Sect. 5.

1.2 Roadmap

We present mathematical preliminaries in Sect. 2, and the basics on linear regres-
sion and ridge regression in Sect. 3. Next we introduce basic notation for MPC
based on Shamir secret sharing in Sect. 4. In Sect. 5 we discuss the relevant
choices for solving linear systems of equations in an MPC setting, showing how
we avoid the use of secure rational reconstruction. Section 6 contains the basic
protocols for secure linear algebra, which we use in our protocol for secure ridge
regression in Sect. 7. Finally, we discuss the performance in Sect. 8, and conclude
in Sect. 9 also mentioning some recent papers building on our results.

2 Preliminaries

We use common notation for matrices and vectors. For d ≥ 1, the group of d×d
invertible matrices over a field F is denoted by GLd(F). The groups of d × d
lower resp. upper triangular invertible matrices are denoted by Ld(F),Ud(F) ⊆
GLd(F), and we use L1

d(F) to denote the group of lower triangular matrices with
an all-ones diagonal.

A matrix A ∈ GLd(F) is said to have an LU-decomposition if A = LU for
some L ∈ L1

d(F) and U ∈ Ud(F). We use LUd(F) to denote the set of all matrices
in GLd(F) that have an LU-decomposition. Note that the LU-decomposition for
each A ∈ LUd(F) is unique. Similarly, a matrix A ∈ GLd(F) is said to have
a Cholesky decomposition if A = LLT for some L ∈ Ld(F). The Cholesky
decomposition is also unique, and exists over F = R if and only if A is symmetric
positive definite.

For A ∈ GLd(F), we use adj A = det(A)A−1 to denote the adjugate of A.
For our approach, a key property is that if A is integral then so are detA and
adj A. That is, if A is a matrix over Z, then detA ∈ Z and adj A is also a
matrix over Z. Furthermore, Hadamard’s inequality states that |det A| ≤
∏d

i=1 ‖ai‖2, where ai are the rows (or columns) of A. For α = ‖A‖max,
Hadamard’s inequality implies |det A| ≤ dd/2αd. If A is symmetric positive
definite, detA is positive and Hadamard’s inequality becomes detA ≤ ∏d

i=1 ai,i

and we get det A ≤ αd. Finally, Hadamard’s inequality yields ‖adj A‖max ≤
(d − 1)(d−1)/2αd−1 as bound for the adjugate.
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Gaussian elimination and variations thereof are used to compute detA,
adj A, and A−1. For example, A−1 is computed by transforming the augmented
matrix (A | I) into (I | A−1) by means of Gauss-Jordan elimination. Similarly,
if A has an LU-decomposition as defined above, applying Gaussian elimination
to A amounts to multiplying A from the left by the lower triangular matrix
L−1, resulting in U = L−1A. Hence, the upper triangular matrix U is obtained
without applying any pivoting steps. Putting detA = det U =

∏d
i=1 ui,i yields

the determinant.
We will perform Gaussian elimination over finite fields of large prime order

p, and we will do so for essentially uniformly random matrices only. As a con-
sequence, there will be no need for pivoting and all computations will be exact
(cf. use of preconditioning explained in Sect. 5). Inspired by Bareiss [Bar68], we
will combine division-free Gaussian elimination with back substitution such that
det A is obtained at almost no extra cost. See Sect. 6.3 for further details.

3 Ridge Regression

Ridge regression is a well-known technique in statistics and machine learning
[FHT01], which can be seen as a refinement of the ordinary least squares method
used in linear regression. Ridge regression provides the user with a handle, the
regularization parameter λ > 0, which can be used to reduce the variance of
the prediction at the cost of introducing some bias. If λ is set properly, ridge
regression can outperform the ordinary least squares method in terms of the root
mean-square error, defined below. In high-dimensional problems, ridge regression
can help to reduce the problem of overfitting.

Given an overdetermined linear system Xw = y, the least squares solution
w minimizes ‖Xw − y‖2. Typically, X is an n × d matrix over R with n � d.
Each row of X represents an input record with d features, and the corresponding
entry of y represents the known output value. The least squares solution w =
(XTX)−1XTy, is used as the optimal weight vector for predicting the output
values for new input records x by evaluating xTw.

Ridge regression finds a vector w minimizing

‖Xw − y‖22 + λ‖w‖22, (1)

where we note the presence of the regularization parameter in the second term.
The solution w minimizing (1) is now given by:

w =
(
XTX + λI

)−1
XTy. (2)

To compute w, one solves the linear system Aw = b with A = XTX + λI
and b = XTy. Note that the regularization parameter λ not only suppresses
large entries in w, but also ensures that A is positive definite, hence invertible:
zT

(
XTX + λI

)
z = ‖Xz‖22 + λ‖z‖22 > 0 for any nonzero z, since λ > 0.

In the context of machine learning, the input records X along with the known
output values y are called the training set, and the least-squares solution w is
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called the model. The performance of the model is evaluated in terms of the root-
mean-square error (RMSE) of the model’s predictions. The model complexity
(training error) is defined as the RMSE for the training set, which is equal to
‖Xw − y‖2/

√
n. The generalizability (test error) of the model is defined as the

RMSE for a test set (X ′,y′), which is equal to ‖X ′w − y′‖2/
√

n′. Overall, the
goal is to ensure that both RMSEs are small and approximately equal to each
other.

The performance of a machine learning algorithm critically depends on the
quality of the input data. Extensive data preprocessing may be required in prac-
tice to enhance the quality of the input data. In our experiments we will use
standard datasets from the UCI repository, for which most of the data prepro-
cessing has already been done. The only two tasks that remain before applying
ridge regression to these datasets are (i) feature scaling and (ii) encoding of
categorical features.

For feature scaling, we apply min-max scaling to each of the columns of X
and to vector y as well. Concretely, all features are scaled to the range [−1, 1].
We prefer this form of data normalization because it requires little processing
and does not leak too much information about X and y.

To encode categorical features (including Boolean features), we basically use
a form of “one-hot encoding” with respect to the range [−1, 1]. For Boolean
features, we encode the values True and False by 1 and −1, respectively. A
categorical feature with s possible values is encoded by s Boolean features, where
the value for exactly one of the Boolean features will be set to 1 and the remaining
s − 1 Boolean features are set to −1.

4 MPC Setting

We consider an information-theoretically secure MPC setting with m parties
tolerating a dishonest minority of up to t passively corrupt parties, 0 ≤ t ≤
(m − 1)/2. The protocols are designed to work in the outsourcing scenario. In
this scenario the data providers distribute shares to the m parties running the
MPC protocol, meaning that no (plaintext) knowledge of the data by any of
the parties is assumed. We require, in its most general form, black box access
to secure addition and multiplication of shares, which are defined over a finite
field. Dot products are required to have the same round complexity as a single
multiplication, see below.

In our implementation we instantiate the sharing scheme as Shamir secret
sharing [BGW88,GRR98], using the MPyC framework [Sch18], which succeeds
the VIFF framework [Gei10], for our practical experiments.

Let p > m be a prime. We use [[a]]p or [[a]] to denote a secret-shared value a ∈
Zp, where a is interpreted as a signed integer in the range {−	p/2
, . . . , 	p/2
}.
We assume that secure field arithmetic (+,−, ∗, / modulo p) is supported effi-
ciently as well as secure generation of random numbers (e.g., [[r]] with r ∈R Zp).

We highlight three auxiliary protocols which are of particular relevance for
our approach.
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For secure dot products [[x]]·[[y]] with x,y ∈ Z
d
p, we recall that the complexity

is the same as for a single secure multiplication, except for local computations.
This extends to secure matrix products [[A]][[B]] with A,B ∈ Z

d×d
p , for which the

complexity is equivalent to d2 secure multiplications in parallel.
Next, to generate [[r]] and [[1/r]] for a random r ∈R Z

∗
p, one proceeds as follows:

generate [[r]], [[u]] with r, u ∈R Zp, open [[r]][[u]] to obtain ru, and output [[r]] and
[[1/r]] = [[u]]/(ru). For large p, ru �= 0 will hold with overwhelming probability;
if ru = 0 simply try again with fresh r and u.

Finally, we will also use secure conversion between secret-shared values in
different prime fields. In particular, for primes p and q satisfying p > q > 2κ+�,
where κ is a security parameter, we use a secure protocol for converting [[a]]q into
[[a]]p, −2�−1 ≤ a < 2�−1. Roughly, such a protocol proceeds by jointly generating
[[r]]q and [[r]]p for a random r ∈ [0, 2�+κ). Then the value of a + r is opened,
which is statistically indistinguishable from random for κ sufficiently large, and
one sets [[a]]p = a + r − [[r]]p.

5 Solving Systems of Linear Equations

As outlined in Sect. 3, we divide ridge regression into two main stages. In the
first stage we compute A = XTX +λI and b = XTy, and in the second stage we
solve Aw = b to find w. For secure ridge regression, the most interesting and
challenging part will be the second stage, and in this section we motivate our
approach for solving Aw = b.

In numerical analysis one distinguishes two major types of solution methods
for systems of linear equations. Direct methods, such as Gaussian elimination,
run in a finite number of steps and compute an exact solution in the absence
of rounding errors. Iterative methods, such as conjugate gradient, yield approx-
imate solutions within a limited amount of time, even for very large matrices.
In contrast to some other recent work (e.g., [GSB+17]), we will choose a direct
method to solve Aw = b in our protocols for secure ridge regression. Below we
explain our reasons for doing so.

An important observation is that we can actually use exact computation for
secure ridge regression. Instead of relying on fixed-point arithmetic—or even
worse floating-point arithmetic—in an MPC setting, we will only use exact inte-
ger arithmetic in our protocols. This way we take advantage of the fact that
secure integer arithmetic is efficient even for large values when using Shamir
secret sharing. Moreover, we can borrow techniques from the related setting of
secure linear algebra over finite fields [CD01].

We will make sure that the input data (contained in X and y) are scaled to
integer values, basically by multiplying each input value with 2α and rounding
to the nearest integer for a fixed value of α. The value of α must be sufficiently
large to ensure that the final results will be accurate. We will refer to α as the
accuracy parameter.

Since A is invertible, solving Aw = b is equivalent to computing w = A−1b.
Therefore, even if A contains integer values only, the solution w will in general
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contain rational values. As A−1 = (det A)−1adj A, however, it suffices to com-
pute w′ = (adj A)b and z = det A, from which w can be recovered as w = w′/z.
Here, both w′ and z are integral. We compute w′ and z by first reducing the
augmented matrix (A | b) to echelon form using Gaussian elimination and then
applying back substitution to obtain w′.

To perform secure Gaussian elimination on (A | b) there are several options. A
first idea is to use Gaussian elimination (row reduction) directly, which amounts
to repeatedly selecting a pivot and updating the matrix accordingly. However,
oblivious row reduction, hiding the position of the pivot and so on, is compu-
tationally very costly: searching for a nonzero element in the pivot column is
already nontrivial in a secure setting, and obliviously swapping entire rows to
move the pivot to the diagonal is even much more costly.

A common technique in numerical analysis to avoid pivot selection is the use
of preconditioning. Roughly, the idea is to solve the equivalent system RAw = Rb
for a random matrix R, instead of the original system Aw = b. Matrix R is
assumed to be invertible, which is true with overwhelming probability in many
settings. When solving linear systems over R, such an approach is numerically
unstable and leads to poor results. When solving linear systems over a finite field,
however, numerical instability is of no concern. We will follow this approach.

The upshot of computing (adj A)b and detA separately is that we will also
avoid the use of secure rational reconstruction. In the next section we will show
why this lets us essentially halve the size of the prime modulus for the finite field
arithmetic compared to other papers. For instance, [GJJ+18] relies on rational
reconstruction and uses a modulus which should be large enough to “hold” the
product of (adj A)b and detA.

6 Secure Linear Algebra

We present protocols for computing determinants, matrix inverses, and solutions
to linear systems. Given an invertible matrix A ∈ Z

d×d, we compute the results
over Zp assuming p is sufficiently large. E.g., for −p/2 < det A < p/2, det A ∈ Z

∗
p

and A is properly embedded in Z
d×d
p . Assuming further bounds on the entries

of A and b, we will show how to compute A−1 and A−1b over Zp as well.

6.1 Secure Determinant

Cramer and Damg̊ard presented a protocol for secure computation of detA over
any finite field [CD01], which is reminiscent of Bar-Ilan and Beaver’s protocol for
secure multiplicative inverses [BB89]. The idea is to securely generate a random
invertible matrix [[R]] together with its determinant [[detR]], open the random-
ized matrix RA, and finally compute [[detA]]. We follow the same approach in
Protocol 1, except that we improve upon the way random matrix R is generated
in several ways.

Ideally, R is generated as a random matrix in GLd(Zp). To securely com-
pute detR as well, matrix R is limited to the slightly smaller range LUd(Zp)
of matrices that have an LU-decomposition. The following lemma shows that
uniformly random matrices in LUd(Zp) are statistically indistinguishable from
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Protocol 1. Det([[A]]) A ∈ GLd(Zp)
1: Generate [[R]], [[det R−1]] with R ∈R LUd(Zp) using Protocol 2.
2: Open RA ← [[R]][[A]].
3: Compute [[det A]] = det(RA)[[det R−1]].
4: Return [[det A]].

Protocol 2. RndMatDet(d)
1: Generate [[L]] with L ∈R L1

d(Zp).
2: Generate [[U ]], [[det U−1]] with U ∈R Ud(Zp).
3: Compute [[R]] = [[L]][[U ]].
4: Set [[det R−1]] = [[det U−1]].
5: Return [[R]], [[det R−1]].

uniformly random matrices in GLd(Zp). Therefore, similar to the security proofs
in [BB89,CD01], opening RA reveals negligible information on A only, assuming
p is exponentially large in the security parameter κ.

Lemma 1. Δ(R;G) ≤ d/p, for R ∈R LUd(Zp) and G ∈R GLd(Zp).

Proof. Since LUd(Zp) ⊆ GLd(Zp) and R and G are both uniform we have

Δ(R;G) = 1
2

∑

x∈GLd(Zp)

|Pr[R = x] − Pr[G = x]| = 1 − |LUd(Zp)|
|GLd(Zp)| .

Since |LUd(Zp)| = pd2−d(p − 1)d and |GLd(Zp)| ≤ pd2
, we have

Δ(R;G) ≤ 1 −
(

p − 1
p

)d

= 1 −
(

1 − 1
p

)d

≤ d

p
,

using Bernoulli’s inequality in the last step.

To sample a matrix R securely from LUd(Zp), we use Protocol 2. The protocol
also outputs the determinant of R, or rather its inverse. Random matrices in
L1

d(Zp) and Ud(Zp) can be generated easily, provided we can securely generate
random elements of Zp. To ensure that U is invertible, we generate ui,i ∈R Zp

for i = 1, . . . , d, and then apply secure inversion to detU =
∏d

i=1 ui,i. With
negligible probability detU = 0, in which case secure inversion will fail and we
have to try again. With overwhelming probability, however, detU �= 0 and secure
inversion will succeed. In total, Protocol 2 roughly uses d2 random elements
from Zp.

Our protocol for generating random matrices improves upon Cramer and
Damg̊ard’s protocol Π0 [CD01, p. 126] in several respects. The main difference
is that protocol Π0 depends on a redundant type of LU-decomposition in which
the diagonals of both L and U consist of elements in Z

∗
p. By fixing the diag-

onal of L to all ones, the LU-decomposition used in our protocol is unique.
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Protocol 3. AdjDet([[A]]) A ∈ GLd(Zp)
1: Generate [[R]], [[det R−1]] with R ∈R LUd(Zp) using Protocol 2.
2: Open RA ← [[R]][[A]].
3: Reduce (RA | [[R]]) to obtain [[A−1]] by Gauss-Jordan elimination over Zp.
4: Compute [[det A]] = det(RA)[[det R−1]].
5: Compute [[adj A]] = [[det A]][[A−1]].
6: Return [[adj A]], [[det A]].

As an immediate consequence, our proof for statistical indistinguishability is
much simpler (cf. Lemma 1). Moreover, the complexity of the protocol is reduced
as we do not need to generate the diagonal of L at random, and we do not need to
compute det L either. Finally, as a further optimization, we only use one secure
inversion throughout the entire protocol (to perform the secure zero-test and
inversion for detU all at the same time).

Apart from generating a random matrix R and its inverse determinant,
Protocol 1 mainly performs a secure matrix multiplication. The computation
of det(RA) is done locally, so we might use any algorithm for computing deter-
minants to implement this step. However, Lemma 1 helps us save some work
for the local computation as well. The lemma basically implies that RA is sta-
tistically close to a uniformly random matrix in LUd(Zp), and therefore we can
perform Gaussian elimination to compute det(RA) without any pivoting, as
shown below.

6.2 Secure Matrix Inversion

We next present Protocol 3 for secure matrix inversion, which is of independent
interest. Since A−1 will in general have rational entries for a matrix A ∈ Z

d×d,
as discussed above, we will use the pair (adj A,det A) as representation of A−1.
This way we avoid any rational arithmetic, and, moreover, we can use a similar
embedding for A in Z

d×d
p as for the determinant, using the bound for ‖adj A‖max

from Sect. 2 to choose p sufficiently large.
If we stick to the common approach of computing A−1 = (det A)−1adj A over

Zp, such that adj A and detA can be recovered using rational reconstruction over
Zp, the required size for p would be roughly twice as large.

6.3 Secure Linear Solver

Finally, we present Protocol 4 for securely solving a linear system, in which we
avoid performing a full matrix inversion. In step 3 we apply Gaussian elimination
to the augmented matrix (RA | [[R]][[b]]). As explained in Sect. 5, this can be
done without pivoting. Matrix RA is first transformed into upper-triangular
form, and then we apply back substitution to compute [[A−1b]]. For Gaussian
elimination on (RA | [[R]][[b]]), we use the division-free variant (see, e.g., [Bar68]).
Combined with back substitution, we achieve that det(RA) is obtained at almost
no additional cost. In total we need 2

3d3 + O(d2) multiplications, 1
3d3 + O(d2)

modular reductions, and exactly d inversions modulo p for step 3.
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Protocol 4. LinSol([[A]], [[b]]) A ∈ GLd(Zp), b ∈ Z
d
p

1: Generate [[R]], [[det R−1]] with R ∈R LUd(Zp) using Protocol 2.
2: Open RA ← [[R]][[A]].
3: Solve (RA | [[R]][[b]]) to obtain [[A−1b]] by Gaussian elimination over Zp.
4: Compute [[det A]] = det(RA)[[det R]]−1.
5: Compute [[(adj A)b]] = [[det A]][[A−1b]].
6: Return [[(adj A)b]], [[det A]].

Protocol 5. Ridge([[X]]q, [[y]]q, λ) X ∈ Z
n×d
q ,y ∈ Z

n
q , λ ∈ N

1: Compute [[A]]q = [[XT]]q[[X]]q + λI. � A = XTX + λI
2: Compute [[b]]q = [[XT]]q[[y]]q. � b = XTy
3: Convert [[(A | b)]]q to [[(A | b)]]p.
4: Compute ([[(adj A)b]]p, [[det A]]p) = LinSol([[(A | b)]]p).
5: Set [[(det A)w]]p = [[(adj A)b]]p. � w = A−1b
6: Return [[(det A)w]]p, [[det A]]p.

Lemma 2. Let γ = ‖(A|b)‖max. Correctness of Protocols 1, 3, and 4 follows if

p

2
> d

d
2 γd.

Proof. For Protocol 1 we need that p/2 > |det A|. We use the bound |det A| ≤
dd/2γd obtained from Hadamard’s inequality in Sect. 2. So we require p/2 >
dd/2γd.

For Protocol 3, in addition to p/2 > |det A|, we need p/2 > ‖adj A‖max.
Using the bound ‖adj A‖max ≤ (d − 1)(d−1)/2γd−1 from Sect. 2, we still have
p/2 > dd/2γd as overall bound.

For Protocol 4 we need p/2 > ‖(adj A)b‖max in addition to p/2 > |det A|.
Note that (adj A)b = det(A)w, where w is the unique solution to the system
Aw = b. By Cramer’s rule we then have ‖(adj A)b‖max = maxd

i=1{|det(Ai)|} ≤
dd/2γd where Ai is the matrix obtained by replacing the ith column of matrix
A with b. Hence, the bound p/2 > dd/2γd suffices in this case as well.

7 Secure Ridge Regression

In this section we present our protocol for ridge regression, see Protocol 5. All
entries of X and y are assumed to be in [−2α, 2α] ∩ Z for an appropriate value
of the accuracy parameter α (i.e., normalized to [−1, 1] as explained in Sect. 3,
scaled by a factor of 2α, and rounded to the nearest integer). The regularization
parameter λ is scaled accordingly. We note that parameter α is between 5 and
10 in our experiments, cf. Table 2.
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The two main stages of ridge regression are performed over two different
prime fields. In the first stage, XTX+λI and XTy are computed over a relatively
small field Zq, while w = A−1b is computed over a substantially larger field Zp

in the second stage. See Table 2 for some typical sizes of p and q. Since n is
typically very large as well, cf. Table 1, secure computation of XTX over Zp

would put excessive demands on time and space utilization.
The conversion in step 3 of the protocol is done as described at the end of

Sect. 4. The sizes for primes p and q are determined in the following lemma.

Lemma 3. Let β = ‖(X | y)‖max. Correctness of Protocol 5 follows if

q

2
> nβ2 + λ + 2κ and

p

2
> d

d
2 (nβ2 + λ)d.

Proof. For prime q we need that q/2 > ‖(A | b)‖max. Each entry of (A | b) is a
dot product of two length-n vectors with entries bounded in absolute value by
β, plus λ for the diagonal of A. Therefore, ‖(A | b)‖max ≤ nβ2 + λ. To allow for
secure conversion from Zq to Zp, we require q/2 > nβ2 + λ + 2κ.

For prime p we use the result of Lemma 2 with γ = nβ2+λ. Although matrix
A is known to be symmetric positive definite, giving us det(A) ≤ γd, the overall
bound of p/2 > dd/2γd remains because of the p/2 > ‖(adj A)b‖max constraint.

8 Performance Evaluation

We have performed several experiments using the UCI datasets [DG19] shown
in Table 1. Each dataset is randomly split into a 70% training set and a 30%
test set (except for dataset Year prediction MSD, for which we respect its pre-
defined training/test split, taking the first 463715 rows to form the training set
and the remaining 51630 rows are used for testing). The RMSEs reported for
training and testing are obtained using the Cholesky solver provided for ridge
regression in Scikit-learn [PVG+11], setting λ = 1. Note that the Gas Sensor
Array datasets have two targets, for which the RMSEs are reported separately.
To handle multiple targets, we have generalized Protocol 5 in the obvious way,
replacing vector y by a matrix Y with one column per target.

We have run our protocol for secure ridge regression in a 3-party setting using
the values for accuracy parameter α shown in Table 2. For each (normalized)
dataset we have tried increasingly larger values for α until the errors became
insignificant (below 0.1% relative to the RMSEs of Table 1). We have refrained
from tuning the regularization parameter λ, and simply set λ = 22α (which
corresponds to λ = 1 after scaling). The bit lengths |p| and |q| are determined
from the bounds in Lemma 3, using β = 2α and κ = 30. The total running time
for Protocol 5 comprises two parts: (A, b)-time represents the time for computing
[[A]] and [[b]] (steps 1–2), while A−1b-time covers the time for Protocol 4. The
time for the conversion in step 3 is negligible.
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Table 1. UCI datasets. RMSEs for ridge regression with Scikit-learn.

id Dataset n d∗ Target(s) Train RMSE Test RMSE

1 Student Performance 395 30 G3 0.38 0.46

2 Wine Quality red 1,599 11 Quality 0.16 0.16

3 Wine Quality white 4,898 11 Quality 0.19 0.19

4 Year Prediction MSD 515,345 90 Year 0.21 0.21

5 Gas Sensor Array methane 4,178, 504 16 Ethylene methane 0.29 0.34 0.29 0.34

6 Gas Sensor Array CO 4,208,261 16 Ethylene CO 0.34 0.34 0.34 0.34

7 HIGGS 11,000,000 7 Class 0.97 0.97
∗The reported number of columns d corresponds with the databases original number of

columns. The bit-lengths of p and q reported in Table 2 are determined after one-hot encoding.

Table 2. Results of this work compared to the literature. All times are in seconds.
HP/VP stand for horizontal/vertical partitioning. 32-bit and 64-bit refer to bit lengths
used for secure fixed-point arithmetic. Accuracy α yields relative errors below 0.1%.
The relative errors reported by [GSB+17] are also given.

id α |q| |p| This work [NWI+13] [GJJ+18] [GSB+17]

(A, b) A−1b Total HP HP VP VP 32-bit VP 64-bit

1 6 54 1314 0.13 1.48 1.61 – 39.76 328.06 5 (−0.0%) 35 (−0.0%)

2 7 58 313 0.02 0.08 0.10 39 – – – –

3 8 61 356 0.04 0.12 0.16 45 4.09 – 0 (4.2%) 4 (−0.0%)

4 6 64 3102 237 18.3 255 – – – 230 (0.0%) 808 (0.0%)

5 8 71 673 62.8 0.05 62.9 – – – – –

6 9 73 708 63.0 0.05 63.1 – – – 42 (5.2%) 69 (0.0%)

7 5 66 277 34.9 0.12 35.0 – – – – –

Our implementation is written in Python using the MPyC package [Sch18,
ridgeregression.py]. The experiments were done using three PCs, connected via
a Netgear GS208-100PES Ethernet switch. Each PC was running on Windows
8.1 Enterprise (64-bit) with an Intel Core i7-4770 CPU at 3.40 GHz and 16 GB
of RAM. Table 2 compares our results to three other solutions for secure ridge
regression from the literature. The times reported are purely indicative, and give
a basic idea of the performance of the various solutions.

We note that the previous works shown in Table 2 exploit the locality of the
input data, assuming that the data is either partitioned horizontally or verti-
cally. For example, Nikolaenko et al. [NWI+13] assume the dataset is partitioned
horizontally, allowing them to compute A and b using additive homomorphic
encryption only. In our work, we do not make any specific assumptions on the
distribution of the input data; instead we adopt the more general outsourc-
ing scenario, where any data provider simply sends secret shares of its data to
the respective parties performing the secure computation (using log2 q bits per

https://github.com/lschoe/mpyc/tree/master/demos/ridgeregression.py
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Table 3. Comparison of (A, b)-times for synthetic data.

n d This work [GSB+17]

50,000 20 1 s 2 s

50,000 100 24 s 32 s

500,000 20 11 s 18 s

500,000 100 3min 29 s 6 min 1 s

1,000,000 100 6min 57 s 12 min 42 s

1,000,000 200 28min 30 s 49 min 56 s

share). Thus, in our experiments, each party holds shares of the entire dataset
and is not assumed to have any plaintext knowledge of the data.

Also, these previous works [NWI+13,GSB+17,GJJ+18] rely on a so-called
2-server approach requiring two non-colluding parties (e.g., a “crypto service
provider” and an “evaluator”). For our solution, the number of colluding parties
tolerated is scalable, assuming an honest majority.

The competitiveness of our solution is also confirmed by Table 3, showing our
results for a range of synthetic datasets compared to the most favorable results
reported by Gascón et al. [GSB+17] (for their 3-party setting).

Obviously, exploiting the locality of the input data may easily lead to huge
speed-ups when combined with our approach. For horizontally partitioned data,
the (A, b)-time reported in Table 2 will become very small, as the work trivially
reduces to the secure addition of the locally computed partial dot products.
For vertically partitioned data, the (A, b)-time can be reduced by a substantial
factor, as the dot products for the locally available columns of X require no
communication except for secret-sharing the end result.

9 Concluding Remarks

Assuming that matrix X is of full column rank, Protocol 5 can also be used
for secure linear regression by setting λ = 0. If matrix X is distributed among
several data providers, however, ensuring that X is of full rank need not be
trivial. For instance, in a vertical data partitioning it may not be that easy to
detect a redundant feature (used by multiple data providers). Setting λ > 0
removes the need to remove such redundant columns.

Our results also extend to the underdetermined case n < d. In this case, the
closed form solution given by Eq. (2) can be rewritten as

w = XT
(
XXT + λI

)−1
y, (3)

using that (XTX + λI)XT = XTXXT + λXT = XT(XXT + λI).
Modifying our protocol for ridge regression accordingly results in Protocol 6.

In step 4 of the protocol the secret-shared matrix X converted to the large
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Protocol 6. Ridge([[X]]q, [[y]]q, λ) X ∈ Z
n×d
q ,y ∈ Z

n
q , λ ∈ N

1: Compute [[A]]q = [[X]]q[[X
T]]q + λI. � A = XXT + λI

2: Convert [[(A | X | y)]]q to [[(A | X | y)]]p.
3: Compute ([[(adj A)y]]p, [[det A]]p) = LinSol([[(A | y)]]p).
4: Compute [[(det A)w]]p = [[XT]]p[[(adj A)y]]p. � w = XTA−1y
5: Return [[(det A)w]]p, [[det A]]p.

prime field Zp is used to compute the output vector w. Since typically d � n, a
relatively small number of conversions n per entry of the length-d output vector
w are performed. Setting λ = 0 for this protocol yields a solution for secure
linear regression in the case that X is of full row rank.

Details about the handling of the input and output for our secure ridge
protocols are beyond the scope of this paper. For instance, one needs to decide
how much information the parties are willing to leak when normalizing their joint
datasets. Also, the parties may jointly need to determine a suitable value for
the regularization parameter λ (hyperparameter tuning). Similarly, the output
[[(det A)w]]p, [[det A]]p of our secure ridge protocols can be handled in lots of ways.
These two values may simply be revealed, accepting leakage of the exact value
of the determinant. Alternatively, these values may be converted to shares over
Zp′ , where p′ is of double length compared to p; subsequently, a secure division
of [[(detA)w]]p′ by [[det A]]p′ is performed (over Zp′ , hence very efficient, using
a standard protocol for secure inversion, see also Sect. 4) to obtain [[w]]p′ , from
which the exact solution w ∈ Q

d is recovered by rational reconstruction modulo
p′ in the clear. Note that the latter approach gives exactly the same final result
as [GJJ+18, Protocol 3].

The question of how much information a regression model w reveals about
the input data has been studied extensively in the literature. Even if the entries of
w are rounded to floating-point numbers of limited precision, information might
leak as by definition w is computed to summarize essential information about
the input. In general, one must therefore resort to techniques from differential
privacy to limit information leakage. As an example of (recent) work in this
direction, we refer to [AMS+20] and references therein.

An important observation, however, is that we get differential privacy for w
basically for free for the regime n � d. Intuitively, when the number of samples
n is much larger than the number of features d, revealing only the length-d vector
w may be expected to be relatively safe. For linear regression (λ = 0) there exist
analytical results confirming this intuition. For example, in [Wan18, Figure 2]
the question “When is privacy for free in statistical learning?” is addressed, and
it is shown this happens for n � d.

We like to end with mentioning two recent follow-up works showing how
our approach extends to other interesting settings. In [BV20], Bouman and de
Vreede show how to extend our results to the secure computation of the Moore-
Penrose pseudoinverse, which is a challenging problem as one needs to hide all
information about the rank of the input matrix. And in [HFT20], building on
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our techniques and protocols, Hastings et al. find that our approach leads to
concrete efficiency gains in the context of privacy-preserving network analytics.
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Abstract. The structure and weights of Deep Neural Networks (DNN)
typically encode and contain very valuable information about the dataset
that was used to train the network. One way to protect this information
when DNN is published is to perform an interference of the network
using secure multi-party computations (MPC). In this paper, we suggest
a translation of deep neural networks to polynomials, which are easier to
calculate efficiently with MPC techniques. We show a way to translate
complete networks into a single polynomial and how to calculate the
polynomial with an efficient and information-secure MPC algorithm. The
calculation is done without intermediate communication between the
participating parties, which is beneficial in several cases, as explained
in the paper.

Keywords: Privacy · DNN · Data publishing · Data sharing

1 Introduction

Deep Neural Networks (DNN) are the state-of-the-art form of Machine Learning
techniques these days. They are used for speech recognition, image recognition,
computer vision, natural language processing, machine translation, and many
other tasks. Similar to other Machine Learning (ML) methods, DNN is based on
finding patterns in the data and, as such, the method embeds information about
the data into a concise and generalized model. Subsequently, the sharing of the
DNN model also reveals private and valuable information about the data.

In this paper, we first suggest approximating a trained neural network with
a single (possibly nested) polynomial. We present a nested polynomial approach
to speed up the calculation of the polynomial on a single node. The essence
of the idea is to nest the polynomial approximation of each layer within the
approximation of the next layer, such that a single polynomial (or arithmetic
circuit) will approximate not only a single network unit, but a few layers or even
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the entire network. We discuss an efficient, (perfect information theoretically
secure) secret-sharing MPC calculation of the polynomial calculation of DNN.
Lastly, we compare the MPC calculation of the neural network itself with a
calculation of polynomial representation.

Our main contribution in this research is an optimization of (communication-
less) MPC calculations of a shared DNN by approximating neighboring layers
by a single polynomial, and in some cases, the entire network. An additional
contribution is a nesting of a multi-layer polynomial to reduce the redundant
calculations of the intermediate layers.

Previous relevant research is covered in Sect. 2. Section 3 and Sect. 4 dis-
cuss polynomial approximation of DNN on a single computing node. A secure,
communication-less multi-party computation, which is presented in Sect. 5.
Section 6 summarizes the techniques to obtain blind execution of DNN. Empir-
ical experiments are described in Sect. 7 and, lastly, the paper is concluded in
Sect. 8. Details are excluded from this version and can be found in [6].

2 Previous Work

Distributed MPC protocols are built for fixed-point arithmetic, and many times
even for limited range values. Thus, the main issue in calculating the neural net-
work activation with secure multi-party computations algorithms is the transla-
tion of activation functions from floating-point arithmetic to fixed-point.

Approximation of neural network units’ activation function with fixed-point
arithmetic and without MPC was considered before in [9,10], where polynomial
functions were suggested for approximation. CryptoDL [10] showed an imple-
mentation of Convolutional Neural Networks (CNN) over encrypted data using
homomorphic encryption (HE). The paper has shown approximation of CNN
activation functions by low-degree polynomials due to the high-performance
overhead of higher degree polynomials.

A calculation of neural networks with secure multi-party computations was
considered in [12]. Their experiments showed that the polynomial approximation
of the sigmoid function requires at least a 10-degree polynomial, which causes
a considerable performance slow-down with garbled circuit protocol. The work
had a limitation for two participating parties and the algorithm was shown to
be limiting in terms of performance and the practical size of the network.

CrypTFlow [11] is a system that converts TensorFlow (TF) code automat-
ically into secure multi-party computation protocol. The most salient charac-
teristic of CrypTFlow is the ability to automatically translate the code into
MPC protocol, where the specific protocol can be easily changed and added.
The optimized three-party computational protocol is specifically targeted for
NN computation and speeds up the computation. This approach is similar to
the holistic approach of [1].

SecureNN [15] proposed arguably the first practical three-party secure com-
putations, both for training and for activation of DNN and CNN. The impres-
sive performance improvement over then, state-of-the-art, results is achieved by
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replacing garbled circuits and oblivious transfer protocols with secret sharing
protocols. The replacement also allowed information security instead of compu-
tational security. Despite being efficient, the protocols require ten communica-
tion rounds for ReLu calculation of a single unit not counting share distribution
rounds.

A different approach at speeding up performance was made by [5], which con-
centrated on two-party protocols. The work showed a mixed protocol framework
based on Arithmetic sharing, Boolean sharing, and Yao’s garbled circuit (ABY).
Each protocol was used for its specific ability, and the protocols are mixed to
provide a complete framework for neural networks activation functions.

3 Neural Network as Polynomial Functions in a Single
Node Case

We show how to approximate functions that are a typical part of DNNs, by
polynomials. We focus on the most commonly used functions in neural networks.

Weighted Sum of the Unit Input. Given neuron inputs X1, . . . , Xn, the
weighted sum is a multiplication of inputs with the corresponding weights S =∑n

i=1 wiXi−b, where b is a bias of the neuron which is a polynomial of degree 1.

Common Activation Functions. Most of the research approximating DNN
activation functions focused on these few common functions:
ReLu (ReLu(x) = max(0, x)), Leaky ReLu (similar to ReLu but LReLu(x) =
0.01x if x ≤ 0), Sigmoid

(
σ(x) = 1

1+e−x

)
, TANh

(
tanh(x) = e2x−1

e2x+1

)
, SoftMax

(used for multi-class prediction σ(xi) = exi
∑k

i=1 exi
). All those functions can be

approximated with a polynomial using various different methods, for example [1,
10,12,13,16]. Our optimization method is agnostic to a specific approximation
method.

Differently from the most of the research approaches, which minimized
the degree of the approximating polynomial, our communication-less approach
allows us to use a higher degree polynomials. In our previous research [7] we
have shown that 30-degree Chebyshev polynomials achieve good results.

Max and Mean Pooling. Max and Mean pooling compute the corresponding
functions of a set of units. Those functions are frequently used in CNN following
the convolution layers. Previous works [16] suggested replacing max-pooling with
a scaled mean-pooling, which is trivially represented by a polynomial. However,
this requires the replacement to be done during the training stage, while we
focus on a post-training stage.
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In this paper, we have used a simple and practical approximation of max
function is:

m′(x, y) =
x + y

2
+ ((x − y)2)1/2. (1)

Notice that the function provides an approximation near any values of x and
y, which is an advantage over Taylor or Chebyshev approximations, that are
developed according to a specific point. Despite its simplicity, Eq. 1 provides a
relatively good approximation.

Notice that using a two-variable function for the max pooling layer of k inputs
requires chaining of the max functions:

max(x1, x2, . . . xk) = max(x1,max(x2, . . . ,max(xk−1, xk))).

Alternatively, the optimization sequence is interrupted at the max-pooling
layer, which will require an MPC protocol for the max function calculation, for
example [15].

4 Multiple Layers Approximation

We have discussed the approximation of DNN functions by polynomials. The
approximation exists for all the common functions. This makes it possible to
combine multiple layers into a single polynomial function according to the con-
nectivity of the layers.

One example of a network that can be approximated by a single polynomial
function is auto-decoder where hidden layers are dense layers with (commonly)
ReLu or sigmoid activation.

The idea is to create a polynomial for the “flow” of the data in the network
instead of approximating every single neural unit with a polynomial. As an
example, consider the network in Fig. 1.

Fig. 1. A small example network with an input layer on the left, two dense hidden
layers U1 and U2, and an output layer on the right consisting of a single unit. Each
layer utilizes ReLu or sigmoid activation functions, or any other function that can be
approximated by a polynomial.

The network consists of an input layer (I) on the left, two dense hidden layers
(U1 and U2), and one output layer O, which is implemented by the softmax
function. The units are marked as uli where l is the hidden layer number and i
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is the number of the unit in the layer. We assume that the activation functions
of the hidden layers are ReLu (or any other function that can be approximated
by a polynomial function).

Consider a unit u11. It calculates the function which is approximated by the
polynomial. Assume that ReLu activation functions are approximated using a
polynomial of d-degree.

ReLu(
∑

i

wiIi) ≈ P11 = Pol11(
∑

i

wiIi). (2)

Unit u21 receives P11 and P12 as inputs and calculates the “nested” polynomial
function:

P21 = Pol21(
∑

i

wiP1i). (3)

In general, assuming dense layers, the nested polynomials are defined as:

Plj = Pollj(
∑

i

wiP(l−1)i). (4)

In this simple case, the result of networks evaluation can be calculated by
evaluating two polynomials of d2-degree: P21 and P22, and calculating the output
layer function of their output. Overall, by approximating softmax by Polsm we
get the following polynomial for the entire network:

DNN(x) = Polsm (wo
1P21 + wo

2P22)
= Polsm

(
wo

1Pol21(w
21
1 P11 + w21

2 P12) + wo
2Pol22(w

22
1 P11 + w22

2 P12)
)

= Polsm
(
wo

1Pol21(w
21
1 Pol11(w

11
1 I1 + w11

2 I2) + w21
2 Pol12(w

12
1 I1 + w12

2 I2))
+ wo

2Pol22(w
22
1 Pol11(w

11
1 I1 + w11

2 I2) + w22
2 Pol12(w

12
1 I1 + w12

2 I2))
)

(5)
Notice that P11 and P12 were calculated twice as they are used as inputs for
both U21 and U22 units.

5 Communication-Less MPC for Polynomial Calculations

The goal of MPC calculations in the considered setup is to protect the published
model from exposure to participating cloud providers. The model is trained by
the data provider and has two components: architecture, which includes the
layout, type, and interconnection of the neural units, as well as the weights
of the input, which were refined during the training of the network, i.e. back-
propagation phase.

Our goal is to protect the weights that were obtained by a costly process of
training. While the architecture also might hold ingenious insights, it is consid-
ered less of a secret and may be exposed to the cloud providers.

Even though the described algorithm is agnostic to the specific MPC proto-
col, it is better to use a protocol that can support k > 2 parties, provides perfect
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information theoretical security and is efficient for a polynomial calculations in
terms of communication rounds to enable usage of high-degree polynomials.

A number of MPC protocols answer those requirements [2,4]. These MPC
protocols based on Shamir secret sharing [14] can cope with a minority of semi-
honest parties and even with a third of the malicious parties. BGW protocol [2]
provides a perfect security and [4] provides statistical security with any desirable
certainty. In our case, the input is not a multi-variable that is secret-shared, but
rather the weights and coefficients of the network are the secrets.

Clear-Text Inputs. In a simpler scenario, the input is revealed to all partici-
pating parties. In this case, the secrets are the weights of the trained network.
The input values are then can be considered as numerical constants for the MPC
calculation and thus, communication rounds can be eliminated completely, see
BGW [2] algorithm where additive “gates” are calculated locally without any
communication.

Given a secret-share of coefficient a: s = [s1, s2]. The polynomial p(x) can be
calculated as p(x) = p1(x)+p2(x), where p1(x) and p2(x) use the corresponding
secret share.

Secret-Shared Inputs. In the second scenario, the input values are protected
as well, and thus, they are distributed by the secret share. As the input values are
raised to polynomial degree k, the secret share is done on the set of values: X =
[x, x2, . . . xk]. Multiplication of secret shares requires communication rounds in
a general case, still when secret sharing every element of X it is possible to
eliminate the communications all-together using techniques from [3] or [8].

6 Distributed Communication-Less Secure Interference
for Unknown DNN

The last two sections, Sect. 4 and Sect. 5, provide all the required building blocks
for communication-less MPC for common DNNs. In Sect. 4 we showed how a
given, pre-trained network can be approximated with a single polynomial, in
most common cases. As a side-note, as the neural network activation functions
are not limited to a specific set, there might be networks that cannot be approx-
imated. However, the majority of networks use a rather small set of functions
and architectures.

Once the network is presented by a single polynomial, Sect. 5 shows that it
can be calculated without a single communication round (apart from the input
distribution and output gathering) when the inputs are revealed, or with half
the communication rounds when the inputs are secret.

Taken together, those two results enable a somewhat surprising outcome: the
data owner can train DNN models, pre-process, and share them with multiple
cloud providers. The providers then can collaboratively calculate interference of
the network on common or secret-shared inputs without ever communicating
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with each other. Thus, reducing the attack surface even further even for multi-
layer networks.

7 Experiments

All tests were performed on the Fashion database of MNIST, which contains a
training set of 60,000 and a testing set of 10,000 28 × 28 images of 10 fashion
categories. The task is a multi-class classification of a given image. Experiments
on larger datasets and different types of DNN are planned for extended version
of the paper.

To solve the problem we have used a non-optimized neural network with two
dense hidden layers: one of 300 units and the second one with 100 units. The
output layer is a softmax layer with ten units and batch normalization layers
before each activation layer.

The performed experiments were done on a pre-trained model. The model was
loaded and translated into polynomial as described above automatically. This
enables us to perform translation for any pre-trained network, similarly in spirit
to [11]. Both the original model and polynomial representation were executed on
the same inputs. The outputs are compared for different classification (divided
by a total number of test inputs).

Figure 7 shows the difference in accuracy of the network with different
degrees. As can be seen, the accuracy improves with the degree of the poly-
nomial approximation, however the improvement flattens at around d = 30.

The computation costs are increasing linearly with the polynomial degree
(data not shown), where the original ReLu is similar to d = 1 degree polynomial.
Thus, it makes sense to choose the lowest degree that still provides consistent
and accurate results.

Fig. 2. Accuracy of DNN and polyno-
mial approximation averaged over 10
runs of 500 examples each.

Fig. 3. Relative difference in results
between polynomial approximation
and the DNN model as a function of
polynomial degree.

8 Conclusions

In this paper, we have presented a way to reduce and ultimately eliminate the
number of communication rounds in the secure multi-party computation of DNN
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models. We believe that this optimization method can enable more efficient
DNN calculations and further progress in the process of privacy-preserving data
sharing.

The above optimization of DNN evaluation targets the inference phase, which
is done after the DNN-based model is shared and distributed across cloud
providers. The network is not trained anymore, but only queried by the clients.
At this phase, the performance issues do not impact the data owners, which could
be resource-limited end-devices, but rather are relevant for the cloud providers
that have as much larger resources.
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Abstract. This paper proposes a novel method for using a PoW-based
Blockchain to ensure data integrity in cloud database management sys-
tems. The use of cloud platforms for storing data or even hosting databases
is incredibly huge, and in many cases, there is no convenient way for a client
to check the integrity of the data stored in the cloud database. To solve this,
we propose a technique based on an interaction between the cloud platform
and a PoW-based Blockchain. This interaction exploits a Distributed Hash
Table and lightweight software agents, which are monitoring changes done
to cloud database storage nodes. Data update operations are published by
the agents as Blockchain log/audit transactions that propagate deep into
the Blockchain network until they become immutably and cryptograph-
ically protected by it. The proposed method enables the Cloud Provider
to manage metadata so that it will be able to easily detect deliberate or
accidental corruptions of transactions and to recover the transactions in
case such a data corruption incident occurs.

Keywords: PoW-based Blockchain · Data integrity · Cloud database

1 Introduction

The ability of the cloud database to ensure data integrity is extremely impor-
tant [1,2]. The integrity of outsourced data to the cloud is being put at risk
in practice [2,3]. In the last few years, there is a growing interest around the
question as to how to integrate the Blockchain and cloud databases [1]. Clients
of the cloud database commonly assume that if the data is encrypted before it
is outsourced to the cloud, it is secured enough. Researches show that although
encryption protects the data from internal attacks, it does not fully protect the
data from configuration issues or software bugs. Those issues/bugs can cause
data corruption on purpose or by accident. Methods that describe how to store
control log/audit data, that document changes performed by the cloud database
clients, in the Blockchain, were already widely studied [4–6].
c© Springer Nature Switzerland AG 2021
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In this paper, we propose a novel method to protect log/audit transactions
from the moment they are published in the Blockchain network until they become
committed to that network.

2 Background and Related Work

A Merkle Hash Tree (MHT) [7], is a binary tree, where each leaf is a hash
of a transaction. A Distributed Hash Table (DHT) [8] is a distributed system
that provides a lookup service. Reference Zyskind et al. [9] presents a successful
integration of Blockchain and DHT which inspires our work.

Blockchain is a chain of blocks, a linear structure that begins with a genesis
block and grows with new blocks linked to the end of the chain. A consensus
algorithm is a process used to reach an agreement on a single data block among
multiple and unfamiliar with each other nodes. The Proof of Work (PoW) [10]
is a well-known consensus algorithm that is used as well in Bitcoin [11] and in
Ethereum [12].

Reference Weintraub et al. [13] propose a method that provides a probabilis-
tic client-side data integrity assurance in column-oriented NoSQL databases.
Reference Zikratov et al. [4] details a few additional Client-Side computation
methods.

References Zhang et al. [3], Zikratov et al. [4], and Xie et al. [14] detail a few
Third-Party Auditor (TPA) methods in which the data integrity is monitored
by a third-party.

References Zikratov et al. [4], Wei et al. [15], Wong et al. [16] detail a few
Provable Data Possession challenge-response methods to perform data integrity
verification in a cloud database environment.

Reference Gaetani et al. [5] describes a two-layer Blockchain method case
study from the European SUNFISH project. The first layer is a permission-
based Blockchain that executes a lightweight consensus protocol that assures
low latency and high throughput. The second layer is a PoW-based Blockchain
that stores evidence of the database operations logged in the first layer. The two
layers together provide the desired guarantees of data integrity, performance,
and stability.

Reference Basu et al. [6] considers a two-layer Blockchain method application
scenario with a Virtual Network Function (VNF) [17]. The first layer Blockchain
is a permission-based Blockchain that is used to verify the integrity of the data
logged by individual VNF instances. The second-layer Blockchain is a public
PoW-based Blockchain that helps with the verification of the authenticity of the
overall logged data. Interaction between these two Blockchain layers provides
the overall performance improvement and effective assurances of data integrity.

Reference Zikratov et al. [4] describes how it is possible to use the Blockchain
technology for cloud database integrity assurance in a client-server architec-
ture. It suggests running a watcher software on every cloud database node. The
watcher software monitors the files on cloud database nodes and reports changes
that occur on those files as Blockchain transactions.
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3 The Proposed Method

3.1 The Proposed Method Description

In a PoW-based Blockchain, a transaction is published into the transactions pool,
mined into a block, and pushed into the Blockchain by the mining of five consec-
utive blocks. When the block that contains the discussed transactions reaches
the depth of six or more in the Blockchain, the block and all the contained trans-
actions are considered as committed [11]. Figure 1 depicts the list of committed
vs. not-committed blocks.

Fig. 1. Blockchain list of blocks committed vs. not-committed blocks

The proposed method is designed to address a threat model in which acciden-
tal or deliberate corruption attacks on a random transaction that runs through
the system are detected. The proposed method recovers the system from the
detected corruption.

The proposed method model is depicted in Fig. 2. The cloud database is
constructed from multiple storage nodes that store the client’s data. The DHT [8]
is employed for storing transactions and blocks mappings. The mined and backup
transaction pools are employed for corruption attack detection and recovery.

Every cloud database node executes agent software that monitors changes
to files which it is configured to monitor; one agent per node. When the agent
software detects a change done to one of the monitored files, it generates a
log/audit transaction that documents the change and sends it to the Blockchain
network.

Fig. 2. The proposed method schematics
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We have decided to use the PoW-base Blockchain due to its decentraliza-
tion, security, privacy, and reliability. Furthermore, the fact that the probabil-
ity to break the cryptographic chain after the transaction is committed in the
Blockchain strives to zero, as the block gets deeper into the chain, backs this
decision.

A transaction flow in the proposed method system is as follows:

1. Agent: publish a transaction to the transactions pool.
2. CP: store a copy of the transaction into the backup transactions pool.
3. CP: store the transaction id to transaction hash mapping into the DHT.
4. Miner: mine the transaction as part of a block.
5. CP: move the copy of the transaction from the backup transactions pool to

the mined transactions pool.
6. CP: remove the mapping of the transaction id to transaction hash from the

DHT.
7. CP: calculate the MHT root of all the transactions for the block that contains

thetransaction.
8. CP: store a mapping from the block id to the MHT root into the DHT.
9. Blockchain: a block with the target transaction gets committed.

10. CP: clears the mappings of this block from the DHT.
11. CP: removes all the corresponding transactions from the mined transactions

pool.

The transaction id to transaction hash mapping is stored in the DHT for checking
the transaction integrity while the transaction is in the transactions pool. In
case a change in a transaction is detected by a hash miss compare, the corrupted
transaction is recovered by using the original transaction that is fetched from the
backup transactions pool. An additional way to protect the backup transactions
pool is to divide it between several CPs and to use Multi-party computation
(MPC) [18] to construct the transactions. On the one hand, this method requires
much more overhead than the DHT method, on the other hand, it enables full
recovery in case an error is detected in the transaction pool since the MPC
is protected by most of the honest providers. The mined transactions pool is
maintained for recovery in case there is a corruption attack on a transaction
in a mined but not-committed block. The transactions are kept in the mined
transactions pool and the mappings are stored in the DHT until the blocks that
contain them become committed.

3.2 The Proposed Method Algorithms

Every one of the CP algorithms is distributed and replicated on different nodes
in the network, in order to ensure the distribution and replication of the overall
ecosystem. The CP mapper algorithm is presented in Algorithm 1. Algorithm 2
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Algorithm 1: Distributed CP Mapper Algorithm
while 1 do

if A new block is mined then
Calculate the MHT root for all the transactions in the block;
Store Block ID to MHT root mapping into the DHT;
Remove the mined transactions IDs to hash mappings from the DHT;
Move the mined transactions from the backup transactions pool to the
mined transactions pool;

Remove the committed block’s mappings from the DHT;
Remove the committed transactions from the mined transactions pool;

end

end

describes the CP Verification algorithm for the transactions pool. Storing a map-
ping from transaction id to hash of the transaction can be used for protecting
the transactions in the mined transactions pool as well. In such a way, the CP
stores the transaction id to the transaction hash of every mined transaction into
the DHT. The mapping is used in case the same transaction is attacked in a
mined not-committed block and the mined transactions pool for recovering the
system from the corruption attack. Algorithm 3 describes the CP Verification

Algorithm 2: Distributed CP Verification Algorithm (Transactions Pool)
while 1 do

For each transaction in the transactions pool calculate the SHA256 hash;
Compare the transaction’s calculated hash to the stored in the DHT hash;
if Some transaction calculated hash does not match the stored one then

if Transaction content in the backup transactions pool was not changed
then

Replace the corrupted transaction with the original one which is
fetched from the backup transactions pool;

else
Remove the transaction id to transaction hash from the DHT;
Remove the damaged transaction from the transaction pool and the
backup transactions pool;

Notify the client that the transaction was corrupted;

end

end

end

Algorithm for the mined not-committed blocks. The CP Miner mines a block by
using the PoW consensus algorithm. We implement our CP miners so we will be
able to control the block mining frequency by increasing/decreasing PoW com-
plexity, and as we want to control the algorithm that the miners use to fetch the
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transactions from the transactions pool. The two improvements to the miner’s
algorithm are implemented so the miners will be able to stand at the pace with
the transactions generation rate of a high-frequency transaction generating cloud
database, as it can be faster than the financial transactions generation rate. Par-
ticularly in our proposed method, the miners fetch all the transactions from the
transactions pool to the mined block in every mining iteration. Important to
note, when integrating the proposed method with a practical cloud database it
is required to limit the block to a maximal value to prevent spam attacks [19].

For the evaluation of the proposed method, we have implemented two cor-
ruption attack algorithms, namely: a corruption attack on a random transaction
from the transactions pool and a corruption attack on a random transaction
from a random mined not-committed block.

Algorithm 3: Distributed CP Verification Algorithm (Mined Not-
Committed Blocks)
while 1 do

Get not-committed blocks from the Blockchain;
Calculate MHT root for all the not-committed blocks;
Compare the calculated MHT root’s of those blocks and compare them to
the stored one’s;

if Some MHT root hash has changed then
Cancel all the blocks from the end of the Blockchain up to including the
corrupted block;

Store all the transactions from the canceled blocks in a local buffer, not
including the corrupted transaction;

Fetch the original transaction that was corrupted from the mined
transactions pool;

Delete from the mined transactions pool all the canceled transactions;
Delete the block ids to MHT root mappings of the canceled blocks from
the DHT;

Retransmit all the transactions that were fetched from the canceled
blocks to the Blockchain excluding the corrupted transaction including
the original one;

end

end

3.3 The Proposed Method Potential Vulnerabilities

The CP algorithms are considered, to be honest, and reliable since they are repli-
cated and distributed. To provide robustness to the system, we execute many
distributed instances of the CP algorithms in parallel. A Byzantine Fault Toler-
ance [10] algorithm should be applied between the different CP distributed and
replicated instances to ensure availability, liveness, and security of the system.
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Handling the agent’s robustness and security is out of the scope of this paper
as their role is to provide the input transactions to the proposed method. The
proposed method operates the same regardless of the entity that generates the
transactions and the transaction’s structure. Moreover, the agents can be pro-
tected by the cloud database security and integrity protocols, as described in
reference [20].

The DHT being distributed is less vulnerable to attacks and it is also pro-
tected by its internal security protection protocols, as described in reference [21].

We consider the Blockchain transactions pool and the Blockchain list of
blocks as vulnerable and exposed to corruption attacks. They represent the data
structures that the proposed method is intended to protect from accidental or
deliberate corruption attacks.

3.4 Correctness of the Proposed Method

This section presents the proof that the proposed method protects all the trans-
actions in the Blockchain network, from the moment they are published into
the Blockchain network and until the system’s end of life. We cite lemmas and
prove the main claim. A detailed proof of the lemmas is omitted because of the
present paper volume limitations. We assume a corruption attack occurs on some
random transactions in the system. The proof is presented without limiting the
generality of the proposed method with regards to the transaction structure or
the number of transactions in a single Blockchain block.

Lemma 1. The integrity of a random transaction is secured from the moment
it is published in the Blockchain’s transactions pool and until it is mined into a
block.

Proof. The proof of lemma 1 is based on the fact we use the secured DHT to
store transactions id to hash mappings and use the transaction from the backup
transactions pool for the recovery as described in Algorithms 1 and 2.

Lemma 2. The integrity of a random transaction is secure from the moment it
is mined into a block and until it is committed.

Proof. The proof of lemma 2 is based on the fact we use the secured DHT to
store block id to transactions MHT [7] root mappings and use the transaction
from the mined transactions pool for the recovery as described in Algorithms 1
and 3.

Theorem 1. The integrity of a random transaction is secured from the moment
it is published in the Blockchain network and until the system’s end of life.

Proof. Lemma 1 proves that the integrity of a transaction is secured from the
moment it is published into the Blockchain’s transactions pool and until it is
mined into a block. Lemma 2 proves that the integrity of a transaction is secured
from the moment it is mined into a block until it is committed. From the moment
the random transaction is committed, its integrity is ensured by the Blockchain
immutability as has been proven in the Bitcoin paper [11].
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3.5 The Proposed Method Attack Detection

We consider a corruption attack on a random transaction from the transactions
pool. It is observed that the time until the attack is detected by the CP is a
random variable with an average of 19.32 ms and a standard deviation of 4.33.
The randomness is sourced, in this attack scenario, from the random choosing
of the transaction for the attack. We consider a corruption attack on a random
transaction from a random mined not-committed block. It is observed that the
time until the attack is detected by the CP is a random variable with an average
of 17.92 ms and a standard deviation of 3.34. The randomness is sourced, in this
case, from the random choices of the mined not-committed block and the random
choice of a transaction from this block, and the probabilistic mainer’s PoW
calculations. We have measured the detection time alteration with an increase
in the number of consecutive random simulations having the following values: 5,
10, 15, 20, and 25 in both attack scenarios. It is observed that there is no distinct
change trend in the obtained results concerning the average, standard deviation,
minimum, and maximum attack detection time values. Therefore, we conclude
that the examined processes are most probably ergodic random processes, in
both attack scenarios.

3.6 The Proposed Method Recovery from Attack

We measure 25 consecutive simulations of the recovery time from the attack
on the transactions pool. We observe that the time for an attack recovery on
a random transaction from the transaction pool is a random variable with an
average of 1.24 ms and a standard deviation of 1.95. We measured 25 consecu-
tive simulations of the time since an attack on a mined not-committed block is
detected and until it is fully recovered by the CP. It can be observed that the
time from attack detection and until the attack is recovered is a random variable
with an average of 43.04 ms and a standard deviation of 6.39. We have measured
the influence of the depth of the attacked random block on the recovery time
in case of an attack on a mined not-committed block. It is observed that the
time it takes to recover the system increases as the corrupted block is deeper
in the Blockchain. The reason for that is that the number of blocks that need
to be canceled and the number of transactions that need to be re-transmitted
increases as the attacked block is deeper in the Blockchain.

3.7 The Proposed Method Scalability

We measure the influence of the transaction generation rate on the average time
that transactions wait in the queue. As was mentioned earlier, the CP min-
ers fetch all the transactions from the transactions pool in every mining cycle.
We perform measurements of the average queuing time when the system runs
without attacker involvement with 1000 agents until all the agents cumulatively
generate 10000 transactions. Other system configuration parameters are PoW
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complexity of 3 bits and 3 CP miners. The transaction generation rate is cumu-
lative for all the agents together, as they are executed in parallel one to the
other. The results of the experiment are presented in Table 1.

Table 1. Average queuing time

Transactions Generation Rate Average Queuing Time [ms]

1[KHz] 26509.39

10[KHz] 28330.6

100[KHz] 29325.2

1[MHz] 28343.79

We observe that as the transaction generation rate increases, the average
queuing time does not increase significantly and stays approximately the same.

The reduction of the average mining time can be used for improving scala-
bility. This is achievable by reducing the number of PoW complexity bits as it
reduces the average mining time, and increases the frequency of block-creation.
With a relatively small PoW complexity, many miners can cooperate to increase
the cryptographic strength of the mining distributed processes, like the method
used in crowd-sourcing [22]. In Bitcoin-like Blockchain’s the miners are not
motivated to cooperate as they are not interested to divide their rewards. In
our method, there is no such problem as the miners are part of the proposed
method. This enables us to run many miner groups in parallel for having strong
cryptography protection over the PoW process together with support for high
scalability. For example, when 100 miners cooperating, they can solve a 13 bits
PoW at the same time one miner solves 3 bits PoW, and 13 bits is much better
protection.

4 Conclusions and Future Work

We propose a novel method for performing data integrity verification on a cloud
database by using Blockchain technology. The proposed method focuses on the
time frame from the moment the log/audit transaction is published by a cloud
database agent software into the Blockchain’s transactions pool and until it
becomes fully committed in the Blockchain network. The obtained results show
that it takes less than 20 ms on average to detect an attack and that it takes an
additional on average less than 50 ms to recover from it. The obtained results
show that the method’s scalability is ensured by a proper choice of the system
parameters involved.

As future work, we consider evaluating our proposed method with Proof-of-
Stake (PoS) consensus algorithm [10] to reduce energy consumption.
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Abstract. Hacking is generally thought of as something done to computer sys-
tems, but this conceptualization can be extended to any system of rules. The tax
code, financial markets, and any system of laws can be hacked. This essay con-
siders a world where AIs can be hackers. This is a generalization of specification
gaming, where vulnerabilities and exploits of our social, economic, and political
systems are discovered and exploited at computer speeds and scale.
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1 Introduction

Artificial intelligence—AI—is an information technology. It consists of software. It runs
on computers. And it is already deeply embedded into our social fabric, both in ways we
understand and in ways we don’t. It will hack our society to a degree and effect unlike
anything that’s come before. I mean this in two very different ways. One, AI systems
will be used to hack us. And two, AI systems will themselves become hackers: finding
vulnerabilities in all sorts of social, economic, and political systems, and then exploiting
them at an unprecedented speed, scale, and scope. It’s not just a difference in degree;
it’s a difference in kind. We risk a future of AI systems hacking other AI systems, with
humans being little more than collateral damage.

This isn’t hyperbole. Okay, maybe it’s a bit of hyperbole, but none of this requires
far-future science-fiction technology. I’m not postulating any “singularity,” where the
AI-learning feedback loop becomes so fast that it outstrips human understanding. I’m not
assuming intelligent androids like Data (Star Trek), R2-D2 (Star Wars), or Marvin the
Paranoid Android (The Hitchhiker’s Guide to the Galaxy). My scenarios don’t require
evil intent on the part of anyone. We don’t need malicious AI systems like Skynet
(Terminator) or the Agents (Matrix). Some of the hacks I will discuss don’t even require
major research breakthroughs. They’ll improve as AI techniques get more sophisticated,
but we can see hints of them in operation today. This hacking will come naturally, as
AIs become more advanced at learning, understanding, and problem-solving.

In this essay, I will talk about the implications of AI hackers. First, I will generalize
“hacking” to include economic, social, and political systems—and also our brains. Next,
I will describe how AI systems will be used to hack us. Then, I will explain how AIs will
hack the economic, social, and political systems that comprise society. Finally, I will
discuss the implications of a world of AI hackers, and point towards possible defenses.
It’s not all as bleak as it might sound.
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2 Hacks and Hacking

First, a definition:
Def: Hack /hak/ (noun) -

1. A clever, unintended exploitation of a system which: a) subverts the rules or norms
of that system, b) at the expense of some other part of that system.

2. Something that a system allows, but that is unintended and unanticipated by its
designers [1].

Notice the details. Hacking is not cheating. It’s following the rules, but subverting
their intent. It’s unintended. It’s an exploitation. It’s “gaming the system.” Caper movies
are filled with hacks. MacGyver was a hacker. Hacks are clever, but not the same as
innovations. And, yes, it’s a subjective definition [2].

Systems tend to be optimized for specific outcomes. Hacking is the pursuit of another
outcome, often at the expense of the original optimization Systems tend be rigid. Systems
limit what we can do and invariably, some of us want to do something else. So we hack.
Not everyone, of course. Everyone isn’t a hacker. But enough of us are.

Hacking is normally thought of something you can do to computers. But hacks can
be perpetrated on any system of rules—including the tax code.

The tax code isn’t software. It doesn’t run on a computer. But you can still think of
it as “code” in the computer sense of the term. It’s a series of algorithms that takes an
input—financial information for the year—and produces an output: the amount of tax
owed. It’s deterministic, or at least it’s supposed to be.

All computer software contains defects, commonly called bugs. These are mistakes:
mistakes in specification, mistakes in programming, mistakes that occur somewhere in
the process of creating the software. It might seem crazy, but modern software applica-
tions generally have hundreds if not thousands of bugs. These bugs are in all the software
that you’re currently using: on your computer, on your phone, in whatever “Internet of
Things” devices you have around. That all of this software works perfectly well most the
time speaks to how obscure and inconsequential these bugs tend to be. You’re unlikely
to encounter them in normal operations, but they’re there.

Some of those bugs introduce security holes. By this I mean something very spe-
cific: bugs that an attacker can deliberately trigger to achieve some condition that
the attacker can take advantage of. In computer-security language, we call these bugs
“vulnerabilities.”

Exploiting a vulnerability is how the Chinese military broke into Equifax in March
2017. A vulnerability in the Apache Struts software package allowed hackers to break
into a consumer complaint web portal. From there, they were able to move to other parts
of the network. They found usernames and passwords that allowed them to access still
other parts of the network, and eventually to download personal information about 147
million people over the course of four months [3].

This is an example of a hack. It’s a way to exploit the system in a way that is both
unanticipated and unintended by the system’s designers—something that advantages the
hacker in some way at the expense of the users the system is supposed to serve.
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The tax code also has bugs. Theymight bemistakes in how the tax laws were written:
errors in the actual words that Congress voted on and the president signed into law. They
might be mistakes in how the tax code is interpreted. They might be oversights in how
parts of the law were conceived, or unintended omissions of some sort or another. They
might arise from unforeseen interactions between different parts of the tax code.

A recent example comes from the 2017 Tax Cuts and Jobs Act. That law was drafted
in haste and in secret, and passed without any time for review by legislators—or even
proofreading. Parts of it were handwritten, and it’s prettymuch inconceivable that anyone
who voted either for or against it knew precisely what was in it. The text contained a
typo that accidentally categorizedmilitary death benefits as earned income. The practical
effect of that mistake was that surviving family members were hit with surprise tax bills
of $10,000 or more [4]. That’s a bug.

It’s not a vulnerability, though, because no one can take advantage of it to reduce their
tax bill. But some bugs in the tax code are also vulnerabilities. For example, there’s a
corporate tax trick called the “Double Irish with a Dutch Sandwich.” It’s a vulnerability
that arises from the interactions between tax laws in multiple countries. Basically, it
involves using a combination of Irish and Dutch subsidiary companies to shift profits
to low- or no-tax jurisdictions. Tech companies are particularly well suited to exploit
this vulnerability; they can assign intellectual property rights to subsidiary companies
abroad, who then transfer cash assets to tax havens [5]. That’s how companies like
Google and Apple have avoided paying their fair share of US taxes despite being US
companies. It’s definitely an unintended and unanticipated use of the tax laws in three
countries. And it can be very profitable for the hackers—in this case, big tech companies
avoiding US taxes—at the expense of everyone else. Estimates are that US companies
avoided paying nearly $200 billion in US taxes in 2017 alone [6].

Somevulnerabilities are deliberately created. Lobbyists are constantly trying to insert
this or that provision into the tax code to benefit their clients. That same 2017 US tax
law that gave rise to unconscionable tax bills to grieving families included a special tax
break for oil and gas investment partnerships, a special exemption that ensures that less
than 1 in 1,000 estates will have to pay estate tax, and language specifically expanding
a pass-through loophole that industry uses to incorporate offshore and avoid US taxes
[7].

Sometimes these vulnerabilities are slipped into law with the knowledge of the
legislator who is sponsoring the amendment, and sometimes they’re not aware of it.
This deliberate insertion is also analogous to something we worry about in software:
programmers deliberately adding backdoors into systems for their own purposes. That’s
not hacking the tax code, or the computer code. It’s hacking the processes that create
them: the legislative process that creates tax law, or the software development process
that creates computer programs.

During the past few years, there has been considerable press given to the possibility
that Chinese companies like Huawei and ZTE have added backdoors to their 5G routing
equipment at the request—or possibly demand—of the Chinese government. It’s cer-
tainly possible, and those vulnerabilities would lie dormant in the system until they’re
used by someone who knows about them.
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In the tax world, bugs and vulnerabilities are called tax loopholes. In the tax world,
taking advantage of these vulnerabilities is called tax avoidance. And there are thousands
of what we in the computer security world would call “black-hat researchers,” who
examine every line of the tax code looking for exploitable vulnerabilities. They’re called
tax attorneys and tax accountants.

Modern software is incredibly complex. Microsoft Windows 10, the latest version
of that operating system, has about 50 million lines of code [8]. More complexity means
more bugs, which means more vulnerabilities. The US tax code is also complex. It
consists of the tax laws passed by Congress, administrative rulings, and judicial rules.
Credible estimates of the size of it all are hard to come by; even experts often have no
idea. The tax laws themselves are about 2,600 pages [9]. IRS regulations and tax rulings
increase that to about 70,000 pages. It’s hard to compare lines of text to lines of computer
code, but both are extremely complex. And in both cases, much of that complexity is
related to how different parts of the codes interact with each other.

We know how to fix vulnerabilities in computer code. We can employ a variety of
tools to detect and fix them before the code is finished. After the code is out in the world,
researchers of various kinds discover them and—most important of all—we want the
vendors to quickly patch them once they become known.

We can sometimes employ these same methods with the tax code. The 2017 tax law
capped income tax deductions for property taxes. This provision didn’t come into force
in 2018, so someone came up with the clever hack to prepay 2018 property taxes in
2017. Just before the end of the year, the IRS ruled about when that was legal and when
it wasn’t [10]. Short answer: most of the time, it wasn’t.

It’s often not this easy. Some hacks are written into the law, or can’t be ruled away.
Passing any tax legislation is a big deal, especially in theUS,where the issue is so partisan
and contentious. (It’s been almost four years, and that earned income tax bug for military
families still hasn’t been fixed. And that’s an easy one; everyone acknowledges it was
a mistake.) It can be hard to figure out who is supposed to patch the tax code: is the
legislature, the courts, the tax authorities? And then it can take years. We simply don’t
have the ability to patch tax code with anywhere near the same agility that we have to
patch software.

2.1 The Ubiquity of Hacking

Everything is a system, every system can be hacked, and humans are natural hackers.
Airline frequent-flier programs are hacked. Card counting in blackjack is a hack.

Sports are hacked all the time. Someone first figured out that a curved hockey stick blade
allowed for faster and more accurate shots but also a more dangerous game, something
the rules didn’t talk about because no one had thought of it before. Formula One racing
is full of hacks, as teams figure out ways to modify car designs that are not specifically
prohibited by the rulebook but nonetheless subvert its intent.

The history of finance is a history of hacks. Again and again, financial institutions and
traders look for loopholes in the rules—things that are not expressly prohibited, but are
unintended subversions of the underlying systems—that give them an advantage. Uber,
Airbnb, and other gig-economy companies hack government regulations. The filibuster
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is an ancient hack, first invented in ancient Rome. So are hidden provisions in legislation.
Gerrymandering is a hack of the political process.

And finally, people can be hacked. Our brain is a system, evolved over millions
of years to keep us alive and—more importantly—to keep us reproducing. It’s been
optimized through continuous interaction with the environment. But it’s been optimized
for humans who live in small family groups in the East African highlands in 100,000
BCE. It’s not as well suited for twenty-first-century New York, or Tokyo, or Delhi. And
because it encompasses many cognitive shortcuts—it evolves, but not on any scale that
matters here—it can be manipulated.

Cognitive hacking is powerful. Many of the robust social systems our society relies
on— democracy, market economics, and so on—depend on humans making appropriate
decisions. This process can be hacked in many different ways. Social media hacks our
attention. Personalized to our attitudes and behavior, modern advertising is a hack of
our systems of persuasion. Disinformation hacks our common understanding of real-
ity. Terrorism hacks our cognitive systems of fear and risk assessment by convincing
people that it is a bigger threat than it actually is [11]. It’s horrifying, vivid, spectac-
ular, random—in that anyone could be its next victim—and malicious. Those are the
very things that cause us to exaggerate the risk and overreact [12]. Social engineering,
the conventional hacker tactic of convincing someone to divulge their login credentials
or otherwise do something beneficial to the hacker, is much more a hack of trust and
authority than a hack of any computer system.

What’s new are computers. Computers are systems, and are hacked directly. But
what’smore interesting is the computerization ofmore traditional systems. Finance, taxa-
tion, regulatory compliance, elections—all these andmore have been computerized. And
when something is computerized, the way it can be hacked changes. Computerization
accelerates hacking across three dimensions: speed, scale, and scope.

Computer speed modifies the nature of hacks. Take a simple concept—like stock
trading—and automate it. It becomes something different. It may be doing the same
thing it always did, but it’s doing it at superhuman speed. An example is high-frequency
trading, something unintended and unanticipated by those who designed early markets.

Scale, too. Computerization allows systems to grow much larger than they could
otherwise, which changes the scale of hacking. The very notion of “too big to fail” is
a hack, allowing companies to use society as a last-ditch insurance policy against their
bad decision making.

Finally, scope. Computers are everywhere, affecting every aspect of our lives. This
means that new concepts in computer hacking are potentially applicable everywhere,
with varying results.

Not all systems are equally hackable. Complex systems with many rules are par-
ticularly vulnerable, simply because there are more possibilities for unanticipated and
unintended consequences. This is certainly true for computer systems—I’ve written in
the past that complexity is theworst enemyof security [13]—and it’s also true for systems
like the tax code, the financial system, and AIs. Systems constrained by more flexible
social norms and not by rigidly defined rules are more vulnerable to hacking, because
they leave themselves more open to interpretation and therefore have more loopholes.
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Even so, vulnerabilities will always remain, and hacks will always be possible. In
1930, the mathematician Kurt Gödel proved that all mathematical systems are either
incomplete or inconsistent. I believe this is true more generally. Systems will always
have ambiguities or inconsistencies, and they will always be exploitable. And there will
always be people who want to exploit them.

3 AIs Hacking Us

In 2016, The Georgia Institute of Technology published a research study on human
trust in robots [14]. The study employed a non-anthropomorphic robot that assisted with
navigation through a building, providing directions such as “This way to the exit.” First,
participants interacted with the robot in a normal setting to experience its performance,
whichwas deliberately poor. Then, they had to decidewhether or not to follow the robot’s
commands in a simulated emergency. In the latter situation, all twenty-six participants
obeyed the robot, despite having observed just moments before that the robot had lousy
navigational skills. The degree of trust they placed in this machine was striking: when
the robot pointed to a dark room with no clear exit, the majority of people obeyed it,
rather than safely exiting by the door through which they had entered. The researchers
ran similar experiments with other robots that seemed to malfunction. Again, subjects
followed these robots in an emergency setting, apparently abandoning their common
sense. It seems that robots can naturally hack our trust.

3.1 Artificial Intelligence and Robotics

We could spend pages defining AI. In 1968, AI pioneer Marvin Minsky defined it as
“the science of making machines do things that would require intelligence if done by
men” [15]. The US Department of Defense uses: “the ability of machines to perform
tasks that normally require human intelligence” [16]. The 1950 version of the Turing
test—called the “imitation game” in the original discussion—focused on a computer
program that humans couldn’t distinguish from an actual human [17]. For our purposes,
AI is an umbrella term encompassing a broad array of decision-making technologies
that simulate human thinking.

One differentiation I need to make is between specialized—sometimes called “nar-
row”—AI and general AI. General AI is what you see in the movies. It’s AI that can
sense, think, and act in a very general and human way. If it’s smarter than humans, it’s
called “artificial superintelligence.” Combine it with robotics and you have an android,
one that may look more or less like a human. The movie robots that try to destroy
humanity are all general AI.

There’s been a lot of practical research going into how to create general AI, and a lot
of theoretical research about how to design these systems so they don’t do thingswe don’t
want them to, like destroy humanity. And while this is fascinating work, encompassing
fields from computer science to sociology to philosophy, its practical applications are
probably decades away. I want to focus instead on specialized AI, because that’s what’s
practical now.
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Specialized AI is designed for a specific task. An example is the system that controls
a self-driving car. It knows how to steer the vehicle, how to follow traffic laws, how to
avoid getting into accidents, and what to do when something unexpected happens—like
a child’s ball suddenly bouncing into the road. Specialized AI knows a lot and can make
decisions based on that knowledge, but only in this limited domain.

One common joke among AI researchers is that as soon as something works, it’s
no longer AI; it’s just software. That might make AI research somewhat depressing,
since by definition the only things that count are failures, but there’s some truth to it. AI
is inherently a mystifying science-fiction term. Once it becomes reality, it’s no longer
mystifying. We used to assume that reading chest X-rays required a radiologist: that is,
an intelligent human with appropriate training. Now we realize that it’s a rote task that
can also be performed by a computer.

What’s really going on is that there is a continuum of decision-making technologies
and systems, ranging from a simple electromechanical thermostat that operates a furnace
in response to changing temperatures to a science-fictional android. What makes some-
thing AI often depends on the complexity of the tasks performed and the complexity
of the environment in which those tasks are performed. The thermostat performs a very
simple task that only has to take into account a very simple aspect of the environment.
It doesn’t even need to involve a computer. A modern digital thermostat might be able
to sense who is in the room and make predictions about future heat needs based on
both usage and weather forecast, as well as citywide power consumption and second-
by-second energy costs. A futuristic thermostat might act like a thoughtful and caring
butler, whatever that would mean in the context of adjusting the ambient temperature.

I would rather avoid these definitional debates, because they largely don’t matter for
our purposes. In addition to decision-making, the relevant qualities of the systems I’ll
be discussing are autonomy, automation, and physical agency. A thermostat has limited
automation and physical agency, and no autonomy. A system that predicts criminal
recidivismhas nophysical agency; it justmakes recommendations to a judge.Adriverless
car has someof all three.R2D2has a lot of all three, although for some reason its designers
left out English speech synthesis.

Robotics also has a popular mythology and a less-flashy reality. Like AI, there are
many different definitions of the term. I like robot ethicist Kate Darling’s definition:
“physically embodied objects that can sense, think, and act on their environments through
physical motion” [18]. In movies and television, that’s often artificial people: androids.
Again, I prefer to focus on technologies that are more prosaic and near term. For our
purposes, robotics is autonomy, automation, and physical agency dialed way up. It’s
“cyber-physical autonomy”: AI technology inside objects that can interact with the
world in a direct, physical manner.

3.2 Human-Like AIs

People have long ascribed human-like qualities to computer programs. In the 1960s,
programmer JosephWeizenbaumcreated a primitive therapist-mimicking conversational
program called ELIZA. He was amazed that people would confide deeply personal
secrets to what they knew was a dumb computer program. Weizenbaum’s secretary
would even ask him to leave the room, so that she could talk to ELIZA in private [19].
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Today, people are polite to voice assistants like Alexa and Siri [20]. Siri even complains
when you’re mean to it: “That’s not very nice,” it says—because it’s programmed to, of
course.

Numerous experiments bear similar results. Research subjects would rate a com-
puter’s performance less critically if they gave the rating on the computer they were
criticizing, indicating that they didn’t want to hurt its feelings [21]. In another experi-
ment, if a computer told a research subject some obviously fictional piece of “personal
information,” the subject was likely to reciprocate by sharing actual personal informa-
tion [22]. The power of reciprocation is something that psychologists study. It’s a hack
that people use, too.

It’s not just that we’ll treat AIs as people. They’ll also act like people in ways that
will be deliberately designed to fool us. They’ll employ cognitive hacks.

During the 2016 US election, about a fifth of all political tweets were posted by bots
[23]. For the UK Brexit vote of the same year, it was a third [24]. An Oxford Internet
Institute report from2019 found evidence of bots being used to spread propaganda in fifty
countries [25]. These tended to be simple programs mindlessly repeating slogans. For
example, a quarter million pro-Saudi “We all have trust in [crown prince] Mohammed
bin Salman” tweets were posted following the 2018 murder of Jamal Khashoggi [26].

In 2017, the Federal Communications Commission had an online public-comment
period for its plans to repeal net neutrality. A staggering 22 million comments were
received. Many of them—maybe half—were submitted using stolen identities [27].
These fake comments were also crude; 1.3 million were generated from the same tem-
plate, with some words altered to make them appear unique [28]. They didn’t stand up
to even cursory scrutiny.

Efforts like these will only get more sophisticated. For years, AI programs have
been writing news stories about sports and finance for real news organizations like the
Associated Press [29, 30]. The constrained nature of those topics made them easier for
an AI. They’re now starting to write more general stories. Research projects like Open
AI’s GPT-3 are expanding the capabilities of what AI-driven text generation can do [31].
These systems can be fed actual facts and write true stories, but they can just as easily
be fed untruths and write fake news.

It doesn’t take much imagination to see how AI will degrade political discourse.
Already, AI-driven personas can write personalized letters to newspapers and elected
officials, leave intelligible comments on news sites andmessage boards, and intelligently
debate politics on social media [32]. These systems will only get better: more sophis-
ticated, more articulate, more personal, and harder to distinguish from actual human
beings.

In a recent experiment, researchers used a text-generation program to submit 1,000
comments in response to a government request for public input on aMedicaid issue [33].
They all sounded unique, like real people advocating a specific policy position. They
fooled the Medicaid.gov administrators, who accepted them as genuine concerns from
actual human beings. The researchers subsequently identified the comments and asked
for them to be removed, so that no actual policy debate would be unfairly biased. Others
won’t be so ethical.
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These techniques are already being used. An online propaganda campaign used
AI-generated headshots to create fake journalists [34]. China experimented with AI-
generated text messages designed to influence the 2020 Taiwanese election [35]. Deep-
fake technology—AI techniques to create real videos of fake events, often with actual
people saying things they didn’t actually say—are being used politically [36].

One example of how this will unfold is in “persona bots.” These are AIs posing as
individuals on socialmedia and in other digital groups. They have histories, personalities,
and communications styles. They don’t constantly spew propaganda. They hang out
in various interest groups: gardening, knitting, model railroading, whatever. They act
as normal members of those communities, posting and commenting and discussing.
Systems like GPT-3 will make it easy for those AIs to mine previous conversations and
related Internet content and appear knowledgeable. Then, once in a while, the AI posts
something relevant to a political issue. Maybe it’s an article about an Alaska healthcare
worker having an allergic reaction to theCOVID-19 vaccine,with aworried commentary.
Or maybe it’s something about a recent election, or racial justice, or anything that’s
polarizing. One persona bot can’t move public opinion, but what if there were thousands
of them? Millions?

This has been called “computational propaganda,” [37] and will change the way we
view communication. AI will make the future supply of disinformation infinite [38].
Persona bots will break the “notice-and-comment” rulemaking process, by flooding
government agencies with fake comments. They may also break community discourse.

These systems will affect us at the personal level as well. Earlier I mentioned social
engineering. One common hacker tactic is phishing emails that purport to be from some-
one they’re not, intended to convince the recipient to do something she shouldn’t. Most
phishing emails are generic and easily tagged as spam. The more effective phishing
emails—the ones that result in people and companies losing lots of money—are per-
sonalized. For example, an email that impersonates the CEO to someone in the finance
department, asking for a particular wire transfer, can be particularly effective [39]. Voice
can be even more effective [40]. The laborious task of customizing phishing attacks
could be automated by AI techniques, allowing marketers to send out personalized
advertisements, and phishing scammers to send out individually targeted emails.

It’s not that being persuaded by an AI is fundamentally more damaging than being
persuaded by another human, it’s that AIs will be able to do it at computer speed and
scale. Today’s cognitive hacks are crude: a fake newspaper article designed to fool only
the most gullible, or a persuasive nudge designed to affect only the most desperate.
AI has the potential for every one of those hacks to be microtargeted: personalized,
optimized, and individually delivered [41]. Old-style con games are individually crafted
person-to-person cognitive hacks. Advertising messages are bulk broadcast cognitive
hacks. AI techniques have the potential to blend aspects of both of those techniques.

3.3 Robots Hacking Us

The addition of robotics will only make these hacks more effective, something Kate
Darling chronicled in her book The New Breed [18]. We humans have developed some
pretty effective cognitive shortcuts to recognize other people. We see faces everywhere;
two dots over a horizontal line looks like a face without any trouble. This is why even
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minimalist illustrations are so effective. If something has a face, then it’s a creature
of some sort: with intentions, feelings, and everything else that comes with real-world
faces. If that something speaks or, even better, converses, thenwebelieve it has intentions,
desires, and agency.

Robots are no exception. Many people have social relationships with their robot
vacuums, even complaining when the company would offer to replace rather than repair
“their” Roomba [42]. A US Army–developed anti-landmine robot ran into problems
when a colonel refused to allow the insect-shaped device to continue to harm itself by
stepping on mines [43]. A Harvard robot could convince students to let it in dorms by
pretending to be a food-delivery robot [44]. And Boxie, a childlike talking robot at MIT,
could persuade people to answer personal questions just by asking nicely [45].

The human nurturing instinct isn’t solely genetically focused. We can experience
nurturing feelings towards adopted children, and we can feel the same instincts arise
when we interact with the children of friends or even strangers–or puppies. At least
some of our response is inspired by the appearance and behavior of children. Children
have large heads in proportion to their bodies, and large eyes in proportion to their heads.
They talk with a higher-pitched voice than adults. And we respond to all of this.

Artists have taken advantage of this for generations to make their creations appear
more sympathetic. Children’s dolls are designed this way. Cartoon characters are drawn
this way, as far back as Betty Boop in the 1930s and Bambi in 1942. In the 2019 live-
action movie Alita: Battle Angel, the main character had her eyes computer-enhanced
to be larger [46].

Anthropomorphic robots are an emotionally persuasive technology, and AI will only
amplify their attractiveness. As AI mimics humans, or even animals, it will hijack all
the mechanisms that humans use to hack each other. As psychologist Sherry Turkle
wrote in 2010: “When robots make eye contact, recognize faces, mirror human gestures,
they push our Darwinian buttons, exhibiting the kind of behavior people associate with
sentience, intentions, and emotions” [47]. That is, they hack our brains.

We might intuitively know that it’s just a plastic green dinosaur. But a large face
paired with a small body makes us think of it as a child. Suddenly we’re thinking of it
as a creature with feelings, and will protect it from harm [18]. And while that may be
benign, what happens when that robot looks at its human owners with its big, sad eyes
and asks them to buy it a software upgrade [48]?

Because we humans are prone to making a category error and treating robots as
living creatures with feelings and intentions, we are prone to being manipulated by
them. Robots could persuade us to do things we might not do otherwise. They could
scare us into not doing things we might otherwise do. In one experiment, a robot was
able to exert “peer pressure” on subjects, encouraging them to take more risks [49]. How
soon before a sex robot suggests in-app purchases in the heat of the moment [50]?

AIs will get better at all of this. Already they are trying to detect emotions by analyz-
ing ourwritings [51], reading our facial expressions [52], ormonitoring our breathing and
heartrate [53]. They get it wrong a lot of the time, but it is likely that they will improve.
And, like so many areas of AI, they will eventually surpass people in capability. This
will allow them to more precisely manipulate us.
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As AIs and autonomous robots take on more real-world tasks, human trust in
autonomous systems will be hacked with dangerous and costly results. But never for-
get that there are human hackers controlling the AI hackers. All of the systems will be
designed and paid for by humans who want them to manipulate us in a particular way
for a particular purpose. I’ll talk more about this later.

4 When AIs Become Hackers

Hacker “Capture the Flag” is basically the outdoor game played on computer networks.
Teams of hackers defend their own computers while attacking other teams’. It’s a con-
trolled setting for what computer hackers do in real life: finding and fixing vulnerabilities
in their own systems, and exploiting them in others’.

The competition has been a mainstay at hacker gatherings since the mid-1990s.
These days, dozens of teams from around the world compete in weekend-long marathon
events held all over the world. People train for months. Winning is a big deal. If you’re
into this sort of thing, it’s pretty much the most fun you can possibly have on the Internet
without committing multiple felonies.

In 2016, DARPA ran a similarly styled event for AI [54]. One hundred teams entered
their systems into the Cyber Grand Challenge. After completion of qualifying rounds,
seven finalists competed at the DEFCON hacker convention in Las Vegas. The compe-
tition occurred in a specially designed test environment filled with custom software that
had never been analyzed or tested. The AIs were given ten hours to find vulnerabili-
ties to exploit against the other AIs in the competition, and to patch themselves against
exploitation.A systemcalledMayhem, createdby a teamofPittsburgh computer-security
researchers, won. The researchers have since commercialized the technology, which is
now busily defending networks for customers like the Department of Defense [55].

Therewas a human-teamcapture-the-flag event atDEFCON that same year.Mayhem
was invited to participate as the only non-human team, and came in last. You can easily
imagine how this mixed competition would unfold in the future. AI entrants will improve
every year, because the core technologies are all improving. Thehuman teamswill largely
stay the same, because humans remain humans even as our tools improve. Eventually
the AIs will routinely beat the humans. My guess is that it’ll take less than a decade.
It will be years before we have entirely autonomous AI cyberattack capabilities, but AI
technologies are already transforming the nature of cyberattack [56].

One area that seems particularly fruitful for AI systems is vulnerability finding.
Going through software code line by line is exactly the sort of tedious problem at which
AIs excel, if they can only be taught how to recognize a vulnerability [57].Many domain-
specific challenges will need to be addressed, of course, but there is a healthy amount of
academic literature on the topic—and research is continuing [58]. There’s every reason to
expect AI systems will improve over time, and some reason to expect them to eventually
become very good at it.

The implications extend far beyond computer networks. There’s no reason that AIs
can’t find new vulnerabilities—thousands of them—in many of the systems I mentioned
earlier: the tax code, banking regulations, political processes. Whenever there’s a large
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number of rules that interact with each other, we should expect AIs to eventually be find-
ing the vulnerabilities and creating the exploits. Already AIs are looking for loopholes
in contracts [59].

This will all improve with time. Hackers, of any kind, are only as good as their
understanding of the system they’re targeting and how it interacts with the rest of the
world. AIs initially capture this understanding through the data they’re trained with, but
it continues to improve as it is used. Modern AIs are constantly improving based on
ingesting new data and tweaking their own internal workings accordingly. All of this
data continually trains the AI, and adds to its experience. The AI evolves and improves
based on these experiences over the course of its operation. This is why autonomous
vehicle systems brag about number of road hours they’ve had.

There are really two different but related problems here. The first is that an AI might
be instructed to hack a system. Someone might feed an AI the world’s tax codes or
the world’s financial regulations, with the intent of having it create a slew of profitable
hacks. Theother is that anAImight naturally, albeit inadvertently, hack a system.Both are
dangerous, but the second is more dangerous because we might never know it happened.

4.1 The Explainability Problem

In The Hitchhiker’s Guide to the Galaxy, a race of hyper-intelligent, pan-dimensional
beings build the universe’s most powerful computer, Deep Thought, to answer the ulti-
mate question to life, the universe, and everything.After 7.5millionyears of computation,
Deep Thought informed them that the answer was 42. And was unable to explain its
answer, or even what the question was [60].

That, in a nutshell, is the explainability problem. Modern AI systems are essentially
black boxes. Data goes in at one end, and an answer comes out the other. It can be impos-
sible to understand how the system reached its conclusion, even if you are a programmer
and look at the code. We don’t know precisely why an AI image-classification system
mistook a turtle for a rifle, or a stop sign with a few carefully designed stickers on it as
a “Speed Limit 45” sign: both real examples [61].

AIs don’t solve problems like humans do. Their limitations are different than ours.
They’ll consider more possible solutions than we might. More importantly, they’ll look
at more types of solutions. They’ll go down paths that we simply have not considered,
paths more complex than the sorts of things we generally keep in mind. (Our cognitive
limits on the amount of simultaneous information we can mentally juggle has long been
described as “the magical number seven plus or minus two” [62, 63]. My point is not
to settle on a number, but to point out that an AI system has nothing even remotely like
that limitation.)

In 2016, the AI program AlphaGo won a five-game match against one of the world’s
best Go players, Lee Sedol—something that shocked both the AI and the Go-playing
worlds. AlphaGo’s most famous move was move 37 of game 2. It’s hard to explain
without diving deep into Go strategy, but it was a move that no human would ever have
chosen to make [64].

In 2015, a research group fed an AI system called Deep Patient health and medical
data from approximately 700,000 individuals, and testedwhether or not the system could
predict diseases. The result was a success.Weirdly, Deep Patient appears to performwell
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at anticipating the onset of psychiatric disorders like schizophrenia—even though a first
psychotic episode is nearly impossible for physicians to predict [65]. It sounds great, but
Deep Patient provides no explanation for the basis of a diagnosis, and the researchers
have no idea how it comes to its conclusions. A doctor either can trust or ignore the
computer, but can’t query it for more info.

That’s not ideal. What we want is for the AI system to not only spit out an answer,
but also provide some explanation of its answer in a format that humans can understand.
We want those so we are more comfortable trusting the AI’s decisions, but this is also
how we can ensure that our AI systems haven’t been hacked to make biased decisions.

Researchers are working on explainable AI [66]; in 2017, DARPA launched a $75
million research fund for a dozen programs in the area [67]. And while there will be
advances in this field, there seems to be a trade-off between capability and explainability.
Explanations are a cognitive shorthand used by humans, suited for the way humans
make decisions. AI decisions simply might not be conducive to human-understandable
explanations, and forcing those explanations might pose an additional constraint that
could affect the quality of decisions made by an AI system. It’s unclear where all this
research will end up. In the near term, AI is becoming more and more opaque, as the
systems get more complex and less human-like—and less explainable.

4.2 Reward Hacking

As I wrote above, AIs don’t solve problems in the same way that people do. They will
invariably stumble on solutions that we humans might never anticipated—and some
will subvert the intent of the system. That’s because AIs don’t think in terms of the
implications, context, norms, and values that humans share and take for granted.

Reward hacking involves an AI achieving a goal in a way the AI’s designers neither
wanted nor intended [68, 69]. Some actual examples:

In a one-on-one soccer simulation, the player was supposed to score against the
goalie. Instead of directly kicking the ball into the goal, the AI system figured out that
if it kicked the ball out of bounds, the opponent—in this case the goalie—would have
to throw the ball back in, leaving the goal undefended [70].

In a stacking task, the AI was supposed to stack blocks. Height was measured by
the position of the bottom face of one particular block. The AI learned to flip that block
upside down—so that its bottom faced up—rather than stack it on top of another block.
(Obviously, the rules failed to explicitly state that the “bottom” of the block should
always point downward [71].)

In a simulated environment for “evolved” creatures, the AI was allowed to modify
its own physical characteristics in order to better fulfill its objectives. The AI figured out
that instead of running, it could make itself tall enough to cross a distant finish line by
falling over it [72].

These are all hacks. You can blame them on poorly specified goals or rewards, and
youwould be correct. You can point out that they all occurred in simulated environments,
and you would also be correct. But the problem is more general: AIs are designed to
optimize towards a goal. In doing so, they will naturally and inadvertently hack systems
in ways we won’t expect.
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Imagine a robotic vacuum assigned the task of cleaning up any mess it sees. It might
disable its vision so that it can’t see anymesses, or covermesses upwith opaquematerials
so it doesn’t see them [73]. In 2018, an entrepreneurial—or perhaps just bored—pro-
grammer wanted his robot vacuum to stop bumping into furniture. He trained an AI by
rewarding it for not hitting the bumper sensors [74]. Instead of learning not to bump
into things, the AI learned to drive the vacuum backwards because there are no bumper
sensors on the back of the device.

Any good AI system will naturally find hacks. If are problems, inconsistencies, or
loopholes in the rules, and if those properties lead to an acceptable solution as defined
by the rules, then AIs will find them. We might look at what the AI did and say, “well,
technically it followed the rules.” Yet we humans sense a deviation, a cheat, a hack
because we understand the context of the problem and have different expectations. AI
researchers call this problem “goal alignment.”

We all learned about this problem as children, with the King Midas story. When
the god Dionysus grants him a wish, Midas asks that everything he touches turns to
gold. Midas ends up starving and miserable when his food, drink, and daughter all
turn to inedible, unpotable, unlovable gold. That’s a goal alignment problem; Midas
programmed the wrong goal into the system.

We also know that genies are very precise about the wording of wishes, and can
be maliciously pedantic when granting them. But here’s the thing: there is no way to
outsmart the genie. Whatever you wish for, he will always be able to it in a way that you
wish he hadn’t. The genie will always be able to hack your wish.

The problem is more general, though. In human language and thought, goals and
desires are always underspecified [75]. We never describe all of the options. We never
delineate all of the caveats and exceptions and provisos. We never close off all the
avenues for hacking. We can’t. Any goal we specify will necessarily be incomplete.

This is largely okay in human interactions, because people understand context and
usually act in good faith. We are all socialized, and in the process of becoming so, we
generally acquire common sense about how people and the world works. We fill any
gaps in our understanding with both context and goodwill.

If I asked you to get me some coffee, you would probably go to the nearest coffeepot
and pour me a cup, or maybe to walk to the corner coffee shop and buy one. You would
not bring me a pound of raw beans, or go online and buy a truckload of raw beans. You
would not buy a coffee plantation in Costa Rica. You would also not look for the person
closest to you holding a cup of coffee and rip it out of their hands. Youwouldn’t bringme
week-old cold coffee, or a used paper towel that had wiped up a coffee spill. I wouldn’t
have to specify any of that. You would just know.

Similarly, if I ask you to develop a technology that would turn things to gold on
touch, you wouldn’t build it so that it starved the person using it. I wouldn’t have to
specify that; you would just know.

We can’t completely specify goals to an AI. And AIs won’t be able to completely
understand context. In a TED talk, AI researcher Stuart Russell joked about a fictional
AI assistant causing an airplane delay in order to delay someone’s arrival at a dinner
engagement. The audience laughed, but how would a computer program know that
causing an airplane computer malfunction is not an appropriate response to someone
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who wants to get out of dinner [76]? (Internet joke from 2017: Jeff Bezos: “Alexa, buy
me something on Whole Foods.” Alexa: “OK, buying Whole Foods.”).

In 2015, Volkswagen was caught cheating on emissions control tests. It didn’t forge
test results; it designed the cars’ computers to do the cheating for them. Engineers
programmed the software in the cars’ onboard computers to detect when the car was
undergoing an emissions test. The computer then activated the car’s emissions-curbing
systems, but only for the duration of the test. The result was that the cars had superior
performance on the road. They also emitted up to forty times the amount of nitrogen
oxides the EPA allowed, but only when the EPA wasn’t watching [77].

The Volkswagen story doesn’t involve AI—human engineers programmed a regular
computer system to cheat—but it illustrates the problem nonetheless. Volkswagen got
awaywith it for over ten years because computer code is complex and difficult to analyze.
It’s hard to figure out exactly what software is doing, and it’s similarly hard to look at a
car and figure out what it’s doing. As long as the programmers don’t say anything, a hack
like that is likely to remain undetected for a long time; possibly forever. In this case, the
only reason we know about Volkswagen’s actions is that a group of scientists at West
Virginia University tested the cars’ performance on the road. Basically, the scientists
tested the car without the software realizing it [78].

If I asked you to design a car’s engine control software to maximize performance
while still passing emissions control tests, you wouldn’t design the software to cheat
without understanding that you were cheating. This simply isn’t true for an AI; it doesn’t
understand the abstract concept of cheating. It will think “out of the box” simply because
it won’t have a conception of the box, or of the limitations of existing human solutions.
Or of ethics. It won’t understand that the Volkswagen solution harms others, that it
undermines the intent of the emissions control tests, or that it is breaking the law.

This is similar to Uber’s Greyball tool [79]. Uber created special software would
identify potential regulators and present then with an alternative regulation-complying
Uber service instead of what they were actually doing. Again, this is a story of humans
cheating. But we can easily imagine an AI coming up with the same “solution.” It won’t
even realize that it’s hacking the system. And because of the explainability problem, we
humans might never realize it either.

4.3 AIs as Natural Hackers

Unless the programmers specify the goal of not behaving differently when being tested,
an AI might come up with the same hack. The programmers will be satisfied. The
accountants will be ecstatic. And because of the explainability problem, no one will
realize what the AI did. And yes, now that we know the Volkswagen story, the program-
mers can explicitly set the goal to avoid that particular hack, but there are other hacks
that the programmers will not anticipate. The lesson of the genie is that there will always
be hacks the programmers will not anticipate.

The worry isn’t limited to the obvious hacks. If your driverless car navigation system
satisfies the goal of maintaining a high speed by spinning in circles—a real example
[80]—programmers will notice this behavior and modify the goal accordingly. The
behavior may show up in testing, but we will probably never see it occur on the road.
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The greatest worry lies in the hacks that are less obvious—the ones we’ll never know
about because their effects are subtle.

We’ve already seen the first generation of this. Much has been written about rec-
ommendation engines, and how they push people towards extreme content [81]. They
weren’t programmed to do this; it’s a property that naturally emerged as the systems
continuously tried things, saw the results, and then modified themselves to do more of
what resulted inmore user engagement and less of what didn’t. The algorithms learned to
push more extreme content to users because that’s what gets people reading or watching
more. It didn’t take a bad actor to create this hack: a pretty basic automated system found
it on its own. And most of us didn’t realize that it was happening (except for the folks at
Facebook, who ignored their own research demonstrating that it was happening) [82].

Similarly, in 2015, anAI taught itself to play the 1970s computer gameBreakout. The
AI wasn’t told anything about the game’s rules or strategy. It was just given the controls,
and rewarded for maximizing its score. That it learned how to play isn’t interesting;
everyone expected that. But it independently discovered, and optimized to a degree not
seen in human players, the tactic of “tunneling” through one column of bricks to bounce
the ball off the back wall [83].

Nothing I’m saying here will be news to AI researchers, and many are currently
considering ways to defend against goal and reward hacking. One solution is to teach
AIs context. The general term for this sort of research is “value alignment”: How do
we create AIs that mirror our values? You can think about solutions in terms of two
extremes. The first is that we can explicitly specify those values. That can be done today,
more or less, but is vulnerable to all of the hacking I just described. The other extreme
is that we can create AIs that learn our values, possibly by observing humans in action,
or by ingesting all of humanity’s writings: our history, our literature, our philosophy,
and so on. That is many years out (AI researchers disagree on the time scale). Most of
current research straddles these two extremes [84].

Of course, you can easily imagine the problems that might arise by having AIs
align themselves to historical or observed human values. Whose values should an AI
mirror? A Somali man? A Singaporean woman? The average of the two, whatever that
means? We humans have contradictory values. Any individual person’s values might be
irrational, immoral, or based on false information. There’s a lot of immorality in our
history, literature, and philosophy. We humans are often not very good examples of the
sorts of humans we should be.

4.4 From Science Fiction to Reality

The feasibility of any of this depends a lot on the specific system being modeled and
hacked. For an AI to even start on optimizing a solution, let alone hacking a com-
pletely novel solution, all of the rules of the environment must be formalized in a way
the computer can understand. Goals—known in AI as objective functions—need to be
established. The AI needs some sort of feedback on how well it is doing so that it can
improve its performance.

Sometimes this is a trivial matter. For a game like Go, it’s easy. The rules, objective,
and feedback—did you win or lose?—are all precisely specified. And there’s nothing
outside of those things to muddy the waters. The pattern-matching machine learning AI
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GPT-3 can write coherent essays because its “world” is just text. This is why most of
the current examples of goal and reward hacking come from simulated environments.
Those are artificial and constrained, with all of the rules specified to the AI.

What matters is the ambiguity in a system. We can imagine feeding the world’s tax
laws into an AI, because the tax code consists of formulas that determine the amount
of tax owed, but ambiguity exists in some of those laws. That ambiguity is difficult to
translate into code, which means that an AI will have trouble dealing with it—and that
there will be full employment for tax lawyers for the foreseeable future.

Most human systems are evenmore ambiguous. It’s hard to imagine anAI coming up
with a real-world sports hack like curving a hockey stick.AnAIwould have to understand
not just the rules of the game, but the physiology of the players, the aerodynamics of the
stick and the puck, and so on and so on. It’s not impossible, but it’s still science fiction.

Probably the first place to look for AI-generated hacks are financial systems, since
those rules are designed to be algorithmically tractable. We can imagine equipping an
AI with all the world’s financial information in real time, plus all of the world’s laws
and regulations, plus newsfeeds and anything else we think might be relevant; and then
giving it the goal of “maximum profit legally.” My guess is that this isn’t very far off,
and that the result will be all sorts of novel hacks. And there will probably be some hacks
that are simply beyond human comprehension, which means we’ll never realize they’re
happening.

This ambiguity ends up being a near-term security defense against AI hacking. We
won’t have AI-generated sports hacks until androids actually play the sports, or until a
generalized AI is developed that is capable of understanding the world broadly, and with
ethical nuance. It’s similar with casino game hacks, or hacks of the legislative process.
(Could an AI independently discover gerrymandering?) It’ll be a long time before AIs
will be capable of modeling and simulating the ways that people work, individually and
in groups, and before they are capable of coming up with novel ways to hack legislative
processes.

There’s another issue, and one that I’ve largely ignored. Two different flavors of AI
have emerged since the 1950s. The earliest AI research was in something called “sym-
bolic AI,” and it focused on simulating human understanding through a goal-oriented
manipulation of elements, symbols, and facts. This has turned out to be incredibly hard,
and not a lot of practical progress has been made in the past few decades. The other
flavor is “neural networks.” And while it is also an old idea, it has really only taken off
in the last decade because of giant leaps in computation and data. This is the AI that
ingests training data and gets better with experience that translates into even more data.
It’s gazillions of computational cycles and huge datasets that allow neural networks to
do more things, like beat world-champion Go players and engage in plausible-sounding
text conversations. That said, they do not “understand” language, or “think” in any real
way. They basically make predictions based on what they’ve “learned” from the past: a
kind of sophisticated statistical parroting. And while it is surprising is just how much
a model like that can accomplish, there’s a lot they can’t do. And much of what I am
writing about here could easily fall into that category.

But here’s the thing about AI. Advances are discontinuous and counterintuitive.
Things that seem easy turn out to be hard, and things that seem hard turn out to be
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easy. We don’t know until the breakthrough occurs. When I was a college student in
the early 1980s, we were taught that that the game of Go would never be mastered by a
computer because of the enormous complexity of the game: not the rules, but the number
of possible moves. And now a computer has beaten a human world champion. Some of
it was due to advances in the science of AI, but most of the improvement was just from
throwing more computing power at the problem.

So while a world filled with AI hackers is still a science-fiction problem, it’s not
a stupid science-fiction problem in a galaxy far far away. It’s primarily tomorrow’s
problem, but we’re seeing precursors of it today. We had better start thinking about
enforceable, understandable, ethical solutions.

5 The Implications of AI Hackers

Hacking is as old as humanity. We are creative problem solvers. We are loophole
exploiters. We manipulate systems to serve our interests. We strive for more influence,
more power, more wealth. Power serves power, and hacking has forever been a part of
that.

Still, no humans maximize their own interests without constraint. Even sociopaths
are constrained by the complexities of society and their own contradictory impulses.
They’re concerned about their reputation, or punishment. They have limited time. These
very human qualities limit hacking.

In his 2005 book, The Corporation, Joel Baken likened corporations to immortal
sociopaths [85]. Because they are optimized profit-makingmachines, and try to optimize
the welfare of their managers, they are more likely to hack systems for their own benefit.
Still, corporations consist of people, and it’s the people that make the decisions. Even in
a world of AI systems dynamically setting prices—airline seats is a good example—this
again limits hacking.

Hacking changed as everything became computerized. Because of their complex-
ity, computers are hackable. And today, everything is a computer. Cars, appliances,
phones: they’re all computers. All of our social systems—finance, taxation, regulatory
compliance, elections—are complex socio-technical systems involving computers and
networks. This makes everything more susceptible to hacking.

Similarly, cognitive hacks aremore effectivewhen they’re perpetrated by a computer.
It’s not that computers are inherently better at creating persuasive advertising, it’s just
that they can do it faster andmore frequently—and can personalize advertisements down
to the individual.

To date, hacking has exclusively been a human activity. Searching for new hacks
requires expertise, time, creativity, and luck. When AIs start hacking, that will change.
AIs won’t be constrained in the same ways, or have the same limits, as people. They’ll
think like aliens. They’ll hack systems in ways we can’t anticipate.

Computers are much faster than people. A human process that might take months
or years could get compressed to days, hours, or even seconds. What might happen
when you feed an AI the entire US tax code and command it to figure out all of the
ways one can minimize the amount of tax owed? Or, in the case of a multinational
corporation, feed it the entire planet’s tax codes? Will it figure out, without being told,
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that it’s smart to incorporate in Delaware and register your ship in Panama? How many
vulnerabilities—loopholes—will it find that we don’t already know about? Dozens?
Hundreds? Thousands? We have no idea, but we’ll probably find out within the next
decade.

We have societal systems that deal with hacks, but those were developed when
hackers were humans, and reflect the pace of human hackers. We don’t have any system
of governance that can deal with hundreds—let alone thousands—of newly discovered
tax loopholes. We simply can’t patch the tax code that quickly. We aren’t able to deal
with people using Facebook to hack democracy, let alone what will happen when an
AI does it. We won’t be able to recover from an AI figuring out unanticipated but legal
hacks of financial systems. At computer speeds, hacking becomes a problem that we as
a society can no longer manage.

We already see this in computer-driven finance, with high-frequency trading and
other computer-speed financial hacks. These aren’t AI systems; they are automatic sys-
tems using human-generated rules and strategies. But they are able to execute at super-
human speeds, and this makes all the difference. It’s a precursor of what’s to come. As
trading systems become more autonomous—as they move more towards AI-like behav-
ior of discovering new hacks rather than just exploiting human-discovered ones—they
will increasingly dominate the economy.

It’s not just speed, but scale as well. Once AI systems start discovering hacks, they’ll
be able to exploit them at a scale we’re not ready for. We’re already seeing shadows of
this. A free AI-driven service called Donotpay.com automates the process of contesting
parking tickets. It has helped to overturn hundreds of thousands of tickets in cities like
London and NewYork [86]. The service has expanded into other domains, helping users
receive compensation for delayed airline flights, and to cancel a variety of services and
subscriptions [87].

The AI persona bots discussed previously will be replicated in the millions across
social media. They will be able to engage on the issues around the clock, sending billions
ofmessages, long and short. Run rampant, theywill overwhelm any actual online debate.
What we will see as boisterous political debate will be bots arguing with other bots [88].
They’ll artificially influence what we think is normal, what we think others think. This
sort of manipulation is not what we think of when we laud the marketplace of ideas, or
any democratic political process.

The increasing scope of AI systems also makes hacks more dangerous. AI is already
making important decisions that affect our lives—decisions we used to believe were the
exclusive purview of humans. AI systems make bail and parole decisions [89]. They
help decide who receives bank loans [90]. They screen job candidates [91], applicants
for college admission [92], and people who apply for government services [93]. They
make decisions about the news we see on social media, which candidate’s ads we see,
and what people and topics surface to the top of our feeds. They make military targeting
decisions.

As AI systems get more capable, society will cede more—and more important—
decisions to them. AIs might choose which politicians a wealthy power broker will fund.
They might decide who is eligible to vote. They might translate desired social outcomes
into tax policies, or tweak the details of social programs. They already influence social
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outcomes; in the future they might explicitly decide them. Hacks of these systems will
become more damaging. (We’ve seen early examples of this with “flash crashes” of the
market [94].)

5.1 AI Hacks and Power

The hacks described in this essay will be perpetrated by the powerful against us. All
of the AIs out there, whether they be on your laptop, online, or embodied in a robot,
are programmed by other people, usually in their interests and not yours. An Internet-
connected device like Alexa can mimic being a trusted friend to you. But never forget
that it is designed to sell Amazon’s products. And just as Amazon’s website nudges you
to buy its house brands instead of what might be higher-quality goods, it won’t always
be acting in your best interest. It will hack your trust in it for Amazon’s goals.

Similarly, all of these hacks will further the interests those who control the AI soft-
ware, the AI systems, and the robots. It won’t just be that the individually tailored
advertisement will persuade more successfully, it’s that someone will pay for that extra
bit of persuasion because it benefits them. When the AI figures out a novel tax loophole,
it will do so because some wealthy person wants to exploit it in order to pay less taxes.
Hacking largely reinforces existing power structures, and AIs will further reinforce that
dynamic.

One example: AIBO is a robot dog marketed by Sony since 1999. The company
released new and improved models every year through 2005, and over the next few years
slowly discontinued support for older AIBOs. AIBO is pretty primitive by computing
standards, but that didn’t stop people from becoming emotionally attached to them. In
Japan, people held funerals for their “dead” AIBOs [95].

In 2018, Sony started selling a new generation of AIBO. What’s interesting here
aren’t the software advances that make it more pet-like, but the fact that it now requires
cloud data storage to function [96]. This means that, unlike previous generations, Sony
has the capability to modify or even remotely “kill” any AIBO. The first three years of
cloud storage are free, and Sony has not announced what it will charge AIBO owners
after that. Three years on, when AIBO owners have become emotionally attached to
their pets, they will probably be able to charge a lot.

6 Defending Against AI Hackers

When AIs are able to discover new software vulnerabilities, it will be an incredible boon
to government, criminal, and hobbyist hackers everywhere. They’ll be able to use those
vulnerabilities to hack computer networks around the world to great effect. It will put
us all at risk.

But the same technology will be useful for the defense. Imagine how a software
company might deploy a vulnerability finding AI on its own code. It could identify, and
then patch, all—or, at least, all of the automatically discoverable—vulnerabilities in its
products before releasing them. This feature might happen automatically as part of the
development process. We could easily imagine a future when software vulnerabilities
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are a thing of the past. “Remember the early decades of computing, when hackers would
use software vulnerabilities to hack systems? Wow, was that a crazy time.”

Of course, the transition period will be dangerous. New code might be secure, but
legacy code will still be vulnerable. The AI tools will be turned on code that’s already
released and in many cases unable to be patched. There, the attackers will use automatic
vulnerability finding to their advantage. But over the long run, an AI technology that
finds software vulnerabilities favors the defense.

It’s the same when we turn to hacking broader social systems [97]. Sure, AI hackers
might find thousands of vulnerabilities in the existing tax code. But the same technology
can be used to evaluate potential vulnerabilities in any proposed tax law or tax ruling.
The implications are game changing. Imagine a new tax law being tested in this manner.
Someone—it could be a legislator, a watchdog organization, the press, anyone—could
take the text of a bill and find all the exploitable vulnerabilities. This doesn’t mean that
vulnerabilities will get fixed, but it does mean that they’ll become public and part of
the policy debate. And they can in theory be patched before the rich and powerful find
and exploit them. Here too, the transition period will be dangerous because of all of our
legacy laws and rules. And again, defense will prevail in the end.

With respect to AI more generally, we don’t know what the balance of power will be
between offense and defense. AIs will be able to hack computer networks at computer
speeds, but will defensive AIs be able to detect and effectively respond? AIs will hack
our cognition directly, but can we deploy AIs to monitor our interactions and alert us
that we’re being manipulated? We don’t know enough to make accurate predictions.

Ensuring that the defense prevails in these more general cases will require building
resilient governing structures that can quickly and effectively respond to hacks. It won’t
do any good if it takes years to patch the tax code, or if a legislative hack becomes so
entrenched that it can’t politically be patched. Modern software is continually patched;
you know how often you update your computers and phones. We need society’s rules
and laws to be similarly patchable.

This is a hard problem of modern governance, and well beyond the scope of this
paper. It also isn’t a substantially different problem than building governing structures
that can operate at the speed of, and in the face of the complexity of, the information
age. Legal scholars like Gillian Hadfield [98], Julie Cohen [99], Joshua Fairfield [100],
and Jamie Susskind [101] are writing about this, and much more work is needed to be
done.

The overarching solution here is people. What I’ve been describing is the interplay
between human and computer systems, and the risks inherent when the computers start
doing the part of humans. This, too, is a more general problem than AI hackers. It’s
also one that technologists and futurists are writing about. And while it’s easy to let
technology lead us into the future, we’re much better off if we as a society decide what
technology’s role in our future should be.

This is all something we need to figure out now, before these AIs come online and
start hacking our world.
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duces a single ciphertext, and any t + 1 out of n intended recipients can
combine their partial decryptions to obtain the plaintext. Ad hoc thresh-
old encryption (ATE) schemes require no correlated setup, enabling each
party to simply generate its own key pair. In this paper, we initiate a
systematic study of the possibilities and limitations of ad-hoc threshold
encryption, and introduce a key application to scalable multiparty com-
putation (MPC).

Assuming indistinguishability obfuscation (iO), we construct the first
ATE that is sender-compact—that is, with ciphertext length indepen-
dent of n. This allows for succinct communication once public keys have
been shared. We also show a basic lower bound on the extent of key shar-
ing: every sender-compact scheme requires that recipients of a message
know the public keys of other recipients in order to decrypt.
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1 Introduction

A public key threshold encryption (TE) scheme gives one the ability to generate
a ciphertext that is decryptable by any t + 1 out of n intended recipients, while
remaining semantically secure against any smaller group. Among other things,
it enables tasks such as electronic voting [16,17] and round-efficient multiparty
computation (MPC) [2,19], where only t + 1 colluding parties should be able to
learn information about others’ inputs.

One simple way to construct threshold encryption is to use any encryp-
tion scheme, with each of n recipients having independently generated keys. To
encrypt, the sender applies (t+1, n)-secret sharing to the message, and encrypts
each share with the key of the respective recipient; we call this share-and-encrypt.

Share-and-encrypt has the advantage of requiring no master secret and no
correlated setup among the recipients. A basic public-key infrastructure is all
that is required. We will call TE schemes with this property ad hoc threshold
encryption (ATE). An additional advantage of this simple approach is that the
length of information sent to each recipient is independent of the number of
recipients (since each recipient needs to see only the part of the ciphertext rele-
vant to them). We will call TE with this property recipient-compact. It is, how-
ever, not sender-compact, because the length of information sent by the sender
is dependent on the number of recipients. This missing feature is particularly
desirable when the sender, rather than unicasting information to each recipient,
broadcasts it—for example, by using an intermediate server. Prior to this paper,
whether sender-compactness is achievable for ad hoc TE was an open problem.

1.1 Our Contributions

In this paper, we initiate a systematic study of the possibilities and limitations of
ad hoc threshold encryption, and introduce a key application to scalable MPC.
We start with a definitional framework that systematizes the various options for
functionality and security in Sect. 2.

As our main feasibility result (Sect. 3), we show that sender-compactness is,
in principle, achievable.

Contribution 1 (Theorem 1). We describe the first sender-compact ad hoc
threshold encryption scheme.

The price we pay for sender-compactness is that we use indistinguishability
obfuscation (iO), and that every sender needs a public key. This key needs to
be known for decryption, and has a component whose size grows polynomially
with n. However, public keys are published once, whereas ciphertexts are created
and transmitted multiple times, so having the burden of size in the public keys
instead of the ciphertexts can be a big advantage when the sender is already
known to the recipient. Moreover, in some uses of TE, decryption is delayed,
and the linear component of the public key is not needed by every recipient
(for example, if TE is used for backup storage that is usually not accessed; see
Sect. 1.2 for another example).
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We also show a fundamental limitation of sender-compact schemes: recipi-
ents need to know the public keys of other recipients. Specifically, we define (in
Sect. 2) a TE property we call recipient-set-obliviousness, which demands that
the recipient algorithms be run without the public keys of other recipients.

Contribution 2 We show that recipient-set-obliviousness and sender-compact-
ness cannot be simultaneously satisfied.

We formally state and prove this result in the full version of this paper.
Threshold encryption is well suited for applications to multi-party computa-

tion (MPC), because it allows multiple parties to learn shares of a value. Building
MPC protocols is much easier when encryption also allows for some homomor-
phic computation, so that operations on unopened ciphertexts can be used to
operate on the underlying plaintexts.

We demonstrate, in Sect. 4, how to build recipient-compact ad hoc threshold
encryption schemes that support limited homomorphism. We use the acronym
“HATE” to describe ATE schemes that support homomorphism.

Contribution 3 (Theorems 3, 4 and 5). We describe three recipient-compact
HATE schemes that support additive homomorphism.

The first two of these schemes are based on standard assumptions. They
follow the share-and-encrypt paradigm, and allow homomorphism because of a
careful combination of specific encryption and secret sharing schemes. One of
these schemes keeps messages in the exponent, and thus supports only limited
message spaces. Choosing a secret sharing scheme with the right properties is
crucial to enable the scheme to be ad hoc, recipient-compact, and homomorphic.
We use Shamir and CRT secret sharing, both of which are additively homomor-
phic over multiple inputs, do not require pre-distributed correlated randomness,
and have compact shares.

These schemes are recipient-set-oblivious and therefore cannot be sender-
compact. However, they have an additional property on top of recipient com-
pactness, which we call recipient-local evaluation: namely, not only does a cipher-
text consists of compact recipient-wise components, but also each recipient can
perform homomorphic evaluation locally on its own components.

The third recipient-compact additively homomorphic ATE has the advantage
that a fresh ciphertext (before homomorphic evaluation) is sender-compact, but
at the price of relying on iO. We obtain this scheme by modifying our iO-based
scheme from Sect. 3. Prior to homomorphic evaluation, a different ciphertext
(of size independent of n) for each recipient must be extracted from the sender-
compact ciphertext. As in the first two schemes, homomorphic evaluation can be
performed locally on these per-recipient ciphertexts, giving the scheme recipient-
local evaluation. This scheme supports only small message spaces.
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Open Questions About Ad hoc Threshold Encryption. Our systematic study and
results raise several intriguing open problems about ad hoc threshold encryp-
tion. First, are there sender-compact ad hoc threshold encryption schemes with
constant-size public keys (independent of n)? Are there such schemes which do
not require a sender public key? Can such schemes be based on more stan-
dard assumptions than iO? Are there ad hoc threshold encryption schemes with
ciphertexts that remain compact even after homomorphic evaluation? Is it possi-
ble to achieve full homomorphism? (We note that share-and-encrypt is not known
to solve this problem: in principle, a multi-input fully homomorphic threshold
secret sharing scheme can be combined with fully homomorphic encryption to
give fully homomorphic ad hoc threshold encryption; however, to the best of our
knowledge, all known constructions of multi-input fully homomorphic threshold
secret sharing require pre-distributed correlated randomness.)

The importance of our results and these questions is reinforced by their
usefulness for scalable MPC, which we discuss next.

1.2 Application: One-Server, Fault-Tolerant MPC

Consider a service that has an app with a large smartphone user base. Suppose
the service wants to collect aggregate usage statistics, but (for regulatory com-
pliance, or for good publicity, or for fear of becoming a target for attackers and
investigators) does not wish to learn the data of any individual user.

A traditional MPC solution is not suitable for this setting, because the phones
do not communicate directly with one another, and because we cannot expect
every phone to remain engaged for the duration of the protocol, as phones may
go out of signal range or run out of charge. We call MPC protocols in this setting
Large-scale One-server Vanishing-participants Efficient MPC (LOVE MPC).

As we already mentioned, threshold encryption can be used for MPC. Ad hoc
threshold encryption is particularly well-suited for this setting: by not having a
setup phase, it eliminates an important bottleneck, because running a multi-user
setup protocol with vanishing participants may present problems. In particular,
HATE schemes can be used to build LOVE MPC for the honest-but-curious
setting as follows: each phone sends an encryption of its input to the server,
who homomorphically combines them, sends the result out for decryption by all
users, and successfully uses the partial decryptions to get the correct result as
long as more than t phones respond.

Using our HATE constructions, we derive a 3-round LOVE MPC for addition
(described in the full version of this paper). This improves on the round com-
plexity of prior work by Bonawitz et al. [5], who proposed a 5-round protocol.
(We also prove, in the full version of this paper, that three rounds and some
setup—e.g. a PKI—is necessary for LOVE MPC.)

The resulting LOVE MPC is based on standard assumptions when using
the HATE constructions of Sect. 4.1, and the linear per-user communication we
obtain asymptotically matches the per-user communication of Bonawitz et al.
[5]. (Per-user communication was improved to constant by subsequent work of
Bell et al. [4], but still at the cost of 5 rounds as opposed to our 3.) Additionally,
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at the price of using our iO-based HATE construction (Section Sect. 4.2), we
obtain constant per-user communication, which is asymptotically better than
the protocol of Bonawitz et al. [5] and asymptotically matches the protocol of
Bell et al. [4] (but, of course, at very high concrete costs due to the use of iO).

1.3 Related Work

Threshold Encryption. Known sender-compact threshold encryption schemes are
not ad hoc: they require some correlated setup. For instance, a sender-compact
threshold variant of ElGamal, due to Desmedt and Frankel [13] (and described
in the full version of this paper) requires a setup phase for every new set of n
recipients. Delerablée and Pointcheval [12] designed a sender-compact scheme
based on bilinear maps with a reduced setup requirement. In their scheme, the
sender can pick the set of n recipients dynamically; however, each recipient’s
secret key must be derived from a common master secret key, so this scheme is
not ad hoc.

On the other hand, known ad hoc threshold encryption schemes are not
sender-compact. The simple share-and-encrypt construction discussed above
requires the sender to send an amount of information that is linear in n. Daza
et al. [11] use an interpolation-based trick to reduce the ciphertext size to O(n−t)
(and subsequently use bilinear maps to give a matching CCA2-secure construc-
tion [10]); however, they leave open the problem of further lowering the cipher-
text size.

Ad hoc fully homomorphic threshold encryption was explored by Boneh
et al. [6] and Badrinarayanan et al. [2], as well as by Dodis et al. [14] as “spooky”
encryption; however, their schemes are not even recipient-compact, let alone
sender-compact.

Ad Hoc Broadcast Encryption. Ad hoc sender-compact encryption has been
achieved in the context of broadcast encryption, which is a special case of thresh-
old encryption with the threshold t = 0, giving any one recipient the ability to
decrypt. Specifically, Boneh and Zhandry [7] construct what they call distributed
broadcast encryption form indistinguishability obfuscation (iO). Their construc-
tion has the downside of long (polynomial in the number n of recipients) public
keys. Later, Ananth et al. [1] shrink the public keys at the cost of changing
the assumption to differing-inputs obfuscation (diO). Zhandry [21] improves on
these results, shrinking the public keys and replacing the iO assumption with
witness PRFs, but still requiring t = 0.

2 Threshold Encryption (TE) Definitions

A threshold encryption scheme [13] is an encryption scheme where a message
is encrypted to a group R of recipients, and decryption must be done collab-
oratively by at least t + 1 members of that group. (This can be defined more
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broadly for general access structures, but we limit ourselves to the threshold
access structure in this paper.)

Classically, threshold cryptography involves a secret-shared secret key, which
fixes the set of all key-holders. That is, a single Setup operation suffices only
to establish a single set of recipients, and the sender is not allowed to specify a
recipient set R at encryption time.

Dynamic threshold encryption [12] allows a sender to choose the set of recip-
ients dynamically at encryption time, as described in the Enc algorithm of
Sect. 2.1. In a dynamic threshold encryption scheme, a single Setup operation
suffices for the establishment of arbitrarily many groups of recipients.

However, dynamic threshold encryption schemes still require trusted setup,
where a central authority distributes correlated randomness to all parties. In
an ad hoc threshold encryption (ATE) scheme, there is no need for any trusted
central authority or master secret key msk. We call a threshold encryption scheme
ad hoc if a public-private key pair can be generated without knowledge of a
master secret key; that is, if each party is able to generate its keys independently.

In this paper, we additionally consider keyed-sender threshold encryption
schemes. In a keyed-sender threshold encryption scheme, in order to encrypt a
message, the sender must use its own secret key in addition to the recipients’
public keys (unlike in typical public-key encryption, where encryption does not
require the knowledge of any secrets). Similarly, in order to decrypt the cipher-
text, recipients need to use the sender’s public key in addition to their secret
keys.

2.1 Threshold Encryption Syntax

A threshold encryption scheme consists of five algorithms, described in this
section. This description is loosely based on the work of Daza et al. [10], but
we modify the input and output parameters to focus on those we require in our
constructions, with some additional parameters discussed in the text. Parame-
ters in purple (namely, msk) are absent from ad hoc schemes; parameters in blue
(namely, skSndr and pkSndr) are present only in keyed-sender schemes (for readers
seeing this text in monochrome, we give text explanations in addition to colors).
Keyed-sender schemes additionally require a sixth algorithm, KeyGenSndr.

Setup(1λ, t) → (params,msk) is a randomized algorithm that takes in a security
parameter λ as well as a threshold t and sets up the global public parameters
params for the system.
If the scheme is not ad hoc, Setup also sets up the master secret key msk for
key generation.
For simplicity, we provide Setup with the threshold t, and assume that t is
encoded in params. However, in t-flexible schemes, t may be decided by each
sender at encryption time, and should then be an input to Enc (and encoded
in the resulting ciphertext). In keyed-sender schemes (where the sender must
use their secret key to encrypt and recipients must use the sender’s public
key to decrypt), t may also be specified in the sender’s public key.
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KeyGen(params,msk) → (pk, sk) is a randomized key generation algorithm that
takes in the global public parameters params (and, if the scheme is not ad
hoc, the master secret key msk) and returns a recipient’s public-private key
pair.

KeyGenSndr(params,msk) → (pkSndr, skSndr) is a randomized algorithm present in
keyed-sender schemes only; it takes in the global public parameters params
(and, if the scheme is not ad hoc, the master secret key msk) and returns
a sender’s public-private key pair where the private key is used to facilitate
encryption by the sender, the public key is used to facilitate decryption of
messages from the sender.

Enc(params, skSndr, {pki}i∈R,|R|>t,m) → c is a randomized encryption algo-
rithm that encrypts a message m to a set of public keys belonging to the
parties in the intended recipient set R in such a way that any size-(t + 1)
subset of the recipient set should jointly be able to decrypt. We assume t is
specified within params, but (if the scheme is keyed-sender) it may also be
specified within the sender’s public key, or (if the scheme is t-flexible) it may
be specified on the fly as an input to Enc itself.

PartDec(params, pkSndr, {pki}i∈R, skj , c) → dj is an algorithm that uses a secret
key skj belonging to one of the intended recipients (that is, for j ∈ R) to get
a partial decryption dj of the ciphertext c. This partial decryption can then
be combined with t other partial decryptions to recover the message.

FinalDec(params, pkSndr, {pki}i∈R, c, {di}i∈R′⊆R,|R′|>t) → m is an algorithm
that combines t + 1 or more partial decryptions to recover the message m.

In a sender-compact scheme, the size of the ciphertext c is independent of
the number of recipients n. In a recipient-compact scheme, PartDec requires only
a portion ci of the ciphertext c, where the size of ci is independent of n.

2.2 Threshold Encryption Flexibility

Not all threshold encryption schemes allow/require all of the algorithm inputs
described in Sect. 2.1. Sometimes disallowing an input can make the scheme less
flexible, but, on the other hand, sometimes schemes that do not rely on certain
inputs have an advantage.

More Flexibility: Unneeded Inputs. Ad hocness is an example of gaining an
advantage by eliminating dependence on an input. Ad hoc schemes do not use
the master secret key msk, and thus do not require a trusted central authority
(which in many scenarios might not exist).

Another example of gaining an advantage by eliminating an input is recipient-
set-obliviousness. Requiring both decryption algorithms (PartDec and FinalDec)
to be aware of the set of public keys belonging to individuals in the set R of
recipients can be limiting.

Definition 1 (Threshold Encryption: Recipient-Set-Obliviousness).
We call a threshold encryption scheme recipient-set-oblivious if neither partial
decryption nor final decryption use {pki}i∈R.



368 L. Reyzin et al.

It may seem that a recipient-set-oblivious scheme should require less commu-
nication, since the sender would never need to communicate R to the recipients.
However, in the full version of this paper we show that a recipient-set-oblivious
ATE scheme cannot be sender-compact.

More Flexibility: Additional Inputs. In describing the threshold encryption algo-
rithms, for the most part we assumed that the threshold t was fixed within the
global public parameters params (or, in a keyed-sender scheme, in the sender’s
public key). However, some schemes (such as share-and-encrypt) allow the sender
to choose t at encryption time; we call such schemes t-flexible.

2.3 Threshold Encryption Security

The threshold encryption security definition is two-fold. We require semantic
security, informally meaning that encryptions of two messages of the same size
should be indistinguishable. We use the semantic security definition of Boneh
et al. [6] for threshold encryption schemes, modified to support the keyed-sender
property. We also require simulatability, informally meaning that given a cipher-
text corresponding to one of two messages, partial decryptions can be simulated
in such a way as to cause the ciphertext to decrypt to either of the two messages.
The latter requirement is useful for MPC applications.

Both for semantic security and simulatability, there are three notions of secu-
rity we consider, which differ according to the point in the security game at
which the adversary must commit to the set of corrupt parties C, and the set of
challenge ciphertext recipients R. From weakest to strongest, these are super-
static, static and adaptive security. In super-static security, which is what our
obfuscation-based construction achieves, the adversary specifies both C and R
before seeing the public keys. In static security, which is what our other con-
structions achieve, the adversary specifies C before seeing the public keys, but
can specify R later, at the same time as the two challenge messages, mR and
mL. In adaptive security, the adversary specifies C having seen the public keys,
and can specify R at the same time as the two challenge messages, as in static
security.

The formal definitions of threshold encryption security are straightofrward
given the above discussion, but are too lengthy given the space constraints. We
therefore give them in the full version of this paper.

2.4 Threshold Encryption with Homomorphism

Homomorphic ad hoc threshold encryption (HATE) can be particularly useful
in applications to multi-party computation.

Definition 2 (Threshold Encryption: Homomorphism). Let F be a class
of functions, each taking a sequence of valid messages and returning a valid
message. An F-homomorphic threshold encryption scheme additionally has the
following algorithm:



Compact Ad Hoc Threshold Encryption 369

Eval(params, {pki}i∈R, [c1, . . . , c�], f) → c∗ is an algorithm that, given � cipher-
texts and a function f ∈ F , computes a new ciphertext c∗ which decrypts to
f(m1, . . . , m�) where each cq, q ∈ [1, . . . , �] decrypts to mq.

Informally, Eval should be correct, meaning that decryption should lead to
the correct plaintext message f(m1, . . . , m�).

2.5 Threshold Encryption Compactness

Compactness Without Homomorphism. As described in the introduction, we say
that a threshold encryption scheme is sender-compact (or, in other words, that
it has sender-compact encryption) if the size of a ciphertext is independent of
the number of recipients. We say that it is recipient-compact (or, in other words,
that it has recipient-compact encryption) if the portion of the ciphertext required
by each recipient to produce their partial decryption is independent of the num-
ber of recipients. Of course, if a threshold encryption scheme is sender-compact,
then it is also recipient-compact, since each receiver can use the entire (com-
pact) ciphertext to partially decrypt. However, the converse is not necessarily
true. Even if a scheme is not sender-compact, it can be recipient-compact if the
ciphertext c can be split into compact components c = {ci}i∈R such that every
recipient can run PartDec given just one component ci.

Compactness With Homomorphism. When we consider homomorphic threshold
encryption, a fresh ciphertext c may look different than a ciphertext c∗ which
Eval outputs. Of course, the size of c∗ should not grow linearly with the number
� of inputs to f ; otherwise, homomorphism becomes unnecessary, and c∗ could
simply consist of a concatenation of the input ciphertexts.

Notice that this does not preclude ciphertext growth. Even if a fresh cipher-
text has size independent of n, the output of Eval may grow with n. We intro-
duce some new terminology to handle this: we say that a homomorphic threshold
encryption scheme has compact evaluation if the output of Eval has size inde-
pendent of n, and that it has recipient-compact evaluation if the output of Eval
can be split into recipient-wise compact components. Additionally, we say that a
homomorphic threshold encryption scheme has recipient-local evaluation if it has
recipient-compact encryption and evaluation is performed component-wise, with
Eval taking one recipient’s component of each input ciphertext and producing
that recipient’s compact component of the output ciphertext.

All of our schemes in Sect. 4 have recipient-compact encryption and recipient-
local evaluation; the scheme in Sect. 4.2 additionally has sender-compact encryp-
tion.

In a setting where multiple senders send ciphertexts to a single server, who
homomorphically computes on the ciphertexts and sends (the relevant parts of)
the output of Eval to receivers, it is enough to have a sender-compact encryption
and recipient-compact evaluation, even if the overall output of Eval is long. These
properties suffice for reducing bandwidth, because the size of every message
transmitted between two parties is independent of the number of recipients.
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If, instead, we have a setting where senders send ciphertexts directly to
receivers who then compute on those ciphertexts themselves, sender-compact
encryption is less important, and recipient-local evaluation becomes key. Each
sender must send something to each receiver anyway (instead of sending only
one thing to the server), and in a setting with direct peer-to-peer channels,
it becomes unimportant whether those things are all the same sender-compact
ciphertext, or receiver-wise components of a recipient-compact ciphertext.

3 Sender-Compact Ad Hoc Threshold Encryption

In this section, we describe a sender-compact ATE. In the share-and-encrypt
construction, the total ciphertext size is Θ(n), because each recipient gets an
encryption of a different share. A natural approach is to compress the ciphertext
using obfuscation: namely, instead of using the encrypted shares as the cipher-
text, we can try to use an obfuscated program that outputs one encrypted share
at a time given an appropriate input (such as a short symmetric encryption of
the message, a recipient secret key, and proof of the recipient membership in the
recipient set R).

However, this strategy fails to achieve sender-compact ciphertexts, because
the obfuscated program remains linear in the size of the threshold t. The reason
is that, within the security proof, in one of the hybrids we are forced to hardcode
t secret shares in the program, and the obfuscated program must be of the same
size in all hybrid games.

Therefore, instead of putting an obfuscated program in the ciphertext, each
sender obfuscates a program as part of key generation. This program becomes the
sender’s public key. While it is long (polynomial in the in the number of recipients
n), it needs to be created and disseminated only once, as opposed to a ciphertext,
which depends on the message. Notice that having this obfuscated program as
the sender’s public key makes our ATE scheme keyed-sender, meaning that in
order to encrypt a message the sender must use its secret key, and in order to
decrypt a message, recipients must use the sender’s public key.

One can think of the obfuscated program in the sender’s public key as a
“horcrux”.1 The sender stores some of its secrets in this obfuscated program,
and when encrypting a message, the sender includes just enough information in
the ciphertext that the obfuscated program can do the rest of the work.

Once we put the obfuscated program in the sender’s public key, we run into
the issue that the outputs of the program on the challenge ciphertext cannot be
dependent on the challenge message. This is because in the proof of security, the
challenge message is chosen dynamically by the adversary, whereas the program
is obfuscated by the challenger at the beginning of the game. In some hybrids,
the outputs corresponding to the challenge message must be hardcoded in the
program; so, they cannot depend on the actual message, which can be picked
after the program is fixed. Therefore, instead of returning secret shares of the
1 A “horcrux” is a piece of one’s soul stored in an external object, according to the

fantasy series Harry Potter [20].
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challenge message, the program returns shares of a random mask which is used
to encrypt the message.

Specifically, the program that each sender obfuscates takes as input a random
nonce—together with the sender’s signature on that nonce—and a recipient’s
secret key. The program checks the signature, and that the recipient’s secret key
matches one of the public keys to which the sender addressed this ciphertext
(this “addressing” is performed implicitly, via the same signature). Note that
checking membership in the set of recipients is important: otherwise any party
could extract a secret share of the message. If the checks pass, the program
outputs a secret share of a PRF output on the random nonce. The actual message
is symmetrically encrypted with that PRF output.

The obfuscated program that makes up the sender public key is formally
described in Algorithm 1, and the obfuscation-based ATE is described in
Construction 1. It uses an indistinguishability obfuscator iO, puncturable pseu-
dorandom function PPRF, a secret sharing scheme SS, a constrained signature
SIG, and a length-doubling pseudorandom generator PRG with domain {0, 1}λ

and range in {0, 1}2λ. We define all of these primitives in the full version of this
paper.

Algorithm 1. fkw,kShare,SIG.pk(−→pv = {pvi}i∈R, idx, sv, nonce, σ)

The following values are hardcoded:
params = (λ, n, t), where

λ is the security parameter,
n is the number of recipients, and
t is the threshold.

kw, a secret PPRF key used to recover the mask w from nonce nonce
kShare, a secret PPRF key used to secret share the mask w
SIG.pk, a signature verification key

The following values are expected as input:−→pv = {pvi ∈ {0, 1}2λ}i∈R, lexicographically ordered public values
idx, an index
sv ∈ {0, 1}λ, a secret value
nonce
σ, a signature

if (−→pv[idx] = PRG(sv)) and (SIG.Verify(SIG.pk, (−→pv, nonce), σ)) then
w ← PPRFkw (nonce)
r ← PPRFkShare(nonce)
[w]idx ← SS.Share(w, n, t; r)[idx] {This gives the idxth secret share of w}
return [w]idx

Informally, in order to prove security, we will have to show that given an
obfuscation of this program, an adversary who has only t or fewer secret keys
from the recipient set will not be able to tell the difference between an encryption
of a message mR and an encryption of a different message mL. Our proof will
need to puncture kw and kShare on the challenge nonce in order to remove any
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Let the public parameters params = (λ, n, t) consist of the security parameter λ,
the number of recipients n, and the threshold t.

KeyGen(params):

{The following generates the “receiver” keys.}
sv ← {0, 1}λ

pv ← PRG(sv) ∈ {0, 1}2λ

return (pv, sv)

KeyGenSndr(params):

{The following generates the “sender” keys.}
(SIG.pk, SIG.sk) ← SIG.KeyGen(1λ)

kw ← PPRF.KeyGen(1λ)
{This PPRF key will be used to produces the mask w for the message. Its output is
assumed to be in the message space group.}
kShare ← PPRF.KeyGen(1λ)
{This PPRF key will be used to produce the randomness for secret sharing w. We slightly
abuse PPRF notation above; the size of w and the size of the randomness needed to
secret share w might be very different. We simply assume that either the keys used
are of different sizes (that is, kShare might actually consist of multiple keys), or that
the PPRF is chained in the appropriate way to produce a sufficiently large amount of
randomness. We assume that the output of PPRF with kw is in some group G which
contains the message space, and that the output of PPRF with kShare is of whatever form
the randomness for SS.Share should take.}
ObfFunc ← iO(fkw,kShare,SIG.pk)

return (pkSndr = ObfFunc, skSndr = (SIG.sk, kw))

Enc(params, skSndr = (SIG.sk, kw), −→pv = {pvi}i∈R,|R|≥t, m):

nonce ← PPRF.domain
e = (PPRFkw (nonce) + m)
σ ← SIG.Sign(SIG.sk, (−→pv, nonce))
return c = (nonce, e, σ)

PartDec(params, pkSndr = ObfFunc, −→pv = {pvi}i∈R, svi, c = (nonce, e, σ)):

Let idx be the index of the public value corresponding to the secret value svi in a
lexicographic ordering of {pvi}i∈R
di ← ObfFunc(−→pv, idx, svi, nonce, σ)
return di

FinalDec(params, c = (nonce, e, σ), {di}i∈R′⊂R):

w ← SS.Reconstruct({di}i∈R′⊂R)
m ← e − w
return m

Construction 1: Obfuscation-Based ATE

information about the challenge plaintext from the program. For the proof to go
through given the guarantees of iO, it is crucial that, as we change the plaintext,
the output does not change for any input—in particular, even if the adversary
is able to forge a signature that ties the ciphertext to a wrong set of public
keys. We ensure this property by using a constrained signature scheme SIG, so
that we can guarantee (in an appropriate hybrid) that a signature tying the
ciphertext to a wrong set of public keys does not exist. This means that the
public verification key (which is incorporated into the obfuscated program) is of
size polynomial in n.

Theorem 1. The obfuscation-based ATE (Construction 1) is (n, t)-super-
statically secure for any polynomial n, t, as long as iO is a secure indistinguisha-
bility obfuscator, PPRF is a secure puncturable PRF, SS is a secure (n, t)-secret



Compact Ad Hoc Threshold Encryption 373

sharing scheme, SIG is a constrained signature scheme, and PRG is a secure
pseudorandom generator.

We prove Theorem 1 in the full version of this paper. Note that all the
tools this construction uses can be obtained from indistinguishability obfuscation
(with complexity leveraging), and one-way functions.

3.1 t-Flexibility

For simplicity, we describe obfuscation-based ATE in a way that is not by default
t-flexible, since the threshold t is fixed within the sender’s public key. However,
it can be made t-flexible in a very straightforward way, simply by including t as
part of the (signed) input to the obfuscated program.

3.2 Reducing the Public Key Size

In the construction described above, the sender’s public key size is polynomial
in the number n of recipients. We can decrease the size of the public key by
relying on differing-inputs obfuscation (diO) [1,3] instead of indistinguishability
obfuscation (iO). If we do, then we can modify the obfuscated program to take
a Merkle hash commitment to the set of recipients’ public keys, instead of the
entire list; additionally, we will be able to replace constrained signatures with
any signature scheme. This will enable us to go from poly(n)-size public keys
to poly(t)-size public keys. (We still need poly(t) because that is the number of
secret shares we must hard-code in the program in one of the hybrids in our
security proof.)

4 Recipient-Compact Homomorphic Ad Hoc Threshold
Encryption

In this section, we describe three recipient-compact HATE constructions. In
addition to recipient-compactness, all three of these schemes have recipient-local
evaluation, meaning that each recipient can perform evaluation locally given just
their compact component of the ciphertext.

Two of them (Sect. 4.1) are based on the share-and-encrypt paradigm.
These are recipient-set-oblivious, but are not sender-compact. The last
(Sect. 4.2) achieves sender-compactness by combining share-and-encrypt with
the obfuscation-based sender-compact ATE from Sect. 3. However, like the ATE
in Sect. 3, it is not recipient-set-oblivious.

4.1 Building HATE from Homomorphic Encryption and Secret
Sharing

In this section, we describe our share-and-encrypt homomorphic ad hoc threshold
encryption scheme which, despite its Θ(n)-size ciphertexts, is efficient enough to
be used in practice in some scenarios, because it is recipient-compact.
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As we mentioned in the introduction, one natural way to build ATE is to
use a threshold secret sharing scheme SS together with a public-key encryption
scheme PKE. The idea is to secret share the message, and to encrypt each share
to a different recipient using their public key; therefore, we call this the share-
and-encrypt paradigm. We elaborate on it in the full version of this paper.

Notice that we are able to omit all but the relevant part of the ciphertext as
input to PartDec for each party (where the relevant part is the one encrypted
under their key), making the scheme both recipient-set-oblivious and recipient-
compact. This further saves on communication in some contexts.

Theorem 2. Share-and-encrypt (described formally in the full version of this
paper) is a (n, t)-statically secure, recipient-set-oblivious, recipient-compact
ATE, as long as SS is a secure share simulatable t-out-of-n secret sharing scheme,
and PKE is a CPA-secure public key encryption scheme.

We prove Theorem 2 in the full version of this paper.
If the secret sharing and encryption schemes are homomorphic in compatible

ways, the share-and-encrypt construction is a Homomorphic ATE. The trick
is finding the right homomorphic secret sharing and encryption schemes. In
particular, if the secret sharing scheme is F-homomorphic, the encryption scheme
must be F ′-homomorphic, where F ′ includes the homomorphic evaluation of F
over secret shares.

Of course, if the secret sharing and encryption schemes are both fully homo-
morphic, they give fully homomorphic ATE. However, no homomorphic thresh-
old secret sharing schemes (with homomorphism over multiple inputs, without
pre-distributed correlated randomness) is known, to the best of our knowledge.2

We show two efficient combinations of secret sharing and encryption which
result in additively homomorphic ATE: Shamir-and-ElGamal and CRT-and-
Paillier(both described in detail in the full version of this paper).

Shamir-and-ElGamal. We build share-and-encrypt HATE out of ElGamal enc-
ryption [15] and a variant of Shamir secret sharing. We need to use a variant of
Shamir secret sharing (which we call exponential Shamir secret sharing), and not
Shamir secret sharing itself, because Shamir secret sharing is additively homo-
morphic (and the homomorphism is applied via addition of individual shares), so
we would need the encryption scheme to support addition; however, ElGamal is
only multiplicatively homomorphic, so if we attempt to apply a homomorphism
on encrypted shares, it will not work. What we need in order to get an additively
homomorphic ATE scheme is to use ElGamal encryption with a secret sharing
scheme which is additively homomorphic, but whose homomorphism is applied
via multiplication. Therefore, we need to alter our Shamir secret sharing scheme
by moving the shares to the exponent; then, taking a product of two shares will
result in a share of the sum of the two shared values. We refer to the full version of

2 Boyle et al. [9] give a nice introduction to homomorphic secret sharing. Jain et al.
[18] and Dodis et al. [14] both build (threshold) function secret sharing, which gives
homomorphic secret sharing, but the homomorphism is only over a single input.
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this paper for a description of the ElGamal encryption scheme and the exponential
Shamir secret sharing scheme which we use.

Theorem 3. Shamir-and-ElGamal (described in the full version of this paper) is
an additively homomorphic ad hoc threshold encryption scheme for a polynomial-
size message space.

Shamir-and-ElGamal is an ad hoc threshold encryption scheme by
Theorem 2; the homomorphism follows from the homomorphisms of the under-
lying encryption and secret sharing schemes.

In Shamir-and-ElGamal we are limited to polynomial-size message spaces
since final decryption uses brute-force search to find a discrete log. Jumping
ahead to LOVE MPC, polynomial-size message spaces are still useful in many
applications, as explained in the introduction. Moreover, the server already does
work that is polynomial in the number of users, so asking it to perform another
polynomial computation is not unreasonable.

CRT-and-Paillier. We also build share-and-encrypt HATE out of Camenisch-
Shoup encryption and Chinese Remainder Theorem based secret sharing. The
Camenisch-Shoup encryption scheme is a variant of Paillier encryption that
supports additive homomorphism. However, we cannot combine it with Shamir
secret sharing, since Shamir shares all live in the same group, while each instance
of a Camenisch-Shoup encryption scheme uses a different modulus. Therefore,
we combine Camenisch-Shoup encryption with CRT secret sharing, which has
exactly the property that different shares can live in different groups. Unlike
Shamir-and-ElGamal, this HATE allows us to use large message spaces. We
refer to the full version of this paper for a description of the Camenisch-Shoup
encryption scheme and the CRT secret sharing scheme which we use.

Theorem 4. CRT-and-Paillier (described in the full version of this paper) is
an additively homomorphic ad hoc threshold encryption scheme.

CRT-and-Paillier is an ad hoc threshold encryption scheme by Theorem 2; the
homomorphism follows from the homomorphisms of the underlying encryption
and secret sharing schemes.

4.2 Building HATE from Obfuscation

As described in Sect. 3, the obfuscation-based ATE is not homomorphic. Infor-
mally, in order to make the obfuscation-based ATE F-homomorphic, we can
modify the obfuscated program to:

1. Use a F-homomorphic secret sharing scheme [8]. (As an example, Shamir
secret sharing is additively-homomorphic.) Note that F should always include
subtraction from a constant (in the appropriate group); the obfuscated pro-
gram returns shares of the mask w, which we want to use, together with the
masked message e, to obtain shares of m = e − w.
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However, this alone is not enough; even if the secret shares returned by the
obfuscated programs are homomorphic, in order to extract them from the
ciphertext, one must know a recipient secret value sv, while evaluation should
require no secrets.

2. Use F ′-homomorphic public key encryption and decryption keys pki, ski

instead of public and private values pvi = PRG(svi), svi. The obfuscated pro-
gram would then not require ski as input; instead, it would return a ciphertext
that requires ski for decryption.
F ′ must include the functions necessary to evaluate F on the homomorphic
secret shares.

This modification makes the construction F-homomorphic while preserving
sender-compactness. Thus, anyone (e.g., a server) can evaluate the obfuscated
program to extract encryptions of all recipients’ shares of the mask, homomorphi-
cally convert these into encrypted shares of the message, and homomorphically
compute on those encrypted shares (since our public key encryption scheme is
homomorphic, as are secret shares). The server would then send all parties their
encrypted share of the computation output. Additionally, this construction is
recipient-compact (as long as homomorphic shares are small), since each party
only needs one compact part of the ciphertext for partial decryption.

More concretely, we can use ElGamal encryption [15]. Once the obfuscated
program is evaluated, we are essentially using the Shamir-and-ElGamal HATE
(Sect. 4.1). In particular, this implies that we are limited to polynomial-size
message spaces, since final decryption uses brute-force search to find a discrete
logarithm.

In the full version of this paper we give more details about our homomorphic
recipient-compact HATE construction.

Theorem 5. The modified obfuscation-based ATE is (n, t)-super-statically
secure for any polynomial n, t, as long as iO is a secure indistinguishability obfus-
cator, PPRF is a secure puncturable PRF, SS is a secure secret sharing scheme,
SIG is a constrained signature scheme, and PKE is a secure public-key encryp-
tion scheme. Moreover, it is F-homomorphic if SS is F homomorphic (where F
includes subtraction from a constant), and if PKE is F ′-homomorphic (where F ′

includes the evaluation of F on SS secret shares).
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made in the area of Password Protected Secret Sharing (PPSS), we con-
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1 Introduction

Passwords are an extremely popular form of authentication because of their easy
memorization and ease of use. However, the low entropy of passwords that makes
it easy to memorize has the significant downside of making them very vulnerable
in the case of database breaches that reveal the hash of passwords. Every year
millions of passwords are lost when sites get hacked - the attackers have to do
an offline guessing attack to discover the passwords from the hash of passwords
recovered from the sites.

These sites attempt to protect the passwords through extra hashing and using
salts, but with use of multiple machines it is nearly impossible to keep a deter-
mined attacker from performing an offline attack, we can only make it somewhat
more expensive. With GPU parallelization and hardware hashing chips becoming
cheaper, even requiring many rounds of hashing isn’t enough to keep dictionary
attacks, or even brute force attacks from succeeding. The same problem applies
to using passwords to encrypt data to store in the cloud, both for password man-
agers, and other applications - if either the data is lost, or the service becomes
corrupted, a low entropy password can be brute-forced offline.

This loss of passwords can be very catastrophic when sensitive data is lost.
In addition, many users reuse their password across sites, so a breach of a low-
security site can cause accounts to be compromised on other sites. Password
managers attempt to resolve this problem by storing high-entropy secrets as
site specific passwords, but storing the list of site specific passwords encrypted
by only a low-entropy master password; this faces the same problems listed
above since now the password manager may be hacked and the master passwords
compromised.

To solve these issues related to offline attacks, the useful idea of PPSS (Pass-
word Protected Secret Sharing) was introduced, which blocks adversaries from
performing offline guessing attacks by splitting the high entropy encryption
keys/passwords among many servers.

1.1 Password Protected Secret Sharing

The idea of using multiple servers to prevent offline attacks was first proposed
by Ford and Kaliski [5]. This notion was extended by [2] who introduced PPSS,
which uses secret sharing [11] to split up a secret with n servers, such that it can
be reconstructed if a threshold of t servers is reached, by a client using only the
low-entropy password. Note that this isn’t simply splitting the secret up to be
stored on n servers with a secret sharing scheme, and authenticating the shares
with the password since whatever is used for authenticating the password can
be used to launch an offline attack by a single server.

This idea of PPSS is related to that of a T-PAKE [9] (Threshold-Password
Authenticated Key Exchange), which is used to agree on a session key after
interacting with t out of n servers. One can see that an T-PAKE can be obtained
from a PPSS by storing a high-entropy secret with the PPSS, and then using
that in a traditional PAKE. Note that this PAKE cannot be offline attacked
because the password is high entropy.
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While the Bagherzandi et al. scheme [2] takes three messages from server
to client and back, and requires a public-key infrastructure, in [7], a scheme is
presented which is round-optimal and requires only the low-entropy password
to work. This scheme uses OPRFs (Oblivious Pseudorandom Functions) which
compute a deterministic function on the server without letting the server know
the input to the function. In this scheme, the client calculates t OPRFs on the
password pw (one with each server), and uses them to encrypt/decrypt the secret
shares.

One downside of the scheme, as it is presented in the paper, is that each
OPRF evaluation requires two exponentiations for the client, and though the
first one can be shared across all the servers, that still adds up to t + 1 total for
the scheme.

1.2 TOPPSS Overview

One solution to this performance issue was shown in [8] through a remarkably
efficient protocol called TOPPSS. There they introduced the idea of a T-OPRF
(Threshold-OPRF) which moves the secret sharing into the OPRF, by computing
this function across many servers, all of which remain oblivious of the input. They
then use the output of this function to encrypt the actual secret. The benefit of
this approach was that they were able to evaluate the entire T-OPRF with just
2 exponentiations for the client.

1.3 Dynamic Subset PPSS

However, their TOPPSS implementation had a drawback from the original
OPRF model - when communicating with the servers, the client had to specify
the subset of t servers, SE of SI (the set of all servers in the network), that the
T-OPRF was being run with. This meant that if any of the originally expected
set of servers was down or not available for use for some reason then the client
would have to restart the entire protocol. It would have to pick another set
SE , and then communicate with the servers it had already done so with. This
makes the protocol efficient (i.e. “only two exponentiations”) only if the servers
remain fixed and do not change dynamically. Furthermore, restarting the proto-
col means double the bandwidth costs and latency, which is much slower than
the exponentiations that TOPPSS saves. A potential workaround is to do a roll-
call initially, which does bound the potential cost, but this extra set of rounds
again far exceeds the exponentiation costs saved. Furthermore, not being able
to dynamically pick the servers as the client proceeds through the protocol also
hurts things like load balancing between the servers (a server committed to the
protocol cannot be free to do other things dynamically), a problem which may be
further reducing efficiency. In this paper we define a protocol as Dynamic Subset,
if it can dynamically construct the subset of servers it is using as it makes its
way through the protocol and does not have to decide on it beforehand.
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1.4 Clientless Server Enrolling and Disenrolling in PPSS

Server enrollment and disenrollment is trivial to perform with the client or user
involvement, just have the user use its password to run the PPSS enrollment
protocol again but with the new set of servers. At first, this may seem sufficient,
however, as we argue requiring client involvement generally makes large scale
deployment of PPSS practically impossible.

Firstly, PPSS makes sense only when the different servers holding shares of
the secret belong to different, largely independent organizations otherwise if the
servers belonged to the same organization then any security process weakness
or insider threat that effects one server will also likely effect the other servers.
Organizations who by a business agreement agreed to run the servers may over
time disappear or due to change in their priorities drop out of the PPSS agree-
ment and remove their server and over time the number of servers may go below
t needed for recovering the data, hence, we also need to add servers or organi-
zations over time.

Secondly, while it is true that most users will log on to a service once over
a month or few months, a small fraction of users may never log on during that
period for various reasons, including vacation, sickness, temporary change in
priority, etc. Even if that portion of population that does not log on for an
extended period of time is small (e.g. less than 1%), its possible that enough
servers drop during that duration to permanently have those users lose access
to their data. It is unlikely that any service could practically be deployed that
allows even a small fraction of its population to lose access to their data with
a small but non-negligible probability. So it seems of fundamental importance
for adoption of a PPSS protocol that allows userless or clientless enrolling and
disenrolling of servers.

Fully Dynamic PPSS: We refer to a PPSS scheme as full dynamic if it pro-
vides both the dynamic subset and clientless server enrollment and disenrollment
functionality.

1.5 Our Contributions

To solve the first issue of dynamic subset during secret reconstruction, a T-
OPRF needs to be constructed that hides the details of the servers being used
from the servers themselves. If the client can have generic communications with
the servers that do not rely on the other server, then the client can just ignore
any non-operational servers and continue on, dynamically altering the set of
servers it is going to use, and only finalizing after communicating with all of
them. As mentioned, we define a protocol as Dynamic Subset, if it can dynami-
cally construct the subset of servers it is using as it makes its way through the
protocol and does not have to decide on it beforehand. Motivated by this def-
inition, we present DS-TOPPSS (Dynamic Subset - TOPPS) that matches the
Dynamic Subset criterion while sacrificing little in performance. In our second
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contribution, in addition to showing the above we give a fully Dynamic PPSS
that can securely add or delete servers from the network at will, without needing
a TTP or the client, we present protocols for enrollment and disenrollment that
make this possible.

1.6 Organization

In Sect. 2, background information about the research that DS-TOPPSS is based
on is provided. In Sect. 3, we specify DS-TOPPSS and show its properties (cor-
rectness, and security). Additionally, we give a numerical performance evalua-
tion for our protocol against the previous two protocols for various cases of t
and n. Finally in Sect 4., we provide protocols for making any TOPPSS scheme
fully dynamic, again, along with security analyses. We note that for security we
employ simulation based definitions in our proofs of security.

2 Background

OPRF PPSS: The original scheme [7] relies on OPRFs. The basic idea is that
with secret sharing scheme as in PPSS, knowing <t potential shares of the secret
does not give you any indication of whether or not the shares are valid. This
means that if you store the shares encrypted with the results of a function that
the server does not know the input or output of, <t servers have no way of
knowing if their offline attacks are succeeding or not.

The reconstruction part of the scheme starts with the client uniformly pick-
ing a random value r to be used as the blinding value for the OPRFs. Next the
client calculates a = H(pw)r where H(x) is a hash function with an appropri-
ate range and sends it to each server. Note that all hash functions referred to
in this paper are random oracles unless otherwise designated. Since the servers
don’t know r, they don’t have any information about H(pw), and cannot offline
attack the password this way. After that, the servers each exponentiate to get
bi = aki = H(pw)rki , where ki is random a value stored by the server, and send it
back. Using these bi’s, the client first deblinds them by undoing the initial expo-
nentiation, and then hashes them with another hash and the password, ending
up with the output of the OPRF: fki

(pw) = H2

(
pw, b

1/r
i

)
= H2

(
pw,H(pw)ki

)
.

The fki
(pw)’s are then used to decrypt the publicly stored encrypted shares

efki
(pw)(Si), which have been encrypted and stored in this fashion during the

initialization steps. This yields the Si’s, which are then used in Lagrangian inter-
polation to reconstruct the secret. In the figures below, during initialization the
client communicates with the servers over a secure (e.g. SSL/TLS) connection.
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Initialization:

1. Creates n random values ki.
2. Send server i the value ki to store at server.
3. With each ki calculate the PRF fki

(pw) = H2

(
pw,H(pw)ki

)
.

4. Split up the secret S into shares Si.
5. Encrypt each share with the PRF as the key efki

(pw)(Si) and store this
publicly.

Reconstruction:

1. Client calculates a = H(pw)r and sends it to each server.
2. Each server i calculates bi = aki and sends it back.
3. The client calculates fki

(pw) = H2

(
pw, b

1/r
i

)
.

4. Client retrieves the publicly available encrypted shares efki
(pw)(Si) and

decrypts them.
5. Client uses Lagrangian interpolation formula and outputs S =∑

i∈SE(Si)
(∏

j∈SE/{i}
−xj

xi−xj

)
.

Original PPSS Scheme Specification

TOPPSS:
¯

As previously mentioned, the above scheme requires one exponen-
tiation for the blinding and t for deblinding each bi, which results in a total of
t + 1 exponentiations. TOPPSS [8] improves upon this computational require-
ment through some creative algebra. The essence of the protocol was to move the
Lagrangian interpolation into the exponent, and use the homomorphic proper-
ties of exponentiation to add the relevant terms in the exponent by multiplying
everything together.

The scheme starts out the same as earlier, with the client sending a = H(pw)r

to each server. However, along with a, the client also sends SE , the set of servers
that the client has decided on using. Additionally, the ki’s are not random values
anymore, but shares of some high-entropy, random secret k. Using this set SE ,
the servers first calculate the relevant Lagrangian coefficient λi, and then not
only exponentiate by ki but also λi to get bi. These bi’s, once sent back instead of
being immediately deblinded, are then multiplied together into b =

∏
i∈SE bi =∏

i∈SE arkiλi = ar
∑

i∈SE kiλi = ark. Note that except for the r factor, since the
ki’s are shares of a secret, no matter which servers you pick, b will result in the
same value. Deblinding and hashing gives us the final result of the T-OPRF,
fk(pw) = H2(pw, b1/r).
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Initialization:

1. Selects high-entropy random value k.
2. Calculate fk(pw) = H2

(
pw,H(pw)k

)
and use it to encrypt a secret, or for

other purposes.
3. Client splits up k using (t, n) secret sharing and sends one share ki to each

server.
4. Client additionally publicly assigns each server an x-coordinate xi based on

their share.

Reconstruction:

1. Select a set SE ⊆ SI with size t.
2. Calculate a = H(pw)r and send it to each server in SE along with SE .
3. Each server calculates bi = akiλi where λi =

∏
j∈SE/{i}

−xj

xi−xj
and sends it

back.
4. The client calculates b =

∏
i∈SE bi.

5. Output fk(pw) = H2

(
pw, b1/r

)
.

TOPPSS Specification

In the TOPPSS paper [8] you do not directly use fk(pw) above as an encryp-
tion key. Rather during the initialization phase you first hash fk(pw) to C|K
and store C at each server. During the reconstruction phase, each server sends
C back to the client and the client checks that they are all the same and that
they match the C from the reconstructed hash of fk(pw) before using K. We will
assume this extra step for our Dynamic Subset TOPPSS (DS-TOPPSS) below
also.

3 Dynamic Subset TOPPSS

The main problem with the TOPPSS scheme is that the server needs informa-
tion on the set of servers to calculate the Lagrangian coefficient. Including the
Lagrangian coefficient on the client side after the server round requires another
exponentiation, which is self-defeating. The idea then becomes to apply the
Lagrangian on the server, but then adjust it later on the client without doing
costly exponentiations. This leads to the following protocol.

3.1 Overview

The basic idea behind DS-TOPPSS is to realize that all the inputs that go into
calculating the Lagrangian coefficient λi are/can be made extremely small. λi is
calculated solely from x-coordinates and if we make xi = i + 1 (e.g. 1, 2, 3, 4, 5),
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then none of the numbers should get very large at all. The only thing that makes
the exponentiation costly is that there are divisions/subtractions in the formula
for λi that make it a full-sized exponent. Hence, we try to achieve the correct
Lagrangian on the client side without any divisions.

3.2 Specification

Once the server receives a = H(pw)r, it needs to send back all the requisite infor-
mation needed for potentially including any server in the exponent. Specifically,
we define

Li =
∏

j∈SI\{i}

1
xi − xj

(1)

and send back bi = akiLi . One can see how this term contains all the divisions
that will ever be needed. Then, on the client side, after we have talked to all the
servers and settled on a set of servers SE , the client calculates

ui =

⎛
⎝ ∏

j∈SE\{i}
−xj

⎞
⎠

⎛
⎝ ∏

j∈SI\SE
xi − xj

⎞
⎠ (2)

Then, to go from Li to λi one just needs to multiply Li · ui. This includes
the numerator that had been missing from Li and cancels out the factors from
the denominators that are unneeded. In terms of the protocol, this equates to
exponentiating bui

i before multiplying all of them together and then deblinding.
Note that for realistic cases, ui is very small compared to a full sized exponent
because of the aforementioned small x values, and lack of divisions.

One further speed improvement can be drawn from the fact that we are
not merely doing t “small” exponentiations, we are calculating the product of t
such exponentiations. And calculating the product of multiple exponentiations
is known to be significantly faster than calculating each one individually and
then multiplying. Specifically, Pippenger’s algorithm [4] can be made to run in
about (1 + t/ lg(tB))B multiplications where B is the bit length and t is the
number of servers as opposed to the t ·B multiplications that would be required
to do each individually.

A Note on Negative Exponents. While the exponents ui needed on the
client side to form the Lagrangian coefficient remain small because the division
is taken care of on the server side, they are not necessarily positive, and when
taken modP will become full-sized again. To solve this, we take the modular
inverse of bi before running the Pippenger step if ui is negative, and always
exponentiate by |ui|.
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Initialization (Same as TOPPSS):

1. Selects high-entropy random value k.
2. Calculate fk(pw) = H2

(
pw,H(pw)k

)
and use it to encrypt a secret, or for

other purposes.
3. Client splits up k using (t, n) secret sharing and sends one share ki to each

server.
4. Client additionally publicly assigns each server an x-coordinate xi based on

their share.

Reconstruction

1. Calculate a = H(pw)r and send it to each desired server, creating SE as
you go.

2. If the server is unavailable, pick a new one, and update SE .
3. Each server sends back bi = akiLi where Li =

∏
j∈SI\{i}

1
xi−xj

as described
above.

4. For all bi, the client calculates ui =
(∏

j∈SE\{i} −xj

) (∏
j∈SI\SE xi − xj

)

as described above.
5. If ui < 0, then bi = 1

bi
.

6. The client calculates b =
∏

i∈SE b
|ui|
i using Pippenger’s algorithm.

7. Output fk(pw) = H2

(
pw, b1/r

)
.

DS-TOPPSS Specification

3.3 Performance

Table 1. Worst case values for client performance for group order 2256
(
t =

⌊
N
2

⌋
+ 1

)

N Highest ui

∑
lg ui OPRF PPSS DS-TOPPSS TOPPSS

3 4 3.584 768 516 514

4 18 11.754 1024 520 515

7 14,400 49.1264 1280 536 516

10 45,722,000 138.004 1792 559 518

20 1.12E+22 738.981 3072 669 523

30 6.86E+38 1909.202 4352 829 528

50 3.84E+76 6175.044 6912 1288 538

75 >2256 15265.223 9984 1503 550

100 >2256 29504.551 13312 1723 563

An important point about our protocol is that it is not strictly equal in perfor-
mance as TOPPSS. While the original goal was to create a dynamic subset PPSS
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that maintained the efficiency of TOPPSS, because of the additional exponentia-
tions by the ui’s, DS-TOPPSS does start to cost more than TOPPSS, especially
in the asymptotic case. However, for all realistic n and t values, and a lot of
unrealistic ones, the ui’s stay very small and the cost stays very close to 2 full
exponentiations in ZP , and under 3, for many values. In addition, though ui

does grow with O(n!), even when it reaches the group order it still stays much,
much cheaper than the original OPRF protocol due to the use of Pippinger’s
algorithm.

To demonstrate this, we have included a table below of numerically computed
values for various selected N ’s, with t =

⌊
N
2

⌋
+ 1. We are assuming that a full

sized exponentiations requires lg P multiplications and have not distinguished
between multiplications and squarings for ease of comparison as per the model
in [4]. Additionally, a graph is included that gives a visual indication of the
performance of the three algorithms.

Fig. 1. Worstcase performance comparisons for OPRF PPSS, DS-TOPPS, and
TOPPSS

3.4 Security

In terms of security, our protocol is very similar to that of TOPPSS, and our
proof is nearly trivial. More specifically, two parts are identical:

1. The servers store the same information in both protocols (the ki’s)
2. The servers receive the same information in runs of the T-OPRF in both

protocols (pwr)
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Because of this, we can use the security of TOPPSS to assert that server
corruptions (<t of them) are secure for our protocol also. The only part that
needs to be shown secure is that of a client corruption. We do this by showing
that the view of DS-TOPPSS is simulatable from a view of TOPPSS.

This can be seen from the fact that starting with the vector
〈
pwrk1λ1 ,

pwrk2λ2 , . . .
〉

of server values, sent back to the client, one simply has to raise

each one to 1/ui to get the
〈
pwrk1 �L1 , pwrk2 �L2 , . . .

〉
in the view of DS-TOPPSS.

All other information is the same in the views of both protocols.

3.5 Correctness

Substituting directly from the protocol specification, the protocol outputs:

fk(pw) = H2

(
pw, b1/r

)

= H2

⎛
⎝pw,

( ∏
i∈SE

b
sgn(ui)∗|ui|
i

)1/r
⎞
⎠ = H2

⎛
⎝pw,

( ∏
i∈SE

bui
i

)1/r
⎞
⎠

= H2

(
pw,

∏
i∈SE

b
ui∗1/r
i

)
= H2

(
pw,

∏
i∈SE

akiLiui1/r

)

= H2

(
pw,

∏
i∈SE

H(pw)rkiLiui1/r

)
= H2

(
pw,

∏
i∈SE

H(pw)kiλi

)

= H2

(
pw,H(pw)

∑
i∈SE kiλi

)
= H2

(
pw,H(pw)k

)

This last value is exactly what is the desired output, as mentioned in step 2
of the Initialization procedure above.

3.6 Robustness with Dynamic Subset TOPPSS

As mentioned earlier, in the TOPPSS paper you do not directly use fk(pw)
above as an encryption key. Rather during the initialization phase you first hash
fk(pw) to C|K and store C at each server. During the reconstruction phase, each
server sends C back to the client and the client checks that they are all the same
and that they match the C from the reconstructed hash of fk(pw) before using
K. We assume this extra step for our Dynamic Subset TOPPSS (DS-TOPPSS)
also. This public storing of C is a common addition to verify that the protocol
ran properly.

Another advantage of the dynamic subset property of our protocol is brought
up if it does fail. Unlike TOPPSS, we can easily apply the robustness scheme
from [1] to the values returned from the servers. The only addition to the scheme
is that the values need to be de-blinded by raising them to 1

r while TOPPSS
needs to account for the servers raising them to the lambdas which is both more
costly because of differing exponents and much more complicated.
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4 Fully Dynamic TOPPSS

4.1 Enrollment Scheme

While TOPPSS was created with performance in mind, we have realized that
there is an additional benefit to TOPPSS schemes over OPRF schemes. Since
TOPPSS actually stores the secret shares ki in plaintext, the network can create
a new share without any involvement from the user. In contrast, the original
scheme which requires the OPRF to be fully run before being able to access the
decrypted shares (which requires the password). One can see that this is an issue,
because if the user does not log on for a long period of time, the network may be
unable to juggle around any dysfunctional/corrupt servers with servers it wants
to add. This may potentially lead to the number of working servers dropping
below t, which implies a complete loss of data. However, adding a server without
the client is not trivial either, as doing it naively will reveal k to the existing
servers if there isn’t a trusted third-party (the user). Our scheme to do so relies
on using “masking” polynomials to hide the shares given to the new server.

The original servers start by each deciding on a random, degree t−1 polyno-
mial that is zero at the new servers’ x-coordinate. They then give shares to each
other server at the recipients’ x-coordinates. To prove that these shares indeed
fulfill the above criterion, each server runs the following zero-knowledge proof:

Repeat the following procedure m times:

1. Prover creates a random polynomial P ′(x).
2. Prover sends each verifier i the shares a = {P ′(xi), P ′(xi) + P (xi)} using

public-key encryption.
3. The verifiers collectively flip a coin to decide bit b and use it to select a share

ab, which is then made public. Note that unless more than t−2 verifiers are
colluding, this does not reveal any extra information about P (x).

4. Collectively, the servers use the shares to either construct P ′(x) or P ′(x) +
P (x).

5. If the chosen polynomial is both degree t − 1 and is 0 at x = xn, continue
iterating.

6. Otherwise, output ⊥
ZK proof for polynomial shares.

This ZK proof is well-known and has correctness and security proofs in [3]
and [6]. After proving these properties, each server adds their shares from all the
masking polynomials to the main share that they have, and sends it to the new
server. The new server then combines all the shares with the relevant Lagrangian
coefficients at its x-coordinate. Because of the properties of the masking poly-
nomials, they all go to zero at that point, leaving only the needed share.
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1. Designate the new server x-coordinate xn.
2. t original servers SE are picked to participate.
3. Each creates a random polynomial Pi(x) of degree t−1 such that Pi(xn) = 0.
4. Each old server i sends each old server j over public-key encryption Pi(xj).
5. Each old server uses the above ZK-proof to prove that their polynomial

fulfills the criterion from step 3.
6. Each old server i sends the new server yi = ki +

∑
j∈SE Pj(xi).

7. The new server interpolates kn =
∑

i∈SE(yi)
(∏

j∈SE/{i}
xn−xj

xi−xj

)
and stores

it for later use in DS-TOPPSS.

Clientless Enrollment Scheme Specification

Security. First, we have to realize that we only have to prove security in the
case where we have t−2 corrupted old servers colluding with the new server. This
can be reduced to the case with t − 1 old servers working without the new one,
because the new server can be thought of as the t− 1th old server by simply not
using its extra information. In addition, if we assume that all communications
happen under secure channels, and the security of the aforementioned ZK proof
scheme [3,6], then the corrupt servers only know their own polynomials.

Next, note that when all the shares are added, they effectively become shares
for a new polynomial, F (x) =

∑
P ′

i (x) + P (x) the sum of all the masking poly-
nomials and the original one. Since it is intended to be evaluated at xn, all the
masking polynomials equal 0, and so F (xn) = P (xn). However, at any other
points, because of the randomness of the masking polynomials, F (x) looks com-
pletely random compared to P (x). As long as all t of the masking polynomials
aren’t given to the new server, the addition of that final unknown random polyno-
mial, done inside a finite field, makes P (x) completely unpredictable from F (x).
Hence, the new server is only able to gain the information it is supposed to.

Now, since we have shown security with communication over private channels,
we need to show that it is also secure when using public-key encryption to
transmit the shares. First, we formalize this concept of maintaining security
with public-key encryption:

Definition 1. A clientless enrollment scheme is secure using public-key encryp-
tion if with any set of adversarial servers SA with |SA| ≤ t − 2 and new server
Sn, masking polynomials Pj(x), and encryption keys kis, where common view
V = {{Pj(xi) | i ∈ SA, j ∈ SE/SA} , {{Pi(x), ki} | i ∈ SA} , {yi | i ∈ SE}}:

{{eki
(Pj(xi)) | i, j ∈ SE/SA} ,V} c≡ {{eki

(0) | i, j ∈ SE/SA} ,V}
This definition captures the idea of the situation remaining the same whether

or not we use public-key encryption, or use private channels and just encrypt
garbage in the transcripts.

Theorem 1. The above clientless enrollment scheme is secure with communi-
cation done with public-key encryption.
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Proof. Since there are multiple pieces of information that are different in the two
things we are proving computationally equivalent, this requires a hybrid proof.
We begin by defining Hj for all 0 ≤ j ≤ (t − |SA|)2 as distributions over the
transcripts defined as in the above theorem, except that j of the intercepted
ciphertexts are encrypted 0’s, and the others are encryptions of real shares.
Note that the tow distributions above are equivalent to H0 and Hσ∗(t−|SA|)2 .
This leads the following reformulation of the theorem statement:

Given a uniform random bit σ, for any PPT adversary D, there exists a PPT
algorithm D∗ s.t:

∣∣Prx←Hσ∗(t−|SA|)2 [D(1n, x,V) = σ]−
Prx←Hσ∗(t−|SA|)2 [D∗(1n, |x|,V) = σ]

∣∣ < negl(n)
(3)

where V is the plaintext rest of the transcript for some negligible function negl(n).
We now examine the situation between two adjacent distributions, and posit

that transcripts from distributions Hj and Hj−1 are computationally indistin-
guishable. Start by assuming the inverse of the previous statement:

Given a uniform random bit σ here exists a PPT distinguisher D′ such that
for all PPT algorithms D′∗:

∣∣Prx←Hj−σ
[D′(1n, x,V) = σ] − Prx←Hj−σ

[′∗(1n, x,V) = σ]
∣∣ > negl(n) (4)

for all negligible function negl(n).
Next, with this PPT distinguisher D′, we can construct the following PPT

adversary A({m1,m2}, ekj
(mσ), P ∗(x)):

1. Create a random polynomial P (x) of degree t − 1.
2. Create random polynomials P ′

i (x) of degree t − 1 s.t. P ′
i (xn) = 0.

3. Emulate a running of the clientless server enrollment protocol, and record the
transcript x in the format described in the theorem statement.

4. Make j − 1 of the encrypted shares e(0) each with the appropriate key.
5. Set the jth encrypted share to the input received ekj

(mσ).
6. Set the messages in V from the server that the jth message is sent from to

reflect being from the polynomial P ∗(x).
7. Output D′(1n, x,V)

Now, when you run A with the input A({0, P ∗(xi)}, ekj
(σ ∗ P ∗(xi)), P ∗(x))

with uniformly random bit σ and P ∗(x) with appropriate degree and x-intercept
for a masking polynomial, A outputs the correct σ with probability non-
negligibly greater than 1

2 . This breaks the IND − CPA property of the public-key
encryption, hence, Eq. (5) must be false, and the maximum advantage that any
PPT distinguisher gains on the jth step must be < negl(n) for some negligible
function negl(n).

Hence, since the number of steps (t − |SA|)2 < n2, which is polynomial, the
maximum total advantage (t−|SA|)2∗negl(n) must also be negligible, concluding
the proof.
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Correctness. The shares yi that the new server receives are the sum of shares
for masking polynomials and the original polynomial. and since polynomials add
linearly, these are also shares for the sum for the masking polynomial and the
original one. Symbolically, these are shares of F (x) = P (x) +

∑
i∈SE P ′

i (x).
Now, when the server interpolates F (x) at xn, the P ′

i (x) components go to
0 because of their definitions, leaving only P (xn), which is the desired share.
– Disenrollment

¯
: is similar to enrollment and is covered in the appendix.

4.2 Linear Communication Enrollment Scheme

One problem with the above schemes (reducing the problem to proactive scheme
on dynamic groups) is that they are relatively communication intensive. Because
each server needs to distribute its polynomial to each of the others, through the
network effect, its bandwidth complexity is O(n2). Usually this should not be a
problem, since server management is such a rare procedure, and n and t shouldn’t
be that big anyways. However, if one does have an extremely large network of
servers which makes these impractical, we do have a linear bandwidth alternate
enrollment scheme. However, it is not as simple as our above one, requiring
homomorphic encryption and a much more cumbersome message order.

To begin, the new server creates a key-pair for Paillier encryption [10] and
shares the public key with everyone. Each old server out of the t then calculates
the Lagrangian coefficient for their x coordinate. Next, they encrypt that coef-
ficient ∗ their share, with the new server’s public key. The new server decrypts
the product of those encryptions, which because of the homomorphic properties
of the encryption, will be the desired y-coordinate.

Note that each individual encrypted share/coefficient product cannot be
given to the new server, since if they were corrupt, they could decrypt them
individually and recover the ki’s themselves. Instead, the servers need to multi-
ply the encrypted values sequentially, passing it on from one to the other (around
the table honest-but-curious protocol). This may be cumbersome, but the num-
ber of steps required does stay linear as opposed to quadratic.

1. Designate new server x-coordinate xn.
2. t old servers comprising set SE each calculate �i(xn) where �i(x) is the ith

Lagrangian basis polynomial given by �i(x) =
∏

j∈SE
x−xj

xi−xj
.

3. Each server then calculates ci = e (ki�i(xn)) where e(x) is Paillier encryption
using the new server’s public key.

4. The servers in SE pass along a running product of their ci’s so that the last
server ends up with c =

∏
i∈SE ci = e

(∑
i∈SE ki�i(xn)

)
= e(kn).

5. The last server sends c to the new server which decrypts it using its public
key and stores xn and kn for use in TOPPSS.

Linear Communication Clientless Enrollment Scheme Specification
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5 Conclusion

In this paper we have extended on the TOPPSS protocol from [8] by introducing
the idea of dynamic-subset, and constructing a dynamic-subset scheme that is
nearly as efficient as TOPPSS. We showed this efficiency through numerical sim-
ulations and provided a security reduction to TOPPSS. We note that while this
is a relatively small addition, it increases the flexibility of the scheme and pre-
vents extra synchronization, which is always welcome in actual systems We then
further showed the importance of performing server enrollment and disenroll-
ment without the client being present, which is another contribution to system
flexibility, and gave protocols that accomplish this. Our resulting protocol is a
fully-dynamic PPSS scheme in that it achieves dynamic subset capability during
reconstruction phase and also achieves clientless enrollment and disenrollment
of servers.

Overall, our contributions add to the flexibility of adopting the above schemes
with much less systems friction (requiring synchronization among parties, and
requirements for involvement of extra parties). We note that while from protocol
design these issues may be small, from a system acceptability such issues can be
crucial at times.

6 Appendix: Disenrollment Scheme

Our disenrollment scheme works in much the same manner as the enrollment one
with the use of random polynomials. The difference in this case is that instead
of using the P ′(x)s to mask anything temporarily, they instead permanently
change the shares that all the servers have, without giving the disenrolled server
the information to do so.

The protocol proceeds as follows. All n − 1 of the remaining servers create
a random polynomial of degree t − 1, P ′

i (x). Unlike the enrollment scheme, this
one is 0 not at xn, but instead at 0, since it needs to preserve the secret in
the constant term instead of the share at xn. The old servers then distribute
the shares to the others and prove the required criterion with a ZK-proof as
explained above. After exchanging the shares from the random polynomials,
the old servers add those shares to their ki value, and use that as their new
share. This emulates the process of creating a new polynomial and creating
shares from it to replace the old one without having to actually reconstruct
the secret anywhere. Since the server being kicked out is not involved in any
of this process, his shares becomes useless with regards to the new polynomial.
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1. Designate the server being disenrolled as server a.
2. All servers that aren’t getting disenrolled create a random polynomial Pi(x)

of degree t − 1 with y-intercept 0.
3. Each of these servers i then send each server (except the one being disen-

rolled) j over public-key encryption Pi(xj).
4. Using the above ZK-proof, the servers prove that their polynomial fulfills

the criterion from step 2.
5. Each server participating in the protocol replaces its share ki with ki +∑

j∈SI/{a} Pj(xi).

Clientless Server Disenrollment Specification

Security. Notice that security for this protocol does not involve revealing extra
information to any of the participating servers. Because the only thing given to
them are shares with a ZK-proof, by the zero knowledge property of the proof,
the remaining servers don’t learn anything they don’t already know. Instead,
we need to argue that even with the aid of t − 2 servers, the disenrolled server
cannot figure out his share for the new polynomial.

Similar to the enrollment scheme, the new polynomial created looks com-
pletely random with respect to the old one. Even with t − 1 servers aiding the
disenrolled server, there are still n + 1 − t polynomials that this coalition does
not have any information about because of the ZK property of the proof. Even
just one of those would make the polynomial that the adversaries would have
left after subtracting away what they knew effectively random. Because of this,
and the security of secret sharing, the kicked-out server has no way of using his
old share to predict a new share for the new polynomial.

The proof of security when using public-key encryption instead of private
channels is nearly identical to the enrollment case.

Correctness. This correctness proof is very similar to that of enrollment. All
the servers add shares from the masking polynomials to their shares, which make
the resulting shares, shares of F (x) = P (x) +

∑
i∈SI P ′

i (x).
When used for interpolation at x = 0 for secret reconstruction, the P ′

i (x)
components will go to 0, leaving only P (x), which is the original secret.
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Abstract. We present a novel end-to-end solution for in-memory mali-
cious activity detection done prior to exploitation by leveraging machine
learning capabilities based on data from unique run-time logs, which are
carefully curated in order to detect malicious activity in the memory of
protected processes. This solution achieves reduced overhead and false
positives as well as deployment simplicity.

Keywords: Malware detection · In-memory attacks · Early detection

1 Introduction

In recent years malware has become increasingly sophisticated and difficult to
detect prior to exploitation [5]. Several approaches that attempt to detect and
protect against it prior to exploitation of the target exist, see e.g. [3,4,12]. Solu-
tions include Endpoint Protection Platforms (EPP) such as legacy or next-
generation anti-viruses, Endpoint Detection and Response (EDR), Managed
Detection and Response (MDR), Cross-layered Detection and Response (XDR)
and many more [2]. These solutions usually rely on either a constantly updated
database of signatures for detecting malware variants that have already been
seen in the wild, a predefined set of rules or heuristics for identifying malicious
activity by actions taken by a program, leveraging more advanced machine learn-
ing techniques like behavioral analysis (to deduce if an entity or set of actions is
malicious or not), or any hybrid combination of these approaches [7,11,15].

All these approaches have shortcomings when it comes to identifying malware
correctly prior to exploitation. In some cases, if the resource defined as a potential
target is critical to the organization, e.g. a global authentication service running
on a secure server, the owners will have a high incentive to protect it, but for
most protection mechanisms this is likely to cause an increased number of false
positives on accesses of the resource, an adverse impact on performance, or
even reduced resource functionality. All these potential problems often deter
organizations from hardening the protection of critical resources in comparison
with the rest of the system [1,6]. The end result is a similar protection level
for all system resources, which is often insufficient for protecting against very
sophisticated malware, especially in-memory ones [9,13].
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In this work, we present a security mechanism that ensures, with high proba-
bility, that detection occurs in real time prior to any malicious action. Our solu-
tion was implemented by training a malware detection machine learning model
on a large data-set of run-time logs (provided by Morphisec Ltd) that were
collected from real-world machines during both standard workloads and real
malware attacks. The logs contain a set of environmental and process-related
variables efficiently extracted during run-time, identified as important for the
detection of in-memory attacks. Using the deployed detector, our system is able
to query a minimal run-time log from a critical process to infer if an in-memory
malicious activity is about to take place and perform a mitigation action before
any harmful operation is performed.

Malware detection using ML models often analyzes the contents of files (e.g.
executable files) or other data sources for extracting features to train the model
[14], or transforms the problem to another domain, such as image recognition
[20]. Unlike these approaches, our solution uses run time environment logs in
an efficient and seamless manner (in comparison to a memory dump analysis or
sandbox/VM approach [8,16–18]). In comparison to other solutions that mon-
itor processes in real-time (e.g. [10]), our solution is non-intrusive and has low
performance overhead. It also reduces false positives to a minimum, as a thresh-
old is set depending on how early the detection is required, providing a trade-off
between the length of the early warning interval and the rate of false positives.

2 Dataset

The dataset used in this research is composed of logs, each of which contain-
ing environmental information regarding a specific process, that were collected
live at runtime. The environmental information collected consists of both static
data (that could have been collected without the execution of the process) and
dynamic data collected from the virtual memory of the process itself. The dataset
spans logs collected between January 1, 2019 and December 31, 2019. These logs
were collected during real world incidents in actual production machines. They
were collected using a proprietary agent program (provided by Morphisec Ltd).
This proprietary software leverages deep integration in the operating system’s
kernel in order to block malicious activity during runtime using various memory-
morphing techniques. These logs were taken prior to exploitation, which means
that any malicious activity has not yet taken place in the target machine, how-
ever, the malicious entity was indeed running. The dataset consists of two types
of logs:

1. Malicious activity: Environmental runtime logs from incidents where the
following actions taken by the malicious entity were indeed malicious (e.g. a
log from the starting point of a ransomware malware execution).

2. Benign activity: Environmental runtime logs from incidents where the
application/process/service are benign and the following actions were non-
malicious (e.g. opening a malware-free document file via Microsoft Word).

https://www.morphisec.com
https://www.morphisec.com
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Using the proprietary deterministic solution to mark each log, means that all
of the records in the dataset are already labeled as malicious or benign. These
labels were reviewed regularly by malware analysts to further reduce the prob-
ability of false positives/negatives.

Data Analysis. Each log is unique, there are no two logs which are exactly
the same. Any identifiable information in the logs, such as usernames, machine
names, domain names, etc. was anonymized in order to preserve privacy. In
Table 1 and Table 2 we present some statistics about the dataset.

Table 1. Dataset: Labels

Label Count

Malicious 1,637,645

Benign 827,938

Total 2,465,583

Table 2. Dataset: Classification

Classification by type Count

Classified 1,043,520

Unclassified 594,125

Total (malicious) 1,637,645

As can be seen from Table 1, there is almost a 2:1 ratio between the malicious
samples and the benign ones. As presented by Table 2, almost two thirds of the
malicious samples are also classified by type (e.g. Trojan). As we show in the
full paper [19], our data set is heterogeneous in terms of malware and attack
types, operating systems, machines, users etc., thus the data is unlikely to cause
over-fitting to any one of these characteristics.

There are 20 malware categories in the dataset as classified by YARA rules.
The records in the dataset are basically documents in JSON format, resembling
runtime logs containing a predetermined set of fields holding environmental data
about a certain process under observation. The log files contain a lot of textual
information. Nevertheless, their size is typically quite small, peaking at 500 KB.
There are dozens of different fields and attributes as part of the log specification
(which is proprietary), however, we chose only the most relevant fields in the
logs (listed in the full paper [19]), which are also available to be collected during
runtime using open source tools and/or low level coding.

3 Pre-processing and Model Generation

The essence of the solution lays in the machine learning model trained on a big
data set of real-world logs representing malicious activity in various execution
stages and from various types of malware, as well as benign data from standard
applications.
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High-level Flow. The high level flow of the model training procedure is as follows:

1. Given a data set of logs in the correct format, extract the textual features
required and convert them from textual representations to numeric vectors
using a standard Natural Language Processing algorithm, do this for every
value (i.e. a full word) in the logs.

2. Given a data set of logs represented as numeric vectors (that is, the output
from the previous stage), convert each log file containing these numeric rep-
resentations to a single numeric vector, using a standard calculation from the
world of document classification.

3. Given a set of numeric vectors to be used as a training set with proper labels
(either malware or benign), train a prediction model in a supervised manner,
using a standard Machine Learning ensemble approach from the world of
classification.

We describe the training process in more detail in the following sub-sections.

Data Preparation. In this stage, we did the following:

1. Cleaned the data where it was needed using Python scripting over the JSON
documents:
(a) Dealing with wrong data types (e.g. text instead of integer) by removing

it altogether.
(b) Dealing with missing values, keep them as is (empty), as long as most of

the log itself still contains proper values.
(c) Normalizing numeric values that were out of the range expected for cer-

tain fields, taking the average from the same classification group.
(d) Correcting errors in parsing in case of incorrect syntax, etc.

2. Shuffling of the logs in order to avoid any existing patterns in the way they
will be split to sets.

3. We split the data set according to the “Holdout method” to a training set,
which also acts as a validation set, and a testing set, ahead of time. The
dataset we use, whose dimensions are presented in Table 1, consists of the
instances of the test set (set aside initially and consisting of an equal number
of malicious and benign instances) and a subset of the remaining instances of
a larger collection of instances from 2019. The proportion between malicious
and benign training set instances was selected so as to optimize the AUC of
our cross-validation tests on the training set. The best cross validation results
were obtained when the proportion of malicious instances in the training set
is approximately 70%, as shown by Table 3.

Table 3. Pre-processing and model generation: split to sets

Set Malicious Benign Total

Training 1,336,432 526,725 1,863,157

Test (Holdout) 301,213 301,213 602,426
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4. Prepared the high-performance training server, placing the relevant sets of
documents ready to be input to the next stage in the process.

Feature Engineering. The main strength of our model lays in its features chosen
carefully from the logs as each and every one of them contributes in the detec-
tion process. We chose approximately 40 features, consisting of metadata fields,
runtime-related features, and PE-related fields. Anonymized features were not
selected. The full list of features is presented in the full paper [19].

Textual Features to Associations. After extracting the features, we wanted to
understand what is the similarity between all their values in the set that we
received. As the features have textual representation we decided to leverage this
and use a well-known method from the field of Natural Language Processing,
called word2vec. This method uses a shallow two-layered neural network to pro-
cess and convert every value (‘word’) in the log to a meaningful one-dimensional
vector of size 32. Using word2vec, values (‘words’) with similar context should
have a similar vector as given by measuring cosine similarity between values. The
word2vec model is trained in an unsupervised manner, which means we ignore
the labels (benign, malicious), and provide a vector for each and every unique
feature value in the training set.

Dimensionality Reduction. After the word2vec model is trained, we need to con-
vert every log as a whole to a representative vector that we can work with. For
this purpose we use a common method usually used for document classification
tasks, which allows us to reduce the dimension of the log while preserving seman-
tics. For each of the following types of features, we calculated the mean vector
of all the vectors (that we received as an output from the word2vec model) that
represents the values (‘words’) inside them using Python scripting:

1. Stack snapshot and trace
2. Registers data, opcodes collected in memory
3. Loaded modules and resources
4. Process and metadata information

This produces a one-dimensional vector of size 192 for every specific log. This
vector is then used as input for a supervised classifier to be trained in the next
stage.

Training. Now that we have all the logs represented as one-dimensional vectors
in the training set, we can input them as training data with their labels, to an
ML algorithm trained in a supervised manner. We chose the gradient boosting
technique which outputs a prediction model in the form of an ensemble of weak
prediction models (in our case, Decision trees). We wanted a simple pre-tweaked
black box solution for gradient boosting, so we tested both of the popular options:
XGBoost and LightGBM . Since there were only minor differences between them
in terms of detection quality, we chose LightGBM which was easier to use.

https://en.wikipedia.org/wiki/Word2vec
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/XGBoost
https://en.wikipedia.org/wiki/LightGBM
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4 Detection Framework

Architecture. Our detection framework consists of the following parts:

I. “Detector”: A novel machine learning model trained on a big data set of
environmental run-time logs captured from real-world malicious incidents per a
specific protected process. This model runs on a standard server in the cloud,
receives a log for detection and replies with a relative score, quantifying the
probability that the activity represented by the log is malicious.
II. “Agent”: A lightweight service running on the endpoint machine whose task
is to generate log instances from critical processes that are to be protected and
send them to the Detector over the network.

High level flow

1. A critical process, which should be protected, is running on the endpoint
machine, a lightweight log extraction service is installed and extracts logs
during run-time as required.

2. The extracted log is sent from the endpoint machine to the Detector server.
3. The Detector server inputs the received log into the already-deployed machine

learning model to receive a detection score.
4. A result with a score for the activity diagnosed from the given log, is being

sent from the server to the endpoint for taking further actions as needed.

5 Experimental Evaluation

Our evaluation uses the test set defined in Sect. 3. The results are presented by
Table 4. These results were obtained by using a classification threshold of 0.75.

Table 4. Experimental Evaluation: Confusion Matrix for the test set

Positive (predicted) Negative (predicted)

Positive (actual) 301,202 11

Negative (actual) 111 301,102

Other metrics that are computed based on the confusion matrix are shown
in Table 5.

As presented by Table 5, detection quality is very high. Specifically, the recall
is nearly 1 while the FPR is extremely low, approximately 0.04%. We also ana-
lyzed the run-time requirements of our solution, establishing that its overhead is
small, and conducted additional experiments that are described in the full paper
[19].
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Table 5. Experimental Evaluation: Metrics for the test set

Metric Value

Area Under the ROC Curve (AUC) 0.997712

Accuracy (ACC) 0.999797

Precision (PPV) 0.999632

Recall (TPR) 0.999963

False positive rate (FPR) 0.000369

False negative rate (FNR) 0.000037

F1 Score 0.999798

6 Conclusion

As malware rose in sophistication and volume in recent years, so is the require-
ment for innovative solutions for its detection. In this work we presented an end
to end ML-based solution for the early detection of in-memory malicious activ-
ity via runtime logs, to demonstrate the potential of leveraging the plethora of
process and environment data that can be collected from processes executing
on endpoint machines over time and be used for malware detection. Our exper-
imental evaluation establishes that this approach has the potential of yielding
high-quality detection of malicious process activity before it performs harmful
operations.

In future work, we plan to investigate the length of the early warning period
that can be achieved using our detection approach, that is, how long before the
malware attempts to execute its harmful operations can it be detected using
our approach. In addition, there are challenges yet to be overcome regarding our
solution’s limitations, which include: reducing the downtime on update, mini-
mizing compatibility issues on the Agent’s side, attempting to provide offline
detections, overcoming the performance limitation of parallel logging and the
overhead stemming from retraining of the model. Additional avenues for future
research include extending our detector by improving the server-side component,
security, communications, anti tampering, and logging mechanisms.
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Abstract. A significant aspect of software integrity is the ability to
determine whether a system is correctly showing the information it is
intended to show. This work combines abstract cryptographic compos-
ability principles with automated machine learning techniques to sup-
port a new methodology for software integrity checking, particularly
in the intractable domain of interface validation. A subtle but often
perilously overlooked cryptographic principle is the requirement that a
sender be aware of the meaning of inputs, specifically of the cleartext
behind encrypted messages. We propose using computer vision to evalu-
ate whether interfaces exhibit technical awareness of information content,
enabling automated development-time and real-time integrity checking
that is far more efficient and extensive than manual analysis.

Keywords: Integrity · Assurance · Composability · Cryptography ·
Machine learning · Computer vision · User interfaces

1 Background

As the chief method for understanding and evaluating computational results in
any setting, user interfaces should have a high requirement for integrity and
correctness, yet rarely are they evaluated with the kind of attention needed for
high assurance, let alone baseline assurance. A consumer-grade interface for a
mobile app with a multi-million user base might have a very moderate yet expen-
sive level of human quality assurance applied to it, along with some traditional
but highly brittle validation tools. But it can also be a risk factor as an infras-
tructure component for society in general as well as an implicit dependency of
high-vulnerability, mission-critical systems in public or military sectors. As such,
the moderate expense of human involvement may be far less than required for
proper assurance. The pressure to reduce expensive human QA increases by the
day, even assuming humans are up to the tedious and repetitive task of evaluat-
ing constantly revised software.

This work proposes a new paradigm for user interface validation, taking
human effort out of the loop by applying automated machine learning inspired
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https://doi.org/10.1007/978-3-030-78086-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78086-9_30&domain=pdf
http://orcid.org/0000-0003-3728-6674
https://doi.org/10.1007/978-3-030-78086-9_30


406 D. Beaver

by cryptographic proof methodologies. We focus here on exploring and motivat-
ing the parallels between assuring cryptographic security and assuring software
reliability, at a broad conceptual level. Case studies with software experience
and engineering impact are described in detail in accompanying works [2].

One broad approach for validating software implementations is to require par-
ticular language implementations and then apply formal, somewhat automatable
reasoning techniques to offer proofs or assurance that the results of a computa-
tion will be correct. Specifications are laid out in mathematical formality and
then proved to the extent possible.

An engineering approach is also possible, in which inspection of many test
cases provides desired code coverage and case coverage. In many settings, auto-
mated testing has become the primary vehicle for software validation, particu-
larly given the large scale, collaborative and dynamic nature of modern software.
Test cases accumulate and themselves require revision, but they provide the
captured specification of desirable behavior, even if incomplete.

Many settings, however, are resistant to proof or automation because their
very nature is hard to capture in simple declarations or as a function which
maps text inputs to text outputs. In particular, user interfaces offer visual or
auditory messages and affordances which can be challenging to describe in a
mechanically-verifiable way.

For example, “A stop sign icon is showing” in an autonomous vehicle display
is easy for a human to understand as a specification, but not simple to declare
for automated validation. Over time, an icon may be updated. Its presence or
position may be hard to specify formally, while also being tedious for a human
to verify.

Typical ad hoc UI validation methods include comparing images to previous
snapshots. These comparisons are brittle when changes are made, and often
impossible until a first prototype is built to obtain a baseline golden image
after manual verification. Still, golden images constitute a significant portion of
automated interface validation, while being an inconvenience to developers when
changes are made.

The gap between human skills and mechanical capabilities means that a user
interface is essentially an encryption of the relevant state of a system, hidden
from automated interpretation. The human must be able to decrypt the mes-
sage embodied in the UI presentation, quickly and easily. There is generally no
requirement that a machine can interpret the UI presentation, however. The lack
of mechanical interpretability is an obstacle to automated software assurance.

Our goal in this work is to motivate a design pattern to support verification of
visual presentations, driven by analogies with concepts of awareness and proofs of
knowledge in cryptography. We will need to address two aspects: (1) the ability
to interpret a visual presentation (analogous to a ciphertext) as a plaintext,
thereby demonstrating knowledge of the plaintext; and (2) a suitable choice of
what the analogy to a plaintext actually is.
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1.1 Computer Vision and Cryptographic Awareness

Computer Vision techniques can fill part of the automation gap, by offering
dynamic and flexible ways to detect visual affordances. Validating whether an
affordance is present and correctly rendered is critical for assessing if an interface
is providing required information or is behaving in error or corruption. Recent
advances in object detection make it feasible to specify and detect particular
objects in a visual rendering, such as an icon for a stop sign.

Still, automated object detection using modern machine-learned networks
isn’t quite enough, since there needs to be a specification for when and how
those affordances appear.

Enter cryptography, which obsesses about and offers an interpretation of what
is “encrypted” in the “ciphertext message” conveyed by interface to human, for
the human to decrypt. In other words, cryptography demands an interpretation
of what is encoded in the encryption.

Drawing parallels, we regard the visualization as an encryption with respect
to a weak adversary - a machine which is generally incapable of understanding
visualizations tendered for human consumption. We need to resolve two goals:
can this “encryption” be explained by awareness of a cleartext, and what exactly
is that cleartext in the first place?

With very recent developments in computer vision, we can bridge the gap
of needing a human to “decode” affordances, interpreting them against a suit-
ably chosen cleartext message rather than against previous encodings (golden
images). We don’t want to ask golden-image style questions, “Did we get the
same encryptions of messages as we did during the previous deployments?” We
do want to ask, “Do the latest encryptions decode to the expected set of clear
messages that currently underpin them?”

The latter question requires a cleartext, though. The lynchpin is the universal
architecture of backend-frontend distributed systems. In virtually every modern
setting (twenty-first century), a backend communicates with a frontend by way
of a tree of text, often JSON. These text-based structures describe values to be
displayed, such as warnings or speeds or summaries.

This work serves as a proposal to interpret backend-to-frontend communica-
tions as the cleartext in an ideal crytographic protocol. The backend messages
are what the frontend’s display must be “aware” of. Specifically, one must be
able to reconstruct backend messages simply by observing the proffered inter-
face. When there is support for a claim that backend messages can be decoded
as expected, there is assurance that what a human sees is correct, valid and
actionable.

The standard golden-image approach would correspond to comparing latest
encryptions to encryptions done in earlier implementations. This is not the goal
of this paradigm - and it contains no reference to anything corresponding to clear-
texts. Here, we interpret encryptions by mapping to suitably defined cleartexts,
namely backend-frontend data-model messages.
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The combination of machine learning and cryptographic principles offers a
way to ensure stronger integrity and effective validation in an easily automated
manner.

Concrete case studies to support the proposals here have been conducted and
are reported elsewhere [2]. This work conveys the overall approach and motiva-
tion, drawing parallels between cryptographic principles, machine learning tools
and software assurance.

2 Cryptographic Awareness

The specific principle of interest, born in attempts to prove cryptographic pro-
tocols secure, is a notion called awareness. In encryption settings, it requires
the sender of E(x) to demonstrate knowledge of x. In other settings, described
in more detail shortly, it requires an interpretation of any protocol message in
terms of an “ideal protocol” communication.

Without awareness, cryptosystems and protocols fall prey to subtle abuse.
For example, consider a naive voting system in which a voter V1 sends a public-
key encryption Ek(v1) to a ballot collector with public key k. Voter V2 can copy
V1’s vote without knowing what it is, simply sending Ek(v1).

Certainly, this seems like a trivial weakness with little impact. Let’s address
some of the concerns, however. First, on basic principles, this voting method
permits something not possible with a standard ballot box or a collection of
handwritten votes tossed in a hat. Having deviated from the properties supported
by an ideal implementation, it’s not clear that we can rely on further conclusions
about this real implementation, such as whether the votes can be biased in
unexpected ways or the system can be abused when composed with multiple
interactions.

Consider a ballot with three choices, all roughly equally favored by a voter
base of a thousand members. Specifically, the tallies might concretely be 330,
340, 330 for A, B and C, respectively. A coalition of a dozen conspiring voters
can easily discover who V1 voted for, by copying V1’s vote and observing the
tipped, winning choice.

Thus, a single invocation of an awareness-disrespecting protocol can leak
critical information. There are also settings where a single invocation reveals
nothing useful but composition of protocols leads to complete failure.

For example, an efficiency improvement in a cryptographic tool known as
Oblivious Transfer [11] was proposed by Den Boer [4] as a way to avoid repeating
highly expensive public key generation computations. OT allows a sender to
send a message that arrives with 50-50 probability, but the sender doesn’t learn
whether it was delivered or not. The asymmetry in knowledge is critical for digital
checks and balances, and finds application in many cryptographic settings like
zero-knowledge proof systems [8]. Finding a fast implementation that overcame
the need to generate a new public composite n = pq each and every iteration
was of significant value.

It was shown soon after, however, that repeated use of the n in the manner
proposed in [4] permitted a sender to obtain otherwise-intractable knowledge
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about the quadratic residuosity of values modulo n. The sender could present
values whose residuosity matched other unknown values (similar to copying a
vote without knowing the vote). The sender could combine unknown values
homomorphically.

For security, it is critical that the knowledge remain asymmetric, namely that
the sender not know which values have been observed in the clear and which
remain hidden to the receiver. But with these capabilities, the sender could
then break the knowledge barrier and determine what the receiver received in
a significant fraction if not all of the invocations, defeating the purpose of the
protocol.

Whether it is a single protocol invocation or a composition of protocols, the
lack of technical awareness is a critical pitfall in cryptographic settings. Should
one be concerned only with “awareness,” though, and how does it relate to
ordinary software integrity and validation? Let’s turn first to exposing where
awareness lies in the pantheon of cryptographic concerns and then see the new
role it offers in practical software validation.

2.1 Universal Composability and Real vs Ideal

Awareness is tied deeply to tools used to show that protocols can safely be
composed together. The underpinning of Universal Composability [5] is a notion
of comparing a “real” execution to an “ideal” execution [1]. If attacks on a
real execution can be shown to be no more powerful than attacks on an ideal
execution, then, informally, the real implementation is considered composably
secure.

To relate a real execution (say, with RSA encryption) to an ideal execution
(say, with a trusted communication channel or trusted third party), some tech-
nical machinery is involved. Specifically, one must exhibit a simulator machine
that is capable of attacking an ideal scenario while also presenting a facsimile of
a real scenario to a given attacker. If the attacker cannot discern whether it is
attacking real or ideal (by way of simulator), and if the end results of the execu-
tions (the outputs produced by various participants) are also indistinguishable,
then one can conclude the protocol is secure.

The messages sent in the ideal setting can be considered the generalization of
a “cleartext.” If the ideal model is a simple point-to-point communication, then
the ideal-execution messages are precisely cleartexts. The composability and
awareness models allow for broader kinds of interactions, like voting or function-
evaluation or secret-sharing or oblivious transfer, with more general meaning to
what those ideal messages represent.

Awareness, then, consists of knowing what messages have been sent in the
ideal execution. Technically, the simulator must be able to extract a message to
be sent on an ideal channel. The ability to extract a message is what demon-
strates awareness of that message.

The lack of technical awareness is a critical but recognized pitfall in crypto-
graphic settings, and it has proved out as a natural aspect of the encompassing
notion of protocol composability. This argues its importance, but it is unheard
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of in other settings such as software or interface validation, where a mix of ad
hoc methodologies offer support but formal notions are challenging to deploy
in practice. Let’s consider some formal notions and then examine how modern
machine learning supports applying them toward better UI assurance.

3 Synthesizing Backend Communications from GUI
Renderings

To draw the analogy between cryptographic awareness and GUI interpretation,
formalisms from [2] are repeated below. The current work is a description of
broad connections and does not present a specific case analysis, so these for-
malisms set the basis for discussion but are not employed in this work. We refer
to [2] for case studies and specific applications.

Typical user interfaces employ a frontend client which updates a presentation
based on a JSON text-based dictionary tree model x supplied by a backend ser-
vice. The client GUI G then renders an image, G(x). To demonstrate awareness
of the input x, one must extract x from G(x), namely interpret the GUI in terms
of the backend “cleartext” JSON.

Definition 1. A GUI G is ε-aware of the model, with respect to an input dis-
tribution D on model data, if there exists an efficient interpreter I such that
I(G(x)) = x with probability exceeding 1 − ε.

Since a GUI may often omit information on purpose, we allow for a filter F to
restrict demands to a subset of the model data, often to just a specific subtree:

Definition 2. A GUI G is ε-aware of the model relative to filter F , with respect
to an input distribution D on model data, if there exists an efficient interpreter
I such that F (I(G(x))) = F (x) with probability exceeding 1 − ε.

When applying these concepts to software engineering settings, the distribu-
tion may be challenging to define formally, since it should match what is seen
when the software is deployed. Our concern here is not how to discover such dis-
tributions but rather to supply an analogy for showing awareness with respect
to a particular distribution, chosen as effectively as possible. Test-driven devel-
opment itself has two components: having a way to test code, and having a way
to produce a span of tests [3,6,9,10,12,13]. We focus here on having a new way
to test code.

Definition 3. Let a test suite S generate backend text models with distribution
D. A GUI G satisfies awareness-based assurance with respect to test suite S and
filter F if it is ε-aware of the model with respect to D and relative to F .

We wish to consider validators and show they cannot discern real from ideal.
The ultimate technical goal will be to show any validator is unable to distinguish
the two settings. In case studies and proposed software practice, these validators
are generally intended to be simple equality tests on subtrees, and the goal is to
provide a simple validator to use in a test-driven setting.
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Definition 4. Let V take an input pair of strings, (a, b), and report a 1-bit
output. A test validator V supports awareness-based assurance of GUI G if
|Pr[V (f0, f1) = i] − 1/2| < ε, where i is a uniformly random bit, fi is F (x)
with x sampled from D, and f1−i = F (I(G((x))).

4 Awareness-Based Development Paradigm

One purpose of drawing the analogy between cryptographic awareness and user-
interface development is to show how to make a UI more robust by facilitating
test-driven development (TDD). The novel paradigm is this:

1. Visual specifications using slide deck quality (e.g. PowerPoint)
2. Backend model is defined (JSON schema)
3. Train object detector on labeled spec (design deck) to identify affordances
4. Write test code to map detected affordances to synthesized JSON

While identifying affordances using computer vision is not novel [13], prior
applications sought to generate test sequences and then compare golden images.
The notion of mapping images to backend messages is novel.

Computer Vision. A key element in this paradigm is to automate visual testing
of a UI by replacing the two current but expensive and brittle validation patterns
with a robust, automated test framework. (Current approaches include expensive
human vetting by way of manual interpretations of spec, or automated but brittle
comparisons of previous golden snapshots.)

Case studies in [2] demonstrate that CV-based object detection can be
trained from PowerPoint-quality designer spec and then applied robustly to
the later-implemented actual GUI. This takes human effort out of the quality-
assurance (QA) approach. It also eliminates the brittle nature of golden snap-
shots.

The human effort of validating implementations de novo and after modifi-
cations is replaced by an initial machine-learning labeling effort. It suffices to
label the slide-deck quality images, marking when affordances are present or not.
Moreover, the labeling is itself very straightforward, since the designer has pre-
sumably already organized sample images in terms of known states (like: “stop
sign present” or “warning light showing”) for the purpose of instructing engi-
neering efforts.

Awareness. The next step in the paradigm is to validate images formally not
merely by detecting affordances but by recreating the original JSON which gave
rise to them. An example case study from [2] explores testing whether an emer-
gency indicator is shown on-screen. In an awareness-based test-driven develop-
ment phase, an extractor is written as part of the test code to map states where
indicators are detected to JSON subtrees that trigger an indicator in the first
place. The extractor code generates JSON without such triggers when it is pro-
vided images in which the indicator is not detected by automated CV. While
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engineers need to write extractor code, just as they need to write test-driven
tests in any TDD setting, there is no need for QA or online verification.

Software Development Efforts. Given the level of formal cryptographic moti-
vation, it seems that this paradigm could be quite expensive. Simple case studies
show otherwise [2]: a feasible implementation of test-driven GUI development
using automated awareness-based validation took less than a week to produce.
The backend, GUI, awareness-interpreter and validator in a simple case study.
Filtering JSON on a warning mode and using a test suite whose distribution is
over pseudorandomly generated warning states (presence or lack thereof), the
extracted JSON matched the actual source JSON without error.

4.1 Online Self-validation

As described above, the interpreter/extractor should run efficiently in a test
setup, but there is no requirement that it be fast enough to work on resource-
limited client hardware. It turns out that object-detection processing is certainly
fast enough even on a handheld device to deploy with the application. Inconsis-
tencies can be noted in real time and detected immediately when the extracted
JSON fails to match the backend-supplied JSON.

Although not specifically a required goal, the computer-vision processing can
be fast enough even on a handheld device to deploy with the application and
note inconsistencies in real time. The instrumented app can immediately show
that it knows it is in an incorrect display state, flagging and reporting bugs as
they occur in the wild.

The formalisms speak of distributions where interpretations must be faithful.
By deploying self-testing with the application, the awareness-based validation is
expanded to offer much greater assurance because it relies on accurate real-world
distributions, not just synthetic or sampled logs used during development.

5 Summary

This work describes a validation paradigm for user interfaces which relies on
cheap, automated interpretations of presented images, instead of the traditional
focus on brittle image-to-image consistency or on expensive human interpreta-
tion of sampled images.

Two aspects are essential for this paradigm to work. First, recent computer
vision techniques have shown sufficient power (e.g. object detection for affor-
dances) to enable steps needed to interpret presented images. Second, a notion
inspired by cryptographic awareness of cleartexts is the basis for defining and
measuring the target of interpretation: the backend-supplied model data (analo-
gous to cleartexts in cryptography).

By automating the UI interpretation in terms of backend model data, our
awareness-based test-driven paradigm allows testing to be set up in advance of
the first implementations of a project, and to be based on initial and sketched
specifications which are not bit-for-bit replicas of a final screening. This drives
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down the cost of testing, increasing the appeal and robustness of testing, and
thereby increasing the assurances offered during deployment.
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Abstract. Katz et al., CCS 2018 (KKW) is a popular and efficient
MPC-in-the-head non-interactive ZKP (NIZK) scheme, which is the tech-
nical core of the post-quantum signature scheme Picnic, currently consid-
ered for standardization by NIST. The KKW approach simultaneously
is concretely efficient, even on commodity hardware, and does not rely
on trusted setup. Importantly, the approach scales linearly in the circuit
size with low constants with respect to proof generation time, proof ver-
ification time, proof size, and RAM consumption. However, KKW works
with Boolean circuits only and hence incurs significant cost for circuits
that include arithmetic operations.

In this work, we extend KKW with a suite of efficient arithmetic
operations over arbitrary rings and Boolean conversions. Rings Z2k are
important for NIZK as they naturally match the basic operations of mod-
ern programs and CPUs. In particular, we:

– present a suitable ring representation consistent with KKW,
– construct efficient conversion operators that translate between arith-

metic and Boolean representations, and
– demonstrate how to efficiently operate over the arithmetic repre-

sentation, including a vector dot product of length-n vectors with cost
equal to that of a single multiplication.

These improvements substantially improve KKW for circuits with
arithmetic. As one example, we can multiply 100 × 100 square matrices
of 32 bit number using 3200× smaller proof size than standard KKW
(100× improvement from our dot product construction and 32× from
moving to an arithmetic representation).

We discuss in detail proof size and resource consumption and argue
the practicality of running large proofs on commodity hardware.
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1 Introduction

Zero-knowledge proofs of knowledge (ZKPoKs) enable a prover P, given a public
circuit C, to show that she holds a witness w, such that C(w) = 1. Recent
research focuses on efficient ZK proofs of arbitrary statements. A special case of
ZK is non-interactive ZK (NIZK). NIZK proofs can be transferred and verified
without interacting with P.

[KKW18] specified a powerful NIZK proof system over Boolean circuits that
features linear scaling in proof size, in verifier time, and, critically, in proof
generation time. In this work, we extend this system with efficient arithmetic and
conversions between Boolean and arithmetic representations. Our contribution
thus reduces both proof size and computation.

Motivation and Setting for Our Work. ZKPs, and especially NIZKs, have
enjoyed immense research interest in recent years. The majority of such works
prioritize small proof size and fast verification, important metrics in blockchain-
related applications. However, optimizing these metrics comes at significant
prover cost. In experiments reported in many works, provers are run on powerful
servers with hundreds of GB of RAM. Asymptotically, proof times are typically
super-linear in the size of the proof circuit, with costs O(n log n).

At the same time, moderate resource requirements, such as low memory
utilization, are essential to a class of applications, such as those running a ZK
prover on a mobile device. Modern flagship phones have 4 to 6 GB RAM, a
portion of which can be made available to the NIZK application.

This leaves room for a balanced approach that prioritizes total proof time,
and that takes into account the ability to run on commodity hardware, and the
costs of proof generation, network transmission, and verification.

We argue that [KKW18] is a great fit for applications where only commodity
hardware is available and where concretely efficient performance is demanded:
[KKW18]’s linear scaling in communication, prover computation, and verifier
computation mean that the approach remains tractable even for large proof
statements. [KKW18]’s RAM consumption is low even for large proof functions
due to the gate-by-gate proof generation, and [KKW18] uses only light-weight
computational primitives. The technique also requires no trusted setup. Finally,
[KKW18] is actively supported by the community, since it is under consideration
standardization by NIST as part of the Picnic post-quantum signature scheme.

However, [KKW18] supports only Boolean circuits. When [KKW18] is used
in contexts that require complex arithmetic, the circuit size grows significantly,
increasing both proof computation and communication. In this work, we improve
[KKW18] by extending it with efficient arithmetic operations and with conver-
sions between Boolean and arithmetic representations.

1.1 A Use Case for Balanced ZKP

To illustrate and make more precise our motivation, we explicate one natural
use case where [KKW18] would be a top ZKP system among prior work.
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Consider a set of mobile phones on a local Wi-Fi or bluetooth broadcast net-
work, e.g., in the context of a group event, private contact tracing, etc. Suppose
one phone wishes to prove a statement to everyone on the broadcast channel.
Note that even though interaction is available here, the interactive designated-
verifier systems, such as [JKO13,HK20] must repeat the proof for each verifier.
Thus interactive techniques are not well suited for convincing the entire network
at once, and a NIZK proof, which can be broadcasted, is a better solution.

In such a setting, the broadcast network resource is surprisingly substantial:
while somewhat slower than 1gbps LAN, Wi-Fi supports speeds up to many
hundreds of Mbps. Bluetooth 5 supports bandwidth of up to 2Mbps on distances
of up to 800 ft (240 m).

We wish to complete the proof, including its generation, transmission (which
may overlap with the other two phases), and verification, as quickly as possible.
One natural way to view this optimization space is to ask: “given the available
bandwidth, say 10Mbps, is the bottleneck proof generation, transmission, or ver-
ification?” The answer to this question (cf. Sect. 2 discussion of ZK systems’
costs) is: “Proof generation/verification.” Thus [KKW18], a proof system with
concretely efficient linear scaling in the proof size, is a top choice.

1.2 Our Contribution and Outline of the Work

We extend the [KKW18] proof system with efficient ring arithmetic. Ring (e.g.,
vs field) operations are a particularly useful primitive for ZK, since they naturally
match basic steps of existing programs written in standard languages, such as
C. A ring-based ZK system can thus be more naturally used in proving program
properties (e.g. presence of bugs [HK20]) in ZK.

While [dSGMOS19,BN19] (cf. Related Work Sect. 2) considered adding arith-
metic to KKW for highly tailored applications, we provide a generic construction,
and additionally offer the following efficient arithmetic operations:

Consider a finite ring whose elements are l bits long.

– We add an efficient operation that computes the dot-product of two arbitrary
size vectors of ring elements for 2l proof bits (cf Sect. 5.1).

– We add efficient conversions between Boolean and arithmetic representations.
Specifically, we add conversion operations between Boolean and rings Zk for
arbitrary k. Let l = log k. Converting l Boolean values to an arithmetic value
(or vice versa) costs l2 bits in the proof (cf Sect. 5.2).

In Sect. 6, we formalize our approach as a p party semi-honest protocol in the
preprocessing model, prove its security, and explain how it plugs into the honest-
verifier ZK protocol of [KKW18]. Thus, via the Fiat-Shamir transform [FS87]
our approach directly extends the NIZK [KKW18] proof system.

We provide a detailed account of the performance of our system, including
individual gate costs and comparisons with standard [KKW18] (Sect. 7). We
demonstrate that for arithmetic operations, our approach substantially improves
[KKW18]. Of particular note is our improvement for linear arithmetic: as an
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example, our approach can multiply 100× 100 square matrices of 32 bit number
using 3200× smaller proof size than standard [KKW18].

1.3 Intuition: MPC-in-the-Head, [KKW18] and Our Work

[KKW18] is a NIZK in the MPC-in-the-Head paradigm. In the MPC-in-the-head
paradigm, the prover P simulates in her head a secure multi-party computation
(MPC) protocol between several ‘virtual players’. These players are given shares
of P’s witness as input and run the proof circuit C under MPC. P commits
to the views of these players, and then the verifier V selects a subset of views
to open. By checking that these views are consistent with the honest execution
of the MPC protocol resulting in the output 1, V gains confidence that P did
not cheat and indeed has a witness. Because V does not see the views of all
players, the MPC protocol’s security properties prevent him from learning P’s
witness. Therefore, such a protocol achieves Zero Knowledge. The players amplify
soundness by repeating the protocol. Such systems can be transformed into NIZK
proof systems using the classic Fiat-Shamir transform [FS87].

[KKW18] implements MPC-in-the-head with a protocol heavily based on
preprocessing. Preprocessing fits elegantly with MPC-in-the-head because it can
be easily prepared by P and checked by V. As do [IKOS07,GMO16,CDG+17],
[KKW18] allows efficient broadcast-based MPC, which allows P to simulate
larger numbers of MPC players in her head. Because the protocol happens only
in P’s head, these broadcasts are efficient. By simulating more players, P reduces
the number of repetitions needed to amplify soundness.

Our work notices inherent flexibility in this broadcast-based MPC protocol.
We point out that broadcasts of Boolean values are easily generalized to broad-
casts of elements of arbitrary finite rings. We show how this extension allows us
to directly encode algebraic operations like addition and multiplication, signifi-
cantly reducing cost. We further show how Boolean and k-bit integer operations
can be mixed in the same circuit by including conversion operations.

2 Related Work

Zero Knowledge. ZKP [GMR85,GMW91] is a fundamental cryptographic prim-
itive. ZK proofs of knowledge (ZKPoKs) [GMR85,BG93,DP92] allow a prover
to convince a verifier, who holds a circuit C, that the prover knows an input,
or witness, w for which C(w) = 1. Originally, practical ZK research focused on
specific algebraic relations. More recently, ZK research has focused on practical
proofs of arbitrary circuits. Our work is in this arbitrary circuit setting.

MPC-in-the-Head. Ishai et al. [IKOS07], introduced the powerful ‘MPC-in-the-
head’ paradigm, outlined in Sect. 1.3. ZKBoo [GMO16] was the first implemen-
tation of MPC-in-the-head. Chase et al. [CDG+17] deprecated ZKBoo by build-
ing a more efficient system, ZKB++. They demonstrated that ZKB++ can
implement an efficient signature scheme using only symmetric-key primitives.
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Katz et al. [KKW18], the basis of our work, further improved this direction by
using MPC with preprocessing. Picnic [ZCD+17], a signature scheme based on
ZKB++, was submitted to the NIST post-quantum standardization effort. The
Picnic submission was since updated and is now based on [KKW18].

Ligero [AHIV17] is another MPC-in-the-head protocol that diverges from our
work’s lineage. Ligero offers sublinear proof size (O(

√|C|)), but incurs super-
linear prover computation (O(|C| log |C|)). It is estimated that Ligero constructs
smaller proofs than [KKW18] for circuits with more than approximately 100K
gates. Thus, a choice between [KKW18] and Ligero should be based on the
desired application and on performance requirements.

SNARKs. Succinct non-interactive arguments of knowledge (SNARK)
[GGPR13,PHGR13,BCG+13,CFH+15,Gro16] build proofs that are particu-
larly efficient, both in communication and verification time. They construct
proofs that are shorter than the input itself. Prior work demonstrated the feasi-
bility of sublinear ZK proofs [Kil92,Mic94], but were concretely inefficient. Early
SNARKs required a semi-trusted party. This disadvantage led to the develop-
ment of STARKs (succinct transparent arguments of knowledge) [BBHR18].
STARKs do not require trusted setup and rely on more efficient primitives.
STARKs are succinct ZKP, and thus are SNARKs. In this work, we do not sep-
arate them; rather we see them as a body of work focused on sublinear proofs.

Recent SNARKs include Libra [XZZ+19] and Virgo [ZXZS19]. SNARKs
[MBKM19,CHM+20] rely on trusted setup, which we wish to avoid. SPARKs
[EFKP20] parallelize expensive prover time, but total CPU consumption (our
metric) is superlinear. Supersonic’s prover [BFS20] is quazilinear with high con-
stants. Fractal [COS20] runs its concretely expensive prover on a high-end Intel
Xeon 6136 CPU at 3.0 GHz with 252 GB of RAM (no more than 32 GB of RAM
were used in any experiment).

Interactive ZK. In this work, we focus on concretely efficient non-interactive
ZK. Another direction forgoes non-interactivity in exchange for very fast proofs.
Interactivity allows private-coin ZK protocols, such as those based on [JKO13]
and garbled circuits (GC). In [JKO13], V garbles the evaluated circuit, then P
evaluates and thus obtains the random encoding of the output. The GC authen-
ticity property guarantees that P is unable to obtain a requisite output label
without evaluating with a valid witness w. Recently, [HK20] showed that condi-
tional branches in the proof circuit can be evaluated for free.

We achieve performance similar to the above works (linear with low concrete
overhead), but we work with algebraic values and in the non-interactive setting.

Prior work on Arithmetic. [KKW18] tailors [KKW18] for AES-based signatures
and Short Integer Solution problem. In contrast, we propose a more general
KKW suite of tools. Namely:

Motivated by ZKP of AES (whose S-boxes use F28 arithmetic), [dSGMOS19]
adapt [KKW18] to operate in the field F28 . Our approach similarly improves
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[KKW18] by adding operations, but we take a more general approach and inte-
grate ring operations, efficient dot product, and conversions.

Baum and Nof [BN19] consider an arithmetic field-only version of [KKW18],
focusing on interactive instances of ZK arguments of knowledge for instances of
the Short Integer Solution problem. [BN19] do not provide conversions between
representations. We offer ring arithmetic (matching basic steps of existing pro-
grams) and additional efficient operations: dot product and conversions.

We are not aware of other arithmetic ZK constructions that work with KKW.

Balanced NIZK. In Sect. 1, we motivate a setting that prioritizes total proof
time, taking into account the ability to run on commodity hardware and the
cost of proof generation, transmission, and verification. Among the many recent
ZKP systems (cf. Sect. 2), several works belong to this balanced niche, among
them Libra [XZZ+19] and Virgo [ZXZS19] (concretely expensive but with linear
prover time), Ligero [AHIV17] and [KKW18]. We improve this balanced setting.
Among the above works, Libra and Virgo are the most recent, and enjoy linear
proof time with reasonable proof size. However, Libra requires trusted setup
that we wish to avoid. While Libra and Virgo report faster proof times than
Ligero and [KKW18], they were tested on vastly more powerful machines: Libra:
Amazon EC2 c5.9xlarge with 70 GB of RAM and Intel Xeon Platinum 8124 m
CPU with 3 GHz virtual core, and Virgo: server with 512 GB of DDR3 RAM
(1.6 GHz) and 16 3.2 GHz cores (2 threads/core). While Ligero runs on modest
hardware, its proof time is super-linear: O(n log n). Finally, [KKW18] enjoys
both linear scaling and concretely efficient proof time, but its proof size is linear
as well. Because of [KKW18]’s linear scaling, it is a strong fit for balanced-cost
NIZK.

MPC Arithmetic Protocols. We highlight some related works that address arith-
metic protocols with properties similar to our own improvements.

[CGH+18] used threshold secret sharing to construct an efficient arithmetic
MPC protocol. Like our approach, their protocol provides an efficient vector dot
operation. However, their protocol works with fields (and we are interested in
supporting efficient ring arithmetic), and further, is not compatible with Boolean
circuits.

BLAZE [PS20] proposed a fast three-server privacy-preserving machine learn-
ing framework. Their protocol allows both vector dot product operations and
conversions between Boolean and arithmetic values. BLAZE is a 3-PC protocol,
and does not generalize to arbitrary numbers of parties. Additionally, their arith-
metic to Boolean conversions require the use of garbled circuits and are expen-
sive. Our MPC-in-the-head protocol supports similar operations, but allows any
number of virtual parties and leverages the ZK prover to efficiently instantiate
conversions.
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3 Notation

– Let p denote the number of parties: there are p parties Pi for i ∈ {1, . . . , p}.
– We consider finite rings R. We denote the bit-length of an R element by l.
– We write a ←$ R to denote that a is a uniform element drawn from R.
– λ denotes a uniform Boolean mask.
– x, y, z, etc. denote cleartext Boolean bits that appear in the proof.
– x̃, ỹ, z̃, etc. denote encrypted Boolean bits. I.e., x̃ = x ⊕ λ for some mask λ.
– Capitalized variables are used for ring values: Λ is a uniform ring element

mask, X,Y,Z are cleartext ring elements, and X̃, Ỹ , Z̃ are encrypted ring
elements. That is, X̃ = X + ΛX .

– Suppose a is a Boolean value (resp. A is a ring element). Then let [[a]] denote
a secret sharing of a (resp. [[A]] of A). That is, suppose each player Pi holds
an additive share ai such that

⊕p
i=1 ai = a (resp.

∑p
i=1 Ai = A). Then [[a]] is

the vector (a1, a2, . . . , ap) (resp. [[A]] = (A1, A2 . . . Ap) ).
– We refer to Boolean (resp. arithmetic) wires with lowercase (resp. uppercase),

e.g., value A on wire A. Context disambiguates this slight abuse of notation.

Although our circuits discuss arbitrary rings, we also provide concrete con-
version operators between particular rings. Specifically, we construct conversion
operations from the Booleans to rings Zk for arbitrary k. We also provide the
dual conversion from Zk to the Booleans.

4 [KKW18] Background

As discussed in Sect. 1, [KKW18] is a powerful MPC-in-the-head NIZKPoK sys-
tem that takes advantage of a preprocessing-based protocol to achieve efficiency.
[KKW18] NIZKPoK’s relevant (to us) features are non-interactivity and its low-
constant linear scaling in all proof costs, including proof generation, proof trans-
mission, and proof verification.

The proof system is built from two protocols:

1. An MPC protocol with preprocessing secure against up to p − 1 semi-honest
corruptions. It is this protocol that we improve in our work.

2. An honest-verifier Zero Knowledge (HVZK) protocol. This HVZK protocol
uses the above MPC protocol as a black-box. In particular, P runs the MPC
protocol in her head many times (i.e., there are many instances) and among
many players. This MPC protocol includes a preprocessing and online phase.
The verifier V challenges P to open the views of players. In some instances,
V inspects the preprocessing given to all players to check it was correctly
constructed. In the other instances, V inspects the preprocessing and online
views of all but one MPC party and checks that the views are consistent with
the MPC protocol. Thus, V becomes convinced that P could not have cheated
in either the preprocessing or the online phases.
Because the MPC protocol is used as a black-box, we can substitute in our
own improved protocol.
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Due to lack of space, we defer a formal review of [KKW18]’s MPC protocol
to a full version of this paper. We present our extensions to their protocol in full
detail such that the specific details of their protocol are not essential background.

5 Adding Arithmetic to Boolean Circuits

Our core contribution is an extension to the concretely efficient NIZK proof
system of [KKW18]. In particular, we add efficient arithmetic operations as well
as conversions between arithmetic and Boolean representations. In this section,
we explain how our protocol implements these operations.

We first discuss a pure algebraic version of [KKW18] and explain the relative
efficiency of our arbitrary ring operations. Then, we show how to mix arithmetic
and Boolean representations in a single circuit by adding conversion operations.

5.1 Ring Circuits with Efficient Dot Product

Consider circuits where the gates perform ring operations: i.e. circuits with addi-
tion, multiplication, and subtraction gates. Ring [KKW18] is a natural gener-
alization of the Boolean protocol, and we leverage similar preprocessing and
online phases. The phases are primarily concerned with propagating the follow-
ing invariants gate-by-gate through the circuit:

– Preprocessing invariant. During the preprocessing phase, P ensures that
each virtual player has a uniformly random additive share of a random mask.
For each ring wire A the p virtual players hold the random sharing [[ΛA]]
where ΛA is a uniform element of a finite ring R.

– Online invariant. In the online phase, each virtual player holds the value
Ã = A + ΛA. I.e., they each hold the same encryption of A.

These invariants support correctness, because they imply that on each output
wire A the players hold A+ΛA and [[ΛA]]. Thus, the players can broadcast their
mask shares and locally reconstruct A. The invariants support security against
up to p − 1 semi-honest corruptions, because they ensure that each cleartext
value A is masked by ΛA, and thus no strict subset of players, who together
have only a uniform additive share of ΛA, can reconstruct ΛA. We prove these
facts formally in the full version of this paper.

We next step through the supported algebraic operations, showing how our
representation propagates the preprocessing and online invariants.

Inputs. Suppose the wire A is an input wire. Our goal is to provide a uniform
sharing [[ΛA]] in the preprocessing phase and to provide the encryption Ã =
A + ΛA to each player in the online phase.

P sets up the preprocessing invariant by choosing p uniform values and send-
ing one to each virtual player. She distributes [[ΛA]]. The sum of these p values is
the uniform mask ΛA. In practice, P draws these values according to per-player
pseudorandom seeds. Thus, Pi’s view of all input mask messages (as well as all
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other pseudo-randomly generated masks, as we discuss for subsequent gates)
can be computed from a short seed. The online phase is also straight-forward:
P sends the value Ã = A + ΛA to each virtual player.

To use our protocol to construct a proof, P sends to V the views of all
virtual players save one. For an input wire, this costs l bits of communication
where l is the bit-length of an element in R. Thus, the preprocessing phase is
communication-free due to seeds and the online phase requires only a single
broadcast of a ring element.

Addition. Consider an addition gate with inputs A and B and output C that
computes C ← A+B. By induction, the players hold uniform sharings [[ΛA]] and
[[ΛB ]] in the preprocessing phase and encryptions Ã, B̃ in the online phase. Our
goal is to propagate a sharing [[ΛC ]] in the preprocessing phase and an encryption
C̃ = C + ΛC such that C = A + B.

In the preprocessing phase, we let the preprocessing mask of the output wire
be ΛC = ΛA + ΛB. Accordingly, the virtual players locally compute their mask
shares by adding their respective input shares: together they compute [[ΛC ]] ←
[[ΛA]] + [[ΛB ]]. In the online phase, the players locally add together the masked
input values: C̃ ← Ã + B̃. The preprocessing and online local computations
propagate the respective invariants:

Ã + B̃ = (A + ΛA) + (B + ΛB) = (A + B) + (ΛA + ΛB) = C + ΛC = C̃

Because addition gates do not require the virtual players to communicate,
addition gates are communication-free in the proof.

Subtraction. Subtraction is performed in the same manner as addition. Consider
a gate with inputs A and B and output C that computes C ← A − B. We let
ΛC = ΛA − ΛB . During the online phase, the virtual players locally subtract:

Ã − B̃ = (A + ΛA) − (B + ΛB) = (A − B) + (ΛA − ΛB) = C + ΛC = C̃

Like addition gates, subtraction gates are communication-free.

Public Constants. Public constants and multiplication by public constants can
be easily encoded in our representation. Due to lack of space, we defer this
explanations of these encodings to the full version of this paper.

Multiplication. Consider a multiplication gate with inputs A,B and output C
that computes C ← AB. Unfortunately, multiplication cannot be computed as
easily as addition. In particular, P must distribute auxiliary ring elements to
the players in the preprocessing phase, and the players must communicate via
broadcast in the online phase.

In the preprocessing phase, P generates a fresh uniform mask ΛC by draw-
ing uniform ring elements and sending one to each player. In practice, these
values are drawn according to the per-player pseudorandom seed, and hence are
communication-free in the proof.
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Additionally, P computes the product ΛA,B = ΛAΛB and distributes a uni-
form sharing [[ΛA,B ]] to the players. Note that because ΛA,B is a fixed value,
one virtual player’s uniform share cannot be generated from a seed, and must
instead be set according to ΛA,B . Therefore, that player’s preprocessing incurs
communication in the proof.

In the online phase, the virtual players hold [[ΛA]], [[ΛB ]], [[ΛA,B ]], [[ΛC ]], Ã, and
B̃. They locally compute the following intermediate sharing:

[[S]] ← [[ΛA,B ]] + [[ΛC ]] − Ã[[ΛB ]] − [[ΛA]]B̃

Recall that we do not assume ring multiplication is commutative, so we take care
to order multiplicands properly. The players broadcast these shares, reconstruct
S, and set C̃ ← ÃB̃ + S. Note that it is safe to reconstruct S, because S is
masked by the uniform element ΛC . This computation properly calculates an
encryption of AB:

ÃB̃ + S = ÃB̃ + (ΛAΛB + ΛC − ÃΛB − ΛAB̃)

= ÃB̃ + (ΛAΛB + ΛC − (AΛB + ΛAΛB) − (ΛAB + ΛAΛB))

= AB + ΛC = C̃

Altogether, this arithmetic product costs 2l bits in the proof where l is the
bit-size of ring elements: l bits to add the last player’s share of ΛA,B to the proof
message and l bits to send the unopened player’s broadcast (V can compute the
opened players’ broadcasts himself, so they need not be sent).

Dot Product. In this section, we generalize from multiplication to vector dot
product without increasing cost. Without our optimization, such a dot product
of n element vectors costs 2ln bits in the proof, because the dot product involves
n multiplications each costing 2l bits. We show that only 2l total bits are needed.

Note, a particular player Pi’s received messages Λi
A,B and S are only used in

an additive manner to compute the product. Therefore, if our intent is to add
together n products, then we can sum the per-player messages for all products
before sending them, avoiding sending all of the summands.

Consider a dot product gate with input vectors (A1, . . . An), (B1, . . . , Bn) and
output C. The gate computes:

C ← A1B1 + . . . + AnBn

By the circuit invariants, players have mask shares for all input vector elements in
the preprocessing phase and encryptions all vector elements in the online phase.
The players receive auxiliary masks/communicate to evaluate the dot product.

For simplicity, we argue that our improvement works for the sum of two
products A1B1 +A2B2, but our argument generalizes to the sum of any number
of products. Let S1, S2 respectively be the broadcasted terms reconstructed by
virtual players when computing A1B1 and A2B2. Recall that to compute an
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encryption of A1B1 and A2B2, the players locally compute Ã1B̃1+S1 and Ã2B̃2+
S2. Thus, to compute the overall sum, the players compute:

(Ã1B̃1 + S1) + (Ã2B̃2 + S2) = (Ã1B̃1 + Ã2B̃2) + (S1 + S2)

Thus, in the online phase, the players need not broadcast [[S1]] and [[S2]] sepa-
rately: instead they more efficiently broadcast [[S1 + S2]]. This reduces the com-
munication cost of the online phase. The preprocessing communication cost is
similarly improved: to compute [[S1 + S2]], the players compute shares of the
following expression (where ΛC1 , ΛC2 are uniformly random):

S1 + S2 = (ΛA1,B1 + ΛC1 − ˜A1ΛB1 − ΛA1
˜B1) + (ΛA2,B2 + ΛC2 − ˜A2ΛB2 − ΛA2

˜B2)

= (ΛA1,B1 + ΛA2,B2 ) + (ΛC1 + ΛC2)− ˜A1ΛB1 − ΛA1
˜B1 − ˜A2ΛB2 − ΛA2

˜B2

Thus, in the preprocessing phase it suffices for P to distribute uniform shares
[[ΛA1,B1+ΛA2,B2 ]] instead of distributing both [[ΛA1,B1 ]] and [[ΛA2,B2 ]]. Again, this
improves communication. Other values are known to the players a priori or can
be generated from seeds. Altogether, the vector dot product of length n vectors
costs 2l bits in the proof.

To illustrate the importance of this optimization, we compare the communi-
cation cost to multiply an M × N matrix by a N × P matrix where each matrix
entry is an l bit ring element. Without vector dot product, such a multiplication
costs 2M · N · P · l bits of communication, because the resulting M · P matrix
entries are each l bit sums of N products. Our optimization removes the factor
N : the total cost is 2M · P · l bits.

5.2 Converting Between Boolean and Arithmetic

We have shown how we construct an arithmetic version of the [KKW18] proto-
col for arbitrary rings. However, many functions (e.g., comparisons and bitwise
operations) are more efficiently expressed in a Boolean representation. To get the
best of both worlds, we now introduce efficient conversion operations between
Boolean and arithmetic representations. We stress that our conversions are not
for arbitrary rings, but only rings of the form Zk for arbitrary k > 2.

Single Bit Conversion. Consider a conversion gate with Boolean input wire a
and arithmetic output wire A. By induction, the players together hold the mask
sharing [[λa]] in the preprocessing phase and each hold the encryption a ⊕ λa

in the online phase. We show how added communication allows the players to
propagate the invariant such that they hold [[ΛA]] and Ã = A + ΛA. In other
words, we convert the Boolean encoding to a valid arithmetic encoding.

We start by giving the players preprocessing material. First of all, P pseu-
dorandomly generates from seeds [[ΛA]] ∈ Zk and distributes it to the players.
This new value ΛA serves only as a mask that ensures security. Additionally, P
deals a uniform sharing [[Λa]] ∈ Zk such that Λa = λa (λa is a Boolean value and



Efficient Generic Arithmetic for KKW 425

Λa is an arithmetic value)1. The role of this auxiliary mask is different than ΛA.
In particular, the auxiliary mask algebraically eliminates the Boolean mask λa.
Note that, similar to multiplication, one player’s share of Λa cannot be pseudo-
randomly generated, because the shares must sum to Λa = λa, and λa is a fixed
value. Thus, the translation preprocessing costs l proof bits. We emphasize that
although λa = Λa, the players hold XOR shares of λa and additive shares of Λa.

In the online phase, we use the following two properties of arbitrary values
x, y ∈ {0, 1} when computing modulo k > 2:

x ⊕ y = x + y − 2xy (1)

x2 = x (2)

To convert, the virtual players locally compute the following intermediate share:

[[S]] ← [[Λa]](1 − 2ã) + [[ΛA]]

Each virtual player then broadcasts her share, reconstructs S, and computes
Ã ← ã + S. That is, each player outputs a correct arithmetic representation
Ã = A + ΛA. We now show that this computation is correct:

ã + S = (a ⊕ λa) + Λa(1 − 2(a ⊕ λa)) + ΛA ã = a ⊕ λa

= (a + λa − 2aλa) + Λa(1 − 2(a + λa − 2aλa)) + ΛA Equation (1)
= (A + λa − 2Aλa) + Λa(1 − 2(A + λa − 2Aλa)) + ΛA a = A

= (A + Λa − 2AΛa) + Λa(1 − 2(A + Λa − 2AΛa)) + ΛA λa = Λa

= (A + Λa − 2AΛa) + Λa − 2AΛa − 2Λ2
a + 4AΛ2

a + Λa distribute
= A + Λa − 2AΛa + Λa − 2AΛa − 2Λa + 4AΛa + ΛA Equation (2)

= A + ΛA = Ã

This conversion costs l bits of communication in the preprocessing phase,
because one virtual player is given a non-pseudorandomly chosen value for her
share of Λa. Therefore P sends this non-pseudorandom value to V to open the
view of this player (if this player is not opened, preprocessing is free). In the
online phase, we incur l bits of communication, because P must send the broad-
cast of the unopened player to V to convey the views of all opened players.

Multi-bit Conversion. Often, it is useful to convert an entire vector of Boolean
values together into a single arithmetic value. Specifically, a Boolean vector is
often used as the binary representation of an arithmetic value. Suppose we have
a vector of Boolean wires (a1, a2, . . . , al) that we would like to convert into an
arithmetic value A:

A = a1 + 2a2 + . . . + 2l−1al

Of course, we can use l single-bit conversions, as described above, to construct
this sum. However, there are optimizations available.
1 Here and elsewhere, equality between a Boolean value and an arithmetic value simply

indicates that both values are either both 0 or both 1 in their respective ring.
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In particular, this näıve translation costs l2 bits in the online phase. We
now reduce this cost to l bits. Recall that each bitwise translation requires the
broadcast of an l bit value S. Let Si be this broadcast value for bit i. The idea is
to simply have the players compute and broadcast their shares of the following
single value:

[[SA]] = [[S1 + 2S2 + . . . + 2l−1Sl]]

The players then reconstruct SA and locally compute the following:

A + ΛA ← SA + ã1 + 2ã2 + . . . + 2l−1ãl

One further optimization is available for integer rings Z2n for some n, a partic-
ularly useful set of rings for modeling common cleartext computations. Looking
again at the definition of [[SA]], notice that the summand 2l−1Sl overflows the
ring by 2l−1 bits. That is, this summand carries only 1 bit of information in Z2n .
Therefore, at preprocessing time P need not give the players l bit shares Λa,
but instead need only send 1 bit shares. In general, for a given vector index i, P
sends l − i − 1 bits of preprocessing. In sum, the preprocessing costs l2+l

2 bits.
Altogether, an l bit conversion costs l bits in the online phase and (at most)

l2 bits in the preprocessing phase.

Converting Arithmetic to Boolean. Suppose we wish to convert an arithmetic
value A to its binary decomposition (a1, a2, . . . , al). Our construction for this
conversion is based on a simple observation about Zero Knowledge. In the ZK
setting, we can “compute backwards” and then prove what was computed is cor-
rect. More precisely, P simply gives the virtual players encryptions and masks
corresponding to (a1, a2, . . . , al) as Boolean inputs. Then, the virtual parties
use the multi-bit conversion described above to translate (a1, a2, . . . , al) to an
arithmetic value A′. Note that if P provides the correct inputs, then A = A′.
Therefore, the parties compute A−A′ and reconstruct the output by broadcast-
ing their mask shares of this result; i.e., they reconstruct 0 if P did not cheat.
By inspecting this output value, V is convinced that P provided a correct binary
decomposition of the value A.

Altogether, converting an arithmetic value to its binary decomposition costs
(1) at most l2 preprocessing bits for the Boolean to arithmetic conversion, (2)
l online bits for the Boolean to arithmetic conversion, (3) l online bits for the
input bits given the virtual parties, and (4) l online bits for the unopened player’s
broadcast of her mask share.

6 Our Semi-honest MPC Protocol

We first explain the 3-round honest-verifier ZK (HVZK) protocol of [KKW18] so
that our core theorems can be understood. Our protocol is plugged directly into
this HVZK protocol.

P constructs a large number M (e.g., 500) of commitments to full instances
of our protocol. That is, she commits to the views of all p (e.g., 64) players,
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both in the preprocessing and online protocol phases. Then, V challenges P to
open a small number τ (e.g., 25) of instances. For each of these τ instances, P
sends to V the compactly represented views of all except for one player chosen
by V. V checks that the views of these opened players are consistent with the
protocol, and thus is convinced (his confidence depends on τ) that P could not
have cheated in the online phase. Because V only obtains p−1 views and because
our protocol is secure against p−1 semi-honest corruptions, he does not learn P’s
witness. In the remaining M − τ instances, P opens all players’ preprocessing
views, where each preprocessing instance is compactly represented as a single
master seed. V checks that these preprocessing views are consistent with the
protocol, and thus is convinced (depending on M and τ) that P could not have
cheated in the preprocessing phase either. By configuring M, τ , and p, P can
construct a ZK proof with high soundness.

By plugging into [KKW18]’s HVZK protocol, we achieve a ZK protocol by
specifying our protocol as a semi-honest protocol in a preprocessing model. The
crucial pieces of our protocol Π are specified in Sect. 5, where we give the indi-
vidual actions taken by the virtual parties on gate types. While we stress that
the discussion given in Sect. 5 is sufficient to understand our approach, we give
also a more formal construction in the full version of this paper.

Construction 1. Π is the p party protocol defined in Sect. 5.

Our protocol Π makes use of two oracle functionalities. In particular, it first
uses the functionality Fpre to instantiate preprocessing material for the p virtual
players and Finp which broadcasts P’s masked input to the p players.

Theorems proved in the full version of this paper imply the following:

Theorem 1. Π correctly implements the semantics of ring circuits and is secure
against up to p − 1 semi-honest corruptions in the Fpre, Finp hybrid model.

This fact, combined with Theorem 2.2 of [KKW18], implies the following:

Theorem 2. Let M be the total number of repetitions of the proof, τ be the
number of proofs checked by V (hence M−τ preprocessings are checked), and p be
the number of virtual players. Assuming the existence of a collision-resistant hash
function and of a secure commitment scheme, the 3-round honest-verifier Zero
Knowledge proof protocol of [KKW18] instantiated with Π is an honest-verifier
zero-knowledge proof of knowledge with soundness/knowledge error ε where:

ε = max
M−τ≤k≤M

{ (
k

M−τ

)

(
M

M−τ

) · pk−M−τ

}

We point out that our soundness error is equal that of standard [KKW18],
because the cheating P’s chances of being caught remain the same. If P cheats
in any preprocessing phase, then she is caught if V inspects the preprocessing. If
P cheats in any online phase, then she is caught if V opens the cheating player.

Finally, by applying the Fiat-Shamir transform [FS87] (and assuming a ran-
dom oracle), this instantiated 3-round HVZK protocol becomes a non-interactive
Zero Knowledge Proof of Knowledge (NIZKPoK).
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7 Performance Estimation

We improve the [KKW18] approach by adding a suite of efficient ring operations
and Boolean conversions. It is immediate from our constructions that we inherit
the performance characteristics of [KKW18], including computation and commu-
nication costs. Namely, our computation costs are approximately the same per
gate (whether arithmetic or Boolean) as [KKW18]. This is because the compu-
tations supporting arithmetic or Boolean operations are extremely lightweight,
and the main costs involve memory manipulations, which are of similar scope.
Our communication cost is the same as [KKW18] for Boolean operations, and is
correspondingly increased for arithmetic operations. We outline this cost below,
and compare it with that of [KKW18].

Gate Kind ADD SUB DOT INPUT OUTPUT B2A

Preprocessing 0 0 l 0 0 l2

Online 0 0 l l l l

Fig. 1. The per-instance proof size cost of each gate for an l-bit finite ring. Note that to
construct a NIZK, multiple instances must be completed. Realistic numbers of instances
vary between 20 − 40 depending on the parameterization of the NIZK [KKW18].

Gate Costs. Recall, multiple proof instances are required to increase soundness.
Figure 1 tabulates the per-instance communication cost for each gate. The num-
ber of instances needed to achieve a certain security parameter depends on the
number of simulated parties. As one practical example, for 128 bits of security
with 64 simulated parties, 23 instances are required [KKW18]. Thus, if p = 64,
the total communication cost of, e.g., a DOT gate is 46l bits where l is the bit
size of the finite ring elements. We emphasize that proof instances that are used
only to check preprocessing incur essentially no communication cost because the
entire preprocessing is regenerated from a single master seed.

Arithmetic Improvement. We compare our communication with that of
[KKW18] on several functions. To understand the performance of classic
[KKW18], it suffices to look at Fig. 1 with l = 1, recalling that classic [KKW18]
does not support vector dot product, only simple Boolean AND (costing 2 bits
total).

– Addition. Suppose that we wish to add numbers in the ring Z2l for some
l. Boolean circuits can encode this addition efficiently using a ripple-carry
adder that costs l − 1 AND gates or 2l − 2 proof bits. In contrast, our addition
is a free homomorphic operation.
Adding in most rings other than Z2l is extremely costly for the Boolean
approach. For example, to compute in the field Zp for prime p, the Boolean
approach must compute the costly modp operation which uses l2 AND gates.
In contrast, our approach adds elements of this field for free.
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– Multiplication. Computing a multiplication in the ring Z2l consumes l2 AND
gates by the schoolbook method. In contrast, we use only l bits. Furthermore,
if we consider other rings, the situation skews further in our favor. For exam-
ple, to multiply in a field Zp, a Boolean circuit must multiply in a ring large
enough that the product does not overflow (i.e. twice the number of bits in
p), and then compute modp.

– Matrix multiplication. As discussed in Sect. 5, our DOT gate excels as effi-
ciently computing matrix multiplications. In sum, multiplying a M×N matrix
by a N ×P matrix of l-bit elements requires 2M ·P · l bits. That is, computing
a matrix multiplication requires only twice as many bits as are needed to rep-
resent the output matrix. To compare the performance of classic [KKW18],
assume that the matrix elements are elements of Z2l . Thus, Boolean alge-
bra can encode a multiplication using l2 AND gates or 2l2 proof bits. The
total proof cost for a matrix multiplication in the specified dimensions is thus
2l2 · M · N · P bits. Thus, our approach improves by factor N · l. When con-
crete parameters are considered, it becomes clear that this improvement is
substantial. For example, to multiply 100 × 100 square matrices of 32 bit
integers, we require 3200× less communication.
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Abstract. In an Internet of Things (IoT) environment, devices may
become compromised by cyber or physical attacks causing security and
privacy breaches. When a device is compromised, its network behavior
changes. In an IoT environment where there is insufficient attack data
available and the data is unlabeled, novelty detection algorithms may be
used to detect outliers. A novelty threshold determines whether the net-
work flow is an outlier. In an IoT environment, we have different types
of devices, some more complex than others. Simple devices have more
predictable network behavior than complex ones. This work introduces a
novel access control method for IoT devices by tuning novelty detection
algorithm hyper-parameters based on a device’s network complexity. This
method relies only on network flow characteristics and is accomplished in
an autonomous fashion requiring no labeled data. By analyzing connection
based parameters and variance of each device’s network traffic, we develop
a formalized measurement of complexity for each device. We show that this
complexity measure is positively correlated to how accurately a device can
be modeled by a novelty detection algorithm. We then use this complex-
ity metric to tune the hyper-parameters of the algorithm specific to each
device. We propose an enforcement architecture based on Software Defined
Networking (SDN) that uses the complexity of the device to define the pre-
cision of the decision boundary of the novelty algorithm.

Keywords: IoT · Security · Unsupervised machine learning · Access
control

1 Introduction

The billions of devices that bridge the cyber and physical worlds have already
altered how we interact with our physical surroundings. Smart speakers respond
to spoken requests for information, provide reminders or simply turn on and
off the lights. Embedded cameras can detect who we are and respond to our
gestures to do mundane tasks such as turning up the volume, dim the lights, etc.
For all the convenience and function that these devices, they also bring a long
history of poorly implemented security, unpatched vulnerabilities, and privacy
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violations. Poorly implemented security on these devices has lead to distributed
denial of service (DDoS) attacks specifically originating from these devices [8].

Security baselines [4,5] and strong endpoint security in international stan-
dards [24] are steps in the right direction, but there will always be insecure
devices; either because they were manufactured that way or did not receive soft-
ware patches. This is highlighted in the large corpus of research [1,23,25,25–27]
that documents how and why vulnerable IoT devices are prone to security attacks.
We will never be able to depend on all of our devices being completely secure,
therefore we must instead depend on the network to help us to monitor and secure
the devices for us. To scale to the networks of tomorrow and to be of practical use
to the average consumer, network based IoT security must be done in a largely
autonomous manner.

Unlike networks of the past, made up of a small number of general purpose
machines, Internet of Things (IoT) networks will increasingly be made up of
a large number of specialized devices designed to do a single task. The single
purpose and often constrained nature of these devices makes them harder to
intrinsically secure, but easier to extrinsically analyze. A single temperature
sensor, for example, will not be able to run an anti-malware application, but
does have a simple and predictable network traffic footprint.

This work exploits this single purpose nature and the correspondingly pre-
dictable network behavior of IoT devices to autonomously derive several mea-
sures of complexity based entirely on their network traffic. This allows not only
for the classification and evaluation of IoT devices based on their complexity, but
also enables each IoT device’s historic network behavior to be more accurately
modeled using an anomaly detection algorithm that is tuned to this complexity.

For enforcement we employ a software defined network that can proactively
take several actions on a flow such as counting, logging, rate-limiting, delaying
and blocking. Previous enforcement architectures were built on a binary model
of trust and enforcement, i.e. block or allow traffic for a particular port or for a
particular flow. Instead of binary enforcement; block or allow, our model allows
the enforcement function to dynamically adjust for the complexity of the device
(a direct measure of how well it can be modeled) and the abnormality of the
flow (the measure of its separation from inliers). Highly abnormal flows from
very simple devices can be automatically blocked, while such flows from more
complex devices can be rate-limited or logged. Effectively this places more trust
in devices that can be accurately modeled and less trust in devices that cannot
be accurately modeled. We believe this is a key contribution and we have devel-
oped a ground truth methodology to test our model and a network reference
architecture to enforce it.

This behavior-based flow routing model can be used as the first line of defense;
to slow or prevent botnets and DDoS attacks at their source by detecting anoma-
lous traffic at the granularity of individual flows from specific devices. Proper
implementation would allow the network to selectively isolate and block mali-
cious flows, leaving devices continuing to perform their primary function.
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Research Contributions

– We formalize measurements of device complexity and establish a definition
of device behavior based on anomaly/novelty detection formulated from IP
header traffic all using unsupervised techniques that require no labeled data.

– We hypothesize that devices with smaller complexity values will show less
of an aberration in its behavior compared with those of higher complexity
values. Our results justify this. Thus, we tune the outlier threshold for the
anomaly detection algorithms in accordance with device complexity.

– We propose a test architecture that uses the complexity tuned behavior to
autonomously monitor and enforce learned behavior from devices.

This work is organized as follows; in Sect. 2 we review related research on how
to analyze behavior and secure IoT devices. In Sect. 3 we describe the lab setup
and the data collected. In Sect. 4 we develop methods for measuring complexity
and how devices are classified into discrete groups. Section 5 describes how we
develop a method for modeling learned behavior of IoT devices and describe
the enforcement architecture in Sect. 6. In Sect. 7 we describe how the tuning of
the hyper-parameters affects precision, recall and false positives of the model.
Finally in Sect. 8 we summarize the work and propose possible next steps in this
research.

2 Related Work

2.1 Device Identity Detection

Loepz-Martin et al. [10] build a network traffic classifier (NTC) using a recurrent
neural network (RNN) and apply it to labeled IoT traffic. The goal of this is to
identify the types of traffic and services exhibited by an IoT device as a step
toward identifying the device.

Miettinen et al. [13] have developed a method, called IoT Sentinel, that
uses machine learning to designate a device type on the network, referred to by
the authors as a device fingerprint. Using the random forest algorithm and 23
network features they were able to identify device types on the network based on
the device’s traffic. The 23 features are based on layer two, three and four of the
OSI networking stack. Expecting that the body of the packet will be encrypted,
all the features the authors employed are based on unencrypted parts of the
traffic like IP headers information.

Bezawada et al. [2] build on the work done in [13] by using a machine learning
approach to broadly identify the device and place it in a predefined category,
such as a light bulb. According to the authors, even devices from different man-
ufacturers can be placed into general categories such as two separate light bulbs
can be identified and placed into a lighting category.

All supervised solutions of fingerprinting devices suffer from a similar problem
in that they require labeled data for each device. Not only this but a supervised
classifier must be trained on every device, and potentially retrained on devices
after a firmware update.
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2.2 IoT Behavior and Autonomous Techniques

The following works use various means of autonomous and unsupervised machine
learning approaches to identifying devices and device behavior. This has advan-
tages over statically defined access control lists and firewall rules.

IoT-Keeper [7] is an edge based IoT anomaly based access control system
that uses correlation-based feature selection to determine which features do not
contribute to the anomaly detection. AuDI [12] implemented an autonomous
device-type identification that uses the periodicity of device communications
resulting in abstract device categories that could be used to enforce access control
policies. DioT [14] extends the AuDI classification model to create a federated
approach by aggregating device anomaly detection profiles.

Ren et al. use a privacy focused approach to enumerating and analyzing IoT
behavior [19]. Ortiz et al. set up a probabilistic framework to monitor device
behavior using an LSTM (Long Term Short Term Memory) neural network, to
learn from inherent sequencing of TCP flows to automatically learn features from
device traffic with the intent of categorizing devices and distinguishing between
IoT devices and Non-IoT devices [18]. The authors are able to identify previously
known devices after only 18 TCP-flow samples and categorize devices into two
classes IoT and Non-IoT.

2.3 Complexity and Predictability

Formalized measurement of complexity as applied in a computer science con-
text is probably most often associated with the works of Andrey Nikolaevich
Kolmogorov, who defined the complexity of an object as the shortest computer
program to produce the object as an output [9]. This simple notion arises again
in the work of Jorma Rissanen whose work on the minimum description length
principal that establishes that the best model for a set of data is one that leads
to the best compression of the data [21].

In the paper Predictability, Complexity, and Learning authors Bialek et al.
establish a formal result that predictive information provides a general measure
of complexity [3]. In this work we propose that the relationship between pre-
dictive information and complexity is commutative, i.e. not only does predictive
information lead to a measure of complexity, but that complexity provides a
general measure of predictive information.

In machine learning this relationship leads to the logical notion that the
less complex the model the more accurately it can be modeled, or to put this
in the context of IoT, the less complex the device the more accurately we can
define its behavior. Specifically, this work builds an anomaly based behavioral
model, where the device’s complexity directly affects the decision boundary that
differentiates between inliers and outliers.

Our model can be used to determine a representative set of flows, along with
a learned decision boundary, that define the behavior of a device and these flows
can be directly loaded into flow tables of Openflow enabled switches. We believe
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that this will scale to the broad spectrum of devices and adapt to any new
configurations of devices in the future.

Take, for example, a refrigerator that is also an Android tablet, the method-
ologies previously mentioned in the related works, would struggle to character-
ize such a device. Our method does not try to recognize this device as either a
refrigerator or a tablet, it does not try to guess at the service or characterize
the device’s application layer data. Our model does not rely on learning specific
human interactions with the refrigerator, nor determining if those interactions
are anomalous. Our model only relies on how complex the refrigerator appears
on the network and how much it stays within our learned boundary of behavior.

This work extends the work done in [6] by using a novelty detection algorithm
and formalizing a ground truth testing methodology, to show the efficacy of the
model at recognizing new and anomalous traffic.

3 Data Format and Collection

Data was collected from a real residential network with approximately 25 devices
(Table 1) over the course of 37 days. These devices range from general computing
devices like laptops and smartphones, IoT hubs with several IoT Devices using
Zigbee or Zwave behind them, to single-purpose devices such as light bulbs and
temperature sensors. Data was collected by a central MicroTik router (Fig. 1)
and sent to nprobe [15] running on a Raspberry Pi. Flows were stored in a
MariaDB relational database. Table 2 shows the features of the data collected.

Table 1. List of devices

Home devices

• Amcrest Camera •Plex Server •Raspberry PI 3

•Google Home •Samsung Note 8 •Smart Things Hub

•J. Chromebook (Asus) •Xbox One (2) •Appple Macbook Pro

•Philips Hue Hub •Chromecast •Echo Dot

•Eufy Doorbell •Motorola Android •HP Stream Laptop (2)

•Eufy light bulb •TP Link Switch •Roku Express

•B. Chromebook (HP) •Brother Printer •Roku Stick

•Amazon Alexa 1st gen. •Fire Tablet (3)

Flows were aggregated with a maximum of 30 min per flow. Inactive flow
timeout was set to 15 s. If the devices have not exchanged traffic in 15 s the flow
is completed and recorded. For training and test data sets the data is filtered
by an individual IP address. The test environment is configured such that the
devices always receive the same IPv4 address.

Definition 1. Network Flow: A sequence of packets where all the packets in
the flow have the same tuple: source address, destination address, source port,
destination port and protocol.
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Table 2. Data features

Feature Description

IPV4 SRC ADDR IPv4 Source Address

IPV4 DST ADDR IPv4 Destination Address

IN PKTS Incoming flow packets (Device->Destination)

IN BYTES Incoming flow bytes (Device->Remote)

OUT PKTS Outgoing flow packets (Remote->Device)

OUT BYTES Outgoing flow bytes (Remote->Device)

L4 SRC PORT IPv4 Source Port

L4-DST PORT IPv4 Destination Port

PROTOCOL IP Protocol Identifier

Fig. 1. Data collection architecture

4 Device Complexity Classification

Device complexity is an aggregate measurement of a device’s IP connections,
dip, and how much its traffic varies over time dv. Devices that are single purpose
should have simple network behavior and general purpose devices will have more
complex network behavior. Figure 2 shows where devices should fall along a
spectrum of simple and complex.

Fig. 2. Spectrum of network complexity
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4.1 Device IP Complexity

This research examines how devices form connections. Simply counting the num-
ber of unique IP addresses that a device connects with fails to take into account
the inherent service-oriented hierarchical structure of the IPv4 address space,
where companies and services are often part of similar subnets. To account for
this we propose a complexity measure based on a simple ratio of IP spread to
IP depth. IP spread is the number of unique source and destination IP addresses
that interact with the device. IP depth is the number of IP addresses that belong
to the same higher level octets.

Definition 2. IP Tree, IP Branch, IP Leaf, IP Spread. An IP tree is a
unique first order octet which comprises the root of the tree. An IP Branch is a
second or third order octet that has one or more fourth order octets under it. An
IP leaf is a unique fourth order octet. IP Spread is the sum of total unique IP
addresses that interact with a device.

Device IP Spread ( IPSpread)

IPSpread =
∑

IPtrees (1)

Device IP Depth ( IPDepth)

IPDepth =
∑

IPleaf∑
IPbranch

(2)

Device IP Complexity ( dip)

dip =
IPSpread

IPDepth
(3)

To calculate IP spread and depth we build unordered trees of each IP address
where the first order octet is the root and lower octets are children. Then we
can calculate how many trees, branches and leaf nodes each IoT device contacts.
A large number of IP trees with few branches indicates a large IP spread. A
small number of IP trees that have many branches and leaves indicates a large
IP depth. IP spread/depth is used as one measure of a device’s complexity. The
intuition here is that this complexity measure mirrors how services are organized
based on common IP subnets. As devices form connections out to the Internet
their complexity goes up. As the number of connections that have common
first, second and third octets increases this has a corresponding reduction in the
complexity measurement of the device. Devices belonging to a single ecosystem
such as Google Home have a small number of broad trees (low IP Spread and high
IP Depth) as they connect to mostly Google’s networks dedicated to these types
of devices. Other devices such as laptops and smart phones make connections
to many unique destinations thus leading to a large number of thin trees each
having fewer branches and leaves. Figure 3 shows the total IP complexity of each
device. Devices that are more general purpose have higher complexity and are
grouped together on the right of the figure. Single purpose and lower complexity
devices are grouped on the left of the figure.
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Fig. 3. IP device complexity

4.2 Device Variance

The variance metric comes from the simple notion that devices on a network
present different variances based on what they do on the network. Device vari-
ance is calculated by taking the sum of the standard deviation of n device features
df in the training set as shown in Eq. 4. Each device’s variance is graphed in
Fig. 4. Here again, devices that tend to be more general purpose have higher
complexity and are grouped on the right of the figure. Single purpose and lower
complexity devices are grouped on the left of the figure.

Device Variance ( dv)

dv =
n∑

f=1

σdf
(4)

4.3 Aggregate Complexity

Overall device complexity is the sum of the average device variance and the
average device IP complexity as calculated in Eq. 5 and shown in Fig. 5. Devices
in the figure again show that general purpose and higher complexity devices
tend toward the right side of the graph and more single purpose lower complex
devices tend to be grouped on the left side of the graph.

Aggregate Device Complexity (ADC)

ADC = dip + dv (5)

Discrete Complexity. Organizing the devices based on logarithmic magni-
tudes of complexity allows us to easily examine device characteristics within
discrete groups as shown in in Fig. 6.
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Fig. 4. Average device network variance

Discrete Device Complexity (DDC)

DDC = �log10ADC� (6)

Fig. 5. Aggregate complexity
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Fig. 6. Discrete complexity

5 Behavior

Given the complex interactions that IoT devices have with the physical world,
behavior represents the dynamic and changing network footprint exhibited by
these devices. The sensing and actuating response of IoT devices that bridges the
cyber and physical world requires new methods of defining what is normal and
what is abnormal. IoT devices, even the same make and model from the same
manufacturer will exhibit slightly different behavior based on how they interact
with the human inhabitants, each other and the environment. Two very similar
devices, that have different apps installed may act very differently. This variance
in behavior requires that the model is tailored to these specific and individual
devices.

We begin by defining IoT device behavior based on the past history of net-
work interactions of the device, bounded by the most extreme of these inter-
actions in the training set. To model the degree of normality and extremity of
behavior we turn to classic outlier detection algorithms, adding what we believe
to be a key contribution of this research, we tune the hyper-parameter of the
outlier detection algorithm to the specific device based on the measure of com-
plexity as defined in the previous section.

This method has the direct affect of making the decision boundary of the
trained model a more precise fit for simple devices and more generalized for
complex devices. This allows the detection algorithm to be more strict in identi-
fying outliers for simple devices and more lax for complex devices. This enhances
the model, enabling it to adaptively prioritize new extreme behavior and reduce
false positives for simple devices.
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5.1 Novelty Detection

Novelty detection is a form of outlier detection where the training set is con-
sidered untainted by outliers i.e. only positive samples. New observations are
classified and determined to fall within the decision boundary are inliers and
observations outside the decision boundary are outliers. To derive a behavior for
a device we employ the One Class Support Vector Machine (OCSVM) algorithm
using the Radial Basis Function (RBF) kernel [11]. Outlier flows detected dur-
ing the training phase are recorded, and form the set of flows we call significant
flows.

Definition 3. Significant Flow: A significant flow is one that is marked as
an outlier by the OCSVM during training. This set of flows plus the decision
boundary forms the behavior boundary of the device.

Definition 4. Device Behavioral Boundary: Device behavioral boundary
is the set of all unique significant flows and the decision boundary found during
training.

To establish that the complexity measurement is a statistically relevant one
we take the linear regression of the number of outliers found by the OCSVM
using the default values of ν = 0.5 and gamma as calculated in Eq. 7. The
correlation of outliers to anomalies can be seen in Fig. 7.

γ =
1

nfeatures ∗ x .var()
(7)

Fig. 7. Complexity vs Anomalies
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5.2 Novelty Detection Tuning Using Device Complexity

To the best of our knowledge, labeled anomaly data for each of the devices
in Table 1 does not exist. To test the efficacy of our model we developed the
following testing ground-truth methodology:

Training and Testing Set: We took up to 1000 historical flows from each
device, used 80% for training and 20% for testing. We assume that all of the
testing set consists of inliers (i.e. no a priori outliers). We then developed a set
of outliers by randomly generating each IPv4 destination octet such that each IP
address generated conforms to a non-reserved IP address [20]. Destination ports
were randomly generated in the range 1–65535 and protocols were randomly
picked from the set (1,6,17) which were the protocols found in the training data.

The OCSVM using the RBF kernel is governed by the two hyper-parameters,
ν (nu) and γ (gamma). Gamma sets the radius of the RBF kernel by determining
the influence of each example of the decision boundary and ν sets the upper
bound on fraction of errors during training and the lower bound on the fraction
of support vectors used. For the purposes of this work we set this using the ‘scale’
option of Sci-kit learn which uses the following equation to determine gamma.

This research examines three methods to establish ν for devices; static ν set
uniformly across all devices; a dynamic ν set per device, and a ν tuned to the
complexity of the device.

5.3 Static Hyper-Parameter ν

For the static method an average ν is found and applied uniformly across all the
device models. To find the average ν, each device was modeled using OCSVM
with ν varied over the range of 0.00001 to 0.5. The ν for each device that had
the best F1 score was saved and the mean ν value was calculated across all the
devices. This average ν was then used to train the model for each device and
test for anomalies. This gives a baseline model where there is a balance between
precision and recall and where the hyper-parameter ν is set to the same value
for each device.

5.4 Dynamic Hyper-Parameter ν

The dynamic method finds the best ν for each device and that ν is applied
individually to each model. To find the ν value for individual devices, each
device was modeled using OCSVM with ν varied over the range of 0.00001 to
0.5. The ν for each device that had the highest F1 score was then used to train
the model for that device and test for anomalies. This gives results that balance
precision and recall and a model that is tuned per device.

5.5 Complexity-Tuned Dynamic ν

To tune the model based on complexity a value for ν is found that minimizes
false positives for low complex devices. To find a ν value that is tuned to the
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complexity of the device, each device was modeled using OCSVM with ν varied
over the range of 0.00001 to 0.5. The ν for each device that had the highest Fβ

scores where β = ÂDC , where ÂDC is the normalized value (between 0 and 1)
of the aggregate device complexity as defined in Sect. 4. This search prioritizes
minimizing false negatives on low complexity devices as seen in Eq. 8.

Fβ = (1 + β2 )
precision ∗ recall

(β2 ∗ precision) + recall
(8)

6 Enforcement Architecture

The enforcement architecture shown in Fig. 8 is based on a centralized model
where there is a single device that acts as a router, gateway and access point. To
implement the enforcement architecture we use a Raspberry Pi 4. The Raspberry
Pi 4 is a single-board computer based on an ARM architecture. We chose this as it
is a reasonable representation of the embedded architectures used in today’s more
powerful home routers, and analyze if it is capable of handling both training the
novelty detection model and switching and routing done by the SDN controller
and SDN switch.

SDN architectures decouple the control and the data plane in routers and
switches. This opens the network to new services, features, and a level of
dynamism that was previously not possible. This work leverages the programma-
bility of the network to dynamically allow, block, rate-limit, log and route traffic
based on if the flow is novel, the degree of novelty, and the complexity of the
device.

The reference enforcement architecture developed for this work uses the
OpenFlow [16] reference soft switch called OpenVSwitch [17]. OpenVSwitch sup-
ports OpenFlow versions 1.0–1.5.

RYU is a software defined network controller that implements OpenFlow. In
this prototype we use RYU to setup and control OpenVswitch [22]

The flow collector consists of a Raspberry Pi running a netflow collection
software called nprobe. Nprobe stores the flows into a MariaDB database.

6.1 Enforcement

Enforcement of the currently proposed test environment examines only values
known at connection time. Aggregate flow metrics will be examined in a future
work. The connection enforcement stage is only run once at flow connection
setup. The connection features include IP header attributes such as IP source,
IP destination, port, and protocol. If the model detects an outlier based on the
connection features it will use the current device confidence scores and the outlier
degree to the flow to calculate the flow trust score.
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Fig. 8. Enforcement architecture

In Fig. 8 the anomaly detection engine loads previously trained device models
stored as serialized python objects and calculates device complexity, behavioral
boundary, and flow scores. For flows that do not exist in the current flow rules
table of OpenVSwitch, RYU queries the anomaly engine to determine if the flow
is an outlier, inlier or significant flow (a flow that was an outlier during the
training stage). If a flow is determined to be an outlier and the policy for that
device is to drop outliers then the flow is simply not added to the flow table
matched rules and is dropped.

The architecture in Fig. 8 allows the network to make extremely granular flow
decisions on every flow in the network, including inbound/outbound traffic to
the Internet and intra-network device traffic. Based on the behavioral boundary
there is no need to isolate an entire device, just the flows that are found to be
abnormal.

7 Results

7.1 Static Hyper-Parameter ν

Figure 9 shows the OCSVM classifier trained on each device with a static ν and
applied uniformly to all devices based on the search that optimizes the F1 score
as defined in Sect. 5.2. This model has an average false positive rate (FPR) of
0.082 averaged across all devices.
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Fig. 9. Un-tuned model

Fig. 10. Search model
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Figure 10 shows the OCSVM where each device model is tuned with the ν
that optimizes the F1 score. This model has a average false positive rate (FPR)
of 0.062.

Figure 11 shows the OCSVM where each device is tuned to the ν that uses
the complexity of the device to influence the precision of the Fβ score. There is
a noticeable drop in the number of false positives overall, however more impor-
tantly there is a greater drop in the false positive rate for the lower complexity
devices. This can be seen in the fact that more of the devices on the left (the
low complexity devices) have markedly smaller false positive rates. This is the
expected result as we are tuning the Fβ score weighted toward precision on these
devices.

Table 3. Low complexity model characteristics

Model type DDC <5 DDC <4 ADC <Mean DC <1 Std Dev

Static

P = 0.984

R = 0.549

FPR = 0.107

P = 0.98

R = 0.582

FPR = 0.114

P = 0.911

R = 0.893

FPR = 0.061

P = 0.914

R = 0.911

FPR = 0.06

Dynamic

P = 0.927

R = 0.893

FPR = 0.072

P = 0.916

R = 0.581

FPR = 0.113

P = 0.946

R = 0.936

FPR = 0.053

P = 0.959

R = 0.946

FPR = 0.044

Tuned

P = 0.951

R = 0.915

FPR = 0.048

P = 0.96

R = 0.955

FPR = 0.033

P = 0.975

R = 0.878

FPR = 0.029

P = 0.976

R = 0.887

FPR = 0.026

Table 3 shows how the three models perform on several subsets of the device
space where devices have low complexity measures. The first column shows the
model on devices that have a discrete device complexity DDC of less than 5 (as
calculated in Sect. 4.3. The second column shows devices with a DDC of less than
4. The third column shows devices that have an aggregate complexity ADC less
than mean complexity of the set of all devices. Finally, the last column shows
the devices that have ADC of less then one standard deviation.

The tuned model outperforms both the dynamic and the static models in
terms of precision and false positive rate. This is expected as the tuned model
has a higher weight for minimizing false positives than the other two with a
small trade-off of lower recall. It is also notable, that the tuned model performs
better on the higher complex devices as shown in column 1,2 with the tuned
model having better precision and recall than the static and dynamic models.
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Fig. 11. Tuned search model

8 Conclusions and Future Work

In this work we established an autonomous and unsupervised method to for-
mally measure the complexity of a network device based solely on the network
flows from that device. We show that this complexity measure has a positive
correlation to the number of outliers found in an un-tuned anomaly detection
engine. We then used this measure of device complexity to develop a behavioral
model for each device based on a tuned novelty detection engine. We show that
this behavioral model has a lower FPR for all devices and performs better than
both the static and dynamic modeling methods. Finally, we propose a network
architecture based on SDN to dynamically enforce our model.

In future work, we will look at additional methods of establishing network
complexity such as incorporating a second enforcement stage based on aggregate
flow features such as bytes per second and packets per second. This will allow the
model to account for connections that are normal in the connection attributes,
but may be anomalous based on bandwidth. We also apply our complexity model
to other domains, such as industrial IoT networks and SCADA based networks.
Finally we will look at how we can use a supervised learning approach to finger
print devices and use this to bootstrap a behavior model across know common
devices and device ecosystems.
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Abstract. In order to detect unknown intrusions and runtime errors of
computer programs, the cyber-security community has developed various
detection techniques. Anomaly detection is an approach that is designed
to profile the normal runtime behavior of computer programs in order to
detect intrusions and errors as anomalous deviations from the observed
normal. However, normal but unobserved behavior can trigger false pos-
itives. This limitation has significantly decreased the practical viability
of anomaly detection techniques. Reported approaches to this limitation
span a simple alert threshold definition to distribution models for approx-
imating all normal behavior based on the limited observation. However,
each assumption or approximation poses the potential for even greater
false positive rates. This paper presents our study on how to explain the
presence of anomalies using a neural network, particularly Long Short-
Term Memory, independent of actual data distributions. We present and
compare three anomaly detection models, and report on our experience
running different types of attacks on an Apache Hypertext Transfer Pro-
tocol server. We performed a comparative study, focusing on each model’s
ability to detect the onset of each attack while avoiding false positives
resulting from unknown normal behavior. Our best-performing model
detected the true onset of every attack with zero false positives.

Keywords: System call monitoring · Machine learning · N-gram

1 Introduction

Over the last four decades, the software assurance community has developed
various types of monitoring techniques in order to detect intrusions and errors
in computer programs at runtime. Such monitoring techniques focus around
the following approaches: (1) detecting known bad patterns, (2) detecting run-
time deviations from the design specifications of the program, or (3) detecting
runtime deviations (anomalies) from the observed normal of the program. The
first approach (known bad pattern detection) [2,8,22,27,31,34] encompasses pre-
dominantly signature-based matching employed by various anti-virus and net-
work packet monitoring solutions. Attack signatures are usually built by analyz-
ing known attacks. The process of collecting signatures implicitly assumes and
c© Springer Nature Switzerland AG 2021
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accepts the risk that any unknown attack has to succeed or become detectable
at least once. Only after the attack can any relevant information be collected,
studied, and shaped into a signature to be used in the detection. Sometimes,
the initial signature needs to be improved later to increase the effectiveness of
the signature in detecting variants of the corresponding attack or to address
any logic that was not initially discovered by the analysts. The signature-based
approach does not generally detect or protect against exploits of zero-day vulner-
abilities unless they happen to match already known malicious signatures. The
second approach, design specification-deviation detection [1,24,40] requires a pri-
ori knowledge about the target program’s internal logic and additional efforts to
generate corresponding behavior specifications. Unlike the first two approaches,
the third approach, anomaly detection [5,13,15] does not require a priori knowl-
edge of attack behavior or application design in order to protect an arbitrary
computer program from unknown intrusions and errors. The basic rationale is as
follows: if the entropy of the behavior of the program is finite, one can observe
the program to learn about its normal behavior and then detect anomalies that
do not follow this behavior. Unfortunately, there are three practical challenges
with this anomaly detection approach.

1. The first challenge is the representation of normal behavior. There have been
investigations of using the names of system calls generated by a program to
represent a trace of a program’s behavior, e.g. [15]. However, it has also been
reported that mimicry attacks [16,25,41] can go undetected by mimicking
some normally observed sequence of system calls. A feature space is a set of
attributes of a system whose values are being observed. If the granularity of
the feature space is insufficient, it may be impossible to distinguish between
the normal and abnormal, lowering the true positive rate.

2. The second challenge is that practical observations are often limited and may
not cover all possible normal behaviors of the target program. This practical
limitation often results in false positives during detection, when alerts are
issued for the normal behaviors that were not previously observed. Excessive
false positive alerts can make the detection solution unusable. On the other
hand, any generalization of the learned normal can create false negatives
regarding anomalous behaviors covered by the generalization of the normal
behavior, lowering the true positive rate.

3. The third challenge is to learn normal behavior using noisy behavior observa-
tions in an unsupervised manner. Any observed noise can incur false negatives
regarding any intrusions or errors that resemble the noise. Such false negatives
will correspondingly lower the true positive rate [10].

This paper focuses on anomaly detection methods that address these three chal-
lenges. The proposed detection methods take a bit stream as input, where each
bit has the value 0 if the corresponding local behavior matches a known behav-
ior or 1 otherwise. Although a variety of models for behavior representation can
be considered, the system call n-gram model [15] is used in this paper. Due to
the factors mentioned in the challenges described above, the resulting n-gram
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match-mismatch bit stream is inherently noisy. Therefore, the main problem inves-
tigated in this paper is how to reliably find anomalies in this noisy bit stream.

We present and compare four methods that are designed to detect anoma-
lies in an n-gram match-mismatch bit stream. We report here on our experi-
ence running various types of attacks several times on a relatively lightly loaded
Apache Hypertext Transfer Protocol (HTTP) server application. We processed
the server’s system call behavior, before, during and after the attacks, using
the nine models. Then we performed a comparative analysis, focusing on each
model’s ability to detect the attacks while avoiding false positive alarms. The
results presented in this paper show that our proposed method, called LAF
(denoting “LSTM Anomaly Filter”), is highly practical in terms of false positives,
true positives, detection delays, supported types of programs, and detectable
types of attacks. By eliminating false positives without compromising the true
positive rate, the LAF can detect the true onset of DoS attacks early (e.g.,
almost immediate detection attacks with no false positives in our experiments).
This makes timely remedial actions possible, with enough time and computa-
tional power. Moreover, other types of attacks involving a smaller number of
system calls can be addressed. The rest of this paper is organized as follows:
Sect. 2 defines the problem; Sects. 3 presents the four anomaly detection meth-
ods; Sect. 4 presents our experimental setting and evaluates our results; Sect. 5
summarizes related work. Then, Sect. 6 concludes the paper with a summary
and our vision of future work.

2 Problem Definition

System call (syscall) anomaly detection approaches tend to include two concep-
tual phases:

– Training: creates a behavior model (or profile) for a sequence of consecutive
syscalls made by a process during its normal states. A controlled environment
is often used to assure normal operation of the process.

– Detection: an anomaly alert is issued when the observed sequence of syscalls
deviates from the behavior model by more than an allowed threshold. This
paper is focused on the quantification of the model-appropriate threshold
selection.

We collect and record the n-grams of the syscall streams for each program to
be monitored. During the monitoring phase, runtime syscall n-grams undergo a
match test over the recorded n-grams and a match (0)/mismatch (1) bit stream
is produced. In determining the normality of the runtime behavior, we apply a
distribution-based classifier approach.

Let p̂ be the average match rate of n-grams at which the training is arbitrarily
set to complete (i.e., defining the end of the training phase).

Let X ∼ Binomial(W, p̂) be a random variable modeling the number of
matches (i.e., zeros in the bit stream) in W consecutive n-gram match tests. If
the “aggregation window size” W is large enough and p̂ is not too close to either
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1 or 0, the binomial distribution can be considered approximately equivalent to
a Gaussian distribution with the following mean and variance:

E(X) = a = Wp̂ . (2.0.1)

V (X) = var(X) = E((X − E(X))2) = α2 = Wp̂(1 − p̂). (2.0.2)

Under the assumptions the relation or random variable and the distributions
can be presented as:

X ∼ Binomial(W, p̂) ≈ N(Wp̂,Wp̂(1 − p̂))

This expression means that random variable X has binomial distribution,
which in turn is approximated by a normal distribution with expected value Wp̂
and variance Wp̂(1 − p̂)). For this approximately Gaussian distribution, it gener-
ally makes sense to consider that a system is in a normal state when the number
X of matches in the binary coded match/mismatch string of length W is within
range E(X)±mσ of the mean of the corresponding normal distribution. However,
in our application, a match rate above upper bound E(X)+mσ is also considered
to be normal because observing signs of normal behavior in abundance is normal.
Hence, we’ll focus on the match rates falling below the lower bound E(X) − mσ.
We will use 3 anomaly threshold, hence take fixed m = 3.

Let n be the length of the n-grams. A completely new n-gram in the worst
case can ultimately result in up to 2n − 1 consecutive mismatches if it con-
sists exclusively of previously non-profiled syscalls. Therefore, the size W of the
aggregation window should be large enough to accommodate at least 2n − 1
consecutive mismatches in a normal state. That is, W should be set such that:

W − (Wp̂ − m
√

Wp̂(1 − p̂)) ≥ 2n − 1. (2.0.3)

Here W is the aggregation window size, n is the length of each n-gram, and
m = 3, for example, is the multiplier allowing anomaly detection with the 3σ
span. Based on this basic definition of the problem of anomaly detection, the
paper presents three anomaly detection methods given – EWMA (Exponentially
Weighted Moving Average Method), PEWMA (Probabilistic EWMA), and LAF
(LSTM Anomaly Filter).

3 Anomaly Detection Methods

3.1 Static Binomial Method (SB)

For the first model we make the simplest assumptions about the bit stream.
Any isolated bit stream can be näıvely viewed as a realization of some Bernoulli
test sequence with a “success” (or match in our case) probability. For a large
enough sequence of experiments Bernoulli distribution can be approximated by
a normal distribution with parameters given by (2.0.1) and (2.0.2). The training
stage provides us a reasonable estimate of the match probability p , which we
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assume is good enough to characterize the process in a normal state. So, to build
the simplest, while admittedly näıve model for bit stream anomaly detection, we
assume that the process and observable bit stream data possess the following
three properties:

1. The probability of X is approximated by the normal distribution;
2. The individual match/mismatch tests are described by the Bernoulli distri-

bution;
3. The match probability p̂ is static (i.e. does not change over time).

If these assumptions hold, we can consider the process model to be in a
normal state if the following holds:

X ≥ Wp̂ − m
√

(Wp̂(1 − p̂) (3.1.1)

W is set such that, the inequality (2.0.3) is satisfied.
On one hand the simplicity of the expression (3.1.1) allows for easy com-

putation of an anomaly condition. On another hand the assumptions (1)–(3)
that lead to the expression may be too näıve as independence of the consequen-
tial n-grams is an intentional simplification for the Bernoulli model’s necessary
conditions, so SB is excluded in our experiment.

3.2 EWMA

In Sect. 2 we assumed that the process behavior was static, i.e. distribution of the
matches describing normal process behavior was specific only to the process and
did not change with time. In our dynamic models, we will not seek or assume exis-
tence of one distribution universally describing normal behavior of the process.

One way of addressing assumption (3) from the SB is to reevaluate the prob-
ability mass function of X sequentially as new observation data comes in. How-
ever, simply substituting p̂ of the previous models with localized estimates may
misclassify the corresponding local anomalies. Hence, the history of X needs
to be included into localized statistics. The localized statistics introduced in
the sections below can allow us to estimate distribution parameters specifying
normal process behavior from one point in time to another.

To allow localized computing of an average value, we will consider EWMA
(the Exponentially Weighted Moving Average [33]), which is a popular localized
averaging technique that computes the local average E(Xt) for a time point t
by recursively applying exponentially decreasing weights to the past averages as
follows:

E(Xt) = αE(X)(t − 1)) + (1 − α)Xt , (3.2.1)

where 0 ≤ α < 1 is the weight put on the history. Based on the normal dis-
tribution assumption, Xt is considered to meet the following condition in most
cases:

|E(Xt) − Xt| < mσ̂t, (3.2.2)
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where m is a constant multiplier (as before we use 3σ) and σ̂t is the localized
estimate of standard deviation computed for a point t in time as follows:

σ̂t =
√

E(X2
t−1) − E(Xt−1)2 , (3.2.3)

In our application, Xt is defined to be the number of matches during W con-
secutive match/mismatch tests. Therefore, E(Xt) < Xt is not considered to be
anomalous, but rather normal above average behavior. Based on this observation
and (3.2.2), we can consider the process to be in a normal state if the following
holds:

Xt ≤ E(Xt) − mσ̂t, (3.2.4)

where, E(Xt) is computed according to (3.2.1), σ̂t is computed according to
(3.2.3).

3.3 PEWMA

It has been reported that EWMA tends to be optimized at a higher end of the
value range (i.e., close to 1) in terms of mean squared error (MSE) prediction
given a data stream containing a small number of anomaly events placed near
each other with short inter-occurrence times [4]. Under such an optimization,
the mean E(X) changed by a large anomaly does not return to the normal level
fast enough to detect closely following smaller anomaly events. To address this
[4] proposed a variant of EWMA called Probabilistic EWMA (PEWMA). This
model replaces the localized mean recursive update expression (3.2.1) as follows:

E(Xt) = α(1 − βPt)E(Xt−1) + (1 − α(1 − βPt))Xt , (3.2.1)

where 0 < α < 1 is the history weighting parameter, Pt is the probability
of Xt under some modeled distribution (as in [4] we use a standard normal
distribution), and β is the weight placed on Pt.

It is easy to see that with β → 0 or Pt → 0 the expression for PEWMA
converges to EWMA. The rationale behind PEWMA is that samples that are less
likely to have been observed should have lesser influence on the corresponding
updates. In order to accomplish this based on the normal distribution, Pt is

defined as follows: Pt = min( 1√
2π

e
(E(Xt−1)−Xt)

2

2σ̂2
t , p̂), where σ̂t is computed as

in (3.1.3) and p̂ is the expected match rate recorded at the completion of the
training.

The process is in a normal state if the following holds: Xt ≤ E(Xt) − mσ̂t.
Even though this expression appears to be the same as that of DSM-E, here the
localized mean is defined as (3.2.1). As before m = 3 is used as the constant
multiplier for anomaly detection.
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3.4 LSTM Anomaly Filter (LAF)

The most annoying problem in any threshold-based anomaly detection mech-
anism is caused by recurrent match-mismatch patterns that can trigger false
positive alerts. The problem becomes more cumbersome as the number and com-
plexity of such patterns increase. Of course, this problem diminishes when our
n-gram profile is complete and covers 100% of all normal behavior of the target
program. However, in theory, this is hard to justify. Given the fact that we do
not have the source code of the program, we cannot assume the language type
the program’s system call sequences. If this language belongs to, say, context-free
language type, the n-gram model, which is a sub-regular expression, will not be
able to represent all system call sequences in a finite set of n-grams.

In order to address recurring false positives incurred by recurring match-
mismatch sequence patterns, we need an anomaly detection technique beyond
and above the statistical threshold approaches. In this case, we need one that has
a learning capacity: the recurring false positives are quickly learned and have the
associated recurring alerts diminish quickly over time. More learning capacity is
required as the number, pattern complexity, and the occurrence complexity of
the false positive match-mismatch sequences increase.

Long and Short-Term Memory (LSTM) as a special recurrent neural network
(RNN) with an input, hidden and output layers has been utilized for long-range
dependencies [48]. On the hidden layer of LSTM at time, the outputs – ct−1,l and
ht−1,l of the previous layer at t − 1 come in the layer at t as inputs. The major
advantage of LSTM controls a cell status ct−1,l that indicates an accumulated
sate information. The cell state is updated or cleared by several operations. If
this state is cleared, the past cell status is forgotten by f t,l. If updated, ct,l

– one of the outputs at t will be propagated to the final state. The cell state
is prevented from vanishing or exploding gradient, which is a problem of the
traditional RNN, resulting in more learning capacity. Like PEWMA, LAF starts
with match-mismatch sequences with a training phase.

4 Application Experiment

Given a bit stream of system call (syscall) n-gram match test results, each model
presented in Sects. 2 through 3 defines a condition that the bit stream must sat-
isfy in order to qualify as normal. For the purpose of anomaly detection, the
system is instructed to issue an anomaly alert whenever the model-specific con-
ditions are not satisfied. For quantitative verification and validation, we imple-
mented the models and installed the implementation on an operational Apache
HTTP Server environment. The syscall n-gram model [9,14,15,35,37,42,46,47]
was used for the training and match tests with n = 6 [37].

In this application test, we upgraded the original syscall n-gram technique
to support multi-process and multi-threaded applications. The Apache HTTP
Server uses multiple process instances at runtime. To accommodate the multi-
process and multi-threaded nature of the application, the n-gram training was
modified to aggregate the syscalls into process and thread groups to assure that
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each syscall n-gram belongs entirely to a particular execution context. This modi-
fication significantly improved the training time as arbitrary interleaving between
threads were not learned nor matched against.

During the training phase, the model implementations observed the web
server during normal operation periods and profiled every unique n-gram. The
training phase was set to finish when there are fewer than 23 mismatches over
the last 10000 n-grams, which would yield p corresponding to 0.9973. The W
value (aggregation window size) of the simple models (EWMA and PEWMA)
varied between 1700 and 5000. The W value of the stream models varied between
20 and 5000. Note that the minimum W value is limited in the simpler models
(e.g., SB) as given in their corresponding models. This is not the case in the
stream-based models. This is one of the advantages of using stream-based mod-
els when it comes to detecting short attacks. We revisit this in the Conclusions
section.

Based on reported test cases [4], the values of EWMA and PEWMA were
set to 0.97, 0.99, respectively, giving heavy weight on recent history to detect
anomaly onsets. In order to conduct live attacks1, we used an application-
level, remote denial-of-service (DoS) attack identified by CVE-2011–3192, to
which the target web server was vulnerable. The tested implementation of
this attack (available at http://www.exploit-db.com/exploits/17696/) accepts
an input parameter called numforks, which defines the intensity of the attack.
By exploiting the HTTP protocol, this application-layer DoS attack causes mem-
ory exhaustion within the application. In our test, a high-intensity attack was
remotely initiated and immediately terminated. The second attack was per-
formed after some period of time at a lower intensity level and lasted until
the system became unresponsive.

4.1 Results from Aggregations

In our tested cases, this value was in the 20–100 range. Figure 1 shows our
experimental results with EWMA, PEWMA, and LAF assigned as label a, b, and
c, respectively. EWMA and PEWMA can be applied with aggregation windows.
This is advantageous for two reasons: (1) the inherent delay between the actual
onset point of an anomaly and the corresponding alert point can be reduced; (2)
has the potential to detect different attack types involving a small sequence of
system calls. Our aggregation tests shown in Fig. 1 revealed that the proposed
LAF is the best performer with zero false positives. However, it was found that
LAF’s attack detection delay tends to increase as the aggregation size increases.

4.2 Slow HTTP

Most of our empirical work measures the behavior of “fork bombs” in which
crafted input can cause a victim web server to exhaust local process tables. There
are, however, a variety of strategies for denying service. To gain generality in our

1 The experiments were conducted with the permission of the system owner.

http://www.exploit-db.com/exploits/17696/
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Fig. 1. DSMs with aggregations: N = 20, 40, 80, and 100

results, in this section we measure the effectiveness of our detection models when
they are subjected to “slow HTTP” attacks.

Slow HTTP attacks (https://github.com/shekyan/slowhttptest/wiki) exploit
a natural asymmetry between HTTP clients and servers: a client can send
requests to an HTTP server in an incremental way so that, at low cost to the
client, a server must allocate and maintain significant system resources such as
socket send buffers. Slow HTTP attacks are significant because the vulnerabil-
ity arises from resource policies implemented by numerous HTTP servers (e.g.,
keeping very low-flow connections alive) for legitimate quality-of-service reasons.
As a complement to our “fork-bomb” experiments for evaluating our detection
models, slow HTTP attacks are illuminating because their implementing mech-
anisms are entirely different.

We tested the effectiveness of three of our models (EWMA, PEWMA, and
LAF) by running slow HTTP attacks and measuring each model’s false positives
and negatives with different training periods. We chose these models for the slow
HTTP tests because these models work well with small aggregation windows.
For each model, we ran three tests with varying levels of training performed prior
to each test. At the high (expensive) end, our training phases continued until
the cumulative match rate reached .9973 (very little behavior not seen during
training). At the low end, our training only reached a very incomplete cumulative
match rate of 8. In Fig. 2, we show the results from our three models assuming
the highest level of training (.9973 cumulative match rate). The five lines at the
top of the figure show the aggregation window size (5) and show graphically the
number of mismatches (up to the size of the aggregation window) over time (left
to right). The bottom three columns of the figure show the alerting behavior
of the three models: EWMA, PEWMA, and LAF. As can be seen, an early
false positive on the left hand is generated by the first two models but not by
LAF. At this level of training, all three models detect the onset of the attack
(but not quite at the same time). In our second test configuration (Fig. 3), we
measure detection model performance when the training is completed with a

https://github.com/shekyan/slowhttptest/wiki
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Fig. 2. Slow HTTP attack with 99.73% training.

cumulative match rate of .9545. With less complete training, one can see that
there are numerous mismatches over the period of observation. The first two
models (EWMA, PEWMA) generate a large number of false positives in addition
to detecting the onset of the actual attack, however LAF generates no false
positives and also identifies the onset of the attack. In our third test configuration
(Fig. 4), we measure detection model performance when the training is completed
with a cumulative match rate of only .8. In this case, the number of mismatches
is overwhelming as one would expect with such incomplete training. The first
two models (EWMA, PEWMA) generate a continuous stream of false positives.

Fig. 3. Slow HTTP attack with 95.45% training.
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The LAF model, however, generates no false positives and also detects the onset
of the attack with only a minor delay. This is a striking outcome: how can
this model be so much more effective? We believe that this is due to the fact
that a neural network addresses the overlapping and probabilistically dependent
nature of the n-grams on a more fundamental stochastic level than distribution-
based models. An n-gram following a normal n-gram is more likely to be normal.
Conversely, an abnormal n-gram is more likely to be followed by an abnormal
n-gram [29]. In our match-mismatch bit stream representation, this means that
a mismatch is more likely to be followed by a mismatch, rather than a match.
Therefore, contrary to the assumptions (1) and (2) made in Sect. 2 for SB, the
bit stream is not very accurately represented by the Bernoulli distribution due
to the interdependence between the n-grams. Meanwhile, the neural network
provides an evaluation model of the process’ stochastic behavior independent of
distribution. This is the most prominent distinction of the neural network, when
compared to the traditional distribution-based classification methods [18].

Fig. 4. Slow HTTP attack with 80% training.

5 Related Work

We have studied various anomaly detection methods for profiling normal behav-
ior in terms of system calls during the training-phase and for using the recorded
profile during the detection-phase to confirm the normality of incoming runtime
sequences. Some reported methods of system call (syscall) anomaly detection are
based on n-gram and statistical learning models [15,42]. Other reported methods
are based on automata models and call-stack return-address models [13,35,40].
Ideally, the anomaly detection methods should be able to complement existing
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signature or misuse detection systems to enhance the overall security effective-
ness of the system by detecting unknown errors and attacks for which signatures
are not yet defined. Unfortunately, application behavior data observed during
the training phase is often limited to a small subset of all normal behavior or
possibly tainted by hidden attacks or errors [10,11,18,21]. Therefore, it is virtu-
ally impossible to prove a claim that the behavior model captures all necessary
aspects of the behavior in such a way that all possible unknown attacks and errors
can subsequently be distinguished. This paper organizes reported approaches to
this challenge into two groups: (1) classifier group and (2) sensitivity group.

The approaches from the classifier group generalize the limited training data
to certain distributions or feature space regions in order to more uniformly clas-
sify the unknown behaviors. Related studies include statistical generalization
and classification of the distributions of the data by normal distribution [4],
machine learning [10], kNN methods [10,26,30], and support vector machines
[7,11,18]. The approaches from the sensitivity group adjust the anomaly alert
threshold in order to correctly ignore benign noise in the detection phase. This
group includes stide, t-stide, and the specific use cases of RIPPER and HMM
reported in [42]. The sequence time-delay embedding (stide) method takes a
sequence of syscalls as input and stores the sequence from the training-phase as
unique n-grams with most frequently selected value of n set to 6. In the detec-
tion phase, each n-gram, representing a sliding window of the runtime syscall
sequence, is compared with the training phase collected n-gram sequences. The
anomaly alert threshold is defined in terms of the number of mismatches in the
“locality frame” (the reported case is the last 20 match tests). An anomaly alert
is issued only when the runtime sequence incurs mismatches above the threshold.
This method is most effective when clean, normal behavioral sequences are used
for training. The threshold sequence time-delay embedding (t-stide) method is a
variant of stide, which drops rarely occurring n-grams from the trained normal.
The reported example is dropping any n-gram that accounts for less than 0.001%
of the total number of n-gram occurrences counted during the training [23,24].
In [42], t-stide was less effective compared to stide. However, it was shown in
[10] that t-stide is more effective when trained over noisy data.

A specific use case of RIPPER in which a mismatch is defined to be a vio-
lation of a high-confidence rule (e.g., violation score greater than 80 [28] is also
reported in [42]. The anomaly alert threshold is defined in terms of the number
of mismatches over the last 20 syscalls. In the Hidden Markov Model (HMM),
the alert threshold is defined in terms of a minimum required probability associ-
ated with transitions and outputs [42]. Reported findings [15] show the following:
when the threshold is set high enough, (1) the average false positive (FP) rate
of the n-gram models is similar to the RIPPER rule-learning model, and much
better (lower) than that of a HMM; (2) the true positive (TP) rate of n-gram
models is much better compared to RIPPER although worse than HMM. The
overall performance characteristic of the n-gram models is that both TP and
FP rates decrease as the threshold increases (i.e., TP becomes worse while FP
becomes better). By storing and matching the n-grams of a runtime sequence
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without significant computation, n-gram models naturally pose modest compu-
tational overhead compared to statistical learning models. However, the anomaly
alert threshold, with its potentially adverse effect on TP and FP rates, is the
key performance parameter.

6 Conclusion

The experimental evidence supports the idea that LAF is desirable solutions in
terms of the Receiver Operating Characteristics (ROC) of anomaly detection in
the presented application. In other words, the proposed solutions showed a mini-
mized false positive rate without compromising the true positive rate (maximum
true positive rate and minimum false positive rate). The large aggregation of
the match test bit stream can reduce the computation overhead of the anomaly
detection. However, this approach comes with the inherent delay in anomaly
detection in terms of the number of system calls (syscalls) between the true
onset of an anomaly and the detection incurred by the aggregation over time.
Moreover, different types of attacks, such as shell-code attacks, involving a small
number of syscalls can be washed out by the surrounding normal behavior in
large aggregations. Because of this, we believe that a method supporting rather
small aggregation is likely to be more useful in practice.

The proposed LAF is the best performing detection model based on our
experimental data and analysis. Our application and experimental results have
shown that LAF is a highly practical anomaly detection solution in terms of
ROC, detection delay, and supported types of attack. By supporting any aggre-
gation size with effective elimination of false positives without compromising
the true positive rate, LAF can detect the onset of DoS attacks early with min-
imal false positives (e.g., almost immediate detection of DoS attacks with no
false positives in our W = 20 cases). This makes remedial action possible, with
enough time and computational power. Moreover, other types of attacks involv-
ing a smaller number of syscalls can be addressed. This case is outside the scope
of the paper and represents future work.
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Abstract. Computations, such as syndromic surveillance and
e-commerce, are executed over the datasets collected from different geo-
graphical locations. Modern data processing systems, such as MapRe-
duce/Hadoop or Spark, also, require to collect the data from different geo-
graphical locations to a single global location, before executing an applica-
tion, and thus, result in a significant communication cost. While MapRe-
duce/Hadoop and Spark have proven to be the most useful paradigms in
the revolution of distributed computing, the federation of cloud and big-
data activities is the challenge, wherein data processing should be mod-
ified to avoid (big) data migration across remote (cloud) sites. This is
exactly our scope of work, where only the very essential data for obtaining
the final result is transmitted, for reducing communication and process-
ing, and for preserving data privacy as much as possible. In this work, we
propose an algorithmic technique for geographically distributed computa-
tions, called Meta-X, that decreases the communication cost by allowing
us to process and moves metadata to among different locations, instead
of the entire datasets. We illustrate the usefulness of Meta-X in terms
of MapReduce computations for different operations, such as equijoin, k-
nearest-neighbors finding, and shortest path finding.

Keywords: MapReduce · Hadoop · Spark

1 Introduction

In several applications (e.g., syndromic surveillance, wherein hospitals share
information, such as a sudden increase in sales of specific drugs, telehealth calls,
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and school absenteeism requests, to enable early detection of community-wide
outbreaks of diseases), data is collected from multiple geographically dispersed
locations and analyzed at the central/global location. Such types of geograph-
ically distributed computations not only incur the communication cost due to
sending data to the global-site and the computation cost at the global site, but
also jeopardize the data privacy. Moreover, due to regulatory compliances, such
as GDPR, often, sensitive data is not allowed to move beyond certain geographic
boundaries. To process a large amount of data, Hadoop and Spark have been
evolved. However, both such systems require data to be moved to a single loca-
tion before executing the computation. Thus, to avoid data movement among
different locations and regarding the data security as well as regulatory compli-
ances, it is desirable to move only the very essential data.

In this paper, we propose an algorithmic technique for modern data pro-
cessing systems, entitled Meta-X, where X refers to a system (e.g., Hadoop,
Spark) that can be used in processing geographically distributed applications.
In this paper, we build Meta-X for particularly MapReduce, (and will use the
word Meta-MapReduce and Meta-X interchangeably). In short, first, Meta-
MapReduce distributes the computation across a virtual geo-distributed com-
puting cluster, which locally executes the computation at their sites. Second, all
the sites send the desired “key” to the global location that finds the desired keys
over all the received data and requests all the sites to send the “value (or data)”
corresponding to the desired “keys.” Finally, all the sites send the desired data,
if satisfy the regulatory compliances, to the global site that executes the final
MapReduce computation and produces the final answer.

1.1 Background on MapReduce

MapReduce [1] is a programming system for parallel processing of large-scale
data. MapReduce works in two phases: Map phase and Reduce phase, where two
user-defined functions, namely, map function and reduce function, are executed
over data. In MapReduce, data is represented of the form of 〈key, value〉 pairs.

The Map Phase. A MapReduce computation starts from the Map phase where
a user-defined map function works on a single input and produces intermediate
outputs of the form 〈key , value〉 pairs. A single input, for example, can be a tuple
of a relation. An application of the map function to a single input is called a
mapper. Several mappers execute in parallel and provide intermediate outputs
of the form of 〈key, value〉 pairs.

The Reduce Phase. The Reduce phase provides the final output of MapReduce
computations. The reduce phase executes a user-defined reduce function on its
inputs, i.e., outputs of the Map phase. An application of the reduce function
to a single key and its associated list of values is called a reducer. Since there
are several keys in the indeterminate output, there are also multiple reducers
that work in parallel. The reducer capacity [2]—an important parameter—is an
upper bound on the sum of the sizes of the values that are sent to the reducer.
For example, the reducer capacity maybe the size of the main memory of the
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processors on which the reducers run. The capacity of a reducer is denoted by
q, and all the reducers have an identical capacity.

A detailed description of MapReduce may be found in Chap. 2 of [3]. Apache
Hadoop [4] is a well-known and widely used open-source software implementation
of MapReduce for distributed data storage and processing over large-scale data.
More details about Hadoop and its Hadoop distributed file system (HDFS) may be
found in Chap. 2 of [5]. YARN [6] is the latest version of Hadoop-0.23, details about
YARN may be found in [7]. The standard Hadoop system is designed to process
data at a single location, i.e., locally distributed processing. Thus, Hadoop is not
able to process data at geo(graphically)-distributed multiple-clusters.

Locality of Data
Input data to a MapReduce job may exist at the same site where mappers and
reducers reside. However, ensuring an identical location of data and mappers/
reducers cannot always be guaranteed. It may be a possibility that a user has a
single local machine and wants to enlist a public cloud to help data processing.
In both cases, it is required to move data to the location of mappers-reducers.
Interested readers may see examples of MapReduce computations where the
locations of data and mappers-reducers are different in [8].

In order to motivate and demonstrate the impact of different locations of
data and mappers-reducers, we consider two real examples, as follows:

Amazon Elastic MapReduce. Amazon Elastic MapReduce (EMR)1 processes
data that is stored in Amazon Simple Storage Service (S3)2, where the locations
of EMR and S3 are not identical. Hence, it is required to move data from S3 to
the location of EMR. However, moving the whole dataset from S3 to EMR is
not efficient if only a small specific part of it is needed for the final output.

G-Hadoop and Hierarchical MapReduce. Two implementations of MapRe-
duce, G-Hadoop [8] and Hierarchical MapReduce [9], perform MapReduce com-
putations over geographically distributed clusters. In these new implementations,
several clusters execute an assigned MapReduce job in parallel and provide par-
tial outputs. Note that the output of a cluster is not the final output of a MapRe-
duce job, and the final output is produced by processing partial outputs of all
the clusters at a single cluster. Thus, inter-cluster data transfer—transmission
of partial outputs of all the clusters to a single cluster—is required for producing
the final output, as the location of the partial outputs of all the clusters and the
location of the final computation are not identical. However, moving the whole
partial outputs of all the clusters to a single cluster is also not efficient if only a
small portion of the clusters’ outputs is needed to compute the final output.

Hierarchical MapReduce is depicted in Fig. 1, where three clusters process
data using MapReduce in parallel, and the output of all three clusters is required
to be sent to one of the clusters or another cluster, which executes a global reducer
for providing the final output. In Fig. 1, it is clear that the locations of partial
1 http://aws.amazon.com/elasticmapreduce/.
2 http://aws.amazon.com/s3/.

http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/s3/
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Fig. 1. Different locations of MapReduce clusters in Hierarchical MapReduce.

outputs of all the clusters and the location of the global reducers are not identical;
hence, partial outputs of all the clusters are required to be transferred to the
location of the global reducer.

Communication Cost

The communication cost dominates the performance of a MapReduce algorithm
and is the sum of the amount of data that is required to move from the location
of users or data (e.g., S3) to the location of mappers (e.g., EMR) and from the
map phase to the reduce phase in each round of a MapReduce job. For example,
in Fig. 1, the communication cost is the sum of the total amount of data that is
transferred from mappers to reducers in each cluster and from each cluster to the
site of the global reducer. In this paper, we are interested in minimizing the data
transferred in order to avoid communication and memory overhead, as well as to
protect data privacy as much as possible. In MapReduce, we transfer inputs to
the site of mappers-reducers from the site of the user, and then, several copies
of inputs from the map phase to the reduce phase in each iteration, regardless of
their involvement in the final output. If few inputs are required to compute the
final output, then moving all inputs to the site of mappers/reducers and then
the copies of the same inputs to the reduce phase is communication inefficient.

There are some works that consider the location of data (e.g. [10]) in a
restrictive manner and some works (e.g. [11,12]) that consider data movement
from the map phase to the reduce phase. We enhance the model suggested in [12]
and suggest an algorithmic technique for MapReduce algorithms to decrease the
communication cost by moving only relevant input data to the site of mappers-
reducers. Specifically, we move metadata of each input instead of the actual data,
execute MapReduce algorithms on the metadata, and only then fetch the actual
required data needed to compute the final output.

1.2 Motivating Examples

We present two examples (equijoin and entity resolution) to show the impact of
different locations of data and mappers/reducers on communication cost involved
in MapReduce jobs.
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Equijoin of Two Relations. X(A,B) and Y (B,C). Problem statement : The
join of relations X(A,B) and Y (B,C), where the joining attribute is B, provides
output tuples 〈a, b, c〉, where (a, b) ∈ X and (b, c) ∈ Y . In equijoin of X(A,B)
and Y (B,C), all tuples of both relations with an identical value of attribute B
should appear together at the same reducer for producing the final output tuples.
Shortly, a mapper takes a single tuple from X(A,B) or Y (B,C) and provides
〈B,X(A)〉 or 〈B, Y (C)〉 as key-value pairs. A reducer joins the assigned tuples
that have an identical key. Figure 2 shows two relations X(A,B) and Y (B,C),
and we consider that the size of all the B values is very small as compared to
the size of values of the attributes A and C.

Fig. 2. Equijoin of relations X(A,B) and Y (B,C).

Communication Cost Analy-
sis: We now investigate the
impact of different locations
of the relations and mappers-
reducers on the communica-
tion cost. In Fig. 2, the com-
munication cost for joining
of the relations X and Y —
where X and Y are located at
two different clouds and equi-
join is performed on a third
cloud—is the sum of the sizes
of all three tuples of each rela-
tion that are required to move
from the location of the user
to the location of mappers,
and then, from the map phase to the reduce phase. Consider that each tuple
is of unit size; thus, the communication cost is 12 for obtaining the final output.

However, if there are a few tuples having an identical B-value in both the
relations, then it is useless to move the whole relations from the user’s location
to the location of mappers, and then, tuples from the map phase to the reduce
phase. In Fig. 2, two tuples of X and two tuples of Y have a common B value
(i.e., b1). Hence, it is not efficient to send tuples having values b2 and b3, and by
not sending tuples with B values b2 and b3, we can reduce communication cost.

Entity Resolution. Problem statement : Entity resolution using MapReduce is
suggested in [12]. A solution to the entity resolution problem provides disjoint
subsets of records, where records match other records if they pass a similarity
function, and these records belong to a single entity (or person). For example, if
voter-card, passport, student-id, driving-license, and phone numbers of several
people are given, a solution to the entity resolution problem makes several sub-
sets, where a subset corresponding to a person holds their voter-card, passport,
student-id, driving-license, and phone numbers.

Communication Cost Analysis: The authors [12] provided a solution to the entity
resolution problem with decreased communication cost between the map phase
and the reduce phase, by not sending the record of a person to a reducer, if the
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person has only a single record. However, in this model for every pair of records
that share a reducer, a copy of one is transferred to the site of reducers, and in this
manner, the communication cost is n(n−1)

2 , if n records are assigned to a reducer.
Note that by using the proposed technique of this paper, the communication cost
for the entity resolution problem will be n, if n records are assigned to a reducer.

1.3 Problem Statement and Our Contribution

We are interested in reducing the amount of data to be transferred to the site
of the cloud executing MapReduce computations and the amount of data trans-
ferred from the map phase to the reduce phase. From the preceding two examples,
it is clear that in several problems, the final output depends on some inputs,
and in those cases, it is not required to send the whole input data to the site
of mappers and then (intermediate output) data from the map phase to the
reduce phase. Specifically, we consider two scenarios for reducing the communi-
cation cost, where: (i) the locations of data and mappers-reducers are different,
and (ii) the locations of data and mappers are identical. Note that in the first
case, data is required to move from the user’s site to the computation site and
then from the map phase to the reducer phase, while in the second case, data is
transferred only from the map phase to the reduce phase.

In addition to the locations of data and computations, we are also considering
the number of iterations involved in a MapReduce job and the reducer capacity
(i.e., the maximum size of inputs that can be assigned to a reducer).

Our Contributions. In this paper, we provide the following:

– An algorithmic approach for MapReduce algorithms. We provide a
new algorithmic approach for MapReduce algorithms, Meta-MapReduce
(Sect. 3), that decreases the communication cost significantly. Meta-
MapReduce regards the locality of data and mappers-reducers and avoids
the movement of data that does not participate in the final output. Par-
ticularly, Meta-MapReduce provides a way to compute the desired
output using metadata3 (which is much smaller than the original input
data) and avoids uploading the whole data (either because it takes too long
or for privacy reasons). It should be noted that we are enhancing MapReduce
and not creating entirely a new framework for large-scale data processing;
thus, Meta-MapReduce is implementable in the state-of-the art MapRe-
duce systems such as Spark [13], Pregel [14], or modern Hadoop.

– Data-privacy in MapReduce computations. Meta-MapReduce also
allows us to protect data privacy as much as possible in the case of an honest-
but-curious adversary by not sending all the inputs. For example, in the case
of equijoin, processing tuple 〈ai, bi〉 of a relation X and 〈bj , ci〉 of a relation
Y based on metadata does not reveal the actual tuple information until it
is required at the cloud. It should be noted that the relations X and Y

3 The term metadata is used in a different manner, and it represents a small subset,
which varies according to tasks, of the dataset.
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can deduce that the relations Y and X have no tuple with value bi and bj ,
respectively. However, the outcome of both relations does not imply the actual
value of ai, bi, and ci.
Nevertheless, by the auditing process, a malicious adversary can be detected.
Moreover, in some settings auditing enforces participants to be honest-but-
curious rather than malicious, as malicious actions can be audited, discovered,
and imply punishing actions.

– Other applications.
• Meta-MapReduce for processing geographically distributed data (Sect.

4.1) and for processing multi-round MapReduce jobs (Sect. 4.3).
• Meta-MapReduce for performing equijoin, k-nearest-neighbors, and

shortest path findings on a social networking graph and show how Meta-
MapReduce decreases the communication cost (Sect. 3.1 and Sect. 5).

2 The System Setting

The system setting is an extension of the standard setting [2], where we consider,
for the first time, the locations of data and mappers-reducers and the communi-
cation cost. The setting is suitable for a variety of problems where at least two
inputs are required to produce an output. In order to produce an output, we
need to define the term mapping schema, as follows:

Mapping Schema. A mapping schema is an assignment of the set of inputs
(i.e., outputs of the map phase) to some given reducers under the following two
constraints:

– A reducer is assigned inputs whose sum of the sizes is less than or equal to
the reducer capacity q.

– For each output produced by reducers, we must assign the corresponding
inputs to at least one reducer in common.

For example, a mapping schema for equijoin example will assign all tuples (of
relations X and Y ) having an identical key to a reducer such that the size of
assigned tuples is not more than q.

The Model. The model is simple but powerful and assumes the following:

1. Existence of systems such as Spark, Pregel, or modern Hadoop.
2. A preliminary step at the user site who owns the dataset for finding metadata4

that has a smaller memory size than the original data.
3. Approximation algorithms (given in [2]), which are based on a bin-packing

algorithm, at the cloud or the global reducer in case of Hierarchical MapRe-
duce [9]. The approximation algorithms assign outputs of the map phase
to reducers while regarding the reducer capacity. Particularly, in our case,
approximation algorithms will assign metadata to reducers in such a manner
that the size of actual data at a reducer will not exceed the reducer capacity
and all the inputs that are required to produce outputs must be assigned at
one reducer in common.

4 The selection of metadata depends on the problem.
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The next section presents a new algorithmic technique for MapReduce algo-
rithms, where we try to minimize communication cost regarding different locations
of data and mappers/reducers with the help of a running example of equijoin.

3 Meta-MapReduce

We present our algorithmic technique that reduces the communication cost for a
variety of problems, e.g., join of relations, k-nearest-neighbors finding, similarity-
search, and matrix multiplication. The proposed technique regards locality of
data, the number of iterations involved in a MapReduce job, and the reducer
capacity. The idea behind the proposed technique is to process metadata at map-
pers and reducers, and process the original required data at required iterations
of a MapReduce job at reducers. In this manner, we suggest processing metadata
at mappers and reducers at all the iterations of a MapReduce job. Therefore,
the proposed technique is called Meta-MapReduce. In this section, we intro-
duce how to incorporate Meta-MapReduce for computations hosted only at
a single location, and then, in later sections, we show how Meta-MapReduce
can be used in geographically distributed computations.

Before going into detail of Meta-MapReduce, we need to redefine the com-
munication cost to take into account the size of the metadata, the amount of
the (required) original data, which is required to transfer to reducers only at
required iterations, and different locations of data and computations.

The Communication Cost for Metadata and Data. In the context of
Meta-MapReduce, the communication cost is the sum of the following:

Metadata Cost. The amount of metadata that is required to move from the
location of users to the location of mappers (if the locations of data and
mappers are different) and from the map phase to the reduce phase in each
iteration of MapReduce job.

Data Cost. The amount of required original data that is needed to move to
reducers at required iterations of a MapReduce job.

The next section explains the way Meta-MapReduce works, using an
example of equijoin for a case of different locations of data and mappers. Fol-
lowing the example of equijoin, we also show how much communication cost is
reduced due to the use of Mata-MapReduce.

3.1 Meta-MapReduce Working

In the standard MapReduce, users send their data to the site of the mappers
before the computation begins. However, in Meta-MapReduce, users send
metadata to the site of mappers, instead of original data, see Fig. 3. Now, map-
pers and reducers work on metadata, and at required iterations of a MapReduce
job, reducers call required original data from the site of users (according to
assigned 〈key , value〉 pairs) and provide the desired result. We present a detailed
execution to demonstrate Meta-MapReduce (see Fig. 3), using the equijoin
task, as follows:
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Fig. 3. Meta-MapReduce algorithmic approach.

Step 1. Users create a master process that creates map tasks and reduce tasks
at different compute nodes. A compute node that processes the map task is
called a map worker, and a compute node that processes the reducer task is
called a reduce worker.

Step 2. Users send metadata, which varies according to an assigned MapReduce
job, to the site of mappers. Also, the user creates an index, which varies
according to the assigned job, on the entire database.
For example, in the case of equijoin (see Fig. 2), a user sends metadata for each
of the tuples of the relations X(A,B) and Y (B,C) to the site of mappers. In
this example, metadata for a tuple i (〈ai, bi〉, where ai and bi are values of the
attributes A and B, respectively) of the relation X includes the size of all non-
joining values (i.e., |ai|5) and the value of bi. Similarly, metadata for a tuple i
(〈bi, ci〉, where bi and ci are values of the attributesB andC, respectively) of the
relation Y includes the size of all non-joining values (i.e., |ci|) with bi (remember
that the size of bi is much smaller than the size of ai or ci). In addition, the user
creates an index on the attribute B of both the relations X and Y .

Step3. In the map phase, a mapper processes an assigned input and provides some
number of 〈key , value〉 pairs, which are known as intermediate outputs, a value
is the size of the corresponding input data (which is included in metadata). The
master process is then informed of the location of intermediate outputs.
For example, in case of equijoin, a mapper takes a single tuple i (e.g., 〈|ai|, bi〉)
and generates some 〈bi, value〉 pairs, where bi is a key and a value is the size
of tuple i (i.e., |ai|). Note that in the original equijoin example, a value is the
whole data associated with the tuple i (i.e., ai).

Step 4. The master process assigns reduce tasks (by following a mapping schema
as suggested in [2]) and provides information of intermediate outputs, which
serve as inputs to reduce tasks. A reducer is then assigned all the 〈key , value〉
pairs having an identical key by following a mapping schema for an assigned

5 The notation |ai| refers to the size of an input ai.
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job. Now, reducers perform the computation and call6 only required data
if there is only one iteration of a MapReduce job. On the other hand, if a
MapReduce job involves more than one iteration, then reducers call original
required data at required iterations of the job (we will discuss multi-round
MapReduce jobs using Meta-MapReduce in Sect. 4.3).
For example, in the case of equijoin, a reducer receives all 〈bi , value〉 pairs
from both relations X and Y , where a value is the size of tuple associated with
key bi. Inputs (i.e., intermediate outputs of the map phase) are assigned to
reducers by following a mapping schema for equijoin such that a reducer does
not assign more original inputs than its capacity, and after that reducers
invoke the call operation. Note that a reducer that receives at least one
tuple with key bi from both relations X and Y produces outputs and requires
original input data from the user’s site. However, the reducer, receiving tuples
with key bi from a single relation only, does not request for the original input
tuple, since these tuples do not participate in the final output.

We now compute the communication cost involved in the equijoin exam-
ple (see Fig. 2) using Meta-MapReduce. Recall that without using Meta-
MapReduce, a solution to the equijoin problem (in Fig. 2) requires 12 units of
communication cost. However, using Meta-MapReduce, there is no need to
send the tuple 〈a3, b2〉 of the relation X and the tuples 〈b3, c3〉 of the relation Y to
the location of computation. Moreover, we send metadata of all the tuples to the
site of mappers, and intermediate outputs containing metadata are transferred to
the reduce phase, where reducers call only desired tuples having b1 value from
the user’s site. Consequently, a solution to the problem of equijoin has only 4
units cost plus a constant cost for moving metadata using Meta-MapReduce,
instead of 12 units communication cost. Table 1 shows communication cost for
different operations using Meta-MapReduce.

Theorem 1 (The communication cost). Using Meta-MapReduce, the
communication cost for the problem of the join of two relations is at most 2nc+
h(c+w) bits, where n is the number of tuples in each relation, c is the maximum
size of a value of the joining attribute, h is the number of tuples that actually
join, and w is the maximum required memory for a tuple.

Proof. Since the maximum size of a value of the joining attribute, which works as
metadata in the problem of join, is c and there are n tuples in each relation, users
have to send at most 2nc bits to the site of mappers-reducers. Further, tuples
that join at the reduce phase have to be transferred from the map phase to the
reduce phase and then from the user’s site to the reduce phase. Since there are
at most h tuples join and the maximum size of a tuple is w, we need to transfer
at most hc and at most hw bits from the map phase to the reduce phase and
from the user’s site to the reduce phase, respectively. Hence, the communication
cost is at most 2nc + h(c + w) bits.

6 The call operation will be explained in Sect. 3.2.
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Further Significant Improvement. We note that it is possible to further
decrease the communication cost by using two iterations of a MapReduce job,
in which the first iteration is performed on metadata and the second iteration
is performed on the required original data. Specifically, in the first iteration, a
user sends metadata to some reducers such that reducers are not assigned more
metadata than capacity, and all these reducers will compute the required original
data and the optimal number of reducers for a task. Afterward, a new MapRe-
duce iteration is executed on the required original data such that a reducer is
not assigned more original inputs than its capacity. In this manner, we save
replication of metadata and some reducers that do not produce outputs.

Table 1. The communication cost for joining of relations using Meta-MapReduce.

Problems
Communication cost

using Meta-MapReduce using MapReduce

Join of two relations 2nc + h(c + w) 4nw

Skewed Values of the Joining Attribute 2nc + rh(c + w) 2nw(1 + r)

Join of two relations by hashing the joining attribute 6n · log m + h(c + w) 4nw

Join of k relations by hashing the joining attributes 3knp · log m + h(c + w) 2knw

n: the number of tuples in each relation, c: the maximum size of a value of the joining attribute, r: the

replication rate, h: the number of tuples that actually join, w is the maximum required memory for a

tuple, p: the maximum number of dominating attributes in a relation, and m: the maximal number of

tuples in all given relations.

3.2 The Call Function

In this section, we will describe the call function that is invoked by reducers to
have the original required inputs from the user’s site to produce outputs.

All the reducers that produce outputs require the original inputs from the
site of users. Reducers can know whether they produce outputs or not, after
receiving intermediate outputs from the map phase, and then, inform the corre-
sponding mappers from where they have fetched these intermediate outputs (for
simplicity, we can say all reducers that will produce outputs send 1 to all the cor-
responding mappers to request the original inputs, otherwise send 0). Mappers
collect requests for the original inputs from all the reducers and fetch the original
inputs, if required, from the user’s site by accessing the index file. Remember
that in Meta-MapReduce, the user creates an index on the entire database
according to an assigned job, refer to Step 2 in Sect. 3.1. This index helps to
access the required data that reducers want without doing a scan operation. Note
that the call function can be easily implemented on recent implementations of
MapReduce, e.g., Pregel and Spark.

For example, we can consider our running example of equijoin. In the case
of equijoin, a reducer that receives at least one tuple with key bi from both the
relations X(A,B) and Y (B,C) requires the original input from the user’s site,
and hence, the reducer sends 1 to the corresponding mappers. However, if the
reducer receives tuples with key bi from a single relation only, the reducer sends
0. Consider that the reducer receives 〈bi, |ai|〉 of the relation X and 〈bi, |ci|〉 of
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the relation Y . The reducer sends 1 to corresponding mappers that produced
〈bi, |ai|〉 and 〈bi, |ci|〉 pairs. On receiving requests for the original inputs from
the reducer, the mappers access the index file to fetch ai, bi, and ci, and then,
the mapper provides ai, bi, and ci to the reducer.

3.3 Meta-MapReduce for Skewed Values of the Joining Attribute

Consider two relations X(A,B) and Y (B,C), where the joining attribute is B
and the size of all the B values is very small as compared to the size of values of
the attributes A and C. One or both of the relations X and Y may have a large
number of tuples with an identical B-value. A value of the joining attribute B
that occurs many times is known as a heavy hitter. In the skew join of X(A,B)
and Y (B,C), all the tuples of both the relations with an identical heavy hitter
should appear together to provide the output tuples.

In Fig. 4, b1 is a heavy hitter; hence, it is required that all the tuples of
X(A,B) and Y (B,C) with the heavy hitter, b1, should appear together to pro-
vide the output tuples, 〈a, b1, c〉 (a ∈ A, b1 ∈ B, c ∈ C), which depend on exactly
two inputs. However, due to a single reducer—for joining all tuples with a heavy
hitter—there is no parallelism at the reduce phase, and a single reducer takes a
long time to produce all the output tuples of the heavy hitter.

Fig. 4. Skew join example for a heavy hit-
ter, b1.

We can restrict reducers in a way
that they can hold many tuples, but
not all the tuples with the heavy-
hitter-value. In this case, we can
reduce the time and use more reduc-
ers, which results in a higher level of
parallelism at the reduce phase. But,
there is a higher communication cost,
since each tuple with the heavy hit-
ter must be sent to more than one
reducer.

We can solve the problem of skew
join using Meta-MapReduce, using
four steps suggested in Sect. 3.1.

Theorem 2 (The communication cost). Using Meta-MapReduce, the
communication cost for the problem of skew join of two relations is at most
2nc + rh(c + w) bits, where n is the number of tuples in each relation, c is the
maximum size of a value of the joining attribute, r is the replication rate,7 h is
the number of distinct tuples that actually join, and w is the maximum required
memory for a tuple.

Proof. From the user’s site to the site of mappers-reducers, at most 2nc bits are
required to move (according to Theorem 1). Since at most h distinct tuples join
7 The replication rate [11] of a mapping schema is the average number of key-value

pairs for each input.
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and these tuples are replicated to r reducers, at most rhc bits are required to
transfer from the map phase to the reduce phase. Further, h tuples of size at
most w to be transferred from the map phase to the reduce phase, and hence,
at most rhw bits are assigned to reducers. Thus, the communication cost is at
most 2nc + rh(c + w) bits.

3.4 Meta-MapReduce for an Identical Location of Data
and Mappers

We explained the way Meta-MapReduce acts in the case of different locations
of data and computation, and show how it provides desired outputs by consid-
ering only metadata of inputs. Nevertheless, Meta-MapReduce also decreases
the amount of data to be transferred when the locations of data and compu-
tations are identical. In this case, mappers process only metadata of assigned
inputs instead of the original inputs as in MapReduce, and provide 〈key , value〉
pairs, where a value is the size of an assigned input, not the original input itself.
A reducer processes all the 〈key , value〉 pairs having an identical key and calls
the original input data, if required. Consequently, there is no need to send all
those inputs that do not participate in the final result from the map phase to
the reduce phase.

For example, in the case of equijoin, if the location of mappers and relations
X and Y are identical, then a mapper processes a tuple of either relation and
provides 〈bi , |ai |〉 or 〈bi , |ci |〉 as outputs. A reducer is assigned all the inputs
having an identical key, and the reducer calls the original inputs if it has received
inputs from both the relations.

4 Extensions of Meta-MapReduce

We have presented Meta-MapReduce for different and identical locations of
data and mappers-reducers. However, some extensions are required to use Meta-
MapReduce for geographically distributed data processing, for handling large
size values of joining attributes, and for handling multi-round computations.
This section provides three extensions of Meta-MapReduce.

4.1 Incorporating Meta-MapReduce in G-Hadoop and Hierarchical
MapReduce

G-Hadoop and Hierarchical MapReduce are two implementations for geograph-
ically distributed data processing using MapReduce. Both the implementations
assume that a cluster processes data using MapReduce and provides its outputs
to one of the clusters that provides final outputs (by executing a MapReduce
job on the received outputs of all the clusters). However, the transmission of
outputs of all the clusters to a single cluster for producing the final output is
not efficient, if all the outputs of a cluster do not participate in the final output.
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We can apply Meta-MapReduce idea to systems such as G-Hadoop and
Hierarchical MapReduce. Note that we do not change the basic functionality
of both implementations. We take our running example of equijoin (see Fig. 5,
where we have three clusters, possibly on three continents, the first cluster has
two relations U(A,B) and V (B,C), the second cluster has two relations W (D,B)
and X(B,E), and the third cluster has two relations Y (F,B) and Z(B,G)) and
assume that data exist at the site of mappers in each cluster. In the final output,
reducers perform the join operation over all the six relations, which share an
identical B-value.

Fig. 5. Three clusters, each with two relations.

The following three steps are required for obtaining final outputs using the
execution of Meta-MapReduce over G-Hadoop and Hierarchical MapReduce.

Step 1. Mappers at each cluster process input data according to an assigned
job and provide 〈key , value〉 pairs, where a value is the size of an assigned
input.
For example, in Fig. 5, a mapper at Cluster 1 provides outputs of the form of
〈bi , |ai |〉 or 〈bi , |ci |〉.

Step 2. Reducers at each cluster provide partial outputs by following an assigned
mapping schema, and partial outputs, which contain only metadata, are
transferred to one of the clusters, which will provide final outputs.
For example, in case of equijoin, reducers at each cluster provide partial
output tuples as 〈|ai |, bi , |ci |〉 at Cluster 1, 〈|di |, bi , |ei |〉 at Cluster 2, and
〈|fi |, bi , |gi |〉 at Cluster 3 (by following a mapping schema for equijoin). Partial
outputs of Cluster 1 and Cluster 3 have to be transferred to one of the clusters,
say Cluster 2, for obtaining the final output.

Step 3. A designated cluster for providing the final output processes all the
outputs of the clusters by implementing the assigned job using Meta-
MapReduce. Reducers that provide the final output call the original input
data from all the clusters.
For example, in equijoin, after receiving outputs of Cluster 1 and Cluster 3,
Cluster 2 implements two iterations for joining tuples. In the first iteration,
outputs of Clusters 1 and 2 are joined (by following a mapping schema for
equijoin), and in the second iteration, outputs of Clusters 3 and the output of
the previous iteration are joined at reducers. A reducer in the second iteration
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provides the final output as 〈|ai |, b1 , |ci |, |di |, |ei |, |fi |, |gi |〉 and calls all the
original values of |ai|, |ci|, |di|, |ei|, |fi|, and |gi| for providing the desired
output, as suggested in Sect. 3.2.

Communication Cost Analysis. In Fig. 5, we are performing equijoin in three
clusters, and assuming that data is available at the site of mappers in each
cluster. In addition, we consider that each value takes two units in size; hence,
any tuple, for example, 〈ai, bi〉, has the size of 4 units.

First, each of the clusters performs an equijoin within the cluster using
Meta-MapReduce. Note that using Meta-MapReduce, there is no need to
send any tuple from the map phase to the reduce phase within the cluster, while
G-Hadoop and Hierarchical MapReduce do data transfer from the map phase to
the reduce phase, and hence, results in 76 units of communication cost. More-
over, in G-Hadoop and Hierarchical MapReduce, the transmission of two tuples
(〈a3, b2〉, 〈a4, b2〉) of U , one tuple (〈b2, c2〉) of V , two tuples (〈d2, b2〉, 〈d3, b3〉) of
W , two tuples (〈b2, e3〉, 〈b4, e4〉) of X, two tuples (〈f2, b5〉, 〈f3, b6〉) of Y , and
one tuple (〈b7, g3〉) of Z from the map phase to the reduce phase is useless, since
they do not participate in the final output.

After computing outputs within the cluster, metadata of outputs (i.e., size of
tuples associated with key b1 and key b2) is transmitted to Cluster 2. Here, it is
important to note that tuples with value b1 provide final outputs. Using Meta-
MapReduce, we will not send the complete tuples with value b2, hence, we also
decrease the communication cost; while G-Hadoop and Hierarchical MapReduce
send all the outputs of the first and third clusters to the second cluster. After
receiving outputs from the first and the third clusters, the second cluster per-
forms two iterations as mentioned previously, and in the second iteration, a
reducer for key b1 provides the final output. Following that the communication
cost is only 36 units.

On the other hand, the transmission of outputs with data from the first
cluster and the third cluster to the second cluster and performing two iterations
result in 132 units of communication cost. Therefore, G-Hadoop and Hierarchical
MapReduce require 208 units of communication cost while Meta-MapReduce
provides the final results using 36 units of communication cost.

4.2 Large Size of Joining Values

We have considered that the sizes of joining values are very small as compared
to the sizes of all the other non-joining values. For example, in Fig. 2, the sizes
of all the values of the attribute B are very small as compared to all the values
of the attributes A and C. However, considering the very small size of values of
the joining attribute is not realistic. All the values of the joining attribute may
also require a considerable amount of memory, which may be equal to or greater
than the sizes of non-joining values. In this case, it is not useful to send all the
values of the joining attribute with metadata of non-joining attributes. Thus, we
enhance Meta-MapReduce for handling a case of large size of joining values.
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We consider our running example of the join of two relations X(A,B) and
Y (B,C), where the size of each of bi is large enough such that the value of bi
cannot be used as metadata. We use a hash function to gain a short identifier
(that is unique with high probability) for each bi. We denote H(bi) to be the hash
value of the original value of bi. Here, Meta-MapReduce works as follows:

Step 1. For all the values of the joining attribute (B), use a hash function such
that an identical bi in both of the relations has a unique hash value with a
high probability, and bi and bj , i �= j, receive two different hash values with
a high probability.

Step 2. For all the other non-joining attributes’ values (values corresponding to
attributes A and C), find metadata that includes the size of each value.

Step 3. Perform the task using Meta-MapReduce: (i) Users send hash values
of joining attributes and metadata of the non-joining attributes. For example,
a user sends hash value of bi (H(bi)) and the corresponding metadata (i.e.,
size) of values ai or ci to the site of mappers. (ii) A mapper processes an
assigned tuples and provides intermediate outputs, where a key is H(bi) and
a value is |ai| or |ci|. (iii) Reducers call all the values corresponding to a
key (hash value), and if a reducer receives metadata of ai and ci, then the
reducer calls the original input data and provides the final output.
Note that there may be a possibility that two different values of the joining
attribute have an identical hash value; hence, these two values are assigned
to a reducer. However, the reducer will know these two different values, when
it will call the corresponding data. The reducer notifies the master process,
and a new hash function is used.

Theorem 3 (The communication cost). Using Meta-MapReduce for the
problem of join where values of joining attributes are large, the communication
cost for the problem of the join of two relations is at most 6n · log m+ h(c+w)
bits, where n is the number of tuples in each relation, m is the maximal number
of tuples in two relations, h is the number of tuples that actually join, and w is
the maximum required memory for a tuple.

Proof. The maximal number of tuples having different values of a joining
attribute in all relations is m, which is upper bounded by 2n; hence, a map-
ping of hash function of m values into m3 values will result in a unique hash
value for every of the m keys with a high probability. Thus, we use at most
3 · log m bits for metadata of a single value, and hence, at most 6n · log m
bits are required to move metadata from the user’s site to the site of mappers-
reducers. Since there are at most h tuples join and the maximum size of a tuple
is w, we need to transfer at most hc and at most hw bits from the map phase
to the reduce phase and from the user’s site to the reduce phase, respectively.
Hence, the communication cost is at most 6n · log m + h(c + w) bits.

4.3 Multi-round Computation

We show how Meta-MapReduce can be incorporated in a multi-round MapRe-
duce job, where values of joining attributes are also large as the value of non-
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joining attributes. In order to explain, the working of Meta-MapReduce in a
multi-iterative MapReduce job, we consider an example of join of four relations
U(A,B,C,D), V (A,B,D,E), W (D,E, F ), and X(F,G,H), and perform the
join operation using a cascade of two-way joins..

Step 1. Find dominating attributes in all the relations. An attribute that occurs
in more than one relation is called a dominating attribute [15]. E.g., in our
running example, attributes A, B, D, E, and F are dominating attributes.

Step 2. Implement a hash function over all the values of dominating attributes
so that all the identical values of dominating attributes receive an identical
hash value with a high probability, and all the different values of dominating
attributes receive different hash values with a high probability.
For example, identical values of ai, bi, di, ei, and fi receive an identical hash
value, and any two values ai and aj , such that i �= j, probably receive different
hash values (a similar case exists for different values of attributes B, D, E,
F ).

Step 3. For all the other non-dominating joining attributes’ (an attribute that
occurs in only one of the relations) values, we find metadata that includes
size of each of the values.

Step 4. Now perform 2-way cascade join using Meta-MapReduce and follow
a mapping schema according to a problem for assigning inputs (i.e., outputs
of the map phase) to reducers.
In equijoin example, we may join relations as follows: first, join relations U
and V , and then join the relation W to the outputs of the join of relations U
and V . Finally, we join the relation X to outputs of the join of relations U ,
V , and W . Thus, we join the four relations using three iterations of Meta-
MapReduce, and in the final iteration, reducers call the original required
data.

Example: Following our running example, in the first iteration, a mapper
produces 〈H(ai), [H(bi), |ci|,H(di)]〉 after processing a tuple of the relation
U and 〈H(ai), [H(bi),H(di),H(ei)]〉 after processing a tuple of the rela-
tion V (where H(ai) is a key). A reducer corresponding to H(ai) provides
〈H(ai),H(bj), |ck|,H(dl),H(ez)〉 as outputs.

In the second iteration, a mapper produces 〈H(di), [H(ai),H(bj), |ck|,
H(ez)]〉 and 〈H(di), [H(ei),H(fi)]〉 after processing outputs of the first iteration
and the relation W , respectively. Reducers in the second iteration provide output
tuples by joining tuples that have an identical H(di). In the third iterations, a
mapper produces 〈H(fi), [H(ai),H(bi), |ci|,H(di),H(ei)]〉 or 〈H(fi), [|gi|, |hi|]〉,
and reducers perform the final join operations. A reducer, for key H(fi), receives
|gi| and |hi| from the relation X and output tuples of the second iteration, pro-
vides the final output by calling original input data from the location of user.

Theorem 4 (The communication cost). Using Meta-MapReduce for the
problem of join where values of joining attributes are large, the communication
cost for the problem of join of k relations, each of the relations with n tuples, is
at most 3knp · log m + h(c + w) bits, where n is the number of tuples in each
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relation, m is the maximal number of tuples in k relations, p is the maximum
number of dominating attributes in a relation, h is the number of tuples that
actually join, and w is the maximum required memory for a tuple.

Proof. According to Theorem 3, at most 3 · log m bits for metadata are required
for a single value; hence, at most 3knp ·log m bits are required to move metadata
from the user’s site to the site of mappers-reducers. Since at most h tuples
join and the maximum size of a tuple is w, at most hc and at most hw bits
from the map phase to the reduce phase and from the user’s site to the reduce
phase, respectively, are transferred. Hence, the communication cost is at most
3knp · log m + h(c + w) bits.

5 Versatility of Meta-MapReduce

This section provides two more problems that can be solved using Meta-
MapReduce.

k-nearest-neighbors (k-NN) Problem Using Meta-MapReduce. Problem
statement : k-NN problem [16] tries to find k-nearest-neighbors of a given object.
Two relations R of m tuples and S of n tuples are inputs to the k-NN problem,
where m < n. E.g., relations R and S may contain a list of cities with full
descriptions of the city, images of places to visit in the city. Following that, a
solution to the k-NN problem finds k cities from the relation S for each city of
the relation R in a manner that the distance between two cities (the first city
belongs to R and the second city belongs to S) is minimum, and hence, km pairs
are produced as outputs. A basic approach to find k-NN is given in [16] that
uses two iterations of MapReduce, where the first iteration provides local k-NN
and the second iteration provides the global k-NN for each tuple of R.
Communication Cost Analysis: The communication cost is the size of all the
tuples of R and S that are required to move to the location of mappers-reducers,
and then, tuples from the map phase to the reduce phase in the two iterations. If
k ≤ m, then it is communication inefficient to move all tuples of S from the user’s
location to the location of mappers and from the map phase to the reduce phase.
Thus, sending only metadata of each tuple avoid significant communication cost.

Fig. 6. A graph of a social network.

Shortest Path Findings on a
Social Networking Graph using
Meta-MapReduce. Problem state-
ment : Consider a graph of a social
network, where a node represents
either a person or a photo, and an
edge exists between two persons if
they are friends or between a person
and a photo of the person is tagged in the photo; however, there is no edge
between two photos; see Fig. 6. The implementation of the shortest path algo-
rithm on the graph results in paths between two persons i and j with common
information (which exist on the paths) between the two persons i and j.
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Communication Cost Analysis: We want to find the shortest path between
persons P1 and P6, refer to Fig. 6. A shortest path algorithm will provide a
path P1-P2-P3-Pic1 -P5-P6 or P1-P2-P3-Pic1 -P4-P6 and show the common things
between every two persons on the path and the photo, Pic1 , as a connection
between P3 and P5. Note that in this case, it is communication in-efficient to
send all the photos and common information between every two friends of the
graph to the site of mappers, because most of the nodes are removed in the final
output. Hence, it is beneficial to send metadata of people and photos to the
location of mappers and to process metadata to find the shortest path between
two people at the reduce phase. In Fig. 6, reducers that provide the final output
call information of person (P1, P2, P3, P5, P6) and photo (Pic1 ). Consequently,
there is no need to send Pic2 and Pic3 .

6 Conclusion

While Hadoop and Spark are widely used efficient distributed processing frame-
works for big-data processing in a fault-tolerant manner, these systems suffer
from a major drawback in terms of locally distributed computations, which pre-
vent them from implementing geographically distributed data processing. The
increasing amount of geographically distributed data and the nature of MapRe-
duce or Spark motivate us to rethink the design of the current big-data processing
systems.

This paper found that it is not required to send the whole datasets to the
location of computation, if all the inputs do not participate in the final output.
Thus, we proposed a new algorithmic technique, Meta-X and illustrated it
in the context of MapReduce computations. Meta-MapReduce decreases a
huge amount of data to be transferred across clouds by transferring metadata
(which is exponentially smaller) for a data field (rather than the field itself) and
processes metadata at the map phase and the reduce phase. We demonstrated
the impact of Meta-MapReduce for solving problems of equijoin, k-nearest-
neighbors finding, and shortest path finding.
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Abstract. A Statistical Information Theoretic Secure (SITS) sys-
tem utilizing the Chinese Remainder Theorem (CRT), coupled with
Fully Homomorphic Encryption (FHE) for Distributed Communication-
less Secure Multiparty Computation (DCLSMPC) of any Distributed
Unknown Finite State Machine (DUFSM) is presented. Namely, secret
shares of the input(s) and output(s) are passed to/from the comput-
ing parties, while there is no communication between them throughout
the computation. We propose a novel approach of transition table repre-
sentation and polynomial representation for arithmetic circuits evalua-
tion, joined with a CRT secret sharing scheme and FHE to achieve SITS
communication-less within computational secure execution of DUFSM.
We address the severe limitation of FHE implementation over a sin-
gle server to cope with a malicious or Byzantine server. We use several
distributed memory-efficient solutions that are significantly better than
the majority vote in replicated state machines, where each participant
maintains an FHE replica. A Distributed Unknown Finite State Machine
(DUFSM) is achieved when the transition table is secret shared or when
the (possible zero value) coefficients of the polynomial are secret shared,
implying communication-less SMPC of an unknown finite state machine.

Keywords: Secure multiparty computation · Replicated state
machine · Chinese Remainder Theorem

1 Introduction

The processing of encrypted information where the computation program is
unknown is an important task that can be solved in a distributed fashion using
communication among several participants, e.g., [12]. Unfortunately, this com-
munication reveals the participants to each other and requires a non-negligible
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overhead concerning the communication between them. Computational secure
communication-less approaches can also be suggested, either for the case of
known automaton and global inputs, e.g., [10] or for the case of computational
security alone. Here, we present the first communication-less solution that is sta-
tistical information-theoretical secure (not perfect), within an FHE-based com-
putational secure scheme.

A major contribution to the area of distributed computing is the replicated
state machine introduced by Lamport [21]. The implementation of such state
machines is usually based on a distributed consensus [20].

We propose a sharing scheme that is based on a secret shared transition
function or a unique polynomial over a finite ring for various implementations
e.g., Boolean function, state machine transition, control of RAM, or control of
Turing Machine. Specifically, for any state machine, this polynomial encodes the
information of all the transitions from a state x and input y to the next state
z. The information may also contain the encoding of the output. The polyno-
mial can be described by an arithmetic circuit (and vice versa) and be evaluated
distributively by the SMPC participants. Each participant evaluates the arith-
metic circuit using the CRT SITS secret sharing scheme where the shares are
FHE encrypted. Consequently, the possibility for (value secured) additions and
multiplications with no communication is achieved. In the scope of this polyno-
mial representation of the transition function, the actual computed function is
kept private by using secret shares for all (zero and non-zero) coefficients of the
polynomial, revealing only a bound on the maximal degree k of the polynomial.

The CRT representation allows an unbounded number of independent addi-
tions and multiplications of the respective components of two (or more) numbers
over a finite ring. So in that manner, we compute arithmetic circuits in a dis-
tributed fashion, where each participant performs calculations over a finite ring
defined by the relatively prime number they are in charge of. We accomplish
a distributed polynomial evaluation, where several participants do not need to
communicate with each other before and during the computation.

The transition function of a state machine may be represented by a bivariate
polynomial from the current state and the input to the next state (and output).
Namely, a bi-variate polynomial can be defined by the desired points that define
the transition from the current state (x) and the input (y) to the next state (z),
which may encode the output too. Alternatively, a univariate polynomial can be
defined by using the most significant digits of (x + y) to encode the state (x)
and the least significant digits, to encode the input (y). The output state (z)
occupies the same digits of (x) that serve to encode the next state, while the rest
of the digits in (z) are zeros. Thus, the next input can be added to the previous
result and be used in computing the next transition, and so forth.

Naturally, several known error correction techniques that rely on features of
the Chinese Remainder Theorem (depicted in [18,19]) can eliminate the influence
of Byzantine participants. These schemes are not designed to preserve the fully
homomorphic property of CRT secret sharing, just as the CRT threshold secret
sharing does not support additions and multiplications. The values might exceed
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the global maximal value the mutual primes can represent (originally, with no
additional error-correcting values). Still, when using FHE, a computation can
be designed to never exceed this maximal value and be error corrected. We
note that FHE has significant complications when executed over a single server,
as the server can be Byzantine, not following the algorithm it should execute
on the encrypted values. Thus, a distributed secure multiparty computation is
preferred.

Related Work and Our Contribution. Recently, extensive work on compu-
tationally secure communication-less computation has been done, see [6,13] and
in references therein. However, the computation security is only based on the
belief that one-way functions exist [8]. Several other works in the scope of per-
fect information-theoretically secure schemes were presented in [4,11,12,14,15].
Unfortunately, neither of them can compute all possible functions, and they
require either communication or a need for exponential resources to maintain
continuous functioning. In this paper, we present an alternative to a replicated
state machine with no communication, while improving the communication over-
head of the secret shared random-access machine presented in [16] and the secret
shared Turing machine presented in [12]. This SITS within FHE approach can
also be used in implementations for distributed, efficient, databases [3], Accumu-
lating Automata with no communication [14] or even for ALU operations in the
communication-less RAM implementation [16]. Another important application
is in the scope of SMPC of machine learning queries [7].

CRT Arithmetic. We briefly review some of the key topics that serve as the
base of this work.

Let p1 < p2 < . . . < pk where pi are relatively prime and a set of congruence
equations a ≡ ai (mod pi) for 1 ≤ i ≤ k for k > 0 and where ai are remainders.
The original form of the CRT states that this given set of congruence equations
always has one and exactly one solution modulo

∏k
1 pi.

The most important feature of the Chinese Remainder Theorem for our inter-
est, is the possibility of adding and multiplying two vectors of congruence values
independently. Namely, for performing fully homomorphic addition and multi-
plication operations on CRT-based secret shares. Unlike perfectly secure secret
sharing such as the schemes of Shamir [23] and Blakley [5], a CRT-based secret
sharing scheme that supports homomorphic additions and multiplications (unlike
[2]) is only statistically secured. We use FHE to computationally mitigate infor-
mation leakage from the individual CRT share.

2 Replicated State Machine Vs. CRT DFSM or DUFSM

In this section, we explore the different aspects of a CRT based SMPC that
utilizes the features mentioned before. We introduce our DFSM approach that
copes with several of the Replicated State Machine (RSM) drawbacks. Also, to
increase the privacy of the computation implied by this approach, we suggest
using a local Fully Homomorphic Encryption (FHE) based arithmetic circuit
that keeps the efficiency of memory while protecting the data.
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Implementing the Transition Function with Secret Sharing. An Arith-
metic Circuit is based on additions and multiplications which support the imple-
mentation of any Finite State Machine (FSM) transition function or table.
One convenient way to do so is by representing each bit in the circuit as a
vector of two different bits (just as a quantum bit is represented). Namely,
the bit 0 is represented by 01, and the bit 1 by 10. Consider each directed
edge in the transition function graph tuple representation being represented as
〈CurrentState, Input → NextState,Output〉. Then, given a (possibly secret
shared) transition function, this structure allows us to secret share the table
among different participants, possibly even padding it with additional never-used
tuples. CurrentState, Input, and NextState are represented by a sequence of
2-bits vectors. Thus, we double the logarithmic number of bits needed for the
binary representation, rather than using a linear number of bits in the unary rep-
resentation as used in [12] (optimized for small degree polynomial, secret shares,
and multiplication outcome).

Now, to blindly compute the next state and output, given the current state
and input, a participant multiplies each bit of the shared secret (2-bits vector
representation) with the bits of each line of the transition table. Then, they sum
up the resulting 2-bits vector into a single bit. In Algorithm 1, we can see that
by multiplying the resulting bits with the state and input encoding (lines 7, 9),
we ensure that only the fitting transition is chosen as the rest become 0. Blindly
summing up all results of all next states and outputs (line 10) results in the
desired (secret shared) next state and output.

Algorithm 1: Blindly Matching a Transition Tuple
input : transition table T , state current with length L and input i
output: next state and output

1 x ← encode(current); y ← encode(i); // encode in the redundant form
2 result ← 0

3 foreach line in T do
4 xT ← line[0]; yT ← line[1]; // unpack each tuple
5 sum ← 1;

6 for i ← 0 to 2L do
// perform multiplication with previous and current sum (i += 2)

7 sum ← sum · (x[i] · xT [i] + x[i+ 1] · xT [i+ 1]);
8 end
9 sum ← sum · (y[0] · yT [0] + y[1] · yT [1]);

10 result ← result+ sum · T [line] ; // accumulate conditioned next state
11 end
12 return decode(result)

Utilization of an FHE Mechanism. Nowadays, the concept of Fully Homo-
morphic Encryption (FHE) has become highly popular in the field of modern
cryptography. In a nutshell, FHE scheme is an encryption scheme that allows
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the evaluation of arbitrary functions on encrypted data. The problem was first
suggested by Rivest, Adleman, and Dertouzos [22], and thirty years later, imple-
mented in the breakthrough work of Gentry [17]. A major application of FHE is
in cloud computing. This is because nowadays a user can store data on a remote
server that has more storage capabilities and computing power than theirs. How-
ever, the user might not trust the remote server, as the data might be sensitive,
so they send the encrypted data to the remote server and expect it to perform
some arithmetic operations on it, without learning anything about the original
raw data. In our case, an FHE scheme is employed to preserve the privacy among
the participants, each being a remote server, blindly following the computation.

Algorithm 2: Dealer Extended FHE Procedure
input : initial value x, an operation op, and a stream of inputs stm
output: result of op applied on x with all the the inputs in stm

1 context ← initFHE() ; // context allows encryption+decryption

2 primes ← genPrimes(K);
3 q ← queue();
4 for i ← 1 to K do
5 m ← primes[i];
6 xEncrypted ← encrypt(mod(x), context) ; // encrypt x (mod m)
7 workers[i] ← startWorker(m, op, xEncrypted, q);
8 end

9 while hasNext(stm) do
10 y ← next(stm);
11 yEncrypted ← encrypt(y, context) ; // encrypt incoming input
12 q.push(yEncrypted);
13 end

14 for i ← 1 to K do
15 rEncrypted ← stopWorker(workers[i]);
16 results[i] ← decrypt(rEncrypted, context) ; // decrypt result
17 end

18 return recover(primes, results)

The dealer’s procedure described in Algorithm 2 is an extension of the original
distributed computation algorithm depicted in [9] that supports FHE behavior.
The dealer now initializes an FHE context with which they encrypt both the
initial value and the incoming inputs (lines 6, 11). From this point, they continue
in the same way as before (line 7, 12), except for a decryption step at the end
(line 16) and scheduled bootstrapping steps during the computation. For the
sake of generality, the bootstrapping step is omitted but can be regarded as the
assignment of the first share of the input to be the share of the initial state.
After completing all of the decryptions, the results are reassembled by the CRT
into a single solution as shown before.
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Algorithm 3: Worker Extended FHE Procedure
input : modulus m, operation op, encrypted initial value x, and encrypted

inputs queue q
output: encrypted result of op applied on x and all the encrypted inputs

1 while notSignaled() do
2 y ← tryPop(q);
3 x ← op(x, y);
4 x ← blindMod(x,m) ; // can be implemented in several ways
5 end
6 return x

Equally, the participants (workers) are dealt with a plaintext modulus in
which they operate. By keeping the modulus in the clear, we do not leak any
meaningful information and aid the participant in carrying out the computation
with respect to their finite field. As before, after a worker is initialized, they start
receiving encrypted inputs and apply the operator to them (line 3). As opposed to
the operator application in a general field, these blind applications are expected
to be done in a finite field that is typically different from the binary field in
computers (e.g., 8 bits for BYTE or 32/64 for a computer WORD). Therefore,
the worker performs a dedicated balancing step after each iteration (line 4).
Namely, they perform a blind modulo reduction to the result, thus keeping it
inside the field. This step is possible due to a unique feature of FHE bitwise
calculations that allows a blind conditioned output. One popular library that
supports this feature is IBM’s HELib [24]. The idea behind this implementation
is based on an aggregation of the condition results. A suggested implementation
is outlined in Algorithm 4 where line 3 creates an unknown bit and line 5 reflects
a conditioned output based on that bit. The subtraction is aggregated by using
the differences computed in line 4.

Algorithm 4: Blind Modulo Reduction
input : encrypted integer x, modulus m
output: result of encrypted x (mod m)

1 levels ← maxLevels(m) ; // max possible value i.e � (m−1)2

m
� ≈ m

2 for j ← 0 to levels do
3 i ← compare(x,m);
4 d ← x − i;
5 x ← xi · d+ (1 − i) · x;
6 end

Utilizing this feature is essential during the procedure of a worker in our CRT
based approach as the worker should be oblivious to the fact they carry out the
same procedure only on encrypted data. As long as they know how to perform
homomorphic operations such as additions and multiplications, while staying
within the boundaries of the computer’s binary representation, the homomor-
phism of the operations over the CRT secret shares is preserved.
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3 Polynomial Based CRT DUFSM

We present an alternative to further improve the secrecy of the transition func-
tion of the FSM that is based on polynomial representation. In case we use
the Lagrange interpolation, it is essential to choose the parameter M > 0 of
the ring Z/MZ wisely. Otherwise, the interpolation fails. Since is not guaran-
teed that every number x ∈ Z/MZ is invertible (e.g., zero), and the denomi-
nators in the basis polynomials are comprised of differences between two num-
bers, the different divisions might not be possible. Therefore, for a set of points
{(xi, yi)|i = 0, . . . , n}, it is crucial to choose such ring Z/MZ, where all the dif-
ferences xi − xj are invertible. Consider a set of points in the finite ring Z/KZ,
such that K =

∏n
i pi for relatively primes pi. To successfully interpolate this

set of points using Lagrange’s method, we need to verify that neither of the
differences has a common factor in {p1, . . . , pn}.

Consider a given FSM that is represented by a truth table. Namely, we are
interested in the relations between the different states and the possible inputs or
outputs. We suggest a (non-perfect) encoding scheme that allows us to represent
this FSM completely by polynomials. First, we encode the different states and
transitions in some grid-compatible representation, where a transition in that
context, is a 2-tuple e = (u, v) such that the state u has a valid input that leads
to v. One simple encoding is through positive integers representation. Given a
set of states V , and a set of transitions E, the 2-D point unique encoding of
them is calculated as follows in Algorithm 5.

Algorithm 5: FSM Encoding Procedure
input : V,E
output: A list of points P1 = (x1, y1), . . . , Pn = (xn, yn) where n = |E|

1 rangeV ← randRange(1, |V |) ; // generate numbers for each state
2 rangeE ← randRange(1, |E|) ; // generate numbers for each transition
3 points = [ ];
4 for i ← 1 to |E| do
5 u, v ← unpack(E[i]) ; // unpack the states in transition
6 x ← rangeV [indexOf(u, V )] + rangeE[i];
7 y ← rangeV [indexOf(v, V )];
8 points.append((x, y));

/* each point P is calculated such that P = (ru + re, rv) where
ru, rv are the random numbers chosen for states u, v and re is
the random number chosen for transition e */

9 end
10 return points

Since the y value of a point is comprised only of a state encoding, the decoding
process is simple. It is however not guaranteed for the x value, as it is comprised
of an encoded summation that might overlap other encoded values. One possible
way to deal with this, is to simply work on different scales, more specifically,
we use a factor f = 10t where t > 0 to choose the integers in line 1 from the
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range {f + 1 . . . |V | · f}. Also, considering that there might be many transitions
to cause an overflow between the scales, the parameter t needs to be bounded
such that t > log |E| and f = 10t > |E| holds.

Evaluating Polynomial within FHE. Since the polynomials are both
encrypted and already evaluated in a specific field, the only information a partic-
ipant can learn stems from the encryption parameters and the finite field mod-
ulus assigned to them beforehand. By keeping the modulus clear, we simplify
the assignment process while not revealing any meaningful data to the partici-
pants, as all the other data they receive is encrypted. The encryption parameters,
however, including the public key, might hint at the computational security of
the scheme, in case the participant is interested in breaking it. The Homomor-
phic Encryption Standard [1] may assist in choosing recommended parameters
for implementation. In practice, the suggested process provides the participants
with a reduced polynomial in some finite field, but the actual application of
different operations does not consider that fact. Fortunately, we can maintain
the result in the respected finite field by applying a blind modulo operation on
each polynomial evaluation. This can be done by the previous method described
in Algorithm 4. Moreover, to successively evaluate the polynomial without con-
suming all the noise budget of the FHE scheme, one can utilize a bootstrapping
method, thus allowing the computation to carry on endlessly.

4 Concluding Remarks

Communication-less secure multi-party computation, where the servers that per-
form the computation are not aware of the other servers’ identity and location,
introduces a new facet of security, where colluding is much harder to be coordi-
nated. Efficiency is an obvious additional benefit as in many cases the (typically
quadratic) communication overhead is significantly more expensive than the local
computation. One more important aspect to note is that we no longer need to
synchronize the actions of the servers, as they may process their own (secret
shared) inputs whenever convenient before the eventual output collection. Our
various implementations demonstrate the practicality of our scheme and for the
sake of brevity can be found online.

Lastly, it is possible to integrate an error-correction encoding into our scheme
that copes with Byzantine participants. This includes increasing the size of the
mutual primes p1 < p2 < . . . < pk to avoid overflow of the computation with
respect to p1 ·p2, . . . ·pk, and adding more mutual primes q1 < q2 < . . . < ql that
are larger than pk, and where l is a function of the maximal number of errors,
and in a way, may introduce an error correcting code.
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Abstract. The GDPR (General Data Protection Regulation) is a regulation for
data protection and privacy for citizens of the EU. It also addresses the export of
personal data outside the EU, thus creating a regulation the affects most, as all, of
the commercial companies, government institutions, and other sectors that main-
tain personal information of their customers or audiences. Social Networks are,
of course, major interested parties both for the GDPR since their core definitions
involve both private user’s information, and data ownership issues. Thus, there is
an urgent need for a sustainable and reliable privacymodel for these networks, that
does not currently exist. In our previous research we have devised a comprehen-
sive Trust-based model for security in Social Networks, that uses Trust, Access
Control and Flow Control. In this paper we use this model, and add an element of
context to it, for creating an implementation in Social Networks, that will better
enforce the GDPR and rights management regulations.

Keywords: GDPR · Social networks security · Flow control · Access control ·
Trust

1 Introduction, Background, and Related Work

The rapid growth ofOnline Social Networks (OSN) and their increasing popularity in the
past decade as major communication channels, have raised some new shapes of security
and privacy concerns. In our previous work, we have created a privacy model that is
composed of three main phases addressing three of its major aspects: trust, role-based
access control in [1] and in [2], and information flow, by creating an Information Flow-
Control model for adversary detection [3], or a trustworthy network [4]. We represent
a social network as an undirected graph, where nodes are the OSN users, and edges
represent relations between them such as friendship relations. An Ego node (or Ego
user) is an individual focal node, representing a user whose information flow we aim
to control. An Ego node along with its adjacent nodes are denoted Ego network. Our
comprehensive Trust-based model uses Access Control for the direct friends of the
Ego-user, and Information Flow Control for the users that are in a further distance.

We use OSN parameters, such as total number of friends, age of user account, and
friendship duration to characterize the quality of the network connections as will be
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explained in this paper. The GDPR [5] is a regulation for data protection and privacy for
citizens of the EU. It refers also to the use of personal data outside the EU, thus creating
a regulation the affects most, as all, sectors that involve personal data. Social Networks
are a vast source of personal information just by their core definition, and this exposes
them to the liability of these regulations. The most important aspect of GDPR, which is
“the right to be forgotten” can be applied by the monitoring of data instances flowing to
users by our model in the OSN.

Handling the effects of GDPR on Social Networks is crucially important since the
regulations have been enforceable since May 2018. A strong reliable and viable method
of action has not still been introduced, and a lot of resources are put in beginning to
find suitable infrastructures that can satisfy these demands. This is especially hard in
Social Networks, where endless amounts of data are spread constantly. [6] examine the
principles outlined in the GDPR in the context of social network data and analyze the
consequences of their implementation in OSN. The main ideas of this analysis are that
the problems need to be adhered are first, the initial data processing consent by the data
owners (OSN users) vs. the public nature of the Social Network. Second, the primary
and secondary data collections issue and their lack of transparency. Third, the depth and
spread of OSN data (and for that, the flow part of our model is a good solution). Fourth,
the data profiling and analysis problem- that is a serious breach of data ownership
and privacy. Last is the issue of data storage, that may breach the important GDPR
principal of “the right to be forgotten”. The efficacy of GDPR in OSN is presented in
[7], where the challenges of implementing the regulations on OSN are shown, and the
association of their causes to the nature of the communication are presented in general,
with the indication of the problematic aspects of data spreading in the network. This
paper specifically addresses the “right to be forgotten” issue in Facebook.

2 The Trust-Based Model and GDPR Implementation

The model we have presented in previous work [1–4] is composed of three main phases
addressing three of its major aspects: trust, role-based access control and information
flow. In the First phase, the Trust phase, we assign trust values on the edges connecting
direct friends to the Ego node in their different roles, e.g., Family, Colleagues etc. In the
second phase, the Role Based Access Control phase, we remove direct friends that do
not have the minimal trust values required to grant a specific permission to their roles.
A cascade removal is carried out in their Ego networks as well. After this removal, the
remaining user nodes and their edges are also assigned with trust values.

In the third and last phase, the Information Flow phase, we remove from the graph
edges and nodes that are not directly connected to the Ego-user, and have low trust
values, to construct a privacy preserving trusted network.

A data instance can be characterized by its context (e.g., politics, sports, etc.), and
the trust measure must be refined by this context. For context evaluation, we categorize
different users in the Ego network by their Trust per context. We calculate this Trust for
the friends in the Ego network: different trust values for every category, meaning that
they have a User Trust Value per category denoted here as UTV κ for each category κ.
The calculation is presented in [8]. We can see an example for such a set of UTV κ ’s and
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access granting for certain data instances in Fig. 1, where the Minimum Trust Value of a
certain category of a data instance is presented asMTVκ . Three out of four users hold the
necessary trust value (UTVκ) for κ = Politics, thus have access to it, while only one user
hold the necessary UTVκ for κ = Sales and has access to it. A problem arises when we
take a closer look in the Social Network’s data instances.We can divide all OSN activities
to atomic ones and non-atomic ones. Non-atomic actions are ones that can create linked
actions, for example, writing a post can create comments and likes from friends in
the network. Writing a comment is also non-atomic since it can create likes and sub-
comments. Atomic actions, such as likes, accordingly, are ones that cannot create linked
actions. The problematic aspect of non-atomic actions is the question of data ownership.
If theEgouserwrites a post, and thenAlice comments on this post,whodoes the comment
belong to? It might seem negligible if the comment is of simple nature, but comments are
a platform that sometimes go well beyond a simple data instance and can be elaborated
and data sensitive as the post itself, and evenmore. Comments themselves are non-atomic
actions that can create linked actions, e.g. Bob replies to Alice’s comment, or likes it.
In terms of OSN, this ownership problem is quite important, especially considering the
GDPR. Comments, for example, can be deleted either by the Ego node (who writes
the post) or by the commenter himself. The challenges in this problem are finding the
proper ownership outline, handling the data distribution without privacy or ownership
conflicts, and wisely devising the implementation algorithms in a comprehensive but
efficient manner. Here we divide the GDPR issues in Social Network into two different
parts: Data dispersion in the network, and erasing data from the network (“right-to-be-
forgotten”). There are three main types of data instances in OSN: Private-shared data
– this type is a data instance that can shared, commented on, etc., but will not be copied
fully and separately to another user, meaning the original data will remain as the data
owner’s instance, and no other instances (objects) will be created. For example – Alice
posts a picture, her friends comment and share it, but none of them copies and uploads it
as a separate picture in his feed. Private-shared data with leakage – this type is a data
instance that also can shared, commented on, etc., but is copied fully and separately to
another user, meaning that another different instance (object) is created.

For example – Alice posts a picture, and one of her friends copies and uploads it
as a separate picture in his feed. Private-controlled data – this type is a data instance
cannot be shared, but only viewed or liked or any other atomic action.

This type of data is very relevant to video or audio files that need to be restricted in
their dispersion. This type of data can be shared only with followers or subscribers and
will not be freely shared to other parts of the network. For example – Alice is a singer,
that shares a new song only with her followers in their private group and disables the
sharing option for this song. For the problem of data dispersion in the network, which
is relevant to both types of private-shared data, but not to the private-controlled data,
subject to GDPR, we suggest a three-stage process for non-atomic OSN actions: In the
first stage, we look at the data instance origin as it is generated. This origin can be
consisted of multiple ownerships, e.g.- a photo uploaded with several tagged users in it,
a song uploaded by an artist, that involves the record company, tagged in the post. For
this preliminary stage we need the consent of all the original data owners.
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In the second stage, we begin monitoring the spread of the data, and decide whether
a certain user, that is connected to the data owner, is even allowed to access the data.
This stage is done by our Trust-based model described in the previous section. This
stage is especially important since our model can detect problematic and low-trusted
users, and those might have the potential to use this data unlawfully and with copyright
infringement. So, this stage is used for determining which user can gain access to the
data instance. An important part of this stage is the contextual validation phase that was
described in the previously. In the third stage, that regards non-atomic actions, and is
done after the completion of the second stage, when we know the granted accesses for
users, we need to create an access and usage agreement, even before a user creates the
sub-data instance itself, (comment on the original post, share of the post, etc.) and by
doing that he or she are spreading this data instance to their network. The user that takes
this action is the one that needs this agreement, since he is the one creating data that is
connected to the original data of the other user, and his data can be erased or controlled
by the other user. For example, Alice writes a post, then Bob comments lengthily on
this post. His comment can vanish if Alice deletes the post, or even just his comment.
For this- they must have a usage agreement on the comment itself. An implementation
example for it is a pop-up window that contains the agreement when a user tries to begin
commenting on a post. The friends of the commenter also need to access this comment,
and if they wish to act on this comment, the same usage agreement must apply.

Fig. 1. Access decisions in different categories Fig. 2. Monitoring non-atomic OSN actions

Themeaning of usage agreement is as follows: The new user agrees that his comment
is part of the data instances, including the posts and the comments connected to it. This
creates a chain of data instances, and this implies that if someone that is upper in the
chain removes his data, the new user’s data is removes. For example, if Alice writes a
post, and thenBob comments on it, and thenCharlie replies onBob’s comment, Charlie’s
reply could be erased in three cases: If he deletes it himself, if Bob deletes his comment-
and then the reply is erased, and if Alice deletes her post, thus erasing all the data chain.
The difference between the ownership agreement and the usage agreement is that the
ownership is done only on the original data – if it involves more than one user- and this is
an agreement of mutual and equal ownership, and the usage agreement is hierarchical by
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nature – in which the users that act on the data have lesser privileges and their derivative
data on the origin can be erased by the data origin’s owners. The manifestation of this
process is portrayed in Fig. 2.We can see that in Stage 1 there is an ownership agreement
between Ego A and Ego B, that are the owners of the original data instance. Stage 2
includes the screening of the user named Alice- she has to gain the necessary contextual
trust to act on the data (in this case, commenting on the post). In stage 3 we can see
that the final approvement of acting on the data (thus, spreading it) is dependent on the
usage agreement for Alice. We can see that Bob, that is a friend of Alice, wishes to reply
on her comment, thus creating another branching in the data tree. The usage agreement
is between him and Alice, and by that it is also derived from the usage agreement of
Alice and the Ego. If Bob wished only to see the comment, and not act upon it, then
he would just need to have the sufficient context-trust level. This approach is a viable
solution to the problematic aspects of GDPR in Social Networks and can create a much
more sustainable solution to the dispersion and ownership problem of data instances
in the Social Network. For the problem of erasing data from the network we suggest a
two-stage process for non-atomic OSN actions:

In the first stage, we look at the data instance origin. Asmentioned in the previously,
this origin can consist of multiple ownerships. For this preliminary stage we need the
consent of all the original data owners – that the data instance is going to be erased.
We use the same ownership agreement mentioned in the first stage of the dispersion
solution, that involves the implementation of a Consent Management Solution. In case
we do not delete the original post, but a comment in the chain of comments, the second
stage starts from this comment only. The second stage of this process is erasing all the
data instances that were spread in the network along the chain. This task is specifically
hard due to the OSN sizes of users and data, but our obvious advantage is the context
and trust screening we did in the dispersion of data. The amount of data to be checked is
considerably reduced, and it is only the subset of the active users (ones that created data
or acted upon data) from the subset of the trustworthy (above a certain MTVκ) users in
a certain category.

3 Experimental Evaluation

The basic Trust-based model’s experimental results and evaluations can be seen in our
previous work: [1–4]. For this research we did two experiments to validate the two
approaches mentioned in the previous section: one for the dispersion problem, and one
for the erasure problem. For the dispersion part, we took three different Ego networks
and requested the Ego users to each take 50 actions from their Facebook activity log,
that involve another person (a friend from the network). We then asked for every action
to first be categorized (like share, comment on a post, etc.), and then requested the Ego
user to state the level of closeness to the friend involved in this action on a scale of 0 to
10. The last part the Ego user needed to do per each action is to answer the question: “If
you needed to fill out a consent form before performing this action, that states that you
have joint ownership on this action with the friend involved, thus never being able to
erase it by yourself, would you still perform this action?”. The answer should be between
0, meaning wouldn’t do this action, and 10, meaning will do this action. We can see the
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results in Table 1, all the datasets are for non-atomic actions. We can see that there is
a correlation between the level of closeness to the friend and the level of consent on
performing an action in the OSN. We can see that the lowest average score for closeness
is given in Dataset No. 2 (4.97) and accordingly, the average level of consent is the lowest
(6.52). As for the erasure part: in the context part results, that were mentioned earlier,
we wanted to find out how efficient would it be to reduce the amount of data needed to
be checked, by using only the relevant part of the Ego network, meaning we check only
the subset of the active users (ones that created data or acted upon data) from the subset
of the trustworthy (above a certain MTVκ) users in a certain category.

Table 1. Results of consent form option on Facebook activities

Dataset Number
of actions

Avg. connection
closeness level with
the friend

Avg. consent on
performing the
action with a
consent form

No. 1 36 8.05 8.42

No. 2 33 4.97 6.52

No. 3 50 8.5 8.22

Fig. 3. Results of the context phase experiment in sizes of the active sub-networks

For that purpose, we took two different Ego networks, both in the context topic of
“politics” (in these networks this topic was very relevant and had significant traffic. We
checked the Ego- networks for trustworthy friends in the category of politics (MTVpol-
itics > 0.8). After this screening we examined this sub-network, and looked for only
active users, that posted or acted on data relating to politics. The results are shown in
Fig. 3, and we can see the substantial differences in the number of users that are relevant
(trustworthy and active) in relation to the entire network. This choice is very efficient:
the difference in efficiency of searching 238 users instead of 933 users, and then erasing
data from only 36 users, for example, in Network A is huge. These results demonstrate
the importance of the context phase of the model and show the effectiveness of our
approach for implementing the GDPR “right-to-be-forgotten”.
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4 Conclusion

In this research we presented an implementation of a Trust-based for Social Networks
that will better enforce the unresolved the GDPR. The control over the user’s data, and
its monitoring gives us the ability to adhere to the GDPR in Social Networks. The results
of the experimental part of this paper give us the perspective of real OSN users on how
to implement this process.
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