
Chapter 5
Intersection Homology

Jean-Paul Brasselet

Abstract The famous duality theorems for compact oriented manifolds: Poincaré
duality between cohomology and homology, and Poincaré-Lefschetz duality, inter-
section between cycles, are no longer true for a singular variety. A huge and fantastic
step forward was taken by Mark Goresky and Robert MacPherson by the simple but
brilliant idea of rediscovering duality by restricting oneself to chains only meeting
the singular part of a stratified singular variety in controlled dimensions. Intersection
homology was born. In this survey, we recall the first geometric definition as well
as the theoretical sheaf definition allowing to describe the main properties of the
intersection homology. Fruitful and unexpected developpments have been obtained
in the context of singular varieties. For instance de Rham’s theorem and Lefschetz’s
fixed point theorem find their place in the theory of intersection homology. The
same is true for Morse’s theory (see the Mark Goresky’s survey in this Handbook,
Chap.5, Vol. I). In the last section, we provide some applications of intersection
homology, for example concerning toric varieties or asymptotic sets. It must be said
that the main application and source, itself, of innumerable applications is the fasci-
nating and fruitful topic of perverse sheaves, which unfortunately it is not possible
to develop in such a survey.
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5.1 Introduction

In the case of manifolds, global homological invariants like Betti numbers enjoy
remarkable duality properties as stated by Poincaré (1893) and Lefschetz (1926).
For smooth manifolds, the de Rham theorem (1931) and Morse theory (1934) show
that it is possible to compute such topological invariants using differential forms and
smooth functions. Unfortunately, all these beautiful results fail to hold for singular
varieties. In an attempt to generalize the powerful theory of characteristic numbers to
the singular case, Mark Goresky and Robert MacPherson noticed about 1973 that the
failure of Poincaré duality is caused by the lack of transversal intersection of cycles
on the singular locus. As a remedy, they introduced chains with well controlled
intersection behaviour on the singular locus. These “intersection chains” form a
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complex that yields a new (co-) homology theory, called “intersection homology”.
As a key point, the new theory yields an intersection product with suitable duality
properties.

That new approach turned out to be extremely fruitful, far beyond the original
purpose at hand, and stimulated awholewealth of unexpected developments.Already
at an early stage in the development of intersection homology, the original geometric
construction of intersection chains has been recast into the formalism of sheaf theory
and (hyper-) cohomology. The powerful machinery thus made available has been
indispensable for the development of the theory; yet it bears the risk to hide the
beautiful geometry that lies at the bottom.

The article is divided into five main sections: In the first Sect. 5.2 the classical
results in themanifold case are presented and examples show their failure for singular
varieties.

Section5.3 is devoted to the main tools in the frameworks of sheaf theory and
derived categories. Definitions are provided and notations are fixed.

Section5.4 is devoted to the definition of intersection homology, both in the P L
and in the topological situations. The local calculus eventually leads to “sheafify”
the original geometric approach, thus obtaining the intersection sheaf complexes. In
this context, the Deligne sheaf complex is of fundamental importance.

Section5.5 shows how several important concepts and results carry over from
the usual (co-) homology of manifolds to intersection homology of singular vari-
eties: first basic properties Sect. 5.5.1, functoriality Sect. 5.5.2, the Lefschetz fixed
point theorem Sect. 5.5.3,Morse theory Sect. 5.5.4, de Rham theorem Sect. 5.5.5, and
cohomology operations like Steenrod squares, cobordism andWu classes Sect. 5.5.6.

Section5.6 is a supplement and thus of a different nature: Here are collected vari-
ous applications and generalizations that deserve mention, but where an appropriate
introduction would by far exceed the scope of the present survey. Therefore brief
sketches and suitable references are presented.

There is a vast literature consistingof research articles, conference papers, surveys,
books, course notes etc. dealing with intersection homology and its implications and
generalizations, some including historical comments. The first mention is for the
surveys byMacPherson [127, 128], Goresky [89], Kleiman [117], the conferences in
the Bourbaki Seminar byBrylinski [45] and Springer [171], and surveys by Friedman
[79], Klinger [118]. This short list is far from being exhaustive.

Among the books dedicated to intersection homology and perverse sheaves, let
mention those by Borel et al. [18], Kirwan [116], Goresky-MacPherson [96], Schür-
mann [167], Maxim [130] Dimca [66].

More specialized surveys are for instance: on de Rham theorem [24], on Morse
theory [126], on combinatorial toric intersection homology [70], on perverse sheaves
[125, 161], etc. This list presents only a small selection.

This concise overview of such an extensive theory is of mainly introductory char-
acter and remains thus necessarily incomplete; yet the author hopes that the reader
will deepen the interest in this fascinating subject.

The author is very grateful to Gottfried Barthel, Karl-Hienz Fieseler, Ludger
Kaup, Alice Libardi, Th?uy Nguy

∼
ên Thi. Bích, Eliris Rizziolli, Marcelo Saia, and to
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the anonymous referee for many helpful corrections and suggestions on an earlier
version of this paper.

Important note: The concept of intersection homology was first defined by
Goresky and MacPherson in the framework of P L-spaces and P L-stratifications
([92] see also [18, Chaps. I–III]). In this framework, definitions are intuitive and
geometric, it is possible to make explicit figures and proofs are nice, ingenious, del-
icate but often technical. In their paper [94] Goresky and MacPherson consider the
more general framework of topological spaces and topological stratifications. The
use of tools such as sheaf theory and derived categories, together with the notion of
Deligne sheaf, makes proofs easier and opens the door to deeper results and to more
applications (see also [18, Chaps. IV and V]).

Both viewpoints are important and have their own advantages and disadvantages
and it would be a mistake to hide one of them. The first one provides the motivation
and the meaning of the concept, the second one provides simpler proofs, as well as a
huge amount of extensions and applications. The introduction of Habegger’s chapter
in the Borel book [18, Chap. II] explicits these roles.

5.2 Classical Results—Poincaré and Poincaré-Lefchetz

In order to understand the introduction of intersection homology it is useful to recall
some elementary properties for manifolds.

An n-manifold (or n-topological manifold) is a (non-empty, Hausdorff) topologi-
cal space X such that each point admits a neighborhood homeomorphic with an open
subset of the Euclidean space Rn .

Let X be an n-dimensional compact, connected, oriented and without boundary
smooth manifold. The Poincaré duality says that the p and (n − p) Betti numbers of
X agree. It first statedwithout proof in [152] thenPoincaré gave a proof of the theorem
using topological intersection theory in his 1895 paper Analysis Situs [153]. Hee-
gaard [104], provided a counter-example to Poincaré’s formula and, finally, Poincaré
provided a new proof performed in terms of dual cell decompositions [154, 155].
For historical details, see for example [157]. In order to simplify, in this introduction,
homology and cohomology groups are with Z coefficients.

The Poincaré result is presented in two ways: using intersection of cycles, i.e.
showing the existence of an intersection morphism

Hn−p(X) ⊗ Hn−q(X)
•−→ Hn−(p+q)(X)

(see Sect. 5.2.5) and showing the existence of a Poincaré duality isomorphism

P D : H p(X)
∼=−→ Hn−p(X),
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using dual cells (see Sect. 5.2.6). The two definitions are linked by the commutative
diagram, where ∪ denotes the usual cup-product.

H p(X) ⊗ Hq(X)
∪

P D⊗P D

H p+q(X)

P D

Hn−p(X) ⊗ Hn−q(X)
•

Hn−(p+q)(X).

(5.1)

The first part of this section consists of some useful definitions and notations. Then
the classical dualities (Poincaré and Poincaré-Lefschetz) for manifolds are recalled
and counter-examples in the situation of singular varieties are provided.

5.2.1 PL-Structures

A piecewise-linear structure, P L-structure on a topological space X is a class of
locally finite (simplicial) triangulations such that any subdivision of one of them
belongs to the class and two of them admit a common subdivision.

When endowed with a P L-structure, the space is said a P L-space. Not all topo-
logical space admit a P L-structure and when such structure exists it is, in general,
not unique.

A triangulation of a P L-space X is a triangulation of the corresponding class.
That is a simplicial complex K whose geometric realization |K | is homeomorphic
to X . The space is said triangulated and one writes X = |K |.

The advantage of having a whole class of triangulations is that any open subset
U ⊂ X inherits a P L-structure. This property is convenient for the construction of
sheaves (see in particular Example5.3.2).

A manifold equipped with a structure of P L-space is called P L-manifold. In a
triangulation K of a P L-manifold, every (n − 1)-simplex is a face of exactly two
n-simplices. This property is one of the conditions for a P L-space to be a P L-
pseudomanifold.

5.2.2 Pseudomanifolds

Definition 5.2.1 The (non-empty, paracompact, Hausdorff) topological space X is
an n-pseudomanifold if there is a closed subspace � ⊂ X such that:

1. X \ � is an n-dimensional manifold dense in X .
2. dim� ≤ n − 2.
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The subspace � of the pseudomanifold X contains the subset of singular points
of X i.e. the points which do not admit a neighborhood homeomorphic to a ball and
whose boundary is homeomorphic to a sphere.

A P L-pseudomanifold X of dimension n is an n-dimensional P L-space X con-
taining a closed P L-subspace � of codimension at least 2 such that X − � is an
n-dimensional P L-manifold dense in X .

Equivalently, given a triangulation X = |K |, then |K | is the union of the n-
simplices and each n − 1-simplex is face of exactly two n-simplices.

A connectivity condition of the set X − � is sometimes added. The connected
P L-pseudomanifold X is oriented if there exists a compatible orientation of all
n-simplices. In the connected and oriented situation of a P L-pseudomanifold, the
conditions ensure existence of a fundamental class [X ]. Namely, given a triangulation
X = |K | of an n-dimensional connected and oriented P L-pseudomanifold, the sum
of all (oriented) n-simplices is a cycle whose class is the fundamental class. The
original article by Goresky and MacPherson suppose the P L-pseudomanifold to be
compact and oriented. These hypothesis are dropped in the further articles.

The pinched torus (Fig. 5.1 and Example5.2.6) and the suspension of the torus
(Example5.5.10) are examples of connected and oriented P L-pseudomanifolds.

5.2.3 Stratifications

Dealing with singular spaces, the notion of stratification is one of the most important
tool. The main reference for the definitions and results is the Trotman’s survey in
this Handbook, vol I [179, Chap.4] (see also [128]).

A (topological) stratification S of the n-dimensional pseudomanifold X is the
data of a filtration

(S) X = Xn ⊃ Xn−1 = Xn−2 ⊃ · · · ⊃ X1 ⊃ X0 ⊃ X−1 = ∅ (5.2)

by closed subspaces such that

• every stratum Si = Xi − Xi−1 is either empty or a finite union of i-dimensional
smooth submanifolds of X ,

• each point x in Si admits a distinguished neighborhood Ux ⊂ X together with a
homeomorphism

φx : Ux → B
i × c̊(L) (5.3)

(local triviality property) where:

– B
i is an open ball in Ri ,

– the “link” L (called the link of the stratum Si ) is a compact (n − i − 1)-
dimensional pseudomanifold independent (up to homeomorphism) of the point
x in the stratum Si and filtered by:
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L = Ln−i−1 ⊃ Ln−i−3 ⊃ · · · ⊃ L0 ⊃ L−1 = ∅,

– c̊(L) is the open cone over L defined by c̊(L) = L × [0, 1[/(x, 0) ∼ (x ′, 0),
and filtred by

(c̊(L))0 = {0} and (c̊(L))k = c̊(Lk−1) if k > 0.

By definition, one has c̊(∅) = {point}.
Moreover, the homeomorphism φx preserves the stratifications of Ux and B

i ×
c̊(L) respectively, that is there are restriction homeomorphisms

φx |X j : Ux ∩ X j → B
i × c̊(L j−i−1), for j ≥ i.

In particular stratifications which satisfy the Whitney conditions (see [89], [179])
satisfy the topological local triviality property (A’ Campo [18, Chap. IV]):

A P L-stratification S of the n-dimensional P L-pseudomanifold X is a strati-
fication such that all involved subspaces are P L-subspaces and the local triviality
property holds in the P L-category.

5.2.4 Borel-Moore Homology

In the following, G will denote an R-module, for R a PID. For example, G can be Z,
Q, R or C. In this (sub)section, X is a connected, oriented, not necessarily compact
n-dimensional P L-manifold or P L-pseudomanifold.

Given a triangulation X = |K |, the complex of possibly infinite simplicial chains
of K with coefficients in G is denoted byC∗(K ; G). A chain ξ inCi (K ; G) is written
ξ = ∑

ξσ σ where σ are oriented i-simplices in K and ξσ are elements of G. It has a
canonical image inCi (K ′; G) for any subdivision K ′ of K . Two chains inCi (K1; G)

and Ci (K2; G) are identified if their image in a common subdivision coincide. The
group Ci (X; G) of P L-geometric chains with closed supports of X is the direct limit
under refinement of the groups Ci (K ; G) over all triangulations of X .

The support of ξ ∈ Ci (K ; G) is the union of the closed simplices such that ξσ �=
0 and is denoted by |ξ |, it does not depend on subdivision, thus the support of
ξ ∈ Ci (X; G) is well defined.

Using the usual boundaryoperator, the complexof chainsC∗(X; G) iswell defined
and its homology, denoted by H∗(X; G) is called homology with closed supports of
X , or Borel-Moore homology of X [17] (see also “Homologie de deuxième espèce”
in Cartan [48, Exposé 5, Sect. 6]).

The subcomplex of chains with compact supports is denoted by Cc∗(X; G) and its
homology H c∗ (X; G) is the homology with compact support. If X is compact, the
two homology groups coincide.
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5.2.5 Poincaré Duality Homomorphism

The idea, for defining Poincaré duality “à la Poincaré”, is to associate to a given
triangulation K of an n-dimensional manifold X a decomposition of X into “cells”,
in such a way that there is a one-to-one correspondence between p-dimensional
simplices and (n − p)-dimensional dual cells (called “Polyèdre réciproque” in [154,
Sect.VII]).

Let X be a triangulated, compact and oriented n-dimensional P L-pseudomani-
fold X = |K | such that the triangulation K itself is the first barycentric subdivision
of a triangulation of X .

A p-elementary cochain is an (oriented) p-simplex σ , denoted by σ ∗ when con-
sidered as a p-cochain. A p-cochain with coefficients in G, element of C p(K ; G),
is a formal sum

∑
giσ

∗
i where gi ∈ G and the σi are (oriented) p-simplices in K .

The coboundary δσ ∗ of the p-elementary cochain σ ∗ is defined to be the (p + 1)-
cochain

δσ ∗ =
∑

[σ : τ ]τ ∗

where the sum involves all (p + 1)-simplices τ such that σ is a face of τ (denoted
σ < τ ). The incidence number [σ : τ ] is +1 if the orientation of σ is the one as
boundary of τ and −1 otherwise. This defines the homomorphism

δ p : C p(K ; G) → C p+1(K ; G)

by linearity.
Considering a first barycentric subdivision K ′ of K , the barycenter of every sim-

plex σ in K is denoted by σ̂ . The simplices in K ′ whose first vertex is σ̂ are all
simplices on the form (σ̂ , σ̂i1 , . . . , σ̂iq )with σ < σi1 < · · · < σiq . The union of these
simplices, is called the the dual block of σ and is denoted by D(σ ). One has

D(σ ) = {τ ∈ K ′ : τ ∩ σ = {σ̂ }}. (5.4)

The dual block D(σ ) has dimension (n − p), it is endowed with an orientation such
that the orientation of D(σ ) followed by the orientation of σ is the orientation of X
(see [23, 177]).

The Poincaré homomorphism (at the level of chains and cochains) is the map

P D : C p(K ; G) → Cn−p(K
′; G)

defined by P D(σ ∗) = D(σ ) and extended by linearity. One has

P D(δσ ∗) = ∂P D(σ ∗).

The correspondence “simplex” → “dual block” sends K -cochains to K ′-chains.
By this correspondence, cocycles are sent to cycles and coboundaries to boundaries.
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The Poincaré homomorphism is then well defined:

P D : H p(K ; G) −→ Hn−p(K
′G).

As it is well known, the homology and cohomology groups of X do not depend on
the given triangulation. The Poincaré dualitymorphism is realised by the cap-product
by the fundamental class [X ]:

P D : H p(X; G)
•∩[X ]−→ Hn−p(X; G)

The main Poincaré’s result is:

Theorem 5.2.2 • In a compact oriented manifold, the dual blocks are cells, i.e. the
dual block of a p-simplex σ is homeomophic to an (n − p)-ball and its boundary
is homeomorphic to an (n − p − 1)-sphere.

• In a compact oriented manifold, the Poincaré morphism is an isomorphism.

Fig. 5.1 Cycles and cocycles on the torus (i) and the pinched torus (ii)

Example 5.2.3 Examples of computations for a manifold and a pseudomanifold.
Figure5.1i and ii are planar representations of the torus and the pinched torus, with

suitable identification of the simplices of the boundary and with given compatible
orientation of all 2-simplices.

In the torus, the cochain α = σ ∗
1 + σ ∗

2 + . . . + σ ∗
6 is a cocycle, not a coboundary.

The dual chain a = P D(α) is a cycle, not a boundary. In the same way, by symmetry
with respect to the first diagonal, one has a “horizontal” cocycle β and dual cycle
b = P D(β). In the torus, the Poincaré homomorphism is an isomorphism (here
G = Z):

H 1(T ;Z) → H1(T ;Z), Zα ⊕ Zβ → Z a ⊕ Z b.
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On the pinched torus, which is a singular variety, the Poincaré homomorphism is
no longer an isomorphism.

On the one hand, the cocycle α = σ ∗
1 + σ ∗

2 + σ ∗
3 is not a coboundary. Indeed, the

coboundary of the vertex A consists of all 1-dimensional simplices of which A is a
vertex and α is only half of it. The cohomology class of α is not zero. The dual of
the cocycle α is the cycle a. This cycle is a boundary (the boundary of the gray part),
its homology class is zero: the Poincaré morphism maps the non-zero class of α on
the zero class of a. It is not injective.

On the other hand, the (red) cycle b going from A to A is not a boundary, its
homology class is not zero and generates the 1-dimensional homology. But it is easy
to see that b is not the dual of a cochain. The Poincaré morphism is not surjective.

The Poincaré morphism of the pinched torus is neither injective, nor surjective,
although it is a morphism from Z to Z:

Zα ∼= H 1(X;Z) •∩[X ]−→ H1(X;Z) ∼= Z b.

5.2.6 Poincaré—Lefschetz Homomorphism

In his 1895 paper [153, Sect. 9] (corrected in [154, 155]), Poincaré gave a definition
of intersection of two oriented and complementary dimensional cycles in a compact
oriented manifold. Lefschetz, in 1936 [122] defined the intersection of an i-chain
a and a j-chain b in a compact oriented n-manifold M whenever |a| ∩ |b| contains
simplices of dimension at most i + j − n, and gave a formula for the multiplicity
in a ∩ b of an i + j − n-simplex σ ⊂ |a| ∩ |b| which is local, in the sense that it
depends only on the behavior of a and b near an interior point of σ .

Let X be a smooth P L-manifold, two cycles a and b are said dimensionally
transverse if either they do not meet or their dimensions satisfy the formula:

codim (|a| ∩ |b|) = codim |a| + codim |b|.

Theorem 5.2.4 (See [120–122] and [176, Sect. 5] for a summary) In a compact ori-
ented smooth P L-manifold, the intersection of two dimensionally transverse cycles
with appropriately defined orientations and multiplicities is a cycle.

In a compact oriented P L-manifold X , if two dimensionally transverse cycles a
and b have complementary dimensions, then the intersection a ∩ b is a finite num-
ber of points {xi }. The cycles being oriented, in each of the points xi Lefschetz
defines the local intersection index I (a, b; xi ), depending on orientations and mul-
tiplicities [122, 153, 154]. For elementary cycles (i.e. with multiplicities +1), the
index I (a, b; xi ) is +1 if the orientation of a followed by the orientation of b is the
orientation of X and −1 otherwise, then extend by linearity. The intersection index
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I (a, b) =
∑

xi ∈a∩b

I (a, b; xi ).

defines an intersection product

Cn−p(X;Z) × C p(X;Z) −→ Z

a , b ∼→ I (a, b)
(5.5)

which associates to each pair of oriented, dimensionally transverse and complemen-
tary dimensional cycles (a, b) the intersection index I (a, b).

The intersection index I (a, b) does not depend on the representative of the homol-
ogy classes of the cycles a and b.

Theorem 5.2.5 (Poincaré-Lefschetz duality [120, 122, 153, 154]) In a compact
oriented smooth P L-manifold, the intersection product (5.5) induces a bilinear map

Hn−p(X;Z) × Hp(X;Z) −→ H0(X;Z) ε−→ Z

which is non-degenerate when tensored by the rational numbers. Here ε is the eval-
uation map ε : ∑

ni {xi } �→ ∑
ni .

Let X be a singular variety, then the Poincaré-Lefschetz duality is no longer true.
The pinched torus is a classical example:

Fig. 5.2 Transverse cycles in the pinched torus

Example 5.2.6 (The pinched torus) Consider the pinched torus.
The area C in Fig. 5.2ii is a chain whose boundary is c − b. The cycles b and c are

homologous. However, the intersection indices are I (a, b) = +1 and I (a, c) = 0.
There is no intersection product at the level of homology classes.
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5.3 The Useful Tools: Sheaves—Derived Category

In the previous section, the spaces consideredweremainly compact and non singular.
The notions of duality and intersection can be generalized to singular spaces using
Borel-Moore homology on the one hand and sheaf theory on the other hand.

General useful references for these sections are Godement and Bredon (see [86,
Chapitre II] and [36]). The interested reader will find a history of sheaf theory in the
Christian Houzel article [106], in particular the passage from closed supports (Jean
Leray) to open supports (Henri Cartan).

5.3.1 Sheaves

Let X be a topological P L-pseudomanifold. Let R be a PID, that may be sometimes
Z or even a field such as R, Q or C. A sheaf on X will be a sheaf A of R-modules.
The category of sheaves on X is denoted by Sh(X). The constant sheaf is denoted
by RX .

The set of sections of the sheaf A over an open subset U of X is denoted by
�(U,A). Given a family of supports , the subset of elements s ∈ �(X,A) for
which support of s belongs to  is denoted by �(X,A). The families considered
are mainly the family of closed supports, the family of compact supports c and for
a subspace A ⊂ X the family (A) of supports whose elements are closed subsets
contained in A.

The stalk at a point x ∈ X of the sheaf A is denoted by Ax . The restriction of A
to a subspace Y ⊂ X is denoted by A|Y or simply AY .

A sheaf L on the topological space X is called locally constant if there is an open
covering {Ui } of X and a family of R-modules {Li } such that L|Ui is the constant
sheaf on Ui represented by the R-module {Li }. Equivalently, every point x ∈ X has
a neighborhood U such that the restriction maps

Lx ← �(U ;L) → Ly

are isomorphisms for all y ∈ U .

5.3.2 System of Local Coefficients

The notion of system of local coefficients comes from Steenrod [174]. In fact in his
introduction, Steenrod wrote that he generalizes an idea originating from Whitney
(1940), who, in turn credits the idea to de Rham (1932). Also Steenrod claims that
the notion is equivalent to the Reidemeister Überdeckung (1935) [159]. Steenrod
provides applications of the notion, in particular full duality and intersection theory in



5 Intersection Homology 235

a non-orientable manifold [174, Sect. 14]. Later, Steenrod applied that notion in 1951
in his book “The Topology of Fibre Bundles” when defining characteristic classes
(Stiefel-Whitney and Chern classes) by obstruction theory (see [175, Sect. 30–31]).

The interest of local systems is well demonstrated by the example given by
MacPherson [128, p. 19] of a local system which makes intersection homology
interesting even when the space is nonsingular.

A local coefficient system (or local system) of R-modules on a topological space
X is a locally constant sheaf L of R-modules.

If X is connected, then it is possible to use a single R-module L instead of a
family Li . If X is not connected, a local coefficient system is determined by the
data of a base point xi in Ci and a representation ρ : π1(X, xi ) → Aut (Li ) for each
connected component Ci of X .

Example 5.3.1 An exemple of local system is given by the orientation sheafOX on
a (not necessarily orientable) n-dimensional manifold. That is the sheaf associated
to the presheaf

U �→ Hn(X, X \ U ; R).

If ∂X = ∅, then OX is a locally constant sheaf with stalks isomorphic to R. It is
constant if X is orientable.

5.3.3 Complexes of Sheaves

A bounded complex of sheaves A• is a sequence

. . . −→ Ap−1 d p−1−→ Ap d p−→ Ap+1 −→ . . . p ∈ Z

such that d p ◦ d p−1 = 0 for all p andAp = 0 for |p| sufficiently large. If necessary
to specify the complex, the differential will be denoted by d p

A• .
A sheafA can be regarded as a complex of sheavesA• withA0 = A,Ap = 0 for

p �= 0, and d p = 0 for all p. In this case, the complex A• is said to be concentrated
in degree 0.

Given a complex of sheaves, the shifted complex A[n]• is defined by A[n]p =
An+p and dA[n]• = (−1)ndA• .

The sheaf of sections associated with a complex of sheaves A• assigns to every
open subset U ⊂ X the chain complex

. . . → �(U ;Ap−1) → �(U ;Ap) → �(U ;Ap+1) → . . . .

The p-th cohomology sheaf Hp(A• ) associated with A• is the sheafification ([86,
Chapitre II, Sect. 1.2]) of the presheaf whose group of sections over U is the p-th
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homology group ofA• . The stalk at a point x ∈ X of the sheafHp(A• ) isHp(A• )x
∼=

Hp(A•
x ).

Borel and Moore [17] define cohomologically locally constant (denoted CLC)
complex of sheaves if the associated cohomology sheaves are locally constant. A
complex of sheaves A• is said (cohomologically) constructible with respect of a
filtration (5.2) of X if allA• |(Xi −Xi−1) are CLC and their stalk cohomology is finitely
generated.

The complex A• is said P L-(cohomologically) constructible if it is bounded
and (cohomologically) constructible with respect of a filtration of X by closed
P L-subsets. Finally, the complex A• is said topologically (cohomologically) con-
structible if it is bounded and (cohomologically) constructible with respect to a
topological filtration of X .

Henceforth, we will adopt the modern shorthand of replacing the words “(coho-
mologically) constructible” simply with “constructible”. As in [94], all complexes
of sheaves considered will be topologically constructible.

Example 5.3.2 The sheaf complex of P L-chains with closed suports.
Let X be a connected, oriented, not necessarily compact n-dimensional P L-

manifold or P L-pseudomanifold. In Sect. 5.2.4 the Borel-Moore homology chains
Ci (X; G)with coefficients in an abelian grouphave beendefined.The samedefinition
applies with coefficients in a local system L, denoted by Ci (X;L).

In a first step the presheaf U �→ Ci (U ;L) for U open in X , is defined as follows.
Let V ⊂ U be two open subsets in X , the natural restriction maps

ρV U : Ci (U ;L) → Ci (V ;L) (5.6)

are defined in the following way: (see also [94, Sect. 2.1]) For a chain ξ ∈ Ci (U ;L),
there is a locally finite triangulation KU of U such that ξ can be written

∑
σ∈KU

ξσ σ

with ξσ ∈ Lσ andLσ is the (constant) value ofL on σ . Any triangulation of V admits
a subdivision KV such that every simplex υ in KV is contained in a simplex σ(υ) of
a subdivision of KU and such that dim υ = dim σ(υ). Considering orientations of
all simplices of the triangulations, the chain ρV U (ξ) ∈ Ci (V ;L) is defined by

ρV U (ξ) =
∑

υ∈KV

(−1)(υ:σ(υ)) ξσ(υ)υ

where the sign is +1 if υ and σ(υ) have the same orientation and −1 otherwise.
The boundary ∂i : Ci (U ;L) → Ci−1(U ;L) is defined in the following way: A

chain ξ ∈ Ci (U ;L) is written ∑
σ∈KU

ξσ σ for a locally finite triangulation KU of U
and ξσ ∈ Lσ . Let τ be a face of σ and ρσ

τ : Lσ → Lτ the natural morphism, then

∂i (ξ) =
∑

σ

∑

τ<σ

[τ : σ ]ρσ
τ (ξσ ).τ.
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where the incidence number [τ : σ ] is+1 if the orientation of τ is the one as boundary
of σ and −1 otherwise.

Definition 5.3.3 ([94, Sect. 2.1], see Remark 5.4.10 for the notation) The Borel-
Moore complex of sheaves of P L-chains C• on X with coefficients in L is defined
by

�(U ; C−i ) = Ci (U ;L)

with the above boundary.

5.3.4 Injective Resolutions

The injective resolutions are particularly important, by the fact that for any abelian
categorywith enough injective objects, each R-module admits an injective resolution.

Definition 5.3.4 ([94, Sect. 1.5], [18, II, Sect. 5]) A map of complexes of sheaves
ϕ• : A• → B• which commutes with the differentials

ϕi+1 ◦ di
A• = di

B• ◦ ϕi

is called a quasi-isomorphism if it induces isomorphisms Hi (ϕ• ) : Hi (A• ) →
Hi (B• ) of the cohomology sheaves of the complexes.

Definition 5.3.5 ([49, IV, Sect. 3]) Twomorphisms of complexes ϕ• : A• → B• and
ψ • : A• → B• are homotopic if there exists a collection {hi : Ai → Bi−1}, i ∈ Z

of sheaf maps, called a homotopy, so that:

di−1
B• ◦ hi + hi+1 ◦ di

A• = φi − ψ i

for all i ∈ Z.

Definition 5.3.6 Let K (X) denote the category whose objects A• are topologi-
cally constructible bounded complexes of sheaves on X and whose morphisms
ϕ• : A• → B• are homotopy classes of sheaf maps which commute with the dif-
ferentials (Definition 5.3.5).

Definition 5.3.7 ([86, II, Sect. 7.1], [49, V, Sect. 1], [17, Sect. 1], [36, II, Sect. 9])
A sheaf I is injective if, for any sheaf monomorphism F → G and any sheaf map
F → I there exists an extension G → I.

Coefficients are important in the definition: the sheaf of integers Z on a point is
fine (see Definition 5.3.10) but not injective, because Z is not injective over itself.

If ϕ• : A• → I• is a quasi-isomorphism of complex of sheaves on X and if each
I• is injective, then I• is called an injective resolution of A• .

Main properties of injective resolutions are (see [17, Sect. 1], [36, II, Sect. 9], [86,
II Sect. 7.1], [89, Sect. 4.2], and [94, Sect. 1.5]):
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Proposition 5.3.8 1. Ifϕ• : A• → I• is a quasi-isomorphism of complex of sheaves
on X and I• is an injective resolution of A• , then there exists a morphism
ψ • : I• → A• that is a homotopy inverse to ϕ• . Therefore ϕ• is invertible in
the category K (X).

2. Injective resolutions exist for any complex of sheaves of R-modules and are
uniquely determined up to chain homotopy.

3. Every bounded complex of sheaves admits a canonical bounded injective resolu-
tion (see given references).

5.3.5 Hypercohomology

The p-th hypercohomology group IHp(X;A• ) of a complex of sheaves A• is the
p-th cohomology group of the cochain complex

. . . → �(X; I p−1) → �(X; I p) → �(X; I p+1) → . . . ,

where I• is the canonical injective resolution of A• ([49, XVII, Sect. 2], [94, 1.6]).
Considering sections with supports in a family of supports , one defines

hypercohomology IHp
(X;A• ) with support in the family  as

IHp
(X;A•

) = H p(�(X; I•
)).

Aquasi-isomorphism induces an isomorphismonhypercohomology. In particular,
the hypercohomology groups are naturally isomorphic to the cohomology group of
the single complex which is associated to the double complex C p(X;Aq) (see [86,
II Sect. 4.6]).

Definition 5.3.9 ([86, II, Sect. 3.5 and 3.6]) A sheafA is called soft (“faisceau mou”
in french) if any section over any closed subset of X can be extended to a global
section, i.e. the restriction maps

�(U,A) → �(B,A)

are surjective for all open U ⊂ X and closed subset B ⊂ U .

Definition 5.3.10 ([86, II, Sect. 3.7]) A sheafA over a paracompact Hausdorff space
X is called fine (“faisceau fin” in french) if for every locally finite open cover {Ui }
of X there are endomorphisms ϕi of A such that:

• for every i , ϕi is zero outside a closed subset contained in Ui ,
• one has

∑
i ϕi = id.

Here, locally finite means that every point x ∈ X admits an open neighborhood
which meets a finite number of elements Ui .

Every fine sheaf is soft, but the converse is not true [86, II, Sect. 3.7].
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Proposition 5.3.11 ([18, II, Sect. 5], [86]) Let X be a paracompact topological
space, if the sheaf complex A• consists of injective, fine or soft sheaves, then

IHi (X;A•
) = Hi (�(X;A•

)). (5.7)

Examples of Hypercohomology

Let X be a n-dimensional P L-space, the following examples provide particular cases
of hypercohomology groups which will be useful for considering the properties of
intersection homology. Coefficients are either a R-module G or a sheaf of local
coefficients L.

Example 5.3.12 (a) Hypercohomology of the sheaf complex of P L-chains with
closed supports.
The complex of sheaves of P L-chains C• is a complex of fine sheaves on X (see
[18, Sect. 5, Note]). Hence the complex C• satisfies Proposition 5.3.11. One has:

IH−i (X; C•
) ∼= H−i (�(X; C•

)) = Hi (X).

For every family of supports  one has:

IH−i
 (X; C•

) = H
i (X). (5.8)

(b) Hypercohomology of the constant sheaf.
Consider the constant sheaf RX on X , viewed as a complex concentrated in
degree 0, then,

IHi (X; RX ) = Hi (X)

is cohomology of X with closed supports. For every family of supports  one
has:

IHi
(X; RX ) = Hi

(X). (5.9)

5.3.6 The (Constructible) Derived Category

The derived category was defined by Verdier [183, 184]. An object in the derived
category is a complex of sheaves. In this category, new morphisms are added so that
every quasi-isomorphism has an inverse and, consequently, every quasi-isomorphism
becomes an isomorphism in the derived category (Property 5.3.13). Verdier found
he was able to prove his duality theorems only for complexes of sheaves A• whose
cohomology sheaves are constructible. Since then, it has become common to focus
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on the constructible derived category, in which each object is a complex of sheaves
with constructible cohomology.

The reader is assumed to be familiar with the notions of categories and func-
tors [100, Chapitre 1]. Text books which provide useful notions are, for instance,
Kashiwara-Shapira [112]) or Gelfand-Manin [85]. Classsical references for this
section are [103, 183], [184, Chap.8]. The useful tools are well presented in [94,
Sects. 1.8–1.15] and the reader will find there all necessary tools and material.

For the convenience of the reader, as far as possible, conventions and notations
of main references [92, 94] and [18] are used. However in the case of possible doubt
the notations of [94] are privileged (see Remark 5.4.10).

The Derived Category

Let A and B be sheaves on X, let Hom(A,B) denote the abelian group of all sheaf
maps A → B. Let Hom(A,B) be the sheaf whose sections over an open set U are
the sections �(U ;Hom(A,B)) = Hom(A|U ,B|U ). If A• and B• are complexes of
sheaves,Hom(A• ,B• ) is the single complex of sheaves which is obtained from the
double complex Hom p,q(A• ,B• ) = Hom(Ap,Bq).

The derived category Db(X) was introduced by J.L. Verdier by localization of
K (X). The objects in Db(X) are still topologically constructible bounded complexes
of sheaves on X but morphisms A• → B• are defined as equivalence class of dia-
grams of chain maps:

A• E •q.i. B•

where “q.i.” means a quasi-isomorphism. Two such diagrams

A• E •
1

q.i. B• , A• E •
2

q.i. B•

are equivalent is there is a commutative diagram in K (X) (meaning a diagram that
commutes up to homotopy).

E •
1

q.i.

A• E •
3

q.i. B• .

E •
2

q.i.

Property 5.3.13 The derived category converts quasi-isomorphisms to isomor-
phisms: If ϕ• : A• → B• is a quasi-isomorphism (that is, a morphism of bounded



5 Intersection Homology 241

complexes of sheaves whose induced map on cohomology is an isomorphism) then
it has an inverse in the derived category Db(X).

This because ϕ• may be composed with an injective resolution ψ • : B• → I• . Then
Proposition 5.3.8 (1) implies that ψ • ◦ ϕ• has a homotopy inverse θ • : I• → A•

which is therefore also a quasi-isomorphism, so θ • ◦ ψ • is an inverse to ϕ• in the
derived category.

5.3.7 Derived Functors

An exact functor F : Sh(X) → Sh(Y ) gives rise to a functor Db(X) → Db(Y ) on
derived categories. In this case, the homotopy category functor F : K (X) → K (Y )

transforms quasi-isomorphisms into quasi-isomorphisms. However important func-
tors such as Hom(A, •), A ⊗ •, �(X, •), direct image f∗, are not exact. The way
to extend such functors in Db is the Verdier’s notion of derived functor. That will
be very useful to express properties of intersection homology, in particular using
formulae (5.12) and (5.13).

A covariant additive functor T from complexes of sheaves to an abelian category
gives rise to its right derived functor RT defined on Db(X) by defining

RT (A•
) = T (I•

).

where I• is the canonical injective resolution of A• (see references in (5.3.5) in
particular [49, Chap. V] and [94, Sect. 1.5]).

Classical Derived Functors

(a) The functor Hom(A, •) → K (X) has a (right) derived functor RHom• [49,
Ch. VI]. Let A• and B• be bounded complexes of sheaves on X . To define
RHom•

(A• ,B• ), consider Hom•
(A• ,B• ) as a functor of B• , and take its right

derived functor. The functor

A• → RHom•
(A•

,B•
)

is a functor from Db(X) into itself [18, V.5.17].

(b) The (left) derived tensor product functor A• L⊗ • : Db(X) → Db(X) is defined
in a similar way to the right derived functors by the formula

A• L⊗ B• = A• ⊗J •
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where J • → B• is a resolution of B• whose stalks are flat R-modules (see [49, Ch.

VI], [168]). If R is a field then A• L⊗ B• = A• ⊗B• .
If A• and B• ∈ Db(X) are constructible with respect to a given stratification of

X then so are RHom•
(A• ,B• ) and A• L⊗ B• ([94, 1.9]).

(c) By definition, the i-th hypercohomology group IHi (X;A• ) of A• ∈ Db(X) is
the i-th derived functor of the global section functor �(X, •).

Functors associated to a map

Consider now a continuous map f : X → Y between locally compact topological
spaces. Complete definitions and properties of the following functors are presented
in the Grivel chapter in [18, Chapter VI].

(d) The functor direct image f∗ : Sh(X) → Sh(Y ).
If A is a sheaf on X , the presheaf defined by

�(V, f∗A) = �( f −1(V );A) for all V open in Y

is a sheaf on Y denoted by f∗A. If j : X ↪→ Y is a closed immersion and A a sheaf
on X , then j∗A = AY is the extension of the sheafA by zero. One defines the derived
functors R f∗ : Db(X) → Db(Y ) as in the definition.

(e) The functor f! : Sh(X) → Sh(Y ) direct image with proper supports.
If V ⊂ Y is open, the family of subsets C ⊂ X which are closed in f −1(V ) and

such that the map f |C : C → V is proper is a family of supports in f −1(V ) denoted
by V . If A is a sheaf on X , the presheaf defined by

�(V ; f!A) = �V ( f −1(V );A) for all V open in Y

is a sheaf on Y [18, VI, 2.2].
If Y is a point, then f!A = �c(X;A), where c denotes the family of compact

subsets in X . If j : X ↪→ Y is an open (or closed) immersion, then j!A = AY and
the functor j! is exact, one has R j!A• = j!A• . Finally, the functor f! is exact in the
subcategory of injective sheaves on X .

The right derived functor of f! denoted R f! : Db(X) → Db(Y ) has stalks

H•
(R f!A•

)y
∼= IH•

c( f −1(y);A•
) ∀y ∈ Y.

If f : X → Y is stratified with respect of stratifications of X and Y ([179,
Sect. 4.4]), then R f∗A• and R f!A• are constructible with respect to the stratification
of Y . This is a consequence of the topological locally trivial nature of a stratification,
see (5.3).

(f) The functor pull-back f ∗ : Sh(Y ) → Sh(X).
The functor f∗ : Sh(X) → Sh(Y ) admits a left adjoint, denoted by f ∗ : Sh(Y ) →

Sh(X). There is an isomorphism
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HomSh(X)( f ∗B,A) ∼= HomSh(Y )(B, f∗A). (5.10)

for A ∈ Sh(X) and B ∈ Sh(Y ). The functor f ∗ is exact and R f ∗B = f ∗B for all
B ∈ Sh(Y ).

For every point x ∈ X and B ∈ Sh(Y ), there is an isomorphism at the level of
stalks

( f ∗B)x = B f (x) ∀x ∈ X.

For an inclusion j : X ↪→ Y , then j∗B = B|X is the restriction of the sheaf B
to X .

Denote by p : X → {pt} the map to a point. The constant sheaf RX is equal to

RX = p∗Rpt. (5.11)

(g) Unlike the adjonction (5.10) between the functors f∗ and f ∗, in general there
is no functor f ! : Sh(Y ) → Sh(X) with a sheaf isomorphism Hom( f!A,B) ∼=
f∗Hom(A, f !B).
The functor f ! : Db(Y ) −→ Db(X) is defined at the level of derived categories

(see [94, 1.12] and [18, V, 5.12]). If I• is a complex of injective sheaves on Y ,
then f !(I• ) is defined to be the sheaf associated to the presheaf whose sections over
an open set U ⊂ X are �(U ; f !I• ) = Hom• ( f!K•

U , I• ) where K•
U is the canonical

injective resolution of the constant sheaf RU .

Example 5.3.14 • For an open immersion j : X ↪→ Y , one has j ! = j∗.
• For a closed immersion j : X ↪→ Y , one has

j !(G•
)(U ) = �(X)(V ;G•

)

where V is an open subset in Y such thatU = V ∩ X Here (X) denotes the family
of supports whose elements are closed subsets contained in X .

The (local) Verdier duality theorem ([94, 1.12]) is a canonical isomorphism in
Db(Y ),

R f∗ RHom•
(A•

, f !B•
) ∼= RHom•

(R f!A•
,B•

)

for any A• ∈ Db(X) and B• ∈ Db(Y ).

5.3.8 Dualizing Complex ([94, 1.12], [18, V, 7.1])

Borel and Moore first defined the dualD(A• ) of a complex of sheavesA• [17], and
they showed that for any open set U ⊂ X the hypercohomology groups IHi

c(U ;A• )

and IHi (U ;D(A• )) are dual. Here, IHi
c denotes the hypercohomology with compact
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supports, i.e., Ri�c. This property characterizes D(A• ) up to quasi-isomorphism. It
implies, for example, that if X is compact and R is a field, then

IHi (X;A•
) = Hom( IH−i (X;D(A•

)), R).

On a P L-manifold, Borel and Moore considered the dual of the constant sheaf,
and showed that this is the Borel-Moore sheaf of chains C• (cf. Definition5.3.3).

Later, Verdier [183, 184] defined a complex of sheaves D•
X , the dualizing complex

such that
D(A•

) ∼= RHom•
(A•

,D•
X )

for any bounded complex A• . Verdier identified D•
X = D(RX ) and showed that, in

Db, the sheaf C• is isomorphic to the dualizing sheaf. Therefore, the Borel-Moore
dual ofA• may be identified withHom(A• , C• ). While defining the dualizing sheaf,
Verdier provided the good language to express the duality and showed an isomor-
phism in the derived category between A• and the double dual of A• , i.e. if A• is a
bounded topologically constructible complex of sheaves on X , then there is a natural
isomorphism in Db(X)

A• ∼= D(D(A•
)).

If B• ∼= D(A• ), then the corresponding pairing

B• L⊗ A• → D•
X

is called a Verdier dual pairing.
The associated cohomology sheaves of D•

X are nonzero in negative degree only,
with stalksH−i (D•

X )x = Hi (X X − {x}; R). If X is an n-dimensional P L-manifold,
the shifted complexD•

X [−n] is naturally isomorphic to (in fact, an injective resolution
of) the orientation sheaf of X (see Example 5.3.1 and [94, Sect. 1.12], also [18, V,
Sect. 7.3] but taking care of notations cf. Remark 5.4.10).

The hypercohomology groups IH−i (X; D•
X ) equal the ordinary homology groups

with closed support Hi (X; R) and IH−i
 (X; D•

X ) = H
i (X; R) for any family of

supports  on X [18, V,7.1-2-3].
Consider the projection p : X → {pt} and the sheaf Rpt. The dualizing sheaf

satisfies [18, V,7.18]:
D•

X
∼= p!Rpt.

Hence for every map f : X → Y one has a canonical isomorphism D•
X

∼= f !D•
Y

(compare with (5.11)).
Let f : X → Y be a continuousmapbetween topologicalmanifolds,A• ∈ Db(X)

and B• ∈ Db(Y ). The functors satisfy the following duality formulae

f !B• ∼= DX ( f ∗DY (B•
))

R f!A• ∼= DY (R f∗DX (A•
)).
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If A• is a topologically constructible complex of sheaves on X , fx : {x} → X is
the inclusion of a point, and Ux is a distinguished neighborhood of x (see 5.3), then
[94, p.91] (see also [18, V, Sect. 4.5])

H j ( f ∗
x A•

) ∼= IH j (Ux ;A•
) (5.12)

H j ( f !
xA•

) ∼= IH j
c (Ux ;A•

). (5.13)

These groups are respectively called the stalk homology and the costalk homology
of A• at x .

The following geometric interpretations are taken from [94, Sect. 4, p. 106] and
will be useful to interpreting the Theorem 5.4.9.

If a class ξ ∈ IH j (X;A• ) does not vanish under the homomorphism

IH j (X;A•
) → H j ( f ∗

x A•
)

then any cycle representative of ξ must contain the point x . Thus, H j ( f ∗
x A• ) repre-

sents local classes which “cannot be pulled away from the point x”. The set

{x ∈ X |H j ( f ∗
x A•

) �= 0} is called the local j-support o f the complex A•
.

Similarly, a class η ∈ IH j (X;A• ) is in the image of the homomorphism

H j ( f !
xA•

) → IH j (X;A•
).

if some cycle representative of η is completely contained in a neighborhood of x .
Thus Hi ( f !

xA• ) represents local classes which are “supported near x”. The set

{x ∈ X |H j ( f !
xA•

) �= 0} is called the local j-cosupport o f the complex A•
.

5.4 Intersection Homology—Geometric and Sheaf
Definitions

In order to recover duality properties for singular varieties, the idea of intersection
homology, due to Mark Goresky and Robert MacPherson, is to restrict the con-
sideration to cycles which meet the singular part of the variety with a “controlled”
dimension. That makes sense if the variety is endowed with a suitable stratification.
The considered singular varieties are pseudomanifolds.

As observed by Goresky and MacPherson [92], in a P L-pseudomanifold of
dimension n, if two cycles of respective dimensions i and j are in general posi-
tion, then their intersection can be given canonically the structure of an i + j − n
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chain. However, their intersection is (in general) no longer a cycle and Theorems
5.2.4 and 5.2.5 do not hold. That is the motivation for the following definitions.

The first definition has been given by Goresky and MacPherson in the framework
of stratified compact oriented P L-pseudomanifolds (see [91, 92]) and also [18,
Chaps. I–IV]). The compactness is not required here and the considered chains are
the P L-geometric chains (Sect. 5.2.4). The second definition, using sheaves and, in
particular the Deligne sheaf complex, has been given by the same authors in [94]
(see also [18, Chaps. V–IX]).

5.4.1 The Definition for PL-Stratified Pseudomanifolds
([91], 53)

Let X be a P L-stratified pseudomanifold. If a chain ξ meets transversaly an element
Xn−α of the P L-filtration, then one has

dim(|ξ | ∩ Xn−α) = i − α.

The allowed chains and cycles will be those which meet each element Xn−α of
the singular part with a controlled and fixed transversality defect pα . This defect is
called the perversity (in French: Perversité, in German: Toleranz).

A perversity, also called G M-perversity for Goresky-MacPherson perversity, is
an integer value function

p̄ : [0, dim X ] ∩ Z → N, pα := p̄(α)

such that p0 = p1 = p2 = 0 and

pα ≤ pα+1 ≤ pα + 1 for α ≥ 2. (5.14)

This condition is the one given originally by Goresky and MacPherson in order
to ensure the main properties of the theory. More general perversities have been
considered by various authors (see [128] and Sect. 5.6.4) providing other aspects for
the theory (Fig. 5.3).

Example 5.4.1 Examples of perversities are

• the zero perversity 0̄ = (0, 0, . . . , 0),
• the maximal (or top) perversity t̄ = (0, 0, 0, 1, 2, . . . , n − 2),
• for n even, n ≥ 4, the upper middle n̄ = (0, 0, 0, 1, 1, 2, 2, . . . , n

2 − 1, n
2 − 1) and

the lower middle perversities m̄ = (0, 0, 0, 0, 1, 1, . . . , n
2 − 2, n

2 − 1).

Let p̄ = (p0, p1, p2, . . . , pn) be a perversity, the complementary perversity q̄ =
(q0, q1, q2, . . . , qn) is defined by pα + qα = tα for all α ≥ 2.
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Fig. 5.3 The perversity p̄ =
(0, 0, 0, 1, 1, 2, 3, 3, 3, 4)

Given a stratification (5.2) of a n-dimensional pseudomanifold X , Goresky and
MacPherson [92, Sect. 1.3] call ( p̄, i)-allowable an i-chain ξ ∈ Ci (X; G) such that

dim(|ξ | ∩ Xn−α) ≤ i − α + pα ∀α ≥ 0

The condition means that the perversity is the maximum admissible defect of
transversality. The boundary of a p̄-allowable chain is not necessarily p̄-allowable
(easy examples). In order to define a complex of chains, one has to set:

Definition 5.4.2 The intersection chains I C p̄
i (X; G) is the subset of Ci (X; G) con-

sisting of chains ξ such that ξ and ∂ξ are p̄-allowable, that is

I C p̄
i (X; G) =

⎧
⎨

⎩
ξ ∈ Ci (X; G)

∣
∣
∣
∣

dim(|ξ | ∩ Xn−α) ≤ i − α + pα
∀α ≥ 2

dim(|∂ξ | ∩ Xn−α) ≤ (i − 1) − α + pα

⎫
⎬

⎭

Using the usual boundary of chains, the obtained chain complex is denoted by
(I C p̄

∗ (X; G), ∂∗).

Definition 5.4.3 The intersection homology groups I H p̄
∗ (X; G) are the homology

groups of the complex (I C p̄
∗ (X; G), ∂∗).

Using, in the definition, the subcomplex Cc∗(X; G) of chains with compact
supports (see Sect. 5.2.4) provides the intersection homology groups with compact
supports, denoted by I H p̄,c

∗ (X; G). Notice that on the one hand, the intersection
homology defined in [92] agrees with the intersection homology with compact sup-
ports as defined in [94]. On the other hand, the intersection homology defined in [94]
agrees with the Borel-Moore intersection homology (with closed supports) of [92].

5.4.2 Definition with Local Systems

To make the construction of homology with coefficients in a local system, work in
intersection homology, one only needs the local system L to be defined on the dense
open part X − � of X .
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LetL be a local coefficient system of R-modules on X − �. Given an open subset
U ⊂ X and a locally finite triangulation K of U , since L may not be defined on all
of U , it is impossible to define a group C K

i (U,L) of i-chains ξ with coefficients in
L. Nevertheless, [94, 2.2] or [89, 9.4] observes that, for any perversity p̄, and for any
( p̄, i)-allowable chain ξ , if σ is any i-simplex with nonzero coefficient in ξ , both the
interior of σ and the interiors of all the i − 1 dimensional faces of σ lie entirely in
X − � by the allowability conditions. That justifies the definition:

I C p̄,K
i (U ;L) =

⎧
⎨

⎩
ξ ∈ C K

i (U ;L)
∣
∣
∣
∣

dim(|ξ | ∩ U ∩ Xn−α) ≤ i − α + pα
∀α ≥ 0

dim(|∂ξ | ∩ U ∩ Xn−α) ≤ (i − 1) − α + pα

⎫
⎬

⎭

The map I C p̄,K
i (U ;L) → I C p̄,K

i−1 (U ;L) is well defined and the intersection homol-

ogy groups I H p̄
∗ (X;L) are defined as in Sect. 5.2.4 (with U = X).

Many examples of computation of intersection homology groups can be found
for instance in the Goresky-MacPherson’s chapter [18, Chap. III] and in [27, 63,
71, 128]. See also Example 5.5.10. Here are two elementary examples, where the
coefficient sheaf L is the constant sheaf ZX .

Example 5.4.4 (The pinched torus) (see Fig. 5.1) The singular set is a point: the
pinched point {0}. The considered stratification is given by the filtration

X ⊃ � = {0} ⊃ ∅

The only possible perversity is the perversity 0̄. The 1-dimensional intersection
homology of the pinched torus is zero, while its 1-dimensional homology does not
vanish.

I H 0̄
0 (X) = Z[pt] I H 0̄

1 (X) = 0 I H 0̄
2 (X) = Z[X ].

(compare with Example5.2.3).

Example 5.4.5 (The double cone) Though it is similar to the previous example and
it is not a connected pseudomanifold, the example of the double cone is instructive.
One may compare with the example of the suspension of two circles [128].

The double cone X is obtained by pinching the cylinder S1 × R at level {0} into a
point {a}. The line � (see Fig. 5.4) goes through the singular point {a} and C1 and C2

are the two 2-dimensional components of the double cone. Poincaré duality fails for
the double cone X . The only possible perversity is the perversity 0̄. Two points x1
and x2 contained in different connected components of X\{a} are not homologous,
in intersection homology, as any 1-chain linking these two points contain the vertex
{a} and is not permitted. Poincaré duality is recovered with intersection homology
(see 5.23) (Table5.1).
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Fig. 5.4 The double cone

Table 5.1 Homology and intersection homology of the (double) cone

i Hi (X) Hc
i (X) I Hi (X) I Hc

i (X)

0 0 Z{pt} 0 Z{x1} ⊕ Z{x2}
1 Z[�] 0 0 0

2 Z[C1] ⊕ Z[C2] 0 Z[C1] ⊕ Z[C2] 0

5.4.3 Witt Spaces

Formany applications, the class of spaceswith evendimension strata is too restrictive.
The largest class ofWitt spaces still enjoys Poincaré duality of themiddle intersection
homology, but allows for some strata of odd dimension (see for instance the following
references (5.26), (5.5.3), (5.5.3), (5.5.46)).

Definition 5.4.6 A stratified pseudomanifold X is a R-Witt space ([94, Sect. 5.6.1]
[169]) if, for each stratum of odd codimension α = 2k + 1, then I H m̄

k (Lα; R) = 0,
where Lα is the link of the stratum (5.3) For such a space, the intersection homology
groups of the two middle perversities coincide (see Example 5.4.1):

I H m̄
∗ (X; R) ∼= I H n̄

∗ (X; R).

5.4.4 The Intersection Homology Sheaf Complex

The intersection homology sheaf complex is defined in the context of P L-pseudo-
manifolds. In the following section, the Deligne complex will be defined in the more
general context of topological pseudomanifolds. When both defined, the intersec-
tion homology sheaf complex and the Deligne complex are quasi-isomorphic and
their hypercohomology computes intersection homology. That is made precise in the
following sections.

Definition 5.4.7 Let IC−i
p̄ be the subsheaf of C−i (see Example5.3.2) whose

sections over an open subset U ⊂ X consist of all locally finite P L-chains ξ ∈
�(U ; C−i ) such that |ξ | is ( p̄, i)-allowable and |∂ξ | is ( p̄, i − 1)-allowable with
respect to the filtration of U

U ⊃ U ∩ Xn−2 ⊃ · · · ⊃ U ∩ X1 ⊃ U ∩ X0.
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That is

�(U ; IC−i
p̄ ) =

⎧
⎨

⎩
ξ ∈ �(U ; C−i )

∣
∣
∣
∣

dim(|ξ | ∩ U ∩ Xn−α) ≤ i − α + pα
∀α ≥ 0

dim(|∂ξ | ∩ U ∩ Xn−α) ≤ (i − 1) − α + pα

⎫
⎬

⎭

The sheaf IC−i
p̄ is well defined and �(U ; IC−i

p̄ ) = I C p̄
i (U ). If V ⊂ U are two

open subsets in X , then for every perversity p̄, there are natural restriction maps
ρV U : I C p̄

i (U ) → I C p̄
i (V ) as in (5.6) (see [94, Sect. 2.1]).

Using the restriction of the usual boundary, one obtains a complex of sheaves IC •
p̄

on X . This complex is soft [18, II, Sect. 5] so that the complex satisfies Proposition
5.3.11. The hypercohomology groups IH−i (X; IC •

p̄) are canonically isomorphic to

the intersection homology groups I H p̄
i (X; R) defined in [92, Sect. 1.3] for R = Z.

Also, one has
IH−i

c (X; IC•
p̄) = I H p̄,c

i (X; R),

intersection homology with compact supports, and more generally

IH−i
 (X; IC•

p̄) = I H p̄,
i (X; R) (5.15)

for any family of supports  on X (see [18, II, 5]).

The associated cohomology sheaves H−i (IC •
p̄) are called the local intersection

homology sheaf. The stalk at x ∈ X of this sheaf is I H p̄
i (X, X − {x}; R).

Definition with Local Systems

Considering local systems provide many useful examples as well as powerful appli-
cations.

Let L be a local coefficient system of R-modules on X − �. Given an open
subset U ⊂ X and a locally finite triangulation K of U , the group I C p̄,K

i (U ;L) is
well defined (see Sect. 5.4.2) as well as maps I C p̄,K

i (U ;L) → I C p̄,K
i−1 (U ;L).

Definition 5.4.8 ([94, Sect. 2.2], [89, 9.4]) Let X be a P L-stratified
P L-pseudomanifold and p̄ a perversity, the sheaf complex IC•

p̄(L) of intersection
chains with local coefficients in L is defined by

�(U, IC−i
p̄ (L)) = lim

K
I C p̄,K

i (U ;L)

where the limit is taken over locally finite compatible triangulations of U . The inter-
section homology groups of X with coefficients in L, denoted I H p̄

i (X;L), are the
hypercohomology groups IH−i (X; IC•

p̄(L)).
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Combining formula (5.15) with (5.12) and (5.13), one obtains the following the-
orem:

Theorem 5.4.9 Let fx : {x} → X be the inclusion of a point x in X, Ux a distin-
guished neighborhood of x and let IC p̄,•

X (L) be the sheaf complex of intersection
chains, one has:

H j ( f ∗
x IC p̄,•

X (L)) ∼= IH j (Ux ; IC p̄,•
X (L)) = I H p̄

− j (Ux ;L) (5.16)

H j ( f !
xIC p̄,•

X (L)) ∼= IH j
c (Ux ; IC p̄,•

X (L)) = I H p̄,c
− j (Ux ;L). (5.17)

Remark 5.4.10 An important remark is that the index for the dimension of the
homology and intersection homology groups differs according to the authors. That
can be considered as unfortunate but shows the diversity of the theory and diversity
of applications.

In [94, Sect. 2.3] Goresky and MacPherson explicit four different indices in the
literature and the reader has to take care of the convention used in the concerning
article.

(a) Homology subscripts, as in [92] or [63]: a subscript k indicates chains of dimen-
sion k.

(b) Homology superscripts, as in [94] and this survey: a superscript −k indicates
chains of dimension k.

(c) Cohomology superscripts, as in [18, 19, 84]: a superscript j indicates chains of
dimension n − j .

(d) The Beilinson-Bernstein-Deligne-Gabber scheme [10]: a superscript j indicates
chains of codimension n

2 + j .

For an n–dimensional compact oriented pseudomanifold these schemes compare
as follows: Hk(X) in scheme (a) is isomorphic to H−k(X) in scheme (b), H n−k(X)

in scheme (c), and H
n
2 −k(X) in scheme (d).

5.4.5 The Deligne Construction

In a conversation at the IHES, in the fall of 1976, R. MacPherson explained about
intersection homology to P. Deligne. P. Deligne had been thinking about variation
of Hodge structures on a smooth algebraic curve where truncation arises naturally.
When R. MacPherson explained the intersection homology of a cone, it looked like
this truncation so P. Deligne conjectured that perhaps intersection homology might
be explained by repeated truncation. His conjecture was proven by Goresky and
MacPherson [94], who pointed out that this construction could be used to prove
the topological invariance of intersection homology, and to give a definition that
works in characteristic p. In the meantime, on 20 April 1979, P. Deligne had written
to D. Kazhdan and G. Lusztig about the theory, describing his interpretation using
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truncation, and conjecturing that intersection homology might be pure [94, Sect. 3]
or [18, V, Sect. 2.2].

The Deligne idea is to start with the constant sheaf (or a local system of coef-
ficients) on the non-singular part and extending stratum by stratum by alternate
operations of “pushing” and “truncating”. While requiring technical tools, the idea
of Deligne construction is relatively simple. One starts with (all) chains on the reg-
ular stratum, then pushing the complex on the “next” stratum, and then “cutting”
(truncating) according to the perversity in order to retain only allowed chains. One
continues the process by induction on decreasing dimension of the strata.

Therefore, the Deligne construction uses two tools: the “pushing” attaching prop-
erty and the “truncating” operation.

The Attaching Map

Let Y be a closed subspace of X and i the inclusion of U = X − Y into X . For a
sheaf A• , the composition of the natural morphisms

A• → i∗i∗A• → Ri∗i∗A•

is the attaching map.
Consider a stratification (5.2)

X = Xn ⊃ Xn−1 = Xn−2 ⊃ · · · ⊃ X1 ⊃ X0 ⊃ X−1 = ∅

and, denoting by Uk = X − Xn−k the complementary open subsets, consider the
filtration

U1 = U2 ⊂ U3 ⊂ · · · ⊂ Un+1 = X.

One has U2 = X − �. Denote by ik : Uk ↪→ Uk+1 the inclusion. Then

A•
k = A• |Uk = i∗

kA• |Uk+1 .

The following result is one of the main ingredients of the sheaf axiomatic con-
struction of intersection homology (see Sect. 5.4.7).

Theorem 5.4.11 ([94, Proposition 2.5], [18, II, Theorem 6.1]) The natural homo-
morphism

IC• |Uk+1 → Rik∗IC• |Uk = Rik∗i∗
kIC• |Uk+1

induces an isomorphism

H j (ICn−• )x → H j (Rik∗ICn−• )x for x ∈ Uk+1 − Uk

for all j ≤ p(k) − n.



5 Intersection Homology 253

The Deligne Truncation Functor

If k ∈ Z, the truncation of a complex of sheaves A• on X is a new complex ([94,
1.14], [18, V,1.10]):

(τ≤kA•
)i =

⎧
⎪⎨

⎪⎩

Ai if i < k

ker di if i = k

0 if i > k.

The functor τ≤k determine a truncation functor on the derived category Db(X). See
[94, 1.14] for more detailed properties.

The Deligne Sheaf [94, Sect. 3.1], [18, V, Sect. 2.2]

In this section X is a topological pseudomanifold and L denotes a system of local
coefficients on the regular part X − �.

Let p̄ a fixed perversity, the Deligne complex of sheaves (or Deligne sheaf)
P

•
k(L) ∈ Db(Uk) is defined inductively by

P
•
2(L) = L[n]

P
•
k+1(L) = τ≤p(k)−n Rik∗P

•
k(L) for k ≥ 2.

The resulting complexP• (L) = P
•
n+1(L) is called theDeligne intersection homology

chain complex with coeffcients in L.
Startingwith a regularNoetherian ring R of finiteKrull dimension and the constant

sheaf R on X − � instead of L, i.e. starting with

P
•
2 = D•

U2
∼= RU2 [n]

the complex P
• = P

•
n+1 is written

P
• = τ≤p(n)−n Rin∗ · · · τ≤p(3)−n Ri3∗τ≤p(2)−n Ri2∗RX−�[n].

5.4.6 Local Calculus and Consequences

The local calculus, and precisely the computation in formulae (5.18) and (5.19)
below, are the starting points for the characterization of intersection homology.

Let x ∈ X be a point in the stratum Sn−α with codimension α in X . Let U
be a neighborhood of x homeomorphic to B

n−α × c̊(Lx ), where dim Lx = α − 1
(see 5.3). The following result is proved in [18, II, Sect. 3–4] in the context of P L-
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pseudomanifolds and in [94, Sect. 2.4], [93, 1.7] in the context of topological pseu-
domanifolds.

Proposition 5.4.12 Let X be a locally compact stratified pseudomanifold and p̄ any
perversity. Let x be a point in a stratum with codimension α in X and let U be a
neighborhood of x homeomorphic to B

n−α × c̊(Lx), then one has:

I H p̄
i (U ) ∼= I H p̄

i−(n−α)(c̊(Lx )) ∼=

⎧
⎪⎨

⎪⎩

0 i < n − pα

I H p̄
i−(n−α)−1(Lx ) i ≥ n − pα.

(5.18)

I H p̄,c
i (U ) ∼= I H p̄,c

i (c̊(Lx )) ∼=

⎧
⎪⎨

⎪⎩

I H p̄
i (Lx ) i < α − pα − 1

0 i ≥ α − pα − 1

(5.19)

The link Lx is compact and its homologygroups,with compact and closed supports
coincide.

Here is an useful and important notation for the sequel:

Denoting by p̄ a perversity and q̄ the complementary perversity, one recalls that
pk + qk = k − 2 for all k ≥ 2. If j ∈ N, one defines the inverse perversity function

p−1( j) = min{ k | pk ≥ j}

and p−1( j) = ∞ if j > pn (Fig. 5.5).
Using the “inverse perversity function”; the properties (5.18) and (5.19) arewritten

dim{x ∈ X | I H p̄
i (Ux ) �= 0} ≤ n − p−1(n − i) for i ≤ n − 1,

dim{x ∈ X | I H c, p̄
i (Ux ) �= 0} ≤ n − q−1(i) for i ≥ 1,

Fig. 5.5 An example of the
function p−1 (for the
perversity of Fig. 4) One has
p−1(1) = 3, p−1(2) = 5,
p−1(3) = 6, p−1(4) = 9,
p−1(5) = +∞
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and in terms of hypercohomology (see (5.15) and with j = −i)

dim{x ∈ X | IH j (Ux ; IC p̄,•
X ) �= 0} ≤ n − p−1( j + n) for j ≥ 1 − n. (5.20)

dim{x ∈ X | IH j
c (Ux ; IC p̄,•

X ) �= 0} ≤ n − q−1(− j). for j ≤ −1. (5.21)

As observed by Goresky and MacPherson [93, 1.8, Theorem] the results of this
section are valid for intersection homology with coefficients in a local system.

5.4.7 Characterizations of the Intersection Complex

In the introduction of their Sect. 3 [94], Goresky and MacPherson provide the moti-
vation for the characterizations of the intersection complex, in particular topological
invariance of intersection homology. The theorem [94, Theorem 3.5] shows that if X
has a P L structure and is stratified by a P L stratification and if p̄ denotes a fixed per-
versity then the Deligne complex P

• (L) and the complex of P L intersection chains
IC p̄,•

X (L) are canonically isomorphic in Db(X)whenever they are both defined. That
justifies the use of the notation IC p̄,•

X (L) to denote this isomorphism class of objects,
for any topological pseudomanifold.

In this section, X is a topological pseudomanifold. The first characterization of the
intersection complex, as a system of axioms called [AX1] p̄, is given in [94, Sect. 3.3]
and [18, V, Sect. 4]. In [18, V, Sect. 4.20], Borel discusses some points concerning
the “differences” between [18, 94], in particular the usefulness of the hypothesis
“topologically constructible”.

If S denotes a filtration (5.2) of the space X , let Uk = X − Xn−k denote the
complementary increasing filtration by open sets. There are inclusions

ik : Uk ↪→ Uk+1 and jk : Sn−k = (Uk+1 − Uk) ↪→ Uk+1.

Definition 5.4.13 ([94, Sect. 3.3]) Let p̄ be a perversity and L is a local system
defined on the regular part of X . A complex of sheaves A• on X satisfies axioms
[AX1] p̄(L) if it satisfies:
(1a)A• is constructible with respect to the given stratification andA• |U2 is quasi-
isomorphic to L[n].
(1b) Hi (A• ) = 0 for i < −n.
(1c) Hi (A• |Uk+1) = 0 for i > p(k) − n.
(1d) The attaching maps (see Theorem 5.4.11) induce isomorphisms

Hi ( j∗
k A• |Uk+1) → Hi ( j∗

k Rik∗i∗
kA• |Uk+1)

for all k ≥ 2 and i ≤ p(k) − n.
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Theorem 5.4.14 ([94, Sect. 3.5] [18, V, Theorem 2.5]), The sheaf P•
p̄(L) satisfies

properties [AX1] p̄(L). Any complex of sheaves A• satisfying [AX1] p̄(L) is quasi-
isomorphic to P

•
p̄(L).

Theorem 5.4.15 ([94, Sect. 3.5, Corollary]) Let p̄ be a perversity and A• be a con-
structible complex of fine (or soft) sheaves on X satisfying axioms [AX1] p̄(R), then
the cohomology groups of the complex

. . . → �(X;A j−1) → �(X;A j ) → �(X;A j+1) → . . .

i.e., the hypercohomology groups IH j
c (X;A• ), are naturally isomorphic to the inter-

section homology groups I H p̄
n− j (X; R).

In fact, Goresky andMacPherson prove the followingmain result, of which follow
the main properties of intersection homology (Sect. 5.5.1).

Theorem 5.4.16 ([94, Sect. 3.5]) The functor P•
p̄ which assigns to any locally trivial

sheaf F on X0 = X − �, the complex

P
•
p̄(F) = τ≤p(n)−n Rin∗ · · · τ≤p(3)−n Ri3∗τ≤p(2)−n Ri2∗F[n].

defines an equivalence of categories between

(a) the category of locally constant sheaves on X0 = X − � and
(b) the full subcategory of Db(X) whose objects are all complexes of sheaves which

satisfy the axioms [AX1] p̄ .

Example 5.4.17 The orientation sheafO on X0 is quasi-isomorphic to the dualizing
sheaf D•

X0 [−n]. Then P•
p̄(O) is the intersection homology sheaf and its cohomology

is:
H−i (P

•
(O)) = I H p̄

i (X;Z)

for any r ≥ 0.

Example 5.4.18 Let RX0 be the constant sheaf on X0, placed in degree 0. Then

H j (P
•
p̄(RX0)) = I H j

p̄ (X; R)

is the intersection cohomology.

Theorem 5.4.19 ([94, Sect. 3.6] [18, II, Theorem 6.1]) Let X be a
P L-pseudomanifold with a fixed P L-stratification then the sheaf of P L-intersection
chains IC p̄,•

X satisfies the axioms [AX1] p̄(R) with respect to the given stratification.
It is naturally quasi-isomorphic to P

•
p̄(R).

The second characterization of the intersection complex of sheaves goes as fol-
lows, as a consequence of the local calculus (see [18, V, Sect. 2.12] and formulae
(5.20), (5.21), (5.16), (5.17)).
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Definition 5.4.20 ([94, Sect. 4.1], [127, Sect. 9] and [18, V Sect. 4.13].) Let L be a
local system on an open dense submanifold U of codimension at least 2 in X and let
fx : {x} → X be the inclusion of a point x in X . One says that the sheaf complexA•

satisfies the axioms [AX2] p̄(L) for the perversity p̄ if one has:

(2a)A• is a topologically constructible complex andA• |U = L[n] for some open
dense submanifold U of codimension at least 2 in X and over which the local
system L is defined.
(2b) H j (A• ) = 0 if j < −n
(2c) dim{x ∈ X |H j ( f ∗

x A• ) �= 0} ≤ n − p−1( j + n) for every j ≥ −n + 1.
(2d) dim{x ∈ X |H j ( f !

xA• ) �= 0} ≤ n − q−1(− j) for every j ≤ −1.

where is q̄ the complementary perversity of p̄
The uniqueness theorem, proved in Goresky and MacPherson [94, 4.1] (see also

[18, V, 4.17]) states that up to canonical isomorphism, there exists an unique complex
in Db(X) which satisfies axioms [AX2] p̄(L). It is given by the sheaf IC p̄,•

X (L),
constructed as before with any stratification of X . As a corollary, the intersection
homology groups I H p̄

∗ (X) are topological invariant and exist independently of the
choice of the stratification of X . One has:

Theorem 5.4.21 ([94, Sect. 4.1] [18,V, 4.17])LetA• be a fine (or soft) sheaf complex
on X satisfying Axioms [AX2] p̄ for a perversity p̄ and  a family of supports on X,
then the cohomology groups of the complex

. . . → �(X;A j−1) → �(X;A j ) → �(X;A j+1) → . . .

i.e., the hypercohomology groups IH j
(X;A), are isomorphic to the intersection

homology groups I H p̄,
− j (X;L).

In the common setting, equivalence of the systems of axioms [AX1] p̄(L) and
[AX2] p̄(L) is proved in [94, 4.3], [18, V Sect. 4.10].

5.5 Main Properties of Intersection Homology

The first properties have been proved by Goresky andMacPherson [92] in the frame-
work of P L-pseudomanifolds (see also [18, Chaps. I–IV]). They have been proved
in the topological setting, using sheaves and in particular the Deligne sheaf complex,
by the same authors in [94] (see also [18, Chaps.V–IX]).

5.5.1 First Properties

In general, results and proofs of this section can be found in various books or surveys
concerning intersection homology. However, references will be given to the original
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papers of Goresky and MacPherson [92] for the P L situation and [94] for the case
with sheaves and systems of local coefficients. References to the Borel book [18]
will be provided as well, always taking care of the difference of notations.

The intersection homology groups are not homotopy invariant. The intersection
homology groups of a cone do not (all) vanish (see (5.18)), while the cone is homo-
topic to a point, whose non-zero homology groups vanish. However, one has.

Topological Invariance

In [92, Corollary, p.148] Goresky and MacPherson show that the P L intersection
homology groups are P L-invariants, i.e. independent of the P L-stratification (see
also [18, V, 4.19]). In [94, 4.1] (see also [18, V, 4.18]), Goresky and MacPherson
show independence of the topological stratification as a consequence of the Deligne
construction performed for the canonical p̄-filtration they defined ([94, 4.2]) and the
system of axioms [AX2] p̄(L). The canonical p̄-filtration is a homological stratifica-
tion, the coarsest one for which the intersection homology sheaf is cohomologically
constructible.

Theorem 5.5.1 ([94, Sect. 4, Introduction and Sect. 4.1, Corollary 1]) Let X be a
locally compact pseudomanifold and p̄ a perversity. Let L be a local system on the
regular part X0 = X − �.

• The intersection homology groups I H p̄
∗ (X;L) and I H p̄,c

∗ (X;L) are topological
invariants and exist independently of the choice of a stratification of X,

• For any homeomorphism f : X → Y , the complexes IC p̄,•
X and f ∗IC p̄,•

Y are iso-
morphic in the derived category.

In [113] King proves topological invariance without sheaves in the case of G M
perversities. He also provides a generalization of the intersection homology groups
using singular theory and general perversities (“loose perversities”). King claims
that the P L intersection homology theory of [92] agrees with his singular theory for
any loose perversity and P L stratified set (see the discussion [113, p. 158]). “One
can define intersection homology for topological pseudomanifolds, independently
of P L structures”. A modification of the King’s method is provided by Friedman
[79, 5.6.2].

In [162]Rourke andSanderson use homology stratifications to present a simplified
version of the Goresky-MacPherson proof valid for PL-spaces.

Products in Intersection Homology

Definition 5.5.2 ([94, Sect. 5.0]) An R-orientation for X is a chosen
quasi-isomorphism

RX−�[n] → D•
X−�.
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If char(R) �= 2 then an R-orientation of X is equivalent to an orientation of X − �

in the usual topological sense.

Suppose X is a (not necessarily orientable) n-dimensional pseudomanifold. For
any local system L on the regular part X0 = X − � and any perversity p̄ the
Deligne’s sheaf P•

p̄(L) is defined on X . In [94, Sect. 5.2] and [18, V, Sect. 9, C]
it is shown that any pairing of local systems L1 ⊗ L2 → L3 induces a pairing

P
•
p̄(L1) ⊗ P

•
q̄(L2) → P

•
r̄ (L3) for r̄ ≥ p̄ + q̄. (5.22)

by induction using the construction of Deligne “attaching–truncating” from the mul-
tiplication on the regular subset X0.

The generalized Poincaré duality, Poincaré-Lefschetz theorem as well as inter-
section pairing, and cup and cap-products follow from particular cases of formula
5.22, mainly in the case of Examples5.4.17 and 5.4.18 (see also [18, V, Sect. 9.15]
taking care of difference of indices—see Remark 5.4.10).

For instance, cup products I H a ⊗ I H b → I H a+b and cap products I H a ⊗
I Hb → I Hb−a in intersection cohomology follow from the canonical pairings

RX
L⊗ RX → RX and RX

L⊗ D•
X → D•

X .

This constructions works over any commutative ring R of finite cohomological
dimension.

Intersection Pairing

One of the most important properties of intersection homology is the generalization
of the Poincaré-Lefschetz duality, i.e. the intersection pairing (Sect. 5.2.6).

The following Proposition ([92, Sect. 2]) has been first stated by Goresky and
MacPherson in the P L setting, using a McCrory Lemma [131, 132], itself using the
Zeeman technique to move cycles into general position (see [92, Sect. 2.2]).

Proposition 5.5.3 ([92, Sect. 2.3]) Let X a compact oriented P L-pseudomanifold
and let p̄, q̄ and r̄ perversities such that p̄ + q̄ ≤ r̄ , one has canonical bilinear
pairings

I H p̄
i (X;Z) × I H q̄

j (X;Z) → I Hr̄
i+ j−n(X;Z),

These pairings are compatible with the cup and cap products ([92, Sect.7, Appendix]).

Note that, in the non compact situation, the preceding construction gives rise to
the pairings

I H p̄
i (X) × I H q̄,c

j (X) → I Hr̄ ,c
i+ j−n(X).
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Goresky and MacPherson generalized the results in the topological setting [94,
Sects. 5.2 and 5.3], using the intersection sheaf complex (see also [18, V, 9.15] taking
care of difference of indices—see Remark 5.4.10).

Starting with local coefficient systems L1,L2,L3 on X − �, a product L1 ⊗
L2 → L3 gives rise to intersection pairings (cf 5.22) [94, 5.2]

IC•
p̄(L1)

L⊗ IC•
q̄(L2) → IC•

r̄ (L3)[n].

and the Theorem:

Theorem 5.5.4 ([94, 5.2], [18, I, 4.2; V, 9.14]) Let X be a topological pseudoman-
ifold. If p̄ + q̄ ≤ r̄ there are canonical intersection pairings

I H p̄
i (X;L1) × I H q̄

j (X;L2) → I Hr̄
i+ j−n(X;L3).

These pairings are compatible with the cup and cap products.

Goresky and MacPherson remark that it is not necessary to have an orientation in
the preceding construction [94, Sect. 5.2].

Verdier Duality—The Generalized Poincaré-Lefschetz

In their original article, in a delicate and very geometric proof, using so-called “basic
sets” Q p̄

i , Goresky and MacPherson prove the generalized Poincaré duality:

Theorem 5.5.5 ([92, 3.3, Theorem]) Let X be a compact, oriented pseudomanifold
and let p̄ and q̄ be two complementary perversities, then the pairing

I H p̄
i (X;Z) × I H q̄

n−i (X;Z) → I H t̄
0(X;Z) ε→ Z

followed by the evaluation map ε (which counts points with their multiplicity order)
is non-degenerate, when tensorised by the rationals Q.

Note that, in the non compact situation, the preceding construction gives rise to
the pairing (see Example 5.4.5).

I H p̄
i (X;Z) × I H q̄,c

n−i (X;Z) → I H t̄,c
0 (X;Z) ε→ Z (5.23)

In a more general way, let k be a field, then the pairing

I H p̄
i (X; k) × I H q̄

n−i (X; k) → I H t̄
0(X; k)

ε→ k

is non-degenerate and induces isomorphisms

I H p̄
i (X; k) ∼= Hom(I Hq̄

n−i (X; k), k)
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Note that, in the non-compact case, one has isomorphisms:

I H p̄
i (X; k) ∼= Hom(I Hq̄,c

n−i (X; k), k)

In [94] these results have been generalized byGoresky andMacPherson, assuming
that the coefficient ring R is a field k and that X is k-orientable (with a choice of
k-orientation). The following results follow from the property of duality between
IC•

p̄ and IC•
q̄ for complementary pervesities p̄ + q̄ = t̄ . In particular if X has even

codimension strata, then IC•
m̄ is self dual (for example, if X is a complex analytic

variety).

Definition 5.5.6 ([94, 5.3]) Let n = dim(X), a pairingA• L⊗B• → D•
X [n] of objects

in Db(X) is called a Verdier dual pairing if it induces an isomorphism in Db(X)

A• −→ RHom•
(B•

,D•
X )[n].

Theorem 5.5.7 ([94, 5.3, Theorem]) Suppose p̄ and q̄ are complementary perver-
sities, then the intersection pairing followed by the map to homology

IC•
p̄

L⊗ IC•
q̄ → IC•

t̄ [n] → D•
X [n]

is a Verdier dual pairing.

Corollary 5.5.8 ([94, 5.3, Corollary]) Let X be a compact, oriented stratified pseu-
domanifold and let p̄ and q̄ be two complementary perversities, then the pairing

I H p̄
i (X; k) × I H q̄

n−i (X; k) → I H t̄
0(X; k)

ε→ k

followed by the evaluation map ε (which counts points with their multiplicity order)
induces isomorphisms

I H p̄
i (X; k) ∼= Hom(I Hq̄

n−i (X; k), k)

Dropping the assumption that X is oriented, letO be the orientation local system
of k-modules on X − �. A pairing L1 ⊗ L2 → O of local systems on X − � is
called perfect if the induced mapping L1 → Hom(L2,O) is an isomorphism.

Theorem 5.5.9 ([94, 5.3, last Theorem]) Suppose p̄ and q̄ are complementary per-
versities and the pairing L1 ⊗ L2 → O is perfect. Then the intersection pairing
followed by the map to homology

IC•
p̄(L1)

L⊗ IC•
q̄(L2) → IC•

t̄ (O)[n] → D•
X [n]

is a Verdier dual pairing.
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Note that, usingAlexander-Whitney chains, Friedman andMcClure [80] re-prove
these results in the special case of field coefficients.

Example 5.5.10 (Suspension of the torus) That is the original Goresky-MacPherson
example (see [92]) for which Poincaré duality fails for usual homology. The suspen-
sion of the torus (Fig. 5.6) is the join of the torus with two points A and B. It is a
3-dimensional singular variety with two singular points A and B: the link of A (or
B) is a torus, not a sphere. See the alternative very nice picture of the suspension of
the torus in [92].

Fig. 5.6 Suspension of the
circle S1 and of the torus

The natural stratification of the suspension of the torus is

X ⊃ X0 = {A, B} ⊃ ∅.

There are two possible perversities:

p̄ = 0̄ = (0, 0, 0, 0) and p̄ = t̄ = (0, 0, 0, 1)

An i-dimensional chain c containing one (or two) of the singular points A and B is
allowable if

0 = dim(|c| ∩ X0) ≤ i − 3 + p3,

that means, if p̄ = 0̄, then i ≥ 3 and if p̄ = t̄ , then i ≥ 2.
The intersection homology groups I H p̄

i (X;Q) corresponding to the two perver-
sities are easily computed and are resumed in the Table5.2. The cycle a is boundary
of the cycle c(a), cone with vertex a. The suspension of a is a 2-dimensional cycle
denoted by �(a).
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Table 5.2 Intersection homology of the suspension of the torus

Perversities p̄ = 0̄ p̄ = t̄

i I H 0̄
i (X) I H t̄

i (X)

0 Q{x} Q{x}
1 Qa ⊕ Qb 0

2 0 Q�(a) ⊕ Q�(b)

3 Q[X ] Q[X ]

The intersection matrix of the intersection product

I H 0̄
1 (X;Q) × I H t̄

1(X : Q) → Q

(
�(a) �(b)

a 0 ∓1
b ±1 0

)

is non-degenerate.

Factorization of Poincaré Homomorphism. See [92, Sect. 1.4], [94,
Sect. 5.1], [18, I, Sect. 4.1; I, Sect. 3.2]

Poincaré Duality—Return to the smooth case
The Poincaré duality can be proved by using sheaf complexes: R is still a regular
Noetherian ring with finite Krull dimension, which can be Z,Q or R. Assuming that
X is an n-dimensional oriented manifold, the quasi-isomorphism of complexes of
sheaves RX [n] ∼= C•

X induces isomorphisms of hypercohomology groups:

IH−i
 (X; RX [n]) ∼= IH−i

 (X; C•
X )

i.e., (5.8), (5.9)
H n−i

 (X) ∼= H
i (X).

In particular, one has (see Sect. 5.2.2):

H n−i (X) ∼= Hi (X) and H n−i
c (X) ∼= H c

i (X).

Poincaré Duality—Singular case
An orientation on X is an isomorphism (5.5.2)

RX−�[n] → D•
X−�.
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The (unique in Db) canonical lift of the orientation

RX [n] → Ri∗RX−�[n] ∼=→ Ri∗D•
X−�

induces the cap-product with the orientation (fundamental) class

P DX : RX [n] → D•
X .

Proposition 5.5.11 ([94, Sect. 5.1]) Assume X oriented, and let i : X − � → X
denote the inclusion. For any perversity p̄ there is a unique morphism in Db

RX [n] → IC•
p̄ → D•

X

such that the induced morphism i∗RX [n] → i∗IC• is the evident one and i∗IC• →
i∗D•

X is given by the orientation. These morphisms factor the cap-product with the
fundamental class [X ], i.e. P DX : RX [n] → D•

X .

For any perversity p̄, denote the previous morphisms by

αX : RX [n] → IC•
p̄ and ωX : IC•

p̄ → D•
X .

By taking hypercohomology, one obtain the classical comparison morphisms

H •
(X)

αX−→ I H p̄
n−• (X) and I H p̄

n−• (X)
ωX−→ Hn−• (X).

The composition ωX ◦ αX : RX [n] → D•
X

RX [n] P DX

αX

D•
X

IC•
p̄

ωX

induces at the global level, i.e., taking hypercohomology, the “classical” Poincaré
duality homomorphism

H •
(X) → Hn−• (X)

that is factorized by intersection homology

H n−i (X)
•∩[X ]

α0̄
X

α
p̄
X

Hi (X)

I H 0̄
i (X) I H p̄

i (X)

ωt̄
X

I H t̄
i (X).

ωt̄
X

(5.24)
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Poincaré Duality—Singular case—geometry
In this (sub)-section, X is an oriented compact P L-pseudovariety.

First, remark that if p̄ and q̄ are two perversities such that p̄ ≤ q̄ , that is pα ≤ qα

for all α, then one has a natural morphism

I C p̄
∗ (X) ↪→ I Cq̄

∗ (X) (5.25)

for every support family and it induces a morphism I H p̄
∗ (X) → I H q̄

∗ (X).
In particular, one has a morphism I H 0̄∗ (X) → I H p̄

∗ (X) and a morphism
I H p̄

∗ (X) → I H t̄∗(X) for every perversity p̄.

The morphism α0̄
X : H n−i (X) → I H 0̄

i (X) can be described in the following way:
Assuming that X is embedded in a smooth m-dimensional P L oriented manifold

M , the stratification of X can be extended to a stratification of M by taking M \ X
as the regular stratum. Let K be a locally finite triangulation of M compatible with
the stratification. For each p = n − i-simplex σ ∈ K contained in X , the dual cell
of σ in M , denoted by Dσ has dimension m − p (see 5.4) and is transverse to all
strata. The Poincaré homomorphism

Cn−i
(K ) (X) → C (K ′)

i (X)

associates to the elementary (n − i)-cochain σ ∗ which corresponds to the simplex
σ in K , the i-chain ξ = Dσ ∩ X of (K ′), which is 0̄-allowed. Therefore, for each
perversity p̄, one has the factorisation (5.24).

Relative Homology, See [93, 1.3], [18, I, 2.2.2]

Let X be a stratified pseudomanifold, and U an open subset in X , then U inherits a
structure of stratified pseudomanifold induced by the one of X . For every perversity
p̄, the complex of intersection chains of U with compact supports I C p̄

∗ (U ), is a
sub-complex of I C p̄

∗ (X).
Defining I C p̄

∗ (X,U ) = I C p̄
∗ (X)/I C p̄

∗ (U ), one obtains a relative complex and
one has a long exact sequence:

· · · → I H p̄
i (U ) → I H p̄

i (X) → I H p̄
i (X,U ) → I H p̄

i−1(U ) → · · ·

The property is also valid with local systems (see [93, 1.8]).

Excision, See [93, 1.5]

Lemma 5.5.12 Let X be a locally compact stratified pseudomanifold and U and V
two open subsets in X, then the inclusion (U,U ∩ V ) ↪→ (U ∪ V, V ) induces an
isomorphism of intersection homology groups with compact supports



266 J.-P. Brasselet

I H p̄
i (U,U ∩ V ) ∼= I H p̄

i (U ∪ V, V ).

Proposition 5.5.13 Let X be a locally compact stratified pseudomanifold, U an
open subset in X and A a closed subset in U. Let p̄ be any perversity, then the inclu-
sion (X − A,U − A) ↪→ (X,U ) induces an isomorphism of intersection homology
groups with compact supports

I H p̄
i (X,U ) ∼= I H p̄

i (X − A,U − A).

The property is also valid with local systems (see [93, 1.8]).

Künneth Formulae, See [94, 6.3]

Künneth formulae in homology If X and Y are topological spaces, and R a PID
(principal ideal domain) the Künneth formula is written as short exact sequence
(where all homology groups have R coeffivients)

0 →
⊕

a+b=i

Ha(X) ⊗ Hb(Y ) → Hi (X × Y ) →
⊕

a+b=i−1

TorR(Ha(X), Hb(Y )) → 0,

that (not canonically) splits.
If R is a field k, then the Künneth formula is written

⊕

a+b=i

Ha(X; k) ⊗ Hb(Y ; k) ∼= Hi (X × Y ; k).

Künneth formula in intersection homology In general, the Künneth formula is
no longer true for intersection homology (see counterexamples in [61, Sect. 5]).
However, there are some situations for which the the Künneth formula is true.

(1) Cheeger [59] observes that the Künneth formula holds for the middle inter-
section cohomology, and for Witt spaces X,Y (see Sect. 5.4.6) with k = R.

I H m̄
i (X × Y ;R) ∼=

⊕

a+b=i

I H m̄
a (X;R) ⊗ I H m̄

b (Y ;R). (5.26)

The formula is extended in [94, 6.3] in the context of “middle homology sheaves”.
A middle homology sheaf is a complex of sheaves S• such that for some local
coefficient system F on X0 = X\�,

S• = IC•
m̄(F) = IC•

n̄(F).

Let π1 : X × Y → X and π2 : X × Y → Y be the projections. Let F1 and F2 be
local coefficients systems on the regular parts of X and Y respectively, satisfying the
previous formula, then
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I H m̄
i (X × Y ;π∗

1F1 ⊗ π∗
2F2) ∼=

⊕

a+b=i

I H m̄
a (X;F1) ⊗ I H m̄

b (Y ;F2).

(2) When one of the element of the product is a smooth manifold, the formula is
verified (see [93, Sect. 1.6], [61]).

Proposition 5.5.14 Let X be a locally compact stratified pseudomanifold and M a
manifold. Let p̄ be a perversity, one has a split exact sequence:

0 → (I H p̄
∗ (X) ⊗ H∗(M))i → I H p̄

i (X × M) → (I H p̄
∗ (X) ∗ H∗(M))i−1 → 0

(3) Fix a coefficient ring R which is a principal ideal domain and suppose X and
Y are compact pseudomanifolds. Cohen, Goresky and Ji show [61] more general
results showing, for instance that if the perversity p̄ satisfies

p(a) + p(b) ≤ p(a + b) ≤ p(a) + p(b) + 1

for all a and b, then there is a split short exact sequence for intersection cohomology
with the perversity p̄ and coefficients in R:

0 →
⊕

a+b=i

I Ha(X) ⊗ I Hb(Y ) → I Hi (X × Y ) →
⊕

a+b=i−1

TorR(I Ha(X), I Hb(Y )) → 0.

The condition on the perversity p̄ means that the graph of the perversity function
does not deviate far from some straight line through the origin (see also [28, Corollary
9.3]).

(4) G. Friedman, in [74], considers biperversities ( p̄, q̄) and obtains a Künneth
theorem relating I H p̄,q̄

∗ (X × Y ) and I H p̄
∗ (X) and I H q̄

∗ (Y ) for all choices of p̄ and
q̄ . and this recovers the result of Cohen,Goresky and Ji.

(5) Let k be a field, Friedman and McClure [80] define a perversity Q̄( p̄, q̄) on
the product X × Y , whose value depends on regularness or not of the elements of
the filtration of the product. They obtain an isomorphism

I H p̄
∗ (X; k) ⊗ I H q̄

∗ (Y ; k) → I H Q̄
∗ (X × Y ; k).

Normalization and Intersection Homology, [92, Sect. 4], [18, I, 1.6, I, 3.2,
V,2.8 and 2.12]

The oriented n-dimensional pseudomanifold X is normal if

Hn(X, X − {x};Z) = Z for all x ∈ X.

Equivalently, each point x admits a fundamental system of neighborhoods U whose
regular part U \ � is connected.
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Proposition 5.5.15 ([92, Sect. 4.3], [94, Sect. 5.6] [18, I, Sect. 4.1]) Let X be a nor-
mal pseudomanifold, the morphisms αX and ωX (see Sect.5.5.1) induce isomor-
phisms:

RX
∼= IC•

0̄
and IC•

t̄
∼= D•

X

respectively for the zero perversity 0̄ and the total one t̄:

H n−i (X) ∼= I H 0̄
i (X), I H t̄

i (X) ∼= Hi (X).

The vertical arrows in diagram (5.24) are isomorphisms.

Proposition 5.5.16 ([92, Sect. 4.2], [18, I, Sect. 3.2]) Let X̃ be the normalization of
a pseudomanifold X, then one has:

I H p̄
i (X̃) = I H p̄

i (X).

Homology Manifolds

Goresky and MacPherson conjecture in [92, Sect. 6.6] that if X is a normal pseu-
dovariety such that I H p̄

∗ (X) → I H q̄
∗ (X) are isomorphisms for all p̄ ≤ q̄ , then X is

a Z-homology manifold, i.e. there is an integer n such that for each point {x} in X ,
the local homology group satisfies

Hi (X, X \ {x} ;Z) =
{
0 if i �= n

Z if i = n.
(5.27)

The conjecture is false, by a counter-example of King [114] who shows that it is
true if one considers more general perversities, so-called “loose perversities”. In
[32], Brasselet and Saralegi show that the conjecture is true with a supplementary
hypothesis, namely if there are tubular neighborhoods of the strata without homolog-
ical monodromy. On the other hand, Fieseler and Kaup define in [73, 115] invariants
linked to properties of the fibers of the Deligne sheaf. Using these invariants Brasse-
let, Fieseler and Kaup provide computable criteria for X being a homology manifold
[25].

Case of Isolated Singularities

Proposition 5.5.17 ([18, Sect. 5.1])Let X be an n-dimensional pseudomanifold with
an isolated singularity at {x}. The integer pn is the only one pertinent element of the
perversity, one has 0 ≤ pn ≤ n − 2 and:
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I H p̄,c
i (X) =

⎧
⎪⎨

⎪⎩

H c
i (X \ {x}) i < n − pn − 1

Im(H c
i (X \ {x}) → H c

i (X)) i = n − pn − 1

H c
i (X) i > n − pn − 1,

(5.28)

I H p̄
i (X) =

⎧
⎪⎨

⎪⎩

Hφ

i (X \ {x}) i < n − pn − 1

Im(Hφ

i (X \ {x}) → Hi (X)) i = n − pn − 1

Hi (X) i > n − pn − 1

(5.29)

where φ denotes the family of closed subsets in X which are contained in X \ {x}.
If n is even and p̄ is the middle perversity, one has n − pn − 1 = n/2.

The Proposition is valid with local coefficieny systems.

Example of Thom Spaces, [18, I, Sect. 5.3], [26]

Let B a compact 2n-dimensional manifold and π : E → B a real oriented vector
bundle with even rank r on B. The Thom spaceT associated to E is the Alexandroff
compactification of E by adjonction of a point at infinity. It is also the quotient
T (E)/S(E) where T (E) and S(E) are the fibre bundles associated to E whose
fibers are respectively closed balls and spheres in the fibers of E . The Thom space is
a pseudomanifold with an isolated singular point and its dimension is 2s = 2n + r .

Let [T] be the fundamental class ofT and e ∈ Hr (B) the Euler class of the bundle
E . For every i , different from 0 and 2s, one has a commutative diagram ([27], see
also [18, I, Sect. 5.3]):

H 2s−i (T)
· ∩[T]

∼=

Hi (T)

∼=

Hi (B)
· ∩e

Hi−r (B)

and for the middle (lower) perversity:

I Hi (T) =

⎧
⎪⎨

⎪⎩

Hi (T) i < s

Im(Hi (B)
· ∩e−−−→Hi−r (B)) i = s

Hi−r (B) i > s.

(5.30)

In [92, Sect. 6.3] Goresky and MacPherson illustrate the behavior of torsion in
the intersection homology by the example of Thom space for which the universal
coefficient theorem fails and the generalized Poincaré duality theorem is not true
over Z.

Exemples of computations of Thom spaces associated to the Segre and Veronese
embeddings are provided by Brasselet and Gonzalez-Sprinberg in [27].
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5.5.2 Functoriality

In general, for a map f : X → Y , there is no functoriality, i.e. no maps I f ∗ and I f∗
such that the diagrams below (5.32) and (5.33) commute. The functoriality problem
has been proposed by Goresky andMacPherson in [18, IX, C, Problem 4]): “Find the
most general category of spaces and maps (perhaps with additional data) on which
intersection homology is functorial.”

Goresky and MacPherson earlier proved functoriality for Normally Nonsingular
Maps [94, Sect. 5.4]:

(a) A normally nonsingular map ([82, Sect. 4.1]) f : X → Y between oriented
topological spaces, is a map such that there is a diagram

N
i

π

Y × R
n

p

X
f

s

Y

(5.31)

in which π : N → X is a rank d vector bundle with zero-section s, the map i is
an open embedding, p is the first projection and f = p ◦ i ◦ π . The integer d − n
is the relative codimension of f . As said in [82], “Geometrically, that says that the
singularities of X at any point x are no better or worse than the singularities of
Y at f (x).” Topological pseudomanifotds and normally nonsingular maps form a
category (see [82]).

Theorem 5.5.18 ([94, 5.4.3]) Let f : X → Y be a proper normally nonsingular
map of relative dimension ν. Then there are homomorphisms

I f∗ : I H p̄
k (X) → I H p̄

k (Y ) and I f ∗ : I H p̄
k (Y ) → I H p̄

k−ν(X).

I H p̄
k is both a covariant functor (via I f∗) and a contravariant functor (via I f ∗) on

the category of topological pseudomanifotds and normally nonsingular maps.

In their discussion in [18, IX, C], Goresky andMacPherson give and discuss sev-
eral classes ofmaps f : X → Y forwhich there are natural homomorphisms between
I H m̄∗ (X) and I H m̄∗ (Y ) (where m̄ is the middle (lower) perversity). In particular, they
give the following examples:

(b) The placid maps. A continuous map f : X → Y between stratified spaces is
said placid if it is stratum preserving (i.e. the image of every stratum of X is contained
in a single stratum of Y ) and for each stratum S in Y , the inequality holds:

codimX f −1(S) ≥ codimY (S).
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Proposition 5.5.19 [98, Proposition 4.1] Assume that f : X → Y is a placid map.
Then pushforward of chains and pullback of generic chains induce homomorphisms
on intersection homology:

I f∗ : I H m̄
k (X) → I H m̄

k (Y ) and I f ∗ : I H m̄
n−k(Y ) → I H m̄

m−k(X).

where m = dim(X) and n = dim(Y ).

(c) Small maps. [94, Sect. 6.2]
A proper surjective algebraic map f : X → Y between irreducible complex n-

dimensional algebraic varieties is small if X is nonsingular and for all r > 0,

codC{y ∈ Y | dimC f −1(y) ≥ r} > 2r.

If Y is one or two dimensional then a small map f : X → Y must be a finite map.
If Y is a threefold then the fibres of a small map f must be zero dimensional except
possibly over a set of isolated points in Y where the fibres may be at most curves.

(d) A more general result has been proved by Barthel, Brasselet, Fieseler, Gabber
and Kaup.

Theorem 5.5.20 ([5, Théorème 2.3]) Let f : X → Y be a map between algebraic
complex varieties of respective pure (real) dimensions m and n, and consider R = Q.
Then
(1) There are contravariant homomorphisms (with closed supports)

I f ∗ : I Hn−• (Y ) → I Hm−• (X)

and covariant homomorphisms with compact supports

I f∗ : I H c
• (X) → I H c

• (Y )

such that the following diagrams commute:

I Hn−• (Y )
If ∗−−−→ I Hm−• (X) I H c

• (X)
If∗−−−→ I H c

• (Y )�
⏐
⏐
⏐αY

�
⏐
⏐
⏐αX

⏐
⏐
⏐
�ωX

⏐
⏐
⏐
�ωY

H • (Y )
f ∗−−−→ H • (X) H c

• (X)
f∗−−−→ H c

• (Y ).

(5.32)

(2) Assume that the map f : X → Y is proper, then there are contravariant homo-
morphisms with compact supports

I f ∗ : I H c
n−• (Y ) → I H c

m−• (X)

and covariant homomorphisms with closed supports
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I f∗ : I H• (X) → I H• (Y )

such that the following diagrams commute:

I H c
n−• (Y )

If ∗−−−→ I H c
m−• (X) I H• (X)

If∗−−−→ I H• (Y )�
⏐
⏐
⏐αY

�
⏐
⏐
⏐αX

⏐
⏐
⏐
�ωX

⏐
⏐
⏐
�ωY

H •
c (Y )

f ∗−−−→ H •
c (X) .H• (X)

f∗−−−→ H• (Y ).

(5.33)

The results can be summarized by the following commutative diagram (the reader
is invited to write the similar diagram with compact supports):

H∗
c (X)

Poincaré

αX

H∗(X)

f∗

H∗
c (Y )

f ∗

αY

I H∗(X)

If∗
?

ωX

H∗(Y )

I H∗(Y )

If ∗

?

I H∗(Y )

ωY

Note that the notations used in [5] are μ f for I f ∗ and ν f for I f∗. In general, the
associated maps I f ∗ and I f∗ in intersection homology are not uniquely determined.
They are uniquely determined by f in the following particular cases:

• if Y is smooth. In that case, αY and I f ∗ ◦ αY are isomorphisms and I f ∗is deter-
mined by αX ,

• if f is an equidimensional dominant map or, more generally, a placid map (see [5,
(3.3)]),

• if f is the embedding of a closed submanifold X with codimension 1 in Y such
that Y is locally analytically irreducible along X (see [5, (3.6)]),

• if f is a homologically small map in the sense of [94, Sect. 6.2].

Based on the previous results,Weber [185] assumes that amap of analytic varieties
is an inclusion of codimension one. He shows that the existence of an associated
morphism in intersection homology follows from Saito’s decomposition theorem.
For varieties with conical singularities he shows that the existence of intersection
homology morphism is equivalent to the validity of the Hard Lefschetz Theorem for
links.

Lifting of Algebraic Cycles

The notion of intersection homology I H (C)
• (Y ) of Y with supports in a closed sub-

variety C of Y , i.e. relative intersection homology I H• (Y,Y \ C) (see Sect. 5.3.1) is
useful for this section.
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Theorem 5.5.21 ([5, Théorème 2.4]). Let C be a closed subvariety of Y , with pure
dimension n, then the homology class [C], with rational coefficients, is in the image
of the morphism

ωY : I H (C)
n (Y ) −→ H (C)

n (Y ) .

The classes corresponding to algebraic cycles in an algebraic variety can be lifted
in intersection homology, however the lifting is not unique.

Coming to the original question asked by Goresky and MacPherson (see [18,
Goresky-MacPherson, Chap. IX, Sect. H, Problem 10]) the homology Chern-
Schwartz-MacPherson classes of an algebraic variety can be lifted to intersection
homology, for the middle perversity and with rational coefficients [5, Corollaire
2.6]. On the one hand, Goresky constructed an example for which there is no lifting
when using Z coefficients, on the other hand Verdier constructed an example for
which the lifting is not unique even with rational coefficients (see [26, 27] for these
examples). Also, using the previous results obtained for the middle perversity (and
higher ones) it is not possible to multiply more than two homology classes. This
gives an obstruction to the definition of general characteristic numbers for singular
complex algebraic varieties.

The Classification Theorem

The morphisms I f ∗ and I f∗ in intersection homology are not uniquely determined
by the morphism f . The following result provides a measure of the ambiguity. It
gives also a geometric meaning of the motivation and completes the principal result:

Theorem 5.5.22 ([5, Théorème 2.7])There is a one-to-one correspondence between
the morphisms I f ∗, resp. I f∗, such that the diagrams (5.32) and (5.33) commute
and classes γ ∈ I H

(� f )
n (X × Y ) which are liftings of the homology class [� f ] ∈

H
(� f )
n (X × Y ) of the graph of f .

5.5.3 Lefschetz Fixed Points and Coincidence Theorems

Lefschetz Fixed Points Theorem

The smooth case
Let M be an n-dimensional oriented smooth manifold, and f : M → M . One of the
possible definitions of the Lefschetz number L( f ) (known as Lefschetz fixed point
formula [122]) is:

L( f ) =
n∑

k=0

(−1)kTrace( fk : Hk(M;Q) → Hk(M;Q)). (5.34)
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Let G( f ) ⊂ M × M be the graph of f . In general, G( f ) is not transverse to the
diagonal �M in M × M . However, one can find a map f ′ : M → M homotopic to
f such that the graph G( f ′) is transverse to �M . The (oriented) cycles G( f ′) and
�M are transverse and complementary dimensional in M × M . Moreover, there are
finitely many intersection points b j ∈ G( f ′) ∩ �M . In such a point, the intersection
number I (G( f ′),�M ; b j ) is well defined (see Sect. 5.2.6) and one has

L( f ) =
∑

b j

I (G( f ′),�M ; b j ). (5.35)

That number does not depend on the map f ′ homotopic with f and such that G( f ′)
is transverse to �M .

The main properties of the Lefschetz number are the following: If L( f ) �= 0, then
f admits fixed points. If f = idM then L( f ) = χ(M). If f and g are two homotopic
maps from M to M , then L( f ) = L(g).

The singular case
Goresky and MacPherson proved in [98] the Lefschetz fixed point theorem in the
context of placid (Sect. 5.5.2 b) self maps of Witt spaces (see Sect. 5.4.6) and by
using intersection homology with middle lower perversity.

The intersection homology Lefschetz number of a placid self-map f : X → X is
defined by the formula [98, Sect. 4 Definition]:

I L( f ) =
dim X∑

i=0

(−1)iTrace( fi : I H m̄
i (X;Z) → I H m̄

i (X;Z)). (5.36)

In [98, Proposition 4.2], Goresky and MacPherson show that if f : X → Y is a
placid map between two compact orientedQ-Witt spaces, with n = dim X , then the
graph of f determines a canonical homology class [G( f )] ∈ I H m̄

n (X × Y ;Q).
For a placid self map of a Q-Witt space, both the graph of f and the diagonal

carry fundamental classes in intersection homology of X × X and one has:

Theorem 5.5.23 ([98], Theorem I) Let f : X → X be a placid self map of an n-
dimensional Q-Witt space. Let [G( f )] and [�] be the homology classes of the graph
of f and of the diagonal in I H m̄

n (X × X;Q). Then the Lefschetz number I L( f ) is
given by

I L( f ) = [G( f )] • [�]

where • denotes the intersection product of cycles in intersection homology.

The formula 5.35 has been extended in the singular situation by Goresky and
MacPherson (see [97],[98, Sects. 7–12]) in terms of local Lefschetz numbers of a
placid map f : X → X at isolated fixed points.

Theorem 5.5.24 ([98, Theorem II]) The intersection Lefschetz number is the sum
of the local contributions taken over all the fixed points.
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Another way to define local Lefschetz numbers is developed by Bisi et al. [14]
using Čech-de Rham theory. The coincidence of this later notion with Goresky and
MacPherson ones is shown in Brasselet-Suwa [33].

The Coincidence Theorem

The smooth case
In [122] Lefschetz defined the coincidence number of two maps f : M → N and
g : M → N where M and N are compact oriented smooth n-dimensional manifolds
without boundaries. The coincidence set C( f, g) is defined to be

C( f, g) = {x ∈ M | f (x) = g(x)}.

The Lefschetz coincidence number is defined as

L( f, g) =
n∑

k=0

(−1)kTrace(P DM ◦ gn−k ◦ P D−1
N ◦ fk) (5.37)

Hk(M;Q)
fk

Hk(N ;Q)

H n−k(M;Q)

P DM ∼=

H n−k(N ;Q)
gn−k

P DN ∼=

where vertical arrows are Poincaré duality isomorphisms. If L( f, g) is not zero, then
there is at least one coincidence point: C( f, g) is not empty.

The singular case
In the case of singular varieties, Goresky and MacPherson defined the notion of
placid correspondences C between n-dimensional Witt spaces X and Y as beeing an
n-dimensional compact oriented pseudomanifold C ⊂ X × Y such that each of the
projections πX : C → X and πY : C → Y is placid. According to the Proposition
5.5.19, one has homomorphisms on intersection homology:

(πY )∗(πX )
∗ : I H m̄

i (X) → I H m̄
i (Y ) and (πX )∗(πY )

∗ : I H m̄
i (Y ) → I H m̄

i (X).

IfC1andC2 are two correspondences between theWitt spaces X and Y , the Lefschetz
number I L(C1,C2) is defined to be the alternating sum of traces of the induced map

(π2
X )∗(π

2
Y )

∗π1
Y )∗(π

1
X )

∗ : I H m̄
i (X) → I H m̄

i (X).

Each correspondence defines a canonical intersection homology class

[Ci ] ∈ I H m̄
n (X × Y ;Q)
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and the Lefschetz number I L(C1,C2) is equal to the intersection product [C1] • [C2]
([98, Theorem I’]). Moreover, Goresky and MacPherson show ([98, Theorem II’])
that it is equal to the sum of the local linking numbers suitably defined (see [98,
Sect. 8]).

In the particular case of coincidences, given f, g : X → Y placid maps between
n-dimensional oriented compact Q-Witt spaces, the Lefschetz coincidence number
is defined by [35]

I L( f, g) =
∑

i

(−1)iTrace(gi fi ),

where fi : I H m̄
i (X) → I H m̄

i (Y ) and gi : I H m̄
i (Y ) → I H m̄

i (X) are defined for the
lower middle perversity m̄ (Proposition 5.5.19).

Theorem 5.5.25 [98, Sect.14], [35] The Lefschetz coincidence number of ( f, g)
is determined by the intersection of the canonical homology classes of the graphs,
[G( f )] and [G(g)].

I L( f, g) = (−1)n[G( f )] • [G(g)].

If I L( f, g) �= 0 then there is (at least one point) x ∈ X such that f (x) = g(x).
Examples of coincidence of maps are provided in [35] (J.-P. Brasselet, A.K.M.

Libardi, T.F.M. Monis, E.C. Rizziolli and M.J. Saia) with local and global explicit
computations.

5.5.4 Morse Theory

A complete history of Morse theory can be found, for instance in the Introduction
of the Goresky-MacPherson’s book [96], Sect. 1.7. A complete survey is given by
Mark Goresky in the Chap.5 of this Handbook (Vol. 1), see [90].

The Smooth Case

The main results of classical Morse theory for ordinary homology and for a compact
smooth variety M can be summarized as follows [136]:

A critical point of a smooth function f : M → R on amanifold M is a point where
the differential of f vanishes, its image by f is a critical value. A non-degenerate
critical point of f is a point for which the Hessianmatrix of second partial derivatives
of f is non-singular.

A smooth function f : M → R on a manifold M is aMorse function if it has only
non-degenerate critical points. According to a result by René Thom [178], the Morse
functions form an open, dense subset of all smooth functions f : M → R (for the
C2- Whitney topology).
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Considering a smooth function f : M → R and a point c ∈ R, let M<c denote
the inverse image by f of the open interval ] − ∞, c[.

The Morse Lemma says:

• For small enough ε, if the interval ]v − ε, v + ε[ does not contain any critical
value, then M<v+ε is homeomorphic to M<v−ε.

• If p is a non-degenerate critical point of f : M → R, then there exists a chart
(x1, x2, . . . , xn) in a neighborhood Up of p such that xi (p) = 0 for all i and
f (x) = f (p) − x2

1 − x2
2 − · · · − x2

k + x2
k+1 + · · · + x2

n inUp. The integer k is the
Morse index of f at p. For small enough ε, one has, with v = f (p),

Hi (M<v+ε, M<v−ε) =
{
0 for i �= k

Z for i = k
(5.38)

The Singular Case

In the case of a singular variety, there is no longer a Morse index for ordinary homol-
ogy. Goresky and MacPherson [93, Sect. 4.5 (3)] provide a nice counter-example.

In fact, the concept of Morse function in the case of isolated singular varieties has
been introduced by F. Lazzeri [119]. Some conditions for beeing a Morse function
on a stratified space have been stated by Benedetti [12] and Pignoni [151] (see [96,
Introduction, Sect. 1.4]).

Goresky and MacPherson assume that X is a purely n-dimensional complex ana-
lytic variety, endowed with a Whitney stratification (with complex analytic strata),
and embedded in a complex analytic manifold M . In [96, Introduction, Sect. 1.4
What is a Morse function ?] A C∞ function f : M → R is called a Morse function
for X provided

• For each stratum S of X , the function f |S has only nondegenerate critical points.
The critical points of f are the critical points of f |S and the critical values of f
are the values of f at these points.

• At each critical point p ∈ X , the differential d f (p)(τ ) �= 0 whenever τ is a limit
of tangent planes from some larger stratum containing S in its closure.

• All critical values are distinct.

If p is a critical point in the stratum S, then the Morse index k of f at p is defined
to be c + λ where c is the complex codimension of S in X and λ is the classical
Morse index of f |S .

In order to recoverMorse theory in the context of intersection homology, Goresky
and MacPherson define the following ingredients [95, 96], see also [90].

The first one is the complex link of a stratum S. Choose a manifold N meeting
S transversaly at p and a generic projection π : N ∩ X → C sending p to 0. For
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0 < ε � δ � 1 denote by B(p, δ) the ball of radius δ centered at p and Bδ = X ∩
B(p, δ), ∂Bδ = X ∩ ∂B(p, δ). The complex link LC of S is a pseudomanifold with:

LC = π−1(t) ∩ Bδ, ∂LC = π−1(t) ∩ ∂Bδ.

where 0 < |t | < ε.
Denote byμ he monodromy transformation obtained by carrying a chain Z inLC

with in ∂LC, over a small loop around 0 in C. The second ingredient is the Morse
group Ap, image of the variation map (see [93, Sect. 3.7] and [96, Part II, Sect. 6.3]):

(1 − μ) : I Hc−1(LC, ∂LC;Z) −→ I Hc−1(LC;Z)

where (1 − μ) vanishes on I Hc−1(∂LC).
Using intersection homology, Goresky and MacPherson recover Morse theory

for a compact Whitney stratified singular complex analytic variety X analytically
embedded in a smooth variety M , as follows:

Theorem 5.5.26 ([96]) For an open dense set of Morse functions f : M → R (in
the sense of Lazzeri and Pignoni), all values v ∈ R have exactly one of the following
properties (and only finitely many values have property 2):

(1) For small enough ε, then X<v+ε is homeomorphic to X<v−ε in a stratum pre-
serving way,

(2) There is a Morse index k of the critical point p with critical value v such that
for small enough ε,

I Hi (X<v+ε, X<v−ε;Z) =
{
0 for i �= k

Ap for i = k
(5.39)

In [93, 95, 96] Goresky andMacPherson provide various applications of stratified
Morse theory :

• The Lefschetz hyperplane theorem holds for the intersection homology of a (sin-
gular) projective algebraic variety [93, Sect. 5.4].

• The intersection homology of a complex n-dimensional Stein space vanishes in
dimensions > n [93, Sect. 5.3].

• (3) The sheaf of intersection chains on a general fibre specializes (over a curve) to
a perverse object on the special fibre [93, Sect. 6.1].

As the authors write on [93, Sect. 0.2], “other methods have been used to obtain
some of these results ..., however themethod ofMorse theory has several advantages:
it can be used to study homology with Z coefficients (as well as Q coefficients) and
it applies to analytic (as well as algebraic) varieties.”
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5.5.5 De Rham Theorems

By relating differential geometry to topology, de Rham’s theorem (1931) opened
the door to “countless” new results, applications, conjectures, and many alternative
proofs.

The passage from the smooth case to the singular case is due to Cheeger, Goresky
andMacPherson. From “geometric” results, theymainly developed the theory within
the framework of sheaves (see [88]). Several important conjectures have resulted in
various fields.

Although implicit in the previous works, the explicit and geometric translation
in terms of order of poles corresponding to the perversity was given in [28] (see
Sect. 5.5.5).

This section is divided into four parts: de Rham’s theorem in the smooth case,
de Rham’s theorem in the singular case, conjectures and applications, geometric
translation. In this section, all intersection homology groups are written with the
middle perversity the notation of which is omitted.

The Smooth Case

The de Rham Theorem (de Rham thesis [160]) provides a very useful relationship
between the topology and the differentiable structure of a P L-manifold. The de
Rham complex is the complex of smooth differential forms on a manifold M with
exterior derivative as the differential:

0 → �0(M)
d→ �1(M)

d→ �2(M)
d→ ...

The de Rham Theorem says that the cohomology H j
d R(M) of the de Rham complex

is isomorphic to the P L-cohomology H j (M;R). There are many proofs in the liter-
ature. TheWhitney’s book “Geometric integration theory” provides a nice geometric
proof of the Theorem [186, Chap. IV, Theorem 29A].

Let M be a Riemannian (compact) oriented manifold endowed with a metric g.
The metric induces an inner product on fibers T ∗

x (M) of the cotangent bundle and
then anL2-metric on� j (M) = �(� j (T ∗(M))). Let δ : � j (M) → � j−1(M) be the
formal adjoint of d relatively to the inner product and ∗ : � j (M) → �n− j (M) the
Hodge star operator [20]. The Hodge Theorem, first proved by Hodge (1933–1936)
with final proof by Hermann Weyl and Kunihiko Kodaira, says that every de Rham
cohomology class is represented by a unique harmonic form, i.e. a differential form
of which the Laplacian � is zero:

�(ω) = (dδ + δd)(ω) = 0.

A compact complex projective manifold is a Kähler manifold. The cohomology
groups admit a decomposition (pure Hodge decomposition)
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Hr (M;C) =
⊕

p+q=r

H p,q(M;C),

as direct sum of complex vector spaces and H p,q(M;C) = Hq,p(M;C). The (p, q)
components of a harmonic form are again harmonic.

The complex of sheaves is exact and is a soft resolution of the constant sheafRM .
It follows that the sheaf cohomology is the singular cohomology withR coefficients.

The Sheaf of L2 Differential Forms

In order to extend the theory to singular varieties, one considers a pseudomanifold
X whose regular part X0 = X \ � is a smooth (possibly incomplete) Riemannian
manifold with a metric g ([60], Sect. 3).

One define a presheaf on X by assigning by assigning to each open set U ⊂ X
the subset �(U,�i

(2)) in �i (U ∩ X0) of differential forms ω such that for any point
x in U , there is a neighbourhood V of x in U such that

∫

V ∩X0
ω ∧ ∗ω < ∞ and

∫

V ∩X0
dω ∧ ∗dω < ∞

This presheaf is filtered by differential form degree and the exterior derivative
makes it into a complex of presheaves. The associated sheaf complex, obtained by
“sheafification” is the sheaf of L2 differential forms denoted by�∗

(2). It is a complex
of fine sheaves whose cohomology is denoted by H∗

(2)(X).
The definition makes sense in the case of a local system L on X0 provided that L

has a smoothly varying positive definite inner product on each fiber. The restriction
of the sheaf to X0 is the sheaf of all smooth differential forms (with arbitrary growth)
on X0 (and coefficients in L).

The Cheeger-Goresky-MacPherson’s Conjecture

The study of L2 cohomology on the non-singular part of a variety with conical
singularities was initiated by Cheeger in the context of the study of analytic torsion.
In 1976 Sullivan observes similarity between I H andL2, namely similarity between
local results in Proposition 5.4.12 and forthcoming Lemma 5.5.30 The same year,
Deligne proposes to consider variation of Hodge structure on intersection homology
[60, p. 308] (see Sect. 5.5.5).

These observations led Cheeger, Goresky andMacPherson’s to the famous CGM
conjecture which concerns complex n-dimensional projective varieties and is in fact
made up of three conjectures [60, Sect. 4].

The conjecture are written for the middle perversity (here the two middle perver-
sities agree) which will be omitted.
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Conjecture 5.5.27 states that the intersection homology groups I H∗(X) satisfy the
following 5 conditions of the “Kähler package”. That is :

1. Poincaré duality (see Sect. 5.5.8). The intersection pairing

I Hi (X) × I H2n−i (X) → C (5.40)

is non singular for all i .
2. Pure Hodge decomposition. There is a natural direct sumHodge decomposition

I Hr (X) ∼= ⊕p+q=r I Hp,q(X)

such that
I Hp,q(X) ∼= I Hq,p(X).

The decomposition is compatible withmaps I f∗ and I f∗ when they exist, for example
if f : Y → X is normally nonsingular with relative dimension m then

I f∗ : I Hp,q(Y ) → I Hp,q(X) and I f ∗ : I Hp,q(X) → I Hp−m,q−m(Y ).

Themap fromcohomology Hi (X) → I H2n−i (X) is amorphismofHodge structures.
3. Hard Lefschetz. Let H be a hyperplane in the ambient projective space, which is

transverse to a Whitney stratification of X . Let N ∈ H 2(X) denote the cohomology
class represented by H ∩ X and let L : I Hi (X) → I Hi−2(X) denote multiplication
by this class. then the map

Lk : I Hn+k(X) → I Hn−k(X)

is an isomorphism for each k.
Let define Pn+k(X) = ker(Lk+1), then the Lefschetz decomposition

I Hm(X) = ⊕k Lk(Pm+2k(X))

is compatible with the Hodge decomposition.
4. Lefschetz Hyperplane Theorem, Let H be a hyperplane in the ambient projective

space, which is transverse to a Whitney stratification of X . The homomorphism
induced by inclusion

I Hk(X ∩ H ;Z) → I Hk(X;Z)

is an isomorphism for k < n − 1 and a surjection for k = n − 1. (for instance see
[72, 102]).

5. Hodge Signature Theorem. If σ(X) denotes the signature of the intersection
pairing (5.40) on I Hn(X), then

σ(X) =
∑

p+q≡0(mod2)

(−1)p dim I H(p,q)(X).
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As written in [60], Conjecture 5.5.27 follows from the stronger following Con-
jectures 5.5.28 and 5.5.29.

Conjecture 5.5.28 The L2 cohomology group H k
(2)(X) is finite dimensional and is

isomorphic to the subspace Hk of �k ∩ L2 which consists of the square summable
differential k-forms which are closed and co-closed dω = δω = 0. Furthermore, the
operator “integration” preserves this subspace Hk .

Conjecture 5.5.29 For almost any chain ξ ∈ Ck(X) and almost anydifferential form
θ ∈ Hk , the integral

∫
ξ
θ is finite and

∫
∂η
θ = ∫

η
dθ whenever both sides are defined.

The induced homomorphism

H j
(2)(X)

∫

−→ Hom(I H m̄
j (X);C)

is an isomorphism.

Cheeger, Goresky andMacPherson conjectured that each class contains an unique
harmonic (closed and co-closed) representative and that splitting the harmonic forms
into their (p, q)–pieces yields a (pure) Hodge decomposition, compatible with
Deligne’s mixed Hodge structure on the ordinary cohomology groups of X . They
noted that the Hodge decomposition would exist if the metric on U were complete,
and they suggested that another approach to constructing a Hodge decomposition
of I H∗(X) is to construct a complete (Kähler) metric. Moreover, they gave a lot
of evidence for the validity of the conjectures. This fundamental work of Cheeger,
Goresky, and MacPherson has lead to a great deal of work by many people.

Poincaré Lemma for L2-cohomology
Let L be an n − 1-dimensional Riemannian (compact) manifold endowed with a
metric gL . For h > 0, the metric cone on L , denoted by ch(L), is the completion
of the incomplete Riemannian manifold L × [0,∞[ endowed with the metric g =
dr ⊗ dr + r2h gL .

As before,�•
(2)(c

h L) denotes the subset of differential formsω ∈ �• (ch(L) \ {0})
such that

∫

ch(L)\{0}
ω ∧ ∗ω < ∞ and

∫

ch(L)\{0}
dω ∧ ∗dω < ∞

where d : �i → �i+1 is induced by the external derivative and the operator ∗ is the
Hodge operator [20, 58, 59].

The L2-cohomology groups of the cone c(L), denoted by H j
(2)(c

h(L)) are coho-
mology groups of the complex �

•
(2)(c

h(L)).

Lemma 5.5.30 ([59, Lemma 3.4]) The L2-cohomology groups of the cone c(L)
satisfy
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H j
(2)(c

h(L)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H j
dR(L) if j <

n − 1

2
+ 1

2h

0 if j ≥ n − 1

2
+ 1

2h
.

Varieties with isolated conical singularities
Let X be a singular variety whose singularities are isolated points {ai } admitting
each one a neighborhood Ui in X , which is isometric to the (open) metric cone c̊(Li )

whose basis is a smooth manifold Li . In the particular case n is even, h = 1 and p̄
is the middle perversity m̄, then p̄(n) = n

2 − 1, and one has:

n − 1 − pn = n − 1

2
+ 1

2h
= n

2

Cheeger, Goresky and MacPherson study the two following cases:
(1) [59, Theorem 6.1] and [60, Sect. 3.4]. Let X be a pseudomanifold embedded as

P L-subvariety in R
N and let � the singular subset in X . There is, on X0 = X \ �,

a metric g̃ which endows the manifold X \ � of a structure of flat Riemannian
manifold, i.e. every point x in the n − 1-skeleton admits a neighborhoodUx isometric
to an open subset in R

N .
(2) [59, Sect. 3.5], [60, Sect. 3.5]. X is a compact analytic variety embedded in a

Kählerian manifold. Then X \ � is endowed with the metric induced by restriction
of the Kählerianmetric. One assume that� is locally analytically conical, that means
the following:

A variety X is locally analytically conical if each point p ∈ X has a neighborhood
U and an analytic embedding ρ : U → C

N such that ρ(U ) is a cone at ρ(p) (see
[60, Sect. 3.5 Definition and Examples]).

Theorem 5.5.31 ([60]) In the two previous cases, the integration map induces an
isomorphism:

H j
(2)(X)

∫

−→ Hom(I H p̄
j (X); R) (5.41)

The idea is to prove that the direct image of the presheaf on U formed of the
appropriate L2-forms of degree i has a “fine” associated sheaf and that, as i varies,
those associated sheaves form a (de Rham) complex that satisfies the axioms that
characterize IC∗(X); the cohomology groups of the complex are equal to its hyper-
cohomology groups because the sheaves are fine.

Other proofs of CGM conjectures
The conjectures of Cheeger, Goresky and MacPherson were also treated with some
success in the case that X0 is the smooth part of a complex projective variety X with
isolated singularities.

Let X be a normal singular algebraic surface (overC) embedded in the projective
space P

N (C) and let � be its singularity set, which consists of isolated singular
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points. Restricting the Fubini-Study metric of PN (C) to X0 = X \ �, provides an
incomplete Riemannianmanifold (X0, g).Wu-ChungHsiang andVishwambhar Pati
proved in [107] that the L2-cohomology Hi

(2)(X0) is naturally isomorphic to the
dual of themiddle intersection homology I H m

i (X). However their proof has a certain
gap corrected by Nagase [139] (see also [137, 138]). The “non- normal” case can be
proved in the same way by making its normalization, as asserted in [107].

Saper [163, 164] who was inspired by the case of the Zucker conjecture
(Sect. 5.5.5), constructed a complete Kähler metric on X0 whose L2-cohomology
groups are dual to the intersection homology groups of X .

Finally, Ohsawa [147, 148] proved the conjecture in dimension dim X ≤ 2: If
X in P

n(C) is a projective variety of dimension dim X ≤ 2, then the L2 de Rham
cohomology groups of the regular part X0, with respect to the Fubini-Study metric
are canonically isomorphic to the intersection cohomology groups of X .

The Deligne Conjecture: Variation of Hodge Structures

Over a compact Kähler manifold X , Deligne (unpublished manuscript, see [188])
has constructed canonical Hodge structures on the cohomology groups H p(X,L),
of weight p + k. When the basis X is non-compact, Deligne’s arguments still put
Hodge structures on the L2 cohomology groups of the completion X provided they
are finite dimensional.

Let X be a nonsingular algebraic variety and D is a divisor with normal crossings
in X , which may be interpreted as giving a stratification of X whose largest stratum
is X \ D. The considered local system is underlying a polarizable variation of Hodge
structure.

A variation of Hodge structure, considered as local system L on X \ D, has an
IC extension to all of X . Deligne conjectures that IC(X;L) is isomorphic to the
sheaf of L2 differential forms on X , where the Riemannian metric on X \ D, is the
complete metric that is hyperbolic near each codimension 1 divisor.

In the case of one dimensional base, Zucker [188] has obtained a natural identi-
fication

H∗
(2)(X ,L) ∼= H∗(X , i∗L)

here i∗L is the direct image of L on X . The L2 cohomology groups are then finite
dimensional and come equipped with Hodge structures.

Cattani et al. [51], and independently, Kashiwara and Kawai [111] proved the
Deligne conjecture, for higher dimensions:

Theorem 5.5.32 The complex of sheaves L2 differential forms on X satisfies the
axioms of middle intersection cohomology sheaf with values in the local system L.
In particular

H∗
(2)(X ,L) ∼= I H∗(X ,L)



5 Intersection Homology 285

Corollary 5.5.33 The intersection cohomology groups I H ∗(X ,L) carry canonical
(pure) Hodge structures of weight p + k.

The Zucker Conjecture

Zucker was aware of the work of Cheeger, Goresky, and MacPherson that appears
in [59, 60] when he made the following conjecture, which first appeared in a 1980
preprint ([189]):

Conjecture 5.5.34 Let X be theSatake,Baily-Borel compactificationof the quotient
space U of a Hermitian symmetric domain modulo a proper action of an arithmetic
group �. Let U be provided with the natural complete metric, then the sheaf of
L2-differential forms on X with coefficients in a metrized local system L on U
is isomorphic (in the derived category) to the sheaf IC(X;L) (see Introduction in
[123]).

Zucker was led to this conjecture by some examples that he worked out [188,
Sect. 6] of his general results [189, (3.20) and (5.6)] about theL2-cohomology groups
of an arithmetic quotient of a symmetric space. In the examples, the compactification
is obtained by adjoining a finite number of isolated singular points, and Zucker was
struck by the values of the local L2-cohomology groups at these points: they are
equal to the singular cohomology groups of the link in the bottom half dimensions
and to 0 in the middle and in the top half dimensions (compare with Lemma 5.5.30).

Borel [15], Borel and Casselman [16] proved the Zucker conjecture in the partic-
ular case of a group of Q-rank one or two (see also [50]).

The conjecture has been fully proved by Looijenga [123], Saper and Stern [165].
Looijenga uses Mumford’s (1975) desingularization of X and the decomposition
theorem. Saper and Stern use a more direct method, which they feel will also yield
a generalization of a conjecture due to Borel (see [165]).

One reason for the great interest in Zucker’s conjecture is that it makes it possible
to extend the “Langlands program” to cover the important non compact case, as
Zucker indicates in [190].

Other Related Results

There is a lot of results related to the previous ones. The intersted reader may consult
Nagase [139], Saper [163], Pardon and Stern [150], etc.

The Geometric Viewpoint

In this section, all the homology and cohomologygroupswill bewith real coefficients.
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Shadow forms
The shadow forms have been defined by Brasselet, Goresky and MacPherson [28].

The idea is to associate a differential form ω(ξ) to simplices of a barycentric
subdivision K ′ of a given triangulation K , so that there is a clear relationship between
the defect of transversality of the simplices relatively to the simplices σ of K and
the order of the pole of the corresponding differential form on σ .

Various equivalent definitions of the shadow forms are provided in [28]. One of
them goes as follows: Let � = �n be the standard n-simplex.

� = {(x1, x2, . . . , xn+1) ∈ R
n+1| 0 ≤ xi ≤ 1,

∑
xI = 1}.

The shadow forms are defined for k-simplices ξ of the barycentric subdivision �′
which do not lie in the boundary of�. Such a barycentric subdivision can be defined
for each point p in the interior of �, requiring that for each pair F ′ < F of faces of
�, the barycenters of F , F ′ and of the face opposite to F ′ in F are collinear. The
corresponding barycentric subdivision of�will be denoted�′(p). Every k-simplex
ξ admits a geometrical realization ξ(p) in this subdivision.

Fig. 5.7 The shadow is the dotted area. The point p is in the shadow Sξ (c) but p′ is not

Let c be a singular chain in the interior of�, the shadow Sξ (c) cast by an (n − k)-
chain c with respect to ξ is the set of all points p such that ξ(p) intersects c (Fig. 5.7).

Definition 5.5.35 The shadow form ω(ξ) is the unique differential form such that
the value of its integral over any (n − k)-chain c is the volume of the shadow Sξ (c):

∫

c
ω(ξ) = volume (Sξ (c)).

An explicit equivalent definition goes as follows: denote by Dξ the incidence
variety

Dξ = {(p, x) ∈ int (�) × int (�) : x ∈ ξ(p)}.
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Let i be the inclusion i : Dξ ↪→ � × � and let π1 and π2 be the projections on the
first and second factors of � × �.

Dξ
i

� × �

π1 π2

� �

If (x1, . . . , xn+1) are the barycentric coordinates of�n , theWhitney form W (�n)

is the volume form of �n ,

W (�n) = W (x1, . . . , xn+1) = n!
n+1∑

i=1

(−1)i+1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn+1.

Proposition 5.5.36 The shadow form ω(ξ) is the (n − k)-differential form defined
by

ω(ξ) =
∫

π2

i∗π∗
1 (W (�n))

where
∫
π2

denotes integration along the fibres of π2 (see [20]).

The differential form ω(ξ) is C∞ on int (�). Indeed Dξ is a smooth manifold and
the fibres π−1

2 (x) ∩ Dξ are relatively compact.
Generalizing the definition to polyhedra provides:

Theorem 5.5.37 ([28, Corollary 9.3]) Let X be a polyhedron in the Euclidean space
Rn. Fix q, 1 ≤ q ≤ ∞, and denote by p̄(q) the highest perversity whose graph is
situated strictly below the line from origin and with slope 1/q. Then the intersection
homology of X, for the perversity p̄(q), is isomorphic to Lq -cohomology of X:

I H p̄(q)
k (X) ∼= H n−k

(q) (X).

Conjecture 5.5.38 (Brasselet et al. [28]) Let X be a stratified space with a Rie-
mannian metric and conical singularities. Let � be the singular set, q ≥ 2, and
Lq -cohomology of X \ � is finite dimensional, then it is isomorphic to intersection
cohomology of X .

The conjecture has been proved by Youssin [187] who also extends the result to
spaces with horn-singularities.

Belkacem Bendifallah [11] provided an explicit formula for the coefficients of
shadow forms as integrals ofDirichlet type, obtaining an alternative proof ofTheorem
5.5.37. He gave a duality formula and a product formula for shadow forms and
constructed the correct underlying algebraic structure.

The Brasselet-Legrand approach.
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J.-P. Brasselet and A. Legrand consider the situation of an n-dimensional pseudova-
riety X endowed with a Thom-Mather stratification, and whose strata are smooth
manifolds.

The idea is to prove a de Rham type theorem by considering a complex of
differential forms whose coefficients are C∞ functions on the regular part of X which
may have poles on the singular strata but whose behavior in a neighborhood of the
strata is controlled. The control is performed through two parameters, associated
with each stratum Sn−α . The first control βα corresponds to an admissible maximum
order of poles of the functions on the stratum, the second cα is related to the local
conical metric in the neighborhood of the stratum. An admissible differential form
can have a pole on a stratum, but the the order of the poles should not be too large
for the Poincaré lemma to be verified to some degree. Also, the quotients [βα/cα]
should satisfy the same inequalities than the G M-perversities (see formula 5.14).

The obtained complex�•
β,c is a complex of soft sheaves satisfying axioms [AX1] p̄

with

pα = α − 2 −
[
βα

cα

]

whose hypercohomology is intersection homology for the complementary perversity.
On the one hand the complex �

•
β,c is a generalization of the complex of shadow

forms.
On the other hand, it allows to define a suitable algebra in order to generalize

the Hochschild-Kostant-Rosenberg theorem to the case of singular varieties, more
precisely to manifolds with boundary and to varieties with isolated singularities. The
classical result of Hochschild et al. [105] asserts that the Hochschild homology of a
finitely generated, smooth complex algebra A equals the space of Kähler differentials
over A. In 1982, Connes [62] extended this result in a topological setting and in [31]
the authors generalize the Connes’s idea to the case of singular varieties with isolated
singularities.

The relation between the defects of transversality (perversity) of a cycle and the
order of the poles of the associated differential form are explicit in the context of
shadow forms and the context of the complex �

•
β,c. The smallest is the dimension

of the stratum, the greater the admissible order of the poles of the differential forms.
The physicist Alain Connes (private conversation) says that “there is a higher con-
centration of energy in the smaller singular strata”.

The Goresky-MacPherson’s complex �
•
q̄ .

The Goresky-MacPherson complex has been described by Brylinski [46] (for an
interpretation in terms of sheaf defined on the resolution of the stratified space see
[1, Sect. 6.5]).

Let π : M → B be a smooth fibration of smooth manifolds. A filtration (Cartan’s
filtration) of the de Rham complex �

•
M is defined as follows :

Definition 5.5.39 For k ≥ 0, Fk�
•
M is the sub-complex of �•

M consisting of the
differential forms ω such that ω and dω satisfy: if ξ1, ξ2, . . . , ξk+1 are k + 1 vector
fields on M , tangent to the fibres of π , then i(ξ1) ◦ · · · ◦ i(ξk+1)(ω) = 0.
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Let X be a pseudomanifold with C∞-structure, equipped with a Thom-Mather
stratification (see [179, 4.2.17]). If Si ⊂ S̄ j , (πi )|Ti ∩Sj is C∞ and πi ◦ π j = πi on
Ti ∩ Tj . One denotes by X0 the smooth stratum of X .

Definition 5.5.40 Let q̄ be a perversity, denote by�•
q̄ the sub-complex of�•

X0 con-
sisting of the differential formsω such that every point of Sn−α admits a neighborhood
V ⊂ Tn−α on which the restriction of ω is in Fq(α)�

•
V ∩X0 , relative to the projection

V ∩ X0 → Sn−α induced by πn−α .

This means that, near Sn−α , ω satisfies i(ξ1) ◦ · · · ◦ i(ξq(α)+1)ω = 0 if the ξi are
vector fields defined on X0 and are tangent to the fibers of πn−α .

Proposition 5.5.41 [46, Proposition 1.2.6] The complex of sheaves �
•
q̄ satisfies

(AX1)q̄ .

As a corollary, the hypercohomology groups of the complex of sheaves �•
q̄ are

isomorphic to Hom(I H p̄
j (X);R), where p̄ and q̄ are complementary perversities.

See also the survey by Pollini [156].

L∞-cohomology.
Let X be a subanalytic compact pseudomanifold. In [182] Valette shows a de Rham
theorem for L∞-cohomology forms on the nonsingular part of X . The obtained
cohomology is isomorphic to the intersection cohomology of X for the top perversity.
There is a Lefschetz duality theorem relating the L∞-cohomology to the so-called
DirichletL1-cohomology.As a corollary, theDirichletL1-cohomology is isomorphic
to intersection cohomology in the zero perversity.

Morse functions.
Let X be a space with isolated conical singularities. In [124] U. Ludwig establishes,
using anti-radial Morse functions on X , a combinatorial complex which computes
the intersection homology of X . The complex constructed is generated by the smooth
critical points of theMorse function and representatives of the de Rham cohomology
(in low degree) of the link manifolds of the singularities of X . It can be seen as
an analogue of the famous Thom-Smale complex for smooth Morse functions and
singular homology on a compact manifold.

5.5.6 Steenrod Squares, Cobordism and Wu Classes

In this section, the coefficients are the mod 2 integers Z2.

Steenrod Squares and Wu Classes

Goresky and Pardon [99] define four classes of singular spaces for which they define
various characteristic numbers and for which these characteristic numbers determine
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the cobordism groups. In the four cases, they construct characteristic numbers by
lifting Wu classes to intersection homology. Then they can multiply them.

In the singular case, the mod 2 Steenrod square operations have been defined in
intersection cohomology by Goresky in [87] (see also [99, Sect. 4]), as operations

Sqi : I H j
c̄ (X) → I Hi+ j

2c̄ (X)

for perversities c̄ such that 2c̄ ≤ t̄ . Via Poincaré duality one has similar operations
in intersection homology (with compact supports).

Definition 5.5.42 ([99, Sect. 5.1]) Let X be an n-dimensional pseudomanifold.
Assume c̄ is a perversity such that 2c̄ ≤ t̄ . Let b̄ = t̄ − c̄ be the complementary
perversity. For any i with 0 ≤ i ≤ [n/2] the Steenrod square operation

Sqi : I H c̄
i (X) → I H 2c̄

0 (X) → Z2

is given by multiplication with the intersection cohomology i th-Wu class of X :

vi (X) = vi
b̄
(X) ∈ I Hi

b̄
(X).

One defines vi (X) = 0, for i > [n/2].
If X is a Z2-Witt space (see Sect. 5.4.6), then the middle intersection homol-

ogy group is self-dual, i.e., satisfies the Poincaré duality over Z2. Also the natural
homomorphism

I Hi
m̄(X) → I Hi

n̄(X)

is an isomorphism.

Definition 5.5.43 ([99, Sect. 8.1]) A stratified pseudomanifold X is locally ori-
entable if, for each stratum, the link is an orientable pseudomanifold. A stratified
pseudomanifold X is a locally orientable Witt space if it is both locally orientable
and a Z2-Witt space.

In the situation of a locally orientable Witt space, the Wu classes which are
defined to be middle intersection homology classes, can be multiplied to construct
characteristic Wu numbers

ε(vi (X) · v j (X)) = 〈vn−i (X) ∪ vn− j (X), [X ]〉 ∈ Z2

where i + j = n. The map ε : H0(X,Z2) → Z2 denotes the augmentation and the
following diagram commutes:
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I H m̄
i (X) × I H m̄

j (X)
·

I H t̄
0(X)

ε
Z2

I H n−i
m̄ (X) × I H n− j

m̄ (X)
∪

∼=×∼=

I H n
0̄
(X).

∼=

Theorem 5.5.44 ([99, Theorem 10.5]) A locally orientable Witt space X of dimen-
sion n is a boundary of a locally orientable Witt space Y if and only if each of the
characteristic Wu numbers

vi j (X) = ε(vi (X)v j (X)v1(X)n−i− j ) ∈ Z2

vanish, where ε : H0(X;Z2) → Z2 denotes the augmentation.

Here, the class v1 is a cohomology class and vi v j is a (intersection) homology
class, so the product is a well defined cobordism invariant.

In [99] M. Goresky and W. Pardon provide further important results concerning
cobordism of singular spaces (see also [56]).

Cobordism of Maps in the Singular Case

Generalizing the results of R. Stong in the smooth case, J.-P. Brasselet, A. Libardi,
E. Rizziolli and M. Saia define the cobordism of maps in the following way:

Definition 5.5.45 ([34]) Let f : X → Y be a map between pseudomanifolds of
dimensions m and n respectively. The triple ( f, X,Y ) is null-cobordant if there
exist:

1. pseudomanifolds V and W with dimensions m + 1 and n + 1, respectively, and
∂V = X and ∂W = Y .

2. a map F : V → W such that the following diagram commutes.

UX

∼= φ

F|UX
UY

∼=ψ

∂V × [0, 1) f ×I d
∂W × [0, 1),

whereUX andUY are collared neighborhoods of X andY in V andW respectively,
and φ and ψ are P L-diffeomorphisms such that φ(x) = (x, 0), x ∈ ∂V and
ψ(y) = (y, 0), y ∈ ∂W .

3. F|∂V = f : ∂V → ∂W .

Let f : X −→ Y be a map, with X a compact locally orientable Witt space of
pure dimension m and Y a closed n-dimensional smooth manifold. Then the map f! :
I H

p̄

i (X) → I H
p̄

i (Y ) is defined in such a way that the following diagram commutes
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Hi (X)
f∗

Hi (Y )

I H p̄
i (X)

ωX

f!
I H p̄

i (Y )

ωY �

i.e. f! = (ωY )
−1 ◦ f∗ ◦ ωX , where the map ωY is an isomorphism since Y is smooth.

Denote by f̃! the composition map f̃! = α−1
Y ◦ f!, i.e. the composition map

I H p̄
i (X)

ωX−→ Hi (X)
f∗−→ Hi (Y )

P−1
Y−→ H n−i (Y )

where the last arrow denotes the inverse Poincaré isomorphism.

Theorem 5.5.46 ([34]) Let X be a compact locally orientable Witt space of pure
dimension m and Y a closed n-dimensional smooth manifold. Given a map f : X −→
Y , if the triple ( f, X,Y ) is null-cobordant, with ( f, X,Y ) = ∂(F, V, W ) and W is
a smooth manifold, then for any partition � and r numbers u1, . . . , ur satisfying
ui ≤ [m/2] for all i and (�1 + �2 + . . . �s) + u1 + . . . + ur + r(m − n) = n, the
Stiefel-Whitney–Wu numbers

〈w�(Y ). f̃!(vm−u1(X)). · · · . f̃!(vm−ur (X)), [Y ]〉

are zero.

Let f : X → Y be a proper and normally nonsingular map of pseudomanifolds,
there is an unique Gysin map

I fi : I H m̄
i (X) → I H m̄

i (Y )

such that the following diagram commutes (Theorem 5.5.18, see [94, Sect. 5.4.3]).

Hi (X)
f∗

Hi (Y )

I H p̄
i (X)

ωX

Ifi
I H p̄

i (Y ).

ωY

(5.42)

The same result holds for placid maps as well (Proposition 5.5.19, see [94] and
[5, Proposition 3.2]).

Theorem 5.5.47 ([34]) Let f : X −→ Y be a normally nonsingular (or placid)
map, with X and Y compact locally orientable Witt spaces of pure dimension m
and n respectively. If ( f, X,Y ) is null-cobordant, then for any u with 0 ≤ u ≤ n, the
following Wu numbers vanish:

〈vn−u(Y ).I fi (vu(X)), [Y ]〉 = 0.



5 Intersection Homology 293

5.6 Supplement: More Applications and Developments

5.6.1 Toric Varieties

Max Brückner (for the octatope) [43, 44], Max Dehn (in 1905, for dimensions 4 and
5) [65] and Duncan Sommerville [170] (in 1927, in all dimensions) proved certain
relations involving numbers of faces for simplicial polytopes.

Let P be an n-dimensional simplicial polytope. For i = 0, . . . , d − 1, let fi

denote the number of i-dimensional faces of p. The sequence

( f0, f1, . . . , fd−1)

is called the f -vector of the polytope P . Additionally, set f−1 = fd = 1. Then for
any k = 0, . . . , d − 2 the following Dehn-Sommerville equation holds:

d−1∑

j=k

(−1) j

(
j + 1

k + 1

)

f j = (−1)d−1 fk .

When k = −1, it expresses the fact thatEuler characteristic of an (d − 1)-dimensional
simplicial sphere is equal to 1 + (−1)d−1.

For k = 0, 1, . . . , d + 1, let

hk =
k∑

i=0

(−1)k−i

(
n − i

k − i

)

fi−1.

The (d + 2)-uple
h(P) = (h0, h1, . . . , hd+1)

is called the h-vector of P .
The generalized lower bound conjecture (McMullen-Walkup) [135] is the follow-

ing:

Conjecture 5.6.1 Let P be a simplicial n-dimensional polytope. Then

1. 1 = h0 ≤ h1 ≤ · · · ≤ h[ d
2 ].

2. for an integer 1 ≤ r ≤ d
2 , the following are equivalent:

a. hr−1 = hr .
b. there is a triangulation K of P all of whose faces of dimension at most d − r

are faces of P .

In McMullen [134] conjectured that the Dehn-Sommerville relations together
with the generalized lower bound conjecture provide sufficient conditions for the
existence of a simplicial polytope with a given h-vector.
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If k and i are positive integers, then k can be written uniquely in the form

k =
(

ni

i

)

+
(

ni−1

i − 1

)

+ · · · +
(

n j

j

)

,

where ni > ni−1 > · · · > n j ≥ j ≥ 1. Define

k<i> =
(

ni + 1

i + 1

)

+
(

ni−1 + 1

i − 1

)

+ · · · +
(

n j + 1

j + 1

)

.

Also define 0<i> = 0. A vector k0, k1, . . . , kd of integers is an M-vector if k0 =
1 and 0 ≤ ki−1 ≤ k<i>

i for 1 ≤ i ≤ d − 1. McMullen conjectured that a sequence
(h0, . . . , hd) of integers is the h-vector of a simplicial convex d-polytope if and only
if h0 = 1, hi = hd−i for 0 ≤ i ≤ d and the following sequence is an M-vector:

(h0, h1 − h0, h2 − h1, . . . , h[ d
2 ] − h[ d

2 ]−1).

The “if” part was proven by Billera and Lee [13].
The “only if” part was proven by Stanley [173] in a very surprising paper, as a

consequence of the inequalities of Betti numbers provided by the hard Lefschetz
theorem, and considering the cohomology of an associated toric variety, which is
non-singular. By this paper deep results from algebraic geometry are related to the
study of combinatorics.

A simplicial polytope is always rational so there exists an associated toric variety.
In the non-simplicial (but still rational) case the associated toric variety is singular. In
1981 R.MacPherson showed how to compute the (rational) intersection cohomology
of the (possibly singular) toric variety associated to any rational convex polytope and
spoke about it in many conferences. This calculation was popularized by J. Bernstein
and A. Khovanski. Proofs were published by: Fieseler [68] and by Denef and Loeser
[64]

In [172] Stanley used this calculation together with the hard Lefschetz theorem
for I H to prove the generalized lower bound conjectures for rational convex poly-
topes and conjectured that the same result holds in the non-rational case as well.
The calculations are simplified if one considers the torus-equivariant intersection
cohomology instead.

In the case of a non-rational polytope, no toric variety exists. This led to the
possibility of proving the same result for non-rational polytopes by constructing
the torus-equivariant intersection cohomology, in a purely combinatorial manner,
together with a proof that it satisfies the hard Lefschetz theorem. The theory was
successfully developed by Barthel et al. [8, 9], Bressler [37], Bressler and Lunts
[38, 39], Karu [110] (see also Fieseler [69] and Braden [21, 22]). This completed
the proof of Stanley’s conjectures for non-rational polytopes.
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5.6.2 The Asymptotic Set

Let F : X = C
n → Y = C

n be a polynomial mapping. In the study of geometrical
or topological properties of polynomial mappings, the set of points at which those
maps fail to be proper plays an important role. The asymptotic set

SF = {a ∈ Y s.t. ∃{ξk} ⊂ X, |ξk | → ∞, F(ξk) → a}

is the smallest set SF such that the map

F : X \ F−1(SF ) → Y \ SF

is proper. In a topological approach of the Jacobian conjecture, it reduces to show
that the asymptotic set of a complex polynomial mapping with non zero constant
Jacobian is empty. It is then natural to study the topology of the asymptotic set.

Define by Sing(F) the singular locus of F (the zero set of its Jacobian determi-
nant) and denote by K0(F) the set of critical values of F , i.e. the set F(Sing(F)).
Define theRiemannianmanifold MF asCn \ Sing(F)with the pull backofEuclidean
Riemannian metric on R2n = C

n . This metric is non degenerate outside the singular
locus of F .

Proposition 5.6.2 ([180, Proposition 2.3]) Let F : Cn → C
n be a polynomial map.

There exists a real semi-algebraic pseudomanifold NF ⊂ R
ν , for some ν ≥ 2n, such

that
Sing(NF ) ⊂ (SF ∪ K0(F)) × {0Rp }.

with p = ν − 2n, and there exists a semi-algebraic bi-Lipschitz map:

hF : MF → Reg(NF ),

where NF is equipped with the metric induced by R
ν .

Case F : C2 → C
2.

The first result comes from Anna and Guillaume Valette. In [180], they associate the
singular pseudomanifolds NF to polynomial mappings F : C2 → C

2. They prove
that themap F with non-vanishing Jacobian is not proper if and only if the intersection
homology of NF is nontrivial in dimension 2 and for any (or some) perversity. The
intersection homology of NF describes the geometry of the singularities at infinity of
themapping F . This provides a new and original approach to the Jacobian conjecture.
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Case F : Cn → C
n.

Th?uyNguy
∼
ên Thi. Bích, withAnna andGuillaumeValette [144] consider the leading

forms F̂i of the components of a polynomial mapping

F = (F1, . . . , Fn) : Cn → C
n.

They obtain:

Theorem 5.6.3 ([144]) Let F : Cn → C
n be a polynomial mapping with nowhere

vanishing Jacobian. If rank(DC F̂i )i=1,...,n > n − 2 then F is not proper if and only
if I H p̄

2 (NF ) �= 0 for any (or some) perversity p̄.

In [140] Th?uy Nguy
∼
ên T.B. shows that for a class of non-proper generic dominant

polynomial mappings, the results in [144, 180] hold also without hypothesis of non
emptyness of the set K0(F). In her thesis, [141], she provides explicit stratifications of
the asymptotic set SF and of the critical set K0(F) of polynomial map F : Cn → C

n

by a new method, that she called the method of “façons”. That method appears to be
a very powerful and a promising method not only for the computation of intersection
homology. A large number of examples is provided.

In [142], Th?uy Nguy
∼
ên T.B. describes explicitely such a variety NF associated to

the Pinchuk’s map and calculate its intersection homology. The result describes the
geometry of singularities at infinity of the Pinchuk’s map. She also shows that the
real version of the A. and G. Valette’s results in [180] does not hold.

Case F : Cn → C
n−1

Given a polynomial mapping G : Cn → C
n−1, with n ≥ 2, in [143], Th?uy Nguy

∼
ên

T.B. and M.A. Soares Ruas construct singular varieties VG , similarly to the previous
NF . They prove that if the intersection homologywith total perversity (with compact
or closed supports) in dimension two of (any of the corresponding) VG is trivial then
G is a fibration.

5.6.3 Factorization of Poincaré Morphism for Toric Varieties

In this section, all homology and cohomology groups are with Z coefficients. Refer-
ences for this section are [6–8] (see also [83]).

The Cartier and Weil divisors play an important role for normal varieties. Given
a Cartier divisor of a complex n-dimensional variety X one can associate its Chern
class in H 2(X;Z). Given a Weil divisor , one can associate its class in H2n−2(X;Z).
In the two cases, the class of a principal divisor is zero. Denoting by DivC(X) and
DivW(X) the abelian groups of classes of algebraic divisors of Cartier and Weil
modulo the principal divisors, there are homomorphisms
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c1 : DivC(X) → H2(X) and κ : DivW(X) → H2n−2(X).

For k = 2 the Poincaré morphism,

P2 : H 2(X) −→ H2n−2(X),

is cap-product by the fundamental class [X ] of X . Let D be a Cartier divisor, then

P2(c
1(D)) = κ(D).

In the smooth case, the Poincaré morphism is an isomorphism and the two notions
of divisors coincide.

For a normal toric variety X , the divisors classes admit invariant representatives
under action of the torus T (see [81, 3.4]); There are isomorphisms

DivC(X) ∼= DivTC(X) and DivW(X) ∼= DivTW(X)

where DivTC(X) and DivTW(X) denote the groups of invariant divisors classes.
A non-degenerated toric varieties is a toric variety which is not isomorphic to the

product of a toric variety of dimension d < n and an n − d-dimensional torus. Its
fundamental group is finite.

For every perversity p̄, let denote by i(p) the highest integer i ≤ n such that
p(2i) ≤ 1 and Vp the invariant open subset of X union of orbits with dimension at
least n − i(p). Then the group I H p̄

2n−2(X) is isomorphic to the group

DivTp̄(X) = {[D] ∈ DivTW(X) : D|Vp ∈ DivTC(Vp)}

and one has.

Theorem 5.6.4 ([6, Satz 2]) Let X be a non degenerated toric variety, then:

H 1(X) ∼= H cld
2n−1(X) = 0

and one has a commutative diagram

DivTC(X)

c1 ∼=

DivTp̄(X)

∼=

DivTW(X)

κ ∼=

H 2(X)
αX

I H p̄
2n−2(X)

ωX
H2n−2(X).

where the composition of maps in the lowest line is the Poincaré homomorphism.

In the case of degenerate toric variety, one has a more general result taking into
account the torus factor [6, 8].
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5.6.4 General Perversities

Several authors are breaking away from the conditions on perversities as defined by
Goresky and MacPherson in their original articles; see the (non exhaustive list of)
papers of Cappell and Shaneson [47], Chataur et al. [55], Friedman [75–77, 79],
Habegger and Saper [101], King [113], Saralegi-Aranguren [166].

These provides some interesting generalizations and results. that are sketched
out at certain points in this survey. Friedman’s article [79] itself provides a very
good survey on the subject. Quoting Friedman, his article is an expository survey
of the different notions of perversity in intersection homology and how different
perversities require different definitions of intersection homology theory.

“With more general perversities than GM-perversities, one usually loses topolog-
ical invariance of intersection homology (though this should be seen not as a loss
but as an opportunity to study stratification data), but duality results remain, at least
if one chooses the right generalizations of intersection homology. Complicating this
choice is the fact that there are a variety of approaches to intersection homology.”

With previous notation of strata, perversities such that pα ≤ codim X (Sn−α) − 2
have been studied in detail by Friedman (see [78]) who proved in particular Poincaré
duality for general perversities, Lefschetz duality for pseudomanifoldswith boundary
and Mayer-Vietoris sequence.

The Lefschetz duality for pseudomanifolds with boundary is also aim of the
paper [181] by G. Valette. On a pseudomanifold X with boundary, two perversities
are considered, the one for X and the other for the boundary ∂X . If the difference
between the chosen perversities is constant, then Lefschetz duality holds on X . Here,
allowable chains of the boundary ∂X are allowable on X .

5.6.5 Equivariant Intersection Cohomology

Equivariant intersection cohomology has been mainly studied by J.L. Brylinski, M.
Brion and R. Joshua, by T. Oda and, in the circle case, by J.I.T. Prieto, G. Padilla
and M. Saralegi-Aranguren.

Brylinski [46] provides an explicit complex in order to compute intersection
homology in the equivariant setting. T. Oda considers the situation of toric action
[145, 146]. Brion [40], Brion and Joshua [41], Joshua [108] provide a relationship
between the vanishing of the odd dimensional intersection cohomology sheaves and
of the odd dimensional global intersection cohomology groups. The authors provide
a geometric proof of the vanishing of odd dimensional local and global intersection
cohomology for Schubert varieties and complex spherical varieties. For a survey
on these works, see [109]. In their paper [42] the authors extend their methods to
algorithmically compute the intersection cohomology Betti numbers of reductive
varieties.
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In the papers [149, 158] G. Padilla, J.I.T. Prieto andM. Saralegi-Aranguren study
circle actions on pseudomanifolds by using intersection cohomology and equivariant
intersection cohomology. The orbit space and the Euler class of the action determine
the equivariant intersection cohomology of the pseudomanifold as well as its local-
ization.

5.6.6 Intersection Spaces

In [67], Timo Essig assigns cell complexes to certain topological pseudomanifolds
depending on a perversity function in the sense of intersection homology. The main
property of the intersection spaces is Poincaré duality over complementary perversi-
ties for the reduced singular (co)homology groups with rational coefficients. In the
paper [3] of M. Banagl, using differential forms, the resulting generalized cohomol-
ogy theory for pseudomanifolds was extended to 2-strata pseudomanifolds with a
geometrically flat link bundle.

The resulting homology theory H I is well-known not to be isomorphic to inter-
section homology (see Banagl and Hunsicker [4]) but mirror symmetry “tends to”
interchange I H and H I ([3]). A new duality theory for pseudomanifolds is obtained,
which addresses certain needs in string theory related to the existence of massless
D-branes in the course of conifold transitions and their faithful representation as
cohomology classes (see Banagl [2]).

5.6.7 Blown-Up Intersection Homology

In [29, 30] Brasselet et al. use a notion of “déplissage” apparented to blow-up in
order to define integration of differential forms on simplices and to prove a de Rham
theorem for stratified varieties.

A similar method has been used by D. Chataur, M. Saralegi and D. Tanré to
define the so called “blown-up intersection homology”. The initial aim [52] is to
extend Sullivan’s minimal models theory to the framework of pseudomanifolds. The
authors prove also a conjecture of M. Goresky andW. Pardon on Steenrod squares in
intersection homology [99]. The relation with rational homotopy has been extended
in [53]. The authors work in a context of simplicial sets in the sense of Rourke and
Sanderson [162]. This provides a definition of formality in the intersection setting.

In [54] the authors prove the topological invariance of the blown-up intersection
cohomology with compact supports in the case of a paracompact pseudomanifold
with no codimension one strata.

Based upon simplicial blow-up, Chataur and Tanré construct in [57] Eilenberg-
MacLane spaces for the intersection cohomology groups of a stratified space, answer-
ing a problem asked by M. Goresky and R. MacPherson ([18, Chap. IX, Problem
11]).



300 J.-P. Brasselet

5.6.8 Real Intersection Homology

Whether there is a good analog of intersection homology for real algebraic varieties
was stated as a problem by Goresky and MacPherson in [18, Chap. IX, Problem 7)].
They observed that if such a theory exists then it cannot be purely topological; indeed
the groups constructed byMcCrory and Parusiński in [133] are not homeomorphism
invariants. These authors consider a class of algebraic stratifications that have a
natural general position property for semialgebraic subsets. They define the real
intersection homology groups I H Sk(X) and show that they are independent of the
stratification. If X is nonsingular and pure dimensional then I H Sk(X) = Hk(X;Z2),
classical homology with Z2 coefficients. An intersection pairing is defined.

5.6.9 Perverse Sheaves and Applications

Perverse sheaves and applications deserve a survey for the subject itself. Various
authors wrote surveys concerning perverse sheaves and applications, they are clear
and informative. In the MacPherson papers [127, 128], MacPherson and Vilonen
[129],Massey survey [125] andKlinger survey [118],many references and results are
given concerning in particular three main applications of perverse sheaves: Decom-
position theorem, Weak and Hard Lefschetz theorems.

It is fair to mention in these papers other important applications such as Kazdhan-
Lusztig conjecture, D-modules and Riemann-Hilbert correpondence, characteristic
p and Weil conjecture, etc.

The story is far from over. Today there are many books and papers: an extensive
literature on perverse sheaves in various fields of mathematics, showing the interest
and diversity of the subject. The interested reader will find in the perverse sheaves a
subject of fascinating discovery and exploratory innovation.
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