
Chapter 2
Plane Algebraic Curves with Prescribed
Singularities

Gert-Martin Greuel and Eugenii Shustin

Abstract We give a survey on the known results about the problem of the existence
of complex and real algebraic curves in the plane with prescribed singularities up to
analytic and topological equivalence. The question is whether, for a given positive
integer d and a finite number of given analytic or topological singularity types, there
exist a plane (irreducible) curve of degree d having singular points of the given type
as its only singularities. The set of all such curves is a quasiprojective variety, which
we call an equisingular family, denoted by E SF . We describe, in terms of numerical
invariants of the curves and their singularities, the state of the art concerningnecessary
and sufficient conditions for the non-emptiness and T -smoothness (i.e., being smooth
of expected dimension) of the corresponding E SF . The considered singularities can
be arbitrary, but we pay special attention to plane curves with nodes and cusps, the
most studied case, where still no complete answer is known in general. An important
result is, however, that the necessary and the sufficient conditions show the same
asymptotics for T -smooth equisingular families if the degree goes to infinity.
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2.1 Introduction

Singular algebraic curves, their existence, deformation, families (from the local and
global point of view) attract continuous attention of algebraic geometers since the
last century. The aim of this survey is to give an account of results, trends and bibli-
ography related to the existence of curves with prescribed singularities with a focus
on algebraic curves in the plane. We consider the existence problem for complex
and real plane curves with given singularities up to analytic and topological equiv-
alence. The general problem is: given an integer d > 0 and analytic or topological
singularity types S1, . . . , Sr , does there exist a curve (resp. an irreducible curve) of
degree d in P

2 having r singular points of types S1, . . . , Sr , respectively, as its only
singularities?

An important particular case is the same problem for one singularity. Namely, let
S be an analytic or topological type. What is the minimal degree d(S) of a curve in
P
2 having a singular point of type S ? In other words, we ask about a polynomial

normal form of minimal degree of the given singularity.
The space |d H | = |H 0(P2,OP2(d))| of all curves of degree d in P

2, H a hyper-
plane in P

2, can be identified with the punctured vector space of homogeneous
polynomials of degree d in 3 variables modulo multiplication with a non-zero con-
stant. That is, |d H | = C[x0, x1, x2]d � {0}/C

∗ is a projective space of dimension
N = (d2 + 3d)/2. The subspace of this P

N , consisting of (irreducible) curves of
degree d in P

2 having r singular points of types S1, . . . , Sr (and maybe other unspec-
ified singularities) is the Equisingular Family (E SF) which we denote by

V (irr)
d (S1, . . . , Sr )

(it may be empty). This description of V (irr)
d (S1, . . . , Sr ) is set-theoretically, but

it is shown in [28] that these sets are quasi-projective subvarieties of P
N (see [28,

Propositions I 1.61 and I 1.71] for a simple proof in the case of one singularity),
which can be endowed with a unique (not necessarily reduced) scheme structure
representing the functor of equianalytic resp. equisingular deformations (see [28,
Theorem II 2.36]).
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The following geometric problems concerning equisingular families of plane
curves have been of interest to algebraic geometers since the early 20th century:

• Existence Problem: Is V (irr)
d (S1, . . . , Sr ) non-empty?

• T -Smoothness Problem: If V (irr)
d (S1, . . . , Sr ) is non-empty, is it T -smooth, i.e.

smooth and of the “expected” dimension (see end of the Preliminaries)?
• Irreducibility Problem: Is V (irr)

d (S1, . . . , Sr ) irreducible?
• Deformation Problem: What are the adjacencies of the singularities of a curve of
degree d if it varies inside |d H |?
First of all, a complete answer to these questions is known only for the case of

plane nodal curves (Severi [73], Harris [37]): the inequality 0 ≤ n ≤ (d−1)(d−2)
2 is

necessary and sufficient for the nonemptiness, T -smoothness, and irreducibility of
the family V irr

d (n A1) of irreducible plane curves of degree d with n nodes as their
only singularities, and, additionally, for the independent smoothing of prescribed
nodes while keeping the others, induced by the space of plane curves of degree d.

Already for plane curves with ordinary cusps a reasonable complete answer is
hardly possible, due to a large gap between the known upper bounds of the number
of cusps and the known examples of curves with many cusps. Due to the irregular
behavior of such examples, it seems unrealistic to expect a sufficient condition for
either non-emptiness, or T -smoothness, or irreducibility, which is at the same time
necessary (as in the case of plane nodal curves).

This situation has motivated us to pursue the following goal: describe the regular
region of V (irr)

d (S1, . . . , Sr ) (i.e. the nonempty and T -smooth part), in a possibly
precise form, which should be

(i) universal, i.e. applicable to arbitrary singularities,
(ii) numerical, i.e. expressed as relations (inequalities) for numerical invariants of

the curves and their singularities,
(iii) asymptotically optimal or asymptotically proper, i.e. having either the same

asymptotics or an asymptotics that coincides up to multiplication with a posi-
tive constant with the known examples of irregular (empty or non-T -smooth)
equisingular families if d goes to infinity.

We like to emphasize that one can expect asymptotically optimal or asymptotically
proper results (about nonemptiness, T -smoothness, irreducibility, ...) only for the
regular region; we do not see any systematic behavior for the irregular region of
V (irr)

d (S1, . . . , Sr ) if d → ∞.
In this survey we focus mainly on the existence problem and give only a short

account on answers to the other problems.We give always precise references, includ-
ing original sources and in addition hints to the methods whenever appropriate. We
feature both complex and real singular curves. A special attention is paid to curves
with nodes and cusps, curveswith simple, ordinary, and semi-quasihomogeneous sin-
gularities, in which cases one can apply specific constructions and formulate general
restrictions in a simpler form.

In general, there is only one universal approachwhich provides sufficient existence
results for arbitrary topological and analytical singularity types and any degree, both
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over the complex and over the real fields, and which is asymptotically comparable
with the necessary conditions. This approach combines two main ingredients: the
theory of zero-dimensional schemes related to planar curve singularities coupled
to the cohomology vanishing theory for their ideal sheaves, and the patchworking
construction. While the cohomological approach, which builds a bridge between the
local and global geometry of singular algebraic curves, is not treated in this survey,
we explain the parchworking method in several interesting situations. Furthermore,
we mention important results on the existence of curves with nodal singularities
on other algebraic surfaces and in the projective space, and address several related
problems.

For a comprehensive treatment of these problems and detailed proofs, and more
generally of the theory of topologically and analytically equisingular families of
curves on surfaces, see the monograph [31]. In the present survey, we basically fol-
low the main thread of the monograph [31] providing more details in certain places,
for instance, in Sect. 2.4.1 as well as in Sect. 2.4.2, where Theorems 2.4.5, 2.4.6 and
2.4.7 are new.

2.1.1 Preliminaries: Isolated Singularities

We work mainly with algebraic varieties (not necessarily reduced or irreducible) but
use the Euclidean topology and analytic structure sheaf (unless otherwise stated). For
this reason we call them algebraic complex spaces (see [31, Notations and Conven-
tions] for a precise definition). An algebraic curve resp. algebraic surface means an
algebraic complex space of pure dimension one resp. two. By a real algebraic vari-
ety resp. real analytic variety we mean an algebraic resp. analytic variety equipped
with an anti-holomorphic involution. By a hypersurfacewemean an effective Cartier
divisor in a smooth variety �.

A singularity is by definition the germ (X, z) of a complex space, may be smooth.
A singularity (X, z) is isolated if X \ {z} is smooth for some representative X . Two
hypersurface singularities (X, z) ⊂ (�, z) and (X ′, z′) ⊂ (�, z′) are called analyt-
ically equivalent (resp. topologically equivalent) if there exists an analytic isomor-
phism (resp. a homeomorphism) of neighborhoods of z resp. z′ in � mapping (X, z)
to (X ′, z′).

The analytic equivalence can be expressed as an isomorphism of the analytic
local rings:OX,z

∼= OX ′,z′ . The topological equivalence is used in this paper only for
reduced plane curve singularities where it is completely characterized by discrete
invariants (see [6, 28, 90, 97, 107]): Namely, two reduced plane curve singularities
(C, z) and (C ′, z′) are topologically equivalent iff there exists a bijection of local
branches such that the Puiseux pairs of the corresponding branches coincide, as well
as the pairwise intersectionmultiplicities of the corresponding branches; equivalently
if they have embedded resolutions by blowing up points such that the systems of
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multiplicities of the reduced total transforms coincide. The second definition is the
preferred one since it generalizes to deformations over non-reduced base spaces.

Analytic resp. topological equivalence classes of isolated singular points are called
(contact) analytic types resp. topological types (or analytic resp. topological singu-
larities). For simple or ADE singularities (cf. [28]) analytic and topological types
coincide and we talk simply about their type. Of particular interest are the sim-
ple singularities of type A1, called nodes , given in local analytic coordinates as
x2 + y2 = 0 and of type A2, called (ordinary) cusps , given as x2 + y3 = 0.

Important numerical invariants are the Milnor number, the delta invariant and the
kappa-invariant. Let (X, z) ⊂ (�, z) ∼= (Cn, 0) be an isolated hypersurface singu-
larity and f ∈ C{x1, . . . , xn} ∼= O�,z a defining power series in local coordinates
x1, . . . , xn . Then

μ(X, z) := dimC C{x1, . . . , xn}/〈 ∂ f

∂x1
, . . . ,

∂ f

∂xn
〉

is the Milnor number of (X, z) and

τ(X, z) := dimC C{x1, . . . , xn}/〈 f,
∂ f

∂x1
, . . . ,

∂ f

∂xn
〉

is the Tjurina number of (X, z), which is the dimension of the base space of the
semiuniversal deformation of (X, z).

For a reduced curve singularity (C, z) we call

δ(C, z) := dimC(ν∗OC/OC)z

the delta-invariant (δ-invariant) of (C, z), where ν : C → C is the normalization of
a representative C of (C, z). Let (C, z) be a reduced plane curve singularity defined
by f ∈ C{x, y}. The kappa-invariant (κ-invariant) of (C, z) is the intersection mul-
tiplicity of (C, z) with a generic polar, that is,

κ(C, z) := dimC C{x, y}/〈 f, α
∂ f

∂x
+ β

∂ f

∂y
〉, (2.1)

with (α : β) ∈ P
1 generic. We also write μ( f ), δ( f ) and κ( f ). Recall for a plane

curve singularity f the formulas (cf. [56] and [28, Propositions I. 3.35 and I. 3.38])

μ( f ) = 2δ( f ) − r( f ) + 1,

κ( f ) = μ( f ) + mt( f ) − 1,

where r( f ) = r(C, z) is the number of branches of (C, z) (irreducible factors of
f ) and mt( f ) = mt(C, z) the multiplicity of (C, z) (degree of lowest non-vanishing
term of f ).

We introduce further the tau-es-invariant (τ es-invariant)
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τ es(C, z) := τ(C, z) − dimC T 1,es(C, z) = dimC O�,z/I es( f ),

with I es( f ) the equisingularity ideal (cf. [31, Definition 1.1.63]) and T 1,es(C, z) the
tangent space to the equisingular stratum (= the μ-constant stratum) 
μ in the base
of the semiuniversal deformation of (C, z). Since
μ is smooth, τ es(C, z) is equal to
the codimension of the μ-constant stratum in the (τ -dimensional) base space of the
semiuniversal deformation of (C, z), which coincides with the codimension of the
μ-constant stratum in the (μ-dimensional) base space of the semiuniversal unfolding
of f . We have also (cf. [24, Lemma 1.3])

τ es(C, z) = μ(C, z) − modality( f ),

wheremodality( f ) is themodality of the function f with respect to right equivalence.
Note that τ es(C, z) can be effectively computed in terms of the resolution invariants
of (C, z)), an algorithm is implemented in Singular [15]. For details we refer to
[28, Remark to Corollary II.2.71] and to [31, Corollary 1.1.64].

Now we can explain more precisely the T-smoothness property. Let S be an
analytic resp. topological singularity type of a plane curve singularity (C, z). The
requirement that a curve of degree d has a singularity of type S imposes τ(S) :=
τ(C, z) resp. τ es(S) := τ es(C, z) conditions on the space of all curves of degree d
(cf. [23] for anaytic types and [24] for toplogical types). Let S1, ..., Sq be analytic
types and Sq+1, ..., Sr topolgical types of singularities of the degree d-curve C ⊂ P

2.
Then we say that V (irr)

d (S1, . . . , Sr ) has the expected dimension at C if its dimension
at C is

d2 + 3d

2
−

q∑

i=1

τ(Si ) −
r∑

i=q+1

τ es(Si ), (2.2)

and V (irr)
d (S1, . . . , Sr ) is T-smooth at C if it is smooth of expected dimension at C

(in particular, the number (2.2) must be non-negative). We refer to [23, Corollary
6.3], [24, Theorem 3.6], and [31, Theorem 2.2.40] for this and for further properties
of V (irr)

d (S1, . . . , Sr ).

2.2 Singular Plane Curves: Restrictions

Various restrictions for the existence of plane curves of degree d with prescribed
singularities S1, . . . , Sr have been found. We recall the most important ones.

2.2.1 Genus Formula and Bézout’s Theorem

First, one should mention the general classical bound
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r∑

i=1

δ(Si ) ≤ (d − 1)(d − 2)

2
, (2.3)

for the existence of an irreducible plane curve of degree d having r singularities of
types S1, . . . , Sr , which results from the genus formula (2.9).

For a reduced (not necessarily irreducible) plane curve we get as necessary bound
for the existence, i.e., for Vd(S1, . . . Sr ) �= ∅, the inequality

r∑

i=1

μ(Si ) ≤ (d − 1)2. (2.4)

This is a consequence of Bézout’s theorem (see e.g. [31, Theorem II. 1.16]):

Two plane projective curves C, D ⊂ P
2 of degrees c and d, respectively, which

have no component in common, intersect at c · d points, counting intersection mul-
tiplicities. That is,

c · d =
∑

z∈C∩D

dimC OPn ,z/〈 f, g〉, (2.5)

with f resp. g being local equations of C resp. D at z.

To see (2.4) let C be given by a homogeneous polynomial F ∈ C[x0, x1, x2]
of degree d and let F ′

α =∑2
i=0 αi∂ F/∂xi and F ′

β =∑2
i=0 βi∂ F/∂xi with αi , βi

generic, define two generic polars of C , both of degree d − 1. The intersection
points of {F ′

α = 0} and {F ′
β = 0} include the singular points ofC and the intersection

multiplicities are just the corresponding Milnor numbers. Thus, we get (2.4).
For the proof of (2.3) let us recall first two genus formulae. The arithmetic genus

of an arbitrary projective scheme X is defined as

pa(X) := (−1)dim X (χ(OX ) − 1).

Here, for any coherent sheafF on X , χ(F) =∑(−1)i dimC Hi (X,F) is the (alge-
braic) Euler characteristic of F .

For a curve C we have pa(C) = 1 − χ(OC) = 1 − dimC H 0(C,OC) + dimC

H 1(C,OC). If C is reduced and connected, then we have H 0(C,OC) = C and
hence we get for the arithmetic genus pa(C) = dimC H 1(C,OC) ≥ 0. If C has s
connected components C1, ..., Cs , the additivity of the Euler characteristic implies
pa(C) = 1 − s + dimC H 1(C,OC) = 1 − s +∑s

i=1 pa(Ci ), which may be nega-
tive for s > 1.

The geometric genus g(C) of a reduced curve C is defined as the arithmetic genus
of the normalization C of C , hence

g(C) := pa(C) = pa(C) − δ(C), (2.6)
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with δ(C) := dimC H 0(ν∗OC/OC) the total delta invariant of C and ν : C → C the
normalization map. (2.6) follows from applying χ to the exact sequence

0 → OC → ν∗OC → ν∗OC/OC → 0,

noting thatχ(ν∗OC) = χ(OC) and Hi (ν∗OC/OC) = 0 for i > 0.Moreover, δ(C) =∑
z∈Sing(C)δ(C, z), with δ(C, z) the delta invariant of C at z. For a smooth curve C

the arithmetic genus and the geometric genus coincide (δ(C) = 0).
IfC is irreducible, thenC is connected and smooth and g(C) = pa(C) = g(C) ≥

0. If C is a reduced curve with s irreducible components C1, ..., Cs , we have

g(C) = 1 − s +
s∑

i=1

g(Ci ) (2.7)

and hence g(C) + s − 1 ≥ 0. The general genus formulas (2.6) and (2.7) were first
proved by Hironaka [40, Theorem 2] using the resolution of the singularities of C
(he defines g(C) as

∑s
i=1 g(Ci )).

If C ⊂ P
2 is a plane curve of degree d > 0, then C is connected (by Bézout’s

theorem) and we have

pa(C) = (d − 1)(d − 2)

2
. (2.8)

This follows from the exact sequence

0 → OP2(−d) → OP2 → OC → 0,

giving 1 − pa(C) = χ(OC) = χ(OP2) − χ(OP2(−d)) = 1 − χ(OP2(−d)), and
from χ(OP2(−d)) = dimC H 2(P2,OP2(−d)) =

(d−1
2

)
(see [38, Theorem III.5.1] for

the cohomology of projective space). Below we compute the arithmetic genus via
the topological Riemann-Hurwitz formula.

Now, if C ⊂ P
2 is reduced and irreducible, then C is smooth and connected and

the geometric genus g(C) = g(C) is non-negative. The formulas (2.6) and (2.8)
imply the genus formula

g(C) = (d − 1)(d − 2)

2
− δ(C). (2.9)

Since g(C) is non-negative for an irreducible curve of degree d we get the
inequality (2.3).

Of course, Bézout’s theorem leads to various further necessary conditions for the
existence of the curve C such as, for instance by considering a line through 2 points
or a conic through 5 points,

max
i �= j

(
mt(Si ) + mt(Sj )

) ≤ d , max
#(I )=5

∑

i∈I

mt(Si ) ≤ 2d .
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Finally we mention the inequality

q∑

i=1

τ(Si ) +
r∑

i=q+1

τ es(Si ) ≤ d2 + 3d

2
(2.10)

for regular existence, that is, for the existence of a curve C ⊂ P
2 of degree d with

q analytic singularities S1, ..., Sq and r − q topological singularities Sq+1, ..., Sr ,
such that Vd(S1, . . . Sr ) is T -smooth at C (cf. (2.2) and [23, Corollary 6.3 (ii)], [24,
Corollary 3.9], [31, Theorem 2.2.40]).

2.2.2 Plücker Formulae

Besides the genus formula and Bézout’s theorem, the Plücker formulae provide
necessary bounds for the existence, which are often sharper. Let’s deduce these
formulae.

Let C ⊂ P
2 be a reduced, irreducible curve of degree d > 1, given by a homoge-

neous polynomial F ∈ C[x0, x1, x2]. Denote by C∗ ⊂ (P2)∗ its dual curve, that is,
the Zariski closure of the quasi-projective curve

{
(a0 : a1 : a2) ∈ (P2)∗

∣∣∣∣
{a0x0 + a1x1 + a2x2 = 0} is tangent
to C at some smooth point p ∈ C

}

Here (P2)∗ is the (dual) projective 2-space, whose points (a0 : a1 : a2) are in 1-1
correspondence with the lines {a0x0 + a1x1 + a2x2 = 0} ⊂ P

2.
We have a natural rational duality morphism d : C ��� C∗, mapping a (smooth)

point z of C to its tangent at z: Let z ∈ C and let P be an irreducible component of
the germ (C, z). In local affine coordinates x, y such that z = (0, 0) and the x-axis
is tangent to P , this component admits a parametrization

{
x = t p

y = λtq + O(tq+1)
1 ≤ p < q, λ �= 0, t ∈ (C, 0) .

and the tangent lines to the points of P are given by equations y = b(t)x + c(t)with

b(t) = λq

p
tq−p + O(tq−p+1), c(t) = λtq + O(tq+1), t ∈ (C, 0) . (2.11)

It follows that generically the duality morphism d is 1–1, and hence birational.
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Furthermore, C∗ is an irreducible projective curve1 of degree d∗ > 1. The degree d∗
of C∗ is classically called the class of C.

Let C = {F = 0} with F(x0, x1, x2) a homogeneous polynomial of degree d. At
a smooth point z ∈ C , the coefficients of the tangent line are given by

a0 = ∂ F

∂x0
, a1 = ∂ F

∂x1
, a2 = ∂ F

∂x2
.

Let (C, 0) � t �→ z(t) = (xo(t), x1(t), x2(t)) parametrize the germ (C, z). Since
F(z(t)) ≡ 0, we have ∂ F(z(t))

dt = ∂ F
∂x0

· dx0
dt + ∂ F

∂x1
· dx1

dt + ∂ F
∂x2

· dx2
dt = 0, that is, with

ai (t) = ai (z(t)),

a0(t) · dx0
dt

+ a1(t) · dx1
dt

+ a2(t) · dx2
dt

= 0 . (2.12)

Combining this with the Euler formula d · F=x0∂ F/∂x0 + x1∂ F/∂x1 + x2∂ F/∂x2,
which implies that a0(t)x0(t) + a1(t)x1(t) + a2(t)x2(t) = 0, we obtain

x0(t) · da0

dt
+ x1(t) · da1

dt
+ x2(t) · da2

dt
= 0 , (2.13)

which is dual to (2.12). Thus, the dual to C∗ is the original curve C .
We call a tangent line L to C a singular tangent, if

(a) either L is tangent to C at a singular point,

(b) or L is tangent to C at more than one point,

(c) or L intersects C at a non-singular point with multiplicity > 2.

The set of singular tangents is finite, since the set Sing(C) is finite, and the conditions
(b) and (c) determine L as a singular point of C∗ (cf. Formula (2.11)). Hence, there
exists a point q = (q0 : q1 : q2) ∈ P

2 \ C which does not lie on any singular tangent.
Denote by q the pencil of lines through q. Recall that a line L ∈ q is tangent to C
at the (non-singular) point z ∈ C iff z lies also on the polar curve relative to q, that
is, iff

F(z) = 0 = q0
∂ F

∂x0
(z) + q1

∂ F

∂x1
(z) + q2

∂ F

∂x2
(z) .

Weobserve that d∗ is the number of lines L ∈ q tangent toC at non-singular points,
and that {q0

∂ F
∂x0

+ q1
∂ F
∂x1

+ q2
∂ F
∂x2

= 0} is a generic polar of C . Applying Bézout’s
Theorem (2.5) to the non-singular intersection points of {F = 0} with a generic

1An equation F∗ for C∗ can be obtained as follows: let

g(x1, x2) := ad
0 · F

(−(a1x1 + a2x2)

a0
, x1, x2,

)
∈ C(a0, a1, a2)[x1, x2] ,

and compute the discriminant D ∈ C[a0, a1, a2] \ {0} of g(1, x2). D is homogenous of degree
2d2− d and is the product of F∗ with some number of linear factors. Hence, factorizing D and
removing all linear factors, we get an equation for C∗. The computations can be carried out with
the Singular software [15].
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polar (which gives d∗ as total number) and the singular intersection points (which
gives the kappa-invariant κ(C, z) at each intersection point z), we obtain the first
Plücker formula

d∗ = d(d − 1) −
∑

z∈Sing(C)

κ(C, z). (2.14)

For κ see the Definition (2.1) and the subsequent formula from the Preliminaries
section. In particular, if C has n nodes and k cusps as its only singularities one gets

d∗ = d(d − 1) − 2n − 3k. (2.15)

Using again a point q as above, we derive now the Riemann-Hurwitz formula and
give another proof of the genus formula (2.9). Let C → C be the normalization map.
Then the topological Euler characteristic of C satisfies (using Mayer-Vietoris2).

χtop(C) = χtop
(
C
)−

∑

z∈Sing(C)

(
r(C, z)−1

)

= 2 − 2g(C) −
∑

z∈Sing(C)

(
r(C, z)−1

)
, (2.16)

where r(C, z) is the number of irreducible branches of the germ (C, z). Besides,
considering the projection of C on some straight line L0 �⊃ {q} from the point q
leads to the following version of the topological Riemann-Hurwitz formula,

χtop(C) = d · χtop(L) − d∗ −
∑

z∈Sing(C)

(
mt(C, z)−1

)
,

since a line L ∈ q , which is tangent to C at a non-singular point, meets C at d −1
points, and a line L ∈ q through a point z ∈ Sing(C) meets C at d −mt(C, z)+1
points. Combining the last equation with (2.14) and (2.16), we come to the genus
formula (2.9),

g(C) = (d − 1)(d − 2)

2
−
∑

z∈Sing(C)

δ(C, z).

We also mention the second Plücker formula: for any reduced plane curve of
degree d ≥ 3 which does not contain lines as components, the following equality
holds

∑

z∈Sing(C)

h(C, z) = 3d(d − 2) −
∑

z∈C\Sing(C)

((C · TzC)z − 2), (2.17)

2Consider a covering C = (U ∩ C) ∪ (U ′ ∩ C), U the union of non-intersecting open ε-balls and
U ′ the complement of the union of closed ε′-balls, ε′ < ε, around the singular points of C .
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where h(C, z) is the intersection multiplicity of the curve C with its Hessian deter-
minant at the point z and (C · TzC)z stands for the intersection number of C with its
tangent line TzC at z. According to [74], if z ∈ Sing(C), then

h(C, z) = 3κ(C, z) +
∑

C ′
((C ′ · TzC

′)z − 2mt(C ′, z)), (2.18)

where C ′ ranges over all local branches of C at z (i.e., irreducible components of the
germ (C, z)).

The second Plücker equation for a reduced plane curve of degree d ≥ 3 which
does not contain lines as components and with n nodes and k cusps states

k∗ = 3d(d − 2) − 6n − 8k, (2.19)

where k∗ is the number of cusps of C∗. This follows from (2.17) and (2.18): indeed,
when there are no flexes at the nodes, and at all smooth flexes we have a triple
intersection with the tangent, then h(A1) = 3κ(A1) + 0 = 6, h(A2) = 3κ(A2) −
1 = 8.

2.2.3 Log-Miyaoka-Yau Inequality

Any smooth complex algebraic surface X of general type (i.e., of Kodaira dimension
2) satisfies the Bogomolov-Miyaoka-Yau inequality

c21 ≤ 3c2,

where c1, c2 are the Chern classes of the complex tangent bundle T (X), and the
terms in the inequality are evaluated at the fundamental class [57, 103, 104] (see
also [5, Theorem VII.4.1]). Sakai [69] noticed that c21 < 3c2 if the surface contains
rational or elliptic curves and gave a strengthened inequality for this case (so-called
log-Miyaoka-Yau inequality), which was improved further by Miyaoka [58]. In the
form suggested by Hirzebruch [41, Theorem 3] it reads

c21 − 3c2 ≥
k∑

i=1

m(Ei ) +
p∑

j=1

(−C2
j ), (2.20)

where E1, ..., Ek ⊂ X are pairwise disjoint curves splitting into rational components,
C1, ..., C p are elliptic curves (disjoint to each other and to E1, ..., Ek), and all the
summands in the right-hand side are positive.

By applying the log-Miyaoka-Yau inequality (2.20), Sakai [69, Theorem A]
obtained the necessary condition
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r∑

i=1

μ(Si ) <
2ν

2ν + 1
·
(

d2− 3

2
d

)

where ν denotes the maximum of the multiplicities mt(Si ), i = 1, . . . , r . In [69]
further bounds for the total Milnor number are given. In particular, if S1, . . . , Sr are
ADE-singularities then

r∑

i=1

μ(Si ) <

⎧
⎪⎪⎨

⎪⎪⎩

3

4
d2− 3

2
d + 2 if d is even ,

3

4
d2− d + 1

4
if d is odd ,

is necessary for the existence of a plane curve with r singularities of types S1, . . . , Sr .
Applying the inequality (2.20) to the desingularized double covering of the plane

ramified along a curve with simple singularities, i.e., Ar , Dr , E6, E7, E8, Hirzebruch
and Ivinskis [41, 43] obtained the following bound for a reduced plane curve C of
an even degree d ≥ 6 having only simple singularities:

∑

z∈Sing(C)

m(C, z) ≤ d(5d − 6)

2
, (2.21)

where the invariant m(C, z) can be computed as follows:

m(Ar ) = 3r(r + 2)

r + 1
, m(Dr ) = 3(4r2 − 4r − 9)

4(r − 2)
, (2.22)

m(E6) = 167

8
, m(E7) = 383

16
, m(E8) = 1079

40
.

Langer [51, Theorem 1] generalized the Bogomolov-Miyaoka-Yau inequality to
orbifold Euler numbers and obtained an upper bound to the number of simple sin-
gularities of curves on surfaces. In particular (see [51, Theorem 9.4.2 and formula
(11.1.1)]), for any reduced curves of degree d ≥ 10 with n nodes and k cusps it yields
the bound

(2 − α) n +
(
7

2
− 3

2
α − 1

24α

)
k ≤

(
1 − α

3

)
d2 − d (2.23)

with an arbitrary 3
10 ≤ α ≤ 5

6 ,which is always better thanHirzebruch-Ivinskis’ bound

(2.21). Substituting α =
√
73−1
24 , one obtains the maximal coefficient of k in (2.23),

and hence

6059 + 7
√
73

10512
n + k ≤ 125 + √

73

432
d2 − 511 + 11

√
73

1752
d . (2.24)
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2.2.4 Spectral Bound

Further necessary conditions can be obtained by applying the semicontinuity of
the singularity spectrum (see [94]), which works in any dimension. The singular-
ity spectrum of a hypersurface singularity f : C

n+1 → C gathers the information
about the eigenvalues of the monodromy operator T and about the Hodge filtra-
tion {F p} on its vanishing cohomology. The (singularity) spectrum is defined as an
unordered μ( f )-tuple of rational numbers (a1, ..., aμ) (counted with frequencies),
where the frequency of the number a in the spectrum is equal to the dimension of
the eigenspace of the semisimple part of T acting on F p/F p+1, p = [n − a], with
eigenvalue exp(−2π ia). If F : X → S is a good representative of a deformation of
f , let�F−1(s) denote the union of all spectra of the singular points in the fiber F−1(s),
where the frequency of a in �F−1(s) is the sum of its frequencies in the spectra of all
singular points of F−1(s).

The semicontinuity of the spectrum says that any half open interval (t, t + 1] ⊂ R

is a semicontinuity domain for F , that is, the sum MF−1(s) of the frequencies of the
elements of (t, t + 1] in �F−1(s) is upper semicontinuous for s ∈ S ([85, Theorem
2.4]). Before that Varchenko [94] had proved that for deformations F of low weight
of a quasi-homogeneous f even every open interval (t, t + 1) is a semicontinuity
domain.

The semicontinuity of the singularity spectrum can be used to compute effectively
an upper bound for the number of isolated hypersurface singularities of a given type
occurring on a hypersurface V ⊂ P

n of degree d. Observe the following:

• Any hypersurface of degree d with isolated singularities can be obtained as small
deformation of { fd = 0}, where fd(x1, ..., xn) is a nondegenerate d-form, which
stays fixed in the deformation, while all variable terms have degree < d. To see
this, choose coordinates in P

n so that the hyperplane {x0 = 0} avoids Sing(V )

and meets V transversally. The affine hypersurface V a ⊂ A
n = {x0 �= 0} has the

same collection of singularities and is given by { f (x1, ..., xn) = 0}, where the
highest form fd of degree d is nondegenerate. Including V a into the family of
affine hypersurfaces {V a

t }|t |≤1 of the same degree d given by3

td f (x1/t, ..., xn/t) = fd(x1, ..., xn) + t fd−1(x1, ..., xn) + ... = 0 ,

we obtain the given collection of singularities in a deformation of the nondegener-
ate d-multiple singularity { fd = 0} at the origin. Since the space of nondegenerate
d-forms is connected, by the semicontinuity of the spectrum it is sufficient to
compute the spectrum of xd

1 + . . . + xd
n to get a bound for V .

• If precisely M of the spectral numbers (counted with their frequencies) of the
singularity defined by f = xd

1 + . . . + xd
n are in the interval (t, t + 1], t ∈ R, then

the sum of the frequencies of the spectral numbers in the interval (t, t + 1] of
the singularities (close to 0) of a small deformation F of f can be at most M ,

3Such families are called lower deformations.
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i.e., MF−1(s) ≤ M f −1(0) = M (cf. [85, Theorem 2.4]; if the deformation is of low
weight, we can use even the open interval (t, t + 1) by [94]).

For instance, we can look for an upper bound for the number of cusps which may
appear on a curve of degree 11 by using Singular [15, 70]:

LIB ‘‘gmssing.lib’’;
ring r=0,(x,y),ds;
poly g=xˆ2-yˆ3; // a cusp
list s1=spectrum(g); // spectral numbers of a cusp (with mult’s)
s1;
//-> [1]:
//-> _[1]=-1/6 _[2]=1/6
//-> [2]:
//-> 1,1

That is, for a cusp we have Mg−1(0) = 2 for each interval (t, t + 1) with t < −1/6,
t + 1 > 1/6.

poly f = xˆ11+yˆ11;
list s2 = spectrum(f); // spectral numbers of f (with mult’s)
s2;
//-> [1]: (spectral numbers)
//-> _[1]=-9/11 _[2]=-8/11 _[3]=-7/11 _[4]=-6/11 _[5]=-5/11
//-> _[6]=-4/11 _[7]=-3/11 _[8]=-2/11 _[9]=-1/11 _[10]=0
//-> _[11]=1/11 _[12]=2/11 _[13]=3/11 _[14]=4/11 _[15]=5/11
//-> _[16]=6/11 _[17]=7/11 _[18]=8/11 _[19]=9/11
//-> [2]: (frequencies or multiplicities)
//-> 1,2,3,4,5,6,7,8,9,10,9,8,7,6,5,4,3,2,1

Having computed the spectral numbers, we look for an appropriate interval (t, t + 1)
to apply the semicontinuity theorem MF−1(s) ≤ M f −1(0), F a deformation of f . If
F−1(s) contains k cusps, then Mg−1(0)k = 2k ≤ M f −1(0). Choosing t = − 2

11 we get
2k ≤ 63, i.e., at most 31 cusps can appear on a curve of degree 11.

The same result canbe computedbyusing theSingularprocedurespsemicont
to get the sharpest bound for the number of singularities obtainable in the above way:

spsemicont(s2,list(s1),1);
// -> [1]: 31

We recall that the spectrum is a topological invariant of the curve singularity, and,
for example, according to [84] for the quasihomogeneous singularity xm + yn = 0
is the multiset (set with frequencies)

{
i

m
+ j

n
− 1 : 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1

}
. (2.25)

A simple algorithm for computing the spectrum of an arbitrary isolated curve singu-
larity was suggested in [44].

Varchenko [94] used the semicontinuity of the spectrum to give an upper bound
for the number of nondegenerate singular points (i.e. of type A1) on arbitrary hyper-
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surfaces in P
n . Let Nn(d) be the maximal number of singular points of type A1 which

can exist on a hypersurface in P
n of degree d. He proves the following inequality

(conjectured by Arnold),

Nn(d) ≤ An(d) = and n + (lower degrees of d), (2.26)

with an ∼ √
(6/π)n = 1.3819...

√
n, if n → ∞.

2.3 Plane Curves with Nodes and Cusps

The simplest singularities, the node A1 and the ordinary cusp A2, typically occur
in most of the questions related to singular curves. The case of curves with nodes
and cusps is also the most studied case, both in classical and in modern algebraic
geometry. It suggests beautiful results and challenging problems. Furthermore, the
study of the particular case of curves with nodes and cusps led to the development
of important techniques and the discovery of most interesting phenomena in the
geometry of singular algebraic curves and their families. We shall demonstrate this
for the problem of the existence of a plane curve of a given degree with a given
collection of nodes and cusps, both in the complex and real case.

2.3.1 Plane Curves with Nodes

We start with the construction of complex plane curves with only nodes as singular-
ities and with any prescribed number being allowed by the genus bound (2.3). The
construction is due to Severi [73] and very simple. It uses, however, the T -smoothness
of a family of nodal curves in an essential way, called classically the “completeness
of the characteristic linear series” (see [59]). For a modern proof see [23] and [31,
Sect. 4.5.2.1].

For real curves their existence with the number of nodes below or equal to the
genus bound is also classically knownanddue toBrusotti [8], using the T -smoothness
of the family of real nodal curves. But in the real case we have to distinguish between
three kinds of nodes: hyperbolic, elliptic and non-real (coming in complex conjugate
pairs). The fact that, subject to the genus bound, any prescribed distribution among
the three different kinds can be realized was proved much later in [77], and with a
different method by Pecker [65, 66, 68]. The construction is much more difficult
than in the complex case. It uses a “patchworking construction” invented by Viro for
non-singular real curves and extended to singular curves in [77, 79] (see also [31,
Sects. 2.3 and 4.5.1]).
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Complex Curves

Let C be a complex plane irreducible curve of degree d with n nodes. The genus
bound (2.3) yields

n ≤ (d − 1)(d − 2)

2
, (2.27)

since g(C) ≥ 0 and the δ-invariant of the node is 1. If we assume that C consists of
s irreducible components, then we get

n ≤ (d − 1)(d − 2)

2
+ s − 1. (2.28)

It goes back to Severi [73] that the bounds (2.27) and (2.28) are, in fact, necessary
and sufficient for the existence of a plane curve of degree d with n nodes. More
precisely,

Theorem 2.3.1 The bound (2.27) is necessary and sufficient for the existence of a
complex plane irreducible curve of degree d with n nodes as its only singularities.

Furthermore, for any s ≥ 2, any positive integers d, d1, ..., ds satisfying d = d1 +
... + ds, and nonnegative integers n1, ..., ns, the inequalities

ni ≤ (di − 1)(di − 2)

2
, i = 1, ..., s,

are necessary and sufficient for the existence of a complex plane reduced curve of
degree d splitting into s irreducible components of degrees d1, ..., ds and having

n =
s∑

i=1

ni +
∑

1≤i< j≤s

di d j

nodes as its only singularities, while the i-th component has precisely ni nodes,
i = 1, ..., s.

Proof Severi proved that, given a nodal plane curve C of degree d, the germ of
the family of curves of degree d having a node in a neighborhood of an arbitrary
singular point of C , is a smooth hypersurface germ in |OP2(d)| � P

d(d+3)/2, and,
moreover, all these germs intersect transversally at C (for a modern treatment see
[23, Corollary 6.3] and [31, Corollary 4.3.6]). This fact immediately yields that there
exists a deformation of C in P

d(d+3)/2 along which prescribed nodes are smoothed
out, while the others persist (possibly changing their position). Thus, given n and
d satisfying (2.27), we take the union of d straight lines in general position, which
is a curve with d(d−1)

2 nodes (the maximum by (2.28)). Then choose some line and
deform the curve by smoothing out all d − 1 intersection points of this line with the
other lines, obtaining an irreducible, rational curve with (d−1)(d−2)

2 nodes (see Fig.
2.1). Finally, we take another deformation by smoothing out (d−1)(d−2)

2 − n nodes
and obtain an irreducible curve of degree d with n nodes as desired.



84 G.-M. Greuel and E. Shustin

Fig. 2.1 Severi’s construction of irreducible nodal curves

Fig. 2.2 Real plane quintics a with 6 nodes: x5 − 5
4 x3 + 5

16 x − 1
2 y4 + 1

2 y2 − 1
16 = 0 , b with 5

cusps: 129
8 x4y − 85

8 x2y3 + 57
32 y5 − 20x4 − 21

4 x2y2 + 33
8 y4 − 12x2y + 73

8 y3 + 32x2 = 0

In the reducible case,we take irreducible curves of degreesd1, ..., ds withn1, ..., ns

nodes respectively and place them in general position in the plane. �

Remark 2.3.2 Wewould like to underline the importance of the fact that each curve
appearing in the Severi’s construction was amember of a smooth equisingular family
in P

d(d+3)/2 of expected dimension (such families are called T -smooth), and the
germ of the family was the transversal intersection of smooth equisingular families
corresponding to individual singular points of the given curve. That is, given such a
curve with a possibly maximal number of singularities, one immediately obtains the
existence of curves with any smaller amount of singularities. We shall see later how
efficient this property (which follows from T -smoothness) is for the construction of
curves with arbitrary singularities.

Real Curves

Over the reals, a nodal singular point can be of one of the following three types:

• either hyperbolic, i.e., a real intersection point of two smooth real local branches,
locally equivalent to {x2 − y2 = 0},

• or elliptic, i.e., a real intersection point of two complex conjugate smooth local
branches, locally equivalent to {x2 + y2 = 0},
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• or imaginary, i.e., a non-real node (which always comes in pairs of complex
conjugate nodes).

Thus, a natural question iswhat amount of hyperbolic, elliptic andpairs of complex
conjugate nodes a real plane curve can have. Note that Severi’s construction is not
of much help, since, for instance, a generic conjugation-invariant configuration of d
lines in the plane can have at most

[
d
2

]
elliptic nodes. The patchworking construction

invented byO.Viro around 1980 for the study of the topology of smooth real algebraic
varieties (see, for instance, the Appendix to [31]) was later applied to curves and
hypersurfaces with singularities (see [31, Sect. 2.3]). It allowed one to completely
answer the above question [77]. Another solution was later suggested by Pecker [65],
who used explicit parameterizations of real rational curves, obtaining, for instance,
the quintic shown in Fig. 2.2a. Here we demonstrate the patchworking construction,
which also applies efficiently to curves with singularities of other types, while the
methods of [65] are restricted to nodal curves only.

The version of the patchworking construction which we need was introduced in
[77, 79] (see also [31, Sects. 2.3 and 4.5.1]). Let us be given a convex lattice polygon

 ⊂ R

2 and a convex4 subdivision of it into convex lattice polygons 
1, ...,
N .
Let F1, ..., FN be bivariate complex or real polynomials with Newton polygons

1, ...,
N , respectively, such that

(i) the truncations of Fi and Fj on the common side σ of 
i and 
 j coincide,
(ii) each polynomial Fi is peripherally nondegenerate, i.e., the truncation of Fi on

any side of 
i defines a smooth curve in (C∗)2,
(iii) each polynomial Fi defines a curve with isolated singularities in (C∗)2.

Denote by S(Fi ) the multi-set of topological or analytic types of the singular
points of the curve Fi (x, y) = 0 in (C∗)2.

Then we orient the adjacency graph of the polygons 
1, ...,
N without oriented
cycles and verify the S-transversality condition (S being the topological or analytic
equivalence of singularities, see [31, Definition 2.3.3 and Definition 2.3.12]) for each
patchworking pattern (
i , ∂
i,+, Fi ), where ∂
i,+ is the union of the sides of 
i

corresponding to the incoming arcs of the adjacency graph and S stands for the
chosen complex or real topological or analytic equivalence of singularities.

The following patchworking theorem for curves says that we can “glue” the poly-
nomials Fi together to one polynomial F , which defines a curve with isolated sin-
gularities in (C∗)2 that inherits the singularity types from the Fi .

Theorem 2.3.3 With the above notations and assumptions let F1, ..., FN with prop-
erties (i), (ii), (iii) be given. Then there exists a polynomial F(x, y) with Newton
polygon 
 such that

S(F) =
N⋃

i=1

S(Fi ).

4A convex subdivision is a subdivision into linearity domains of some convex piecewise linear
function defined on the lattice triangle Td = Conv{(0, 0), (d, 0), (0, d)}.
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Fig. 2.3 Patchworking of a
real plane curve with elliptic
nodes

Moreover, the family of S-equisingular curves defined by polynomials with Newton
polygon 
 is T -smooth at {F = 0}.
We say that a family of curves is S-equisingular, if the choosen types S of the
singular points of the curves stay locally constant along some section.

One of the nicest sides of the patchworking construction is that it works equally
well over the complex and the real fields. The first example illustrating this feature
is as follows.

Theorem 2.3.4 For any integer d ≥ 3 and nonnegative integers a, b, c, the
inequality

a + b + 2c ≤ (d − 1)(d − 2)

2
, (2.29)

is necessary and sufficient for the existence of a real plane irreducible curve of degree
d having a hyperbolic nodes, b elliptic nodes and c pairs of complex conjugate nodes
as its only singularities. Moreover, the constructed curves belong to a T -smooth
family.

Proof The necessity follows from the genus bound (2.3). Thus, we focus on the
construction. We only sketch the proof, which in full detail is presented in [77].
Namely, we shall prove the theorem in the case a = c = 0. As noticed in Remark
2.3.2, it is enough to construct a real rational curve with (d−1)(d−2)

2 elliptic nodes
(since the curves belong to a T -smooth family). Consider the subdivision of the
lattice triangle Td = Conv{(0, 0), (d, 0), (0, d)} into lattice triangles as shown in
Fig. 2.3. Observe that the number of interior integral points in these triangles amounts
to (d−1)(d−2)

2 .
Each tile of the subdivision is a triangle of the formT =Conv{(0, 0), (0, 2), (m, 1)}

(up to an automorphism of the lattice Z
2). We claim that the real polynomial

F(x, y) = y2 − 2y Pm(x + λ) + 1, (2.30)

where Pm(x) = cos(m arccos x) is them-th Chebyshev polynomial and λ is a generic
real number, has Newton polygon T and defines a real plane curvewithm − 1 elliptic
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nodes in (R∗)2. Note that m − 1 is the number of interior integral points in T . To
prove the claim it is enough to rewrite the equation of the curve F(x, y) = 0 in the
form

y = Pm(x + λ) ±
√

Pm(x + λ)2 − 1

and recall that Pm hasm − 1 extrema:
[

m
2

]
minima on the level−1 and

[
m−1
2

]
maxima

on the level 1.
Now we associate with each triangle T (i) of the subdivision a polynomial Fi)

with Newton triangle T (i) which is obtained from a polynomial like (2.30) by the
coordinate changematching an appropriate automorphism of the latticeZ

2. A further
transformation F (i)(x, y) �→ αi F (i)(βi x, γi y) with suitable positive αi , βi , γi ∈ R

equates the truncations of each pair of the neighboring polynomials F (i), F (i+1) on
the common side of T (i) and T (i+1). To complete the proof, we apply Theorem 2.3.3,
observing that, in the nodal case, every patchworking pattern (T (i), ∂+T (i), F (i)) is
S-transversal (S being the topological or analytic equivalence of singularities), see
[79, Theorem 4.2] or [31, Corollary 4.5.3]. �

2.3.2 Plane Curves with Nodes and Cusps

Questions concerning the number of nodes and cusps on a plane curve of a given
degree are classical and highly nontrivial as compared to the purely nodal case, in
particular over the reals. No complete answer is known in general, neither in the
complex case, nor in the real one.

The general restrictions for their existence from Sect. 2.2, such as the genus
formula, the Plücker formulas, and the bounds by Hirzebruch-Ivinskis [41, 43] and
Langer [51] take a special simple form for curves with nodes and cusps. We compare
the asymptotics of the bounds by Hirzebruch-Ivinskis and Langer if the degree goes
to infinity.

In the second part of this section we report on the state of knowledge on curves
with many cusps, complex as well as real. Special attention will be given to small
degrees, with precise references to their construction.

The last part is devoted to the patchworking construction, which provides an
asymptotically complete answer if we restrict to real and complex plane curves with
nodes and cusp belonging to T -smooth equisingular families.

For the results of this section see also [31, Sects. 4.2.2.2, 4.5.2.1] (for restrictions)
and [31, Sects. 4.5.2.2, 4.5.2.3] (for constructions).

In the whole section we consider complex or real curves which are irreducible
over the complex numbers.

Restrictions for the existence

Let C be a curve with only nodes and cusps as singularities. For a node we have
δ = μ = 1, κ = 2 and for a cusp δ = 1, μ = 2, κ = 3. Hence the Formulas (2.4),
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resp. (2.9), give as a necessary condition for the existence of an irreducible, resp. not
necessarily irreducible, curve with n nodes and k cusps the estimates

2n + 2k ≤ (d − 1)(d − 2), resp.

n + 2k ≤ (d − 1)2.

By combining the Plücker Formulae (2.15) and (2.17) with Formula (2.18) and the
fact that d∗(d∗ − 1) ≥ d (resulting from formula (2.14)), one gets the following
necessary conditions for the existence of irreducible curves, that is, for the non-
emptiness of V irr

d (n A1 + k A2), originally due to Lefschetz [52]:

2n + 3k ≤ d2− d − √
d ,

6n + 8k ≤ 3d2− 6d . (2.31)

Better bounds from Hirzebruch-Ivinskis, Langer, and spectral estimates are
obtained as a consequence of deep results in algebraic geometry. The general
Hirzebruch-Ivinskis inequality (2.21) reads for a curve of an even degree d ≥ 10
with n nodes and k cusps as (cf. (2.22))

9

8
n + 2k ≤ 5

8
d2− 3

4
d for all d even, d ≥ 6 (2.32)

Langer’s inequality (2.24) applies to all degrees d ≥ 10, and in this range it is
always better then (2.32). Hirzebruch-Ivinskis (HI) compared to Langer (L) gives:

(HI): 0.5625n + k ≤ 0.3125d2 − 0.375d,

(L): 0.5821n + k ≤ 0.3091d2 − 0.3453d.

In particular, Langer’s inequality implies that the maximal number of cusps kmax(d)

on a curve of degree d satisfies

lim
d→∞ sup

kmax(d)

d2
≤ 125 + √

73

432
= 0.3091... . (2.33)

We also mention the spectral bound [94, Theorem, p. 164]

1

2
n + k ≤ 1

2
·
(
the number of integral points (i, j) satisfying
0 < i, j < d, d

6 < i + j ≤ 7
6d

)
(2.34)

= 23

72
d2 + O(d) ≈ 0.3194d2 + O(d),

which is asymptotically weaker than the Hirzebruch-Ivinskis’ and Langer’s bounds.
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Curves with a large number of cusps

The problem of existence of plane curves with a large number of cusps attracted a
special attention, due to the fact that themaximal possible number of cusps in general
is not known yet. We shortly describe here several constructions.

Following Zariski [108, Formula (14), p. 220], consider curves C (1)
r ⊂ P

2 of
degree d = 6r , r ≥ 1, given by F2 + G3 = 0, where F, G ∈ C[x, y, x] are generic
homogeneous polynomials of degree 3r and 2r , respectively. The curves F = 0 and
G = 0 then intersect transversally at 6r2 distinct points, and each of these intersection
points is an ordinary cusp of the curve C (1)

r . The total number of cusps is 6r2 = d2

6 ,
which is far from the upper bounds discussed above. However, choosing appropriate
real F and G, one can obtain a real irreducible curve C (1)

r of degree d = 6r with d2

6
real cusps.

Ivinskis’ construction [43] has provided a bigger number of cusps. Namely, he
started with the sextic curve F(x, y, z) = 0 having 9 cusps in the torus (C∗)2 and
considered the series of curves C (2)

r = {F(xr , yr , zr = 0}, r ≥ 1, of degree d = 6r .
Since the substitution of (xr , yr , zr ) for (x, y, z) defines an r2-sheeted covering of
the torus (C∗)2, we obtain that C (2)

r has 9r2 = d2

4 cusps. This number of cusps is
closer to the upper bounds, but the number of real cusps of C (2)

r is at most 12.
A new idea was suggested by Hirano [39]: she used a sequence of coverings

defined by the substitution of (x3, y3, z3) for (x, y, z), choosing each time the coor-
dinate system with axes tangent to the current curve, and noticing that each tangent
point like that lifts to three ordinary cusps. In particular, starting with the sextic
curve having 9 cusps, she produced the sequence of curves C (3)

k , k ≥ 1, of degree
d = dk = 2 · 3k , having

sk = 9

8
(9k − 1)

cusps. The limit ratio of the number of cusps by the square of the degree equals here

lim
k→∞

sk

d2
k

= 9

32
= 0.28125,

which is closer to Langer’s bound (2.33). Moreover, this was the first example of an
equisingular family having a negative expected dimension

dk(dk + 3)

2
− 2sk ∼ −d2

k

16
as k → ∞,

implying that the cusps impose dependent conditions on the space of curves of degree
d and that this E SF is not T -smooth.

The construction by Hirano was later refined by Kulikov [50] and then by Calabri
et al. [9, Theorem 6], who found a sequence of curves C (4)

k of degree dk = 108 · 9k ,
k ≥ 1, having at least

sk = 69309

20
92k − 27 · 9k − 9

20
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cusps, which yields the (so far) best known limit ratio

lim
k→∞

sk

d2
k

= 2567

8640
= 0.2971... .

Notice also that the constructions by Hirano, Kulikov, and Calabri et al. give a
rather small number of real cusps.

For small degrees d, the known upper bounds often coincide with the known
maximal number smax(d) of cusps of a plane curve of degree d or differ by 1. We
present the results in the following table with an additional information on the known
maximal number smax,R(d) of real cusps on a real curve of degree d.

Degree 3 4 5 6 7 8 9 10 11 12
Upper bound 1 3 5 9 10 15 21 26 31 40
smax 1 3 5 9 10 15 20 26 30 39
smax,R 1 3 5 7 10 14 14 18 23 28

The upper bounds for 3 ≤ d ≤ 6 follow from the second Plücker formula in the
form (2.31). The upper bounds for 7 ≤ d ≤ 9 were proved by Zariski [108, pp. 221,
222]: he showed that for the d-multiple cover of the plane ramified along a plane
curve of degree d with only nodes and cusps, the irregularity vanishes [108, p. 213],
and then he derived that the family of curves of degree d − 3 − [ d−1

6

]
passing through

the cusps of the given curve was unobstructed; hence, the number of cusps does not
exceed (d−m)(d−3−m)

2 + 1, where m = [ d−1
6

]
(cf. [108, Formula (18) on page 221]).

The bounds for 9 ≤ d ≤ 10 follow also from the spectral estimate (2.34). The bound
31 ford = 11 follows from the semicontinuity of the spectrum for lower deformations
of quasihomogeneous singularities [95, Theorem in page 1294] applied to the open
interval

(
2
11 ,

13
11

)
(different from that in (2.34)). At last, the bound 40 for d = 12

follows from the Hirzebruch-Ivinskis estimate (2.32).
The cubic, quartic, quintic, sextic, and septic with the indicated number of cusps

were classically known. For example, the quartic is dual to the nodal cubic, while
the sextic is dual to a smooth cubic, and the quintic was known to Segre (an explicit
construction can be found in [33], see also Fig. 2.2b). The maximal known cuspidal
curves for d = 10 and 12 were constructed by Hirano [39]. The maximal known
cuspidal curves for d = 8, 9, and 11 were constructed via patchworking respectively
in [79, Theorem 4.3] and [9, Appendix], [31, Sect. 4.5.2.3]. The maximal cuspidal
septic was constructed by Zariski [108, p. 222] (see also [45]). We comment on
this result, which nicely combines duality of curves with the classical result on
deformation of curves: the nodes and cusps of an irreducible plane curve of degree
d can be independently deformed in a prescribed way or preserved as long as the
number of cusps is less than 3d [71, 72]. Zariski starts with the sextic having 9 cusps,
deforms it into the sextic with 7 cusps and one node, takes its dual which is a curve
of degree 7 with 10 cusps and 3 nodes and, finally, smoothes out the nodes.

For d ≤ 5, there are real maximal cuspidal curves with only real cusps: such a
quartic is dual to the cubic with an elliptic node, the cuspidal quintic constructed in
[33] and shown in Fig. 2.2b is real and has only real cusps. The knownmaximal num-
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bers of real cusps for degrees 6 ≤ d ≤ 8 were reached in [42]. It is interesting that
smax,R(6) = 7 is the actual maximum for real sextics as shown in [42]: the absence
of a real sextic with 8 real cusps was derived from a delicate analysis of the moduli
space of real K3 surfaces obtained as double covers of the plane ramified along a real
plane sextic curve. The values of smax,R for 9 ≤ d ≤ 12 are borrowed from Theorem
2.3.6.

Patchworking curves with nodes and cusps.

The patchworking construction gives an asymptotically proper answer to the exis-
tence problem for real and complex plane curves with nodes and cusps. If we restrict
our attention to real and complex plane curves with nodes and cusp which belong to
T -smooth equisingular families, then this construction, in view of (2.10), provides
an asymptotically complete answer (see [79, Theorems 2.2, 3.3, and 4.1] and [31,
Sect. 4.5.2.2]):

Theorem 2.3.5 For any non-negative integers d, n, k such that

n + 2k ≤ d2− 4d + 6

2
, (2.35)

there exists a (complex) plane irreducible curve with n nodes and k cusps as only
singularities. Moreover, the result is asymptotically T -smooth optimal, i.e., up to
linear terms in d no more nodes and cusps are possible on a curve belonging to a
T -smooth E SF.

Theorem 2.3.6 (1) For any d ≥ 3 and any positive integer c such that

c ≤ d2 − 3d + 4

4
, (2.36)

there exists a real plane curve of degree d with c real cusps as its only singularities.
(2) There exists a linear polynomial ψ(d) in the variable d such that, for any

d ≥ 3 and nonnegative integers nh, ne, nim, cre, cim with

nh + ne + 2nim + 2cre + 4cim ≤ d2

2
+ ψ(d), (2.37)

there is a real plane curve of degree d having nh hyperbolic nodes, ne elliptic nodes,
nim pairs of complex conjugate nodes, cre real cusps, and cim pairs of complex
conjugate cusps as its only singularities.

Moreover, these curves correspond to T -smooth germs of the respective equisingular
families of curves with cusps in (1) resp. with nodes and cusps in (2) and the bounds
in (2.36) and (2.37) are asymptotically optimal w.r.t. T -smooth E SF.

Proof We prove here the part (1) of Theorem 2.3.6, referring to the references above
for the rest. Consider the subdivision of the lattice triangle Td = Conv{(0, 0), (d, 0),
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Fig. 2.4 Construction of real curves with real cusps

(0, d)} into the lattice quadrangles an triangles depicted in Fig. 2.4a. It is not difficult
to show that the subdivision is convex.

It is easy to see that, for any given α, β, γ ∈ R
∗, there exist real polynomials

F1(x, y) = αy + βx + γ x2 + a11xy + a12xy2,

F2(x, y) = αy2 + βx + γ x2y + b11xy + b12xy2,

withNewton quadrangles Q1, Q2 (see Fig. 2.4b) which define curves with a real cusp
in (R∗)2. Both curves coincide with the real cuspidal cubic tangent to the coordinate
axes in an appropriate way. Thus, we can associate compatible real polynomials with
each tile of the subdivision so that the polynomials for the translates of Q1 and Q2

will define real curves with a real cusp in (R∗)2. Orient the adjacency graph of the
subdivision so that, for each pattern (
i , ∂+
i , Gi ), the part of the boundary ∂+
i

will consist of the two lower sides of each translate of Q1 and Q2. The lattice length
of the rest of the boundary is 2, which is greater than 1, the number of cusps in (C∗)2,
which finally yields the transversality of each pattern (see [79, Theorem 4.1(1)] or
[31, Proposition 4.5.2]). By Theorem 2.3.3 there exists a real curve of degree d with

real cusps as its only singularities, where the number of cusps equals
[

d2−3d+4
4

]
,

the number of translates of Q1 and Q2 in the subdivision. Since the resulting curve
belongs to a T -smooth equisingular family, it can be deformed with smoothing out
prescribed cusps. �
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We note that the inequalities (2.35), (2.36) and (2.37) differ, w.r.t. the number of
cusps, from the restriction of the genus bound (2.3) by a factor 1

2 at d2 and a term
linear in d, showing that the result is asymptotically proper.

2.4 Plane Curves with Arbitrary Singularities

In this section we discuss curves with special singularities (ordinary multiple points,
simple singularities) as well as curves with arbitrary singularities up to topological or
analytic equivalence. Moreover, the bounds based on the Bogomolov-Miyaoka-Yau
inequality are mainly restricted to simple singularities and semi-quasihomogeneous
singularities (we discuss this in more detail in Sect. 2.4.2). Thus, in general we are
left only with the genus bound, the Plücker bounds, and the spectral bound.

2.4.1 Curves of Small Degrees

For degrees≤ 6 the possible collections of singularities of irreducible complex plane
curves are classified.

The fact that an irreducible real or complex cubic may have either a node A1 or a
cusp A2 was known already to Newton [60–62] (for a modern treatment of Newton’s
study, see [49]).

Collections of singularities of complex irreducible quartic curves can easily be
classified bymanipulating equations or by using quadratic Cremona transformations,
and all this has been known to algebraic geometers of the 19-th century. Moreover,
it can be shown that each collection of singularities defines a smooth irreducible
subvariety of expected dimension in the space P

14 of plane projective quartics (see,
for instance, [7, 98]). The classification of real singular quartic curves was completed
in [34] (see also [48] for more details as well as for the classification of real singular
affine quartics).5

Still, the classification of collections of singularities of irreducible plane quin-
tic curves can be reached by elementary methods. The complete classification of
singularities of plane quintics together with the statement that each collection of
singularities defines a smooth irreducible equisingular family of expected dimension
can be found in [16] and [17, Sect. 7.3] (se also [33, 99] for interesting particular
examples of singular quintics).

The case of plane sextic curves is the first non-elementary one. The study of plane
sextics heavily relies of a thorough investigation of K3 surfaces appearing as double
covers of the plane ramified along the considered sextic curve. On the other hand, it
reveals a highly interesting new phenomenon - the existence of the so-called Zariski

5Both papers contain much more material: they classify all possible dispositions of singular points
on the real point set of the quartic curve.
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pairs, i.e., pairs of curves having the same collection of singularities, but belonging
to different components of the equisingular family. The first example presenting two
sextic curves with 6 ordinary cusps that have non-homeomorphic complements in
the projective plane was found by Zariski [108, p. 214]. The complete classification
of collections of singularities (up to topological equivalence) can be found in [3]
and [17, Sect. 7.2] (various particular cases have been investigated in [91–93]). The
classiication of real singularities of real sextics is not completed yet (for the case of
complex and real cusps, see Sect. 2.3.2 above).

2.4.2 Curves with Simple, Ordinary, and
Semi-quasihomogeneous Singularities

In the present section we construct equisingular families of curves with many simple
resp. ordinary resp. semi-quasihomogeneous singularities and compare their number
with the known necessary bounds. Again, bymeans of the patchworking construction
we are able to construct families such that the number of singularities is asymptot-
ically optimal resp. proper. The results presented in Theorem 2.4.5, 2.4.6 and 2.4.7
are new.

Curves with simple singularities. The patchworking construction, essentially used
in Sect. 2.3 for the construction of curves with real and complex nodes and cusps,
works equally well in the case of arbitrary simple singularities An , n ≥ 1, Dn , n ≥ 4,
En , n = 6, 7, 8. The results of [83, 100] on the existence of plane complex curves
with simple singularities can be summarized in the following statement (cf. [31,
Theorem 4.5.5])

Theorem 2.4.1 (1) For any simple singularity S, there exists a linear polynomial
ϕS(d) such that the inequality

kμ(S) ≤ d2

2
+ ϕS(d) (2.38)

is sufficient for the existence of an irreducible complex plane curve of degree d
having k isolated singular points of type S as its only singularities and belonging to
a T -smooth ESF.

(2) Furthermore, for any integer m ≥ 1, there exists a linear polynomialψ simple
m (d)

such that the inequality

r∑

i=1

μ(Si ) ≤ d2

2
+ ψ simple

m (d), (2.39)

with arbitrary r and simple singularities S1, ..., Sr with Milnor numbers ≤ m, is
sufficient for the existence of an irreducible complex plane curve of degree d having
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r isolated singular points of types S1, ..., Sr , respectively, as its only singularities
and belonging to a T -smooth ESF.

Notice that this existence statement is asymptotically optimal as long as we con-
sider curves belonging to T -smooth E SF . Indeed, the codimension of a T -smooth
E SF in the considered cases equals the left-hand side in (2.38) or (2.39) (see [23,
Corollary 6.3(ii)] and [31, Theorem 2.2.40]), and hence satisfies

kμ(S) ≤ d(d + 3)

2
, resp.

r∑

i=1

μ(Si ) ≤ d(d + 3)

2
.

In each case, the difference between the bounds in the necessary and sufficient condi-
tions is linear in d. For the proof we refer to [83, 100] (see also the proof of Theorem
2.4.5).

The existence of real curves with simple singularities was analyzed in [101] along
the same lines, though the argument was incomplete: in particular, Lemma 3.1 in
[101] is wrong as pointed out by E. Brugallé. So, in general the problem over the
reals remains open.

While the patchworking construction basically resolves the existence problem for
curves with simple singularities that impose independent conditions on the coeffi-
cients of the defining equation, there are examples of curves with extremely many
simple singularities imposing thereby dependent conditions on the curve.

So, the construction invented by Hirano [39] (which we discussed in connection
to plane curves with large number of cusps, Sect. 2.3.2) applies well also to more
complicated cusps An (see [39, Theorem 2]). Namely, one starts with a smooth
conic and, in each step, chooses axes tangent to the current curve and substitutes
(xn+1, yn+1, zn+1) for (x, y, z), which results in the following sequence of singular
curves:

Theorem 2.4.2 For any even n ≥ 4, there exists a sequence of irreducible complex
plane curves Ck, k = 1, 2, ..., of degree dk = 2(n + 1)k having

sk = 3(n + 1)((n + 1)2k − 1)

n(n + 2)

singular points of type An as their only singularities.

Remark 2.4.3 In fact, Hirano’s construction works for odd n ≥ 3 as well with the
above formulas for the degree and for the number of An singularities, but the curves
appear to be reducible.

Since a singularity An imposes in general τ(An) = μ(An) = n conditions, we
obtain that the total number of conditions compared with the dimension of the space
of curves of the given degree reveals the following asymptotics:

lim
k→∞

nsk

dk(dk + 3)/2
= 3

2
− 3

2(n + 2)
> 1 for all n ≥ 2. (2.40)
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Thus, the An impose dependent conditions and the corresponding equisingular stra-
tum is not T -smooth. For instance, in general, we cannot decide whether there exist
curves of degree dk with any number m < sk of singularities of type An .

Other series of extremal examples exhibit plane curves with one singularity Am

with m = m(d) as large as possible for a given degree d. More precisely, each series
consists of plane curves of degrees d → ∞with one Am(d) singularity: Gusein-Zade
and Nekhorochev [36, Proposition 2] constructed a series of curves for which

lim
d→∞

m(d)

d(d + 3)/2
= 15

14
= 1.0714... .

Later Cassou-Nogues and Luengo [13] obtained another sequence of curves with

lim
d→∞

m(d)

d(d + 3)/2
= 8 − 4

√
3 = 1.0717... .

The best known result is due to Orevkov [64, Sect. 4]:

Theorem 2.4.4 There exists a sequence of plane curves of degrees dk → ∞ as
k → ∞ having a singular point of type Amk such that

lim
k→∞

mk

dk(dk + 3)/2
= 7

6
= 1.1666... .

The ratios of the number of imposed conditions to the dimension of the space of
curves of a given degree in all these examples appears to be > 1; hence, we again
observe a non-T -smooth equisingular family. Also, in general, we cannot decide
whether there exist curves of degree dk with an Ar singularity for all r < mk .

It is worth to compare the extremal examples by Hirano and Orevkov with the
known restrictions. The genus bound (2.3) and Plücker formulas (2.14), (2.17) yield
weaker bounds than the Hirzebruch-Ivinskis’ and the spectral ones. Namely, the
Hirzebruch-Ivinskis bound (2.21) combined with the first formula in (2.22) implies
that the limit ratio of the total Milnor number to the dimension of the space of curves
of the given degree does not exceed

5(n + 1)

3(n + 2)
in the case of Hirano,

5

3
in the case of Orevkov.

By (2.25) the spectra of the singularity An and of an ordinary d-fold singularity are

{
k

n + 1
− 1

2
: 1 ≤ k ≤ n

}
,

{
i + j

d
− 1 : 1 ≤ i, j ≤ d − 1

}
,
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respectively. Applying the semicontinuity of the spectrum on the interval ( n
n+1 −

3
2 ,

n
n+1 − 1

2 ], one can easily derive an upper bound of the total Milnor number for the
existence of a curve of fixed degree d with s singular points of type An:

sn ≤ #

{
(i, j) ∈ Z

2
∣∣ 1 ≤ i, j < d,

n

n + 1
− 1

2
<

i + j

d
≤ n

n + 1
+ 1

2

}
. (2.41)

If we fix n ≥ 2 and let d → ∞, then we obtain

lim
d→∞ sup

sn

d(d + 3)/2
≤ 3

2
− 2

(n + 1)2
,

which is comparable with the limit ratio in examples of Hirano (2.40), showing that,
for large n the spectral bound is almost sharp.

If we let s = 1 and d → ∞ in (2.41), we will obtain

lim
d→∞ sup

n

d(d + 3)/2
= 3

2
,

which differs from the asymptotical ratio attained in Orevkov’s examples, Theorem
2.4.4, leaving open the question on the sharpness of the spectral bound in the case
of one singularity An .

Curves with ordinary multiple singular points. By an ordinary (multiple) singu-
lar point we understand a singularity consisting of several smooth local branches
intersecting each other transversally. It happens that the patchworking construction
provides an asymptotically optimal existence condition for curveswith ordinarymul-
tiple points as well, which, moreover, completely covers both the complex and the
real case.

Theorem 2.4.5 For a fixed positive integer m the following holds:
(1) There exists a linear polynomial ψ

ordinary
m, f i x (d) such that, for an arbitrary

sequence of integers r2, ..., rm ≥ 0, the inequality

m∑

i=2

i(i + 1)

2
ri ≤ d2

2
+ ψ

ordinary
m, f i x (d) (2.42)

is sufficient for the existence of an irreducible complex plane curve of degree d in
a T-smooth equisingular family, having ri ordinary singular points of multiplicity
i = 2, ..., m as its only singularities, all of them in general position.

(2) Furthermore, the same inequality (2.42) is sufficient for the existence of a
real plane irreducible curve of degree d in a T-smooth equisingular family, having
the given collection of ordinary multiple points in conjugation-invariant general
position, when we prescribe the numbers of pairs of imaginary ordinary singular
points for each multiplicity 2, ..., m and prescribe the number of real local branches
for each real ordinary singular point.
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Note that the necessary existence condition in the setting of Theorem 2.4.5 is

m∑

i=2

i(i + 1)

2
ri ≤ d(d + 3)

2
,

as long as d is big enough, which follows from the Alexander-Hirschowitz theo-
rem [4, Theorem 1.1] (see also [31, Theorem 3.4.22]). That is, the bound (2.42) is
asymptotically optimal (even for non-T-smooth families).

Proof The first part of the theorem follows, in fact, from the Alexander-Hirschowitz
theorem [4, Theorem 1.1] after some routine work ensuring that a generic bivariate
polynomial of degree d, whose derivatives vanish up to appropriate order at the
given points in general position, defines an irreducible curve with only ordinary
singularities as prescribed. The second part, however, is not accessible within this
framework, since the control over the real singularity types may require at least d2

m
extra independent conditions, which is not bounded by a linear function of d. So, to
prove the second statement (and thereby the first one), we apply a suitable version
of the patchworking construction.

The main element of the construction consists of a collection of the following
patchworking patterns. Fix any 2 ≤ i ≤ m and consider the lattice rectangle Ri =
Conv{(0, 0), (0, i), (i + 1, 0), (i + 1, i)}.We claim that there exists a real irreducible
polynomial Fi (x, y) with Newton polygon Ri (see Fig. 2.5a) which defines a real
plane curve having in (C∗)2 exactly two singular points:

• either two complex conjugate ordinary singularities of order i ,
• or two real ordinary singularities with the prescribed number j ≤ i/2 of pairs of
complex conjugate local branches.

Indeed, in the projective plane P
2 with coordinates x, y, z consider the pencil of

conics passing through the points (1, 0, 0) and (0, 1, 0) and through two more points
p1, p2 ∈ (C∗)2 = P

2 \ {xyz = 0}, either a pair of complex conjugate points, or a pair
of real generic points. In the case of complex conjugate p1, p2, we pick i distinct
smooth real conics Q1, ..., Qi in our pencil, while in the case of real p1, p2, we
pick i smooth conics Q1, ..., Qi in our pencil so that i = 2 j of them are real and
the others form j pairs of complex conjugate conics. Consider the projective curve
Q1 · · · Qi · L = 0, where L = x + λz with a generic real number λ. This curve has
ordinary singularities of order i at p1, p2, and (0, 1, 0), an ordinary singularity of
order i + 1 at (1, 0, 0), and i more nodes, which are intersection points of the line
L = 0 with the conics. There exists a small real deformation of the considered curve
that preserves the ordinary singularities at p1, p2, (1, 0, 0), and (0, 1, 0) and smoothes
out all the extra nodes. This follows directly from [76, Theorem, p. 31] or, after the
blowing up � → P

2 of the four ordinary singularities, from [23, Theorem 6.1(iii)],
since each component C of the blown-up curve satisfies −C K� > 0, and the nodes
do not contribute to the right-hand side of the required inequalities (see also [31,
Theorem 4.4.1(b) (formula (4.4.1.3)), Proposition 4.4.3(b) (formula (4.4.1.10)), and
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Fig. 2.5 Patchworking of real curves with ordinary singularities

Remark 4.4.212(ii)]). So, we obtain the desired polynomial Fi by substituting z = 1
into the equation of the above deformed curve.

Then we subdivide the lattice triangle Td = Conv{(0, 0), (d, 0), (0, d)} into con-
vex lattice polygons, in which the desired number of patches corresponding to any
fixed real ordinary singularity type should be arranged as shown in Fig. 2.5b. The
polynomials for each rectangle are obtained from just one suitable polynomial Fi

constructed above, which should be multiplied by an appropriate monomial and
undergo the coordinate change x �→ x−1 and/or y �→ y−1 in order to make any two
neighboring polynomials agree along the common side of their Newton rectangles.
Between the unions of rectangles corresponding to different types of ordinary sin-
gularities, we leave the space of vertical size at most m − 1 (shown by dashed lines
in Fig. 2.5b) which should be subdivided into lattice triangles with the associated
polynomials defining smooth real curves in (C∗)2 so that finally one obtains a convex
subdivision of Td . To apply the patchworking theorem [79, Theorem 3.6] we have to
verify the topological transversality conditions. With an appropriate orientation of
the adjacency graph of the tiles of the subdivision, we get ∂+ Ri in each rectangle Ri

to be the union of the bottom and the left sides. The sufficient transversality condition
stated in [79, Theorem 4.1(1), the first formula] (see also [31, Proposition 4.5.2 and
Corollary 1.2.22]) reads as

the contribution of the two i − multiple points = 2i

< 2i + 1 = the total length of the upper and the right sides of Ri .

Finally, we note that the resulting curve (obtained by the patchworking construc-
tion) admits by T -smoothness a deformation smoothing out any prescribed singu-
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larities and keeping the remaining ones. Thus, one can realize any values in the
right-hand side of (2.42) with φ

ordinary
m, f i x (d) ∼ m2d. �

Curves with semi-quasihomogeneous singularities. Consider curve singularities
topologically equivalent to xm + yn = 0, 2 ≤ m ≤ n. A slightly modified Zariski
construction mentioned in Sect. 2.3.2 provides a series of curves with a large number
of semi-quasihomogeneous singularities. Combining Zariski’s with the patchwork-
ing construction we obtain even a series of curves belonging to a T -smooth family.

Theorem 2.4.6 Let 2 ≤ m ≤ n.
(1) If gcd(m, n) = 1, then for any r ≥ 1, the curve C of degree d = rmn given

by Fn + Gm = 0, where F, G ∈ C[x, y, z] are generic homogeneous polynomials
of degree rm and rn, respectively, is irreducible and has r2mn = d2

mn singular points
of type xm + yn = 0 as its only singularities.

(2) If gcd(m, n) > 1, then for any r ≥ 1, the curve C of degree d = rmn + 1 given
by L1Fn + L2Gm = 0, where F, G ∈ C[x, y, z] are generic homogeneous polyno-
mials of degree rm and rn, respectively and L1, L2 are generic linear polynomials,
is irreducible and has r2mn = (d−1)2

mn singular points of type xm + yn = 0 as its only
singularities.

Moreover, in both cases we can assume that the constructed curves are real and
all their singular points are real.

Proof By construction, the curves F = 0 and G = 0 intersect transversally at r2mn
distinct points, and the curve C has the topological singularity xm + yn = 0 at each
of these intersection points. �

Note that the number of singularities obtained on these “Zariski curves” is close
to the genus bound (2.3): for instance, under the conditions of Theorem 2.4.6, the
number of the considered singular points does not exceed

(d − 1)(d − 2)

(m − 1)(n − 1) + gcd(m, n) − 1
<

(d − 1)2

(m − 1)(n − 1)
,

which is comparable with the actual numbers d2

mn and (d−1)2

mn of singularities. On the
other hand, we cannot guarantee that the conditions imposed on the curve by singular
points are independent; hence, we cannot ensure that there exist curves of the given
degree with any intermediate amount of singular points of the given type.

One can modify Zariski’s construction further and obtain a curve with different
semi-quasihomogeneous singularities, and, moreover, obtain a curve belonging to a
T -smooth equisingular stratum.

Theorem 2.4.7 (1) Given integers

d0, d ′
0 ≥ 0, d1, ..., dk, d ′

1, ..., d ′
l ≥ 1, m1, ..., mk, n1, ..., nl ≥ 2



2 Plane Algebraic Curves with Prescribed Singularities 101

such that

d =
k∑

i=1

mi di + d0 =
l∑

j=1

n j d
′
j + d ′

0.

Then the plane curve of degree d

H
k∏

i=1

Fmi
i + H ′

l∏

j=1

G
n j

J = 0, (2.43)

where F1, ..., Fk, G1, ..., Gl , H, H ′ are generic homogeneous polynomials of degree
d1, ..., dk, d ′

1, ..., d ′
l , d0, d ′

0, respectively, has di d ′
j singular points of topological type

xmi + yn j = 0 for all i = 1, ..., k, j = 1, ..., l. Further on, we can achieve that the
constructed curve is real and all its singular points are real.

(2) In addition, if either

(i)

{ [
d0 �= d ′

0 or gcd(m1, ..., mk, n1, ..., nl) = 1
]

and
∑k

i=1

∑l
j=1 di d ′

j (mi + n j − gcd(mi , n j ) − ε(mi , n j )) < d̃(d ′ + 3),

where d ′ = min{d0, d ′
0}, d̃ = d − d ′,

ε(a, b) =
{
1, a ≡ 1 mod b, or b ≡ 1 mod a,

0, otherwise,

or
(ii)

k∑

i=1

l∑

j=1

di d
′
j (mi + n j − gcd(mi , n j ) − ε(mi , n j )) < d̃(d ′ + 2), (2.44)

then the curve constructed above belongs to a T -smooth equisingular family, and it
admits a deformation moving all its singular points to a general position.

Proof We have to explain only part (2). Consider the case (2ii). We can assume that
d0 = d ′

0 = d ′ > 0. We shall prove that the curve given by

Ĥ

⎛

⎝L
k∏

i=1

Fmi
i + L ′

l∏

j=1

G
n j

J

⎞

⎠ = 0, (2.45)

where F1, ..., Fk, G1, ..., Gl , L , L ′, Ĥ are generic homogeneous polynomials of
degree d1, ..., dk, d ′

1, ..., d ′
l , 1, 1, d ′ − 1, respectively, belongs to a T -smooth equi-

singular family with respect to the singular points located at the set
⋃

i, j {Fi =
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0} ∩ {G j = 0}, and all these singular points can be moved to a general position
(while the nodes located on H may disappear). Since these properties are open, they
will hold for the original curve (2.43) as well. On the other hand, by [76, Theorem
in page 31] the required properties will follow from [76, Inequality (4)] which in
our situation takes the form of (2.44) (cf. the definition of the invariant b in [76,
Definition 2]). In the same manner, one can settle the case (2i). �

Remark 2.4.8 (1) Under the hypotheses of part (2) of Theorem 2.4.7, one can
deform the curve (2.43) smoothing out prescribed singularities and keeping the other
ones.

(2) The hypotheses of Theorem 2.4.7(2) can be relaxed to the following one:

d ′ ≥ d̃ · max
i, j

{
1

mi
+ 1

n j

}
− 2 .

2.4.3 Curves with Arbitrary Singularities

Note that none of the constructions discussed in Sects. 2.3 and 2.4.2 can be applied
directly, if we ask about the existence of plane curves of a given degree with a
prescribed collection of topological or analytic singularities, which are not further
specified. For instance, the patchworking construction requires tofind apatchworking
pattern for and prescribed singularity, i.e., a bivariate polynomial that defines a curve
with a given singularity and whose Newton polygon can be used as a tile in the
subdivision of the triangle Td = Conv{(0, 0), (d, 0), (0, d)}. To get a reasonable
existence result, one needs such tiles of a possibly minimal area, and it is not clear at
all how to find these minimal tiles for arbitrary topological or analytic singularities.

However, there is another approach that combines some features of the patchwork-
ing construction with suitable H 1-vanishing criteria for the ideal sheaves of zero-
dimensional subschemes of the plane placed in general position. The first attempt
like that, undertaken in [26], has led to the following existence criterion: for any
positive integer d and topological singularity types S1, ..., Sr , the inequality

r∑

i=1

μ(Si ) ≤ d2

392
(2.46)

is sufficient for the existence of an irreducible plane curve of degree d having r
singular points of types S1, ..., Sr , respectively, as its only singularities.

This criterion already possessed two important properties: it was universal, i.e.,
uniformly applicable to arbitrary topological singularities, and asymptotically proper
i.e. comparable with the necessary condition (2.4). On the other hand, the analytic
singularity types were left aside, and the coefficient of d2 in (2.46) was too small. An
improved method was suggested in [81] (for a further improvement and a detailed
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exposition see [31, Sect. 4.5.5]). Themain result was (cf. [81, Theorem 3 andRemark
5] and [31, Corollary 4.5.15]):

Theorem 2.4.9 For any positive integer d and an arbitrary sequence of complex,
resp. real, analytic singularity types S1, ..., Sr , the inequality

r∑

i=1

μ(Si ) ≤ 1

9
(d2 − 2d + 3) (2.47)

is sufficient for the existence of a plane irreducible complex, resp. real, curve of degree
d having r singular points of types S1, ..., Sr , respectively, as its only singularities.
Moreover, the positions of the singular points together with the tangent directions
for unibranch singularities can be chosen generically.

We point out that condition (2.47) has a much larger coefficient of d2 in the right-
hand side than (2.46) and covers both arbitrary topological and analytic singularity
types, being universal with respect to the choice of singularities.

We also remark that condition (2.47) is a weaker form of the following stronger
sufficient existence conditions (see [31, Theorem 4.5.14]):

6n + 10k + 49

6
t + 625

48

∑

Si �=A1,A2

δ(Si ) ≤ d2 − 2d + 3,

for topological singularity types S1, ..., Sr , and

6n + 10k +
∑

Si �=A1,A2

7μ(Si ) + 2δ(Si ))
2

6μ(Si ) + 3δ(Si )
≤ d2 − 2d + 3,

for analytic singularity types S1, ..., Sr . In these inequalities, n is the number of nodes
A1, k is the number of cusps A2, and t is the number of singularities A2m , m ≥ 2,
occurring in the list S1, ..., Sr . Notice that the coefficients in front of n and k in the
above two formulas are the best possible, since a node at a prescribed point imposes
3 conditions, while a cusp at a fixed point with a fixed tangent direction imposes 5
conditions.

The case of just one singularity is of special interest. The corresponding result
sounds as follows ([81, Theorem 2 and Remark 5] and [31, Theorem 4.5.19]):

Theorem 2.4.10 For an arbitrary analytic singularity type S, there exists a plane
curve of degree

d ≤ 3
√

μ(S) − 1 (2.48)

having a singular point of type S as its only singularity.

Remark 2.4.11 A necessary condition for d as in Theorem 2.4.10 comes, for
instance, from (2.4): d ≥ √

μ(S) + 1. Thus, the sufficient condition (2.48) is of
the same order

√
μ(S) as the necessary one.
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We comment on the main ideas behind Theorems 2.4.9 and 2.4.10:
The first important ingredient is to reduce the existence problem to an H 1-

vanishing condition for the ideal sheaf of a suitable zero-dimensional subscheme
of the plane. Namely, to each reduced plane curve germ (C, p) we associate two
zero-dimensional schemes Zs

st (C, p) and Z̃ a
st (C, p) in P

2 supported at p that are
defined as follows (cf. [31, Sects. 1.1.4 and 4.5.5.1]):

• Take the complete resolution tree T ∞(C, p), choose the subtree T ∗(C, p) con-
taining all infinitely near points which are not the nodes of the union of the strict
transform of (C, p) with the exceptional locus, and then define Zs

st (C, z) by the
ideal I s

st ⊂ OP2,p generated by the elements ϕ ∈ OP2,p having the multiplicity
mt(C, p) + 1 at p, and the multiplicity of the strict transform of (C, p) at each
infinitely near point q ∈ T ∗(C, p) \ {p}.

• Let (C, p) be given by f (x, y) = 0 with f ∈ OP2,p square-free, x, y affine coor-
dinates in a neighborhood of p such that p = (0, 0). Define Z̃ a

st (C, z) by the ideal
mp Ĩ a ⊂ OP2,p, where

Ĩ a = {g ∈ OP2,p : g, gx , gy ∈ 〈 f, fx , fy〉}.

The importance of these schemes comes from the following claim (cf. [31, Proposi-
tion 4.5.12]):

Lemma 2.4.12 Let Z denote Zs
st (C, p), resp. Z̃ a

st (C, p). If a positive integer d sat-
isfies

H 1(P2,JZ/P2(d)) = 0,

whereJZ/P2 is the ideal sheaf of the subscheme Z ⊂ P
2, then there exists a curve C ′ ⊂

P
2 of degree d such that the germ (C ′, p) is topologically, resp. analytic equivalent

to (C, p). Furthermore, the corresponding equisingular family V irr
d (S) (S being the

topological, resp. analytic type of (C, z)) is T-smooth at C ′.

The length of Zs
st (C, z) and Z̃ a

st (C, z) can be estimated from above by a linear
function in δ(C, p) and μ(C, p) (see [31, Corollary 1.1.4 and Lemma 1.1.78]).

It is not difficult to see that, for a randomly chosen germ (C, p), the minimal
d in Lemma 2.4.12 can be of order deg Z , i.e., of order μ(C, p), but

√
μ(C, p) is

required in Theorems 2.4.9 and 2.4.10. So, the second important idea is to replace
the germ (C, p), or, more precisely, the corresponding zero-dimensional scheme Z
by a generic element in Iso(Z), the orbit of Z by the action of the group Aut(OP2,p).
The principal bound is as follows (cf. [81, Propositions 8 and 10, Remark 3] and
[31, Proposition 3.6.1 and Corollary 3.6.4]). Given an irreducible zero-dimensional
scheme Z ⊂ P

2 supported at z ∈ P
2, denote by M2(Z) the intersection multiplic-

ity of two generic elements of the ideal I (Z) ⊂ OP2,z . If Z consists of irreducible
components Z1, ..., Zk , we set M2(Z) = M2(Z1) + ... + M2(Zk).

Lemma 2.4.13 For an arbitrary zero-dimensional Z of degree deg Z > 2, there
exists Z ′ ∈ Iso(Z) and
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Fig. 2.6 Necessary and sufficient conditions for existence: The statement holds asymptotically for
the region between the corresponding boundary curves

d ≤ deg Z√
4
3 M2(Z)

+
√
4

3
M2(Z) − 2

such that
H 1(P2,JZ ′/P2(d)) = 0 .

In the case of a reducible scheme Z = Z1 ∪ ... ∪ Zr , we move its supporting
points to a general position and choose generic element Z ′

i ∈ Iso(Zi ) for each
component Zi .

A proper combination of these two ideas (Lemmas 2.4.12 and 2.4.13) leads to
Theorems 2.4.9 and 2.4.10.

The following diagram illustrates the present knowledge about the existence
of plane curves of degree d with arbitrary (analytical or topological) singularities
S1, ..., Sr (Fig. 2.6).
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2.5 Related and Open Problems

2.5.1 Existence Versus T-Smoothness and Irreducibility

The existence problem for singular algebraic curves is tightly related to the geometry
of the corresponding equisingular family, especially, to the T -smoothness property,
which was crucial in the patchworking construction and also used in other construc-
tions. In this section, we construct singular plane algebraic curves of two sorts:
(i) those which demonstrate the sharpness of the known T -smoothness criteria and
(ii) those which yield examples of reducible equisingular families.

Recall the universal sufficient conditions for the T-smoothness (see [75, Theorem
1], [24, Corollary 3.9(d)], [28, Theorems 1 and 2] and [31, Theorems 4.3.8 and
4.3.9]):

Theorem 2.5.1 Let C be an irreducible plane curve of degree d with singular points
p1, ..., pr of topological or analytic types S1, ..., Sr respectively. Then the equisin-
gular family V irr

d (S1, ..., Sr ) is T -smooth at C if either

r∑

i=1

τ ′(Si ) < 4d − 4, (2.49)

where τ ′ = τ es if Si is a topological type and τ ′ = τ if Si is an analytic type, i =
1, ..., r , or

r∑

i=1

γ ′(C, pi ) ≤ (d + 3)2 , (2.50)

where γ ′ = γ es for Si is a topological type and γ ′ = γ ea for Si an analytic type,
i = 1, ..., r .

The symbols τ es, τ, γ es, γ ea are topological or analytic singularity invariants. For
precise definitions we refer to [31, Sect. 1.2.3.1 and Definition 1.1.63], and for the
detailed study of their properties to [31, Corollary 1.1.64, Proposition 1.2.26]. Here
we provide only the following information used below (see also Preliminaries):

• τ is the Tjurina number, i.e., the dimension of the Tjurina algebra

τ(C, p) = τ( f ) = dimC OP2,z/〈 f, fx , fy〉,

where a square-free element f ∈ OP2,z defines the curve germ (C, p), and x, y
are local coordinates;

• τ es(C, p) is the codimension of theμ-const stratum in the versal deformation base
of the curve germ (C, p); it always satisfies

τ es(S) ≤ τ(S) ≤ μ(S),
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with equalities for a simple singularity type S.
• γ es(C, p) ≤ γ ea(C, p) for any curve germ with equality if the singularity is sim-
ple, furthermore

γ ea(S)

{
= (μ(S) + 1)2, if S = An, n ≥ 1,

≤ (μ(S) + 1)2, otherwise.

We also recall important particular cases (see [31, Corollaries 4.3.6, 4.3.11, for-
mula (1.2.3.1)] and Theorem 2.5.1):

Theorem 2.5.2 (1) An irreducible plane curve of degree d with n nodes and k cusps
as its only singularities belongs to a T -smooth equisingular family if either

k < 3d , (2.51)

(any n ≥ 0, i.e., nodes do not count) or

4n + 9k ≤ (d + 3)3 . (2.52)

(2) An irreducible plane curve of degree d with r singular points of simple singu-
larity types S1, ..., Sr belongs to a T -smooth equisingular family if

∑

Si ∈A

(μ(Si ) + 1)2 +
∑

Si ∈D,E

max

{
(μ(Si ) − 1)2,

1

2
(μ(Si ) + 2)2

}
≤ (d + 3)3.

(2.53)

Remark 2.5.3 Observe that, first, the right-hand sides in the 4d-criterion (2.49) and
the 3d-criterion (2.51) for T -smoothness are only linear in d, while the sufficient
condition (2.47) for existence is quadratic in d in the right-hand side. Second, the T -
smoothness restrictions (2.51) and (2.52) are far away from the existence conditions
in Theorem 2.3.6, and, third, the invariants assigned to singular points in the left-
hand side of (2.50) and (2.53) are in general of order μ2(S), while in (2.47) we
have just μ(S). That is, for general analytic or topological types there exists a wide
range of nonempty equisingular families, which do not fall to the limits of Theorems
2.5.1 and 2.5.2. On the other hand, for curves with simple (Theorem 2.4.1) , ordinary
(Theorem2.4.5), and semi-quasihomogeneous singularites (Theorem2.4.7), we have
T -smooth equisingular families with asymptotically proper bounds for existence.

Thus, natural questions arise for arbitrary singularities:

(1) Does the difference between the left-hand sides of the sufficient T -smoothness
criteria in Theorems 2.5.1 and 2.5.2 and the left-hand side of the sufficient
existence criterion (2.47) reflect the lack of T -smoothness outside the limits
pointed in Theorems 2.5.1 and 2.5.2?

(2) Or, can the singularity invariants in the left-hand side of the sufficient T -
smoothness criteria be essentially diminished?
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We exhibit a series of singular plane algebraic curves and their families demon-
strating that the linear bounds (2.49) and (2.51) are sharp, the coefficients in the left-
hand side of (2.52) are sharp, and the singularity invariants in the other T -smoothness
conditions can, in principle, be improved only by a constant factor, while their order
with respect to the Milnor number persists. We mainly use the constructions dis-
cussed in Sects. 2.3 and 2.4. For all details and more examples see [31, Sects. 4.2.3,
4.3.3] and references therein.

The following example, which is due to du Plessis and Wall [18] (elaborated
further in [21]), shows that the bound (2.49) is sharp.

Theorem 2.5.4 For any d ≥ 5 the irreducible curve C ⊂ P
2 given by xd

1 + x5
2 xd−5

0 +
xd
2 = 0 has the unique singular point z = (1, 0, 0) with Tjurina number 4d − 4, and

the equisingular family V irr
d (S), where S is the analytic type of the germ (C, z), is

not T -smooth. Furthermore, the family V irr
d (S) is nonreduced for d ≤ 6, consists of

two intersecting components for d = 7, and is reduced, irreducible with a singular
locus containing C for d ≥ 8.

The examples found in [28, Proposition 4.5] (see also [31, Theorem 4.3.23]) show
that the classical Severi-Segre-Zariski bound (2.51) is sharp and that the coefficients
4 and 9 in (2.52) are sharp.

Theorem 2.5.5 Let p ≥ 6, q ≥ 9. Then the variety V irr
d (n · A1, k · A2) has a non-

T -smooth component if

(a) d = 3p, n = 0, k = p2 + 3p, or
(b) d = 2q, n = q2 − 9q, k = 6q.

In the series (a), 9k = d2 + 9d, and hence the coefficient 9 in (2.52) is sharp.
In the series (b), 4n = d2 − 18d and also k = 3d, which yields the sharpness of
(2.51) and of the coefficient 4 in (2.52). A curve C ∈ V irr

d (n · A1, k · A2) at which
the T -smoothness fails can be constructed by Zariski’s method as in Theorem 2.4.6:
namely, we set C to be given by

AP2R2 + B Q2 = 0,

where A, B, P, Q, R are generic polynomials of degrees a, b, p, q, r , respectively,
such that

a = d − 3p − 2r ≥ 0, b = d − 2q ≥ 0.

The series (a) corresponds to r = 0, d = 3p, q = p + 3, p ≥ 6, while the series (b)
corresponds to d = 2q, p = 6, r = q − 9. For the failure of the T -smoothness see
the proof of [31, Theorem 4.3.23].

The next series of examples were found in [25, Theorems 5 and 6] (see also [31,
Theorems 4.3.24 and 4.3.25]). They show that the coefficients of the An and Dn

singularities in (2.53) may, in principle, be reduced, but only by a constant factor
≥ 1

4 .
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Theorem 2.5.6 Let l ≥ 2, 0 ≤ s ≤ l − 2, q ≥ 3
l−s−1 be integers.

(1) Let k > 2l − s be an integer. Then there exists an irreducible plane curve C of
degree d = q(k + s) having precisely q2 singular points, all of type Akl+s−1,
such that the family V irr

d (q2 · Akl+s−1) is not T -smooth at C. Moreover,

• if k > 4l − s, then C belongs to a component of V irr
d (q2 · Akl+s−1) of expected

dimension which is singular at C;
• if k ≥ max{l2 + 2l, 4l + 4 − s}, then the germ of V irr

d (q2 · Akl+s−1) at C is a
singular, normal complete intersection.

(2) Let k > 2l − s + 1 be integer. Then there exists an irreducible plane curve C
of degree d = q(k + s) having precisely q2 singular points, all of type Dkl+s+1,
such that the family V irr

d (q2 · Dkl+s+1) is not T -smooth at C. Moreover,

• if k > 4l − s, then C belongs to a component of V irr
d (q2 · Dkl+s+1) of expected

dimension which is singular at C;
• if k ≥ max{l2 + 2l + 2, 4l + 4 − s}, then V irr

d (q2 · Dkl+s+1) is a singular,
normal locally complete intersection at C.

In particular, for l = 2, s = 0, we have in part (1)

d2 = q2k2 and q2(μ(A2k−1) + 1)2 = 4q2k2,

and in part (2)

d2 = q2k2 and q2(μ(D2k+1) − 1)2 = 4q2k2.

In part (1) the construction is as follows. Take the affine curve

(y + yl − xl)2(1 + λ1xk+s−2l + λ2xs yk + yk+s) = 0,

where λ1, λ2 ∈ C are generic. It is easy to check that it is irreducible with the unique
singularity Akl+s−1 at the origin. Thenwe take its projective closure, choose a generic
projective coordinate system (x0, x1, x2) and apply the transformation (x0, x1, x2) =
(yq

0 , yq
1 , yq

2 ) (cf. Ivinskis’ and Hirano’s constructions [39, 43]). In part (2), we start
with the affine curve

x(y + yl − xl)
2(1 + λ1xk+s2l−1) + λ2xs yk + yk+s = 0,

which is irreducible and has the unique singularity Dkl+s+1 at the origin. Then
similarly take the projective closure and apply the transformation (x0, x1, x2) =
(yq

0 , yq
1 , yq

2 ) in generic projective coordinates x0, x1, x2. For the lack of the T -
smoothness, we refer to [31, Sect. 4.3.3.2].

Remark 2.5.7 The first ever (finitely many) examples of reduced equisingular fam-
ilies of expected dimension which are not smooth are due to Luengo [54, 55]. In
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particular, one of his examples comes with a curve of degree 9 with a unique sin-
gularity A35. We recover this curve in Theorem 2.5.6(1) for l = 4, s = 0, q = 1,
k = 9.

Another application of the construction methods discussed in Sects. 2.3 and 2.4
is to find interesting examples of reducible equisingular families. There are several
ways to verify that an equisingular family is reducible:

• An explicit computation of the equisingular family. This is available only for very
specific situations for relatively small degrees, see, for example, [21, Theorem
1.1(ii)], where the family V irr

7 (S) (S being the analytic type of the singularity
x5 + y7 = 0) was shown to be reducible.

• Exhibiting two (or more) components of an equisingular family, whose generic
members differ from the algebraic-geometric point of view. In the classical exam-
ple by Zariski [108, Sects. VIII.3 and VIII.5], the family V irr

6 (6 · A2) contains (at
least) two components: in one of them the generic curve has 6 cusps on a conic,
while on the other one this is not the case.

• Exhibiting two (or more) components of the equisingular family, whose generic
members are embedded into the plane in a topologically different way. The afore-
mentioned Zariski example is of such kind [106], since the complements to these
generic curves in the plane are not homeomorphic (they have different Alexander
polynomials and different fundamental groups).

• Exhibiting two (ormore) components of the equisingular family that have different
dimensions, or such that one is reduced (for instance, T -smooth) and the other is
not.

We present here examples of the last kind. In fact, equisingular families with compo-
nents of dimension higher than the expected one were known for a while: Segre [72]
(see also [89]) showed that the dimension of the component of V irr

6m (6m2 · A2) con-
taining the curves F3 + G2 = 0, deg F = 2m, degG = 3m, exceeds the expected
dimension by at least

(m − 1)(m − 2)

2
> 0 as long as m ≥ 3,

Wahl [96] showed that the family V irr
104(3636 · A1, 9000 · A2) contains a nonreduced

component. The problem is to show that there exists another (say, T -smooth) com-
ponent of the considered equisingular family.

According to [108, Sects. VIII.3 and VIII.5], [78, Theorem 2.1], [28, Proposition
5.4], [29, Proposition 1.1] (see also [31, Examples 4.2.0.9 and 4.2.0.10, Propositions
4.6.10 and 4.6.11]), we have the following statement.

Theorem 2.5.8 (1) Each of the families V irr
6 (6 · A2) and V12(24 · A2) has (at least)

two distinct components of the expected dimension.
(2) Let p, d be integers satisfying
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p ≥ 3, 6p ≤ d ≤ 12p − 3

2
−
√
35p2 − 15p + 1

4
.

Then the family V irr
d (6p2 · A2) has components of different dimensions. Moreover,

if d > 6p, then π1(P
2 \ C) � Z/dZ for all curves C ∈ V irr

d (6p2 · A2).
(3) Let m ≥ 9 Then there exists k0 = k0(m) such that for any k ≥ k0 and any

integer s atisfying
k − 1

2
≤ s ≤ k

(
1 −

√
2

m

)
− 3

2
,

the equisingular family V irr
km+s(k

2 · S(m)) of irreducible plane curves of degree d =
km + s with k2 ordinary m-fold points (topological type S(m)) has components of
different dimensions. Moreover, π1(P

2 \ C) � Z/dZ for all curves C ∈ V irr
d (k2 ·

S(m)).

In part (1) the former family is the classical Zariski’s example discussed above.
The latter family V irr

12 (24 · A2) contains a component of expected dimension 42
formed by the curves given by

F3 + G2 = 0, deg F = 4, degG = 6,

whose 24 cusps lie on a plane quartic curve. However, according to Theorem 2.3.6(1)
there exists a T -smooth component of the family V irr

12 (28 · A2). Smoothing out any
four cusps of a curveC ∈ V irr

12 (28 · A2), one obtains curves in T -smooth components
of V irr

12 (24 · A2), and it is not difficult to verify that there is a 24-tuple of cusps of
C ∈ V irr

12 (28 · A2) which does not lie on any plane quartic curve.
In parts (2), resp. (3), one obtains components of the equisingular families of

dimension above the expected one formed by the Zariski type curves (cf. Theorem
2.4.7) given by C2

2pC ′
d−6p + C2

3pC ′′
d−6p = 0, where

degC2p = 2p, degC3p = 3p, degC ′
d−6p = degC ′′

d−6p = d − 6p,

resp.
∑m

i=0 R(i)
s Fi

k Gm−k
k = 0, where

deg Fk = degGk = k, deg R(i)
s = s, i = 0, ..., m.

However, in both the cases there exists a T -smooth component (of expected dimen-
sion): in part (2) by Theorem 2.3.6(i), in part (3) this can be derived by means of the
Alexander-Hirschowitz theorem [4, Theorem 1.1] (see also [31, Theorem 3.4.22]).
The fact that the fundamental group of the complement to the considered curves is
always abelian follows from Nori’s theorem [63, Proposition 3.27]. Namely, we use
the following very particular case of Nori’s result:

Theorem 2.5.9 Let C ⊂ P
2 be a reduced, irreducible curve of degree d, and let

the blowing-up β : X → P
2 resolve all the non-nodal singular points of C so that
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the union of the strict transform D of C with the reduced exceptional divisor E is
nodal. If D2 > 2r(C), where r(C) is the number of the nodes of C, then π1(P

2 \ C)

is abelian (and equal to Z/dZ).

So, given a curve C ∈ V irr
d (6p2 · A2) with d > 6p2 as in Theorem 2.5.8(2), we

blow up each cusp of C three times obtaining a smooth strict transform D on the
blown up plane X such that the union of D ∪ E is nodal; hence Theorem 2.5.9 applies
and yields that π1(P

2 \ C) is abelian due to D2 = d2 − 6 · 6p2 > 0. Similarly, given
a curveC ∈ V irr

d (k2 · S(M)) as in Theorem 2.5.8(3), we blow up each multiple point
of C obtaining a smooth strict transform D on the blown up plane X , while the union
D ∪ E is nodal. Again Theorem 2.5.9 applies and yields that π1(P

2 \ C) is abelian
due to D2 = d2 − k2m2 = (km + s)2 − k2m2 > 0.

2.5.2 Curves on Other Algebraic Surfaces

For other algebraic surfaces thanP
2, we consider only the case of nodal curves, which

is the most important one, since it is directly related to the vanishing/nonvanishing
of Gromov-Witten invariants.

In the following caseswe knowcomplete answers inwhich the equisingular family
is T -smooth [11, 12, 14, 27, 88] (see also [31, Sect. 4.5.6.3]).

Theorem 2.5.10 (1) Let � be a toric surface associated with the planar nondegen-
erate lattice polygon 
, L(
) the corresponding tautological line bundle. Then the
inequality

0 ≤ n ≤ #(Int(
) ∩ Z
2)

is necessary and sufficient for the existence of an irreducible curve with n nodes (as
its only singularities) in the linear system |L(
)|.

(2) Let � = P
2
k , 1 ≤ k ≤ 9, be the plane blown up at k distinct generic points, D

an effective divisor class of type D = d L − d1E1 − ... − dk Ek, where L is the lift
of a general line on P

2, E1, ..., Ek are exceptional divisors, d ≥ d1 ≥ ... ≥ dk > 0.
Suppose that −DK� > 0. An irreducible curve C ∈ |D| with n nodes as its only
singularities exists if and only if either

k = 1, 0 ≤ n ≤ pa(D) = D2 + DK�

2
+ 1,

or

k = 2, 0 ≤ n ≤ pa(D),

{
either d ≥ d1 + d2,

or d = d1 = d2 = 1,

or
k ≥ 3, D2 > 0, 0 ≤ n ≤ pa(D).
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(3) For any g ≥ 3, given a general smooth K3 surface � of the principal series
in P

g, and m > 0 and n satisfying

0 ≤ n ≤ dim |O�(m)|,

there exists an irreducible curve in the linear system |O�(m)| with n nodes as its
only singularities.

(4) Let � ⊂ P
3 be a generic smooth surface of degree d ≥ 5. Then, for all

m ≥ d, 0 ≤ n ≤ dim |O�(m)|

there exists an irreducible curve in the linear system |O�(m)| having n nodes as its
only singularities.

Remark 2.5.11 Part (1) is actually well-known, one can find details in [31, Theorem
4.5.32].

Part (2) admits an extension to the generic surfaces P
2
k , k > 10, with extra restric-

tions to the divisor D and the number of nodes n (see [27, Theorem 5] or [31, Tearem
4.5.30 and Corollary 4.5.31]).

Part (4) is proved by the method resembling the patchworking construction.
Namely, the proof goes by induction with the case d = 4 (settled in part (3)) as
the base. The induction step consists in a pair of deformations:

• the union of a generic surface �d−1 of degree d − 1 with a generic tangent plane
π to it deforms in a family into a generic smooth surface �d of degree d;

• an inscribeddeformation of a curve in the central fiber that consists of an irreducible
curve in the linear system |O�d−1(m)| on �d−1 having dim |O�d−1(m)| nodes, and
of a nodal curve in the plane π of degree m having 1

2 (m − d + 2)(m − d + 3)
nodes.

Under certain transversality conditions, the above central curve can be deformed into
an irreducible curve C ∈ |O�d (m)| having

dim |O�d−1(m)| + (m − d + 2)(m − d + 3)

2
= dim |O�d (m)|

nodes.
It should be noted that Chiantini and Ciliberto [14, Sect. 1] exhibit examples of

superabundant nodal curves on surfaces in P
3: in particular, for d ≥ 20 and m = 3

there are curves in |O�(3)| with n > dim |O�(3)| nodes, and for d ≥ 8 and m � 0
there exists a component of the equisingular family of curves with n < dim |O�(m)|
nodes that has a dimension greater than the expected one.

One can obtain some sufficient existence conditions for curves with arbitrary sin-
gularities on smooth projective surfaces. For a topological or analytic singularity type
S, denote by e(S) the minimal degree of a reduced plane curve C having a singular
point of type S as its only singularity, belonging to a T -smooth equisingular family,
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which intersects transversally with the space of curves passing through the intersec-
tion of C with a generic fixed line. Then the following holds (see [31, Proposition
4.5.26]).

Lemma 2.5.12 Let � be a smooth projective algebraic surface, D an effective divi-
sor on �, L a very ample divisor on �. Given topological or analytic singularity
types S1, ..., Sr and a zero-dimensional scheme Z ⊂ � defined in some distinct r
points z1, ..., zr ∈ � by the powers me(Si )

zi
⊂ O�,zi of the maximal ideals so that

H 1(�,JZ/�(D − L)) = 0 and max
1≤i≤r

e(Si ) < L(D − L − K�) − 1,

then there exists an irreducible curve C ∈ |O�(D)| with r singular points of types
S1, ..., Sr , respectively, as its only singularities.

The proof is based on a version of the patchworking construction as it appears
in [80, 82] (see also [31, Sect. 2.3.5]). Some numerical conditions, based on h1-
vanishing criteria [102], can be found in [31, Sect. 4.5.6.2].

2.5.3 Other Related Problems

Rational cuspidal curves. A rational cuspidal curve is a complex rational plane
curve homeomorphic to a sphere, equivalently, a rational plane curve having only
irreducible singularities (called (generalized) cusps). They attracted much attention
due to their interesting properties and tight links to the Jacobian conjecture, affine
algebraic geometry, and birational geometry (see [1, 46, 105]). The subject definitely
deserves a separate full size survey. We only mention one result directly related to
the existence problem for singular plane curves [47, Theorem 1.1]:

Theorem 2.5.13 A rational cuspidal curve has at most 4 singular points.

There is a series of classification results for rational cuspidal curves (see references
in [47]).

Curves in thehigher-dimensional projective spaces. Each reducedprojective curve
can be embedded into P

n with n ≥ 3. The question on the number of nodes of an
irreducible curve in P

n , n ≥ 3, of degree d and genus g was studied in [86, 87] over
the complex field and in [65] over the real field. For n ≥ 3, the genus of an irreducible
nondegenerate (i.e., not contained in a hyperplane) curve of degree d ≥ n in P

n is
bounded from above by

C(d, n) = 1

2
m((m − 1)(n − 1) + 2e), where d − 1 = m(n − 1) + e, 0 ≤ e < n − 1,

(see [10] or [32, p. 57]).

Theorem 2.5.14 For any d ≥ n ≥ 3 and any δ ≤ C(d, n), there exists a real irre-
ducible nondegenerate curve of degree d in P

n with δ real nodes as its only singu-
larities.
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For the proof, Pecker [65] constructs a suitable real plane rational curve with
C(d, n) real nodes in the affine plane, then maps it by

ψ(x, y) = (x, x2, ..., xn−k, y, yx, yx2, ..., yxk−1), k = n −
[

d − 1

m + 1

]
,

to P
n with the image of degree d. It is not difficult to see that prescribed nodes of the

obtained curve can be smoothed out (cf. also [87]).

Deformations of plane curves singularities. A local version of the problems dis-
cussed in this survey is the following local adjacency problem:

Given a reduced plane curve singular germ (C, p), what collections of singular-
ities can appear in its (versal) deformation?

The question on the existence of a global plane curve of a given degree d with
prescribed singularities can be considered as the above local deformation question
for an ordinary d-fold singular point.

We show only two specific examples, both over the real field and both concerning
the nodal deformations of arbitrary real plane curve singular points.

The first result is due to Pecker [67]. Recall that the maximal number of nodes
appearing in a deformation of a plane curve singularity (C, p) equals δ(C, p), which
in case of an irreducible (i.e., unibranch) germ (C, p) can be written as 1

2μ(C, p).

Theorem 2.5.15 Given an irreducible real plane curve singularity (C, p) and any
nonnegative α ≤ 1

2μ(C, p). Then there exists a real deformation of (C, p), whose
general member has α real elliptic nodes as its only singularities.

Due to the openness of versality (see, for instance, [30, Theorem I.1.15]), given
a deformation of a singularity (C, p) with a singular general member, there exists a
deformation of (C, p) in which the singularities of that general member can indepen-
dently be deformed in a prescribed way. That is, to prove the theorem it is enough to
find a deformation realizing α = 1

2μ(C, p) elliptic nodes. For the latter deformation,
Pecker explicitly constructs a deformation of the parametrization of (C, p).

An in a sense opposite question is to find a deformation with the maximal possible
number of hyperbolic nodes. Such deformations are called morsifications, and they
carry out an important information on the topology of the singularity (C, p) [2, 35]
(see also [19] for the relation of morsifications to mutations of quivers). A’Campo
and Gusein-Zade [2, 35] proved the following claim.

Theorem 2.5.16 Every totally real plane curve singularity (i.e., a real plane curve
singularity (C, p) all of whose local branches are real) possesses a morsification,
and each morsification exhibits δ(C, p) hyperbolic nodes.

A’Campo and Gusein-Zade gave different proofs, using sequences of blow-ups and
contractions on one side, and explicit formulae involving Tchebycheff polynomials
on the other side.

The quintic shown in Fig. 2.2a represents, in fact, amorsification of the singularity
y4 − 2x5 = 0.
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The question on the existence ofmorsifications for real singularities (C, p) having
complex conjugate local branches turns to be much harder. A partial answer to this
question was suggested in [53].

2.5.4 Some Questions and Conjectures

In principle, every timewepresented a partial answer to a specific or general existence
problem, we encourage the reader to improve or even complete the answer. However,
several questions deserve a more detailed comment.

Cuspidal plane curves. In Sect. 2.3.2 we discussed one of the most challenging
questions: what is the maximal number kmax(d) of ordinary cusps of a plane curve
of degree d? Langer [51] conjectures that the coefficient of d2 in the right-hand side
of (2.33) is sharp. More precisely,

Conjecture 2.5.17

lim
d→∞ sup

kmax(d)

d2
= 125 + √

73

432
.

Concerning the maximal number kmax,R(d) of real cusps on a real plane curve of
degree d, the best existence result is Theorem2.3.6.We conjecture that the coefficient
of d2 in (2.36) is sharp, i.e.,

Conjecture 2.5.18

lim
d→∞ sup

kmax,R(d)

d2
= 1

4
.

The following version of the problem was pointed by Vik. Kulikov. Choose an
almost complex structure on the plane tamed by the standard symplectic structure.

Question 1
What is the maximal number of cusps of a pseudo-holomorphic plane curve of degree
d? Does there exists a cuspidal plane pseudoholomorphic curve of degree d with the
number of cusps breaking consequences of the Bogomolov-Miyaoka-Yau inequality
(e.g., the Hirzebruch-Ivinskis bound (2.32))?

The latter question reflects the fact that there is no analogue of the Bogomolov-
Miyaoka-Yau inequality for symplectic fourfolds.

Reducible equisingular families of plane curves. In contrast to the sufficient T -
smoothness conditions of equisingular families of plane curves, which were shown
to be sharp (or close to sharp) in several important cases (see Sect. 2.5.1), the
known examples of reducible equisingular families like in Theorem 2.5.8 are very
far from the available general sufficient irreducibility conditions, which consist of
three inequalities (see [31, Theorem 4.6.4])
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max
1≤i≤r

ν ′(Si ) ≤ 2

5
d − 1,

r∑

i=1

(ν ′(Si ) + 2)2 <
9

10
d2,

25

2
· #(nodes) + 18 · #(cusps) +

∑

Si �=A1,A2

(τ ′(Si ) + 2)2 < d2, (2.54)

where the singularity invariants ν ′ and τ ′ are of the order of the Tjurina number
τ , and hence the coefficients assigned to the singularities in (2.54) are of order
τ 2. For instance, an ordinary m-fold singular point (considered up to topological
equivalence) enters the left-hand side of (2.54) with the coefficient 1

4m2(m + 1)2 (see
[31, Corollary 4.6.7]), while in the series of reducible equisingular families of curves
with ordinary singularities from Theorem 2.5.8(3), the ratio of d2 to the number of
ordinary m-fold singularities does not exceed (m + 1)2. This leaves completely open
the following question

Question 2
How sharp are the sufficient irreducibility conditions (2.54)?

Another specific feature of the examples in Theorem 2.5.8, namely, the fact that the
curves in different components of the equisingular family have the same fundamental
group of the complement (i.e., form a so-called anti-Zariski pair ) raises the following
interesting question.

Question 3
Can the curves in an anti-Zariski pair be transferred to each other by a homeomor-
phism of the plane onto itself?

Sharpness of restrictions to curves with arbitrary singularities. We have dis-
cussed above the sharpness of the known restrictions, notably, of Langer’s bound in
the case of curves with ordinary cusps. On the other hand, in Sect. 2.4.2 we have seen
that, for An singularities, with large Milnor number n, Hirano’s examples (Theorem
2.4.2 and Remark 2.4.3) have almost the same asymptotics as the spectral bound
does. Beyond the range of simple or ordinary multiple singularities, the spectral
bound and the genus and Plücker formulas are the only universal bounds applicable
to arbitrary singularities, and the spectral bound is much stronger than the genus and
Plücker bounds. So, it is natural to ask.

Question 4
For which singularity types (say, semiquasihomogeneous, irreducible, etc.) with large
Milnor numbers is the spectral bound (asymptotically) sharp, or almost sharp?

As said above, so far this is known to be true only for An singularities.

Gromov-Witten invariants of rational surfaces. Let P
2
r be the plane blown up at

r > 0 generic points. For r ≤ 9, we know a complete answer about the existence



118 G.-M. Greuel and E. Shustin

of nodal curves of arbitrary genus in an arbitrary linear system on P
2
r (see Theorem

2.5.10(2)).
If r > 9, one can find in the literature only partial answers, see [27, Theorem 5 and

Corollary 3.1.7] or [31, Theorem 4.5.30 and Corollary 4.5.31]. For a divisor class
D ∈ Pic(P2

r ), the expected dimension of the moduli space M0,g(P
2
r , D) of stable

maps of (unmarked) curves of genus g to P
2
r representing the class D equals (cf.

[20])
−DKP2

r
+ g − 1 .

The following question arises

Question 5
Suppose that r > 9 and D ∈ Pic(P2

r ) satisfies the conditions −DKP2
r
> 0 and D2 ≥

−1. Does there exist a nodal rational curve C ∈ |D|?
The restriction D2 ≥ −1 comes from the fact thatP2

r does not contain (−k)-curves
with k > 1. The above question is directly related to the non-vanishing of genus zero
Gromov-Witten invariants ofP

2
r : it is shown in [22, Theorem 4.1 and Section 5.2] that

theseGromov-Witten invariants do count rational curves in |D| if either−DKP2
r
> 1,

or d ≤ 10, or some di equals 1 or 2, where D = d L − d1E1 − ... − dr Er (L being
the lift of a generic line in P

2, E1, ..., Er the exceptional divisors of the blowing
up). We note also that, in view of the condition −DKP2

r
> 0, an affirmative answer

to Question 5 yields the existence of a nodal curve C ′ ∈ |D| with any nonnegative
number of nodes fewer than for the rational curve C ; hence, the nonvanishing of the
corresponding Gromov-Witten invariants of positive genus. Furthermore, Question
5 can be extended in the following way.

Question 5’
Suppose that r > 9, g ≥ 0, and D ∈ Pic(P2

r ) satisfies the conditions −DKP2
r
+ g >

0 and D2 > 0. Does there exist a curve C ∈ |D| of genus g? What is the enumerative
meaning of the corresponding genus g Gromov-Witten invariants of P

2
r ?
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