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Dũng Tráng Lê
Centre de Mathématiques et Informatique
Université d’Aix-Marseille
Marseille, France

ISBN 978-3-030-78023-4 ISBN 978-3-030-78024-1 (eBook)
https://doi.org/10.1007/978-3-030-78024-1

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-78024-1


Preface

This is the second volume of the Handbook of the Geometry and Topology of Singu-
larities, a subject which is ubiquitous in mathematics, appearing naturally in a wide
range of different areas of knowledge. The scope of singularity theory is vast; its
purpose is multifold. This is a meeting point where many areas of mathematics, and
science in general, come together.

Let us recallBernardTeissier’swords in his foreword to theHandbook inVolume I:

I claim that Singularity Theory sits inside Mathematics much as Mathematics sits inside
the general scientific culture. The general mathematical culture knows about the existence
of Morse theory, parametrizations of curves, Bézout’s theorem for plane projective curves,
zeroes of vector fields and the Poincaré-Hopf theorem, catastrophe theory, sometimes a
version of resolution of singularities, the existence of an entireworld of commutative algebra,
etc. But again, for the singularist, these and many others are lineaments of a single landscape
and she or he is aware of its connectedness. Moreover, just asMathematics does with science
in general, singularity theory interacts energetically with the rest of Mathematics, if only
because the closures of non-singular varieties in some ambient space or their projections
to smaller dimensional spaces tend to present singularities, smooth functions on a compact
manifoldmust have critical points, etc. But singularity theory is also, again in a role played by
Mathematics in general science, a crucible where different types of mathematical problems
interact and surprising connections are born.

The Handbook has the intention of covering a wide scope of singularity theory,
presenting articles on various aspects of the theory and its interactions with other
areas of mathematics in a reader-friendly way. The authors are world experts; the
various articles deal with both classical material and modern developments.

Volume I of this collection gathered together ten articles with foundational aspects
of the theory. These include

• The combinatorics and topology of plane curves and surface singularities.
• An introduction to four of the classical methods for studying the topology and

geometry of singular spaces, namely resolution of singularities, deformation
theory, stratifications, and slicing the spaces à la Lefschetz.

v
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• Milnor fibrations and their monodromy.
• Morse theory for stratified spaces and constructible sheaves.
• Simple Lie algebras and simple singularities.

Volume II also consists of ten articles. These cover foundational aspects of the
theory and related topics, including

• The analytic classification of plane curve singularities and the existence of
complex and real algebraic curves in the plane with prescribed singularities.

• An introduction to the limits of tangents to a complex analytic surface, a subject
that originates in Whitney’s work on understanding the set of limits of tangents
at smooth points as one approaches the singular set.

• Introductions to Zariski’s equisingularity and Intersection homology, which are
two of the main current viewpoints for studying singularities. Equisingularity
means equivalent or similar singularity in some sense that has to be made precise
and it is a vast field of current research. Intersection homology was introduced by
MarkGoresky andRobertMacPherson and is a brilliantway ofmaking the famous
duality theorems for compact oriented manifolds work for singular varieties.

• An overview of Milnor’s fibration theorem for real and complex singularities,
as well as an introduction to Massey’s theory of Lê cycles, which encode deep
information about the geometry and topology of the Milnor fibers of complex
hypersurface singularities.

• Adiscussion ofmixed singularities,which are real analytic singularitieswith a rich
structure that allows their study via complex geometry. This uses the method of
the non-degenerate Newton boundary and toricmodifications, which are powerful
tools for the study of complex analytic singularity theory.

• The study of intersections of concentric ellipsoids in R
n and its relation with

several areas ofmathematics, fromholomorphic vector fields to singularity theory,
toric varieties, and moment-angle manifolds.

• Areviewof the topologyof quasi-projective varieties andgeneralizations of results
about the topology of the complements of singular plane curves and hypersurfaces
in projective space.

Each chapter in Volume II has its own introduction and a large bibliography for
further reading, and there is a global index of terms at the end.

This collection, the Handbook of Geometry and Topology of Singularities, will
continue with three more volumes. Volumes III and IV will include contributions
on Zariski equisingularity; the basic theory of A-equivalence and density of stable
maps due to John Mather, Terry Wall, and others; various aspects of the theory
of Chern classes for singular varieties; indices of vector fields, 1-forms and foli-
ations, extending the classical local index of Poincaré-Hopf; Lipschitz geometry
in singularity theory; an introduction to mixed Hodge structures; limits of tangent
spaces in high dimensions; tropical geometry; determinantal varieties; constructible
sheaves and other important aspects of singularity theory. Volume V will be devoted
to singular holomorphic foliations in complex manifolds.
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Re-phrasing Bernard Teissier’s words above, these topics, among many others,
are lineaments of the single landscape that goes under the name “singularity theory”.

There is a lot more that ought to be included in this collection but, happily, the
vastness of this rich area of mathematics makes impossible the task of gathering
together in five volumes so many important aspects. Yet, these five volumes together
will cover awide spectrum of singularity theory and its interactionswith other related
areas of mathematics.

This book is addressed to graduate students and newcomers to the theory, as well
as to specialists who can use it as a guidebook, and it provides an accessible account
of the state of the art in several aspects of the subject, its frontiers, and its interactions
with other areas of research.

Cuernavaca, Mexico
Marseille, France
Mexico City, Mexico
March 2021

José Luis Cisneros-Molina
Dũng Tráng Lê

José Seade
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Chapter 1
The Analytic Classification of Irreducible
Plane Curve Singularities

Abramo Hefez and Marcelo Escudeiro Hernandes

Abstract In 1973, Oscar Zariski gave a course at the École Polytechnique (cf. the
lecture notes [23] or the monograph [24]), where he discussed in the local case the
analogous problem to the construction of the moduli space of algebraic curves of
genus g; that is, he proposed to search for moduli spaces with respect to analytic
equivalence for germs of irreducible complex analytic plane curves having the same
topological type. Zariski recognized that this problem was at that stage very difficult
and concentrated his efforts on explicit calculations in some particular cases. Since
then, the subject has substantially advanced and our purpose here is to further detail
the solution of the moduli problem for plane branches given in [12], using the same
framework as Zariski’s, adding to his methods singularity tools that were starting
to blossom at this time. The results we present improve several ones found in the
literature and shed light over many questions asked by Zariski, using techniques
that may be useful to solve other relevant related questions. The exposition is kept
as elementary as possible to highlight the beauty and simplicity of the solution of
Zariski’s problem and since it is not intended to be a compendium on the subject,
several results from algebra and singularity theory will be invoked, giving precise
statements and references, where they may be found, without concern about quoting
primary sources.
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1.1 Background

In this section we will introduce our objects of study: germs of complex analytic
plane curves and their singularities. Although, apparently, it may seem to be a shal-
low subject, surprisingly, this is not the case, since it relates important branches of
mathematics as algebra, topology, analytic geometry and theory of singularities.

Since our major problem is the analytic classification of plane curve singularities,
we will start by setting notation, defining our basic objects and studying the relations
among them. This part may be used as an introduction to the study of germs of plane
analytic curves.

1.1.1 Plane Curve Singularities

A complex plane affine curve is a set of the form

C f = {(x, y) ∈ C
2; f (x, y) = 0},

where f ∈ C[X, Y ] is a non-constant polynomial without multiple factors.
A point P = (a, b) ∈ C

2 will be called a singular point of C f , if

f (a, b) = ∂ f

∂ X
(a, b) = ∂ f

∂Y
(a, b) = 0.
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There are at most finitely many singular points on C f , and our objective here is
to study such exceptional points from different points of view: algebraic, topologic
and analytic, as we will explain in the course of these notes.

To C f there is associated its coordinate ring R f = C[X, Y ]/〈 f 〉, where 〈 f 〉
denotes the ideal of C[X, Y ] generated by f . This ring characterizes algebraically,
in a categorical sense, the geometric object C f , but the behavior of C f at a particular
point P = (a, b) could be better understood if one considers, instead, the localization
of R f at P , that is, the local ring

R f,P =
{

g

h
; g, h ∈ R f , h /∈ MP

}
⊂ K f ,

where MP is the maximal ideal of R f corresponding to the point P = (a, b) and
K f is the total ring of fractions of R f .

Still, this ring is not “sufficiently local” to describe properly the properties of
C f at P . For example, the real trace of the irreducible nodal curve C f defined
by f = Y 2 − X2(X + 1) looks like Fig. 1.1, suggesting that this curve is locally
reducible in a neighborhood of the origin in the classical topology of C

2.

Fig. 1.1 The nodal curve

This fact is not reflected by the ring R f,P which, in this example, is a domain,
since it is a subring of the field of fractionsK f of the domain R f . The trouble is that
the local character of R f,P refers to the Zariski topology of C

2 which is coarser than
the classical topology.

To remedy this situation, we may think of the polynomial f as an element ofO =
C{X, Y }, the ring of complex convergent power series. In this ring, f decomposes
as f = (Y − X

√
X + 1)(Y + X

√
X + 1), therefore, there exists a neighborhood U
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of the origin in C
2 such that

C f ∩ U = {(x, y) ∈ U ; y = x
√

x + 1} ∪ {(x, y) ∈ U ; y = −x
√

x + 1}.

This point of view is very promising since the ring O carries only information
around the origin in the classical topology of C

2 and has very good algebraic proper-
ties: it is aNoetherian local regular and factorial domain (cf. [17, Chap. 3]). The group
O∗ of units of O consists of the series u such that u(0, 0) 
= 0, hence M = 〈X, Y 〉
is the maximal ideal of O.

So, we may associate to f ∈ M \ {0} a germ of a complex analytic plane curve
through the origin of C

2, which we still denote by C f . The series f is called a
Cartesian equation of C f , and determines an analytic function in a non specified
open neighborhood of the origin 0 := (0, 0) of C

2, which we denote by (C2, 0).
From the Hilbert-Rückert Nullstellensatz [17, Theorem 3.4.4], to have a good

correspondence between germs of plane curves and their equations, we will always
assume that these are reduced. This result implies that for f, g ∈ M \ {0} ⊂ O,
reduced, one has

C f = Cg ⇐⇒ f = ug, for some u ∈ O∗.

The above equivalence asserts that a germ of analytic plane curve determines its
equation modulo multiplication by a unit. Hence, if we denote by Red(M) the set of
reduced series inM, then we may identify the set of germs of analytic plane curves
with the quotient Red(M)/O∗.

Let us write f in the form f = fn + fn+1 + · · · , where each fi is a homogeneous
polynomial of degree i or the zero polynomial and fn 
= 0. The polynomial fn is
called the initial form of f and n the multiplicity of f or of C f . We will write n =
mult( f ) = mult(C f ). Since fn is a homogeneous polynomial in two variables andC

is algebraically closed, it follows that fn splits into a product of linear homogeneous
polynomials:

fn =
l∏

i=1

(ai X + bi Y )ri , with r1 + · · · + rl = n.

The union of lines defined by the equations ai X + bi Y = 0, i = 1, . . . , l, is called
the tangent cone of C f , denoted by T C f . Using the same definition for a singular
point as for plane affine curves in C

2, it follows that C f is singular at the origin if
and only if n = mult( f ) > 1; that is, f ∈ M2. If C f is not singular at the origin, it
will be called nonsingular.

When f ∈ M \ {0} is irreducible, byHensel’s Lemma (cf. [17,Corollary 3.3.21]),
one has that fn = (aX + bY )n , so T C f consists of only one line.

From the Inverse Function Theorem (cf. [17, Corollary 3.3.7]), an analytic map
germ ϕ : (C2, 0) → (C2, 0) is an isomorphism if and only if
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ϕ(X, Y ) = (aX + bY + g, cX + dY + h), g, h ∈ M2 a, b, c, d ∈ C, ad − bc 
= 0.

If this is the case, ϕ is called an automorphism of (C2, 0). The set of all such auto-
morphisms form a group under composition, denoted by Aut(C2, 0).

Definition 1.1.1 We say that the curves C f and Cg are analytically equivalent,
writingC f � Cg , if there exists an automorphism ϕ of (C2, 0) such thatϕ(C f ) = Cg .

In terms of equations, one has that C f � Cg if and only if there exist an automor-
phism ϕ of (C2, 0) and a unit u ofO such that f = u(g ◦ ϕ). The above condition is
an equivalence relation in the set of reduced elements inM, called analytic equiva-
lence and denoted by f ∼ g.

Given f, g ∈ O, we define the intersection multiplicity at the origin of f and g
as being

I( f, g) = dimC O/〈 f, g〉.

We reproduce below, for the reader’s convenience, the well known facts about
intersection multiplicities (cf. [11, Theorems 4.14 and 4.18]).

Property 1.1.2 Properties of intersection multiplicities:

(a) I( f, g) = ∞ (respectively, I( f, g) = 0) if and only if f and g have a nontrivial
common factor (respectively, f or g is a unit);

(b) I( f, g) = I(g, f );

(c) I( f, g) = I( f ◦ ϕ, g ◦ ϕ) = I(u f, vg), for allϕ ∈ Aut(C2, 0) and all u, v ∈ O∗;
(d) I( f, gh) = I( f, g) + I( f, h), for all h ∈ O;

(e) I( f, g) = 1 if and only if f, g ∈ M \ M2 and T C f ∩ T Cg = {0};
(f) I( f, g) = I( f, g − h f ), for all h ∈ O.

(g) I( f, g) ≥ mult( f )mult(g) with equality if and only if T C f ∩ T Cg = {0}.
Given two germs of curves C f and Cg , because of Property 1.1.2 (c), we may

define their intersection multiplicity as C f · Cg = I( f, g), which is invariant under
automorphisms of (C2, 0).

For irreducible f ∈ M \ {0}, we define

�( f ) = {I( f, g); g ∈ O} ⊂ N ∪ {∞}.

From Properties 1.1.2 (a) and (d), this set has the structure of a semigroup,1 called
the semigroup of values ofC f . Since�( f ) describes the wayC f intersects all germs
of curves, not necessarily reduced, at the origin of C

2, it is conceivable that it will
play an important role, as will be confirmed later.

From Property 1.1.2 (c), it follows that

C f � Cg =⇒ �( f ) = �(g). (1.1)

1 By a semigroup we mean a subset of N ∪ {∞} that contains {0,∞} and is closed under addition.
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Any property or numerical function, either on f or on C f , invariant by analytic
equivalence, will be said to be an analytic invariant.

For instance, from (1.1), it follows that�( f ) is an analytic invariant attached to the
curve C f . On the other hand, since the multiplicity of f is invariant by composition
with an automorphisms of (C2, 0) and multiplication by units, this is also an analytic
invariant. These two invariants are related because from Property 1.1.2 (g) it follows
that mult( f ) = min(�( f ) \ {0}), hence, also for this reason, the multiplicity is an
analytic invariant.

Remark 1.1.3 If C f is nonsingular, then f = aX + bY + hot , with a 
= 0 or b 
=
0, where hot stands for an element in M2. By taking ϕ(X, Y ) : = (cX + dY, f )

with ad − bc 
= 0 and g(X, Y ) : = Y , we have that f = 1 · g ◦ ϕ, which shows that
C f � CY . This implies that all nonsingular curves are analytically equivalent to the
germ (C, 0).

The above equivalence f ∼ Y for f of multiplicity one is generalized by the
Weierstrass Preparation Theorem (cf. [17, Lemma 3.2.2 and Theorem 3.2.4]), that
asserts that any curve C f is analytically equivalent to one with an equation of a
special form, called a Weierstrass polynomial, as described next.

Given f ∈ Mofmultiplicityn, then f ∼ P , where P is aWeierstrass polynomial,
that is,

P(X, Y ) = Y n + a1(X)Y n−1 + · · · + an(X), with a1(X), . . . , an(X) ∈ XC{X},

with mult(ai (X)) ≥ i , for i = 1, . . . , n, because mult(P) = mult( f ) = n.
It is this representation of elements of M that allows one to prove the good

algebraic properties of O such as noetherianity and factoriality.
From Property 1.1.2 (e), nonsingularity may be characterized as follows:

C f is nonsingular ⇐⇒ �( f ) = N ∪ {∞}.

The ring of a plane curve germ C f , defined as being the quotient C-algebra

O( f ) = O
〈 f 〉 ,

is an algebraic object that encodes all the analytic properties of C f , in the following
sense:

Proposition 1.1.4 Let f, g ∈ M \ {0} reduced. The following are equivalent:

(i) C f and Cg are analytically equivalent;
(ii) C f and Cg are analytically isomorphic as germs of analytic spaces;

(iii) O( f ) � O(g) as C-algebras.

Proof (i) ⇒ (ii) is obvious.
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(ii) ⇒ (iii) This follows immediately from the fact that to a morphism of germs of
analytic spacesC f → Cg it corresponds functorially a homomorphism ofC algebras
O(g) → O( f ) (cf. [17, Lemma 3.4.20 (3)]).
(iii) ⇒ (i) This proof is contained in [11, Theorem 4.1]. �

One of the main problems in this theory is to classify the reduced elements inM
with respect to analytic equivalence. This problem as stated until now is intractable
because the group action (u, ϕ) f = u( f ◦ ϕ) of the semidirect product G = O∗

�

Aut(C2, 0) on the set Red(M) of reduced elements of M representing analytic
equivalence is too much intricate to be successfully understood.

Example 1.1.5 In fact, given

f = Y 8 + (1 − 13X)Y 7 + (−14X + 70X2)Y 6 + (84X2 − 196X3)Y 5+
+ (−1 − 280X3 + 280X4)Y 4 + (−1 + 2X + 560X4 − 112X5)Y 3+
+ (3X − 672X5 − 224X6)Y 2 + (−3X2 − 2X3 + 448X6 + 320X7)Y+
+ X3 + X4 − 128X7 − 128X8,

how one could suspect that the corresponding curve C f is analytically equivalent to
the curve Cg with the much simpler equation g = Y 3 − X7?

This is so, because f was produced by taking f = u(g ◦ ϕ), with u = 1 + X +
Y ∈ O∗ and ϕ(X, Y ) = (X + Y, X − Y ).

The strategy, then, will be to partition Red(M) in such a way that the action of G
could be better understood on each set of the partition.We will start by separating the
elements of Red(M) by their number of irreducible components. Then separate the
members of each subset of Red(M) with a fixed number of irreducible components
by topological type, as defined below.

Definition 1.1.6 We will say that two germs of curves C f and Cg are topologically
equivalent, or equisingular, writing C f ≡ Cg , if there exists a germ of homeomor-
phism ϕ of (C2, 0) such that ϕ(C f ) = Cg .

Notice the similarity with analytic equivalence, where ϕ was taken as an analytic
isomorphism, instead of simply a homeomorphism. In terms of equations, this equiv-
alence is expressed by the existence of a germ of homeomorphism ϕ of (C2, 0) and
a unit u in O such that f = u(g ◦ ϕ).

At a first glance it looks intractable to decide whether two given germs of plane
curves C f and Cg are topologically equivalent, or not, because there is no explicit
description, as in the case of analytic isomorphisms, for the homeomorphisms of
(C2, 0). Fortunately, as we will see in Sect. 1.1.3, there are deep results that lead to
easy tests to verify if two germs of plane curves are topologically equivalent or not,
which is far for being the case for analytic equivalence.

Obviously, analytically equivalent plane curve germs are topologically equivalent,
so the group G acts on any equisingularity class L of germs of curves. But, as one
may naturally suspect, it is not possible to give a reasonable geometric model for L
and for the action of G on it.
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So, to simplify our problem,wewill focus on the analytic classification of equisin-
gular plane irreducible curves, called plane branches, and represent them by means
of parametrization. This is what we are going to do in the next subsection.

1.1.2 Irreducible Plane Curve Singularities

As said before, the problem we are interested in is the analytic classification of
equisingular plane branches. This problem was first addressed by Ebey [9] and then
by Zariski in [23]. In general lines, given an equisingularity class L, this problem
consists in determining a constructible set� in some finite dimensional affine space,
called a parameter space, such that its points represent at least one branch of each
analytic class inL, with the property that its quotient by the analytic equivalence has
a good geometric structure.

In this subsection, we will make the first steps toward the construction of such a
parameter space �.

We will assume, from now on, that C f is a plane branch. This corresponds to
irreducible equations f in O, so O( f ) is a domain and K f is its field of fractions.

A branch may be defined alternatively through parametrization instead of Carte-
sian equation, as will be described below. Before, we make some considerations.

We denote byO1 theC-algebraC{t} of convergent power series in one indetermi-
natewith complex coefficients anddenote byM1 itsmaximal ideal tC{t}.An analytic
map germ ρ : (C, 0) → (C, 0) is determined by an element ρ(t) = ∑

i≥1 ai t i ofM1.
The least i for which ai 
= 0 is called the order of ρ(t), or of ρ, and is denoted by
ordt (ρ(t)) or by ordt (ρ). Notice that ρ is an isomorphism if and only if ordt (ρ) = 1.
The set of these isomorphisms form a group under composition which we denote by
Aut(C, 0).

Any element ξ(t) = (x(t), y(t)) ∈ M1 × M1 \ {(0, 0)} will be called a
parametrization. To a parametrization ξ(t) there is associated naturally the germ
of analytic morphism ξ : (C, 0) → (C2, 0), defined by z �→ (x(z), y(z)), that
parametrizes Im(ξ).

In the set of all parametrizations one has a partial order defined as follows: we say
that a parametrization ξ1(t) precedes a parametrization ξ2(t), writing ξ1(t) ≺ ξ2(t),
if there is an element ρ(t) ∈ M1 such that ξ2(t) = ξ1(ρ(t)). If ordt (ρ(t)) = 1, both
parametrizations will be considered equivalent.

A parametrization ξ(t) will be called a primitive parametrization if for every
parametrization ξ1(t) with ξ1(t) ≺ ξ(t), one has that ξ1(t) is equivalent to ξ(t). In
this sense, a primitive parametrization is minimal with respect to the partial order ≺.

Example 1.1.7 Just to illustrate the above definition, consider the family of
parametrizations

ξk(t) = (t kn, t km) ∈ M1 × M1, with k, n, m ∈ N \ {0}, and GCD(n, m) = 1.
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One has that ξk(t) is primitive if and only if k = 1.

Indeed, if k > 1 then ξ1(t) ≺ ξk(t) = ξ1(ρ(t))where ρ(t) = t k with ordt (ρ(t)) =
k > 1; hence ξk(t) is a non-primitive parametrization.

Observe that any element ζ(t) ∈ O1 \ {0}may be written as ζ(t) = tnu(t), where
u(0) 
= 0, that is, u(t) is a unit in O1. So, any ξ(t) ∈ M1 × M1 \ (M1 × {0} ∪
{0} × M1) may be written as ξ(t) = (tn1u1(t), tn2u2(t)), where n1, n2 ∈ N \ {0}
and u1(t), u2(t) are units in O1.

Suppose that ξ ≺ ξ1 then there exists ρ(t) = t j v(t) ∈ M1, with j ∈ N \ {0} and
v(t) a unit in O1, such that ξ1(t) = ξ(ρ(t)); that is,

tn = t jn1vn1(t)u1(t
j v(t)), tm = t jn2vn2(t)u2(t

j v(t)).

Since u1(t), u2(t) and v(t) are units in O1, we must have n = jn1 and m = jn2.
As GCD(n, m) = 1, it follows that ordt (ρ(t)) = j = 1 and, therefore, ξ1(t) is a
primitive parametrization.

In general, it is a hard problem to determine if a given parametrization is primitive
or not. Fortunately, in Proposition 1.1.17, we will present an easy criterion that will
apply to a special kind of parametrizations, the so called Puiseux parametrizations,
which are extensively used in this context.

Given a parametrization ξ(t) = (x(t), y(t)), we define the ring

Rξ : = C{ξ(t)} = {g(x(t), y(t)); g ∈ O},

and set ordt (ξ(t)) = min{ordt x(t), ordt y(t)}. Note that if ξ(t) is a parametrization
such that ordt (ξ(t)) = 1, then ξ(t) is primitive. The ring Rξ is a domain, since it is
a subring of O1. We denote its field of fractions by Kξ .

The ring Rξ will be said to have a conductor, if there exists α ∈ N such that
tαO1 ⊂ Rξ .

A parametrization ξ(t) will be called a parametrization of a branch C f , if
f (ξ(t)) = 0, as an element of O1.
If ξ(t) is a parametrization of C f , then for any ρ(t) ∈ M1 \ {0} one has that

ξ(ρ(t)) is a parametrization of C f , since

f (ξ(ρ(t)) = ρ( f (ξ(t))) = ρ(0) = 0.

At this point, it is not obvious that a plane branch admits non trivial parametriza-
tions. The theorem below will guarantee their existence, but first we set a definition.

The integral closure of a domain R in its field of fractionsKR , denoted by R, is the
set of elements inKR that satisfy an equation of the form Zn + a1Zn−1 + · · · + an =
0, where a1, . . . , an ∈ R.

Theorem 1.1.8 Let f ∈ M be irreducible. Then there exists ξ(t) ∈ M1 × M1 such
that, if we consider O1/Rξ as quotient of C-vector spaces, one has

(i) dimC O1/Rξ < ∞;
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(ii) f (ξ(t)) = 0;
(iii) O( f ) � Rξ .

Conversely if ξ(t) ∈ M1 × M1 is such that Condition (i) above is satisfied, then
there exists an irreducible f ∈ M for which f (ξ(t)) = 0. Moreover, O( f ) � Rξ

and O1 is the integral closure of Rξ in its field of fractions Kξ .

Proof Theproof of the existence of ξ(t) satisfying (i) and (ii) is given in [17, Theorem
5.1.1]. To complete the proof of the first part of the theorem, we will show that
any ξ(t) satisfying (i) and (ii) also satisfies (iii). Indeed, consider the C-algebras
homomorphism ξ ∗ : O → O1, defined by ξ ∗(g) = g(ξ(t)). Then by (ii) we have
that f ∈ Ker(ξ ∗). Suppose that there exists g ∈ Ker(ξ ∗) which is not a multiple of
f , then because f is irreducible, f and g have no nontrivial common factor, hence
from Property 1.1.2 (a) it follows that

dimC Rξ = dimC Im(ξ ∗) = dimC O/Ker(ξ ∗) ≤ dimC O/〈 f, g〉 < ∞,

which contradicts (i), since dimC O1 = ∞. Therefore, Ker(ξ ∗) = 〈 f 〉, showing that
(iii) holds.

The proof of the converse may be found in [17, Theorem 5.1.3]. �

The fact thatO1 is the integral closure Rξ of Rξ inKξ implies thatKξ is isomorphic
to the field of fractions C((t)) of O1, called the field of Laurent series. Hence one
has that

O( f ) � Rξ , O( f ) � Rξ = O1 and K f � Kξ = C((t)).

Remark 1.1.9 Let ξ(t) = (x(t), y(t)) be a parametrization of order 1 and let C f be
the associated branch. Without loss of generality, we may assume that ordt x(t) = 1.
Then defining ρ(t) : = x(t), we have that ρ ∈ Aut(C, 0), hence we may consider
ρ−1. Suppose that ρ−1(t) = ∑

i≥1 ai t i , then defining g(X, Y ) = ∑
i≥1 ai Xi ∈ O,

we have that t = g(ξ(t)) ∈ Rξ , which shows that O( f ) � Rξ = O1 � C{X} =
O(Y ). This, in view of Proposition 1.1.4, implies that C f � CY , hence mult( f ) =
mult(Y ) = 1, which shows that C f is nonsingular.

Since any nonzero element ζ(t) ∈ C((t)) may be written uniquely as ζ(t) =
tαz(t), where α ∈ Z, z(t) ∈ O1 and z(0) 
= 0, we define the order of ζ(t) as being
the number ordt (ζ(t)) = α, and set by convention ordt (0) = ∞. This extends the
order function we defined onO1, determining a valuation v on C((t)), in such a way
that v(O1) = N ∪ {∞}.
Remark 1.1.10 Let S be a subset of O1 such that its elements have distinct values
and v(S) ⊂ v(O1) \ v(Rξ ) = N \ v(Rξ ), then the elements of the set S = {s; s ∈
S} ⊂ O1/Rξ are linearly independent overC. This implies that dimC O1/Rξ ≥ #(N \
v(Rξ )).

Suppose now that Rξ has a conductor. Then for some α ∈ N one has tαO1 ⊂ Rξ ,
which implies that α + N ∪ {∞} = v(tαO1) ⊂ v(Rξ ), hence N \ v(Rξ ) ⊂ N \ α +



1 The Analytic Classification of Irreducible Plane Curve Singularities 11

N, where the last set is finite. Take any subset S = {h1, . . . , hr } of O1 such that
v(S) = N \ v(Rξ ). We will show that the set S is a set of generators of the C-vector
space O1/Rξ . Indeed, let h ∈ O1. Then either v(h) ∈ v(Rξ ), in which case there
exists g1 ∈ Rξ such that v(h − g1) > v(h), or v(h) ∈ N \ v(Rξ ), in which case there
exist hi1 ∈ S and ai1 ∈ C such that v(h − ai1hi1) > v(h). Now, repeat recursively
this procedure to the resulting element whose order is greater than the previous one,
until one reaches an element with value greater or equal to max(N \ v(Rξ )), which
belongs to Rξ .

Combining together the above considerations we get, in any case, that

dimC

O1

Rξ

= #(N \ v(Rξ )),

and dimC O1/Rξ is finite if Rξ has a conductor.

The following result will relate condition (i) in Theorem 1.1.8, the existence of a
conductor for Rξ and the notion of primitive parametrization.

Proposition 1.1.11 Let ξ(t) = (x(t), y(t)) ∈ M1 × M1 \ {(0, 0)} be a
parametrization. If Kξ is the field of fractions of Rξ , then the following conditions
are equivalent:

(i) Rξ has a conductor;
(ii) dimC O1/Rξ < ∞;

(iii) ξ(t) is a primitive parametrization;
(iv) Kξ contains an element of order one.

Proof (i) ⇒ (ii) This follows from Remark 1.1.10.
(ii) ⇒ (iii) Suppose that ξ(t) is not a primitive parametrization, then there is a
parametrization ξ1(t) and an element ρ(t) ∈ M1 with ordt (ρ(t)) = p > 1 such that
ξ(t) = ξ1(ρ(t)). Therefore Rξ ⊂ C{ρ(t)}, hence v(Rξ ) ⊂ pN. This implies that N \
v(Rξ ) is not finite, hence from Remark 1.1.10, one has dimC O1/Rξ = ∞.
(iii) ⇔ (iv) If s ∈ Kξ is an element of minimal positive order p, then any element
in Kξ has order divisible by p. Indeed, if s = t pu, and if h = tmv is any element
in Kξ , where u and v are units in O1, then writing m = pq + r , where q, r ∈ Z

and 0 ≤ r < p, we have h/sq = tr v/uq ∈ Kξ , implying that v(h/sq) = r , which is
a contradiction unless r = 0. Now, we will show thatKξ ⊂ C((s)). For, if ζ ∈ Kξ is
of order pn1, then there exists a complex number c1 and an element ζ1 ∈ Kξ such that
ζ − c1sn1 = ζ1, such that ordt (ζ1) = pn2 with n2 > n1. Repeating this argument for
ζ1 and so on, we see that there is a formal Laurent series h(t) such that ζ = h(s).
Since ζ and s are convergent, we have that h is convergent. So, ζ ∈ C((s)).

Since x(t), y(t) ∈ Kξ ⊂ C((s)), and ξ(t) = (x(t), y(t)) is primitive, it follows
that ordt (s) = 1.

Conversely, suppose that ξ is not primitive, hence x(t), y(t) ∈ C{s} for some s
in C{t} of order p > 1. Since Kξ ⊂ C((s)), it follows that the elements of Kξ have
orders multiple of p, therefore Kξ does not contain any element of order one.
(iv) ⇒ (i) It will be proved later (see Corollary 1.1.15). �
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Notice that we proved that (iii) and (iv), above, are equivalent. The proof that
(iv) implies (i) will be done in Corollary 1.1.15, by showing that (iii) implies (i). To
prove this result, we need to show that we may, by means of a change of parameter,
transform any parametrization into a special very useful form.

If ξ(t) = (z(t), w(t)) is a parametrization of the branch C f , then
ξ †(t) = (w(t), z(t)) is a parametrization of C f † , where f †(X, Y ) = f (Y, X), which
is analytically equivalent to C f . Moreover, Rξ = Rξ † . So, at the cost of changing our
branch by an analytically equivalent one, we may assume that n : = ordt (z(t)) ≤
ordt (w(t)). Since z(t) = tnu(t), where u(t) is a unit inO1, hence u(0) 
= 0, we may
take a branch v(t) = n

√
u(t) of the n-th root function of u(t) around the origin, which

is also a unit in O1. Now, by defining ρ(t) = tv(t), one has ρ ∈ Aut(C, 0), so if we
consider its inverse ρ−1, one gets the equivalent parametrization of ξ(t):

ξ(ρ−1(t)) = (tn, y(t)), where y(t) = w(ρ−1(t)), and ordt y(t) ≥ n.

A parametrization of the form (tn, y(t)) ∈ C{t}2, with ordt y(t) ≥ n, is called a
Newton-Puiseux parametrization, or shortly a Puiseux parametrization. Notice that
because we made a particular choice of the n-th root of v(t), other choices would
produce the following equivalent parametrizations to ξ(t):

ξi (t) = (tn, y(εi t)), where ε is a primitive n-th root of 1 and i = 1, . . . , n,

called the associated Puiseux parametrizations to the parametrization ξ(t), which
are the only parametrizations ofC f of the form (tn, y(t)). Notice that ξ(t) is primitive
if and only if any one of its associated Puiseux parametrizations is primitive, since
primitivity is invariant under equivalence of parametrizations.

The following result will show the interplay between Puiseux parametrizations
and Cartesian equations of branches to which they correspond.

Theorem 1.1.12 Let ε be a primitive n-th root of unity.

(i) Let g = Y n + a1(X)Y n−1 + · · · + an(X) be an irreducible Weierstrass polyno-
mial. Then there exists y(t) ∈ O1 such that

g(X, Y ) =
n∏

i=1

(Y − y(εi t)), where tn is replaced by X. (1.2)

(ii) Let y(t) ∈ M1 be such that dimC O1/Rξ < ∞, where ξ(t) = (tn, y(t)). Then
the polynomial

∏n
i=1(Y − y(εi t)), where tn is replaced by X, is an irreducible

Weierstrass polynomial in O.

Proof See [17, Theorem 5.1.7]. �

The following result connects intersection multiplicities to parametrizations:
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Proposition 1.1.13 Let ξ(t) be a primitive Puiseux parametrization and let g be
the irreducible Weierstrass polynomial associated to it as in Theorem 1.1.12 (ii). Let
h ∈ O, then one has that

I(g, h) = ordt (h(ξ(t))).

Proof See [11, Theorem 4.17], or [17, Lemma 5.1.5]. �

Observe that it is not necessary to suppose that ξ(t) is a Puiseux parametrization,
but it is enough to require that it is primitive, since for any ρ ∈ Aut(C, 0) one has
that

ordt (h(ξ(ρ((t)))) = ordt (ρ(h(ξ(t)))) = ordt (h(ξ(t))).

So, for any primitive parametrization ξ(t) of C f , we have that

�( f ) = {ordt (g(ξ(t))), g ∈ O} = �(ξ),

where
�(ξ) : = {ordt (h(t)), h ∈ Rξ }.

The following result is crucial.

Proposition 1.1.14 Let ξ(t) = (tn, y(t)) be a primitive Puiseux parametrization
and let g(X, Y ) be the associated Weierstrass polynomial as given in Theorem 1.1.12
(ii). If DY g(X) ∈ C{X} denotes the discriminant of g(X, Y ) as a polynomial in Y ,
then

DY g(tn)C{t} ⊂ Rξ .

Proof See [24, Theorem on p. 6], or [11, Theorem 4.4] for an elementary proof. �

Let us write DY g(tn) = tαu(t), where α ∈ N and u(t) is a unit in O1, then one
has that tαO1 ⊂ Rξ , hence Rξ has a conductor. Let γ denote the smallest natural
number such that tγO1 ⊂ Rξ , so tγO1 is the largest common ideal of O1 and Rξ ,
called the conductor ideal of Rξ . We call γ the conductor exponent of Rξ .

In general, if ξ(t) is a primitive parametrization, not necessarily in Puiseux form,
of an irreducible f ∈ O, as we may suppose that n = I( f, X) ≤ I( f, Y ) (at possibly
the cost of interchanging X and Y ), there exists a primitive Puiseux parametrization
and an automorphism ρ of (C, 0) such that (ρ(tn), y(ρ(t)) = ξ(t). Since there exists
γ ∈ N such that tγO1 ⊂ C{tn, y(t)}, it follows that ρ(tγ )C{ρ(t)} ⊂ C{ξ(t)} = Rξ .
But, C{ρ(t)} = C{t} = O1 and ρ(tγ ) = tγ u, where u is a unit in O1, then tγO1 is
also the conductor ideal of Rξ .

Corollary 1.1.15 If ξ(t) is a primitive parametrization, then the ring Rξ has a
conductor.

From the existence of the conductor ideal tγO1 of the ring Rξ associated to a
primitive parametrization ξ(t), it follows that for any h ∈ O1 such that ordt (h) ≥ γ

we have that h ∈ Rξ , and therefore ordt (h) ∈ �(ξ). This implies that
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γ + N ⊂ �(ξ).

Let c be the smallest natural number such that c + N ⊂ �(ξ). This number c is
called the conductor of �(ξ). We have the following result:

Lemma 1.1.16 Let ξ(t) be a primitive parametrization, The conductor c of �(ξ)

coincides with the conductor exponent γ of Rξ ; that is, γ = c.

Proof We have obviously that c ≤ γ . Suppose by reductio ad absurdum that c < γ .
Let h be an arbitrary element ofO1, then ordt t ch ≥ c, so there exist h1, . . . , hγ−c ∈
Rξ such that

ordt (t
ch − h1 − h2 − · · · − hγ−c) > γ,

hence t ch − h1 − h2 − · · · − hγ−c ∈ Rξ , which implies that t ch ∈ Rξ , therefore,
t cO1 ⊂ Rξ , a contradiction with the minimality of γ . �

For a branch C f , we know from Theorem 1.1.8 that a parametrization ξ(t) of C f

induces an isomorphism fromK f onto C((t)), in such a way thatO( f ) corresponds
to O1 and O( f ) corresponds to Rξ . So, the inverse image of the conductor of Rξ is
the largest common ideal ofO( f ) andO( f ), which we denote by C. Therefore, one
has that

dimC

O( f )

C = dimC

O1

t cO1
= c. (1.3)

Although in general, given a parametrization, without the help of Computer Alge-
bra it is difficult to verify if it is primitive or not, we will see below that there is an
easy criterion for doing this when the parametrization is in Puiseux form.

Given a Puiseux parametrization ξ(t) = (tn, y(t)), where y(t) = ∑∞
i=n ai t i , we

will define two associated fundamental sequences of integers as follows:
Put β0 = n. Let β1 the first exponent i in y(t) = ∑∞

i=n ai t i such that ai 
= 0 and
n � i , if it exists, otherwise we stop the process. Define e0 = n and e1 = GCD(n, β1),
and let β2 be the first exponent in y(t) greater than β1 which is not divisible by e1, if it
exists, otherwise we stop the process. Define e2 = GCD(e1, β2) = GCD(n, β1, β2),
and continue this process. In this way, we obtain two sets of integers n, β1, β2, . . .,
and ei = GCD(n, β1, . . . , βi ), i ≥ 1. Since the ei are not increasing, the sequence
must stabilize, that is, ei = d for i ≥ g, for some g.

Proposition 1.1.17 A Puiseux parametrization ξ(t) = (tn, y(t)), where y(t) =∑∞
i=n ai t i , is primitive if and only if d : = GCD{n, j; a j 
= 0} = 1.

Proof Suppose that d > 1, then tn, y(t) ∈ C{td}, hence ξ(t) is not primitive. So, we
have proved that if ξ(t) is primitive, then d = 1.

Conversely, suppose that d = 1, then one must have eg = 1 for some g. If we sub-
tract from y(t) a linear combination of powers of tn , we get y1 = ∑

i≥β1
ai t i as an

element in Kξ , the field of fractions of Rξ = C{tn, y(t)}. Now if e1 = λ1n + μ1β1,
we have that z1(t) : = tλ1n y1(t)μ1 is inKξ and has order e1. Now, subtracting a linear
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combination of powers of z1(t) from y1(t), we get an element in Kξ of with order
β2. We continue this process until we get y1(t), . . . , yg(t) of orders β1, . . . , βg ,
with GCD(n, β1, . . . , βg) = 1. So, there exist integers ηi such that η0n + η1β1 +
· · · + ηgβg = 1, therefore tη0n y1(t)η1 · · · yg(t)ηg is in Kξ and has order 1. This,
in view of Proposition 1.1.11 (iv) ⇒ (iii), implies that (tn, y(t)) is a primitive
parametrization. �

The two sets of integers β0 = n, β1, . . . , βg and e0 = n, e1, . . . , eg , with eg = 1,
obtained from a primitive Puiseux parametrization, play a very important role in this
theory.

Example 1.1.18 Given the primitive Puiseux parametrization

ξ(t) = (t36, 2t36 + 5t54 + t72 − t78 + 3t84 + 2t90 + t92 + 6t94 − 2t95 + 5t96),

one has

β0 = n = 36, e0 = β0 = n = 36;
β1 = 54, e1 = GC D(e0, β1) = GC D(36, 54) = 18;
β2 = 78, e2 = GC D(e1, β2) = GC D(18, 78) = 6;
β3 = 92, e3 = GC D(e2, β3) = GC D(6, 92) = 2;
β4 = 95, e4 = GC D(e3, β4) = GC D(2, 95) = 1.

Let us now interpret geometrically the above results about parametrized plane
branches.

InTheorem1.1.8 (and in its proof)we saw that to a given primitive parametrization
ξ(t) there is associated a unique branchC f and amorphism ξ : (C, 0) → (C2, 0) such
that Im(ξ) ⊂ C f . From the same quoted theorem, we have that the map ξ : (C, 0) →
C f is the normalization map, hence it is a germ of homeomorphism between the
two germs of analytic curves, so Im(ξ) = C f . This implies that any plane branch is
intrinsically homeomorphic to the germof disc (C, 0), hence they are all topologically
equivalent to each other. This is why we needed to define equisingularity of germs of
curves as we did in Definition 1.1.6, taking into account the embedding of the germ
in C

2.
Fromwhatwe sawuntil now,wehave that a branchC f determines a unique class of

equivalent primitive parametrizations and, conversely, any primitive parametrization
determines a unique germ of plane branchC f . Hence, wemay indistinctly work with
plane branches or with primitive parametrizations.

Since we are going to work with branches represented by parametrizations, it
will be important to characterize analytic equivalence of branches in terms of their
parametrizations. Before we do that, we will need the following result.

Lemma 1.1.19 If ξi : (C, 0) → (C2, 0), i = 1, 2, are two non-constant morphisms
corresponding to primitive parametrizations ξi (t), then Im(ξ1) = Im(ξ2) if and only
if ξ1(t) and ξ2(t) are equivalent parametrizations; that is, there is an automorphism
ρ of (C, 0) such that ξ2(t) = ξ1(ρ

−1(t)).
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Proof If there exists an automorphism ρ of (C, 0) such that ξ2(t) = ξ1(ρ
−1(t)),

then clearly Im(ξ1) = Im(ξ2). On the other hand, if Im(ξ1) = Im(ξ2), then ξ1 and
ξ2 are two normalization maps of their common image, therefore, by the unique-
ness of normalizations (cf. [17, Remark 4.4.6]), it follows that there exists an
analytic isomorphism ρ : (C, 0) → (C, 0) such that ξ2 = ξ1 ◦ ρ−1, hence ξ2(t) =
ξ1(ρ

−1(t)). �

The next result will characterize primitive parametrizations that represent analytic
equivalent branches.

Proposition 1.1.20 Two primitive parametrizations ξ1(t) and ξ2(t) define analyti-
cally equivalent branches if and only if there exist ϕ ∈ Aut(C2, 0) and ρ ∈ Aut(C, 0)
such that ξ2(t) = (ϕ ◦ ξ1 ◦ ρ−1)(t).

Proof LetC fi be the images of themorphisms ξi : (C, 0) → (C2, 0) associated to the
parametrizations ξi (t), for i = 1, 2. If C f1 and C f2 are analytically equivalent, then,
by definition, there is a ϕ ∈ Aut(C2, 0) such that ϕ(C f1) = C f2 . This implies that ξ2
andϕ ◦ ξ1 have the same image, hence fromLemma1.1.19, there exitsρ ∈ Aut(C, 0)
such that ξ2 = (ϕ ◦ ξ1) ◦ ρ−1, proving one direction of the proposition.

Conversely, if ξ2 = ϕ ◦ ξ1 ◦ ρ−1, then the isomorphism ϕ of (C2, 0) induces an
isomorphism between the images C f1 of ξ1 and C f2 of ξ2, showing that they are
analytically equivalent. �

Remark 1.1.21 If we consider the group A = Aut(C2, 0) × Aut(C, 0) acting on
the set M1 × M1 by the rule

(ϕ, ρ) · ξ(t) : = (ϕ ◦ ξ ◦ ρ−1)(t) = ϕ(ξ(ρ−1(t))),

then the criterion in Proposition 1.1.20 may be rephrased as follows:
The primitive parametrizations ξ1(t) and ξ2(t) define two analytically equivalent

branches if and only if they are A-equivalent; that is, they belong to the same orbit
under the action of A.

In particular, if ξ1(t) and ξ2(t) are A-equivalent, then �(ξ1) = �(ξ2).

Example 1.1.22 TheprimitivePuiseuxparametrizations ξ1(t) = (t2, t3) and ξ2(t) =
(t2, 1

4 t2 − 1
8 t3 + 1

16 t4 − 1
32 t5) are A-equivalent. Indeed, if we take ϕ(X, Y ) =

(4X, X − Y + X2 − XY ) and ρ(t) = 2t , we have that ξ2(t) = (ϕ ◦ ξ1 ◦ ρ−1)(t).
By Property 1.1.2 (g) we have 2 = n = min�(ξ1) \ {0} = min�(ξ2) \ {0}; and

since any m ≥ 2 may be written as m = 2a + 3b for a, b ∈ N, we have that m =
ordt (h(ξ1(t))) = ordt (g(ξ2(t))) where h(X, Y ) = XaY b and g(X, Y ) = Xa(Y −
1
4 X)b. Hence, �(ξ1) = �(ξ2) = N \ {1}.

Notice that in the case of parametrizations, the group action that characterizes
analytic equivalence is the product of two groups, while in the case of equations, it
is the direct product of two groups, hence a more complicated action.
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Up to now,we know that plane branchesmay be defined through primitive Puiseux
parametrizations. We will use automorphisms ϕ of (C2, 0) and ρ of (C, 0), as above,
to transform a Puiseux parametrization into another simpler Puiseux parametrization.
This strategywas initiated, to the best of our knowledge, byEbey in [9] and developed
further by Zariski in [23].

To simplify notation, we will always denote by n the number β0 and by m the
number β1.

Remark 1.1.23 IfC f is nonsingular, then fromRemark1.1.3 oneknows that f ∼ Y .
It then follows that any nonsingular plane branch is equivalent to one with Puiseux
parametrization ξ(t) = (t, 0). On the other hand, if ξ(t) = (tn,

∑
i≥n ai t i ) is a prim-

itive Puiseux parametrization defining a singular branch, then, from Proposition
1.1.17, there exists a j 
= 0 such that n � j and the least such j is what we denoted
by β1 just before Proposition 1.1.17 and we are denoting now by m.

1.1.3 Equisingularity of Branches

Thanks to the works of Brauner, Kähler, Burau and Zariski in the first three decades
of last century, one knows that the topological type of an immersed plane branch is
encoded by its Puiseux exponents, which we define below.

Let (tn,
∑

i≥n ai t i ) be a Puiseux primitive parametrization of a plane branch
given by a Weierstrass polynomial P of multiplicity n. The numbers n = β0, m =
β1, . . . , βg defined just before Proposition 1.1.17 are the so called Puiseux exponents
or characteristic exponents of CP . The set of characteristic exponents associated to
a Puiseux primitive parametrization ξ(t) will be denoted by Exp(ξ(t)).

The following is a deep classical theorem which is comprehensively discussed in
[5, Theorem 12 pp. 438-439] and gives a manageable criterion for equisingularity of
branches.

Theorem 1.1.24 Let two plane branches C1 and C2 be given by primitive Puiseux
parametrizations ξ1(t) and ξ2(t), respectively. Then

C1 ≡ C2 ⇐⇒ Exp(ξ1(t)) = Exp(ξ2(t)).

This means that the characteristic exponents of Puiseux parametrizations are a
complete topological invariant for the branches they represent. In particular, an
immediate consequence of this theorem is the nontrivial fact that the multiplicity
of a plane branch is a topological invariant. This led Zariski to formulate the famous
conjecture that the same result holds more generally for hypersurface germs, instead
of plane curves (cf. [26]).

When the plane curve germs C1 and C2 are not irreducible, Zariski has shown in
[27, Lemma 7.1] that C1 ≡ C2 if and only if C1 and C2 have the same number r of
irreducible components and there is an ordering of their components C1,i and C2,i

such that C1,i ≡ C2,i and C1,i · C1, j = C2,i · C2, j , for all i, j = 1, . . . , r .



18 A. Hefez and M. E. Hernandes

The only restriction for a set β0, . . . , βg , whose GCD is 1, to be a set of character-
istic exponents of a Puiseux parametrization is that they form an increasing sequence
such that GCD(β0, . . . , βi−1) � βi , i = 1, . . . , g.

To the characteristic exponents there are attached the important invariants,

e0 = β0; ei = GCD(β0, . . . , βi ), i = 1, . . . , g,

with eg = 1, which already have been defined just before Proposition 1.1.17, and

n0 = 1; ni = ei−1

ei
, i = 1, . . . , g.

Let us stress the fact that not every Puiseux parametrization ξ(t) = (tn, y(t)),
where y(t) = ∑

i≥n ai t i with aβi 
= 0, i = 1, . . . , g, represents a plane branch such
that Exp(ξ(t)) = {β0, . . . , βg}. This is the case if, and only if, for all j = 0, . . . , g −
1,

∀i with β j ≤ i < β j+1 and e j � i =⇒ ai = 0. (1.4)

In the literature, very often, instead of giving the characteristic exponents of a
Puiseuxparametrization, one gives the Puiseux pairs (ni , mi ), i = 1, . . . , g,whereni

is as above andmi = βi

ei
. Since ei = GCD(ei−1, βi ), it follows thatGCD(ni , mi ) = 1,

for all i = 1, . . . , g.
It is an exercise to verify that Puiseux pairs and the characteristic exponents of a

primitive Puiseux parametrization determine each other.

We now retake the study of the semigroup of values of a plane branch C f , which
is by itself a rich subject.

Given v0, . . . , vr ∈ N we define

〈v0, . . . , vr 〉 = {x0v0 + · · · + xr vr ; x0, . . . , xr ∈ N} ∪ {∞},

called the semigroup generated by v0, . . . , vr .

Lemma 1.1.25 Given a semigroup � of N ∪ {∞}, there exists a unique finite set of
integers v0, . . . , vr ∈ � such that

(i) v0 < v1 < · · · < vr , and vi /∈ 〈v0, . . . , vi−1〉, for all i = 1, . . . , r;
(ii) � = 〈v0, . . . , vr 〉;

(iii) {v0, . . . , vr } is contained in any set of generators of �.

Proof See [11, Proposition 6.1]. �

The set {v0, . . . , vr } is called the minimal set of generators of � and the integer
r the genus of �.

Lemma 1.1.26 Given a semigroup� of N ∪ {∞}, the following assertions are equiv-
alent:
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(i) � has a conductor;
(ii) The GCD of all elements of � \ {∞} is 1.

Proof See [11, Proposition 6.2]. �

For a primitive parametrization ξ(t), we know, from Corollary 1.1.15 and
Lemma 1.1.16, that �(ξ) has a conductor, it follows that its minimal set of gen-
erators v0, . . . , vr has GCD equal to one.

The interesting fact is that there are remarkable relations among the characteristic
exponents β0, . . . , βg of a primitive Puiseux parametrization ξ(t) and the minimal
set of generators {v0, . . . , vr } of the semigroup �(ξ).

Theorem 1.1.27 Let ξ(t) be a primitive Puiseux parametrization with characteristic
exponents n = β0, β1, . . . , βg and associated integers e0, . . . , eg = 1. Let v0, . . . , vr

be the minimal set of generators of �(ξ). Then

(i) r = g;
(ii) v0 = β0 = n, and

v j =
j−1∑
k=1

ek−1 − ek

e j−1
βk + β j , j = 1, . . . , g;

(iii) ei = GCD(v0, . . . , vi ), and v j is the smallest element in �(ξ) which is not
divisible by e j−1.

Proof See [11, Theorem 6.12]. �

From this we get easily the following formulas (cf. [11, (6.4)]):

vi = ni−1vi−1 − βi−1 + βi , i = 1, . . . , g. (1.5)

In view of Theorem 1.1.27 (ii), equalities (1.5) imply that the characteristic expo-
nents of a Puiseux parametrization ξ(t) determine �( f ), where C f is the branch
determined by ξ(t) and conversely. Hence, one has that

C f1 ≡ C f2 ⇐⇒ �( f1) = �( f2).

Formulas (1.5) also imply that

vi > ni−1vi−1, i = 1, . . . , g. (1.6)

A semigroup with the above relations (1.6) among the elements of its minimal
set of generators will be called strongly increasing. These necessary conditions for
a semigroup 〈v0, . . . , vg〉 to be the semigroup of a branch are also sufficient (cf. [11,
Theorem 6.14]).

Formulas (1.5), when inverted, give the following ones:
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βi = vi − (ni−1 − 1)vi−1 − · · · − (n1 − 1)v1, i = 1, . . . , g. (1.7)

A semigroup � with conductor c will be called symmetric if the following con-
dition is satisfied:

∀z ∈ N, z ∈ � ⇐⇒ c − 1 − z /∈ �.

The gaps of � are the elements in N \ �, so the symmetry of � means that in the
interval [0, c − 1] there are as many gaps as elements in �.

One has the following result:

Theorem 1.1.28 Let �( f ) be the semigroup of values of a plane branch C f , then
�( f ) is symmetric and the conductor c of �( f ) satisfies

c =
g∑

i=1

(ni − 1)vi − v0 + 1. (1.8)

Proof See [11, Propositions 7.9 and 7.5]. �

A consequence of the symmetry of �( f ) is that the number of its gaps is precisely
c

2
, hence c is always an even number. This has the following notable consequence. Let

ξ(t) be a primitive parametrization for C f , since, from Theorem 1.1.8 and Remark
1.1.10, one has

dimC

O( f )

O( f )
= dimC

O1

Rξ

= #(N \ �( f )) = c

2
,

it follows from equalities (1.3) and the fact that γ = c, that

dimC

O( f )

C = c

2
= dimC

O( f )

O( f )
.

The above equality is what characterizes the so called Gorenstein rings.
Since �( f ) is determined by its gaps, a finite set, we have that this set of integers

is also a complete topological invariant for the branch C f .
In general, a given integer s in a semigroup � = 〈v0, . . . , vg〉 may be written in

several different ways as a combination of the vi , but there is one privileged way to
write it when these generators satisfy relations (1.6), as described in the result below.

Proposition 1.1.29 Let � = 〈v0, . . . , vg〉 be a semigroup whose generators satisfy
relations (1.6), then any natural number s is uniquely representable in the form

s =
g∑

i=0

si vi , 0 ≤ si < ni , i = 1, . . . , g, s0 ∈ Z,

in such a way that s ∈ � if and only if s0 ≥ 0.



1 The Analytic Classification of Irreducible Plane Curve Singularities 21

Proof See [11, Proposition 7.5]. �

In the sequel we discuss another set of invariants that characterize an equi-
singularity class of plane branches with semigroup of values � introduced by
R. Apéry in [2].

Let n = min(� \ {0}). The Apéry sequence a0 = 0, a1, . . ., an−1, associated to �

is defined as follows:

ai = min{α ∈ �; α 
≡ 0, a1, . . . , ai−1 mod n}, i = 1, . . . , n − 1.

Notice that � determines the Apéry sequence.

Proposition 1.1.30 The Apéry sequence has the following properties:

(i) 0 = a0 < a1 < · · · < an−1 ;
(ii) ai 
≡ a j mod n, if 0 ≤ i < j ≤ n − 1;

(iii) � \ {∞} = ⋃n−1
i=0

(
ai + nN

)
;

(iv) c = an−1 − (n − 1).

Proof See [11, p. 92]. �

Item (iii) above shows that the Apéry sequence determines �. On the other hand,
it is clear that the gaps of �, that is the elements in N \ �, are the integers of the form

ai − n, ai − 2n, . . . , ai −
[
ai

n

]
n, i = 1, . . . , n − 1.

Example 1.1.31 Consider the semigroup

� = 〈6, 9, 19〉 = {0, 6, 9, 12, 15, 18, 19, 21, 24, 25, 27, 28,
30, 31, 33, 34, 36, 37, 38, 39, 40, 42, · · · }.

Then n = min(� \ {0}) = 6 and its conductor is c = 42. The Apéry sequence of
� is

a0 = 0,
a1 = min{α ∈ �;α 
≡ 0 mod 6} = 9,
a2 = min{α ∈ �;α 
≡ 0, 9 mod 6} = 19,
a3 = min{α ∈ �;α 
≡ 0, 9, 19 mod 6} = 28,
a4 = min{α ∈ �;α 
≡ 0, 9, 19, 28 mod 6} = 38,
a5 = min{α ∈ �;α 
≡ 0, 9, 19, 28, 38 mod 6} = 47.

Notice that c = a5 − (n − 1) = 42.
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1.1.4 Semiroots of a Branch

In this section, we will study special elements of O whose intersection multiplicity
realize the generators of the semigroup �( f ), of a branch C f . These elements are
important in several contexts, since the branches associated to them are simpler than
the original branch and contain a great amount of information about it.

Let f ∈ C{X}[Y ] be an irreducible Weierstrass polynomial and let ξ(t) be a
primitive Puiseux parametrization of C f . As mentioned in the previous section,
�( f ) = 〈v0, . . . , vg〉 is a complete topological invariant for the plane branch C f .

Notice that if h ∈ O is such that I ( f, h) = vi for some 0 ≤ i ≤ g, then h must be
irreducible. In fact, if h = h1 · h2 with h1, h2 ∈ M, then

vi = I ( f, h) = I ( f, h1 · h2) = I ( f, h1) + I ( f, h2),

with I ( f, h1), I ( f, h2) ∈ �( f ) \ {0}, which contradicts the fact that the vi , i =
0, . . . , g, form a minimal set of generators.

As remarked before, we may suppose that ξ(t) = (tn,
∑

i≥n ai t i ), where n =
degY ( f ).

Among all the elements in O whose intersection multiplicity with C f belong to
the minimal set of generators of �( f ) we will consider a particular subset.

Definition 1.1.32 For any k = 0, . . . , g − 1, a k-semiroot of f is a monic polyno-
mial fk ∈ C{X}[Y ] such that degY ( fk) = n

ek
and I( f, fk) = vk+1. We define fg = f

and call { f0, f1, . . . , fg} a complete system of semiroots for f .

The next result shows that complete systems of semiroots for f exist.

Theorem 1.1.33 Let ξ(t) = (tn,
∑

i≥n ai t i ) be a primitive Puiseux parametriza-
tion for a plane branch C f and let fk ∈ C{X}[Y ], for 0 ≤ k < g, be the minimal

polynomial of
∑

n≤i<βk+1
ai X

i
n over C((X)). We have

(i) ξk(t) = (t
n

ek ,
∑

n≤i<βk+1
ai t

i
ek ) is a primitive Puiseux parametrization for C fk ;

(ii) degY ( fk) = n
ek

and I( f, fk) = ordt ( fk(ξ(t))) = ordt ( f (ξk(t))) = vk+1;

(iii)
∑ j

i=1(ni − 1)vi + β j+1 is the minimal order of a term in fk(ξ(t)) not divisible
by e j , for any fixed j such that k ≤ j < g.

In particular, fk is a k-semiroot of f .

Proof The first two items follow from the computations in [24, Theorem 3.9 on p.
11], or [11, Theorem 6.12].

We now proceed to the proof of (iii). Denoting G j = {η ∈ C; ηe j = 1}, then The-
orem 1.1.12 gives

fk =
∏
ε∈ G0

Gk

(
Y −

∑
n≤i<βk+1

aiε
i X

i
n

)
,
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and, consequently,

fk(ξ(t)) =
∏
ε∈ G0

Gk

( ∑
n≤i<βk+1

ai (1 − εi )t i +
∑

i≥βk+1

ai t
i

)
.

From [11, Lemma 6.10] we have that

ordt

( ∑
n≤i<βk+1

ai (1 − εi )t i +
∑

i≥βk+1

ai t
i

)
=

⎧⎨
⎩

β j if ε ∈ G j−1 \ G j ; j < k

βk if ε ∈ Gk .

As G j−1 \ G j is the union of e j−1−e j

ek
cosets of Gk , then, for any j such that

k ≤ j < g, the minimal order of a term in fk(ξ(t)) not divisible by e j is

j∑
i=1

e j−1 − e j

ek
βi + β j+1 =

j∑
i=1

(ni − 1)vi + β j+1,

as we wanted to show. �

A k-semiroot of f , as described in the previous theorem, will be called a charac-
teristic k-semiroot.

Semiroots are not uniquely determined. In fact, S. Abhyankar and T. Moh in
[1] define a special type of semiroots, called approximate roots, which have some
particularities that characterize them uniquely. On the other hand, in [13] we present
an algorithm that allows one to compute Standard Basis for the coordinate ring of any
irreducible curve, not necessarily plane. For a plane branch, elements in a minimal
Standard Basis are semiroots. So, characteristic semiroots, approximate roots, or
elements in a minimal Standard Basis are all semiroots, but may differ from each
other.

As before, we denote Exp(ξ) = {β0, . . . , βg} and �( f ) = 〈v0, . . . , vg〉. Recall
that we defined n = β0 = v0 and m = β1 = v1. We have the following immediate
corollary.

Corollary 1.1.34 For fk and ξk(t), with 0 ≤ k ≤ g, as in Theorem 1.1.33, one has

Exp(ξk) =
{

β0

ek
, . . . ,

βk

ek

}
and �( fk) =

〈
v0
ek

, . . . ,
vk

ek

〉
.

Observe that, for j = 1, . . . , k, we have

n j = e j−1

e j
= GC D(β0, . . . , β j−1)

GC D(β0, . . . , β j )
=

GC D

(
β0

ek
, . . . ,

β j−1

ek

)

GC D

(
β0

ek
, . . . ,

β j

ek

) .
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As a consequence, we have that the conductor ck of �( fk) is given by

ck =
k∑

j=1

(n j − 1)
v j

ek
− v0

ek
+ 1. (1.9)

If fk is a k-semiroot of f and h j is a j-semiroot of fk , then it follows immediately
that h j is a j-semiroot of f .

Applying successive Euclidean division, and by Proposition 1.1.29 we obtain the
following consequence:

Corollary 1.1.35 Let { f0, . . . , fg} be a complete system of semiroots. Every h ∈ O
can be uniquely written in the form

h =
∑

i0,...,ig

ai0,...,ig f i0
0 · · · f

ig
g ,

with ig ≥ 0, 0 ≤ ik < nk, for all 0 ≤ k < g, and ai0,...,ig ∈ C{X}. Moreover,

(i) degY ( f i0
0 · · · f

ig
g ) 
= degY ( f j0

0 · · · f
jg

g ), if (i0, . . . , ig) 
= ( j0, . . . , jg);

(ii) If (i0, . . . , ig−1) 
= ( j0, . . . , jg−1), then

I( f, ai0,...,ig−1,0 f i0
0 · · · f

ig−1

g−1 ) 
= I( f, a j0,..., jg−1,0 f j0
0 · · · f

jg−1

g−1 );

(iii) If h ∈ C{X}[Y ] with degY (h) < degY ( fk) = n
ek

, then I( f, h) = ekI( fk, h).

Proof For (i) and (ii) see [21, Corollary 5.4].
Now, we prove (iii). If h ∈ C{X}[Y ] with degY (h) < degY ( fk), then by (i) we may
write h = ∑

i0,...,ik−1
ai0,...,ik−1 f i0

0 · · · f ik−1
k−1 , and by (ii), for some ( j0, . . . , jk−1),

I( f, h) = min(i0,...,ik−1){I( f, ai0,...,ik−1 f i0
0 · · · f ik−1

k−1 )}
= I( f, a j0,..., jk−1 f j0

0 · · · f jk−1
k−1 ).

But, since { f0, . . . , fk−1} is a complete system of semiroots of fk , it follows that
I( fk, h) = I( fk, a j0,..., jk−1 f j0

0 · · · f jk−1
k−1 ). As I( f, X) = n = ekI( fk, X) and I( f, f j ) =

v j+1 = ekI( fk, f j ), for 0 ≤ j < k, we get the result. �

Example 1.1.36 Let ξ(t) = ξ3(t) = (t8, t12 + t14 + t15) be a primitive Puiseux
parametrization for a plane branch C f . The characteristic exponents of C f are
Exp(ξ3) = {8, 12, 14, 15}, e0 = 8, e1 = 4, e2 = 2, e3 = 1 and according to Theo-
rem 1.1.27 we have �( f ) = 〈8, 12, 26, 53〉.

By Theorem 1.1.33,

ξ0(t) = (t, 0), ξ1(t) = (t2, t3), ξ2(t) = (t4, t6 + t7)
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are primitive Puiseux parametrizations for C fk with fk a k-semiroot of f for 0 ≤
k ≤ 2.

Using Theorem 1.1.12 we obtain

f0 = Y, f1 = Y 2 − X3, f2 = Y 4 − 2X3Y 2 − 4X5Y + X6 − X7,

f = f3 = Y 8 − 4X3Y 6 − 8X5Y 5 + (6 − 26X)X6Y 4+
+(16 − 24X)X8Y 3 + (−4 + 36X − 20X2)X9Y 2+
+(−8 + 16X − 8X2)X11Y + (1 + 6X + 21X2 − X3)X12.

Recall that
I ( f, f0) = ordt ( f0(ξ(t))) = 12 = v1,
I ( f, f1) = ordt ( f1(ξ(t))) = 24 = v2,
I ( f, f2) = ordt ( f2(ξ(t))) = 53 = v3.

1.2 Zariski’s Approach

Zariski’s program to attack the problem of analytic classification of plane branches
belonging to an equisingularity class L, consisted in constructing an appropriate
parameter space� that represents all the analytic types of themembers ofL, and then
to quotient it modulo the relation that identifies two point that represent analytically
equivalent branches, to get the corresponding moduli space, as specified below.

One wants � to be a constructible nonempty set in some finite dimensional affine
space C

N , together with a function F : � → L, in such a way that F(�) contains
at least one representative of each class of analytic equivalence in L. To realize this
program it will be necessary to interpret the equivalence relation ∼ on � induced by
the action of G = O∗

� Aut(C2, 0) on L, namely,

σ1 ∼ σ2 ⇐⇒ F(σ1) ∈ G(F(σ2)),

where G(F(σ2)) denotes the orbit of F(σ2) under the action of G, and to study the
space�/ ∼. It is intuitive that the smaller is the integer N , the simpler the equivalence
relation ∼ on � will be, since there will be less parameters to deal with.

1.2.1 A Parameter Space

Zariski’s strategy, sketched in [23], consisted in constructing a parameter space by
means of the coefficients of y(t) in primitive Puiseux parametrizations of the form
ξ(t) = (tn, y(t)) that correspond to branches in a given equisingularity class L. The
trouble is that this would yield to an infinite dimensional space, but he overcomes this
inconvenient by observing that there is a uniform bound for L such that each branch
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in L is analytically equivalent to a branch with a Puiseux parametrization (tn, y(t)),
where y(t) is a polynomial of degree less or equal than this bound. In this way, the
coefficients of such y(t) determine a point in a finite dimensional affine space. The
method proceeds by introducing some uniform elimination criteria of coefficients
in y(t), depending only on L, without changing the analytic type of the branch it
represents, in order to lower the dimension of this affine space.

So, we start with the reduction that will tell us that our parametrizations are finitely
determined in the sense we make precise below.

Given an element h ∈ C{X1, . . . , Xr }, written as h = ∑∞
i=0 hi , where each hi is

a homogeneous polynomial of degree i in C[X1, . . . , Xr ] or the zero polynomial,
we denote by j kh the truncation

∑k
i=0 hi of h and call it the k-th jet of h.

First Reduction: Let ξ(t) = (x(t), y(t)) be a primitive parametrization such that
n : = ordt (ξ(t)) > 2 and let c be the conductor of �(ξ). Then one has that
ξ(t) and j c−1ξ(t) are A-equivalent. The case n = 2 will be treated separately in
Proposition 1.2.1.

Indeed, since (x(t), y(t)) and (y(t), x(t)) areA-equivalent, we may assume that
x(t) = ∑

i≥n ai t i and y(t) = ∑
i≥r bi t i , where anbr 
= 0 and n ≤ r . Suppose that

�(ξ) = 〈v0, . . . , vg〉, then v0 = n and v1 ≥ r . It follows, from Formula (1.8) that
c ≥ r + 1 ≥ n + 1 (here we use n > 2), hence we may write x(t) = ∑c−1

i=n ai t i +∑
i≥c ai t i and y(t) = ∑c−1

i=r bi t i + ∑
i≥c bi t i . As

∑
i≥c ai t i ,

∑
i≥c bi t i ∈ Rξ , it fol-

lows that there exist p, q ∈ 〈X, Y 〉2 such that p(ξ(t)) = ∑
i≥c ai t i and q(ξ(t)) =∑

i≥c bi t i . So, if we take ρ(t) = t and ϕ(X, Y ) = (X − p(X, Y ), Y − q(X, Y )), one
has ϕ(ξ(ρ−1(t))) = j c−1ξ(t).

In particular, if ξ(t) = (tn, y(t)) is a primitive Puiseux parametrization, with n >

2, then ξ(t) is A-equivalent to (tn, j c−1y(t)).
The following reduction will give us a uniform way, depending on L, to start the

series y(t).

Second Reduction: Suppose that ξ(t) = (tn y(t)) is a given Puiseux parametriza-
tion such that y(t) = Q(tn) + amtm + · · · , where am 
= 0, m is not a multiple of n
and Q is a univariate polynomial with degt Q(tn) < m. Let us define

ρ(t) = t and ϕ(X, Y ) =
(

X,
Y − Q(X)

am

)
,

then ρ and ϕ are, respectively, automorphisms of (C, 0) and of (C2, 0) such that

ϕ(ξ(ρ−1(t))) = (tn, tm + · · · ).

So, we may eliminate all initial terms of order multiple of n. Notice that besides
the elimination of the terms in y(t) of degrees divisible by n and lower that m, one
may transform any term ai t i with ai 
= 0 in y(t), instead of amtm , into t i .

The following result is an example of how these reductions may help us in our
intent.
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Proposition 1.2.1 Any branch of multiplicity 2 is analytically equivalent to a branch
parametrized by (t2, tm), where m is odd.

Proof LetC f be a branch of multiplicity 2, then there exists a primitive parametriza-
tion ξ(t) = (x(t), y(t)) such that ordt ξ(t) = 2, hence at the cost of permuting X and
Y , we may assume that 2 = ordt x(t) ≤ ordt y(t). So, we may reparametrize ξ(t) is
such a way that, after applying the Second Reduction, we get a primitive Puiseux
parametrization ξ1(t) = (t2,

∑
i≥m ai t i ), where m is odd. This implies that �(ξ) =

〈2, m〉, hence, by Theorem 1.1.28, its conductor is c = m − 1. So,
∑

i>m ai t i ∈ Rξ1 ,
which means that there exists q ∈ 〈X, Y 〉2 such that q(ξ1(t)) = ∑

i>m ai t i . Now, if
we take

ρ(t) = t and ϕ(X, Y ) =
(

X,
Y − q(X, Y )

am

)
,

we get ϕ(ξ1(ρ
−1(t))) = (t2, tm). �

Remark 1.2.2 Given a branch defined by a Weierstrass polynomial f = Y n +∑n
i=1 ci (X)Y n−i in C{X}[Y ] with a primitive Puiseux parametrization ξ(t), in the

Second Reduction we can take Q(tn) ∈ C{tn} and obtain ξ1(t) = ϕ(ξ(ρ−1(t))) =
(tn, y(t)) with y(t) without any term of the form akntkn . Consequently, by Theo-
rem 1.1.12, the branch with parametrization ξ1(t) admits a Weierstrass polynomial
Y n + ∑n

i=2 bi (X)Y n−i , with bi (X) ∈ C{X}, as Cartesian equation. Notice that this
corresponds to apply the Tschirnhausen operator on f , that is, the automorphism
ϕ ∈ Aut(C2, 0) defined by ϕ(X, Y ) = (X, Y − c1(X)

n ).

Note that in the First andSecondReductions, applied to a Puiseux parametrization,
we only playedwith the automorphismϕ, taking in both casesρ(t) = t . Now, playing
with both automorphisms ϕ and ρ, we may characterize the transformations that
preserve the form of a Puiseux parametrization.

Proposition 1.2.3 Let ξ(t) = (tn, y(t)) ∈ M1 × M1, where y(t) = tm + hot, with
n < m, and hot means an element in Mm+1

1 . Then the automorphisms ϕ and ρ of
(C2, 0) and (C, 0), respectively, are such that ϕ(ξ(ρ−1(t))) = (tn, tm1 + hot), with
n < m1, and hot means an element in Mm1+1

1 , if, and only if, m = m1 and there exist
ε ∈ C

∗, p(X, Y ) ∈ 〈X2, Y 〉 and q(X, Y ) ∈ 〈X, Y 〉2 such that

ρ(t) = t

(
εn + p(ξ(t))

tn

) 1
n

, ϕ(X, Y ) = (εn X + p(X, Y ), εmY + q(X, Y )).

Proof Let us write

ϕ(X, Y ) = (αX + βY + p1(X, Y ), γ X + δY + q(X, Y )),

where p1(X, Y ), q(X, Y ) ∈ 〈X, Y 〉2.
From the equality ϕ(ξ(ρ−1(t))) = (tn, tm1 + hot), we get
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α(ρ−1(t))n + βy(ρ−1(t)) + p1(ξ(ρ−1(t))) = tn,

γ (ρ−1(t))n + δy(ρ−1(t)) + q(ξ(ρ−1(t))) = tm1 + hot.

Evaluating orders in the above equalities, it follows that α 
= 0, γ = 0 and
m1 = m.

If we write βY + p1(X, Y ) =: p(X, Y ), we have that p(X, Y ) ∈ 〈X2, Y 〉, and

α(ρ−1(t))n + p(ξ(ρ−1(t))) = tn, and ϕ(X, Y ) = (αX + p(X, Y ), δY + q(X, Y )).

Hence, (ρ(t))n = αtn + p(ξ(t)), and from the fact that

δy(ρ−1(t)) + q(ξ(ρ−1(t))) = tm + hot,

putting ε = n
√

α, it follows that δ = εm and the proposition is proved. �

The next result will give us a way to compare the parametrization ϕ(ξ(ρ−1(t))),
where ϕ and ρ are automorphisms as in the above proposition with ε = 1, with the
Puiseux parametrization ξ(t) such that am = 1.Wewill denote by y′(t) the derivative
of y(t) with respect to t .

Corollary 1.2.4 For the automorphisms ϕ and ρ, with ε = 1, and for p and q as
described in Proposition 1.2.3, if ξ(t) = (tn, y(t)) is such that y(t) = ∑

i≥m ai t i ,
with am = 1, then ϕ(ξ(ρ−1(t))) = ξ(t) + (0, θ(ρ−1(t))), where

θ(t) = q(ξ(t)) − y′(t)
ntn−1

p(ξ(t)) −
∑
i≥m

ai t
i

∞∑
l=2

( i
n

l

)(
p(ξ(t))

tn

)l

, (1.10)

and is such that the initial term of θ(ρ−1(t)) is equal to that of θ(t).

Proof From Proposition 1.2.3 we have

(ρ(t))i = t i

(
1 + p(ξ(t))

tn

) i
n

= t i + t i
∞∑

l=1

( i
n

l

)(
p(ξ(t))

tn

)l

,

and consequently,

(ρ−1(t))i = t i − ρ−1(t)i
∞∑

l=1

( i
n

l

)(
p(ξ(ρ−1(t)))

ρ−1(t)n

)l

,

hence
ϕ(ξ(ρ−1(t))) = ξ(t) + (0, θ(ρ−1(t))),

where,
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θ(t) = q(ξ(t)) − ∑
i≥m ai t i

∑∞
l=1

( i
n
l

)( p(ξ(t))
tn

)l

= q(ξ(t)) − ∑
i≥m ai t i ip(ξ(t))

ntn − ∑
i≥m ai t i

∑∞
l=2

( i
n
l

)( p(ξ(t))
tn

)l

= q(ξ(t)) − y′(t)
ntn−1 p(ξ(t)) − ∑

i≥m ai t i
∑∞

l=2

( i
n
l

)( p(ξ(t))
tn

)l

.

Finally, since

θ(ρ−1(t)) = θ(t + hot) = θ(t) + ε(t), where ordt (ε(t)) > ordt (θ(t)),

where hot means an element in M2
1, it follows that θ(ρ−1(t)) and θ(t) have same

initial term. �

The following is a slight generalization of [24, Proposition 1.2, Chap. 3, p. 19]
and [24, (2.5) and (2.6) on p. 23].

Proposition 1.2.5 Let ξ(t) = (tn, tm + ∑
i>m ai t i ), with n � m, be a primitive

Puiseux parametrization of a branch C f . If k > m is such that k ∈ �( f ), or
k ∈ �( f ) + m − n, then C f is analytically equivalent to a branch with a Puiseux
parametrization (tn, tm + ∑

m<i<k ai t i + ∑
i>k a′

i t
i ), where a′

i ∈ C, for i > k.

Proof If k > m and k ∈ �( f ), then there exists q ∈ 〈X, Y 〉2 such that j k(q(ξ(t))) =
−aktk . Considering ε = 1 and p = 0 in Proposition 1.2.3, we obtain the result.

On the other hand, if k > m and k ∈ �( f ) + m − n, there exists p ∈ 〈X2, Y 〉
with j k−m+n(p(ξ(t)) = − n

m aktk−m+n . We obtain the result taking ε = 1 and q = 0
in Proposition 1.2.3. �

The next result is a substantial generalization of the above proposition.

Theorem 1.2.6 Let ξ(t) = (tn, tm + ∑
i>m ai t i ) be a primitive Puiseux

parametrization representing a plane branch C f with semigroup of values �( f ) =
〈v0, v1, . . . , vg〉, where v0 = n and v1 = m. If j > m and j ∈ �( f ) + vk − n, for
some 0 ≤ k ≤ g, then C f is analytically equivalent to a branch with parametriza-
tion (tn, tm + ∑

i>m a′
i t

i ) with a′
i = ai for i < j , and a′

j = 0.

Proof For k ∈ {0, 1} the result corresponds to Proposition 1.2.5.
Let us suppose that j > m and j ∈ �( f ) + vk − n for some k with 2 ≤ k ≤ g.

Consider the characteristic (k − 1)-semiroot fk−1 as described in Theorem 1.1.33.
Since fk−1 ∈ C{X}[Y ] is an irreducible Weierstrass polynomial of degree n

ek−1
=

n1 · · · nk−1, and ni ≥ 2 for i = 1, . . . , g, we have that ( fk−1)Y ∈ 〈X2, Y 〉 and
( fk−1)X ∈ 〈X, Y 〉2. Moreover,

I( f, ( fk−1)Y ) = ek−1I( fk−1, ( fk−1)Y ) = ek−1(ck−1 + n
ek−1

− 1)

= ∑k−1
i=1 (ni − 1)vi ≥ m > n,

(1.11)
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where the first equality, above, follows fromCorollary 1.1.35 (iii), the second equality
follows from the formula I( f, fY ) = c + n − 1 (cf. [11, Corollary 7.16]) applied to
fk−1 instead of f and, finally, the third equality follows from (1.9).
Considering j > m and j = s + vk − n, where s = ∑g

i=0 si vi ∈ �( f ) with 0 ≤
si < ni and s0 ≥ 0 as described in Proposition 1.1.29, we have that h = Xs0 f s1

0 · . . . ·
f

sg

g−1 is such that I( f, h) = s.
Taking, in Proposition 1.2.3, ε = 1, p = −αh( fk−1)Y and q = αh( fk−1)X , where

α is an arbitrary complex number, we get ϕ ∈ Aut(C2, 0) and ρ ∈ Aut(C, 0), which
in view of Corollary 1.2.4, are such that

ϕ(ξ(ρ−1(t))) = ξ(t) + (0, θ(ρ−1(t))),

with

θ(t) = αh(ξ(t))
( fk−1(ξ(t)))′

ntn−1
−

∑
i≥m

ai t
i

∞∑
l=2

( i
n

l

)(−α(h( fk−1)Y )(ξ(t))

tn

)l

,

and the initial terms of θ(ρ−1(t)) and of θ(t) are equal.

Notice that since ordt

(
( fk−1(ξ(t)))′

)
= vk − 1, then

ordt

(
h(ξ(t))

( fk−1(ξ(t)))′

ntn−1

)
= s + vk − n = j.

On the other hand, the order in t of the second term in the expression of θ(t) is
2(s + I( f, ( fk−1)Y ) − n) + m.

Case 1. j = s + vk − n ≤ 2(s + I( f, ( fk−1)Y ) − n) + m.
By choosing a convenient value for α we can eliminate the term that assume order

j in ϕ(ξ(ρ−1(t))).

Case 2. j = s + vk − n > 2(s + I( f, ( fk−1)Y ) − n) + m.
In this case, from (1.11), it follows that s < vk and, also,

2(s + I( f, ( fk−1)Y ) − n) + m > I( f, ( fk−1)Y ) − n + m =
ek−1I( fk−1, ( fk−1)Y ) − n + m =
ek−1

(
ck−1 + n

ek−1
− 1

)
− n + m > ek−1ck−1.

Since s < vk , we may take h = Xs0 f s1
0 · . . . · f sk−1

k−2 . By Theorem 1.1.33 (iii) and
some elementary computations, it follows that the lowest order not multiple of ek of

a term in t i
( i

n
l

)(
(h( fk−1)Y )(ξ(t))

tn

)l

, for i ≥ m and l ≥ 2, is
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m + 2(s +
k−1∑
i=1

(ni − 1)vi − vk−1 + βk − 2n) > s + vk − n = j.

The above analysis shows that in
∑

i≥m ai t i
∑∞

l=2

( i
n
l

)(−α(h( fk−1)Y )(ξ(t))
tn

)l

all terms

have order r > ek−1ck−1 and ek−1 divides r for all r < s + vk − n = j .
Since ck−1 is the conductor of �( fk−1), there exists

h1 =
∑

ek−1ck−1<r<s+vk−n

a′
r Xr0 f r1

0 · · · f rk−1
k−1 ∈ 〈X, Y 〉2,

where r = r0v0 + r1v1 + · · · + rk−1vk−1, with I( f, Xr0 f r1
0 · · · f rk−1

k−2 ) = r , such that

ordt

(
h1(ξ(t)) −

∑
i≥m

ai t
i

∞∑
l=2

( i
n

l

)(−α(h( fk−1)Y )(ξ(t))

tn

)l)
> s + vk − n = j.

Redefining p : = −αh( fk−1)Y and q : = αh( fk−1)X + h1 we obtain

ϕ(ξ(ρ−1(t))) = ξ(t) + (0, θ1(ρ
−1(t))),

with

θ1(t) = αh
( fk(ξ(t)))′

ntn−1
+ h1(ξ(t)) −

∑
i≥m

ai t
i

∞∑
l=2

( i
n

l

)(−α(h( fk−1)Y )(ξ(t))

tn

)l

,

where ordt (θ1(ρ
−1(t)) − θ1(t))>ordt (θ1(ρ

−1(t)))=ordt (θ1(t)) = s + vk − n = j ,
concluding our proof, after a suitable choice of α. �

The above theorem gives us the following reduction:

Third Reduction: Let ξ(t) = (tn, tm + ∑
i>m ai t i ) be a primitive Puiseux

parametrization of C f with semigroup �( f ) = 〈v0, v1, . . . , vg〉, where v0 = n and
v1 = m. If s > m and s ∈ �( f ) − n, there exists a branch analytically equivalent
to C f with parametrization (tn, tm + ∑

i>m a′
i t

i ) such that a′
i = ai for i < s and

a′
s = 0. Indeed, as m < s = j − n with j ∈ �( f ) \ {0}, we have j = α + vk , for
some α ∈ �( f ) and 0 ≤ k ≤ g, then the previous theorem allows us to perform this
reduction.

We summarize the three above reductions in the following theorem which gener-
alizes the results of Ebey in [9] and Zariski in [23].

Theorem 1.2.7 Let ξ1(t) = (tn, y(t)) be a primitive Puiseux parametrization of a
branch C with semigroup of values � = 〈v0, . . . , vg〉, where n = v0. If n > 2, there
exists a primitive Puiseux parametrization
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ξ(t) =
(

tn, tm +
∑
i>m

i /∈�−n

ai t
i

)
, (1.12)

where m = v1 and the coefficients ai satisfy condition (1.4), such that the branch
determined by ξ(t) is A-equivalent to C. If n = 2, ξ(t) is A-equivalent to (t2, tm),
where m is odd.

Proof If n > 2, by the Second Reduction, we have that ξ1(t) and ξ̃1(t) = (tn, tm +∑
i>m a′

i t
i ) determine analytically equivalent branches.

Applying the Third Reduction to ξ̃1(t), for every i ∈ � − n, with m < i < c, we
obtain

ξ̃ (t) =
(

tn, tm +
c−1∑
i>m

i /∈�−n

ai t
i +

∑
i≥c

ai t
i

)
.

Now, we apply the First Reduction to get the result in this case. If n = 2, the the
result follows from Proposition 1.2.1. �

If c − 1 − n > m, since max{i; i /∈ �( f ) − n} = c − 1 − n, the above result
implies that a primitive parametrization ξ1(t) = (tn, y(t)) and the associated
parametrization ξ(t) = (tn, j c−1−n(y(t))) determine two analytically equivalent
branches. This is the case when n > 3 or when n = 3 and m > 6. On the other
hand, if n = 2, or n = 3 and 4 ≤ m ≤ 5, then the curve is analytically equivalent to
one with Puiseux parametrization (tn, tm).

Remark 1.2.8 The above theorem gives the best possible reduction if one consid-
ers the whole equisingularity class determined by an arbitrary semigroup of val-
ues �. But, for some special semigroups �, it could happen that possibly shorter
parametrizations represent all analytic classes in the equisingularity class determined
by �. What we are claiming is that if we suppress a term of degree greater than m
and that does not belong to � − n in the expression of y(t) = tm + ∑

i>m
i /∈�−n

ai t i , then
possibly some analytic class belonging to the equisingularity class determined by �

would not be represented.

Now, we are in position to define a parameter space for the equisingularity class
of branches determined by a semigroup of values �, better than the one obtained by
Zariski by means of what he called short parametrizations.

Definition 1.2.9 Let � = 〈v0, . . . , vg〉 be a semigroup of values of a branch. We
define the parameter space �(�) as being the Zariski open set in C

N , with N =
# [(m,+∞) \ (� − n)], where n = v0 andm = v1, whose points have as components
the coefficients ai in the Puiseux parametrization

(
tn, tm +

∑
i>m

i /∈�−n

ai t
i

)
,
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under the restriction that aβ2 · · · aβg 
= 0 and the coefficients ai satisfy condition (1.4).

Next, we compute the dimension N of �(�).
The condition i > m and i /∈ � − n, means that i is a gap of � greater than m and

such that i + n is still a gap. These elements are exactly those of the form

ai − 2n, . . . , ai −
[
ai − m

n

]
n, i = 2, . . . n − 1,

where ai , i = 0, . . . , n − 1, is the Apéry sequence attached to �. So, we get the
estimate

N ≤
n−1∑
i=2

([
ai − m

n

]
− 1

)
=

n−1∑
i=2

[
ai − m

n

]
+ n − 2.

Let now γi , i = 1, . . . , g, be the numbers of gaps of � in the interval [βi , βi+1),
where βg+1 = ∞, which are divisible by ei and do not belong to � − n, then

N = γ1 + · · · + γg.

Suppose g ≥ 2. Because (cf. Formulas (1.7))

βi = vi − (ni−1 − 1)vi−1 − · · · − (n1 − 1)v1, i = 1, . . . , g,

and since ei | βi , and ni ≥ 2, for i ≥ 1, it follows that

βi + v0 = vi − (ni−1 − 1)vi−1 + · · · + (n1 − 1)v1 + v0 /∈ �.

This, because otherwise, since βi + n < vi , we would have

βi + v0 ∈ 〈v0, . . . , vi−1〉,

which is impossible since ei−1 divides every element in 〈v0, . . . , vi−1〉, but does not
divide βi .

This implies that if g ≥ 2, then γi ≥ 1, for i = 2, . . . , g, and consequently, N ≥
g − 1.

Remark 1.2.10 Onehas N = 0 if and only if v0 = 2, or v0 = 3 and v1 = 4 or v1 = 5.
Indeed, N = 0 implies g = 1. So, we have � = 〈v0, v1〉, with GCD(v0, v1) = 1.

In this case, av0−1 = v1(v0 − 1). On the other hand, N = 0 if, and only if,

av0−1 − 2v0 < v1,

which is equivalent to v1(v0 − 2) < 2v0, implying that v0 < 4.
For v0 = 2, v1 is any odd natural number greater than 2. For v0 = 3, v1 = 4 or

v1 = 5.
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In conclusion, N = 0 if, and only if, � = 〈2, m〉, where m is odd, or � = 〈3, m〉,
where m = 4, or m = 5.

Example 1.2.11 Let us consider the equisingularity class of branches with semi-
group � = 〈3, 7〉.

As n = v0 = 3 and m = v1 = β1 = 7, then the conductor of � is c = 12 (cf.
Theorem 1.1.28) and any branch with semigroup � admits a primitive Puiseux
parametrization as ξ3(t) = (t3, b3t3 + ∑

i≥6 bi t i ) with b7 
= 0.
Following the steps in the proof of Theorem 1.2.7, we apply first the Second

Reduction to ξ3(t), by considering

ρ(t) = t and ϕ(X, Y ) =
(

X,
Y − b3X − b6X2

b7

)
,

obtaining
ξ2(t) = ϕ(ξ3(ρ

−1(t))) = (t3, t7 +
∑
i≥8

ai t
i )

with ai = bi
b7
.

Now, we apply the Third Reduction to ξ2(t) for every i ∈ � − 3with 7 < i < c =
12, that is, for i ∈ {9, 10, 11}. As 9, 10 ∈ � and 11 = v1 + v1 − n, the reduction can
be performed using Proposition 1.2.5 that indicates elements ε, p and q in order to
obtain automorphisms ρ and ϕ as described in Proposition 1.2.3.

For i = 9, we take ε = 1, p(X, Y ) = 0 and q(X, Y ) = −a9X2 in Proposition
1.2.3, getting ρ(t) = t and ϕ(X, Y ) = (X, Y − a9X2). In this way,

ξ2,1(t) = ϕ(ξ2(ρ
−1(t))) = (t3, t7 + a8t8 +

∑
i≥10

ai t
i ).

For i = 10, we take ε = 1, p(X, Y ) = 0 and q(X, Y ) = −a10XY in Proposition
1.2.3. So, ρ(t) = t and ϕ(X, Y ) = (X, Y − a10XY ) and therefore

ξ2,2(t) = ϕ(ξ2,1(ρ
−1(t))) = (t3, t7 + a8t8 +

∑
i≥11

a′
i t

i ).

For i = 11, we take ε = 1, q(X, Y ) = 0 and p(X, Y ) = 3a′
11
7 Y in Proposition

1.2.3, consequently ρ(t) = t
(
1 + 3a′

11
7 (t4 + a8t5 + ∑

i≥11 a′
i t

i−3)
) 1

3
and ϕ(X, Y ) =

(X − 3a′
11
7 Y, Y ). By Corollary 1.2.4, we obtain

ξ2,3(t) = ϕ(ξ2,2(ρ
−1(t))) = (t3, t7 + a8t8 + r(t))

with r(t) ∈ M12
1 .

Now, as the conductor of � is c = 12 it follows that r(t) ∈ Rξ2,3 and there exists
h(X, Y ) ∈ 〈X, Y 〉2 with h(ξ2,3) = r(t). In this way, taking ρ(t) = t and ϕ(X, Y ) =
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(X, Y − h(X, Y )) we get the First Reduction on ξ2,3(t):

ξ(t) = ϕ(ξ2,3(ρ
−1(t))) = (t3, t7 + a8t8).

In this case, the dimension of �(�) is N = 1.
Notice that if we suppress the term a8t8 in ξ(t) we do not have the analytic

class of (t3, t7 + t8) that is distinct from the analytic class of (t3, t7), because these
parametrizations are not A-equivalent, as we verify in the sequel.

In fact, if ξ1 = (t3, t7 + t8) and ξ0 = (t3, t7) were A-equivalent then by
Corollary 1.2.4 there would exist p(X, Y ) ∈ 〈X2, Y 〉 and q(X, Y ) ∈ 〈X, Y 〉2 that
give us automorphisms ρ(t) and ϕ(X, Y ) such that

ξ0(t) = (t3, t7) = ϕ(ξ1(ρ
−1(t)) = (t3, t7 + t8) + (0, θ(ρ−1(t))), (1.13)

with

θ(t) = q(ξ1(t)) − 7t6 + 8t7

3t2
p(ξ1(t)) −

∑
i∈{7,8}

t i
∞∑

l=2

( i
3

l

)(
p(ξ1(t))

t3

)l

.

Equality (1.13) implies that ordt (θ(t)) = ord( θ(ρ−1(t))) = 8. As p(X, Y ) ∈
〈X2, Y 〉 we have ordt (p(ξ1(t))) ≥ 6 and

ordt

⎛
⎝−7t6 + 8t7

3t2
p(ξ1(t)) −

∑
i∈{7,8}

t i
∞∑

l=2

( i
3

l

)(
p(ξ1(t))

t3

)l
⎞
⎠ ≥ 10.

On the other hand, we have q(X, Y ) = d X2 + s(X, Y ), that is, q(ξ1(t)) = dt6 +
s(ξ1(t)) with d ∈ C and ordt (s(ξ1(t))) ≥ 9.

So, Equality (1.13) is impossible, i.e., ξ0(t) and ξ1(t) represent branches in distinct
analytic classes.

We will show (see Proposition 1.4.5) that the dimension of the moduli space for
branches with semigroup � = 〈3, 7〉 is zero.

Notice that given (ai )i ∈ �(�), then (ζ j i ai )i , for j = 1, . . . , n, where ζ is a
primitive n-th root of unity, also belong to �(�) and the associated parametrizations
ξ j (t) = (tn, y(ζ j t)) define the same branch. This is not the whole equivalence class
of (ai )i with respect to the equivalence relation ∼ induced by G on �(�), but only
part of it. The equivalence classes with respect to the relation∼ are not well behaved
enough to produce a good quotient �(�)/ ∼. So, the strategy adopted by Zariski
was to stratify further his parameter space analogous to our �(�) by means of
some analytic invariant. The invariant adopted by Zariski was what he called the
λ-invariant, which we discuss in Sect. 1.2.3.

Several analytic invariants were considered in the literature: Tjurina numbers,
Zariski λ-invariant and many others. The invariant we will use in Sect. 1.3, for the
solution of Zariski’s problem, is the set of values of Kähler differentials for being a
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more complete invariant. This invariant was partially considered by Zariski and we
will introduce it in the next subsection.

1.2.2 Kähler Differentials

Let C f be a plane branch, we define the O( f )-module of Kähler differentials as
being2

�( f ) = O( f ) ⊕ O( f )

( fx , fy)O( f )
,

where fx and fy are respectively the images of fX and fY in O( f ).
If we denote by dx and dy the images of e1 = (1, 0) and e2 = (0, 1) in �( f ),

respectively, it follows that dx and dy are generators of �( f ) as an O( f )-module,
which is not free, since one has the relation fx dx + fydy = 0.

For g ∈ O( f ), let us define

dg = gx dx + gydy ∈ �( f ).

We will say that ω ∈ �( f ) is an exact differential if there exists g ∈ O( f ) such
that ω = dg. The set of exact differentials will be denoted by dO( f ).

An important invariant ofC f related toKähler differentials is the Tjurina number,
defined as

τ( f ) = dimC

O
〈 f, fX , fY 〉 = dimC

O( f )

J ( f )
,

where J ( f ) is the ideal 〈 fx , fy〉 in O( f ).
One has that τ( f ) < ∞, because otherwise f would have a common factor with

fX and fY , since f is irreducible, this common factor would be f , which is not
possible.

The Tjurina number of C f is an analytic invariant. Indeed, if g = u f , where
u ∈ O∗, then gX = u X f + u fX and gY = uY f + u fY . So,

〈g, gX , gY 〉 = 〈u f, u X f + u fX , uY f + u fY 〉 = 〈u f, u fX , u fY 〉 = 〈 f, fX , fY 〉,

showing that τ(u f ) = τ( f ). Also, if g = f ◦ ϕ, where ϕ = (ϕ1, ϕ2) is an automor-
phism of (C2, 0), then by the chain rule

(
gX

gY

)
=

(
(ϕ1)X (ϕ2)X

(ϕ1)Y (ϕ2)Y

)(
fX ◦ ϕ

fY ◦ ϕ

)
, with

(
(ϕ1)X (ϕ2)X

(ϕ1)Y (ϕ2)Y

)
invertible.

This implies that

2 This module is denoted by Zariski in [23] by OdO.
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〈g, gX , gY 〉 = 〈 f ◦ ϕ, fX ◦ ϕ, fY ◦ ϕ〉,

showing that τ( f ◦ ϕ) = τ( f ).

Lemma 1.2.12 τ( f ) = 0 if and only if C f is nonsingular.

Proof We have that τ( f ) = 0 if and only if 〈 f, fX , fY 〉 = O. This is so, if and only
if one of the three generators is a unit. Since f ∈ M, this is equivalent to either fX

or fY is a unit, which is equivalent to mult( f ) = 1. �

Let us denote by T ( f ) the torsion submodule of �( f ) and by �(M) the length
of a module M . Concerning the torsion module T ( f ), one has the following result:

Proposition 1.2.13 Let T ( f ) be the torsion submodule of �( f ), then

�(T ( f )) = τ( f ).

Proof See [25, Theorem 1]. �

This result, together with Lemma 1.2.12, yield immediately the following:

Corollary 1.2.14 �( f ) is torsion free if and only if C f is nonsingular.

Another remarkable number attached f ∈ O is the Milnor number defined as

μ( f ) = dimC

O
〈 fX , fY 〉 .

Since μ( f ) = ∞ if, and only if, fX and fY have a common factor, this number
is finite for irreducible f .

It is not evident at all that μ( f ) is an analytic invariant. It is clearly invariant by
composition of f with automorphisms of (C2, 0), but it is not clear that it is invariant
by multiplication of f by units in O. Indeed, the following result will give us more:
μ( f ) is a topological invariant!

Theorem 1.2.15 For irreducible f ∈ M one has that μ( f ) = c, where c is the
conductor of �( f ).

Proof See [11, Theorem 7.18]. �

From the definitions it follows readily that

�(T ( f )) = τ( f ) ≤ μ( f ) = c.

The equality in the above inequality was treated by Zariski and is the content of
the following result:

Theorem 1.2.16 Let C f be a branch. Then one has that μ( f ) = τ( f ) if, and only
if, f ∼ Y n − Xm, where n, m ∈ N, with GCD(n, m) = 1.
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Proof See [25, Theorem 1]. �

Due to the inequality �(T ( f )) ≤ c, the curves described in the above theorem
are called curves with maximal torsion, that is, those for which �(T ( f )) = c. These
curves are the most special ones, curves for which μ( f ) − τ( f ) ≤ 2 were classified
in [3] and will be revisited later.

Given a primitive parametrization ξ(t) = (x(t), y(t)) of C f , we may consider the
O( f ) � C{ξ(t)}-modules homomorphism

� : �( f ) → C{t}
gdx + hdy �→ [g(ξ(t))x ′(t) + h(ξ(t))y′(t)]t, (1.14)

where x ′(t) and y′(t) denote the derivatives of x(t) and y(t) with respect to t . We
will denote by ψ the monomorphism O( f ) → C{t}, g �→ g(ξ(t)).

Proposition 1.2.17 One has that ker� = T ( f ).

Proof Letω ∈ T ( f ), then there exists an element 0 
= p ∈ O( f ) such that pω = 0.
Now,

0 = �(pω) = ψ(p)�(ω),

and since ψ(p) 
= 0 and C{t} is a domain, it follows that �(ω) = 0.
Conversely, suppose that 0 
= ω = gdx + hdy ∈ �( f ) is such that

�(ω) = [g(ξ(t))x ′(t) + h(ξ(t))y′(t)]t = 0.

On the other hand, from the relation fx dx + fydy = 0, we have

fx (ξ(t))x ′(t) + fy(ξ(t))y′(t) = 0.

This shows that the system of linear equation over C((t))

{
g(ξ(t))Z + h(ξ(t))W = 0
fx (ξ(t))Z + fy(ξ(t))W = 0

has a nontrivial solution Z = x ′(t), W = y′(t), which implies that

0 = det

[
g(ξ(t)) h(ξ(t))
fx (ξ(t)) fy(ξ(t))

]
= g(ξ(t)) fY (ξ(t)) − h(ξ(t)) fX (ξ(t)).

In this way, one has the relation fy g − h fx = 0 inO( f ) and the relation fx dx +
fydy = 0 in �( f ). Hence,

fyω = fy(gdx + hdy) = fy gdx − h fx dx = ( fy g − h fx )dx = 0,

which shows that ω ∈ T ( f ). �
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The above theorem allows us to view, through the homomorphism �, the O( f )-
module �( f )/T ( f ) as a submodule of C((t)). In view of this, we may define, for
ω ∈ �( f )/T ( f ) \ {0},

v(ω) = ordt (�(ω)).

Notice that given a non unit g ∈ O( f ), then

v(dg) = v(gx dx + gydy) = ordt ([gx(ξ(t))x ′(t) + gy(ξ(t))y′(t)]t)
= ordt (g(ξ(t))′) + 1 = ordt (g(ξ(t)) = v(g).

Let us define the set of values of differentials as

�( f ) = v (�( f )/T ( f )) ⊂ N ∪ {∞}.

Then we have that

�( f ) \ {0} ⊂ �( f ), and �( f ) + �( f ) ⊂ �( f ),

where the first inclusion follows from the equality v(dg) = v(g), for all non invertible
g ∈ O( f ), and the second, because v(gω) = v(g) + v(ω), for all g ∈ O( f ) and
ω ∈ �( f ).

Because of the above second inclusion, one has that c + min(�( f )) + N ⊂ �( f ).
The smallest natural number d such that d + N ⊂ �( f )will be called the conductor
of �( f ).

The sets �( f ) will play a central role in our treatment of analytic classification
of plane branches. To begin with, we show that they are analytic invariants. To see
this, we will give another description of the O( f )-module �( f )/T ( f ).

Let us recall (cf. [11, Corollary 7.16]) that, for an irreducible Weierstrass poly-
nomial f ∈ C{X}[Y ], one has I( f, fY ) = n + c − 1, where n = I( f, X) and c is the
conductor of �( f ). Consider now ξ(t) = (x(t), y(t)) a primitive parametrization of
C f and let

ζ(t) = − t x ′(t)
fy(ξ(t))

∈ C((t)),

hence ordt (ζ(t)) = 1 + n − 1 − (n + c − 1) = −c + 1.
Consider now the O( f )-module homomorphism multiplication by ζ(t):

mζ : O( f ) → C((t))
g �→ ζ(t) · g(ξ(t)).

We have the following result:

Proposition 1.2.18 The map mζ is injective and mζ (J ( f )) = �(�( f )).

Proof The map mζ is injective, because the map O( f ) → C{t} is injective and
ζ(t) 
= 0. Notice that any element of h ∈ J ( f ) may be written as h = g2 fx − g1 fy ,
so
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mζ (h) = − t x ′(t)
fy(ξ(t))

(g2(ξ(t)) fx(ξ(t)) − g1(ξ(t)) fy(ξ(t))

= t (g1(ξ(t))x ′(t) + g2(ξ(t))y′(t))
= �(g1dx + g2dy) ∈ �(�( f )),

where the second equality follows from fx (ξ(t))x ′(t) + fy(ξ(t))y′(t) = 0.
Conversely, let �(g1dx + g2dy) ∈ �(�( f )), then

�(g1dx + g2dy) = t (g1(ξ(t))x ′(t) + g2(ξ(t))y′(t))

= t (g1(ξ(t))x ′(t) − g2(ξ(t))
fx(ξ(t))

fy(ξ(t))
x ′(t))

= − t x ′(t)
fy(ξ(t))

(g2(ξ(t)) fx(ξ(t)) − g1(ξ(t)) fy(ξ(t)))

= mζ (g2 fx − g1 fy) ∈ mζ (J ( f )),

concluding our proof. �

Since �(�( f )) � �( f )/T ( f ), it follows that we have an O( f )-modules iso-
morphism �( f )/T ( f ) � J ( f ), in such a way that

�( f ) = v(J ( f )) + v(ζ ) = v(J ( f )) − c + 1. (1.15)

From this, and the discussion on Tjurina’s number done just before Lemma 1.2.12
one has that �( f ) is an analytic invariant.

The analytic invariant μ( f ) − τ( f ) will be described in the following result.

Proposition 1.2.19 We have that �(�( f ) \ �( f )) = μ( f ) − τ( f ).

Proof Let ξ(t) = (x(t), y(t)) be a primitive parametrization of C f . Since O( f ) �
Rξ = C{x(t), y(t)} and

J ( f ) � S := {h(ξ(t)), h ∈ 〈 f, fX , fY 〉C{X, Y }}

are C-vector subspaces of finite codimension in C{t}, it follows that

τ( f ) = dimC

(
O( f )

J ( f )

)

= �
[{ordt (q); q ∈ Rξ } \ {ordt (q); q ∈ S}] .

Since {ordt (q); q ∈ Rξ } = �( f ), from (1.15) we get

τ( f ) = �[�( f ) \ {l + c − 1; l ∈ �( f )}]
= c

2 + �[{l + c − 1; l ∈ N
∗ \ �( f )}]

= c − �(�( f ) \ �( f )).

Now, we conclude the proof by using Theorem 1.2.15. �
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As a consequence we get the following result.

Corollary 1.2.20 Let C f be a branch. The following statements are equivalent:

(i) f ∼ Y n − Xm with GC D(n, m) = 1;
(ii) μ( f ) = τ( f );

(iii) �( f ) = �( f ) \ {0}.
Proof This follows from Theorem 1.2.16 and the previous result. �

Example 1.2.21 Let ξ(t) = (t3, t10 + at11 + bt14) be a primitive Puiseux
parametrization of a plane curve C f with a 
= 0.

Remark that n = v0 = 3, m = v1 = β1 = 10, that is, �( f ) = 〈3, 10〉 and ξ(t) is
expressed as (1.12).

The conductor of �( f ) is c = 18 (see (1.8)) and its gaps are the elements of the
set {1, 2, 4, 5, 7, 8, 11, 14, 17}.

Considering ω1 = 3xdy − 10ydx ∈ �( f ) we get

v(ω1) = ordt (�(ω1)) = 14 and v(xω1) = ordt (�(xω1)) = 17.

In this way, as �( f ) \ {0} ⊆ �( f ) we have

D : = {3, 6, 9, 10, 12 + i; i ∈ N} ⊆ �( f ).

We claim that the above inclusion is an equality.
Indeed, given γ ∈ �( f ), by definition of �( f ), there exists ω = gdx + hdy in

�( f ) such that γ = v(ω).
If v(gdx) 
= v(hdy) then γ = min{v(gdx), v(hdy)} ∈ �( f ) \ {0} ⊂ D.
If v(gdx) = v(hdy) then we must have v(h) ≥ 3, v(g) ≥ 10 and in this way

γ = v(ω) ≥ min{v(gdx), v(hdy)} ≥ 13 and, consequently, γ ∈ D.
In conclusion, �( f ) = {3, 6, 9, 10, 12 + i; i ∈ N}.
In [13] we described algorithms to compute all possible sets �( f ) for f varying

in a fixed equisingularity class.

1.2.3 The Zariski Invariant

For not being able to realize the analytic classification in the parameter space of
short parametrizations, Zariski tried to stratify it by means of an analytic invariant
that he denoted by λ and we call the Zariski invariant. Since this is not a topological
invariant, equisingular branches may have distinct λ-invariants (see Example 1.2.23
below), but for a fixed value of λ, branches that share this common λ-invariant may
admit further elimination of parameters.
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Let C be a plane branch with semigroup of values � = 〈n, m, v2, . . . , vg〉, with
n > 3, or n = 3 and m > 6, and admitting a primitive Puiseux parametrization
(tn,

∑∞
i≥n ai t i ). Let us define the Zariski λ-invariant as

λ = min{i ∈ N; i + n /∈ � and ai 
= 0}.

Then from Theorem 1.2.7, there exists an analytically equivalent branch toC with
a primitive Puiseux parametrization of the form

ξ(t) =
⎛
⎜⎝tn, tm + bλtλ +

c−1−n∑
i>λ

i /∈�−n

ai t
i

⎞
⎟⎠ , (1.16)

where bλ 
= 0 and c is the conductor of �.
We have the following result:

Proposition 1.2.22 Let C f be a plane branch with a parametrization of the form
(1.16), with λ + n /∈�( f ) and bλ 
= 0. Let ω1 = mydx − nxdy∈�( f ), then v(ω1) =
λ + n = min(�( f ) \ �( f )). For any differential ω ∈ �( f ) such that v(ω) /∈ �( f )

and v(ω) > v(ω1), one has v(ω) ≥ v(ω1) + n.

Proof See [24, Lemma 4.2, p. 50]. �

It follows readily from Proposition 1.2.22 that λ = λ( f ) is an analytic invariant,
since �( f ) and �( f ) are so.

The following example will show that λ is not a topological invariant, in the sense
that it may vary in a given equisingularity class of branches.

Example 1.2.23 Let � = 〈3, 10〉, then c = 18. Since 11 + 3 /∈ � and 14 + 3 /∈ �,
it follows that (t3, t10 + t11) and (t3, t10 + t14) represent two equisingular branches
with λ = 11 and λ = 14, respectively.

Observe that if ξ(t) = (t v0 , t v1 + ∑
ai t i ) is a parametrization ofC f as (1.12), then

the Zariski λ-invariant is given byλ( f ) = min{i; ai 
= 0}. In particular, if g ≥ 2 then
λ( f ) ≤ β2.

Notice that �( f ) and �( f ) determine τ( f ) and λ( f ), but there are no relation
between the last two invariants, as one may check in the following example.

Example 1.2.24 Consider the following primitive parametrizationswith semigroup
� = 〈5, 11〉:

ξ1 = (t5, t11 + t12), ξ2 = (t5, t11 + t12 − 1
3 t14),

ξ3 = (t5, t11 + t14), ξ4 = (t5, t11 + t12 + 22
23 t13 + 136

121 t14).

Denoting by λi : = λ( fi ), τi : = τ( fi ) and �i : = �( fi ), where fi ∈ O deter-
mines a branch with parametrization ξi , i = 1, 2, 3, 4, one has
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λ1 = 12, τ1 = 34, �1 \ � = {17, 23, 28, 29, 34, 39};
λ2 = 12, τ2 = 35, �2 \ � = {17, 23, 28, 34, 39};
λ3 = 14, τ3 = 35, �3 \ � = {19, 24, 29, 34, 39};
λ4 = 12, τ4 = 35, �4 \ � = {17, 28, 29, 34, 39},

where these numbers were calculated by means of the algorithms in [15].

For equisingular branches that share the same Zariski λ-invariant, there is an
additional reduction process. This reduction was considered by Zariski in [23] and
[25] in his study of branches with semigroup 〈n, m〉. However, we will extend the
result for branches with an arbitrary semigroup of values.

Theorem 1.2.25 Let ξ(t) = (tn, tm + aλtλ + ∑
i>λ ai t i ) be a primitive Puiseux

parametrization of a branch C with semigroup of values � = 〈v0, . . . , vg〉, where
n = v0, m = v1 and λ = min{i; i + n /∈ � and ai 
= 0} its Zariski invariant. If
j > λ and j ∈ � + λ, then C is analytically equivalent to a branch parametrized by
(tn, tm + aλtλ + ∑

i>λ a′
i t

i ) with a′
i = ai for i < j , and a′

j = 0.

Proof Initially, we will consider the case g = 1 or 0 < j − λ < v2. In this case, we
have that j = αn + βm + λ with α 
= 0 or β 
= 0.

Let us define ϕ ∈ Aut(C2, 0) and ρ ∈ Aut(C, 0) as in Proposition 1.2.3, putting
ε = 1,

p = aXα+1Y β ∈ 〈X2, Y 〉, where a = na j

(λ−m)aλ
,

q = ∑[
λ−m

αn+βm

]
+1

k=1

( m
n
k

)
ak XkαY kβ+1 ∈ 〈X, Y 〉2.

(1.17)

FromCorollary 1.2.4, we have ϕ(ξ(ρ−1(t))) = ξ(t) + (0, θ(ρ−1(t))), where θ(t)
is as defined there, having θ(ρ−1(t)) and θ(t) same initial terms.

Since

q(ξ(t)) =

[
λ−m

αn+βm

]
+1∑

k=1

(m
n

k

)
aktkαn+m(β+1) + aaλ(1 + β)m

n
t j + hot,

where here, and in the rest of the proof, hot means elements in M j+1
1 , and

y′(t)
ntn−1

p(ξ(t)) + ∑
i≥m ai t i

∑∞
k=2

( i
n
k

) ( p(ξ(t))

tn

)k

=

∑[
λ−m

αn+βm

]
+1

k=1

( m
n
k

)
aktkαn+m(β+1) + aaλ(λ + βm)

n
t j + hot,

we have that

θ(t) = −aaλ(λ − m)

n
t j + hot = −a j t

j + hot.
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Now, because θ(ρ−1(t)) and θ(t) have same initial terms, the result follows.
Let us now suppose that j − λ ≥ v2. In this case, there exists some h ∈ 〈X, Y 〉2

such that v(h) = j − λ.
We define ϕ and ρ as in Proposition 1.2.3, with p = aXh, q = m

n aY h and ε = 1,
where a is a complex number, and then we apply Corollary 1.2.4.

With our choices of p, q and ε, we have

q(ξ(t)) − y′(t)
ntn−1

p(ξ(t)) = �(hω1)

ntn
,

where� is the homomorphismdefined in (1.14), andω1 = mydx − nxdy, as defined
in Proposition 1.2.22. In this way we get

v(q(ξ(t)) − y′(t)
ntn−1

p(ξ(t))) = j ≤ β2 + v(h) < m + 2v(h)

= v

(∑
i≥m ai t i

∑∞
k=2

( i
n
k

) ( p(ξ(t))
tn

)k
)

.

Consequently, v(θ(ρ−1(t))) = v(θ(t)) = j ; and by choosing conveniently the value
of a, we may conclude the proof. �

The above theorem allows us to formulate one additional reduction process for
equisingular branches with a given λ-invariant.

Fourth Reduction: Let ξ(t) = (tn, tm + aλtλ + ∑
i>λ ai t i ) be a primitive Puiseux

parametrization of C f with semigroup �( f ) and Zariski invariant λ. If s > λ and
s − λ ∈ �( f ), there exists a branch analytically equivalent to C f parametrized by
(tn, tm + aλtλ + ∑

i>λ a′
i t

i )) such that a′
i = ai for i < s and a′

s = 0.

Notice that if we apply the four reductions to a primitive Puiseux parametriza-
tion of a branch with a semigroup � and Zariski invariant λ, we obtain a primitive
parametrization ξ1(t) = (tn, tm + atλ + ∑

i /∈�−n
i /∈�+λ

ai t i ), where a 
= 0 and the parame-
ters ai respecting the necessary conditions to preserve the semigroup. Moreover, if
we consider ρ−1(t) = a− 1

λ−m t and ϕ(X, Y ) = (a
n

λ−m X, a
m

λ−m Y ) we have

ξ(t) = ϕ(ξ1(ρ
−1(t))) =

(
tn, tm + tλ +

∑
i /∈�−n
i /∈�+λ

a′
i t

i

)
, with a′

i = ai a
− i

λ−m . (1.18)

The above changes of parameter and coordinates show that in the analytic class
of a branch given by a primitive Puiseux parametrization (tn,

∑
i≥m ai t i ), where

m > n, the coefficients am and aλ may be chosen arbitrarily in C
∗. The choice of

am = aλ = 1 represents a canonical normalization.

Example 1.2.26 Let ξ(t) = (t3, t10 + at11 + bt14), with a 
= 0, be a primitive
Puiseux parametrization of a plane curve C f , as considered in Example 1.2.21, that
admits �( f ) = 〈3, 10〉 with conductor c = 18 and Zariski invariant λ = 11.
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Since 14 − λ = 3 ∈ �( f ), we may apply the Fourth Reduction.
Following the instructions in Theorem 1.2.25, we consider ϕ ∈ Aut(C2, 0) and

ρ ∈ Aut(C, 0) as in Proposition 1.2.3, putting

ε = 1, p = 3b

a
X2 and q = 10b

a
XY.

From Corollary 1.2.4, we have ξ1(t) = ϕ(ξ(ρ−1(t))) = ξ(t) + (0, θ(ρ−1(t))),
where θ(t) is as (1.10) with θ(ρ−1(t)) and θ(t) having the same initial term.

Since θ(t) = −bt14 + r(t) with r(t) ∈ M16
1 we get ξ1(t) = (t3, t10 + at11 +

s(t)) with s(t) ∈ M15
1 .

Now, as i ∈ �( f ) − 3 for i ≥ 15, applying the Third and First Reductions, it
follows that ξ1(t) isA-equivalent to ξ2(t) = (t3, t10 + at11). In addition, considering
ρ−1(t) = a−1t and ϕ(X, Y ) = (a3X, a10Y ) we get

ϕ(ξ2(ρ
−1(t))) = (t3, t10 + t11).

So, ξ(t) is A-equivalent to (t3, t10 + t11).

From the discussion above Example 1.2.26, we have two distinct situations;
namely,

(i) �( f ) \ �( f ) = ∅. Then C f is analytically equivalent to a branch with a
parametrization ξ(t) = (tn, tm), with GCD(n, m) = 1, or

(ii) �( f ) \ �( f ) 
= ∅. Then C f is analytically equivalent to a branch with a
parametrization ξ(t) as in (1.18).

Till now, we have followed the strategy proposed by Zariski in [23], in which
one performs a succession of reductions with growing complexity level. Zariski
recognized that this problem was at that stage very difficult, and concentrated his
efforts on explicit calculations in some particular cases. At the end of the introduction
of his lecture notes, Zariski expresses his hope on the subject:

Nous espérons que ce cours stimulera de nouveaux travaux sur le sujet. Un des prob-
lèmes que nous recommandons au lecteur est celui-ci de l’identification de l’espace
des modules avec un constructible d’une variété V .

So, to proceed successfully with Zariski’s program, we are going from now on
to adopt a new strategy that will allow us to obtain reductions without necessarily
exhibiting explicitly the changes of parameter and of coordinates involved. This will
be done by using techniques from Singularity Theory, which we introduce in the
next section.

1.3 Singularity Theory Approach

Up to this point, we converted the classification problem of branches in an equisin-
gularity class determined by a semigroup of values � to the study of an equivalence
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relation ∼ on the set of parameters �(�) representing Puiseux parametrizations of
such branches. Although this set has the good geometric structure of a principal open
Zariski set in a finite dimensional affine space, hence itself a smooth affine variety,
the trouble is that the equivalence relation ∼, induced by automorphisms ϕ and ρ as
in Proposition 1.2.3, is not given by a group action, since, in this case, the change of
parameters ρ is tailored by the specific parametrization on which it acts.

To apply techniques from Singularity Theory, one has to work with a geometric
group acting on a geometric space. So, to put ourselves in this framework, we are
going to relax the assumption that branches are represented by primitive Puiseux
parametrizations, and go back to parametrizations in general as elements in � =
M1 × M1, under the action of the groupA = Aut(C2, 0) × Aut(C, 0), defined by

(ϕ, ρ) · ξ(t) = (ϕ ◦ ξ ◦ ρ−1)(t).

The elimination criteria of parameters, we are looking for, in a given
ξ(t) = (x(t), y(t)) ∈ �, where x(t) = ∑∞

i=1 ai t i and y(t) = ∑∞
i=1 bi t i , keeping

A-equivalence, may be summarized as follows.
To verify if a term (aktk, bktk) of order k in ξ(t) is eliminable, one has to show

that there is an element ξ1(t) ∈ � which is A-equivalent to ξ(t) and such that

j k−1ξ(t) = j k−1ξ1(t) = j kξ1(t).

1.3.1 The Complete Transversal Theorem

At this point Singularity Theory comes into the scene through the following funda-
mental tool:

Theorem 1.3.1 (Mather’s Lemma) Let G be a Lie group acting on a smooth man-
ifold M and let Tm M be the tangent space of M at a point m of M. A connected
smooth submanifold W of M is contained in a single orbit of G if, and only if, the
following conditions are fulfilled:

(i) TwW ⊆ TwG(w) for all w ∈ W ;

(ii) dim TwG(w) is constant for w ∈ W .

Proof See Lemma 3.1 in [19]. �

The following is a simple, but important, consequence of Mather’s Lemma that
appeared in [7, Proposition 1.3] and will be of our direct interest.

Corollary 1.3.2 (The Complete Transversal Theorem) Let G be a Lie group acting
on an affine space A with underlying vector space V and W ⊆ V a subspace. If for
a ∈ A we have

(i) W ⊆ TaG(a);
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(ii) Ta+wG(a + w) = TaG(a) for all w ∈ W ,

then a + W ⊆ G(a).

Proof Obviously, a + W ⊆ A is a connected submanifold of the affine space A.
Since W is a subspace of V we have

Ta+w(a + W ) = W ⊆ TaG(a) = Ta+wG(a + w), ∀w ∈ W.

In this way, a + W satisfies the hypothesis of Mather’s Lemma, hence a + W is
contained in a single orbit. More precisely, a + W ⊆ G(a). �

The crucial fact is that under the conclusion that a + W ⊆ G(a) of the Com-
plete Transversal Theorem, we may choose an element w ∈ W such that a + w is
G-equivalent to a. This gives a glimpse on the enormous potential of this result
in obtaining new elimination criteria of coefficients in parametrizations, keeping
unchanged the analytic type of the branches they represent.

Let us now outline the strategy we will follow to attack the problem of analytic
classification of branches in which we make use of what observed above.

Let n > 1 be an integer and let us define

�n = {ξ(t) ∈ M1 × M1; j nξ(t) = (tn, 0)}.

Notice that every branch C of multiplicity n is equivalent to a branch with
parametrization in �n , since this is equivalent to choose coordinates in such a way
that the line Y = 0 is the tangent line to the branch and then normalize the coefficient
of tn in x(t).

The largest subgroup of A that acts on this set is

Ã = {(ϕ, ρ) ∈ A; j1(ρ(t)) = αt, j1(ϕ(X, Y )) = (αn X + bY, dY ).

This is so, because any other (ϕ, ρ) acting on an element ξ(t) in �n will affect its
first jet.

We highlight the following subgroups of the group Ã:

H = {(ϕ, ρ) ∈ Ã; ρ(t) = αt, and ϕ(X, Y ) = (αn X, dY ), αd 
= 0}, and

Ã1 = {(ϕ, ρ) ∈ Ã; j1(ρ) = t and j1(ϕ) = (X + bY, Y )}.

Although the elements in Ã1 and H do not commute, every element in Ã can be
written as a composition of an element of each subgroup.

The action of the groupH, called the Homothety group, on a parametrization ξ(t)
does not introduce nor eliminate terms, hence we will initially focus on the group Ã1

that may allow elimination of terms. Observe that the reductions presented in Sect.
1.2 were obtained only with the action of Ã1.
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To make use of the Complete Transversal Theorem (CTT), we need a Lie group
G acting on a finite dimensional affine space A and identify which subspace W of
the underlying vector space V of A we will consider.

For given k > n, we will consider the affine spaces

A = �k
n = j k�n,

with underlying vector space V = j k(Mn+1
1 × Mn+1

1 ). The groups under consider-
ation are the algebraic affine groups G = Ãk

1, with operation defined by

( j kϕ1, j kρ1) · ( j kϕ2, j kρ2) = j k( j kϕ1 ◦ j kϕ2, j kρ1 ◦ j kρ2),

acting on A as follows:

( j kϕ, j kρ) · j kξ(t) = j k( j kϕ ◦ j kξ ◦ j kρ−1)(t),

which is consistent, since j kρ−1(t) depends only on the coefficients of j kρ(t).

Remark 1.3.3 Because of the compatibility of the formation of jets with composi-
tions, we have that the above definitions could be rephrased as follows:

( j kϕ1, j kρ1) · ( j kϕ2, j kρ2) = ( j kϕ1 ◦ ϕ2, j kρ1 ◦ ρ2),

and
( j kϕ, j kρ) · j kξ(t) = j k(ϕ ◦ ξ ◦ ρ−1)(t).

Notice also that the groups Ãk
1 are unipotent, since j k

(
(Id, Id) − (ϕ, ρ)

)k+1 = 0 for

all (ϕ, ρ) ∈ Ã1.

On the other hand, the subspace W we consider will be one of the following sets:
W k

10 = (t k, 0)C, W k
01 = (0, t k)C or W k

11 = (t k, 0)C + (0, t k)C.

Remark 1.3.4 Notice that in our context one has

g(ξ(t) + w) = g(ξ(t)) + w, ∀g ∈ Ãk
1, ∀ξ ∈ �k

n, and ∀w ∈ W k
10,

implying that Ãk
1(ξ(t) + w) = Ãk

1(ξ(t)) + w, for all ξ(t) ∈ �k
n and w ∈ W k

10, which
is stronger than condition (ii). We will show in Proposition 1.3.8 that condition (ii)
in the statement of CTT is satisfied in general for W = W k

11.

In conclusion, to apply CTT to our problem we have to characterize the tangent
space to orbits under the action of Ãk

1, so, let us put our hands to work.
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1.3.2 Tangent Spaces to Orbits

In what follows, we use the following notation:

L1 = {ϕ ∈ Aut(C2, 0); j1(φ) = (X + bY, Y ), where b ∈ C}, and

R1 = {ρ ∈ Aut(C, 0); j1(ρ) = t}.

So, Ã1 = L1 × R1. We will denote by G any of the groups L1,R1 or Ã1; we will
indicate by g and ξ(t) elements in Gk and �k

n , respectively.
By definition, the orbit Gk(ξ(t)) is the image of the map

ψξ : Gk → �k
n

g �→ ψξ(g) := g · ξ(t).

Given g1 ∈ Gk we have the commutative diagram:

Gk ψξ (t)−→ �k
n

Lg1 ↓ � ↓ L ′
g1

Gk ψξ (t)−→ �k
n

where Lg1(g) = j k(g1 ◦ g) and L ′
g1(ξ(t)) = j k(g1 · ξ(t)), for any g ∈ Gk and

ξ(t) ∈ �k
n .

Denoting by dp F the differential of a map F at a point p, we have, for any g ∈ Gk ,

(dLg1 (g)ψξ ) ◦ (dg Lg1) = (dψξ (g)L
′
g1) ◦ (dgψξ).

Since Lg1 and L ′
g1 are diffeomorphisms, taking g = g0, the identity of Gk , we

conclude that dg1(ψξ ) has the same rank for all g1 ∈ Gk and that the tangent space
to the orbit Gk(ξ) at ξ(t), is the image of

dg0ψξ : Tg0Gk → Tξ�
k
n,

that is,
Tξ(t)Gk(ξ(t)) = dg0ψξ(Tg0Gk). (1.19)

Recall that the tangent space Tg0Gk is the set of vectors v such that there exists a
germ of complex curve γ (u) in Gk with γ (0) = g0 and γ ′(0) = v.

Ifwewrite g0 = (e1, e2), where e1(X, Y ) = (X, Y ) and e2(t) = t are the identities
of L1 and R1, respectively, then
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Tξ(t)Ãk
1(ξ(t)) = dg0ψξ(Tg0Ãk

1)

= dg0ψξ(Te1Lk
1 × Te2Rk

1)

= dg0ψξ

(
(Te1Lk

1 × {e2}) ⊕ ({e1} × Te2Rk
1)
)

= dg0ψξ

(
Te1Lk

1 × {e2}
) + dg0ψξ

({e1} × Te2Rk
1

)
.

(1.20)

Now, since

Lk
1 = {(X, Y ) + j k(p, q); p ∈ 〈X2, Y 〉, q ∈ 〈X, Y 〉2}, and

Rk
1 = {t + j k(r); r ∈ 〈t〉2},

hence are affine spaces, it follows that

Te1Lk
1 = j k(〈X2, Y 〉) × j k(〈X, Y 〉2), and

Te2Rk
1 = j k(〈t〉2).

(1.21)

Proposition 1.3.5 With the above notation we have

dg0ψξ

(
Te1Lk

1 × {e2}
) = {

j k(p(ξ(t)), q(ξ(t))); p ∈ 〈X2, Y 〉, q ∈ 〈X, Y 〉2} .

Proof Considering the commutative diagram

Lk
1 × {e2} ψξ→ Lk

1(ξ(t))

π1 ↓ ↗ ψ1

Lk
1

Since, dg0ψξ = de1(ψ1) ◦ dg0π1 and dg0π1 is an isomorphism, we have

dg0ψξ

(
Te1Lk

1 × {e2}
) = de1ψ1

(
Te1Lk

1

)
.

Now, for v ∈ Te1Lk
1, consider the curve γ (u) = e1 + uv, u ∈ C, in Lk

1, hence we
obtain the curveψ1(γ (u)) = γ (u) · ξ(t) = (e1 + uv)(ξ(t)) in the orbitLk

1(ξ(t)). So,

de1ψ1(v) = ∂(e1 + uv)(ξ)

∂u
(0) = v(ξ(t)).

As v ∈ Te1Lk
1, from (1.21), we have v ∈ j k(〈X2, Y 〉) × j k(〈X, Y 〉2), hence

de1(ψ1)
(
Te1Lk

1

) = {
j k(p(ξ(t)), q(ξ(t))); p ∈ 〈X2, Y 〉, q ∈ 〈X, Y 〉2} ,

concluding our proof. �
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Similarly, one will describe dg0ψξ

({e1} × Te2Rk
1

)
in the next proposition.

Proposition 1.3.6 If ξ(t) = (x(t), y(t)) ∈ �k
n, then

dg0ψξ

({e1} × Te2Rk
1

) = {
j k(x ′(t)r, y′(t)r); r ∈ 〈t〉2} .

Proof Consider the natural commutative diagram

{e1} × Rk
1

ψξ→ Rk
1(ξ)

π2 ↓ ↗ ψ2

Rk
1

Sinceψξ = ψ2 ◦ π2, we obtain dg0ψξ = de2(ψ2) ◦ dg0π2. But, dg0π2 is an isomor-
phism and

dg0ψξ

({e1} × Te2Rk
1

) = de2(ψ2)
(
Te2Rk

1

)
.

To describe de2(ψ2)
(
Te2Rk

1

)
, let us consider the curve γ (u) = e2 + uv ∈ Rk

1,
where v ∈ Te2Rk

1. Thenψ2(γ (u)) = ξ(e2 + uv) is a curve in the orbitRk
1(ξ). Hence,

de2ψ2(v) = ∂ξ(e2 + uv)

∂u
(0) = de2ξ(e2)v.

As e2(t) = t and v ∈ Te2Rk
1 = j k

(〈t〉2), we obtain
dg0ψξ

({e1} × Te2Rk
1}
) = de2(ψ2)

(
Te2Rk

1

) = {
j k(x ′(t)r, y′(t)r); r ∈ 〈t2〉} ,

proving the result. �

From Propositions 1.3.6, 1.3.5 and (1.20), we finally obtain the following descrip-
tion of the tangent space of the orbit Ãk

1(ξ(t)) at ξ(t) ∈ �k
n .

Theorem 1.3.7 For ξ(t) ∈ �k
n, one has

Tξ Ãk
1(ξ(t)) =

{
j k(ξ ′(t)r + (p(ξ(t)), q(ξ(t)))), p ∈ 〈X2, Y 〉, q ∈ 〈X, Y 〉2, r ∈ 〈t〉2

}
,

where ξ ′(t) = (x ′(t), y′(t)).

Now, that we have the description of the tangent space of the orbit at a point, we
are in position to prove that Condition (ii) in Theorem 1.3.2 is verified for W = W k

1,1.

Proposition 1.3.8 Let ξ(t) = (x(t), y(t)) ∈ �k
n and let W = (t k, 0)C + (0, t k)C.

We have, for all k > n, that
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Tξ(t)+wÃk
1(ξ(t) + w) = Tξ(t)Ãk

1(ξ(t)), ∀w ∈ W.

Proof Initially we show that (t k, 0) ∈ Tξ(t)+wÃk
1(ξ(t) + w) for all w = (a1t k, a2t k)

∈ W . Indeed, putting r = t k/(x ′(t) + a1t k−1)we have that ordt (r) = k − (n − 1) ≥
2, hence r ∈ 〈t〉2. So, taking p = q = 0, Theorem 1.3.7 implies that

(t k, 0) = j k((x ′(t) + ka1t k−1)r, (y′(t) + ka2t k−1)r) ∈ Tξ(t)+wÃk
1(ξ(t) + w).

(1.22)
Given v ∈ Tξ(t)+wÃk

1(ξ(t) + w), where w = (a1t k, a2t k), by Theorem 1.3.7, there
exist p = bY + p1, p1, q ∈ 〈X, Y 〉2 and r ∈ 〈t〉2 such that

v = j k((x ′(t) + ka1t k−1)r + p(ξ(t) + w), (y′(t) + ka2t k−1)r + q(ξ(t) + w))

= j k(x ′(t)r + p(ξ(t) + w), y′(t)r + q(ξ(t) + w))

= j k(x ′(t)r + p(ξ(t)), y′(t)r + q(ξ(t))) + ba1(t k, 0).
(1.23)

As j k(x ′(t)r + p(ξ(t)), y′(t)r + q(ξ(t))) ∈ Tξ(t)Ãk
1(ξ(t)) and, by (1.22),

ba1(t k, 0) ∈ Tξ(t)Ãk
1(ξ(t)), we have that v ∈ Tξ(t)Ãk

1(ξ(t)); and consequently,
Tξ(t)+wÃk

1(ξ(t) + w) ⊆ Tξ(t)Ãk
1(ξ(t)).

On the other hand, if v = j k(x ′(t)r + p(ξ(t)), y′(t)r + q(ξ(t))) ∈ Tξ(t)Ãk
1(ξ(t)),

then, by (1.22) and (1.23),

v = j k((x ′(t) + ka1tk−1)r + p(ξ(t) + w), (y′(t) + ka2tk−1)r + q(ξ(t) + w)) − ba1(t
k , 0),

which belongs to Tξ(t)+wÃk
1(ξ(t) + w), finishing the proof. �

It will be convenient to highlight from what was done in this subsection the result
that follows.

Theorem 1.3.9 Let ξ(t) ∈ �n. If, for some integer k > n, (a1t k, a2t k) ∈ Tjkξ(t)

Ãk
1( j kξ(t)), then there is a parametrization ξ1(t) ∈ �n which is Ã1-equivalent to

ξ(t) and such that j kξ1(t) = j kξ(t) + (a1t k, a2t k).

Remark 1.3.10 Observe that Theorems 1.3.7 and 1.3.9 allow us to recover part of
the reductions of the previous section.

For example, given ξ0(t) ∈ �n with semigroup of values � = 〈n, m, . . . , vg〉,
taking r = 0, p = 0 and q ∈ 〈X, Y 〉2 with ordt q(ξ0(t)) = k ∈ � in Theorem 1.3.7,
we get (0, t k) ∈ Tjkξ0(t)Ãk

1( j kξ0(t)), for every k > n. In this way, ξ0(t) and ξ1(t) =
(tn, tm + ∑

i>m
i /∈�

bi t i ) determine analytically equivalent curves.

In the next subsection, we will connect the elements of the invariant� of a branch
parametrized by ξ(t) to the tangent spaces Tjkξ(t)Ãk

1( j kξ(t)).
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1.3.3 The Analytic Classification

For a given a branchC with semigroup� and set of values of differentials�, we know
that all terms of order in (� − n) ∪ (� \ {0} + λ) in a primitive Puiseux parametriza-
tion ξ(t) of C are eliminable (cf. Theorem 1.2.7 and the Fourth Reduction).
Now, since � \ {0} ⊆ �, λ + n = v(mydx − nxdy) ∈ � (cf. Proposition 1.2.22)
and � + � ⊂ �, it follows that

(� − n) ∪ (� + λ) ⊆ � − n.

In this subsection, by using Theorem 1.3.9, we will unify all the reductions so far
presented in a sole one that will allow us to discard all terms in a primitive Puiseux
parametrization with exponents in� − n \ {m, λ}where m = β1 and λ is the Zariski
invariant.

In the next result we will characterize the integers k > m such that (0, t k) ∈
Tjkξ(t)Ãk

1( j kξ(t)), which, in virtue of Theorem 1.3.9, is crucial for eliminating the
term of order k in ξ(t).

Proposition 1.3.11 Let ξ(t) = (tn, y(t)) ∈ �n be a parametrization of a branch
C f with �( f ) = 〈v0, v1, . . . , vg〉, where v0 = n and v1 = m. For k > m, (0, t k) ∈
Tjkξ(t)Ãk

1( j kξ(t)) if and only if k = v(ω) − n, where ω = qdx − pdy ∈ �( f ) with
p ∈ 〈X2, Y 〉, q ∈ 〈X, Y 〉2 and h stands for the image of h ∈ O in O( f ).

Proof By Theorem 1.3.7, (0, t k) ∈ Tjkξ(t)Ãk
1( j kξ(t)) if and only if there exist p ∈

〈X2, Y 〉, q ∈ 〈X, Y 〉2 and r ∈ 〈t〉2 such that

0 = j k(x ′(t)r + p(ξ(t))) and t k = j k(y′(t)r + q(ξ(t))). (1.24)

A solution for the first equation is r = − p(ξ(t))
x ′(t) + t k−n+2s, for some s ∈ O1. Replac-

ing this expression for r in the second equation, we get

t k = j k
(

q(ξ(t)) − p(ξ(t))y′(t)
x ′(t) + t k−n+2y′(t)s

)
= j k

(
q(ξ(t))x ′(t)−p(ξ(t))y′(t)

x ′(t)

)
= j k

(
�(qdx−pdy)

ntn

)
,

where � is as given in (1.14). Hence k = v(qdx − pdy) − n.
On the other hand, given w = qdx − pdy ∈ �( f ), where p ∈ 〈X2, Y 〉 and

q ∈ 〈X, Y 〉2; if we put k = v(ω) − n, then r = − p(ξ(t))
x ′(t) solves the system (1.24),

completing the proof of the proposition. �

Using Proposition 1.3.11, Theorem 1.3.9 and the next lemma, we will recover
below the Third Reduction.

Lemma 1.3.12 Let C f be a branch. If k ∈ �( f ) − n and k > m, then there exists
ω = qdx − pdy ∈ �( f ), with p ∈ 〈X2, Y 〉 and q ∈ 〈X, Y 〉2, such that k = v(ω) −
n.
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Proof In fact, let k be such that m < k = γ − n, with γ ∈ �( f ). Considering { f0 =
Y, . . . , fg} a complete system of semiroots of f , by Corollary 1.1.35, there exists h =
Xα0Y α1 f α2

1 · · · · · f
αg

g−1 with α0 ≥ 0, 0 ≤ αi < ni , for i = 1, . . . , g, such that v(h) =
γ . Observe that for each j = 0, . . . , g, one has that f j ∈ C{X}[Y ] is a Weierstrass
polynomial of degree n

e j
= n0 · · · · n j that coincides to its multiplicity.

If there exists an index j > 1 such that α j > 0, then considering dh = hx dx +
hydy, we have that k = v(dh) − n with hX ∈ 〈X, Y 〉2 and hY ∈ 〈X2, Y 〉.

On the other hand, if for all j > 1, one has α j = 0, put h = Xα0Y α1 . Since v(h) =
γ = k + n > m + n, one of the following three possibilities occurs: α1 ≥ 2; α1 = 1
and α0 ≥ 2; or α1 = 0 and α0 >

[
m
n

] + 1 > 2. In any case, dh = hx dx + hydy is
such that hX ∈ 〈X, Y 〉2 and hY ∈ 〈X2, Y 〉. �

In this way, by Proposition 1.3.11 and Theorem 1.3.9 we obtain, again, by another
method, that C f is analytically equivalent to a branch defined by a parametrization
as in Theorem 1.2.7.

Moreover, if ai = 0 for all i /∈ � − n then the corresponding parametrization is
ξ(t) = (tn, tm). Otherwise, we have that λ = min{i; ai 
= 0} and we recover the
parametrization

ξ(t) =
(

tn, tm + aλtλ +
∑

i>λ

i /∈�−n

ai t
i

)
,

that will be considered in the sequel.

Proposition 1.3.13 Let ξ(t) be a parametrization of a branch C f as above. If δ >

λ + n and δ ∈ �( f ) \ �( f ), then δ = v(qdx − pdy), where q ∈ 〈X, Y 〉2 and p ∈
〈X2, Y 〉.
Proof Let ω = qdx − pdy be such that v(ω) = δ /∈ �( f ). Then we must have
p, q ∈ 〈X, Y 〉 and δ = v(ω) > v(qdx) = v(pdy).

Suppose that p = αX + p1, with p1 ∈ 〈X2, Y 〉 and α 
= 0. Hence, v(p) = n
which implies, in view of the equality v(qdx) = v(pdy), that v(q) = m; that is,
q = βY + q1, with β 
= 0 and q1 ∈ 〈X, Y 〉2.

The inequality v(ω) > v(qdx) = v(pdy) imposes that α = n and β = m. In this
way, ω = ω1 + q1dx − p1dy, where ω1 = mydx − nxdy. Notice that, by hypothe-
sis we do not have v(ω) = v(ω1) = λ + n nor v(ω) = v(q1dx − p1dy) < v(ω1) =
λ + n. So, we must have λ + n = v(ω1) = v(q1dx − p1dy) with q1dx − p1dy ∈
�( f ) satisfying the conditions in Proposition 1.3.11. Hence, (0, tλ) ∈ Tjλξ(t)

Ãλ
1( jλξ(t)) and consequently, by Theorem 1.3.9, there would exist a primitive

parametrization defining a branch analytically equivalent to C f with distinct (or
without) Zariski invariant λ, a contradiction. Hencewemust have p = p1 ∈ 〈X2, Y 〉.

Now, suppose that q /∈ 〈X, Y 〉2. As v(q) + n = v(p) + m, we must have q =
βY + q1 with β 
= 0 and q1 ∈ 〈X, Y 〉2. As v(y) 
= v(q1), we have that v(p) +
m = v(q) + n ≤ m + n, that is, v(p) ≤ n, a contradiction. Therefore, we have
q ∈ 〈X, Y 〉2. This concludes the proof of the proposition. �
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We are ready now to present the ultimate reduction with respect to the group Ã1.

Theorem 1.3.14 Let ξ1(t) be a primitive parametrization of a plane branch C f with
semigroup of values � and value set of differentials �. Suppose that � \ � 
= ∅, then
ξ1(t) is Ã1-equivalent to a parametrization of the form

ξ(t) =
(

tn, tm + aλtλ +
∑

i>λ

i /∈�−n

ai t
i

)
, (1.25)

where n = min� \ {0}, m = min� \ 〈n〉 and λ = min(� \ �) − n. Moreover, two
such parametrizations with same λ-jet are Ã1-equivalent if and only if they are equal.

Proof Existence. For each k such that λ < k ∈ � − n we have that k + n ∈ � or
k + n ∈ � \ �.

If λ < k ∈ � − n, then by what we said before Proposition 1.3.13 there exists a
parametrization ξ2(t) which is Ã1-equivalent to a parametrization ξ1(t) satisfying
j kξ2(t) = j k−1ξ2(t) = j k−1ξ1(t).

If λ + n < k + n ∈ � \ �, by Proposition 1.3.13, there exists ω ∈ �( f ) with
v(ω) = k + n satisfying the hypothesis of Proposition 1.3.11; that is, (0, t k) ∈
Tjkξ1(t)Ãk

1( j kξ1(t)). Hence, by Theorem 1.3.9, we get a parametrization ξ2(t) which
is Ã1-equivalent to ξ1(t) with j kξ2(t) = j k−1ξ2(t) = j k−1ξ1(t).

Now, repeating this reduction for all k with λ < k < c, where c is the conductor
of �, and apply an element of Ã1 that performs the Third Reduction, we obtain a
parametrization ξ(t) as in the statement of the proposition which is Ã1-equivalent to
ξ1(t).
Unicity. Let ξ(t) be as in (1.25) and let k > λ be an integer such that k + n /∈ �.
Consider the one dimensional affine space

N k
ξ = j k−1ξ(t) + C(0, t k),

and let Gk
ξ be the algebraic subgroup of Ãk

1 that leaves N k
ξ invariant. Since Ãk

1 is an
algebraic unipotent group over C, it follows that Gk

ξ is an algebraic connected group
(cf. [4, p. 8]). We will show that the orbit Gk

ξ ( j kξ(t)) is just { j k(ξ(t))}. This is so,
because Gk

ξ ( j kξ(t)) is a connected closed set in N k
ξ � C (cf. [22, Theorem 2]), so it

consists either of one point, or it is the whole N k
ξ .

If Gk
ξ ( j kξ(t)) does not consist of a single point, then since Gk

ξ ( j kξ(t)) ⊂
Ãk

1( j kξ(t)), it would follow that

C(0, t k) = Tjkξ(t)G
k
ξ ( j kξ(t)) ⊂ Tjkξ(t)Ãk

1( j kξ(t)),

which from Propositions 1.3.11 and 1.3.13 yields to a contradiction. �

Remark 1.3.15 As observed in Sect. 1.2.2, each admissible set � in an equisingu-
larity class determined by the semigroup � with conductor c, admits a conductor
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d ≤ c. So, the above theorem guarantees that an element ξ(t) in �n with semigroup
of values � and set of values of differentials � is Ã1-equivalent (consequently A-
equivalent) to j d−n−1ξ(t).

Remark 1.3.16 Not every parametrization ξ(t) of the form (1.25) has semigroup of
values equal to�, because the conditions aβ2 · · · aβg 
= 0 and those contained in (1.4),
as well, should be satisfied. On the other hand, the set of values of differentials of the
branch it represents is not necessarily equal to �. This is a more subtle issue, since
one can show (cf. [13]) that this imposes conditions on the coefficients of ξ(t), so
that the subset��(�) of elements in�c−1

n that represent branches with semigroup of
values � and admissible set of values of differentials � form a constructible subset
invariant under the action of Ãc−1

1 . If �i , i = 1, . . . , s, are the admissible set of
values of differentials for branches in the equisingularity class determined by �,
then the subsets ��(�i ), i = 1, . . . , s, form a partition by constructible subsets of
the constructible set�� , the set of elements in�c−1

n which have semigroup of values
equal to �.

Recall that we are interested in the classification of equisingular branches with
respect to analytic equivalence, which was translated into the classification with
respect to the action of the group Ã on primitive parametrizations determining a
given semigroup of values. Since the action of this group on parametrizations is
obtained by composition of the Ã1-action with theH-action, to perform the analytic
classification of plane branches, it is enough to analyze the H-action on primitive
parametrizations as in (1.25), getting the result [12, Theorem 2.1], below.

Theorem 1.3.17 (Normal Form Theorem) Let C be a branch with semigroup of
values � and set of values of differentials �. If � \ � 
= ∅, then C is analytically
equivalent to a branch with parametrization

ξ(t) =
(

tn, tm + aλtλ +
∑

i>λ

i /∈�−n

ai t
i

)
,

where n = min� \ {0}, m = min� \ 〈n〉 and λ = min(� \ �) − n. Otherwise C is
analytically equivalent to a branch with parametrization ξ(t) = (tn, tm).

Moreover, a branch parametrized by ξ1(t) = (tn, tm + bλtλ + ∑
i>λ

i /∈�−n
bi t i ) is

analytically equivalent to C if, and only if, there exists α ∈ C
∗ such that bi = αi−mai ,

for all i .

Proof As observed, just before the statement of the theorem, this is a consequence
of the composition of the actions of Ã1 and H on a parametrization ξ(t) as in
Theorem 1.3.14. �
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1.4 Final Remarks

In this final section we will derive some consequences of the Normal Form Theorem
and compare them with related results in the literature.

1.4.1 Comparison with Other Works

We believe that the conclusion of the Normal Form Theorem is what Zariski was
expecting to achieve in general. To support our belief, we quote a result about the
analytic classification of curves with semigroup � = 〈n, n + 1〉 that Zariski proves
in his course at the École Polytéchnique [23].

Theorem 1.4.1 ( [24, Theorem 6.12 on p. 104]) For n ≥ 5 consider two primitive
parametrizations with generic coefficients

ξ1(t) =
⎛
⎝tn, tn+1 +

2n−1∑
i=n+3

ai t
i +

∑
i∈∪s

j=2E j

ai t
i

⎞
⎠ ,

ξ2(t) =
⎛
⎝tn, tn+1 +

2n−1∑
i=n+3

bi t
i +

∑
i∈∪s

j=2E j

bi t
i

⎞
⎠ ,

where E j = {( j + 1)n − (n − j − 1), . . . , ( j + 1)n − 1} and ai = 0 whenever i
is one of the first j + 1 element of E j for all 2 ≤ j ≤ s with s = [

n−3
2

]
. The

parametrizations define branches analytically equivalent if and only if there exists
r ∈ C

∗ such that r i−(n+1)ai = bi for all i > n + 1.

Remark 1.4.2 We made a correction in the original statement by Zariski, where it
is stated that s = [

n−4
2

]
, but according to [23, Definition 6.10 and Remark 6.11], one

should have s = [
n−3
2

]
, as we stated above.

Zariski observed that Theorem 1.4.1 holds for n = 5, 6, without the hypothesis
of genericity on the coefficients and asked the following question:

Does Theorem 6.12 remain true without assuming that ξ1(t) and ξ2(t) are generic?

The answer is no, as we show in the following example.

Example 1.4.3 Let us consider ξ1(t) = (t7, t8 + t10 + t11 + 11
4 t12 + at13 + b1t20)

and ξ2(t) = (t7, t8 + t10 + t11 + 11
4 t12 + at13 + b2t20) with a 
= 21

4 and b1 
= b2,
which are in the formof the above theorem. So, if Theorem1.4.1was true, without the
genericity condition, the associated branches would not be analytically equivalent.

But, applying the algorithms in [13] with the restriction a 
= 21
4 , one finds � \

� = {17, 25, 27, 33, 34, 41} and d = 27. In this way, any natural number greater or
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equal to d − n = 20 belongs to � − n. Consequently, the normal forms in Theorem
1.3.17 for ξ1(t) and ξ2(t) are the same, namely: (t7, t8 + t10 + t11 + 11

4 t12 + at13).
Hence, the associated branches are analytically equivalent, giving a negative answer
to Zariski’s question.

In [14] we give the analytic classification of all branches in the equisingularity
class determined by the semigroup 〈7, 8〉.

One possible consequence of our result is an easy way to characterize branches
with τ = μ − 1, obtained in [3], as shown below.

Corollary 1.4.4 A branch C f satisfies τ( f ) = μ( f ) − 1 if, and only if, it is ana-
lytically equivalent to a branch with a parametrization (tn, tm + t (n−1)m−2n) with
GCD(n, m) = 1.

Proof Observe that, by Proposition 1.2.19, the result is equivalent to characterize
the branches with � \ � = {λ + n}.

It is clear that if � = 〈n, m〉 and λ = (n − 1)m − 2n, then � \ � = {λ + n}.
Conversely, recall that v1 < λ ≤ β2 = v2 + m − m1n, with m1 = m

e1
> n1 ≥ 2,

and λ + n + � ⊆ �.
If � = 〈n, m, v2, . . . , vg〉 with λ = β2 = v2 + m − m1n, then, by Proposition

1.3.14, λ + 2n = v2 + m − (m1 − 2)n ∈ � \ �.
In this way, we must have λ + n = s1m − s0n with 2 ≤ s1 ≤ n1 − 1 and 1 ≤

s0. If g ≥ 2, then v2 + λ + n = v2 + s1m − s0n ∈ � \ �. It follows that the only
possibility for the semigroup is � = 〈n, m〉.

If s1 < n1 − 1, then λ + n + m = (s1 − 1)m − s0n ∈ � \ �. If s0 ≥ 2 then λ +
2n = s1m − (s0 − 1)n ∈ � \ �.

So, if� \ � = {λ + n}, then� = 〈n, m〉 and λ = (n − 1)m − 2n. By Proposition
1.3.14 and normalizing the coefficient aλ as in (1.18), any natural number k > (n −
1)m − 2n is an element of � − n ⊆ � − n, then by the Normal Form Theorem we
have the result. �

1.4.2 Computability

Let us observe that it is computationally manageable to obtain the normal form
presented in (1.25) and to decide if two plane branches are analytically equivalent
or not.

In fact, given a primitive Puiseux parametrization we can easily determine its
Puiseux exponents β0, . . . , βg which, by Theorem 1.1.27, allows us to get the semi-
group �. The four reductions we presented give us explicit elements inA that reduce
our parametrization to the form ξ(t) = (tn, tm + bλtλ + ∑c−n−1

i>λ bi t i ).
Using the algorithm presented in [13], we may compute the set � and its conduc-

tor d. As we pointed out in Remark 1.3.15, it is sufficient to consider j d−n−1ξ(t).
Moreover, with these data, we determine the elements less than d − n in � − n that
correspond to terms that we can eliminate in j d−n−1ξ(t).
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In order to do this, preserving the Puiseux form, we consider an element
(ϕ, ρ) ∈ Ã1, as described in Corollary 1.2.4, that is, q ∈ 〈X, Y 〉2 and p ∈ 〈X2, Y 〉
with ordt q(ξ(t)) < d − n and ordt p(ξ(t)) < d − m. In particular, it is sufficient
to take q = ∑

in+ jm<d−n αi j X i Y j and p = ∑
in+ jm<d−m βi j X i Y j . As j d−n−1ξ(t),

p and q are polynomials, the method to obtain the normal form is effective and
computable. In [15] we give details about the computational implementation for the
normal formal process and the analytic classification of plane branches.

1.4.3 A Solution for the Moduli Problem

As remarked in previous sections, fixing an equisingularity class L, determined by
a semigroup of values �, there exist a finite number of distinct possible value sets
of Kähler differentials �1, . . . , �s . In this way, we may stratify L by these analytic
invariants, obtaining a disjoint union L = ⋃s

j=1 L j , where L j indicates the set of all
branches with semigroup � and value set of Kähler differentials � j .

Let us consider the parameter space �� consisting of all tuples formed with the
coefficients of j c−1y(t) of Puiseux parametrizations ξ(t) = (tn, y(t)), where c is the
conductor of� and�ξ = �. This set is a Zariski open set in a finite dimensional affine
space. Let us denote by ��(� j ) the subset of �� consisting of points representing
elements in L j , hence we get a stratification

�� =
s⋃

j=1

��(� j ).

Each ��(� j ) is a constructible set in �� that may be explicitly described via
the algorithms developed in [13] and [15], which also show that one of these sets is
Zariski open in �� . The quotient of this set by the equivalence relation induced by
analytic equivalence on branches will be called the generic component of the moduli
space.

Inside each ��(� j ) there is a subset N j representing elements in the normal
form (1.25), which in turn is a constructible set in ��(� j ) and may be realized as a
constructible set in the affine space C

d j , where d j = 1 + �{i; i > λ, i /∈ � j − n}.
So, if we define the function

� :
s⋃

j=1

N j → L

that maps the coefficients of y(t) to the branch corresponding to the Puiseux
parametrization (tn, y(t)), then, by the Normal Form Theorem, the image of � con-
tains one representative of each analytic class in the equisingularity class L and
analytic equivalence is translated into the C

∗-action on each N j as described in
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Theorem 1.3.17, offering in this way a solution to the moduli problem proposed by
Zariski.

1.4.4 Dimensions of Components of the Moduli Space

The problem of determining the dimension of the generic component of the moduli
space for branches in a given equisingularity class was addressed by several authors,
starting with Zariski.

Zariski dedicated a substantial part of [23] to this problem in the particular case in
which the curves have semigroup of values 〈n, nk + 1〉. Some time later, C. Delorme
studied in [8] the case of branches with semigroup 〈n, m〉, giving a closed formula for
the dimension of the generic component of the moduli space in this case. In [20], R.
Peraire presented an algorithm to compute the dimension of the generic component
of the moduli space for curves with semigroup 〈n, m〉 and a fixed Zariski λ-invariant.
In [10], Y. Genzmer gave a closed formula to compute the dimension of the generic
component of the moduli space for branches in any fixed equisingularity class.

The Normal Form Theorem gives us the description of any stratum of the mod-
uli space determined by an analytic invariant �, its structure and, in particular, its
dimension, not only for the generic component.

In fact, to compute the dimension of each stratum it is sufficient to fix a semigroup
� and to consider a generic primitive parametrization ξ(t) as in (1.12). By the algo-
rithms developed in [13], one can describe all possible N j and determine all algebraic
restrictions on their points in order to represent branches in L j . So, the dimension of
N j/C

∗, which is equal to the dimension of N j minus one (due to the normalization
aλ = 1) is the number of elements in {i; i > λ, i /∈ � j − n} corresponding to free
parameters in the set of algebraic restrictions that determine � j .

Now, using the above discussion and the Normal Form Theorem, we may char-
acterize the equisingularity classes that have zero-dimensional moduli space.

Proposition 1.4.5 The moduli space for branches in an equisingularity class deter-
mined by � = 〈v0, v1, . . . , vg〉, where v0 = n and v1 = m, is zero-dimensional if and
only if � is one of the following semigroups:

N; 〈2, m〉; 〈3, m〉; 〈4, m〉, m = 5, 7 or 〈4, 6, v2〉.

Moreover, for n ≤ 2 or for 〈4, 6, v2〉, the moduli space is a single point; for n = 3,
it is a set with

[
m
3

]
isolated points and for n = 4 and m = 5, 7 the moduli space

consists of
[

m
2

]
isolated points.

Proof If g > 2, we have necessarily β3 > λ and β3 /∈ � − n, because otherwise,
by the Normal Form Theorem, β3 would be eliminable, provoking a change in the
equisingularity class. So, for these semigroups we have parametrizations of branches
with at least one free parameter aβ3 and, consequently, the moduli space admits a
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stratum with dimension greater than 0. Observe that for g = 2 and β2 > λ the same
argument works.

Suppose now that g = 2 and λ = β2. Then from (1.7) one has λ = v2 + v1 −
n1v1 = v2 + v1 − m1v0, with m1 = m

e1
> n1 ≥ 2. Taking k =

[
(n2−2)v2+(n1−1)m

n

]
, we

have that λ < (n2 − 1)v2 − kn < λ + n. If either n2 > 2 or n1 > 2 or m > 2n, then
k ≥ 2 and i = (n2 − 1)v2 − kn /∈ � − n. By Proposition 1.2.22, we conclude that
i = (n2 − 1)v2 − kn /∈ � − n. In this way, we have parametrizations with a free
parameter ai , so there is a stratum of the moduli space with positive dimension.
So, for g = 2, to have a zero dimensional moduli space, we must have n1 = n2 = 2
and m < 2n; that is, � = 〈4, 6, v2〉. In this case, � \ � = {λ + 4, λ + 8}, and any
integer greater than λ = v2 − 6 belongs to � − 4. By the Normal Form Theorem,
any curve with semigroup of values � = 〈4, 6, v2〉 is equivalent to a curve given by a
parametrization (t4, t6 + t v2−6) and consequently the moduli space is a single point.

Now, as we observed in Remark 1.2.10, all equisingular branches with n = 1,
n = 2, or n = 3 and 4 ≤ m ≤ 5 are analytically equivalent, so for such semigroups
the moduli space reduces to a single point.

It remains to consider the equisingularity classes determined by semigroups � =
〈n, m〉 with n ≥ 3.

If n>4, then λ = 3m − 2n is a Zariski invariant. Taking i = 4m − ([m/n + 2]) n,
we have that i /∈ � − n and λ < i < λ + n. As before, Proposition 1.2.22 give
us that i /∈ � − n and there exist parametrizations with a free parameter ai and,
consequently, a stratum of the moduli space with positive dimension. We have
the same conclusion for n = 4 and m ≥ 9 by considering λ = 2m − 8 and i =
3m − ([m/4 + 2]) 4.

If n = 4 andm ∈ {5, 7}, then the only possibilities forλ are 3m − 4k with 2 ≤ k ≤[
m
2

]
. For each of these possibilities, any natural number greater than λ is an element

of � − 4. By the Normal Form Theorem every curve with semigroup � = 〈4, m〉
with m = 4, 7 is analytically equivalent to a branch with parametrization (t4, tm) or
(t4, tm + tλ), that is, we have

[
m
2

]
possible analytic classes.

Finally, for n = 3 and m > 6, the only possible Zariski invariants are 2m − 3k
with 2 ≤ k ≤ [

m
3

]
. As before, the normal forms are (t3, tm) or (t3, tm + tλ). So, we

have
[

m
3

]
possible analytic classes. �

The above result was obtained, by other methods, by J.W. Bruce and T.J. Gaffney
in [6].

Given now a semigroup of values �, we denote by �� the analytic invariant
corresponding to the generic component of the moduli space of the equisingularity
class L determined by �. The next result will show how to determine easily the
dimension of the generic component of its moduli space.

Theorem 1.4.6 The dimension of the generic component of the moduli space of the
equisingularity class determined by a semigroup of values � is equal to

�{i; i > λ, i /∈ �� − n and e j | i if i ≥ β j , 1 ≤ j ≤ g}, (1.26)
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where λ = min�� − n, n = min� \ {0}, n, β1, . . . , βg are the characteristic expo-
nents of any Puiseux parametrization ξ such that �ξ = � and e j = GCD(n, β1, . . . ,

β j ).

Proof In fact, because ��(��) is an open Zariski set in�� and in view of Theorem
1.3.17, the dimension of the generic component of the moduli space is precisely the
number of coefficients ai in a generic parametrization of the form (tn, tm + tλ +∑

λ<i /∈��−n ai t i ), provided ai = 0 if β j < i and e j � i for 1 ≤ j ≤ g. From this, the
result follows. �

In a similar way, if we choose an admissible Zariski λ-invariant, that is, any
element in {i; i > m and i /∈ � − n} and consider a primitive parametrization as in
(1.18), with generic coefficients, we can compute the generic � for branches with
such Zariski invariant and get the same expression as in (1.26) for the dimension of
the generic component with fixed λ. This is a generalization of the result obtained
by Peraire in [20], where she considers the case g = 1.

Notice that in Theorem 1.4.6, for branches with semigroup of genus one, that is,
� = 〈n, m〉, we do not have the restrictions described in (1.4), so, the expression
(1.26) reduces to �{i, λ < i /∈ �� − n}. In this situation we recover the result [18,
Theorem 5.1].

Corollary 1.4.7 The dimension of the generic component of the moduli space for
branches with semigroup � = 〈n, m〉 is l(n, m) − c + τmin, where c = (n − 1)(m −
1) is the conductor of �, τmin is the least Tjurina number for branches with semigroup
� and l(n, m) = �{i, m < i /∈ � − n}.
Proof The dimension of the generic component of the moduli space is the largest
dimension of all strata, in which case ��� \ � is maximum in the equisingularity
class and, consequently, by Proposition 1.2.19 and Theorem 1.2.15, the dimension
of the stratum with minimum Tjurina number τmin is ��� \ � = c − τmin .

Now, since � = 〈n, m〉, the dimension of the generic component of the moduli
space is the cardinality of the set

{i, λ < i /∈ �� − n} = {i, m < i /∈ � − n} \ {i, m < i /∈ �� − n \ � − n}.

But, since
�{i, m < i /∈ �� − n \ � − n} = ��� \ �,

the result follows. �

In the same way, if we consider the least Tjurina number for branches with semi-
group � = 〈n, m〉 and Zariski λ-invariant fixed, we obtain a similar formula.
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1.4.5 An Example

To illustrate our results, we will describe here all normal forms for branches in the
equisingularity class determined by the semigroup � = 〈4, 11〉. This example is a
particular case of the entire classification of singularities of multiplicity 4 to be found
in [16].

The table below exhibits the normal forms with the respective algebraic restric-
tions on their coefficients to ensure that they possess the given � \ � invariant.

Restrictions Normalized normal form � \ �

(t4, t11 + t13 + a14t14) {17, 21, 25, 29}
a17 
= 25

22 (t4, t11 + t14 + a17t17) {18, 25, 29}
a17 = 25

22 (t4, t11 + t14 + a17t17 + a21t21) {18, 29}
(t4, t11 + t17) {21, 25, 29}
(t4, t11 + t21) {25, 29}
(t4, t11 + t25) {29}

(t4, t11) ∅

The above table shows that the moduli space of the equisingularity class deter-
mined by � = 〈4, 11〉 has seven strata, the first row corresponds to the generic com-
ponent of the moduli that has dimension one. The next two rows give also one-
dimensional strata but non-generic, and the last four correspond to zero-dimensional
strata.

1.4.6 Analytic Versus Formal

It is a fact, as we will see soon, that many of the properties of C f may be studied
algebraically, without any reference to convergence problems by considering f as
an element of C[[X, Y ]], the ring of formal power series in two indeterminates with
coefficients in C, viewed only as an algebraically closed field without any reference
to its topology. Although we loose the geometric interpretation for C f , which is
useless for our purpose, we gain a remarkable simplification of the theory and at
the same time the possibility to extend the related problems to a wider context, for
instance, for curves over any algebraically closed ground field.

The ring C[[X, Y ]] shares most of the algebraic properties of the ring C{X, Y }
as, for instance, the fact that it is a local ring with maximal ideal M = 〈X, Y 〉 and
is a unique factorization domain.

By an algebroid plane curvewemeanC f =SpecR( f ), where R( f ) = C[[X, Y ]]/
〈 f 〉 for some f ∈ M. Now, in contrast with the analytic case,C f has only two points:
the closed point 0, corresponding to the maximal ideal M and the generic point η

corresponding to the zero ideal 〈0〉. Since in the analytic case, the ringO( f ) carries
all the analytic informations about C f , it is natural to concentrate on the study of the
ring R( f ) and to define the relation
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C f ∼ Cg ⇐⇒ R( f ) � R(g),

where � represents isomorphism as C-algebras.
On the other hand, the topological equivalence of C f and Cg in the analytic case

may be replaced in the formal context by equisingularity relation as follows:

C f ≡ Cg ⇐⇒ �( f ) = �(g),

where �( f ) and �(g) are defined as in the analytic setting.
In this more general context, Puiseux parametrizations exist, but are given by

formal series. Everything we did in these notes works as well in this formal setting,
because all series involved are finitely determined with respect to the associated
group actions, in such a way that we only have to work with polynomials.

At the contrary ofwhat one could expect, the theory one gets in this new framework
is not more general than in the analytic one, as remarked by Zariski in [24, p. 3].
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Chapter 2
Plane Algebraic Curves with Prescribed
Singularities

Gert-Martin Greuel and Eugenii Shustin

Abstract We give a survey on the known results about the problem of the existence
of complex and real algebraic curves in the plane with prescribed singularities up to
analytic and topological equivalence. The question is whether, for a given positive
integer d and a finite number of given analytic or topological singularity types, there
exist a plane (irreducible) curve of degree d having singular points of the given type
as its only singularities. The set of all such curves is a quasiprojective variety, which
we call an equisingular family, denoted by E SF . We describe, in terms of numerical
invariants of the curves and their singularities, the state of the art concerningnecessary
and sufficient conditions for the non-emptiness and T -smoothness (i.e., being smooth
of expected dimension) of the corresponding E SF . The considered singularities can
be arbitrary, but we pay special attention to plane curves with nodes and cusps, the
most studied case, where still no complete answer is known in general. An important
result is, however, that the necessary and the sufficient conditions show the same
asymptotics for T -smooth equisingular families if the degree goes to infinity.
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2.1 Introduction

Singular algebraic curves, their existence, deformation, families (from the local and
global point of view) attract continuous attention of algebraic geometers since the
last century. The aim of this survey is to give an account of results, trends and bibli-
ography related to the existence of curves with prescribed singularities with a focus
on algebraic curves in the plane. We consider the existence problem for complex
and real plane curves with given singularities up to analytic and topological equiv-
alence. The general problem is: given an integer d > 0 and analytic or topological
singularity types S1, . . . , Sr , does there exist a curve (resp. an irreducible curve) of
degree d in P

2 having r singular points of types S1, . . . , Sr , respectively, as its only
singularities?

An important particular case is the same problem for one singularity. Namely, let
S be an analytic or topological type. What is the minimal degree d(S) of a curve in
P
2 having a singular point of type S ? In other words, we ask about a polynomial

normal form of minimal degree of the given singularity.
The space |d H | = |H 0(P2,OP2(d))| of all curves of degree d in P

2, H a hyper-
plane in P

2, can be identified with the punctured vector space of homogeneous
polynomials of degree d in 3 variables modulo multiplication with a non-zero con-
stant. That is, |d H | = C[x0, x1, x2]d � {0}/C

∗ is a projective space of dimension
N = (d2 + 3d)/2. The subspace of this P

N , consisting of (irreducible) curves of
degree d in P

2 having r singular points of types S1, . . . , Sr (and maybe other unspec-
ified singularities) is the Equisingular Family (E SF) which we denote by

V (irr)
d (S1, . . . , Sr )

(it may be empty). This description of V (irr)
d (S1, . . . , Sr ) is set-theoretically, but

it is shown in [28] that these sets are quasi-projective subvarieties of P
N (see [28,

Propositions I 1.61 and I 1.71] for a simple proof in the case of one singularity),
which can be endowed with a unique (not necessarily reduced) scheme structure
representing the functor of equianalytic resp. equisingular deformations (see [28,
Theorem II 2.36]).
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The following geometric problems concerning equisingular families of plane
curves have been of interest to algebraic geometers since the early 20th century:

• Existence Problem: Is V (irr)
d (S1, . . . , Sr ) non-empty?

• T -Smoothness Problem: If V (irr)
d (S1, . . . , Sr ) is non-empty, is it T -smooth, i.e.

smooth and of the “expected” dimension (see end of the Preliminaries)?
• Irreducibility Problem: Is V (irr)

d (S1, . . . , Sr ) irreducible?
• Deformation Problem: What are the adjacencies of the singularities of a curve of
degree d if it varies inside |d H |?
First of all, a complete answer to these questions is known only for the case of

plane nodal curves (Severi [73], Harris [37]): the inequality 0 ≤ n ≤ (d−1)(d−2)
2 is

necessary and sufficient for the nonemptiness, T -smoothness, and irreducibility of
the family V irr

d (n A1) of irreducible plane curves of degree d with n nodes as their
only singularities, and, additionally, for the independent smoothing of prescribed
nodes while keeping the others, induced by the space of plane curves of degree d.

Already for plane curves with ordinary cusps a reasonable complete answer is
hardly possible, due to a large gap between the known upper bounds of the number
of cusps and the known examples of curves with many cusps. Due to the irregular
behavior of such examples, it seems unrealistic to expect a sufficient condition for
either non-emptiness, or T -smoothness, or irreducibility, which is at the same time
necessary (as in the case of plane nodal curves).

This situation has motivated us to pursue the following goal: describe the regular
region of V (irr)

d (S1, . . . , Sr ) (i.e. the nonempty and T -smooth part), in a possibly
precise form, which should be

(i) universal, i.e. applicable to arbitrary singularities,
(ii) numerical, i.e. expressed as relations (inequalities) for numerical invariants of

the curves and their singularities,
(iii) asymptotically optimal or asymptotically proper, i.e. having either the same

asymptotics or an asymptotics that coincides up to multiplication with a posi-
tive constant with the known examples of irregular (empty or non-T -smooth)
equisingular families if d goes to infinity.

We like to emphasize that one can expect asymptotically optimal or asymptotically
proper results (about nonemptiness, T -smoothness, irreducibility, ...) only for the
regular region; we do not see any systematic behavior for the irregular region of
V (irr)

d (S1, . . . , Sr ) if d → ∞.
In this survey we focus mainly on the existence problem and give only a short

account on answers to the other problems.We give always precise references, includ-
ing original sources and in addition hints to the methods whenever appropriate. We
feature both complex and real singular curves. A special attention is paid to curves
with nodes and cusps, curveswith simple, ordinary, and semi-quasihomogeneous sin-
gularities, in which cases one can apply specific constructions and formulate general
restrictions in a simpler form.

In general, there is only one universal approachwhich provides sufficient existence
results for arbitrary topological and analytical singularity types and any degree, both
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over the complex and over the real fields, and which is asymptotically comparable
with the necessary conditions. This approach combines two main ingredients: the
theory of zero-dimensional schemes related to planar curve singularities coupled
to the cohomology vanishing theory for their ideal sheaves, and the patchworking
construction. While the cohomological approach, which builds a bridge between the
local and global geometry of singular algebraic curves, is not treated in this survey,
we explain the parchworking method in several interesting situations. Furthermore,
we mention important results on the existence of curves with nodal singularities
on other algebraic surfaces and in the projective space, and address several related
problems.

For a comprehensive treatment of these problems and detailed proofs, and more
generally of the theory of topologically and analytically equisingular families of
curves on surfaces, see the monograph [31]. In the present survey, we basically fol-
low the main thread of the monograph [31] providing more details in certain places,
for instance, in Sect. 2.4.1 as well as in Sect. 2.4.2, where Theorems 2.4.5, 2.4.6 and
2.4.7 are new.

2.1.1 Preliminaries: Isolated Singularities

We work mainly with algebraic varieties (not necessarily reduced or irreducible) but
use the Euclidean topology and analytic structure sheaf (unless otherwise stated). For
this reason we call them algebraic complex spaces (see [31, Notations and Conven-
tions] for a precise definition). An algebraic curve resp. algebraic surface means an
algebraic complex space of pure dimension one resp. two. By a real algebraic vari-
ety resp. real analytic variety we mean an algebraic resp. analytic variety equipped
with an anti-holomorphic involution. By a hypersurfacewemean an effective Cartier
divisor in a smooth variety �.

A singularity is by definition the germ (X, z) of a complex space, may be smooth.
A singularity (X, z) is isolated if X \ {z} is smooth for some representative X . Two
hypersurface singularities (X, z) ⊂ (�, z) and (X ′, z′) ⊂ (�, z′) are called analyt-
ically equivalent (resp. topologically equivalent) if there exists an analytic isomor-
phism (resp. a homeomorphism) of neighborhoods of z resp. z′ in � mapping (X, z)
to (X ′, z′).

The analytic equivalence can be expressed as an isomorphism of the analytic
local rings:OX,z

∼= OX ′,z′ . The topological equivalence is used in this paper only for
reduced plane curve singularities where it is completely characterized by discrete
invariants (see [6, 28, 90, 97, 107]): Namely, two reduced plane curve singularities
(C, z) and (C ′, z′) are topologically equivalent iff there exists a bijection of local
branches such that the Puiseux pairs of the corresponding branches coincide, as well
as the pairwise intersectionmultiplicities of the corresponding branches; equivalently
if they have embedded resolutions by blowing up points such that the systems of
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multiplicities of the reduced total transforms coincide. The second definition is the
preferred one since it generalizes to deformations over non-reduced base spaces.

Analytic resp. topological equivalence classes of isolated singular points are called
(contact) analytic types resp. topological types (or analytic resp. topological singu-
larities). For simple or ADE singularities (cf. [28]) analytic and topological types
coincide and we talk simply about their type. Of particular interest are the sim-
ple singularities of type A1, called nodes , given in local analytic coordinates as
x2 + y2 = 0 and of type A2, called (ordinary) cusps , given as x2 + y3 = 0.

Important numerical invariants are the Milnor number, the delta invariant and the
kappa-invariant. Let (X, z) ⊂ (�, z) ∼= (Cn, 0) be an isolated hypersurface singu-
larity and f ∈ C{x1, . . . , xn} ∼= O�,z a defining power series in local coordinates
x1, . . . , xn . Then

μ(X, z) := dimC C{x1, . . . , xn}/〈 ∂ f

∂x1
, . . . ,

∂ f

∂xn
〉

is the Milnor number of (X, z) and

τ(X, z) := dimC C{x1, . . . , xn}/〈 f,
∂ f

∂x1
, . . . ,

∂ f

∂xn
〉

is the Tjurina number of (X, z), which is the dimension of the base space of the
semiuniversal deformation of (X, z).

For a reduced curve singularity (C, z) we call

δ(C, z) := dimC(ν∗OC/OC)z

the delta-invariant (δ-invariant) of (C, z), where ν : C → C is the normalization of
a representative C of (C, z). Let (C, z) be a reduced plane curve singularity defined
by f ∈ C{x, y}. The kappa-invariant (κ-invariant) of (C, z) is the intersection mul-
tiplicity of (C, z) with a generic polar, that is,

κ(C, z) := dimC C{x, y}/〈 f, α
∂ f

∂x
+ β

∂ f

∂y
〉, (2.1)

with (α : β) ∈ P
1 generic. We also write μ( f ), δ( f ) and κ( f ). Recall for a plane

curve singularity f the formulas (cf. [56] and [28, Propositions I. 3.35 and I. 3.38])

μ( f ) = 2δ( f ) − r( f ) + 1,

κ( f ) = μ( f ) + mt( f ) − 1,

where r( f ) = r(C, z) is the number of branches of (C, z) (irreducible factors of
f ) and mt( f ) = mt(C, z) the multiplicity of (C, z) (degree of lowest non-vanishing
term of f ).

We introduce further the tau-es-invariant (τ es-invariant)
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τ es(C, z) := τ(C, z) − dimC T 1,es(C, z) = dimC O�,z/I es( f ),

with I es( f ) the equisingularity ideal (cf. [31, Definition 1.1.63]) and T 1,es(C, z) the
tangent space to the equisingular stratum (= the μ-constant stratum) 
μ in the base
of the semiuniversal deformation of (C, z). Since
μ is smooth, τ es(C, z) is equal to
the codimension of the μ-constant stratum in the (τ -dimensional) base space of the
semiuniversal deformation of (C, z), which coincides with the codimension of the
μ-constant stratum in the (μ-dimensional) base space of the semiuniversal unfolding
of f . We have also (cf. [24, Lemma 1.3])

τ es(C, z) = μ(C, z) − modality( f ),

wheremodality( f ) is themodality of the function f with respect to right equivalence.
Note that τ es(C, z) can be effectively computed in terms of the resolution invariants
of (C, z)), an algorithm is implemented in Singular [15]. For details we refer to
[28, Remark to Corollary II.2.71] and to [31, Corollary 1.1.64].

Now we can explain more precisely the T-smoothness property. Let S be an
analytic resp. topological singularity type of a plane curve singularity (C, z). The
requirement that a curve of degree d has a singularity of type S imposes τ(S) :=
τ(C, z) resp. τ es(S) := τ es(C, z) conditions on the space of all curves of degree d
(cf. [23] for anaytic types and [24] for toplogical types). Let S1, ..., Sq be analytic
types and Sq+1, ..., Sr topolgical types of singularities of the degree d-curve C ⊂ P

2.
Then we say that V (irr)

d (S1, . . . , Sr ) has the expected dimension at C if its dimension
at C is

d2 + 3d

2
−

q∑

i=1

τ(Si ) −
r∑

i=q+1

τ es(Si ), (2.2)

and V (irr)
d (S1, . . . , Sr ) is T-smooth at C if it is smooth of expected dimension at C

(in particular, the number (2.2) must be non-negative). We refer to [23, Corollary
6.3], [24, Theorem 3.6], and [31, Theorem 2.2.40] for this and for further properties
of V (irr)

d (S1, . . . , Sr ).

2.2 Singular Plane Curves: Restrictions

Various restrictions for the existence of plane curves of degree d with prescribed
singularities S1, . . . , Sr have been found. We recall the most important ones.

2.2.1 Genus Formula and Bézout’s Theorem

First, one should mention the general classical bound
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r∑

i=1

δ(Si ) ≤ (d − 1)(d − 2)

2
, (2.3)

for the existence of an irreducible plane curve of degree d having r singularities of
types S1, . . . , Sr , which results from the genus formula (2.9).

For a reduced (not necessarily irreducible) plane curve we get as necessary bound
for the existence, i.e., for Vd(S1, . . . Sr ) �= ∅, the inequality

r∑

i=1

μ(Si ) ≤ (d − 1)2. (2.4)

This is a consequence of Bézout’s theorem (see e.g. [31, Theorem II. 1.16]):

Two plane projective curves C, D ⊂ P
2 of degrees c and d, respectively, which

have no component in common, intersect at c · d points, counting intersection mul-
tiplicities. That is,

c · d =
∑

z∈C∩D

dimC OPn ,z/〈 f, g〉, (2.5)

with f resp. g being local equations of C resp. D at z.

To see (2.4) let C be given by a homogeneous polynomial F ∈ C[x0, x1, x2]
of degree d and let F ′

α =∑2
i=0 αi∂ F/∂xi and F ′

β =∑2
i=0 βi∂ F/∂xi with αi , βi

generic, define two generic polars of C , both of degree d − 1. The intersection
points of {F ′

α = 0} and {F ′
β = 0} include the singular points ofC and the intersection

multiplicities are just the corresponding Milnor numbers. Thus, we get (2.4).
For the proof of (2.3) let us recall first two genus formulae. The arithmetic genus

of an arbitrary projective scheme X is defined as

pa(X) := (−1)dim X (χ(OX ) − 1).

Here, for any coherent sheafF on X , χ(F) =∑(−1)i dimC Hi (X,F) is the (alge-
braic) Euler characteristic of F .

For a curve C we have pa(C) = 1 − χ(OC) = 1 − dimC H 0(C,OC) + dimC

H 1(C,OC). If C is reduced and connected, then we have H 0(C,OC) = C and
hence we get for the arithmetic genus pa(C) = dimC H 1(C,OC) ≥ 0. If C has s
connected components C1, ..., Cs , the additivity of the Euler characteristic implies
pa(C) = 1 − s + dimC H 1(C,OC) = 1 − s +∑s

i=1 pa(Ci ), which may be nega-
tive for s > 1.

The geometric genus g(C) of a reduced curve C is defined as the arithmetic genus
of the normalization C of C , hence

g(C) := pa(C) = pa(C) − δ(C), (2.6)
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with δ(C) := dimC H 0(ν∗OC/OC) the total delta invariant of C and ν : C → C the
normalization map. (2.6) follows from applying χ to the exact sequence

0 → OC → ν∗OC → ν∗OC/OC → 0,

noting thatχ(ν∗OC) = χ(OC) and Hi (ν∗OC/OC) = 0 for i > 0.Moreover, δ(C) =∑
z∈Sing(C)δ(C, z), with δ(C, z) the delta invariant of C at z. For a smooth curve C

the arithmetic genus and the geometric genus coincide (δ(C) = 0).
IfC is irreducible, thenC is connected and smooth and g(C) = pa(C) = g(C) ≥

0. If C is a reduced curve with s irreducible components C1, ..., Cs , we have

g(C) = 1 − s +
s∑

i=1

g(Ci ) (2.7)

and hence g(C) + s − 1 ≥ 0. The general genus formulas (2.6) and (2.7) were first
proved by Hironaka [40, Theorem 2] using the resolution of the singularities of C
(he defines g(C) as

∑s
i=1 g(Ci )).

If C ⊂ P
2 is a plane curve of degree d > 0, then C is connected (by Bézout’s

theorem) and we have

pa(C) = (d − 1)(d − 2)

2
. (2.8)

This follows from the exact sequence

0 → OP2(−d) → OP2 → OC → 0,

giving 1 − pa(C) = χ(OC) = χ(OP2) − χ(OP2(−d)) = 1 − χ(OP2(−d)), and
from χ(OP2(−d)) = dimC H 2(P2,OP2(−d)) =

(d−1
2

)
(see [38, Theorem III.5.1] for

the cohomology of projective space). Below we compute the arithmetic genus via
the topological Riemann-Hurwitz formula.

Now, if C ⊂ P
2 is reduced and irreducible, then C is smooth and connected and

the geometric genus g(C) = g(C) is non-negative. The formulas (2.6) and (2.8)
imply the genus formula

g(C) = (d − 1)(d − 2)

2
− δ(C). (2.9)

Since g(C) is non-negative for an irreducible curve of degree d we get the
inequality (2.3).

Of course, Bézout’s theorem leads to various further necessary conditions for the
existence of the curve C such as, for instance by considering a line through 2 points
or a conic through 5 points,

max
i �= j

(
mt(Si ) + mt(Sj )

) ≤ d , max
#(I )=5

∑

i∈I

mt(Si ) ≤ 2d .
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Finally we mention the inequality

q∑

i=1

τ(Si ) +
r∑

i=q+1

τ es(Si ) ≤ d2 + 3d

2
(2.10)

for regular existence, that is, for the existence of a curve C ⊂ P
2 of degree d with

q analytic singularities S1, ..., Sq and r − q topological singularities Sq+1, ..., Sr ,
such that Vd(S1, . . . Sr ) is T -smooth at C (cf. (2.2) and [23, Corollary 6.3 (ii)], [24,
Corollary 3.9], [31, Theorem 2.2.40]).

2.2.2 Plücker Formulae

Besides the genus formula and Bézout’s theorem, the Plücker formulae provide
necessary bounds for the existence, which are often sharper. Let’s deduce these
formulae.

Let C ⊂ P
2 be a reduced, irreducible curve of degree d > 1, given by a homoge-

neous polynomial F ∈ C[x0, x1, x2]. Denote by C∗ ⊂ (P2)∗ its dual curve, that is,
the Zariski closure of the quasi-projective curve

{
(a0 : a1 : a2) ∈ (P2)∗

∣∣∣∣
{a0x0 + a1x1 + a2x2 = 0} is tangent
to C at some smooth point p ∈ C

}

Here (P2)∗ is the (dual) projective 2-space, whose points (a0 : a1 : a2) are in 1-1
correspondence with the lines {a0x0 + a1x1 + a2x2 = 0} ⊂ P

2.
We have a natural rational duality morphism d : C ��� C∗, mapping a (smooth)

point z of C to its tangent at z: Let z ∈ C and let P be an irreducible component of
the germ (C, z). In local affine coordinates x, y such that z = (0, 0) and the x-axis
is tangent to P , this component admits a parametrization

{
x = t p

y = λtq + O(tq+1)
1 ≤ p < q, λ �= 0, t ∈ (C, 0) .

and the tangent lines to the points of P are given by equations y = b(t)x + c(t)with

b(t) = λq

p
tq−p + O(tq−p+1), c(t) = λtq + O(tq+1), t ∈ (C, 0) . (2.11)

It follows that generically the duality morphism d is 1–1, and hence birational.
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Furthermore, C∗ is an irreducible projective curve1 of degree d∗ > 1. The degree d∗
of C∗ is classically called the class of C.

Let C = {F = 0} with F(x0, x1, x2) a homogeneous polynomial of degree d. At
a smooth point z ∈ C , the coefficients of the tangent line are given by

a0 = ∂ F

∂x0
, a1 = ∂ F

∂x1
, a2 = ∂ F

∂x2
.

Let (C, 0) � t �→ z(t) = (xo(t), x1(t), x2(t)) parametrize the germ (C, z). Since
F(z(t)) ≡ 0, we have ∂ F(z(t))

dt = ∂ F
∂x0

· dx0
dt + ∂ F

∂x1
· dx1

dt + ∂ F
∂x2

· dx2
dt = 0, that is, with

ai (t) = ai (z(t)),

a0(t) · dx0
dt

+ a1(t) · dx1
dt

+ a2(t) · dx2
dt

= 0 . (2.12)

Combining this with the Euler formula d · F=x0∂ F/∂x0 + x1∂ F/∂x1 + x2∂ F/∂x2,
which implies that a0(t)x0(t) + a1(t)x1(t) + a2(t)x2(t) = 0, we obtain

x0(t) · da0

dt
+ x1(t) · da1

dt
+ x2(t) · da2

dt
= 0 , (2.13)

which is dual to (2.12). Thus, the dual to C∗ is the original curve C .
We call a tangent line L to C a singular tangent, if

(a) either L is tangent to C at a singular point,

(b) or L is tangent to C at more than one point,

(c) or L intersects C at a non-singular point with multiplicity > 2.

The set of singular tangents is finite, since the set Sing(C) is finite, and the conditions
(b) and (c) determine L as a singular point of C∗ (cf. Formula (2.11)). Hence, there
exists a point q = (q0 : q1 : q2) ∈ P

2 \ C which does not lie on any singular tangent.
Denote by q the pencil of lines through q. Recall that a line L ∈ q is tangent to C
at the (non-singular) point z ∈ C iff z lies also on the polar curve relative to q, that
is, iff

F(z) = 0 = q0
∂ F

∂x0
(z) + q1

∂ F

∂x1
(z) + q2

∂ F

∂x2
(z) .

Weobserve that d∗ is the number of lines L ∈ q tangent toC at non-singular points,
and that {q0

∂ F
∂x0

+ q1
∂ F
∂x1

+ q2
∂ F
∂x2

= 0} is a generic polar of C . Applying Bézout’s
Theorem (2.5) to the non-singular intersection points of {F = 0} with a generic

1An equation F∗ for C∗ can be obtained as follows: let

g(x1, x2) := ad
0 · F

(−(a1x1 + a2x2)

a0
, x1, x2,

)
∈ C(a0, a1, a2)[x1, x2] ,

and compute the discriminant D ∈ C[a0, a1, a2] \ {0} of g(1, x2). D is homogenous of degree
2d2− d and is the product of F∗ with some number of linear factors. Hence, factorizing D and
removing all linear factors, we get an equation for C∗. The computations can be carried out with
the Singular software [15].
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polar (which gives d∗ as total number) and the singular intersection points (which
gives the kappa-invariant κ(C, z) at each intersection point z), we obtain the first
Plücker formula

d∗ = d(d − 1) −
∑

z∈Sing(C)

κ(C, z). (2.14)

For κ see the Definition (2.1) and the subsequent formula from the Preliminaries
section. In particular, if C has n nodes and k cusps as its only singularities one gets

d∗ = d(d − 1) − 2n − 3k. (2.15)

Using again a point q as above, we derive now the Riemann-Hurwitz formula and
give another proof of the genus formula (2.9). Let C → C be the normalization map.
Then the topological Euler characteristic of C satisfies (using Mayer-Vietoris2).

χtop(C) = χtop
(
C
)−

∑

z∈Sing(C)

(
r(C, z)−1

)

= 2 − 2g(C) −
∑

z∈Sing(C)

(
r(C, z)−1

)
, (2.16)

where r(C, z) is the number of irreducible branches of the germ (C, z). Besides,
considering the projection of C on some straight line L0 �⊃ {q} from the point q
leads to the following version of the topological Riemann-Hurwitz formula,

χtop(C) = d · χtop(L) − d∗ −
∑

z∈Sing(C)

(
mt(C, z)−1

)
,

since a line L ∈ q , which is tangent to C at a non-singular point, meets C at d −1
points, and a line L ∈ q through a point z ∈ Sing(C) meets C at d −mt(C, z)+1
points. Combining the last equation with (2.14) and (2.16), we come to the genus
formula (2.9),

g(C) = (d − 1)(d − 2)

2
−
∑

z∈Sing(C)

δ(C, z).

We also mention the second Plücker formula: for any reduced plane curve of
degree d ≥ 3 which does not contain lines as components, the following equality
holds

∑

z∈Sing(C)

h(C, z) = 3d(d − 2) −
∑

z∈C\Sing(C)

((C · TzC)z − 2), (2.17)

2Consider a covering C = (U ∩ C) ∪ (U ′ ∩ C), U the union of non-intersecting open ε-balls and
U ′ the complement of the union of closed ε′-balls, ε′ < ε, around the singular points of C .
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where h(C, z) is the intersection multiplicity of the curve C with its Hessian deter-
minant at the point z and (C · TzC)z stands for the intersection number of C with its
tangent line TzC at z. According to [74], if z ∈ Sing(C), then

h(C, z) = 3κ(C, z) +
∑

C ′
((C ′ · TzC

′)z − 2mt(C ′, z)), (2.18)

where C ′ ranges over all local branches of C at z (i.e., irreducible components of the
germ (C, z)).

The second Plücker equation for a reduced plane curve of degree d ≥ 3 which
does not contain lines as components and with n nodes and k cusps states

k∗ = 3d(d − 2) − 6n − 8k, (2.19)

where k∗ is the number of cusps of C∗. This follows from (2.17) and (2.18): indeed,
when there are no flexes at the nodes, and at all smooth flexes we have a triple
intersection with the tangent, then h(A1) = 3κ(A1) + 0 = 6, h(A2) = 3κ(A2) −
1 = 8.

2.2.3 Log-Miyaoka-Yau Inequality

Any smooth complex algebraic surface X of general type (i.e., of Kodaira dimension
2) satisfies the Bogomolov-Miyaoka-Yau inequality

c21 ≤ 3c2,

where c1, c2 are the Chern classes of the complex tangent bundle T (X), and the
terms in the inequality are evaluated at the fundamental class [57, 103, 104] (see
also [5, Theorem VII.4.1]). Sakai [69] noticed that c21 < 3c2 if the surface contains
rational or elliptic curves and gave a strengthened inequality for this case (so-called
log-Miyaoka-Yau inequality), which was improved further by Miyaoka [58]. In the
form suggested by Hirzebruch [41, Theorem 3] it reads

c21 − 3c2 ≥
k∑

i=1

m(Ei ) +
p∑

j=1

(−C2
j ), (2.20)

where E1, ..., Ek ⊂ X are pairwise disjoint curves splitting into rational components,
C1, ..., C p are elliptic curves (disjoint to each other and to E1, ..., Ek), and all the
summands in the right-hand side are positive.

By applying the log-Miyaoka-Yau inequality (2.20), Sakai [69, Theorem A]
obtained the necessary condition
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r∑

i=1

μ(Si ) <
2ν

2ν + 1
·
(

d2− 3

2
d

)

where ν denotes the maximum of the multiplicities mt(Si ), i = 1, . . . , r . In [69]
further bounds for the total Milnor number are given. In particular, if S1, . . . , Sr are
ADE-singularities then

r∑

i=1

μ(Si ) <

⎧
⎪⎪⎨

⎪⎪⎩

3

4
d2− 3

2
d + 2 if d is even ,

3

4
d2− d + 1

4
if d is odd ,

is necessary for the existence of a plane curve with r singularities of types S1, . . . , Sr .
Applying the inequality (2.20) to the desingularized double covering of the plane

ramified along a curve with simple singularities, i.e., Ar , Dr , E6, E7, E8, Hirzebruch
and Ivinskis [41, 43] obtained the following bound for a reduced plane curve C of
an even degree d ≥ 6 having only simple singularities:

∑

z∈Sing(C)

m(C, z) ≤ d(5d − 6)

2
, (2.21)

where the invariant m(C, z) can be computed as follows:

m(Ar ) = 3r(r + 2)

r + 1
, m(Dr ) = 3(4r2 − 4r − 9)

4(r − 2)
, (2.22)

m(E6) = 167

8
, m(E7) = 383

16
, m(E8) = 1079

40
.

Langer [51, Theorem 1] generalized the Bogomolov-Miyaoka-Yau inequality to
orbifold Euler numbers and obtained an upper bound to the number of simple sin-
gularities of curves on surfaces. In particular (see [51, Theorem 9.4.2 and formula
(11.1.1)]), for any reduced curves of degree d ≥ 10 with n nodes and k cusps it yields
the bound

(2 − α) n +
(
7

2
− 3

2
α − 1

24α

)
k ≤

(
1 − α

3

)
d2 − d (2.23)

with an arbitrary 3
10 ≤ α ≤ 5

6 ,which is always better thanHirzebruch-Ivinskis’ bound

(2.21). Substituting α =
√
73−1
24 , one obtains the maximal coefficient of k in (2.23),

and hence

6059 + 7
√
73

10512
n + k ≤ 125 + √

73

432
d2 − 511 + 11

√
73

1752
d . (2.24)
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2.2.4 Spectral Bound

Further necessary conditions can be obtained by applying the semicontinuity of
the singularity spectrum (see [94]), which works in any dimension. The singular-
ity spectrum of a hypersurface singularity f : C

n+1 → C gathers the information
about the eigenvalues of the monodromy operator T and about the Hodge filtra-
tion {F p} on its vanishing cohomology. The (singularity) spectrum is defined as an
unordered μ( f )-tuple of rational numbers (a1, ..., aμ) (counted with frequencies),
where the frequency of the number a in the spectrum is equal to the dimension of
the eigenspace of the semisimple part of T acting on F p/F p+1, p = [n − a], with
eigenvalue exp(−2π ia). If F : X → S is a good representative of a deformation of
f , let�F−1(s) denote the union of all spectra of the singular points in the fiber F−1(s),
where the frequency of a in �F−1(s) is the sum of its frequencies in the spectra of all
singular points of F−1(s).

The semicontinuity of the spectrum says that any half open interval (t, t + 1] ⊂ R

is a semicontinuity domain for F , that is, the sum MF−1(s) of the frequencies of the
elements of (t, t + 1] in �F−1(s) is upper semicontinuous for s ∈ S ([85, Theorem
2.4]). Before that Varchenko [94] had proved that for deformations F of low weight
of a quasi-homogeneous f even every open interval (t, t + 1) is a semicontinuity
domain.

The semicontinuity of the singularity spectrum can be used to compute effectively
an upper bound for the number of isolated hypersurface singularities of a given type
occurring on a hypersurface V ⊂ P

n of degree d. Observe the following:

• Any hypersurface of degree d with isolated singularities can be obtained as small
deformation of { fd = 0}, where fd(x1, ..., xn) is a nondegenerate d-form, which
stays fixed in the deformation, while all variable terms have degree < d. To see
this, choose coordinates in P

n so that the hyperplane {x0 = 0} avoids Sing(V )

and meets V transversally. The affine hypersurface V a ⊂ A
n = {x0 �= 0} has the

same collection of singularities and is given by { f (x1, ..., xn) = 0}, where the
highest form fd of degree d is nondegenerate. Including V a into the family of
affine hypersurfaces {V a

t }|t |≤1 of the same degree d given by3

td f (x1/t, ..., xn/t) = fd(x1, ..., xn) + t fd−1(x1, ..., xn) + ... = 0 ,

we obtain the given collection of singularities in a deformation of the nondegener-
ate d-multiple singularity { fd = 0} at the origin. Since the space of nondegenerate
d-forms is connected, by the semicontinuity of the spectrum it is sufficient to
compute the spectrum of xd

1 + . . . + xd
n to get a bound for V .

• If precisely M of the spectral numbers (counted with their frequencies) of the
singularity defined by f = xd

1 + . . . + xd
n are in the interval (t, t + 1], t ∈ R, then

the sum of the frequencies of the spectral numbers in the interval (t, t + 1] of
the singularities (close to 0) of a small deformation F of f can be at most M ,

3Such families are called lower deformations.
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i.e., MF−1(s) ≤ M f −1(0) = M (cf. [85, Theorem 2.4]; if the deformation is of low
weight, we can use even the open interval (t, t + 1) by [94]).

For instance, we can look for an upper bound for the number of cusps which may
appear on a curve of degree 11 by using Singular [15, 70]:

LIB ‘‘gmssing.lib’’;
ring r=0,(x,y),ds;
poly g=xˆ2-yˆ3; // a cusp
list s1=spectrum(g); // spectral numbers of a cusp (with mult’s)
s1;
//-> [1]:
//-> _[1]=-1/6 _[2]=1/6
//-> [2]:
//-> 1,1

That is, for a cusp we have Mg−1(0) = 2 for each interval (t, t + 1) with t < −1/6,
t + 1 > 1/6.

poly f = xˆ11+yˆ11;
list s2 = spectrum(f); // spectral numbers of f (with mult’s)
s2;
//-> [1]: (spectral numbers)
//-> _[1]=-9/11 _[2]=-8/11 _[3]=-7/11 _[4]=-6/11 _[5]=-5/11
//-> _[6]=-4/11 _[7]=-3/11 _[8]=-2/11 _[9]=-1/11 _[10]=0
//-> _[11]=1/11 _[12]=2/11 _[13]=3/11 _[14]=4/11 _[15]=5/11
//-> _[16]=6/11 _[17]=7/11 _[18]=8/11 _[19]=9/11
//-> [2]: (frequencies or multiplicities)
//-> 1,2,3,4,5,6,7,8,9,10,9,8,7,6,5,4,3,2,1

Having computed the spectral numbers, we look for an appropriate interval (t, t + 1)
to apply the semicontinuity theorem MF−1(s) ≤ M f −1(0), F a deformation of f . If
F−1(s) contains k cusps, then Mg−1(0)k = 2k ≤ M f −1(0). Choosing t = − 2

11 we get
2k ≤ 63, i.e., at most 31 cusps can appear on a curve of degree 11.

The same result canbe computedbyusing theSingularprocedurespsemicont
to get the sharpest bound for the number of singularities obtainable in the above way:

spsemicont(s2,list(s1),1);
// -> [1]: 31

We recall that the spectrum is a topological invariant of the curve singularity, and,
for example, according to [84] for the quasihomogeneous singularity xm + yn = 0
is the multiset (set with frequencies)

{
i

m
+ j

n
− 1 : 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1

}
. (2.25)

A simple algorithm for computing the spectrum of an arbitrary isolated curve singu-
larity was suggested in [44].

Varchenko [94] used the semicontinuity of the spectrum to give an upper bound
for the number of nondegenerate singular points (i.e. of type A1) on arbitrary hyper-
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surfaces in P
n . Let Nn(d) be the maximal number of singular points of type A1 which

can exist on a hypersurface in P
n of degree d. He proves the following inequality

(conjectured by Arnold),

Nn(d) ≤ An(d) = and n + (lower degrees of d), (2.26)

with an ∼ √
(6/π)n = 1.3819...

√
n, if n → ∞.

2.3 Plane Curves with Nodes and Cusps

The simplest singularities, the node A1 and the ordinary cusp A2, typically occur
in most of the questions related to singular curves. The case of curves with nodes
and cusps is also the most studied case, both in classical and in modern algebraic
geometry. It suggests beautiful results and challenging problems. Furthermore, the
study of the particular case of curves with nodes and cusps led to the development
of important techniques and the discovery of most interesting phenomena in the
geometry of singular algebraic curves and their families. We shall demonstrate this
for the problem of the existence of a plane curve of a given degree with a given
collection of nodes and cusps, both in the complex and real case.

2.3.1 Plane Curves with Nodes

We start with the construction of complex plane curves with only nodes as singular-
ities and with any prescribed number being allowed by the genus bound (2.3). The
construction is due to Severi [73] and very simple. It uses, however, the T -smoothness
of a family of nodal curves in an essential way, called classically the “completeness
of the characteristic linear series” (see [59]). For a modern proof see [23] and [31,
Sect. 4.5.2.1].

For real curves their existence with the number of nodes below or equal to the
genus bound is also classically knownanddue toBrusotti [8], using the T -smoothness
of the family of real nodal curves. But in the real case we have to distinguish between
three kinds of nodes: hyperbolic, elliptic and non-real (coming in complex conjugate
pairs). The fact that, subject to the genus bound, any prescribed distribution among
the three different kinds can be realized was proved much later in [77], and with a
different method by Pecker [65, 66, 68]. The construction is much more difficult
than in the complex case. It uses a “patchworking construction” invented by Viro for
non-singular real curves and extended to singular curves in [77, 79] (see also [31,
Sects. 2.3 and 4.5.1]).
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Complex Curves

Let C be a complex plane irreducible curve of degree d with n nodes. The genus
bound (2.3) yields

n ≤ (d − 1)(d − 2)

2
, (2.27)

since g(C) ≥ 0 and the δ-invariant of the node is 1. If we assume that C consists of
s irreducible components, then we get

n ≤ (d − 1)(d − 2)

2
+ s − 1. (2.28)

It goes back to Severi [73] that the bounds (2.27) and (2.28) are, in fact, necessary
and sufficient for the existence of a plane curve of degree d with n nodes. More
precisely,

Theorem 2.3.1 The bound (2.27) is necessary and sufficient for the existence of a
complex plane irreducible curve of degree d with n nodes as its only singularities.

Furthermore, for any s ≥ 2, any positive integers d, d1, ..., ds satisfying d = d1 +
... + ds, and nonnegative integers n1, ..., ns, the inequalities

ni ≤ (di − 1)(di − 2)

2
, i = 1, ..., s,

are necessary and sufficient for the existence of a complex plane reduced curve of
degree d splitting into s irreducible components of degrees d1, ..., ds and having

n =
s∑

i=1

ni +
∑

1≤i< j≤s

di d j

nodes as its only singularities, while the i-th component has precisely ni nodes,
i = 1, ..., s.

Proof Severi proved that, given a nodal plane curve C of degree d, the germ of
the family of curves of degree d having a node in a neighborhood of an arbitrary
singular point of C , is a smooth hypersurface germ in |OP2(d)| � P

d(d+3)/2, and,
moreover, all these germs intersect transversally at C (for a modern treatment see
[23, Corollary 6.3] and [31, Corollary 4.3.6]). This fact immediately yields that there
exists a deformation of C in P

d(d+3)/2 along which prescribed nodes are smoothed
out, while the others persist (possibly changing their position). Thus, given n and
d satisfying (2.27), we take the union of d straight lines in general position, which
is a curve with d(d−1)

2 nodes (the maximum by (2.28)). Then choose some line and
deform the curve by smoothing out all d − 1 intersection points of this line with the
other lines, obtaining an irreducible, rational curve with (d−1)(d−2)

2 nodes (see Fig.
2.1). Finally, we take another deformation by smoothing out (d−1)(d−2)

2 − n nodes
and obtain an irreducible curve of degree d with n nodes as desired.
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Fig. 2.1 Severi’s construction of irreducible nodal curves

Fig. 2.2 Real plane quintics a with 6 nodes: x5 − 5
4 x3 + 5

16 x − 1
2 y4 + 1

2 y2 − 1
16 = 0 , b with 5

cusps: 129
8 x4y − 85

8 x2y3 + 57
32 y5 − 20x4 − 21

4 x2y2 + 33
8 y4 − 12x2y + 73

8 y3 + 32x2 = 0

In the reducible case,we take irreducible curves of degreesd1, ..., ds withn1, ..., ns

nodes respectively and place them in general position in the plane. �

Remark 2.3.2 Wewould like to underline the importance of the fact that each curve
appearing in the Severi’s construction was amember of a smooth equisingular family
in P

d(d+3)/2 of expected dimension (such families are called T -smooth), and the
germ of the family was the transversal intersection of smooth equisingular families
corresponding to individual singular points of the given curve. That is, given such a
curve with a possibly maximal number of singularities, one immediately obtains the
existence of curves with any smaller amount of singularities. We shall see later how
efficient this property (which follows from T -smoothness) is for the construction of
curves with arbitrary singularities.

Real Curves

Over the reals, a nodal singular point can be of one of the following three types:

• either hyperbolic, i.e., a real intersection point of two smooth real local branches,
locally equivalent to {x2 − y2 = 0},

• or elliptic, i.e., a real intersection point of two complex conjugate smooth local
branches, locally equivalent to {x2 + y2 = 0},
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• or imaginary, i.e., a non-real node (which always comes in pairs of complex
conjugate nodes).

Thus, a natural question iswhat amount of hyperbolic, elliptic andpairs of complex
conjugate nodes a real plane curve can have. Note that Severi’s construction is not
of much help, since, for instance, a generic conjugation-invariant configuration of d
lines in the plane can have at most

[
d
2

]
elliptic nodes. The patchworking construction

invented byO.Viro around 1980 for the study of the topology of smooth real algebraic
varieties (see, for instance, the Appendix to [31]) was later applied to curves and
hypersurfaces with singularities (see [31, Sect. 2.3]). It allowed one to completely
answer the above question [77]. Another solution was later suggested by Pecker [65],
who used explicit parameterizations of real rational curves, obtaining, for instance,
the quintic shown in Fig. 2.2a. Here we demonstrate the patchworking construction,
which also applies efficiently to curves with singularities of other types, while the
methods of [65] are restricted to nodal curves only.

The version of the patchworking construction which we need was introduced in
[77, 79] (see also [31, Sects. 2.3 and 4.5.1]). Let us be given a convex lattice polygon

 ⊂ R

2 and a convex4 subdivision of it into convex lattice polygons 
1, ...,
N .
Let F1, ..., FN be bivariate complex or real polynomials with Newton polygons

1, ...,
N , respectively, such that

(i) the truncations of Fi and Fj on the common side σ of 
i and 
 j coincide,
(ii) each polynomial Fi is peripherally nondegenerate, i.e., the truncation of Fi on

any side of 
i defines a smooth curve in (C∗)2,
(iii) each polynomial Fi defines a curve with isolated singularities in (C∗)2.

Denote by S(Fi ) the multi-set of topological or analytic types of the singular
points of the curve Fi (x, y) = 0 in (C∗)2.

Then we orient the adjacency graph of the polygons 
1, ...,
N without oriented
cycles and verify the S-transversality condition (S being the topological or analytic
equivalence of singularities, see [31, Definition 2.3.3 and Definition 2.3.12]) for each
patchworking pattern (
i , ∂
i,+, Fi ), where ∂
i,+ is the union of the sides of 
i

corresponding to the incoming arcs of the adjacency graph and S stands for the
chosen complex or real topological or analytic equivalence of singularities.

The following patchworking theorem for curves says that we can “glue” the poly-
nomials Fi together to one polynomial F , which defines a curve with isolated sin-
gularities in (C∗)2 that inherits the singularity types from the Fi .

Theorem 2.3.3 With the above notations and assumptions let F1, ..., FN with prop-
erties (i), (ii), (iii) be given. Then there exists a polynomial F(x, y) with Newton
polygon 
 such that

S(F) =
N⋃

i=1

S(Fi ).

4A convex subdivision is a subdivision into linearity domains of some convex piecewise linear
function defined on the lattice triangle Td = Conv{(0, 0), (d, 0), (0, d)}.
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Fig. 2.3 Patchworking of a
real plane curve with elliptic
nodes

Moreover, the family of S-equisingular curves defined by polynomials with Newton
polygon 
 is T -smooth at {F = 0}.
We say that a family of curves is S-equisingular, if the choosen types S of the
singular points of the curves stay locally constant along some section.

One of the nicest sides of the patchworking construction is that it works equally
well over the complex and the real fields. The first example illustrating this feature
is as follows.

Theorem 2.3.4 For any integer d ≥ 3 and nonnegative integers a, b, c, the
inequality

a + b + 2c ≤ (d − 1)(d − 2)

2
, (2.29)

is necessary and sufficient for the existence of a real plane irreducible curve of degree
d having a hyperbolic nodes, b elliptic nodes and c pairs of complex conjugate nodes
as its only singularities. Moreover, the constructed curves belong to a T -smooth
family.

Proof The necessity follows from the genus bound (2.3). Thus, we focus on the
construction. We only sketch the proof, which in full detail is presented in [77].
Namely, we shall prove the theorem in the case a = c = 0. As noticed in Remark
2.3.2, it is enough to construct a real rational curve with (d−1)(d−2)

2 elliptic nodes
(since the curves belong to a T -smooth family). Consider the subdivision of the
lattice triangle Td = Conv{(0, 0), (d, 0), (0, d)} into lattice triangles as shown in
Fig. 2.3. Observe that the number of interior integral points in these triangles amounts
to (d−1)(d−2)

2 .
Each tile of the subdivision is a triangle of the formT =Conv{(0, 0), (0, 2), (m, 1)}

(up to an automorphism of the lattice Z
2). We claim that the real polynomial

F(x, y) = y2 − 2y Pm(x + λ) + 1, (2.30)

where Pm(x) = cos(m arccos x) is them-th Chebyshev polynomial and λ is a generic
real number, has Newton polygon T and defines a real plane curvewithm − 1 elliptic
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nodes in (R∗)2. Note that m − 1 is the number of interior integral points in T . To
prove the claim it is enough to rewrite the equation of the curve F(x, y) = 0 in the
form

y = Pm(x + λ) ±
√

Pm(x + λ)2 − 1

and recall that Pm hasm − 1 extrema:
[

m
2

]
minima on the level−1 and

[
m−1
2

]
maxima

on the level 1.
Now we associate with each triangle T (i) of the subdivision a polynomial Fi)

with Newton triangle T (i) which is obtained from a polynomial like (2.30) by the
coordinate changematching an appropriate automorphism of the latticeZ

2. A further
transformation F (i)(x, y) �→ αi F (i)(βi x, γi y) with suitable positive αi , βi , γi ∈ R

equates the truncations of each pair of the neighboring polynomials F (i), F (i+1) on
the common side of T (i) and T (i+1). To complete the proof, we apply Theorem 2.3.3,
observing that, in the nodal case, every patchworking pattern (T (i), ∂+T (i), F (i)) is
S-transversal (S being the topological or analytic equivalence of singularities), see
[79, Theorem 4.2] or [31, Corollary 4.5.3]. �

2.3.2 Plane Curves with Nodes and Cusps

Questions concerning the number of nodes and cusps on a plane curve of a given
degree are classical and highly nontrivial as compared to the purely nodal case, in
particular over the reals. No complete answer is known in general, neither in the
complex case, nor in the real one.

The general restrictions for their existence from Sect. 2.2, such as the genus
formula, the Plücker formulas, and the bounds by Hirzebruch-Ivinskis [41, 43] and
Langer [51] take a special simple form for curves with nodes and cusps. We compare
the asymptotics of the bounds by Hirzebruch-Ivinskis and Langer if the degree goes
to infinity.

In the second part of this section we report on the state of knowledge on curves
with many cusps, complex as well as real. Special attention will be given to small
degrees, with precise references to their construction.

The last part is devoted to the patchworking construction, which provides an
asymptotically complete answer if we restrict to real and complex plane curves with
nodes and cusp belonging to T -smooth equisingular families.

For the results of this section see also [31, Sects. 4.2.2.2, 4.5.2.1] (for restrictions)
and [31, Sects. 4.5.2.2, 4.5.2.3] (for constructions).

In the whole section we consider complex or real curves which are irreducible
over the complex numbers.

Restrictions for the existence

Let C be a curve with only nodes and cusps as singularities. For a node we have
δ = μ = 1, κ = 2 and for a cusp δ = 1, μ = 2, κ = 3. Hence the Formulas (2.4),
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resp. (2.9), give as a necessary condition for the existence of an irreducible, resp. not
necessarily irreducible, curve with n nodes and k cusps the estimates

2n + 2k ≤ (d − 1)(d − 2), resp.

n + 2k ≤ (d − 1)2.

By combining the Plücker Formulae (2.15) and (2.17) with Formula (2.18) and the
fact that d∗(d∗ − 1) ≥ d (resulting from formula (2.14)), one gets the following
necessary conditions for the existence of irreducible curves, that is, for the non-
emptiness of V irr

d (n A1 + k A2), originally due to Lefschetz [52]:

2n + 3k ≤ d2− d − √
d ,

6n + 8k ≤ 3d2− 6d . (2.31)

Better bounds from Hirzebruch-Ivinskis, Langer, and spectral estimates are
obtained as a consequence of deep results in algebraic geometry. The general
Hirzebruch-Ivinskis inequality (2.21) reads for a curve of an even degree d ≥ 10
with n nodes and k cusps as (cf. (2.22))

9

8
n + 2k ≤ 5

8
d2− 3

4
d for all d even, d ≥ 6 (2.32)

Langer’s inequality (2.24) applies to all degrees d ≥ 10, and in this range it is
always better then (2.32). Hirzebruch-Ivinskis (HI) compared to Langer (L) gives:

(HI): 0.5625n + k ≤ 0.3125d2 − 0.375d,

(L): 0.5821n + k ≤ 0.3091d2 − 0.3453d.

In particular, Langer’s inequality implies that the maximal number of cusps kmax(d)

on a curve of degree d satisfies

lim
d→∞ sup

kmax(d)

d2
≤ 125 + √

73

432
= 0.3091... . (2.33)

We also mention the spectral bound [94, Theorem, p. 164]

1

2
n + k ≤ 1

2
·
(
the number of integral points (i, j) satisfying
0 < i, j < d, d

6 < i + j ≤ 7
6d

)
(2.34)

= 23

72
d2 + O(d) ≈ 0.3194d2 + O(d),

which is asymptotically weaker than the Hirzebruch-Ivinskis’ and Langer’s bounds.



2 Plane Algebraic Curves with Prescribed Singularities 89

Curves with a large number of cusps

The problem of existence of plane curves with a large number of cusps attracted a
special attention, due to the fact that themaximal possible number of cusps in general
is not known yet. We shortly describe here several constructions.

Following Zariski [108, Formula (14), p. 220], consider curves C (1)
r ⊂ P

2 of
degree d = 6r , r ≥ 1, given by F2 + G3 = 0, where F, G ∈ C[x, y, x] are generic
homogeneous polynomials of degree 3r and 2r , respectively. The curves F = 0 and
G = 0 then intersect transversally at 6r2 distinct points, and each of these intersection
points is an ordinary cusp of the curve C (1)

r . The total number of cusps is 6r2 = d2

6 ,
which is far from the upper bounds discussed above. However, choosing appropriate
real F and G, one can obtain a real irreducible curve C (1)

r of degree d = 6r with d2

6
real cusps.

Ivinskis’ construction [43] has provided a bigger number of cusps. Namely, he
started with the sextic curve F(x, y, z) = 0 having 9 cusps in the torus (C∗)2 and
considered the series of curves C (2)

r = {F(xr , yr , zr = 0}, r ≥ 1, of degree d = 6r .
Since the substitution of (xr , yr , zr ) for (x, y, z) defines an r2-sheeted covering of
the torus (C∗)2, we obtain that C (2)

r has 9r2 = d2

4 cusps. This number of cusps is
closer to the upper bounds, but the number of real cusps of C (2)

r is at most 12.
A new idea was suggested by Hirano [39]: she used a sequence of coverings

defined by the substitution of (x3, y3, z3) for (x, y, z), choosing each time the coor-
dinate system with axes tangent to the current curve, and noticing that each tangent
point like that lifts to three ordinary cusps. In particular, starting with the sextic
curve having 9 cusps, she produced the sequence of curves C (3)

k , k ≥ 1, of degree
d = dk = 2 · 3k , having

sk = 9

8
(9k − 1)

cusps. The limit ratio of the number of cusps by the square of the degree equals here

lim
k→∞

sk

d2
k

= 9

32
= 0.28125,

which is closer to Langer’s bound (2.33). Moreover, this was the first example of an
equisingular family having a negative expected dimension

dk(dk + 3)

2
− 2sk ∼ −d2

k

16
as k → ∞,

implying that the cusps impose dependent conditions on the space of curves of degree
d and that this E SF is not T -smooth.

The construction by Hirano was later refined by Kulikov [50] and then by Calabri
et al. [9, Theorem 6], who found a sequence of curves C (4)

k of degree dk = 108 · 9k ,
k ≥ 1, having at least

sk = 69309

20
92k − 27 · 9k − 9

20
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cusps, which yields the (so far) best known limit ratio

lim
k→∞

sk

d2
k

= 2567

8640
= 0.2971... .

Notice also that the constructions by Hirano, Kulikov, and Calabri et al. give a
rather small number of real cusps.

For small degrees d, the known upper bounds often coincide with the known
maximal number smax(d) of cusps of a plane curve of degree d or differ by 1. We
present the results in the following table with an additional information on the known
maximal number smax,R(d) of real cusps on a real curve of degree d.

Degree 3 4 5 6 7 8 9 10 11 12
Upper bound 1 3 5 9 10 15 21 26 31 40
smax 1 3 5 9 10 15 20 26 30 39
smax,R 1 3 5 7 10 14 14 18 23 28

The upper bounds for 3 ≤ d ≤ 6 follow from the second Plücker formula in the
form (2.31). The upper bounds for 7 ≤ d ≤ 9 were proved by Zariski [108, pp. 221,
222]: he showed that for the d-multiple cover of the plane ramified along a plane
curve of degree d with only nodes and cusps, the irregularity vanishes [108, p. 213],
and then he derived that the family of curves of degree d − 3 − [ d−1

6

]
passing through

the cusps of the given curve was unobstructed; hence, the number of cusps does not
exceed (d−m)(d−3−m)

2 + 1, where m = [ d−1
6

]
(cf. [108, Formula (18) on page 221]).

The bounds for 9 ≤ d ≤ 10 follow also from the spectral estimate (2.34). The bound
31 ford = 11 follows from the semicontinuity of the spectrum for lower deformations
of quasihomogeneous singularities [95, Theorem in page 1294] applied to the open
interval

(
2
11 ,

13
11

)
(different from that in (2.34)). At last, the bound 40 for d = 12

follows from the Hirzebruch-Ivinskis estimate (2.32).
The cubic, quartic, quintic, sextic, and septic with the indicated number of cusps

were classically known. For example, the quartic is dual to the nodal cubic, while
the sextic is dual to a smooth cubic, and the quintic was known to Segre (an explicit
construction can be found in [33], see also Fig. 2.2b). The maximal known cuspidal
curves for d = 10 and 12 were constructed by Hirano [39]. The maximal known
cuspidal curves for d = 8, 9, and 11 were constructed via patchworking respectively
in [79, Theorem 4.3] and [9, Appendix], [31, Sect. 4.5.2.3]. The maximal cuspidal
septic was constructed by Zariski [108, p. 222] (see also [45]). We comment on
this result, which nicely combines duality of curves with the classical result on
deformation of curves: the nodes and cusps of an irreducible plane curve of degree
d can be independently deformed in a prescribed way or preserved as long as the
number of cusps is less than 3d [71, 72]. Zariski starts with the sextic having 9 cusps,
deforms it into the sextic with 7 cusps and one node, takes its dual which is a curve
of degree 7 with 10 cusps and 3 nodes and, finally, smoothes out the nodes.

For d ≤ 5, there are real maximal cuspidal curves with only real cusps: such a
quartic is dual to the cubic with an elliptic node, the cuspidal quintic constructed in
[33] and shown in Fig. 2.2b is real and has only real cusps. The knownmaximal num-
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bers of real cusps for degrees 6 ≤ d ≤ 8 were reached in [42]. It is interesting that
smax,R(6) = 7 is the actual maximum for real sextics as shown in [42]: the absence
of a real sextic with 8 real cusps was derived from a delicate analysis of the moduli
space of real K3 surfaces obtained as double covers of the plane ramified along a real
plane sextic curve. The values of smax,R for 9 ≤ d ≤ 12 are borrowed from Theorem
2.3.6.

Patchworking curves with nodes and cusps.

The patchworking construction gives an asymptotically proper answer to the exis-
tence problem for real and complex plane curves with nodes and cusps. If we restrict
our attention to real and complex plane curves with nodes and cusp which belong to
T -smooth equisingular families, then this construction, in view of (2.10), provides
an asymptotically complete answer (see [79, Theorems 2.2, 3.3, and 4.1] and [31,
Sect. 4.5.2.2]):

Theorem 2.3.5 For any non-negative integers d, n, k such that

n + 2k ≤ d2− 4d + 6

2
, (2.35)

there exists a (complex) plane irreducible curve with n nodes and k cusps as only
singularities. Moreover, the result is asymptotically T -smooth optimal, i.e., up to
linear terms in d no more nodes and cusps are possible on a curve belonging to a
T -smooth E SF.

Theorem 2.3.6 (1) For any d ≥ 3 and any positive integer c such that

c ≤ d2 − 3d + 4

4
, (2.36)

there exists a real plane curve of degree d with c real cusps as its only singularities.
(2) There exists a linear polynomial ψ(d) in the variable d such that, for any

d ≥ 3 and nonnegative integers nh, ne, nim, cre, cim with

nh + ne + 2nim + 2cre + 4cim ≤ d2

2
+ ψ(d), (2.37)

there is a real plane curve of degree d having nh hyperbolic nodes, ne elliptic nodes,
nim pairs of complex conjugate nodes, cre real cusps, and cim pairs of complex
conjugate cusps as its only singularities.

Moreover, these curves correspond to T -smooth germs of the respective equisingular
families of curves with cusps in (1) resp. with nodes and cusps in (2) and the bounds
in (2.36) and (2.37) are asymptotically optimal w.r.t. T -smooth E SF.

Proof We prove here the part (1) of Theorem 2.3.6, referring to the references above
for the rest. Consider the subdivision of the lattice triangle Td = Conv{(0, 0), (d, 0),
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Fig. 2.4 Construction of real curves with real cusps

(0, d)} into the lattice quadrangles an triangles depicted in Fig. 2.4a. It is not difficult
to show that the subdivision is convex.

It is easy to see that, for any given α, β, γ ∈ R
∗, there exist real polynomials

F1(x, y) = αy + βx + γ x2 + a11xy + a12xy2,

F2(x, y) = αy2 + βx + γ x2y + b11xy + b12xy2,

withNewton quadrangles Q1, Q2 (see Fig. 2.4b) which define curves with a real cusp
in (R∗)2. Both curves coincide with the real cuspidal cubic tangent to the coordinate
axes in an appropriate way. Thus, we can associate compatible real polynomials with
each tile of the subdivision so that the polynomials for the translates of Q1 and Q2

will define real curves with a real cusp in (R∗)2. Orient the adjacency graph of the
subdivision so that, for each pattern (
i , ∂+
i , Gi ), the part of the boundary ∂+
i

will consist of the two lower sides of each translate of Q1 and Q2. The lattice length
of the rest of the boundary is 2, which is greater than 1, the number of cusps in (C∗)2,
which finally yields the transversality of each pattern (see [79, Theorem 4.1(1)] or
[31, Proposition 4.5.2]). By Theorem 2.3.3 there exists a real curve of degree d with

real cusps as its only singularities, where the number of cusps equals
[

d2−3d+4
4

]
,

the number of translates of Q1 and Q2 in the subdivision. Since the resulting curve
belongs to a T -smooth equisingular family, it can be deformed with smoothing out
prescribed cusps. �
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We note that the inequalities (2.35), (2.36) and (2.37) differ, w.r.t. the number of
cusps, from the restriction of the genus bound (2.3) by a factor 1

2 at d2 and a term
linear in d, showing that the result is asymptotically proper.

2.4 Plane Curves with Arbitrary Singularities

In this section we discuss curves with special singularities (ordinary multiple points,
simple singularities) as well as curves with arbitrary singularities up to topological or
analytic equivalence. Moreover, the bounds based on the Bogomolov-Miyaoka-Yau
inequality are mainly restricted to simple singularities and semi-quasihomogeneous
singularities (we discuss this in more detail in Sect. 2.4.2). Thus, in general we are
left only with the genus bound, the Plücker bounds, and the spectral bound.

2.4.1 Curves of Small Degrees

For degrees≤ 6 the possible collections of singularities of irreducible complex plane
curves are classified.

The fact that an irreducible real or complex cubic may have either a node A1 or a
cusp A2 was known already to Newton [60–62] (for a modern treatment of Newton’s
study, see [49]).

Collections of singularities of complex irreducible quartic curves can easily be
classified bymanipulating equations or by using quadratic Cremona transformations,
and all this has been known to algebraic geometers of the 19-th century. Moreover,
it can be shown that each collection of singularities defines a smooth irreducible
subvariety of expected dimension in the space P

14 of plane projective quartics (see,
for instance, [7, 98]). The classification of real singular quartic curves was completed
in [34] (see also [48] for more details as well as for the classification of real singular
affine quartics).5

Still, the classification of collections of singularities of irreducible plane quin-
tic curves can be reached by elementary methods. The complete classification of
singularities of plane quintics together with the statement that each collection of
singularities defines a smooth irreducible equisingular family of expected dimension
can be found in [16] and [17, Sect. 7.3] (se also [33, 99] for interesting particular
examples of singular quintics).

The case of plane sextic curves is the first non-elementary one. The study of plane
sextics heavily relies of a thorough investigation of K3 surfaces appearing as double
covers of the plane ramified along the considered sextic curve. On the other hand, it
reveals a highly interesting new phenomenon - the existence of the so-called Zariski

5Both papers contain much more material: they classify all possible dispositions of singular points
on the real point set of the quartic curve.
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pairs, i.e., pairs of curves having the same collection of singularities, but belonging
to different components of the equisingular family. The first example presenting two
sextic curves with 6 ordinary cusps that have non-homeomorphic complements in
the projective plane was found by Zariski [108, p. 214]. The complete classification
of collections of singularities (up to topological equivalence) can be found in [3]
and [17, Sect. 7.2] (various particular cases have been investigated in [91–93]). The
classiication of real singularities of real sextics is not completed yet (for the case of
complex and real cusps, see Sect. 2.3.2 above).

2.4.2 Curves with Simple, Ordinary, and
Semi-quasihomogeneous Singularities

In the present section we construct equisingular families of curves with many simple
resp. ordinary resp. semi-quasihomogeneous singularities and compare their number
with the known necessary bounds. Again, bymeans of the patchworking construction
we are able to construct families such that the number of singularities is asymptot-
ically optimal resp. proper. The results presented in Theorem 2.4.5, 2.4.6 and 2.4.7
are new.

Curves with simple singularities. The patchworking construction, essentially used
in Sect. 2.3 for the construction of curves with real and complex nodes and cusps,
works equally well in the case of arbitrary simple singularities An , n ≥ 1, Dn , n ≥ 4,
En , n = 6, 7, 8. The results of [83, 100] on the existence of plane complex curves
with simple singularities can be summarized in the following statement (cf. [31,
Theorem 4.5.5])

Theorem 2.4.1 (1) For any simple singularity S, there exists a linear polynomial
ϕS(d) such that the inequality

kμ(S) ≤ d2

2
+ ϕS(d) (2.38)

is sufficient for the existence of an irreducible complex plane curve of degree d
having k isolated singular points of type S as its only singularities and belonging to
a T -smooth ESF.

(2) Furthermore, for any integer m ≥ 1, there exists a linear polynomialψ simple
m (d)

such that the inequality

r∑

i=1

μ(Si ) ≤ d2

2
+ ψ simple

m (d), (2.39)

with arbitrary r and simple singularities S1, ..., Sr with Milnor numbers ≤ m, is
sufficient for the existence of an irreducible complex plane curve of degree d having
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r isolated singular points of types S1, ..., Sr , respectively, as its only singularities
and belonging to a T -smooth ESF.

Notice that this existence statement is asymptotically optimal as long as we con-
sider curves belonging to T -smooth E SF . Indeed, the codimension of a T -smooth
E SF in the considered cases equals the left-hand side in (2.38) or (2.39) (see [23,
Corollary 6.3(ii)] and [31, Theorem 2.2.40]), and hence satisfies

kμ(S) ≤ d(d + 3)

2
, resp.

r∑

i=1

μ(Si ) ≤ d(d + 3)

2
.

In each case, the difference between the bounds in the necessary and sufficient condi-
tions is linear in d. For the proof we refer to [83, 100] (see also the proof of Theorem
2.4.5).

The existence of real curves with simple singularities was analyzed in [101] along
the same lines, though the argument was incomplete: in particular, Lemma 3.1 in
[101] is wrong as pointed out by E. Brugallé. So, in general the problem over the
reals remains open.

While the patchworking construction basically resolves the existence problem for
curves with simple singularities that impose independent conditions on the coeffi-
cients of the defining equation, there are examples of curves with extremely many
simple singularities imposing thereby dependent conditions on the curve.

So, the construction invented by Hirano [39] (which we discussed in connection
to plane curves with large number of cusps, Sect. 2.3.2) applies well also to more
complicated cusps An (see [39, Theorem 2]). Namely, one starts with a smooth
conic and, in each step, chooses axes tangent to the current curve and substitutes
(xn+1, yn+1, zn+1) for (x, y, z), which results in the following sequence of singular
curves:

Theorem 2.4.2 For any even n ≥ 4, there exists a sequence of irreducible complex
plane curves Ck, k = 1, 2, ..., of degree dk = 2(n + 1)k having

sk = 3(n + 1)((n + 1)2k − 1)

n(n + 2)

singular points of type An as their only singularities.

Remark 2.4.3 In fact, Hirano’s construction works for odd n ≥ 3 as well with the
above formulas for the degree and for the number of An singularities, but the curves
appear to be reducible.

Since a singularity An imposes in general τ(An) = μ(An) = n conditions, we
obtain that the total number of conditions compared with the dimension of the space
of curves of the given degree reveals the following asymptotics:

lim
k→∞

nsk

dk(dk + 3)/2
= 3

2
− 3

2(n + 2)
> 1 for all n ≥ 2. (2.40)
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Thus, the An impose dependent conditions and the corresponding equisingular stra-
tum is not T -smooth. For instance, in general, we cannot decide whether there exist
curves of degree dk with any number m < sk of singularities of type An .

Other series of extremal examples exhibit plane curves with one singularity Am

with m = m(d) as large as possible for a given degree d. More precisely, each series
consists of plane curves of degrees d → ∞with one Am(d) singularity: Gusein-Zade
and Nekhorochev [36, Proposition 2] constructed a series of curves for which

lim
d→∞

m(d)

d(d + 3)/2
= 15

14
= 1.0714... .

Later Cassou-Nogues and Luengo [13] obtained another sequence of curves with

lim
d→∞

m(d)

d(d + 3)/2
= 8 − 4

√
3 = 1.0717... .

The best known result is due to Orevkov [64, Sect. 4]:

Theorem 2.4.4 There exists a sequence of plane curves of degrees dk → ∞ as
k → ∞ having a singular point of type Amk such that

lim
k→∞

mk

dk(dk + 3)/2
= 7

6
= 1.1666... .

The ratios of the number of imposed conditions to the dimension of the space of
curves of a given degree in all these examples appears to be > 1; hence, we again
observe a non-T -smooth equisingular family. Also, in general, we cannot decide
whether there exist curves of degree dk with an Ar singularity for all r < mk .

It is worth to compare the extremal examples by Hirano and Orevkov with the
known restrictions. The genus bound (2.3) and Plücker formulas (2.14), (2.17) yield
weaker bounds than the Hirzebruch-Ivinskis’ and the spectral ones. Namely, the
Hirzebruch-Ivinskis bound (2.21) combined with the first formula in (2.22) implies
that the limit ratio of the total Milnor number to the dimension of the space of curves
of the given degree does not exceed

5(n + 1)

3(n + 2)
in the case of Hirano,

5

3
in the case of Orevkov.

By (2.25) the spectra of the singularity An and of an ordinary d-fold singularity are

{
k

n + 1
− 1

2
: 1 ≤ k ≤ n

}
,

{
i + j

d
− 1 : 1 ≤ i, j ≤ d − 1

}
,
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respectively. Applying the semicontinuity of the spectrum on the interval ( n
n+1 −

3
2 ,

n
n+1 − 1

2 ], one can easily derive an upper bound of the total Milnor number for the
existence of a curve of fixed degree d with s singular points of type An:

sn ≤ #

{
(i, j) ∈ Z

2
∣∣ 1 ≤ i, j < d,

n

n + 1
− 1

2
<

i + j

d
≤ n

n + 1
+ 1

2

}
. (2.41)

If we fix n ≥ 2 and let d → ∞, then we obtain

lim
d→∞ sup

sn

d(d + 3)/2
≤ 3

2
− 2

(n + 1)2
,

which is comparable with the limit ratio in examples of Hirano (2.40), showing that,
for large n the spectral bound is almost sharp.

If we let s = 1 and d → ∞ in (2.41), we will obtain

lim
d→∞ sup

n

d(d + 3)/2
= 3

2
,

which differs from the asymptotical ratio attained in Orevkov’s examples, Theorem
2.4.4, leaving open the question on the sharpness of the spectral bound in the case
of one singularity An .

Curves with ordinary multiple singular points. By an ordinary (multiple) singu-
lar point we understand a singularity consisting of several smooth local branches
intersecting each other transversally. It happens that the patchworking construction
provides an asymptotically optimal existence condition for curveswith ordinarymul-
tiple points as well, which, moreover, completely covers both the complex and the
real case.

Theorem 2.4.5 For a fixed positive integer m the following holds:
(1) There exists a linear polynomial ψ

ordinary
m, f i x (d) such that, for an arbitrary

sequence of integers r2, ..., rm ≥ 0, the inequality

m∑

i=2

i(i + 1)

2
ri ≤ d2

2
+ ψ

ordinary
m, f i x (d) (2.42)

is sufficient for the existence of an irreducible complex plane curve of degree d in
a T-smooth equisingular family, having ri ordinary singular points of multiplicity
i = 2, ..., m as its only singularities, all of them in general position.

(2) Furthermore, the same inequality (2.42) is sufficient for the existence of a
real plane irreducible curve of degree d in a T-smooth equisingular family, having
the given collection of ordinary multiple points in conjugation-invariant general
position, when we prescribe the numbers of pairs of imaginary ordinary singular
points for each multiplicity 2, ..., m and prescribe the number of real local branches
for each real ordinary singular point.
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Note that the necessary existence condition in the setting of Theorem 2.4.5 is

m∑

i=2

i(i + 1)

2
ri ≤ d(d + 3)

2
,

as long as d is big enough, which follows from the Alexander-Hirschowitz theo-
rem [4, Theorem 1.1] (see also [31, Theorem 3.4.22]). That is, the bound (2.42) is
asymptotically optimal (even for non-T-smooth families).

Proof The first part of the theorem follows, in fact, from the Alexander-Hirschowitz
theorem [4, Theorem 1.1] after some routine work ensuring that a generic bivariate
polynomial of degree d, whose derivatives vanish up to appropriate order at the
given points in general position, defines an irreducible curve with only ordinary
singularities as prescribed. The second part, however, is not accessible within this
framework, since the control over the real singularity types may require at least d2

m
extra independent conditions, which is not bounded by a linear function of d. So, to
prove the second statement (and thereby the first one), we apply a suitable version
of the patchworking construction.

The main element of the construction consists of a collection of the following
patchworking patterns. Fix any 2 ≤ i ≤ m and consider the lattice rectangle Ri =
Conv{(0, 0), (0, i), (i + 1, 0), (i + 1, i)}.We claim that there exists a real irreducible
polynomial Fi (x, y) with Newton polygon Ri (see Fig. 2.5a) which defines a real
plane curve having in (C∗)2 exactly two singular points:

• either two complex conjugate ordinary singularities of order i ,
• or two real ordinary singularities with the prescribed number j ≤ i/2 of pairs of
complex conjugate local branches.

Indeed, in the projective plane P
2 with coordinates x, y, z consider the pencil of

conics passing through the points (1, 0, 0) and (0, 1, 0) and through two more points
p1, p2 ∈ (C∗)2 = P

2 \ {xyz = 0}, either a pair of complex conjugate points, or a pair
of real generic points. In the case of complex conjugate p1, p2, we pick i distinct
smooth real conics Q1, ..., Qi in our pencil, while in the case of real p1, p2, we
pick i smooth conics Q1, ..., Qi in our pencil so that i = 2 j of them are real and
the others form j pairs of complex conjugate conics. Consider the projective curve
Q1 · · · Qi · L = 0, where L = x + λz with a generic real number λ. This curve has
ordinary singularities of order i at p1, p2, and (0, 1, 0), an ordinary singularity of
order i + 1 at (1, 0, 0), and i more nodes, which are intersection points of the line
L = 0 with the conics. There exists a small real deformation of the considered curve
that preserves the ordinary singularities at p1, p2, (1, 0, 0), and (0, 1, 0) and smoothes
out all the extra nodes. This follows directly from [76, Theorem, p. 31] or, after the
blowing up � → P

2 of the four ordinary singularities, from [23, Theorem 6.1(iii)],
since each component C of the blown-up curve satisfies −C K� > 0, and the nodes
do not contribute to the right-hand side of the required inequalities (see also [31,
Theorem 4.4.1(b) (formula (4.4.1.3)), Proposition 4.4.3(b) (formula (4.4.1.10)), and
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Fig. 2.5 Patchworking of real curves with ordinary singularities

Remark 4.4.212(ii)]). So, we obtain the desired polynomial Fi by substituting z = 1
into the equation of the above deformed curve.

Then we subdivide the lattice triangle Td = Conv{(0, 0), (d, 0), (0, d)} into con-
vex lattice polygons, in which the desired number of patches corresponding to any
fixed real ordinary singularity type should be arranged as shown in Fig. 2.5b. The
polynomials for each rectangle are obtained from just one suitable polynomial Fi

constructed above, which should be multiplied by an appropriate monomial and
undergo the coordinate change x �→ x−1 and/or y �→ y−1 in order to make any two
neighboring polynomials agree along the common side of their Newton rectangles.
Between the unions of rectangles corresponding to different types of ordinary sin-
gularities, we leave the space of vertical size at most m − 1 (shown by dashed lines
in Fig. 2.5b) which should be subdivided into lattice triangles with the associated
polynomials defining smooth real curves in (C∗)2 so that finally one obtains a convex
subdivision of Td . To apply the patchworking theorem [79, Theorem 3.6] we have to
verify the topological transversality conditions. With an appropriate orientation of
the adjacency graph of the tiles of the subdivision, we get ∂+ Ri in each rectangle Ri

to be the union of the bottom and the left sides. The sufficient transversality condition
stated in [79, Theorem 4.1(1), the first formula] (see also [31, Proposition 4.5.2 and
Corollary 1.2.22]) reads as

the contribution of the two i − multiple points = 2i

< 2i + 1 = the total length of the upper and the right sides of Ri .

Finally, we note that the resulting curve (obtained by the patchworking construc-
tion) admits by T -smoothness a deformation smoothing out any prescribed singu-
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larities and keeping the remaining ones. Thus, one can realize any values in the
right-hand side of (2.42) with φ

ordinary
m, f i x (d) ∼ m2d. �

Curves with semi-quasihomogeneous singularities. Consider curve singularities
topologically equivalent to xm + yn = 0, 2 ≤ m ≤ n. A slightly modified Zariski
construction mentioned in Sect. 2.3.2 provides a series of curves with a large number
of semi-quasihomogeneous singularities. Combining Zariski’s with the patchwork-
ing construction we obtain even a series of curves belonging to a T -smooth family.

Theorem 2.4.6 Let 2 ≤ m ≤ n.
(1) If gcd(m, n) = 1, then for any r ≥ 1, the curve C of degree d = rmn given

by Fn + Gm = 0, where F, G ∈ C[x, y, z] are generic homogeneous polynomials
of degree rm and rn, respectively, is irreducible and has r2mn = d2

mn singular points
of type xm + yn = 0 as its only singularities.

(2) If gcd(m, n) > 1, then for any r ≥ 1, the curve C of degree d = rmn + 1 given
by L1Fn + L2Gm = 0, where F, G ∈ C[x, y, z] are generic homogeneous polyno-
mials of degree rm and rn, respectively and L1, L2 are generic linear polynomials,
is irreducible and has r2mn = (d−1)2

mn singular points of type xm + yn = 0 as its only
singularities.

Moreover, in both cases we can assume that the constructed curves are real and
all their singular points are real.

Proof By construction, the curves F = 0 and G = 0 intersect transversally at r2mn
distinct points, and the curve C has the topological singularity xm + yn = 0 at each
of these intersection points. �

Note that the number of singularities obtained on these “Zariski curves” is close
to the genus bound (2.3): for instance, under the conditions of Theorem 2.4.6, the
number of the considered singular points does not exceed

(d − 1)(d − 2)

(m − 1)(n − 1) + gcd(m, n) − 1
<

(d − 1)2

(m − 1)(n − 1)
,

which is comparable with the actual numbers d2

mn and (d−1)2

mn of singularities. On the
other hand, we cannot guarantee that the conditions imposed on the curve by singular
points are independent; hence, we cannot ensure that there exist curves of the given
degree with any intermediate amount of singular points of the given type.

One can modify Zariski’s construction further and obtain a curve with different
semi-quasihomogeneous singularities, and, moreover, obtain a curve belonging to a
T -smooth equisingular stratum.

Theorem 2.4.7 (1) Given integers

d0, d ′
0 ≥ 0, d1, ..., dk, d ′

1, ..., d ′
l ≥ 1, m1, ..., mk, n1, ..., nl ≥ 2
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such that

d =
k∑

i=1

mi di + d0 =
l∑

j=1

n j d
′
j + d ′

0.

Then the plane curve of degree d

H
k∏

i=1

Fmi
i + H ′

l∏

j=1

G
n j

J = 0, (2.43)

where F1, ..., Fk, G1, ..., Gl , H, H ′ are generic homogeneous polynomials of degree
d1, ..., dk, d ′

1, ..., d ′
l , d0, d ′

0, respectively, has di d ′
j singular points of topological type

xmi + yn j = 0 for all i = 1, ..., k, j = 1, ..., l. Further on, we can achieve that the
constructed curve is real and all its singular points are real.

(2) In addition, if either

(i)

{ [
d0 �= d ′

0 or gcd(m1, ..., mk, n1, ..., nl) = 1
]

and
∑k

i=1

∑l
j=1 di d ′

j (mi + n j − gcd(mi , n j ) − ε(mi , n j )) < d̃(d ′ + 3),

where d ′ = min{d0, d ′
0}, d̃ = d − d ′,

ε(a, b) =
{
1, a ≡ 1 mod b, or b ≡ 1 mod a,

0, otherwise,

or
(ii)

k∑

i=1

l∑

j=1

di d
′
j (mi + n j − gcd(mi , n j ) − ε(mi , n j )) < d̃(d ′ + 2), (2.44)

then the curve constructed above belongs to a T -smooth equisingular family, and it
admits a deformation moving all its singular points to a general position.

Proof We have to explain only part (2). Consider the case (2ii). We can assume that
d0 = d ′

0 = d ′ > 0. We shall prove that the curve given by

Ĥ

⎛

⎝L
k∏

i=1

Fmi
i + L ′

l∏

j=1

G
n j

J

⎞

⎠ = 0, (2.45)

where F1, ..., Fk, G1, ..., Gl , L , L ′, Ĥ are generic homogeneous polynomials of
degree d1, ..., dk, d ′

1, ..., d ′
l , 1, 1, d ′ − 1, respectively, belongs to a T -smooth equi-

singular family with respect to the singular points located at the set
⋃

i, j {Fi =
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0} ∩ {G j = 0}, and all these singular points can be moved to a general position
(while the nodes located on H may disappear). Since these properties are open, they
will hold for the original curve (2.43) as well. On the other hand, by [76, Theorem
in page 31] the required properties will follow from [76, Inequality (4)] which in
our situation takes the form of (2.44) (cf. the definition of the invariant b in [76,
Definition 2]). In the same manner, one can settle the case (2i). �

Remark 2.4.8 (1) Under the hypotheses of part (2) of Theorem 2.4.7, one can
deform the curve (2.43) smoothing out prescribed singularities and keeping the other
ones.

(2) The hypotheses of Theorem 2.4.7(2) can be relaxed to the following one:

d ′ ≥ d̃ · max
i, j

{
1

mi
+ 1

n j

}
− 2 .

2.4.3 Curves with Arbitrary Singularities

Note that none of the constructions discussed in Sects. 2.3 and 2.4.2 can be applied
directly, if we ask about the existence of plane curves of a given degree with a
prescribed collection of topological or analytic singularities, which are not further
specified. For instance, the patchworking construction requires tofind apatchworking
pattern for and prescribed singularity, i.e., a bivariate polynomial that defines a curve
with a given singularity and whose Newton polygon can be used as a tile in the
subdivision of the triangle Td = Conv{(0, 0), (d, 0), (0, d)}. To get a reasonable
existence result, one needs such tiles of a possibly minimal area, and it is not clear at
all how to find these minimal tiles for arbitrary topological or analytic singularities.

However, there is another approach that combines some features of the patchwork-
ing construction with suitable H 1-vanishing criteria for the ideal sheaves of zero-
dimensional subschemes of the plane placed in general position. The first attempt
like that, undertaken in [26], has led to the following existence criterion: for any
positive integer d and topological singularity types S1, ..., Sr , the inequality

r∑

i=1

μ(Si ) ≤ d2

392
(2.46)

is sufficient for the existence of an irreducible plane curve of degree d having r
singular points of types S1, ..., Sr , respectively, as its only singularities.

This criterion already possessed two important properties: it was universal, i.e.,
uniformly applicable to arbitrary topological singularities, and asymptotically proper
i.e. comparable with the necessary condition (2.4). On the other hand, the analytic
singularity types were left aside, and the coefficient of d2 in (2.46) was too small. An
improved method was suggested in [81] (for a further improvement and a detailed
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exposition see [31, Sect. 4.5.5]). Themain result was (cf. [81, Theorem 3 andRemark
5] and [31, Corollary 4.5.15]):

Theorem 2.4.9 For any positive integer d and an arbitrary sequence of complex,
resp. real, analytic singularity types S1, ..., Sr , the inequality

r∑

i=1

μ(Si ) ≤ 1

9
(d2 − 2d + 3) (2.47)

is sufficient for the existence of a plane irreducible complex, resp. real, curve of degree
d having r singular points of types S1, ..., Sr , respectively, as its only singularities.
Moreover, the positions of the singular points together with the tangent directions
for unibranch singularities can be chosen generically.

We point out that condition (2.47) has a much larger coefficient of d2 in the right-
hand side than (2.46) and covers both arbitrary topological and analytic singularity
types, being universal with respect to the choice of singularities.

We also remark that condition (2.47) is a weaker form of the following stronger
sufficient existence conditions (see [31, Theorem 4.5.14]):

6n + 10k + 49

6
t + 625

48

∑

Si �=A1,A2

δ(Si ) ≤ d2 − 2d + 3,

for topological singularity types S1, ..., Sr , and

6n + 10k +
∑

Si �=A1,A2

7μ(Si ) + 2δ(Si ))
2

6μ(Si ) + 3δ(Si )
≤ d2 − 2d + 3,

for analytic singularity types S1, ..., Sr . In these inequalities, n is the number of nodes
A1, k is the number of cusps A2, and t is the number of singularities A2m , m ≥ 2,
occurring in the list S1, ..., Sr . Notice that the coefficients in front of n and k in the
above two formulas are the best possible, since a node at a prescribed point imposes
3 conditions, while a cusp at a fixed point with a fixed tangent direction imposes 5
conditions.

The case of just one singularity is of special interest. The corresponding result
sounds as follows ([81, Theorem 2 and Remark 5] and [31, Theorem 4.5.19]):

Theorem 2.4.10 For an arbitrary analytic singularity type S, there exists a plane
curve of degree

d ≤ 3
√

μ(S) − 1 (2.48)

having a singular point of type S as its only singularity.

Remark 2.4.11 A necessary condition for d as in Theorem 2.4.10 comes, for
instance, from (2.4): d ≥ √

μ(S) + 1. Thus, the sufficient condition (2.48) is of
the same order

√
μ(S) as the necessary one.
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We comment on the main ideas behind Theorems 2.4.9 and 2.4.10:
The first important ingredient is to reduce the existence problem to an H 1-

vanishing condition for the ideal sheaf of a suitable zero-dimensional subscheme
of the plane. Namely, to each reduced plane curve germ (C, p) we associate two
zero-dimensional schemes Zs

st (C, p) and Z̃ a
st (C, p) in P

2 supported at p that are
defined as follows (cf. [31, Sects. 1.1.4 and 4.5.5.1]):

• Take the complete resolution tree T ∞(C, p), choose the subtree T ∗(C, p) con-
taining all infinitely near points which are not the nodes of the union of the strict
transform of (C, p) with the exceptional locus, and then define Zs

st (C, z) by the
ideal I s

st ⊂ OP2,p generated by the elements ϕ ∈ OP2,p having the multiplicity
mt(C, p) + 1 at p, and the multiplicity of the strict transform of (C, p) at each
infinitely near point q ∈ T ∗(C, p) \ {p}.

• Let (C, p) be given by f (x, y) = 0 with f ∈ OP2,p square-free, x, y affine coor-
dinates in a neighborhood of p such that p = (0, 0). Define Z̃ a

st (C, z) by the ideal
mp Ĩ a ⊂ OP2,p, where

Ĩ a = {g ∈ OP2,p : g, gx , gy ∈ 〈 f, fx , fy〉}.

The importance of these schemes comes from the following claim (cf. [31, Proposi-
tion 4.5.12]):

Lemma 2.4.12 Let Z denote Zs
st (C, p), resp. Z̃ a

st (C, p). If a positive integer d sat-
isfies

H 1(P2,JZ/P2(d)) = 0,

whereJZ/P2 is the ideal sheaf of the subscheme Z ⊂ P
2, then there exists a curve C ′ ⊂

P
2 of degree d such that the germ (C ′, p) is topologically, resp. analytic equivalent

to (C, p). Furthermore, the corresponding equisingular family V irr
d (S) (S being the

topological, resp. analytic type of (C, z)) is T-smooth at C ′.

The length of Zs
st (C, z) and Z̃ a

st (C, z) can be estimated from above by a linear
function in δ(C, p) and μ(C, p) (see [31, Corollary 1.1.4 and Lemma 1.1.78]).

It is not difficult to see that, for a randomly chosen germ (C, p), the minimal
d in Lemma 2.4.12 can be of order deg Z , i.e., of order μ(C, p), but

√
μ(C, p) is

required in Theorems 2.4.9 and 2.4.10. So, the second important idea is to replace
the germ (C, p), or, more precisely, the corresponding zero-dimensional scheme Z
by a generic element in Iso(Z), the orbit of Z by the action of the group Aut(OP2,p).
The principal bound is as follows (cf. [81, Propositions 8 and 10, Remark 3] and
[31, Proposition 3.6.1 and Corollary 3.6.4]). Given an irreducible zero-dimensional
scheme Z ⊂ P

2 supported at z ∈ P
2, denote by M2(Z) the intersection multiplic-

ity of two generic elements of the ideal I (Z) ⊂ OP2,z . If Z consists of irreducible
components Z1, ..., Zk , we set M2(Z) = M2(Z1) + ... + M2(Zk).

Lemma 2.4.13 For an arbitrary zero-dimensional Z of degree deg Z > 2, there
exists Z ′ ∈ Iso(Z) and
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Fig. 2.6 Necessary and sufficient conditions for existence: The statement holds asymptotically for
the region between the corresponding boundary curves

d ≤ deg Z√
4
3 M2(Z)

+
√
4

3
M2(Z) − 2

such that
H 1(P2,JZ ′/P2(d)) = 0 .

In the case of a reducible scheme Z = Z1 ∪ ... ∪ Zr , we move its supporting
points to a general position and choose generic element Z ′

i ∈ Iso(Zi ) for each
component Zi .

A proper combination of these two ideas (Lemmas 2.4.12 and 2.4.13) leads to
Theorems 2.4.9 and 2.4.10.

The following diagram illustrates the present knowledge about the existence
of plane curves of degree d with arbitrary (analytical or topological) singularities
S1, ..., Sr (Fig. 2.6).
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2.5 Related and Open Problems

2.5.1 Existence Versus T-Smoothness and Irreducibility

The existence problem for singular algebraic curves is tightly related to the geometry
of the corresponding equisingular family, especially, to the T -smoothness property,
which was crucial in the patchworking construction and also used in other construc-
tions. In this section, we construct singular plane algebraic curves of two sorts:
(i) those which demonstrate the sharpness of the known T -smoothness criteria and
(ii) those which yield examples of reducible equisingular families.

Recall the universal sufficient conditions for the T-smoothness (see [75, Theorem
1], [24, Corollary 3.9(d)], [28, Theorems 1 and 2] and [31, Theorems 4.3.8 and
4.3.9]):

Theorem 2.5.1 Let C be an irreducible plane curve of degree d with singular points
p1, ..., pr of topological or analytic types S1, ..., Sr respectively. Then the equisin-
gular family V irr

d (S1, ..., Sr ) is T -smooth at C if either

r∑

i=1

τ ′(Si ) < 4d − 4, (2.49)

where τ ′ = τ es if Si is a topological type and τ ′ = τ if Si is an analytic type, i =
1, ..., r , or

r∑

i=1

γ ′(C, pi ) ≤ (d + 3)2 , (2.50)

where γ ′ = γ es for Si is a topological type and γ ′ = γ ea for Si an analytic type,
i = 1, ..., r .

The symbols τ es, τ, γ es, γ ea are topological or analytic singularity invariants. For
precise definitions we refer to [31, Sect. 1.2.3.1 and Definition 1.1.63], and for the
detailed study of their properties to [31, Corollary 1.1.64, Proposition 1.2.26]. Here
we provide only the following information used below (see also Preliminaries):

• τ is the Tjurina number, i.e., the dimension of the Tjurina algebra

τ(C, p) = τ( f ) = dimC OP2,z/〈 f, fx , fy〉,

where a square-free element f ∈ OP2,z defines the curve germ (C, p), and x, y
are local coordinates;

• τ es(C, p) is the codimension of theμ-const stratum in the versal deformation base
of the curve germ (C, p); it always satisfies

τ es(S) ≤ τ(S) ≤ μ(S),
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with equalities for a simple singularity type S.
• γ es(C, p) ≤ γ ea(C, p) for any curve germ with equality if the singularity is sim-
ple, furthermore

γ ea(S)

{
= (μ(S) + 1)2, if S = An, n ≥ 1,

≤ (μ(S) + 1)2, otherwise.

We also recall important particular cases (see [31, Corollaries 4.3.6, 4.3.11, for-
mula (1.2.3.1)] and Theorem 2.5.1):

Theorem 2.5.2 (1) An irreducible plane curve of degree d with n nodes and k cusps
as its only singularities belongs to a T -smooth equisingular family if either

k < 3d , (2.51)

(any n ≥ 0, i.e., nodes do not count) or

4n + 9k ≤ (d + 3)3 . (2.52)

(2) An irreducible plane curve of degree d with r singular points of simple singu-
larity types S1, ..., Sr belongs to a T -smooth equisingular family if

∑

Si ∈A

(μ(Si ) + 1)2 +
∑

Si ∈D,E

max

{
(μ(Si ) − 1)2,

1

2
(μ(Si ) + 2)2

}
≤ (d + 3)3.

(2.53)

Remark 2.5.3 Observe that, first, the right-hand sides in the 4d-criterion (2.49) and
the 3d-criterion (2.51) for T -smoothness are only linear in d, while the sufficient
condition (2.47) for existence is quadratic in d in the right-hand side. Second, the T -
smoothness restrictions (2.51) and (2.52) are far away from the existence conditions
in Theorem 2.3.6, and, third, the invariants assigned to singular points in the left-
hand side of (2.50) and (2.53) are in general of order μ2(S), while in (2.47) we
have just μ(S). That is, for general analytic or topological types there exists a wide
range of nonempty equisingular families, which do not fall to the limits of Theorems
2.5.1 and 2.5.2. On the other hand, for curves with simple (Theorem 2.4.1) , ordinary
(Theorem2.4.5), and semi-quasihomogeneous singularites (Theorem2.4.7), we have
T -smooth equisingular families with asymptotically proper bounds for existence.

Thus, natural questions arise for arbitrary singularities:

(1) Does the difference between the left-hand sides of the sufficient T -smoothness
criteria in Theorems 2.5.1 and 2.5.2 and the left-hand side of the sufficient
existence criterion (2.47) reflect the lack of T -smoothness outside the limits
pointed in Theorems 2.5.1 and 2.5.2?

(2) Or, can the singularity invariants in the left-hand side of the sufficient T -
smoothness criteria be essentially diminished?
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We exhibit a series of singular plane algebraic curves and their families demon-
strating that the linear bounds (2.49) and (2.51) are sharp, the coefficients in the left-
hand side of (2.52) are sharp, and the singularity invariants in the other T -smoothness
conditions can, in principle, be improved only by a constant factor, while their order
with respect to the Milnor number persists. We mainly use the constructions dis-
cussed in Sects. 2.3 and 2.4. For all details and more examples see [31, Sects. 4.2.3,
4.3.3] and references therein.

The following example, which is due to du Plessis and Wall [18] (elaborated
further in [21]), shows that the bound (2.49) is sharp.

Theorem 2.5.4 For any d ≥ 5 the irreducible curve C ⊂ P
2 given by xd

1 + x5
2 xd−5

0 +
xd
2 = 0 has the unique singular point z = (1, 0, 0) with Tjurina number 4d − 4, and

the equisingular family V irr
d (S), where S is the analytic type of the germ (C, z), is

not T -smooth. Furthermore, the family V irr
d (S) is nonreduced for d ≤ 6, consists of

two intersecting components for d = 7, and is reduced, irreducible with a singular
locus containing C for d ≥ 8.

The examples found in [28, Proposition 4.5] (see also [31, Theorem 4.3.23]) show
that the classical Severi-Segre-Zariski bound (2.51) is sharp and that the coefficients
4 and 9 in (2.52) are sharp.

Theorem 2.5.5 Let p ≥ 6, q ≥ 9. Then the variety V irr
d (n · A1, k · A2) has a non-

T -smooth component if

(a) d = 3p, n = 0, k = p2 + 3p, or
(b) d = 2q, n = q2 − 9q, k = 6q.

In the series (a), 9k = d2 + 9d, and hence the coefficient 9 in (2.52) is sharp.
In the series (b), 4n = d2 − 18d and also k = 3d, which yields the sharpness of
(2.51) and of the coefficient 4 in (2.52). A curve C ∈ V irr

d (n · A1, k · A2) at which
the T -smoothness fails can be constructed by Zariski’s method as in Theorem 2.4.6:
namely, we set C to be given by

AP2R2 + B Q2 = 0,

where A, B, P, Q, R are generic polynomials of degrees a, b, p, q, r , respectively,
such that

a = d − 3p − 2r ≥ 0, b = d − 2q ≥ 0.

The series (a) corresponds to r = 0, d = 3p, q = p + 3, p ≥ 6, while the series (b)
corresponds to d = 2q, p = 6, r = q − 9. For the failure of the T -smoothness see
the proof of [31, Theorem 4.3.23].

The next series of examples were found in [25, Theorems 5 and 6] (see also [31,
Theorems 4.3.24 and 4.3.25]). They show that the coefficients of the An and Dn

singularities in (2.53) may, in principle, be reduced, but only by a constant factor
≥ 1

4 .
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Theorem 2.5.6 Let l ≥ 2, 0 ≤ s ≤ l − 2, q ≥ 3
l−s−1 be integers.

(1) Let k > 2l − s be an integer. Then there exists an irreducible plane curve C of
degree d = q(k + s) having precisely q2 singular points, all of type Akl+s−1,
such that the family V irr

d (q2 · Akl+s−1) is not T -smooth at C. Moreover,

• if k > 4l − s, then C belongs to a component of V irr
d (q2 · Akl+s−1) of expected

dimension which is singular at C;
• if k ≥ max{l2 + 2l, 4l + 4 − s}, then the germ of V irr

d (q2 · Akl+s−1) at C is a
singular, normal complete intersection.

(2) Let k > 2l − s + 1 be integer. Then there exists an irreducible plane curve C
of degree d = q(k + s) having precisely q2 singular points, all of type Dkl+s+1,
such that the family V irr

d (q2 · Dkl+s+1) is not T -smooth at C. Moreover,

• if k > 4l − s, then C belongs to a component of V irr
d (q2 · Dkl+s+1) of expected

dimension which is singular at C;
• if k ≥ max{l2 + 2l + 2, 4l + 4 − s}, then V irr

d (q2 · Dkl+s+1) is a singular,
normal locally complete intersection at C.

In particular, for l = 2, s = 0, we have in part (1)

d2 = q2k2 and q2(μ(A2k−1) + 1)2 = 4q2k2,

and in part (2)

d2 = q2k2 and q2(μ(D2k+1) − 1)2 = 4q2k2.

In part (1) the construction is as follows. Take the affine curve

(y + yl − xl)2(1 + λ1xk+s−2l + λ2xs yk + yk+s) = 0,

where λ1, λ2 ∈ C are generic. It is easy to check that it is irreducible with the unique
singularity Akl+s−1 at the origin. Thenwe take its projective closure, choose a generic
projective coordinate system (x0, x1, x2) and apply the transformation (x0, x1, x2) =
(yq

0 , yq
1 , yq

2 ) (cf. Ivinskis’ and Hirano’s constructions [39, 43]). In part (2), we start
with the affine curve

x(y + yl − xl)
2(1 + λ1xk+s2l−1) + λ2xs yk + yk+s = 0,

which is irreducible and has the unique singularity Dkl+s+1 at the origin. Then
similarly take the projective closure and apply the transformation (x0, x1, x2) =
(yq

0 , yq
1 , yq

2 ) in generic projective coordinates x0, x1, x2. For the lack of the T -
smoothness, we refer to [31, Sect. 4.3.3.2].

Remark 2.5.7 The first ever (finitely many) examples of reduced equisingular fam-
ilies of expected dimension which are not smooth are due to Luengo [54, 55]. In
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particular, one of his examples comes with a curve of degree 9 with a unique sin-
gularity A35. We recover this curve in Theorem 2.5.6(1) for l = 4, s = 0, q = 1,
k = 9.

Another application of the construction methods discussed in Sects. 2.3 and 2.4
is to find interesting examples of reducible equisingular families. There are several
ways to verify that an equisingular family is reducible:

• An explicit computation of the equisingular family. This is available only for very
specific situations for relatively small degrees, see, for example, [21, Theorem
1.1(ii)], where the family V irr

7 (S) (S being the analytic type of the singularity
x5 + y7 = 0) was shown to be reducible.

• Exhibiting two (or more) components of an equisingular family, whose generic
members differ from the algebraic-geometric point of view. In the classical exam-
ple by Zariski [108, Sects. VIII.3 and VIII.5], the family V irr

6 (6 · A2) contains (at
least) two components: in one of them the generic curve has 6 cusps on a conic,
while on the other one this is not the case.

• Exhibiting two (or more) components of the equisingular family, whose generic
members are embedded into the plane in a topologically different way. The afore-
mentioned Zariski example is of such kind [106], since the complements to these
generic curves in the plane are not homeomorphic (they have different Alexander
polynomials and different fundamental groups).

• Exhibiting two (ormore) components of the equisingular family that have different
dimensions, or such that one is reduced (for instance, T -smooth) and the other is
not.

We present here examples of the last kind. In fact, equisingular families with compo-
nents of dimension higher than the expected one were known for a while: Segre [72]
(see also [89]) showed that the dimension of the component of V irr

6m (6m2 · A2) con-
taining the curves F3 + G2 = 0, deg F = 2m, degG = 3m, exceeds the expected
dimension by at least

(m − 1)(m − 2)

2
> 0 as long as m ≥ 3,

Wahl [96] showed that the family V irr
104(3636 · A1, 9000 · A2) contains a nonreduced

component. The problem is to show that there exists another (say, T -smooth) com-
ponent of the considered equisingular family.

According to [108, Sects. VIII.3 and VIII.5], [78, Theorem 2.1], [28, Proposition
5.4], [29, Proposition 1.1] (see also [31, Examples 4.2.0.9 and 4.2.0.10, Propositions
4.6.10 and 4.6.11]), we have the following statement.

Theorem 2.5.8 (1) Each of the families V irr
6 (6 · A2) and V12(24 · A2) has (at least)

two distinct components of the expected dimension.
(2) Let p, d be integers satisfying
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p ≥ 3, 6p ≤ d ≤ 12p − 3

2
−
√
35p2 − 15p + 1

4
.

Then the family V irr
d (6p2 · A2) has components of different dimensions. Moreover,

if d > 6p, then π1(P
2 \ C) � Z/dZ for all curves C ∈ V irr

d (6p2 · A2).
(3) Let m ≥ 9 Then there exists k0 = k0(m) such that for any k ≥ k0 and any

integer s atisfying
k − 1

2
≤ s ≤ k

(
1 −

√
2

m

)
− 3

2
,

the equisingular family V irr
km+s(k

2 · S(m)) of irreducible plane curves of degree d =
km + s with k2 ordinary m-fold points (topological type S(m)) has components of
different dimensions. Moreover, π1(P

2 \ C) � Z/dZ for all curves C ∈ V irr
d (k2 ·

S(m)).

In part (1) the former family is the classical Zariski’s example discussed above.
The latter family V irr

12 (24 · A2) contains a component of expected dimension 42
formed by the curves given by

F3 + G2 = 0, deg F = 4, degG = 6,

whose 24 cusps lie on a plane quartic curve. However, according to Theorem 2.3.6(1)
there exists a T -smooth component of the family V irr

12 (28 · A2). Smoothing out any
four cusps of a curveC ∈ V irr

12 (28 · A2), one obtains curves in T -smooth components
of V irr

12 (24 · A2), and it is not difficult to verify that there is a 24-tuple of cusps of
C ∈ V irr

12 (28 · A2) which does not lie on any plane quartic curve.
In parts (2), resp. (3), one obtains components of the equisingular families of

dimension above the expected one formed by the Zariski type curves (cf. Theorem
2.4.7) given by C2

2pC ′
d−6p + C2

3pC ′′
d−6p = 0, where

degC2p = 2p, degC3p = 3p, degC ′
d−6p = degC ′′

d−6p = d − 6p,

resp.
∑m

i=0 R(i)
s Fi

k Gm−k
k = 0, where

deg Fk = degGk = k, deg R(i)
s = s, i = 0, ..., m.

However, in both the cases there exists a T -smooth component (of expected dimen-
sion): in part (2) by Theorem 2.3.6(i), in part (3) this can be derived by means of the
Alexander-Hirschowitz theorem [4, Theorem 1.1] (see also [31, Theorem 3.4.22]).
The fact that the fundamental group of the complement to the considered curves is
always abelian follows from Nori’s theorem [63, Proposition 3.27]. Namely, we use
the following very particular case of Nori’s result:

Theorem 2.5.9 Let C ⊂ P
2 be a reduced, irreducible curve of degree d, and let

the blowing-up β : X → P
2 resolve all the non-nodal singular points of C so that
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the union of the strict transform D of C with the reduced exceptional divisor E is
nodal. If D2 > 2r(C), where r(C) is the number of the nodes of C, then π1(P

2 \ C)

is abelian (and equal to Z/dZ).

So, given a curve C ∈ V irr
d (6p2 · A2) with d > 6p2 as in Theorem 2.5.8(2), we

blow up each cusp of C three times obtaining a smooth strict transform D on the
blown up plane X such that the union of D ∪ E is nodal; hence Theorem 2.5.9 applies
and yields that π1(P

2 \ C) is abelian due to D2 = d2 − 6 · 6p2 > 0. Similarly, given
a curveC ∈ V irr

d (k2 · S(M)) as in Theorem 2.5.8(3), we blow up each multiple point
of C obtaining a smooth strict transform D on the blown up plane X , while the union
D ∪ E is nodal. Again Theorem 2.5.9 applies and yields that π1(P

2 \ C) is abelian
due to D2 = d2 − k2m2 = (km + s)2 − k2m2 > 0.

2.5.2 Curves on Other Algebraic Surfaces

For other algebraic surfaces thanP
2, we consider only the case of nodal curves, which

is the most important one, since it is directly related to the vanishing/nonvanishing
of Gromov-Witten invariants.

In the following caseswe knowcomplete answers inwhich the equisingular family
is T -smooth [11, 12, 14, 27, 88] (see also [31, Sect. 4.5.6.3]).

Theorem 2.5.10 (1) Let � be a toric surface associated with the planar nondegen-
erate lattice polygon 
, L(
) the corresponding tautological line bundle. Then the
inequality

0 ≤ n ≤ #(Int(
) ∩ Z
2)

is necessary and sufficient for the existence of an irreducible curve with n nodes (as
its only singularities) in the linear system |L(
)|.

(2) Let � = P
2
k , 1 ≤ k ≤ 9, be the plane blown up at k distinct generic points, D

an effective divisor class of type D = d L − d1E1 − ... − dk Ek, where L is the lift
of a general line on P

2, E1, ..., Ek are exceptional divisors, d ≥ d1 ≥ ... ≥ dk > 0.
Suppose that −DK� > 0. An irreducible curve C ∈ |D| with n nodes as its only
singularities exists if and only if either

k = 1, 0 ≤ n ≤ pa(D) = D2 + DK�

2
+ 1,

or

k = 2, 0 ≤ n ≤ pa(D),

{
either d ≥ d1 + d2,

or d = d1 = d2 = 1,

or
k ≥ 3, D2 > 0, 0 ≤ n ≤ pa(D).
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(3) For any g ≥ 3, given a general smooth K3 surface � of the principal series
in P

g, and m > 0 and n satisfying

0 ≤ n ≤ dim |O�(m)|,

there exists an irreducible curve in the linear system |O�(m)| with n nodes as its
only singularities.

(4) Let � ⊂ P
3 be a generic smooth surface of degree d ≥ 5. Then, for all

m ≥ d, 0 ≤ n ≤ dim |O�(m)|

there exists an irreducible curve in the linear system |O�(m)| having n nodes as its
only singularities.

Remark 2.5.11 Part (1) is actually well-known, one can find details in [31, Theorem
4.5.32].

Part (2) admits an extension to the generic surfaces P
2
k , k > 10, with extra restric-

tions to the divisor D and the number of nodes n (see [27, Theorem 5] or [31, Tearem
4.5.30 and Corollary 4.5.31]).

Part (4) is proved by the method resembling the patchworking construction.
Namely, the proof goes by induction with the case d = 4 (settled in part (3)) as
the base. The induction step consists in a pair of deformations:

• the union of a generic surface �d−1 of degree d − 1 with a generic tangent plane
π to it deforms in a family into a generic smooth surface �d of degree d;

• an inscribeddeformation of a curve in the central fiber that consists of an irreducible
curve in the linear system |O�d−1(m)| on �d−1 having dim |O�d−1(m)| nodes, and
of a nodal curve in the plane π of degree m having 1

2 (m − d + 2)(m − d + 3)
nodes.

Under certain transversality conditions, the above central curve can be deformed into
an irreducible curve C ∈ |O�d (m)| having

dim |O�d−1(m)| + (m − d + 2)(m − d + 3)

2
= dim |O�d (m)|

nodes.
It should be noted that Chiantini and Ciliberto [14, Sect. 1] exhibit examples of

superabundant nodal curves on surfaces in P
3: in particular, for d ≥ 20 and m = 3

there are curves in |O�(3)| with n > dim |O�(3)| nodes, and for d ≥ 8 and m � 0
there exists a component of the equisingular family of curves with n < dim |O�(m)|
nodes that has a dimension greater than the expected one.

One can obtain some sufficient existence conditions for curves with arbitrary sin-
gularities on smooth projective surfaces. For a topological or analytic singularity type
S, denote by e(S) the minimal degree of a reduced plane curve C having a singular
point of type S as its only singularity, belonging to a T -smooth equisingular family,
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which intersects transversally with the space of curves passing through the intersec-
tion of C with a generic fixed line. Then the following holds (see [31, Proposition
4.5.26]).

Lemma 2.5.12 Let � be a smooth projective algebraic surface, D an effective divi-
sor on �, L a very ample divisor on �. Given topological or analytic singularity
types S1, ..., Sr and a zero-dimensional scheme Z ⊂ � defined in some distinct r
points z1, ..., zr ∈ � by the powers me(Si )

zi
⊂ O�,zi of the maximal ideals so that

H 1(�,JZ/�(D − L)) = 0 and max
1≤i≤r

e(Si ) < L(D − L − K�) − 1,

then there exists an irreducible curve C ∈ |O�(D)| with r singular points of types
S1, ..., Sr , respectively, as its only singularities.

The proof is based on a version of the patchworking construction as it appears
in [80, 82] (see also [31, Sect. 2.3.5]). Some numerical conditions, based on h1-
vanishing criteria [102], can be found in [31, Sect. 4.5.6.2].

2.5.3 Other Related Problems

Rational cuspidal curves. A rational cuspidal curve is a complex rational plane
curve homeomorphic to a sphere, equivalently, a rational plane curve having only
irreducible singularities (called (generalized) cusps). They attracted much attention
due to their interesting properties and tight links to the Jacobian conjecture, affine
algebraic geometry, and birational geometry (see [1, 46, 105]). The subject definitely
deserves a separate full size survey. We only mention one result directly related to
the existence problem for singular plane curves [47, Theorem 1.1]:

Theorem 2.5.13 A rational cuspidal curve has at most 4 singular points.

There is a series of classification results for rational cuspidal curves (see references
in [47]).

Curves in thehigher-dimensional projective spaces. Each reducedprojective curve
can be embedded into P

n with n ≥ 3. The question on the number of nodes of an
irreducible curve in P

n , n ≥ 3, of degree d and genus g was studied in [86, 87] over
the complex field and in [65] over the real field. For n ≥ 3, the genus of an irreducible
nondegenerate (i.e., not contained in a hyperplane) curve of degree d ≥ n in P

n is
bounded from above by

C(d, n) = 1

2
m((m − 1)(n − 1) + 2e), where d − 1 = m(n − 1) + e, 0 ≤ e < n − 1,

(see [10] or [32, p. 57]).

Theorem 2.5.14 For any d ≥ n ≥ 3 and any δ ≤ C(d, n), there exists a real irre-
ducible nondegenerate curve of degree d in P

n with δ real nodes as its only singu-
larities.
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For the proof, Pecker [65] constructs a suitable real plane rational curve with
C(d, n) real nodes in the affine plane, then maps it by

ψ(x, y) = (x, x2, ..., xn−k, y, yx, yx2, ..., yxk−1), k = n −
[

d − 1

m + 1

]
,

to P
n with the image of degree d. It is not difficult to see that prescribed nodes of the

obtained curve can be smoothed out (cf. also [87]).

Deformations of plane curves singularities. A local version of the problems dis-
cussed in this survey is the following local adjacency problem:

Given a reduced plane curve singular germ (C, p), what collections of singular-
ities can appear in its (versal) deformation?

The question on the existence of a global plane curve of a given degree d with
prescribed singularities can be considered as the above local deformation question
for an ordinary d-fold singular point.

We show only two specific examples, both over the real field and both concerning
the nodal deformations of arbitrary real plane curve singular points.

The first result is due to Pecker [67]. Recall that the maximal number of nodes
appearing in a deformation of a plane curve singularity (C, p) equals δ(C, p), which
in case of an irreducible (i.e., unibranch) germ (C, p) can be written as 1

2μ(C, p).

Theorem 2.5.15 Given an irreducible real plane curve singularity (C, p) and any
nonnegative α ≤ 1

2μ(C, p). Then there exists a real deformation of (C, p), whose
general member has α real elliptic nodes as its only singularities.

Due to the openness of versality (see, for instance, [30, Theorem I.1.15]), given
a deformation of a singularity (C, p) with a singular general member, there exists a
deformation of (C, p) in which the singularities of that general member can indepen-
dently be deformed in a prescribed way. That is, to prove the theorem it is enough to
find a deformation realizing α = 1

2μ(C, p) elliptic nodes. For the latter deformation,
Pecker explicitly constructs a deformation of the parametrization of (C, p).

An in a sense opposite question is to find a deformation with the maximal possible
number of hyperbolic nodes. Such deformations are called morsifications, and they
carry out an important information on the topology of the singularity (C, p) [2, 35]
(see also [19] for the relation of morsifications to mutations of quivers). A’Campo
and Gusein-Zade [2, 35] proved the following claim.

Theorem 2.5.16 Every totally real plane curve singularity (i.e., a real plane curve
singularity (C, p) all of whose local branches are real) possesses a morsification,
and each morsification exhibits δ(C, p) hyperbolic nodes.

A’Campo and Gusein-Zade gave different proofs, using sequences of blow-ups and
contractions on one side, and explicit formulae involving Tchebycheff polynomials
on the other side.

The quintic shown in Fig. 2.2a represents, in fact, amorsification of the singularity
y4 − 2x5 = 0.
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The question on the existence ofmorsifications for real singularities (C, p) having
complex conjugate local branches turns to be much harder. A partial answer to this
question was suggested in [53].

2.5.4 Some Questions and Conjectures

In principle, every timewepresented a partial answer to a specific or general existence
problem, we encourage the reader to improve or even complete the answer. However,
several questions deserve a more detailed comment.

Cuspidal plane curves. In Sect. 2.3.2 we discussed one of the most challenging
questions: what is the maximal number kmax(d) of ordinary cusps of a plane curve
of degree d? Langer [51] conjectures that the coefficient of d2 in the right-hand side
of (2.33) is sharp. More precisely,

Conjecture 2.5.17

lim
d→∞ sup

kmax(d)

d2
= 125 + √

73

432
.

Concerning the maximal number kmax,R(d) of real cusps on a real plane curve of
degree d, the best existence result is Theorem2.3.6.We conjecture that the coefficient
of d2 in (2.36) is sharp, i.e.,

Conjecture 2.5.18

lim
d→∞ sup

kmax,R(d)

d2
= 1

4
.

The following version of the problem was pointed by Vik. Kulikov. Choose an
almost complex structure on the plane tamed by the standard symplectic structure.

Question 1
What is the maximal number of cusps of a pseudo-holomorphic plane curve of degree
d? Does there exists a cuspidal plane pseudoholomorphic curve of degree d with the
number of cusps breaking consequences of the Bogomolov-Miyaoka-Yau inequality
(e.g., the Hirzebruch-Ivinskis bound (2.32))?

The latter question reflects the fact that there is no analogue of the Bogomolov-
Miyaoka-Yau inequality for symplectic fourfolds.

Reducible equisingular families of plane curves. In contrast to the sufficient T -
smoothness conditions of equisingular families of plane curves, which were shown
to be sharp (or close to sharp) in several important cases (see Sect. 2.5.1), the
known examples of reducible equisingular families like in Theorem 2.5.8 are very
far from the available general sufficient irreducibility conditions, which consist of
three inequalities (see [31, Theorem 4.6.4])
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max
1≤i≤r

ν ′(Si ) ≤ 2

5
d − 1,

r∑

i=1

(ν ′(Si ) + 2)2 <
9

10
d2,

25

2
· #(nodes) + 18 · #(cusps) +

∑

Si �=A1,A2

(τ ′(Si ) + 2)2 < d2, (2.54)

where the singularity invariants ν ′ and τ ′ are of the order of the Tjurina number
τ , and hence the coefficients assigned to the singularities in (2.54) are of order
τ 2. For instance, an ordinary m-fold singular point (considered up to topological
equivalence) enters the left-hand side of (2.54) with the coefficient 1

4m2(m + 1)2 (see
[31, Corollary 4.6.7]), while in the series of reducible equisingular families of curves
with ordinary singularities from Theorem 2.5.8(3), the ratio of d2 to the number of
ordinary m-fold singularities does not exceed (m + 1)2. This leaves completely open
the following question

Question 2
How sharp are the sufficient irreducibility conditions (2.54)?

Another specific feature of the examples in Theorem 2.5.8, namely, the fact that the
curves in different components of the equisingular family have the same fundamental
group of the complement (i.e., form a so-called anti-Zariski pair ) raises the following
interesting question.

Question 3
Can the curves in an anti-Zariski pair be transferred to each other by a homeomor-
phism of the plane onto itself?

Sharpness of restrictions to curves with arbitrary singularities. We have dis-
cussed above the sharpness of the known restrictions, notably, of Langer’s bound in
the case of curves with ordinary cusps. On the other hand, in Sect. 2.4.2 we have seen
that, for An singularities, with large Milnor number n, Hirano’s examples (Theorem
2.4.2 and Remark 2.4.3) have almost the same asymptotics as the spectral bound
does. Beyond the range of simple or ordinary multiple singularities, the spectral
bound and the genus and Plücker formulas are the only universal bounds applicable
to arbitrary singularities, and the spectral bound is much stronger than the genus and
Plücker bounds. So, it is natural to ask.

Question 4
For which singularity types (say, semiquasihomogeneous, irreducible, etc.) with large
Milnor numbers is the spectral bound (asymptotically) sharp, or almost sharp?

As said above, so far this is known to be true only for An singularities.

Gromov-Witten invariants of rational surfaces. Let P
2
r be the plane blown up at

r > 0 generic points. For r ≤ 9, we know a complete answer about the existence
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of nodal curves of arbitrary genus in an arbitrary linear system on P
2
r (see Theorem

2.5.10(2)).
If r > 9, one can find in the literature only partial answers, see [27, Theorem 5 and

Corollary 3.1.7] or [31, Theorem 4.5.30 and Corollary 4.5.31]. For a divisor class
D ∈ Pic(P2

r ), the expected dimension of the moduli space M0,g(P
2
r , D) of stable

maps of (unmarked) curves of genus g to P
2
r representing the class D equals (cf.

[20])
−DKP2

r
+ g − 1 .

The following question arises

Question 5
Suppose that r > 9 and D ∈ Pic(P2

r ) satisfies the conditions −DKP2
r
> 0 and D2 ≥

−1. Does there exist a nodal rational curve C ∈ |D|?
The restriction D2 ≥ −1 comes from the fact thatP2

r does not contain (−k)-curves
with k > 1. The above question is directly related to the non-vanishing of genus zero
Gromov-Witten invariants ofP

2
r : it is shown in [22, Theorem 4.1 and Section 5.2] that

theseGromov-Witten invariants do count rational curves in |D| if either−DKP2
r
> 1,

or d ≤ 10, or some di equals 1 or 2, where D = d L − d1E1 − ... − dr Er (L being
the lift of a generic line in P

2, E1, ..., Er the exceptional divisors of the blowing
up). We note also that, in view of the condition −DKP2

r
> 0, an affirmative answer

to Question 5 yields the existence of a nodal curve C ′ ∈ |D| with any nonnegative
number of nodes fewer than for the rational curve C ; hence, the nonvanishing of the
corresponding Gromov-Witten invariants of positive genus. Furthermore, Question
5 can be extended in the following way.

Question 5’
Suppose that r > 9, g ≥ 0, and D ∈ Pic(P2

r ) satisfies the conditions −DKP2
r
+ g >

0 and D2 > 0. Does there exist a curve C ∈ |D| of genus g? What is the enumerative
meaning of the corresponding genus g Gromov-Witten invariants of P

2
r ?
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Chapter 3
Limit of Tangents on Complex Surfaces

Tráng Dũng Lê and Jawad Snoussi

Abstract In these notes we give an introduction on the limits of tangents to a com-
plex analytic surface. We first describe the case of hypersurfaces, using integral
dependence on ideals and equisingularity controlled by Milnor number, and then
we discuss the case of general surfaces of CN using Whitney equisingularity and
equivalent criteria.
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3.1 Introduction

After H. Whitney introduced a regular condition for complex analytic stratified sets
(see [54] Sect. 19) a natural question was to understand the set of limits of tangents
at singular points. In these notes we give a survey in the case of complex analytic
surfaces.

Let X be a reduced complex analytic space. Let x be a point of X . If the point x is
a non-singular point of X , there is only a tangent space at x and if (xn) is a sequence
of points of X tending to x , the limit of tangent spaces Txn (X) is the tangent space
Tx (X). However when x is a singular point of X , there might be several limits of
tangent spaces limxn→x Txn (X).

Let us define.

Definition 3.1.1 A space T is a limit of tangent spaces at a point x on X if there
exists a sequence of non-singular points (xn) of X which tends to x such that the
tangent spaces Txn (X) tend to T .

Suppose X is reduced, equidimensional of dimension d at the point x and call X0

the subset of non-singular points of X . When the germ (X, x) is not equidimensional,
one needs to work with each irreducible component.

Let (X, x) ⊂ (CN , x) be a local embedding in an Euclidean space. Let U be an
open neighborhood of x in CN and U = U ∩ X a neighborhood of x in X .

We have a map:

γ0 : U ∩ X0 → G(d, N )

into the Grassmanian G(d, N ) of d-linear spaces of CN which maps a point y of
U ∩ X0 into the linear subspace Ty(X) of CN .

By a theorem of Nobile ([35, Theorem 1]) and a Theorem of Remmert-Stein ([41,
Satz 13 p. 299]) the closure of the graph of γ0 inU × G(d, N ) is an analytic subspace
X̃U . The projection of U × G(d, N ) onto U induces a holomorphic map:

ν : X̃U → X ∩ U

which is a proper modification of X ∩ U of dimension d. The map ν is called the
Nash modification of X at x .

Then the fiber of ν over x is the set of limits of tangent spaces of X at x . Since ν

is a complex analytic modification, this fiber is analytic, but by the theorem of Chow
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(see [5, Theorem V p. 910]) it is algebraic because it is a closed analytic subspace
of the projective variety {x} × G(d, N ).

If X is not equidimensional at x , the set of limits of tangents of X at x is a finite
union of projective varieties living in different Grassmannian spaces. However, along
this work, we shall focus on reduced pure dimensional spaces.

Proposition 3.1.2 The set of limits of tangents at a point x of a reduced analytic
space X is a projective algebraic set.

We shall often make the abuse of language that instead of talking of the linear
space Ty(X) we consider the affine space Ty(X) at the point y. Therefore sometimes
a limit of tangents at x will be an affine space at the point x .

The set of limits of tangents to X at x , is strongly related to another set: the tangent
cone of X at x .

LetI be the ideal ofOCN ,x defining the germ (X, x) in (CN , x). Let inx ( f ) denote
the initial form of a function f ∈ OCN ,x at x , i.e., the sum of terms of lowest degree
in the Taylor expansion of f at x . We call the initial ideal of I at x , the ideal ofOCN ,x

generated by all the initial forms inx ( f ) of functions in I. It is a homogeneous ideal
in C[X1, . . . , XN ] that we denote by Inx (I). It defines a cone in C

N with vertex in
x that we call the tangent cone of X at x and denote it by CX,x .

When X is equidimensional at x the tangent cone CX,x is an algebraic space of
the same dimension as X .

One can check that the generatrices of the tangent cone CX,x are the lines in C
N

containing x obtained as limits of secants to X at x (see e.g [54, Sect. 8 p. 510]).
That is, a line x ∈ � ⊂ C

N is a generatrix of the reduced subspace |CX,x | subjacent
to CX,x if and only if there exists a sequence of points (xn) in X converging to x such
that the sequence of lines (xxn) converges to �.

The tangent cone determines completely the set of limits of tangent lines to a
curve. In fact, in curves, thanks to l’Hospital’s rule and to the existence of local
parametrization, we know that the limits of tangent lines and of secant lines coincide
(see Lemma 6.2.1 of [27]). Since algebraic cones of dimension 1 are finite unions of
lines, the limits of tangent lines to a curve at a given point are precisely the lines of
the tangent cone at that point.

All along this work, we shall call a tangent line to a curve, either a tangent line at
a non-singular point, or a limit of tangent lines at a singular point.

Another situation where the limits of tangents are quite easy to understand and
describe is when the considered space is a two-dimensional reduced cone.

In fact, a cone C of dimension 2 is a cone over a projective curve Proj(C). So for
a non-singular point x of C , the tangent plane to C at x is tangent to C along the
generatrix � containing x . It is the plane obtained as the cone over the tangent line
to Proj(C) at the point Proj(�).

When the point x ∈ C is singular, the whole generatrix � is singular and so is
the point Proj(�) ∈ Proj(C). The homogeneity of the equations of C allows to prove
that the limits of tangent planes to C at any point of � different from the vertex, are
exactly the cones over the tangent lines to Proj(C) at Proj(�).
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Since tangent lines to a curve at singular points are clearly characterized, there is
no ambiguity in talking about tangent planes to a cone of dimension two at a singular
point. In particular, the set of limits of tangent planes to a cone at its vertex is the set
of all the cones over all tangent lines to the associated projective curve at each of its
points.

In higher dimensions, the relation with the tangent cone is not so direct, but still
there is a relation.

We shall begin by proving a theorem due to Hironaka saying that for equidimen-
sional complex analytic sets, tangent spaces to the reduced tangent cone, are among
the set of limits of tangent spaces to the complex set at the given point.

This theorem is a consequence of another theorem due to Hironaka showing the
existence of Whitney regular stratifications with the Thom condition.

Then, we give a theorem of B. Teissier which gives a necessary and sufficient
condition for a hyperplane H to be a limit of tangent hyperplanes to a complex
analytic hypersurface at an isolated singular point. To establish this result we need
to link limits of tangent hyperplanes to the theory of integral dependence on ideals.

As a corollary of the theorem of Teissier we give a characterization of the limits
of tangents of a complex analytic hypersurface of dimension 2 at an isolated singular
point.

This characterization is given in terms of the Milnor number of the hyperplane
sections of the surface. In case of hypersurfaces of C3, the hyperplane sections are
plane curves, and theMilnor number is a strong tool formeasuring the equisingularity
in families of curves. This allows to link limits of tangent planes to the equisingularity
of the surface obtained by blowing-up the origin, along the exceptional fiber.

At this stage, an important object related to the limits of tangents is introduced:
the exceptional tangents.

The characterization of exceptional tangents allows to complete the description
of the set of limits of tangents to hypersurfaces of C3 with isolated singularities,
since every hyperplane of C3 containing an exceptional tangent is a limit of tangent
planes.

Then we define polar curves and prove that exceptional tangents of a hypersurface
in C

3 are precisely the common tangents to the general elements of the family of
polar curves.

The following step is to generalize the study of limits to reduced equidimensional
surfaces in CN without conditions on the codimension or on the singular locus.

Here it is useful to define tangent and limits of tangent hyperplanes. These are
hyperplanes containing a tangent or a limit of tangent planes.

Using again Hironaka’s result on the tangents to the tangent cone, we explain how
the limits of tangent hyperplanes are the hyperplanes that are either tangent to the
tangent cone, or that contain a special generatrix of the tangent cone, that we define,
in this context, to be the exceptional tangents.

In order to explain that this definition of exceptional tangents generalizes conve-
niently the definition given in hypersurface case, we prove that in the general case,
the exceptional tangents are still the common tangents to the general polar curves.
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Afterwards, we establish the relation with equsingularity. The first step in that
direction is to relate the limits of tangents, to tangent lines to discriminants of generic
projections toC2. This part of the work is based on the paper [25] byD. T. Lê, dealing
with hypersufaces of C3 that we generalize to surfaces in CN .

Using Whitney regularity, Zariski’s discriminant criterion and strong simultane-
ous resolution, we establish the relation between limits of tangents and exceptional
tangents with equisingularity. This part of the text relates and generalizes the paper
[44] where J. Snoussi works on normal surfaces.

Finally we describe surfaces which do not have exceptional tangents.
Along the work we give different examples to illustrate the results presented.
In the text, as it is usually done, we shall denote by |Z | the reduced complex

analytic space underlying a complex analytic space Z .

3.2 An Application of a Theorem of Hironaka

3.2.1 The Thom Stratification

We do as in [30, Sect. (1.4) for the complex analytic case].
Let f : X → Y be a holomorphic morphism between reduced complex analytic

spaces.
For general results and properties on stratifications andWhitney stratifications we

refer to [52].We say that f is a stratifiedmorphism if there are aWhitney stratification
S = (Si ) of X and a Whitney stratification T = (Tj ) of Y such that, for any stratum
Si , there is an index j (i) for which f induces a surjective submersion of Si onto
Tj (i).

Definition 3.2.1 1. Let f be a holomorphic morphism stratified by the stratifi-
cations S of X and T of Y . We say that the pair (Sα, Sβ) satisfies the Thom
condition at x ∈ X if x ∈ Sα , Sα ⊂ Sβ and for a fixed embedding of (X, x) in
(CN , 0) for any sequence of points (xn ∈ Sβ) tending to x for which the sequence
(Txn ( f

−1( f (xn)) ∩ Sβ) converges to T then T ⊃ Tx ( f −1( f (x)) ∩ Sα).
2. We say that the stratified map f satisfies Thom A f condition if for any point

z ∈ X , and Sα the stratum of X which contains z, for any stratum Sβ such that
Sα ⊂ Sβ , the pair (Sα, Sβ) satisfies the Thom condition at z ∈ X .

A remarkable result ofHironaka [20,Corollary1ofTheorem2ofSect. 5Thom A f -
condition and flattening] (or [2, Théorème 4.2.1]) is that for any germ of holomorphic
function (X, x) → (C, 0) there is a representative f : X → U ⊂ C such that:

Theorem 3.2.2 There areWhitney stratifications of X andU forwhich f is stratified
and satisfies the Thom condition.

As a consequence we have the following corollary also attributed to Hironaka.
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Corollary 3.2.3 Suppose that X is equidimensional at x. For a generic generatrix
� of |CX,x | and for any sequence of non-singular points (xn) in X for which the
sequence of lines (xxn) tends to � and the sequence of tangent planes Txn (X) tends
to a plane T , the plane T is the tangent plane to |CX,x | along �.

In particular the tangent spaces to the reduced tangent cone |CX,x | belong to the
set of limits of tangents of X at x .

By generic generatrix of |CX,x | we mean a line which corresponds to a point of a
Zariski dense set of non-singular points of Proj(|CX,x |).

3.2.2 Deformation on the Tangent Cone

In order to prove the Corollary 3.2.3, we need to define a 1-parameter family which
specializes on the tangent cone (see [10], [12, 2.4] or [47, 1.7.1 Theorem 2]).

Let X be a reduced complex analytic space and x be a point of X . The germs of
complex analytic functions on (X, x) define an analytic local ringOX,x . Themaximal
ideal mX,x of OX,x defines the graded algebra:

Grm(OX,x ) := ⊕n∈N
mn

X,x

mn+1
X,x

This graded algebra defines a subscheme Proj(CX,x ) of Proj(CN ), where:

N = dimC(m/m2)

is the Zariski dimension of the local ring OX,x . The graded algebra Grm(OX,x ) also
defines a cone CX,x in CN called the tangent cone of X at x .

Notice that the tangent cone of X at x is not reduced in general.
The tangent cone CX,x is defined by a homogeneous ideal of C[X1, . . . , XN ] that

can be obtained as follows:
Let J be the ideal of OCN ,x which defines the germ (X, x) in (CN , x). Since OX,x

is noetherian (see e.g. [21, Corollaire 2 p. 18–07]), the graded algebra Grm(OX,x ) is
also noetherian and we can find generators a1, . . . ar of J such that their initial forms
i.e., the non-constant homogeneous polynomials of lowest degree of their Taylor
expansions at x (see e.g. [56, p. 249]) inx (a0), . . . , inx (ar ), generate the ideal Inx J
defining CX,x .

Wemay assume that the germ (X, x) is embedded in (CN , 0). Consider f1, . . . , fr
to be functions defined on a neighbourhoodU of 0 inCN which induce the elements
a1, . . . , ar in the local ring OCN ,x . The ideal of OCN ,x generated by the initial forms
inx f1, . . . , inx fr of f1, . . . , fr defines a cone isomorphic to CX,x .

As in the proof of Théorème (1.5) of [19], we can define the 1-parameter defor-
mation given by:
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F1(z, t) = inx f1(z) + t f1,n1+1 + . . .

. . .

Fr (z, t) = inx fr (z) + t fr,nr+1 + . . .

where fi, j is the sum of the terms of fi of degree j and ni is the multiplicity of fi at
the point x .

The complex analytic set W defined by F1 = . . . = Fr = 0 is an analytic subset
of U × C. The projection on the second factor induces a holomorphic map:

ϕ : W → C.

Since:

Fi (z, t) = 1

tni
fi (t z)

The fiber over t0 �= 0 of ϕ has a germ at (0, t0) isomorphic to (X, x) and the fiber of
ϕ above 0 has a germ at (0, 0) which is isomorphic to the germ of CX,x at its vertex.

This is why one can call the morphism ϕ a deformation of (X, x) on its tangent
cone.

For the convenience of our proof, we shall assume that the open setU is invariant
by homothety with center x .

3.2.3 Proof of Corollary 3.2.3

Remember that we assume that the space X is equidimensional at x . Let d be the
dimension of X at x . We also suppose that the point x is the origin 0 of CN .

Let (xn, tn) be a sequence of non-singular points of the fibers Wtn := ϕ−1(tn) of
ϕ tending to (z, 0) ∈ ϕ−1(0).

Since for each t �= 0, the fiber Wt has a germ at (0, t) isomorphic to (X, 0) by
the homothety z 	→ t z, the sequence (xn, tn) of W corresponds to the sequence of
non-singular points (x ′

n = tnxn) of X which tends to 0.
In fact the sequence of tangent spaces (T(xn ,tn)(Wtn )) is equal to the sequence

of tangent spaces (Ttnxn (X)) of X . By choosing a subsequence of (xn, tn) we may
suppose that the sequence (T(xn ,tn)(Wtn )) has a limit T1 and the sequence (Ttnxn (X))

has a limit T2. Since the two sequences (T(xn ,tn)(Wtn )) and (Ttnxn (X)) coincide in the
Grassmannian space G(d, N ), we have T1 = T2.

By the result of Hironaka stated in Theorem 3.2.2 there are Whitney stratifica-
tions of W and of C such that they satisfy the Thom condition. We can choose the
stratification ofC to be {0},C − {0} since the germs of fibers of ϕ at the points (0, t),
for t �= 0, are isomorphic.

Let Sα be a stratumof theWhitney stratification of |W0| ∩U of dimension dimW0.
Assume that z is a point of this stratum.
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The Thom condition implies that the limit of T(xn ,tn)(Wtn ) when (xn, tn) tends to
(z, 0) is the tangent space to the stratum Sα at z. In fact, since we have supposed
that X is equidimensional at the point x , the points of Sα are non-singular points of
|CX,0| ∩U . Since this observation is true for a finite number of strata of |W0| ∩U
of dimension dim |CX,0|, and since the closures of these strata are the irreducible
components of |CX,0| ∩U , the limit of tangent spaces T1(= T2) is then tangent to
the tangent cone along the generatrix limit of secants limn 0(tnxn).

In this way all the tangent spaces to the strata of |W0| ∩U of dimension dim |W0|
are limit of tangents of X at 0. This proves Corollary 3.2.3.

Remark 3.2.4 In the case X is a reduced complex hypersurface in C
n+1 the set of

limits of tangent hyperplanes to the hypersurface is an algebraic subset of the space
P̌
n of projective hyperplanes. In that case Corollary 3.2.3 says that the dual variety

of Proj(|CX,0|) is in the set of limits of tangent spaces to X at 0.

3.3 The Theorem of Teissier

3.3.1 Statement

Theorem 3.3.1 Let (X, x) be a germ of complex analytic hypersurface at the point
x with an isolated singularity at x. A hyperplane H through x is not a limit of tangent
hyperplanes to X at x if and only if the intersection X ∩ H is a hypersurface with an
isolated singularity at x with the minimumMilnor number at x among all the Milnor
numbers at x of the intersections with hyperplanes through x.

Proof The proof uses the notion of integral dependence over an ideal (see [56, p.
347], or the book [38], here we use the paper [22] or [48] where the results are
adapted to the case of local analytic algebras that we need in these notes).

We first prove:

Lemma 3.3.2 Let (X, x) be a germ of complex analytic hypersurface with an iso-
lated singularity at the point x and defined by a germ of holomorphic function f
at x in (Cn+1, x). Let H be a hyperplane through x which is not a limit of tangent
hyperplanes of X at x. Then, the multiplicity e(I ) of the ideal I induced by the Jaco-
bian ideal J ( f ) = (∂ f/∂z0, . . . ∂ f/∂zn) on the analytic local ring OX,x is equal to
μ(X, x) + μ(X ∩ H, x):

e(I ) = μ(X, x) + μ(X ∩ H, x).

Proof Remember that μ(X, x) is the Milnor number of a hypersurface with isolated
singularity. It was defined by J. Milnor in [34, Chap. 8 Theorem 7.2 p. 60]. The
Milnor number of X at x is given by:
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μ(X, x) = dimC

OCn+1,x

Jac( f )

where Jac( f ) is the ideal of the ring OCn+1,x (� C{z0, . . . , zn}) generated by the
partial derivatives of f .

In particular the Lemma says that, if H is not a limit of tangents of X at x , the
singularity of X ∩ H is isolated at x .

Instead of considering germs, we shall consider representatives of these germs.
Assume x is the origin 0 of Cn+1, and choose an open neighborhood U of the

origin in Cn+1. Call U := U ∩ X . We can choose coordinates in Cn+1 such that the
hyperplane H is given by z0 = 0.

Since the affine hyperplane {z0 = 0} is not a limit of tangent hyperplanes, for
any sequence (xn) of non-singular points of X tending to 0, the sequence of tangent
hyperplanes (Txn (X)) does not tend to the hyperplane z0 = 0. In fact, since the space
X̃ of the Nash modification ν is complex analytic, it is equivalent to say that, for any
germof complex analytic curve p : (D, 0) → (X, 0)whose image ofD − {0} is in the
non-singular part X0 of X , the hyperplane {z0 = 0} is not the limit limt→0 Tp(t)(X).

Since X = { f = 0} is a hypersurface, the gradient of f at a non-singular point z
of X is orthogonal to the tangent hyperplane Tz(X). In [34, Sect. 4 p.33] one finds that
the gradient of a complex analytic function f at a point z is given by the conjugates
of the partial derivatives of f at z:

grad f (z) = (∂ f/∂z0(z), . . . ∂ f/∂zn(z)).

Therefore, the hyperplane {z0 = 0)} is not a limit of tangent hyperplanes to X at x
if and only if:

lim
t→0

(line(∂ f/∂z0(p(t)), . . . , ∂ f/∂zn(p(t)))) is not line(1, 0, . . . , 0) (3.1)

for any germ of complex analytic curve p : (D, 0) → (X, x) such that p(t) is a
non-singular point for t �= 0.

Since ∂ f/∂zi (p(t)) is an analytic function of one variable of the open diskD at 0,
this means that one of terms ∂ f/∂z1(p(t)), . . . , ∂ f ∂zn(p(t)) has an entire series at 0
with a lower degree less or equal to the lower degree of the power series ∂ f/∂z0(p(t)).

This is where we use the notion of integral dependence over an ideal.
Since we need this notion of integral dependence in the complex analytic case,

we consider a local analytic ring O, i.e., the quotient of a ring of convergent series
by an ideal, and an ideal I in O.

Recall that an element α of the ring O is integral over the ideal I if there is a
relation:

αn +
n∑

1

aiα
n−i = 0

where ai belongs to I i , for i, 1 ≤ i ≤ n.
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This algebraic notion gives a bridge between geometry and analysis.
Precisely consider a germ of analytic space (X, x) such that OX,x � O. In [22,

Théorème 2.1 equivalence of (i) and (iii)], one can find the proof of: α ∈ OX,x is
integral over the ideal I ⊂ OX,x if and only if, for any germ of morphisms p :
(D, 0) → (X, x), i.e., any germ of complex analytic path of X at x , we have p∗α ∈
p∗ IOD,0, where p∗α is the function α ◦ p and p∗ IOD,0 is the pull back in OD,0 of
the ideal I of OX,x .

Therefore the element ∂ f/∂z0 in the local analytic algebra:

OX,0 = C{z0, . . . , zn}
( f )

is integral over the ideal I0 generated by (∂ f/∂z1, . . . , ∂ f/∂zn) in OX,0, because the
preceding Condition (3.1) above means that for any analytic path p on X at 0, we
have:

p∗(∂ f/∂z0) ∈ p∗ I0OD,0.

In particular, since the singularity of X at 0 is isolated, the ideals I and I0 are
primary for the maximal ideal m of OX,0 and they have the same multiplicity (see
[22, Proposition 1.18]).

In fact, a Theorem of Rees (see [37]) says that in a local analytic ring the primary
ideals I ⊂ J for the maximal ideal have the same multiplicity if and only if the
integral closures I and J are equal. It yields that the hyperplane z0 = 0 is not a limit
of tangents of X at the point 0 if and only if the multiplicity e(I0) of the ideal I0 of
the local ring OX,0 equals the multiplicity e(I ) of the ideal I of the local ring OX,0.

The m-primary ideal I0 of OX,0 is generated by n generators in the Cohen-
Macaulay local analytic ringOX,0 of dimension n (in fact hereOX,0 is a hypersurface
local ring, in particular it is Cohen-Macaulay because it is the local ring of a complete
intersection), so the multiplicity e(I0) of I0 is equal to:

dimC

OX,0

I0
.

Since:

dimC

OX,0

I0
= dimC

C{z0, . . . , zn}
( f, ∂ f/∂z1, . . . , ∂ f/∂zn)

,

the multiplicity e(I0) equals the intersection number of f and (∂ f/∂z1, . . . , ∂ f/∂zn)
at the point 0. In particular it implies that the complex analytic set:

{∂ f/∂z1 = . . . = ∂ f/∂zn = 0}

is a curve at the point 0.
Since the number e(I0) = e(I ) is finite, the curve
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	 := {∂ f/∂z1 = . . . = ∂ f/∂zn = 0}

intersects the hypersurface { f = 0} locally at 0. Consider:


 := (z0, f ) : (Cn+1, 0) → (C2, 0).

Notice that 	 is the critical locus of 
.
The restriction of 
 to (	, 0) is finite because locally at 0 we have:


−1(C × {0}) ∩ 	 = {0}

with a good choice of the representatives of the germs at 0. Since a finite analytic
map is proper, a theorem of Remmert ([40] Satz 23) gives that the image of |	| by

 is a complex analytic curve |�| at 0.

As the multiplicity e(I ) equals the intersection number of { f = 0} and the curve
	 = {∂ f/∂z1 = . . . = ∂ f/∂zn = 0} at 0, since the direct image
∗	 of	 by the map

 := (z0, f ) : (Cn+1, 0) → (C2, 0) is the discriminant � of 
 (see the definition in
[49, 2.6 p. 588]), the intersection number ({ f = 0}.	)0 is given by the projection
formula (see [6]):

({ f = 0}.	)0 = (
−1({C × {0}).	)0 = (C × {0}.
∗	)0 = (C × {0}.�)0.

Beware that 	 or 
∗	 might not be reduced. Each branch of |�| might be counted
with a multiplicity.

We have:

Lemma 3.3.3 The intersection number (C × {0}.�)0 equalsμ(X, 0) + μ(X ∩ H).

By the invariance of the discriminant by pull-back (see [49, Remarque 3.3 Chap.
III p. 341–342]) the intersection number (C × {0}.�)0 equals the discriminant of the
map (X, 0) → (C, 0) induced by the linear form z0, since in this case the discriminant
is a point whose multiplicity is precisely (C × {0}.�)0.

Proof of Lemma 3.3.3 LetU be a sufficiently small neighborhood of the origin 0 in
C

n+1 and a sufficiently small neighborhood V of (0, 0) in C2 such that the mapping

 defined above induces a map 
U,V : U → V .

We observe first that themultiplicity of a point v of� ∩ V is the sum of theMilnor
numbers of critical points of 
 over v in U .

Then, choose U and V small enough. Now consider line C × {t} such that t is
chosen small enough such that:

1. the number of intersection points of V ∩ (C × {t}) with |�| is the intersection
number (C × {0}.|�|)0;

2. by choosing U conveniently, U ∩ 
−1(C × {t}) is the Milnor fiber of f at 0 and
U ∩ 
−1((0, t)) the Milnor fiber of (X ∩ H, 0).
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Then we do a proof similar to the one of [26, Theorem 4.5 particularly of Lemma
4.9] (or [27, Proof of Lemma 6.6.9 Chap. 6 of this handbook vol. I ]). In [48, Propo-
sition 1.2 Chap II] Teissier gives an algebraic proof of the Lemma 3.3.3.

Lemma 3.3.3 implies that (
−1(C × {0}).	)0 = μ(X, 0) + μ(X ∩ H) which
yields:

({ f = 0}.	)0 = dimC

C{z0, . . . , zn}
( f, ∂ f ∂z1, . . . , ∂ f ∂zn)

= μ(X, 0) + μ(X ∩ H) = e(I ).

This proves Lemma 3.3.2.
Using Lemma 1.4 of [48] and the upper semi-continuity of Milnor number in

the family of hyperplane sections through 0, one obtains the minimality of Milnor
number μ(X ∩ H) as stated in Theorem 3.3.1. This proves Theorem 3.3.1.

Our arguments above lead to:

Corollary 3.3.4 Consider a hypersurface defined by the germ of complex analytic
function f ∈ OCn+1,0 having at the origin 0 an isolated singularity. Let H be a
hyperplane of Cn+1 through the origin 0. Choose the coordinates of Cn+1 such that
H = {z0 = 0}. The hyperplane H is not a limit of tangents of X at 0 if and only if
the ideal I0 generated by ∂ f/∂z1, . . . , ∂ f/∂zn in OX,0 has the same multiplicity than
the ideal generated by ∂ f/∂z0, ∂ f/∂z1, . . . , ∂ f/∂zn in OX,0.

Remark 3.3.5 In [50, Théorème 2, Appendice p. 291] B. Teissier proves that if
for a hyperplane μ(X ∩ H, 0) is the minimum among all the Milnor numbers of
intersections by hyperplanes at 0, then there is a flag L1 ⊂ . . . ⊂ Ln−1 of subspaces of
H such that (μ(X, 0), μ(X ∩ H, 0), μ(X ∩ Ln−1), . . . , μ(X ∩ L1)) is the μ∗(X, 0)
sequence defined by Teissier in [48, Définition 1.5 Chap. 1].

For instance, L1 has dimension one and μ(X ∩ L1) = m(X, 0) − 1, where
m(X, 0) is the multiplicity of x at the point 0, since the intersection number
(L1.X)0 = m(X, 0). Therefore L1 is not contained in the tangent cone CX,0 of X at
the point 0.

3.4 Hypersurfaces of Dimension 2

3.4.1 Consequences of Teissier’s Theorem

In the case we consider complex surfaces in C
3, i.e., complex hypersurfaces of

dimension 2, with isolated singularities, the Theorem of Teissier allows us to describe
the set of limits of tangent planes at an isolated singular point because the section of
a surface by a plane is a curve.

Let S be a complex analytic surface inC3 with an isolated singularity at 0 defined
by f : C3 → C. Let P be a plane through 0. The result of Teissier tells us:
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Corollary 3.4.1 The plane P is not a limit of tangent planes of S at 0 if and only if
the Milnor number μ(S ∩ P, 0) is minimum among all the Milnor numbers at 0 of
intersections of S by planes.

As a consequence we have:

Proposition 3.4.2 If P1 and P2 are two planes which are not limit of tangents of
the surface S at 0, we can embed S ∩ P1 and S ∩ P2 in a family of plane curves
satisfying μ-constant.

Proof Consider � the open set of the space of planes through 0 such that for any
plane P in �, P is not a limit of tangents ta S at 0.

Over � we have the tautological bundle T(�) where the fiber over a point τ of �

is the plane which corresponds to the point τ . This bundle is a sub-fibration of the
trivial bundle C3 × �:

T(�)

θ

C
3 × �

�

(3.2)

Let F : (C3, 0) × � → C be the trivial extension of f : (C3, 0) → C. The inter-
section of a representative of {F = 0} with T(�) endowed with the projection onto
� defines a flat deformation on �.

Since the planes P1 and P2 belong to � and � is connected, we can prove that
S ∩ P1 and S ∩ P2 belong to a μ-constant family of plane curves.

As a consequence of the main result of [28] we obtain:

Lemma 3.4.3 If P1 and P2 are two planes which are not limit of tangents of the
surface S at 0, the plane curves S ∩ P1 and S ∩ P2 are topologically equisingular.

Now the problem is to find a way to compute the Milnor number of a generic
plane section of the surface S.

In what follows, we shall give results to obtain theMilnor number of a hyperplane
section of the surface singularity and give results to compare two general hyperplane
sections.

The idea is to blow-up the singular point and observe that there is a way to obtain
conditions on the plane section to have the generic Milnor number. For generalities
on blowing-ups we refer to [46, Sect. 3].

When one blows up a point x in CN , one obtains a complex analytic manifold Z
of dimension N . The blowing-up of the point is the map e : Z → C

N .
Namely we have a map h from C

N − {x} into P
N−1 which sends a point y ∈

C
N − {x} to the affine line which connects x and y. The space of affine lines of CN

through x is isomorphic to PN−1.
The graph of h is a subset of CN × P

N−1 which is not closed. The closure of this
graph is precisely the manifold Z .
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The projection e of Z onto C
N is the blowing-up of the point x in C

N . By abuse
of language it is often said that Z is the blowing-up of x in CN .

The fiber of e over x is isomorphic to PN−1 and called the exceptional divisor of
the blowing-up e.

Similarly one can define the blowing-up eU of a point x in an open subset U of
C

N . In fact eU is the morphism induced by e from e−1(U ) into U .
Let X be a reduced equidimensional closed complex analytic subset of an open

subset U of CN . Let eU : ZU → U be the blowing-up of the point x ∈ X in U . The
strict transform X ′ of X by the blowing-up eU is the closure of e−1

U (X − {x}) in ZU .
The blowing-up eX of x in X is the map induced by eU from the strict transform X ′
of X to X . One can construct the blowing-up eX by considering the map hX from
X − {x} into P

N−1 and by taking the closure of the graph of hX in U × P
N−1.

One notices that the set underlying the exceptional divisor of the blowing-up eX
is equal to the space Proj(|CX,x |) of lines through x in the tangent cone of X at x .

One can prove that the inverse image by eX of the maximal ideal m of OX,x is a
sheaf of OX ′-modules on X ′ which is locally of rank one.

More generally the blowing-up of an ideal I in X , where X is a small representative
of (X, x) where I is generated by the holomorphic functions f1, . . . , fk defined
on X is the following: Let V (I ) be the complex analytic subspace of X defined
by f1 = . . . = fk = 0. On X − V (I ) we have a map into P

k−1 defined by z 	→
( f1(z), . . . , fk(z)). The closure of the graph of this map in X × P

k−1 is an analytic
space XI . The projection of XI onto X is the blowing-up eI of X with center the ideal
I . One can prove that the inverse image of I by eI is a locally invertibleOXI -module.

We have the following universal property: For any map f : Z → X such that
the inverse image f ∗ I is a locally invertible OZ -module, the morphism f factorizes
uniquely through eI , i.e., there is a unique morphism f I : Z → XI such that f =
eI ◦ f I :

Z

f

f1
XI

eI

X

(3.3)

If one considers a complex analytic surface S closed in an open subset U of C3,
the blowing-up of the point 0 ∈ S in S is a complex analytic map e : S′ → S and the
reduced exceptional divisor is the projective curve Proj(|CS,0|).

For instance, for the blowing-up eC : C′ → C of a cone C at 0 of dimension 2 the
fiber e−1

C (0) is the projective curve Proj(C).
Let P be a complex plane of C3 containing 0 and U an open subset of C3 also

containing 0. The strict transform of P ∩U by the blowing-up e0 : U ′ → U of 0 in
U is a surface P ′ whose intersection with the exceptional divisor e−1

0 (0) of e0 is a
projective line in e−1

0 (0).
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When the intersection S ∩ P is a reduced curve, the intersection S′ ∩ P ′ is the
blowing-up at 0 of S ∩ P . Therefore the points of P ′ ∩ |e−1(0)| correspond to the
distinct tangents of S ∩ P at the singular point 0.

There is a relation between the Milnor number μ(S ∩ P, 0) of the plane curve at
0 and the Milnor numbers of S′ ∩ P ′ at the points t1, . . . , tk of P ′ ∩ |e−1(0)|.

Namely we have:

Lemma 3.4.4 Let (C, 0) be the germ at 0 of a reduced plane curve having k distinct
tangents at 0. Let C ′ → C be the blowing-up at 0 of a sufficiently small representative
C of (C, 0). We have:

μ(C, 0) = m(C, 0)(m(C, 0) − 1) +
k∑

i=1

μ(C ′, ti ) − k + 1

where t1, . . . , tk are the points of C ′ above 0 and m(C, 0) is the multiplicity of the
plane curve C at 0.

Proof Let δ(C, 0) be the following number:

δ(C, 0) := dimC

ŌC,0

OC,0

where ŌC,0 is the normalization of the local ring OC,0. It is known that δ(C, 0) is a
finite number.

In [34, Theorem 10.5, p. 85] Milnor proves that:

μ(C, 0) + r − 1 = 2δ(C, 0),

where r is the number of branches of C at 0.
It is known that (see e.g [53] Remark p.151):

δ(C, 0) = m(C, 0)(m(C, 0) − 1)

2
+

k∑

i=1

δ(C ′, ti ).

Therefore using Milnor formula given above we have:
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μ(C, 0) = 2δ(C, 0) − r + 1 = m(C, 0)(m(C, 0) − 1) +
k∑

i=1

2δ(C ′, ti ) − r + 1

=m(C, 0)(m(C, 0) − 1) +
k∑

i=1

(μ(C ′, ti ) + ri − 1) − r + 1

=m(C, 0)(m(C, 0) − 1) +
k∑

i=1

μ(C ′, ti ) + r − k − r + 1

where ri is the number of branches of C ′ at the point ti and r = ∑k
i=1 ri . This yields:

μ(C, 0) = m(C, 0)(m(C, 0) − 1) +
k∑

i=1

μ(C ′, ti ) − k + 1

as we claim in Lemma 3.4.4.
If we apply this lemma to the plane curve S ∩ P , we have:

μ(S ∩ P, 0) = m(S ∩ P, 0)(m(S ∩ P) − 1) +
k∑

i=1

μ(S′ ∩ P ′, ti ) − k + 1. (3.4)

Since two plane sectionswithminimalMilnor number are topologically equisingular,
we can apply the following results:

Lemma 3.4.5 If two germs of plane curve (C1, 0) and (C2, 0) are topologically
equisingular, i.e., there are good neighbourhoods U1 and U2 of 0 in C2 relatively to
C1 and C2 and a homeomorphism h : U1 → U2 such that h(C1 ∩U1) = C2 ∩U2,
then:

1. they have the same number of branches, the homeomorphism h sends a branch
of C1 at 0 on a branch of C2 at 0;

2. the intersection number of the branch 	i and the branch 	 j (i �= j ) at 0 is equal
to the intersection number of h(	i ) and h(	 j ) at 0.

Proof The notion of good neighborhood due to Prill ([36] or see [17, 9.3.1]) implies
that one can choose small open balls B̊1 and B̊2 centered at 0 as good neighbourhoods
in C2 relatively to C1 and C2.

The analytic components ofC1 andC2 at 0 are given by the connected components
of B̊1 ∩ C1 − {0} and B̊2 ∩ C2 − {0}. This gives 1.

By choosing the balls B′
1 and B

′
2 centered at 0, closed and smaller than B̊1 and B̊2

the property of being good neighbourhoods implies that B′
1 − (	i ∪ 	 j ) and B

′
2 −

(h(	1) ∪ h(	2)) have the same homotopy type. It implies that on the spheres S′
1 =

∂B′
1 and S

′
2 = ∂B′

2 the complements of the links defined by 	1 ∪ 	2 and h(	1) ∪
h(	2) have isomorphic fundamental groups, so the corresponding links have the
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same Alexander polynomials. A result of Burau [3] shows that this implies that the
intersection number of 	i and 	 j at 0 equals the intersection number of h(	1) and
h(	2) at 0.

Another reasoning consists to use a result of Reeve [39]: the intersection number
of a branch 	i and a branch 	 j of C1 at 0 is equal to the linking number of the knot
	i ∩ S with the knot 	 j ∩ S, where S is a sufficiently small sphere centered at 0.

This proves 2.
We shall need another result:

Lemma 3.4.6 Let (C1, 0) and (C2, 0) be two germs of complex analytic plane curves
which are topologically equisingular. Then

1. the germs (C1, 0) and (C2, 0) have the same multiplicity;
2. their strict transforms by a blowing-up of 0 in C

2 have the same number k of
points over 0 and there is an order of these points such that the germs (C ′

1, t1,i )
and (C ′

2, t2,i )of the strict transformat these points are topologically equisingular,
for 1 ≤ i ≤ k.

Proof If (C1, 0) and (C2, 0) are topologically equisingular by a local homeomor-
phism h of C2 an analytic component 	i of C1 at 0 is topologically equisingular to
the component h(	i ) of C2 at the point 0. By using Corollary 1 of 3.1.1 and Propo-
sition 3.2.1 of [47] one proves that two topologically equisingular branches can be
embedded in a one parameter μ constant deformation. With the result of [23] (or
[28]) the multiplicity of 	i and h(	i ) at 0 must be the same

The multiplicity of (C1, 0) is the sum of the multiplicities at 0 of the components
	i and the multiplicity of (C2, 0) is the sum of the multiplicities at 0 of h(	i ), which
are the components of (C2, 0), so the two germs must have the same multiplicity.
This proves 1.

Since (C1, 0) and (C2, 0) are equisingular, their Lipschitz saturation (see [14,
Definition 1.4.18]) are the same ([14, Theorem 1.4.23]), therefore, since they are the
generic projections of their Lipschitz saturation curve embedded in some C

N , by
considering the family of projection onto C

2 representatives of the germs of plane
curve (C1, 0) and (C2, 0) can be embedded in an equisingular family which satisfies
the hypotheses of [55, Theorem 7 p. 529].

By definition of the equivalence ofC1 andC2 ([55, Definitions 2, 3, 4 andTheorem
1]),C1 andC2 have the same number of distinct tangents and their strict transforms at
the points of the blowing-up of 0 which correspond to their tangents are equisingular.
This proves 2.

3.4.2 Limit of Tangents of Surfaces of C3 with Isolated
Singularity

By using the Formula 3.4 a plane P is not limit of tangent planes to S at 0 if and
only if the line Proj(P) intersects Proj(|CS,0|) at points where the blowing-up S′ of
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S at 0 is equisingular along Proj(|CS,0|) and since the plane P is not contained in
the tangent cone CS,0, this implies that the multiplicity of S ∩ P at 0 is equal to the
multiplicity of S at 0.

This gives:

Theorem 3.4.7 Let (S, 0) be the germ of surface in (C3, 0) with an isolated sin-
gularity. The limit of tangents of S at 0 are the planes tangent to the tangent cone
|CS,0| and a finite number of pencils of planes around lines of |CS,0| that we call the
exceptional tangents of S at 0.

Proof Corollary 3.2.3 already tells us the the tangent planes to the reduced tangent
cone |CS,0| are limit of tangent planes of S at 0.

Projective lines through a singular point of Proj(|CS,0|) correspond to limits of
tangent planes P of S at 0 because these lines intersect the curve Proj(|CS,0|) in less
points than a general projective line. This shows that the number of distinct tangents
of (S ∩ P) is not the generic one.

Therefore singular points of Proj(|CS,0|) corresponds to exceptional tangents as
defined in the Theorem.

We are left with non-singular points of the curve Proj(|CS,0|) and projective lines
� transverse to the curve Proj(|CS,0|).

We first notice:

Lemma 3.4.8 Let (X, 0) be a germ of complex hypersurface embedded in (Cn+1, 0).
Suppose that the singular locus (�, 0) of (X, 0) has dimension 1 and is non-singular.
Assume that (X, 0) defines a μ-constant family of complex hypersurfaces along
(�, 0). Then, for any function f transverse to � at 0 the family of germs of complex
hypersurfaces (X ∩ { f = f (y)}, y) is μ-constant with the same Milnor number at
y in an open neighbourhood U0 of 0 in �.

Proof Let x1, . . . , xn, t be local complex analytic coordinates of Cn+1 such that the
equation of (X, 0) is F(x1, . . . , xn, t) = 0 and x1 = . . . = xn = 0 defines (�, 0).
The family Ft = F(x1, . . . , xn, t) = 0 is the μ-constant family along � at 0.

Since f is transverse to � at 0, we can choose in an open neighbourhoodU of 0
in Cn+1 the local coordinates x1, . . . , xn, f .

Because {F(x1, . . . , xn, t) = 0} defines in an open neighbourhood of 0 in Cn+1 a
μ-constant family of hypersurfaces, by [29] (see also [48, Remarque 3.10]) the hyper-
plane {t = 0} is not a limit of tangent hyperplanes to X at 0 and in the ring OCn+1,0

the fonction ∂F/∂t is integral over the ideal (∂F/∂x1, . . . , ∂F/∂xn) (compare with
the beginning of the proof of Lemma 3.3.2).

Therefore the set {∂F/∂z1 = . . . = ∂F/∂zn = 0} coincides with {∂F/∂z1 =
. . . = ∂F/∂zn = ∂F/∂t = 0}, i.e., with the critical locus of F in an open neigh-
bourhood of 0 in Cn+1.

Similarly ∂F/∂ f is integral over the ideal (∂F/∂x1, . . . , ∂F/∂xn) and the set
{∂F/∂z1 = . . . = ∂F/∂zn = 0} coincides with {∂F/∂z1 = . . . = ∂F/∂zn =
∂F/∂ f = 0}.
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It implies that the relative polar curve of {F = 0} relatively to t = 0 at 0, i.e., the
critical locus of 
0 = (t, F) : (Cn+1, 0) → (C × C, 0) outside {F = 0} (see [27,
Theorem 6.6.3]), is empty. Similarly the relative polar curve of {F = 0} relatively
to f = 0 at 0 is empty.

From [24] the Milnor numbers of X ∩ {t = 0} and X ∩ { f = 0} at 0 are both
equal to the (n − 1)-Betti number of the Milnor fiber of F at 0. By hypothesis the
Milnor number of X ∩ {t = 0} is μ.

Since (X ∩ {t = u}, (0, . . . , 0, u)) is the germ of aμ-constant family of hypersur-
faces, the Milnor number of (X ∩ { f = f (u)}, (0, . . . , 0, u)) is also μ for u small
enough, since by continuity f is also transverse to � at (0, . . . , 0, u) for u small
enough. This gives a proof of Lemma 3.4.8.

Let us come back to the proof of Theorem 3.4.7.
Because of Lemma 3.4.8, for any projective line D which intersects Proj(|CS,0|)

at a point x where the blowing-up surface S′ is equisingular along Proj(|CS,0|) at x ,
the Milnor number of S′ ∩ P ′ at x , where P ′ is the strict transform of the plane P
defined by the projective line D, is the same among all the germ of curves S′ ∩ S0 at
x . where S0 is any non-singular surface transverse at x with Proj(|CS,0|).

By Lemma 3.4.3, Lemma 3.4.6 and with Lemma 3.4.4 one can prove that any
projective line which intersects transversally Proj(|CS,0|) at points which are smooth
points of Proj(|CS,0|) and where S′ is equisingular along Proj(|CS,0|) corresponds to
a plane P of C3 through 0 such that the plane curve S ∩ P has the minimal Milnor
number at 0 among all planes through 0.

In particular we obtain:

Corollary 3.4.9 Let (S, 0) be a germ of complex hypersurface of dimension 2 with
isolated singularity at 0. The exceptional tangents of S at 0 correspond to the singular
points of Proj(|CS,0|) and the non-singular points y1, . . . , yk of Proj(|CS,0|) where
the blowing-up surface S′ does not have a locally constant Milnor number along
Proj(|CS,0|).

3.5 Polar Varieties of a Hypersurface of Dimension 2

We shall provide another way to obtain exceptional tangents of a hypersurface of
dimension 2 at an isolated singular point.

3.5.1 Polar Varieties

We first give a general definition of Polar varieties of a reduced equidimensional
complex analytic space. For properties of Polar varieties we advise the reader to
consult [31].
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Let X be an equidimensional complex analytic subset of dimension d of an open
subset U of CN . Let p : X → C

k be the restriction to X of a projection C
N → C

k ,
where 2 ≤ k ≤ d + 1.

Definition 3.5.1 Let x be a point of X . There is a non empty Zariski open subset �
of the space of projections of CN ontoCk , for 2 ≤ k ≤ dim X + 1 such that, for p ∈
�, the closure Pk−1(p) of the critical locus of the restriction of p to the non-singular
part X − � of X is either empty or an analytic subspace of dimension k − 1 whose
equisingularity class of (Pk−1(p), x) only depends on the germ (X, x). We call the
germ (Pk−1(p), x) the germ of polar variety defined at x by the general projection p.

Here we consider the equisingularity class as the one defined by equiresolution
or more simply by Whitney conditions of the family parametrized by �.

Notice that here we have given the definition of polar varieties of the remark
(2.2.3) of [31].

Remark 3.5.2 1. In the case of a swallow tail, i.e the surface discriminant of the
general equation of degree 4, the limit of tangents at the origin is only a plane.
If one considers a projection p onto that plane, the polar curve P1(p) is empty.

2. The polar variety Pd(p) is always X .
3. In the case of a surface one has only to consider the polar curve P1(p) and

the whole surface P2(p). When the surface is a hypersurface S of C3, we shall
choose the Zariski open dense set � of projections C3 → C

2 defining the polar
curve in such a way that the kernel l of a projection in � satifies the condition
l � |CS,0|
There is a relation between the tangent cone of the polar curve at a point 0 of a

surface S and the exceptional tangents of S at 0. Now, we are going to specify this
relation.

3.5.2 Exceptional Tangents of a Hypersurface
of Dimension 2

In the proof of Theorem 3.4.7 we have obtained that the exceptional tangents of a
germ of hypersurface (X, x) of dimension 2 with isolated singularity correspond
to the singular points of Proj(|CX,x |) and the non-singular points of Proj(|CX,x |) at
which the blowing-up X ′ of X at x is not equisingular along Proj(|CX,x |).

There is another way to find these exceptional tangents at an isolated singular
point of X . Namely:

Lemma 3.5.3 Let S be a complex analytic hypersurface of dimension 2with isolated
singularities. Let 0 be a point of S. The lines which are in the tangent cone of the
Polar curve P1(p) at 0, for almost all p ∈ �, are exceptional tangents of S at 0.



3 Limit of Tangents on Complex Surfaces 143

Proof Consider p : C3 → C
2 a sufficiently general projection. Let D be a line of

the tangent cone CP1(p),0 of the polar curve P1(p) at 0.

Let zn ∈ P1(p) be a sequence of points �= 0 tending to 0 such that the lines 0zn
converge to D. Since P1(p) is the closure in S of the critical locus of the restriction
of p to S − � and since we may assume that zn is a non-singular point of P1(p) and
of S, the tangent plane of S at zn is a plane containing Tzn (P1(p)) and the kernel of
p. Since the limit T of Tzn (S) contains D (see Lemma 6.2.1 of [27]), the plane T
contains D and the kernel of p and is a limit of tangent planes to S at 0.

If the line D is in all the tangent cones CP1(p),0 of the polar curves P1(p) for an
infinity of p, the line D must be an exceptional tangent as stated in the Lemma.

In fact we have:

Theorem 3.5.4 Let S be complex analytic hypersurface of dimension 2 with an
isolated singularity at the point 0. A line D is an exceptional tangent of S at 0 if and
only if it is in the tangent cone of almost all polar curves of S at 0.

Proof One of the implications of this proposition is given by Lemma 3.5.3. Let us
show the converse, i.e., any exceptional tangent is in the tangent cone of all polar
curves of S at 0.

We shall first explain a relation between limits of tangent planes and tangent lines
to discriminants of finite projections to C

2.
Let l be a line through 0 in C

3. Consider a projection �l : C3 → C
2 having l as

its kernel. For a generic choice of the line l the restriction πl of the projection �l to
S is finite, defined by two functions f and g in OS,0. The ideal ( f, g), generated by
f and g in OS,0 is primary for the maximal ideal of OS,0.
The blowing-up e1 of the ideal ( f, g) of S is given by the closure S1 in S × P

1

of the graph of the map S − {0} → P
1 defined by:

q 	→ ( f (q) : g(q)).

Then, the blowing-up e1 : S1 → S of the ideal ( f, g) of OS,0 is induced by the
projection of the graph into S.

Let eZ be the blowing-up of C2 at the point 0:

eZ : Z → C
2.

By the universal property of the blowing-up eZ there is a map p1 from S1 to Z such
that eZ ◦ p1 = πl ◦ e1.

We have the following pull-back diagram of πl by eZ :

S1
e1

p1

S

πl

Z
eZ

C
2

(3.5)
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Let L be a line of C2 going through 0. The inverse image of L by the projection
�l is a plane Q containing the line l. One can view S1 as the family of curves S ∩ Q
as L is in the family of lines of C2 through 0.

Let t = (0, (u : v)) ∈ e−1
Z (0) (� P

1). A line Lt = {uy − vx = 0} of C2 going
through 0 defines a strict transform L ′

t by the blowing-up eZ that intersects the
exceptional divisor at the point (0, t). The inverse image π−1

l (Lt ) is the curve S ∩ Qt

where Qt = �−1
l (Lt ).

One can see in our context that each section S ∩ Qt is isomorphic to its strict
transform in S1 by e1.

Let P1(πl) be the polar curve at 0 defined by the projection πl on S. Notice that
the polar curve P1(πl) is the critical space of πl . The discriminant �l is the image
of P1(πl) by πl . Since discriminant and critical spaces are kept under base change
in a pull-back diagram (see [49, Remarque 3.3 Chap. III p. 341–342]), their inverse
images e−1

Z (�l) and e
−1
1 (P1(πl)) by eZ and e1 are the discriminant and critical space

of the map p1.

Remark 3.5.5 The surface S1 ⊂ S × P
1 is endowed with the restriction λ1 of the

second projection:
λ1 : S1 → P

1.

For any point t = (u : v) ∈ P
1 the fiber λ−1

1 (t) is the strict transform of the section
S ∩ Qt by e1.

Then the surface S1 is a flat family of plane curves, each of them is isomorphic
to the hyperplane section S ∩ Qt by the plane Qt containing the line l. The family
is parametrized by P

1.
The Theorem 7 p. 529 of [55] tells that the discriminant e−1

Z (�l) has components
other than the exceptional divisor e−1

Z (0) which intersect the exceptional divisor
e−1
Z (0) at points (0, t) over which the curve λ−1

1 (t) does not have the generic equi-
singularity type, so by [28] it does not have the minimum Milnor number.

It yields the following Lemma:

Lemma 3.5.6 The strict transform of the polar curve P1(πl) by the blow-up e1,
intersects the exceptional divisor e−1

1 (0) at the points (0, t) ∈ S × P
1 where the fiber

λ−1
1 (t) has a Milnor number at 0 strictly larger than the minimum Milnor number of

the hyperplane sections of S at 0.
In particular, a plane Qt containing the line l, is a limit of tangent planes to S at

0 if and only if its image �l(Qt ) is a tangent line to the discriminant |�l | at 0.
Proof of Lemma 3.5.6. A point (0, t0) of the exceptional fiber e−1

1 (0) is a point
where S1 is not equisingular along |e−1

1 (0)| if and only if the image p1(0, t0) is
an intersection point of at least two components of the discriminant e−1

Z (�l), since
e−1
Z (0) is already one component of e−1

Z (�l). Equivalently, (0, t) is an intersection
point of the strict transform of P1(πl) by e1 with the exceptional divisor.

These intersection points are the points (0, t0) for which the fiber λ
−1
1 (t0) does not

have the generic equisingularity type. Equivalently, the Milnor number of λ−1
1 (t0) is

not minimum among Milnor numbers of general fibers.
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Since, for every t ∈ P
1, each fiber λ−1

1 (t) is isomorphic to the hyperplane section
S ∩ Qt , the considered Milnor numbers are Milnor numbers of hyperplane sections
S ∩ Qt .

By the Theorem of Teissier 3.3.1 any such point (0, t0) of e
−1
1 (0) is the intersection

of e−1
1 (0) with the strict transform by e1 of the section S ∩ H by a limit H of tangent

planes of S at 0.
The images of such points (0, t0) by the morphism p1 are intersections of the

strict transform of �l by eZ with the exceptional divisor of e−1
Z (0).

The commutativity of the Diagram 3.5 implies that a plane Qt0 is a limit of tangent
planes to S at 0 if and only if its image �l(Qt0) is a tangent line to |�l | at 0.

Let us now come back to the proof of Theorem 3.5.4. We are finishing with the
following Lemma:

Lemma 3.5.7 Let D be an exceptional tangent of S at 0. For any general line
0 ∈ l ⊂ C

3 not contained in |CS,0|, and such that a linear projection �l : C3 → C
2

with kernel l is in the open dense set �, call P1(πl) the polar curve defined by the
restriction πl of �l to S.

There is a branch 	l of P1(πl) at 0, such that for any sequence of points (xn) ⊂ 	l

tending to 0 and for which the limit lim
n→∞Txn (S) is a plane T we have:

1. the plane T is the plane spanned by l and D;
2. the reduced tangent cone of 	l is D.

Proof Let D be an exceptional tangent of S at 0. Let l ⊂ C
3 be a line through 0which

is not in the tangent cone |CS,0|. Call Hl the two-dimensional plane containing both
l and D. By definition of exceptional tangent the plane Hl is a limit of tangent planes
to S at 0.

First we are going to prove that Hl is the limit of tangent planes to S along a
branch of the polar curve associated to the line l.

For a general choice of l, a linear projection �l : C3 → C
2 with kernel l is con-

tained in the open dense set � defining the general polar curve. Call πl its restriction
to a representative S of (S, 0). It is a finite map. We shall denote �l its discrim-
inant space and P1(πl) the corresponding polar curve. In our setting we have that
|πl(P1(πl))| = |�l |.

Since the plane Hl is a limit of tangent planes to S at 0, by Lemma 3.5.6 its image
�l(Hl) is a tangent line D0 to �l at 0. But, since Hl is spanned by l(= ker(�l)) and
D, we have:

�l(Hl) = �l(D) = D0.

On the other hand, D0 is tangent to a branch of �l which is the image of a branch
	l of the polar curve P1(πl).

Consider a sequence of points (xn) ⊂ 	l converging to 0 and �= 0. By definition
of polar curves, at each point xn , we have:

l ⊂ Txn (S).
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Assume that (xn) is a subsequence such that, the limit of planes Txn (S) is a plane
T and the sequence of lines (Tπl (xn)(|�l |)) converges. Then:

�l(T ) = lim
n→∞�l(Txn (S)) = lim

n→∞Tπl (xn)(|�l |) = D0.

We have then �l(Hl) = �l(T ) = D0 which implies, as desired, that:

Hl = T = lim
n→∞Txn (S).

Let us prove now that the line D is tangent to the branch 	l at 0.
Consider a sequence of points (xn) ⊂ 	l tending to 0, �= 0, and such that:

• the sequence of secants (0xn) tends to the line l ′ = |C	l ,0|
• and the sequence of planes (Txn (S)) converges to the plane Hl .

A combination of Corollary 3.2.3 and Theorem 3.4.7 can be stated as follows:
Let (zn) be a sequence of non-singular points of a representative S of (S, 0)

converging to 0, such that the sequence of lines (0zn) converges to a line � and the
sequence of tangent planes Tzn (S) converges to a plane T . Then, either T is tangent
to |CS,0| along �, or � is an exceptional tangent and � ⊂ T .

For a general choice of the line l, the plane Hl is not tangent to |CS,0| and D is
the unique exceptional tangent contained in Hl .

Therefore, by the observation above, the limit l ′ is an exceptional tangent of S at 0
contained in Hl . Since D is the unique exceptional tangent contained in Hl , we have
l ′ = D. As limits of secants and limits of tangents coinside for curves, it implies that
D is the tangent to the branch 	l at 0. Which ends the proof of Lemma 3.5.7.

The line D is then tangent to almost all the polar curves of S at 0, which conludes
the proof of Theorem 3.5.4.

3.6 Surfaces in C
N

Up to now we have mainly discussed the case of hypersurface singularities, and in
particular hypersurfaces of C3 with isolated singularities. In that context the main
tools have been the relation between integral dependence on ideals, limits of tangents,
equisingularity and Milnor number of hyperplane sections.

Whenwe dealwith general surfaces inCN some changes have to bemade. Tangent
planes are no more hyperplanes, and for that reason it is convenient to work with
limits of tangent hyperplanes. It allows to have clearer formulations andmore precise
results. Lê and Teissier showed [32] that it is an appropriate manner to deal with the
problem of limits of tangents in a general context, using the conormal space.

In this work, we choose not to generalize the use of limits of tangent hyperplanes,
avoiding to work with the conormal space, conormal morphism and Lagrangian
methods; this will be done in a different work dedicated to general case. We keep
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using the Nash modification, but we shall use hyperplane sections in order to work
with equisingularity.

The equisingularity criterion we shall be working with is Whitney regularity and
its equivalent concepts in our context: Zariski’s criterion and strong simultaneous
resolution. Unlike the case of hypersurfaces, the family of curves are no more plane
curves, making the equisingularity criteria weaker. For instance the number of tan-
gents need not be constant in aWhitney equisingular family of space curves. Example
3.6.27 illustrates this fact.

Another important difference comes from the possibility for the surface to be non
Cohen-Macaulay at a point. When this happens, the surfaces obtained by blowing-
up certain ideals, that we use in order to study the equisingularity of the hyperplane
sections, need not be Cohen-Macaulay at some points; so the special fibers through
those points are not reduced. For this reason we need to work with equisingularity in
families of generically reduced curves, following what has been done in [9, 16, 42].

A one-dimentional singular locus is another difference. In order to deal with the
singular locus we need to work with the vertical apparent contour instead of the
critical locus, following the way it has been used in [25]. This approach prevents us
from using equisingularity criteria at a point of the singular locus.

The presentation of this section is based on the work of D.T. Lê in [25] where he
works with non-isolated hypersurface singularities ofC3, on the work of J. Snoussi in
[44] where he studies limits of tangents on normal surfaces ofCN and the paper [32]
whereD.T. Lê andB. Teissier study limits of tangents to any analytic space. Themain
results stated and proved here are already available in these works. However, some
generalizations to non Cohen-Macaulay surfaces, and non-isolated singularities are
original results even if the proofs are straight forward extensions of the existing
techniques.

From now on, a surface is an equidimensional and reduced complex analytic
space of dimension 2, embedded in an open subset of CN . It may have non-isolated
singularities.

3.6.1 Description of the Limits

We shall start by describing the set of limits of tangent spaces to a surface at a singular
point. It is a generalization of the situation of isolated singularities of hypersurfaces
in C

3. We shall introduce exceptional tangents in a different manner than in the
hypersurface case. Afterwards we shall show that this definition is a generalization of
the one in hypersurfaces, by using theWhitney regularity as equisingularity criterion
in Sect. 3.6.4.

Let (S, 0) be a germ of surface embedded in (CN , 0). Recall that the Nash mo-
dification ν : S̃ → S on a representative S of the germ (S, 0) allows to view the
limits of tangent spaces at a given point x ∈ S as the fiber ν−1(x). We want now to
describe the fiber ν−1(0). We know by Corollary 3.2.3, that the tangent planes to the
tangent cone at 0 are in this set of limits. In order to complete the description of this
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set, consider the following commutative diagram, that we will call secant/tangent
diagram:

S × P
N−1 × G(2, N ) X

e′
0

ξ
ν ′

S̃

ν

S × G(2, N )

S × P
N−1 S′ e0

S C
N

(3.6)

where G(2, N ) is the Grassmannian of 2-dimensional vector spaces inCN , e0 and e′
0

are respectively the blow-up of the origin in S and the blow-up of the pull-back of the
maximal ideal mS,0 of the local ring OS,0 in S̃. The morphism ξ is e0 ◦ ν ′ = ν ◦ e′

0.
The morphism ν ′ is given by the universal property of the blowing-up.

Now, in our situation all the spaces S, S′, S̃ and X are surfaces, and the respective
exceptional fibers, e−1

0 (0) and ξ−1(0) are curves. Note that when the singular locus�

of S has dimension one, the inverse image ν−1(�) is also one dimensional, however
the fiber ν−1(0) might be finite. We consider the decomposition into irreducible
components of the fibers over 0:

|e−1
0 (0)| =

⋃

i

Vi , |ν−1(0)| =
⋃

i

Wi , and |ξ−1(0)| =
⋃

i

Di ,

since we are interested in the limits of tangents at the point 0 we do not consider all
the inverse image |ν−1(�)| but only |ν−1(0)|.

Recall that the components Vi are precisely the irreducible components of the
projective curve Proj(|CS,0|) and the Wi are the irreducible components of the set of
limits of tangent spaces to S at 0.

A point in the fiber |ξ−1(0)| is of the form (0, η, τ ), where η is a point of PN−1

corresponding to a line �, generatrix of the tangent cone |CS,0|, and τ is a point in
G(2, N ) corresponding to a limit T of tangent spaces to S at 0, both of them taken
with respect to the same limit, i. e. there exists a sequence of non-singular points
(xn) ⊂ S such that � = limn(0xn) and T = limnTxn (S). A result due toWhitney [54,
Theorem 22.1], can be restated as � ⊂ T .

Consider an irreducible component Di of |ξ−1(0)|. Since dim Di = 1, its image
by ν ′ is either a component Vi of dimension 1 or a point ηi ∈ Proj(|CS,0|).
Definition 3.6.1 Let ηi ∈ Proj(|CS,0|) be a point such that ηi = ν ′(Di ) for some
one-dimensional irreducible component Di of |ξ−1(0)|. The line �i corresponding
to ηi is a generatrix of |CS,0|, that we call an exceptional tangent of S at 0.

The following theorem shows that the exceptional tangents play a similar role
in the description of the set of limits of tangents as in the case of hypersurfaces of
dimension 2:

Theorem 3.6.2 Let S be a representative of a germ of surface singularity (S, 0) ⊂
(CN , 0). The set of limits of tangent planes to S at 0 is made of the tangent planes
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to the tangent cone |CS,0| along its generatrices, and a finite number of curves
Li ⊂ G(2, N ) such that for any plane T in Li , we have �i ⊂ T , where the �i ’s are
the exceptional tangents of S at 0.

Proof Consider an irreducible component Di of |ξ−1(0)| that maps by ν ′ onto a one-
dimensional component Vi of Proj(|CS,0|). By Corollary 3.2.3, the inverse image of
an open dense subset of Vi by ν ′ is an open dense subset of Di , and therefore the
image e′

0(Di ) corresponds to the set of limits of tangent spaces to S at 0 that are
tangent to the irreducible component of |CS,0| corresponding to Vi along one of its
generatrices.

When this component is a plane, e′
0(Di ) is a single point which represents the

plane itself.
When ν ′(Di ) = {ηi } is a point, then, by Definition 3.6.1, it corresponds to an

exceptional tangent �i of S at 0. The component Di will be of the form {(0, ηi )} × Li ,
whereLi is an irreducible curve inG(2, N ). Any point τ ∈ Li corresponds to a plane
T containing the line �i .

The image e′
0(Di )will be a 1-dimensional componentWi = {0} × Li of |ν−1(0)|.

This completes the description of the limits of tangent spaces to S at 0.

Remark 3.6.3 In the case of surfaces that are not hypersurfaces, it is convenient to
consider tangent hyperplanes and limits of tangent hyperplanes.

A hyperplane H is tangent to S at a non-singular point if it contains the tangent
plane at that point. It is a limit of tangent hyperplanes if it contains a limit of tangent
planes, or equivalently, it is a limit of tangent hyperplanes to S at non-singular points.

In this presentation, for equidimensional complex analytic spaces we can obtain
a description of the set of limits of tangent hyperplanes, as it is done in [32, Sect.
2]. In this case of surface singularity the set of limit hyperplanes is the union of the
dual variety of the projective curve defined by the tangent cone and a finite union
of hyperplanes which are the duals of the points corresponding to the exceptional
tangents.

We can now describe the limits of tangent spaces to the surface at a generic point
of the singular locus.

Corollary 3.6.4 Let us suppose that the dimension at 0 of the singular locus � of
S is one. There is an open neighborhood U of 0 in S such that at any point x of
� ∩ (U − {0}) the limits of tangent spaces are a finite number of two-dimensional
planes, that coincide with the planes of the tangent cone |CS,x | which all intersect
along the tangent line to � at x.

Proof We are in the case where the singular locus � of S has dimension one. Then
inverse image ν−1(�) has dimension one.

First, there is an open neighborhood U1 of 0 in S, such that x is a non-singular
point of U1 ∩ � − {0}. Then there is an open neighborhood U2 of 0 in S such that
the fiber ν−1(x) of a point x in U2 ∩ � − {0} is a finite set. By Theorem 3.6.2, we
know how is this fiber. Since it is of dimension 0, there is no exceptional tangent
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and the components of the reduced tangent cone |CS,x | consist in a finite number of
planes.

Finally there exists an open neighborhood U3 of 0 in S such that a representative
S of (S, 0) satisfies Whitney conditions along U3 ∩ � at x and x is a non-singular
point of that component of �. Therefore, the tangent space to � at x is contained in
any limit of tangent spaces to S at x .

If we choose the open neighborhood U as U1 ∩U2 ∩U3, then for any point
x ∈ U ∩ � − {0}, all the planes of the reduced tangent cone |CS,x | intersect along
the line Tx (�), and these planes are the limits of tangent planes to S a x .

Example 3.6.5 Consider the surface S defined by the parametrization:

ϕ(u, v) = (u, v3, v5, uv2).

Using the parametrization one can compute limits of secants and limits of tangents
by choosing sequences of points (un, vn) in C

2 converging to (0, 0) with different
relative speed of convergence.

IfC4 has local coordinates (x, y, z,w), then the singular locus� of S is the x-axis.
One can find that its reduced tangent cone at the origin is defined by z = w = 0.

Consider a smooth point p = (u, v3, v5, uv2) ∈ S, where v �= 0. The direction of
tangent space Tp(S) is spanned by the vectors (1, 0, 0, v2) and (0, 3v2, 5v4, 2uv).
In order to compute limits of tangent spaces to S at 0, one chooses sequences of
points αn = (un, vn) tending to 0 and computes the limits of Tϕ(αn)(S). The choice of
sequences with different speed of convergence for (un) and (vn) allows to describe
all the possible limits.

In this case we find that the limits are all the planes inC4 defined by the equations
z = 0 and ay − bw = 0; where (a : b) ∈ P

1. Note that the plane of the reduced
tangent cone is one of these limits. All the others are planes containing the x-axis,
which corresponds to an exceptional tangent.

Consider now a point q = (u0, 0, 0, 0) with u0 �= 0; it is a point of � different
from 0. At the point q the reduced tangent cone is a plane with direction y = z = 0.
One can see that the unique limit of tangent planes to S at q is precisely the plane
with direction y = z = 0.

This example has been taken from [9, 4.6].

Let us summarize the results thatwe have obtained. There is an open neighborhood
U of 0 in S such that the limits of tangent planes at any point x of the singular locus
� inU − {0} are the planes of the reduced tangent cone. At the origin, a hyperplane
is a limit of tangent hyperplanes if and only if it is tangent to the reduced tangent
cone or it contains an exceptional tangent of the surface at that origin.
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3.6.2 Polar Curves

We have seen that in the case of 2-dimensional hypersurfaces with isolated singu-
larities, the exceptional tangents are the fixed tangents of the generic polar curves
associated to the singularity. We are going to see that this correspondence holds for
general surfaces.

Recall from Sect. 3.5.1, that a polar curve associated to a surface S ⊂ C
N at

the origin is defined as follows: first consider a general (N − 2)-plane L of CN

containing the origin and a linear projection �L : CN → C
2 whose kernel is L .

When L ∩ |CS,0| = {0} the restriction πL of�L to a sufficiently small representative
S of the germ of complex surface (S, 0), is a finite map. The polar curve P1(πL) is
the closure in S of the critical locus of the restriction of πL to the non-singular locus
of S. For a general L this space is either always empty or of dimension one and, if the
representative S of the germ (S, 0) is small enough, P1(πL) − {0} is non-singular.

Let us describe it more carefully. Following the way it was done in [31, Sect. 2], a
non-singular point x ∈ S is in the polar curve P1(πL) if and only if dim(Tx (S) ∩ L) ≥
1. Consider now the subspace C1(L) of the Grassmannian G(2, N ) made of planes
whose intersection with L has dimension at least one:

C1(L) = {T ∈ G(2, N )|dim(T ∩ L) ≥ 1}.

One can prove that C1(L) is of codimension 1 in G(2, N ). It is one of the Schubert
varieties in the Grassmannian.

Recall that the surface S̃ obtained by Nash modification can be endowed with the
Gauss map γ : S̃ → G(2, N ), restriction of the second projection of S × G(2, N ).
We can now view the polar curve P1(πL) as the closure in S of the image:

ν(γ −1(C1(L)) ∩ (S̃ − ν−1(�))),

where � is the singular locus of S for a sufficiently small representative of the germ
(S, 0).

This description allows us to generalize the correspondence between exceptional
tangents and fixed tangents of the polar curves.

Theorem 3.6.6 Let (S, 0) ⊂ (CN , 0) be a germ of surface. When the general polar
curve of S at 0 is not empty, a line in the reduced tangent cone |CS,0| is an exceptional
tangent of S at 0 if and only if it is tangent to all polar curves P1(πL) for L in an
open dense set of the Grassmannian G(N − 2, N ).

When the general polar curve is empty, the surface has no exceptional tangent at
0 and its tangent cone is a finite union of planes.

Proof Weshall first prove that,when the general polar curve P1(πL) is not empty then
its strict transform P̃1(πL) by ν intersects every 1-dimensional irreducible component
of ν−1(0) in at least one point.
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In [51, IV. 1.3. Proposition 2 andCorollary 1.3.2], Teissier proves that for a generic
(N − 2)-plane L , the space γ −1(C1(L)) is either empty or 1-dimensional, and that
γ −1(C1(L)) ∩ (S̃ − ν−1(�)) is dense in γ −1(C1(L)). Therefore the strict transform
P̃1(πL) of the polar curve by ν is |γ −1(C1(L))|.

On the other hand we can prove that the Schubert variety C1(L) intersects every
one-dimensional subvariety of G(2, N ) (see Proposition 3.7.1 in the appendix).
As a consequence, C1(L) will intersect the image by the Gauss map γ of any 1-
dimensional irreducible component of ν−1(0).

When the general polar curve is not empty, its strict transform by ν in S̃ is
|γ −1(C1(L))|, and it will then intersect every one-dimensional component of ν−1(0).

When the general polar curve is empty, γ −1(C1(L)) is empty and hence |ν−1(0)|
is zero-dimensional. In this case, the tangent cone to S at 0 is a finite union of planes,
that are precisely the limits of tangent planes to S at 0.

In particular when the general polar curve is empty, the surface has no exceptional
tangent.

Assume now that the general polar curve is not empty.

X
e′
0

ξ
ν ′

S̃

ν

S′ e0
S

(3.7)

Let � be an exceptional tangent of S at 0. By Definition 3.6.1, there exists a curve
L ⊂ G(2, N ) such that {(0, l)} × L is a component of |ξ−1(0)|, where l is the point
of PN−1 which represents the line �. This component will then intersect almost all
the strict transforms of the polar curves by ξ . But this component is contracted by ν ′
to the point l (see the Diagram 3.7).

It yields that almost all the polar curves have their strict transform by the blow-up
e0 of the origin in S containing the point l. The line � is then a common tangent to
almost all the polar curves.

Conversely, we shall prove that a common tangent to almost all polar curves is an
exceptional tangent.

Suppose � is such a common tangent. Then there exists a dense set � in the
Grassmannian G(N − 2, N ), such that for every L ∈ �, l is a point of the strict
transform of P1(πL) in S′ by the blow-up e0.

Suppose l does not correspond to an exceptional tangent. ByDefinition 3.6.1, since
the morphism ν ′ is surjective, the inverse image (ν ′)−1(l) is a finite set {θ1, . . . θr }.
Let us define the subset Zi ⊂ G(N − 2, N ) as follows: an (N − 2)-plane L is in Zi

if and only if the strict transform of the polar curve P1(πL) in X by ξ contains the
point θi . In this way we have � ⊂ Z1 ∪ . . . ∪ Zr .

Since � is dense in G(N − 2, N ), necessarily at least one of the Zi ’s is dense.
Hence, there exists a dense subset Zi0 ⊂ G(N − 2, N ), such that for any L ∈ Zi0
the strict transform of the polar curve P1(πL) in X by ξ contains θi0 := (0, l, τ0) ∈
|ξ−1(0)|.
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The image (0, τ0) = e′
0(θi0) will be a point in ν−1(0) that belongs to the strict

transform in S̃ by ν of almost all the polar curves.
Then for every L ∈ Zi0 , there exists a sequence (xn,L) ⊂ P1(πL) of non-singular

points of S, such that limn→∞Txn,L (S) = T0, where T0 is the two-plane represented
by τ0 ∈ G(2, N ).

By definition of polar curves, every tangent space Txn,L (S) contains a line �n ⊂
L . The limit contains then a line �L ⊂ L . For every (N − 2)-plane L ∈ Zi0 , the
intersection with the plane T0, has dimension at least 1 which is impossible, because
for a fixed two-plane in CN the intersection with a general (N − 2)-plane is a point.
This concludes the proof of Theorem 3.6.6.

Remark 3.6.7 (a) The spaceC1(L) ⊂ G(2, N ) used for describing the polar curve,
is a particular case of Schubert varieties that have been used in [31, Section 2], to
define the polar varieties associated to an equidimensional analytic space. See also
[51, Chap. IV].

(b) The property that the polar curves have nofixed point by theNashmodification,
is actually a property satisfied by Nash modification in any dimension (see [15, I.2]
or [45, III.1.2]).

We have seen that if the general polar curve is empty the surface has no exceptional
tangent. The converse is false. A surface may have no exceptional tangent and still
have a non-empty generic polar curve. In fact any cone over a (reduced) non-singular
projective curve of degree at least 2 has no exceptional tangent and has a non-empty
general polar curve. The limits of tangent planes at the vertex of the cone are the
cones over the tangent lines to the projective curve. A generic projection to C

2 of
such a cone always has a critical locus.

Example 3.6.8 Consider the surface S of Example 3.6.5. One can consider lin-
ear projections given by functions ( fa := x + a1y + a2z + a3w, fb := b1y + b2z +
b3w), and compute the polar curve for general values ai ’s and bi ’s. For simplicity we
shall do it for chosen values known to be generic.

Consider the projections P and Q : C4 → C
2 defined respectively by:

P(x, y, z,w) = (x, y + w) and Q(x, y, z,w) = (x + y, y − z + w).

Call p and q their respective restrictions to S. One can compute the critical loci
of the compositions p ◦ ϕ and q ◦ ϕ, where ϕ is the parametrization map defined in
Example 3.6.5. Then one takes the images of this critical loci in S and removes from
it the singular locus. The remaining spaces are the respective polar curves.

The polar curve associated to p is defined by the equations

y = −
(
2

3

)3

x3, z = −(
2

3
)5x5,w = −3

2
z.

Its tangent line is the x-axis.
For the projection Q, the associated polar curve to q is defined by the equations:
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(−x + 4y)3 =
(
3

2

)3

y, (−x + 4y)5 =
(
3

2

)5

z,w = −3

2
y + 4z.

Its tangent line is the x-axis.
The x-axis is the unique fixed tangent of both polar curves.
We have seen in Example 3.6.5, that this line is the unique exceptional tangent of

S at 0. In this case it coincides with the tangent line to the singular locus.

3.6.3 Relation with Discriminants of Projections to C2

We want now to relate limits of tangents to the geometry of discriminants of generic
projections. In [25, Sect. 2], D.T. Lê studied this relation in the case of hypersurfaces
of C3 and established the link between limits of tangent planes and tangents to
discriminants. The proof in the hypersurface case extends straight forward to general
surfaces, and this is what we show in the first part of this subsection.

Consider a projectionπL : S → C
2 induced by a linear projection�L : CN → C

2

whose kernel L is an (N − 2)-linear space. In what follows we shall say that πL is a
good projection at 0 , or L is a good (N − 2)-plane at 0 , whenever L ∩ |CS,0| = {0},
or equivalently, when the degree of the projection πL at 0 equals the multiplicity of
the surface S at 0.

Definition 3.6.9 The vertical apparent contour, of the projection πL is the closure
of the set of points x in a sufficiently small representative S of (S, 0), for which the
intersection of L with the tangent cone of S at x has dimension at least 1. It will be
denoted by VL .

The image of the vertical apparent contour by πL will be called the vertical part
of the discriminant, and will be denoted by V�L .

In other words, a non-singular point is in the vertical apparent contour if and only
if it is critical, and a singular point x is in the vertical apparent contour if and only
if either dim|CS,x | ∩ L ≥ 1 or x is a limit of non-singular points of S in the vertical
apparent contour.

Notice that there exists an open dense set� ⊂ G(N − 2, N ) such that, for L ∈ �

the vertical apparent contour VL coincides with the polar curve P1(πL) associated
to a projection with kernel L .

Let L be an (N − 2)-plane ofCN such that L ∩ |CS,0| = {0}. Call�L : CN → C
2

and πL : S → C
2 the induced maps.

Theorem 3.6.10 Let H be a hyperplane of CN containing L. Then H is a limit of
tangent hyperplanes to S at 0 if and only if the image �L(H) is a limit of tangent
lines to the vertical part of the discriminant V�L .

Proof Consider a linear projection �L inducing a finite map πL : S → C
2, and let

V�L be the vertical part of its discriminant. Let D be a limit of directions of tangent
lines Dn toV�L at points yn �= 0 converging to 0.
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Call xn ∈ S a point in the vertical apparent contour VL such that πL(xn) = yn .
When xn is a non-singular point in S, the hyperplane�−1

L (Dn) contains the tangent
space Txn (S).

When xn is a singular point of S, we can assume it to be �= 0 in a sufficiently small
neighborhood U of 0. Recall from Corollary 3.6.4, that the tangent cone |CS,xn | is a
finite union of planes, so�−1

L (Dn) contains a component of the tangent cone |CS,xn |.
In both cases,�−1

L (Dn) contains either a tangent plane or a limit of tangent planes
to S at xn . So, when xn tends to 0, this sequence of hyperplanes tends to a limit of
tangent hyperplanes that coincides with �−1

L (D).
Conversely, Let T be a limit of tangents to S at 0 contained in a hyperplane

H ⊃ L . Since L ∩ |CS,0| = {0}, the two-plane T is not an irreducible component of
the tangent cone |CS,0|, and L intersects T along a line � which is not in |CS,0|.

Consider the restriction of the Gauss map γ to the germ (S̃, (0, τ )). We shall call
it γT : (S̃, (0, τ )) → (G(2, N ), τ ), where τ ∈ G(2, N ) is the point representing the
plane T .

If the fiber γ −1
T (τ ) has dimension two, then T will be tangent to S at every point

of an irreducible component of S. In that case T is an irreducible component of S at
0 and therefore a component of |CS,0|, which is excluded by the hypothesis.

If γ −1
T (τ ) has dimension 1, call x = (y, τ ) a point of γ −1

T (τ ) with y ∈ S. When y
is non-singular, T is tangent to S at y. When y is singular, close to 0 but �= 0, then by
Corollary 3.6.4, the plane T is a component of |CS,y |. So in any case, the point y is
in the vertical apparent contour of πL . Therefore the image ν(γ −1

T (τ )) is contained
in the vertical apparent contour of πL , and at any point y �= 0 of that image, T is a
component of |CS,y |. The image �L(T ) is then tangent to V�L at πL(y), for every
0 �= y ∈ ν(γ −1

T (τ )); taking the limit we obtain that �L(H) = �L(T ) is a limit of
tangents toV�L .

Now, suppose that γT is finite. Recall that L ∩ T = �, where � is a line which is
not in the tangent cone |CS,0|.

Call, as before (Sect. 3.6.2), C1(L) ⊂ G(2, N ) the set of two-dimensional linear
subspaces of CN containing a line of L . It is a Schubert variety of codimension 1 in
G(2, N ) that contains τ .

We have seen in the proof of Theorem 3.6.6, that for a general (N − 2)-plane L ,
the inverse image γ −1(C1(L)) is either empty or equal to the strict transform by ν

of the polar curve P1(πL). Furthermore γ −1(C1(L)) is empty if and only if |ν−1(0)|
is a finite set. In our situation, T is a limit of tangent planes, that is not a plane of the
reduced tangent cone. This implies that |ν−1(0)| is of dimension one, and hence the
general polar curve is not empty.

Then, the inverse image γ −1
T (C1(L)) contains at (0, τ ) the strict transform B′

L by
ν of a branch BL of the polar curve P1(πL).

Consider a sequence of points (xn) ⊂ BL , converging to 0 and �= 0. Since the strict
transform B′

L intersects |ν−1(0)| at (0, τ ), the sequence of tangent planes (Txn (S))

converges to T .
On the other hand, since each xn �= 0 is on the polar curve P1(πL), we have that

dim(Txn (S) ∩ L) = 1, and then the image ln := �L(Txn (S)) is a tangent line toV�L .
Passing to the limit we obtain:



156 T. D. Lê and J. Snoussi

�L(H) = �L(T ) = lim
n→∞�L(Txn (S)) = lim

n→∞ln

which is a limit of tangent lines toV�L . This ends the proof of the Theorem.
Notice that, if πL(H ∩ S) is tangent toV�L for some general L ⊂ H of codimen-

sion 1, then πL ′(H ∩ S) will be tangent toV�L′ for any other general (N − 2)-plane
L ′ ⊂ H .

Example 3.6.11 Consider again the surface S of Example 3.6.5, and two hyper-
planes H1 and H2 defined respectively by y + w = 0 and x = 0.

None of these hyperplanes contains the reduced tangent cone |CS,0|.
Consider the 2-plane L defined by x = y + w = 0. We have L ∩ |CS,0| = {0},

L ⊂ H1 and L ⊂ H2. The kernel of projection P of Example 3.6.8 is precisely L .
We shall describe the vertical apparent contour and the vertical part of the dis-

criminant of P . Recall that if x �= 0 is a point of the singular locus of S, sufficiently
close to 0, then the reduced tangent cone |CS,x | is defined by y = z = 0, and it is
the only limit of tangent planes to S at x . This implies that the point x is not in the
vertical apparent contour, i.e., the singular locus of S is not contained in the vertical
apparent contour. Therefore, in this case, the vertical apparent contour of P coincides
with the polar curve P1(P).

The equations of the polar curve are given in Example 3.6.8. The vertical apparent
contour is defined by t = (∗)s3, where (s, t) is a local system of coordinates in C

2

and (∗) is a unit in OC2,0. Its tangent line at 0 is the s-axis.
The image of H1 by P is the s-axis, meanwhile the image of H2 is the t-axis.
The first hyperplane contains the exceptional tangent and the second one does

not. H1 is a limit of tangent hyperplanes and H2 is not.

Theorem 3.6.10 relates tangent hyperplanes to tangents of the vertical part of dis-
criminants of projections into C

2. This will allow us to establish a relation between
limits of tangent hyperplanes and equisingularity via Zariski’s discriminant criterion.

We want now to characterize the limits of tangent hyperplanes to a surface at a
point, in terms of equisingularity of the family of their sections on S. In order to do
that, we need to visualize some related surface as the family of hyperplane sections
of S. This can be achieved by blowing-up ideals generated by 2 generic linear forms
of the ambient space, as it has been done in the hypersurface case in the proof of
Theorem 3.5.4. More precisely:

Consider a good (N − 2)-plane L ⊂ C
N such that L ∩ |CS,0| = {0}. It is defined

by two linear equations FL and GL . Call fL and gL ∈ OS,0 their respective restric-
tions to the surface (S, 0), and πL = ( fL , gL) : S → C

2 the finite map induced on a
representative of (S, 0).

Call eL : SL → S the blow-up of the ideal ( fL , gL) ⊂ OS,0.
At this stage it is relevant tomention thedifferencewhen (S, 0) isCohen-Macaulay

and when it is not.
When (S, 0) is Cohen-Macaulay, the functions fL and gL form a regular sequence,

and the blown-up surface SL is defined in S × P
1 by the equation fLv − gLu = 0,

where (u : v) is a homogeneous system of coordinates in P
1, see for Example [7,

17.14]. This surface is Cohen-Macaulay at each of its points.
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When the surface (S, 0) is not Cohen-Macaulay, consider the surface S∗ defined in
S × P

1 by the equation fLv − gLu = 0. Every section of this surface S∗ by subspace
of S × P

1 defined by (u : v) = (α : β) is isomorphic to the curve defined on S by the
equation β fL − αgL = 0 which has an embedded component, so that the surface S∗
has an embedded component supported on {0} × P

1. Since the surface obtained by
the blow-up of the ideal ( fL , gL) is the closure of the graph of the map ( fL : gL), it is
then the reduced surface associated to the one defined in S × P

1 by fLv − gLu = 0.
This blown-up surface may have isolated points at which it is not Cohen-Macaulay.

Consider now a hyperplane H ⊃ L . Therefore the hyperplane H is defined by
a linear equation of the form bFL − aGL = 0 where (a : b) ∈ P

1. The hyperplane
section H ∩ S is defined in S by b fL − agL = 0; we shall denote it by h(a : b).When
the surface (S, 0) is Cohen-Macaulay, the hyperplane sections never have embedded
components. Conversely, when the surface (S, 0) is not Cohen-Macaulay, all its
hyperplane sections have an embedded component at the origin. In both cases, some
of the hyperplane sections may have non-reduced one-dimensional components. We
shall treat this situation later on.

Consider the map λL : SL → P
1 induced by the second projection of S × P

1.

SL
eL

λL

S

P
1

(3.8)

For any point (a : b) ∈ P
1 the fiber λ−1

L (a : b) coincides with the strict transform
of h(a : b) by eL .We can visualize the surface SL as the family of hyperplane sections
of S given by all the hyperplanes of CN containing L .

When the surface SL is not Cohen-Macaulay at a point (0, (a : b)), then the strict
transform of the hyperplane section h(a : b) by eL will have an embedded component
at that point. Still, the hyperplane defining h(a : b) may not be a limit of tangent
hyperplanes. See Example 3.6.27.

Remark 3.6.12 When the surface (S, 0) is Cohen-Macaulay, a fiberλ−1
L (a : b) is the

curve in S × P
1 defined by (u : v) = (a : b). This curve is the subspace of S × {(a :

b)} defined by b fL − agL = 0.
So every fiber λ−1

L (a : b) is isomorphic to the respective hyperplane section h(a :
b) defined above. In this case we can view the surface SL as the unfolding of the
family of the hyperplane sections on S given by all the hyperplanes containing L .

Following the way it has been done in Sect. 3.5.2, let us consider the blow-up
of the origin in C

2. We obtain a map eZ : Z → C
2, and we notice that the map eL

is precisely the blow-up of the pull-back by πL of the maximal ideal of OC2,0. The
universal property of the blowing-up gives rise to a unique morphism φL : SL → Z
which commutes the following diagram:
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SL
eL

φL

S

πL

Z
eZ

C
2

(3.9)

It is the same Diagram as (3.5), with different notations in order to adapt it to this
new situation.

Lemma 3.6.13 Let H be a hyperplane ofCN containing the good (N − 2)-plane L
as above. The hyperplane H is a limit of tangent hyperplanes to S at 0 if and only if
the image by φL of the strict transform of H ∩ S by eL , intersects the strict transform
by eZ of the vertical part of the discriminant V�L of πL .

Proof The lemma is a direct consequence of Theorem 3.6.10. In fact, since H con-
tains a good (N − 2)-plane L , it is a limit of tangent hyperplanes if and only if
D := πL(H ∩ S) is tangent to V�L at 0. Equivalently, the strict transform D′ of
D by eZ intersects the strict transform V′

�L
of V�L by eZ . Since the Diagram (3.9)

commutes, the image by φL of the strict transform of H ∩ S by eL coincides with D′.

We shall now relate the fact of being a non tangent hyperplane to the equisin-
gularity of the family of curves λL : SL → P

1 defined before Remark 3.6.12. The
criterion of equisingularity that we shall use is Whitney regularity .

Consider a one-parameter flat family of curvesψ : X → T ; X being a sufficiently
small representative of a germ of surface (X, 0) and T an open neighborhood of 0 in
C. Assume the singular locus Y of X is smooth, of dimension one and is such that
for any t ∈ T the fiberψ−1(t) intersects Y in a single point. It is usual to callψ−1(0)
the special fiber and ψ−1(t) for t ∈ T sufficiently close to the origin, a generic fiber.

In general, one considers families of reduced curves, i.e., each fiber ψ−1(t) is
a reduced curve. However, we want to emphasize that in our context we allow the
surface X to be non Cohen-Macaulay at the special point 0 ∈ Y , which means that
the fiber ψ−1(0)may be non-reduced at 0, having an embedded component. But still
we require it to be reduced elsewhere. This is what we call a family of generically
reduced curves in [9], see also [16].

Definition 3.6.14 Let ψ : X → T be a one-parameter flat family of curves, where
X is a sufficiently small representative of a germ of surface (X, 0). Let Y be the
singular locus of X , assumed to be one-dimensional.

We say that the family of curves is Whitney regular at 0, or that the surface X is
Whitney regular along Y at 0 if:

– Y is non-singular,
– for every t ∈ T the curveψ−1(t) is generically reduced andhas a single intersection
point with Y , and

– the surface X satisfies Whitney’s condition along Y .

Notice thatwhen the fiberψ−1(0) has a non-reduced one-dimensional component,
then the family of curves is not Whitney regular at 0.
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In order to relate Whitney regularity to limits of tangent hyperplanes, we shall
need to first relate Whitney equisingularity to the geometry of discriminants and
then use Lemma 3.6.13. The relation between Whitney regularity and discriminants
is given by the so called Zariski’s discriminant criterion. In case of families of curves,
Zariski’s criterion has a simple statement in terms of constancy of the multiplicity of
the discriminant of a generic projection to C2. We refer to [1] for precise definitions
and properties in the case of families of reduced curves.

Since in our case the hyperplane sections may have embedded components we
are going to need to use the equivalence between Whitney regularity and Zariski’s
criterion in that context. This equivalence was proved in [9, Theorem 3.1], and can
be stated as follows:

Proposition 3.6.15 A surface X as above isWhitney regular along Y at 0, if and only
if for any finite map π : X → C

2 induced by a good linear projection, the reduced
space associated to the discriminant of π is a smooth curve.

The reader must be aware that the equivalence between Zariski criterion and
Whitney conditions does not hold in higher dimensions.

We shall then use the relation we have established between limits of tangents
and discriminant of good projections to relate the limits of tangents to Whitney
equisingularity.

Let L be a good (N − 2) plane and λL : SL → P
1 as above.

Proposition 3.6.16 Let H ⊃ L be a hyperplane defined by a linear equation
bFL − aGL = 0. Call η = (0, (a : b)) ∈ |e−1

L (0)| the intersection point of the strict
transform of H ∩ S by eL with the exceptional divisor of eL . Assume η is not a point
of the strict transform of the singular locus � of S by eL . Then the hyperplane H is
not a limit of tangent hyperplanes to S at 0 if and only if the surface SL is Whitney
regular along |e−1

L (0)| at η.
Proof Let H be as in the hypothesis. By Lemma 3.6.13, H is a limit of tangent
hyperplanes if and only if φL(η) is an intersection point of the strict transform of
V�L by eZ with the exceptional divisor of eZ (see Diagram 3.9).

Since η is not in the strict transform by eL of �, the reduced discriminant of
φL at η coincides with its vertical part, and therefore it is precisely |e−1

Z (V�L )|. By
Proposition 3.6.15, H is a limit of tangent hyperplanes to S at 0 if and only if SL is
not Whitney regular along e−1

L (0) at η.
In the case of surfaces with isolated singularities, the vertical part of the discri-

minant and the discriminant of πL coincide, so Proposition 3.6.16 can be stated as
follows:

Corollary 3.6.17 If (S, 0) is an isolated surface singularity, let L be agood (N − 2)-
plane and H a hyperplane containing L. Call η the intersection point of the strict
transform by eL of H ∩ S with the exceptional divisor of eL . Then H is a limit of
tangent hyperplanes to S at 0 if and only if the surface SL is not Whitney regular
along |e−1

L (0)| at η.
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Corollary 3.6.18 Let H be a hyperplane of CN which does not contain any com-
ponent of the tangent cone |CS,0| and is not tangent to the singular locus at 0. Then
H is a limit of tangent hyperplanes to S at 0 if and only if, there exists a good linear
space L ⊂ H of dimension N − 2, i.e., for which L ∩ |CS,0| = {0}, such that SL is
not Whitney regular along |e−1

L (0)| at the intersection point of the strict transform of
H ∩ S by eL with the exceptional divisor of eL .

Proof Call Di (respectively R j ) the tangent lines to � (respectively to H ∩ S) at
0 with 1 ≤ i ≤ n and 1 ≤ j ≤ r . Let Pi, j be the two-planes generated by Di and
R j . Since the hyperplane H is not tangent to �, the linear spaces Pi, j are in fact
two-dimensional. Each of these planes intersect H along the line R j . For almost
all (N − 2)-planes L ⊂ H , we have L ∩ Pi, j = {0}. This emplies that the images
�L(Di ) and �L(R j ) are distinct and therefore the strict transform of H ∩ S and
of � by eL in SL do not intersect. By Proposition 3.6.16, we obtain the required
equivalence

Example 3.6.19 Consider the surface S ⊂ C
4 defined by the parametrization

n : (u, v) 	→ (u, uv, v2, v3)

which is the normalization of S. The surface S has an isolated singularity at 0, it is
not Cohen-Macaulay at 0.

The limits of secants to S at 0 are limits of lines generated by vectors (un, unvn,
v2n, v

3
n) when (un) and (vn) are non-zero sequences in C converging to 0.

As in the previous examples, one varies the relative speed of convergence of such
sequences and obtain that the reduced tangent cone is the (x, z)-space defined by the
equations y = w = 0; where (x, y, z,w) is a system of coordinates in C4.

In a similar way, the tangent space at a point �= 0 is spanned by the vectors
(1, vn, 0, 0) and (0, un, 2vn, 3v2n), for un and vn in C non simultaneously zero.

Making these sequences converge to zero, and taking different relative speed of
convergence, one obtains that the set of limits of tangent spaces is the set of planes
given by the equations w = 0 and ay + bz = 0 for (a : b) ∈ P

1.
The x-axis is the only exceptional tangent of S at 0.
Consider now two hyperplanes Hz and Hx defined respectively by z = 0 and

x = 0. None of them contains the plane |CS,0|. The hyperplane Hz is a limit of
tangent hyperplanes and Hx is not.

Consider the 2-plane L defined by x = z = 0; it is contained in both Hx and Hz

and L ∩ |CS,0| = {0}. We shall describe the surface SL obtained by the blow-up of
the ideal (x, z) in S.

The surface S is defined by the equations y2 − x2z = 0, yz − xw = 0, xz2 −
yw = 0 and z3 − w2 = 0. Since S is not Cohen-Macaulay at 0, the blown-up surface
SL ⊂ S × P

1 is defined as the reduced surface subjacent to the surface S1 defined by
the equation xt = zs in S × P

1, where (s : t) is a systemof homogeneous coordinates
in P1.

One can use a software such as Singular in order to obtain primary decompositions,
or compute by hands.
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In the chart t �= 0, the surface S1 is defined by the ideal

< y − w
( s
t

)
,w2 − z3 > ∩ < y, z,w > .

It has an embedded component along the s
t -axis. Then, the surface SL(= |S1|) is

defined, in this chart, by the ideal

< y − w
( s
t

)
,w2 − z3 > .

It is isomorphic to the product of the plane curve w2 − z3 = 0 by the s
t -axis. It is

then Whitney regular along the s
t -axis.

In the chart s �= 0, The surface S1 is defined by the ideal:

< y2 − x3
(
t

s

)
,w − y

(
t

s

)
> ∩ < x, y,w > .

which implies that the surface SL = |S1| is defined in this chart by the ideal:

< y2 − x3
(
t

s

)
,w − y

(
t

s

)
> .

In this chart, the surface SL is isomorphic to the hypersurface of C3 defined by the
ideal

< y2 − x3
(
t

s

)
> .

The normalization of this hypersurface ofC3 is a singular surface defined inC3 by the
equation r2 = x

(
t
s

)
. So The surface SL is not Whitney regular along the exceptional

fiber at the point ((0, 0, 0, 0), (1 : 0)). This is precisely the intersection point of the
strict transform of Hz ∩ S by eL with the exceptional fiber in SL .

The intersection point of the strict transform of Hx ∩ S by eL with the exceptional
fiber is ((0, 0, 0, 0), (0 : 1)); we have just seen that SL is Whitney regular along
|e−1

L (0)| at that point.
This example was used by Chavez [4, Example 4.2.9].

Remark 3.6.20 When a hyperplane section H ∩ S does not have isolated singular-
ities at 0, then at least one of its branches at 0 is non-reduced. Let us call C such a
branch.

When the curve C is a component of the singular locus � of S, the hyperplane H
may not be a limit of tangent hyperplanes.

The example of the surface S defined by y2 − x3 = 0 in C
3 illustrates this situ-

ation. In fact, S is a product of a cusp by a line. Its unique limit of tangents is the
plane y = 0. If one takes the plane Hx defined by x = 0, the the section Hx ∩ S is
not reduced, and it is not a limit of tangent hyperplanes.
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When the curveC is not contained in�, then H is not transverse to S alongC. The
hyperplane H is tangent to S along C. The hyperplane H is then a limit of tangent
hyperplanes.

If we want to apply Theorem 3.6.10 to this context, we can see that when H
contains a component C of �, the section H ∩ S may not be tangent to the vertical
apparent contour of a general projection to C

2.
Meanwhile, if C � �, then H is not transverse to S along C, which implies that H

contains the tangent plane to S at any point 0 �= x ∈ C close to 0. For any (N − 2)-
plane L ⊂ H , the intersection L ∩ Tx (S) has dimension at least one. The curve C is
then in the vertical apparent contour of the projection πL .

In Proposition 3.6.16 and Corollaries 3.6.17 and 3.6.18, the situation where the
hyperplane contains a component of the singular locus is omitted. When the non-
reduced component of the hyperplane section is not in the singular locus, Whitney
regularity, as Defined in 3.6.14, is not satisfied.

Wehave thus established a link between limits of tangent hyperplanes andWhitney
regularity along the exceptional fiber, of surfaces of type SL , obtained by blowing-up
ideals generated by two generic linear forms. We shall use this characterization in
the following subsection to determine the exceptional tangents viewed as points in
the exceptional fiber of the blow-up of the origin.

3.6.4 Exceptional Tangents and Equisingularity

In the case of surfaces in C
3 the exceptional tangents at a given point were defined

in terms of equisingularity of the surface obtained by blowing-up the point, along
the exceptional divisor of the blow-up. In the general case of surfaces, the relation is
not straightforward. That is why we have chosen to define the exceptional tangents
using the secant/tangent Diagram (3.6). But still, we want to explain the relation
between the exceptional tangents and the equisingularity, which allows, in the case
of surfaces with isolated singularities, to characterize them completely.

Recall that a line 0 ∈ � ⊂ |CS,0| is an exceptional tangent of S at 0 if and only
if every hyperplane containing it is a limit of tangent hyperplanes to S at 0 (see
Remark 3.6.3). Such a line corresponds to a point in the exceptional fiber e−1

0 (0) of
the blow-up of the origin of S, e0 : S′ → S.

Remark 3.6.21 Recall from page xxx that for an (N − 2)-plane L we have defined
the blow-up eL : SL → S. Now we can construct a map αL : S′ → SL as follows:
Let L be an (N − 2)-plane such that L ∩ |CS,0| = {0}. We have that S′ ⊂ S × P

N−1

and SL ⊂ S × P
1. Consider the map

AL : S × (PN−1 − Proj(L)) → S × P
1

defined as I dS × A′
L , where A′

L is the projection from P
N−1 − Proj(L) onto P1 with

center Proj(L).
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Since Proj(L) ∩ Proj(|CS,0|) = ∅, the projection AL induces a finite map:

αL : S′ → SL .

Proposition 3.6.22 Let l ∈ Proj(CS,0) be a point corresponding to an exceptional
tangent � of a surface S at 0. Then for every (N − 2)-plane L such that L ∩ |CS,0| =
{0}, the surface SL is not Whitney regular along e−1

L (0) at αL(l).

Proof Let � be an exceptional tangent and let L be an (N − 2)-plane such that
L ∩ |CS,0| = {0}. Then, by Remark 3.6.3, the hyperplane H containing L and � is a
limit of tangent hyperplanes to S at 0.

When � is not tangent to the singular locus of S, then by Proposition 3.6.16, αL(l)
is a point in SL in which the surface SL is not Whitney regular along the exceptional
divisor of eL .

When � is tangent to the singular locus � of S, then the image αL(l) is a point
of the strict transform of � by eL . In this case, the discriminant of φL : SL → Z at
φL(αL(l)) (see Diagram 3.9) has at least two components: the exceptional fiber and
part of the strict transform of πL(�) by eZ . By Proposition 3.6.15, the surface SL is
not Whitney regular along e−1

L (0) at αL(l).
For the converse of the previous proposition, we need to take into acount the

singular locus. As we have seen in the previous sub-section, since we characterize
limits of tangents with respect to the vertical part of the discriminant, and not the
whole discriminant, we only can characterize exceptional tangents by equisingularity
at points that are not in the strict transform of the singular locus by the blowing-up.
More precisely:

Proposition 3.6.23 Let η ∈ Proj(CS,0) be a point that does not belong to the strict
transform of the singular locus of S by e0. If for every good (N − 2)-plane L, i.e.,
such that L ∩ |CS,0| = {0}, the surface SL is not Whitney regular along e−1

L (0) at
αL(η), then η corresponds to an exceptional tangent of S at 0.

Proof Letη ∈ Proj(CS,0) be a pointwhich is not in the strict transformof� by e0. Let
H be a hyperplane containing the line corresponding to η and a good (N − 2)-plane
in H .

The strict transform of H ∩ S by eL intersects the strict transform of the singular
locus � by eL if and only if H contains a tangent line, or a limit of tangent lines, to
� at 0. In fact, if the strict transform of H ∩ S by eL intersects the strict transform
of � by eL , then, by commutativity of Diagram (3.9), the tangent lines of � and
of H ∩ S have a common image D by �L , and therefore H = �−1

L (D) contains a
tangent line to � at 0.

For a generic choice of L , the hyperplane H does not contain any tangent to �,
then αL(η) is not in the strict transform of � by eL .

By hypothesis, the surface SL is not Whitney regular along e−1
L (0) at αL(η). By

Proposition 3.6.16, H is a limit of tangent hyperplanes to S at 0. This implies that η
is an exceptional tangent.
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Thanks to this equisingular description of the exceptional tangents we can char-
acterize them directly on the blown-up surface S′ in relation with the normalization
morphism of S′ . It is a partial characterization when the original singularity is not
isolated, since Proposition 3.6.23 does not allow to determine whether a tangent line
to the singular locus is an exceptional tangent.

The following result generalizesTheorem5.8 of [44] to the case of non-necessarily
normal surfaces. The proof is very similar to the one in the case of normal surfaces.

Let e0 : S′ → S be the blow-up of the origin in a representative S of a germ of
surface (S, 0), and call n′ : S′ → S′ its normalization.

Definition 3.6.24 We shall call special point in S′, any point η ∈ e−1
0 (0) satisfying

one or more of the following properties:

1. η is image by n′ of a singular point of S′
2. η is image by n′ of a singular point of the reduced exceptional fiber |(e0 ◦ n′)−1(0)|
3. η is a critical value of the restriction of the normalization to the exceptional fiber.

Remark 3.6.25 Here and elsewhere in the text, by a critical point of a finite map
f : X → Y we mean a point of X at which the map does not induce a local analytic
isomorphism into its image. In particular, when the target Y is non-singular, any
singular point of X is critical. When x ∈ X is non-singular and the image f (x) of x
is a singular point of f (X), then x is critical.

Theorem 3.6.26 Let η ∈ Proj(CS,0) = e−1
0 (0) be a point which does not belong to

the strict transform of the singular locus by e0. Then η corresponds to an exceptional
tangent to S at 0 if and only if it is a special point in S′.

In order to prove this equivalence, we shall need to use another concept of equisin-
gularity, equivalent in our context toWhitney regularity, namely strong simultaneous
resolution.

A flat morphism f : X → T is a one parameter family of generically reduced
curves where T is a smooth curve, X is a reduced surface, the generic fiber is
reduced and the special fibers are generically reduced, i.e., with isolated singularities
and possibly embedded components. We consider situations where such a morphism
has a section σ : T → X such that for any t ∈ T the fiber f −1(t) − {σ(t)} is a
non-singular curve.

Call ν : X → X the normalization of X . We say that the family of curves admits
a normalization in family if ( f ◦ ν)−1(t) are non-singular for all t in T .

The family has a weak simultaneous resolution if it has a normalization in family
and the reduced inverse image |ν−1(σ (T ))| is isomorphic to |ν−1(x0)| × σ(T ). The
family has a strong simultaneous resolution when it has a normalization in family
and the inverse image ν−1(σ (T )) is isomorphic to the product ν−1(x0) × σ(T ).

In the context of families of generically reduced curves, G.-M. Greuel proved
in [16, theorem 9.3], that weak simultaneous resolution is equivalent to topological
triviality, and in [42, Theorems 4.7 and 5.2], O.N. da Silva and J. Snoussi prove that
strong simultaneous resolution is equivalent toWhitney regularity and also equivalent
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to weak simultaneous resolution together with the constancy of the multiplicity of
the fibers along σ(T ).

For the case of families of reduced curves see [1], where a general panorama is
presented.

Proof of Theorem 3.6.26 We shall first prove that if a point of Proj(CS,0) = e−1
0 (0)

is not special then it does not correspond to an exceptional tangent of S at 0.
Let η be such a point. One can choose a good (N − 2)-plane L such that the

hyperplane H , generated by L and the line l corresponding to η, is not tangent to the
tangent cone CS,0, does not contain any line corresponding to a special point, does
not contain any tangent line to the singular locus of S and the hyperplane section
H ∩ S has isolated singularities (generically reduced).

We shall prove that H is not a limit of tangent hyperplanes. Let αL : S′ → SL be
the morphism defined in Remark 3.6.21 (see the Diagram 3.10 below).

W S′

nL

n′
S′

αL
e0

U

λU

SL

λL

eL
S

T P
1

(3.10)

Call τ = αL(η). Sinceη is not in the strict transformby e0 of the singular locus of S,
there are neighborhoodsU of τ in SL and T of t0 := λL(τ ) inP1, such that λL induces
the flat morphism λU : U → T . Themorphism λU admits a section σ : T → U such
that λ−1

U (t) − {σ(t)} is non-singular for all t ∈ T . Recall that λ−1
L (t0) is the strict

transform of H ∩ S by eL .
Since L is a good (N − 2)-plane, the degree at 0 of the projection πL equals the

multiplicity of the surface S at 0. If we call IL the ideal of OS,0 whose blow-up is eL ,
then by [6], the degree of πL at 0 equals the multiplicity of IL . Therefore the ideals
IL and m have the same multiplicity, where m is the maximal ideal of OS,0. We also
have IL ⊂ m and it is m-primary. By a Theorem of Rees [38, 3.2] these ideals have
the same integral closure, and then by [22, Theorem 2.1], these two ideals have the
same normalized blowing-up.

Therefore, both surfaces S′ and SL have the same normalization. Call nL : S′ →
SL the normalization map. We have nL = αL ◦ n′.

CallW := n−1
L (U ) ⊂ S′. Let D be the intersectionW ∩ (e0 ◦ n′)−1(0). If the open

set U is chosen small enough, and since η is not a special point, then all the points
in W are smooth points of S′ and of |D|.

The image |n′(D)| is a smooth curve in a neighborhood of η in S′, otherwise
the restriction of n′ to D would be critical according to the definition we gave in
Remark 3.6.25.

Let us first prove normalization in family.
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Let θ ∈ D ⊂ W be a point such that n′(θ) = η. By hypothesis, the projective
hyperplane Proj(H) is not tangent to Proj(|CS,0|). Since η is not a special point, then
by Definition 3.6.24.3., θ is not critical for the restriction of n′ to |D|. It implies that
the strict transform of H ∩ S by e0 ◦ n′ intersects transversally |D| at θ . In other
words, the curve (λL ◦ nL)

−1(t0) is transversal to |D| in W , hence it is non-singular.
This proves that λL : U → T has a normalization in family.

In order to prove that λL has a weak simultaneous resolution at τ ∈ SL , we shall
prove that the restriction of the normalization nL to |D| does not ramify over τ .

Since |D| and |nL(D)| are non-singular, we shall prove the constancy of the
number of pre-images by nL of points in σ(T ).

Let x ∈ σ(T ), recall that n−1
L (x) = n′−1(α−1

L (x)). We shall first understand the
fibers α−1

L (x).
For every x ∈ σ(T ) there exists a unique hyperplane Hx containing the (N − 2)-

plane L such that the strict transform of Hx ∩ S by eL intersects e−1
L (0) at x . Note

that under this notation the hyperplane H is Hτ . By commutativity of the Diagram
(3.10), we have α−1

L (x) = Proj(Hx ) ∩ Proj(|CS,0|).
For x ∈ σ(T ), x �= τ , and for U and T sufficiently small, the intersection of

Proj(Hx ) and Proj(|CS,0|) is transverse in P
N−1 and consists in exactly as many

points as the degree of the reduced curve Proj(|CS,0|).
Now, consider an intersection point ηi ∈ Proj(H) ∩ Proj(|CS,0|). The point η

is one of the ηi ’s. The (N − 2)-plane L can be chosen so that all the points ηi ,
except maybe η, are non-singular points of Proj(|CS,0|) at which the intersection
with Proj(H) is transverse. We need to be more specific about the possibility for η

to be a singular point of Proj(|CS,0|).
Since η is not a special point, the inverse images of η by the normalization n′

are non-singular points of |D| and the images of the germs of |D| at these points by
n′ are also non-singular. Therefore the only possibility for η to be a singular point
of Proj(|CS,0|), is when it is the intersection point of two, or more, non-singular
branches of the germ (Proj(|CS,0|), η). Each one of these branches is contained in a
different analytically irreducible component of the germ (S′, η). It may happen that
a branch is contained in several analytic components of (S′, η).

In this way, the normalization n′ separates all the analytic components of (S′, η)

and the branches of (Proj(|CS,0|), η), and there is no critical point of the restriction
of n′ to |D| over η.

Then if η is a singular point of Proj(|CS,0|), and x is a point in σ(T ) sufficiently
close to τ , consider a small neighborhood V of η. The number of points in the
intersection V ∩ Proj(Hx ) ∩ Proj(|CS,0|) = {x1, . . . , xr }, is equal to the number of
branches of Proj(|CS,0|), say β1, . . . , βr , intersecting at η, with xi ∈ βi .

Each branch βi is contained in some irreducible components of S′ at η, say
S′
1, . . . , S

′
ri , with ri ≥ 1.

We have then:

#(n′−1(η)) =
r∑

i=1

#(n′−1(xi )) =
r∑

i=1

ri .
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On the other hand, if η j �= η, then, when T is small enough, for x in σ(T ) − {τ },
the projective hyperplane Proj(Hx ) intersects Proj(|CS,0|) only in one point y j in a
small neighbourhood of η j . The point y j belongs to s j irreducible components of
(S′, η j ). It yields:

#(n′−1(η j )) = #(n′−1(y j )) = s j .

Therefore:
#(n−1

L (τ )) =
∑

i,ηi �=η

#(n′−1(ηi )) + #(n′−1(η))

=
∑

j,η j �=η

s j +
r∑

i=1

ri .

If x ∈ σ(T ) with x �= τ close enough to τ , then we have

#(n−1
L (x)) =

∑

j,η j �=η

#(n′−1(y j )) +
r∑

i=1

#(n′−1(xi ))

=
∑

j,η j �=η

s j +
r∑

i=1

ri = #(n−1
L (τ )).

Which implies that λL : SL → P
1 admits a weak simultaneous resolution at η.

In order to prove strong simultaneous resolution, we only need to prove that the
hyperplane section H ∩ S has the same multiplicity as a generic hyperplane section.

The choice of the good (N − 2)-plane L ⊂ H in the beginning of this proof was
made such that the hyperplane section H ∩ S is with isolated singularity. It is proved
in ([42, Lemma 4.8]) that the multiplicity of a curve with isolated singularities does
not depend on the possible embedded component.

Therefore the multiplicity at 0 of the hyperplane section H ∩ S equals the degree
at 0 of the prjectionπL , which is equal to themultiplicity of S at 0, since the projection
�L is good.

The multiplicity at 0 of the hyperplane section H ∩ S is the the same as the one
of a generic hyperplane section H ′ ∩ S.

The strict transform (H ∩ S)′ of H ∩ S by eL has the same multiplicity at the
intersection point with e−1

L (0) as the section H ∩ S at 0, which is equal to the degree
of eL at the intersection point. And the same is true for a generic hyperplane H ′.

It implies that strict transforms by eL , (H ∩ S)′ and (H ′ ∩ S)′ have the same
multiplicity at their respective intersection point with e−1

L (0).
The family λL : U → T has then constant multiplicity along σ(T ), and therefore

it is a Whitney regular family.
So H is not a limit of tangent hyperplanes to S at 0, and l is not an exceptional

tangent.



168 T. D. Lê and J. Snoussi

Conversely, let η be a special point, and consider a good (N − 2)-plane L . Define
αL , nL , τ := αL(η) and λL : U → T as before. If η = n′(z) with z singular point
for S′, then τ = nL(z) which makes it impossible for λL to have a normalization in
family. It implies that the surface SL is not Whitney regular along |e−1

L (0)| at η. By
Proposition 3.6.23 the line l is an exceptional tangent.

If η = n′(z) with z singular for |(e0 ◦ n′)−1(0)|, then z is a ramification point of
the restriction of nL to the exceptional fiber. So λL : U → T cannot have a weak
simultaneous resolution. Again, by Proposition 3.6.23, the line l is an exceptional
tangent.

Now let η = n′(z) with z critical point of the restriction of n′ to the exceptional
fiber |(e0 ◦ n′)−1(0)|. Consider a sufficiently small neighborhood W of z in S′ and
call D = W ∩ |(e0 ◦ n′)−1(0)|. Call W ′ the image of W in S′ and D′ = |n′(D)|.
Notice thatW ′ is a neighborhood of η in an analytically irreducible component of S′
at η, so that D′ may not be Proj(|CS,0|) ∩ W ′, but only one, or some, of the branches
of the exceptional fiber. Suppose that λL has a weak simultaneous resolution at τ

then |n′−1(D′)| = |n−1
L (σ (T )| is isomorphic to T × |n−1

L (τ )| which contradicts the
hypothesis that z is critical.

In the theorem above, an intersection point of two components of the exceptional
fiber in S′ which is not a special point does not correspond to an exceptional tangent.
The following example illustrates such a situation

Example 3.6.27 Let (S, 0) ⊂ (C4, 0) be a germ of surface with two irreducible
components defined as follows: (S1, 0) is defined by the equations Z − X2 = 0 and
T − Y 2 = 0 and (S2, 0) defined by Y + T 2 = 0 and Z + X2 = 0, with (S, 0) =
(S1, 0) ∪ (S2, 0).

The surface (S, 0) is reduced, equidimensional and its irreducible components
are smooth and intersect exactly at 0.

The tangent cone |CS,0| is the union of two planes P1 defined by Z = T = 0 and
P2 defined Z = Y = 0. These two planes intersect along the line Y = Z = T = 0.

The limits of tangent planes to S at 0 are the planes P1 and P2. The surface does
not have any exceptional tangent.

When one blows-up the surface S at the origin, the exceptional fiber in S′ is
Proj(CS,0) which is the union of two projective lines intersecting in (1 : 0 : 0 : 0);
this point does not correspond to an exceptional tangent.

Remark 3.6.28 The situation of the example above does not occur in hypersurfaces
of C3. In fact, the blow-up of a point in a hypersurface gives rise to a space that
is locally a hypersurface and therefore Cohen-Macaulay at every point. Meanwhile,
the Example 3.7.1 is a typical example of a surface that is not Cohen-Macaulay at
the origin and its blowing-up at the origin is again a non Cohen-Macaulay surface at
some point.

It would be interesting to know if in the case of normal surface singularities, an
intersection line of two components of the tangent cone is always an exceptional
tangent, as was asked in [44, Remark 5.10].

A different way to pose that question, is to ask whether the number of tangents
to general hyperplane sections is constant for normal surfaces. It is known that this
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number of tangents is not necessarily constant inWhitney regular families of curves,
see for example [13]. However it is constant in Lipschitz equisingular families of
curves. Then the question is whether the family of general hyperplane sections of a
germ of normal surface, have a generic projection to C

2 with the same topological
type. for more information on Lipschitz equisingularity and equisaturation we refer
to [14].

At an intersection point η of the strict transform of the singular locus with the
exceptional divisor of e0 in S′, equisingularity criteria do not specify whether η

corresponds to an exceptional tangent. Using Theorems 3.6.10 and 3.6.6 a tangent
line to the singular locus is an exceptional tangent if and only if it is tangent to the
vertical apparent contour of almost all projections induced by linear projections to
C

2. The example of the swallow tail, illustrates this situation:

Example 3.6.29 The swallow tail is the surface defined in C3 by the equation

256x3 − 27y4 − 128x2z2 + 144xy2z + 16xz4 − 4y2z3 = 0.

It has a singular locus of dimension one. The Nash modification ν of this surface
is the blow-up of its Jacobian ideal. When one computes this blow-up, one sees that
the fiber ν−1(0) is a single point. The only limit of tangent planes is the plane of the
tangent cone defined by x = 0.

So the intersection of the strict transform of the singular locus by the blow-up of
0 with the exceptional fiber does not correspond to an exceptional tangent.

3.6.5 Surfaces Without Exceptional Tangents

We have seen that exceptional tangents of a surface (S, 0) contribute significantly in
the composition of the sets of limits of tangents and they are an obstruction to the
equisingularity of the surface obtained by the blowing-up of 0. In particular when
the set of limits of tangents is finite, the surface has no exceptional tangent.

In [33], D.T. Lê and B. Teissier showed that under some conditions, a surface in
C

3 with no exceptional tangent can be deformed in a Whitney equisingular manner
to its tangent cone. So a surface with no exceptional tangent is very close to be a
cone.

Wewant here to describe very shortly the situation of surfaces without exceptional
tangents.

We have seen in Sect. 3.2.2 that one can deform a surface into its tangent cone
through the specialization to the tangent cone. More precisely, for a surface (S, 0) ⊂
(CN , 0) there exists a map ϕ : W ⊂ C

N × C → C such that the fiber ϕ−1(0) has a
germ at (0, 0) isomorphic to the germ of the tangent cone (CS,0, 0) and ϕ−1(t) has
a germ a (0, t) isomorphic to (S, 0) for every t �= 0 close to the origin. Moreover, if
we call T := {0} × C then we have T ⊂ W .
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Theorem 3.6.30 Let (S, 0) be a germ of surface for which the tangent cone CS,0 is
a reduced space. Let ϕ : W → C be the specialization to the tangent cone as above.
Call W 0 the non-singular locus of W.

If the surface (S, 0) has no exceptional tangent, then W 0 satisfies Whitney con-
ditions along T .

This result was first proved in [33, Theorem 2.1.1] in the case of hypersurfaces
of C3 and then generalized by Giles Flores [11, Theorem 8.11]. The reader can find
there detailed proofs that we do not reproduce here.

As consequence of Theorem 3.6.30, when the surface has a reduced tangent cone
and no exceptional tangent, then the germ of the surface is homeomorphic to its
tangent cone. The surface is topologically a complex cone.

One would like to skip the hypothesis of having a reduced tangent cone to deduce
some properties on surfaces with no exceptional tangents. This has been done for
surfaces with isolated singularities.

When the surface (S, 0) is normal, the exceptional tangents are characterized in
Sect. 3.6.26 and therefore its non-existence implies the following:

Proposition 3.6.31 If (S, 0) is a normal surface without exceptional tangent, then
the normalized blow-up of 0 and the normalized Nash modification are isomorphic
and they are a resolution of the singularity. Furthermore their reduced exceptional
fiber is smooth.

This result was proved in [43, Theorem 5.4]. The idea of the proof is that when the
surface has no exceptional tangent, then there are no base points of the polar curves
by the blow-up of 0. It is also proved that in this situation there are no base points
of the hyperplane sections by the Nash modification. As a consequence each of the
considered normalized modifications factors through the other one.

In the case of hypersurfaces of C3 with isolated singularity, a sharper result was
previously obtained in [33, Theorem 2.2.1]:

Proposition 3.6.32 Let (S, 0) be an isolated singularity of hypersurface inC3. Then
the following are equivalent:

(ii) (S, 0) has no exceptional tangent.
(ii) The specialization to the tangent cone has a strong simultaneous resolution.
(iii) The blow-up of the origin is a resolution of the singularity and the reduced fiber

|e−1
0 (0)| is non-singular.

(iv) The tangent cone CS,0 is reduced and has an isolated singularity.
(v) The blown-up surface S′ is equisingular along the curve |e−1

0 (0)|.
In this context note that the fact of having a reduced tangent cone is a conse-

quence of not having any exceptional tangent. In particular an isolated singularity of
hypersurface of C3 with no exceptional tangent is homeomorphic to the cone over a
non-singular (reduced) curve.

Wewonder if such a homeomorphismcan be obtained for any surfacewith isolated
singularity. Note that in Example 3.6.27, the surface is not homeomorphic to its
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tangent cone, but still is homeomorphic to a complex cone over two lines in C3 that
do not intersect.
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3.7 Appendix: Intersections in Grassmannians

In this appendix, we state and prove a result on intersections with Schubert varieties
in Grassmannians. This was needed in the proof of Theorem 3.6.6.

Recall that we have defined the first Schubert variety in G(2, N ) as follows:
Let L be an (N − 2)-linear subspace ofCN . We call C1(L) the subset of G(2, N )

such that T ∈ C1(L) if and only if dim(T ∩ L) ≥ 1. It is a subvariety of codimension
one in G(2, N ).

Proposition 3.7.1 Let C ⊂ G(2, N ) be an irreducible projective curve. Then the
intersection C1(L) ∩ C is not empty.

Proof Insteadofworkingwith theGrassmannianof linear subspaces ofCN of dimen-
sion 2, we shall work with the equivalent setting of projective linear subspaces of
dimension 1 in PN−1, that we denote by G(1,PN−1).

We have a natural isomorphism of G(2, N ) onto G(1,PN−1).
Call C̃ ⊂ G(1,PN−1), the space made of projective lines of PN−1 representing

the planes of CN in the curve C. The space C̃ is an irreducible projective curve in
G(1,PN−1).

We shall denote by l(�̃) ⊂ P
N−1 the projective line represented by the point

�̃ ∈ G(1,PN−1).
Following the idea developed in [8, 4.2.3], define:

X =
⋃

�̃∈C̃
l(�̃) ⊂ P

N−1.

We want to prove that X is an irreducible projective subset of dimension 2 in
P
N−1.
Consider the subspace:

Ĩ := {(�̃, p) ∈ G(1,PN−1) × P
N−1| p ∈ l(�̃)}.

The space Ĩ is an algebraic projective subset of G(1,PN−1) × P
N−1, see [8, Sect.

3.2.3].
The first and second projections on Ĩ induce respectively the morphisms:
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α : Ĩ → G(1,PN−1) and β : Ĩ → P
N−1.

We have then:
X = β(α−1(C̃));

which gives X a structure of projective subset of PN−1.
Call α0 the restricted morphism α0 := α|α−1(C̃) : α−1(C̃) → C̃.
The fibers of α0 are {�̃} × l(�̃), for �̃ ∈ C̃. These are irreducible projective alge-

braic subsets of dimension 1 in Ĩ. Since C̃ is also irreducible, then by [18, Theorem
11.14], the inverse image α−1(C̃) is an irreducible projective set. Furthermore, since
C̃ has dimension one and the fibers of α0 are of dimension 1, then by [18, Theorem
11.12], the set α−1(C̃) has dimension 2. We have seen that X = β(α−1(C̃)) which
implies that X is an irreducible projective subset of PN−1.

Consider now the restricted map β0 := β|α−1(C̃) : α−1(C̃) → X . Let p be a point
of X . We have:

β−1
0 (p) = β−1(p) ∩ α−1(C̃) = {(�̃, p) ∈ C̃ × {p} | p ∈ l(�̃)},

which shows that we can consider the fibers of β0 as algebraic subsets of C̃. Since
the space C̃ has dimension 1, the fibers of β0 have dimension at most one. As a first
consequence, again by [18, Theorem 11.12], X has dimension at least one.

If a fiber β−1
0 (p) has dimension 1, then it corresponds to the curve C̃ itself.

There is at most one point p in X such that the fiber β−1
0 (p) has dimension one.

In fact, for a point p ∈ X ⊂ P
N−1 we shall denote by p∗ the set of lines of PN−1 that

contain the point p. In this setting the fibers of β0 can be written as:

β−1
0 (p) = (p∗ ∩ C̃) × {p}.

For two distinct points p and q in X , if the respective fibers β−1
0 (p) and β−1

0 (q) have
dimension 1, they correspond to the same irreducible curve C̃, then this curve would
be the intersection p∗ ∩ q∗ ∩ C̃which is either empty or the point in C̃ corresponding
to the line (pq) joining p and q. It is never a one dimensional space.

Since the projective algebraic set X is irreducible of dimension at least 1, then
by the preceding observation, a generic fiber of β0 : α−1(C̃) → X has dimension 0.
Again by [18, Theorem 11.12], The space X is a projective algebraic subset of PN−1

of dimension dim(α−1(C̃)) = 2.
In order to prove the proposition above, we need to consider a Schubert variety

associated to an (N − 2)-space in C
N . Consider now an (N − 2)-plane L ⊂ C

N .
The corresponding projective space Proj(L) ⊂ P

N−1 has dimension N − 3.
The projective subsets X and Proj(L) have complementary dimensions in P

N−1,
therefore:

X ∩ Proj(L) �= ∅.
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Call p̃ a point in X ∩ Proj(L), and recall that X =
⋃

�̃∈C̃
l(�̃) ⊂ P

N−1.

Then there exists �̃ ∈ C̃ such that p̃ ∈ l(�̃). Therefore:

p̃ ∈ l(�̃) ∩ Proj(L).

Coming back to the affine space CN and to the Grassmannian of two-planes in
C

N , the statement above can be formulated as follows:
The projective line l(�̃) corresponds to a two-dimensional plane T (�) ⊂ C

N

represented by a point � ∈ C ⊂ G(2, N ). The intersection of the plane T (�) with
the (N − 2)-plane L contains the line l(p) ⊂ C

N represented by p̃ ∈ P
N−1. In other

words, The plane T (�) corresponds to a point in the Schubert variety C1(L), equiv-
alently:

� ∈ C ∩ C1(L),

proving that the intersection is not empty.
For a non irreducible projective curve in G(2, N ), every irreducible component

intersects the Schubert variety C1(L) for any (N − 2)-plane L of CN .
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24. Lê Dũng Tráng,Calcul du nombre de cycles évanouissants d’une hypersurface complexe,Ann.
Inst. Fourier 23 (1973), 261–270.
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Chapter 4
Algebro-Geometric Equisingularity
of Zariski

Adam Parusiński

Abstract This is a survey on Zariski equisingularity. We recall its definition, main
properties, and a variety of applications in Algebraic Geometry and Singularity The-
ory. In the first part of this survey, we consider Zariski equisingular families of com-
plex analytic or algebraic hypersurfaces. We also discuss how to construct Zariski
equisingular deformations. In the second part, we present Zariski equisingularity of
hypersurfaces along a nonsingular subvariety and its relation to other equisingularity
conditions. We also discuss the canonical stratification of such hypersurfaces given
by the dimensionality type.
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4.1 Introduction

A singularity is the germ of a complex or real analytic space (V, p) that is not
regular at p. Equisingularity means equivalent or similar singularity and it is always
necessary to make precise which equivalence of singularities we have in mind. Thus
two singularities (X, x) and (Y, y) are analytically equivalent if there is an analytic
isomorphism germ φ : (X, x) → (Y, y). If φ is only a homeomorphism then we say
that (X, x) and (Y, y) are topologically equivalent. If (X, x) and (Y, y) are both
subspaces of the affine space (Kn, 0), K = R or C, then we may require φ to be
the restriction of an isomorphism (resp. homeomorphism) of the ambient spaces � :
(Kn, 0) → (Kn, 0). If such � exists we say then that (X, x) and (Y, y) are ambient
analytically (resp. topologically) equivalent.

Let V be a real or complex analytic space. Then there exists a stratification S of
V , that is a decomposition of V into analytic manifolds that, moreover, are usually
required to satisfy some additional properties. For the notion of stratification and
a historical account of stratification theory, we refer the reader to the paper of D.
Trotman [70] in the first volume of this handbook and the references therein. It is
known that there always exists a stratification of V that is topologically equisingular
along each stratum, that is if p1 and p2 belong to the same stratum then (V, p1)
and (V, p1) are topologically equivalent. If V is a subspace of Kn then one may,
moreover, require this stratification to be ambient topologically equisingular. This
can be achieved by constructing a Whitney stratification of V . Another and entirely
independentway of constructing such a stratification is Zariski equisingularity,which
is the subject of this survey.

Recall that, in general, there is no stratification that is analytically equisingular
along each stratum, as a classical example ofWhitney [78,Example 13.1] shows:V =
{(x, y, z) ∈ K

3; xy(y + x)(y − zx) = 0} admits a continuous family of analytically
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(or even C1-diffeomorphically) non-equivalent singularities along the z-axis, due to
the phenomenon of continuous moduli (the cross-ratio in this example).

In 1971 in “Some open questions in the theory of singularities” [85], O. Zariski
proposed a general theory of equisingularity for complex algebraic and analytic
hypersurfaces. Zariski’s approach was based on a new version of equisingularity that
Zariski called algebro-geometric equisingularity, since it was defined by purely alge-
braic means but it reflected many geometric properties. For instance, as Varchenko
shows in [72–74] answering a question posed by Zariski, Zariski equisingularity,
which we now call the algebro-geometric equisingularity of Zariski, implies ambi-
ent topological triviality. Zariski equisingularity under an additional genericity of
projection assumption implies Whitney’s conditions as shown by Speder [64].

This notion of equisingularity extended Zariski’s earlier work on the singularities
of plane curves, their equivalence and their families, see [82–84]. For the general
case of hypersurface singularities over an algebraically closed field of characteristic
zero Zariski presented his program in [87, 88]. The paper [88] “Foundations of a
general theory of equisingularity on r -dimensional algebroid and algebraic varieties,
of embedding dimension r + 1”, published in 1979, contains a complete foundation
of this theory, stated for algebroid varieties over an algebraically closed field of
characteristic zero. (Recall that algebroid varieties are the varieties defined by ideals
of the rings of formal power series, see [32, Chap. 4] and [88, Sect. 2]) Since then
Zariski equisingularity has been widely applied in the theory of singularities. We
present in this survey an account, certainly incomplete, of this development.

Intuitively, Zariski’s notion can be characterized by two properties:

1. If (V, P1) and (V, P2) are equisingular, then P1 is a regular point of V if and
only if P2 is a regular point of V .

2. If W ⊂ Sing V is non-singular then V is equisingular along W at P ∈ W if and
only if for all sufficiently general projections π : Kr+1 → K

r the discriminant
locus of π |V is equisingular along π(W ) at π(P).

Formally, one may talk about two notions of Zariski equisingularity, of a hyper-
surface along its nonsingular subvariety and of a family of hypersurface singularities
parameterized by a finite number of parameters. This is already present, implicitly,
in [85], where the former one is motivated by the latter one. We shall follow this path
in this survey as well. In Sect. 4.2 we describe the equisingular families of complex
plane curve singularities. This description is based on Puiseux with parameter the-
orem, Theorem 4.2.1. Then we introduce Zariski equisingularity of families, Sects.
4.2 and 4.3. As we have mentioned, Zariski equisingular families are topologically
trivial. Therefore Zariski equisingularity implies the generic topological equisin-
gularity of real or complex, algebraic varieties or analytic spaces (not necessarily
hypersurfaces). We present this principle in Sect. 4.3.5. As a consequence Zariski
equisingularity provides an algorithmic construction of a topologically equisingular
stratification. More applications to Algebraic Geometry are presented in Sects. 4.3.6
and 4.3.7.

In Sect. 4.4 we show how to construct equisingular deformations of a given singu-
larity. This construction appears in many applications, in particular it is used to show
that a (real or complex) analytic singularity is homeomorphic to an algebraic one,
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see subsection 4.4.4, and, moreover wemay assume that the latter one is defined over
the field of algebraic numbers Q, see Sect. 4.4.2. At the end of Sect. 4.4 we discuss
how Zariski equisingularity can be used to trivialize families of analytic function and
map germs, see Sects. 4.4.5 and 4.4.6.

In Sect. 4.5 we present the original notion of Zariski equisingularity of a hypersur-
face V along a nonsingular subvariety W , and a related notion of the dimensionality
type. Zariski equisingularity along a hypersurface is defined by taking successive
co-rank 1 projections and their discriminants, and a similar construction is used to
define Zariski equisingularity in families. The main, and to some extent still open
problem, is to decide what projection to take to verify whether such an equisingu-
larity holds. As follows from Zariski work, in the case of families of plane curves
singularities, the equisingularity given by a single projection implies equisingularity
for all transverse projections, for this notion see Sect. 4.5.1. Therefore, originally,
Zariski considered transverse projections as sufficient for such verification, see [85].
In [37] Luengo gave an example of a family of surface singularities in C

3 that is
Zariski equisingular for one transverse projection but not for a generic or generic
linear projection. Therefore, in [88], Zariski proposed to build this theory on the
notion of “generic” projection. The definition of such generic projection given in
[88] is therefore crucial. It involves adding all the coefficients of a generic formal
change of coordinates as indeterminates to the ground field. As Zariski also showed
in [88] a generic (in a more standard meanining) polynomial projection gives the
same theory, that is to say the same notion of generic Zariski equisingularity along
a nonsingular subvariety. But it is not known how to verify which polynomial pro-
jections are generic in this sense or even whether there is a bound on the minimal
degree of such polynomial generic projections. Thismakes algorithmic computations
of the dimensionality type and related notions of generic Zariski equisingularity and
Zariski’s canonical stratification impossible at the moment. The algebraic case was
studied in more detail by Hironaka [26], where the algebraic semicontinuity of the
minimal degree of such polynomial projection is shown. The question whether a
generic linear projection is always sufficient is still open for dimensionality type≥2,
though the case of the dimensionality type 2 is fairly well understood thanks to [9].
General set-up
In this surveywe present Zariski’s theory in the complex analytic set-up,which seems
to be the most common and of the biggest interest for singularity theory. There are
two obvious extensions that one has to keep in mind. The first one, as the original
definition ofZariski, is the theory of algebroid varieties over an arbitrary algebraically
closed field of characteristic zero, when one works with the varieties defined by the
ideals in the ring of formal power series. The second one is the real analytic set-up.
Many results on Zariski equisingularity, such as topological triviality for example,
are valid in both complex analytic and real analytic set-ups. The real analytic set up
sometimes requires more careful statements, for instance, by replacing analytic sets
by the equations or ideals defining them. In general, for Zariski equisingularity, the
assumption on the ground field to be algebraically closed seems not to be essential,
unlike the assumption to be of characteristic zero, which is necessary.
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In Sect. 4.2, which can be considered as a motivation for the general definition,
we discuss the equisingularity of complex plane curves. Sections 4.3 and 4.4 are
presented for complex and real analytic or algebraic spaces. For the definitions,
theorems and proofs of these two sections there is no essential difference between
the real and the complex case. The second part of Sect. 4.5, the dimensionality type,
is presented in the algebroid set-up, like Zariski’s original definition. Every statement
of this section holds in complex analytic case. We also believe that it can be carried
over to the real analytic set-up, but this has yet to be done.
Notation and terminology.
We denote by K either R or C. Thus, by K-analytic we mean either real analytic or
holomorphic (complex analytic). Sometimes we abbreviate it saying that a space or
a map is analytic if the ground field, C or R, is clear from the context or if the result
holds in both cases.

By an analytic space, we mean one in the sense of [45]. As we work mostly in
the local analytic case, it suffices to consider only analytic set germs. For an analytic
space X by Sing X we denote the set of singular points of X , i.e. the support of the
singular subspace of X . By Reg X we denote its complement X \ Sing X , the set of
regular points of X . For an analytic function germ F we denote by V (F) its zero set
and by Fred its reduced (i.e. square free) form. By a real analytic arc, we mean a real
analytic map γ : I → X , where I = (−1, 1) and X is a real or a complex analytic
space.

For a polynomial monic in z, F(x, z) = zd + ∑d
i=1 ai (x)z

d−i , with coefficients
analytic functions in x , we denote by DF (x) its discriminant, and by �F (x) its
discriminant locus, the zero set of DF (x). The discriminant of F , and more generally
the generalized discriminants of F , are recalled in Appendix, Sect. 4.6.

We say that f ∈ K{x} is a unit if f (0) �= 0. We often useWeierstrass Preparation
Theorem. Recall briefly its statement, see for instance [45, Theorem 2, p. 12], [34,
Chap. 3, Sect. 2] for more details. Let F(x, z) ∈ K{x, z} be regular in the variable
z, that is F(0, z) = zd unit(z). Then there are ai (x) ∈ K{x} such that ai (0) = 0 and

F(x, z) = unit(x, z) (zd +
d∑

i=1

ai (x)z
d−i ).

We call the monic polynomial zd + ∑d
i=1 ai (x)z

d−i , the Weierstrass polynomial
associated to F . An analogous statement holds for formal power series, i.e. for
F(x, z) ∈ K[[x, z]].

4.2 Equisingular Families of Plane Curve Singularities

We recall the notion of equisingular families of complex plane curve singularities.
There are several equivalent definitions that are proposed by Zariski in [82, 83]. We
use the one based on the discriminant of a local projection. Firstly, this is the defi-
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nition that Zariski generalizes to the higher-dimensional case. Secondly, by Puiseux
with parameter theorem, it gives an equiparameterization of such singularities by
fractional power series.

Let

F(t, x, y) = yd +
d∑

i=1

ai (t, x)y
d−i (4.1)

be a monic polynomial in y ∈ C with complex analytic coefficients ai (t, x), defined
on Uε,r = Uε ×Ur , where Uε = {t ∈ C

l; ‖t‖ < ε}, Ur = {x ∈ C; |x | < r}. Here
t = (t1, . . . , tl) is considered as a parameter. One also often assumes that F is reduced
(has no multiple factors) so that its discriminant DF is not identically equal to zero.
For arbitrary F we either consider DFred or, equivalently, the first not identically
equal to zero generalized discriminant of F , see Appendix, Sect. 4.6.

Theorem 4.2.1 (Puiseux with parameter) Suppose that the discriminant of Fred is of
the form DFred (t, x) = xM unit(t, x) where unit(t, x) is a complex analytic function
defined and nowhere vanishing on Uε,r . Then there is a positive integer N and
complex analytic functions ξ̃i (t, u) defined on Uε ×Ur1/N such that

F(t, uN , y) =
d∏

i=1

(y − ξ̃i (t, u)).

Let θ be an Nth root of unity. Then for each i there is j such that ξ̃i (t, θu) = ξ̃ j (t, u).

If F is irreducible then one can take N = d. In general, N = d! always works,
but it is not minimal.

If M = 0 then, by the Implicit Function Theorem (IFT), the roots of F , which
we denote by ξ1(t, x), ..., ξd(t, x), are C-analytic functions of (t, x). Moreover two
such ξi and ξ j either coincide or are distinct everywhere. In general, for arbitrary M ,
Theorem 4.2.1 implies that the projection of the zero set V = V (F) of F onto Uε,
given by (x, y, t) → t is topologically trivial. To see it one may use the following
corollary.

Corollary 4.2.2 For x0 fixed, the roots of F, ξ1(t, x0), . . . , ξd(t, x0), can be chosen
complex analytic in t . Moreover, if ξi (0, x0) = ξ j (0, x0) then ξi (t, x0) ≡ ξ j (t, x0).
Thus the multiplicity of each ξi (t, x0) as a root of F is independent of t .

Proof It suffices to show it for F reduced. Then for x0 �= 0 it follows from the IFT.
Let us show it for x0 = 0. The family ξ1(t, 0), . . . , ξd(t, 0) coincides (as unordered
sets) with ξ̃1(t, 0), . . . , ξ̃d(t, 0). If ξ̃i (0, 0) = ξ̃ j (0, 0) then ξ̃i (t, u) − ξ̃ j (t, u) is either
identically zero or divides uNM and hence equals a power of u times a unit. �

UsingCorollary 4.2.2wemay trivialize topologicallyV with respect the parameter
t by
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�(t, x, ξi (0, x)) = (t, x, ξi (t, x)) i = 1, . . . , d.

The map� is, by Corollary 4.2.2, complex analytic in t and one can show, moreover,
that it is a local homeomorphism. (It follows, for instance, from much more general
[52, Theorem1.2].)

The parameterized Puiseux Theorem, Theorem 4.2.1, can be proven in the same
way as the classical Puiseux Theorem by considering the finite covering of V (F)

over Uε ×U ∗
r , where U

∗
r = Ur \ {0}. Then, for a positive integer N , the pullback of

this covering by (t, u) → (t, uN ) = (t, x) is trivial, its sheets define the roots ξ̃i (t, u)

that extend analytically toUε × {0} by Riemann’s Removable Singularity Theorem.
For details we refer for instance to [57]. Note also that this theorem is a special case
of the Jung-Abhyankar Theorem, see [1, 27], that in complex analytic case can be
proven exactly along the same lines, see [55, Proposition 2.1].

Theorem 4.2.3 (Jung-Abhyankar) Let k be an algebraically closed field of charac-
teristic zero and let f ∈ k[[x1, . . . , xr+1]] be of the form

f (x1, . . . , xr+1) = xdr+1 +
d∑

i=1

ai (x1, . . . , xr )x
d−i
r+1 .

Suppose the discriminant D f of f equals a monomial
∏k

i=1 x
ni
i times a unit. Then

the roots of f are fractional power series in x1, . . . , xr , More precisely, there is a
positive integer N, such that the roots of f (uN

1 , . . . , uN
k , xk+1, . . . , xr+1) belong to

k[[u1, . . . , uk, xk+1, . . . , xr ]].

4.2.1 Equisingular Families of Plane Curve Singularities.
Definition

Let us fix a local projection pr : Cl × C
2 → C

l and suppose that F is a complex
analytic function defined in a neighborhood of the origin in C

l × C
2 and vanishing

identically on T = C
l × {0}. We assume that F is reduced and consider its zero set

V = V (F) = F−1(0) as a family of plane curve singularities

t � (Vt , 0) = (V ∩ pr−1(t), 0)

parameterized by t ∈ (Cl , 0).We say that a local systemof coordinates t1, . . . , tl , x, y
is pr-compatible if pr(t, x, y) = t , where t = (t1, . . . , tl), and T = {x = y = 0}.
Suppose that in such a system of coordinates F is regular in variable y, i.e.
F(0, 0, y) �≡ 0. Then, by theWeierstrass Preparation Theorem, wemay assume that,
up to a multiplication by an analytic unit, F is of the form (4.1) with all ai (0, 0) = 0.
Note also that because T ⊂ V (F), we have F(t, 0, 0) ≡ 0.
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Definition 4.2.4 We say that V = V (F) is an equisingular family of plane curve
singularities if there are a pr -compatible system of coordinates t, x, y, such that F
is regular in variable y, and a non-negative integer M , such that the discriminant
DF (t, x) of F is of the form

DF (t, x) = xM unit(t, x). (4.2)

Equisingular families of plane curve singularities were studied in the algebroid
set-up (i.e. defined by F being a formal power series) over an algebraically closed
field of characteristic zero by Zariski [82–84] mainly by means of (equi)resolution.
All the results of [82–84], properly stated, are valid for the complex analytic case.
In particular, Zariski has shown that in such families the special fiber (V0, 0) and the
generic fiber (Vtgen , 0) are equivalent plane curve singularities, see [82, Sect. 6], see
also [82, Sect. 3] for several equivalent definitions of equivalent plane curve singu-
larities. In the complex analytic set-up, two complex plane curve singularities are
equivalent if and, only if they are ambient topologically equivalent. By [82, Theorem
7], Zariski equisingular families of plane curve singularities are equimultiple, that is
to say mult(t,0,0) V is independent of t . If this multiplicity equals d = degy F , then
we say that the associated projection π(x, y, t) = (x, t) is transverse. Geometrically
it means that the kernel of π is not included in the tangent cone C0(V ). Because the
equimultiple families are normally pseudo-flat (continuity of the tangent cone), it
is enough to check the transversality for the special fiber V0 and if it holds for the
special fiber then it holds also for the generic one. Zariski shows in Theorem 7 of
[82] also the following result.

Theorem 4.2.5 ([82], Theorem 7) If a family of plane curve singularities is equi-
singular (for a not necessarily transverse projection) then it is equisingular for all
transverse projections.

Note that if V = V (F) is equisingular then the singular locus Sing V of V is
T = C

l × {0}. In [83, Sect. 8] Zariski shows that a family V (F) of plane curve
singularities is equisingular if and only if Sing V = T and V \ T, T is a Whitney
stratification of V . In the complex analytic case, this gives another proof of the fact
that the equisingular families of plane curve singularities are topologically trivial
and the following holds.

Corollary 4.2.6 The Puiseux pairs of the roots ξi (t, x) and the contact exponents
between different branches of Vt are independent of t .

In the complex analytic set-up, in [65, p. 623]B.Teissier gives 12 characterizations
of equisingular families of plane curve singularities, including (equi)resolutions,
constancy of the Milnor number, Whitney’s conditions, and topological triviality.
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4.2.2 Equisingular Families of Plane Curve Singularities and
Puiseux with Parameter

The Puiseux with parameter theorem, Theorem 4.2.1, gives the following criterion
of equisingularity of families of plane curve singularities.

Theorem 4.2.7 Let F be reduced and of the form (4.1) in a pr-compatible system
of coordinates t, x, y. We also assume ai (0, 0) = 0 for all i . Then V (F) is an equi-
singular family of plane curve singularities for this system of coordinates if and only
if there are ξ̃i ∈ C{t, u}, i = 1, . . . , d, and strictly positive integers N, ki j , i < j ,
such that

F(t, uN , y) =
d∏

i=1

(y − ξ̃i (t, u)) (4.3)

and ξ̃i − ξ̃ j = uki j unit(t, u) or ξi and ξ j coincide everywhere (the latter possibility
may occur only if F is not reduced).

The above observation implies, in particular, Corollary 4.2.2. We also note that it
implies that all ai of (4.1) satisfy ai (t, 0) ≡ 0. Indeed, by the assumption T ⊂ V (F)

there is a root ξ̃ j of F such that ξ̃ j (t, 0) ≡ 0. Since ξ̃i (0, 0) = 0 for all i the last claim
of the above theorem implies our assertion.

4.3 Zariski Equisingularity in Families

Zariski equisingularity of families of singular varieties was introduced by Zariski in
[85] in the context of equisingularity of a hypersurface along a smooth subvariety,
that we discuss in Sect. 4.5. This is a direct generalization of Definition 4.2.4 but
instead of a single co-rank one projection one considers a system of such successive
projections. It can be formulated over any field, in particular, in the analytic case
over K = R or C. For x = (x1, . . . , xn) ∈ K

n we denote xi = (x1, . . . , xi ) ∈ K
i .

Definition 4.3.1 By a local system of pseudopolynomials in x = (x1, ..., xn) ∈ K
n

at (0, 0) ∈ K
l × K

n, with a parameter t ∈ U ⊂ K
l , we mean a family ofK-analytic

functions

Fi (t, x
i ) = xdii +

di∑

j=1

ai−1, j (t, x
i−1)xdi− j

i , i = 0, . . . , n, (4.4)

defined on U ×Ui , where Ui is a neighborhood of the origin in K
i , with the coef-

ficients ai, j vanishing identically on T = U × {0}. This includes di = 0, in which
case we mean Fi ≡ 1.
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Definition 4.3.2 Let V = F−1(0) be an analytic hypersurface in a neighborhood
of the origin in K

l × K
n . We say that V is Zariski equisingular with respect to the

parameter t (and the system of coordinates x1, . . . , xn) if there are k ≥ 0 and a system
of pseudopolynomials Fi (t, xi ) such that

1. Fn is the Weierstrass polynomial associated to F .
2. for every i , k ≤ i ≤ n − 1, the discriminant of (Fi+1)red (or, equivalently, the

first not identically equal to zero generalized discriminant of Fi+1, seeAppendix,
Sect. 4.6) divides Fi .

3. Fk ≡ 1 (and then we put Fi ≡ 1 for all 0 ≤ i < k).

Remark 4.3.3 In the above definition, we suppose that the system of local coordi-
nates x1, . . . , xn is fixed. Of course one may say that V is Zariski equisingular with
respect to the parameter t , if such a system exists. This raises a variety of interesting
questions, for instance, how to check whether such a system exists. We will discuss
it in Sect. 4.5 in a slightly different set-up, Zariski singularity along a nonsingular
subspace.

Remark 4.3.4 In the original definition of Zariski equisingularity [85] and also in
[72, 73], the condition 2. was stated in an apparently more restrictive way:

2’. for every i , k ≤ i ≤ n − 1, Fi is the Weierstrass polynomial associated to the
discriminant of (Fi+1)red .

The definition given here comes from [52] and is often more convenient to work with
than the original one. Probably, both definitions are equivalent.

4.3.1 Topological Equisingularity and Topological Triviality

In [85] Zariski asked the following question.
Does algebro-geometric equisingularity (i.e. Zariski equisingularity), in complex
analytic case, imply topological equisingularity or even differential equisingularity?

By the latter one, Zariski meant Whitney’s conditions (a) and (b). The answer
to this part of Zariski’s question depends on how generic the system of coordinates
giving Zariski equisingularity is, or equivalently how generic the projections defining
the successive discriminants are, see Sect. 4.5.2 below. In 1972 Varchenko [73] gave
the affirmative answer to the first part of the question, see also [72, 74] for the
statement of results.

Theorem 4.3.5 Suppose that V is Zariski equisingularwith respect to the parameter
t . Then there are neighborhoods U of the origin in K

l , 
0 of the origin in K
n, and


 of the origin in K
l+n, and a homeomorphism

� : U × 
0 → 
, (4.5)

such that
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(i) �(t, 0) = (t, 0), �(0, x1, . . . , xn) = (0, x1, . . . , xn);
(ii) � has a triangular form

�(t, x1, . . . , xn) = (t, �1(t, x1), . . . , �n−1(t, x1, . . . , xn−1),�n(t, x1, . . . , xn));
(4.6)

(iii) �(U × (V ∩ 
0)) = V ∩ 
.

We note that Varchenko’s result gives local topological triviality, a property
stronger than the topological equisingularity. Here by topological equisingularity
we mean the constancy of local topological types of Vt := V ∩ ({t} × K

n) at the
origin, i.e. the existence of homeomorphism germs ht : (V0, 0) → (Vt , 0), possibly
given by ambient homeomorphisms Ht : (Kn, 0) → (Kn, 0). The (ambient) topolog-
ical triviality, that is the existence of � of (4.5), implies that such Ht (x) = �(t, x)
depends continuously on t .

The details of the proof of Theorem 4.3.5 are published in [73]. Strictly speaking
the proof in [73] is in the global polynomial case but it can be adapted easily to
the local analytic case. The homeomorphism � is constructed in the complex case
K = C. The real case follows from the complex one under a standard argument using
the invariance by complex conjugation. The functions�i are constructed inductively
so that every

�i (t, x1, . . . , xi ) = (t, �1(t, x1), . . . , �i (t, x1, . . . , xi )) (4.7)

induces topological triviality of F−1
i (0). Given �i , then �i+1 is constructed in two

steps.
Step 1. One lifts �i to the zero set of F−1

i+1(0). Such a continuous lift exists and is
unique thanks to the following lemma, cf. the multiplicity preservation lemmas of
Sect. 2 of [73] or Lemma on p. 429 of [72]. This lemma and the standard argument
of the continuity of roots show that such a lift is continuous.

Lemma 4.3.6 Let

F(t, x) = xdn +
d∑

j=1

ai−1, j (x
n−1)xd− j

n , (4.8)

be a pseudopolynomial defined in a neighborhood of p = (p′, pn) ∈ C
n. Let Ht :

(Cn−1, p′) → (Cn−1, p′
t ), t ∈ [0, 1], be a continuous family of local homeomor-

phisms preserving the discriminant locus of F, that is Ht (�F , p′) = (�F , p′
t ). Then

the number of distinct roots of F over p′
t , as well as their multiplicities, are indepen-

dent of t .

Step2.As soon as�i+1 is definedon the zero set of F
−1
i+1(0) it suffices to extend it to the

ambient space. This is obtained in Section 1 of [73] by the covering isotopy lemma,
see also Fundamental Lemma of [74]. The construction of such extension is based on
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a triangulation of the base space, so that the finite branched covering F−1
i+1(0) → C

l+i

is trivial over each open simplex, and a simplicial extension argument.

4.3.2 Arc-Wise Analytic Triviality

Zariski equisingularity implies much stronger triviality property than just the topo-
logical one. The following result was shown in [52, Theorem 3.1].

Theorem 4.3.7 Suppose that V is Zariski equisingularwith respect to the parameter
t . Then there are neighborhoods U of the origin in K

l , 
0 of the origin in K
n, and


 of the origin in K
l+n, and a homeomorphism

� : U × 
0 → 
, (4.9)

such that

(i) �(t, 0) = (t, 0), �(0, x1, . . . , xn) = (0, x1, . . . , xn);
(ii) � has a triangular form (4.6) ;
(iii) there is C > 0 such that for all (t, x) ∈ U × 
0

C−1|Fn(�(0, x))| ≤ |Fn(�(t, x))| ≤ C |Fn(�(0, x))|;

(iv) For (t, x1, . . . , xi−1)fixed,�i (t, x1, . . . , xi−1, ·) : K → K is bi-Lipschitz and the
Lipschitz constants of�i and�−1

i canbe chosen independent of (t, x1, . . . , xi−1);
(v) � is an arc-wise analytic trivialization of the projection 
 → U .

(Note that (iii) of Theorem 4.3.7 implies (iii) Theorem 4.3.5.)
Let us recall after [52] the notion of arc-wise analytic trivialization. First, we

need to recall, after [31], the notion of arc-analytic map. Let Y, Z be real analytic
spaces. We say that a map g(z) : Z → Y is arc-analytic if for every real analytic
arc z(s) : I → Z , g(z(s)) is analytic in s. Suppose now that T,Y, Z are K-analytic
spaces, T nonsingular. We say that a map f (t, z) : T × Z → Y is arc-wise analytic
in t if it is K-analytic in t and arc-analytic in z, that is for every real analytic arc
z(s) : I → Z , the map f (t, z(s)) is analytic in both t and s. Note that in the complex
analytic case it means that f (t, z(s)) can be written as a convergent power series∑

α=(α1,...,αl )

∑
k aα,k tαsk in t complex and s real.

Remark 4.3.8 In the complex analytic case, it is in general impossible to have the
complex analytic dependence of� on x , even only on the complex arcs. This rigidity
property already appears for moduli spaces of elliptic curves.

Suppose now that, moreover, π : Y → T is K-analytic. We say

�(t, z) : T × Z → Y
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is an arc-wise analytic trivialization of π , see [52, Definition 1.2], if it satisfies the
following properties

1. � is a subanalytic homeomorphism (semi-algebraic in the algebraic case),
2. � is arc-wise analytic in t (in particular it is K-analytic with respect to t),
3. π ◦ �(t, z) = t for every (t, z) ∈ T × Z ,
4. the inverse of � is arc-analytic,
5. there existK-analytic stratifications {Zi } of Z and {Yi } of Y, such that for each i ,

Yi = �(T × Zi ) and �|T×Zi : T × Zi → Yi is a real analytic diffeomorphism.

The proof of Theorem 4.3.7 follows Varchenko’s strategy [73], which we recalled
briefly inSect. 4.3.1. It is technically simpler since in Step 2 of the proof, the extension
of the trivialization to the ambient space, is based onWhitney Interpolation Formula,
see [78], [52, Appendix I]. The homeomorphism�i+1 is given by a precise algebraic
formula (formula (3.5) of [52]) in terms of the roots of the pseudopolynomial Fi+1

and �i . (This algebraic formula is a real rational map, it involves, in particular, the
square of the distance to the roots of Fi+1. There is no such a complex rational
formula and no hope, of course, to make �i+1 complex arc-analytic, because by
Hartog’s Theorem complex arc-analytic means just complex analytic).

The fact that thus obtained trivialization �i+1 is arc-wise analytic is proven
by induction on i . The inductive step is obtained by a reduction to the Puiseux
with parameter theorem, Theorem 4.2.1. Let xi (s) be a real analytic arc. By
the inductive assumption �i (t, xi (s)) is analytic in t, s. Therefore P(t, s, xi+1) =
Fi+1(�i (t, xi (s), xi+1)) is a pseudopolynomial with respect ot xi+1 depending ana-
lytically on s and t . The main point of the proof is to show that P(t, s, xi+1) defines a
Zariski equisingular family of plane curve singularities parameterized by t . It follows
in essence by the stability of the discriminant by a base change, though technically
it is more involved, P is not necessarily reduced even if so is Fi+1, see the proof of
[52, Theorem 3.1] for more details.

Remark 4.3.9 Arc-wise analytic triviality is, in part, motivated by the relation of
Zariski equisingularity and equiresolution of singularities and the theory of blow-
analytic equivalence, see the last paragraphs of Sect. 4.5.8.

4.3.3 Whitney Fibering Conjecture

In [52], Theorem 4.3.7 is used to show Whitney fibering conjecture.
Whitney stated this conjecture in the context of the regularity conditions (a) and

(b) introduced in [79]. These conditions on stratification imply the topological triv-
iality along each stratum. This trivialization is obtained by the flow of “controlled”
vector fields as follows from proofs of Thom-Mather Isotopy Lemmas. By stating
the Fibering Conjecture, Whitney wanted a stronger version of triviality, namely that
the stratified set locally fibers into submanifolds isomorphic to strata.
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Conjecture 4.3.10 (Whitney fibering conjecture, [78] Sect. 9, p. 230) Any analytic
subvariety V ⊂ U (U open in C

n) has a stratification such that each point p0 ∈ V
has a neighborhood U0 with a semi-analytic fibration.

By a semi-analytic fibration Whitney meant a local trivialization as in (4.9) that
depends complex analytically on the parameter t . Whitney does not specify the
dependence on x , besides that he requires it to be continuous and that the existence
of such fibration should implyWhitney’s regularity conditions (a) and (b) (Whitney’s
semi-analytic fibration should not be confused with the notion of semi-analytic set
introduced about the same time by Łojasiewicz in [35]). Partial results on Whitney
fibering conjecture were obtained in [22], and in the smooth case in [43].

Whitney fibering conjecture was proven in [52] in the local complex and real
analytic cases and in global algebraic cases by means of Zariski equisingularity and
arc-wise analytic triviality. More precisely, by Theorem 4.3.7, every such set has a
stratification that locally admits arc-wise analytic trivializations (see the previous
subsection) along each stratum. Existence of such trivialization guarantees Whit-
ney’s regularity condition (a) but not necessarily condition (b) (see Briançon-Speder
example, Example 4.5.3 below). Here we touch for the first time in this survey an
interesting and important feature, some properties of Zariski equisingular families
depend on the genericity of the system of coordinates x1, . . . , xn . In order to guaran-
tee Whitney’s condition (b) we consider transverse Zariski equisingularity, see [52,
Definition 4.1]. We call Zariski equisingularity transverse (or transversal) if at each
inductive stage the kernel of the projection (t, xi ) → (t, xi−1) is not included in the
tangent cone to Fi = 0 at the origin. If we have a family that is transverse Zariski
equisingular then, by Theorem 4.3 of [52], the arc-wise analytic trivialization con-
structed in [52] satisfies additionally the property, called regularity,

C−1‖x‖ ≤ ‖�(t, x) − �(t, 0)‖ ≤ C‖x‖,

for a constantC independent of t and x . Geometrically it means that the trivialization
� preserves the magnitude of the distance toU × {0}. It is proven in [52, Proposition
7.4] that this regularity implies Whitney’s condtion (b), and even Verdier’s condition
(w), along U × {0}.

We discuss the relation of Zariski equisingularity, the plain one or with extra
conditions such as transversality and genericity, and Whitney’s conditions in Sect.
4.5.2.

4.3.4 Algebraic Case

In the papers [72, 74] Varchenko considers the families of analytic singularities
while the paper [73] deals with the families of affine or projective algebraic varieties.
Similarly, the families of algebraic varieties were considered in Sects. 5 and 9 of
[52]. The version presented below is stated in [56]. It follows from the proof of the
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main theorem, Theorem 3.3, of [52], see also Theorems 3.1 and 4.1 of [73] in the
complex case, Theorems 6.1 and 6.3 of [73] in the real case, and Proposition 5.2 and
Theorem 9.2 of [52] where the global algebraic case is treated.

Theorem 4.3.11 Let V be an open connected neighborhood of t in K
r and let

OV denote the ring of K-analytic functions on V. Let t = (t1, . . . , tr ) denote the
variables inV and let x = (x1, . . . , xn) be a set of variables inKn. Suppose that for
i = k0, . . . , n, there are given

Fi (t, x
i ) = xdii +

di∑

j=1

ai−1, j (t, x
i−1)xdi− j

i ∈ OV[xi ], (4.10)

with di > 0, such that

(i) for every i > k0, the first non identically equal to zero generalized discriminant
of Fi (t, xi−1, xi ) divides Fi−1(t, xi−1).

(ii) the first non identically equal to zero generalized discriminant of Fk0 is indepen-
dent of x and does not vanish onV.

Then, for every q ∈ V there is a homeomorphism

hq : {t} × K
n → {q} × K

n

such that hq(Vt) = Vq, where for q ∈ V we denote Vq = {(q, x) ∈ V × K
n |

Fn(q, x) = 0}.
Moreover, if Fn = G1 · · ·Gs then for every j = 1, . . . , s

hq

(
G−1

j (0) ∩ ({t} × K
n)

)
= G−1

j (0) ∩ ({q} × K
n).

Remark 4.3.12 By construction of [52, 72, 73, 75], the homeomorphisms hq can
be obtained by a local topological trivialization. That is there are a neighborhoodW
of t in Kr and a homeomorphism

� : W × K
n → W × K

n,

so that �(q, t, x)) = hq(t, x). This � is triangular of the form (4.6). If we write
�(q, x) = (q, �q(x)), i.e. as a family of homeomorphisms hq = �q : Kn → K

n ,
then, as follows from [52], we may require that:

1. The homeomorphism � is subanalytic. In the algebraic case, i.e. if we replace
in the assumptions OV by the ring of regular or K-valued Nash functions onV,
� can be chosen semialgebraic.

2. � is arc-wise analytic. In particular, each hq and its inverse h−1
q are arc-analytic.

Remark 4.3.13 If Fi are homogeneous in x , then the functions �q satisfy, by con-
struction,
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∀λ ∈ K
∗,∀x ∈ K

n �q(λx) = λ�q(x).

Hence ifwedefineP(Vq) = {(q, x) ∈ V × P
n
K

| Fn(q, x) = 0}, the homeomorphism
hq induces a homeomorphism between P(Vt) and P(Vq).

4.3.5 Principle of Generic Topological Equisingularity

Varchenko applies Theorem 4.3.5 to establish in [73, Sects. 5 and 6] generic topologi-
cal equisingularity for families of real or complex, affine or projective, algebraic sets.
The principle of generic topological equisingularity says that in an algebraic family
Xt of algebraic sets, parameterized by t ∈ T , where T is not necessarily nonsingular,
irreducible algebraic variety, there is a proper algebraic subset Y of T such that the
fibers Xt have constant topological type for t from each connected component of
T \ Y . In the complex algebraic case T \ Y is connected by the irreducibility of T ,
in the real algebraic case it has finitely many connected components. For analytic
spaces or sets, a similar principle holds locally. In both analytic and algebraic cases,
the results give actually local topological triviality of the family Xt over T \ Y . We
give examples of possible precise statements below. Let us first make some remarks.

Generic topological equisingularity can be proven, in general, either by Zariski
equisingularity or by stratification theory using Whitney stratification and Thom-
Mather Isotopy Lemmas, see [70, Theorem 4.2.17]. Whitney stratification approach
is independent of the choice of coordinates and simple to define. But the trivializa-
tions obtained by this method are not explicit since they are flows of “controlled”
vector fields. Even if such vector fields can be chosen subanalytic or semialgebraic,
not much can be said about the regularity of their flows. Zariski’s equisingularity
method is more explicit and in a way constructive. It uses the actual equations and
coordinate systems. This can be considered either as a drawback or as an advantage.
The trivializations can be chosen subanalytic (semialgebraic in the algebraic case),
as shown in [52]. Actually, the trivializations are given there by explicit formulas in
terms of the coefficients of the polynomials and their roots.

In the real case, the triangulation provides another method for proving generic
topological triviality. The classical triangulation procedures are based on a similar
construction as Zariski equisingularity, i.e. successive co-rank 1 projections and their
discriminants. For instance, a beautiful result on semialgebraic triviality was shown
by Hardt using this approach in [23]. For a fairly complete account on this approach,
the reader can consult [7] and the references therein.

It is fairly straightforward to apply Theorem 4.3.5 to obtain generic topological
equisingularity for families of hypersurfaces. In the case of varieties and spaces
of arbitrary codimension the argument goes as follows. If F = G1 · · ·Gk , then,
under the assumptions of Lemma 4.3.6, for xn−1 fixed, the number of roots of each
G j (�n−1(t, xn−1), xn) = 0 is independent of t , see Lemma 2.2 of [73] or Proposi-
tion 3.6 of [52]. In particular � trivializes not only V (F) = F−1(0) but also each of
V (G j ) = G−1

j (0). Thus [73] implies the following.
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Theorem 4.3.14 If F = G1 · · ·Gk then for each j = 1, . . . , k, the homeomor-
phisms � of Theorem 4.3.5 satisfies �(T × (V (G j ) ∩ 
0)) = V (G j ) ∩ 
, where
Vt (G j ) = (G−1

j (0) ∩ ({t} × K
n). In particular � trivializes {G1 = · · · = Gk = 0}.

Now let us give two possible exact statements for this principle taken from [52].
Note that they give not only generic topological equisingularity but much stronger
generic arc-wise analytic triviality.

Theorem 4.3.15 ([52, Theorem 9.3], cf. [73, Theorems 5.2 and 6.4]) Let T be an
algebraic variety (over K) and let X = {Xk} be a finite family of algebraic sub-
sets T × P

n−1
K

. Then there exists an algebraic stratification S of T such that for
every stratum S and for every t0 ∈ S there is a neighborhood U of t0 in S and
a semialgebraic arc-wise analytic trivialization of π, preserving each set of the
family X,

� : U × P
n−1
K

→ π−1(U ), (4.11)

�(t, x) = (t, �(t, x)), �(t0, x) = (t0, x), where π : T × P
n−1
K

→ T denotes the
projection.

Theorem 4.3.16 ([52, Theorem 6.2]) Let T be a K-analytic space, U ⊂ K
n an

open neighborhood of the origin, π : T ×U → T the standard projection, and let
X = {Xk} be a finite family of K-analytic subsets of T ×U. Let t0 ∈ T . Then there
exist an open neighborhood T ′ of t0 in T and a properK-analytic subset Z ⊂ T ′, con-
taining Sing T ′, such that for every t ∈ T ′ \ Z, X is regularly arc-wise analytically
equisingular along T × {0} at t .

Moreover, there is an analytic stratification of an open neighborhood of t0 in
T such that for every stratum S and every t ∈ S, X is regularly arc-wise analytic
equisingular along S × {0} at t .

In the above theorem by saying thatX is arc-wise analytically equisingular along
T × {0} at t ∈ Reg T we mean that there are neighborhoods B of t in Reg T and 


of (t, 0) in T × K
n , and an arc-wise analytic trivialization � : B × 
t → 
, where


t = 
 ∩ π−1(t), such that�(B × {0}) = B × {0} and for every k,�(T × Xk,t ) =
Xk, where Xk,t = Xk ∩ π−1(t). We say that X is regularly arc-wise analytically
equisingular along T × {0} at t ∈ T if, moreover, � preserves, up to a constant, the
distance to T × {0}, as we explained at the end of Sect. 4.3.3. The latter property is
related to Whitney’s conditions, see Sect. 7 of [52].

4.3.6 Zariski’s Theorem on the Fundamental Group

Varchenko in [73] applies topological triviality of Zariski equisingular projective
algebraic varieties to prove Zariski’s theorem on the fundamental group of the com-
plement. This theorem says that the fundamental group of the complementPn

C
\ Vn−1
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of a complex projective hypersurface Vn−1, n > 2, coincides with the corresponding
group obtained from a general hyperplane section.

This theorem was announced by Zariski in [81], but the proof published in it is
not considered as complete. Another complete proof of this theorem, different from
the one of Varchenko, is given in [20, 21].

4.3.7 General Position Theorem

In [40] Zariski equisingular families of affine or projective algebraic varieties are
used, together with Whitney interpolation, to prove stratified general position and
transversality theorems for semialgebraic subsets of algebraic stratifications.

In classical algebraic topology, general position of chains was used by Lefschetz
to define the intersection pairing on the homology of a manifold. This approach
is based on a possibility of moving a “subvariety” Z of a C∞ manifold M , by
a family of diffeomorphisms, so that the image Z becomes transverse to a given
another “subvariety”W of M . This principle was made precise by Trotman [71] and,
independently, by Goresky [18]. They proved that by a diffeomorphism one can put
in a stratified general position two Whitney stratified closed subsets Z and W of M .

The main theorem of [40] is expressed in terms of a submersive family of dif-
feomorphisms introduced in [17, I.1.3.5]. Let T and M be C∞ manifolds and let
� : T × M → M be a C∞ map. Consider �t : M → M , �t (x) = �(t, x), and
�x : T → M , �x (t) = �(t, x). We say � is a family of diffeomorphisms if for
all t ∈ T the map �t is a diffeomorphism. The family � is called submersive if, for
each (t, x) ∈ T × M , the differential D�x is surjective. By Theorem [17, I.1.3.6],
if � : T × M → M is submersive and both Z and W are Whitney stratified closed
subsets ofM then the set of t ∈ T such that�t (Z) is transverse toW is dense in T and
open provided Z is compact. A good example of a submersive family is a transitive
action � : G × M → M of a Lie group. Note that in this case Theorem [17, I.1.3.6]
gives characteristic 0 part of Kleiman’s transversality of a general translate theorem
[28]. For a stratified set X = ⊔

Si we say that � : T × X → X is a stratified sub-
mersive family of diffeomorphisms if for each stratum Sj , we have�(T × Sj ) ⊂ Sj ,
and the map � : T × Sj → Sj is a submersive family of diffeomorphisms.

In algebraic geometry the intersection of cycles can be defined via a moving
lemma that allows to move the cycle of nonsingular varieties, see [15, Sect. 11.4].
But there is no moving lemma nor algebraic general position theorem for singular
varieties. In the original construction of Intersection Cohomology [16] in order to
define the intersection pairing on singular complex algebraic varieties equipped with
a Whitney stratification Goresky and MacPherson used a piecewise linear general
position theorem of McCrory [38]. The main theorem of [40] shows the existence of
such stratified submersive family in the arc-wise analytic category of [52], see also
Sect. 4.3.2.
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Theorem 4.3.17 ([40, Theorem 1.1]) Let V = {Vi } be a finite family of algebraic
subsets of projective space P

n
K
. There exists an algebraic stratification S = {Sj }

of Pn
K
compatible with each Vi and a semialgebraic stratified submersive family

of diffeomorphisms � : U × P
n
K

→ P
n
K
, where U is an open neighborhood of the

origin in K
n+1, such that �(0, x) = x for all x ∈ P

n
K
. Moreover, the map � : U ×

P
n
K

→ U × P
n
K
, �(t, x) = (t, �(t, x)), is an arc-wise analytic trivialization of the

projection U × P
n
K

→ U.

A similar result holds for affine varieties; see [40, Corollary 3.2].
The proof of Theorem 4.3.17 is rather tricky. It uses the formulas used in [52]

in Step 2 of the construction topological trivialization of Zariski equisingular fami-
lies, see Sect. 4.3.1. These formulas are based on Whitney interpolation and can be
perturbed by introducing complex parameters, these are t ∈ U of the theorem. The
whole construction is applied to a trivial family, that is to the product U × P

n
K
, thus

producing a non-trivial arc-wise analytic trivialization of a trivial family.
Theorem 4.3.17 implies the general position in terms of the expected dimension

of the intersection and the general transversality. The general position in terms of
dimension is exactly what is needed to define the intersection pairing for the intersec-
tion homology, cf. [16]. The general position in terms of dimension can be expressed
as follows, the dimension means the real dimension since we consider semialgebraic
sets.

Corollary 4.3.18 ([40, Proposition 1.3]) Let� : U × P
n
K

→ P
n be a stratified fam-

ily as in Theorem 4.3.17, and let S be the associated algebraic stratification of Pn
K
.

Let Z and W be semialgebraic subsets of Pn
K
. There is an open dense semialgebraic

subset U ′ of U such that, for all t ∈ U ′ and all strata S ∈ S,

dim(Z ∩ �−1
t (W ) ∩ S) ≤ dim(Z ∩ S) + dim(W ∩ S) − dim S.

If S is a stratification of a semialgebraic set X , and T is a stratification of a
semialgebraic subset Y of X , then (Y,T ) is a substratified object of (X,S) if each
stratum of T is contained in a stratum of S. Two substratified objects (Z ,A) and
(W,B) of (X,S) are transverse in (X,S) if, for every pair of strata A ∈ A and
B ∈ B such that A and B are contained in the same stratum S ∈ S, the manifolds A
and B are transverse in S.

Corollary 4.3.19 ([40, Proposition 1.5]) Let� : U × P
n → P

n be a stratified fam-
ily as in Theorem 4.3.17, and let S be the associated algebraic stratification of Pn.
Let Z and W be semialgebraic subsets of Pn, with semialgebraic stratifications A
of Z and B of W such that (Z ,A) and (W,B) are substratified objects of (Pn,S).
There is an open dense semialgebraic subset U ′ of U such that, for all t ∈ U ′, (Z ,A)

is transverse to �−1
t (W,B) in (Pn,S).

In a recent paper [39] Corollary 4.3.19 is used to define an intersection pairing
for real intersection homology, an analog of intersection homology for real algebraic
varieties.
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4.4 Construction of Equisingular Deformations

Let f be either a polynomial or the germ of an analytic function, and let V = V ( f )
denote the zero set of f . We explain below how to construct Zariski equisingular
deformations of V (or more precisely of its equation f ). The idea comes from [41],
where the local complex analytic case was considered. We begin with the global
polynomial case as considered in [56] since it is conceptually simpler and does not
require Artin approximation. Note also that this method can be applied as well to
construct equisingular deformations of sets given by a system of several equations
as was explained at the end of Sect. 4.3.5.

4.4.1 Global Polynomial Case

Given an algebraic subset V ofKn and let the polynomials g1,…, gs ∈ K[x] generate
the ideal defining V . Let

gi =
∑

α∈Nn

gi,αx
α.

In general, a deformation of the gi,α , even arbitrarily small, destroys the topological
structure of V due to the presence of singularities (and “singularities at infinity” in
the global case). In this method we construct a finite number of constraints satisfied
by the coefficients gi,α , these are the Eqs. (4.15), (4.16), (4.18), (4.19) and the in
Eqs. (4.13) and (4.17) below, that satisfy the following property. Any deformation
t �→ gi,α(t) with gi,α(0) = gi,α , that satisfies the same constraints (4.13) and (4.15)–
(4.19) is, by construction, Zariski equisingular. In particular any such deformation is
topologically trivial. Moreover, the entries of (4.13) and (4.15)–(4.19) are rational
functions in gi,α with rational coefficients, that is they belong to Q(ui,α), for some
new indeterminates ui,α .

Let us fix a finite set of coefficients gi,α ∈ K that contains all nonzero of them. In
what follows we will perturb only these coefficients and keep all the other equal to
zero.

After a linear change with rational coefficients of coordinates x we can assume
that

gi = ci x
pi
n +

pi∑

j=1

bn−1,r, j (x
n−1)x pi− j

n =
∑

β∈Nn

an,i,βx
β, ∀i = 1, . . . , s, (4.12)

with

ci �= 0, i = 1, . . . , s. (4.13)
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By multiplying each gi by 1/ci we can assume that ci = 1 for every i . Denote by
f = fn the product of the gi and by an the vector of coefficients an,i,β . The entries
of an are rational functions in the original gi,α (i.e. before the linear change of
coordinates x) with rational coefficients, say

an = An(gi,α), (4.14)

where An = (An,i,β)i,β ∈ Q(ui,α)Nn for some integer Nn > 0. Let the integer ln be
defined by

Dn,ln (an) �≡ 0 and Dn,l(an) ≡ 0, ∀l < ln,

where Dn,l denotes the l-th generalized discriminant of fn , seeAppendix. After a new
linear change of coordinates xn−1 with rational coefficients, Dn,ln (an) = en−1 fn−1

with en−1 �= 0 and

fn−1 =
∑

β∈Nn

an−1,βx
β = xdn−1

n−1 +
dn−1∑

j=1

bn−2, j (x
n−2)xdn−1− j

n−1

for some constants an−1,β and polynomials bn−2, j . We repeat this construction and
define recursively a sequence of polynomials f j (x j ), monic in x j , such that

Dj+1,l j+1(a j+1) = e j

⎛

⎝x
d j

j +
d j∑

k=1

b j−1,k(x
j−1)x

d j−k
j

⎞

⎠ = e j

⎛

⎝
∑

β∈Nn

a j,βx
β

⎞

⎠ = e j f j

(4.15)

is the first non identically equal to zero generalized discriminant of f j+1 and a j

denotes the vector of coordinates a j,β . This way we get a system of equations

Dj+1,l(a j+1) ≡ 0 ∀l < l j+1, (4.16)

and inequations

e j �= 0, (4.17)

for j = n, n − 1, . . . , k0, until we get

fk0 = 1 for some k0 ≥ 0. (4.18)

By (4.13), (4.14) and (4.15) the entries of the ci , ak and e j are rational functions
in the gi,α with rational coefficients, let us say

ci = Ci (gi,α), ak = Ak(gi,α), e j = E j (gi,α), (4.19)
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for some Ci ∈ Q(ui,α), Ak ∈ Q(ui,α)Nk and E j ∈ Q(ui,α). Thus (4.13) and (4.15)–
(4.19) are equations and inequations, with rational coefficients, on the original coef-
ficients gi,α .

LetV be an open connected neighborhood of a point t ∈ K
l and letOV denote the

ring of K-analytic functions onV. Suppose that gi,α(t) ∈ OV, where t ∈ V, satisfy
gi,α = gi,α(t). For t ∈ V and i = 1, . . . , s, we define

g̃i (t, x) :=
∑

α∈Nn

gi,α(t)xα.

Weclaim that if the gi,α(t) satisfy the identities and the inequations (4.13) and (4.15)–
(4.19), then the family t → {g̃1(t, x) = · · · = g̃s(t, x) = 0} is topologically trivial
for t in a small neighborhood of t in V. For this we construct a system Fj (t, x j )

satisfying the assumptions of Theorem 4.3.11. We set

Fn(t, x) =
s∏

i=1

Gi (t, x), where Gi (t, x) =
∑

β∈Nn

An,i,β(gi,α(t))xβ, i = 1, . . . , s,

and An = (An,i,β)i,β ∈ Q(ui,α)Nn given in (4.14). Similarly for j = k0, . . . , n − 1
we set

Fj (t, x
j ) =

∑

β∈N j

A j,β(gi,α(t))xβ. (4.20)

Note thatGi (t, x) concide with gi after the linear change of coordinates made during
the construction. It is clear from the above construction that the family (Fj (t, x j ))

satisfies the assumptions of Theorem 4.3.11. Let us summarize it in the following.

Theorem 4.4.1 Suppose that gi,α(t) satisfy the identities and the inequations (4.13)
and (4.15)–(4.19). Then Fn(t, x) defines a Zariski equisingular family with respect
to the parameter t .

4.4.2 Application: Algebraic Sets are Homeomorphic to
Algebraic Sets Defined Over Algebraic Number Fields

The following result was proven in [56].

Theorem 4.4.2 Let V ⊂ K
n (resp. V ⊂ P

n
K
) be an affine (resp. projective) algebraic

set, whereK = R orC. Then there exist an affine (resp. projective) algebraic set W ⊂
K

n (resp. W ⊂ P
n
K
) and a homeomorphism h : Kn −→ K

n (resp. h : Pn
K

−→ P
n
K
)

such that:
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(i) the homeomorphism h maps V onto W,
(ii) W is defined by polynomial equations with coefficients in Q ∩ K,
(iii) the variety W is obtained from V by a Zariski equisingular deformation. In

particular the homeomorphism h can be chosen semialgebraic and arc-analytic.

Suppose, as in the previous section, that the ideal defining V is generated by the
polynomials g1,…, gs ∈ K[x]. In order to prove Theorem 4.4.2 one constructs in
[56] a deformation t �→ gi,α(t) of the coefficients gi,α ∈ K of the gi that preserves
all polynomial relations over Q satisfied by these coefficients. Therefore this defor-
mation preserves the identities (4.15), (4.16), (4.18) and (4.19). If it is sufficiently
small the inequations (4.13), (4.17) are also preserved and, by Theorem 4.4.1, the
deformation is equisingular in the sense of Zariski.

This construction is particularly simple if the field extension k of Q generated
by the coefficients gi,α is a purely transcendental extension of Q. For the gen-
eral case we refer the reader to [56]. Thus assume that k = Q(t1, . . . , tr ), where
the ti ∈ K are algebraically independent over Q. Then there are rational functions
gi,α(t) ∈ Q(t), t = (t1, . . . , tr ), such that gi,α = gi,α(t). Let V be a neighborhood
of t = (t1, . . . , tr ) that does not contain the poles of the gi,α(t). Since ti ∈ K are
algebraically independent any polynomial relation with coefficients in Q, satisfied
by gi,α = gi,α(t), is also satisfied by gi,α(t). In particular, gi,α(t) satisfy the identi-
ties (4.15), (4.16), (4.18) and (4.19) as wewanted. Choose q ∈ (Q)r ∩ V sufficiently
close to t. Then all gi,α(q) ∈ Q. Therefore the family (Fj ), defined by (4.20), satisfies
the hypothesis of Theorem 4.3.11 and the hypersurfaces X0 := {Fn(q, x) = 0} and
X1 := {Fn(t, x) = 0} are homeomorphic. Moreover, thus constructed homeomor-
phism maps every component of X0 defined by Gi (q, x) = 0 onto the component
of X1 defined by Gi (t, x) = 0, as in Theorem 4.3.14. This proves that the alge-
braic variety V = {g1 = · · · = gs = 0} is homeomorphic to the algebraic variety
{G1(q, x) = · · · = Gs(q, x) = 0} defined by polynomial equations over Q.

A result analogous to Theorem 4.4.2 in the local case, for singularities of analytic
spaces or analytic functions was proven by G. Rond in [61].

Remark 4.4.3 Note that, by the above proof, in the special case when k is a purely
transcendental extension of Q, we may replace, in the statement of Theorem 4.4.2,
Q by Q if K = R, resp. Q[i] if K = C. In general, this is an open problem, whether
every algebraic variety is homeomorphic to a variety defined over Q, resp. Q[i]. In
[67] B. Teissier gave an example of a complex analytic surface singularity defined
over Q(

√
5), which is not Whitney equisingular to any singularity defined over Q.

•? Open problem 1.

Is every complex algebraic variety homeomorphic to a variety defined overQ[i]? Is
every real algebraic variety homeomorphic to a variety defined over Q?
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•? Open problem 2.

Is every complex analytic set germ homeomorphic to a set germ defined overQ[i]?
Is every real analytic set germ homeomorphic to a set germ defined over Q?

4.4.3 Analytic Case

Suppose now that V is the germ at the origin of an analytic subset of Kn and let
g1,…, gs ∈ K{x} generate the ideal defining V . We describe below, following [41],
the construction of Zariski equisingular deformations of V . The main idea is similar
to that of Sect. 4.4.1, that is to use the discriminants of successive linear projections to
construct a system of “constrains”, that is equations and inequations satisfied by the
gi . These are the equations and inequations (4.22), (4.23) defined below. Then any
deformation of the gi that satisfies the same constraints is Zariski equisingular. The
main difference comes from the fact that now we are not going to use the coefficients
of the gi , since there are infinitely many of them. Instead we treat the equation of
(4.22), (4.23), as a system of equations on the functions ui (xi ), ai, j (xi ), that is the
coefficients of these successive discriminants.

Let us consider a finite set of distinguished polynomials g1, . . . , gs ∈ K{x}:

gi (x) = xrin +
ri∑

j=1

an−1,i, j (x
n−1)xri− j

n ,

i.e. we suppose an−1,i, j (0) = 0 for all i, j . Arrange an−1,i, j in a row vector an−1 ∈
K{xn−1}pn , where pn := ∑

i ri . Let fn be the product of the gi ’s. The generalized
discriminants Dn,i of fn are polynomials in the entries of an−1. Let ln be a positive
integer such that

Dn,l(an−1) ≡ 0 l < ln, (4.21)

and Dn,ln (an−1) �≡ 0. Then, after a linear change of coordinates xn−1, by the Weier-
strass Preparation Theorem, we may write

Dn,ln (an−1) = un−1(x
n−1)

(
x pn−1
n−1 +

pn−1∑

j=1

an−2, j (x
n−2)x pn−1− j

n−1

)
,

where un−1(0) �= 0 and for all j , an−2, j (0) = 0. We denote

fn−1 = x pn−1
n−1 +

pn−1∑

j=1

an−2, j (x
n−2)x pn−1− j

n−1
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and the vector of its coefficients an−2, j by an−2 ∈ K{xn−2}pn−1 . Let ln−1 be the pos-
itive integer such that the first ln−1 − 1 generalized discriminants Dn−1,l of fn−1

are identically zero and Dn−1,ln−1 is not. Then again we define fn−2(xn−2) as the
Weierstrass polynomial associated to Dn−1,ln−1 .

We continue this construction and define a sequence of pseudopolynomials fi (xi ),
i = 1, . . . , n − 1, such that fi = x pi

i + ∑pi
j=1 ai−1, j (xi−1)x pi− j

i is the Weierstrass
polynomial associated to the first non-identically zero generalized discriminant
Di+1,li+1(ai ) of fi+1, where we denote in general ai = (ai,1, . . . , ai,pi+1),

Di+1,li+1(ai ) = ui (x
i )

(
x pi
i +

pi∑

j=1

ai−1, j (x
i−1)x pi− j

i

)
, i = 0, ..., n − 1. (4.22)

Thus, for i = 0, ..., n − 1, the vector of functions ai satisfies

Di+1,l(ai ) ≡ 0 for l < li+1, Di+1,li+1(ai ) �= 0. (4.23)

This means in particular that

D1,k(a0) ≡ 0 for l < l1 and D1,l1(a0) ≡ u0,

where u0 is a non-zero constant.
The following theorem follows from the construction of the family ui (t, xi ),

ai, j (t, xi ).

Theorem 4.4.4 Suppose that we extend all function ui (xi ), ai, j (xi ) to analytic fam-
ilies ui (t, xi ), ai, j (t, xi ) ∈ K{t, x}, ui (0, xi ) = ui (xi ), ai, j (0, xi ) = ai, j (xi ), where
t ∈ K

l is considered as a parameter. If the identities and the inequations of (4.22),
(4.23) are still satisfied by these extensions ui (t, xi ), ai, j (t, xi ) then the family
fn(t, x) = 0 is Zariski equisingular.

4.4.4 Application: Analytic Set Germs are Homeomorphic to
Algebraic Ones

The problem of approximation of analytic objects (sets or mappings) by algebraic
ones has a long history, see e.g. [8] and the bibliography therein. In particular, several
results were obtained in the case of isolated singularities. The local topological
algebraicity of analytic set germs, in the general set-up, was first established in [41]
by Mostowski. Given an analytic set germ (V, 0) ⊂ (Kn, 0), Mostowski shows the
existence of a local homeomorphism h̃ : (K2n+1, 0) → (K2n+1, 0) such that, after the
embedding (V, 0) ⊂ (Kn, 0) ⊂ (K2n+1, 0), the image h̃(V ) is algebraic. It is easy
to see that Mostowski’s proof together with Theorem 2 of [8] gives the following
result.
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Theorem 4.4.5 Let K = R or C. Let (V, 0) ⊂ (Kn, 0) be an analytic germ. Then
there is a homeomorphism h : (Kn, 0) → (Kn, 0) such that h(V ) is the germ of an
algebraic subset of Kn.

We remark that in [41] Mostowski states his results only forK = R but his proof
also works for K = C.

The proof of Theorem 4.4.5 is, in principle, similar to the one of Theorem 4.4.2,
but is techniquely much more demanding. The main idea is to use Theorem 4.4.4 and
deform analytic solutions of (4.22) and (4.23) to algebraic ones. Here by algebraic
solutions we mean given by the ones defined by algebraic power series (an algebraic
power series is a power series algebraic over K[x1, ..., xn]—for example the power
series u(x) such that u(0) = 1 and u(x)2 = 1 + x). Recall that the Artin approxi-
mation theorem states that convergent power series solutions of algebraic equations
can be approximated by algebraic power series solutions. Clearly, we need a stronger
result, not only an approximation but also a parameterized deformation from the old,
convergent solutions to the new, algebraic ones. This is provided by Płoski’s ver-
sion of Artin approximation, see [59]. Finally, in order to apply Theorem 4.4.4 we
need the nested Artin approximation, i.e. solutions ui (t, xi ), ai, j (t, xi ) ∈ K{t, xi },
of (4.22) and (4.23), that depend only on x1, . . . , xi and not on xk for k > i . Nested
Artin Approximation Theorem follows from the Néron Desingularization, proven by
Popescu [60], and was not available at the time Mostowski’s paper [41] was written.
Instead, Mostowski proposes a recursive construction of the system of Eqs. (4.22)
and (4.23) giving Zariski equisingularity conditions by local linear changes of coor-
dinates and, at the same time, step by step, provides the deformation-approximation
by algebraic power series solutions following the recipe given in [59].

One may shorten considerably Mostowski’s construction using a stronger result,
the nested variant of Płoski’s version Artin Approximation. This is done in [6], where
such Nested Artin-Płoski-Popescu Approximation Theorem is proven. This theorem
was used in [6] to deform ui (xi ), ai, j (xi ) to algebraic power series solutions of
(4.22) and (4.23). Furthermore, a result of Bochnak-Kucharz [8], based on Artin-
Mazur Theorem of [2], allows one to approximate the zeros of algebraic power series
(or equivalently germs of Nash functions) by the zeros of polynomial functions.

A stronger version of Theorem 4.4.5 was given in [5] where it was shown that
such a homeomorphism h can be found with any prescribed order of tangency at the
origin.

•? Open problem 3.

What is the best level of regularity of homeomorphisms for which the statement
of Theorem 4.4.5 holds? It is known, for instance, that Theorem 4.4.5 is no longer
true if one replaces “homeomorphism” by “diffeomorphism”, for examples see [8]
and the last section of [6]. It is not known whether Theorem 4.4.5 holds true if one
requires the homeomorphism h to be bi-Lipschitz.
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4.4.5 Equisingularity of Function Germs

Zariski Equisingularity can also be used to construct topologically trivial defor-
mations of analytic map germs, see [73]. Let us consider first the case of func-
tions as studied in [6], that is the mappings with values in K. Given a family
gt(y) = g(t, y1, . . . , yn−1) of such germs parameterized by t ∈ (T, t0) We con-
sider the associated family of set germs defined by the graph of g, the zero set of
F(t, x1, . . . , xn) := x1 − g(t, x2, . . . , xn), and construct a topological trivialization
ht of V = V (F) that does not move the variable x1

ht (x1, . . . xn) = (x1, ĥt (x1, x2, . . . , xn)) (4.24)

so that V � (t0, x) if and only if (t, ht (x)) ∈ V . Set σt (y) := ĥt (g(y), y). Then

gt ◦ σt = gt0 ,

that is gt and gt0 are right (i.e. by a homeomorphism of the source) topologically
equivalent. Moreover, since σt depends continuously on t the family gt is topologi-
cally trivial.

We now follow the main ideas of [6] in order to explain the construction of topo-
logical trivialization of a family Vt of analytic subspaces of (Kn, 0) that preserves
the variable x1. For this we adapt the definition of Zariski equisingular families,
Definition 4.3.2, by changing it slightly, and also by changing accordingly the con-
struction of equisingular deformations. The point is that, when we make linear
changes of coordinates in order to replace a function by its Weierstrass polyno-
mial, now we are no longer allowed to change the variable x1 and mix it with the
other variables. So if one of the successive discriminants is divisible by x1 we cannot
proceed the way we have done it before. Therefore we replace the assumptions (2)
and (3) of Definition 4.3.2 by

(2a) There are qi ∈ N such that the discriminant of (Fi )red divides x
qi
1 Fi−1(t, xi−1).

(3a) F1 ≡ 1.

Then the construction of the homeomorphisms that we presented in Sect. 4.3.1
gives the following version of Theorem 4.3.5, that is a simplified statement of [6,
Theorem 5.1].

Theorem 4.4.6 Suppose that V is Zariski equisingularwith respect to the parameter
t in the sense of Definition 4.3.2 with the conditions (2) and (3) replaced by conditions
(2a) and (3a). Then we may require that the homeomorphisms � of (4.9) satisfies
additionally �1(t, x1) = x1.

Proof Idea of proof.
Because F1 ≡ 1, by (2a), the discriminant locus of F2 is either empty or given

by x1 = 0. Therefore we may take �1(t, x1) = x1. Then we show by induction on i
that each �i can be lifted so that the lift �i+1 preserves the zero set of Fi+1 and the
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values of x1. The former condition follows by inductive assumption and the fact that
�i preserves the discriminant locus of Fi+1. The latter condition is satisfied trivially
since �i+1 is a lift of �i . �

As a corollary we obtain the following result.

Theorem 4.4.7 ([6, Theorem 1.2]) Let K = R or C. Let g : (Kn, 0) → (K, 0) be
an analytic function germ. Then there is a homeomorphism σ : (Kn, 0) → (Kn, 0)
such that g ◦ σ is the germ of a polynomial.

For the proof of Theorem 4.4.7 one follows the proof of Theorem 4.4.5 that gives
such homeomorphism to a Nash function and not directly to a polynomial, since we
cannot get a better result just using the Artin approximation. Recall that a function
is Nash if it is analytic and satisfies an algebraic equation. Thus f : (Kn, 0) → K

is the germ of a Nash function if and only if its Taylor series is an algebraic power
series. For more details on real and complex Nash functions and sets see [7, 8].
The final step of the proof of Theorem 4.4.7, a homeomorphism of a Nash germ to a
polynomial germ follows from [8], that is in essence from the Artin-Mazur Theorem,
and a Thom stratification argument, see Sect. 5.5 of [6] for details.

There is a common generalization of Theorems 4.4.7 and 4.4.5.

Theorem 4.4.8 ([6, Theorem1.3])Let (Vi , 0) ⊂ (Kn, 0)beafinite family of analytic
set germs and let g : (Kn, 0) → (K, 0) be an analytic function germ. Then there is a
homeomorphism σ : (Kn, 0) → (Kn, 0) such that g ◦ σ is the germ of a polynomial,
and for each i , σ−1(Vi ) is the germ of an algebraic subset of Kn.

Theorem 4.4.8 cannot be extended to many functions or to maps with values in
K

p for p > 1, see [6, Example 6.3].

Corollary 4.4.9 ([6, Corollary 1.4]) Let g : (V, p) → (K, 0) be an analytic func-
tion germ defined on the germ (V, p) of an analytic space. Then there exists
an algebraic affine variety V1, a point p1 ∈ V1, the germ of a polynomial func-
tion g1 : (V1, p1) → (K, 0) and a homeomorphism σ : (V1, p1) → (V, p) such that
g1 = g ◦ σ .

We do not know whether the above results hold true with “homeomorphism”
replaced by “bi-Lipschitz homeomorphism”.

•? Open problem 4.

Is an analytic function germ bi-Lipschitz homeomorphic to a Nash or a polynomial
germ?

Unlike the analogous open problem for analytic set germs, it is more likely that
the answer to this one is negative. The reason is the following. By the existence of
Lipschitz stratification, cf. [42, 50], the bi-Lipschitz equivalence of analytic set germs
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does not have continuous moduli (the principle of generic bi-Lipschitz triviality,
analogous to the one described in Sect. 4.3.5, holds true). On the other hand, the
bi-Lipschitz right equivalence of analytic function germs admits continuous moduli,
see [24, 25].

Using Theorem 4.4.6 one may show that the principle of generic topological
equisingularity of analytic function germs holds true. (An alternative proof follows
again by stratification theory, more precisely by Thom stratification and Thom-
Mather Isotopy Lemma.) Let T be a K-analytic space and let gt(y) = g(t, y) :
(T, t0) × (Kn, 0) → (K, 0) be a K-analytic family of K-analytic function germs.
We say that the family gt(y) is topologically trivial at t0 (for topological right equiv-
alence) if there are an open neighborhood T ′ of t0 in T and neighborhoods 
0 of the
origin in Kn , and 
 of (t0, 0) in T × K

n , and a homeomorphism

� : U × 
0 → 
,

such that g(�(t, y)) = g(0, y). Then the following statement holds.

Corollary 4.4.10 (Principle of generic topological equisingularity of analytic func-
tion germs, [52, Theorem 8.5]) Let T be a K-analytic space and let gt (y) :
(T, t0) × (Kn, 0) → (K, 0) be a K-analytic family of K-analytic function germs.
Let t0 ∈ T . Then there exist an analytic stratification of an open neighborhood of
t0 in T such that for every stratum S and every t ′0 ∈ S, the family gt(y), t ∈ S is
topologically trivial at t ′0.

4.4.6 Local Topological Classification of Smooth Mappings

The principle of generic topological equisingularity does not hold for the germs
of mappings. That is it is known by an example of Thom [68], see also [44],
that the topological classification of real or complex, analytic or polynomial map
germs admits continuous moduli. This means that there are, polynomial in t , fam-
ilies of polynomial map germs ft : (Kn, 0) → (Kp, 0) that have different topolog-
ical types for different t , provided n ≥ 3, p ≥ 2, see [44]. Recall that we say that
two germs fi : (Kn, 0) → (Kp, 0), i = 1, 2, have the same topological type if there
exist homeomorphisms germs h : (Kn, 0) → (Kn, 0) and g : (Kp, 0) → (Kp, 0)
such that f1 ◦ h = g ◦ f2, that is, in other words, they are right-left topologically
equivalent.

A smoothmap germ f : (Rn, 0) → (Rp, 0) is topologically r-determined if every
smooth map germ with the same r -jet as f is topologically equivalent to f . In [69]
Thom proposed a stabilization theorem:
For any positive integer r , there is a closed semialgebraic subset �r of the r-jet
space Jr (n, p) such that



206 A. Parusiński

(i) codim�r → ∞ as r → ∞, and
(ii) if the r-jet of a map-germ f belongs to Jr (n, p) \ �r , then f is topologically

r-determined.

In other words “most” smooth mappings, that is up to a set of infinite codimension
in the jet space, look algebraic and are finitely determined. Thom gave a sketch of
proof in [69]. The first complete proof was given by Varchenko in [75, 76] using
very different ideas that the ones of Thom, namely Zariski equisingularity. Actually,
Varchenko proved a much stronger result.

Theorem 4.4.11 ([72, Theorem 2]) There exists a partition of the space of r-jets
Jr (n, p) in disjoint semialgebraic sets V0, V1, . . . having the following properties.

1. Maps whose jets live in the same Vi , i > 0, are (right-left) topologically equiv-
alent.

2. Any germ whose r-jet is in Vi for i > 0 is simplicial for suitable triangulations
of Rn and R

p.
3. The codimension of V0 in Jr (n, p) tends to infinity as r tends to infinity.

The stabilization theoremof Thomwas also shown by du Plessis in [12]. The proof
given there follows the original Thom’s ideas, stratification theory, transversality,
isotopy lemmas and Mather’s ideas about versal unfoldings. Another application of
Zariski equisingularity method to finite determinacy was given in [13], where the
function case (p = 1) was considered. Note that topologically finitely determined
function germs f : (Kn, 0) → (K, 0) have isolated singularities (or are regular).
In [13] Bobadilla gives a meaningful version of Theorem 4.4.11 for non-isolated
singularities by considering functions belonging to a fixed ideal I instead of the
whole space of analytic germs at the origin. We refer the reader to [13] for details.

Remark 4.4.12 If the target space of ft is of dimension bigger than one then the
method, we applied in the previous subsection to trivialize families of function germs
may not work. In general we cannot trivialize the family of graphs starting from the
variables in the target, as we did by taking F(t, x1, . . . , xn) := x1 − g(t, x2, . . . , xn),
if this graph is not included in the zero set of a Weierstrass polynomial in a variable
in the source. This is related to the presence of fibers of dimension bigger than the
expected dimension (dimension of the source minus dimension of the target), not
only for f but for every function (discriminant) obtained during the construction
process.

Even if this phenomenon of “blowing-up” of the special fiber is not present, that
is we can apply Zariski method without mixing the variables of the source and of the
target, we cannot, in general, construct topological trivialization that is the identity
on the target. That means that, if p ≥ 2, we get the right-left equivalence instead of
the right one as in Corollary 4.4.10.
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4.5 Equisingularity Along a Nonsingular Subspace.
Zariski’s Dimensionality Type

In [85,Definition 3], see also [72], Zariski introduced the notion of algebro-geometric
equisingularity, now called Zariski equisingularity, of an algebroid hypersurface V ⊂
K

r+1 along a nonsingular subspace of Sing V . This notion can be easily adapted to
the complex and real analytic set-ups.

Let V = f −1(0) be an analytic hypersurface defined in a neighborhood of a point
P ∈ K

r+1. As before we assume that f is reduced. Let W be a nonsingular analytic
subspace of Sing V containing P . Let x1, x2, . . . , xr+1 be a local coordinate system
at P . Consider a set of r elements z1, z2, . . . , zr of the local ring of V at P:

zi = zi (x1, x2, . . . , xr+1) = zi,1 + z1,2 + · · · , i = 1, 2, . . . , r,

where the zi are convergent power series in the x’s, and zi,α is homogeneous of
degree α. We say that the r elements zi form a set of parameters if the following two
conditions are satisfied :

(a) x = 0 is an isolated solution of the r + 1 equations z1(x) = z2(x) = · · · =
zr (x) = f (x) = 0.

(b) The r linear forms zi,1 are linearly independent.

If condition (b) is satisfied, then the r linear equations zi,1(x) = 0, i = 1, 2, . . . , r
define a line lz through P and the parameters zi define a co-rank one projection
πz of a neighborhood of P in K

r+1 onto a neighborhood of P = π(P) in K
r . This

projectionπz is called permissible if the fiberπ−1(π(P)), that is a nonsingular curve,
is transverse to W (here “transverse” means that the the tangent line to the fiber is
not tangent to W ). If this curve is transverse to V at P , that is lz does not belong
to the tangent cone CP(V ) to V at P , then the projection is called transversal (or
transverse) and the zi (x), i = 1, . . . , r , are transversal parameters.

Let πz be a permissible projection and let πz,V denote the restriction of π to V .
Thus we may suppose that locally f is a suitable reduced Weierstrass polynomial
whose discriminant D f is an analytic function in (z1, z2, . . . , zr ). Denote by �z its
zero set, that is the discriminant locus of πz,V .

The projection πz(W ) is a nonsingular variety W , of the same dimension as W .
Since we have assumed that W ⊂ Sing V we have W ⊂ �z . If dimW = dim�z =
r − 1 then we say that V is Zariski equisingular at P along W if P is a non-singular
point of �z . In the general case, Zariski’s definition is inductive and goes as follows.

Definition 4.5.1 We say that V is Zariski equisingular at P along W if there exists
a permissible projection πz such that �z is Zariski equisingular along W at P (or if
P is a nonsingular point of �z).
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4.5.1 Equimultiplicity. Transversality of Projection

As Zariski states on page 489 of [85] the algebro-geometric equisingularity, i.e.
Zariski equisingularity as defined in Definition 4.5.1, implies equimultplicity.

Proposition 4.5.2 If V is Zariski equisingular at P along W then the multiplicity
of V is constant along W.

Zariski proves it when dimW = dim V − 1 = r − 1, see [82, Theorem 7], and in
the general algebroid case in [86]. For a proof in the complex, and also real analytic
case, see [52, Proposition 3.6].

Similarly to Definition 4.5.1 one may define transverse Zariski equisingularity
along a nonsingular subspace as the one given by transverse projections. By Propo-
sition 4.5.2, because the equimultiple families are normally pseudo-flat (continuity
of the tangent cone), the transversality of πz at P implies the transversality at all
points of W in a neighborhood of P .

One can also define generic or generic linear Zariski equisingularity along a
nonsingular subspace. For generic linear it means that we require at each stage the
projection to be chosen from a Zariski open non-empty set of linear projection. Note
that a priori this notion depends on the choice of coordinates and it is not clear
whether it is preserved by nonlinear changes of coordinates. We discuss the notion
of generic projection in Sects. 4.5.4 and 4.5.5.

4.5.2 Relation to Other Equisingularity Conditions.
Examples

As we mentioned before Varchenko showed in [73], see also [72, 74], that in the
complex or real analytic case Zariski equisingularity implies topological triviality.

In [85, Question E], Zariski asked as well whether Zariski equisingularity implies
Whitney’s conditions. This has been disproved by Briançon end Speder in [11] for
the equisingularity as defined in Definition 4.5.1. In [64] Speder shows that if V
is Zariski equisingular along a nonsingular variety W for sufficiently generic pro-
jections, then the pair (Reg(V ),W ) satisfies Whitney’s conditions. For instance,
generic linear projections, that is from a Zariski open non-empty subset of such pro-
jections, are generic in the sense of Speder. This result was improved in [52], where it
was shown that transverse Zariski equisingularity, both in real and complex analytic
cases, implies Whitney’s conditions, see Theorems 4.3 and 7.1 of [52] for precise
statements.

There are several classical examples describing the relation between Zariski equi-
singularity and Whitney’s conditions. The general set up for these examples is the
following. Consider a complex algebraic hypersurface X ⊂ C

4 defined by a polyno-
mial F(t, x, y, z) = 0 such that Sing X = T , where T is the t-axis. Let π : C4 → T
be the standard projection. In all these examples Xt = π−1(t), t ∈ T , is a family
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of isolated singularities, topologically trivial along T . These examples relate the
following conditions:

1. X is Zariski equisingular along T , Definition 4.5.1.
2. X is Zariski equisingular along T for a transverse projection.
3. X is Zariski equisingular along T for a generic system of coordinates. Here we

consider “generic” in the sense of [9]. It is equivalent, see loc. cit. to be generic
linear, or generic in the sense of Zariski [88], that we recall in Sect. 4.5.5 below.

4. The pair (X \ T, T ) satisfies Whitney’s conditions (a) and (b).

Clearly (3)⇒(2)⇒(1). Speder showed (3)⇒(4) in [64] and (2)⇒(4) for families
of complex analytic hypersurfaces with isolated singularities in C3 in his thesis [63]
(not published). Theorem 7.1 of [52] gives (2)⇒(4) in the general case. As the
examples below show, all the other implications are false.

Example 4.5.3 ([11])

F(x, y, z, t) = z5 + t y6z + y7x + x15 (4.25)

This example satisfies (1) for the projections (x, y, z) → (y, z) → x but (4) fails.
As follows from Theorem 7.1 of [52], (2) fails as well.

Example 4.5.4 ([10])

F(x, y, z, t) = z3 + t x4z + y6 + x6 (4.26)

In this example (4) is satisfied and (3) fails. This example satisfies (1) for the pro-
jections (x, y, z) → (x, z) → x .

Example 4.5.5 ([37])

F(x, y, z, t) = z16 + t yz3x7 + y6z4 + y10 + x10 (4.27)

In this example (2) is satisfied and (3) fails.

Example 4.5.6 ([47])

F(x, y, z, t) = x9 + y12 + z15 + t x3y4z5 (4.28)

In this example (4) is satisfied and (1) fails. This also shows that (4) does not
imply (2).

4.5.3 Lipschitz Equisingularity

In 1985 Mostowski [42] introduced the notion of Lipschitz stratification and showed
the existence of such stratification for germs of complex analytic subsets of Cn . For
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complex algebraic varieties, such stratification exists globally. The existence of Lips-
chitz stratification for real analytic spaces and algebraic varieties was shown [48, 50].
Lipschitz stratification satisfies the extension property of stratified Lipschitz vector
fields from lower-dimensional to higher-dimensional strata, and therefore implies
local bi-Lipschitz triviality along each stratum (and hence Lipschitz equisingular-
ity as well). Mostowski’s construction is similar to the one of Zariski, but involves
considering many co-rank one generic projections at each stage of construction. For
more on Lipschitz stratification, we refer the interested reader to [19, 42, 49].

By Lipschitz saturation, see [58], an equisingular family of complex analytic
plane curves is bi-Lipschitz trivial, i.e. trivial by a local ambient bi-Lipschitz home-
omorphism. In general, there is a conjectural relation between Lipschitz and Zariski
equisingularity, at least in the complex analytic set up.

•? Open problem 5.

Are generically Zariski equisingular families of complex hypersurfaces bi-Lipschitz
equisingular? Does Zariski equisingularity provide a “natural” way of construction
of Lipschitz stratification in the sense of Mostowski?

For families of complex surface singularities, that is along a nonsingular subspace
of codimension 2 the following results have been announced in [46, 53]. In [46] it
was shown that generically Zariski equisingular families of normal complex surface
singularities are bi-Lipschitz trivial. In [53] was shown that a natural stratification
given by successive generic (or generic linear) projections of a complex hypersurface
satisfies Mostowski’s Conditions in codimension 2. In particular, the latter result
implies that generic Zariski equisingulariy of families (not necessarily isolated) of
complex surface hypersurface singularities is Lipschitz equisingular.

4.5.4 Zariski Dimensionality Type. Motivation

When dimW = dim V − 1, V is Zariski equisingular at P along W if and only if V
is isomorphic to the total space of an equisingular family of plane curve singularities
along W , see [83, Theorem 4.4]. Then, moreover, Zariski equisingularity can be
realized by any transversal projection πz .

Guided by this example, Zariski conjectured in [85, Question I], that Zariski
equisingularity for a single permissible projection implies the equisingularity for
generic projection (or for almost all projections that we recall later in Sect. 4.5.6).
An affirmative answer to this question would imply, in particular, that if there exists
an equisingular projection then there exist a transversal equisingular projection. Both
turned out not to be true. In [37] Luengo gave an example of a family of surface sin-
gularities inC3 that is Zariski equisingular for one projection, that is even transversal,
but is not equisingular for the generic projection, see Example 4.5.5. Briançon end
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Speder gave in [11] an example that is equisingular for one projection but there is
no transversal projection that gives Zariski equisingularity, see Example 4.5.3.

Therefore Zariski in [88] proposes a different strategy. Instead of arbitrary permis-
sible projections, or even transversal projections, Zariski uses generic projections to
define the equisingularity relation. (We recall what “generic” means for Zariski in the
next subsection.) Having fixed such an equisingularity relation, Zariski introduces
the notion of dimensionality type. For this the equisingularity relation should first
satisfy the following property.

The set of points of equivalent singularities form a locally nonsingular subspace of
V of codimension that depends only on this equisingularity class.

Thus, for a point P ∈ V the set of points equivalent to (V, P) is nonsingular and its
codimension inV characterizes howcomplicated the singularity is. This codimension
is then called the dimensionality type of (V, P). The points of dimensionality type 0
are the nonsingular points of V . The simplest singular points of V , of dimensionality
type 1, are those at which V is isomorphic to the total space of an equisingular family
of plane curves. The closure of the set of points of fixed equisingularity type may
contain points of different equisingularity type but only of the higher dimensionality
type and only on finitely many such equisingular strata.

The very definition of what is meant by the word “generic” is the main point of
Zariski’s definition. Let us make a quick comment on an apparently obvious choice.
Similarly to Definition 4.5.1 onemay define generic linear Zariski equisingularity as
the one given by linear projections belonging to a Zariski open non-empty subset of
linear projections. Except the case of the dimensionality type 1, it is not clear whether
such notion of generic linear Zariski equisingularity is preserved by non-linear local
changes of coordinates, nor whether it implies the generic Zariski equisingularity.

4.5.5 Zariski Dimensionality Type

Formally Zariski’s original definition of the dimensionality type requires the field
extension by infinitely many indeterminates. Therefore, in this subsection excep-
tionally, we work over an arbitrarily algebraically closed field of characterisitc zero
that will be denoted by k, and instead of the category of complex analytic spaces we
consider the category of algebraic or algebroid varieties. Recall that the algebroid
varieties are the varieties defined by ideals of the rings of formal power series, see
[32, Chap. 4] and [88, Sect. 2].We note, however, that in [88, Proposition 5.3] Zariski
shows that his definition involving such a field extension can be replaced by a condi-
tion that is based on the notion of almost all projections that does not require a field
extension. We recall the approach via almost all projections in the next subsection.

Let k be an algebraically closed field of characteristic zero. Consider an alge-
broid hypersurface V = f −1(0) ⊂ (kr+1, P) at P ∈ kr+1 defined in a local sys-
tem of coordinates by a formal power series f ∈ k[[x1, . . . , xr+1]] (that we assume
reduced). Zariski’s definition of the dimensionality type is based on the following
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notion of generic projection. The generic projection, in the sense of [88], is the map
πu(x) = (πu.1(x), . . . , πu,r (x)), with

πu,i (x) =
∑

d≥1

∑

ν1+···νr+1=d

u(i)
ν1,··· ,νr+1

xν . (4.29)

This map is defined over k∗, any field extension of k that contains all coeffi-
cients u(i)

ν1,··· ,νr+1
as interdeterminates, thus formallyπu : ((k∗)r+1, P) → ((k∗)r , P∗

0 ),
where P∗

0 = πu(P). Denote by �∗
u ⊂ (k∗r , P∗

0 ) the discriminant locus of (πu)|V ∗ ,
where V ∗ = f −1(0) ⊂ (k∗(r+1), P).

Let W be a nonsingular algebroid subspace of Sing V and let W ∗ = πu(W ). If
dimW = dim V − 1 then we say that V is generically Zariski equisingular at P
along W if P̄∗ is a non-singular point of �∗

u . In general, the definition is similar to
Definition 4.5.1.

Definition 4.5.7 We say that V is generically Zariski equisingular at P along W
if �∗

u is generically Zariski equisingular along W ∗ at P̄∗ (or if P̄∗ is a non-singular
point �∗

u).

The definition of dimensionality type of [88] is again recursive. It is defined for
any point Q of V , not only the closed point P .

Definition 4.5.8 Any simple (i.e. non-singular) point Q of V is of dimensionality
type 0. Let Q be a singular point V and let Q∗

0 = πu(Q). Then the dimensionality
type of V at Q, denoted by d. t.(V, Q), is equal to

d. t.(V, Q) = 1 + d. t.(�∗
u, Q

∗
0).

The notions of generic Zariski equisingularity and of dimensionality type are
independent of the choice of this field extension k∗, see [88, 89].

As follows from [88] the set of points where the dimensionality type is constant,
say equal to σ , is either empty or a nonsingular locally closed subvariety of V
of codimension σ . The dimensionality type defines a stratification V = �αSα of
V that satisfies the frontier condition, i.e. if Sα ∩ Sβ �= ∅ then Sα ⊂ Sβ , and V is
generically Zariski equisingular along W at P if and only if W is contained in the
stratum containing P .

A singularity is of dimensionality type 1 if and only if it is isomorphic to the total
space of an equisingular family of plane curve singularities, see [83] Theorem 4.4.
Moreover, if this is the case, then V is such an equisingular family for any transverse
system of coordinates.
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4.5.6 Almost all Projections

In [88, Proposition 5.3] Zariski shows that, in Definitions 4.5.7 and 4.5.8, the generic
projection πu can be replaced by a condition that involves almost all projections
πū : kr+1 → kr (so it does not require a field extension).

One says that a property holds for almost all projections if there exists a finite set
of polynomials G = {Gμ} in the indeterminates u(i)

ν1,··· ,νr+1
and coefficients in k such

that this property holds for all projections πū for ū satisfying ∀μGμ(ū) �= 0. Here the
bar denotes the specialization u → ū, i.e. we replace all indeterminates u(i)

ν1,··· ,νr+1
by

elements of k, ū(i)
ν1,··· ,νr+1

∈ k. Thus, for almost all projections πū the dimensionality
type d. t.(V, P) equals

d. t.(V, P) = 1 + d. t.(�ū, πū(P)), (4.30)

where �ū denotes the discriminant locus of πū |V . Since the finite set of polyno-
mials G involves nontrivially only finitely many indeterminates u(i)

ν1,··· ,νr+1
, we may

specialize the remaining ones to 0, and then the projection πū becomes polynomial.
This means that, as soon as we know the set of polynomials G, we may compute the
dimensionality type of V at P just by computing d. t.(�ū, πū(P)), for only one poly-
nomial projection πū , satisfying ∀μGμ(ū) �= 0. Similarly, in order to check whether
V is generic Zariski equisingular at P along S, it suffices to check it for �∗

ū along
πū(S) at πū(P).

4.5.7 Canonical Stratification of Hypersurfaces

The dimensionality type defines a canonical stratification of a given algebroid or alge-
braic hypersurface over an algebraically closed field of characteristic zero. Unfortu-
nately, in general, no specific information on the polynomials of G is given in [88].
Zariski’s construction is purely transcendental, and there is no explicit bound on
the degree of such polynomial projections. This makes, for instance, an algorithmic
computation of Zariski’s canonical stratification impossible. The algebraic case was
studied in more detail by Hironaka [26], where the semicontinuity of such a degree
in Zariski topology is shown. This implies in particular that the dimensionality type
induces, in the algebraic case, a stratification by locally closed algebraic subvarieties.

For complex analytic singularities, we can define the dimensionality type using
generic polynomial or generic analytic projections. It follows from Speder
[64, Theorems 1–4], that in the complex analytic case thus defined canonical strati-
fication satisfies Whitney’s conditions (a) and (b). It also follows from Theorems 3.7
and 7.3 of [52], where a stronger regularity condition, called (arc-w) was proven.

It is an open question whether generic linear projections are generic in the sense
of Zariski.
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•? Open problem 6.

Are generic linear projections sufficient to define generic Zariski equisingularity
and the dimensionality type? More precisely, is the formula (4.30) valid for a Zariski
open non-empty set of linear projections πū?

Even if the answers to the above questions were positive it would not give an
algorithm to compute the dimensionality type and the canonical stratification auto-
matically, but the positive answer to this question would probably help to consider
other related open problems that we summarize below.1

•? Open problem 7.

Characterize geometrically or algebraically generic polynomial projections in the
sense of Zariski?

In the case of strata of dimensionality type 2 a partial answer to both questions
of problem 6 was obtained in [9]. In this paper Briançon and Henry characterized
generically Zariski equisingular families of isolated surface singularities in the 3-
space in terms of local analytic invariants: Teissier’s numbers (multiplicity, Milnor
number, and Milnor number of a generic plane section), the number of double points
and the number of cusps of the apparent contours of the generic projection of the
generic fibre of a mini-versal deformation. All these numbers are local analytic
invariants, and therefore linearly generic change of coordinates is generic in the
sense of Zariski. This shows in particular that, if Sing V is of codimension 2 in V at
P , then the generic linear projections are sufficient to verify whether d. t.(V, p) = 2.

Note that the answer to problem 7 should be quite subtle even in the case of the
dimensionality type 2. Let us remind that in [37] Luengo gave an example of a family
of surface singularities inC3 that is Zariski equisingular for one transverse projection
but not for the generic ones.

•? Open problem 8.

Is the canonical Zariski’s stratification of a complex analytic hypersurface Lipschitz
equisingular?

This problem is a version of problem 5. As we have mentioned in Sect. 4.5.3, the
positive answer for the strata of codimension 2 was announced [53] and, if moreover
codim(Sing V ) = 2, in [46].

1 Added in proofs. The answer to Problem 6 is positive in the case of dimensionality type 2 see
[54].
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4.5.8 Zariski Equisingularity and Equiresolution
of Singularities

In the case of dimensionality type 1, i.e. equivalently, for families of plane curves
singularities, Zariski equisingularity can be expressed in terms of blowings-up
(monoidal transformations) and equiresolution. More precisely, firstly, the following
property of stability by blowings-up holds.

Theorem 4.5.9 ([83, Theorem 7.4]) Assume that the singular locus W of V is of
codimension 1 and let P be a regular point of W . Let π : V ′ → V be the blowing-up
of W, and let Pgen denote a general point of W . Then V is of dimensionality type 1
along W at P if and only if the following two conditions hold

(1) π−1(P) is a finite set of the same cardinality as π−1(Pgen),
(2) each P ′ ∈ π−1(P) is either a nonsingular point of V ′ or a point of dimensionality

type 1.

In the complex analytic set up the conditions (1) and (2) mean that over a neigh-
borhood of P , W ′ := π−1(W ) → W is a finite analytic covering and V ′ is Zariski
generically equisingular along each connected component of W ′ (this includes the
case that V ′ is nonsingular along this connected component).

Secondly, the repeating process of such blowings-up leads not only to a resolution
π̃ : Ṽ → V of V but also to an equiresolution in the following sense. Fix a local pro-
jection of pr : Kr+1 → W , such that pr−1(P) is nonsingular and transverse to W .
The fibers of this projection restricted to W are plane curve singularities Vt parame-
terized by t ∈ W . Then the restrictions of π̃ , Ṽt := π̃−1(Vt ) → Vt are the resolutions
of Vt , see e.g. [83, Corollary 7.5] and the paragraph after it, and the induced projec-
tions of Ṽ and of the exceptional divisor E of π̃ onto W are submersions. Note that
Ṽ coincides with a normalization of V , and hence it is also an equinormalization of
the family Vt . this can be deduced as well from Puiseux with parameter Theorem
4.2.1).

•? Open problem 9.

Do the two properties, stability by blowing-up and equiresolution, hold for arbitrary
codimension strata of Zariski’s stratification?

The first part of this question was stated by Zariski in [87] : “Now, one test that
any definition of equisingularity must meet is the test of its stable behavior along W
under blowing-up ofW”. It also appears in questions F, G and H of [85]. An example
of Luengo [36] shows that the generic Zariski equisingularity does not satisfy the
stability under blowings-up property. That is V = {z7 + y7 + t y5x3 + x10 = 0} ⊂
C

4 is generically Zariski equisingular alongW = Sing V = {x = y = z = 0} but the
blow-up Ṽ of V along W is not generically Zariski equisingular along W̃ = Sing Ṽ
(W̃ is a nonsingular curve in this example).
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Moreover, reciprocally, a blowing-up may make non-equisingular families equi-
singular as shows another example from [36]. In this example V = {z4 + y6 +
t z2y3 + x8 = 0} ⊂ C

4 is not generically Zariski equisingular along W = Sing V =
{x = y = z = 0} (the origin is of dimensionality 3), but the strata of Zariski canon-
ical stratification of the blow-up of W , Ṽ → V , project submersively onto W (no
point of the highest possible dimensionality 3 in Ṽ ).

In order to answer the second part of this question one has tomake precisewhat the
equiresolution, also often called simultaneous resolution, means. To start with there
are embedded resolutions (modifications of the ambient space containing V ) and the
non-embedded ones. The concept of equiresolution was largely studied and clarified
in [66] within the context of non-embedded resolutions of complex analytic surface
singularities, and in [33] in the context of embedded equiresolution of complex
analytic or algebraic varieties.

The relation between generic Zariski equisingularity and equiresolution depends
which notion of the equiresolution is adapted. In the first cited above example of
Luengo [36], V understood as a family Vt does not have strong simultaneous resolu-
tion in the sense of Teissier [66], if we require, moreover, that this resolution is given
by a sequence blowings-up of non-singular equimultiple centers following Hiron-
aka’s algorithm, see [36] for details. In [33] Lipman proposes a strategy to prove a
weaker version of equiresolution for such families. This proof in the algebraic case
was completed by Villamayor [77]. Villamayor’s equiresolution is a modification of
the ambient nonsingular space containing V more general than the ones obtained as
compositions of sequences of nonsingular centers blowings-up. Moreover, it is not
required that the induced resolution of V is an isomorphism over V \ Sing V .

There is another open problem related to the equiresolutions of families of sin-
gularities. Namely, it is not clear whether, in general, equiresolution can be used to
construct topological trivializations. Let us explain it on a simplified example. Sup-
pose that V is a hypersurface of a nonsingular (real or complex) analytic manifoldM ,
π̃ : M̃ → M is a modification, the composition of blowings-up of smooth centers
for instance, and that

(i) there is a local (at P ∈ W ) analytic projection pr : M → W , such that pr−1(P)

is nonsingular and transverse to W and whose fibers restricted to V define a
family of reduced hypersurfaces Vt , t ∈ W .

(ii) π̃−1(V ) is a divisor with normal crossings that is the union of the strict transform
Ṽ of V , assumed non-singular, and the exceptional divisor E .

(iii) The strata of the canonical stratification of π̃−1(V ) (as a divisor with normal
crossings) project by p̃r := pr ◦ π̃ submersively onto W .

Then, by a version of Ehresmann fibration theorem, there is a trivialization of p̃r that
preserves the strata of π̃−1(V ) and hence also Ṽ .Moreover, by [30], this trivialization
can be made real analytic. If this trivialization is a lift by π̃ of a trivialization of pr
then we call the latter a blow-analytic trivialization.
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M̃
π̃

p̃r

M

pr

W

In [30] Kuo developed the theory of blow-analytic equivalence of real analytic
function germs. Kuo shows that for families of isolated hypersurface (or function)
singularities such blow-analytic trivializations exist under the following additional
assumptions: W = Sing and π̃ is an isomorphism over the complement of W . In
this case he constructs a nice (real analytic) trivialization of the resolution space that
projects to a topological trivialization of pr . In particular, it shows that the principle
of generic blow-analytic equisingularity of real analytic function germs holds, see
[30, Theorem 1]. But in the general, non-isolated singularity case it is not even
clear whether there is a topological trivialization that lifts to the resolution space.
The existence of a blow analytic trivialization of family of non-isolated singularities
remains the main open problem of Kuo’s Theory, see [14, 29].

Blow-analytic trivializations are, in particular, arc-analytic, and, actually, at least
in the algebraic (i.e. Nash) case, blow-analytic and arc-analytic maps coincide, see
[4, 51]. Thus there is a hope that Theorem 4.3.7, proven using Zariski equisingularity,
can help in developing blow-analytic theory of non-isolated singularities.
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4.6 Appendix. Generalized Discriminants

We recall the notion of generalized discriminants, see Appendix IV of [3, 62, 80],
or Appendix B of [52]. Let k be an arbitrary field of characteristic zero and let

F(Z) = Zd +
d∑

i=1

ai Z
d−i =

d∏

i=1

(Z − ξi ) ∈ k[Z ], (4.31)

be a polynomial with coefficients ai ∈ k and the roots ξi ∈ k. Recall that the discrim-
inant of F is a polynomial in the coefficients ai that can be defined either in terms
of the roots

DF =
∏

1≤ j1< j2≤d

(ξ j2 − ξ j1)
2,

or as the determinant of the Jacobi-Hermite matrix
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DF =

∣
∣
∣
∣
∣
∣
∣
∣

s0 s1 · · · sd−1

s1 s2 · · · sd
· · · · · · · · · · · ·
sd−1 sl · · · s2d−2

∣
∣
∣
∣
∣
∣
∣
∣

,

where si = ∑d
j=1 ξ i

j , for i ∈ N, are Newton’s symmetric functions. Thus DF = 0 if

and only if F has a multiple root in k.
The generalized discriminants, or subdiscriminants, Dd+1−l of F , l = 1, . . . , d,

can be defined as the principal minors of the Jacobi-Hermite matrix

Dd+1−l :=

∣
∣
∣
∣
∣
∣
∣
∣

s0 s1 · · · sl−1

s1 s2 · · · sl
· · · · · · · · · · · ·
sl−1 sl · · · s2l−2

∣
∣
∣
∣
∣
∣
∣
∣

,

and we put Dd = 1 by convention. Thus Dd+1−l are polynomials in the coefficients
ai . The generalized discriminants can be defined equivalently in terms of the roots

Dd+1−l =
∑

r1<···<rl

∏

j1< j2; j1, j2∈{r1,...,r j }
(ξ j2 − ξ j1)

2.

In particular D1 = DF and F admits exactly l distinct roots in k if and only if
D1 = · · · = Dd−l = 0 and Dd−l+1 �= 0.

If F is not reduced, that means in this case that F has multiple roots, the general-
ized discriminants can replace the (classical) discriminant of Fred . Here Fred equals∏

(Z − ξi ), where the product is taken over all distinct roots of F . The following
lemma is easy.

Lemma 4.6.1 Suppose F has exactly l > 1 distinct roots in k of multiplicities m =
(m1, ...,ml). Then there is a positive constant C = Cl,m, depending only on m =
(m1, ...,ml), such that the generalized discriminant Dd−l+1 of F and the standard
discriminant DFred of Fred are related by

Dd−l+1 = CDFred .

We conclude with the following obvious consequence of the IFT.

Lemma 4.6.2 Let F ∈ C{x1, ..., xn}[Z ] be a monic polynomial in Z such that the
discriminant DFred does not vanish at the origin. Then, there is a neighborhood U
of 0 ∈ C

n such that the complex roots F are analytic on U, distinct, and of constant
multiplicities (as the roots of F).
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49. A. Parusiński, Lipschitz stratification, in Global analysis in modern mathematics (Orono, ME,

1991; Waltham, MA, 1992), Publish or Perish, Houston, TX, 1993, pp. 73–89.
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55. A. Parusiński and G. Rond, The Abhyankar-Jung theorem, J. Algebra, 365 (2012), pp. 29–41.
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Chapter 5
Intersection Homology

Jean-Paul Brasselet

Abstract The famous duality theorems for compact oriented manifolds: Poincaré
duality between cohomology and homology, and Poincaré-Lefschetz duality, inter-
section between cycles, are no longer true for a singular variety. A huge and fantastic
step forward was taken by Mark Goresky and Robert MacPherson by the simple but
brilliant idea of rediscovering duality by restricting oneself to chains only meeting
the singular part of a stratified singular variety in controlled dimensions. Intersection
homology was born. In this survey, we recall the first geometric definition as well
as the theoretical sheaf definition allowing to describe the main properties of the
intersection homology. Fruitful and unexpected developpments have been obtained
in the context of singular varieties. For instance de Rham’s theorem and Lefschetz’s
fixed point theorem find their place in the theory of intersection homology. The
same is true for Morse’s theory (see the Mark Goresky’s survey in this Handbook,
Chap.5, Vol. I). In the last section, we provide some applications of intersection
homology, for example concerning toric varieties or asymptotic sets. It must be said
that the main application and source, itself, of innumerable applications is the fasci-
nating and fruitful topic of perverse sheaves, which unfortunately it is not possible
to develop in such a survey.
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5.1 Introduction

In the case of manifolds, global homological invariants like Betti numbers enjoy
remarkable duality properties as stated by Poincaré (1893) and Lefschetz (1926).
For smooth manifolds, the de Rham theorem (1931) and Morse theory (1934) show
that it is possible to compute such topological invariants using differential forms and
smooth functions. Unfortunately, all these beautiful results fail to hold for singular
varieties. In an attempt to generalize the powerful theory of characteristic numbers to
the singular case, Mark Goresky and Robert MacPherson noticed about 1973 that the
failure of Poincaré duality is caused by the lack of transversal intersection of cycles
on the singular locus. As a remedy, they introduced chains with well controlled
intersection behaviour on the singular locus. These “intersection chains” form a



5 Intersection Homology 225

complex that yields a new (co-) homology theory, called “intersection homology”.
As a key point, the new theory yields an intersection product with suitable duality
properties.

That new approach turned out to be extremely fruitful, far beyond the original
purpose at hand, and stimulated awholewealth of unexpected developments.Already
at an early stage in the development of intersection homology, the original geometric
construction of intersection chains has been recast into the formalism of sheaf theory
and (hyper-) cohomology. The powerful machinery thus made available has been
indispensable for the development of the theory; yet it bears the risk to hide the
beautiful geometry that lies at the bottom.

The article is divided into five main sections: In the first Sect. 5.2 the classical
results in themanifold case are presented and examples show their failure for singular
varieties.

Section5.3 is devoted to the main tools in the frameworks of sheaf theory and
derived categories. Definitions are provided and notations are fixed.

Section5.4 is devoted to the definition of intersection homology, both in the P L
and in the topological situations. The local calculus eventually leads to “sheafify”
the original geometric approach, thus obtaining the intersection sheaf complexes. In
this context, the Deligne sheaf complex is of fundamental importance.

Section5.5 shows how several important concepts and results carry over from
the usual (co-) homology of manifolds to intersection homology of singular vari-
eties: first basic properties Sect. 5.5.1, functoriality Sect. 5.5.2, the Lefschetz fixed
point theorem Sect. 5.5.3,Morse theory Sect. 5.5.4, de Rham theorem Sect. 5.5.5, and
cohomology operations like Steenrod squares, cobordism andWu classes Sect. 5.5.6.

Section5.6 is a supplement and thus of a different nature: Here are collected vari-
ous applications and generalizations that deserve mention, but where an appropriate
introduction would by far exceed the scope of the present survey. Therefore brief
sketches and suitable references are presented.

There is a vast literature consistingof research articles, conference papers, surveys,
books, course notes etc. dealing with intersection homology and its implications and
generalizations, some including historical comments. The first mention is for the
surveys byMacPherson [127, 128], Goresky [89], Kleiman [117], the conferences in
the Bourbaki Seminar byBrylinski [45] and Springer [171], and surveys by Friedman
[79], Klinger [118]. This short list is far from being exhaustive.

Among the books dedicated to intersection homology and perverse sheaves, let
mention those by Borel et al. [18], Kirwan [116], Goresky-MacPherson [96], Schür-
mann [167], Maxim [130] Dimca [66].

More specialized surveys are for instance: on de Rham theorem [24], on Morse
theory [126], on combinatorial toric intersection homology [70], on perverse sheaves
[125, 161], etc. This list presents only a small selection.

This concise overview of such an extensive theory is of mainly introductory char-
acter and remains thus necessarily incomplete; yet the author hopes that the reader
will deepen the interest in this fascinating subject.

The author is very grateful to Gottfried Barthel, Karl-Hienz Fieseler, Ludger
Kaup, Alice Libardi, Th?uy Nguy

∼
ên Thi. Bích, Eliris Rizziolli, Marcelo Saia, and to
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the anonymous referee for many helpful corrections and suggestions on an earlier
version of this paper.

Important note: The concept of intersection homology was first defined by
Goresky and MacPherson in the framework of P L-spaces and P L-stratifications
([92] see also [18, Chaps. I–III]). In this framework, definitions are intuitive and
geometric, it is possible to make explicit figures and proofs are nice, ingenious, del-
icate but often technical. In their paper [94] Goresky and MacPherson consider the
more general framework of topological spaces and topological stratifications. The
use of tools such as sheaf theory and derived categories, together with the notion of
Deligne sheaf, makes proofs easier and opens the door to deeper results and to more
applications (see also [18, Chaps. IV and V]).

Both viewpoints are important and have their own advantages and disadvantages
and it would be a mistake to hide one of them. The first one provides the motivation
and the meaning of the concept, the second one provides simpler proofs, as well as a
huge amount of extensions and applications. The introduction of Habegger’s chapter
in the Borel book [18, Chap. II] explicits these roles.

5.2 Classical Results—Poincaré and Poincaré-Lefchetz

In order to understand the introduction of intersection homology it is useful to recall
some elementary properties for manifolds.

An n-manifold (or n-topological manifold) is a (non-empty, Hausdorff) topologi-
cal space X such that each point admits a neighborhood homeomorphic with an open
subset of the Euclidean space Rn .

Let X be an n-dimensional compact, connected, oriented and without boundary
smooth manifold. The Poincaré duality says that the p and (n − p) Betti numbers of
X agree. It first statedwithout proof in [152] thenPoincaré gave a proof of the theorem
using topological intersection theory in his 1895 paper Analysis Situs [153]. Hee-
gaard [104], provided a counter-example to Poincaré’s formula and, finally, Poincaré
provided a new proof performed in terms of dual cell decompositions [154, 155].
For historical details, see for example [157]. In order to simplify, in this introduction,
homology and cohomology groups are with Z coefficients.

The Poincaré result is presented in two ways: using intersection of cycles, i.e.
showing the existence of an intersection morphism

Hn−p(X) ⊗ Hn−q(X)
•−→ Hn−(p+q)(X)

(see Sect. 5.2.5) and showing the existence of a Poincaré duality isomorphism

P D : H p(X)
∼=−→ Hn−p(X),
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using dual cells (see Sect. 5.2.6). The two definitions are linked by the commutative
diagram, where ∪ denotes the usual cup-product.

H p(X) ⊗ Hq(X)
∪

P D⊗P D

H p+q(X)

P D

Hn−p(X) ⊗ Hn−q(X)
•

Hn−(p+q)(X).

(5.1)

The first part of this section consists of some useful definitions and notations. Then
the classical dualities (Poincaré and Poincaré-Lefschetz) for manifolds are recalled
and counter-examples in the situation of singular varieties are provided.

5.2.1 PL-Structures

A piecewise-linear structure, P L-structure on a topological space X is a class of
locally finite (simplicial) triangulations such that any subdivision of one of them
belongs to the class and two of them admit a common subdivision.

When endowed with a P L-structure, the space is said a P L-space. Not all topo-
logical space admit a P L-structure and when such structure exists it is, in general,
not unique.

A triangulation of a P L-space X is a triangulation of the corresponding class.
That is a simplicial complex K whose geometric realization |K | is homeomorphic
to X . The space is said triangulated and one writes X = |K |.

The advantage of having a whole class of triangulations is that any open subset
U ⊂ X inherits a P L-structure. This property is convenient for the construction of
sheaves (see in particular Example5.3.2).

A manifold equipped with a structure of P L-space is called P L-manifold. In a
triangulation K of a P L-manifold, every (n − 1)-simplex is a face of exactly two
n-simplices. This property is one of the conditions for a P L-space to be a P L-
pseudomanifold.

5.2.2 Pseudomanifolds

Definition 5.2.1 The (non-empty, paracompact, Hausdorff) topological space X is
an n-pseudomanifold if there is a closed subspace � ⊂ X such that:

1. X \ � is an n-dimensional manifold dense in X .
2. dim� ≤ n − 2.
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The subspace � of the pseudomanifold X contains the subset of singular points
of X i.e. the points which do not admit a neighborhood homeomorphic to a ball and
whose boundary is homeomorphic to a sphere.

A P L-pseudomanifold X of dimension n is an n-dimensional P L-space X con-
taining a closed P L-subspace � of codimension at least 2 such that X − � is an
n-dimensional P L-manifold dense in X .

Equivalently, given a triangulation X = |K |, then |K | is the union of the n-
simplices and each n − 1-simplex is face of exactly two n-simplices.

A connectivity condition of the set X − � is sometimes added. The connected
P L-pseudomanifold X is oriented if there exists a compatible orientation of all
n-simplices. In the connected and oriented situation of a P L-pseudomanifold, the
conditions ensure existence of a fundamental class [X ]. Namely, given a triangulation
X = |K | of an n-dimensional connected and oriented P L-pseudomanifold, the sum
of all (oriented) n-simplices is a cycle whose class is the fundamental class. The
original article by Goresky and MacPherson suppose the P L-pseudomanifold to be
compact and oriented. These hypothesis are dropped in the further articles.

The pinched torus (Fig. 5.1 and Example5.2.6) and the suspension of the torus
(Example5.5.10) are examples of connected and oriented P L-pseudomanifolds.

5.2.3 Stratifications

Dealing with singular spaces, the notion of stratification is one of the most important
tool. The main reference for the definitions and results is the Trotman’s survey in
this Handbook, vol I [179, Chap.4] (see also [128]).

A (topological) stratification S of the n-dimensional pseudomanifold X is the
data of a filtration

(S) X = Xn ⊃ Xn−1 = Xn−2 ⊃ · · · ⊃ X1 ⊃ X0 ⊃ X−1 = ∅ (5.2)

by closed subspaces such that

• every stratum Si = Xi − Xi−1 is either empty or a finite union of i-dimensional
smooth submanifolds of X ,

• each point x in Si admits a distinguished neighborhood Ux ⊂ X together with a
homeomorphism

φx : Ux → B
i × c̊(L) (5.3)

(local triviality property) where:

– B
i is an open ball in Ri ,

– the “link” L (called the link of the stratum Si ) is a compact (n − i − 1)-
dimensional pseudomanifold independent (up to homeomorphism) of the point
x in the stratum Si and filtered by:
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L = Ln−i−1 ⊃ Ln−i−3 ⊃ · · · ⊃ L0 ⊃ L−1 = ∅,

– c̊(L) is the open cone over L defined by c̊(L) = L × [0, 1[/(x, 0) ∼ (x ′, 0),
and filtred by

(c̊(L))0 = {0} and (c̊(L))k = c̊(Lk−1) if k > 0.

By definition, one has c̊(∅) = {point}.
Moreover, the homeomorphism φx preserves the stratifications of Ux and B

i ×
c̊(L) respectively, that is there are restriction homeomorphisms

φx |X j : Ux ∩ X j → B
i × c̊(L j−i−1), for j ≥ i.

In particular stratifications which satisfy the Whitney conditions (see [89], [179])
satisfy the topological local triviality property (A’ Campo [18, Chap. IV]):

A P L-stratification S of the n-dimensional P L-pseudomanifold X is a strati-
fication such that all involved subspaces are P L-subspaces and the local triviality
property holds in the P L-category.

5.2.4 Borel-Moore Homology

In the following, G will denote an R-module, for R a PID. For example, G can be Z,
Q, R or C. In this (sub)section, X is a connected, oriented, not necessarily compact
n-dimensional P L-manifold or P L-pseudomanifold.

Given a triangulation X = |K |, the complex of possibly infinite simplicial chains
of K with coefficients in G is denoted byC∗(K ; G). A chain ξ inCi (K ; G) is written
ξ = ∑

ξσ σ where σ are oriented i-simplices in K and ξσ are elements of G. It has a
canonical image inCi (K ′; G) for any subdivision K ′ of K . Two chains inCi (K1; G)

and Ci (K2; G) are identified if their image in a common subdivision coincide. The
group Ci (X; G) of P L-geometric chains with closed supports of X is the direct limit
under refinement of the groups Ci (K ; G) over all triangulations of X .

The support of ξ ∈ Ci (K ; G) is the union of the closed simplices such that ξσ �=
0 and is denoted by |ξ |, it does not depend on subdivision, thus the support of
ξ ∈ Ci (X; G) is well defined.

Using the usual boundaryoperator, the complexof chainsC∗(X; G) iswell defined
and its homology, denoted by H∗(X; G) is called homology with closed supports of
X , or Borel-Moore homology of X [17] (see also “Homologie de deuxième espèce”
in Cartan [48, Exposé 5, Sect. 6]).

The subcomplex of chains with compact supports is denoted by Cc∗(X; G) and its
homology H c∗ (X; G) is the homology with compact support. If X is compact, the
two homology groups coincide.
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5.2.5 Poincaré Duality Homomorphism

The idea, for defining Poincaré duality “à la Poincaré”, is to associate to a given
triangulation K of an n-dimensional manifold X a decomposition of X into “cells”,
in such a way that there is a one-to-one correspondence between p-dimensional
simplices and (n − p)-dimensional dual cells (called “Polyèdre réciproque” in [154,
Sect.VII]).

Let X be a triangulated, compact and oriented n-dimensional P L-pseudomani-
fold X = |K | such that the triangulation K itself is the first barycentric subdivision
of a triangulation of X .

A p-elementary cochain is an (oriented) p-simplex σ , denoted by σ ∗ when con-
sidered as a p-cochain. A p-cochain with coefficients in G, element of C p(K ; G),
is a formal sum

∑
giσ

∗
i where gi ∈ G and the σi are (oriented) p-simplices in K .

The coboundary δσ ∗ of the p-elementary cochain σ ∗ is defined to be the (p + 1)-
cochain

δσ ∗ =
∑

[σ : τ ]τ ∗

where the sum involves all (p + 1)-simplices τ such that σ is a face of τ (denoted
σ < τ ). The incidence number [σ : τ ] is +1 if the orientation of σ is the one as
boundary of τ and −1 otherwise. This defines the homomorphism

δ p : C p(K ; G) → C p+1(K ; G)

by linearity.
Considering a first barycentric subdivision K ′ of K , the barycenter of every sim-

plex σ in K is denoted by σ̂ . The simplices in K ′ whose first vertex is σ̂ are all
simplices on the form (σ̂ , σ̂i1 , . . . , σ̂iq )with σ < σi1 < · · · < σiq . The union of these
simplices, is called the the dual block of σ and is denoted by D(σ ). One has

D(σ ) = {τ ∈ K ′ : τ ∩ σ = {σ̂ }}. (5.4)

The dual block D(σ ) has dimension (n − p), it is endowed with an orientation such
that the orientation of D(σ ) followed by the orientation of σ is the orientation of X
(see [23, 177]).

The Poincaré homomorphism (at the level of chains and cochains) is the map

P D : C p(K ; G) → Cn−p(K
′; G)

defined by P D(σ ∗) = D(σ ) and extended by linearity. One has

P D(δσ ∗) = ∂P D(σ ∗).

The correspondence “simplex” → “dual block” sends K -cochains to K ′-chains.
By this correspondence, cocycles are sent to cycles and coboundaries to boundaries.



5 Intersection Homology 231

The Poincaré homomorphism is then well defined:

P D : H p(K ; G) −→ Hn−p(K
′G).

As it is well known, the homology and cohomology groups of X do not depend on
the given triangulation. The Poincaré dualitymorphism is realised by the cap-product
by the fundamental class [X ]:

P D : H p(X; G)
•∩[X ]−→ Hn−p(X; G)

The main Poincaré’s result is:

Theorem 5.2.2 • In a compact oriented manifold, the dual blocks are cells, i.e. the
dual block of a p-simplex σ is homeomophic to an (n − p)-ball and its boundary
is homeomorphic to an (n − p − 1)-sphere.

• In a compact oriented manifold, the Poincaré morphism is an isomorphism.

Fig. 5.1 Cycles and cocycles on the torus (i) and the pinched torus (ii)

Example 5.2.3 Examples of computations for a manifold and a pseudomanifold.
Figure5.1i and ii are planar representations of the torus and the pinched torus, with

suitable identification of the simplices of the boundary and with given compatible
orientation of all 2-simplices.

In the torus, the cochain α = σ ∗
1 + σ ∗

2 + . . . + σ ∗
6 is a cocycle, not a coboundary.

The dual chain a = P D(α) is a cycle, not a boundary. In the same way, by symmetry
with respect to the first diagonal, one has a “horizontal” cocycle β and dual cycle
b = P D(β). In the torus, the Poincaré homomorphism is an isomorphism (here
G = Z):

H 1(T ;Z) → H1(T ;Z), Zα ⊕ Zβ → Z a ⊕ Z b.
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On the pinched torus, which is a singular variety, the Poincaré homomorphism is
no longer an isomorphism.

On the one hand, the cocycle α = σ ∗
1 + σ ∗

2 + σ ∗
3 is not a coboundary. Indeed, the

coboundary of the vertex A consists of all 1-dimensional simplices of which A is a
vertex and α is only half of it. The cohomology class of α is not zero. The dual of
the cocycle α is the cycle a. This cycle is a boundary (the boundary of the gray part),
its homology class is zero: the Poincaré morphism maps the non-zero class of α on
the zero class of a. It is not injective.

On the other hand, the (red) cycle b going from A to A is not a boundary, its
homology class is not zero and generates the 1-dimensional homology. But it is easy
to see that b is not the dual of a cochain. The Poincaré morphism is not surjective.

The Poincaré morphism of the pinched torus is neither injective, nor surjective,
although it is a morphism from Z to Z:

Zα ∼= H 1(X;Z) •∩[X ]−→ H1(X;Z) ∼= Z b.

5.2.6 Poincaré—Lefschetz Homomorphism

In his 1895 paper [153, Sect. 9] (corrected in [154, 155]), Poincaré gave a definition
of intersection of two oriented and complementary dimensional cycles in a compact
oriented manifold. Lefschetz, in 1936 [122] defined the intersection of an i-chain
a and a j-chain b in a compact oriented n-manifold M whenever |a| ∩ |b| contains
simplices of dimension at most i + j − n, and gave a formula for the multiplicity
in a ∩ b of an i + j − n-simplex σ ⊂ |a| ∩ |b| which is local, in the sense that it
depends only on the behavior of a and b near an interior point of σ .

Let X be a smooth P L-manifold, two cycles a and b are said dimensionally
transverse if either they do not meet or their dimensions satisfy the formula:

codim (|a| ∩ |b|) = codim |a| + codim |b|.

Theorem 5.2.4 (See [120–122] and [176, Sect. 5] for a summary) In a compact ori-
ented smooth P L-manifold, the intersection of two dimensionally transverse cycles
with appropriately defined orientations and multiplicities is a cycle.

In a compact oriented P L-manifold X , if two dimensionally transverse cycles a
and b have complementary dimensions, then the intersection a ∩ b is a finite num-
ber of points {xi }. The cycles being oriented, in each of the points xi Lefschetz
defines the local intersection index I (a, b; xi ), depending on orientations and mul-
tiplicities [122, 153, 154]. For elementary cycles (i.e. with multiplicities +1), the
index I (a, b; xi ) is +1 if the orientation of a followed by the orientation of b is the
orientation of X and −1 otherwise, then extend by linearity. The intersection index
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I (a, b) =
∑

xi ∈a∩b

I (a, b; xi ).

defines an intersection product

Cn−p(X;Z) × C p(X;Z) −→ Z

a , b ∼→ I (a, b)
(5.5)

which associates to each pair of oriented, dimensionally transverse and complemen-
tary dimensional cycles (a, b) the intersection index I (a, b).

The intersection index I (a, b) does not depend on the representative of the homol-
ogy classes of the cycles a and b.

Theorem 5.2.5 (Poincaré-Lefschetz duality [120, 122, 153, 154]) In a compact
oriented smooth P L-manifold, the intersection product (5.5) induces a bilinear map

Hn−p(X;Z) × Hp(X;Z) −→ H0(X;Z) ε−→ Z

which is non-degenerate when tensored by the rational numbers. Here ε is the eval-
uation map ε : ∑

ni {xi } �→ ∑
ni .

Let X be a singular variety, then the Poincaré-Lefschetz duality is no longer true.
The pinched torus is a classical example:

Fig. 5.2 Transverse cycles in the pinched torus

Example 5.2.6 (The pinched torus) Consider the pinched torus.
The area C in Fig. 5.2ii is a chain whose boundary is c − b. The cycles b and c are

homologous. However, the intersection indices are I (a, b) = +1 and I (a, c) = 0.
There is no intersection product at the level of homology classes.
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5.3 The Useful Tools: Sheaves—Derived Category

In the previous section, the spaces consideredweremainly compact and non singular.
The notions of duality and intersection can be generalized to singular spaces using
Borel-Moore homology on the one hand and sheaf theory on the other hand.

General useful references for these sections are Godement and Bredon (see [86,
Chapitre II] and [36]). The interested reader will find a history of sheaf theory in the
Christian Houzel article [106], in particular the passage from closed supports (Jean
Leray) to open supports (Henri Cartan).

5.3.1 Sheaves

Let X be a topological P L-pseudomanifold. Let R be a PID, that may be sometimes
Z or even a field such as R, Q or C. A sheaf on X will be a sheaf A of R-modules.
The category of sheaves on X is denoted by Sh(X). The constant sheaf is denoted
by RX .

The set of sections of the sheaf A over an open subset U of X is denoted by
�(U,A). Given a family of supports , the subset of elements s ∈ �(X,A) for
which support of s belongs to  is denoted by �(X,A). The families considered
are mainly the family of closed supports, the family of compact supports c and for
a subspace A ⊂ X the family (A) of supports whose elements are closed subsets
contained in A.

The stalk at a point x ∈ X of the sheaf A is denoted by Ax . The restriction of A
to a subspace Y ⊂ X is denoted by A|Y or simply AY .

A sheaf L on the topological space X is called locally constant if there is an open
covering {Ui } of X and a family of R-modules {Li } such that L|Ui is the constant
sheaf on Ui represented by the R-module {Li }. Equivalently, every point x ∈ X has
a neighborhood U such that the restriction maps

Lx ← �(U ;L) → Ly

are isomorphisms for all y ∈ U .

5.3.2 System of Local Coefficients

The notion of system of local coefficients comes from Steenrod [174]. In fact in his
introduction, Steenrod wrote that he generalizes an idea originating from Whitney
(1940), who, in turn credits the idea to de Rham (1932). Also Steenrod claims that
the notion is equivalent to the Reidemeister Überdeckung (1935) [159]. Steenrod
provides applications of the notion, in particular full duality and intersection theory in
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a non-orientable manifold [174, Sect. 14]. Later, Steenrod applied that notion in 1951
in his book “The Topology of Fibre Bundles” when defining characteristic classes
(Stiefel-Whitney and Chern classes) by obstruction theory (see [175, Sect. 30–31]).

The interest of local systems is well demonstrated by the example given by
MacPherson [128, p. 19] of a local system which makes intersection homology
interesting even when the space is nonsingular.

A local coefficient system (or local system) of R-modules on a topological space
X is a locally constant sheaf L of R-modules.

If X is connected, then it is possible to use a single R-module L instead of a
family Li . If X is not connected, a local coefficient system is determined by the
data of a base point xi in Ci and a representation ρ : π1(X, xi ) → Aut (Li ) for each
connected component Ci of X .

Example 5.3.1 An exemple of local system is given by the orientation sheafOX on
a (not necessarily orientable) n-dimensional manifold. That is the sheaf associated
to the presheaf

U �→ Hn(X, X \ U ; R).

If ∂X = ∅, then OX is a locally constant sheaf with stalks isomorphic to R. It is
constant if X is orientable.

5.3.3 Complexes of Sheaves

A bounded complex of sheaves A• is a sequence

. . . −→ Ap−1 d p−1−→ Ap d p−→ Ap+1 −→ . . . p ∈ Z

such that d p ◦ d p−1 = 0 for all p andAp = 0 for |p| sufficiently large. If necessary
to specify the complex, the differential will be denoted by d p

A• .
A sheafA can be regarded as a complex of sheavesA• withA0 = A,Ap = 0 for

p �= 0, and d p = 0 for all p. In this case, the complex A• is said to be concentrated
in degree 0.

Given a complex of sheaves, the shifted complex A[n]• is defined by A[n]p =
An+p and dA[n]• = (−1)ndA• .

The sheaf of sections associated with a complex of sheaves A• assigns to every
open subset U ⊂ X the chain complex

. . . → �(U ;Ap−1) → �(U ;Ap) → �(U ;Ap+1) → . . . .

The p-th cohomology sheaf Hp(A• ) associated with A• is the sheafification ([86,
Chapitre II, Sect. 1.2]) of the presheaf whose group of sections over U is the p-th
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homology group ofA• . The stalk at a point x ∈ X of the sheafHp(A• ) isHp(A• )x
∼=

Hp(A•
x ).

Borel and Moore [17] define cohomologically locally constant (denoted CLC)
complex of sheaves if the associated cohomology sheaves are locally constant. A
complex of sheaves A• is said (cohomologically) constructible with respect of a
filtration (5.2) of X if allA• |(Xi −Xi−1) are CLC and their stalk cohomology is finitely
generated.

The complex A• is said P L-(cohomologically) constructible if it is bounded
and (cohomologically) constructible with respect of a filtration of X by closed
P L-subsets. Finally, the complex A• is said topologically (cohomologically) con-
structible if it is bounded and (cohomologically) constructible with respect to a
topological filtration of X .

Henceforth, we will adopt the modern shorthand of replacing the words “(coho-
mologically) constructible” simply with “constructible”. As in [94], all complexes
of sheaves considered will be topologically constructible.

Example 5.3.2 The sheaf complex of P L-chains with closed suports.
Let X be a connected, oriented, not necessarily compact n-dimensional P L-

manifold or P L-pseudomanifold. In Sect. 5.2.4 the Borel-Moore homology chains
Ci (X; G)with coefficients in an abelian grouphave beendefined.The samedefinition
applies with coefficients in a local system L, denoted by Ci (X;L).

In a first step the presheaf U �→ Ci (U ;L) for U open in X , is defined as follows.
Let V ⊂ U be two open subsets in X , the natural restriction maps

ρV U : Ci (U ;L) → Ci (V ;L) (5.6)

are defined in the following way: (see also [94, Sect. 2.1]) For a chain ξ ∈ Ci (U ;L),
there is a locally finite triangulation KU of U such that ξ can be written

∑
σ∈KU

ξσ σ

with ξσ ∈ Lσ andLσ is the (constant) value ofL on σ . Any triangulation of V admits
a subdivision KV such that every simplex υ in KV is contained in a simplex σ(υ) of
a subdivision of KU and such that dim υ = dim σ(υ). Considering orientations of
all simplices of the triangulations, the chain ρV U (ξ) ∈ Ci (V ;L) is defined by

ρV U (ξ) =
∑

υ∈KV

(−1)(υ:σ(υ)) ξσ(υ)υ

where the sign is +1 if υ and σ(υ) have the same orientation and −1 otherwise.
The boundary ∂i : Ci (U ;L) → Ci−1(U ;L) is defined in the following way: A

chain ξ ∈ Ci (U ;L) is written ∑
σ∈KU

ξσ σ for a locally finite triangulation KU of U
and ξσ ∈ Lσ . Let τ be a face of σ and ρσ

τ : Lσ → Lτ the natural morphism, then

∂i (ξ) =
∑

σ

∑

τ<σ

[τ : σ ]ρσ
τ (ξσ ).τ.
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where the incidence number [τ : σ ] is+1 if the orientation of τ is the one as boundary
of σ and −1 otherwise.

Definition 5.3.3 ([94, Sect. 2.1], see Remark 5.4.10 for the notation) The Borel-
Moore complex of sheaves of P L-chains C• on X with coefficients in L is defined
by

�(U ; C−i ) = Ci (U ;L)

with the above boundary.

5.3.4 Injective Resolutions

The injective resolutions are particularly important, by the fact that for any abelian
categorywith enough injective objects, each R-module admits an injective resolution.

Definition 5.3.4 ([94, Sect. 1.5], [18, II, Sect. 5]) A map of complexes of sheaves
ϕ• : A• → B• which commutes with the differentials

ϕi+1 ◦ di
A• = di

B• ◦ ϕi

is called a quasi-isomorphism if it induces isomorphisms Hi (ϕ• ) : Hi (A• ) →
Hi (B• ) of the cohomology sheaves of the complexes.

Definition 5.3.5 ([49, IV, Sect. 3]) Twomorphisms of complexes ϕ• : A• → B• and
ψ • : A• → B• are homotopic if there exists a collection {hi : Ai → Bi−1}, i ∈ Z

of sheaf maps, called a homotopy, so that:

di−1
B• ◦ hi + hi+1 ◦ di

A• = φi − ψ i

for all i ∈ Z.

Definition 5.3.6 Let K (X) denote the category whose objects A• are topologi-
cally constructible bounded complexes of sheaves on X and whose morphisms
ϕ• : A• → B• are homotopy classes of sheaf maps which commute with the dif-
ferentials (Definition 5.3.5).

Definition 5.3.7 ([86, II, Sect. 7.1], [49, V, Sect. 1], [17, Sect. 1], [36, II, Sect. 9])
A sheaf I is injective if, for any sheaf monomorphism F → G and any sheaf map
F → I there exists an extension G → I.

Coefficients are important in the definition: the sheaf of integers Z on a point is
fine (see Definition 5.3.10) but not injective, because Z is not injective over itself.

If ϕ• : A• → I• is a quasi-isomorphism of complex of sheaves on X and if each
I• is injective, then I• is called an injective resolution of A• .

Main properties of injective resolutions are (see [17, Sect. 1], [36, II, Sect. 9], [86,
II Sect. 7.1], [89, Sect. 4.2], and [94, Sect. 1.5]):
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Proposition 5.3.8 1. Ifϕ• : A• → I• is a quasi-isomorphism of complex of sheaves
on X and I• is an injective resolution of A• , then there exists a morphism
ψ • : I• → A• that is a homotopy inverse to ϕ• . Therefore ϕ• is invertible in
the category K (X).

2. Injective resolutions exist for any complex of sheaves of R-modules and are
uniquely determined up to chain homotopy.

3. Every bounded complex of sheaves admits a canonical bounded injective resolu-
tion (see given references).

5.3.5 Hypercohomology

The p-th hypercohomology group IHp(X;A• ) of a complex of sheaves A• is the
p-th cohomology group of the cochain complex

. . . → �(X; I p−1) → �(X; I p) → �(X; I p+1) → . . . ,

where I• is the canonical injective resolution of A• ([49, XVII, Sect. 2], [94, 1.6]).
Considering sections with supports in a family of supports , one defines

hypercohomology IHp
(X;A• ) with support in the family  as

IHp
(X;A•

) = H p(�(X; I•
)).

Aquasi-isomorphism induces an isomorphismonhypercohomology. In particular,
the hypercohomology groups are naturally isomorphic to the cohomology group of
the single complex which is associated to the double complex C p(X;Aq) (see [86,
II Sect. 4.6]).

Definition 5.3.9 ([86, II, Sect. 3.5 and 3.6]) A sheafA is called soft (“faisceau mou”
in french) if any section over any closed subset of X can be extended to a global
section, i.e. the restriction maps

�(U,A) → �(B,A)

are surjective for all open U ⊂ X and closed subset B ⊂ U .

Definition 5.3.10 ([86, II, Sect. 3.7]) A sheafA over a paracompact Hausdorff space
X is called fine (“faisceau fin” in french) if for every locally finite open cover {Ui }
of X there are endomorphisms ϕi of A such that:

• for every i , ϕi is zero outside a closed subset contained in Ui ,
• one has

∑
i ϕi = id.

Here, locally finite means that every point x ∈ X admits an open neighborhood
which meets a finite number of elements Ui .

Every fine sheaf is soft, but the converse is not true [86, II, Sect. 3.7].
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Proposition 5.3.11 ([18, II, Sect. 5], [86]) Let X be a paracompact topological
space, if the sheaf complex A• consists of injective, fine or soft sheaves, then

IHi (X;A•
) = Hi (�(X;A•

)). (5.7)

Examples of Hypercohomology

Let X be a n-dimensional P L-space, the following examples provide particular cases
of hypercohomology groups which will be useful for considering the properties of
intersection homology. Coefficients are either a R-module G or a sheaf of local
coefficients L.

Example 5.3.12 (a) Hypercohomology of the sheaf complex of P L-chains with
closed supports.
The complex of sheaves of P L-chains C• is a complex of fine sheaves on X (see
[18, Sect. 5, Note]). Hence the complex C• satisfies Proposition 5.3.11. One has:

IH−i (X; C•
) ∼= H−i (�(X; C•

)) = Hi (X).

For every family of supports  one has:

IH−i
 (X; C•

) = H
i (X). (5.8)

(b) Hypercohomology of the constant sheaf.
Consider the constant sheaf RX on X , viewed as a complex concentrated in
degree 0, then,

IHi (X; RX ) = Hi (X)

is cohomology of X with closed supports. For every family of supports  one
has:

IHi
(X; RX ) = Hi

(X). (5.9)

5.3.6 The (Constructible) Derived Category

The derived category was defined by Verdier [183, 184]. An object in the derived
category is a complex of sheaves. In this category, new morphisms are added so that
every quasi-isomorphism has an inverse and, consequently, every quasi-isomorphism
becomes an isomorphism in the derived category (Property 5.3.13). Verdier found
he was able to prove his duality theorems only for complexes of sheaves A• whose
cohomology sheaves are constructible. Since then, it has become common to focus
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on the constructible derived category, in which each object is a complex of sheaves
with constructible cohomology.

The reader is assumed to be familiar with the notions of categories and func-
tors [100, Chapitre 1]. Text books which provide useful notions are, for instance,
Kashiwara-Shapira [112]) or Gelfand-Manin [85]. Classsical references for this
section are [103, 183], [184, Chap.8]. The useful tools are well presented in [94,
Sects. 1.8–1.15] and the reader will find there all necessary tools and material.

For the convenience of the reader, as far as possible, conventions and notations
of main references [92, 94] and [18] are used. However in the case of possible doubt
the notations of [94] are privileged (see Remark 5.4.10).

The Derived Category

Let A and B be sheaves on X, let Hom(A,B) denote the abelian group of all sheaf
maps A → B. Let Hom(A,B) be the sheaf whose sections over an open set U are
the sections �(U ;Hom(A,B)) = Hom(A|U ,B|U ). If A• and B• are complexes of
sheaves,Hom(A• ,B• ) is the single complex of sheaves which is obtained from the
double complex Hom p,q(A• ,B• ) = Hom(Ap,Bq).

The derived category Db(X) was introduced by J.L. Verdier by localization of
K (X). The objects in Db(X) are still topologically constructible bounded complexes
of sheaves on X but morphisms A• → B• are defined as equivalence class of dia-
grams of chain maps:

A• E •q.i. B•

where “q.i.” means a quasi-isomorphism. Two such diagrams

A• E •
1

q.i. B• , A• E •
2

q.i. B•

are equivalent is there is a commutative diagram in K (X) (meaning a diagram that
commutes up to homotopy).

E •
1

q.i.

A• E •
3

q.i. B• .

E •
2

q.i.

Property 5.3.13 The derived category converts quasi-isomorphisms to isomor-
phisms: If ϕ• : A• → B• is a quasi-isomorphism (that is, a morphism of bounded
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complexes of sheaves whose induced map on cohomology is an isomorphism) then
it has an inverse in the derived category Db(X).

This because ϕ• may be composed with an injective resolution ψ • : B• → I• . Then
Proposition 5.3.8 (1) implies that ψ • ◦ ϕ• has a homotopy inverse θ • : I• → A•

which is therefore also a quasi-isomorphism, so θ • ◦ ψ • is an inverse to ϕ• in the
derived category.

5.3.7 Derived Functors

An exact functor F : Sh(X) → Sh(Y ) gives rise to a functor Db(X) → Db(Y ) on
derived categories. In this case, the homotopy category functor F : K (X) → K (Y )

transforms quasi-isomorphisms into quasi-isomorphisms. However important func-
tors such as Hom(A, •), A ⊗ •, �(X, •), direct image f∗, are not exact. The way
to extend such functors in Db is the Verdier’s notion of derived functor. That will
be very useful to express properties of intersection homology, in particular using
formulae (5.12) and (5.13).

A covariant additive functor T from complexes of sheaves to an abelian category
gives rise to its right derived functor RT defined on Db(X) by defining

RT (A•
) = T (I•

).

where I• is the canonical injective resolution of A• (see references in (5.3.5) in
particular [49, Chap. V] and [94, Sect. 1.5]).

Classical Derived Functors

(a) The functor Hom(A, •) → K (X) has a (right) derived functor RHom• [49,
Ch. VI]. Let A• and B• be bounded complexes of sheaves on X . To define
RHom•

(A• ,B• ), consider Hom•
(A• ,B• ) as a functor of B• , and take its right

derived functor. The functor

A• → RHom•
(A•

,B•
)

is a functor from Db(X) into itself [18, V.5.17].

(b) The (left) derived tensor product functor A• L⊗ • : Db(X) → Db(X) is defined
in a similar way to the right derived functors by the formula

A• L⊗ B• = A• ⊗J •
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where J • → B• is a resolution of B• whose stalks are flat R-modules (see [49, Ch.

VI], [168]). If R is a field then A• L⊗ B• = A• ⊗B• .
If A• and B• ∈ Db(X) are constructible with respect to a given stratification of

X then so are RHom•
(A• ,B• ) and A• L⊗ B• ([94, 1.9]).

(c) By definition, the i-th hypercohomology group IHi (X;A• ) of A• ∈ Db(X) is
the i-th derived functor of the global section functor �(X, •).

Functors associated to a map

Consider now a continuous map f : X → Y between locally compact topological
spaces. Complete definitions and properties of the following functors are presented
in the Grivel chapter in [18, Chapter VI].

(d) The functor direct image f∗ : Sh(X) → Sh(Y ).
If A is a sheaf on X , the presheaf defined by

�(V, f∗A) = �( f −1(V );A) for all V open in Y

is a sheaf on Y denoted by f∗A. If j : X ↪→ Y is a closed immersion and A a sheaf
on X , then j∗A = AY is the extension of the sheafA by zero. One defines the derived
functors R f∗ : Db(X) → Db(Y ) as in the definition.

(e) The functor f! : Sh(X) → Sh(Y ) direct image with proper supports.
If V ⊂ Y is open, the family of subsets C ⊂ X which are closed in f −1(V ) and

such that the map f |C : C → V is proper is a family of supports in f −1(V ) denoted
by V . If A is a sheaf on X , the presheaf defined by

�(V ; f!A) = �V ( f −1(V );A) for all V open in Y

is a sheaf on Y [18, VI, 2.2].
If Y is a point, then f!A = �c(X;A), where c denotes the family of compact

subsets in X . If j : X ↪→ Y is an open (or closed) immersion, then j!A = AY and
the functor j! is exact, one has R j!A• = j!A• . Finally, the functor f! is exact in the
subcategory of injective sheaves on X .

The right derived functor of f! denoted R f! : Db(X) → Db(Y ) has stalks

H•
(R f!A•

)y
∼= IH•

c( f −1(y);A•
) ∀y ∈ Y.

If f : X → Y is stratified with respect of stratifications of X and Y ([179,
Sect. 4.4]), then R f∗A• and R f!A• are constructible with respect to the stratification
of Y . This is a consequence of the topological locally trivial nature of a stratification,
see (5.3).

(f) The functor pull-back f ∗ : Sh(Y ) → Sh(X).
The functor f∗ : Sh(X) → Sh(Y ) admits a left adjoint, denoted by f ∗ : Sh(Y ) →

Sh(X). There is an isomorphism
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HomSh(X)( f ∗B,A) ∼= HomSh(Y )(B, f∗A). (5.10)

for A ∈ Sh(X) and B ∈ Sh(Y ). The functor f ∗ is exact and R f ∗B = f ∗B for all
B ∈ Sh(Y ).

For every point x ∈ X and B ∈ Sh(Y ), there is an isomorphism at the level of
stalks

( f ∗B)x = B f (x) ∀x ∈ X.

For an inclusion j : X ↪→ Y , then j∗B = B|X is the restriction of the sheaf B
to X .

Denote by p : X → {pt} the map to a point. The constant sheaf RX is equal to

RX = p∗Rpt. (5.11)

(g) Unlike the adjonction (5.10) between the functors f∗ and f ∗, in general there
is no functor f ! : Sh(Y ) → Sh(X) with a sheaf isomorphism Hom( f!A,B) ∼=
f∗Hom(A, f !B).
The functor f ! : Db(Y ) −→ Db(X) is defined at the level of derived categories

(see [94, 1.12] and [18, V, 5.12]). If I• is a complex of injective sheaves on Y ,
then f !(I• ) is defined to be the sheaf associated to the presheaf whose sections over
an open set U ⊂ X are �(U ; f !I• ) = Hom• ( f!K•

U , I• ) where K•
U is the canonical

injective resolution of the constant sheaf RU .

Example 5.3.14 • For an open immersion j : X ↪→ Y , one has j ! = j∗.
• For a closed immersion j : X ↪→ Y , one has

j !(G•
)(U ) = �(X)(V ;G•

)

where V is an open subset in Y such thatU = V ∩ X Here (X) denotes the family
of supports whose elements are closed subsets contained in X .

The (local) Verdier duality theorem ([94, 1.12]) is a canonical isomorphism in
Db(Y ),

R f∗ RHom•
(A•

, f !B•
) ∼= RHom•

(R f!A•
,B•

)

for any A• ∈ Db(X) and B• ∈ Db(Y ).

5.3.8 Dualizing Complex ([94, 1.12], [18, V, 7.1])

Borel and Moore first defined the dualD(A• ) of a complex of sheavesA• [17], and
they showed that for any open set U ⊂ X the hypercohomology groups IHi

c(U ;A• )

and IHi (U ;D(A• )) are dual. Here, IHi
c denotes the hypercohomology with compact
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supports, i.e., Ri�c. This property characterizes D(A• ) up to quasi-isomorphism. It
implies, for example, that if X is compact and R is a field, then

IHi (X;A•
) = Hom( IH−i (X;D(A•

)), R).

On a P L-manifold, Borel and Moore considered the dual of the constant sheaf,
and showed that this is the Borel-Moore sheaf of chains C• (cf. Definition5.3.3).

Later, Verdier [183, 184] defined a complex of sheaves D•
X , the dualizing complex

such that
D(A•

) ∼= RHom•
(A•

,D•
X )

for any bounded complex A• . Verdier identified D•
X = D(RX ) and showed that, in

Db, the sheaf C• is isomorphic to the dualizing sheaf. Therefore, the Borel-Moore
dual ofA• may be identified withHom(A• , C• ). While defining the dualizing sheaf,
Verdier provided the good language to express the duality and showed an isomor-
phism in the derived category between A• and the double dual of A• , i.e. if A• is a
bounded topologically constructible complex of sheaves on X , then there is a natural
isomorphism in Db(X)

A• ∼= D(D(A•
)).

If B• ∼= D(A• ), then the corresponding pairing

B• L⊗ A• → D•
X

is called a Verdier dual pairing.
The associated cohomology sheaves of D•

X are nonzero in negative degree only,
with stalksH−i (D•

X )x = Hi (X X − {x}; R). If X is an n-dimensional P L-manifold,
the shifted complexD•

X [−n] is naturally isomorphic to (in fact, an injective resolution
of) the orientation sheaf of X (see Example 5.3.1 and [94, Sect. 1.12], also [18, V,
Sect. 7.3] but taking care of notations cf. Remark 5.4.10).

The hypercohomology groups IH−i (X; D•
X ) equal the ordinary homology groups

with closed support Hi (X; R) and IH−i
 (X; D•

X ) = H
i (X; R) for any family of

supports  on X [18, V,7.1-2-3].
Consider the projection p : X → {pt} and the sheaf Rpt. The dualizing sheaf

satisfies [18, V,7.18]:
D•

X
∼= p!Rpt.

Hence for every map f : X → Y one has a canonical isomorphism D•
X

∼= f !D•
Y

(compare with (5.11)).
Let f : X → Y be a continuousmapbetween topologicalmanifolds,A• ∈ Db(X)

and B• ∈ Db(Y ). The functors satisfy the following duality formulae

f !B• ∼= DX ( f ∗DY (B•
))

R f!A• ∼= DY (R f∗DX (A•
)).
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If A• is a topologically constructible complex of sheaves on X , fx : {x} → X is
the inclusion of a point, and Ux is a distinguished neighborhood of x (see 5.3), then
[94, p.91] (see also [18, V, Sect. 4.5])

H j ( f ∗
x A•

) ∼= IH j (Ux ;A•
) (5.12)

H j ( f !
xA•

) ∼= IH j
c (Ux ;A•

). (5.13)

These groups are respectively called the stalk homology and the costalk homology
of A• at x .

The following geometric interpretations are taken from [94, Sect. 4, p. 106] and
will be useful to interpreting the Theorem 5.4.9.

If a class ξ ∈ IH j (X;A• ) does not vanish under the homomorphism

IH j (X;A•
) → H j ( f ∗

x A•
)

then any cycle representative of ξ must contain the point x . Thus, H j ( f ∗
x A• ) repre-

sents local classes which “cannot be pulled away from the point x”. The set

{x ∈ X |H j ( f ∗
x A•

) �= 0} is called the local j-support o f the complex A•
.

Similarly, a class η ∈ IH j (X;A• ) is in the image of the homomorphism

H j ( f !
xA•

) → IH j (X;A•
).

if some cycle representative of η is completely contained in a neighborhood of x .
Thus Hi ( f !

xA• ) represents local classes which are “supported near x”. The set

{x ∈ X |H j ( f !
xA•

) �= 0} is called the local j-cosupport o f the complex A•
.

5.4 Intersection Homology—Geometric and Sheaf
Definitions

In order to recover duality properties for singular varieties, the idea of intersection
homology, due to Mark Goresky and Robert MacPherson, is to restrict the con-
sideration to cycles which meet the singular part of the variety with a “controlled”
dimension. That makes sense if the variety is endowed with a suitable stratification.
The considered singular varieties are pseudomanifolds.

As observed by Goresky and MacPherson [92], in a P L-pseudomanifold of
dimension n, if two cycles of respective dimensions i and j are in general posi-
tion, then their intersection can be given canonically the structure of an i + j − n
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chain. However, their intersection is (in general) no longer a cycle and Theorems
5.2.4 and 5.2.5 do not hold. That is the motivation for the following definitions.

The first definition has been given by Goresky and MacPherson in the framework
of stratified compact oriented P L-pseudomanifolds (see [91, 92]) and also [18,
Chaps. I–IV]). The compactness is not required here and the considered chains are
the P L-geometric chains (Sect. 5.2.4). The second definition, using sheaves and, in
particular the Deligne sheaf complex, has been given by the same authors in [94]
(see also [18, Chaps. V–IX]).

5.4.1 The Definition for PL-Stratified Pseudomanifolds
([91], 53)

Let X be a P L-stratified pseudomanifold. If a chain ξ meets transversaly an element
Xn−α of the P L-filtration, then one has

dim(|ξ | ∩ Xn−α) = i − α.

The allowed chains and cycles will be those which meet each element Xn−α of
the singular part with a controlled and fixed transversality defect pα . This defect is
called the perversity (in French: Perversité, in German: Toleranz).

A perversity, also called G M-perversity for Goresky-MacPherson perversity, is
an integer value function

p̄ : [0, dim X ] ∩ Z → N, pα := p̄(α)

such that p0 = p1 = p2 = 0 and

pα ≤ pα+1 ≤ pα + 1 for α ≥ 2. (5.14)

This condition is the one given originally by Goresky and MacPherson in order
to ensure the main properties of the theory. More general perversities have been
considered by various authors (see [128] and Sect. 5.6.4) providing other aspects for
the theory (Fig. 5.3).

Example 5.4.1 Examples of perversities are

• the zero perversity 0̄ = (0, 0, . . . , 0),
• the maximal (or top) perversity t̄ = (0, 0, 0, 1, 2, . . . , n − 2),
• for n even, n ≥ 4, the upper middle n̄ = (0, 0, 0, 1, 1, 2, 2, . . . , n

2 − 1, n
2 − 1) and

the lower middle perversities m̄ = (0, 0, 0, 0, 1, 1, . . . , n
2 − 2, n

2 − 1).

Let p̄ = (p0, p1, p2, . . . , pn) be a perversity, the complementary perversity q̄ =
(q0, q1, q2, . . . , qn) is defined by pα + qα = tα for all α ≥ 2.
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Fig. 5.3 The perversity p̄ =
(0, 0, 0, 1, 1, 2, 3, 3, 3, 4)

Given a stratification (5.2) of a n-dimensional pseudomanifold X , Goresky and
MacPherson [92, Sect. 1.3] call ( p̄, i)-allowable an i-chain ξ ∈ Ci (X; G) such that

dim(|ξ | ∩ Xn−α) ≤ i − α + pα ∀α ≥ 0

The condition means that the perversity is the maximum admissible defect of
transversality. The boundary of a p̄-allowable chain is not necessarily p̄-allowable
(easy examples). In order to define a complex of chains, one has to set:

Definition 5.4.2 The intersection chains I C p̄
i (X; G) is the subset of Ci (X; G) con-

sisting of chains ξ such that ξ and ∂ξ are p̄-allowable, that is

I C p̄
i (X; G) =

⎧
⎨

⎩
ξ ∈ Ci (X; G)

∣
∣
∣
∣

dim(|ξ | ∩ Xn−α) ≤ i − α + pα
∀α ≥ 2

dim(|∂ξ | ∩ Xn−α) ≤ (i − 1) − α + pα

⎫
⎬

⎭

Using the usual boundary of chains, the obtained chain complex is denoted by
(I C p̄

∗ (X; G), ∂∗).

Definition 5.4.3 The intersection homology groups I H p̄
∗ (X; G) are the homology

groups of the complex (I C p̄
∗ (X; G), ∂∗).

Using, in the definition, the subcomplex Cc∗(X; G) of chains with compact
supports (see Sect. 5.2.4) provides the intersection homology groups with compact
supports, denoted by I H p̄,c

∗ (X; G). Notice that on the one hand, the intersection
homology defined in [92] agrees with the intersection homology with compact sup-
ports as defined in [94]. On the other hand, the intersection homology defined in [94]
agrees with the Borel-Moore intersection homology (with closed supports) of [92].

5.4.2 Definition with Local Systems

To make the construction of homology with coefficients in a local system, work in
intersection homology, one only needs the local system L to be defined on the dense
open part X − � of X .
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LetL be a local coefficient system of R-modules on X − �. Given an open subset
U ⊂ X and a locally finite triangulation K of U , since L may not be defined on all
of U , it is impossible to define a group C K

i (U,L) of i-chains ξ with coefficients in
L. Nevertheless, [94, 2.2] or [89, 9.4] observes that, for any perversity p̄, and for any
( p̄, i)-allowable chain ξ , if σ is any i-simplex with nonzero coefficient in ξ , both the
interior of σ and the interiors of all the i − 1 dimensional faces of σ lie entirely in
X − � by the allowability conditions. That justifies the definition:

I C p̄,K
i (U ;L) =

⎧
⎨

⎩
ξ ∈ C K

i (U ;L)
∣
∣
∣
∣

dim(|ξ | ∩ U ∩ Xn−α) ≤ i − α + pα
∀α ≥ 0

dim(|∂ξ | ∩ U ∩ Xn−α) ≤ (i − 1) − α + pα

⎫
⎬

⎭

The map I C p̄,K
i (U ;L) → I C p̄,K

i−1 (U ;L) is well defined and the intersection homol-

ogy groups I H p̄
∗ (X;L) are defined as in Sect. 5.2.4 (with U = X).

Many examples of computation of intersection homology groups can be found
for instance in the Goresky-MacPherson’s chapter [18, Chap. III] and in [27, 63,
71, 128]. See also Example 5.5.10. Here are two elementary examples, where the
coefficient sheaf L is the constant sheaf ZX .

Example 5.4.4 (The pinched torus) (see Fig. 5.1) The singular set is a point: the
pinched point {0}. The considered stratification is given by the filtration

X ⊃ � = {0} ⊃ ∅

The only possible perversity is the perversity 0̄. The 1-dimensional intersection
homology of the pinched torus is zero, while its 1-dimensional homology does not
vanish.

I H 0̄
0 (X) = Z[pt] I H 0̄

1 (X) = 0 I H 0̄
2 (X) = Z[X ].

(compare with Example5.2.3).

Example 5.4.5 (The double cone) Though it is similar to the previous example and
it is not a connected pseudomanifold, the example of the double cone is instructive.
One may compare with the example of the suspension of two circles [128].

The double cone X is obtained by pinching the cylinder S1 × R at level {0} into a
point {a}. The line � (see Fig. 5.4) goes through the singular point {a} and C1 and C2

are the two 2-dimensional components of the double cone. Poincaré duality fails for
the double cone X . The only possible perversity is the perversity 0̄. Two points x1
and x2 contained in different connected components of X\{a} are not homologous,
in intersection homology, as any 1-chain linking these two points contain the vertex
{a} and is not permitted. Poincaré duality is recovered with intersection homology
(see 5.23) (Table5.1).
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Fig. 5.4 The double cone

Table 5.1 Homology and intersection homology of the (double) cone

i Hi (X) Hc
i (X) I Hi (X) I Hc

i (X)

0 0 Z{pt} 0 Z{x1} ⊕ Z{x2}
1 Z[�] 0 0 0

2 Z[C1] ⊕ Z[C2] 0 Z[C1] ⊕ Z[C2] 0

5.4.3 Witt Spaces

Formany applications, the class of spaceswith evendimension strata is too restrictive.
The largest class ofWitt spaces still enjoys Poincaré duality of themiddle intersection
homology, but allows for some strata of odd dimension (see for instance the following
references (5.26), (5.5.3), (5.5.3), (5.5.46)).

Definition 5.4.6 A stratified pseudomanifold X is a R-Witt space ([94, Sect. 5.6.1]
[169]) if, for each stratum of odd codimension α = 2k + 1, then I H m̄

k (Lα; R) = 0,
where Lα is the link of the stratum (5.3) For such a space, the intersection homology
groups of the two middle perversities coincide (see Example 5.4.1):

I H m̄
∗ (X; R) ∼= I H n̄

∗ (X; R).

5.4.4 The Intersection Homology Sheaf Complex

The intersection homology sheaf complex is defined in the context of P L-pseudo-
manifolds. In the following section, the Deligne complex will be defined in the more
general context of topological pseudomanifolds. When both defined, the intersec-
tion homology sheaf complex and the Deligne complex are quasi-isomorphic and
their hypercohomology computes intersection homology. That is made precise in the
following sections.

Definition 5.4.7 Let IC−i
p̄ be the subsheaf of C−i (see Example5.3.2) whose

sections over an open subset U ⊂ X consist of all locally finite P L-chains ξ ∈
�(U ; C−i ) such that |ξ | is ( p̄, i)-allowable and |∂ξ | is ( p̄, i − 1)-allowable with
respect to the filtration of U

U ⊃ U ∩ Xn−2 ⊃ · · · ⊃ U ∩ X1 ⊃ U ∩ X0.
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That is

�(U ; IC−i
p̄ ) =

⎧
⎨

⎩
ξ ∈ �(U ; C−i )

∣
∣
∣
∣

dim(|ξ | ∩ U ∩ Xn−α) ≤ i − α + pα
∀α ≥ 0

dim(|∂ξ | ∩ U ∩ Xn−α) ≤ (i − 1) − α + pα

⎫
⎬

⎭

The sheaf IC−i
p̄ is well defined and �(U ; IC−i

p̄ ) = I C p̄
i (U ). If V ⊂ U are two

open subsets in X , then for every perversity p̄, there are natural restriction maps
ρV U : I C p̄

i (U ) → I C p̄
i (V ) as in (5.6) (see [94, Sect. 2.1]).

Using the restriction of the usual boundary, one obtains a complex of sheaves IC •
p̄

on X . This complex is soft [18, II, Sect. 5] so that the complex satisfies Proposition
5.3.11. The hypercohomology groups IH−i (X; IC •

p̄) are canonically isomorphic to

the intersection homology groups I H p̄
i (X; R) defined in [92, Sect. 1.3] for R = Z.

Also, one has
IH−i

c (X; IC•
p̄) = I H p̄,c

i (X; R),

intersection homology with compact supports, and more generally

IH−i
 (X; IC•

p̄) = I H p̄,
i (X; R) (5.15)

for any family of supports  on X (see [18, II, 5]).

The associated cohomology sheaves H−i (IC •
p̄) are called the local intersection

homology sheaf. The stalk at x ∈ X of this sheaf is I H p̄
i (X, X − {x}; R).

Definition with Local Systems

Considering local systems provide many useful examples as well as powerful appli-
cations.

Let L be a local coefficient system of R-modules on X − �. Given an open
subset U ⊂ X and a locally finite triangulation K of U , the group I C p̄,K

i (U ;L) is
well defined (see Sect. 5.4.2) as well as maps I C p̄,K

i (U ;L) → I C p̄,K
i−1 (U ;L).

Definition 5.4.8 ([94, Sect. 2.2], [89, 9.4]) Let X be a P L-stratified
P L-pseudomanifold and p̄ a perversity, the sheaf complex IC•

p̄(L) of intersection
chains with local coefficients in L is defined by

�(U, IC−i
p̄ (L)) = lim

K
I C p̄,K

i (U ;L)

where the limit is taken over locally finite compatible triangulations of U . The inter-
section homology groups of X with coefficients in L, denoted I H p̄

i (X;L), are the
hypercohomology groups IH−i (X; IC•

p̄(L)).
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Combining formula (5.15) with (5.12) and (5.13), one obtains the following the-
orem:

Theorem 5.4.9 Let fx : {x} → X be the inclusion of a point x in X, Ux a distin-
guished neighborhood of x and let IC p̄,•

X (L) be the sheaf complex of intersection
chains, one has:

H j ( f ∗
x IC p̄,•

X (L)) ∼= IH j (Ux ; IC p̄,•
X (L)) = I H p̄

− j (Ux ;L) (5.16)

H j ( f !
xIC p̄,•

X (L)) ∼= IH j
c (Ux ; IC p̄,•

X (L)) = I H p̄,c
− j (Ux ;L). (5.17)

Remark 5.4.10 An important remark is that the index for the dimension of the
homology and intersection homology groups differs according to the authors. That
can be considered as unfortunate but shows the diversity of the theory and diversity
of applications.

In [94, Sect. 2.3] Goresky and MacPherson explicit four different indices in the
literature and the reader has to take care of the convention used in the concerning
article.

(a) Homology subscripts, as in [92] or [63]: a subscript k indicates chains of dimen-
sion k.

(b) Homology superscripts, as in [94] and this survey: a superscript −k indicates
chains of dimension k.

(c) Cohomology superscripts, as in [18, 19, 84]: a superscript j indicates chains of
dimension n − j .

(d) The Beilinson-Bernstein-Deligne-Gabber scheme [10]: a superscript j indicates
chains of codimension n

2 + j .

For an n–dimensional compact oriented pseudomanifold these schemes compare
as follows: Hk(X) in scheme (a) is isomorphic to H−k(X) in scheme (b), H n−k(X)

in scheme (c), and H
n
2 −k(X) in scheme (d).

5.4.5 The Deligne Construction

In a conversation at the IHES, in the fall of 1976, R. MacPherson explained about
intersection homology to P. Deligne. P. Deligne had been thinking about variation
of Hodge structures on a smooth algebraic curve where truncation arises naturally.
When R. MacPherson explained the intersection homology of a cone, it looked like
this truncation so P. Deligne conjectured that perhaps intersection homology might
be explained by repeated truncation. His conjecture was proven by Goresky and
MacPherson [94], who pointed out that this construction could be used to prove
the topological invariance of intersection homology, and to give a definition that
works in characteristic p. In the meantime, on 20 April 1979, P. Deligne had written
to D. Kazhdan and G. Lusztig about the theory, describing his interpretation using
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truncation, and conjecturing that intersection homology might be pure [94, Sect. 3]
or [18, V, Sect. 2.2].

The Deligne idea is to start with the constant sheaf (or a local system of coef-
ficients) on the non-singular part and extending stratum by stratum by alternate
operations of “pushing” and “truncating”. While requiring technical tools, the idea
of Deligne construction is relatively simple. One starts with (all) chains on the reg-
ular stratum, then pushing the complex on the “next” stratum, and then “cutting”
(truncating) according to the perversity in order to retain only allowed chains. One
continues the process by induction on decreasing dimension of the strata.

Therefore, the Deligne construction uses two tools: the “pushing” attaching prop-
erty and the “truncating” operation.

The Attaching Map

Let Y be a closed subspace of X and i the inclusion of U = X − Y into X . For a
sheaf A• , the composition of the natural morphisms

A• → i∗i∗A• → Ri∗i∗A•

is the attaching map.
Consider a stratification (5.2)

X = Xn ⊃ Xn−1 = Xn−2 ⊃ · · · ⊃ X1 ⊃ X0 ⊃ X−1 = ∅

and, denoting by Uk = X − Xn−k the complementary open subsets, consider the
filtration

U1 = U2 ⊂ U3 ⊂ · · · ⊂ Un+1 = X.

One has U2 = X − �. Denote by ik : Uk ↪→ Uk+1 the inclusion. Then

A•
k = A• |Uk = i∗

kA• |Uk+1 .

The following result is one of the main ingredients of the sheaf axiomatic con-
struction of intersection homology (see Sect. 5.4.7).

Theorem 5.4.11 ([94, Proposition 2.5], [18, II, Theorem 6.1]) The natural homo-
morphism

IC• |Uk+1 → Rik∗IC• |Uk = Rik∗i∗
kIC• |Uk+1

induces an isomorphism

H j (ICn−• )x → H j (Rik∗ICn−• )x for x ∈ Uk+1 − Uk

for all j ≤ p(k) − n.
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The Deligne Truncation Functor

If k ∈ Z, the truncation of a complex of sheaves A• on X is a new complex ([94,
1.14], [18, V,1.10]):

(τ≤kA•
)i =

⎧
⎪⎨

⎪⎩

Ai if i < k

ker di if i = k

0 if i > k.

The functor τ≤k determine a truncation functor on the derived category Db(X). See
[94, 1.14] for more detailed properties.

The Deligne Sheaf [94, Sect. 3.1], [18, V, Sect. 2.2]

In this section X is a topological pseudomanifold and L denotes a system of local
coefficients on the regular part X − �.

Let p̄ a fixed perversity, the Deligne complex of sheaves (or Deligne sheaf)
P

•
k(L) ∈ Db(Uk) is defined inductively by

P
•
2(L) = L[n]

P
•
k+1(L) = τ≤p(k)−n Rik∗P

•
k(L) for k ≥ 2.

The resulting complexP• (L) = P
•
n+1(L) is called theDeligne intersection homology

chain complex with coeffcients in L.
Startingwith a regularNoetherian ring R of finiteKrull dimension and the constant

sheaf R on X − � instead of L, i.e. starting with

P
•
2 = D•

U2
∼= RU2 [n]

the complex P
• = P

•
n+1 is written

P
• = τ≤p(n)−n Rin∗ · · · τ≤p(3)−n Ri3∗τ≤p(2)−n Ri2∗RX−�[n].

5.4.6 Local Calculus and Consequences

The local calculus, and precisely the computation in formulae (5.18) and (5.19)
below, are the starting points for the characterization of intersection homology.

Let x ∈ X be a point in the stratum Sn−α with codimension α in X . Let U
be a neighborhood of x homeomorphic to B

n−α × c̊(Lx ), where dim Lx = α − 1
(see 5.3). The following result is proved in [18, II, Sect. 3–4] in the context of P L-
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pseudomanifolds and in [94, Sect. 2.4], [93, 1.7] in the context of topological pseu-
domanifolds.

Proposition 5.4.12 Let X be a locally compact stratified pseudomanifold and p̄ any
perversity. Let x be a point in a stratum with codimension α in X and let U be a
neighborhood of x homeomorphic to B

n−α × c̊(Lx), then one has:

I H p̄
i (U ) ∼= I H p̄

i−(n−α)(c̊(Lx )) ∼=

⎧
⎪⎨

⎪⎩

0 i < n − pα

I H p̄
i−(n−α)−1(Lx ) i ≥ n − pα.

(5.18)

I H p̄,c
i (U ) ∼= I H p̄,c

i (c̊(Lx )) ∼=

⎧
⎪⎨

⎪⎩

I H p̄
i (Lx ) i < α − pα − 1

0 i ≥ α − pα − 1

(5.19)

The link Lx is compact and its homologygroups,with compact and closed supports
coincide.

Here is an useful and important notation for the sequel:

Denoting by p̄ a perversity and q̄ the complementary perversity, one recalls that
pk + qk = k − 2 for all k ≥ 2. If j ∈ N, one defines the inverse perversity function

p−1( j) = min{ k | pk ≥ j}

and p−1( j) = ∞ if j > pn (Fig. 5.5).
Using the “inverse perversity function”; the properties (5.18) and (5.19) arewritten

dim{x ∈ X | I H p̄
i (Ux ) �= 0} ≤ n − p−1(n − i) for i ≤ n − 1,

dim{x ∈ X | I H c, p̄
i (Ux ) �= 0} ≤ n − q−1(i) for i ≥ 1,

Fig. 5.5 An example of the
function p−1 (for the
perversity of Fig. 4) One has
p−1(1) = 3, p−1(2) = 5,
p−1(3) = 6, p−1(4) = 9,
p−1(5) = +∞
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and in terms of hypercohomology (see (5.15) and with j = −i)

dim{x ∈ X | IH j (Ux ; IC p̄,•
X ) �= 0} ≤ n − p−1( j + n) for j ≥ 1 − n. (5.20)

dim{x ∈ X | IH j
c (Ux ; IC p̄,•

X ) �= 0} ≤ n − q−1(− j). for j ≤ −1. (5.21)

As observed by Goresky and MacPherson [93, 1.8, Theorem] the results of this
section are valid for intersection homology with coefficients in a local system.

5.4.7 Characterizations of the Intersection Complex

In the introduction of their Sect. 3 [94], Goresky and MacPherson provide the moti-
vation for the characterizations of the intersection complex, in particular topological
invariance of intersection homology. The theorem [94, Theorem 3.5] shows that if X
has a P L structure and is stratified by a P L stratification and if p̄ denotes a fixed per-
versity then the Deligne complex P

• (L) and the complex of P L intersection chains
IC p̄,•

X (L) are canonically isomorphic in Db(X)whenever they are both defined. That
justifies the use of the notation IC p̄,•

X (L) to denote this isomorphism class of objects,
for any topological pseudomanifold.

In this section, X is a topological pseudomanifold. The first characterization of the
intersection complex, as a system of axioms called [AX1] p̄, is given in [94, Sect. 3.3]
and [18, V, Sect. 4]. In [18, V, Sect. 4.20], Borel discusses some points concerning
the “differences” between [18, 94], in particular the usefulness of the hypothesis
“topologically constructible”.

If S denotes a filtration (5.2) of the space X , let Uk = X − Xn−k denote the
complementary increasing filtration by open sets. There are inclusions

ik : Uk ↪→ Uk+1 and jk : Sn−k = (Uk+1 − Uk) ↪→ Uk+1.

Definition 5.4.13 ([94, Sect. 3.3]) Let p̄ be a perversity and L is a local system
defined on the regular part of X . A complex of sheaves A• on X satisfies axioms
[AX1] p̄(L) if it satisfies:
(1a)A• is constructible with respect to the given stratification andA• |U2 is quasi-
isomorphic to L[n].
(1b) Hi (A• ) = 0 for i < −n.
(1c) Hi (A• |Uk+1) = 0 for i > p(k) − n.
(1d) The attaching maps (see Theorem 5.4.11) induce isomorphisms

Hi ( j∗
k A• |Uk+1) → Hi ( j∗

k Rik∗i∗
kA• |Uk+1)

for all k ≥ 2 and i ≤ p(k) − n.
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Theorem 5.4.14 ([94, Sect. 3.5] [18, V, Theorem 2.5]), The sheaf P•
p̄(L) satisfies

properties [AX1] p̄(L). Any complex of sheaves A• satisfying [AX1] p̄(L) is quasi-
isomorphic to P

•
p̄(L).

Theorem 5.4.15 ([94, Sect. 3.5, Corollary]) Let p̄ be a perversity and A• be a con-
structible complex of fine (or soft) sheaves on X satisfying axioms [AX1] p̄(R), then
the cohomology groups of the complex

. . . → �(X;A j−1) → �(X;A j ) → �(X;A j+1) → . . .

i.e., the hypercohomology groups IH j
c (X;A• ), are naturally isomorphic to the inter-

section homology groups I H p̄
n− j (X; R).

In fact, Goresky andMacPherson prove the followingmain result, of which follow
the main properties of intersection homology (Sect. 5.5.1).

Theorem 5.4.16 ([94, Sect. 3.5]) The functor P•
p̄ which assigns to any locally trivial

sheaf F on X0 = X − �, the complex

P
•
p̄(F) = τ≤p(n)−n Rin∗ · · · τ≤p(3)−n Ri3∗τ≤p(2)−n Ri2∗F[n].

defines an equivalence of categories between

(a) the category of locally constant sheaves on X0 = X − � and
(b) the full subcategory of Db(X) whose objects are all complexes of sheaves which

satisfy the axioms [AX1] p̄ .

Example 5.4.17 The orientation sheafO on X0 is quasi-isomorphic to the dualizing
sheaf D•

X0 [−n]. Then P•
p̄(O) is the intersection homology sheaf and its cohomology

is:
H−i (P

•
(O)) = I H p̄

i (X;Z)

for any r ≥ 0.

Example 5.4.18 Let RX0 be the constant sheaf on X0, placed in degree 0. Then

H j (P
•
p̄(RX0)) = I H j

p̄ (X; R)

is the intersection cohomology.

Theorem 5.4.19 ([94, Sect. 3.6] [18, II, Theorem 6.1]) Let X be a
P L-pseudomanifold with a fixed P L-stratification then the sheaf of P L-intersection
chains IC p̄,•

X satisfies the axioms [AX1] p̄(R) with respect to the given stratification.
It is naturally quasi-isomorphic to P

•
p̄(R).

The second characterization of the intersection complex of sheaves goes as fol-
lows, as a consequence of the local calculus (see [18, V, Sect. 2.12] and formulae
(5.20), (5.21), (5.16), (5.17)).
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Definition 5.4.20 ([94, Sect. 4.1], [127, Sect. 9] and [18, V Sect. 4.13].) Let L be a
local system on an open dense submanifold U of codimension at least 2 in X and let
fx : {x} → X be the inclusion of a point x in X . One says that the sheaf complexA•

satisfies the axioms [AX2] p̄(L) for the perversity p̄ if one has:

(2a)A• is a topologically constructible complex andA• |U = L[n] for some open
dense submanifold U of codimension at least 2 in X and over which the local
system L is defined.
(2b) H j (A• ) = 0 if j < −n
(2c) dim{x ∈ X |H j ( f ∗

x A• ) �= 0} ≤ n − p−1( j + n) for every j ≥ −n + 1.
(2d) dim{x ∈ X |H j ( f !

xA• ) �= 0} ≤ n − q−1(− j) for every j ≤ −1.

where is q̄ the complementary perversity of p̄
The uniqueness theorem, proved in Goresky and MacPherson [94, 4.1] (see also

[18, V, 4.17]) states that up to canonical isomorphism, there exists an unique complex
in Db(X) which satisfies axioms [AX2] p̄(L). It is given by the sheaf IC p̄,•

X (L),
constructed as before with any stratification of X . As a corollary, the intersection
homology groups I H p̄

∗ (X) are topological invariant and exist independently of the
choice of the stratification of X . One has:

Theorem 5.4.21 ([94, Sect. 4.1] [18,V, 4.17])LetA• be a fine (or soft) sheaf complex
on X satisfying Axioms [AX2] p̄ for a perversity p̄ and  a family of supports on X,
then the cohomology groups of the complex

. . . → �(X;A j−1) → �(X;A j ) → �(X;A j+1) → . . .

i.e., the hypercohomology groups IH j
(X;A), are isomorphic to the intersection

homology groups I H p̄,
− j (X;L).

In the common setting, equivalence of the systems of axioms [AX1] p̄(L) and
[AX2] p̄(L) is proved in [94, 4.3], [18, V Sect. 4.10].

5.5 Main Properties of Intersection Homology

The first properties have been proved by Goresky andMacPherson [92] in the frame-
work of P L-pseudomanifolds (see also [18, Chaps. I–IV]). They have been proved
in the topological setting, using sheaves and in particular the Deligne sheaf complex,
by the same authors in [94] (see also [18, Chaps.V–IX]).

5.5.1 First Properties

In general, results and proofs of this section can be found in various books or surveys
concerning intersection homology. However, references will be given to the original
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papers of Goresky and MacPherson [92] for the P L situation and [94] for the case
with sheaves and systems of local coefficients. References to the Borel book [18]
will be provided as well, always taking care of the difference of notations.

The intersection homology groups are not homotopy invariant. The intersection
homology groups of a cone do not (all) vanish (see (5.18)), while the cone is homo-
topic to a point, whose non-zero homology groups vanish. However, one has.

Topological Invariance

In [92, Corollary, p.148] Goresky and MacPherson show that the P L intersection
homology groups are P L-invariants, i.e. independent of the P L-stratification (see
also [18, V, 4.19]). In [94, 4.1] (see also [18, V, 4.18]), Goresky and MacPherson
show independence of the topological stratification as a consequence of the Deligne
construction performed for the canonical p̄-filtration they defined ([94, 4.2]) and the
system of axioms [AX2] p̄(L). The canonical p̄-filtration is a homological stratifica-
tion, the coarsest one for which the intersection homology sheaf is cohomologically
constructible.

Theorem 5.5.1 ([94, Sect. 4, Introduction and Sect. 4.1, Corollary 1]) Let X be a
locally compact pseudomanifold and p̄ a perversity. Let L be a local system on the
regular part X0 = X − �.

• The intersection homology groups I H p̄
∗ (X;L) and I H p̄,c

∗ (X;L) are topological
invariants and exist independently of the choice of a stratification of X,

• For any homeomorphism f : X → Y , the complexes IC p̄,•
X and f ∗IC p̄,•

Y are iso-
morphic in the derived category.

In [113] King proves topological invariance without sheaves in the case of G M
perversities. He also provides a generalization of the intersection homology groups
using singular theory and general perversities (“loose perversities”). King claims
that the P L intersection homology theory of [92] agrees with his singular theory for
any loose perversity and P L stratified set (see the discussion [113, p. 158]). “One
can define intersection homology for topological pseudomanifolds, independently
of P L structures”. A modification of the King’s method is provided by Friedman
[79, 5.6.2].

In [162]Rourke andSanderson use homology stratifications to present a simplified
version of the Goresky-MacPherson proof valid for PL-spaces.

Products in Intersection Homology

Definition 5.5.2 ([94, Sect. 5.0]) An R-orientation for X is a chosen
quasi-isomorphism

RX−�[n] → D•
X−�.
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If char(R) �= 2 then an R-orientation of X is equivalent to an orientation of X − �

in the usual topological sense.

Suppose X is a (not necessarily orientable) n-dimensional pseudomanifold. For
any local system L on the regular part X0 = X − � and any perversity p̄ the
Deligne’s sheaf P•

p̄(L) is defined on X . In [94, Sect. 5.2] and [18, V, Sect. 9, C]
it is shown that any pairing of local systems L1 ⊗ L2 → L3 induces a pairing

P
•
p̄(L1) ⊗ P

•
q̄(L2) → P

•
r̄ (L3) for r̄ ≥ p̄ + q̄. (5.22)

by induction using the construction of Deligne “attaching–truncating” from the mul-
tiplication on the regular subset X0.

The generalized Poincaré duality, Poincaré-Lefschetz theorem as well as inter-
section pairing, and cup and cap-products follow from particular cases of formula
5.22, mainly in the case of Examples5.4.17 and 5.4.18 (see also [18, V, Sect. 9.15]
taking care of difference of indices—see Remark 5.4.10).

For instance, cup products I H a ⊗ I H b → I H a+b and cap products I H a ⊗
I Hb → I Hb−a in intersection cohomology follow from the canonical pairings

RX
L⊗ RX → RX and RX

L⊗ D•
X → D•

X .

This constructions works over any commutative ring R of finite cohomological
dimension.

Intersection Pairing

One of the most important properties of intersection homology is the generalization
of the Poincaré-Lefschetz duality, i.e. the intersection pairing (Sect. 5.2.6).

The following Proposition ([92, Sect. 2]) has been first stated by Goresky and
MacPherson in the P L setting, using a McCrory Lemma [131, 132], itself using the
Zeeman technique to move cycles into general position (see [92, Sect. 2.2]).

Proposition 5.5.3 ([92, Sect. 2.3]) Let X a compact oriented P L-pseudomanifold
and let p̄, q̄ and r̄ perversities such that p̄ + q̄ ≤ r̄ , one has canonical bilinear
pairings

I H p̄
i (X;Z) × I H q̄

j (X;Z) → I Hr̄
i+ j−n(X;Z),

These pairings are compatible with the cup and cap products ([92, Sect.7, Appendix]).

Note that, in the non compact situation, the preceding construction gives rise to
the pairings

I H p̄
i (X) × I H q̄,c

j (X) → I Hr̄ ,c
i+ j−n(X).
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Goresky and MacPherson generalized the results in the topological setting [94,
Sects. 5.2 and 5.3], using the intersection sheaf complex (see also [18, V, 9.15] taking
care of difference of indices—see Remark 5.4.10).

Starting with local coefficient systems L1,L2,L3 on X − �, a product L1 ⊗
L2 → L3 gives rise to intersection pairings (cf 5.22) [94, 5.2]

IC•
p̄(L1)

L⊗ IC•
q̄(L2) → IC•

r̄ (L3)[n].

and the Theorem:

Theorem 5.5.4 ([94, 5.2], [18, I, 4.2; V, 9.14]) Let X be a topological pseudoman-
ifold. If p̄ + q̄ ≤ r̄ there are canonical intersection pairings

I H p̄
i (X;L1) × I H q̄

j (X;L2) → I Hr̄
i+ j−n(X;L3).

These pairings are compatible with the cup and cap products.

Goresky and MacPherson remark that it is not necessary to have an orientation in
the preceding construction [94, Sect. 5.2].

Verdier Duality—The Generalized Poincaré-Lefschetz

In their original article, in a delicate and very geometric proof, using so-called “basic
sets” Q p̄

i , Goresky and MacPherson prove the generalized Poincaré duality:

Theorem 5.5.5 ([92, 3.3, Theorem]) Let X be a compact, oriented pseudomanifold
and let p̄ and q̄ be two complementary perversities, then the pairing

I H p̄
i (X;Z) × I H q̄

n−i (X;Z) → I H t̄
0(X;Z) ε→ Z

followed by the evaluation map ε (which counts points with their multiplicity order)
is non-degenerate, when tensorised by the rationals Q.

Note that, in the non compact situation, the preceding construction gives rise to
the pairing (see Example 5.4.5).

I H p̄
i (X;Z) × I H q̄,c

n−i (X;Z) → I H t̄,c
0 (X;Z) ε→ Z (5.23)

In a more general way, let k be a field, then the pairing

I H p̄
i (X; k) × I H q̄

n−i (X; k) → I H t̄
0(X; k)

ε→ k

is non-degenerate and induces isomorphisms

I H p̄
i (X; k) ∼= Hom(I Hq̄

n−i (X; k), k)
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Note that, in the non-compact case, one has isomorphisms:

I H p̄
i (X; k) ∼= Hom(I Hq̄,c

n−i (X; k), k)

In [94] these results have been generalized byGoresky andMacPherson, assuming
that the coefficient ring R is a field k and that X is k-orientable (with a choice of
k-orientation). The following results follow from the property of duality between
IC•

p̄ and IC•
q̄ for complementary pervesities p̄ + q̄ = t̄ . In particular if X has even

codimension strata, then IC•
m̄ is self dual (for example, if X is a complex analytic

variety).

Definition 5.5.6 ([94, 5.3]) Let n = dim(X), a pairingA• L⊗B• → D•
X [n] of objects

in Db(X) is called a Verdier dual pairing if it induces an isomorphism in Db(X)

A• −→ RHom•
(B•

,D•
X )[n].

Theorem 5.5.7 ([94, 5.3, Theorem]) Suppose p̄ and q̄ are complementary perver-
sities, then the intersection pairing followed by the map to homology

IC•
p̄

L⊗ IC•
q̄ → IC•

t̄ [n] → D•
X [n]

is a Verdier dual pairing.

Corollary 5.5.8 ([94, 5.3, Corollary]) Let X be a compact, oriented stratified pseu-
domanifold and let p̄ and q̄ be two complementary perversities, then the pairing

I H p̄
i (X; k) × I H q̄

n−i (X; k) → I H t̄
0(X; k)

ε→ k

followed by the evaluation map ε (which counts points with their multiplicity order)
induces isomorphisms

I H p̄
i (X; k) ∼= Hom(I Hq̄

n−i (X; k), k)

Dropping the assumption that X is oriented, letO be the orientation local system
of k-modules on X − �. A pairing L1 ⊗ L2 → O of local systems on X − � is
called perfect if the induced mapping L1 → Hom(L2,O) is an isomorphism.

Theorem 5.5.9 ([94, 5.3, last Theorem]) Suppose p̄ and q̄ are complementary per-
versities and the pairing L1 ⊗ L2 → O is perfect. Then the intersection pairing
followed by the map to homology

IC•
p̄(L1)

L⊗ IC•
q̄(L2) → IC•

t̄ (O)[n] → D•
X [n]

is a Verdier dual pairing.
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Note that, usingAlexander-Whitney chains, Friedman andMcClure [80] re-prove
these results in the special case of field coefficients.

Example 5.5.10 (Suspension of the torus) That is the original Goresky-MacPherson
example (see [92]) for which Poincaré duality fails for usual homology. The suspen-
sion of the torus (Fig. 5.6) is the join of the torus with two points A and B. It is a
3-dimensional singular variety with two singular points A and B: the link of A (or
B) is a torus, not a sphere. See the alternative very nice picture of the suspension of
the torus in [92].

Fig. 5.6 Suspension of the
circle S1 and of the torus

The natural stratification of the suspension of the torus is

X ⊃ X0 = {A, B} ⊃ ∅.

There are two possible perversities:

p̄ = 0̄ = (0, 0, 0, 0) and p̄ = t̄ = (0, 0, 0, 1)

An i-dimensional chain c containing one (or two) of the singular points A and B is
allowable if

0 = dim(|c| ∩ X0) ≤ i − 3 + p3,

that means, if p̄ = 0̄, then i ≥ 3 and if p̄ = t̄ , then i ≥ 2.
The intersection homology groups I H p̄

i (X;Q) corresponding to the two perver-
sities are easily computed and are resumed in the Table5.2. The cycle a is boundary
of the cycle c(a), cone with vertex a. The suspension of a is a 2-dimensional cycle
denoted by �(a).
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Table 5.2 Intersection homology of the suspension of the torus

Perversities p̄ = 0̄ p̄ = t̄

i I H 0̄
i (X) I H t̄

i (X)

0 Q{x} Q{x}
1 Qa ⊕ Qb 0

2 0 Q�(a) ⊕ Q�(b)

3 Q[X ] Q[X ]

The intersection matrix of the intersection product

I H 0̄
1 (X;Q) × I H t̄

1(X : Q) → Q

(
�(a) �(b)

a 0 ∓1
b ±1 0

)

is non-degenerate.

Factorization of Poincaré Homomorphism. See [92, Sect. 1.4], [94,
Sect. 5.1], [18, I, Sect. 4.1; I, Sect. 3.2]

Poincaré Duality—Return to the smooth case
The Poincaré duality can be proved by using sheaf complexes: R is still a regular
Noetherian ring with finite Krull dimension, which can be Z,Q or R. Assuming that
X is an n-dimensional oriented manifold, the quasi-isomorphism of complexes of
sheaves RX [n] ∼= C•

X induces isomorphisms of hypercohomology groups:

IH−i
 (X; RX [n]) ∼= IH−i

 (X; C•
X )

i.e., (5.8), (5.9)
H n−i

 (X) ∼= H
i (X).

In particular, one has (see Sect. 5.2.2):

H n−i (X) ∼= Hi (X) and H n−i
c (X) ∼= H c

i (X).

Poincaré Duality—Singular case
An orientation on X is an isomorphism (5.5.2)

RX−�[n] → D•
X−�.
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The (unique in Db) canonical lift of the orientation

RX [n] → Ri∗RX−�[n] ∼=→ Ri∗D•
X−�

induces the cap-product with the orientation (fundamental) class

P DX : RX [n] → D•
X .

Proposition 5.5.11 ([94, Sect. 5.1]) Assume X oriented, and let i : X − � → X
denote the inclusion. For any perversity p̄ there is a unique morphism in Db

RX [n] → IC•
p̄ → D•

X

such that the induced morphism i∗RX [n] → i∗IC• is the evident one and i∗IC• →
i∗D•

X is given by the orientation. These morphisms factor the cap-product with the
fundamental class [X ], i.e. P DX : RX [n] → D•

X .

For any perversity p̄, denote the previous morphisms by

αX : RX [n] → IC•
p̄ and ωX : IC•

p̄ → D•
X .

By taking hypercohomology, one obtain the classical comparison morphisms

H •
(X)

αX−→ I H p̄
n−• (X) and I H p̄

n−• (X)
ωX−→ Hn−• (X).

The composition ωX ◦ αX : RX [n] → D•
X

RX [n] P DX

αX

D•
X

IC•
p̄

ωX

induces at the global level, i.e., taking hypercohomology, the “classical” Poincaré
duality homomorphism

H •
(X) → Hn−• (X)

that is factorized by intersection homology

H n−i (X)
•∩[X ]

α0̄
X

α
p̄
X

Hi (X)

I H 0̄
i (X) I H p̄

i (X)

ωt̄
X

I H t̄
i (X).

ωt̄
X

(5.24)
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Poincaré Duality—Singular case—geometry
In this (sub)-section, X is an oriented compact P L-pseudovariety.

First, remark that if p̄ and q̄ are two perversities such that p̄ ≤ q̄ , that is pα ≤ qα

for all α, then one has a natural morphism

I C p̄
∗ (X) ↪→ I Cq̄

∗ (X) (5.25)

for every support family and it induces a morphism I H p̄
∗ (X) → I H q̄

∗ (X).
In particular, one has a morphism I H 0̄∗ (X) → I H p̄

∗ (X) and a morphism
I H p̄

∗ (X) → I H t̄∗(X) for every perversity p̄.

The morphism α0̄
X : H n−i (X) → I H 0̄

i (X) can be described in the following way:
Assuming that X is embedded in a smooth m-dimensional P L oriented manifold

M , the stratification of X can be extended to a stratification of M by taking M \ X
as the regular stratum. Let K be a locally finite triangulation of M compatible with
the stratification. For each p = n − i-simplex σ ∈ K contained in X , the dual cell
of σ in M , denoted by Dσ has dimension m − p (see 5.4) and is transverse to all
strata. The Poincaré homomorphism

Cn−i
(K ) (X) → C (K ′)

i (X)

associates to the elementary (n − i)-cochain σ ∗ which corresponds to the simplex
σ in K , the i-chain ξ = Dσ ∩ X of (K ′), which is 0̄-allowed. Therefore, for each
perversity p̄, one has the factorisation (5.24).

Relative Homology, See [93, 1.3], [18, I, 2.2.2]

Let X be a stratified pseudomanifold, and U an open subset in X , then U inherits a
structure of stratified pseudomanifold induced by the one of X . For every perversity
p̄, the complex of intersection chains of U with compact supports I C p̄

∗ (U ), is a
sub-complex of I C p̄

∗ (X).
Defining I C p̄

∗ (X,U ) = I C p̄
∗ (X)/I C p̄

∗ (U ), one obtains a relative complex and
one has a long exact sequence:

· · · → I H p̄
i (U ) → I H p̄

i (X) → I H p̄
i (X,U ) → I H p̄

i−1(U ) → · · ·

The property is also valid with local systems (see [93, 1.8]).

Excision, See [93, 1.5]

Lemma 5.5.12 Let X be a locally compact stratified pseudomanifold and U and V
two open subsets in X, then the inclusion (U,U ∩ V ) ↪→ (U ∪ V, V ) induces an
isomorphism of intersection homology groups with compact supports
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I H p̄
i (U,U ∩ V ) ∼= I H p̄

i (U ∪ V, V ).

Proposition 5.5.13 Let X be a locally compact stratified pseudomanifold, U an
open subset in X and A a closed subset in U. Let p̄ be any perversity, then the inclu-
sion (X − A,U − A) ↪→ (X,U ) induces an isomorphism of intersection homology
groups with compact supports

I H p̄
i (X,U ) ∼= I H p̄

i (X − A,U − A).

The property is also valid with local systems (see [93, 1.8]).

Künneth Formulae, See [94, 6.3]

Künneth formulae in homology If X and Y are topological spaces, and R a PID
(principal ideal domain) the Künneth formula is written as short exact sequence
(where all homology groups have R coeffivients)

0 →
⊕

a+b=i

Ha(X) ⊗ Hb(Y ) → Hi (X × Y ) →
⊕

a+b=i−1

TorR(Ha(X), Hb(Y )) → 0,

that (not canonically) splits.
If R is a field k, then the Künneth formula is written

⊕

a+b=i

Ha(X; k) ⊗ Hb(Y ; k) ∼= Hi (X × Y ; k).

Künneth formula in intersection homology In general, the Künneth formula is
no longer true for intersection homology (see counterexamples in [61, Sect. 5]).
However, there are some situations for which the the Künneth formula is true.

(1) Cheeger [59] observes that the Künneth formula holds for the middle inter-
section cohomology, and for Witt spaces X,Y (see Sect. 5.4.6) with k = R.

I H m̄
i (X × Y ;R) ∼=

⊕

a+b=i

I H m̄
a (X;R) ⊗ I H m̄

b (Y ;R). (5.26)

The formula is extended in [94, 6.3] in the context of “middle homology sheaves”.
A middle homology sheaf is a complex of sheaves S• such that for some local
coefficient system F on X0 = X\�,

S• = IC•
m̄(F) = IC•

n̄(F).

Let π1 : X × Y → X and π2 : X × Y → Y be the projections. Let F1 and F2 be
local coefficients systems on the regular parts of X and Y respectively, satisfying the
previous formula, then
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I H m̄
i (X × Y ;π∗

1F1 ⊗ π∗
2F2) ∼=

⊕

a+b=i

I H m̄
a (X;F1) ⊗ I H m̄

b (Y ;F2).

(2) When one of the element of the product is a smooth manifold, the formula is
verified (see [93, Sect. 1.6], [61]).

Proposition 5.5.14 Let X be a locally compact stratified pseudomanifold and M a
manifold. Let p̄ be a perversity, one has a split exact sequence:

0 → (I H p̄
∗ (X) ⊗ H∗(M))i → I H p̄

i (X × M) → (I H p̄
∗ (X) ∗ H∗(M))i−1 → 0

(3) Fix a coefficient ring R which is a principal ideal domain and suppose X and
Y are compact pseudomanifolds. Cohen, Goresky and Ji show [61] more general
results showing, for instance that if the perversity p̄ satisfies

p(a) + p(b) ≤ p(a + b) ≤ p(a) + p(b) + 1

for all a and b, then there is a split short exact sequence for intersection cohomology
with the perversity p̄ and coefficients in R:

0 →
⊕

a+b=i

I Ha(X) ⊗ I Hb(Y ) → I Hi (X × Y ) →
⊕

a+b=i−1

TorR(I Ha(X), I Hb(Y )) → 0.

The condition on the perversity p̄ means that the graph of the perversity function
does not deviate far from some straight line through the origin (see also [28, Corollary
9.3]).

(4) G. Friedman, in [74], considers biperversities ( p̄, q̄) and obtains a Künneth
theorem relating I H p̄,q̄

∗ (X × Y ) and I H p̄
∗ (X) and I H q̄

∗ (Y ) for all choices of p̄ and
q̄ . and this recovers the result of Cohen,Goresky and Ji.

(5) Let k be a field, Friedman and McClure [80] define a perversity Q̄( p̄, q̄) on
the product X × Y , whose value depends on regularness or not of the elements of
the filtration of the product. They obtain an isomorphism

I H p̄
∗ (X; k) ⊗ I H q̄

∗ (Y ; k) → I H Q̄
∗ (X × Y ; k).

Normalization and Intersection Homology, [92, Sect. 4], [18, I, 1.6, I, 3.2,
V,2.8 and 2.12]

The oriented n-dimensional pseudomanifold X is normal if

Hn(X, X − {x};Z) = Z for all x ∈ X.

Equivalently, each point x admits a fundamental system of neighborhoods U whose
regular part U \ � is connected.
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Proposition 5.5.15 ([92, Sect. 4.3], [94, Sect. 5.6] [18, I, Sect. 4.1]) Let X be a nor-
mal pseudomanifold, the morphisms αX and ωX (see Sect.5.5.1) induce isomor-
phisms:

RX
∼= IC•

0̄
and IC•

t̄
∼= D•

X

respectively for the zero perversity 0̄ and the total one t̄:

H n−i (X) ∼= I H 0̄
i (X), I H t̄

i (X) ∼= Hi (X).

The vertical arrows in diagram (5.24) are isomorphisms.

Proposition 5.5.16 ([92, Sect. 4.2], [18, I, Sect. 3.2]) Let X̃ be the normalization of
a pseudomanifold X, then one has:

I H p̄
i (X̃) = I H p̄

i (X).

Homology Manifolds

Goresky and MacPherson conjecture in [92, Sect. 6.6] that if X is a normal pseu-
dovariety such that I H p̄

∗ (X) → I H q̄
∗ (X) are isomorphisms for all p̄ ≤ q̄ , then X is

a Z-homology manifold, i.e. there is an integer n such that for each point {x} in X ,
the local homology group satisfies

Hi (X, X \ {x} ;Z) =
{
0 if i �= n

Z if i = n.
(5.27)

The conjecture is false, by a counter-example of King [114] who shows that it is
true if one considers more general perversities, so-called “loose perversities”. In
[32], Brasselet and Saralegi show that the conjecture is true with a supplementary
hypothesis, namely if there are tubular neighborhoods of the strata without homolog-
ical monodromy. On the other hand, Fieseler and Kaup define in [73, 115] invariants
linked to properties of the fibers of the Deligne sheaf. Using these invariants Brasse-
let, Fieseler and Kaup provide computable criteria for X being a homology manifold
[25].

Case of Isolated Singularities

Proposition 5.5.17 ([18, Sect. 5.1])Let X be an n-dimensional pseudomanifold with
an isolated singularity at {x}. The integer pn is the only one pertinent element of the
perversity, one has 0 ≤ pn ≤ n − 2 and:
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I H p̄,c
i (X) =

⎧
⎪⎨

⎪⎩

H c
i (X \ {x}) i < n − pn − 1

Im(H c
i (X \ {x}) → H c

i (X)) i = n − pn − 1

H c
i (X) i > n − pn − 1,

(5.28)

I H p̄
i (X) =

⎧
⎪⎨

⎪⎩

Hφ

i (X \ {x}) i < n − pn − 1

Im(Hφ

i (X \ {x}) → Hi (X)) i = n − pn − 1

Hi (X) i > n − pn − 1

(5.29)

where φ denotes the family of closed subsets in X which are contained in X \ {x}.
If n is even and p̄ is the middle perversity, one has n − pn − 1 = n/2.

The Proposition is valid with local coefficieny systems.

Example of Thom Spaces, [18, I, Sect. 5.3], [26]

Let B a compact 2n-dimensional manifold and π : E → B a real oriented vector
bundle with even rank r on B. The Thom spaceT associated to E is the Alexandroff
compactification of E by adjonction of a point at infinity. It is also the quotient
T (E)/S(E) where T (E) and S(E) are the fibre bundles associated to E whose
fibers are respectively closed balls and spheres in the fibers of E . The Thom space is
a pseudomanifold with an isolated singular point and its dimension is 2s = 2n + r .

Let [T] be the fundamental class ofT and e ∈ Hr (B) the Euler class of the bundle
E . For every i , different from 0 and 2s, one has a commutative diagram ([27], see
also [18, I, Sect. 5.3]):

H 2s−i (T)
· ∩[T]

∼=

Hi (T)

∼=

Hi (B)
· ∩e

Hi−r (B)

and for the middle (lower) perversity:

I Hi (T) =

⎧
⎪⎨

⎪⎩

Hi (T) i < s

Im(Hi (B)
· ∩e−−−→Hi−r (B)) i = s

Hi−r (B) i > s.

(5.30)

In [92, Sect. 6.3] Goresky and MacPherson illustrate the behavior of torsion in
the intersection homology by the example of Thom space for which the universal
coefficient theorem fails and the generalized Poincaré duality theorem is not true
over Z.

Exemples of computations of Thom spaces associated to the Segre and Veronese
embeddings are provided by Brasselet and Gonzalez-Sprinberg in [27].
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5.5.2 Functoriality

In general, for a map f : X → Y , there is no functoriality, i.e. no maps I f ∗ and I f∗
such that the diagrams below (5.32) and (5.33) commute. The functoriality problem
has been proposed by Goresky andMacPherson in [18, IX, C, Problem 4]): “Find the
most general category of spaces and maps (perhaps with additional data) on which
intersection homology is functorial.”

Goresky and MacPherson earlier proved functoriality for Normally Nonsingular
Maps [94, Sect. 5.4]:

(a) A normally nonsingular map ([82, Sect. 4.1]) f : X → Y between oriented
topological spaces, is a map such that there is a diagram

N
i

π

Y × R
n

p

X
f

s

Y

(5.31)

in which π : N → X is a rank d vector bundle with zero-section s, the map i is
an open embedding, p is the first projection and f = p ◦ i ◦ π . The integer d − n
is the relative codimension of f . As said in [82], “Geometrically, that says that the
singularities of X at any point x are no better or worse than the singularities of
Y at f (x).” Topological pseudomanifotds and normally nonsingular maps form a
category (see [82]).

Theorem 5.5.18 ([94, 5.4.3]) Let f : X → Y be a proper normally nonsingular
map of relative dimension ν. Then there are homomorphisms

I f∗ : I H p̄
k (X) → I H p̄

k (Y ) and I f ∗ : I H p̄
k (Y ) → I H p̄

k−ν(X).

I H p̄
k is both a covariant functor (via I f∗) and a contravariant functor (via I f ∗) on

the category of topological pseudomanifotds and normally nonsingular maps.

In their discussion in [18, IX, C], Goresky andMacPherson give and discuss sev-
eral classes ofmaps f : X → Y forwhich there are natural homomorphisms between
I H m̄∗ (X) and I H m̄∗ (Y ) (where m̄ is the middle (lower) perversity). In particular, they
give the following examples:

(b) The placid maps. A continuous map f : X → Y between stratified spaces is
said placid if it is stratum preserving (i.e. the image of every stratum of X is contained
in a single stratum of Y ) and for each stratum S in Y , the inequality holds:

codimX f −1(S) ≥ codimY (S).
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Proposition 5.5.19 [98, Proposition 4.1] Assume that f : X → Y is a placid map.
Then pushforward of chains and pullback of generic chains induce homomorphisms
on intersection homology:

I f∗ : I H m̄
k (X) → I H m̄

k (Y ) and I f ∗ : I H m̄
n−k(Y ) → I H m̄

m−k(X).

where m = dim(X) and n = dim(Y ).

(c) Small maps. [94, Sect. 6.2]
A proper surjective algebraic map f : X → Y between irreducible complex n-

dimensional algebraic varieties is small if X is nonsingular and for all r > 0,

codC{y ∈ Y | dimC f −1(y) ≥ r} > 2r.

If Y is one or two dimensional then a small map f : X → Y must be a finite map.
If Y is a threefold then the fibres of a small map f must be zero dimensional except
possibly over a set of isolated points in Y where the fibres may be at most curves.

(d) A more general result has been proved by Barthel, Brasselet, Fieseler, Gabber
and Kaup.

Theorem 5.5.20 ([5, Théorème 2.3]) Let f : X → Y be a map between algebraic
complex varieties of respective pure (real) dimensions m and n, and consider R = Q.
Then
(1) There are contravariant homomorphisms (with closed supports)

I f ∗ : I Hn−• (Y ) → I Hm−• (X)

and covariant homomorphisms with compact supports

I f∗ : I H c
• (X) → I H c

• (Y )

such that the following diagrams commute:

I Hn−• (Y )
If ∗−−−→ I Hm−• (X) I H c

• (X)
If∗−−−→ I H c

• (Y )�
⏐
⏐
⏐αY

�
⏐
⏐
⏐αX

⏐
⏐
⏐
�ωX

⏐
⏐
⏐
�ωY

H • (Y )
f ∗−−−→ H • (X) H c

• (X)
f∗−−−→ H c

• (Y ).

(5.32)

(2) Assume that the map f : X → Y is proper, then there are contravariant homo-
morphisms with compact supports

I f ∗ : I H c
n−• (Y ) → I H c

m−• (X)

and covariant homomorphisms with closed supports
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I f∗ : I H• (X) → I H• (Y )

such that the following diagrams commute:

I H c
n−• (Y )

If ∗−−−→ I H c
m−• (X) I H• (X)

If∗−−−→ I H• (Y )�
⏐
⏐
⏐αY

�
⏐
⏐
⏐αX

⏐
⏐
⏐
�ωX

⏐
⏐
⏐
�ωY

H •
c (Y )

f ∗−−−→ H •
c (X) .H• (X)

f∗−−−→ H• (Y ).

(5.33)

The results can be summarized by the following commutative diagram (the reader
is invited to write the similar diagram with compact supports):

H∗
c (X)

Poincaré

αX

H∗(X)

f∗

H∗
c (Y )

f ∗

αY

I H∗(X)

If∗
?

ωX

H∗(Y )

I H∗(Y )

If ∗

?

I H∗(Y )

ωY

Note that the notations used in [5] are μ f for I f ∗ and ν f for I f∗. In general, the
associated maps I f ∗ and I f∗ in intersection homology are not uniquely determined.
They are uniquely determined by f in the following particular cases:

• if Y is smooth. In that case, αY and I f ∗ ◦ αY are isomorphisms and I f ∗is deter-
mined by αX ,

• if f is an equidimensional dominant map or, more generally, a placid map (see [5,
(3.3)]),

• if f is the embedding of a closed submanifold X with codimension 1 in Y such
that Y is locally analytically irreducible along X (see [5, (3.6)]),

• if f is a homologically small map in the sense of [94, Sect. 6.2].

Based on the previous results,Weber [185] assumes that amap of analytic varieties
is an inclusion of codimension one. He shows that the existence of an associated
morphism in intersection homology follows from Saito’s decomposition theorem.
For varieties with conical singularities he shows that the existence of intersection
homology morphism is equivalent to the validity of the Hard Lefschetz Theorem for
links.

Lifting of Algebraic Cycles

The notion of intersection homology I H (C)
• (Y ) of Y with supports in a closed sub-

variety C of Y , i.e. relative intersection homology I H• (Y,Y \ C) (see Sect. 5.3.1) is
useful for this section.
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Theorem 5.5.21 ([5, Théorème 2.4]). Let C be a closed subvariety of Y , with pure
dimension n, then the homology class [C], with rational coefficients, is in the image
of the morphism

ωY : I H (C)
n (Y ) −→ H (C)

n (Y ) .

The classes corresponding to algebraic cycles in an algebraic variety can be lifted
in intersection homology, however the lifting is not unique.

Coming to the original question asked by Goresky and MacPherson (see [18,
Goresky-MacPherson, Chap. IX, Sect. H, Problem 10]) the homology Chern-
Schwartz-MacPherson classes of an algebraic variety can be lifted to intersection
homology, for the middle perversity and with rational coefficients [5, Corollaire
2.6]. On the one hand, Goresky constructed an example for which there is no lifting
when using Z coefficients, on the other hand Verdier constructed an example for
which the lifting is not unique even with rational coefficients (see [26, 27] for these
examples). Also, using the previous results obtained for the middle perversity (and
higher ones) it is not possible to multiply more than two homology classes. This
gives an obstruction to the definition of general characteristic numbers for singular
complex algebraic varieties.

The Classification Theorem

The morphisms I f ∗ and I f∗ in intersection homology are not uniquely determined
by the morphism f . The following result provides a measure of the ambiguity. It
gives also a geometric meaning of the motivation and completes the principal result:

Theorem 5.5.22 ([5, Théorème 2.7])There is a one-to-one correspondence between
the morphisms I f ∗, resp. I f∗, such that the diagrams (5.32) and (5.33) commute
and classes γ ∈ I H

(� f )
n (X × Y ) which are liftings of the homology class [� f ] ∈

H
(� f )
n (X × Y ) of the graph of f .

5.5.3 Lefschetz Fixed Points and Coincidence Theorems

Lefschetz Fixed Points Theorem

The smooth case
Let M be an n-dimensional oriented smooth manifold, and f : M → M . One of the
possible definitions of the Lefschetz number L( f ) (known as Lefschetz fixed point
formula [122]) is:

L( f ) =
n∑

k=0

(−1)kTrace( fk : Hk(M;Q) → Hk(M;Q)). (5.34)
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Let G( f ) ⊂ M × M be the graph of f . In general, G( f ) is not transverse to the
diagonal �M in M × M . However, one can find a map f ′ : M → M homotopic to
f such that the graph G( f ′) is transverse to �M . The (oriented) cycles G( f ′) and
�M are transverse and complementary dimensional in M × M . Moreover, there are
finitely many intersection points b j ∈ G( f ′) ∩ �M . In such a point, the intersection
number I (G( f ′),�M ; b j ) is well defined (see Sect. 5.2.6) and one has

L( f ) =
∑

b j

I (G( f ′),�M ; b j ). (5.35)

That number does not depend on the map f ′ homotopic with f and such that G( f ′)
is transverse to �M .

The main properties of the Lefschetz number are the following: If L( f ) �= 0, then
f admits fixed points. If f = idM then L( f ) = χ(M). If f and g are two homotopic
maps from M to M , then L( f ) = L(g).

The singular case
Goresky and MacPherson proved in [98] the Lefschetz fixed point theorem in the
context of placid (Sect. 5.5.2 b) self maps of Witt spaces (see Sect. 5.4.6) and by
using intersection homology with middle lower perversity.

The intersection homology Lefschetz number of a placid self-map f : X → X is
defined by the formula [98, Sect. 4 Definition]:

I L( f ) =
dim X∑

i=0

(−1)iTrace( fi : I H m̄
i (X;Z) → I H m̄

i (X;Z)). (5.36)

In [98, Proposition 4.2], Goresky and MacPherson show that if f : X → Y is a
placid map between two compact orientedQ-Witt spaces, with n = dim X , then the
graph of f determines a canonical homology class [G( f )] ∈ I H m̄

n (X × Y ;Q).
For a placid self map of a Q-Witt space, both the graph of f and the diagonal

carry fundamental classes in intersection homology of X × X and one has:

Theorem 5.5.23 ([98], Theorem I) Let f : X → X be a placid self map of an n-
dimensional Q-Witt space. Let [G( f )] and [�] be the homology classes of the graph
of f and of the diagonal in I H m̄

n (X × X;Q). Then the Lefschetz number I L( f ) is
given by

I L( f ) = [G( f )] • [�]

where • denotes the intersection product of cycles in intersection homology.

The formula 5.35 has been extended in the singular situation by Goresky and
MacPherson (see [97],[98, Sects. 7–12]) in terms of local Lefschetz numbers of a
placid map f : X → X at isolated fixed points.

Theorem 5.5.24 ([98, Theorem II]) The intersection Lefschetz number is the sum
of the local contributions taken over all the fixed points.
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Another way to define local Lefschetz numbers is developed by Bisi et al. [14]
using Čech-de Rham theory. The coincidence of this later notion with Goresky and
MacPherson ones is shown in Brasselet-Suwa [33].

The Coincidence Theorem

The smooth case
In [122] Lefschetz defined the coincidence number of two maps f : M → N and
g : M → N where M and N are compact oriented smooth n-dimensional manifolds
without boundaries. The coincidence set C( f, g) is defined to be

C( f, g) = {x ∈ M | f (x) = g(x)}.

The Lefschetz coincidence number is defined as

L( f, g) =
n∑

k=0

(−1)kTrace(P DM ◦ gn−k ◦ P D−1
N ◦ fk) (5.37)

Hk(M;Q)
fk

Hk(N ;Q)

H n−k(M;Q)

P DM ∼=

H n−k(N ;Q)
gn−k

P DN ∼=

where vertical arrows are Poincaré duality isomorphisms. If L( f, g) is not zero, then
there is at least one coincidence point: C( f, g) is not empty.

The singular case
In the case of singular varieties, Goresky and MacPherson defined the notion of
placid correspondences C between n-dimensional Witt spaces X and Y as beeing an
n-dimensional compact oriented pseudomanifold C ⊂ X × Y such that each of the
projections πX : C → X and πY : C → Y is placid. According to the Proposition
5.5.19, one has homomorphisms on intersection homology:

(πY )∗(πX )
∗ : I H m̄

i (X) → I H m̄
i (Y ) and (πX )∗(πY )

∗ : I H m̄
i (Y ) → I H m̄

i (X).

IfC1andC2 are two correspondences between theWitt spaces X and Y , the Lefschetz
number I L(C1,C2) is defined to be the alternating sum of traces of the induced map

(π2
X )∗(π

2
Y )

∗π1
Y )∗(π

1
X )

∗ : I H m̄
i (X) → I H m̄

i (X).

Each correspondence defines a canonical intersection homology class

[Ci ] ∈ I H m̄
n (X × Y ;Q)
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and the Lefschetz number I L(C1,C2) is equal to the intersection product [C1] • [C2]
([98, Theorem I’]). Moreover, Goresky and MacPherson show ([98, Theorem II’])
that it is equal to the sum of the local linking numbers suitably defined (see [98,
Sect. 8]).

In the particular case of coincidences, given f, g : X → Y placid maps between
n-dimensional oriented compact Q-Witt spaces, the Lefschetz coincidence number
is defined by [35]

I L( f, g) =
∑

i

(−1)iTrace(gi fi ),

where fi : I H m̄
i (X) → I H m̄

i (Y ) and gi : I H m̄
i (Y ) → I H m̄

i (X) are defined for the
lower middle perversity m̄ (Proposition 5.5.19).

Theorem 5.5.25 [98, Sect.14], [35] The Lefschetz coincidence number of ( f, g)
is determined by the intersection of the canonical homology classes of the graphs,
[G( f )] and [G(g)].

I L( f, g) = (−1)n[G( f )] • [G(g)].

If I L( f, g) �= 0 then there is (at least one point) x ∈ X such that f (x) = g(x).
Examples of coincidence of maps are provided in [35] (J.-P. Brasselet, A.K.M.

Libardi, T.F.M. Monis, E.C. Rizziolli and M.J. Saia) with local and global explicit
computations.

5.5.4 Morse Theory

A complete history of Morse theory can be found, for instance in the Introduction
of the Goresky-MacPherson’s book [96], Sect. 1.7. A complete survey is given by
Mark Goresky in the Chap.5 of this Handbook (Vol. 1), see [90].

The Smooth Case

The main results of classical Morse theory for ordinary homology and for a compact
smooth variety M can be summarized as follows [136]:

A critical point of a smooth function f : M → R on amanifold M is a point where
the differential of f vanishes, its image by f is a critical value. A non-degenerate
critical point of f is a point for which the Hessianmatrix of second partial derivatives
of f is non-singular.

A smooth function f : M → R on a manifold M is aMorse function if it has only
non-degenerate critical points. According to a result by René Thom [178], the Morse
functions form an open, dense subset of all smooth functions f : M → R (for the
C2- Whitney topology).
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Considering a smooth function f : M → R and a point c ∈ R, let M<c denote
the inverse image by f of the open interval ] − ∞, c[.

The Morse Lemma says:

• For small enough ε, if the interval ]v − ε, v + ε[ does not contain any critical
value, then M<v+ε is homeomorphic to M<v−ε.

• If p is a non-degenerate critical point of f : M → R, then there exists a chart
(x1, x2, . . . , xn) in a neighborhood Up of p such that xi (p) = 0 for all i and
f (x) = f (p) − x2

1 − x2
2 − · · · − x2

k + x2
k+1 + · · · + x2

n inUp. The integer k is the
Morse index of f at p. For small enough ε, one has, with v = f (p),

Hi (M<v+ε, M<v−ε) =
{
0 for i �= k

Z for i = k
(5.38)

The Singular Case

In the case of a singular variety, there is no longer a Morse index for ordinary homol-
ogy. Goresky and MacPherson [93, Sect. 4.5 (3)] provide a nice counter-example.

In fact, the concept of Morse function in the case of isolated singular varieties has
been introduced by F. Lazzeri [119]. Some conditions for beeing a Morse function
on a stratified space have been stated by Benedetti [12] and Pignoni [151] (see [96,
Introduction, Sect. 1.4]).

Goresky and MacPherson assume that X is a purely n-dimensional complex ana-
lytic variety, endowed with a Whitney stratification (with complex analytic strata),
and embedded in a complex analytic manifold M . In [96, Introduction, Sect. 1.4
What is a Morse function ?] A C∞ function f : M → R is called a Morse function
for X provided

• For each stratum S of X , the function f |S has only nondegenerate critical points.
The critical points of f are the critical points of f |S and the critical values of f
are the values of f at these points.

• At each critical point p ∈ X , the differential d f (p)(τ ) �= 0 whenever τ is a limit
of tangent planes from some larger stratum containing S in its closure.

• All critical values are distinct.

If p is a critical point in the stratum S, then the Morse index k of f at p is defined
to be c + λ where c is the complex codimension of S in X and λ is the classical
Morse index of f |S .

In order to recoverMorse theory in the context of intersection homology, Goresky
and MacPherson define the following ingredients [95, 96], see also [90].

The first one is the complex link of a stratum S. Choose a manifold N meeting
S transversaly at p and a generic projection π : N ∩ X → C sending p to 0. For
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0 < ε � δ � 1 denote by B(p, δ) the ball of radius δ centered at p and Bδ = X ∩
B(p, δ), ∂Bδ = X ∩ ∂B(p, δ). The complex link LC of S is a pseudomanifold with:

LC = π−1(t) ∩ Bδ, ∂LC = π−1(t) ∩ ∂Bδ.

where 0 < |t | < ε.
Denote byμ he monodromy transformation obtained by carrying a chain Z inLC

with in ∂LC, over a small loop around 0 in C. The second ingredient is the Morse
group Ap, image of the variation map (see [93, Sect. 3.7] and [96, Part II, Sect. 6.3]):

(1 − μ) : I Hc−1(LC, ∂LC;Z) −→ I Hc−1(LC;Z)

where (1 − μ) vanishes on I Hc−1(∂LC).
Using intersection homology, Goresky and MacPherson recover Morse theory

for a compact Whitney stratified singular complex analytic variety X analytically
embedded in a smooth variety M , as follows:

Theorem 5.5.26 ([96]) For an open dense set of Morse functions f : M → R (in
the sense of Lazzeri and Pignoni), all values v ∈ R have exactly one of the following
properties (and only finitely many values have property 2):

(1) For small enough ε, then X<v+ε is homeomorphic to X<v−ε in a stratum pre-
serving way,

(2) There is a Morse index k of the critical point p with critical value v such that
for small enough ε,

I Hi (X<v+ε, X<v−ε;Z) =
{
0 for i �= k

Ap for i = k
(5.39)

In [93, 95, 96] Goresky andMacPherson provide various applications of stratified
Morse theory :

• The Lefschetz hyperplane theorem holds for the intersection homology of a (sin-
gular) projective algebraic variety [93, Sect. 5.4].

• The intersection homology of a complex n-dimensional Stein space vanishes in
dimensions > n [93, Sect. 5.3].

• (3) The sheaf of intersection chains on a general fibre specializes (over a curve) to
a perverse object on the special fibre [93, Sect. 6.1].

As the authors write on [93, Sect. 0.2], “other methods have been used to obtain
some of these results ..., however themethod ofMorse theory has several advantages:
it can be used to study homology with Z coefficients (as well as Q coefficients) and
it applies to analytic (as well as algebraic) varieties.”
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5.5.5 De Rham Theorems

By relating differential geometry to topology, de Rham’s theorem (1931) opened
the door to “countless” new results, applications, conjectures, and many alternative
proofs.

The passage from the smooth case to the singular case is due to Cheeger, Goresky
andMacPherson. From “geometric” results, theymainly developed the theory within
the framework of sheaves (see [88]). Several important conjectures have resulted in
various fields.

Although implicit in the previous works, the explicit and geometric translation
in terms of order of poles corresponding to the perversity was given in [28] (see
Sect. 5.5.5).

This section is divided into four parts: de Rham’s theorem in the smooth case,
de Rham’s theorem in the singular case, conjectures and applications, geometric
translation. In this section, all intersection homology groups are written with the
middle perversity the notation of which is omitted.

The Smooth Case

The de Rham Theorem (de Rham thesis [160]) provides a very useful relationship
between the topology and the differentiable structure of a P L-manifold. The de
Rham complex is the complex of smooth differential forms on a manifold M with
exterior derivative as the differential:

0 → �0(M)
d→ �1(M)

d→ �2(M)
d→ ...

The de Rham Theorem says that the cohomology H j
d R(M) of the de Rham complex

is isomorphic to the P L-cohomology H j (M;R). There are many proofs in the liter-
ature. TheWhitney’s book “Geometric integration theory” provides a nice geometric
proof of the Theorem [186, Chap. IV, Theorem 29A].

Let M be a Riemannian (compact) oriented manifold endowed with a metric g.
The metric induces an inner product on fibers T ∗

x (M) of the cotangent bundle and
then anL2-metric on� j (M) = �(� j (T ∗(M))). Let δ : � j (M) → � j−1(M) be the
formal adjoint of d relatively to the inner product and ∗ : � j (M) → �n− j (M) the
Hodge star operator [20]. The Hodge Theorem, first proved by Hodge (1933–1936)
with final proof by Hermann Weyl and Kunihiko Kodaira, says that every de Rham
cohomology class is represented by a unique harmonic form, i.e. a differential form
of which the Laplacian � is zero:

�(ω) = (dδ + δd)(ω) = 0.

A compact complex projective manifold is a Kähler manifold. The cohomology
groups admit a decomposition (pure Hodge decomposition)
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Hr (M;C) =
⊕

p+q=r

H p,q(M;C),

as direct sum of complex vector spaces and H p,q(M;C) = Hq,p(M;C). The (p, q)
components of a harmonic form are again harmonic.

The complex of sheaves is exact and is a soft resolution of the constant sheafRM .
It follows that the sheaf cohomology is the singular cohomology withR coefficients.

The Sheaf of L2 Differential Forms

In order to extend the theory to singular varieties, one considers a pseudomanifold
X whose regular part X0 = X \ � is a smooth (possibly incomplete) Riemannian
manifold with a metric g ([60], Sect. 3).

One define a presheaf on X by assigning by assigning to each open set U ⊂ X
the subset �(U,�i

(2)) in �i (U ∩ X0) of differential forms ω such that for any point
x in U , there is a neighbourhood V of x in U such that

∫

V ∩X0
ω ∧ ∗ω < ∞ and

∫

V ∩X0
dω ∧ ∗dω < ∞

This presheaf is filtered by differential form degree and the exterior derivative
makes it into a complex of presheaves. The associated sheaf complex, obtained by
“sheafification” is the sheaf of L2 differential forms denoted by�∗

(2). It is a complex
of fine sheaves whose cohomology is denoted by H∗

(2)(X).
The definition makes sense in the case of a local system L on X0 provided that L

has a smoothly varying positive definite inner product on each fiber. The restriction
of the sheaf to X0 is the sheaf of all smooth differential forms (with arbitrary growth)
on X0 (and coefficients in L).

The Cheeger-Goresky-MacPherson’s Conjecture

The study of L2 cohomology on the non-singular part of a variety with conical
singularities was initiated by Cheeger in the context of the study of analytic torsion.
In 1976 Sullivan observes similarity between I H andL2, namely similarity between
local results in Proposition 5.4.12 and forthcoming Lemma 5.5.30 The same year,
Deligne proposes to consider variation of Hodge structure on intersection homology
[60, p. 308] (see Sect. 5.5.5).

These observations led Cheeger, Goresky andMacPherson’s to the famous CGM
conjecture which concerns complex n-dimensional projective varieties and is in fact
made up of three conjectures [60, Sect. 4].

The conjecture are written for the middle perversity (here the two middle perver-
sities agree) which will be omitted.



5 Intersection Homology 281

Conjecture 5.5.27 states that the intersection homology groups I H∗(X) satisfy the
following 5 conditions of the “Kähler package”. That is :

1. Poincaré duality (see Sect. 5.5.8). The intersection pairing

I Hi (X) × I H2n−i (X) → C (5.40)

is non singular for all i .
2. Pure Hodge decomposition. There is a natural direct sumHodge decomposition

I Hr (X) ∼= ⊕p+q=r I Hp,q(X)

such that
I Hp,q(X) ∼= I Hq,p(X).

The decomposition is compatible withmaps I f∗ and I f∗ when they exist, for example
if f : Y → X is normally nonsingular with relative dimension m then

I f∗ : I Hp,q(Y ) → I Hp,q(X) and I f ∗ : I Hp,q(X) → I Hp−m,q−m(Y ).

Themap fromcohomology Hi (X) → I H2n−i (X) is amorphismofHodge structures.
3. Hard Lefschetz. Let H be a hyperplane in the ambient projective space, which is

transverse to a Whitney stratification of X . Let N ∈ H 2(X) denote the cohomology
class represented by H ∩ X and let L : I Hi (X) → I Hi−2(X) denote multiplication
by this class. then the map

Lk : I Hn+k(X) → I Hn−k(X)

is an isomorphism for each k.
Let define Pn+k(X) = ker(Lk+1), then the Lefschetz decomposition

I Hm(X) = ⊕k Lk(Pm+2k(X))

is compatible with the Hodge decomposition.
4. Lefschetz Hyperplane Theorem, Let H be a hyperplane in the ambient projective

space, which is transverse to a Whitney stratification of X . The homomorphism
induced by inclusion

I Hk(X ∩ H ;Z) → I Hk(X;Z)

is an isomorphism for k < n − 1 and a surjection for k = n − 1. (for instance see
[72, 102]).

5. Hodge Signature Theorem. If σ(X) denotes the signature of the intersection
pairing (5.40) on I Hn(X), then

σ(X) =
∑

p+q≡0(mod2)

(−1)p dim I H(p,q)(X).
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As written in [60], Conjecture 5.5.27 follows from the stronger following Con-
jectures 5.5.28 and 5.5.29.

Conjecture 5.5.28 The L2 cohomology group H k
(2)(X) is finite dimensional and is

isomorphic to the subspace Hk of �k ∩ L2 which consists of the square summable
differential k-forms which are closed and co-closed dω = δω = 0. Furthermore, the
operator “integration” preserves this subspace Hk .

Conjecture 5.5.29 For almost any chain ξ ∈ Ck(X) and almost anydifferential form
θ ∈ Hk , the integral

∫
ξ
θ is finite and

∫
∂η
θ = ∫

η
dθ whenever both sides are defined.

The induced homomorphism

H j
(2)(X)

∫

−→ Hom(I H m̄
j (X);C)

is an isomorphism.

Cheeger, Goresky andMacPherson conjectured that each class contains an unique
harmonic (closed and co-closed) representative and that splitting the harmonic forms
into their (p, q)–pieces yields a (pure) Hodge decomposition, compatible with
Deligne’s mixed Hodge structure on the ordinary cohomology groups of X . They
noted that the Hodge decomposition would exist if the metric on U were complete,
and they suggested that another approach to constructing a Hodge decomposition
of I H∗(X) is to construct a complete (Kähler) metric. Moreover, they gave a lot
of evidence for the validity of the conjectures. This fundamental work of Cheeger,
Goresky, and MacPherson has lead to a great deal of work by many people.

Poincaré Lemma for L2-cohomology
Let L be an n − 1-dimensional Riemannian (compact) manifold endowed with a
metric gL . For h > 0, the metric cone on L , denoted by ch(L), is the completion
of the incomplete Riemannian manifold L × [0,∞[ endowed with the metric g =
dr ⊗ dr + r2h gL .

As before,�•
(2)(c

h L) denotes the subset of differential formsω ∈ �• (ch(L) \ {0})
such that

∫

ch(L)\{0}
ω ∧ ∗ω < ∞ and

∫

ch(L)\{0}
dω ∧ ∗dω < ∞

where d : �i → �i+1 is induced by the external derivative and the operator ∗ is the
Hodge operator [20, 58, 59].

The L2-cohomology groups of the cone c(L), denoted by H j
(2)(c

h(L)) are coho-
mology groups of the complex �

•
(2)(c

h(L)).

Lemma 5.5.30 ([59, Lemma 3.4]) The L2-cohomology groups of the cone c(L)
satisfy
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H j
(2)(c

h(L)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H j
dR(L) if j <

n − 1

2
+ 1

2h

0 if j ≥ n − 1

2
+ 1

2h
.

Varieties with isolated conical singularities
Let X be a singular variety whose singularities are isolated points {ai } admitting
each one a neighborhood Ui in X , which is isometric to the (open) metric cone c̊(Li )

whose basis is a smooth manifold Li . In the particular case n is even, h = 1 and p̄
is the middle perversity m̄, then p̄(n) = n

2 − 1, and one has:

n − 1 − pn = n − 1

2
+ 1

2h
= n

2

Cheeger, Goresky and MacPherson study the two following cases:
(1) [59, Theorem 6.1] and [60, Sect. 3.4]. Let X be a pseudomanifold embedded as

P L-subvariety in R
N and let � the singular subset in X . There is, on X0 = X \ �,

a metric g̃ which endows the manifold X \ � of a structure of flat Riemannian
manifold, i.e. every point x in the n − 1-skeleton admits a neighborhoodUx isometric
to an open subset in R

N .
(2) [59, Sect. 3.5], [60, Sect. 3.5]. X is a compact analytic variety embedded in a

Kählerian manifold. Then X \ � is endowed with the metric induced by restriction
of the Kählerianmetric. One assume that� is locally analytically conical, that means
the following:

A variety X is locally analytically conical if each point p ∈ X has a neighborhood
U and an analytic embedding ρ : U → C

N such that ρ(U ) is a cone at ρ(p) (see
[60, Sect. 3.5 Definition and Examples]).

Theorem 5.5.31 ([60]) In the two previous cases, the integration map induces an
isomorphism:

H j
(2)(X)

∫

−→ Hom(I H p̄
j (X); R) (5.41)

The idea is to prove that the direct image of the presheaf on U formed of the
appropriate L2-forms of degree i has a “fine” associated sheaf and that, as i varies,
those associated sheaves form a (de Rham) complex that satisfies the axioms that
characterize IC∗(X); the cohomology groups of the complex are equal to its hyper-
cohomology groups because the sheaves are fine.

Other proofs of CGM conjectures
The conjectures of Cheeger, Goresky and MacPherson were also treated with some
success in the case that X0 is the smooth part of a complex projective variety X with
isolated singularities.

Let X be a normal singular algebraic surface (overC) embedded in the projective
space P

N (C) and let � be its singularity set, which consists of isolated singular
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points. Restricting the Fubini-Study metric of PN (C) to X0 = X \ �, provides an
incomplete Riemannianmanifold (X0, g).Wu-ChungHsiang andVishwambhar Pati
proved in [107] that the L2-cohomology Hi

(2)(X0) is naturally isomorphic to the
dual of themiddle intersection homology I H m

i (X). However their proof has a certain
gap corrected by Nagase [139] (see also [137, 138]). The “non- normal” case can be
proved in the same way by making its normalization, as asserted in [107].

Saper [163, 164] who was inspired by the case of the Zucker conjecture
(Sect. 5.5.5), constructed a complete Kähler metric on X0 whose L2-cohomology
groups are dual to the intersection homology groups of X .

Finally, Ohsawa [147, 148] proved the conjecture in dimension dim X ≤ 2: If
X in P

n(C) is a projective variety of dimension dim X ≤ 2, then the L2 de Rham
cohomology groups of the regular part X0, with respect to the Fubini-Study metric
are canonically isomorphic to the intersection cohomology groups of X .

The Deligne Conjecture: Variation of Hodge Structures

Over a compact Kähler manifold X , Deligne (unpublished manuscript, see [188])
has constructed canonical Hodge structures on the cohomology groups H p(X,L),
of weight p + k. When the basis X is non-compact, Deligne’s arguments still put
Hodge structures on the L2 cohomology groups of the completion X provided they
are finite dimensional.

Let X be a nonsingular algebraic variety and D is a divisor with normal crossings
in X , which may be interpreted as giving a stratification of X whose largest stratum
is X \ D. The considered local system is underlying a polarizable variation of Hodge
structure.

A variation of Hodge structure, considered as local system L on X \ D, has an
IC extension to all of X . Deligne conjectures that IC(X;L) is isomorphic to the
sheaf of L2 differential forms on X , where the Riemannian metric on X \ D, is the
complete metric that is hyperbolic near each codimension 1 divisor.

In the case of one dimensional base, Zucker [188] has obtained a natural identi-
fication

H∗
(2)(X ,L) ∼= H∗(X , i∗L)

here i∗L is the direct image of L on X . The L2 cohomology groups are then finite
dimensional and come equipped with Hodge structures.

Cattani et al. [51], and independently, Kashiwara and Kawai [111] proved the
Deligne conjecture, for higher dimensions:

Theorem 5.5.32 The complex of sheaves L2 differential forms on X satisfies the
axioms of middle intersection cohomology sheaf with values in the local system L.
In particular

H∗
(2)(X ,L) ∼= I H∗(X ,L)
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Corollary 5.5.33 The intersection cohomology groups I H ∗(X ,L) carry canonical
(pure) Hodge structures of weight p + k.

The Zucker Conjecture

Zucker was aware of the work of Cheeger, Goresky, and MacPherson that appears
in [59, 60] when he made the following conjecture, which first appeared in a 1980
preprint ([189]):

Conjecture 5.5.34 Let X be theSatake,Baily-Borel compactificationof the quotient
space U of a Hermitian symmetric domain modulo a proper action of an arithmetic
group �. Let U be provided with the natural complete metric, then the sheaf of
L2-differential forms on X with coefficients in a metrized local system L on U
is isomorphic (in the derived category) to the sheaf IC(X;L) (see Introduction in
[123]).

Zucker was led to this conjecture by some examples that he worked out [188,
Sect. 6] of his general results [189, (3.20) and (5.6)] about theL2-cohomology groups
of an arithmetic quotient of a symmetric space. In the examples, the compactification
is obtained by adjoining a finite number of isolated singular points, and Zucker was
struck by the values of the local L2-cohomology groups at these points: they are
equal to the singular cohomology groups of the link in the bottom half dimensions
and to 0 in the middle and in the top half dimensions (compare with Lemma 5.5.30).

Borel [15], Borel and Casselman [16] proved the Zucker conjecture in the partic-
ular case of a group of Q-rank one or two (see also [50]).

The conjecture has been fully proved by Looijenga [123], Saper and Stern [165].
Looijenga uses Mumford’s (1975) desingularization of X and the decomposition
theorem. Saper and Stern use a more direct method, which they feel will also yield
a generalization of a conjecture due to Borel (see [165]).

One reason for the great interest in Zucker’s conjecture is that it makes it possible
to extend the “Langlands program” to cover the important non compact case, as
Zucker indicates in [190].

Other Related Results

There is a lot of results related to the previous ones. The intersted reader may consult
Nagase [139], Saper [163], Pardon and Stern [150], etc.

The Geometric Viewpoint

In this section, all the homology and cohomologygroupswill bewith real coefficients.
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Shadow forms
The shadow forms have been defined by Brasselet, Goresky and MacPherson [28].

The idea is to associate a differential form ω(ξ) to simplices of a barycentric
subdivision K ′ of a given triangulation K , so that there is a clear relationship between
the defect of transversality of the simplices relatively to the simplices σ of K and
the order of the pole of the corresponding differential form on σ .

Various equivalent definitions of the shadow forms are provided in [28]. One of
them goes as follows: Let � = �n be the standard n-simplex.

� = {(x1, x2, . . . , xn+1) ∈ R
n+1| 0 ≤ xi ≤ 1,

∑
xI = 1}.

The shadow forms are defined for k-simplices ξ of the barycentric subdivision �′
which do not lie in the boundary of�. Such a barycentric subdivision can be defined
for each point p in the interior of �, requiring that for each pair F ′ < F of faces of
�, the barycenters of F , F ′ and of the face opposite to F ′ in F are collinear. The
corresponding barycentric subdivision of�will be denoted�′(p). Every k-simplex
ξ admits a geometrical realization ξ(p) in this subdivision.

Fig. 5.7 The shadow is the dotted area. The point p is in the shadow Sξ (c) but p′ is not

Let c be a singular chain in the interior of�, the shadow Sξ (c) cast by an (n − k)-
chain c with respect to ξ is the set of all points p such that ξ(p) intersects c (Fig. 5.7).

Definition 5.5.35 The shadow form ω(ξ) is the unique differential form such that
the value of its integral over any (n − k)-chain c is the volume of the shadow Sξ (c):

∫

c
ω(ξ) = volume (Sξ (c)).

An explicit equivalent definition goes as follows: denote by Dξ the incidence
variety

Dξ = {(p, x) ∈ int (�) × int (�) : x ∈ ξ(p)}.
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Let i be the inclusion i : Dξ ↪→ � × � and let π1 and π2 be the projections on the
first and second factors of � × �.

Dξ
i

� × �

π1 π2

� �

If (x1, . . . , xn+1) are the barycentric coordinates of�n , theWhitney form W (�n)

is the volume form of �n ,

W (�n) = W (x1, . . . , xn+1) = n!
n+1∑

i=1

(−1)i+1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn+1.

Proposition 5.5.36 The shadow form ω(ξ) is the (n − k)-differential form defined
by

ω(ξ) =
∫

π2

i∗π∗
1 (W (�n))

where
∫
π2

denotes integration along the fibres of π2 (see [20]).

The differential form ω(ξ) is C∞ on int (�). Indeed Dξ is a smooth manifold and
the fibres π−1

2 (x) ∩ Dξ are relatively compact.
Generalizing the definition to polyhedra provides:

Theorem 5.5.37 ([28, Corollary 9.3]) Let X be a polyhedron in the Euclidean space
Rn. Fix q, 1 ≤ q ≤ ∞, and denote by p̄(q) the highest perversity whose graph is
situated strictly below the line from origin and with slope 1/q. Then the intersection
homology of X, for the perversity p̄(q), is isomorphic to Lq -cohomology of X:

I H p̄(q)
k (X) ∼= H n−k

(q) (X).

Conjecture 5.5.38 (Brasselet et al. [28]) Let X be a stratified space with a Rie-
mannian metric and conical singularities. Let � be the singular set, q ≥ 2, and
Lq -cohomology of X \ � is finite dimensional, then it is isomorphic to intersection
cohomology of X .

The conjecture has been proved by Youssin [187] who also extends the result to
spaces with horn-singularities.

Belkacem Bendifallah [11] provided an explicit formula for the coefficients of
shadow forms as integrals ofDirichlet type, obtaining an alternative proof ofTheorem
5.5.37. He gave a duality formula and a product formula for shadow forms and
constructed the correct underlying algebraic structure.

The Brasselet-Legrand approach.
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J.-P. Brasselet and A. Legrand consider the situation of an n-dimensional pseudova-
riety X endowed with a Thom-Mather stratification, and whose strata are smooth
manifolds.

The idea is to prove a de Rham type theorem by considering a complex of
differential forms whose coefficients are C∞ functions on the regular part of X which
may have poles on the singular strata but whose behavior in a neighborhood of the
strata is controlled. The control is performed through two parameters, associated
with each stratum Sn−α . The first control βα corresponds to an admissible maximum
order of poles of the functions on the stratum, the second cα is related to the local
conical metric in the neighborhood of the stratum. An admissible differential form
can have a pole on a stratum, but the the order of the poles should not be too large
for the Poincaré lemma to be verified to some degree. Also, the quotients [βα/cα]
should satisfy the same inequalities than the G M-perversities (see formula 5.14).

The obtained complex�•
β,c is a complex of soft sheaves satisfying axioms [AX1] p̄

with

pα = α − 2 −
[
βα

cα

]

whose hypercohomology is intersection homology for the complementary perversity.
On the one hand the complex �

•
β,c is a generalization of the complex of shadow

forms.
On the other hand, it allows to define a suitable algebra in order to generalize

the Hochschild-Kostant-Rosenberg theorem to the case of singular varieties, more
precisely to manifolds with boundary and to varieties with isolated singularities. The
classical result of Hochschild et al. [105] asserts that the Hochschild homology of a
finitely generated, smooth complex algebra A equals the space of Kähler differentials
over A. In 1982, Connes [62] extended this result in a topological setting and in [31]
the authors generalize the Connes’s idea to the case of singular varieties with isolated
singularities.

The relation between the defects of transversality (perversity) of a cycle and the
order of the poles of the associated differential form are explicit in the context of
shadow forms and the context of the complex �

•
β,c. The smallest is the dimension

of the stratum, the greater the admissible order of the poles of the differential forms.
The physicist Alain Connes (private conversation) says that “there is a higher con-
centration of energy in the smaller singular strata”.

The Goresky-MacPherson’s complex �
•
q̄ .

The Goresky-MacPherson complex has been described by Brylinski [46] (for an
interpretation in terms of sheaf defined on the resolution of the stratified space see
[1, Sect. 6.5]).

Let π : M → B be a smooth fibration of smooth manifolds. A filtration (Cartan’s
filtration) of the de Rham complex �

•
M is defined as follows :

Definition 5.5.39 For k ≥ 0, Fk�
•
M is the sub-complex of �•

M consisting of the
differential forms ω such that ω and dω satisfy: if ξ1, ξ2, . . . , ξk+1 are k + 1 vector
fields on M , tangent to the fibres of π , then i(ξ1) ◦ · · · ◦ i(ξk+1)(ω) = 0.
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Let X be a pseudomanifold with C∞-structure, equipped with a Thom-Mather
stratification (see [179, 4.2.17]). If Si ⊂ S̄ j , (πi )|Ti ∩Sj is C∞ and πi ◦ π j = πi on
Ti ∩ Tj . One denotes by X0 the smooth stratum of X .

Definition 5.5.40 Let q̄ be a perversity, denote by�•
q̄ the sub-complex of�•

X0 con-
sisting of the differential formsω such that every point of Sn−α admits a neighborhood
V ⊂ Tn−α on which the restriction of ω is in Fq(α)�

•
V ∩X0 , relative to the projection

V ∩ X0 → Sn−α induced by πn−α .

This means that, near Sn−α , ω satisfies i(ξ1) ◦ · · · ◦ i(ξq(α)+1)ω = 0 if the ξi are
vector fields defined on X0 and are tangent to the fibers of πn−α .

Proposition 5.5.41 [46, Proposition 1.2.6] The complex of sheaves �
•
q̄ satisfies

(AX1)q̄ .

As a corollary, the hypercohomology groups of the complex of sheaves �•
q̄ are

isomorphic to Hom(I H p̄
j (X);R), where p̄ and q̄ are complementary perversities.

See also the survey by Pollini [156].

L∞-cohomology.
Let X be a subanalytic compact pseudomanifold. In [182] Valette shows a de Rham
theorem for L∞-cohomology forms on the nonsingular part of X . The obtained
cohomology is isomorphic to the intersection cohomology of X for the top perversity.
There is a Lefschetz duality theorem relating the L∞-cohomology to the so-called
DirichletL1-cohomology.As a corollary, theDirichletL1-cohomology is isomorphic
to intersection cohomology in the zero perversity.

Morse functions.
Let X be a space with isolated conical singularities. In [124] U. Ludwig establishes,
using anti-radial Morse functions on X , a combinatorial complex which computes
the intersection homology of X . The complex constructed is generated by the smooth
critical points of theMorse function and representatives of the de Rham cohomology
(in low degree) of the link manifolds of the singularities of X . It can be seen as
an analogue of the famous Thom-Smale complex for smooth Morse functions and
singular homology on a compact manifold.

5.5.6 Steenrod Squares, Cobordism and Wu Classes

In this section, the coefficients are the mod 2 integers Z2.

Steenrod Squares and Wu Classes

Goresky and Pardon [99] define four classes of singular spaces for which they define
various characteristic numbers and for which these characteristic numbers determine



290 J.-P. Brasselet

the cobordism groups. In the four cases, they construct characteristic numbers by
lifting Wu classes to intersection homology. Then they can multiply them.

In the singular case, the mod 2 Steenrod square operations have been defined in
intersection cohomology by Goresky in [87] (see also [99, Sect. 4]), as operations

Sqi : I H j
c̄ (X) → I Hi+ j

2c̄ (X)

for perversities c̄ such that 2c̄ ≤ t̄ . Via Poincaré duality one has similar operations
in intersection homology (with compact supports).

Definition 5.5.42 ([99, Sect. 5.1]) Let X be an n-dimensional pseudomanifold.
Assume c̄ is a perversity such that 2c̄ ≤ t̄ . Let b̄ = t̄ − c̄ be the complementary
perversity. For any i with 0 ≤ i ≤ [n/2] the Steenrod square operation

Sqi : I H c̄
i (X) → I H 2c̄

0 (X) → Z2

is given by multiplication with the intersection cohomology i th-Wu class of X :

vi (X) = vi
b̄
(X) ∈ I Hi

b̄
(X).

One defines vi (X) = 0, for i > [n/2].
If X is a Z2-Witt space (see Sect. 5.4.6), then the middle intersection homol-

ogy group is self-dual, i.e., satisfies the Poincaré duality over Z2. Also the natural
homomorphism

I Hi
m̄(X) → I Hi

n̄(X)

is an isomorphism.

Definition 5.5.43 ([99, Sect. 8.1]) A stratified pseudomanifold X is locally ori-
entable if, for each stratum, the link is an orientable pseudomanifold. A stratified
pseudomanifold X is a locally orientable Witt space if it is both locally orientable
and a Z2-Witt space.

In the situation of a locally orientable Witt space, the Wu classes which are
defined to be middle intersection homology classes, can be multiplied to construct
characteristic Wu numbers

ε(vi (X) · v j (X)) = 〈vn−i (X) ∪ vn− j (X), [X ]〉 ∈ Z2

where i + j = n. The map ε : H0(X,Z2) → Z2 denotes the augmentation and the
following diagram commutes:
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I H m̄
i (X) × I H m̄

j (X)
·

I H t̄
0(X)

ε
Z2

I H n−i
m̄ (X) × I H n− j

m̄ (X)
∪

∼=×∼=

I H n
0̄
(X).

∼=

Theorem 5.5.44 ([99, Theorem 10.5]) A locally orientable Witt space X of dimen-
sion n is a boundary of a locally orientable Witt space Y if and only if each of the
characteristic Wu numbers

vi j (X) = ε(vi (X)v j (X)v1(X)n−i− j ) ∈ Z2

vanish, where ε : H0(X;Z2) → Z2 denotes the augmentation.

Here, the class v1 is a cohomology class and vi v j is a (intersection) homology
class, so the product is a well defined cobordism invariant.

In [99] M. Goresky and W. Pardon provide further important results concerning
cobordism of singular spaces (see also [56]).

Cobordism of Maps in the Singular Case

Generalizing the results of R. Stong in the smooth case, J.-P. Brasselet, A. Libardi,
E. Rizziolli and M. Saia define the cobordism of maps in the following way:

Definition 5.5.45 ([34]) Let f : X → Y be a map between pseudomanifolds of
dimensions m and n respectively. The triple ( f, X,Y ) is null-cobordant if there
exist:

1. pseudomanifolds V and W with dimensions m + 1 and n + 1, respectively, and
∂V = X and ∂W = Y .

2. a map F : V → W such that the following diagram commutes.

UX

∼= φ

F|UX
UY

∼=ψ

∂V × [0, 1) f ×I d
∂W × [0, 1),

whereUX andUY are collared neighborhoods of X andY in V andW respectively,
and φ and ψ are P L-diffeomorphisms such that φ(x) = (x, 0), x ∈ ∂V and
ψ(y) = (y, 0), y ∈ ∂W .

3. F|∂V = f : ∂V → ∂W .

Let f : X −→ Y be a map, with X a compact locally orientable Witt space of
pure dimension m and Y a closed n-dimensional smooth manifold. Then the map f! :
I H

p̄

i (X) → I H
p̄

i (Y ) is defined in such a way that the following diagram commutes
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Hi (X)
f∗

Hi (Y )

I H p̄
i (X)

ωX

f!
I H p̄

i (Y )

ωY �

i.e. f! = (ωY )
−1 ◦ f∗ ◦ ωX , where the map ωY is an isomorphism since Y is smooth.

Denote by f̃! the composition map f̃! = α−1
Y ◦ f!, i.e. the composition map

I H p̄
i (X)

ωX−→ Hi (X)
f∗−→ Hi (Y )

P−1
Y−→ H n−i (Y )

where the last arrow denotes the inverse Poincaré isomorphism.

Theorem 5.5.46 ([34]) Let X be a compact locally orientable Witt space of pure
dimension m and Y a closed n-dimensional smooth manifold. Given a map f : X −→
Y , if the triple ( f, X,Y ) is null-cobordant, with ( f, X,Y ) = ∂(F, V, W ) and W is
a smooth manifold, then for any partition � and r numbers u1, . . . , ur satisfying
ui ≤ [m/2] for all i and (�1 + �2 + . . . �s) + u1 + . . . + ur + r(m − n) = n, the
Stiefel-Whitney–Wu numbers

〈w�(Y ). f̃!(vm−u1(X)). · · · . f̃!(vm−ur (X)), [Y ]〉

are zero.

Let f : X → Y be a proper and normally nonsingular map of pseudomanifolds,
there is an unique Gysin map

I fi : I H m̄
i (X) → I H m̄

i (Y )

such that the following diagram commutes (Theorem 5.5.18, see [94, Sect. 5.4.3]).

Hi (X)
f∗

Hi (Y )

I H p̄
i (X)

ωX

Ifi
I H p̄

i (Y ).

ωY

(5.42)

The same result holds for placid maps as well (Proposition 5.5.19, see [94] and
[5, Proposition 3.2]).

Theorem 5.5.47 ([34]) Let f : X −→ Y be a normally nonsingular (or placid)
map, with X and Y compact locally orientable Witt spaces of pure dimension m
and n respectively. If ( f, X,Y ) is null-cobordant, then for any u with 0 ≤ u ≤ n, the
following Wu numbers vanish:

〈vn−u(Y ).I fi (vu(X)), [Y ]〉 = 0.



5 Intersection Homology 293

5.6 Supplement: More Applications and Developments

5.6.1 Toric Varieties

Max Brückner (for the octatope) [43, 44], Max Dehn (in 1905, for dimensions 4 and
5) [65] and Duncan Sommerville [170] (in 1927, in all dimensions) proved certain
relations involving numbers of faces for simplicial polytopes.

Let P be an n-dimensional simplicial polytope. For i = 0, . . . , d − 1, let fi

denote the number of i-dimensional faces of p. The sequence

( f0, f1, . . . , fd−1)

is called the f -vector of the polytope P . Additionally, set f−1 = fd = 1. Then for
any k = 0, . . . , d − 2 the following Dehn-Sommerville equation holds:

d−1∑

j=k

(−1) j

(
j + 1

k + 1

)

f j = (−1)d−1 fk .

When k = −1, it expresses the fact thatEuler characteristic of an (d − 1)-dimensional
simplicial sphere is equal to 1 + (−1)d−1.

For k = 0, 1, . . . , d + 1, let

hk =
k∑

i=0

(−1)k−i

(
n − i

k − i

)

fi−1.

The (d + 2)-uple
h(P) = (h0, h1, . . . , hd+1)

is called the h-vector of P .
The generalized lower bound conjecture (McMullen-Walkup) [135] is the follow-

ing:

Conjecture 5.6.1 Let P be a simplicial n-dimensional polytope. Then

1. 1 = h0 ≤ h1 ≤ · · · ≤ h[ d
2 ].

2. for an integer 1 ≤ r ≤ d
2 , the following are equivalent:

a. hr−1 = hr .
b. there is a triangulation K of P all of whose faces of dimension at most d − r

are faces of P .

In McMullen [134] conjectured that the Dehn-Sommerville relations together
with the generalized lower bound conjecture provide sufficient conditions for the
existence of a simplicial polytope with a given h-vector.
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If k and i are positive integers, then k can be written uniquely in the form

k =
(

ni

i

)

+
(

ni−1

i − 1

)

+ · · · +
(

n j

j

)

,

where ni > ni−1 > · · · > n j ≥ j ≥ 1. Define

k<i> =
(

ni + 1

i + 1

)

+
(

ni−1 + 1

i − 1

)

+ · · · +
(

n j + 1

j + 1

)

.

Also define 0<i> = 0. A vector k0, k1, . . . , kd of integers is an M-vector if k0 =
1 and 0 ≤ ki−1 ≤ k<i>

i for 1 ≤ i ≤ d − 1. McMullen conjectured that a sequence
(h0, . . . , hd) of integers is the h-vector of a simplicial convex d-polytope if and only
if h0 = 1, hi = hd−i for 0 ≤ i ≤ d and the following sequence is an M-vector:

(h0, h1 − h0, h2 − h1, . . . , h[ d
2 ] − h[ d

2 ]−1).

The “if” part was proven by Billera and Lee [13].
The “only if” part was proven by Stanley [173] in a very surprising paper, as a

consequence of the inequalities of Betti numbers provided by the hard Lefschetz
theorem, and considering the cohomology of an associated toric variety, which is
non-singular. By this paper deep results from algebraic geometry are related to the
study of combinatorics.

A simplicial polytope is always rational so there exists an associated toric variety.
In the non-simplicial (but still rational) case the associated toric variety is singular. In
1981 R.MacPherson showed how to compute the (rational) intersection cohomology
of the (possibly singular) toric variety associated to any rational convex polytope and
spoke about it in many conferences. This calculation was popularized by J. Bernstein
and A. Khovanski. Proofs were published by: Fieseler [68] and by Denef and Loeser
[64]

In [172] Stanley used this calculation together with the hard Lefschetz theorem
for I H to prove the generalized lower bound conjectures for rational convex poly-
topes and conjectured that the same result holds in the non-rational case as well.
The calculations are simplified if one considers the torus-equivariant intersection
cohomology instead.

In the case of a non-rational polytope, no toric variety exists. This led to the
possibility of proving the same result for non-rational polytopes by constructing
the torus-equivariant intersection cohomology, in a purely combinatorial manner,
together with a proof that it satisfies the hard Lefschetz theorem. The theory was
successfully developed by Barthel et al. [8, 9], Bressler [37], Bressler and Lunts
[38, 39], Karu [110] (see also Fieseler [69] and Braden [21, 22]). This completed
the proof of Stanley’s conjectures for non-rational polytopes.
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5.6.2 The Asymptotic Set

Let F : X = C
n → Y = C

n be a polynomial mapping. In the study of geometrical
or topological properties of polynomial mappings, the set of points at which those
maps fail to be proper plays an important role. The asymptotic set

SF = {a ∈ Y s.t. ∃{ξk} ⊂ X, |ξk | → ∞, F(ξk) → a}

is the smallest set SF such that the map

F : X \ F−1(SF ) → Y \ SF

is proper. In a topological approach of the Jacobian conjecture, it reduces to show
that the asymptotic set of a complex polynomial mapping with non zero constant
Jacobian is empty. It is then natural to study the topology of the asymptotic set.

Define by Sing(F) the singular locus of F (the zero set of its Jacobian determi-
nant) and denote by K0(F) the set of critical values of F , i.e. the set F(Sing(F)).
Define theRiemannianmanifold MF asCn \ Sing(F)with the pull backofEuclidean
Riemannian metric on R2n = C

n . This metric is non degenerate outside the singular
locus of F .

Proposition 5.6.2 ([180, Proposition 2.3]) Let F : Cn → C
n be a polynomial map.

There exists a real semi-algebraic pseudomanifold NF ⊂ R
ν , for some ν ≥ 2n, such

that
Sing(NF ) ⊂ (SF ∪ K0(F)) × {0Rp }.

with p = ν − 2n, and there exists a semi-algebraic bi-Lipschitz map:

hF : MF → Reg(NF ),

where NF is equipped with the metric induced by R
ν .

Case F : C2 → C
2.

The first result comes from Anna and Guillaume Valette. In [180], they associate the
singular pseudomanifolds NF to polynomial mappings F : C2 → C

2. They prove
that themap F with non-vanishing Jacobian is not proper if and only if the intersection
homology of NF is nontrivial in dimension 2 and for any (or some) perversity. The
intersection homology of NF describes the geometry of the singularities at infinity of
themapping F . This provides a new and original approach to the Jacobian conjecture.
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Case F : Cn → C
n.

Th?uyNguy
∼
ên Thi. Bích, withAnna andGuillaumeValette [144] consider the leading

forms F̂i of the components of a polynomial mapping

F = (F1, . . . , Fn) : Cn → C
n.

They obtain:

Theorem 5.6.3 ([144]) Let F : Cn → C
n be a polynomial mapping with nowhere

vanishing Jacobian. If rank(DC F̂i )i=1,...,n > n − 2 then F is not proper if and only
if I H p̄

2 (NF ) �= 0 for any (or some) perversity p̄.

In [140] Th?uy Nguy
∼
ên T.B. shows that for a class of non-proper generic dominant

polynomial mappings, the results in [144, 180] hold also without hypothesis of non
emptyness of the set K0(F). In her thesis, [141], she provides explicit stratifications of
the asymptotic set SF and of the critical set K0(F) of polynomial map F : Cn → C

n

by a new method, that she called the method of “façons”. That method appears to be
a very powerful and a promising method not only for the computation of intersection
homology. A large number of examples is provided.

In [142], Th?uy Nguy
∼
ên T.B. describes explicitely such a variety NF associated to

the Pinchuk’s map and calculate its intersection homology. The result describes the
geometry of singularities at infinity of the Pinchuk’s map. She also shows that the
real version of the A. and G. Valette’s results in [180] does not hold.

Case F : Cn → C
n−1

Given a polynomial mapping G : Cn → C
n−1, with n ≥ 2, in [143], Th?uy Nguy

∼
ên

T.B. and M.A. Soares Ruas construct singular varieties VG , similarly to the previous
NF . They prove that if the intersection homologywith total perversity (with compact
or closed supports) in dimension two of (any of the corresponding) VG is trivial then
G is a fibration.

5.6.3 Factorization of Poincaré Morphism for Toric Varieties

In this section, all homology and cohomology groups are with Z coefficients. Refer-
ences for this section are [6–8] (see also [83]).

The Cartier and Weil divisors play an important role for normal varieties. Given
a Cartier divisor of a complex n-dimensional variety X one can associate its Chern
class in H 2(X;Z). Given a Weil divisor , one can associate its class in H2n−2(X;Z).
In the two cases, the class of a principal divisor is zero. Denoting by DivC(X) and
DivW(X) the abelian groups of classes of algebraic divisors of Cartier and Weil
modulo the principal divisors, there are homomorphisms
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c1 : DivC(X) → H2(X) and κ : DivW(X) → H2n−2(X).

For k = 2 the Poincaré morphism,

P2 : H 2(X) −→ H2n−2(X),

is cap-product by the fundamental class [X ] of X . Let D be a Cartier divisor, then

P2(c
1(D)) = κ(D).

In the smooth case, the Poincaré morphism is an isomorphism and the two notions
of divisors coincide.

For a normal toric variety X , the divisors classes admit invariant representatives
under action of the torus T (see [81, 3.4]); There are isomorphisms

DivC(X) ∼= DivTC(X) and DivW(X) ∼= DivTW(X)

where DivTC(X) and DivTW(X) denote the groups of invariant divisors classes.
A non-degenerated toric varieties is a toric variety which is not isomorphic to the

product of a toric variety of dimension d < n and an n − d-dimensional torus. Its
fundamental group is finite.

For every perversity p̄, let denote by i(p) the highest integer i ≤ n such that
p(2i) ≤ 1 and Vp the invariant open subset of X union of orbits with dimension at
least n − i(p). Then the group I H p̄

2n−2(X) is isomorphic to the group

DivTp̄(X) = {[D] ∈ DivTW(X) : D|Vp ∈ DivTC(Vp)}

and one has.

Theorem 5.6.4 ([6, Satz 2]) Let X be a non degenerated toric variety, then:

H 1(X) ∼= H cld
2n−1(X) = 0

and one has a commutative diagram

DivTC(X)

c1 ∼=

DivTp̄(X)

∼=

DivTW(X)

κ ∼=

H 2(X)
αX

I H p̄
2n−2(X)

ωX
H2n−2(X).

where the composition of maps in the lowest line is the Poincaré homomorphism.

In the case of degenerate toric variety, one has a more general result taking into
account the torus factor [6, 8].
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5.6.4 General Perversities

Several authors are breaking away from the conditions on perversities as defined by
Goresky and MacPherson in their original articles; see the (non exhaustive list of)
papers of Cappell and Shaneson [47], Chataur et al. [55], Friedman [75–77, 79],
Habegger and Saper [101], King [113], Saralegi-Aranguren [166].

These provides some interesting generalizations and results. that are sketched
out at certain points in this survey. Friedman’s article [79] itself provides a very
good survey on the subject. Quoting Friedman, his article is an expository survey
of the different notions of perversity in intersection homology and how different
perversities require different definitions of intersection homology theory.

“With more general perversities than GM-perversities, one usually loses topolog-
ical invariance of intersection homology (though this should be seen not as a loss
but as an opportunity to study stratification data), but duality results remain, at least
if one chooses the right generalizations of intersection homology. Complicating this
choice is the fact that there are a variety of approaches to intersection homology.”

With previous notation of strata, perversities such that pα ≤ codim X (Sn−α) − 2
have been studied in detail by Friedman (see [78]) who proved in particular Poincaré
duality for general perversities, Lefschetz duality for pseudomanifoldswith boundary
and Mayer-Vietoris sequence.

The Lefschetz duality for pseudomanifolds with boundary is also aim of the
paper [181] by G. Valette. On a pseudomanifold X with boundary, two perversities
are considered, the one for X and the other for the boundary ∂X . If the difference
between the chosen perversities is constant, then Lefschetz duality holds on X . Here,
allowable chains of the boundary ∂X are allowable on X .

5.6.5 Equivariant Intersection Cohomology

Equivariant intersection cohomology has been mainly studied by J.L. Brylinski, M.
Brion and R. Joshua, by T. Oda and, in the circle case, by J.I.T. Prieto, G. Padilla
and M. Saralegi-Aranguren.

Brylinski [46] provides an explicit complex in order to compute intersection
homology in the equivariant setting. T. Oda considers the situation of toric action
[145, 146]. Brion [40], Brion and Joshua [41], Joshua [108] provide a relationship
between the vanishing of the odd dimensional intersection cohomology sheaves and
of the odd dimensional global intersection cohomology groups. The authors provide
a geometric proof of the vanishing of odd dimensional local and global intersection
cohomology for Schubert varieties and complex spherical varieties. For a survey
on these works, see [109]. In their paper [42] the authors extend their methods to
algorithmically compute the intersection cohomology Betti numbers of reductive
varieties.
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In the papers [149, 158] G. Padilla, J.I.T. Prieto andM. Saralegi-Aranguren study
circle actions on pseudomanifolds by using intersection cohomology and equivariant
intersection cohomology. The orbit space and the Euler class of the action determine
the equivariant intersection cohomology of the pseudomanifold as well as its local-
ization.

5.6.6 Intersection Spaces

In [67], Timo Essig assigns cell complexes to certain topological pseudomanifolds
depending on a perversity function in the sense of intersection homology. The main
property of the intersection spaces is Poincaré duality over complementary perversi-
ties for the reduced singular (co)homology groups with rational coefficients. In the
paper [3] of M. Banagl, using differential forms, the resulting generalized cohomol-
ogy theory for pseudomanifolds was extended to 2-strata pseudomanifolds with a
geometrically flat link bundle.

The resulting homology theory H I is well-known not to be isomorphic to inter-
section homology (see Banagl and Hunsicker [4]) but mirror symmetry “tends to”
interchange I H and H I ([3]). A new duality theory for pseudomanifolds is obtained,
which addresses certain needs in string theory related to the existence of massless
D-branes in the course of conifold transitions and their faithful representation as
cohomology classes (see Banagl [2]).

5.6.7 Blown-Up Intersection Homology

In [29, 30] Brasselet et al. use a notion of “déplissage” apparented to blow-up in
order to define integration of differential forms on simplices and to prove a de Rham
theorem for stratified varieties.

A similar method has been used by D. Chataur, M. Saralegi and D. Tanré to
define the so called “blown-up intersection homology”. The initial aim [52] is to
extend Sullivan’s minimal models theory to the framework of pseudomanifolds. The
authors prove also a conjecture of M. Goresky andW. Pardon on Steenrod squares in
intersection homology [99]. The relation with rational homotopy has been extended
in [53]. The authors work in a context of simplicial sets in the sense of Rourke and
Sanderson [162]. This provides a definition of formality in the intersection setting.

In [54] the authors prove the topological invariance of the blown-up intersection
cohomology with compact supports in the case of a paracompact pseudomanifold
with no codimension one strata.

Based upon simplicial blow-up, Chataur and Tanré construct in [57] Eilenberg-
MacLane spaces for the intersection cohomology groups of a stratified space, answer-
ing a problem asked by M. Goresky and R. MacPherson ([18, Chap. IX, Problem
11]).
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5.6.8 Real Intersection Homology

Whether there is a good analog of intersection homology for real algebraic varieties
was stated as a problem by Goresky and MacPherson in [18, Chap. IX, Problem 7)].
They observed that if such a theory exists then it cannot be purely topological; indeed
the groups constructed byMcCrory and Parusiński in [133] are not homeomorphism
invariants. These authors consider a class of algebraic stratifications that have a
natural general position property for semialgebraic subsets. They define the real
intersection homology groups I H Sk(X) and show that they are independent of the
stratification. If X is nonsingular and pure dimensional then I H Sk(X) = Hk(X;Z2),
classical homology with Z2 coefficients. An intersection pairing is defined.

5.6.9 Perverse Sheaves and Applications

Perverse sheaves and applications deserve a survey for the subject itself. Various
authors wrote surveys concerning perverse sheaves and applications, they are clear
and informative. In the MacPherson papers [127, 128], MacPherson and Vilonen
[129],Massey survey [125] andKlinger survey [118],many references and results are
given concerning in particular three main applications of perverse sheaves: Decom-
position theorem, Weak and Hard Lefschetz theorems.

It is fair to mention in these papers other important applications such as Kazdhan-
Lusztig conjecture, D-modules and Riemann-Hilbert correpondence, characteristic
p and Weil conjecture, etc.

The story is far from over. Today there are many books and papers: an extensive
literature on perverse sheaves in various fields of mathematics, showing the interest
and diversity of the subject. The interested reader will find in the perverse sheaves a
subject of fascinating discovery and exploratory innovation.
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Chapter 6
Milnor’s Fibration Theorem for Real and
Complex Singularities

José Luis Cisneros-Molina and José Seade

Abstract Milnor’s fibration theorem is a landmark in singularity theory; it allowed
to deepen the study of the geometry and topology of analytic maps near their critical
points. In this chapter we revisit the classical theory and we glance at some areas
of current research. We start with a glimpse at the origin of the fibration theorem,
which is motivated by the study of exotic spheres. We then discuss an elementary
example where all the ingredients of the fibration theorem are described in simple
terms, and we use this as a guideline all along the chapter. The first part concerns
complex singularities, which is a fairly mature area of mathematics; we survey some
of the main steps in this line of research and indicate a wide bibliography as well as
relations with other chapters in this book. The second part concerns real singularities,
a theory that still is in its youth, though it springs also from Milnor’s seminal work.
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6.1 Introduction

Milnor’s fibration theorem [110] is a landmark in singularity theory, it allowed to
deepen the study of the geometry and topology of analytic maps near their critical
points. To each singular point of a complex hypersurface it associates a fibre bundle,
known as the Milnor Fibration of the singularity.

The classification of singularities from a topological viewpoint started with the
work of Brauner [14], he considered singular points of plane curves C in C

2 and
analyses the intersection L = C ∩ S

3
ε of C with a small sphere S3ε of radius ε centred

in the singular point. The intersection L is a knot or link in S
3
ε and the pair (S3ε, L)

determines the local topology of the curve near the singular point (see Sect. 6.4). Fur-
ther work in this direction was also done in [19, 79, 147, 165]. For normal surfaces,
Mumford [114] proved that if V has a singularity at P then its link LV = V ∩ S

5
ε is

never simply connected, hence, it cannot have the homotopy type of a 3-sphere S3.
Later, Brieskorn proved [15] that in higher dimensions there is no analogue to Mum-
ford’s theorem, by showing examples of singularities of n-dimensional hypersurfaces
whose link is homeomorphic to the 2n − 1-sphere, in some of these examples the
link L of the singularity is diffeomorphic to the standard 2n − 1-sphere, while in
other cases L is an exotic sphere [16, 70]. Motivated by Brieskorn’s result, Milnor
determined when the link LV of a complex hypersurface V is a homology sphere
[110, Theorem 8.5], a key ingredient for this result is Milnor’s fibration theorem (see
Sect. 6.2).

Let f : (Cn+1, 0) → (C, 0) be a holomorphicmap taking the origin into the origin,
with an isolated critical point at 0. Since f is analytic, there exists r > 0 sufficiently
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small so that 0 ∈ C is the only critical value of the restriction f |Br , where Br is the
open ball of radius r and center at 0. Set

V := f −1(0) and V ∗ := V \ {0}.

So V ∗ is an n-dimensional complex manifold. We know (see Sect. 6.4) that V ∗
meets transversely every sufficiently small sphere Sε in C

n+1 centered at 0 and
contained in Br . The manifold LV := V ∩ Sε is called the link of the singularity and
its diffeomorphism type does not depend on the choice of the sphere. Then Milnor’s
fibration theorem [110, Theorem 4.8] says that for every such sphere Sε we have a
smooth fiber bundle (see Sect. 6.5)

ϕ := f

| f | : Sε \ LV −→ S
1 . (6.1)

The fiber is diffeomorphic to a 2n-ball to which one attaches handles ofmiddle index.
The number of such handles is nowcalled theMilnor number of the singularity. In fact
f can have non-isolated critical points and we still have fibration (6.1). In this case,
the link LV is not longer a smooth manifold and the Milnor fiber is diffeomorphic
to a ball to which we must attach handles of various indices. The precise number of
handles of each index is prescribed by the Lê numbers of the singularity, a concept
introduced by Massey [99, 100] (see Sect. 6.6.2).

Thefibers F f are diffeomorphic to the complexmanifolds obtained by considering
a regular value t sufficiently near 0 ∈ C and looking at the piece of f −1(t) contained
within the open ball Bε bounded by Sε (see Fig. 6.1).

Milnor also proved a fibration theorem for real singularities [109, Theorem 2] or
[110, Theorem 11.2]. Let f : (Rn, 0) → (Rp, 0), n ≥ p ≥ 1, be a real analytic map
with an isolated critical point, one has a fiber bundle:

ϕ : Sn−1
ε \ LV −→ S

p−1 . (6.2)

Fig. 6.1 The Milnor fiber
F f
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In general the projection map ϕ can only be taken as f/‖ f ‖ in a neighborhood of
the link LV . Also, as pointed out [110, Sect. 11], the condition of having an isolated
critical point is very restrictive. Generically the set of critical values has positive
dimension, and even if the only critical value is 0, it is fairly stringent to ask for
having an isolated critical point (see for instance [41]).

From his appearance, Milnor’s fibration theorem has opened the way to countless
insights and new understandings. It is a beautiful piece of mathematics, where many
different branches, aspects and ideas, come together. In this chapter we revisit the
classical theory in both the complex and real settings, we present various extensions
of it, we glance at some areas of current research and we indicate some connections
with other topics treated in this volume.

This chapter consists of two parts, the first one comprises Sects. 6.2 to 6.7 and is
devoted to complex singularities. In Sect. 6.2 we explain how the search of exotic
spheres in links of complex hypersurface lead toMilnor’s fibration theorem. Sect. 6.3
presents the particular case of Brieskorn-Pham polynomials, these are polynomials
studied by Pham [135] and by Brieskorn [16], where one can see in an elementary
way all the properties and ingredients involved in Milnor’s fibration theorem. This
model example will be the guiding theme and we will be referring to it through the
chapter. Sect. 6.4 explains the local conical structure of real and complex analytic
sets. In Sect. 6.5 we present the classical fibration theorems: the fibration on a sphere
(6.1), the fibration on a tube and their equivalence. Section 6.6 consists of three parts.
The first one focus on the topology and geometry of the link of isolated singularities.
The second part deals with the topology and geometry of the fibre, it starts introduc-
ing the Milnor number μ( f ) of a holomorphic map with isolated critical point: the
fibre of the Milnor fibration has the homotopy type of a wedge of spheres of middle
dimension and μ( f ) is the number of spheres. We present two ways to compute it,
one topological and the other algebraic.We also present Lê numbers, which are a gen-
eralization of the Milnor number introduced by Massey for holomorphic maps with
non-isolated critical point that wementioned above. In the third part wemention rela-
tions ofMilnor’s fibration with other subjects: smoothings of singularities; vanishing
cycles and the Milnor lattice; monodromy, open book decompositions and contact
structures. Section 6.7 presents several extensions of Milnor’s fibration. Firstly, we
describe the fibration for an isolated complete intersection singularity (ICIS). Then,
we present theMilnor-Lê fibration, a fibration on a tube for a holomorphic map germ
f : (X, 0) → (C, 0) on an analytic subset X of Cn , and we introduce the canonical
pencil of f , which gives a fibration on a ball Bε minus the variety V = f −1(0).

The second part of the chapter deals with real singularities and consists of
Sects. 6.8 to 6.11. In Sect. 6.8 we present the classical Milnor fibration (6.2) for
real analytic maps f : (Rn, 0) → (Rp, 0), n ≥ p ≥ 1 with an isolated critical point.
We discuss its main weaknesses compared with is complex counterpart, in particular
the fact that in general, the projection is not given by f/‖ f ‖. At this respect, we
introduce the strong Milnor condition and some results related to it. Section 6.9 is
devoted to the existence of fibrations for real analytic maps with non-isolated critical
point. First we consider the case of maps with isolated critical value, these include
polarweighted homogeneous polynomials, an interesting family of real analytic poly-
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nomials which generalize complex weighted homogeneous polynomials and which
behavemuch like them but also new structures can appear, for instance, they can have
open book decompositions that cannot appear in complex singularities. In Sect. 6.10
we discuss a regularity condition that is necessary and sufficient to assure that if
we have the fibration (6.2), we can take the projection ϕ to be f/| f | everywhere.
This is called d-regularity. We finish with Sect. 6.11 which is about critical points
of analytic functions in the complex variables z1, . . . , zn and their conjugates. We
encounter some examples of these functions already in previous sections. This type
of functions were called mixed functions by Oka [119].

Complex Singularities

6.2 Exotic Spheres and the Birth of Milnor’s Fibration

In 1956 Milnor [108] proved the astonishing result that topological manifolds can
have inequivalent differentiable structures constructing the first “exotic spheres”:
smooth 7-manifolds homeomorphic to S

7 but with non-equivalent differentiable
structures.

The set Sn of equivalence classes of smooth structures on the n-sphere S
n is a

monoid, with operation the connected sum and the identity element the standard
sphere Sn . Smale [154], Stallings [156] and Zeeman [166] proved that every homo-
topy n-sphere, n �= 3, 4, is homeomorphic to the standard n-sphere Sn . Also Smale
[155] proved that two homotopy n-spheres, n �= 3, 4, are h-cobordant if and only if
they are diffeomorphic. Thus, for n �= 4, the monoid Sn is isomorphic to the monoid
�n of all h-cobordism classes of homotopy n-spheres. The case n = 3 follows by
Perelman’s proof of Poincaré’s conjecture.

Kervaire andMilnor [81] studied�n and proved that thismonoid is actually a finite
abelian group. They noticed that �n contains a “preferred subgroup” bPn+1 ≤ �n ,
of those homotopy spheres that bound a parallelizable manifold, i.e., a manifold
with trivial tangent bundle. This is a finite cyclic group which has finite index in
�n . This cyclic group is trivial for n even and has order 1 or 2 for n ≡ 1 (mod 4),
being generated by the Kervaire sphere [80], the boundary of the manifold obtained
by plumbing two copies of the tangent disk bundle of Sn . By [18] bPn+1

∼= Z2 (or
equivalently, Kervaire’s sphere is exotic) if n ≡ 1 (mod 8). For n ≡ 3 (mod 4),
(n + 1 = 4m for some m > 1) its order |bP4m | grows more than exponentially:

|bP4m | =
[
22m−2

(
22m−1 − 1

)] ·
[
numerator of

(4Bm

m

)]
, (6.3)

where the Bm are the Bernoulli numbers. Thus for instance (see [69, 81]), for
n = 7, 11, 15 or 19 there are, respectively, |bPn+1| = 28, 992, 8128 and 130816
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non-equivalent differentiable structures on the n-sphere that bound a parallelizable
manifold. The structure of S4 is still an open problem (see [111, 112]).

6.2.1 Singularities and Exotic Spheres

Let (V, P) be a complex analytic variety of complex dimension n in some affine
space C

N , with a unique singular point at P . Then V ∗ = V \ {P} is a complex
n-manifold.

Proposition 6.2.1 There exists ε > 0 sufficiently small, so that every sphere Sr in
C

N of radius r ≤ ε and center at P meets V ∗ transversely.

This is proved in [110, Chap. 2] when V is algebraic and it is a particular case
of a general theorem about the local conical structure of analytic sets, see Sect. 6.4.
It follows that if (V, P) is as above, then its link LV := Sε ∩ V is a smooth real
analytic manifold of dimension 2n − 1.

For n = 1, LV is a union of circles, one for each branch of V . For n = 2, in 1961
Mumford [114] proved that if V has a normal singularity at P then its link LV is
never simply connected, hence, it cannot have the homotopy type of a 3-sphere S3.
In 1966 Brieskorn [15] proved that if V is given by the equation

z30 + z21 + · · · + z2n = 0, n ≥ 3 odd,

which has an isolated singularity at the origin, then LV is homeomorphic to the
sphere S2n−1, showing that for dimensions higher than 2, there is not an analogous
of Mumford’s theorem. Brieskorn’s result motivated the search of exotic spheres in
the links LV of complex hypersurfaces V , i.e., defined by one single equation, with
isolated singularities. So one has to answer the following question:

Question 6.2.2 Can we know when LV is a homotopy sphere?, and if so, can we
determine which element in �n it represents?

Question 6.2.2 was answered by the work of various people in the 1960s, most
notably by E. Brieskorn, F. Hirzebruch and J. Milnor, see [44, 62] for more details
of this interesting story.

Combining the result by Brieskorn with results of Jänich [78] (Independently
proved in [71]), Hirzebruch [70] proved that the link�(d, 2, . . . , 2) of the singularity
given by the equation

zd
0 + z21 + · · · + z2n = 0, with both n and d odd,

is a homotopy sphere. In particular, �(3, 2, 2, 2, 2, 2) is the 9-dimensional exotic
Kervaire sphere. Also inspired by Brieskorn’s result, Milnor, in a letter to J. Nash,
considered in more generality singularities of hypersurfaces of the form
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za0
0 + za1

1 + · · · + zan
n = 0, ai ≥ 2 , (6.4)

and conjectured which of them have links which are spheres.
Pham [135] motivated by applications to the theory of elementary particles stud-

ied the smooth complex hypersurface za0
0 + za1

1 + · · · + zan
n = 1, he computed its

homotopy type (see Property 6.3.8 in Sect. 6.3), its intersection pairing and its mon-
odromy. Pham’s computations were the ingredients that allowed Brieskorn [16] to
prove Milnor’s conjecture. One of these results is the following remarkable theorem
of Brieskorn [16, Korollar 2].

Theorem 6.2.3 Every exotic sphere of dimension m = 2n − 1 > 6 that bounds a
parallelizable manifold is the link of some hypersurface singularity of the form

za0
0 + za1

1 + · · · + zan
n = 0 ,

for some appropriate integers ai ≥ 2, i = 0, 1, . . . , n.

As a particular case Brieskorn proved that the link of the singularity

z30 + z6k−1
1 + z22 + · · · + z22m = 0 ; k ≥ 1 , m ≥ 2 .

is a (4m − 1)-sphere in bP4m . For m = 2 and k = 1, . . . , 28 we get the 28 classes of
7-spheres, and for m = 3 and k = 1, . . . , 992, we get the 992 classes of 11-spheres.

Afterwards, Milnor [110] answered Question 6.2.2 for general complex hyper-
surfaces with an isolated singularity using his fibration theorem.

LetV be the zero-locus of an analyticmap f : (Cn+1, 0) → (C, 0)with an isolated
critical point at 0. Equip its link L2n−1

V with its natural differentiable structure as the
transverse intersection LV = Sε ∩ V of two smooth submanifolds of Cn+1. One has
a map:

ϕ := f

| f | : Sε \ LV −→ S
1 , (6.5)

and Milnor’s fibration theorem says that this is a smooth fiber bundle.
Milnor also proves that the fiber Ft is diffeomorphic to the portion of a non-critical

level f −1(t) contained within the ball Bε bounded by Sε (see Fig. 6.1). This implies
that the normal bundle of Ft is trivial, being the inverse image of a regular value.
Hence the tangent bundle T Ft is stably trivial, i.e., Ft is stably parallelizable, and
we know from [81] that for compact connected manifolds with non-empty boundary,
stably-parallelizable implies parallelizable. Thus we get:

Proposition 6.2.4 The link LV of every complex hypersurface isolated singularity
bounds the fibers Ft , which are parallelizable manifolds.

The point is to know when LV is a homotopy sphere, and when this happens,
which element it represents in bP2n . Milnor proved that the link of every isolated
hypersurface singularity in C

n+1 is (n − 2)-connected [110, Theorem 5.2] and the
fiber Ft has the homotopy of a bouquet

∨
S

n of spheres of middle dimension [110,
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Theorems 6.5]. The number of spheres in the bouquet
∨
S

n is strictly positive, unless
V has no singularity. This is now called the Milnor number μ of f (see Sect. 6.6).

For n > 2 the link is simply connected and therefore the Hurewicz isomorphism
implies that the homology of LV also vanishes in dimensions i = 1, . . . , n − 2.
Since LV is always orientable, by the Poincaré duality isomorphism its homology
vanishes in dimensions n + i , i = 1, . . . , n − 2 as well. Thus the only possibly non-
zero groups are in dimensions i = n, n − 1 and of course i = 0, 2n − 1 where they
are isomorphic to the group of the integers (or the corresponding ring of coefficients).

If Hn−1(LV ) vanishes then Hn(LV ) also vanishes, by duality, and LV is a homol-
ogy sphere. If n ≥ 2, then LV is simply connected by [110]. Hence, if n > 2 then
Smale’s theorem in [155] implies (Poincaré’s Conjecture in dimensions ≥ 5) that
LV is actually homeomorphic to S2n−1. So the question is to decide when Hn−1(LV )

vanishes, and it is here that the fibration theorem enters the scene.
Fix a fiber F0 and consider the monodromy h : F0 → F0 (a first return map, see

Sect. 6.6.3) of the bundle (6.5) and the induced representation in themiddle homology
of the fiber

h∗ : Hn(F0) → Hn(F0) .

Let �(t) = det(h∗ − t I∗) be the characteristic polynomial of the monodromy. Cor-
responding to Milnor’s fibration there is a Wang sequence (see p. 67 in [110]):

Hn(F0)
h∗−I∗−−−→ Hn(F0) −→ Hn(Sε − LV ) −→ 0 .

By Alexander and Poincaré dualities we have

Hn(Sε − LV ) ∼= H n(LV ) ∼= Hn−1(LV )

and one arrives at Milnor’s theorem [110, Theorem 8.5],

Theorem 6.2.5 For n > 2 the link LV is a topological sphere if and only if the
determinant �(1) of h∗ − I∗ is ±1.

If n is odd, dim LV ≡ 1 (mod 4). The diffeomorphism class of LV in bP2n is
determined by the Kervaire invariant c(F0) ∈ Z2, and a theorem of Levine [92]
asserts that in this case the Kervaire invariant is given by

c(F) = 0i f �(−1) ≡ ±1 (mod 8), c(F) = 1i f �(−1) ≡ ±3 (mod 8).

If n is even, dim LV ≡ 3 (mod 4) and 2n = 4m for some m > 1. The diffeomor-
phism class of LV in bP4m is determined by the signature of the intersection form of
the Milnor fibre

Hn(F0) ⊗ Hn(F0) → Z.

Consider the collection of all 4m manifolds M which are stably parallelizable and
are bounded by the (4m − 1)-sphere. The corresponding signatures σ(M) ∈ Z form
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a group under addition. Let σm > 0 denote the generator of this group. Kervaire and
Milnor proved [81, Theorem 7.5] that if�1 and �2 are homotopy (4m − 1)-spheres,
m > 1, which bound stably parallelizable manifolds M1 and M2 respectively, then
�1 and �2 are h-cobordant, and therefore diffeomorphic, if and only if σ(M1) ≡
σ(M2) (mod σm). On the other hand, an integer σ occurs as σ(M) for some stably
parallelizable manifold M bounded by a homotopy sphere if and only if σ ≡ 0
(mod 8). Therefore |bP4m | = σm/8 and it is given by the multiple of the numerator
of 4Bm

m given in (6.3), where Bm is the m-th Bernoulli number.

6.2.2 Open Questions

Onemay consider singularities which are not hypersurfaces, and try to produce other
elements in the homotopy of spheres. To our knowledge, little is known about this
problem. If we consider complex isolated complete intersection singularities, one
always has a Milnor fibration and the fibers can be regarded as being the interior of
compact parallelizable manifolds with boundary the link, by [65]. So in these cases,
if the link is an exotic sphere, this is in bP2n ≤ �2n−1, which is the simplest and best
understood part of �2n−1.

The second author thanks Patrick Popescu-Pampu for bringing to his attention the
following interesting question posed by Durfee [162, Problem H, p. 252]:

Question 6.2.6 Does every exotic sphere occur as the link of an isolated complex
singularity?

A step for answeringQuestion 6.2.6 is the question that Popescu-Pampu originally
asked:

Question 6.2.7 Does there exist a complex isolated singularitywhose link is a homo-
topy sphere that does not bound a parallelizable manifold?

Such examples, if they exist, would produce elements in the most mysterious part
of the groups �n .

6.3 Model Example: the Brieskorn-Pham Singularities

This section presents the particular case of Brieskorn-Pham polynomials, studied by
Pham [135] and by Brieskorn [16], where one can see in an elementary way all the
properties and ingredients involved in Milnor’s fibration theorem.

Definition 6.3.1 ABrieskorn-Pham polynomial is amap f : Cn+1 → C of the form:

za0
0 + ... + zan

n , ai ≥ 2 . (6.6)
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A simple computation shows that the origin 0 ∈ C
n+1 is its only critical point, so

V := f −1(0) is a complex hypersurface with an isolated singularity at 0. Let d be
the lowest common multiple of the ai and for each i = 0, . . . , n set di = d/ai . Then
one has aC∗-action onCn+1 determined for every non-zero complex number λ ∈ C

∗
by

λ · (z0, . . . , zn) → (λd0 z0, . . . , λ
dn zn) (6.7)

Observe that one has:

f (λd0 z0, . . . , λ
dn zn) = λd f (z1, . . . , zn) (6.8)

so f is weighted homogeneous (see Definition 6.3.9 below). This C∗-action has 0
as its only fixed point and V is an invariant set, union of C∗-orbits. This has the
following properties:

Property 6.3.2 (Conical structure) Restricting the action (6.7) to the positive real
numbers t ∈ R

+, we get a flow such that:

• each orbit converges to 0 as t tends to 0, and it goes to infinity as t tends to ∞;
• each orbit is transverse to all spheres centered at 0. Hence V intersects transversely
every (2n + 1)-sphere Sr centered at 0, so Kr := V ∩ Sr is a real codimension 2
smooth submanifold of Sr ;

• Given arbitrary spheres Sr ,Sr ′ centered at 0, the flow gives a diffeomorphism from
Sr into Sr ′ taking Kr into Kr ′ . Moreover, the flow determines a 1-parameter group
of diffeomorphisms that exhibits the pair (Cn+1, V ) as the cone over (Sr , Kr ). We
denote the manifold Kr by L f and call it the link (see [43, 110]).

Property 6.3.3 (Constant argument) The argument of the complex number f (z) is
constant on each orbit of the aboveR+-action, i.e., f (z)/| f (z)| = f (t z)/| f (t z)| for
all t ∈ R

+.

Property 6.3.4 (Fibration on tubes)

• The restriction of the C∗-action to S
1 leaves invariant every sphere around 0.

• By (6.8), multiplication by eiθ in C
n transports each fiber f −1(ζ ) into the fiber

f −1(eiθd · ζ ). Hence S1 acts on each tube N (δ) := f −1(∂Dδ) , carrying fibres of
f into fibres of f , where ∂Dδ

∼= S
1 is the boundary of the disc inC of radius δ > 0

and centered at 0. A direct computation shows that the orbits of this action are
transverse to the fibers of f . So we have a smooth fiber bundle:

f : N (δ) → ∂Dδ. (6.9)

• By Property 6.3.2 V is transverse to the unit sphere S2n+1 and since each point in
V \ {0} is regular, each fiber f −1(t) with |t | sufficiently small is also transverse to
S
2n+1.

• Hence, if we set N (1, δ) := N (δ) ∩ B
2n+2, where the 1 means that the ball B2n+2

has radius 1, we have that the fiber bundle (6.9) determines a fiber bundle:
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f : N (1, δ) → ∂Dδ
∼= S

1 . (6.10)

This is the second classical version of Milnor’s fibration for the map f , known as
Milnor-Lê fibration.

Property 6.3.5 (Fibration on the ball) Observe that for each line Lθ through the
origin in C, we may consider the set

Xθ := {z ∈ C
n | f (z) ∈ Lθ } .

Each Xθ is a real analytic hypersurface with an isolated singularity at 0, their union
fills the entire Cn+1 and their intersection is V . By Property 6.3.3, the orbits of the
R

+action are contained in the Xθ ’s. By Property 6.3.2, each Xθ is transverse to all the
spheres, and by Property 6.3.4, the S

1-action permutes these hypersurfaces. Thus,
one has that these varieties define a pencil in C

n+1, a sort of open-book where the
binding is now the singular variety V , and each of these varieties is transverse to
every sphere around 0. If we remove V from C

n , for every ball around 0 we get a
fiber bundle

ϕ = f

| f | : B2n \ V −→ S
1 . (6.11)

The fiber over a point eiθ is a connected component of Xθ \ V . The other component
is f −1(e−iθ ).

Property 6.3.6 (Fibration on the sphere)We now focus our attention near the origin,
say restricted to the unit ball B2n+2 in C

n+1. Since each Xθ meets transversely the
sphere S2n+1 = ∂B2n+2, the intersection is a smooth codimension 1 submanifold of
the sphere, containing the link L f = V ∩ S

2n+1. And since the orbits of the S1-action
preserve the sphere S2n+1, the restriction of ϕ to S

2n+1 defines the classical Milnor
fibration:

ϕ = f

| f | : S2n+1 \ L f −→ S
1 . (6.12)

Property 6.3.7 (Equivalence of fibrations) Each R+-orbit is everywhere transverse
to the tube N (δ), by Property 6.3.2 it is transverse to the sphere S

2n+1, and by
Property 6.3.3, the complex numbers f (z) have constant argument along each orbit.
Thence the integral lines of this action determine a diffeomorphism between N (1, d)

and S2n+1 minus the part of the sphere contained inside the open solid tube f −1(
◦
Dδ).

This determines the classical equivalence between the Milnor fibration in the sphere
(6.12) and the Milnor-Lê fibration in the tube (6.10).

Property 6.3.8 (Join) Consider the fibre F = f −1(1). Pham [135] gave an explicit
construction of a vanishing polyhedron P which is a deformation retract of F . The
polyhedron P is homeomorphic to the join Ga0 ∗ · · · ∗ Gan where Ga j is a set with
a j points. Hence, F has the homotopy type of a wedge

∨
Sn of n-spheres, where
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the number of spheres is (a0 − 1)(a2 − 1) . . . (an − 1). This number is now called
the Milnor number of the singularity.

6.3.1 Weighted Homogeneous Singularities

We now remark that everything we said above works in exactly the same way when
V is defined by the following larger class of polynomials.

Definition 6.3.9 A complex polynomial f : (Cn+1, 0) → (C, 0) is weighted homo-
geneous of type {d; d0, . . . , dn}, where d and di are positive integers, if there is a C∗
action on C

n of the form

λ · (z0, . . . , zn) = (λd0 z0, . . . , λ
dn zn) ,

satisfying that for all λ ∈ C
∗ and for all z ∈ C

n one has:

f (λ · z) = λd · f (z) .

These all have the same Properties 6.3.2 to 6.3.7, while Property 6.3.8 generalizes
to the following theorem by Oka [116, Theorem 1]:

Theorem 6.3.10 (Join theorem) Let f be a polynomial in C
n × C

m such that
f (z, w) = g(z) + g(w) for each (z, w) ∈ C

n × C
m, where g and h are weighted

homogeneous in C
n and C

m respectively. Let X = f −1(1) ⊂ C
n × C

m, Y = g−1(1)
⊂ C

n and Z = h−1(1) ⊂ C
m. Then there is a natural homotopy equivalence between

X and the join Y ∗ Z.

If V is the zero-locus of an analytic map f : (Cn+1, 0) → (C, 0) with an isolated
critical point at 0, it has the same Properties 6.3.2 to 6.3.8, but instead of having a
C

∗-action, there are appropriate vector fieldswhose flows have the desired properties.

6.3.2 Real Analytic Singularities

As we will see in the sequel, all real analytic isolated singularities can be equipped
with flows that satisfy properties analogous to Property 6.3.2, and Properties 6.3.4
to 6.3.6, but not always Property 6.3.3. In analogy with Property 6.3.7, this implies
that we have a fibration as in (6.10) and it can be carried to a fibration on the sphere
as in (6.12) but the projection map ϕ may not always be taken to be f/| f | away from
a neighborhood of the link. Having also Property 6.3.3 grants that ϕ can be taken as
f/| f | everywhere, and this is equivalent to the map-germ being d-regular, a concept
that we discuss in Sect. 6.10.
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6.4 Local Conical Structure of Analytic Sets

In this section we present the generalization of Property 6.3.2 in Sect. 6.3. Consider
a reduced, equidimensional real analytic space V of dimension n, defined in an
open ball Br (0) ⊂ R

N around the origin. Assume V contains the origin 0 and V ∗ :=
V − {0} is a real analytic manifold of dimension n > 0. The following is proved in
[110] and it can be deduced from [95].

Theorem 6.4.1 (Milnor 1968) There exists ε > 0 sufficiently small, so that every
sphere inRN centered at 0 and with radius ≤ ε intersects V ∗ transversely. Moreover,
there is a smooth 1-parameter family of diffeomorphisms {γt }, t ∈ [0, ε), such that
γ0 is the identity and if Sε−t denotes the sphere of radius ε − t , then each γt carries
the pair (Sε,Sε ∩ V ) into (Sε−t ,Sε−t ∩ V ). The pair (Bε,Bε ∩ V ) is homeomorphic
to the cone over (Sε,Sε ∩ V ).

The idea of the proof is simple: consider the function d : RN → R given by
d(x1, ..., xN ) = x2

1 + · · · x2
N , so that d is the square of the function “distance to 0”.

The solutions of its gradient vector field ∇d are the straight rays that emanate from
the origin. Let us adapt this vector field to V . For this, take the restriction dV of d to V .
At each point x ∈ V ∗ the gradient vector ∇dV (x) is obtained by projecting ∇d(x) to
Tx V ∗, the tangent space of V ∗ at x , so ∇dV (x) vanishes if and only if Tx V ∗ ⊂ TSx .
This means that a point x ∈ V ∗ is a critical point of dV if and only if V ∗ is tangent
at x to the sphere passing through x and centered at 0. Just as in [110, Corollary
2.8], one has that dV has at most a finite number of critical values corresponding
to points in V ∗, since it is the restriction of an analytic function on Br (0). Hence
V ∗ meets transversely all sufficiently small spheres around the origin in R

N . The
gradient vector field of dV is now everywhere transversal to the spheres around 0,
and it can be assumed to be integrable. Hence it defines a 1-parameter family of local
diffeomorphisms of V ∗ taking each link into “smaller” links, proving Theorem 6.4.1.

Theorem 6.4.1was extended in [20] to varieties with arbitrary singular locus using
Whitney stratifications, we refer to [33, 59] for backgroundmaterial on stratifications
and to chapter [160] by Trotman in Volume I of this Handbook for a survey in strati-
fication theory. Amore refined argument due to Durfee [43] (see also [91]) and based
on the “Curve Selection Lemma” of [110], shows that in fact the diffeomorphism
type of the manifold V ∩ Sε is also independent of the choice of the embedding of
V in RN . One has.

Theorem 6.4.2 Let V be a real or complex analytic set in R
m and P a singular

point in V . Then there exists a Whitney stratification of Rm for which V is a union
of strata, P is a point stratum, and one has the following (Fig. 6.2):

1. There exists ε > 0 sufficiently small, so that every sphere Sr inRm of radius r ≤ ε

and center at P meets transversely every stratum in V .
2. One has a homeomorphism of pairs: (Bε,Bε ∩ V ) ∼= Cone (Sε,Sε ∩ V ).
3. The homeomorphism type of LV := Sε ∩ V is independent of the choice of the

defining equations for V .
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Fig. 6.2 The link of the singularity determines the topological type

Definition 6.4.3 The manifold LV := V ∩ Sε is called the link of V at 0, and a
sphere Sε as in Theorem 6.4.2 is called a Milnor sphere for V and ε is called a
Milnor radius for V . We also denote LV by L f when we want to emphasize the
function rather than the space V .

6.5 The Classical Fibration Theorems for Complex
Singularities

Properties 6.3.4 and 6.3.6 in Sect. 6.3 generalize respectively to the two versions of
the classical Milnor’s fibration theorem for complex singularities.

Theorem 6.5.1 (Fibration Theorem on the sphere) Let U be an open neighborhood
of the origin 0 ∈ C

n+1 and f : (U, 0) → (C, 0) a complex analytic map. Set V :=
f −1(0) and LV := V ∩ Sε where Sε is a sufficiently small sphere in U centered at
0. Then,

ϕ := f

| f | : Sε \ LV −→ S
1, (6.13)

is a C∞ fiber bundle.

The proof by Milnor [110] uses the Curve Selection Lemma, first to show that
the map ϕ has no critical points and then to construct a complete vector field w on
Sε \ LV that projects under ϕ onto the unit vector field tangent to S1. Its flow defines
a 1-parameter subgroup of diffeomorphisms

ht : Sε \ LV → Sε \ LV (6.14)

such that
ht (Fθ ) = Fθ+t . (6.15)

This shows the local triviality of ϕ, i.e., that each fiber of ϕ has a neighborhood which
is a product (Fig. 6.3).
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Fig. 6.3 Fibres of ϕ and
trivializing vector field w on
Sε \ LV

Nowadays, the most common proof of Theorem 6.5.1 follows the original
approach sketched by Milnor himself in a previous unpublished article [109]. The
starting point is the following:

Theorem 6.5.2 (Fibration Theorem on the tube) With the above hypothesis and
notation, let δ > 0 be sufficiently small with respect to ε, so that for every t ∈ C

with |t | ≤ δ the fiber f −1(t) meets the sphere Sε transversely. Let Dδ be the disc
in C of radius δ and center at 0; let ∂Dδ

∼= S
1 be its boundary and set N (ε, δ) :=

f −1(∂Dδ) ∩ Bε, where Bε is the open ball in C
n+1 bounded by Sε. Then,

f|N (ε,δ)
: N (ε, δ) −→ ∂Dδ, (6.16)

is a C∞ fiber bundle, (essentially) isomorphic to that in Theorem 6.5.1.

Definition 6.5.3 The manifold with boundary N (ε, δ) is called a Milnor tube
(Fig. 6.4).

The word “essentially” in the last statement is because the fibers of (6.16) are
compact, while those of (6.13) are open manifolds. To have an actual isomorphism
of the two fibrations one must restrict the fibration (6.16) to the open ball.
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Fig. 6.4 Fibration on the
Milnor tube N (ε, δ)

Milnor proved this theorem in [109] when the map-germ f has an isolated critical
point. In the general case, Milnor proved in [110] that the fibers of (6.16) (restricted
to the open ball) are diffeomorphic to those of (6.13). In order to prove that one
actually has a fiber bundle in Theorem 6.5.2 one must grant that given ε > 0 as
above, there exists a δ as stated, such that all fiber f −1(t)with |t | ≤ δ meet the sphere
Sε transversely. This was not known till 1977 when Hironaka proved in [68] that
all complex valued holomorphic maps have a Thom Stratification. Actually in [66,
Théorème 1.2.4], Hamm and Lê gave the existence of a bonne stratification which
is equivalent to Thom’s a f condition. Using Hironaka’s result, Lê Dũng Tráng [86]
proved Theorem 6.5.2 in a more general context (see Theorem 6.7.1), so nowadays
fibration (6.16) is called the Milnor-Lê fibration.

To prove Theorem 6.5.2 we restrict f to a sufficiently small open ball Br around
0 so that 0 ∈ C is its only critical value. We equip Br with a Thom stratification
[68], so that V is a union of strata and we assume that 0 itself is a stratum. Now let
Sε ⊂ Br be a Milnor sphere for f as defined in Definition 6.4.3, so that every sphere
of radius≤ r meets transversely each stratum in V ; this is possible by Theorem 6.4.2.
By compactness, this implies that there exists δ > 0 such that for each t ∈ C with
0 < |t | ≤ δ, the fiber f −1(t) meets Sε transversely. Hence all fibers of (6.16) in
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Fig. 6.5 The vector field ξ

that carries a Milnor tube
into the sphere

Theorem 6.5.2 are compact smooth manifolds with boundary. The proof of the local
triviality is like in the usual proof of Ehresmann’s fibration lemma, by lifting via the
Jacobian of f appropriate vector fields in C to vector fields in Bε which are normal
to the fiber. The only additional thing is that we must choose the liftings so that the
vector fields are also tangent to Sε, which is possible because the fiber is transverse
to the sphere (see [150, 164]).

The next step to prove Theorem 6.5.1 is analogous to Property 6.3.7 in Sect. 6.3
and it is implicit in [110]: we inflate the Milnor tube, carrying the fibration in the
tube into the fibration in the sphere as stated. This relies on the Curve Selection
Lemma. The key for this is constructing a vector field as stated in the following
lemma (Fig. 6.5).

Lemma 6.5.4 There exists an integrable vector field ξ on Bε \ V such that:

1. Its integral lines are transverse to all Milnor tubes f −1(S1r );
2. Its integral lines are transverse to all spheres centered at 0;
3. Its integral lines travel along points where f has constant argument. That is, if z, w

are points in Bε \ V which are in the same integral line of ξ , then f (z)/| f (z)| =
f (w)/| f (w)|.
This allows one to inflate the tube to the sphere so that we get a homeomorphism

h : N (ε, η) −→ Sε \ N (ε, η) ,

in the obvious way: for each z ∈ N (ε, η) we consider the unique integral line of ξ

passing by z; we then travel along this integral line till it hits the sphere Sε. We thus
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get a fiber bundle ϕ : Sε \ LV → S
1 with projection map ϕ := f ◦ h−1. The hard

part is having one such vector field that further satisfies the third condition. This
grants that the projection map in Theorem 6.5.1 can be taken as ϕ = f/| f | and the
two fibrations are equivalent.

Having these two equivalent fiber bundles associated to a map-germ brings great
richness. The first fibration is interesting for topology and differential geometry. This
has important relationswithknot theory,open-bookdecompositions, contact andsym-
plectic geometry. The second fibration lends itself more naturally to generalizations,
and this has strong relations with algebraic geometry, as it exhibits the special fiber V
as the limit of a flat family of complexmanifolds that degenerate to V .

6.6 Topology of the Link and the Fiber

When V is the zero-locus of an analytic map f : (Cn+1, 0) → (C, 0)with an isolated
singularity at the origin 0, its link is a closed, oriented, real analytic manifold of
dimension 2n − 1 and it can be regarded as being the boundary of the Milnor fiber.
Milnor [110, Sects. 5 and 6] and others have studied the topology of the link and
the fibre of Milnor’s fibration. Here we only say a few words about these important
subjects.

6.6.1 The Link

When n = 1, the defining function f has an essentially unique decomposition into
irreducible factors, f = f a1

1 · · · f ar
r . This determines a decomposition of its zero-

locus V into irreducible components, the branches of V , so the link LV is a knot
or link in S

3 with r components, one for each branch. We refer to [17] for a clear
account on this subject.

For instance, if f is the homogeneous polynomial zk
1 + zk

2, then LV has k compo-
nents and each is a torus knot of type (1, 1), which means that it is a circle embedded
in a torus S1 × S

1 in such a way that it goes once around a parallel and once around
a meridian. If f is now the weighted homogeneous polynomial z21 + z32, then LV has
only one component, which is the trefoil knot depicted in Fig. 6.2. More generally, if
f is z p

1 + zq
2 for some p, q ≥ 2, and k is the largest common divisor of p, q, then LV

has k components, and Brauner [14] proved that each is a torus knot of type (p′, q ′)
where p′ = p/k and q ′ = q/k.

In general, every knot defined by an analytic map-germ C
2 → C is an iterated

torus knot determined by the Puiseux pairs of a Puiseux parameterization of its zero-
locus (see [17] for details). Chapter [56] by García-Barroso et al. in Volume I of this
Handbook describes how to encode the combinatorial information of a plane curve
which determines its embedded topological type in a two-dimensional simplicial
complex.
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The case n = 2 goes back to Felix Klein [83] where he studies the complex
surfaces obtained as quotients of C2 by a finite subgroup. His work implies that
every manifold of the form S

3/� where � is a finite subgroup of SU(2) is the link
of a complex surface in C

3. The corresponding singularities are the rational double
points; they have been studied by many authors, see for instance [42] or [150, Chap.
3]. For instance the link of the function:

f (z1, z2, z3) = z21 + z32 + z53 ,

is the celebrated Poincaré’s homology 3-sphere, which is diffeomorphic to SO(3)
divided by the group of rotations in R

3 that preserve an icosahedron, with SO(3)
being the group of rotations of the Euclidean 3-space and it is isomorphic to SU(2)
divided by its center.

In general, given a holomorphic map-germ f : (C3, 0) → (C, 0), the link L f is
always a connected Waldhausen 3-manifold with negative definite intersection form
(see [115] for details). If f further is weighted homogeneous, then its zero-locus
V is an invariant set of the restriction of the corresponding C

∗-action to S
1, and

as in Property 6.3.4 in Sect. 6.3. This S1-action also leaves invariant every sphere
centered at the origin, therefore the link LV actually is a Seifert 3-manifold. These
manifolds were studied by Seifert [153] and are determined by a set of numerical
invariants called the Seifert invariants (see also [133]). In [134] Orlik and Wegreich
proved that if V is a surface in C

3 given by a weighted homogeneous polynomial
f (z1, z2, z3), there is an equivariant analytic deformation of V into a surface defined
by one of five classes of polynomials, which induces an equivariant diffeomorphism
of the corresponding links, so it is enough to compute the Seifert invariants of the
links of these five classes of polynomials. The polynomials z p

1 + zq
2 + zr

3, as in the
example above, are one of those five types of weighted homogeneous singularities
inC3. Chapter [107] byMichel in Volume I of this Handbook describes the topology
of a surface singularity.

The following remains being an open question. This was studied by St. Yau,
A. Durfee and others in the 1970s and 1980s with interesting partial results, but to
our knowledge, there have not been significant improvements in several decades.

Problem 6.6.1 Characterize up to orientation preserving homeomorphism, the 3-
manifolds that arise as links of isolated complex surface singularities in C

3.

If in the problem above we erase the condition of being defined in C
3 then the

answer is known; this follows essentially by deep results by Grauert, Mumford (and
independently Du Val) and Neumann (see [115]). The problem is determining which
closed oriented Waldhausen manifolds with negative definite intersection form arise
as the link of a hypersurface in C3.

For a general holomorphicmap-germ f : (Cn+1, 0) → (C, 0)weknow from [110,
Theorem 5.2] that the link LV is an orientable (2n − 2)-connected smooth manifold
of dimension 2n − 1. There are cases where the link can be described explicitly as
for instance in Theorem 6.2.3 in Sect. 6.2 where we saw that every exotic sphere of
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dimension greater than 6 that bounds a parallelizable manifold, is the link of some
Brieskorn-Pham polynomial.

Another interesting aspect is to study how the link LV is embedded in the sphere.
Such a pair (Sε, LV ) is called an algebraic knot, a terminology introduce by Lê
[86]. We briefly discussed above the case n = 1. For n > 1 very little is known. Yet,
Milnor’s fibration theorem says that these are all fibred knots (or perhaps links if
n = 1), and if f has an isolated critical point, then one gets interesting open-book
decompositions, a topic briefly discussed below. We refer to [139] for a thorough
discussion of this interesting subject (see also [151, Section 11.2]).

6.6.2 The Fiber

Concerning the topology of the fiber, Milnor in [110, Theorems 5.1, 6.5] proved:

Theorem 6.6.2 If V is the zero-locus of an analytic map f : (Cn+1, 0) → (C, 0)
with an isolated singularity at the origin, then the fiber F of the Milnor fibration
of V is a smooth parallelizable manifold of dimension 2n which has the homotopy
type of a bouquet

∨
S

n of spheres of dimension n. The number μ of spheres in the
bouquet is strictly positive, unless V is smooth.

Definition 6.6.3 The number μ = μ( f ) is called the Milnor number of f .

The number μ( f ) can be computed topologically as the Poincaré-Hopf index of its
gradient vector field ∇ f (z) = (

∂ f
∂z1

(z), . . . , ∂ f
∂zn+1

(z)
)
[110, §7], and algebraically as

the complex dimension of the Jacobian algebra

μ( f ) = dimC C{z1, . . . , zn+1}
/〈 ∂ f

∂z1
, . . . ,

∂ f

∂zn+1

〉
.

This generalizes Property 6.3.8 in Sect. 6.3, and Pham’s result says that the Mil-
nor number of a Brieskorn-Pham polynomial is (a1 − 1)(a2 − 1) . . . (an − 1). More
generally, for f a weighted homogeneous polynomial of type {d; d1, . . . , dn} with
an isolated critical point at the origin, Milnor and Orlik [113] computed its Milnor
number to be μ = (d/d1 − 1) · · · (d/dn − 1).

Property 6.3.8 in Sect. 6.3 also generalizes to join theorems analogous to Theo-
rem 6.3.10 by Oka. Let g : (Cn, 0) → (C, 0) and h : (Cm, 0) → (C, 0) be holomor-
phic maps with 0 an isolated singularity. Let Y and Z be the Milnor fibres of g and
h respectively. Let f (z, w) = g(z) + h(w) for each (z, w) ∈ C

n × C
m and let X be

the Milnor fibre of f . Sebastiani and Thom [152] proved that X is homotopically
equivalent to the join Y ∗ Z of Y and Z . Sakamoto in [146] proved the general result
when g and h are holomorphic functions with arbitrary singularities.

Theorem 6.6.2 was generalized by Hamm [65] to complex isolated complete
intersection singularity germs (ICIS) (see Sect. 6.7). The Milnor fiber F is the piece
of a non-critical level of the defining function that is contained within a small ball
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around the singularity. Hamm’s theorem states that as in the hypersurface case, F
has the homotopy type of a bouquet of spheres of middle dimension. The number
of such spheres is called the Milnor number of the ICIS germ. One also has in this
setting an algebraic formula for the Milnor number, called the Lê-Greuel formula.
This says:

Theorem 6.6.4 If f1, . . . , fk and g are holomorphic map germs (Cn+k, 0) → (C, 0)
such that f = ( f1, . . . , fk) and ( f, g) define isolated complete intersection germs,
then their Milnor numbers are related by:

μ( f ) + μ( f, g) = dimC

On+k,0

( f, Jack+1( f, g))
,

where Jack+1( f, g) denotes the ideal generated by the determinants of all (k + 1)
minors of the corresponding Jacobian matrix.

Since all the homology groups of the Milnor fiber of an ICIS vanish except in
dimension 0 and in middle dimension, the above formula actually measures the
change in the Euler characteristic of the Milnor fibers corresponding to f and to
( f, g). This is the way how this formula generalizes to other settings (see Theorem
6.9.11 below).

In the case of hypersurfaces, Theorem6.6.2was actually refined byMilnor himself
[110] in all dimensions except n = 2, and then completed byLê-Perron [90] for n = 2
with a proof that works in all dimensions:

Theorem 6.6.5 The Milnor fiber F of a hypersurface V ⊂ C
n+1 with an isolated

singularity is diffeomorphic to a 2n-ball to which one attaches μ handles of middle
index n, where μ is the Milnor number.

For hypersurfaces of complex dimension n with non-isolated singularities, one has
from [110] that the Milnor fiber F is a CW -complex of dimension n. This is also an
immediate consequence of Andreotti-Frankel’s theorem in [6] for Stein-manifolds.
Massey’s remarkable theorem in [101, 101] extends Theorem 6.6.5 to this setting.

Theorem 6.6.6 Let f : (Cn+1, 0) → (C, 0) be a holomorphic map-germ and let
F be its Milnor fiber. Assume the defining function f has a non-isolated critical
point and let s be the complex dimension of its critical set. Then the germ of f has
associated (generic) Lê numbers λi , i = 0, . . . , s, and one has:

• If s ≤ n − 2, then F is obtained up to diffeomorphism from a 2n-ball by suc-
cessively attaching λn−k

f,� (0) k-handles, where n − s ≤ k ≤ n and λn−k
f,� (0) is the

(n − k)th Lê number.
• If the complex dimension of its critical set is s = n − 1, then F is obtained up to

diffeomorphism, from a real 2n-manifold with the homotopy type of a bouquet of
λn−1

f,� (0) circles, by successively attaching λn−k
f,� (0) k-handles, where 2 ≤ k ≤ n.

We refer to chapter [89] by Lê et al. in Volume I of this Handbook and chapter [102]
by Massey in this volume for an account on this subject.
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6.6.3 Vanishing Cycles, Open-Books and the Monodromy

Given aholomorphicmap-germ f : (Cn+1, 0) → (C, 0), theFibrationTheorem6.5.2
tells us that the Milnor fibers can be regarded as a 1-parameter flat family {Ft } of
complex manifolds that degenerate to the special fiber F0 = V := f −1(0). This is
the prototype of what is called a smoothing of the singularity, which means a flat
deformation where all other fibers are smooth; we refer to Greuel’s article [61] in
Volume I of this Handbook for an account on that subject. Since the germ of V at
0 is a topological cone, by Theorem 6.4.2, this means that all the homology groups
of F vanish in the limit. In particular, if the critical point of f at 0 is isolated, then
Theorem 6.6.2 says that the only interesting homology group of theMilnor fiber F is
in dimension n and it is generated by μ( f ) cycles of dimension n, which are called
the vanishing cycles. This group,

L( f ) := Hn(F,Z) ∼= Z
μ( f ) ,

is naturally equipped with a (−1)n-symmetric bilinear form 〈 , 〉 coming from the
intersection of cycles. The group L( f ), together with this additional structure is
called the Milnor lattice of the singularity. The literature about it is vast; we refer
to Ebeling’s article [50] in Volume I of this Handbook or to Dimca’s book [33] for
accounts of that subject.

This can be seen in a different way that brings us to the theory of open-books.
Given f as above, the first version of the Milnor fibration theorem says that

ϕ := f

| f | : Sε \ LV −→ S
1

is a fiber bundle. Consider the diffeomorphism h2π : Sε \ LV → Sε \ LV in (6.14)
given by the vector fieldwhich shows the local triviality of theMilnor fibration (6.13).
This is the first return map of the flow defined by a lifting of the vector field on S

1

given by multiplying the radial vector field by the complex number i . By (6.15) the
fibre F := F0 = F2π is invariant under h2π , so the geometric monodromy on the fibre
h : F → F is defined by the restriction h = h2π |F . It depends on the choice of the
horizontal vector fieldw but its isotopy class does not depend on this choice. Hence, it
induces a well-defined isomorphism h∗,i : Hi (F; A) → Hi (F; A). The coefficients
are usually Z, Q, R or C depending on the situation. The isomorphism h∗,i is called
the i-th monodromy isomorphism.

If f has an isolated critical point at 0, then we have that H̃n(F;Z) ∼= Z
μ is

generated by the vanishing cycles. One way to study the Milnor lattice of f and the
monodromy isomorphism is to consider distinguished basis of vanishing cycles, for
this we refer to Ebeling’s survey articles [49, 50] and the references in there.

On the other hand, Milnor’s Fibration (6.13) together with the link LV give an
open-book structure to the sphere Sε. Open-books were introduced by Winkelnkem-
per [163] and these have become an important concept in topology (see for example
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[140]). Open-books allow to describe an arbitrary closed manifold in terms of lower
dimensional ones. The work of E. Giroux and others shows closed connections
between open-books and contact-geometry (see [139]).

Definition 6.6.7 Let M be a smooth closed n-manifold and let N be a codimension
2 submanifold of M with trivial normal bundle. An open-book decomposition of M
consists of N together with a map π : M \ N → S

1 such that

• π is a locally trivial fibration and
• there exists a tubular neighbourhood of N diffeomorphic to N × D

2 such that the
restriction of π to N × (D2\{0}) is the map (x, y) → y/||y||.

The map π is called an open-book fibration of M , N is called the binding and the
fibres of π are called the pages

It follows that the pages are all diffeomorphic and each page can be compacti-
fied by attaching the binding N as its boundary, getting a compact manifold with
boundary.

In the original definition of open-books, Winkelnkemper starts with a compact
manifold F̄ with non-empty boundary ∂ F̄ , together with a diffeomorphism h of F̄
which is the identity on ∂ F̄ . Now form the mapping cylinder F̄h of h, which is a
manifold with boundary (∂ F̄) × S

1. Identifying (x, t) with (x, t ′) for each x ∈ ∂ F̄
and t, t ′ ∈ S

1, we obtain a closed, differentiable manifold M . The fibres F̄ × t are
the pages of the open-book, and their common boundary N = ∂ F̄ × t is the binding.
Notice that in this definition the pages are already compact manifolds with boundary,
and their interiors are the pages above.

In the casewe envisage here, themanifold M is the sphere S2n−1, the binding is the
link LV , the pages are the Milnor fibers and the diffeomorphism h is the geometric
monodromy. We refer to [139] for a discussion on the canonical contact structure
carried by this open-book decomposition.

6.7 Extensions and Refinements of Milnor’s Fibration
Theorem

As mentioned above, Hamm [65] (see also [94]) proved an extension of Milnor’s
fibration theorem for ICIS, isolated complete intersection singularity germs,

f = ( f1, ..., fk) : Cn+k → C
k .

We know from [60, Lemma 1.10] (see also [94]) that given such an f , one can always
find good representatives so that the first k − 1 equations define an ICIS W of one
dimension more, and the last equation defines an isolated singularity hypersurface
germ inW . Therefore we may see this as a special case of the following theorem by
Lê Dũng Tráng [86] (see [29] for the last statement in Theorem 6.7.1, concerning
the isomorphism of the two fibrations).
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Theorem 6.7.1 (Milnor-Lê fibration) Let X be an analytic subset of an open neigh-
borhood U of the origin 0 in C

n. Given f : (X, 0) → (C, 0) holomorphic with a
critical point at 0 ∈ X (in the stratified sense [59]), let V := f −1(0), Bε a closed
ball of sufficiently small radius ε around 0 ∈ C

n and Sε its boundary. Then:

1. If L X = X ∩ Sε is the link of X and LV = f −1(0) ∩ Sε ⊂ L X is the link of V ,
one has a fiber bundle:

ϕ = f

| f | : L X \ LV −→ S
1. (6.17)

2. Now choose ε >> δ > 0 sufficiently small and consider the Milnor tube

N (ε, δ) = X ∩ Bε ∩ f −1(∂Dδ) ,

where Dδ ⊂ C is the disc of radius δ around 0 ∈ C. Then

f : N (ε, δ) −→ ∂Dδ , (6.18)

is a fiber bundle, C∞-isomorphic to the previous bundle.

Notice that the fibers in (6.17) are subsets of the link L X := X ∩ Sε while the fibers
in (6.18) are contained in the interior of X ∩ Bε, in analogy with the classical Milnor
fibrations (6.13) and (6.16). As in Property 6.3.5 of Sect. 6.3, these statements can
be refined by giving a fibration on the whole ball Bε minus the variety V := f −1(0)
which has the two fibrations in Theorem 6.7.1 as subfibrations. For this we need.

Theorem 6.7.2 (The Canonical Pencil) For each θ ∈ [0, π), let Lθ be the line
through 0 in R

2 with an angle θ with respect to the positive orientation of x-axis. Set
V = f −1(0) and Xθ = f −1(Lθ ). Then:

(i) The Xθ are all homeomorphic real analytic hypersurfaces of X with singular
set Sing(V ) ∪ (Xθ ∩ Sing(X)). Their union is the whole space X and they all
meet at V , which splits each Xθ in two homeomorphic halves.

(ii) If {Sα} is a Whitney stratification of X adapted to V , then the intersection of
the strata with each Xθ determines a Whitney stratification of Xθ , and for each
stratum Sα and each Xθ , the intersection Sα ∩ Xθ meets transversely every
sphere in Bε centered at 0.

(iii) There is a uniform conical structure for all Xθ , i.e., there is a homeomorphism

h : (X ∩ Bε, V ∩ Bε) → (
Cone(L X ), Cone(L f )

)
,

which restricted to each Xθ gives a homeomorphism (Xθ ∩ Bε) ∼= Cone(Xθ ∩
Sε).

The next theorem implies that the fibrations over the circle in Milnor’s theorem
actually are liftings of fibrations over RP1:
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Theorem 6.7.3 (Fibration Theorem) One has a commutative diagram of fiber bun-
dles

where �(x) = (Re( f (x)) : Im( f (x))) with fiber (Xθ ∩ Bε) \ V , π is the natural
two-fold covering and ϕ(x) = f (x)

| f (x)| . The restriction of ϕ to the link L X \ L f is the

usual Milnor fibration (6.17), while the restriction to the Milnor tube f −1(∂Dη) ∩ Bε

is the fibration (6.18) (up to multiplication by a constant), and these two fibrations
are equivalent.

The proof of Theorem 6.7.3 follows the same line as in the case when X is
non-singular. The key point is constructing an appropriate integrable vector field
in the vein of Lemma 6.5.4 above. When the ambient space X is singular we must
consider stratified vector fields and use eitherMather’s controlled vector fields [104],
or Verdier’s rugose vector fields [161], which are all continuous and integrable. The
proof in [29] of Theorem 6.7.3 also shows:

Corollary 6.7.4 Let f : (X, 0) → (C, 0) be as above, a holomorphic map with a
critical point at 0 ∈ X, and consider its Milnor fibration

ϕ = f

| f | : L X \ L f −→ S
1 .

If the germ (X, 0) is irreducible, then every pair of fibers of ϕ over antipodal points
of S1 are glued together along the link L f producing the link of a real analytic
hypersurface Xθ , which is homeomorphic to the link of {Re f = 0 }. Moreover, if
both X and f have an isolated singularity at 0, then this homeomorphism is in fact a
diffeomorphism and the link of each Xθ is diffeomorphic to the double of the Milnor
fiber of f regarded as a smooth manifold with boundary L f .

In [87], Lê sketched a proof of the fact that the Milnor fiber Xt of fibration (6.18)
over a point t ∈ ∂Dδ , has as a deformation retract a vanishing polyhedron Pt ⊂ Xt

and described the degeneration of Xt onto the special fiber X0. Recently, a complete
and detailed proof of this result was given in [88]. It is a far-reaching generalization
of Pham’s result in [135] for Brieskorn-Pham polynomials (see Property 6.3.8).

Real Singularities

We now look at Milnor fibrations for real analytic singularities. This emerged too
fromMilnor’s seminalwork in [109, 110].Wealso remark thatmuchof the discussion
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below goes through for meromorphic functions (see [12, 13, 63, 64]) and for semi-
algebraic and subanalytic maps (see [45, 46, 98]). We also refer to the [34] for other
aspects the theory that complement what we explain in this presentation.

6.8 Milnor Fibration for Real Analytic Maps

The following was stated as Hypothesis 11.1 in [110].

Condition 6.8.1 A real analytic map-germ f : (Rn, 0) → (Rp, 0), n ≥ p > 0 sat-
isfies the Milnor condition at 0 if the derivative D f (x) has rank p at every point
x ∈ U \ 0, where U is some open neighborhood of 0 ∈ R

n .

The following extends the fibration theorem to the real setting:

Theorem 6.8.2 (Milnor) Let f satisfy Milnor condition at 0. For every ε > 0 suffi-
ciently small, let δ > 0 be sufficiently small with respect to ε and consider the Milnor
tube N (ε, δ) := f −1(∂Dδ) ∩ Bε, where Dδ is the disc in R

p of radius δ and center at
0, ∂Dδ is its boundary and Bε is the closed ball in R

n of radius ε and center 0. Then

f |N (ε,δ) : N (ε, δ) −→ ∂Dδ , (6.19)

is a fiber bundle. Moreover, the tube N (ε, δ) is diffeomorphic to S
n−1
ε \ (

f −1(
◦
Dδ) ∩

S
n−1
ε

)
, where

◦
Dδ is the interior, and (6.19) determines an equivalent fiber bundle:

ϕ : Sn−1
ε \ L f → S

p−1 , (6.20)

where L f = f −1(0) ∩ S
n−1
ε is the link. The projection ϕ is f/‖ f ‖ in a tubular neigh-

borhood of L f .

The statement that ϕ = f/‖ f ‖ in a tubular neighborhood of the link L f is implicit
inMilnor’s book and it was made explicit in [30, 138]. The proof that (6.19) is a fibre
bundle is an easy extension of the proof of Ehresmann’s Fibration Lemma. As in the
complex case, one then constructs an integrable vector field v in the ball B̄ε, which
is transverse to all spheres in this ball centered at 0, and transverse to all Milnor
tubes. The integral curves of v allow us to carry N (ε, δ) diffeomorphically into the
complement of f −1(Dδ) ∩ S

n−1
ε in the sphere Sn−1

ε , keeping its boundary fixed (see
Fig. 6.6), and one extends the induced fibration to all of Sn−1

ε \ L f using for instance
that the normal bundle of the link is trivial.

Yet, we cannot in general inflate the tube in such a way that the projection ϕ is
f/‖ f ‖ everywhere. In fact this theorem has two weaknesses:

(1) It is much too stringent: map-germs satisfying Condition 6.8.1 are highly non-
generic (see[41]).
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Fig. 6.6 Pushing the fiber
from the interior of the ball
toward the sphere

(2) One has no control over the projection map ϕ outside a neighborhood of the link.

Of course, every complex valued holomorphic function with an isolated critical
point satisfies Condition 6.8.1, and so does if we compose such a function with a real
analytic local diffeomorphism of either the target or the source. The interesting point
is finding examples which are honestly real analytic. Milnor exhibited the following
examples in his book [110], suggested to him by N. Kuiper. Let A denote either the
complex numbers, the quaternions or the Cayley numbers, and define

h : A × A → A × R ,

by h(x, y) = (2x ȳ, |y|2 − |x |2). Milnor first proves (see [110, Lemma 11.6]) that
this mapping carries the unit sphere of A × A to the unit sphere of A × R by a Hopf
fibration. Then he defines, more generally,

f : An × An → A × R ,

by
f (x, y) = (2〈x, y〉, ‖y‖2 − ‖x‖2) , (6.21)

where 〈·, ·〉 is the Hermitian inner product in A. This map is a local submersion
on a punctured neighborhood of (0, 0) ∈ An × An . The link of the corresponding
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singularity is the Stiefel manifold of 2-frames in An and the Milnor fibre is a disc
bundle over the unit sphere of An .

For p = 1, Condition 6.8.1 is always satisfied (see for instance [161]). For maps
into R

2, generically the critical values are real curves converging to (0, 0), though
there are several families of singularities satisfying Condition 6.8.1, see for instance
Sect. 6.8.1 below. For p > 2, few examples are known of map-germs satisfying
Condition 6.8.1 and having a “non-trivial Milnor fibration”, where non-trivial means
that the fibers are not discs.

There are in fact pairs (n, p) as above for which no such examples exist, as stated
in Theorem 6.8.3 below, proved byChurch and Lamotke in [21], completing previous
work by Looijenga [93].

Theorem 6.8.3 Let n, p be positive integers.

1. If 2 ≥ n − p ≥ 0, then such examples exist for the pairs {(2, 2), (4, 3), (4, 2)}.
2. If n − p = 3, non-trivial examples exist for (5, 2) and (8, 5), and perhaps for

(6, 3).
3. If n − p ≥ 4, then such examples exist for all (n, p).

In particular, if p = 2, such examples exist for all n ≥ 4. The case (6, 3) was left
open and it was recently settled affirmatively in [37].

The proof in [21] follows the line in [93] and consists of an inductive process
to decide for which pairs (n, p) there exists a codimension p submanifold K of
the sphere Sn−1 with a tubular neighborhood N which is a product N ∼= K × D p,
such that the natural projection K × (D p \ {0}) → S

p−1 given by (x, y) → y/‖y‖
extends to a smooth fiber bundle projection Sn−1 \ K → S

p−1. No explicit singular-
ities satisfying the Milnor condition 6.8.1 were given.

The first explicit non-trivial example of a real analytic singularity with target R2

satisfying Condition 6.8.1, other than those in [110], was given by A’Campo [1].
This is the map C

m+2 → C defined by

(u, v, z1, ..., zm) −→ uv(ū + v̄) + z21 + ... + z2m . (6.22)

In the recent article [5] is proved that after attaching handles to the Milnor
fibre, this becomes contractible; each handle corresponds to a critical point of an
R-morsification; in particular one recovers the formula of [82, Theorem 2.3] for the
Euler characteristic of the Milnor fibres.

6.8.1 Strong Milnor Condition

The following notion was introduced in [144]:

Condition 6.8.4 Let f : (Rn, 0) → (Rp, 0), n > p ≥ 2, be analytic and satisfy the
Milnor condition at 0, and let L f be its link. We say that f satisfies the strong Milnor
condition at 0 if for every sufficiently small sphere Sε around 0,
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f

| f | : Sε \ L f → S
p−1 (6.23)

is a fiber bundle.

Jacquemard [77] gives two conditions that insure that maps into R
2 satisfying

Condition 6.8.1 actually satisfy the strong Milnor condition. These conditions are
sufficient but not necessary. The first of these is geometric, the second is algebraic.
These are:

Condition A: There exists a neighborhood U of the origin in Rn and a real number
0 < ρ < 1 such that for all x ∈ U − 0 one has:

|〈grad f1(x), grad f2(x)〉|
|| grad f1(x)|| · || grad f2(x)|| ≤ 1 − ρ ,

where 〈·, ·〉 is the usual inner product in R
n .

Condition B: If εn denotes the local ring of analytic map-germs at the origin in Rn ,
then the integral closures in εn of the ideals generated by the partial
derivatives

( ∂ f1
∂x1

,
∂ f1
∂x2

, . . . ,
∂ f1
∂xn

)
and

( ∂ f2
∂x1

,
∂ f2
∂x2

, . . . ,
∂ f2
∂xn

)
(6.24)

coincide, where f1, f2 are the components of f .

One has:

Theorem 6.8.5 (Jacquemard) Let f : (Rn, 0) → (R2, 0), n > 2, be an analytic
map-germ. If the component functions f1 and f2 of f satisfy the previous two con-
ditions A and B, then for every sphere S

n−1
ε of radius ε > 0 sufficiently small and

centered at 0, one has that the projection map in (6.20),

ϕ : Sn−1
ε \ L f → S

1 ,

can be taken to be f/‖ f ‖ everywhere.

In [148, 149] it is presented amethod to construct an infinite family of singularities
which satisfies the strong Milnor condition. This family was later studied in detail
in [144].

Definition 6.8.6 A twisted Brieskorn-Pham polynomial of class {a1, . . . , an; σ } is
a polynomial f : Cn → C of the form

za1
1 z̄σ(1) + · · · + zan

n z̄σ(n),

where each a j ≥ 2, j = 1, . . . , n and σ is a permutation of the set {1, . . . , n} called
the twisting.
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In [144, 149] it was noticed that there exists a smooth action of S1 × R
+ on C

n

of the form

(λ, r) · (z1, . . . , zn) = (λd1r p1 z1, . . . , λ
dn r pn zn) , λ ∈ S

1, r ∈ R
+, (6.25)

where thed j , p j are positive integers such that gcd(d1, . . . , dn) = gcd(p1, . . . , pn) =
1, such that

f
(
(λ, r) · (z1, . . . , zn)

) = λdr p f (z1, . . . , zn) , (6.26)

for some positive integers d and p. So these polynomials are analogous to com-
plex weighted homogeneous polynomials. In [144, 149] it was proved that twisted
Brieskorn-Pham polynomials have an isolated critical point at 0 and the aforemen-
tioned actions imply that one has Properties 6.3.2 to 6.3.7 in Sect. 6.3, hence they
satisfy the strong Milnor condition.

They are called twisted Brieskorn-Pham polynomials for their similarity with the
classical Brieskorn-Pham polynomials (6.6) and the fact proved in [121, 144] (see
also [28, 76]), that if the twisting σ is the identity, the corresponding open-book
decompositions are equivalent to those of classical Brieskorn-Pham singularities.
On the other hand, it was proved in [137] that the link of the twisted Brieskorn-Pham
polynomial za1

1 z̄2 + za2
2 z̄1 is isotopic to the link of the complex singularity given

by z1z2(z
a1
1 + za2

2 ), but their corresponding open-book decompositions are different.
Similar statements hold in 3-variables: in [2–4] there are families of real analytic
singularities with the strong Milnor condition, such that their open-books do not
appear in complex singularities.

Problem 6.8.7 What is the equivalent of Theorem 6.8.3 for the strongMilnor condi-
tion? That is, for which pairs (n, p) there exists an analytic map-germ f : (Rn, 0) →
(Rp, 0) , n > p ≥ 2, satisfying the strong Milnor condition at 0?

When p = 2, such maps exist for all n ≥ 4. There are also several examples with
p = 3 in [77].

It was noted in [144] that the above Condition B can be relaxed and still have
sufficient conditions to guarantee the strong Milnor condition. For this we recall the
notion of the real integral closure of an ideal as given in [55]:

Definition 6.8.8 Let I be an ideal in the ring εm . The real integral closure of I ,
denoted by IR, is the set of h ∈ εm such that for all analytic ϕ : (R, 0) → (Rm, 0),
we have h ◦ ϕ ∈ (ϕ∗(I ))ε1.

Given f : (Rn, 0) → (R2, 0) as above, let us set:

Condition BR: The real integral closures of the Jacobian ideals in (6.24) coincide.

For complex analytic germs conditions B and BR are equivalent (see [55, 159]).
As pointed out in [144], essentially the same proof of Jacquemard in [77] gives:

Theorem 6.8.9 Let f : (Rn, 0) → (R2, 0) be an analytic map-germ that satisfies
the Milnor condition. If its components f1, f2 satisfy the condition A above and
condition BR, then f satisfies the strong Milnor condition.
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This improvement of Theorem 6.8.5 was used in [144] to prove a stability theorem
for real singularities with the strong Milnor condition. This was also used in [40] to
find a theorem in the vein of Theorm 6.8.9 but using “regularity conditions” instead
of Jacquemard’s conditions. This inspired [144, 149] and the use of the canonical
pencil described in Sect. 6.10. We refer for instance to [36, 37, 46, 48, 118, 119,
121, 131, 137] for recent work on the topology of the Milnor fibers.

Massey [103] improved Theorem 6.8.9 using a different viewpoint, via a gen-
eralized Łojasiewicz inequality (see the next section). Massey’s viewpoint applies
in a larger setting, not requiring f to have an isolated critical point, and it relaxes
significantly condition BR.

6.8.2 Model Singularities

In [67] the authors study some families of isolated singularities, sharpening and
extending results by Arnol’d ([7, 9]) and Kuiper [84] and J. Seade and others [144,
149]. They consider first a class of weighted homogeneous polynomials which they
call model polynomials. These were considered by Arnol’d who used them as a first
but main part of his far-reaching classification of singularities of functions. They
characterize the model polynomials that have an isolated singularity and extend
some of Arnol’d’s techniques and results related to monomial bases of the algebra
of a singularity, to polynomials with any number of variables.

Given a function φ : {1, ..., n} → {1, ..., n}, integers pi ≥ 2, and complex num-
bers λi �= 0, one has a model polynomial:

f (z) = λ1z p1
1 zφ(1) + λ2z p2

2 zφ(2) + . . . + λnz pn
n zφ(n) .

and the twisted model polynomial:

f (z) = λ1z p1
1 z̄φ(1) + λ2z p2

2 z̄φ(2) + . . . + λnz pn
n z̄φ(n) .

Given such a polynomial, one can associate to the corresponding function φ a graph
defined as follows: take one vertex for each integer from 1 to n and put an arrow
from the vertex i to the vertex φ(i). For instance, to the model polinomials

z p1
1 z2 + z p2

2 z3 + . . . + z pn−1
n−1 zn + z pn

n ,

z p1
1 z2 + z p2

2 z3 + . . . + z pn
n z1 ,

correspond, respectively, the graphs shown in Fig. 6.7, which are called the n-bamboo
and n-cycle, and similarly for the twisted ones.

It is then proved that a model (and a twisted model) polynomial has an isolated
critical point at 0 if, and only if, every component of its graph is a bamboo or a cycle.
The twisted Pham-Brieskorn polynomials in Definition 6.8.6 are a special case of



340 J. L. Cisneros-Molina and J. Seade

Fig. 6.7 Graphs 5-bamboo
and 5-cycle

the twisted models. As pointed out in [67], it would be interesting to characterize the
twisted model polynomials which have an isolated critical value. Since they are all
quasihomogeneous over R, all of these will have a Milnor-Lê fibration.

6.9 On Functions with a Non-isolated Critical Point

As noted before, considering map-germs (Rn, 0) → (Rp, 0)with an isolated critical
point is very stringent. We now discuss the general case of arbitrary critical locus,
starting with the slightly more general case of functions with an isolated critical
value.

6.9.1 Functions with an Isolated Critical Value

Every holomorphic map-germ (Cm, 0) → (C, 0) with a critical point at 0 has an
isolated critical value, and the fibration Theorems 6.5.1 and 6.5.2 hold in this setting.
It is thus natural to look for extensions of Milnor’s Theorem 6.8.2 for analytic map-
germs f := ( f1, . . . , f p) : (Rn, 0) → (Rp, 0) with a possibly non-isolated critical
point at 0, such that 0 ∈ R

p is the only critical value, i.e., all critical points of f are
in the special fiber V := f −1(0). This was first done in [138].

Definition 6.9.1 If f admits a fibration in tubes of the type (6.19), then we call this
the (local) Milnor-Lê fibration of f (or the Milnor fibration in tubes). If it admits
a fibration on the spheres of the type (6.23), then we call this the (local) Milnor
fibration of f (or the Milnor fibration on spheres).
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Let f, g : Cn → C be holomorphic map-germs, in [138] the authors study condi-
tions for functions of the form f ḡ : Cn → Cwith isolated critical value andmeromor-
phic functions of the form f/g : U → CP

1, to haveMilnor andMilnor-Lê fibrations.
Given a real analytic map-germ f : (Rn, 0) → (Rp, 0), n > p ≥ 1, with an iso-

lated critical value at 0 ∈ R
p, we want to know when is there a local Milnor-Lê

fibration. That is, we want conditions to insure that given a ball Bε bounded by a
Milnor sphere Sε for f (see Definition 6.4.3), there exists a ball Dδ of some radius
δ in Rp, centered at 0, such that if we set N (ε, δ) := f −1(∂Dδ) ∩ Bε, then

f |N (ε,δ) : N (ε, δ) −→ ∂Dδ

is a C∞ fiber bundle.
We know from [110] that this is always satisfied when f has an isolated critical

point (that is immediate from the implicit function theorem). Yet, when the critical
point is not isolated the situation is more delicate. In [138] it was noticed that if the
map-germ f is such that V ( f ) = f −1(0) has dimension > 0 and f has the Thom
a f -property, then f has a local Milnor-Lê fibration.

The study of Milnor fibrations for real analytic map-germs was also addressed
by Massey [103]. Recall that in [66] Hamm and Lê used the complex analytic
Łojasiewicz inequality to show that Thom stratifications exist. Massey gives the
appropriate generalization for the real analytic setting:

Definition 6.9.2 An analytic germ f : (Rn, 0) → (R2, 0) satisfies the strong
Łojasiewicz inequality at 0 if there exists a neighborhood W of 0 and constants
c, θ ∈ R with c > 0, 0 < θ < 1, such that for all x ∈ W one has:

‖ f (x)‖θ ≤ c min
|(a,b)|=1

|a∇g(x) + b∇h(x)| .

In this case the germ f is said to be Ł-analytic.

The main theorem in [103] says.

Theorem 6.9.3 (Massey) If f is Ł-analytic, then for every Milnor sphere Sε there is
a Milnor tube N f (ε, δ) where f is a proper stratified submersion and the projection
of a C∞ fiber bundle. That is, Ł-analytic maps have Milnor-Lê fibrations.

Now we need the following definition from [32].

Definition 6.9.4 Let f : (Rn, 0) → (Rp, 0), n > p ≥ 1, have an isolated critical
value at 0 ∈ R

p. We say that f has the transversality property if for every sufficiently
small sphere Sε around the origin in R

n , there exists δ > 0 such that all the fibers
f −1(t) with ||t || ≤ δ meet transversely the sphere Sε.

The transversality property appears already in [66], and in [131] this is called the
Hamm-Lê condition. Maps with the Thom a f -property and non-empty link have the
transversality condition, but not conversely: there are examples byOka [130] ofmaps



342 J. L. Cisneros-Molina and J. Seade

with the transversality property which do not have the Thom a f -property (see also
[106]) and Ribeiro [141, 142] gives infinite families of maps with the transversality
condition but without the Thom a f -property.

The theorem below is Theorem 3.4 in [31]. This improves [138, Theorem 1.3].

Theorem 6.9.5 Let f : (Rn, 0)→(Rp, 0), n > p ≥ 1, have an isolated critical
value at 0 ∈ R

p. Assume further that f has the transversality property and V ( f ) :=
f −1(0) has dimension greater than 0. Then f has a local Milnor-Lê fibration:

f |N (ε,δ) : N (ε, δ) −→ ∂Dδ , (6.27)

with N (ε, δ) := f −1(∂Dδ) ∩ Bε for some ballDδ ⊂ R
p, 0 < δ � ε. This determines

an equivalent fiber bundle:

ϕ : Sε \ L f −→ S
p−1 , (6.28)

where the projection map ϕ is f/‖ f ‖ restricted to [Sε ∩ N (ε, δ)].
The way to pass from the fibrations in tubes to that on the sphere is as before: one

constructs a smooth vector field ζ in the ball Bε minus V , satisfying:

• Each integral line is transversal to all spheres in Bε centered at 0.
• Each integral line is transversal to all tubes f −1(∂Dδ) contained in Bε.

The difference with the holomorphic setting is that we cannot guarantee now a
third condition: that the vectors f (z) are collinear for all points in each integral line
(cf. Theorem 6.10.3 below). We discuss this in Sect. 6.10.

For maps of the type f ḡ that we envisage above, there is a simple criterium in [54]
and [106, Proposition 3.5] to decide whether or not the map has the transversality
property. This is called CT-regularity in [106]. The advantage of this criterium is that
it is easy to use in practice.

6.9.2 Polar Weighted Singularities

Polar weighted homogeneous maps are polynomial maps f : R2n → R
2 with n >

1 with isolated critical value which behave very much as complex homogeneous
polynomials in the sense that there is a weighted action of C∗ ≡ S

1 × R
∗ on R2n for

which f brings out scalars. The difference with the complex case is that now scalars
in S1 and those in R∗ may act with different weights.

These were defined in [22] inspired by the definition and properties (6.25) and
(6.26) of twistedBrieskorn-Phampolynomials given in [144, 149]. In particular these
satisfy the transversality property, so they have a local Milnor-Lê fibration (6.27) and
as in the complex case, they have a Milnor fibration (6.28).

We identify R2n with Cn and R
2 with C in the usual way.
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Definition 6.9.6 Amap f : Cn → C is polar weighted homogeneous if there exists
a smooth action of S1 × R

+ on C
n of the form

(λ, r) · (z1, . . . , zn) = (λd1r p1 z1, . . . , λ
dn r pn zn) , λ ∈ S

1, r ∈ R
+,

where thed j , p j are positive integers such that gcd(d1, . . . , dn) = gcd(p1, . . . , pn) =
1, such that

f
(
(λ, r) · (z1, . . . , zn)

) = λdr p f (z1, . . . , zn) ,

for some integers d and p. The S1-action is called the polar action, while the R+-
action is called the radial action.

Examples of this kind of maps include complex weighted homogeneous polyno-
mials (where di = pi ) and twisted Brieskorn-Pham polynomials. In [22, 118] it is
proved that this type of polynomials have isolated critical value and that the actions
satisfy Properties 6.3.2 to 6.3.7. By Property 6.3.2 they satisfy the transversality
property, and thus, they have a Milnor-Lê fibration (6.27); and by Properties 6.3.3,
6.3.5 and 6.3.7 they have a Milnor fibration given by f/‖ f ‖ which is equivalent
to the Milnor-Lê fibration. With respect to Property 6.3.8, there is a Join Theo-
rem for polar weighted homogeneous polynomials proved in [22], which generalizes
Theorem 6.3.10 by Oka [116, Theorem 1] for complex weighted homogeneous poly-
nomials.

In [27] a classification of polar weighted homogeneous polynomials with isolated
critical point in three variables is given. It is proved that every polar weighted homo-
geneous polynomialwith isolated critical point in three variablesmust contain certain
polynomials which belong to one of five families, such families generalize the fam-
ilies given by Orlik and Wagreich mentioned in Sect. 6.6.1. It is also proved that the
diffeomorphism type of the link does not change under small perturbation of the coef-
ficients of the polynomial. The proof follows the one of Orlik and Wagreich’s result
[134]: given a family of polar weighted homogeneous polynomials with isolated crit-
ical point fw : C3 → C, where the parameter w is inCr with r > 3, one constructs a
manifold M with an S1-action, an open setU ⊂ C

r and a map φ : M → U , such that
the action leaves φ−1(w) invariant for all w ∈ U , φ−1(w) ∼= Lw equivariantly, where
Lw is the link of the polynomial fw, and φ is a locally trivial fibration. Unlike the
case of complex weighted homogeneous polynomials, the setU can be disconnected
and the topology of Lw can be different for w in different connected components.
One example in two variables of this phenomenon was shown by Oka [119].

Problem 6.9.7 Determine how the topology of the link and the Milnor fibre change
when the parameter w changes connected component of U .

Polar weighted homogeneous polynomials have been intensively studied by Oka
[118–120, 122, 123] and other authors [11, 67, 72–76, 76].
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6.9.3 Functions with Arbitrary Discriminant

We now consider the general setting and study Milnor fibrations for map-germs
(Rn, 0)→(Rp, 0) with arbitrary critical points, following [23, 32]. We start with an
example studied in [97] by López de Medrano.

Example 6.9.8 Consider maps ( f, g) : Rn → R
2 the form:

( f, g) =
(

n∑
i=1

ai x
2
i ,

n∑
i=1

bi x
2
i

)
,

where the ai and bi are real constants in generic position in the Poincaré domain.
This means that the origin is in the convex hull of the points λi := (ai , bi ) and no
two λi are linearly dependent.

A simple calculation shows that ( f, g) is a complete intersection and the corre-
sponding link is a smooth non-empty manifold of real codimension 2 in the sphere.
The critical points � of ( f, g) are the coordinate axis of Rn and the set �( f, g)

of critical values is the union of the n line-segments in R
2 joining the origin to the

points λi . Hence R
p splits into various connected components, and it is proved in

[97] that the topology of the fibers over points in different components changes. Yet,
we know from [32] that these map-germs have the transversality property given in
Definition 6.9.4, and away from the critical set they have a Milnor-Lê fibration. In
fact these maps are d-regular too, a concept that we discuss in Sect. 6.10 and implies
that away from the discriminant, they have also a Milnor fibration on small spheres
with projection map ( f, g)/‖( f, g)‖.

More generally, consider now an open neighbourhood U of 0 ∈ R
n and a C� map

f : (U, 0) → (Rp, 0), n > p ≥ 2, � ≥ 1, with a critical point at 0. Denote by C f the
set of critical points of f in Bε and let � f be the image f (C f ). These are the critical
values of f ; we call � f the discriminant of f .

Definition 6.9.9 We say that the map-germ f has the transversality property at 0 if
there exists a real number ε0 > 0 such that, for every ε with 0 < ε ≤ ε0, there exists
a real number δ, with 0 < δ � ε, such that for every t ∈ B

k
δ \ � f one has that either

f −1(t) does not intersect the sphere Sn−1
ε or f −1(t) intersects Sn−1

ε transversely in
R

n .

The transversality condition of the fibers with small spheres ensures having a
Milnor-Lê fibration, even for C� maps with non isolated critical values. Of course
that as in Example 6.9.8, if the base of the fibration has several connected components
(sectors), then the topology of the fibers can change from one sector to another. We
have the following result from [32].

Proposition 6.9.10 Let f : (Rn, 0) → (Rp, 0), n ≥ p ≥ 2, be a map-germ of class
C� with � ≥ 1. If f has the transversality property, then the restrictions:
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f | : Bn
ε ∩ f −1(D̊

p
δ \ � f ) −→ (D̊

p
δ \ � f ) ∩ Im( f ),

f | : Bn
ε ∩ f −1(S

p−1
δ \ � f ) −→ (S

p−1
δ \ � f ) ∩ Im( f ),

are C� fiber bundles, where ε and δ are small enough positive real numbers,Bn
ε ⊂ R

n

and D
p
δ ⊂ R

p are the closed balls of radius ε and δ centered at 0 and 0, respectively,
D̊

p
δ is the interior of the ball Dp

δ and S
p−1
δ is its boundary. If f is analytic, then the

fibrations above are C∞.

Ribeiro [141] calls this fibration Milnor-Hamm fibration and gives necessary and
sufficient conditions for its existence as well as classes of maps which satisfy them.
He also considers a “stratified transversality condition” which generalizes Defini-
tion 6.9.4.

In [23] the authors study the topology of the fibres of real analytic maps Rn →
R

p+k , n > p + k, inspired by the classical Lê-Greuel formula for theMilnor number
of isolated, complex, complete intersection germs. The idea is that if the map germ
is defined by analytic functions ( f1, ..., f p, g), then we can study the topology of
its fibres by comparing it with the topology of the germ we get by dropping down
g. We require for this that the map f := ( f1, ..., f p) actually satisfies the Thom a f -
property with respect to some Whitney stratification {Sα}, and that its zero-set V ( f )

has dimension ≥ 2 and it is union of strata. The map-germ (Rn, 0)
g→ (Rk, 0) is

assumed to have an isolated critical point inRn with respect to the stratification {Sα}.
By Proposition 6.9.10 the map-germs f and ( f, g) have associated local Milnor-Lê
fibrations. Then one has the corresponding Lê-Greuel formula [23, Theorem 1]:

Theorem 6.9.11 Let F f and Ff,g be Milnor fibres of f and ( f, g) (any Milnor fibres,
regardless of the fact that the topology of the fibers may depend on the connected
component of the base once we remove the discriminant). Then one has:

χ(Ff ) = χ(Ff,g) + IndPH∇ g̃|F f ∩Bε′ ,

where g̃ : Rn → R is given by g̃(x) = ‖g(x) − t0‖2 with t0 ∈ R
k such that F f,g =

g|−1
Ff

(t0) and Bε′ is a small ball in R
n centered at the origin.

The term IndPH∇ g̃|F f ∩Bε′ on the right, which by definition is the total Poincaré-
Hopf index in Ff of the vector field ∇ g̃|Ff , can be expressed also in the following
equivalent ways:

1. As the Euler class of the tangent bundle of F f relative to the vector field ∇ g̃|F f ∩Bε′
on its boundary;

2. As a sum of polar multiplicities relative to g̃ on Ff ∩ Bε′ .
3. As the index of the gradient vector field of a map g̃ on Ff associated to g;
4. As the number of critical points of g̃ on Ff ;
5. When p = 1 = k, this invariant can also be expressed algebraically, as the sig-

nature of a certain bilinear form that originates from [8, 51, 52, 57, 58].

When n = 2m, p = 2q, k = 2 and ( f, g) : Cm → C
q+1 is holomorphic, this is a

reformulation of the classical Lê-Greuel formula [60, 85], Theorem 6.6.4 above.
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We remark that when k = 1 and the germs of f and ( f, g) are both isolated
complete intersection germs, there is a Lê-Greuel type formula in [47] expressed in
terms of normal data of f with respect to an appropriate Whitney stratification. See
also [105] for refinements of the above discussion.

6.10 Milnor Fibrations and d-Regularity

The concept of d-regularity introduced in [30] is inspired by [10, 40, 144, 149] and
it is a key for understanding the difference between real and complex singularities
concerning Milnor fibrations.

6.10.1 The Case of an Isolated Critical Value

Let U be an open neighborhood of the origin 0 ∈ R
n , and consider a real analytic

germ f : (U, 0) → (Rp, 0) which is a submersion for each x /∈ V := f −1(0) and
has a critical point at 0.

Definition 6.10.1 The canonical pencil of f is a family {X�} of real analytic spaces
parameterized by RP

p−1, defined as follows: for each � ∈ RP
p−1, consider the line

L� ⊂ R
p that determines �, and set

X� = {x ∈ U | f (x) ∈ L�} .

Note that every two distinct elements of the pencil X� and X�′ satisfy

X� ∩ X�′ = V .

Each X� has dimension n − p + 1, is non-singular outside V and their union covers
all of U .

Each line L intersects the sphere S
p−1 in two antipodal points θ− and θ+. We

decompose the line L into the corresponding half lines accordingly:

L = L− ∪ {0} ∪ L+.

If we define E∓
� to be the inverse image f −1(L∓), respectively, then we can

express each element of the canonical pencil as the following union (see Fig. 6.8):

X� = E−
� ∪ V ∪ E+

� . (6.29)

If LV is the link of f , we can describe the fibers of the map ϕ = f/‖ f ‖: Sn−1
ε \

LV → S
p−1 as :
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Fig. 6.8 Canonical pencil

ϕ−1(θ−) = E−
� ∩ S

n−1
ε , ϕ−1(θ+) = E+

� ∩ S
n−1
ε .

Then we can write:

XL ∩ S
n−1
ε = (E−

� ∩ S
n−1
ε ) ∪ LV ∪ (E+

� ∩ S
n−1
ε ) = ϕ−1(θ−) ∪ LV ∪ ϕ−1(θ+).

We now assume that f : U → R
p is real analytic, with an isolated critical value

at 0 and it is locally surjective, i.e. the restriction of f to every neighborhood of
0 ∈ U covers a neighborhood of 0 ∈ R

p.

Definition 6.10.2 We say that f is d-regular if there exists ε0 > 0 such that for
every ε ≤ ε0 and for every line L through the origin in R

p, the sphere Sn−1
ε and the

manifold XL \ V are transverse.

As examples of d-regular maps one has:

• All holomorphic maps Cn → C, all polar weighted homogeneous polynomials
and real weighted homogeneous maps with an isolated critical value, are d-regular
maps.
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• If f and g are holomorphic mapsC2 → C such that the product f ḡ has an isolated
critical value at the origin, then the map f ḡ is d-regular, by [138].

• The strongly non-degenerate mixed functions in [119] are all d-regular, by [30,
119] (see Sect. 6.11).

• Direct sumsofd-regularmaps.That is, if f isd-regular in thevariables (x1, . . . , xn)

and g is d-regular in the variables (y1, . . . , ym), then f + g is d-regular in the vari-
ables (x1, . . . , xn, y1, . . . , ym), by [30].

The following is a fundamental property of d-regularity. We refer to [30] for its
proof.

Theorem 6.10.3 The real analytic map f is d-regular if and only if there exists a
smooth vector field ζ such that its integral lines are transverse to all spheres around
0, transverse to all Milnor tubes f −1(∂Dη) ∩ Bε , and tangent to each element XL
of the canonical pencil.

Such a vector field allows us to inflate the tube and get a fibration on the sphere
minus the link, granting that the projection map is f/‖ f ‖. Hence we get a slight
refinement of [30, Theorem 1]:

Theorem 6.10.4 Let f := ( f1, ..., f p) : (Rn, 0) → (Rp, 0) be a locally surjective
real analytic map with an isolated critical value at 0 ∈ R

p and assume V = f −1(0)
has dimension > 0. Then f admits a Milnor-Lê fibration if and only if it has the
transversality property. If this is so, then f is d-regular at 0 if and only if one has a
commutative diagram of smooth fibre bundles:

where L f is the link, ψ = ( f1(x) : · · · : f p(x)) and φ = f
‖ f ‖ : Sn−1

ε \ L f → S
p−1 is

the Milnor fibration. Furthermore, if the two fibrations exist (one on a Milnor tube,
another on the sphere minus the link), then these fibrations are smoothly equivalent.
That is, there exists a diffeomorphism between their corresponding total spaces,
carrying fibers into fibers.

This answers affirmatively a question raised by dos Santos [35], where the author
proved it for p = 2 and f weighted homogeneous. The proof in [30] of the equiv-
alence of the two fibrations has a small gap that has been filled in [24, 25] where
the theorem is proved in the more general setting of real analytic maps with arbi-
trary linear discriminant (see Definition 6.10.8). In [30, 31] there are other criteria
to determine d-regularity which can be useful in practice.

The following corollary is an immediate consequence of the previous theorem:

Remark 6.10.5 In [38, 39] the vector field of Theorem 6.10.3 is called a Milnor
vector field and sufficient condition are given for its existence. In [24, 25] it is proved
that such a vector field exists if and only if the map is d regular.
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Corollary 6.10.6 Given f : (Rn, 0) → (Rp, 0) as in the theorem above, consider
its Milnor fibration

φ = f

‖ f ‖ : Sn−1
η \ L f → S

p−1.

Then the union of the link L f and each pair of fibres of φ over antipodal points of
S

p−1 corresponding to the line L�, is the link of the real analytic variety Xθ .

For instance, if f : (Cn, 0) → (C, 0) is holomorphic and it has an isolated critical
point at 0, then {Re f = 0} is a real hypersurface and its link is the double of the
Milnor fiber of f with the link L f as an equator. If n = 2, then the link of Re ( f ) = 0
is a compact Riemann surface of genus 2g f + r − 1 where g f is the genus of the
Milnor fibre of f and r the number of connected components of the link of f . Thus

for instance, we know from [29] that for the map (z1, z2)
f→ z21 + zq

2 one gets that the
link of Re f is a closed oriented surface in the 3-sphere, union of the Milnor fibres
over the points±i ; an easy computation shows that it has genus q − 1. This provides
an explicit way to determine closed surfaces of all genera ≥ 1 in the 3-sphere by a
single analytic equation.

It would be interesting to study the geometry and topology of the 4-manifolds one
gets in this way, by considering the link of the hypersurface inC3 defined by the real
part of a holomorphic function with an isolated critical point. For example, for the

map (z1, z2, z3)
f→ z21 + z32 + z53, the corresponding 4-manifold is the double of the

E8 manifold, whose boundary is Poincaré’s homology 3-sphere.
The following related result was proved by Menegon and Seade [105] answering

a question in [23].

Theorem 6.10.7 Let f = ( f1, . . . , fn) : (Rm, 0) → (Rn, 0), with 1 < n < m, be a
map germ with an isolated critical point. For each set of indices {i1, . . . , ik} set

Vi1,...,ik := f −1
i1,...,ik

(0) ∩ B
m
ε ,

where fi1,...,ik = ( fi1 , . . . , fik ) : (Rm, 0) → (Rk, 0) and ε is a Milnor radius for f .
The topology of Vi1,...,ik is independent of the choice of the indices i1, . . . , ik . More-
over, the diffeomorphism type of its link it is also independent of the choice of the
indices i1, . . . , ik and it is diffeomorphic to the boundary of the product of the Milnor
fibre F of f and a closed (n − k)-disk. In the particular case when k = n − 1, that
is precisely the double of F.

6.10.2 The General Case

In [32] the authors continue the work begun in [23] and extend the above discussion

on d-regularity to differentiable functions (Rn, 0)
f→ (Rp, 0) of class C

�, � ≥ 1,
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n ≥ p ≥ 2, with a critical point at 0 ∈ R
n , arbitrary critical values � f and non-

empty link LV . This is immediate when the discriminant � f is linear:

Definition 6.10.8 The map-germ f : (Rn, 0) → (Rp, 0) has linear discriminant if
for some representative f there exists η = η( f ) > 0 such that the intersection of� f

with the closed ball Dp
η is a union of line-segments, i.e.:

� f ∩ D
p
η = Cone

(
� f ∩ S

p−1
η

)
.

We call η a linearity radius for � f . (The case when f has 0 ∈ R
p as isolated critical

value is considered to have linear discriminant with arbitrary linearity radius.)

Let f : (Rn, 0) → (Rp, 0) be as above, with linear discriminant, and consider a
representative f with linearity radius η > 0. Set ∂�η := � f ∩ S

p−1
η . For each point

θ ∈ S
p−1
η , let Lθ ⊂ R

p be the open segment of line that starts at the origin and ends
at the point θ (but not containing these two points). Set Eθ := f −1(Lθ ), so each Eθ

is a manifold of class C� for every θ in Sp−1
η \ ∂�η.

Definition 6.10.9 Let f : (Rn, 0) → (Rp, 0) be a map-germ of class C� with � ≥ 1
and linear discriminant. We say that f is d-regular at 0 if for some representative
f there exists ε0 > 0 small enough such that f (Bn

ε0
) ⊂ D̊

p
η , where η is a linearity

radius for � f , and such that every Eθ intersects the sphere Sn−1
ε transversely in Rn ,

for every ε with 0 < ε ≤ ε0 and for all θ ∈ S
p−1
η \ ∂�η such that the intersection is

not empty.

Example 6.10.10 Let K be either R or C. Let ( f, g) : Kn → K
2 be a K-analytic

map of the form:

( f, g) =
(

n∑
i=1

ai x
q
i ,

n∑
i=1

bi x
q
i

)
,

where (ai , bi ) ∈ K are constants in generic position as in Example 6.9.8, and q ≥ 2
is an integer. By [32] the discriminant � is linear and ( f, g) is d-regular.

It is proved in [32] that the fibration theorems 6.10.3 and 6.10.4 extend to this
general setting of C� maps with linear discriminant which have the transversality
property and are d-regular. Also, there are in [32] examples of non-analytic maps
for which these fibration theorems apply. In [141] M. Ribeiro gives some sufficient
conditions for maps with linear discriminant to be d-regular (called ρ-regularity
there) which ensure the existence of the fibration on the sphere.

Consider the following example that generalizes Example 6.10.10.

Example 6.10.11 Let ( f, g) : Rn → R
2 be:

( f, g) =
(

n∑
i=1

ai x
p
i ,

n∑
i=1

bi x
q
i

)
,
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with p, q ≥ 2 integers and the (ai , bi ) as above. If p �= q, the discriminant �( f,g) is
not linear. Yet we can always linearize it with a homeomorphism h in R2. Moreover,
these maps have the transversality property and they are dh-regular in an appropriate
sense that depends on the homeomorphism h. The fibration theorems in [32] extend to
this setting, and in fact to allC�-maps that admit an appropriate “conicmodification”,
a condition that seems to be always satisfied.

6.11 Singularities of Mixed Functions

A mixed function is a real analytic function C
n → C in the complex variables z =

(z1, . . . , zn) and their conjugates z̄ = (z̄1, . . . , z̄n). Early appearance of this type of
functions in singularity theory are, for instance, Kuiper’s examples (6.21) in [110,
Chap. 11], example (6.22) by A’Campo [1], as well as in the work of Rudolph
[145]. The modern study of mixed functions in singularity theory springs from [22,
144, 150]: the twisted Brieskorn-Pham polynomials (Definition 6.8.6) and, more
generally, polarweightedhomogeneouspolynomials (Sect. 6.9.2) are naturallymixed
functions. So are the singularities studied byLópez deMedrano (see for instance [96])
that spring from the study of holomorphic linear actions of Cm in C

n , 0 < m � n
(see [151, Sect. 16]). Other examples of mixed functions are functions of the form
f ḡ : Cn → Cwith f and g holomorphic studied in [136, 138]. This type of functions
yield to a rich interplay between complex geometry and the theory of real analytic
singularities, and that is the topic of Chaps. VI–VIII in [150].

The terms “mixed function and mixed singularity” were coined by Oka [119].
Oka’s systematic study of mixed functions has turned this subject into a whole new
line of research. In particular, inspired by the theory of complex singularities [117],
Oka [119] introduces for mixed functions the useful notion of non-degeneracy with
respect to a naturally defined Newton boundary. He uses this to prove a fibration
theorem for strongly non-degenerate convenient mixed functions, and to study their
topology. We give the necessary definitions to state this theorem and we refer to
Oka’s chapter [132] in this volume for more on the subject.

A mixed analytic function is a function f : Cn → C of the form

f (z) =
∑
ν,μ

cν,μzν z̄μ ,

Assume for simplicity c0,0 = 0, so that 0 ∈ V ( f ) := f −1(0). Following Oka, we
call V ( f ) a mixed hypersurface, though in general it has real codimension 2. The
(radial) Newton polygon (at the origin) �+( f ) is defined in the usual way: it is the
convex hull of: ⋃

cν,μ �=0

(ν + μ) + R
+n ,
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where ν + μ is the sum of the multi-indices of zν z̄μ, i.e., ν + μ = (ν1 + μ1, ..., νn +
μn).

In analogy with complex polynomials, define the Newton boundary �( f ) as the
union of the compact faces of �+( f ). To every given positive integer (weight) vector
P = (p1, ..., pn) we associate a linear function �P on the Newton boundary �( f )

defined by:

�P(ν) =
n∑

j=1

p jν j

for ν ∈ �( f ). Let �(P, f ) = �(P) be the face where �P attains its minimal value.
Then, for a positive weight P , define the face function fP(z) by:

fP(z) =
∑

ν+μ∈�(P)

cν,μzν z̄μ .

We need some notation to introduce the main definitions. For a subset J ⊂
{1, 2, ..., n}, we define the subspace CJ = {z = (z1, . . . , zn) ∈ C

n | z j = 0, j /∈ J },
the subsetC∗J = {z = (z1, . . . , zn) ∈ C

n | z j = 0 ⇔ j /∈ J } abbreviatingC∗n = C
∗J

for J = {1, 2, ..., n}.
Definition 6.11.1 Let P be a strictly positive weight vector. We say that f (z) is
non-degenerate for P if the fiber f −1(0) ∩ C

∗n contains no critical point of the
map fP : C∗n → C. The map f is strongly non-degenerate for P if the mapping
fP : C∗n → C has no critical points at all, dim�(P) ≥ 1 and fP : C∗n → C is
surjective. The function f (z) is called non-degenerate (respectively strongly non-
degenerate) if it is non-degenerate (respectively strongly non-degenerate) for every
strictly positive weight vector P .

For J ⊂ {1, 2, ..., n}, consider the restriction f J := f |CJ and define the set

NV( f ) = {I ⊂ {1, ..., n} | f I �= 0}.

We call NV( f ) the set of non-vanishing coordinate subspaces for f .

Definition 6.11.2 We say that f is k-convenient if J ∈ NV( f ) for every J ⊂
{1, ..., n} with |J | = n − k. We say that f is convenient if f is (n − 1)-convenient.

We may now state the main results in [119, Theorems 29, 33, 36] concerning
Milnor fibrations combined into a single statement.

Theorem 6.11.3 Assume the mixed polynomial f (z) is convenient and strongly non-
degenerate. Then one has a fibration of the Milnor-Lê type in a Milnor tube as in
(6.16), as well as a Milnor fibration on every sufficiently small sphere with projection
map f/‖ f ‖, as in (6.13), and the two fibrations are smoothly equivalent.

In [119] Oka also uses toric geometry to get a resolution of the corresponding
singularity, in analogy with the complex case (see for instance [117]). He then uses
this to study the topology of the links, as well as the topology of the Milnor fibers.
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Oka has published several other articles studying different aspects of mixed func-
tions, including [53, 121, 124–130] with important results that cover a wide spec-
trum of topics, from intersection theory to contact structures or even studying roots
of equations applied in astronomy.

Remark 6.11.4 Inspired in [88], in [26] for a family of mixed functions a vanishing
polyhedron is contructed and with it, a join theorem is proved. One can also consider
mixed maps f : Cn → C

k , for this we refer to [143] and the references in there.
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58. X. Gómez-Mont, P. Mardesić, The index of a vector field tangent to an odd-dimensional
hypersurface, and the signature of the relative Hessian. Funktsional. Anal. i Prilozhen. 33, no.
1, 96, 1–13 (1999)

59. M. Goresky, R. MacPherson. Stratified Morse theory. Springer-Verlag, Berlin, 1988
60. G.-M. Greuel. Der Gauss-Manin Zusammenhang isolierter Singularitäten von vollständigen

Durchschnitten. Dissertation. Göttingen, 1973. Math. Ann. 214 235–266 (1975)

https://doi.org/10.1007/s00574-020-00230-9
https://doi.org/10.1007/s00574-020-00230-9
https://doi.org/10.2969/jmsj/82278227
https://doi.org/10.2969/jmsj/82278227


356 J. L. Cisneros-Molina and J. Seade

61. G.-M.Greuel.Deformation and smoothingof singularities.HandbookofGeometry andTopol-
ogy of Singularities, Volume I, 2020

62. G.-M. Greuel, W. Purket. Life and work of Egbert Brieskorn (1936-2013). Journal of Singu-
larities 18, 7-34 (2018). Special volume in honor of E. Brieskorn. (See also arXiv:1711.09600)

63. S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández. Zeta functions of germs of meromorphic
functions, and the Newton diagram, Funct. Anal. Appl. 32, 93–99 (1998)

64. S.M.Gusein-Zade, I. Luengo,A.Melle-Hernández.On the topology of germs of meromorphic
functions and its applications, St. Petersburg Math. J. 11, 775–780 (2000)

65. H. Hamm. Lokale topologische Eigenschaften komplexer Räume. Math. Ann., 191, 235–252
(1971)

66. H. Hamm, D. T. Lê. Un théorème de Zariski du type de Lefschetz. Ann. Sci. Ec. Norm. Sup.,
6 (series 4), 317–366 (1973)

67. L. Hernández de la Cruz, S. López de Medrano. Some families of isolated singularities. In
Singularities II. Contemp. Math. 475, p. 79–87. A. M. S., Providence, RI, 2008. Proc. Int.
School and Workshop on the Geometry and Topology of Singularities in honor of the 60th
birthday of Lê D. T. Cuernavaca, Mexico, 2007. Eds. J.-P. Brasselet et al

68. H.Hironaka. Stratification and flatness. InReal and complex singularities (Proc. NinthNordic
SummerSchool/NAVFSympos.Math.,Oslo, 1976), p. 199–265. Sijthoff andNoordhoff, 1977

69. F. Hirzebruch. Topological Methods in algebraic geometry. Springer Verlag, 1956
70. F. Hirzebruch. Singularities and exotic spheres. Sem. Bourbaki 1966/67, No.314, 20 p. 1968
71. W. C. Hsiang, W. Y. Hsiang. Some results on differentiable actions. Bull. Amer. Math. Soc.,

72, 134–138 (1966)
72. K. Inaba. On the enhancement to theMilnor number of a class of mixed polynomials. J. Math.

Soc. Japan, 66(1), 25–36 (2014)
73. K. Inaba.Onfibered links of singularities of polarweighted homogeneousmixed polynomials.

In Singularities in geometry and topology 2011, volume 66 of Adv. Stud. Pure Math., pages
81–92. Math. Soc. Japan, Tokyo, 2015

74. K. Inaba. On deformations of isolated singularities of polar weighted homogeneous mixed
polynomials. Osaka J. Math., 53(3), 813–842 (2016)

75. K. Inaba. Topology of the Milnor fibrations of polar weighted homogeneous polynomials.
Manuscripta Math., 157(3-4), 411–424 (2018)

76. K. Inaba, M. Kawashima, and M. Oka. Topology of mixed hypersurfaces of cyclic type. J.
Math. Soc. Japan, 70(1), 387–402 (2018)

77. A. Jacquemard, Fibrations de Milnor pour des applications réelles. Boll. Un. Mat. Ital. B (7),
591–600 (1989)

78. K. Jänich. Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume differenzierbarer
G-Mannigfaltigkeiten ohne Rand. Topology, 5, 301–320 (1966)

79. E. Kähler. Über die Verzweigung einer algebraischen Funktion zweier Veränderlichen in der
Umgebung einer singulären Stelle. Math. Z., 30(1), 188–204 (1929)

80. M. A. Kervaire. A manifold which does not admit any differentiable structure. Comment.
Math. Helv., 34, 257–270 (1960)

81. M. A. Kervaire, J. W.Milnor. Groups of homotopy spheres: I. Annals ofMathematics. Prince-
ton University Press. 77, 504–537 (1963)

82. G. M. Khimshiashvili. On the local degree of a smooth map. Sakharth. SSR Mecn. Akad.
Moambe, SSR85(2), 309-312 (1977)

83. F. Klein. Lectures on the icosahedron and the solution of equations of the fifth degree. Dover,
1956

84. N. H. Kuiper. C1-equivalence of functions near isolated critical points. In Symposium on
Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967), pages 199–
218. Ann. of Math. Studies, No. 69. 1972

85. D. T. Lê. Computation of the Milnor number of an isolated singularity of a complete inter-
section. Funct. Anal. Appl. 8, 127–131 (1974)

86. D. T. Lê. Some remarks on relative monodromy. In P. Holm, editor, in Real and complex
singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pages
397–403. Sijthoff and Noordhoff, Alphen aan den Rijn, 1977

http://arxiv.org/abs/1711.09600


6 Milnor’s Fibration Theorem for Real and Complex Singularities 357

87. D.T. Lê, Polyèdres évanescents et effondrements, A fête of topology, 293-329, Academic
Press, Boston, MA, 1988

88. D.T. Lê and A. Menegon Neto, Vanishing polyhedron and collapsing map, Math. Zeitschrift,
v. 286 (2017), p. 1003–1040

89. D. T. Lê, J. J. Nuño-Ballesteros, J. Seade. The topology of the Milnor fiber. Handbook of
Geometry and Topology of Singularities, Volume I, 2020

90. D. T. Lê, B. Perron. Sur la fiber de Milnor d’une singularité isolée en dimension complexe
trois. C. R. Acad. Sci. Paris Sé r. A-B 289, no. 2, A115–A118 (1979)

91. D. T. Lê, B. Teissier. Cycles évanescents et conditions deWhitney. In Proc. Symp. Pure Math,
40 (Part 2), 65–103 (1983)

92. J. Levine. Polynomial invariants of knots of codimension two. Ann. of Math. (2), 84:537–554,
1966

93. E. Looijenga. A note on polynomial isolated singularities. Indag. Math., 33, 418–421 (1971)
94. E. Looijenga. Isolated Singular Points on Complete Intersections. Cambridge Univ. Press,

Cambridge, London, New York, New Rochelle, Melbourne, Sydney, 1984
95. S. Łojasiewicz. Triangulation of semi-analytic sets. Annali Sc. Norm. Sup. de Pisa, 18, 449–

474 (1964)
96. S. López de Medrano. Topology of the intersection of quadrics in S

n . In Algebraic topology
Springer Verlag Lecture Notes in Math., 1370, 280–292, 1989. (Arcata, CA, 1986), Eds.
Carlsson et al

97. S. López de Medrano. Singularities of homogeneous quadratic mappings. Rev. R. Acad.
Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 108, 95–112 (2014)

98. R. Martins, A. Menegon. Milnor-Lê type fibrations for subanalytic maps. Preprint 2018,
arXiv:1806.05349

99. D. B. Massey. The Lê varieties. I. Invent. Math. 99, 357–376 (1990)
100. D. B. Massey. The Lê varieties II. Invent. Math. 104, 113–148 (1991)
101. D. B.Massey. Lê Cycles and Hypersurface Singularities. Lecture Notes inMathematics 1615,

Springer-Verlag (1995)
102. D. B. Massey. Lê Cycles and Numbers of hypersurface singularities. This volume, 2021
103. D. B. Massey. Real analytic Milnor fibrations and a strong Lojasiewicz inequality. In Real

and complex singularities; Camb. Univ. Press. L. M. S. Lecture Note Series 380, 268-292,
2010. 10th International Workshop on Real and Complex Singularities São Carlos, Brazil,
2008. (Ed.) M. Manoel et al

104. J. Mather. Stratifications and mappings. In Dynamical Systems, Proc. Sympos. Univ. Bahia,
Salvador 1971, 195–232, 1973. Ed. M. Peixoto

105. A. Menegon, J. Seade. On the Lê-Milnor fibration for real analytic maps. Math. Nachr. 290,
No. 2–3, 382–392 (2017)

106. A. Menegon, J. Seade. Vanishing zones and the topology of non-isolated singularities. Geom.
Dedicata 202, 321–335 (2019)

107. F. Michel. The Topology of Surface Singularities. Handbook of Geometry and Topology of
Singularities, Volume I, 2020

108. J.W.Milnor. Onmanifolds homeomorphic to the 7-sphere. Annals ofMathematics. Princeton
University Press. 64, 399–405 (1956)

109. J. W. Milnor. On isolated singularities of hypersurfaces. Preprint June 1966. Unpublished
110. J. W. Milnor. Singular points of complex hypersurfaces. Annals of Mathematics Studies, 61,

Princeton University Press, Princeton, N.J., 1968
111. J. W. Milnor. Differential topology forty-six years later. Notices Amer. Math. Soc., 58(6),

804–809 (2011)
112. J. W. Milnor. Topology through the centuries: low dimensional manifolds. Bull. Amer. Math.

Soc. (N.S.), 52(4), 545–584 (2015)
113. J. W. Milnor, P. Orlik. Isolated singularities defined by weighted homogeneous polynomials.

Topology, 9, 385–393 (1970)
114. D. Mumford. The topology of normal singularities of an algebraic surface and a criterion for

simplicity. Publ. Math. I.H.E.S., 9, 5–22 (1961)

http://arxiv.org/abs/1806.05349


358 J. L. Cisneros-Molina and J. Seade

115. W. D. Neumann. A calculus for plumbing applied to the topology of complex surface singu-
larities and degenerating complex curves. Trans. Amer. Math. Soc., 268, 299–344 (1981)

116. M. Oka. On the homotopy types of hypersurfaces defined by weighted homogeneous poly-
nomials. Topology, 12, 19–32 (1973)

117. M. Oka. Non-degenerate complete intersection singularity. Actualités Mathématiques. Paris:
Hermann. (1997)

118. M. Oka. Topology of polar weighted homogeneous hypersurfaces. Kodai Math. J., 31, 163–
182 (2008)

119. M. Oka. Non-degenerate mixed functions. Kodai Math. J. 33, No. 1, 1–62 (2010)
120. M. Oka. On mixed plane curves of polar degree 1. In The Japanese-Australian Workshop on

Real and Complex Singularities—JARCS III, volume 43 of Proc. Centre Math. Appl. Austral.
Nat. Univ., pages 67–74. Austral. Nat. Univ., Canberra, 2010

121. M. Oka. On Mixed Brieskorn Variety. in Topology of algebraic varieties and singularities.
AMS Contemporary Mathematics 538, 389–399, 2011. Eds. J. I. Cogolludo et al

122. M. Oka. On mixed projective curves. In Singularities in geometry and topology, volume 20
of IRMA Lect. Math. Theor. Phys., pages 133–147. Eur. Math. Soc., Zürich, 2012

123. M. Oka. Mixed functions of strongly polar weighted homogeneous face type. In Singularities
in geometry and topology 2011, volume 66 of Adv. Stud. Pure Math., pages 173–202. Math.
Soc. Japan, Tokyo, 2015

124. M. Oka. Intersection theory on mixed curves. Kodai Math. J., 35(2), 248–267 (2012)
125. M. Oka. Contact structure on mixed links. Vietnam J. Math., 42(3), 249–271 (2014)
126. M. Oka. Remark on the roots of generalized lens equations. SUT J. Math., 53(2), 127–134

(2017)
127. M. Oka. Łojasiewicz exponents of non-degenerate holomorohic and mixed functions. Kodai

Math. J., 41(3), 620–651 (2018)
128. M. Oka. On the roots of an extended Lens equation and an application. In Singularities and

foliations. geometry, topology and applications, volume 222 of Springer Proc. Math. Stat., p.
489–511. Springer, Cham, 2018

129. M. Oka. Smooth mixed projective curves and a conjecture. J. Singul., 18, 329–349 (2018)
130. M. Oka. OnMilnor fibrations of mixed functions, a f -condition and boundary stability. Kodai

Math. J. 38, No. 3, 581–603 (2015)
131. M. Oka. On the connectivity of Milnor fiber for mixed functions. Preprint 2018
132. M. Oka. Introduction to mixed hypersurface singularity. This Volume, 2021
133. P. Orlik. Seifert manifolds, volume 291 of Lecture Notes in Mathematics. Springer-Verlag,

Berlin, 1972
134. P. Orlik, Ph. Wagreich. Isolated singularities of algebraic surfaces with C∗-action. Ann. of

Math., 93, 205–228 (1971)
135. F. Pham. Formules de Picard-Lefschetz généralisées et ramification des intégrales. Bull. Soc.

Math. France, 93, 333–367 (1965)
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Chapter 7
Lê Cycles and Numbers of Hypersurface
Singularities

David B. Massey

Abstract TheMilnor number is themost important number associated to an isolated
hypersurface singularity. It is an invariant of the ambient topological-type of the
hypersurface, it is effectively algebraically calculable, it determines the homotopy-
type of the Milnor fiber, and its constancy in a family implies that Thom’s A f

condition is satisfied and that the ambient topological-type of the hypersurface is
constant (outside of possibly one dimension). In this survey, we will review results
on the Lê cycles and Lê numbers—results which tell us the extent to which the Lê
numbers of a non-isolated hypersurface singularity are a good generalization of the
Milnor number from the isolated case.
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7.1 Introduction and Earlier Results

By now, the Milnor Fibration, introduced by Milnor in 1968 in “Singular Points of
Complex Hypersurfaces” [42] is considered themost fundamental object in the study
of the local topology of complex hypersurfaces. This fibration is discussed at length
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in the article in these volumes “The Topology of the Milnor Fibration”, by Lê, Nuño
Ballesteros, and Seade [28].

We wish to recall some definitions and results here, particularly in the case of
isolated hypersurface singularities to lead to our discussion of Lê cycles and num-
bers, which we developed in [33, 34, 36], to deal with non-isolated hypersurface
singularities.

LetU be a non-empty open subsetCn+1, n ≥ 1, and let f : U → C be an analytic
functionwhich is nowhere locally constant. Let V ( f ) := f −1(0) be the hypersurface
defined by f . Let z := (z0, . . . , zn) be the standard analytic coordinates on U, and
let � f denote the critical locus of f , i.e.,

� f := V

(
∂ f

∂z0
, · · · ,

∂ f

∂zn

)
.

Bya standard argument using theCurveSelectionLemma, ifp ∈ � f , then, in an open
neighborhood W of p, W ∩ � f ⊆ W ∩ V ( f − f (p)); one says that the critical
values of f are locally isolated.

By the singular set of V ( f ), we mean the points of V ( f ) where V ( f ) is not an
analytic submanifold ofU; we denote this singular set by�V ( f ). If p ∈ �V ( f ) and
f is reduced at p, then the previous paragraph implies that, in an open neighborhood
W of p, W ∩ �V ( f ) = W ∩ � f . So, for local questions for a reduced f , one
frequently sees � f and �V ( f ) used interchangeably.

The function f being reduced atp is equivalent to dimp � f ≤ n − 1. In particular,
since n ≥ 1, ifp ∈ V ( f ) and dimp � f = 0, then f is reduced atp and�V ( f ) = � f
near p.

Milnor worked in the complex algebraic category; however, essentially all of his
results in [42] still hold, with the same proofs, in the complex analytic category.
Some of his results that we wish to recall are:

1. Milnor proved that the object that is now called the Milnor fibration over a circle
is a smooth, locally trivial fibration. In fact, Milnor mentions two diffeomorphic
versions of this fibration: one on a small sphere and one inside a small ball. It is
most convenient for us to use the fibration inside a ball.
So, for us here, theMilnor fibration of f at a pointp ∈ V ( f ) is given by the restric-
tion of f , f : B◦

ε (p) ∩ f −1(∂Dη) → ∂Dη for 0 < η 	 ε 	 1, where B◦
ε (p) is an

open ball of radius ε centered at p and ∂Dη is the boundary circle of a disk of
radius η centered at the origin in C. The diffeomorphism-type of this fibration is
independent of the choice of the sufficiently small η and sufficiently smaller η.
The fiber is the Milnor fiber and, at p ∈ V ( f ), is denoted by Ff,p. The action
on the homology/cohomology of Ff,p induced by traveling counteclockwise once
around the base circle in the Milnor fibration is called the Milnor monodromy.

2. Milnor proved that, if p ∈ V ( f ), then the Milnor fiber, Ff,p, has the homotopy-
type of a finite n-dimensional CW-complex. This implies that all of the homology
groups are finitely-generated, are zero above dimension n, and that Hn(Ff,0) is
free Abelian.
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3. Milnor proved that if f has an isolated critical point at p, i.e., dimp � f = 0, then
Ff,p is (n − 1)-connected. Combining this with the previous result, it follows
that, in the case of an isolated critical point, the Milnor fiber has the homotopy-
type of a finite bouquet (one-point union) of n-spheres; the number of spheres in
this bouquet is the Milnor number and is denoted by μ (or μ f (p) or μp( f ), or
some other such variant). In particular, the reduced homology is trivial except in
dimension n where the homology group is Z

μ

.
4. Let p := (p0, . . . , pn) ∈ V ( f ). Milnor showed that if dimp � f = 0, then the

Milnor number of f at p is the degree of the normalized jacobian map from a
small sphere around p to a sphere around the origin. As observed by Palamodov
[46], this implies that the Milnor number μp( f ) can be calculated algebraically
by taking the dimension as a complex vector space of the jacobian algebra

C{z0 − p0, . . . , zn − pn}
〈 ∂ f

∂z0
, . . . ,

∂ f
∂zn

〉 ,

where C{z0 − p0, . . . , zn − p0} denotes the ring of analytic germs, convergent
power series, at p.

5. There is one final result ofMilnor’s thatwewish tomention here. Suppose that f is
a weighted homogeneous polynomial (i.e., there exist positive integers r0, . . . , rn
such that f (z0r0 , . . . , znrn ) is a homogeneous polynomial). Then, theMilnor fiber,
Ff,0, is diffeomorphic to f −1(1).

One of the most fundamental properties of the Milnor fiber is often stated without
reference: for reduced hypersurfaces, the homotopy-type of the Milnor fiber is an
invariant of the local, ambient topological-type of the hypersurface. For an isolated
critical point, this statement is equivalent to saying that the Milnor number is an
invariant of the local, ambient topological-type of the reduced hypersurface; in this
case, this result appears in a remark of Teissier in [52] in 1972 and in [53] in 1973.
The general result, with a monodromy statement, is due to Lê in [22, 23], which both
appeared in 1973.

Theorem 7.1.1 (Teissier, Lê) Let f : (U, 0) → (C, 0) and g : (U, 0) → (C, 0) be
reduced complex analytic functions which define hypersurfaces with the same ambi-
ent topological-type at the origin, i.e., such that there exist open neighborhoods W
and V of the origin and a homeomorphism h : W → V such that h(0) = 0 and
h(W ∩ V ( f )) = V ∩ V (g).

Then, there exists a homotopy-equivalence α : Ff,0 → Fg,0 such that the induced
isomorphism on homology commutes with the respective Milnor monodromy auto-
morphisms.

Example 7.1.2 Consider f : C
2 → C given by f (x, y) = y2 − x3 and g : C

2 →
C given by g(x, y) = y2 − x3 − x2. The spaces V ( f ) and V (g) are respectively
referred to as a cusp and a node. Both functions have isolated critical points at the
origin.
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We leave it as an exercise for the reader to verify thatμ0( f ) = 2, whileμ0(g) = 1
and so, by Lê and Teissier’s result above, V ( f ) and V (g) are not ambiently homeo-
morphic at the respective origins.

In fact, by considering the number of irreducible components of V ( f ) and V (g)
at 0, which corresponds to the number of connected components of V ( f ) − {0} and
V (g) − {0} in small neighborhoods of the origin, one sees that V ( f ) and V (g) are
not even homeomorphic at their origins without worrying about the ambient space.

Note that non-homeomorphic hypersurfaces with isolated singularities can easily
have the sameMilnor numbers. Again, we leave it as an exercise for the reader to see
that this happens if we take h : C

2 → C given by h(x, y) = y3 − x3 and k : C
2 → C

given by k(x, y) = y2 − x5.

The Sebastiani-Thom Theorem was proved in various forms in [43, 47, 49].
This result states that:

Theorem 7.1.3 If we have analytic functions f : U → C and g : U′ → C, and
points a ∈ V ( f ), b ∈ V (g), then the Milnor fiber at (a, b) of the function h : U ×
U′ → C defined by h(w, z) := f (w) + g(z) is homotopy-equivalent to the join,
F f,a ∗ Fg,b, of the Milnor fibers of f and g.

This determines the homology of Fh,0 in a simple way, since the reduced integral
homology of the join of two spaces X and Y is given by

H̃ j+1(X ∗ Y ) =
∑
k+l= j

H̃k(X) ⊗ H̃l(Y ) ⊕
∑

k+l= j−1

Tor
(
H̃k(X), H̃l(Y )

)
.

In particular, if one takes g above to be the function from C to C given by squaring,
then the function h above, h(w, z) := f (w) + z2, is referred to as the suspension
of f , since the Sebastiani-Thom Theorem tells one that the Milnor fiber of h is
homotopy-equivalent to the suspension of the Milnor fiber of f .

There is another important result about the homotopy-type of Milnor fiber. The
very nice general result of Kato and Matsumoto [21] is:

Theorem 7.1.4 Ifp ∈ V ( f ) and s := dimp � f , then Ff,p is (n − s − 1)-connected;
in particular, when s = 0, one recovers the result of Milnor.

In fact, the connectivity result above is the best possible general result of this type,
as the following example shows.

Example 7.1.5 Consider g := z0z1 · · · zs+1 + z2s+2 + · · · + z2n . We leave it as an
exercise for the reader to verify, using results above, that this g has an s-dimensional
critical locus at the origin and Fg,0 has non-trivial homology in dimension n − s.

We wish to consider another classic non-isolated hypersurface singularity:

Example 7.1.6 The Whitney umbrella is the hypersurface in C
3 is defined by the

vanishing of f = y2 − ux2. After an analytic change of coordinates, given by u =
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x + t , we obtain that f = y2 − x3 − t x2, which presents the Whitney umbrella as a
family, ft , of nodes degenerating to a cusp.

Now, Fy2+ux2,0 is homotopy-equivalent to the suspension of Fux2,0. But, as ux2 is
homogeneous,

Fux2,0
∼= {

(u, x)|ux2 = 1
} =

{(
1

x2
, x

)
|x �= 0

}
∼= C

∗.

Thus, Fy2+ux2,0 is homotopy-equivalent to the suspension of a circle, i.e., Fy2+ux2,0

is homotopy-equivalent to a 2-sphere.

That the Milnor number, the number of n-spheres in the homotopy-type of the
Milnor fiber, at an isolated hypersurface singularity p ∈ V ( f ) is calculated as the
complex vector space dimension of the jacobian algebra implies that, if p ∈ � f ,
then the Milnor fiber does not have the homology of a point. But what about the
case of non-isolated hypersurface singularities? The following result of A’Campo
[1] implies that, again, at even a non-isolated critical point, the Milnor fiber cannot
have the homology of a point.

Theorem 7.1.7 Suppose that p ∈ V ( f ) ∩ � f . Then the Lefschetz number of the
Milnor monodromy of f at p is zero.

As the homotopy-type of the Milnor fiber is an invariant of the local, ambient
topological-type of the hypersurface at the origin, if one has a family of hyper-
surfaces with isolated singularities in which the local, ambient, topological-type is
constant, then the Milnor number must remain constant in the family. In 1976, Lê
and Ramanujam proved the converse of this; we describe their result now.

LetD◦ be an open disk about the origin inC, letU be an open neighborhood of the
origin in C

n+1, and let f : (D◦ × U, D
◦ × 0) → (C, 0) be an analytic function; we

write ft for the function defined by ft (z) := f (t, z). Lê and Ramanujam proved
in [30] the following stunning result:

Theorem 7.1.8 Suppose that, for all small t , dim0� ft = 0 and that the Milnor
number of ft at the origin is independent of t . Then, for all small t ,

1. the fiber-homotopy type of the Milnor fibrations of ft at the origin is independent
of t;
and, if n �= 2,

2. the diffeomorphism-type of the Milnor fibrations of ft at the origin are indepen-
dent of t , and

3. the local, ambient, topological-type of V ( ft ) at the origin are independent of t .

There is another important result about μ-constant families: the result of Lê and
K. Saito. We continue with f : (D◦ × U, D

◦ × 0) → (C, 0) as above. The result
of [31] tells one how limiting tangent spaces to nearby level hypersurfaces of f
approach the singularity.
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Theorem 7.1.9 Suppose that, for all small t , dim0� ft = 0 and that the Milnor
number of ft at the origin is independent of t . Then, D

◦ × 0 satisfies Thom’s A f

condition at the origin with respect to the ambient stratum, i.e., if pi is a sequence of
points inD

◦ × U − � f such thatpi → 0 and such that the tangent planes Tpi V ( f −
f (pi )) converge to some T , then C × 0 = T0(D

◦ × 0) ⊆ T .

The result of Kato and Matsumoto can be obtained from a more general result of
Lê, a result which is one of few which allows calculations concerning the homology
of the Milnor fiber for an arbitrary hypersurface singularity.

LetU be an open neighborhood of the origin inC
n+1 and let f : (U, 0) → (C, 0)

be an analytic function. Let L : C
n+1 → C be a generic linear form. Then, it is easy

to see that if dim0� f � 1, then dim0�( f|V (L)
) = (dim0� f ) − 1.

Now, Lê’s Attaching Result, the main result of [22], which we sketch the proof
of in Sect. 7.3, is:

Theorem 7.1.10 The Milnor fiber Ff,0 is obtained from the Milnor fiber Ff|V (L)
,0 by

attaching a certain number of n-handles (n-cells on the homotopy level); this number

of attached n-handles is given by the intersection number
(
�1

f,L
· V ( f )

)
0
, where �1

f,L

denotes the relative polar curve of f with respect to L.

We will define the relative polar curve and discuss how to calculate intersection
numbers in later sections, but we can already see that Kato and Matsumoto’s result
follows inductively from this since we already know Milnor’s result for isolated
singularities and because attaching handles of index k does not affect the connectivity
in dimensions � k − 2.

Not only does Lê’s result imply Kato and Matsumoto’s, but—assuming that(
�1

f,L
· V ( f )

)
0
is effectively calculable—Lê’s result enables the calculation of the

Euler characteristic of the Milnor fiber, together with some Morse-type inequali-
ties on the Betti numbers of the Milnor fiber; for instance, the n-th Betti number,
bn

(
Ff,0

)
, is less than or equal to

(
�1

f,L
· V ( f )

)
0
. However, these inequalities are

usually far from being equalities.

So What Do We Want from Lê Numbers?

Suppose we have an analytic function, f : U → C with a critical locus of arbitrary
dimension s := dimp � f at some point p ∈ V ( f ). What properties would we want
Lê numbers, generalized Milnor numbers, of f at p to have and what are Lê cycles?

Let us answer the last question first: Lê cycles are effective analytic cycles, formal
sums of non-negative integers times analytic subspaces, which we define first, so that
we can take intersection numbers with affine linear subspaces in order to produce
the Lê numbers.

For the Lê numbers associated to f , we want there to be s + 1 numbers which
are effectively calculable; call the numbers λ0

f , . . . , λ
s
f . In the case of an isolated

singularity, we want λ0
f to be the Milnor number of f and all other λi

f to be zero.
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For arbitrary s,wewould like to generalizeMilnor’s result for isolated singularities
and show that theMilnor fiber of f at the origin has a handle decomposition in which
the number of attached handles of each index are given by the appropriate λi

f .
Finally, we would like to have generalizations of the results of Lê and Ramanujam

and Lê and Saito to families of hypersurface singularities of arbitrary dimension.
As we showed 25 years ago, the Lê numbers succeed at these goals to a great

degree. We have also included in this survey some results that have been proved
since then, for instance, Theorem 7.3.10 of Bobadilla, Remark 7.6.10, and almost
all of Sect. 7.7.

7.2 Definitions and Basic Properties of Lê Cycles
and Numbers

As in the introduction, we let U be a non-empty open subset C
n+1, n ≥ 1, and

f : U → C an analytic function which is nowhere locally constant. We make a
linear choice of coordinates z := (z0, . . . , zn) on U.

We are going to need some minimal intersection theory, just proper intersections
(so the codimensions of the intersecting cycles add) inside a complex manifold,
namely U . Such intersections produce well-defined intersection cycles, as opposed
to rational equivalent classes. In the analytic setting, these cycles are locally finite
(as opposed to finite sums in the algebraic setting) formal sums of integers times
irreducible analytic sets. The reader is directed to [10], Chap. 7 and Sect. 8.2. If C
and D are properly intersecting cycles, we write C · D for their intersection product.
When a cycle C is 0-dimensional, so a collection of points with integer coefficients,
we write Cp for the coefficient of p in C . Occasionally, to emphasize that we are
considering V (g1, . . . , gk) as a cycle, we shall write

[
V (g1, . . . , gk)

]
.

Definition 7.2.1 For 1 ≤ k ≤ n + 1, we say that the Lê cycles,
{
	k

f,z

}
k , (of f with

respect to z) exist provided that all of the intersections of cycles below are proper.
We let �n+1

f,z := U as a cycle. Then, for 1 ≤ k ≤ n + 1, we define the (k − 1)-

dimensional relative polar cycle �k−1
f,z and the (k − 1)-dimensional Lê cycle 	k−1

f,z
by downward induction by:

�k
f,z · V

(
∂ f

∂zk−1

)
= �k−1

f,z + 	k−1
f,z ,

where �k−1
f,z consists of the sum of those components of the intersection product

which are not contained in � f and 	k−1
f,z consists of the sum of those components

of the intersection which are contained in � f .
Note that, in a small neighborhood of a point p ∈ � f , �0

f,z = 0, i.e.,

	0
f,z = �1

f,z · V
(

∂ f

∂z0

)
.
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We wish to emphasize that the Lê and relative polar cycles depend on the choice
the coordinates z.

Remark 7.2.2 The
{
�k

f,z

}
k above are a version of the relative polar varieties of

Hamm, Lê, and Teissier from [12, 53]; the only difference is that we do not require
the coordinates to be so generic that the cycles are reduced. We could also say above
that the “relative polar cycles exist”, but it is too cumbersome to always have as an
hypothesis that both the Lê cycles and relative polar cycles exist; so we just say the
Lê cycles exist and the reader should understand that that also implies the relative
polar cycles exist.

Note that the intersections above could fail to be proper on all of U, but may be
proper on a smaller open set U′ (frequently a small open neighborhood of a point
p ∈ � f ). In such a case, in the definition, we would replace theU withU′.

From the definition, we immediately conclude;

Proposition 7.2.3 Suppose the Lê cycles exist. Then, for all k such that 0 ≤ k ≤ n:

1.
∣∣	k

f,z

∣∣ ⊆ � f , where the vertical bars denote the underlying set. Consequently,

locally near a point p,
∣∣	k

f,z

∣∣ ⊆ V ( f − f (p)).
2. 	k

f,z and �k
f,z are effective (i.e., non-negative) and purely k-dimensional (which

vacuously includes the case where the cycles are zero, i.e., the underlying sets
are empty).

3.
∣∣�k+1

f,z

∣∣ ∩ � f = ⋃
j≤k

∣∣	 j
f,z

∣∣; in particular, � f = ⋃
j≤n

∣∣	 j
f,z

∣∣
Furthermore,

4. if s := dimp � f , then in a neighborhood of p, 	k
f,z = 0 for k > s and one may

start the inductive process with �s+1
f,z =

[
V

(
∂ f

∂zs+1
, . . . ,

∂ f
∂zn

)]
. In particular, if p ∈

V ( f ) and dimp � f = 0, then, near p, the only non-zero Lê cycle is 	0
f,z and

(
	0

f,z

)
p =

[
V

(
∂ f

∂z0
, . . . ,

∂ f

∂zn

)]
p

= dimC

C{z0 − p0, . . . , zn − pn}
〈 ∂ f

∂z0
, . . . ,

∂ f
∂zn

〉 = μp( f ),

the Milnor number of f at p.

Before we give an example, we want to first define the Lê numbers.

Definition 7.2.4 Suppose that the Lê cycles of f with respect to z exist.
Then, for all p ∈ U , for all k such that 0 ≤ k ≤ n, we say that the k-dimensional

Lê number, λk
f,z(p) (respectively, k-dimensional relative polar number, γ k

f,z(p)),
of f with respect to z at p exists if and only if 	k

f,z (respectively, �k
f,z) prop-

erly intersects the affine linear subspace V (z0 − p0, . . . , zk−1 − pk−1) at p, in other
words, if p is an isolated point in the intersection.

If it exists, then naturally we define λk
f,z(p) (respectively, γ k

f,z(p)) to be the cor-
responding intersection number, i.e.,

λk
f,z(p) := (

	k
f,z · V (z0 − p0, . . . , zk−1 − pk−1)

)
p
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(respectively,

γ k
f,z(p) := (

�k
f,z · V (z0 − p0, . . . , zk−1 − pk−1)

)
p.)

When k = 0, we mean that λ0
f,z(p) := (

	0
f,z

)
p, i.e., the coefficient of p in the

0-dimensional cycle 	0
f,z.

Note that if the Lê numbers (respectively, relative polar numbers) exist at p, they
exist at all points near p.

Example 7.2.5 Let f : C
3 → C be given by f (t, x, y) = y2 − x4 − t x3, and use

coordinates (t, x, y) (in that order). We shall suppress the reference to these fixed
coordinates throughout the remainder of this example.

First we find � f = V (−x3,−4x3 − 3t x2, 2y) = V (x, y), i.e., the t-axis. Since
dim� f = 1, we may begin with

�2
f = V

(∂ f

∂y

)
= V (2y) = V (y).

�2
f · V

(∂ f

∂x

)
= V (y) · V (−4x3 − 3t x2) = V (y) · V (

(4x + 3t)x2
) =

V (y) · [
V (4x + 3t) + 2V (x)

] = V (y, 4x + 3t) + 2V (y, x).

So, �1
f = V (y, 4x + 3t) and 	1

f = 2V (y, x).
Thus,

�1
f · V

(
∂ f

∂t

)
= V (y, 4x + 3t) · V (−x3) = V (y, 4x + 3t) · 3V (x) = 3[0] = 	0

f .

And, of course, since 0 is a critical point, �0
f = 0.

Thus, the Lê cycles are defined. Furthermore, the Lê numbers at the origin are
defined and we calculate them:

λ1
f (0) = (

2V (y, x) · V (t)
)

0 = 2 and λ0
f (0) = 3.

In the next section, we will return to this example and explain what it tells us
about the homology/cohomology of the Milnor fiber of f at 0.

Example 7.2.6 Let h : C
3 → C be given by h(t, x, y) = y2 + (t − x2)2. We find

that
�h = V (2(t − x2), 2(t − x2)(−2x), 2y) = V (t − x2, y),

which is 1-dimensional.
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We wish to look at this with two different coordinate systems, and see that we
obtain different Lê numbers.

First, use coordinates (t, x, y) and suppress writing them throughout. We start
with

�2
h = V

(
∂h

∂y

)
= V (2y) = V (y).

Then

�2
h · V

(
∂h

∂x

)
= V (y) · V (

2(t − x2)(−2x)
) = V (y, x) + V (y, t − x2).

So �1
h = V (y, x) and 	1

h = V (y, t − x2). Now,

�1
h · V

(
∂h

∂t

)
= V (y, x) · V (

2(t − x2)
) = V (y, x, t) = 	0

h .

Thus we find λ1
h(0) = (

V (y, t − x2) · V (t)
)

0 = 2 and λ0
h(0) = 1 with respect to the

coordinates (t, x, y).
Now use coordinates (x, t, y) and suppress writing them throughout. We again

start with

�2
h = V

(
∂h

∂y

)
= V (2y) = V (y).

Then

�2
h · V

(
∂h

∂t

)
= V (y) · V (

2(t − x2)
) = V (y, t − x2).

So �1
h = 0 and	1

h = V (y, t − x2). Thus we find λ1
h(0) = (

V (y, t − x2) · V (x)
)

0 =
1, and λ0

h(0) = 0 with respect to the coordinates (x, t, y).

In the previous example, the Lê cycles and Lê numbers changedwhenwe changed
coordinate systems; however, the reader is invited to check that, for a generic
coordinate choice, one always obtains 	1

h = V (t − x2, y), 	0
f = 0, λ1

h(0) = 1 and
λ0
h(0) = 0.
However, we will see that, in the next example, the Lê cycles are not fixed even

for generic coordinates (but the Lê numbers are).

Example 7.2.7 Let h = y2 − x3 − (u2 + v2 + w2)x2 and fix the coordinates (u, v,
w, x, y).

Then,

�h = V (−2ux2, −2vx2, −2wx2, −3x2 − 2x(u2 + v2 + w2), 2y) = V (x, y).

As �h is 3-dimensional, we begin our calculation with �4
h .
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�4
h = V (−2y) = V (y).

�4
h · V

(
∂h

∂x

)
= V (y) · V (−3x2 − 2x(u2 + v2 + w2)) =

V (−3x − 2(u2 + v2 + w2), y) + V (x, y) = �3
h + 	3

h .

�3
h · V

(
∂h

∂w

)
= V (−3x − 2(u2 + v2 + w2), y) · V (−2wx2) =

V (−3x − 2(u2 + v2),w, y) + 2V (u2 + v2 + w2, x, y) = �2
h + 	2

h .

�2
h · V

(
∂h

∂v

)
= V (−3x − 2(u2 + v2),w, y) · V (−2vx2) =

V (−3x − 2u2, v,w, y) + 2V (u2 + v2,w, x, y) = �1
h + 	1

h .

�1
h · V

(
∂h

∂u

)
= V (−3x − 2u2, v,w, y) · V (−2ux2) =

V (u, v,w, x, y) + 2V (u2, v,w, x, y) = 5[0] = 	0
h .

Hence, 	3
h = V (x, y), 	2

h = 2V (u2 + v2 + w2, x, y) = a cone (as a set),

	1
h = 2V (u2 + v2,w, x, y),

and 	0
h = 5[0]. Thus, at the origin, λ3

h = 1, λ2
h = 4, λ1

h = 4, and λ0
h = 5.

Note that 	1
h depends on the choice of coordinates—for, by symmetry, if we

re-ordered u, v, and w, then 	1
h would change correspondingly. Moreover, one can

check that this is a generic problem.
Such “non-fixed” Lê cycles arise from the absolute polar varieties (see [32, 54]) of

the higher-dimensional Lê cycles (we shall see this in Theorem 7.6.6). For instance,
in the present case, 	2

h is a cone, and its 1-dimensional polar variety varies with the
choice of coordinates, but generically always consists of two lines; this is the case
for 	1

h as well. Though the Lê cycles are not even generically fixed, the Lê numbers
turn out to be generically independent of the coordinates (see Corollary 7.6.7).

We usually refer to the following proposition as the Teissier trick, since it was first
proved by Teissier in [53] in the case of isolated critical points, by parameterizing
the irreducible components of the relative polar curve and using the Chain Rule from
Calculus; the proof is the same for critical loci of arbitrary dimension. Of course,
we present the formula from the trick using our notation, not Teissier’s. We will use
this trick, together with Lê’s attaching theorem, Theorem 7.1.10, in a crucial way in
Sect. 7.3.
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Proposition 7.2.8 Suppose that the Lê numbers and relative polar numbers of f
with respect to z at p ∈ V ( f ) exist.

Then, p /∈ �1
f,z or dimp �1

f,z ∩ V ( f ) = 0, and

(
�1

f,z · V ( f )
)

p
= λ0

f,z(p) + γ 1
f,z(p).

Now we wish to know how Lê cycles and numbers behave when one takes a
hyperplane slice. This involves how relative polar cycles and numbers behave under
slicing.

The following proposition is part of Proposition 1.21 of [36].

Proposition 7.2.9 Let p := (p0, . . . , pn) ∈ � f , use coordinates z := (z0, . . . , zn)
on U, and coordinates z̃ := (z1, . . . , zn) on V (z0 − p0). Suppose that all of the Lê
and relative polar numbers λ∗

f,z(p) and γ ∗
f,z(p) exist.

Then,

1. all of the Lê and relative polar numbers λ∗
f|V (z0−p0)

,z̃(p) and γ ∗
f|V (z0−p0)

,z̃(p) exist,

2.
λ0

f|V (z0−p0)
,z̃(p) = λ1

f,z(p) + γ 1
f,z(p),

3. for all k such that 1 ≤ k ≤ n − 1 and all j such that 1 ≤ j ≤ n,

λk
f|V (z0−p0)

,z̃(p) = λk+1
f,z (p) and γ

j
f|V (z0−p0)

,z̃(p) = γ
j+1
f,z (p),

and

4. near p, for all k such that 1 ≤ k ≤ n − 1 and all j such that 1 ≤ j ≤ n,

	k
f|V (z0−p0)

,z̃ = 	k+1
f,z · V (z0 − p0) and �

j
f|V (z0−p0)

,z̃ = �
j+1
f,z · V (z0 − p0).

Example 7.2.10 Let us look at the function and first set of coordinates (t, x, y) from
Example 7.2.6. Below, we will dispense with referencing the coordinates until it is
crucial at the end.

We had (or easily calculate now) h : C
3 → C given by h(t, x, y) = y2 + (t −

x2)2,�h = V (t − x2, y),�3
h = C

3,�2
h = V (y),�1

h = V (y, x),	1
h = V (y, t − x2),

γ 3
h (0) = 1, γ 2

h (0) = 1, γ 1
h (0) = 1, λ1

h(0) = 2, and λ0
h(0) = 1 with respect to the

coordinates (t, x, y).
Now�(h|V (t) ) = �(y2 + x4, t) = V (t) ∩ �h, sowemay apply Proposition 7.2.9,

to conclude that

λ0
h|V (t) ,(x,y)

(0) = λ1
h,(t,x,y)(0) + γ 1

h,(t,x,y)(0) = 2 + 1 = 3.
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As h|V (t) has an isolated critical point at 0, λ0
h|V (t) ,(x,y)

(0) equals μ0(h|V (t) ), and our

calculation above agrees with

μ0(h|V (t) ) = dimC

C{x, y}
〈4x3, 2y〉 = 3.

The following is an interesting separate result; it is Proposition 1.31 of [36].

Proposition 7.2.11 Let k � 1. Suppose that the Lê cycles exist, and suppose, for all
pairs of distinct irreducible germs, V and W, of � f through p, that

dimp(V ∩ W ) � k − 1.

Suppose that λk
f,z(p) = 0. Then, λ j

f,z(p) = 0 for all j � k.

Finally, in this section, we need to discuss how generically one needs the coordi-
nates to be in order for all of the Lê numbers and relative polar numbers to exist, and
for us to know that the topological implications that we want later hold.

First, we need to recall a version of an A f stratification, a weaker version than
that described by Lê in [28]. The version we present was called a good stratification
by Hamm and Lê in [12]. We continue with f : U → C being an analytic function
which is nowhere locally constant.

Definition 7.2.12 If X is analytic space, an analytic stratification of X is a locally
finite partition, {Sα}, of X into analytic submanifolds—the strata—such the closure
of each stratum is also analytic, and such that {Sα} satisfies the condition of the
frontier, i.e., the closure of each stratum is a union of strata.

Suppose that we have an analytic function f : U → C. A good stratification
for f at a point p ∈ V ( f ) is an analytic stratification, G, of the hypersurface V ( f )
in a neighborhood, U′, of p such that the smooth part of V ( f ) is a stratum and
so that the stratification satisfies Thom’s A f condition with respect to U′ − V ( f ).
That is, if qi is a sequence of points in U′ − V ( f ) such that qi → q ∈ S ∈ G and
Tqi V ( f − f (qi )) converges to some hyperplane T , then Tq S ⊆ T .

In [12], Hamm and Lê give a proof that good stratifications exist; of course, the
existence also follows from Hironaka’s result as stated in Theorem 3.5 of [28].

The notion defined below, that of prepolar coordinates, is crucial throughout
the remainder of this article. It provides a generic condition on linear choices of
coordinates which implies that all the Lê numbers and polar numbers are defined.
Moreover, prepolarity seems to be the right condition to obtain many topological
results. The importance of this definition cannot be overstated.

Definition 7.2.13 Suppose that {Sα} is a good stratification for f in a neighborhood,
U, of the origin. Let p ∈ V ( f ). Then, a hyperplane, H , in C

n+1 through p is a
prepolar slice for f at p with respect to {Sα} provided that H transversely intersects
all the strata of {Sα}—except perhaps the stratum {p} itself – in a neighborhood of p.
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If H is a prepolar slice for f at p with respect to {Sα}, then, as germs of sets at
p,�( f|H ) = (� f ) ∩ H and dimp �( f|H ) = (dimp � f ) − 1 provided dimp � f � 1;
moreover, {H ∩ Sα} is a good stratification for f|H at p (see [12]).

By 2.1.3 of [12], for a fixed good stratification for f , prepolar slices are generic.
We say simply that H is a prepolar slice for f at p provided that there exists a

good stratification with respect to which H is a prepolar slice.
Let (z0, . . . , zn) be a linear choice of coordinates for C

n+1, let p ∈ V ( f ), and let
{Sα} be a good stratification for h at p.

For 0 � i � n, (z0, . . . , zi ) is a prepolar-tuple for f at p with respect to {Sα}
if and only if V (z0 − p0) is a prepolar slice for f at p with respect to {Sα} and for all
j such that 1 � j � i , V (z j − p j ) is a prepolar slice for f|V (z0−p0 ,...,z j−1−p j−1)

at p with
respect to the good stratification

{Sα ∩ V (z0 − p0, . . . , z j−1 − p j−1)}.

As prepolar slices are generic, so are prepolar-tuples.
Naturally, we say that (z0, . . . , zi ) is a prepolar-tuple for f at p provided that

there exists a good stratification for f at p with respect to which (z0, . . . , zi ) is a
prepolar-tuple.

Note that, if p ∈ V ( f ) and dimp � f = 1, then H is a prepolar slice for f at p if
and only if dimp �( f|H ) = 0.

Remark 7.2.14 Note that in all of our discussion and definitions above of a good
stratification and prepolar coordinates, we did not actually need a “stratification”,
that is, we did not use the condition of the frontier that the closure of each stratum
must be a union of strata. An analytic partition into analytic submanifolds satisfying
the A f with respect to the ambient stratum would have sufficed.

The following is Theorem 1.28 of [36].

Theorem 7.2.15 Suppose that p ∈ V ( f ) ∩ � f , let s := dimp � f , and suppose that
(z0, . . . , zs−1) is a prepolar-tuple at p (when s = 0, there is no condition on the
coordinates). Then, for all k such that 0 ≤ k ≤ s, λk

f,z(p) and γ k
f,z(p) exist.

Furthermore, if (z0, . . . , zn−1) is a prepolar-tuple at x ∈ V ( f ), then all of the Lê
numbers and relative polar numbers of f with respect to z exist at x.

In particular, for all x ∈ V ( f ), for a generic choice of coordinates z, there is
an open neighborhood of x in which all of the Lê cycles, relative polar cycles, Lê
numbers, and relative polar numbers of f with respect to z exist.

7.3 Lê Numbers and the Topology of the Milnor Fiber

As in the previous sections, we let U be a non-empty open subset C
n+1, n ≥ 1,

and f : U → C an analytic function which is nowhere locally constant. We make a
linear choice of coordinates z := (z0, . . . , zn) on U.
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In this section, we give a handle decomposition, in terms of Lê numbers, of
the Milnor fiber of f , where f may have a critical locus of arbitrary dimension.
This decomposition is more refined than that obtained by iteratively applying Lê’s
attaching result from [22].

However, first, we wish to discuss three prior results of others which led to our
general formulation in terms of Lê numbers. And, we should clarify a point that we
have been sloppy about twice in the past; our result is about the compact Milnor
fiber (see Proposition 1.9 of [28]). If p ∈ V ( f ), we denote the compact Milnor fiber
of f at p by F f,p. Thus,

F f,p := Bε(p) ∩ f −1(t),

where 0 < ε 	 1, Bε(p) is a closed ball of radius ε centered at p, and t ∈ D
◦
η, where

D
◦
η is an open disk in C centered at the origin, and 0 < η 	 ε.
We also remind the reader that, if dimp � f = 0, then the Milnor number of f at

p, μ f (p), is equal to λ0
f,z(p) (regardless of the choice of the coordinates z).

Now we combine the result of Milnor in Theorem 6.6 of [42] for n �= 2, and of
Lê and Perron in Proposition 0 of [29] in the case where n = 2, to obtain:

Theorem 7.3.1 Suppose that dimp � f = 0. Then the compact Milnor fiber F f,p is
obtained up to diffeomorphism from a real 2n-ball by attaching μ f (p) n-handles.

Translating the result of Vannier in Proposition 1 of [57] into our notation, we
have:

Theorem 7.3.2 (Vannier) Suppose that dimp � f = 1, n ≥ 3, and z0 is a generic
linear form (prepolar is enough). Then the compact Milnor fiber F f,p is obtained
up to diffeomorphism from a real 2n-ball by attaching λ1

f,z(p) (n − 1)-handles and
then attaching λ0

f,z(p) n-handles.

Remark 7.3.3 We wish to sketch the proofs of these previous two theorems so that
the reader can easily see how to prove our generalization to functions with critical
loci of arbitrary dimension. The reader should also consult Sect. 6 of [28].

We will assume that the point p ∈ V ( f ) is the origin for convenience. We will
omit many technical details, but hopefully include enough so that all of the ideas are
clear. Even without some technical details, this sketch is lengthy.

Inwhat follows,wewill frequently encounter the product of two smoothmanifolds
with boundary, producing a manifold with boundary and “corners”. As is common,
we “straighten the angles” or “smooth these corners” as discussed by Smale on
page 396 of [51], which actually refers to Milnor’s 1959 notes [41]. Throughout the
remainder of this sketch, whenever we have the product of two smooth manifolds
with boundary, we will assume, frequently without additional comment, that the
corners have been smoothed to produce a new manifold with boundary.

We begin by describing Lê’s proof of his attaching theorem, Theorem 7.1.10,
where L in that statement would be our z0, which we assume to be prepolar, and so
�1

f,L = �1
f,z0

= �1
f,z.
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For t ∈ C, let ft := f|V (z0−t0)
. Choose ε > 0 small enough so that the closed ball

of radius ε centered at the origin in V (z0), {0} × B2n
ε , is a Milnor ball for f0 at the

origin (see [28]). One can now choose τ and δ, 0 < τ 	 δ 	 ε, so that

• �1
f,z0

∩ ∂
(
D

◦
δ × B2n

ε

) = ∅,
• N := (

Dδ × B2n
ε

) ∩ f −1(D∗
τ ) is the total space of a Milnor tube fibration (with

corners) for f (as in Theorem 3.1 of [28]),
• N ∩ V (z0) is the total space for a Milnor tube fibration for f0, and
• f −1(Dτ ) ∩ �1

f,z0
∩ ∂(Dδ × B2n

ε ) = ∅.
Finally, we may assume that ({0} × Bε) ∩ f −1

0 (Dτ ) is diffeomorphic to the closed
2n-ball {0} × Bε (by the argument ofMilnor in Lemmas 5.9, 5.10, and Theorem 5.11
of [42]).

Let v be in the interior ofD
∗
τ . Lê’s proof of his attaching result is viaMorse Theory.

He considers the function r given by restricting |z0|2 to the compact Milnor of f at
the origin,

F f,0 := (
Dδ × B2n

ε

) ∩ f −1(v)

(a technical argument is required to prove that this is diffeomorphic—after smoothing
corners—to the standard compact Milnor fiber B2n+2

ε ∩ f −1(v)). It is easy to show
that, for 0 < ω 	 |v|, (Dω × B2n

ε

) ∩ f −1(v) is diffeomorphic to the product of F f0,0

with Dω. Lê then lets the value of r grow, starting from the small positive value ω2

to δ2.
For r > ω2, the function r has critical points precisely where the Milnor fiber

intersects �1
f,z0

. In Lê’s case, z0 is generic enough so that �1
f,z0

is reduced, which

implies that the critical points of z0 restricted to F f,0 are complex non-degenerate; this
implies that each critical point of r has index n. With the assumption that z0 is merely
prepolar, �1

f,z need not be reduced, but then one perturbs to the non-degenerate case;
this splitting of the degenerate critical points is automatically counted correctly by

the intersection number
(
�1

f,z0
· V ( f )

)
0
. Hence, for ease, throughout the remainder

of this sketch, we will assume that �1
f,z0

is reduced.
In terms of handles, what the argument above shows is that the compact Milnor

fiber F f,0 is obtained from the product of the the compact Milnor fiber F f0,0 with a

disk and then attaching
(
�1

f,z0
· V ( f )

)
0
n-handles.

We wish to describe the above attaching in a different way, though it is not truly a
“different” way; it is still Morse theoretic, just more topological and less analytically
rigorous since the Morse function(s) involved are not given analytically. This more
topological viewpoint will be crucial for one’s understanding of what we do later.

Consider the map T which is the restriction of ( f, z0) to the closure

N := (
Dδ × B2n

ε

) ∩ f −1(Dτ )

of N above, i.e., we are using Dτ here, not D
∗
τ . As Lê demonstrates, for generic

z0, the restriction of T to
(
Dδ × B2n

ε

) ∩ �1
f,z0

is one-to-one; so we assume that z0 is
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this generic. Thus we have T : N → Dτ × Dδ and the Cerf diagram C is the curve
T (�1

f,z0
).

The intersection ({v} × Dδ) ∩ C consists of
(
�1

f,z0
· V ( f )

)
0
points, whichwe refer

to as theCerf points for f = v. Consider a set K ⊆ {v} × Dδ formed as follows: take
a small disk D0 around the origin in Dδ , connect {v} × D0 to a collection of small
disks (the Cerf disks) around the Cerf points for f = v by any choice of smooth non-
intersecting, non-self-intersecting paths in {v} × Dδ , thicken and smooth the paths;
this defines K . Let K̂ := T−1(K ).

Then K̂ is diffeomorphic to the entire Milnor fiber Ff,0, because one encounters
no more points in the Cerf diagram as one follows a flow taking the boundary of
K to all of {v} × Dδ and this flow lifts by T to take K̂ to Ff,0. In this description,
each thickened, smoothed path and Cerf disk corresponds to the attaching of one n-
handle. On the level of homology, this follows from excision and using deformation
retracts; on the level ofMorse theory and handles, onewould have to produce aMorse
function which increases along the pre-images of the thickened, smoothed paths of
K , and has no critical points other than a single complex non-degenerate critical point
above each Cerf point for f = v. It is topologically clear that such Morse functions
exist but, without analytic descriptions of the thickened, smoothed paths, one has no
hope of writing these Morse functions explicitly. Nonetheless, this description and
viewpoint is fundamental to the remainder of the our argument, which proceeds by
describing regions and an isotopy in Dτ × Dδ , and lifting via T to regions in N .

Recall from Proposition 7.2.8,

(
�1

f,z · V ( f )
)

0
= λ0

f,z(0) + γ 1
f,z(0).

Note that, if dim0 � f = 0, then λ0
f,z(0) = μ f (0) and γ 1

f,z(0) = μ f|V (z0)
(0).

What the proofs of Lê and Perron, Vannier, and our own show is that, during the
handle attaching which we described above, γ 1

f,z(0) of the attached n-handles cancel

with γ 1
f,z(0) (n − 1)-handles in a handle decomposition of the product of F f|V (z0)

,0

with a disk.
Recall that ({0} × Bε) ∩ f −1

0 (Dτ ) is diffeomorphic to the closed 2n-ball {0} × Bε .
It is easy to show that, for small ω > 0,

�1
f,z0 ∩ ∂

(
(D◦

ω × Bε) ∩ f −1(Dτ )
) = ∅

and the projection (
D

◦
ω × Bε

) ∩ f −1(Dτ ) → D
◦
ω

is a smooth trivial fibration (with boundary and corners). Thus, letting b ∈ (D∗
ω)◦,

we have that Nb := ({b} × Bε) ∩ f −1
b (Dτ ) is diffeomorphic to the closed 2n-ball

{b} × Bε .
Now consider the set Z ⊆ Dτ × {b} formed by taking a small closed disk D

centered at (v, b), connecting it by non-intersecting paths to small non-intersecting
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closed disks centered at (0, b) and disks, the Cerf disks for z0 = b, at the γ 1
f,z(0) =(

�1
f,z · V (z0)

)
0
points in (Dτ × {b}) ∩ C, and then thicken the paths and smooth the

corners. Then, T−1(Z) is diffeomorphic to the entire space Nb, because there are no
more critical points of fb as one flows outward from T−1(Z) to fill up all of Nb; this,
in turn, is diffeomorphic to the closed 2n-ball {b} × Bε . It is important to note that,
if dim0 � f = 0, then 0 is not a critical value of fb and so T−1(A) is diffeomorphic
to T−1(Z), which is diffeomorphic to a closed 2n-ball.

Let A be the subset of Z consisting of the disk around (v, b) and the Cerf disks,
together with the corresponding thickened, smoothed paths. Let Y be the subset of
Z consisting of the disk around (v, b) and the disk around (0, b), together with the
corresponding thickened, smoothed path. LetU andW be small open neighborhoods
of T−1(Y ) and T−1(A), respectively, which are homotopy-equivalent to T−1(Y ) and
T−1(A), andwhose intersection is homotopy-equivalent to the pre-image to the small
disk around (v, b) from above.

ThenU ∪ W is contractible,U ∩ W is homotopy-equivalent to the Milnor fiber
Ff0,0, and W is homotopy-equivalent to T−1(A), which is is a smooth manifold
with boundary obtained from the product of F f0,0 with a disk to which one attaches
γ 1
f,z(0) n-handles, which come from the complex non-degenerate critical points of fb,

which correspond to the points in (Dτ × {b}) ∩ C. An easyMayer-Vietoris argument
(a slight generalization of that used by Vannier in [57]), as given in the proofs of
Theorem4.3 of [33] andTheorem3.3 of [36], shows that T−1(A) has the homology of
(even the homotopy-type of) a finite (n − 1)-dimensional CWcomplex; in particular,
Hn(T−1(A)) = 0 and Hn−1(T−1(A)) is free abelian. This means that, on the level of
homology, the attachedγ 1

f,z(0)n-handles cancelwithγ 1
f,z(0) (n − 1)-handles.Hence,

if n ≥ 3, then the results of Smale in [51] (see also Cerf’s Lemme fundamental of
Sect. III of [4]) tell us that the attached γ 1

f,z(0) n-handles cancel with (n − 1)-handles

in a handle decomposition of the product of F f|V (z0)
,0 with a disk.

Now, as described in [29], one can “swing” the region A in Dτ × Dδ isotopically,
by rotating the small disk centered at (v, b) and “sliding” the Cerf disks along the
components of the Cerf diagram to obtain a subset E ⊆ {v} × Dδ which consists of
a small closed disk, connected by non-intersecting paths to small non-intersecting

closed disks centered at γ 1
f,z(0) of the

(
�1

f,z · V ( f )
)

0
points in ({v} × Dδ) ∩ C, and

then thickening the paths and smoothing any corners.
This isotopy lifts to an isotopy from T−1(A) to T−1(E), and so T−1(E) is obtained

from the product of F f|V (z0)
,0 with a disk by canceling γ 1

f,z(0) (n − 1)-handles.

Note that the isotopy presents T−1(E) as the pre-image of a small disk in {v} × Dδ ,
connected by thickened, smoothed paths to γ 1

f,z(0) of the Cerf disks for f = v. Now

the entire Milnor fiber F f,0 is obtained from T−1(E) by attaching the remaining
n-handles from Lê’s Attaching Theorem, by taking the pre-image under T of the
region E with the remaining

(
�1

f,z · V ( f )
)

0
− γ 1

f,z(0) = λ0
f,z(0)



7 Lê Cycles and Numbers of Hypersurface Singularities 379

Cerf disks for f = v attached via thickened, smoothed paths from E .
Recall from Proposition 7.2.9 that

λ0
f|V (z0)

,z̃(0) = λ1
f,z(0) + γ 1

f,z(0).

If dim0 � f ≤ 1, then this formula becomes μ f|V (z0)
(0) = λ1

f,z(0) + γ 1
f,z(0), where

λ1
f,z(0) = 0 if dim0 � f = 0. The results of Lê and Perron and Vannier follow.

Using our notation and conventions from the remark above, what we have shown
is:

Proposition 7.3.4 Suppose that V (z0) is a prepolar slice for f at 0, and n �= 2, then
the Milnor fiber of f at 0 is obtained—up to diffeomorphism—from the product of
a closed disk D with the Milnor fiber of f0 at 0 by first attaching γ 1

f,z(0) n-handles,
which cancel againstγ 1

f,z(0) (n − 1)-handles ofD × Ff0,0, and then attachingλ0
f,z(0)

more n-handles.
If n = 2, we have the same conclusion except that the canceling is only up to

homotopy.

The following is Theorem 4.3 of [33] and Theorem 3.3 of [36]. The proof by
induction is immediate from Proposition 7.3.4, together with the formulas for the Lê
numbers of a hyperplane slice from Proposition 7.2.9.

Theorem 7.3.5 Let U be an open subset of C
n+1, let f : U → C be an analytic

map, let p ∈ V ( f ), let s denote dimp� f , and let z = (z0, . . . , zs−1) be prepolar for
f at p.
If s � n − 2, then Ff,p is obtained up to diffeomorphism from a real 2n-ball by

successively attaching λn−k
f,z (p) k-handles, where n − s � k � n;

if s = n − 1, then Ff,p is obtained up to diffeomorphism from a real 2n-manifold
with the homotopy-type of a bouquet of λn−1

f,z (p) circles by successively attaching

λn−k
f,z (p) k-handles, where 2 � k � n.

Remark 7.3.6 The reader should understand that we do not claim in Theorem 7.3.5
that there is no further cancellation of higher-dimensional attached handles with
lower-dimensional handles; it is absolutely not true in general that the Lê numbers
are equal to the Betti numbers of the Milnor fiber.

In the following corollary,we let b̃i ( f, p) denote the degree i reducedBetti number
of Ff,p, and note that the Universal Coefficient Theorem implies that homology and
cohomology yield the same Betti numbers.

Corollary 7.3.7 Let U be an open subset of C
n+1, let f : U → C be an analytic

map, let p ∈ V ( f ), let s denote dimp� f , and let z = (z0, . . . , zs−1) be prepolar for
f at p. We will suppress the references to the coordinates below.
Then there is a chain complex (the Lê complex)



380 D. B. Massey

0 → Z
λs
f (p) → Z

λs−1
f (p) → · · · → Z

λ1
f (p) → Z

λ0
f (p) → 0

such that the cohomology of the complex at the λk
f (p) term is isomorphic to

H̃n−k(Ff,p; Z).
Hence, the reduced Euler characteristic of the Milnor fiber of f at p is given by

χ̃(Ff,p) =
s∑

i=0

(−1)n−iλi
f (p)

and the reduced Betti numbers, b̃i ( f ; p), satisfy Morse inequalities with respect to
the Lê numbers, i.e., for all k with n − s � k � n,

(−1)k
k∑

i=n−s

(−1)i b̃i ( f, p) � (−1)k
k∑

i=n−s

(−1)iλn−i
f (p)

and

(−1)k
n∑

i=k

(−1)i b̃i ( f, p) � (−1)k
n∑

i=k

(−1)iλn−i
f (p).

In particular, b̃n( f, p) ≤ λ0
f (p) and H̃n−s(Ff,p; Z) is free abelian of rank

b̃n−s( f, p) ≤ λs
f (p).

Now we wish to give a generalization, on the cohomological level, of the main
result of Siersma in [50]. Phrased in terms of Lê numbers, Siersma’s result is that,
if p ∈ V ( f ), dimp � f = 1, and λ1

f (p) = 1, then either f defines a one-parameter
constant Milnor number family or Ff,p has the homotopy-type of a bouquet of
(λ0

f (p) − 1) n-spheres.
Cohomologically, what this says is that, if λ1

f (p) = 1 and rank Hn−1(Ff,p; Z) =
1, then λ0

f (p) = 0. Together with Lê, we generalized this cohomological statement
in Theorem 5.3 of [26] (here, with a slightly different phrasing):

Theorem 7.3.8 Let U be an open subset of C
n+1, let f : U → C be an analytic

map, let p ∈ V ( f ), let s denote dimp� f , and let z = (z0, . . . , zs−1) be prepolar for
f at p. Suppose that λs

f (p) = rank H̃ n−s(Ff,p; Z).
Then,� f is smooth at p and, for all k such that 0 ≤ k ≤ s − 1, λk

f (p) = 0. Hence,
the reduced cohomology of F f,p is zero outside of degree n − s, where it is isomorphic
to Z

λs
f (p).

We now wish to describe how Lê numbers provide a way to generalize Items (1)
and (2) of Theorem 7.1.8, the result of Lê andRamanujam, to families of non-isolated
hypersurface singularities.

Our main result in [34] (also Theorem 9.4 of [36]) is:
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Theorem 7.3.9 Suppose thatU is an open neighborhood of the origin in C
n+1. Let

ft : (U, 0) → (C, 0) be a one-parameter complex analytic family in the variables
z = (z0, . . . , zn).

Let s := dim0 � f0. Suppose that, for all t small, (z0, . . . , zs−1) is prepolar for ft
at 0 and that the Lê numbers, λi

ft ,z(0), are independent of t for each i with 0 � i � s.
Then,

1. the homology of the Milnor fiber of ft at the origin is independent of t if |t | is
sufficiently small;

if s � n − 2,

2. the fiber homotopy-type of the Milnor fibrations of ft at the origin is independent
of t if |t | is sufficiently small;
and, if s � n − 3,

3. the diffeomorphism-type of theMilnor fibrations of ft at the origin is independent
of t if |t | is sufficiently small.

For many years, it was an open question whether or not the constancy of the Lê
numbers in a family actually implied the constancy of the ambient topological-type.
Then, in 2005, Bobadilla answered several questions along these lines in [5, 6].

What Bobadilla proves is:

Theorem 7.3.10 Suppose that U is an open neighborhood of the origin in C
n+1,

where n ≥ 4. Let ft : (U, 0) → (C, 0) be a one-parameter complex analytic family
in the variables z = (z0, . . . , zn).

Let s := dim0 � f0. Suppose that, for all t small, (z0, . . . , zs−1) is prepolar for ft
at 0 and that the Lê numbers, λi

ft ,z(0), are independent of t for each i with 0 � i � s.

1. The homotopy-type of the real link of V ( ft ) at the origin is independent of t if |t |
is sufficiently small.

2. Suppose that s = 1. Then the ambient topological-type of V ( ft ) at the origin is
independent of t if |t | is sufficiently small.

3. There is an example where n = 4 and s = 3 for which the ambient topological-
type of V ( ft ) is not independent of t for |t | sufficiently small. (See Example 9 of
[5].)

7.4 Lê-Iomdine Formulas and Thom’s A f Condition

In this section, we generalize formulas produced and used by Iomdine [17] and Lê
[25] in the case of a 1-dimensional critical locus. We then look at applications of
these formulas to the upper-semicontinuity of the Lê numbers and to Thom’s A f

condition.
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In much of this section, we will, for convenience, consider the case where the
point under consideration is the origin; the generalizations to arbitrary points are
obvious. So we assume that U is an open neighborhood of 0 in C

n+1, n ≥ 1, and
f : (U, 0) → (C, 0) is an analytic function which is nowhere locally constant.
First, we need a definition of polar ratios; we follow [39, 50] (see also [36],

Definition 4.1).

Definition 7.4.1 Suppose that �1
f,z0

is one-dimensional at the origin.

• Let η be an irreducible component of �1
f,z0

(with its reduced structure). Then η ∩
V (z0) is zero-dimensional at the origin if and only if η ∩ V ( f ) is zero-dimensional
at the origin, and in this case the polar ratio of η (for f at 0 with respect to z0) is

(η · V ( f ))0

(η · V (z0))0

=
(
η · V

(
∂ f
∂z0

))
0

+ (η · V (z0))0

(η · V (z0))0

=
(η · V

(
∂ f
∂z0

)
)0

(η · V (z0))0

+ 1.

• Let η be an irreducible component of �1
f,z0

such that η ∩ V (z0) is one-dimensional
at the origin, i.e., contained in V (z0) near the origin. Then we define the polar ratio
of η to be 1.

We will be interested in the maximum polar ratio over all of the irreducible com-
ponents η of �1

f,z0
at the origin.

If the set�1
f,z0

is empty at the origin (i.e., 0 /∈ �1
f,z0

), then we define this maximum
polar ratio to be 1.

Remark 7.4.2 The case where h is a homogeneous polynomial of degree d is par-
ticularly easy to analyze. Provided that �1

h,z0
is one-dimensional at the origin, each

component of the polar curve is a line, and so the polar ratios are all 1 or d.

We are going to consider functions of the form f + az j0, where a is a non-
zero complex number and j is suitably large. Clearly, however, the coordinate
z0 is extremely non-generic for f + az j0. Hence, if we are using the coordinates
(z0, z1, . . . , zn) for f , we use the coordinates (z1, z2, . . . , zn, z0) for f + az j0. The
purpose of this “rotation” of the coordinate system is merely to get the z0 coordi-
nate out of the way. Typically, if f has an s-dimensional critical locus at the origin,
then f + az j0 will have an (s − 1)-dimensional critical locus at the origin; thus, it
is only the choice of the coordinates z0, . . . , zs−1 that we care about for f , and the
coordinates z1, . . . , zs−1 for f + az j0.

The following Lê-Iomdine Formulas are Theorem 4.5 of [36].

Theorem 7.4.3 Let j � 2, let f : (U, 0) → (C, 0) be an analytic function, let s
denote dim0� f , and assume that s � 1. Let z = (z0, . . . , zn) be a linear choice of
coordinates such that the Lê numbers of f at the origin are defined. Let a be a
non-zero complex number, and use the coordinates z̃ = (z1, . . . , zn, z0) for f + az j0 .
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If j is greater than or equal to the maximum polar ratio for f then, for all but
a finite number of complex a, �( f + az j0) = � f ∩ V (z0) as germs of sets at 0,
dim0�( f + az j0) = s − 1, the Lê numbers of f + az j0 at the origin exist, and

λ0
f +az j0 ,z̃

(0) = λ0
f,z(0) + ( j − 1)λ1

f,z(0),

and, for 1 � i � s − 1,

λi
f +az j0 ,z̃

(0) = ( j − 1)λi+1
f,z (0).

Moreover, if we have the strict inequality that j is greater than the maximum polar
ratio for f , then the above equalities hold for all non-zero a; in particular, this is
the case if j � 2 + λ0

f,z(0).

Corollary 7.4.4 Let f : (U, 0) → (C, 0) be an analytic function, let s denote
dim0� f , and let z = (z0, . . . , zn) be a linear choice of coordinates such that the
Lê numbers of f at the origin are defined. Then, for 0 	 j0 	 j1 	 · · · 	 js−1,

f + z j00 + z j11 + · · · + z js−1
s−1

has an isolated singularity at the origin, and its Milnor number is given by

μ( f + z j00 + z j11 + · · · + z js−1
s−1) =

s∑
i=0

(
λi

f,z(0)

i−1∏
k=0

( jk − 1)

)
=

λ0
f,z(0) + ( j0 − 1)λ1

f,z(0) + ( j1 − 1)( j0 − 1)λ2
f,z(0) + . . .

+( js−1 − 1) . . . ( j1 − 1)( j0 − 1)λs
f,z(0).

If we apply Remark 7.4.2 and use the well-known fact the the Milnor number
at the origin of an isolated critical point of a homogeneous polynomial in n + 1
variables of degree d is (d − 1)n+1, then the above corollary immediately implies:

Corollary 7.4.5 Let h be a homogeneous polynomial of degree d in n + 1 variables,
let s = dim0�h, and suppose that λi

h,z(0) exists for all i � s. Then,

s∑
i=0

(d − 1)iλi
h,z(0) = (d − 1)n+1.

There are the following uniform Lê-Iomdine formulas from Theorem 4.15 of
[36]; the point is that, in one-parameter families, one can pick an exponent j which
works for all ft where |t | is small.
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Theorem 7.4.6 Let ft : (U, 0) → (C, 0) be a one-parameter complex analytic fam-
ily in the variables z = (z0, . . . , zn), whereU is an open neighborhood of the origin
in C

n+1.
As before, we use the coordinates z = (z0, . . . , zn) for ft , we and use the rotated

coordinates z̃ = (z1, z2, . . . , zn, z0) for ft + z j0 .
Let s := dim0� f0, and suppose that s � 1. Suppose that the Lê numbers λ∗

ft ,z(0)

are defined for all small t . Then, there exist τ > 0 and j0 such that, for all j � j0 and
for all t such that 0 < |t | < τ , dim0 �( f0 + z j0) = s − 1, the Lê numbers of ft + z j0
are defined, and

(i) λ0
ft+z j0 ,z̃

(0) = λ0
ft ,z(0) + ( j − 1)λ1

ft ,z(0);

(ii) λi
ft+z j0 ,z̃

(0) = ( j − 1)λi+1
ft ,z(0), for 1 � i � s − 1; and

(iii) �( ft + z j0) = � ft ∩ V (z0) near 0.

As the Milnor number in a family is upper-semicontinuous, Corollary 7.4.4 and
Theorem 7.4.6 immediately imply:

Theorem 7.4.7 Using the notation of the previous theorem, the tuple of Lê numbers

(
λs

ft ,z(0), λs−1
ft ,z(0), . . . , λ0

ft ,z(0)
)

is lexicographically upper-semicontinuous in the t variable, i.e., for all t of small
magnitude, either

λs
f0,z(0) > λs

ft ,z(0)

or
λs

f0,z(0) = λs
ft ,z(0) and λs−1

f0,z(0) > λs−1
ft ,z(0)

or
...

or
λs

f0,z(0) = λs
ft ,z(0), λs−1

f0,z(0) = λs−1
ft ,z(0), . . . , λ1

f0,z(0) = λ1
ft ,z(0),

and λ0
f0,z(0) � λ0

ft ,z(0).

The uniform Lê-Iomdine formulas enable us to apply the main result of Lê and
Saito [31] about Thom’s A f condition to the case of families of non-isolated hyper-
surface singularities.

In all of the results we give below, it is extremely important that our assumptions
on the genericity of the coordinate system will be solely that the Lê numbers
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exist. This is a dimensional requirement which is very easy to check. This should be
contrasted with the results of [14, 15].

Recall now the main result of Lê and Saito in [31]:

Theorem 7.4.8 Let D
◦ be an open disk about the origin in C, let U be an open

neighborhood of the origin in C
n+1, and let f : (D◦ × U, D

◦ × 0) → (C, 0) be an
analytic function; for all t ∈ D

◦, we write ft for the function defined by ft (z) :=
f (t, z), where ft (0) = 0.
Suppose that dim0� f0 = 0 and that, for all small t , the Milnor number of ft

at the origin is independent of t . Then, D
◦ × {0} satisfies Thom’s A f condition at

the origin with respect to the ambient stratum, i.e., if pi is a sequence of points in
D

◦ × U − � f such that pi → 0 and such that Tpi V ( f − f (pi )) converges to some
T , then C × 0 = T0(D

◦ × {0}) ⊆ T .

Our first generalization of the result of Lê and Saito is Theorem 6.5 of [36].

Theorem 7.4.9 Let D
◦ be an open disk about the origin in C, let U be an open

neighborhood of the origin in C
n+1, and let f : (D◦ × U, D

◦ × 0) → (C, 0) be an
analytic function; we write ft for the function defined by ft (z) := f (t, z).

Let s = dim0� f0. Suppose that, for all small t , the Lê numbers λ∗
ft ,z(0) are defined

and independent of t . Then, D◦ × 0 satisfies Thom’s A f condition at the origin with
respect to the ambient stratum, i.e., if pi is a sequence of points in D

◦ × U − � f
such thatpi → 0 and such that Tpi V ( f − f (pi )) converges to someT , thenC × 0 =
T0(D

◦ × 0) ⊆ T .

From the above theorem, we obtain the following corollary, which is Corollary
6.6 of [36].

Corollary 7.4.10 Let f : U → C be an analytic function on an open subset ofCn+1,
let z = (z0, . . . , zn) be a linear choice of coordinates for C

n+1, let M be an analytic
submanifold of V ( f ), let q ∈ M, and let s denote dimq� f .

If the Lê numbers λ∗
f,z(p) are defined and independent of p, for all p ∈ M near

q, then M satisfies Thom’s A f condition at q with respect to the ambient stratum;
that is, if qi is a sequence of points in U − � f such that qi → q and such that
Tqi V ( f − f (qi )) converges to some T , then TqM ⊆ T .

Remark 7.4.11 It is important to note that, in Corollary 7.4.10, we only require that
the coordinates are generic enough so that the Lê numbers are defined; we are not
requiring that the coordinates are prepolar.

On the other hand, Corollary 7.4.10 tells us howwe can obtain good stratifications:
if we have an analytic stratification of V (h) such that the Lê numbers are defined
and constant along the strata, then the stratification is actually a good stratification.
However, there is no guarantee that the coordinates used to define the Lê numbers
are prepolar with respect to this good stratification.
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The following multi-parameter version of the result of Lê and Saito is Theorem
6.8 of [36].

Theorem 7.4.12 Let M be an open neighborhood of the origin in C
k , let U be an

open neighborhood of the origin inC
n+1, and let f : (M × U, M × 0) → (C, 0) be

an analytic function; we write ft for the function defined by ft(z) := f (t, z), where
t ∈ M and z ∈ U.

Suppose that dim0� f0 = 0 and that, for all t near the origin, the Milnor number
of ft at the origin is independent of t. Then, M × 0 satisfies Thom’s A f condition
at the origin with respect to the ambient stratum, i.e. if pi is a sequence of points in
M × U − � f such that pi → 0 and such that Tpi V ( f − f (pi )) converges to some
T , then T0(M × 0) ⊆ T .

Finally, we have the multi-parameter generalization of the result of Lê and Saito,
where the critical loci may have arbitrary dimension; this is Theorem 6.9 of [36].

Theorem 7.4.13 Let M be an open neighborhood of the origin in C
k , let U be an

open neighborhood of the origin inC
n+1, and let f : (M × U, M × 0) → (C, 0) be

an analytic function; we write ft for the function defined by ft(z) := f (t, z), where
t ∈ M and z ∈ U.

Let s = dim0� f0. Suppose that, for all small t, the Lê numbers λ∗
ft,z(0) are defined

and independent of t. Then, M × 0 satisfies Thom’s A f condition at the origin
with respect to the ambient stratum, i.e. if pi is a sequence of points in M × U −
� f such that pi → 0 and such that Tpi V ( f − f (pi )) converges to some T , then
T0(M × 0) ⊆ T .

7.5 Aligned Singularities and Hyperplane Arrangements

Hyperplane arrangements are a much-studied area of mathematics. However, from
the point of view of analytic/algebraic hypersurfaces, hyperplane arrangements are
somewhat unnatural since they are not preserved by analytic or algebraic changes of
coordinates.However, hypersurfaceswith aligned singularities aremore general than
hyperplane arrangements, but have some similar, desirable properties with respect
to Lê cycles and numbers.

All of this material on aligned singularities is taken from Chap. 7 of [36].
For convenience, throughout this section, we concentrate our attention on hyper-

surface germs at the origin. So we again assume thatU is an open neighborhood of
0 in C

n+1, n ≥ 1, and f : (U, 0) → (C, 0) is an analytic function which is nowhere
locally constant.

Recall the definition of a good stratification in Definition 7.2.12.

Definition 7.5.1 If f : (U, 0) → (C, 0) is an analytic function, then an aligned
good stratification for f at the origin is a good stratification for f at the origin in
which the closure of each stratum of the singular set is smooth at the origin.
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If such an aligned good stratification exists, we say that f has an aligned singu-
larity at the origin.

If {Sα} is an aligned good stratification for f at the origin, then we say that a linear
choice of coordinates, z, is an aligning set of coordinates for {Sα} provided that for
each i , V (z0, . . . , zi−1) transversely intersects the closure of each stratum of dimen-
sion � i of {Sα} at the origin. Naturally, we say simply that a set of coordinates, z, is
aligning for f at the origin provided that there exists an aligned good stratification
for f at the origin with respect to which z is aligning.

Note that, given an aligned singularity, aligning sets of coordinates are generic
and prepolar.

Closely related to this notion is:

Definition 7.5.2 If f : (U, 0) → (C, 0) is an analytic function on an open subset
of C

n+1, then a linear choice of coordinates, z, for C
n+1 is pre-aligning for f at the

origin provided that for each Lê cycle, 	i
f,z
, and for each irreducible component, C ,

of 	i
f,z
passing through the origin, the following conditions are satisfied:

1. dim0 C = i ;

2. C is smooth at the origin;

3. V (z0, z1, . . . , zi−1) transversely intersects C at the origin.

Proposition 7.5.3 If f has an aligned singularity at the origin, then for a generic
linear choice of coordinates z, z is prepolar for f at each point, p, near the origin
and, hence, for each such p, the reduced Euler characteristic of the Milnor fiber of
f at p is given by

χ̃ (Ff,p) =
s∑

i=0

(−1)n−iλi
f,z(p).

Proposition 7.5.4 Suppose that {Sα} is an aligned good stratification for f at the
origin and that z is an aligning set of coordinates for {Sα} at the origin. Then, as
germs of sets at the origin, for all i ,

	i
f,z

⊆
⋃

dim0 Sα=i

Sα.

Hence, z is a pre-aligning set of coordinates for f at the origin.

Our main interest in aligned singularities is due to:

Proposition 7.5.5 Suppose that f has an aligned s-dimensional singularity at the
origin and that the coordinates z are aligning. Then, the Lê cycles and Lê numbers
can be characterized topologically in the following inductive manner:
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As a set, 	s
f,z
equals the union of the s-dimensional components of the singular set

of f . To determine the Lê cycle, to each s-dimensional component, C of � f , we
assign the multiplicity mC = (−1)n−s χ̃(Ff,p) for generic p ∈ C, where Ff,p denotes
the Milnor fiber of f at p and χ̃ is the reduced Euler characteristic. Moreover, for
all p ∈ |	s

f,z
|, λs

f,z
(p) = ∑

p∈C mC .

Now, suppose that we have defined the Lê numbers, 	i
f,z
(p) for all i � k + 1 and

for all p near the origin.
Then, as a set, 	k

f,z
equals the closure of the k-dimensional components of the set

of points p ∈ V ( f ), where

χ̃(Ff,p) �=
s∑

i=k+1

(−1)n−iλi
f,z(p).

The Lê cycle is defined by assigning to each irreducible component C of this set the
multiplicity

mC = (−1)n−k

(
χ̃(Ff,p) −

s∑
i=k+1

(−1)n−iλi
f,z(p)

)
,

for generic p ∈ C. Finally, for all p ∈ |	k
f,z
|, we have λk

f,z
(p) = ∑

p∈C mC .

The following two corollaries are immediate:

Corollary 7.5.6 If f has an aligned singularity at the origin, then all aligning
coordinates z determine the same Lê cycles and Lê numbers.

Corollary 7.5.7 Let f and g be reduced, analytic germs with aligned singularities
at the origin in C

n+1. Let z and z̃ be aligning sets of coordinates for f and g,
respectively. If H is a local, ambient homeomorphism from the germ of V ( f ) at the
origin to the germ of V (g) at the origin, then as germs of sets at the origin,

H(	i
f,z
) = 	i

g,z̃
,

for all i , and for all p near the origin in C
n+1,

λi
f,z
(p) = λi

g,z̃
(H(p)),

for all i .

Hyperplane Arrangements

The remainder of this section is devoted to hyperplane arrangements, and is taken
from Chap.5 of [36]. The study of hyperplane arrangements is quite complex and
touches on many areas of mathematics (see, for instance, [44, 45]).
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A central hyperplane arrangement in C
n+1 is the zero-locus of an analytic

function h : C
n+1 → C where h is a product of d linear forms on C

n+1 (here, we are
not necessarily assuming that the forms are distinct).

Recall that Corollary 7.4.5 states: let h be a homogeneous polynomial of degree
d in n + 1 variables, let s = dim0 �h, and suppose that the Lê numbers of h exist at
the origin. Then,

s∑
i=0

(d − 1)iλi
h,z(0) = (d − 1)n+1.

This formula allows us to calculate the Lê numbers for a central hyperplane
arrangement in a purely combinatorial manner from the lattice of flats of the arrange-
ment (see [45] and below). Itwas experimentally observed byD.Welsh andG.Ziegler
that there was a fairly trivial relationship between the Lê numbers of the arrangement
and the Möbius function (defined later in this section). This relationship generalizes
to matroid-based polynomial identities (see [40]).

In the remainder of this section, we give the combinatorial characterization of the
Lê numbers for central hyperplane arrangements and describe the relation between
the Lê numbers and the Möbius function.

Example 7.5.8 Suppose we have such an h. In this case, V (h) equals the union of
hyperplanes, {Hi }i∈I , where I is the indexing set {1, . . . , d ′}, each Hi occurs with
some multiplicitymi := mult Hi , and

∑
mi = d (in particular, if h is reduced, then

each mi = 1 and d ′ = d).
There is an obvious goodWhitney stratification of V (h) obtained from the “flats”

of the hyperplane arrangement; the collection of flats is given by {wJ }J⊆I , where

wJ :=
⋂
i∈J

Hi .

Note that the entire affine space is C
n+1 is considered to be a flat by considering the

empty indexing set J .
If we now take the stratification {SJ }J⊆I , where

SJ = wJ −
⋃

J � K

wK ,

then clearly h is analytically trivial along the strata, and therefore one has trivially a
Whitney stratification. In words, the strata are intersections of the hyperplanes minus
smaller intersections of hyperplanes.

We wish to calculate the Lê numbers of h at the origin with respect to generic
coordinates z. As h is analytically trivial along the strata, it is easy to see that, as
sets, the Lê cycles are given by the unions of the flats of correct dimension. Hence,
as cycles, for all k,

	k
h,z =

∑
dim SJ =k

aJ [wJ ]
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for some aJ . By Proposition 7.2.9, aJ may be calculated by taking any p ∈ SJ and
a normal slice N to SJ in C

n+1 at p, and then aJ = λ0
h|N

(p), where we use generic
coordinates. After a translation to make the point p the origin, we see that h|N at
p is again (up to multiplication by units) a product of linear forms of degree eJ :=∑

i∈J
mi .

Therefore, we may use Corollary 7.4.5 to calculate the Lê numbers of h at the
origin by a downward induction on the dimension of the flats. (In the following, it
looks nicer if we suppress the subscripts.)We denote a hyperplane in the arrangement
by H , a flat by w or v, and define

e(w) :=
∑
w⊆H

mult H.

Next, we define the vanishing Möbius function, η, by downward induction on the
dimension of the flats. For a hyperplane, H , in the arrangement, define

η(H) := mult H − 1;

for a smaller dimensional flat, w, Corollary 7.4.5 tells us that we need to require

η(w) := (e(w) − 1)n+1− dim w −
∑
v�w

η(v) · (e(w) − 1)codimvw.

This equality is equivalent to

∑
v⊇w

(e(w) − 1)dim vη(v) = (e(w) − 1)n+1.

Finally, having calculated the vanishing Möbius function, one has that, for all i ,

λi
h,z(0) =

∑
dim w=i

η(w).

By Theorem 7.3.5, knowing the Lê numbers of the hyperplane arrangement gives
us the Euler characteristic of the Milnor fiber together with Morse inequalities on
the Betti numbers. (Another method for computing the Euler characteristic of the
Milnor fiber from the data provided by the containment relations among the flats,
i.e. by knowing the intersection lattice, is given in [45].)

Now,wewish to describe the relation between theLê numbers of a central arrange-
ment and the Möbius function—this is the result which is generalized in [40].

Let h be the product of d distinct linear forms on C
n+1, so that each hyperplane

in the arrangement V (h) occurs with multiplicity 1. Let A denote the collection
of hyperplanes which are components of V (h). We use the variable H to denote
hyperplanes in A. We use the letters v and w to denote flats of arbitrary dimension.
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Finally, in agreement with our notation in Example7.5.8, let eA(v) = the number of
hyperplanes of A which contain the flat v.

As we saw above, the Lê numbers of a central hyperplane arrangement can be
described in terms of a function ηA defined inductively on the flats by: for all H ∈ A,
ηA(H) = 0, and for all flats w,

∑
w⊆v

(eA(w) − 1)dim vηA(v) = (eA(w) − 1)n+1.

TheMöbius function,μA , onA is defined inductively on the flats by:μA(Cn+1) =
1 and for all flats v � w, ∑

flats u,v⊆u⊆w

μA(u) = 0.

Here, we subscript by η, e, and μ by A because our proof is by induction on the
ambient dimension, and the inductive step requires slicingA by hyperplanes, N , not
contained inA. This will produce new arrangements inside the ambient space N . So
it is important that we indicate which arrangement is under consideration.

More notation now, related to the slicing. We will be taking two kinds of hyper-
plane slices. N will denote a prepolar hyperplane slice through the origin in C

n+1,
i.e. a hyperplane slice which contains no flats of A other than the origin. We will
also use normal slices to the one-flats; if v is a one-dimensional flat and pv ∈ v − 0,
Nv will denote a normal slice to v at pv—that is, Nv is a hyperplane in C

n+1 which
transversely intersects v at pv. We useA ∩ N to denote the obvious induced arrange-
ment in N (which is identified with C

n). The arrangementA ∩ Nv is considered as a
central arrangement where pv becomes the origin and all hyperplanes not containing
pv are ignored. Note that the number of hyperplanes in the arrangement A ∩ Nv is
eA(v).

An arrangement is essential provided that the origin is a flat of the arrangement
(hence, the arrangement is not trivially a product).

The following is Theorem 5.6 of [36], and is the motivating basic result for all of
the further results in [40].

Theorem 7.5.9 If A is a an essential, central hyperplane arrangement consisting
of d hyperplanes in C

n+1, then

ηA(0) = (d − 1)(−1)n+1μA(0) = (d − 1)|μA(0)|.

7.6 Other Characterizations of the Lê Cycles

In this section, we will discuss four other characterizations of Lê cycles: one involv-
ing the blow-up of the jacobian ideal, one involving the characteristic cycle of the
vanishing cycles, one involving a general process for perverse sheaves applied to
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the complex of vanishing cycles, and one involving a characterization in terms of a
constructible function.

Throughout this section, we assume that U is a non-empty open subset of C
n+1,

n ≥ 1, z = (z0, . . . , zn) is a coordinate system for C
n+1, and f : U → C is an ana-

lytic function which is nowhere locally constant.
Let j ( f ) denote the jacobian ideal of f , i.e.,

j ( f ) :=
〈

∂ f

∂z0
, . . . ,

∂ f

∂zn

〉
.

We consider the blow-up, Bl j ( f )U, of U along j ( f ) inside U × P
n , and let E

denote the exceptional divisor. We let π : U × P
n → U be the projection. We use

[w0 : . . .wn] for homogeneous coordinates on P
n and consider distinguished copies

of P
j inside of P

n; we write P
j × {0} for {[w0 : · · · : wj : 0 : · · · : 0] ∈ P

n}.
The following is Theorem II.1.26 of [37]; this characterization of the Lê cycles

was suggested to us byT.Gaffney and can also be derived from thework of van Gastel
in [56]. In more generality, we prove this in Corollary I.2.22 of [37].

Theorem 7.6.1 Let p ∈ V ( f ) ∩ � f and suppose that z := (z0, . . . , zn) is a prepo-
lar for f at p.

Then,

1. the Lê numbers and polar numbers λ∗
f,z(p) and γ ∗

f,z(p) exist,

and there exists a neighborhood � of p such that

2. for all j such that 0 � j � k, the exceptional divisor E properly intersects � ×
P

j × {0} inU × P
n, and

3.
�

j+1
f,z = π∗(Bl j ( f ) U · (� × P

j × {0}))

and
	

j
f,z = π∗(E · (� × P

j × {0})),

where the intersection takes place in U × P
n and π∗ denotes the proper push-

forward.

To present our next characterization of the Lê numbers, we will use the derived
category of bounded, constructible complexes of sheaves and characteristic cycles.
We will give a quick treatment of characteristic cycles, but must direct the reader
to other sources for the basics of the derived category; we recommend the books
[7, 20, 48]. We will also follow Appendix 6.A of [11] for our discussion of Morse
groups/modules.

We should mention that the vanishing cycles of Kashiwara and Schapira are
shifted by one from what essentially all other sources use, and we will not use their
shift. Also, as there are various conventions on the signs in the characteristic cycle,
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we point out that we use the convention which makes all of the coefficients in the
characteristic cycle of a perverse sheaf non-negative.

Throughout this discussion, since we are interested in integral cohomology, we
will fix the base ring Z for our complexes of sheaves of modules (however, we could
use other base rings, and it is common to use the fields Q or C).

We let U be an open neighborhood of the origin of C
n+1, and let X be a closed,

analytic subset of U. We let z := (z0, . . . , zn) be coordinates on U.
Recall that the complex link, LX,p, of X at p is the Milnor fiber of a generic affine

form, restricted to X , at p. That is, the complex link is

LX,p := B◦
ε (p) ∩ X ∩ V (L − b),

where B◦
ε (p) is an open ball in U of radius ε, where 0 < ε 	 1, centered at p, L

is a generic affine form which is zero at p, and b is a complex number such that
0 < |b| 	 ε. The homotopy-type of the complex link is an analytic invariant of the
germ of X at p.

Let S be a complex analytic Whitney stratification of X , with connected strata.
Let F• be a bounded complex of sheaves of Z-modules on X , which is constructible
with respect toS. For each S ∈ S, we let dS := dim S, and let (NX,S, LX,S) denote
complex Morse data for S in X , consisting of a normal slice and complex link of
S in X . Recall that, if p ∈ S, then LX,S is the complex link of the normal slice to
S at p, i.e., LX,S = LNX,S ,p. The homeomorphism-type of the pair (NX,S, LX,S) is
independent of the choices.

Definition 7.6.2 For each S ∈ S and each integer k, the isomorphism-type of
the Z-module mk

S(F
•) := H

k−dS (NX,S, LX,S; F•) is independent of the choice of
(NX,S, LX,S); we refer to mk

S(F
•) as the degree k Morse module of S with respect to

F•.

Remark 7.6.3 The shift by dS above is present so that perverse sheaves can have
non-zero Morse modules in only degree 0; in fact, by 9.5.2 of [19] (or Corollary 4.27
of [38]), having possibly non-zero Morse modules only in degree zero is equivalent
to being perverse.

Definition 7.6.4 Define cS(F•) := ∑
k∈Z

(−1)k rank(mk
S(F

•)), and define the char-
acteristic cycle of F• (in T ∗U) to be the analytic cycle

CC(F•) :=
∑
S∈S

cS(F•)
[
T ∗
S U

]
.

Note that, by Remark 7.6.3, if F• is a perverse sheaf, then

CC(F•) :=
∑
S∈S

rank(m0
S(F

•))
[
T ∗
S U

]
.
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Consider the shifted constant sheaf Z
•
U[n + 1] on U; this is a perverse sheaf

(see, for instance, Sect. 5 of [7]). Then the shifted complex of vanishing cycles
φ f [−1]Z•

U[n + 1] is a perverse sheaf on V ( f ). This is a complex of sheaves such
that, for all p ∈ V ( f ), the stalk cohomology Hk(φ f [−1]Z•

U[n + 1])p is isomorphic
to the reduced cohomology of the Milnor fiber H̃ k+n(Ff,p; Z).

More generally, suppose that X is an analytic space (embedded in affine space so
that the open balls we are about to use make sense), that g : X → C is an analytic
map, and that A• is a bounded, constructible complex of sheaves of Z-modules on
X . For all x ∈ V (g), there is still a well-defined Milnor fibration and Milnor fiber
Fg,x; see [24].

Then the nearby cycles, ψgA•, and vanishing cycles, φgA•, are bounded, con-
structible complexes of sheaves of Z-modules on V (g) such that the stalk coho-
mology at x ∈ V (g) is isomorphic to the hypercohomology (respectively, relative
hypercohomology) of Fg,x, i.e., for all x ∈ V (g),

Hk(ψgA•)x
∼= H

k(Fg,x; A•) and Hk(φgA•)x
∼= H

k+1(B◦
ε (x) ∩ X, Fg,x; A•),

where B◦
ε (x) is a sufficiently small open ball of radius ε > 0, centered at x, in a local

embedding of X into affine space.
If P• is a perverse sheaf on X , then the shifted nearby and vanishing cycles

ψg[−1]P• := (ψgP•)[−1] and φg[−1]P• := (φgP•)[−1] are perverse sheaves on
V (g).

Now, identifying the cotangent space T ∗U of U with U × C
n+1 and its projec-

tivization with U × P
n , the result of Kashiwara et al. [18], Lê and Mebkhout [27]

is:

Theorem 7.6.5 The exceptional divisor E of the blow-up of U along the jacobian
ideal (from above) is equal to P(CC(φ f [−1]Z•

U[n + 1])), the projectivized charac-
teristic cycle of the shifted vanishing cycles.

Thus, replacing E in Theorem 7.6.1 with P(CC(φ f [−1]Z•
U[n + 1])) and using

the same notation, we obtain Theorem 10.14 and Corollary 10.15 of [36]:

Theorem 7.6.6 Suppose that the coordinates z := (z0, . . . , zn) are prepolar for f
at a point p ∈ V ( f ) and write

P(CC(φ f [−1]Z•
U[n + 1])) =

∑
S∈S

mS P
(
T ∗
S U

)
.

Then, there exists a neighborhood � of p in which, for all j ,

	
j
f,z = π∗

(
P(CC(φ f [−1]Z•

U[n + 1])) · (� × P
j × {0})) =

∑
S∈S

mS π∗
(
P
(
T ∗
S U

) · (� × P
j × {0})) =

∑
S∈S

mS � j
z (S),
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where�
j
z (S) is the (possibly non-reduced) j-dimensional absolute polar variety (see

[32]) of S with respect to the affine forms (or corresponding flag)

(z0 − p0, . . . , z j − p j ).

As the absolute polar multiplicities are generically independent of the coordinates
(see [55]), we conclude:

Corollary 7.6.7 For a generic choice of the coordinates at a point, the Lê numbers
are independent of the coordinate choice.

Before we give another characterization of the Lê numbers, we first need the
following proposition, which is Proposition 10.2 of [36]; we need this proposition
so that the theorem that we state is not vacuously true.

Proposition 7.6.8 Suppose that p ∈ V ( f ). Then, for a generic linear choice of
coordinates z := (z0, . . . , zn), there exists open neighborhood � of p such that z
is prepolar at x for all x ∈ �.

The following theorem,which gives another characterization of the Lê numbers, is
a combination of Theorem 7.6.6 above, Corollary 4.20, Theorem 4.24 and Theorem
6.4 of [38] (also using Definition 4.1 of [38]). In the theorem, we will not distinguish
in the notation between an affine form and its restriction to a subspace.

Theorem 7.6.9 Let P• := φ f [−1]Z•
U[n + 1]. Suppose that p ∈ V ( f ), that � is an

open neighborhood of p and that, for all x ∈ � ∩ V ( f ), the coordinate system z is
prepolar at x. Then, for all k and for all x ∈ �, x is an isolated point in the support
of the perverse sheaf

φzk−xk [−1]ψzk−1−xk−1 [−1] . . . ψz0−x0 [−1]P•

and, hence, the stalk cohomology at x is (possibly) non-zero only in degree zero and,
for all k,

H 0(φzk−xk [−1]ψzk−1−xk−1 [−1] . . . ψz0−x0 [−1]P•)x
∼= Z

λk
f,z(x),

where, of course, λk
f,z(x) is the k-dimensional Lê number of f at x.

Remark 7.6.10 As we saw in Corollary 7.3.7, there is a chain complex

0 → Z
λs
f,z(x) → Z

λs−1
f,z (x) → · · · → Z

λ1
f,z(x) → Z

λ0
f,z(x) → 0

such that the cohomology of the complex at the λk
f,z(x) term is isomorphic to

H̃ n−k(Ff,x; Z).
It is truemore generally that, ifP• is a perverse sheaf, then there is a chain complex

with terms
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H 0(φzk−xk [−1]ψzk−1−xk−1 [−1] . . . ψz0−x0 [−1]P•)x,

whose cohomology is isomorphic to the stalk cohomology of P• at x , provided that
for all k and for all x ∈ �, x is an isolated point in the support of the iterated nearby
and vanishing cycles; see Theorem 5.3 of [35] and Theorem 4.16 of [38]. In addition,
a repeated application of Theorem 3.3 of [38], together with Theorem 3.4 of [38],
tells us that, if the Morse modules of P• are free abelian, then all of the modules

H 0(φzk−xk [−1]ψzk−1−xk−1 [−1] . . . ψz0−x0 [−1]P•)x

are also free abelian (of finite rank).

Our final characterization of the Lê cycles and numbers is formal, and is in terms of
the function given by the reducedEuler characteristic of theMilnor fiber. In fact, given
Proposition 7.6.8 and Corollary 7.3.7, it is easy to conclude Proposition/Definition
10.6 and Remark 10.7 of [36]:

Theorem 7.6.11 Suppose that p ∈ V ( f ), that � is an open neighborhood of p and
that, for all x ∈ � ∩ V ( f ), the coordinate system z is prepolar at x.

Then, the Lê cycles 	k
f,z are the unique cycles in � ∩ V ( f ) such that each 	k

f,z
is purely k-dimensional, properly intersects V (z0 − x0, . . . , zk−1 − xk−1) at each
x ∈ 	k

f,z and, for all x ∈ V ( f ),

χ̃ (Ff,x) =
n∑

k=0

(−1)n−k
(
	k

f,z · V (z0 − x0, . . . , zk−1 − xk−1)
)

x.

Remark 7.6.12 The reader should appreciate the “strange” implication of Theo-
rem 7.6.11. Using essentially nothing other than the reduced Euler characteristics
of the Milnor fibers, one can produce the Lê numbers which then yield seemingly
strictly more data, such as the Morse inequalities of Corollary 7.3.7. However, as
discussed in [35] (and related to the results above), this is an implication of the fact
that the shifted vanishing cycles are a perverse sheaf.

7.7 Projective Lê Cycles

Throughout this section, h : C
n+1 → Cwill denote a (non-zero) homogeneous poly-

nomial of degree d, and we continue to let z = (z0, . . . .zn) be coordinates for C
n+1,

and assume that the Lê and relative polar numbers of h at 0 with respect to z exist.
We assume throughout that we are not in the trivial case where d = 1, i.e., where h
is linear; hence, 0 ∈ �h.

As all of the partial derivatives of h are homogeneous (of degree (d − 1)), all
of the positive-dimensional relative polar cycles and Lê cycles of h are conic (C∗-
conic), and so projectivize to yield cycles in P

n . For k ≥ 0, define the k-dimensional
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projective Lê cycle of h and the k-dimensional projective relative polar cycle of
h by

(P	h,z)
k := P(	k+1

h,z ) and (P�h,z)
k := P(�k+1

h,z ).

As we wrote in Remark 4.13 of [36], it seems reasonable to define the global
projective Lê numbers in terms of the Lê numbers of h at the origin (with respect
to coordinates z such that the Lê numbers exist): for k ≥ 1,

(Pλh,z)
k := λk+1

h,z (0).

We mentioned there that the data from λ0
h,z(0) is not lost, since Corollary 7.4.5 tells

us that

λ0
h,z(0) = (d − 1)n+1 −

n∑
i=1

(d − 1)iλi
h,z(0)

or, in our new terminology and notation:

Proposition 7.7.1 The 0-dimensional Lê number of h at the origin can be calculated
using the global projective Lê numbers of h:

λ0
h,z(0)

d − 1
= (d − 1)n −

n−1∑
i=0

(d − 1)i (Pλh,z)
i .

In the remainder of this section, we wish to take this projective case further.
Everything here was produced in collaboration with Paolo Aluffi during our visit to
Florida State University in early 2020.

While we are interested in the projective setting, most of the results seem to be
best stated and proved in the affine situation.

Theorem 7.7.2 The following formulas for the Lê numbers and relative polar num-
bers at the origin hold:

1. γ n+1
h,z (0) = 1, λn+1

h,z (0) = 0, and γ 0
h,z(0) = 0.

2. For 0 ≤ k ≤ n,
γ k
h,z(0) + λk

h,z(0) = (d − 1)γ k+1
h,z (0).

In particular, λ0
h,z(0) = (d − 1)γ 1

h,z(0).

Proof The proof of Item (1) is trivial. We will prove Item (2).

Consider�1
h,z, which is conic and 1-dimensional; thus, as a set,�1

h,z is a collection
of lines. Consequently, as ∂h/∂z0 is homogeneous of degree (d − 1),

λ0
h,z(0) =

(
�1
h,z · V

( ∂h

∂z0

))
0

= (d − 1)
(
�1
h,z · V (z0)

)
0

= (d − 1)γ 1
h,z(0).
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Now we use hyperplane slicing from Proposition 7.2.9, to find

γ k
h,z(0) + λk

h,z(0) =
(

�k+1
h,z · V

( ∂h

∂zk

)
· V (z0, . . . , zk−1)

)
0

=

(
�1
h|V (z0 ,...,zk−1)

,(zk ,...,zn) · V
( ∂h

∂zk

))
0

= (d − 1)
(
�1
h|V (z0 ,...,zk−1)

,(zk ,...,zn) · V (zk)
)

0
=

(d − 1)
(
�k+1
h,z · V (z0, . . . , zk−1, zk)

)
0

= (d − 1)γ k+1
h,z (0).

From this theorem, one can use induction arguments to easily conclude:

Corollary 7.7.3 For all k such that 1 ≤ k ≤ n + 1,

γ k
h,z(0) =

k−1∑
j=0

λ
j
h,z(0)

(d − 1)k− j
= (d − 1)n−k+1 −

n−k∑
m=0

(d − 1)mλm+k
h,z (0).

Now we wish to projectivize the base space in Theorem 7.6.1 and consider the
blow-up

η : Bl j (h)P
n → P

n

of P
n along the jacobian ideal j (h). We view Bl j (h)P

n as a subset of P
n × P

n , and
continue to denote the exceptional divisor by E .

If we projectivize the relative polar cycle portion of Theorem 7.6.1, we obtain:

Theorem 7.7.4 Suppose that (z0, . . . , zn) are prepolar coordinates for h at 0.
Then,

1. the Lê numbers and polar numbers λ∗
h,z(0) and γ ∗

f,z(0) exist,
2. for all j such that 0 � j � k, the exceptional divisor E properly intersects P

n ×
P

j × {0} in P
n × P

n,
3.

(P�h,z)
j = η∗(Bl j (h) P

n · (Pn × P
j × {0})),

where the intersection takes place in P
n × P

n and η∗ denotes the proper push-
forward, and

4. {0} × P
n− j properly intersects (P�h,z)

j in a finite collection of points (possibly
with multiplicity) in P

n and

γ
j+1
h,z (0) =

∫ ({0} × P
n− j

) · (P�h,z)
j = degree

(
(P�h,z)

j
)
.

As all choices of prepolar coordinates produce the product intersections in Item
(2) above, as the degree does not change under rational equivalence, and using Item
(2) of Theorem 7.7.2, we conclude:
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Corollary 7.7.5 The values of the Lê numbers and relative polar numbers of h at
the origin are independent of the choice of prepolar coordinates for h at 0.

Theorem 7.7.4 identifies the relative polar numbers as the projective degrees
of the polar/gradient map. See [8, 9], Example 19.4 of [13], and Sect. 3 of [3].
Following the notation and terminology of this last reference, we conclude:

Corollary 7.7.6 Suppose that (z0, . . . , zk) is a prepolar tuple for h at 0.
Then, for 0 ≤ i ≤ n, the i-th polar degree, gi , of h is equal to the (n − i + 1)-

dimensional relative polar multiplicity of h at 0, i.e., gi = γ n−i+1
h,z (0).

Now thatCorollary 7.7.6 identifies the relative polarmultiplicities as the projective
degrees of the polar/gradient map, and aswe canwrite the relative polarmultiplicities
in terms of Lê numbers via Corollary 7.7.3, there are many new formulas which hold
involving relative polar multiplicities and Lê numbers which follow immediately
from formulas involving the projective degrees of the polar/gradient map.

For instance, we conclude immediately from the work of June Huh in [16]:

Corollary 7.7.7 Suppose that (z0, . . . , zk) is a prepolar tuple for h at 0.
Then the sequence of relative polar multiplicities is log-concave, i.e., for all k

where 0 ≤ k ≤ n − 1, (
γ k+1
h,z (0)

)2 ≥ γ k
h,z(0) · γ k+2

h,z (0).

Using Aluffi’s formula from Theorem 2.1 of [2], we can write the Schwartz-
MacPherson-Chern class of the projective hypersurface P(V (h)) in terms of relative
polar multiplicities and/or Lê numbers. In particular, reading off the degree zero part
of this formula, we obtain the Euler characteristic of P(V (h)):

Corollary 7.7.8 Suppose that (z0, . . . , zk) is a prepolar tuple for h at 0.
Then, the Euler characteristic of P(V (h)) is given by

χ
(
P(V (h))

) = n + 1 + (−1)n
n+1∑
m=1

(−1)mγ m
h,z(0) =

n + 1 + (1 − d)n+1 − 1

d
+ (−1)n

n∑
j=1

(d − 1) j − (−1) j

d
λ
j
h,z(0) =

n + 1 + (1 − d)n+1 − 1

d
+ (−1)n

n∑
j=1

(d − 1) j − (−1) j

d
(Pλh,z)

j−1.

Remark 7.7.9 The reader may wonder why one would be interested in the formulas
for the Euler characteristic of P(V (h)) in terms of Lê or projective Lê numbers when
the formula in terms of the relative polar multiplicities is so simple (because the
formula in terms of projective degrees of the polar/gradient map is so simple).

The point is that, if the dimension of the critical locus of h is fairly small compared
to n, then there are far fewer non-zero Lê numbers than relative polar multiplicities.
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Chapter 8
Introduction to Mixed Hypersurface
Singularity

Mutsuo Oka

Abstract In 1968, Milnor introduced the fibration structure ϕ : S2n−1ε \ K → S
1

for a given holomorphic function f : (Cn, 0)→ (C, 0) where ϕ = f/| f | and ε is
chosen small enough and K = f −1(0) ∩ S

2n−1
ε [24]. From a viewpoint of algebraic

geometry, it is more convenient to study the tubular fibration f : E(ε, δ)∗ → D
∗
δ

where E(ε, δ)∗ = {z ∈ B
2n
ε | 0 < | f (z)| ≤ δ} with δ � ε and D

∗
ε := {t ∈ C | |t | ≤

ε} \ {0} [15, 22]. After this fundamental result, many researches have been carried
out in various related directions. Among them, the generalization of the fibration
structure and related geometry to the situation f : Rm → R

p attractmany researchers
which has led to many researches even today. Milnor also proved the existence
of the spherical fibration ϕ : Sm−1ε \ K → S

p−1 for sufficiently small ε under the
assumption of isolated critical points at the origin (Theorem 11.2, [24]). The problem
here is that ϕ is not necessarily the canonical one f/| f |. J. Seade studied when ϕ can
be the natural map f/| f | in [53]. For further information, see the references in [53]
and also [7–9]. In this survey, we concentrate on the casem = 2n and p = 2, namely
f : Cn → C where the mapping is considered as a mixed function. It turns out that
this class of functions produces a rich class of linkswhich are fibered over a circle.We
will try to give a survey of the basics to study mixed hypersurface singularities using
the method of the non-degenerate Newton boundary (and also toric modification)
which is a very powerful tool for the study of the complex analytic singularity theory.
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8.1 A Quick Trip to the Complex Hypersurface Singularity
Theory

8.1.1 Milnor Fibration

LetU be an open neighborhood of the origin 0 ∈ C
n and let f : (U, 0)→ (C, 0) be

a holomorphic function. 0 is called a critical point or a singular point of the hyper-
surface V := {z | f (z) = 0} if ∂ f := (

∂ f
∂z1

, . . . ,
∂ f
∂zn

) vanishes at 0. Milnor proved the
following fundamental result.

Theorem 8.1.1 ([24]) There exists a positive number ε such that

ϕ : S2n−1ε \ Kε → S
1, ϕ(z) = f (z)/| f (z)|

is a locally trivial fibrationwhereS2n−1ε is the sphere of radius ε and Kε = V ∩ S
2n−1
ε .

The equivalence class of this fibration does not depend on the choice of a small
enough ε.

Recall that two fibration p : E → S
1 and p′ : E ′ → S

1 is C∞-equivalent (or C0-
equivalent) if there is a diffeomorphism (or homeomorphism) ϕ : E → E ′ such that
p = p′ ◦ ϕ : E → S

1. In this survey, we always consider C∞-equivalence. Kε is
called a link of the hypersurface. Brieskorn found an exotic sphere as a link of
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a certain polynomial. For example, f (z) = z31 + z6k−12 + z23 + · · · + z2n with n odd
gives exotic spheres for any k ≥ 1.His discovery of exotic spheres as links of complex
hypersurfaces defined by so called Brieskorn polynomials pushed Milnor to start a
systematic study of links of hypersurfaces. There is a nice survey about these topics
in [9]. The fiber ϕ−1(1) is usually denoted as F and it is called a Milnor fiber. A
basic result on the topology of links is.

Theorem 8.1.2 ([24]) The link Kε is (n − 3)-connected and F has a homotopy
type of (at most) an (n − 1)-dimensional CW-complex. If further 0 is an isolated
singularity of V , F is (n − 2)-connected and homotopic to a bouquet of (n − 1)-
spheres.

In the case of isolated singularity, the Betti-number bn−1(F) is usually called
the Milnor number of f at the origin and is denoted by μ( f ). Kato-Matsumoto
generalized this connectivity assertion as follows.

Theorem 8.1.3 (Kato-Matsumoto [19]) Let � be the singular locus of f and let
s = dim0 �. Then the Milnor fiber is (n − 2− s)-connected.

Monodromy of the Fibration

Consider the sphericalMilnor fibrationϕ : S2n−1ε \ Kε → S
1. Construct a vector field

X on S
2n−1
ε \ Kε so that dϕ(X(z)) = ∂

∂θ
(ϕ(z)) where ∂

∂θ
is the unit angular vector

field on S
1. We can construct X so that it is integrable over any finite time interval.

For this purpose, we can use Lemma 8.1.5 in Sect. 8.1.2 to assume the additional
condition:X(z) is tangent to {z | | f (z)| = const.} for z ∈ S

2n−1
ε \ Kε where | f (z)| ≤

δ with a mall positive δ. Let F = ϕ−1(1) be the Milnor fiber. By the integration
over [0, θ ], we get a family of diffeomorphisms hθ : F → Fθ := ϕ−1(eiθ ). Then
h := h2π : F → F and h is called a geometric monodromy of the Milnor fibration.
The geometric monodromy h depends on the choice of X but the isotopy class of h
does not depend on X and it induces a well-defined isomorphism on the homology
group h∗ j : Hj (F)→ Hj (F) (or on cohomology group h∗ j : H j (F)→ H j (F)).
For a tubularMilnor fibration, themonodromy is defined similarly. See alsoCisneros-
Seade’s chapter, Vol. 2 in this handbook [9].

Characteristic Polynomials and Zeta Function

Let h : F → F be a geometric monodromy map. Then the complement of the link
E = Sε \ Kε is obtained by glueing F × {1} and F × {0} by h on the product F ×
[0, 1]. The j-th characteristic polynomial Pj (t) is defined by the characteristic
polynomial of j-th monodromy homomorphism h∗ j : Hj (F;R)→ Hj (F;R). The
zeta function of the monodromy is defined by the alternating product [24]:

ζ(t) = P0(t)
−1P1(t) · · · Pn−1(t)(−1)n−2 .
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In the case of an isolated singularity, ζ(t) = Pn−1(t)(−1)
n−2

(t − 1)−1 and
deg Pn−1(t) = μ( f ). Therefore

μ( f ) = (−1)n(deg ζ(t)+ 1).

Recall that the degree of a rational function p(t)/q(t) is definedbydeg p − deg q.
Using theWang exact sequence of the sphericalMilnor fibration (see [58], or Lemma
8.4, [24]), the following criterion is well-known (Theorem 8.5, [24]).

Proposition 8.1.4 (Milnor [24]) Assume that f has an isolated singularity at the
origin. Kε is a homology sphere (a homotopy sphere for n ≥ 4) if and only if
Pn−1(1) = ±1.

8.1.2 The Hamm-Lê lemma and a Tubular Milnor Fibration

To study the Milnor fibration from the view point of algebraic geometry, it is more
convenient to use the so called tubular Milnor fibration. This fibration was system-
atically studied by Hamm-Lê to prove Zariski’s hyperplane section theorem [15].
Refer also to the paper of A’Campo [1] where a tubular fibration and resolution of
the function f is used for the calculation of the zeta function.

Lemma 8.1.5 (Hamm-Lê, Lemme (2.1.4), [15]) Let f be a holomorphic function
defined in a neighborhood U of the origin inCn. Then there exists a positive number
r0 satisfying the following property. Take any positive number r1 ≤ r0. There exists
a positive number δ(r1) such that

(SN) (Smoothness of the nearby fibers) For any non-zero η, |η| ≤ δ(r1), the fiber
f −1(η) ∩ B

2n
r0 is non-singular.

(ST) (Strong transversality) For any r1 ≤ r ≤ r0, the sphere S
2n−1
r and the fiber

f −1(η) with η, |η| ≤ δ(r1) intersect transversely.

This lemma is important when f has a non-isolated singularity at the origin. Take
any positive number r ≤ r0 and δ ≤ δ(r) and consider the mapping f : E(r, δ)∗ →
D
∗
δ where

E(r, δ)∗ := {z ∈ B
2n
r | 0 �= | f (z)| ≤ δ}, D

∗
δ := {η ∈ C | 0 �= |η| ≤ δ}.

Then by the Ehresmann’s fibration theorem [60],

Theorem 8.1.6 f : E(r, δ)∗ → D
∗
δ is a locally trivial fibration. Its restriction over

S
1
δ is equivalent to the spherical Milnor fibration.

We call this fibration a tubular Milnor fibration. In the comparison with this
fibration, a spherical Milnor fibration is the original fibration on the complement of
a link described in Theorem 8.1.1. For the proof of the equivalence of two Milnor
fibrations, see for example Theorem (2.2), [29].
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Resolution and A’Campo Formula

Let f : (U, 0)→ (C, 0)be aholomorphic functionwhereU is an openneighborhood
of the origin in C

n and put V = f −1(0). A holomorphic mapping π : X → U is
called a good resolution of f if the following conditions are satisfied.

1. X is an n-dimensional complex manifold.
2. π is a proper mapping and the restriction π : X \ π−1(V )→ U \ V is biholo-

morphic.
3. Put π−1(V ) = (π∗ f )−1(0) = Ṽ +∑r

j=1 m j E j and put D = π−1(0). Here Ṽ
is the strict transformation of V . Here m j is the multiplicity of π∗ f along E j .
Then Ṽ and each divisors E j ( j = 1, . . . , r) are non-singular and the reduced
divisor of (π∗ f )−1(0) has only normal crossing singularities.

Put E0 = Ṽ and let E ′j = E j ∩ D \⋃k �= j Ek . Then the formula of A’Campo is
given as follows.

Theorem 8.1.7 (A’Campo [1], Theorem (5.2), [29]) The zeta function of the mon-
odromy of the Milnor fibration is given by the following.

ζ(t) =
r∏

j=1
(1− tm j )−χ(E ′j ).

In the case of an isolated singularity and π : X \ D→ U \ {0} is biholomorphic,
E j is included in π−1(0). So the calculation of ζ(t) is reduced to the computation
of the Euler characteristic χ(E ′j ). Let Ẽ(r, δ)∗ := π−1(E(r, δ)∗). Then the tubular

Milnor fibration can be understood as the fibration π∗ f : Ẽ(r, δ)∗ → D
∗
δ . Here is the

point where the Newton boundary and the non-degeneracy condition come in.

8.1.3 Weighted Homogeneous Polynomials

Let f (z) =∑ν cνzν be a polynomial (or a Laurent polynomial) and let P =
t (p1, . . . , pn) be an integer vector. f is called a weighted homogeneous polynomial
(or Laurent polynomial) of degree dwith the weight vector P if

∑n
j=1 p jν j = d for

any ν with cν �= 0. Here d is assumed to be a non-zero integer and ν = (ν1, . . . , νn).
We say that P is a strictly positive weight vector (respectively a non-negative
weight vector) if pi > 0 for any i (resp. pi ≥ 0 for any i). When a weighted
homogeneous polynomial is given, there is an associated C

∗-action on C
n which

is defined by t ◦ z = (z1t p1 , . . . , znt pn ). Here C
∗ = C \ {0}. Then f satisfies the

equality f (t ◦ z) = td f (z). Taking a differential in t and putting t = 1, we get the
Euler equality
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d · f (z) =
n∑

j=1
p j z j

∂ f

∂z j
(z). (8.1)

This equality implies the critical value of f is only 0 or empty. The importance of
weighted homogeneous polynomials is the fact that it appears canonically as a face
function of the Newton boundary.

8.1.4 Newton Boundary and Non-degeneracy

(a) (Newton polyhedron of a germ) Let f (z) =∑ cνzν be a germ of a holomor-
phic function expanded at z = 0. The Newton polyhedron +( f ) for a germ
of function f is defined by the convex hull of the union

⋃
ν,cν �=0(ν + R

n+). It
is a non-compact polyhedron and we define the Newton boundary ( f ) as the
union of compact faces of +( f ). The Newton boundary ( f ) is useful for the
study of the local geometry of f −1(0) at the origin. Unless otherwise stated, we
consider this situation in this survey.

(b) (For global geometry) Let h(z) =∑m
i=1 cizνi be aLaurent polynomial. TheNew-

ton polygon�(h) is defined as the convex hull of {νi | cνi �= 0}. Note that in this
case, we do not add the upper right quadrant Rn+ and thus �( f ) is a compact
polyhedron.

In this survey, we consider the local germ case, unless otherwise stated. Let � be
a face of ( f ) (of any dimension). The face function of f for � is defined by

f�(z) :=
∑

ν∈�

cνzν .

We say that f is (Newton) non-degenerate on � if f� : C∗n → C has no critical
point. Here C∗n is the maximal torus:

C
∗n = {z = (z1, . . . , zn) | z j �= 0, ∀ j}.

We say that f is non-degenerate if f is non-degenerate on every face � of ( f ).
For Laurent polynomials, the non-degeneracy is defined as follows. Let h(z) be a
Laurent polynomial. For a face� of�(h), we say that h is (Newton) non-degenerate
on� if h� : C∗n → C has no critical point. We say h is non-degenerate if h : C∗n →
C has no critical point and h is non-degenerate on every face � of �(h). We only
use the non-degeneracy of Laurent polynomial in Lemma 8.3.40.
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Dual Newton Diagram and Associated Toric Modification

Consider the space of non-negative rational weight vectors N+
Q
⊂ Z

n . Take a weight
vector P = t (p1, . . . , pn) ∈ N+

Q
. To emphasize theweight vectors, we denoteweight

vectors by column vectors. P defines a linear function �P on +( f ) by �P(ν) =∑n
i=1 piνi . For simplicity, we write �P(ν) = P(ν) from now on. Let d(P, f ) be

the minimal value of �P |+( f ) and �(P) be the face where �P takes its minimal
value. We also write d(P) for d(P, f ) for simplicity. As P ∈ N+

Q
, we see that d(P)

exists and it is a no-negative integer. Define fP(z) := f�(P)(z). Note that fP is a
weighted homogeneous function of degree d(P) with the weight vector P . If P is
strictly positive, fP is a polynomial. We introduce an equivalence relation in N+

Q
.

We say P, Q are equivalent and denote it as P ∼ Q, if �(P) = �(Q). This gives
a polyhedral cone subdivision of N+

Q
which we call the dual Newton diagram of f

and denote it as ∗( f ). Here a cone subdivision is a subdivision which satisfies (1)
P ∼ r P for any r > 0 and (2) if P ∼ Q, any point R on the line segment PQ is
also equivalent to P .

For a polyhedral cone, the closure of an equivalence class [P] can be written as
a closed cone

σ = Cone(P1, . . . , Pk) :=
{

Q =
k∑

i=1
ti Pi | ti ≥ 0

}

and [P] includes the open cone Int σ . In this survey, a cone is always a closed cone.
Here we assume that {P1, . . . , Pk} is the minimal set of generators of σ . The vectors
P1, . . . , Pk are called the vertices of σ .We can take Pi to be a primitive integer vector.
A polyhedral cone subdivision �∗ of N+

Q
is called a regular simplicial cone subdi-

vision, or a regular fan if each maximal dimensional cone τ = Cone(P1, . . . , Pn) in
�∗ is generated by n primitive integer vectors so that {P1, . . . , Pn} is a Z-basis of
Z
n . Equivalently det(p ji )1≤i, j≤n = ±1 where Pi = t (p1i , . . . , pni ). We say �∗ is a

regular simplicial cone subdivision of ∗( f ) if �∗ is a regular fan which is also a
subdivision of ∗( f ).

Remark 8.1.8 Recall that f (z) is convenient if theNewton boundary( f ) intersect
with every coordinate axis. Equivalently f (z) contains amonomial c j z

a j

j with c j �= 0
for each j = 1, . . . , n. Suppose that f is convenient. Then (n − 1)-dimensional cone

Cone (E1, . . . ,
∨
Ei , . . . , En) is an equivalence class. Here E1, . . . , En are canonical

generators. Namely Ei = t (0, . . . ,
i

�

1, . . . , 0).

Suppose �∗ is a regular simplicial cone subdivision of ∗( f ). Let S be the
set of n-dimensional cones in �∗. Take σ ∈ S. Choose primitive integer vectors
P1, . . . , Pn so that σ = Cone(P1, . . . , Pn).We identify σ with the unimodularmatrix
(P1, . . . , Pn) = (pi j )1≤i, j≤n and we consider an affine space Cn

σ labeled with σ and
the coordinates uσ = (uσ,1, . . . , uσ,n) and the holomorphic mapping πσ : Cn

σ → C
n

which is defined by
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πσ (uσ ) = z, z j = u
pj1

σ,1 · · · u pjn
σ,n , j = 1, . . . , n.

Note that the restriction of πσ to the maximal torus C∗n is a group isomorphism of
C
∗n . In the same way, the homomorphism πA is defined for any unimodular matrix

A. It satisfies the canonical composition rule πA ◦ πB = πAB . Therefore πσ is a
birational map and the inverse is given by πσ−1 which is at least well-defined on
the torus C∗n ⊂ C

n . We construct n-dimensional complex manifold X , first taking
the disjoint union �σ∈SCn

σ and then glue Cn
σ and C

n
τ by uτ = πτ−1σ (uσ ) wherever

πτ−1σ : Cn
σ → C

n
τ is well-defined. By the definition, there is a birational holomorphic

mapping π̂ : X → C
n which is called the toric modification associated with �∗.

By the construction, {(Cn
σ , uσ ), σ ∈ S} give canonical charts of X . Note that the

restriction of π̂ to Cn
σ is nothing but πσ . The main property of this modification is:

Theorem 8.1.9 Assume that f is non-degenerate. Then π̂ : X → C
n is a proper

biholomorphic mapping which gives a good resolution of f .

Assume that f (z) is convenient. Thenwemay assume that the vertices of�∗ other
than the canonical one Ei , i = 1, . . . , n are strictly positive. See Theorem (3.4), [29]
for further details. For a coordinate chartCn

σ with σ = Cone(P1, . . . , Pn), the divisor
Ê(Pi ) is defined by the closure of {uσ,i = 0}. If Pi is strictly positive, Ê(Pi ) is an
exceptional divisor i.e. π̂(Ê(Pi )) = 0.

The Further Basic Properties of π̂ : X → C
n

1. The pull-back of a monomial is given by π̂∗zν = uP1(ν)
σ,1 · · · uPn(ν)

σ,n in the coordi-
nate chart Cn

σ with σ = Cone(P1, . . . , Pn). Thus we have

π̂∗ f (uσ ) = fσ (uσ )

n∏

i=1
ud(Pi )

σ,i

where fσ (uσ ) :=
∑

ν

cν

n∏

j=1
u
Pj (ν)−d(Pj )

σ, j

The intersection of Ṽ with the exceptional divisor Ê(Pi ) is defined as

Ê(Pi ) ∩ Ṽ = {uσ | uσ,i = fσ,Pi (uσ ) = 0},

fσ,Pi (uσ ) := π−1σ ∗ fPi (uσ )/

n∏

j=1
u
d(Pj )

σ, j

=
∑

ν∈�(Pi )

cν

n∏

j=1
u
Pj (ν)−d(Pj )

σ, j



8 Introduction to Mixed Hypersurface Singularity 411

Here Ṽ is the strict transform of V . Thus fσ,Pi is described by the pull-back of

the face function fPi divided by
∏n

j=1 u
d(Pj )

σ, j . Note that fσ,Pi does not contain
the variable uσ,i .

2. For two vertices P, Q, the intersection Ê(P) ∩ Ê(Q) is non-empty if and only
if there is a maximal cone σ = Cone(P1, . . . , Pn) such that P = P1, Q = P2.

3. Put E(P) := Ê(P) ∩ Ṽ . Then E(P) �= ∅ if and only if dim �(P) ≥ 1.

For the calculation of the zeta function through A’Campo’s formula, we need
only consider the maximal dimensional faces of each coordinate subspaces CI and
χ(Ê(P)′) can be computed combinatorially (see Lemma 8.3.40). The zeta function
is given combinatorially by Varchenko [57] as follows.

ζ(t) =
∏

I

ζI (t), ζI =
∏

Q∈SI

(1− td(Q, f I ))−χ(Q)

χ(Q) = (−1)|I |−1|I |!Vol|I |C(�(Q, f I ), 0)/d(Q, f I ).

Here Volm is the m-dimensional Euclidean volume and SI is the set of weight
vectors associated to the maximal dimensional faces of ( f I ). C(�, 0) is the cone
of � with the origin, i.e. C(�, 0) = {rν | 0 ≤ r ≤ 1, ν ∈ �}. See Theorem (5.3),
[29] for details.

Example 8.1.10 Let �∗ be the regular simplicial cone subdivision with vertices
{E1, . . . , En, P}, P = t (1, . . . , 1). Then the associated toric modification π̂ : X →
C

n is nothing but the ordinary blowing up at the origin and X has n coordinate charts

σi = Cone (E1, . . . ,

i
�

P, . . . , En), i = 1, . . . , n.

Example 8.1.11 1. f (z1, z2) = z21 − z32. The dual Newton diagram ∗( f ) is the
left side of Fig. 8.1. It has three vertices E1, E2, P = t (3, 2). Taking a section with
the dotted line, we denote it as the right side graph with black vertices. The dual
Newton diagram is not regular.We add two vertices S = t (1, 1), T = t (2, 1) to make
it regular. Consider the cone σ = Cone(S, P). Then π∗σ f (uσ ) = u2σ,1u

6
σ,2(1− uσ,1).

Ṽ is defined by uσ,1 − 1 = 0 and intersects transversely with Ê(P) which is defined
by uσ,2 = 0. The multiplicities of π̂∗ f one Ê(S) and Ê(P) are 2 and 6 respectively.
2. Let f (z1, z2, z3) = zd1 + zd2 + zd3 . Then the dual Newton diagram is given by 4 ver-
tices E1, E2, E3 and P = t (1, 1, 1). ∗( f ) is already regular and the corresponding
toric modification is nothing but the blowing up at the origin.
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Fig. 8.1 Left:∗( f ), right: section

8.2 Mixed Hypersurface Singularities

8.2.1 Mixed Analytic Functions

A complex valued real analytic function f (z, z̄) defined on an open set U of
C

n is called a mixed function if there is an analytic function of 2n-variables
f (z, w) defined on U × Ǔ such that f (z, z̄) is obtained by substituting wi =
z̄i , i = 1, . . . , n. Here Ǔ = {z̄ | z ∈ U }. Assuming 0 ∈ U for simplicity, f (z) can
be expanded as f (z, z̄) =∑ν,μ cν,μzν z̄μ. Here z = (z1, . . . , zn), z̄ = (z̄1, . . . , z̄n),
ν = (ν1, . . . , νn), μ = (μ1, . . . , μn) and zν = zν1

1 · · · zνn
n , z̄μ = z̄μ1

1 · · · z̄μn
n . zν z̄μ is

called a mixed monomial.
We consider the germ of a real analytic variety (V, 0), V = f −1(0) ⊂ C

n and
its local geometry unless otherwise stated. Writing z j = x j + iy j , z̄ j = x j − iy j , f
can bewritten as f (x, y) = g(x, y)+ ih(x, y)where g(x, y) = � f (x, y), h(x, y) =
� f (x, y) and V = {(x, y) | g(x, y) = h(x, y) = 0}. Thus the mixed hypersurface
V = f −1(0) can be equivalently described as a complete intersection variety of real
codimension 2 from the analogy of complex analytic hypersurfaces. Conversely, if
a complete intersection variety of real codimension 2 in R2n is given as

V = {(x, y) ∈ R
2n | g(x, y) = h(x, y) = 0},

take complex variables z1, . . . , zn (z j = x j + iy j ) and substitute

x j = (z j + z̄ j )/2, y j = (z j − z̄ j )/2i

in g, h and define f (z, z̄) = g(z, z̄)+ ih(z, z̄). Then V can be described as a mixed
hypersurface defined by the mixed function f . The difference is that when we use a
mixed function description, we fix the ordering of g, h so that it gives an orientation
of the normal bundle of the hypersurface V . We define several gradient vectors.
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dg = (gx1, gy1 , . . . , gxn , gyn ), where gx j =
∂g

∂x j
, gyj =

∂g

∂y j
,

∂ f = ( fz1 , . . . , fzn ), ∂̄ f = ( fz̄1 , . . . , fz̄n ),where fz j =
∂ f

∂z j
, fz̄ j =

∂ f

∂ z̄ j
.

Proposition 8.2.1 Let k : Cn → R be a real valued mixed function. Then ∂k = ∂̄k
and dk = 2∂̄k.

Here (x1, y1, . . . , xn, yn) ∈ R
2n is canonically identifiedwith (x1 + iy1, . . . , xn +

iyn) ∈ C
n .

8.2.2 Mixed Singularities

Consider a mixed analytic function f (z, z̄) defined on an open set U ⊂ C
n . A point

a = (α1, . . . , αn) ∈ U is called a critical point of f or a mixed singular point if
the tangential mapping d fa : TaC

n → T f (a)C
∼= T f (a)R

2 is not surjective. If d fa is
surjective, a is called a mixed non-singular (or a regular) point of f .

Proposition 8.2.2 (Proposition 1, [30]) The following conditions are equivalent.

1. a = (a1, . . . , an) is a critical point of f .
2. There exists a complex number α, |α| = 1 such that ∂ f (a, ā) = α∂̄ f (a, ā).

For brevity, we often denote f (a, ā) by f (a), ∂ f (a, ā) by ∂ f (a).

Lemma 8.2.3 ([5], Lemma 2, [38]) Assume that V = f −1(0) is mixed non-singular
at p ∈ S

2n−1
r ∩ V . Then the following conditions are equivalent.

1. The intersection of the sphere S2n−1r and V at p is not transverse.
2. There exists a complex number α ∈ C

∗ such that p = α∂ f (p)+ ᾱ∂̄ f (p).
3. There exist real numbers c, c′ such that

p = c∂̄g(p)+ c′∂̄h(p).

Remark 8.2.4 For a mixed hypersurface V = f −1(0), a ∈ V can be a non-singular
point as a real algebraic variety, even when a is a mixed singular point. For example,
if f = |z1|2 + · · · + |zn|2 − 1, V is a (2n − 1)-dimensional sphere and is smooth
everywhere, but it is also mixed singular everywhere. “Mixed-non-singular at a”
implies V is smooth and of real codimension 2 at a.

8.2.3 A Tubular Milnor Fibration of a Real Analytic Mapping

Consider a real analytic mapping f : U → C where U is an open neighborhood of
the origin of Cn and assume that f satisfies the following conditions.
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(SN) (Smoothness of the nearby fibers) There exists an open neighborhood W of
0 ∈ C

n and 0 is the unique critical value of the restriction f |W .
(T) (Transversality) There exist positive numbers r0 and δ � r0 such thatB2n

r0 ⊂ W
and for any η ∈ D

∗
δ , f

−1(η) and the sphere S2n−1r0 intersect transversely.

Here Dδ := {η ∈ C | |η| ≤ δ} and D
∗
δ := {η ∈ Dδ | η �= 0}. Then by the Ehres-

mann fibration theorem (see [60]), we have

Proposition 8.2.5 f : E(r0, δ)∗ → D
∗
δ is a locally trivial fibration where

E(r0, δ)
∗ := {z ∈ B

2n
r0 | 0 �= | f (z)| ≤ δ}.

Furthermore we consider the stronger transversality condition:

(ST) (Stronger transversality) For any positive r ≤ r0, there exists a positive number
δ(r) such that for any non-zero η ∈ D

∗
δ(r) and any ρ, r ≤ ρ ≤ r0, f −1(η) and

the sphere S2n−1ρ intersects transversely.

Proposition 8.2.6 Assume that f satisfy the conditions (SN) and (ST). The above
fibration f : E(r0, δ)∗ → D

∗
δ does not depend on the choice of r0 and δ � r0.

The above fibration is called the tubular Milnor fibration of f .

8.2.4 Stratification and Thom’s a f -Regularity

Stratification

In this section,we recall basic definitions about stratification. The stratification theory
is introduced by Whitney [59] and Thom [55]. Let X be a real smooth manifold of
dimension n and let V be a closed subset.

Let S = {Mα;α ∈ A} be a family of mutually disjoint submanifolds of X where
Mα is a subset of V . The partition S is called a smooth stratification of V if the
following conditions are satisfied:

(0) (Partition of V ) V is the union of Mα for α ∈ A.
(i) (Locally closedness) Each element ofS is a locally closed smooth submanifold

of X .
(ii) (Locally finiteness) For each point x ∈ V , there exists an open neighborhood

U of x in X such that {α ∈ A;U ∩ Mα �= ∅} is finite.
(iii) (Frontier condition) Mα ∩ Mβ �= ∅ implies Mα \ Mα ⊃ Mβ . Here M is the

closure of M in X .
An element Mα in S is called a stratum. S is called Whitney a-regular if the

following condition is satisfied for any Mα, Mβ with Mβ ⊂ Mα \ Mα . Take a point
p∞ ∈ Mβ and a sequence pν ∈ Mα which converges to p∞. Taking a subsequence
if necessary, we assume that limν→∞ Tpν

Mα = τ in a suitable Grassmannian variety.
Then τ ⊃ Tp∞Mβ . S satisfies b-regularity if it satisfies the following. Take another
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sequence qν on Mβ which converges to p∞ and assume that the direction pνqν

converges to �. Then � ∈ τ . It is known that b-regularity implies a-regularity. S is
called Whitney regular if it satisfied b-regularity. For further details, see Mather [23]
and Trotman’s chapter in this Handbook [56].

Thom’s a f -Regularity

Consider a real analytic mapping f : U → C as above. We say that f satisfies a f -
regularity of Thom if there exists a positive number r0 such that in B

2n
r0 \ f −1(0),

f has no critical point and there exists a stratification S of f −1(0) ∩ B
2n
r0 with finite

strata satisfying the following condition. For any sequence pν ∈ B
2n
r0 \ f −1(0) such

that Tpν
f −1( f (pν))→ τ in the real Grassmannian space and pν → p∞ with p∞ ∈

M ∈ S. Then τ ⊃ Tp∞M . Then the following is well-known.

Lemma 8.2.7 (Proposition 1, [38]) Suppose that f satisfies a f -regularity for some
stratification S of f −1(0). Assume that there exists r0 > 0 such that the sphere
S
2n−1
r , r ≤ r0 and each stratum M ∈ S of a positive dimension intersect transversely.

Then the condition (ST) is satisfied.

Proof Let V (p) := f −1( f (p)). Assume that (ST) does not hold for some r1, 0 <

r1 < r0. Then there exists a sequence pν → p∞ ∈ M with ‖p∞‖ ≥ r1 such that
the sphere S2n−1‖pν‖ and V (pν) is not transversal i.e., Tpν

V (pν) ⊂ Tpν
S2n−1‖pν‖ . Taking

a subsequence if necessary, we assume that limν→∞ Tpν
V (pν) = τ . By continuity,

τ ⊂ Tp∞ S
2n−1
‖p∞‖ . On the other hand, Tp∞M ⊂ τ by the a f -regularity assumption. This

is a contradiction as Tp∞M �⊂ Tp∞ S
2n−1
‖p∞‖ by the transversality assumption of M and

S
2n−1
‖p∞‖ at p∞. �

8.3 Milnor Fibrations for Mixed Functions

8.3.1 Mixed Functions and Newton Boundary

For a given germ of a mixed analytic function f (z, z̄) =∑ν,μ cν,μzν z̄μ, we will
define the Newton boundary ( f ), following the definition of the Newton boundary
of a complex analytic functions.

First we define the Newton polyhedron +( f ) of f as

+( f ) = convex hull of

⎧
⎨

⎩

⋃

cν,μ �=0
(ν + μ+ R

n
+)

⎫
⎬

⎭
.

+( f ) has a canonical polyhedron structure. The Newton boundary ( f ) is defined
by the union of compact faces of +( f, z). Let Zn

≥0 = {t (p1, . . . , pn) ∈ Z
n | pi ∈
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Z≥0} where Z≥0 is the set of non-negative integers. A vector P defines a linear
function �P on +( f ) by

+( f ) � η = (η1, . . . , ηn) �→ �P(η) := η1 p1 + · · · + ηn pn.

Avector P ∈ Z
n
≥0 is considered as aweight vector by degP zi = degP z̄i = pi . To

distinguish from the polar weight which is defined later, we call this weight the radial
weight and we denote it as rdegP zν z̄μ =∑n

i=1 pi (νi + μi ). Put d(P) = d(P, f ) as
the minimal value of �P : +( f )→ R≥0 and put �(P) = {η ∈ +( f ) | �P(η) =
d(P)}. If P is strictly positive (i.e. pi > 0, ∀i), �(P) is a compact face of +( f ),
i.e. �(P) ⊂ ( f ). For a given face � ⊂ +( f ) or a given weight vector P =
t (p1, . . . , pn) ∈ Z

n
≥0, we associate the face functions f� and fP = f�(P)respectively

by

f�(z, z̄) =
∑

ν+μ∈�

cν,μzν z̄μ

fP(z, z̄) =
∑

�P (μ+ν)=d(P)

cν,μzν z̄μ =
∑

ν+μ∈�(P)

cν,μzν z̄μ.

f� and fP are called the face function of the face� or the face function of the weight
P respectively.

8.3.2 Non-degeneracy of Mixed Functions

In the study of a complex analytic hypersurface singularity, the concept of non-
degeneracy of Newton boundary plays an important role. We introduce the same
concept for a mixed hypersurface. Consider a mixed function germ f (z, z̄) =∑

ν,μ aν,μzν z̄μ and its Newton boundary. Take a face � ∈ ( f ). We say that f
is non-degenerate on � if 0 is not a critical value of the mapping f� : C∗n → C.
If the inverse image f −1(0) is empty, it is considered to be non-degenerate. f is
strongly non-degenerate on � if f� : C∗n → C has no critical point. We assume
also f� is surjective for dim � ≥ 1. Here C∗n is the maximal torus:

C
∗n := {z = (z1, . . . , zn) ∈ C

n | z j �= 0, j = 1, . . . , n}.

We say that f is non-degenerate (respectively strongly non-degenerate) if f is
non-degenerate (resp. strongly non-degenerate) on every face � ∈ ( f ).
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8.3.3 Mixed Functions of one Variable (n = 1)

To get a better understanding of the complexity of the strong non-degeneracy, we
consider first mixed polynomials of one variable. The Newton boundary is a single
point d which is the minimal radial degree of the monomials in f . Let fd be the face
function. In general, it is a finite linear sum of monomials of type za z̄d−a . Consider
the simplest case: fd = za z̄b, a + b = d. It is easy to see that

Lemma 8.3.1 Assume that fd(z) = za z̄b. Then fd : C∗ → C
∗ is |a − b|-fold cov-

ering map for a �= b. If a = b, the image of fd is the positive half line of the real
axis.

Recall C∗ := C \ {0}. For the case where fd is a linear sum of several mixed
monomials of the same radial degree, the situation is more complicated. A loop
σ : [0, 2π ] → C

∗ is called a positive monotone loop or a negative monotone loop if
the argument of σ(θ) is a monotone increasing or monotone decreasing respectively.
If σ is a monotone loop of rotation number m, there are exactly m solutions 0 ≤
θ1 < · · · < θm < 2π of the equation arg σ(θ) = τ for any τ, 0 ≤ τ ≤ 2π .

First let us consider the behavior of a linear form. A linear form az + bz̄ is called
positive (respectively critical or negative) if |a| > |b| (resp. |a| = |b| or |a| < |b|).
Then the basic property of linear forms is

Lemma 8.3.2 Consider a linear form fd = z + λz̄ for simplicity.

1. Assume that |λ| = 1 and put λ = e2iθ . Then the image of fd : C∗ → C is the line
which is the union of the two half lines Lθ := {η ∈ C

∗| arg(η) = θ, or θ + π}
and {0}.

2. Assume that |λ| < 1. Then the restriction of fd to the unit disk, θ �→ fd(eiθ ) is
a monotone increasing loop and fd : C∗ → C

∗ is a diffeomorphism.
3. Assume |λ| > 1. Then the restriction of fd to the unit disk |z| = 1 is a monotone

decreasing loop and fd : C∗ → C
∗ is a diffeomorphism.

Proof (1) If λ = 1, the assertion is obvious. For λ = e2iθ , use the change of the
variable w = ze−iθ and the equality z + e2iη z̄ = eiθ (w + w).
For the assertions (2) and (3), assume first that λ is a positive real number. Put z = eiθ

and fd(z) = reiξ . Then we have

reiξ =
{
eiθ (1+ λe−2iθ ), 0 < λ < 1

λe−iθ (1+ λ−1e2iθ ), 1 < λ.

Thus we have

ξ =
{

θ +�(−i log(1+ λe−2iθ )), 0 < λ < 1

−θ +�(−i log((1+ λ−1e2iθ )), λ > 1.

For 0 < λ < 1, we have
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dξ

dθ
= 1+� −2λe

−2iθ

1+ λe−2iθ

= 1+ −2λ2 − 2λ cos(2θ)

1+ λ2 + 2λ cos(2θ)
= 1− λ2

1+ λ2 + 2λ cos(2θ)
> 0.

For λ > 1,

dξ

dθ
= −1+� 2λ−1e2iθ

1+ λ−1e2iθ

= −1+ 2λ−2 + 2λ−1 cos(2θ)

1+ λ−2 + 2λ−1 cos(2θ)
= −1+ λ−2

1+ λ−2 + 2λ−1 cos(2θ)
< 0.

Thus the image of the circle |z| = 1 is a monotone increasing loop for 0 < λ < 1
and a monotone decreasing loop for λ > 1. As fd(r z) = rd fd(z) by homogeneity,
the image fd(C∗) is equal to C∗ and fd |C∗ has no critical points.

If λ is not a positive real number, put λ = re2iτ , r > 0 and change the coordinate
by w = ze−iτ and put w = eiξ , then ξ = θ − τ where z = eiθ . Use the equality
z + λz̄ = eiτ (w + rw̄), to get

arg (z + λz̄) = τ +�(−i log(w + rw̄))

d arg (z + λz̄)

dθ
= d arg (w + λw̄)

dξ

=

⎧
⎪⎨

⎪⎩

1+� −2re
−2iξ

1+ re−2iξ
, r < 1

−1+� 2r−1e2iξ

1+ r−1e2iξ
, r > 1.

(8.2)

�

Now we consider the general case. Assume that fd(z) is factored as

fd(z) = cz p z̄q
�∏

i=1
(z + λi z̄), c �= 0, d = p + q + �. (8.3)

By Lemma 8.3.2, we have

Lemma 8.3.3 If fd satisfies (a) p − q > 0and |λi | < 1, ∀i,or (b) p − q < 0, |λi | >
1,∀i , then fd defines a |d ′|-fold covering map where d ′ = p − q + � or d ′ =
p − q − � respectively.

Proof Assume for example that (a) p − q > 0 and |λi | < 1,∀i . Put z = eiθ , λ j =
r j eiτ j and wj = ze−iτ j = eiθ j . Then θ j = θ − τ j . Then by Lemma 3 and (8.2),
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Fig. 8.2 Left:σ(1, 2/3), right:σ(2/3, 1)

d arg( fd(z))

dθ
= (p − q)+

�∑

j=1

d arg (wj + λ j w̄ j )

dθ j

(p − q)+
�∑

j=1

(

1+� −2r j e
−2iθ j

1+ r j e−2iθ j

)

≥ p − q > 0.

Thus the image of the unit circle is a monotone increasing loop and the rotation
number of fd is d ′ and the assertion follows. The case (b) is treated similarly. �

For fd to be strongly non-degenerate at the origin, it is necessary that fd(C∗) = C
∗

and fd : C∗ → C
∗ is a covering map.

Corollary 8.3.4 For n = 1, if the face function fd satisfies one of the conditions in
Lemma 8.3.3, f (z) is strongly non-degenerate.

Example 8.3.5 Consider the polynomial fd = z2(az + bz̄) with a, b ∈ R+. Con-
sider the loop σ(a, b) := fd |S1 . Note that σ(1, 2/3) is monotone increasing and the
rotation number of σ(1, 2/3) is 3. On the other hand, σ(2/3, 1) has the rotation
number 1 and it is not monotone. Note that in the latter case, there exist 4 directions
0 < θ1 < θ2 < θ3 < θ4 ≤ 2π so that the half line {reiθ j | r > 0} is tangent to the
graph, say at r j eiθ j for j = 1, . . . , 4. See Figure 8.2. This point r j eiθ j corresponds
to a critical point of fd : C∗ → C

∗.

Remark 8.3.6 1. If the factorization (8.3) does not have any critical factors
∀λi , |λi | �= 1, the rotation number of fd/| fd | : S1 → S

1 is given as p − q + �+ − �−
where �± is the number of the positive factors (resp. the negative factors) in the prod-
uct [35].

2. Consider a mixed function f (z) = fd(z)+ R(z)where the monomials of R(z)
have lower radial degrees. Consider a root α of f (z) = 0. α is called simple if the
Jacobian f at z = α is±1 for a sufficiently small ε.α is called a positive (respectively
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a negative ) if the rotation number is 1 (resp. -1). Assume that f has only simple
zeros. Take a big diskDS so thatDS contains all zeros of f (z) = 0. Then the rotation
number of f/| f | : S1S → S

1 is given as p − q + �+ − �− and it is equal to ρ+ − ρ−
where ρ± is the number of positive and negative zeros respectively. (Theorem 17,
[35]).

3. In particular, if f (z) = zdp+r z̄r + (lower terms) and assume that f = 0 has only
simple zeros, the number of zeros satisfies the inequality ρ+ + ρ− ≥ dp = ρ+ − ρ−.

8.3.4 Mixed Weighted Homogeneous Polynomials

Radial Weighted Homogeneous Polynomials and Polar Weighted
Homogeneous Polynomials

A mixed polynomial f =∑ν,μ aν,μzν z̄μ is called a radial weighted homogeneous
polynomial of degree dr with respect to an integral weight vector Q = t (q1, . . . , qn)
if it satisfies the condition

aν,μ �= 0 =⇒
n∑

j=1
q j (ν j + μ j ) = dr . (8.4)

dr is called the radial degree and we denote it as dr = rdegQ f . We usually
assume that qi ≥ 0 and dr > 0. R+-action on Cn is associated by (ρ, z) �→ ρ ◦ z :=
(ρq1 z1, . . . , ρqn zn) and f satisfies the equality:

f (ρ ◦ z, ρ ◦ z) = ρdr f (z, z̄).

Taking the differential in ρ and putting ρ = 1, the Euler equality for the radial
weight Q takes the form:

dr f (z, z̄) =
n∑

i=1

{

qi zi
∂ f

∂zi
(z, z̄)+ qi z̄i

∂ f

∂ z̄i
(z, z̄)

}

. (8.5)

Proposition 8.3.7 Foragivengermof amixed function f (z, z̄)anda strictly positive
weight vector P = (p1, . . . , pn), the face function fP(z, z̄) is a radial weighted
homogeneous polynomial with the weight vector P and the radial degree d(P, f ).

We say that f (z, z̄) =∑ν,μ aν,μzν z̄μ is a polar weighted homogeneous polyno-
mial of degree dp with respect to an integral weight vector P = (p1, . . . , pn) if it
satisfies the condition

aν,μ �= 0 =⇒
n∑

j=1
p j (ν j − μ j ) = dp. (8.6)
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dp is called the polar degree of f and we denote it by dp = pdegP f . Here pi can
be negative but we assume that dp �= 0.

Assume that P is an integer vector and f is polar weighted with respect to P .
There is an associated S

1 action on C
n which satisfies the following equality.

eiθ ◦ z := (z1e
ip1θ , . . . , zne

ipnθ ), eiθ ∈ S
1,

f (eiθ ◦ z) = eidpθ f (z).

Taking the differential in θ and substituting θ = 0, we get the polar Euler equality:

dp f (z, z̄) =
n∑

i=1

{

pi zi
∂ f

∂zi
(z, z̄)− pi z̄i

∂ f

∂ z̄i
(z, z̄)

}

. (8.7)

Note that in both cases, we can take the weight vector to be a primitive integer
vector.The normalized radialweight vector Q̂ is defined by Q̂ = (q1/dr , . . . , qn/dr ).
Similarly the normalized polar weight vector is defined by P̂ = (p1/dp, . . . , pn/dp).

If f is polarweighted homogeneouswith respect to aweight vector P and f is also
radial weighted homogeneous with respect to a primitive vector Q, we say that f is a
mixed weighted homogeneous polynomial. In [30, 31], we called such a polynomial
a polar weighted homogeneous polynomial. We will change the terminology as a
mixed weighted homogeneous polynomial to distinguish those polynomials which
are only polar weighted and the other mixed polynomials which are also radial
weighted homogeneous.

As an example, consider f1 := z31 z̄
2
1 + z21 z̄1 + z22 z̄2 and f2 = z31 z̄

2
1 + z22 z̄2. Both

polynomials are polar weighted homogeneous with respect to P = t (1, 1). f2 is
radial weighted homogeneous of degree 15 with the weight vector Q = (3, 5) but
f1 can not be radial weighted homogeneous.
For given primitive polar and radial weight vectors P = t (p1, . . . , pn), Q =

t (q1, . . . , qn), we associate R+ × S
1-action in C

n as follows.

ρeiθ ◦ (z1, . . . , zn) = (ρq1eip1θ z1, . . . , ρ
qn eipnθ zn), ρeiθ ∈ R+ × S

1.

Observe that f is a mixed weighted homogeneous polynomial of polar degree dp =
pdeg f and radial degree dr = rdeg f with the respective weight vector P, Q if and
only if it satisfies the following equality.

f (ρeiθ ◦ z, ρeiθ ◦ z) = ρdr eidpθ f (z, z̄). (8.8)

The weight vector is not unique unless we assume that P is a primitive integral
vector i.e. gcd(p1, . . . , pn) = 1. To avoid this ambiguity, it is convenient to consider
the normalized weight vector.
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Strongly Mixed Weighted Homogeneous Polynomials

Amixedweightedhomogeneouspolynomialh(z, z̄) is called stronglymixedweighted
homogeneous if the polar weight vector is equal to the radial weight vector i.e.
P = Q. In this case, the associated R+ × S

1-action is in fact C∗-action:

t ◦ z = (z1t
p1 , . . . , znt

pn ), t ∈ C
∗.

If further P = t (1, . . . , 1), f is called a strongly mixed homogeneous polynomial.
In this case, the associated C

∗-action is simply the canonical action (t, z) �→ tz
and the above equality (8.8) says that f (z, z̄) = 0 defines a well-defined projective
hypersurface in Pn−1.

The Global Milnor fibration of a Mixed Weighted Homogeneous
Polynomial

Mixed weighted homogeneous polynomials play a similar fundamental role for the
description of the Milnor fibration of a general mixed function.

Proposition 8.3.8 Let f (z, z̄) be a mixed weighted homogeneous polynomial with a
polarweight vector P = t (p1, . . . , pn)anda radialweight vector Q = t (q1, . . . , qn).
Let dp and dr be the polar and radial degrees respectively.

1. f : Cn → C has a unique critical value 0 and the restricted mappings

f : Cn \ f −1(0)→ C
∗

f : C∗n \ f −1(0)→ C
∗

are locally trivial fibrations. Let F and F∗ be the fibers. Themonodromymapping
h : F → F or h : F∗ → F∗ is given by

h(z) = e2π i/dp ◦ z = (e2πp1i/dp z1, . . . , e
2πpni/dp zn).

2. Assume that a radial weight vector Q is strictly positive and V has an isolated
singularity at the origin.

a. For any r > 0,

ϕ : S2n−1r \ Kr → S
1, ϕ(z) = f (z)/| f (z)|

is a locally trivial fibration (called a spherical Milnor fibration) where Kr =
f −1(0) ∩ S

2n−1
r and the isomorphism class does not depend on the choice of

the radius r .
b. The global Milnor fibration is homotopically equivalent to the restriction

over S1δ
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f : f −1(S1δ)→ S
1
δ

and its isomorphism class does not depend on δ > 0 and it is isomorphic to
the spherical Milnor fibration. Here S1δ := {w ∈ C | |w| = δ}.

We call F and F∗ the Milnor fiber and the toric Milnor fiber respectively. For the
proof, see Proposition 3 and Proposition 4, [30].

Corollary 8.3.9 Let f (z, z̄) be a mixed weighted homogeneous polynomial. Then
f : C∗n → C has no critical point if and only if f −1(0) ⊂ C

∗n is mixed non-singular.

Proof By the above Proposition, 0 is the only possible critical value of
f : C∗n → C. �

8.3.5 Milnor Fibrations for Strongly Non-degenerate Mixed
Functions

We study Milnor fibrations for a general mixed function f (z, z̄), which is not nec-
essarily mixed weighted homogeneous.

Non-vanishing Coordinate Subspaces and Vanishing Coordinate
Subspaces

For a subset J ⊂ {1, 2, . . . , n},CJ is the subspace {z ∈ C
n | z j = 0, j /∈ J } and the

restriction is denoted as f J := f |CJ . There are two classes of subspaces which are
characterized as follows.

Inv( f ) = {I ⊂ {1, . . . , n} | f I �≡ 0}
Iv( f ) = {I ⊂ {1, . . . , I } | f I ≡ 0}.

The subspace CI with I ∈ Inv( f ) (respectively with I ∈ Iv( f )) is called a non-
vanishing coordinate subspace of f (resp. a vanishing coordinate subspace). Define
subset V � of V as

V � :=
⋃

I∈Inv( f )

V ∩ C
∗I .

Recall that f is convenient if and only if Inv( f ) = {∀I ⊂ {1, . . . , n} | I �= ∅}. In
particular, if f is convenient, V � = V \ {0}.
Lemma 8.3.10 (Theorem 19, [31]) Suppose that f (z, z̄) is non-degenerate. Then
there exists a positive number r0 such that the following property holds.

1. (Smoothness) V � ∩ B
2n
r0 is non-singular. In particular, if f is convenient, V \ {0}

is non-singular and 0 is an isolated singularity of V = f −1(0).
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2. (Transversality) The family of spheres S2n−1r , 0 < r ≤ r0 intersect transversely
with V �.

This assertion is a generalization of the assertion for holomorphic functions
(Corollary (2.3), [29]).

Proof (1) We denote the set of mixed singular points of V by �(V ). Assuming
the assertion does not hold, we can find a real analytic curve z(t) ∈ C

n , 0 ≤ t ≤ 1
by the Curve Selection Lemma [14, 24] such that z(t) ∈ �(V ) ∩ V � for t > 0 and
z(0) = 0. By Proposition 8.2.2, there exists an analytic curve λ(t) ∈ S

1 ⊂ C

∂ f (z(t), z̄(t)) = λ(t)∂̄ f (z(t), z̄(t)). (8.9)

Put I = { j | z j (t) �≡ 0}. As z(t) ∈ V � and I ∈ Inv( f ), f I �≡ 0. Note that f I is
also non-degenerate. Assume I = {1, . . . ,m} for simplicity and consider the Taylor
expansion of f I (z(t), z̄(t)):

zi (t) = bi t
ai + (higher terms), bi �= 0, i = 1, . . . ,m

λ(t) = λ0 + λ1t + (higher terms), λ0 ∈ S
1 ⊂ C.

Put A = t (a1, . . . , am) and let f IA be the face functionof f
I (z, z̄),d = d(A, f I ) >

0 and b = (b1, . . . , bm) ∈ C
∗m .

∂ f

∂z j
(z(t), z̄(t)) = ∂ f IA

∂z j
(b, b̄)td−a j + (higher terms), j = 1, . . . ,m

∂ f

∂ z̄ j
(z(t), z̄(t)) = ∂ f IA

∂ z̄ j
(b, b̄)td−a j + (higher terms), j = 1, . . . ,m,

ordt
∂ f I

∂z j
(z(t), z̄(t)) = ordt

∂ f I

∂ z̄ j
(z(t), z̄(t)), j = 1, . . . ,m by (8.9).

Combining this and (8.9), we get

∂ f IA(b) = λ0∂̄ f IA(b).

On the other hand, as f I (z(t)) ≡ 0, we have the equality f IA(0). Then 0 becomes a
critical value of f IA : C∗I → Cbut this is a contradiction to the strongnon-degeneracy
assumption as b ∈ C

∗I .
The assertion (2) follows from the same argument as the proof of Corollary 2.9,

[24]. We give another proof using non-degeneracy. Assume that the transversality
assertion does not hold. Using the Curve Selection Lemma and Lemma 8.2.3, there
exist real an analytic curve z(t) ∈ C

n and an analytic scalar function c(t), 0 ≤ t ≤ 1
such that z(t) ∈ V � for t > 0, z(t) �= 0, z(0) = 0 and z(t) satisfies the equality:

z(t) = c̄(t)∂ f (z(t), z̄(t))+ c(t)∂̄ f (z(t), z̄(t)). (8.10)
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Put I = { j | z j (t) �≡ 0}. As z(t) ∈ V �, I ∈ Inv( f ) and f I �≡ 0. Assume I =
{1, . . . ,m} and consider the Taylor expansions of f I (z(t)), z(t) and c(t) as follows:

zi (t) = bi t
ai + (higher terms), bi �= 0, i = 1, . . . ,m

c(t) = c0t
e + (higher terms).

Put A = (a1, . . . , am), d = d(A, f I ) > 0, b = (b1, . . . , bm) ∈ C
∗m and amin :=

min{ai | i ∈ I }, Imin := {i | ai = amin}. From (8.10), 2amin = e + d and

c̄0 f̄ A,z j (b)+ c0 f A,z̄ j (b) =
{
0, j /∈ Imin

b j , j ∈ Imin.
(8.11)

As f (z(t), z̄(t)) ≡ 0, f IA(b) = 0 and multiplying b̄i ai to (8.11) and taking the
summation for i = 1, . . . ,m, we get

0 <

m∑

i=1
aibi b̄i =

m∑

i=1
(c̄0 f̄ A,z j (b)+ c0 f A,z̄ j (b))b̄i ai

=
m∑

i=1
c̄0ai b̄i f̄ A,z j (b)+ c0

m∑

i=1
ai b̄i f A,z̄ j (b)

=
(

c0

m∑

i=1
aibi f A,z j (b)

)

+ c0

m∑

i=1
ai b̄i f A,z̄ j (b)

�=
(

−c0
m∑

i=1
ai b̄i f A,z̄ j (b)

)

+ c0

m∑

i=1
ai b̄i f A,z̄ j (b)

=2i�(c0

m∑

i=1
ai b̄i f A,z̄ j (b)) ∈ iR.

where the equality
�= follows from the radial Euler equality of f A(b) and the

equality f A(b) = 0. This is an obvious contradiction, as the first term is a positive
real number. �

8.3.6 The Milnor Fibration for Convenient Mixed Functions

We first show the existence of the Milnor fibration assuming f is convenient and
strongly non-degenerate.

Lemma 8.3.11 Assume that f (z, z̄) is a strongly non-degeneratemixed function. Let
r0 be a small positive number as in Theorem 8.3.10. There exists a positive number
δ0 satisfying the following.
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1. Nearby fiber Vη := f −1(η) is non-singular in the ball B2n
r0 for any η �= 0, |η| ≤

δ0.
2. Assume further that f is convenient. Taking r0 sufficiently small if necessary, for

any positive number r1, r1 ≤ r0, there is a positive number δ(r1) ≤ δ0 and for any
non-zero complex number η, |η| ≤ δ(r1), and r, r1 ≤ r ≤ r0, the intersection
Vη ∩ S

2n−1
r is transversal.

Proof Wefirst show the assertion (1). For this assertion, the convenience is not neces-
sary. Suppose the assertion does not hold andwe use the Curve Selection Lemma [14,
24] to find an analytic curve z(t), 0 ≤ t ≤ 1 so that z(0) = 0 and f (z(t), z̄(t)) �= 0
for t �= 0 and z(t) is a critical point of f : Cn → C. By Proposition 8.2.2, there exists
a real scalar function λ(t) ∈ S

1 satisfying the following.

∂ f (z(t), z̄(t)) = λ(t)∂̄ f (z(t), z̄(t)). (8.12)

The argument is similar as that of the proof ofLemma8.3.10. Put I := { j | z j (t) �≡
0}. For simplicity, suppose I = {1, . . . ,m} and consider f I . As f (z(t), z̄(t)) =
f I (z(t), z̄(t)) �≡ 0, we have f I �= 0. We expand z(t) and λ(t) in Taylor expansions.

zi (t) = bi t
ai + (higher terms), bi �= 0, i = 1, . . . ,m

λ(t) = λ0 + λ1t + (higher terms), λ0 ∈ S
1 ⊂ C.

Put A = t (a1, . . . , am) and b = (b1, . . . , bm).

∂ f

∂z j
(z(t), z̄(t)) = ∂ f IA

∂z j
(b)td−a j + (higher terms),

∂ f

∂ z̄ j
(z(t), z̄(t)) = ∂ f IA

∂ z̄ j
(b)td−a j + (higher terms), d = d(A, f I ).

ordt
∂ f I

∂z j
(z(t), z̄(t)) = ordt

∂ f I

∂ z̄ j
(z(t), z̄(t)).

Thus by (8.12),
∂ f IA(b) = λ0∂̄ f IA(b)

which implies b is a critical point of f IA : C∗I → C. This is a contradiction to the
strong non-degeneracy assumption.

(2)Take r0 > 0 so thatS2n−1r , 0 < r ≤ r0 intersect transverselywithV � = V \ {0}.
Now fix a positive r1 ≤ r0. As V ∩ B

2n
r1,r0 is compact, we can take δ(r1) so that

f −1(η) and S
2n−1
r intersect transversely for any r1 ≤ r ≤ r0 and |η| ≤ δ(r1). Here

B
2n
r1,r0 := {z | r1 ≤ ‖z‖ ≤ r0}. �

Remark 8.3.12 Without assuming the convenience, V can have a non-isolated sin-
gularity andwe can not use the compactness argument as above to prove the assertion
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(2). Therefore for the proof of the existence of a Milnor fibration for non-convenient
mixed functions, we need “local tameness” which we will introduce in Sect. 8.3.8.

Corollary 8.3.13 (Existence of Tubular Milnor fibration) Suppose f (z, z̄) is a
strongly non-degenerate and convenient mixed function. Take r0 > 0 and δ(r0)
as Lemma 8.3.11. Put E(r0, δ0)∗ = {z ∈ C

n | ‖z‖ ≤ r0, 0 < | f (z, z̄)| ≤ δ0} and
D
∗
δ0
:= {η ∈ C | 0 < |η| ≤ δ0}. Then

f : E(r0, δ0)
∗ → D

∗
δ0

(8.13)

is a locally trivial fibration and the isomorphism class does not depend on the choice
of r0 and δ0.

8.3.7 The Spherical Milnor Fibration

We assume always that f (z, z̄) is a strongly non-degenerate mixed function. We
consider the spherical Milnor fibration problem. When does the mapping f/| f | :
S
2n−1
r \ Kr → S

1 give a fibration? We consider two vector fields on Cn \ V .

v1(z, z̄) = ∂ log f (z, z̄)+ ∂̄ log f (z, z̄) (8.14)

v2(z, z̄) = i
(
∂ log f (z, z̄)− ∂̄ log f (z, z̄)

)
(8.15)

Hereafter we denote vi (z, z̄) simply by vi (z).Wewill show that v1, v2 are gradient
vectors of � log f (z) = log | f (z)| and � log f (z) = arg f (z) by the following cal-
culation. We denote the Hermitian inner product in Cn by (v, w). Namely (v, w) =∑n

j=1 v j w̄ j for v = (v1, . . . , vn), w = (w1, . . . ,wn) ∈ C
n . Note that �(v, w) is the

Euclidean inner product in R2n under the canonical identification

v = (v1, . . . , vn) ∈ C
n ⇐⇒ (v11, v12, . . . , vn1, vn2) ∈ R

2n

where v j = v j1 + iv j2.

Proposition 8.3.14 ((4), (5), Sect. 5.2 in [31])For agiven analytic curve z(t), z(0) =
w with dz

dt (0) = v, the following equality holds.

d log | f (z(t))|
dt

∣
∣
∣
∣
t=0
= d� log f (z(t))

dt

∣
∣
∣
∣
t=0
= �(v, v1(w)) (8.16)

d arg f (z(t))
dt

∣
∣
∣
∣
t=0
= � log f (z(t))

dt

∣
∣
∣
∣
t=0
= �(v, v2(w)), (8.17)

d log f (z(t))
dt

∣
∣
∣
∣
t=0
= �(v, v1(w))+ i�(v, v2(w)). (8.18)
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Proof We use the equality log f (z) = log | f (z)| + i arg f (z). Let z(t) be as above.

d log f (z(t))
dt

∣
∣
∣
∣
t=0
= d�(log f )(z(t))

dt

∣
∣
∣
∣
t=0
+ i

d� log f (z(t))
dt

∣
∣
∣
∣
t=0

d�(log f )(z(t))
dt

∣
∣
∣
∣
t=0
= � ((v, ∂ log f (w))+ (v̄, ∂̄ log (w))

)

= �(v, v1(w))

d�(arg f )(z(t))
dt

∣
∣
∣
∣
t=0
= �

(
(v,−i∂ log f (w))+ (v̄, i ∂̄ log f (w))

)

= �(v, v2(w)).

�

Corollary 8.3.15 Take a point p ∈ f −1(η) ∩ B
2n
r0 with 0 �= |η| ≤ δ0 as in Corollary

8.3.13. Then Tp f −1(η) = {w ∈ C
n | �(w, vi (p)) = 0, i = 1, 2}.

To prove the existence of a spherical Milnor fibration, we use the next lemmas.

Lemma 8.3.16 (Lemma 30, [31]) Take a point z ∈ S
2n−1
ε \ Kε. z is a critical point

of ϕ = f/| f | if and only if v2(z) and z are linearly dependent over R.

Lemma 8.3.17 (Lemma 31, [31]) Assume that f (z, z̄) is strongly non-degenerate.
There exists a positive number ε1 so that for any z ∈ B

2n
ε1
\ f −1(0), v2(z) and z are

linearly independent over R.

Assume that f is a convenient, strongly non-degenerate mixed function. Using
Lemma 8.3.16, Corollary 8.3.15, Lemmas 8.3.17 and 8.3.11, we have

Theorem 8.3.18 For ε small enough, ϕ : Sε \ Kε → S
1 is a locally trivial fibration.

Lemma 8.3.11 is used to construct a horizontal vector field V(z) of ϕ which is
controlled near Kε so that it can be integrated over any finite time interval. Here
V(z) is horizontal if dϕz(V(z)) = ∂

∂θ
∈ Tϕ(z)S

1 and controlled if V is tangent to
| f (z)| = const . See Sect. 8.3.10 below for further detail.

8.3.8 Milnor Fibrations for Non-convenient Mixed Functions

In this section, we study non-degenerate mixed functions without assuming the con-
venience. This means that the singularity might be non-isolated. For a non-negative
weight vector P = t (p1, . . . , pn), put I (P) := {i | pi = 0}. Note that d(P) = 0 if
and only +( f ) ∩ R

I (P) �= ∅. Recall that d(P) is the minimum value of the linear
function �P restricted ( f ) (see Sect. 8.1.4). Therefore

d(P) > 0 ⇐⇒ f I (P) ≡ 0 ⇐⇒ I (P) ∈ Iv( f ).
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To study non-convenient mixed functions, we consider a slightly bigger boundary
nc( f ) of +( f ). Namely nc( f ) is the union of ( f ) and faces � ⊂ +( f ) which
is not included in any proper coordinate subspace.

Fix I ∈ Iv( f ). Consider the distance function on C
I defined by ρI (z) :=√∑

i∈I |zi |2. We say that f is locally tame along the vanishing coordinate sub-
space CI if there exists rI > 0 so that for any aI = (αi )i∈I ∈ C

∗I with ρI (aI ) ≤ rI
and for any P with I (P) = I , fP,aI := fP |zI=aI is strongly non-degenerate as a func-
tion of {z j | j ∈ I c}. f is called locally tame if f is locally tame for any vanishing
coordinate subspace C∗I [38].

Remark 8.3.19 The locally tame strong non-degeneracy is weaker than the super
strong non-degeneracy defined in [31] (Definition 49) (i.e., rI = ∞) but it plays the
same role for the existence of a local Milnor fibration.

We first observe the following property.

Proposition 8.3.20 (Proposition 7, [31]) Suppose that f (z, z̄) is strongly non-
degenerate and locally tamealong vanishing coordinate subspaces. Then for I ∈ Inv,
f I is also strongly non-degenerate and locally tame along vanishing coordinate sub-
spaces.

Put rnc = min{rI | I ∈ Iv( f )}. Choose r0 so that

∀r ≤ r0 =⇒ S
2|I |−1
r � V ∗I , ∀I ∈ Inv( f ).

Here V ∗I = V ∩ C
∗I and � implies the intersection is transverse. We can gener-

alize the Hamm-Lê Lemma [15] for mixed functions as follows.

Lemma 8.3.21 (Lemma 7, [38]) Suppose that f (z, z̄) is a strongly non-degenerate
mixed function and f is locally tame along vanishing coordinate subspaces. Put
r̂0 = min{rnc, r0}. Then for any 0 < r1 ≤ r̂0, there exists a positive number δ(r1)
satisfying the following.

1. (Smoothness of the nearby fibers) The fiber Vη := f −1(η), η �= 0, |η| ≤ δ(r1)
is non-singular in the ball B2n

r̂0
, i.e. 0 is the unique critical value of f on B

2n
r̂0
∩

f −1(Dδ(r1)).
2. (Strong transversality) For any non-zero η, |η| ≤ δ(r1) and any r with r1 ≤ r ≤

r̂0, the sphere S2n−1r and the hypersurface Vη intersect transversely.

Corollary 8.3.22 (Theorem9, [38]) Assume that f (z, z̄) is strongly non-degenerate
and locally tame along vanishing coordinate subspaces. Take r̂0 > 0 as in Lemma
8.3.21. For any r1 ≤ r̂0, let δ(r1) be as in Lemma 8.3.21. Then

f : E(r1, δ(r1))
∗ → D

∗
δ(r1)

is a locally trivial fibration and the equivalence class of this fibration does not depend
on the choice of r1 and δ(r1).
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We call this fibration the tubular Milnor fibration at the origin. Take ε1 as Lemma
8.3.16 and take r1 ≤ min{r̂0, ε1}. The following is the existence assertion of the
spherical fibration for non-convenient case.

Theorem 8.3.23 Assume that f (z, z̄) is strongly non-degenerate and locally tame
along vanishing coordinate subspaces. Take r̂0 as in Lemma 8.3.21 and take r1 ≤ r̂0,
δ(r1) as in Corollary 8.3.22. Then

f/| f | : S2n−1r1 \ K → S
1, where K = f −1(0) ∩ S

2n−1
r1

is a locally trivial fibration.

We call this fibration the spherical Milnor fibration at the origin.

Proof ByLemma8.3.11, {z, ∂̄g(z), ∂̄h(z)} are linearly independent overR for zwith
0 �= | f (z)| ≤ δ(r1). On the other hand, {v1(z), v2(z)} and {∂̄g(z), ∂̄h(z)} span the
same subspace of real dimension two (Lemma 2, [38]). Therefore we can construct
on S

2n−1
r1 \ K a vector field V so that �(V(z), v2(z)) = 1 and in the neighborhood

of K , it also satisfies
�(V(z), v1(z)) = 0. This implies along the integral curves, the absolute value

of f does not change in the neighborhood of K , as long as �(V(z), v1(z)) = 0.
Thus this gives the structure of a locally trivial fibration on f/| f | : S2n−1r1 \ K → S

1,
where K = f −1(0) ∩ S

2n−1
r1 . �

The transversality (2) of Lemma 8.3.21 of the nearby fibers also follows from the
Thom’s a f -regularity (see next lemma) and Lemma 8.2.7.

Lemma 8.3.24 (Theorem 20, [38], Theorem 3.14, [11]) Suppose that f (z, z̄) is
strongly non-degenerate and tame along vanishing coordinate subspaces. Take r̂0 >

0 as in Lemma 8.3.21 and we consider in B2n
r̂0
. Consider the canonical stratification

Scan where

Scan := {V ∗I , C
∗I \ V ∗I , I ∈ Inv} ∪ {C∗I , I ∈ Iv}.

Then f satisfies Thom a f -regularity with respect to Scan.

8.3.9 Topological Stability

Consider an analytic family of mixed functions ft (z, z̄), 0 ≤ t ≤ 1 such that nc( ft )
is constant. This implies Inv( ft ), Iv( ft ) are also constant. Suppose also that ft is
locally tame and strongly non-degenerate for any t . There is a canonical stratification
of Cn × [0, 1] which is given as follows.

Scan := {V∗I , C
∗I × [0, 1] \V∗I , I ∈ Inv} ∪ {C∗I × [0, 1], I ∈ Iv} where

V∗I := {(z, t) ∈ C
∗I × [0, 1] | ft (z) = 0}, I ∈ Inv( ft ).
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Then we have

Theorem 8.3.25 (Theorem 3.14, [11]) Assume that ft (z, z̄) is an analytic family
satisfying the above condition. Then ft , 0 ≤ t ≤ 1 satisfies Whitney regularity with
respect to the canonical stratification and the topological type of (V ( ft ), 0) is con-
stant for t and their tubular Milnor fibrations are equivalent. In particular, if ft are
convenient with the constant Newton boundary ( ft ), the same assertion holds.

Example

Consider a mixed function f (z, z̄) of one variable z whose Newton boundary is {d}
and assume that the face function is given as

fd(z) = z p z̄q
�∏

j=1
(z + λ j z̄), d = p + q + �. (8.19)

Assume that |λ j | < 1,∀ j and p − q ≥ 0 and p − q + � ≥ 1. Consider the family
fd,t (z) := z p z̄q

∏�
j=1(z + tλ j z̄). Then fd,1 = fd and fd,0(z) = z p+� z̄q . By Lemma

8.3.3, ft is strongly non-degenerate for any 0 ≤ t ≤ 1 and it satisfies the above
assumption. Thus we have

Lemma 8.3.26 fd(z, z̄) is equivalent to the monomial function z p+� z̄q .

Let fk(zk) be a mixed function of one variable zk and assume that the lowest term
has degree dk and the face function is written as

fk,dk (zk) = z pkk z̄qkk

�k∏

j=1
(zk + λk j z̄k)

with pk − qk ≥ 0, pk − qk + �k > 0 and |λk j | < 1 for any j = 1, . . . , �k . Consider
a mixed function

f (z, z̄) = f1(z1, z̄1)+ · · · + fn(zn, z̄n) and

a mixed Brieskorn polynomial and a holomorphic Brieskorn polynomial:

B(z, z̄) = z p1+�1
1 z̄q11 + · · · + z pn+�n

n z̄qnn

b(z) = z p1−q1+�1
1 + · · · + z pn−qn+�n

n .

Theorem 8.3.27 (V ( f ), 0) is equivalent to (V (B), 0). It is also equivalent to
(V (b), 0).
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Proof First, by Theorem 8.3.25, f is equivalent to
∑n

k=1 fk,dk (zk, z̄k). Secondly
each fk,dk is equivalent to z

pk+�k
k z̄qkk by Lemma 8.3.26. Finally we use again Theorem

8.3.25 to get the assertion. For the equivalence with(V (b), 0), use Lemma 8.3.45
below. �

8.3.10 Equivalence of Tubular and Spherical Milnor
Fibrations

Under the assumption of the strong non-degeneracy and the local tameness, the
tubular and the sphericalMilnor fibrations are equivalent.Weuse twogradient vectors
v1(z) and v2 defined in (8.14), (8.15). First we prepare the following.

Lemma 8.3.28 (Lemma 34, [31]) Assume that f is a strongly non-degenerate
locally tame mixed function. Then there exists a positive number r0 so that for any z
with ‖z‖ ≤ r0 and f (z, z̄) �= 0, three vectors

z, v1(z, z̄), v2(z, z̄)

are either (i) linearly independent over R or (ii) they are linearly dependent over R
and the relation can be written as

z = a v1(z, z̄)+ b v2(z, z̄), a, b ∈ R. (8.20)

and the coefficient a is positive.

In Lemma 34, [31], f is assumed to be convenient but the proof is exactly the
same for a local tame mixed function. We consider two Milnor fibrations.

f :∂E(r0, δ0)
∗ → S

1
δ0
, (8.21)

where ∂E(r0, δ0)
∗ = {z ∈ B

2n
r0 | | f (z)| = δ0}

f/| f | :S2n−1r0 \ N (K )→ S
1, (8.22)

where N (K ) = {z ∈ S
2n−1
r0 | | f (z)| < δ0}.

The first fibration is the restriction of the tubular Milnor fibration to the boundary
and it is homotopically equivalent to the tubularMilnor fibration. The secondfibration
is equivalent to the spherical Milnor fibration.

Theorem 8.3.29 The above two fibrations are equivalent.

Proof Construct a vector fieldV(z) inB2n
r0 ∩ {z | | f (z, z̄)| ≥ δ} so that the following

conditions are satisfied.

(a)�(V(z), v2(z)) = 0, (b)�(V(z), v1(z)) > 0, (c)�(V(z), z) > 0.
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Construct V locally and glue together using a partition of the unity.
(i) For a point p where {p, v1(p), v2(p)} are linearly independent, choose a small
open ball neighborhood Up so that three vectors are linearly independent onUp. We
take V(z) so that (a), (b),(c) are satisfied.
(ii) For a point p where {p, v1(p), v2(p)} are linearly dependent over R. Then
�(p, v1(p)) > 1 by (8.20). We choose V(z) = v1(z). Taking a sufficiently small
open ball neighborhood Up so that �(w, v1(w)) > 0 for any w ∈ Up. Note that
�(v1(w), v2(w)) = 0 by the definition of v1 and v2. As B2n

r0 ∩ {z | | f (z)| ≥ δ(r0)} is
compact, we get a finite neighborhoodUp1 , . . . ,Upν

which coversB2n
r0 ∩ {z | | f (z)| ≥

δ(r0)}. Apply the partition of the unity method to this open covering, to construct
a global vector field V. It is easy to see that V satisfies the conditions (a), (b), (c)
everywhere. Then the integration of V gives a diffeomorphism ψ : ∂E(r0, δ)→
S
2n−1
r0 \ N (K ). The condition (a) implies arg f (z(t)) is constant along the integral

curve and (b) implies that the integral curve z(t) starting at z(0) = p ∈ ∂E(r0, δ0)∗
stays outside of the tube {| f | > δ0} for t > 0. (c) imply ‖z(t)‖ are monotone increas-
ing. Thus the integral curve z(t) arrives at q = z(t0) ∈ S

2n−1
r0 \ N (K ) after a finite

time t0 which depends on the initial point p. Define ψ by ψ(p) = q and ψ gives an
equivalence diffeomorphism of two fibration. �

8.3.11 Real Blowing Up and a Resolution of a Real Type

Let f (z, z̄) be a convenient non-degenerate mixed function and let V = f −1(0). Let
∗( f ) be the dualNewton diagramand let�∗ be a regular simplicial cone subdivision
and consider the associated toric modification π̂ : X → C

n . See Sect. 8.1.4 and
Theorem 8.1.9 for the definition and the basic properties of this modification. Let Ṽ
be the strict transform of V in X . It turns out that Ṽ still has some small singularity.
To solve these singularities, we need real blowing ups along exceptional divisors.

Real Blowing-Up

Consider one dimensional complex line with the coordinate z = x + iy. Consider
the imbedding ι : C \ {0} → C× RP

1 defined by ι(z) = (z, [x : y]) where RP
1 is

the real projective space of dimension 1. The real blowing-up is the closure of the
image of ι, say XR. There is a canonical projection πR : XR → C so that πR : XR \
π−1
R

(0)→ C \ {0} is a real analytic diffeomorphism and E := π−1
R

(0) is isomorphic
to the real projective space RP1. We call E the real exceptional divisor. XR has two
charts U1 := {x �= 0} and U2 = {y �= 0}. On U1 and U2, we can take the respective
coordinates (x ′, s) and (y′, t) where s = y/x, t = x/y and πR is defined by

U1 �(x ′, s) πR−→(x, y) = (x ′, x ′s) ∈ C on U1

U2 �(y′, t) πR−→(x, y) = (y′t, y′) ∈ C on U2.
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Note that the exceptional divisor is defined by x ′ = 0 in U1 or y′ = 0 in U2.

Real Blowing Up Along Complex Divisors

Assume X is a complex manifold and D is a smooth complex divisor. Then we can
take a real blowing up along the normal bundle of D, πR : Y → X . Then the excep-
tional divisor E is a RP

1-bundle over D. Let π̂ : X → C
n be a toric modification

associated with a regular simplicial cone subdivision of ∗( f ). We apply this real
blowing up for the exceptional divisors Ê(P) of π̂ .

Lemma 8.3.30 Weassume that f is non-degenerate. Letσ = Cone(P1, P2, . . . , Pn)
be a regular n-simplicial cone in�∗. Consider the face function fP1(z, z̄) of f (z, z̄) =∑

ν,μ cν,μzν z̄μ which is a non-degenerate radially weighted homogenous polynomial
of degree dr = d(P1) with the weight vector P1. Then the pull-back is given as

π∗σ fP1(uσ , ūσ ) =
∑

ν+μ∈�(P1)

cν,μ

n∏

i=1
uPi (ν)

σ,i ū Pi (μ)

σ,i .

If further f is polar weighted of degree dp with the same weight P1, Then

π∗σ fP1(uσ , ūσ ) = uα
σ,1ū

β

σ,1g(uσ
′, ū′σ ),

where u′σ = (uσ,2, . . . , uσ,n), α = dr + dp

2
, β = dr − dp

2
.

Proof The last equality follows from Pi (ν)+ Pi (μ) = dr and Pi (ν)−
Pi (μ) = dp. �

Note that π∗σ fP1 is not divisible by ud(Pi )
σ,1 like in the holomorphic case.

Corollary 8.3.31 Let πR : Z → C
n
σ be the real blowing up along the divisor

Ê(P1) = {uσ,1 = 0}. Let E be the exceptional divisor of πR and let V̂ be the strict
transform of V = f −1(0) into X and let Ṽ be the strict transform of V̂ to Z. Then
Ṽ is non-singular over Ê(P1)∗ := {0} × C

∗(n−1)
σ and intersects transversely with E.

Proof Put uσ,1 = x1 + iy1 and put s = y1/x1, t = x1/y1. Consider the coordinate
chart y1 �= 0 with coordinates (y′1, t, u′σ ). In these coordinates, πR(y′1, t, u′σ ) =
(y′1t, y′1, u′σ ) and E is defined by y′1 = 0. Take q ∈ E ∩ Ṽ ∩ {t �= 0}. Assume
q = (0, t0, v) in these coordinates.We assume v ∈ C

∗(n−1)
σ for simplicity. Then using

the equalities uσ,1 = y′1(t + i), ūσ,1 = y′1(t − i), we can write

π∗
R
fσ (y′1, t, u′σ ) = y′1

dr f ′σ ,

f ′σ =
∑

ν,μ

cν,μ(t + i)P1(ν)(t − i)P1(μ)

n∏

i=2
uPi (ν)

σ,i ū Pi (μ)

σ,i .
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Thus we observe that Ṽ is defined by f ′σ = 0 and f ′σ does not contain y′1. As
πR : Z \ E → C

n
σ is a diffeomorphism and π∗σ f −1(0) ∩ C

∗n
σ is non-singular by the

non-degeneracy, { f ′σ = 0} ∩ R
∗ × C

∗(n−1)
σ is non-singular at q′ = (1, t0, v). Thus the

Jacobian matrix J of {� f ′σ ,� f ′σ } with respect to (y′1, t, x2, . . . , yn) has rank two at
q′. Here uσ, j = (x j + iy j ) for j = 2, . . . , n. It takes the form

J =
(
0 a1

∂� f ′σ
∂x2

· · · ∂� f ′σ
∂yn

0 a2
∂� f ′σ
∂x2

· · · ∂� f ′σ
∂yn

)

, a1, a2 ∈ C.

Note that the Jacobian of {� f ′σ ,� f ′σ } at q is the same with the Jacobian at q′. On
the other hand, E is defined by y′1 = 0. Thus the Jacobian matrix of {y1,� f ′σ ,� f ′σ }
at q is written as (

1 0
0 J

)

This implies Ṽ and E intersect transversely at q. �

A Good Resolution of a Real Type

Let f be a convenient non-degenerate mixed function and let V = f −1(0). Let � :
Y → C

n be a proper mapping where Y is a real analytic manifold of real dimension
2n. We say that � is a good resolution of a real type of f if it satisfies the following
properties.

1. �−1(0) = D, D = D1 ∪ · · · ∪ Dm where each Dj is a non-singular real divisor
of real codimension 1.

2. � : Y \�−1(0)→ C
n \ {0} is a diffeomorphism.

3. Let Ṽ be the closure of�−1(V ) ∩ (Y − D) (we call it the strict transform of V ).
Ṽ is non-singular and real dimension 2(n − 1).

4. Ṽ ∪m
i=1 Di has only normal crossing singularities in the following sense. Take any

q ∈ D1 ∩ · · · ∩ Dk ∩ Ṽ . Then there is a chart U with real analytic coordinates
(v1, . . . , v2n) in the neighborhood of q such that Di = {vi = 0}, 1 ≤ i ≤ k and
Ṽ = {vk+1 = vk+2 = 0}. In this neighborhood U , �∗ f (v) = vk+1 + ivk+2.

The Construction of a Resolution of a Real Type

Let�∗ be a regular simplicial cone subdivision of ∗( f ) and let π̂ : X → C
n the the

associated toric modification. We assume that the vertices of �∗ are strictly positive
except the canonical ones E1, . . . , En , as f is convenient. Thus π̂ : X \ π̂−1(0)→
C

n \ {0} is biholomorphic. LetV be the set of strictly positive vertices of �∗ and let
πR : Y → X be the real blowing ups along every exceptional divisor Ê(P), P ∈ V.
Consider the composition � = π̂ ◦ πR : Y → C

n .
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Theorem 8.3.32 (Theorem 24, [31]) � : Y → C
n is a good resolution of real type

of f .

The proof follows from Lemma 8.3.30 and Corollary 8.3.31. For further details,
see [31]. There is one class of mixed functions for which the toric modification is
already a good resolution. A convenient mixed function f (z, z̄) =∑ν,μ cν,μzν z̄μ is
called a mixed function of a strongly polar weighted homogeneous face type [33], if
it satisfies the next conditions.

1. For any maximal dimensional face � ⊂ ( f ), f�(z) is a strongly mixed
weighted homogeneous polynomial with respect to the unique integer weight
P , normal to the face �.

2. For any (ν, μ) with cν,μ �= 0 and ν + μ /∈ �(P1),

P1(ν) >
rdegP1 f + pdegP1 f

2
, P1(μ) >

rdegP1 f − pdegP1 f

2
.

Remark 8.3.33 In [33], the condition (2) is forgotten in the definition of a mixed
function of a strongly polar weighted homogenous face type, though in the proof of
Theorem 11, (2) is used. Thus the condition (2) must be added to the definition.

Example 8.3.34 1. If f (z, z̄) is a strongly mixed homogeneous polynomial, f is a
mixed function of a strongly polar weighted homogeneous face type.

2. Assume that g(z) =∑ν cνzν is a holomorphic function. Consider a
branched covering ϕa,b : Cn → C

n, a �= b, ϕ(z) = (za1 z̄
b
1, . . . , z

a
n z̄

b
n). Put f (z, z̄) :=

ϕ∗a,bg(z, z̄). Then f is a mixed function of a strongly polar weighted homogeneous
face type. In [37], it is proved that the link of f has a canonical contact structure.

Theorem 8.3.35 (Theorem 11, [33]) Assume that f (z, z̄) is a convenient strongly
non-degenerate mixed function of strongly polar weighted homogeneous face type.
Then the toric modification π̂ : X → C

n is a good resolution of f and there is a
formula of the Varchenko type.

Here a good resolution means the following. For any coordinate chart (Cσ , uσ )

with σ = Cone(P1, . . . , Pn),

π∗σ f =
n∏

i=1
uaiσ,i ū

bi
σ,i g(uσ , ūσ ) where

ai = rdegPi ( f )+ pdegPi ( f )

2
, bi = rdegPi ( f )− pdegPi ( f )

2
.

where g is a mixed function defining the strict transform Ṽ and Ṽ and {Ê(Pi ), i =
1, . . . , n} intersect transversely if they intersect. Note that the topology of f is not
uniquely determined by the combinatorics of ( f ) for mixed functions.
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Example

1. Let f1(z) = z21 z̄1 − z2 z̄22 and f2(z) = z21 z̄1 − z22 z̄2 and let C1 = f −11 (0) and C2 =
f −12 (0). They have the same dual Newton diagram which is generated by E1, E2, P
where P = t (1, 1). The associated toric modification is just a blowing up. Take
the chart σ = Cone(P, E2). πσ (uσ,1, uσ,2) = (z1, z2)with z1 = uσ,1, z2 = uσ,1uσ,2.
Thus

π∗σ f1 = u2σ,1ūσ,1 − uσ,1uσ,2ū
2
σ,1ū

2
σ,2 = uσ,1ūσ,1(uσ,1 − ūσ,1uσ,2ū

2
σ,2)

π∗σ f2 = u2σ,1ūσ,1 − u2σ,1u
2
σ,2ūσ,1ūσ,2 = u2σ,1ūσ,1(1− u2σ,2ūσ,2).

Now note that limuσ,1→0 |uσ,2ū2σ,2| = limuσ,1→0 | uσ,1

ūσ,1
| = 1. Thus we can see that

C̃1 ∩ Ê(P) = {(0, uσ,2) | |uσ,2| = 1}. While C̃2 ∩ Ê(P) = {(0, 1)} and we can see
that C̃2 and Ê(P) intersect transversely. The reason is that f2 is strongly mixed
homogeneous. In particular, f2 is a mixed function of a strongly polar weighted
homogeneous face type.

Consider the real modification πR : Y → X on the normal bundle of Ê(P). Put
uσ,1 = x + yi . Take the coordinate chart {y �= 0} and put t = x/y.

π∗σ f1 = (t2y2 + y2)
(
(yt + iy)− (yt − iy)uσ,2ū

2
σ,2

)

= (t2y2 + y2)y
(
(t + i)− (t − i)uσ,2ū

2
σ,2

)
.

Namely in this chart, the strict transform of C1 is defined by

uσ,2ū
2
σ,2(t − i)− (t + i) = 0.

We can see that this is a non-singular real curve.
2. Let gs(z, z̄) =∑n

j=1 z
2
j z̄ j + s

∑n−1
i=1 z

2
i z̄n . Note that gs is a strongly mixed homo-

geneous polynomial. ∗(gs) is the regular fan with vertices {E, . . . , En−1, P} with
P = t (1, . . . , 1). Thus �∗ = ∗(gs) and the toric modification is the ordinary blow-
ing up at the origin. Take the chart Cn

σ with σ = Cone (E1, . . . , En−1, P) with coor-
dinates (u1, . . . , un). Then we have

π̂∗gs(u) = u2nūn{u21ū1 + · · · + u2n−1ūn−1 + 1+ s
(
u21 + · · · + u2n−1

)}

and V̂ is defined by

ĝs := u21ū1 + · · · + u2n−1ūn−1 + 1+ s(u21 + . . . u2n−1) = 0

and non-singular for a generic s. For a sufficiently small s, gs is isomorphic to g0
which is a simplicial hyperplane polynomial and isotopic to the trivial holomorphic
link of the hyperplane z1 + · · · + zn = 0. See Lemma 8.3.45 below. For s large, the
topology is different. Let us see this phenomenon more explicitly for n = 2 and
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s = 2. Then V is defined by z21 z̄1 + z22 z̄2 + z21 z̄2 = 0 and the local equation of the
projective curve defined by g2 = 0, V̄ , is given as

ḡ2 := u21ū1 + 1+ 2u21 = 0, u1 = z1/z2, in P
1.

Put u1 = x + iy. Then

ḡ2 = (x3 + xy2 + 1+ 2x2 − 2y2)+ i(x2y + 4xy + y3).

Solve the real solutions of�ḡ2 = �ḡ2 = 0.Thus V̂ ∩ Ê(P) = {(−1/8± i
√
31/8, 0),

(β, 0)} where β is the real root of x3 + 2x2 + 1 = 0. This implies that g2 = 0 has
three branches at the origin.

8.3.12 Simplicial Mixed Polynomials

Consider a mixed polynomial f (z, z̄) =∑s
j=1 c jzn j z̄m j where the coefficients c1,

. . . , cs are non-zero complex numbers. We associate the following Laurent polyno-
mial f̂ (w) with f (z, z̄):

f̂ (w) :=
s∑

j=1
c jwn j−m j , w = (w1, . . . ,wn) ∈ C

n.

Proposition 8.3.36 Assume that f (z, z̄) is a polar weighted homogeneous polyno-
mial of degree dp with respect to the polar weight P = (p1, . . . , pn). Then f̂ (w) is
also a weighted homogeneous Laurent polynomial of degree dp with respect to the
same weight vector P.

Put n j = (n j,1, . . . , n j,n), m j = (m j,1, . . . ,m j,n) ∈ N
n for j = 1, . . . , s. f (z, z̄)

is called simplicial if two sets of s vectors {n j +m j | j = 1, . . . , s} and {n j −m j |
j = 1, . . . , s} are both linearly independent in R

n . Consider n × s matrices N =
(ni, j ) and M = (mi, j ). If f is simplicial, rank (N + M) = rank (N − M) = s and
it is clear that s ≤ n. If s = n we say f is a full simplicial polynomial. If s = n,
f (z, z̄) is simplicial if and only if det(N ± M) �= 0.

Proposition 8.3.37 Let f (z, z̄) =∑s
j=1 c jzn j z̄m j . If f (z, z̄) is simplicial, f (z, z̄) is

a mixed weighted homogeneous polynomial under suitable polar and radial weight
vectors.

Proof Assume that P̂ is a normalized polar weight vector. Then it must satisfy the
equalities:

(n1 −m1, P̂) = · · · = (ns −ms, P̂) = 1. (8.23)

By the assumption, rank(N − M) = s. Therefore this has a non-trivial solution.
Similarly a normalized radial weight vector Q̂ must satisfy the equation
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(n1 +m1, Q̂) = · · · = (ns +ms, Q̂) = 1 (8.24)

which has a solution as rank(N + M) = s.

Remark 8.3.38 A polar weight vector or a radial weight vector which are solutions
of (8.23) or (8.24) respectively need not be a non-negative vector.

Examples

Take integers ai ≥ 1, bi ≥ 0, i = 1, . . . , n and consider the following polynomials
which have isolated singularities at the origin.

Ba,b(z, z̄) = za1+b11 z̄b11 + · · · + zan+bnn z̄bnn (mixed Brieskorn)

f I (z, z̄) = za1+b11 z̄b11 z2 + · · · + zan−1+bn−1n−1 z̄bn−1n−1zn + zan+bnn z̄bnn (tree type)

f I I (z, z̄) = za1+b11 z̄b11 z2 + · · · + zan−1+bn−1n−1 z̄bn−1n−1zn + zan+bnn z̄bnn z1 (cyclic type).

The associated Laurent polynomials are given by the following polynomials:

B̂a,b(w) = wa1
1 + · · · + wan

n (8.25)

f̂ I (w) = wa1
1 w2 + · · · + wan

n−1wn + wan
n (8.26)

f̂ I I (w) = wa1
1 w2 + · · · + wan

n−1wn + wan
n w1. (8.27)

They are corresponding to the simplicial weighted homogeneous polynomials
with an isolated singularity which are in the classification list of Orlik-Wagreich
[44]. Mixed polynomials Ba,b, f I , f I I are typical simplicial polynomials and their
associated polynomials B̂a,b, f̂ I , f̂ I I are weighted homogeneous polynomials with
isolated singularity at the origin. See Orlik-Wagreich [44].

We assume that f (z, z̄) =∑s
j=1 c jzn j z̄m j is a simplicial mixed polynomial and

let P = (p1, . . . , pn) be the polar weight vector and dp be the polar degree. Put
F∗(a) = f −1(a) ∩ C

∗n , F̂∗(a) := f̂ −1(a) ⊂ C
∗n for a ∈ C

∗. They can be identified
with the respective toric Milnor fibers of f and f̂ . Note that F∗(a) ∼= F∗(1) and
F̂∗(a) ∼= F̂∗(1). The following theorem says that these toric Milnor fibrations are
isomorphic.

Theorem 8.3.39 ([30])Let f (z, z̄) be a simplicialmixed polynomial and let f̂ (w) be
the associated Laurent polynomial. Let dp be the polar degree of f (z). There exists
a canonical diffeomorphism ϕ : C∗n → C

∗n which maps F(a)∗ into F̂(a)
∗
, ∀a ∈

C
∗ and makes the following diagram commutative. In particular, the toric Milnor

fibrations of f and f̂ are isomorphic.
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C
∗n ϕ−→ C

∗n
⏐
⏐
� f

⏐
⏐
� f̂

C
∗ id−→ C

∗

ϕ is also compatible with the monodromy maps h and ĥ so that the diagram is
commutative.

F(a)∗
ϕ−→ F̂(a)∗⏐

⏐
�h

⏐
⏐
�ĥ

F(a)∗
ϕ−→ F̂(a)∗

a ∈ C
∗

Here for a �= 0, F(a)∗ = f −1(a) ∩ C
∗n, F̂(a)∗ = f̂ −1(a) ∩ C

∗n.

Proof Recall that f (z) and f̂ (w) are polar weighted under the same weight vector
P = (p1, . . . , pn). The S1 actions are defined by

ρ ◦ z = (ρ p1 z1, . . . , ρ
pn zn), ρ ◦ w = (ρ p1w1, . . . , ρ

pnwn)

where z and w are respective coordinates of f and f̂ . Their monodromy maps
h : F∗ → F∗ and ĥ : F̂∗ → F̂∗ are defined by the action of e2π i/dp . Recall that

f̂ (w) =
s∑

j=1
c jwn j−m j .

Suppose we find a diffeomorphism ϕ : C∗n → C
∗n so that ϕ(z) = w which sat-

isfies
wn j−m j = zn j z̄m j ,∀z, j = 1, . . . , s. (8.28)

Assuming this, observe that

f̂ (w) = f (z), ϕ(eiθ ◦ z) = eiθ ◦ w

and thus ϕ is S
1-equivariant and therefore commutes with the respective mon-

odromies.
Now we will construct such ϕ as follows. Express z j , wj in polar coordinates as

z j = ρ j exp(iθ j ), wj = ξ j exp(iη j ), j = 1, . . . , n.

First put
η j = θ j , j = 1, . . . , n.

As arg zn j z̄m j = argwn j−m j ,
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zn j z̄m j = wn j−m j

⇐⇒ |zn j+m j | = |wn j−m j |
⇐⇒ (n j1 + m j1) log ρ1 + · · · + (n jn + m jn) log ρn

= (n j1 − m j1) log ξ1 + · · · + (n jn − m jn) log ξn

Rewriting these equalities in the matrix expression:

(N + M)

⎛

⎜
⎝

log ρ1
...

log ρn

⎞

⎟
⎠ = (N − M)

⎛

⎜
⎝

log ξ1
...

log ξn

⎞

⎟
⎠ . (8.29)

First we assume that s = n. Put (N − M)−1(N + M) = (λi j ) ∈ GL(n,Q). Now we
define ϕ as follows.

ϕ : C∗n → C
∗n, z �→ w

z = (ρ1 exp(iθ1), . . . , ρn exp(iθn))

w = (ξ1 exp(iθ1), . . . , ξn exp(iθn))

ξ j = exp

( n∑

i=1
λ j i log ρi

)

, j = 1, . . . , n.

It is clear that ϕ : C∗n → C
∗n is a diffeomorphism.

Suppose s < n. We simply take a solution of (8.29) as a linear system of equations
in log ξ1, . . . , log ξn .

Now the toric Milnor fibrations

f : C∗n\ f −1(0)→ C
∗, f̂ : C∗n\ f̂ −1(0)→ C

∗

are defined using S
1 actions under the same weight vector P and their monodromy

maps h∗ and ĥ∗ are defined using S
1 action:

exp iθ ◦ z = (exp(i p1θ)z1, . . . , exp(i pnθ)zn)

exp iθ ◦ w = (exp(i p1θ)w1, . . . , exp(i pnθ)wn)

as follows.

h∗ : F∗ → F∗, z �→ exp(2π i/dP) ◦ z

ĥ∗ : F̂∗ → F̂∗, w �→ exp(2π i/dP) ◦ w

Thus it gives a commutative diagram.
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F(α)∗ h∗−→ F(α)∗⏐
⏐
�ϕ

⏐
⏐
�ϕ

F̂(α)∗ ĥ∗−→ F̂(α)∗
, ∀α ∈ C

∗.

�

For the topological information of F̂∗, the following Lemmas are useful.

Lemma 8.3.40 (Kouchnirenko [21], Oka [28]) Let h(z1, . . . , zn) be a non-degene-
rate Laurent polynomial and put Z∗ := {z ∈ C

∗n | h(z) = 0}. Then the Euler char-
acteristic of Z∗ is given as

χ(F∗) = (−1)n−1n!Voln �(h).

Assume h(z) =∑ν cνzν . Recall that the Newton polyhedron of h, �(h) is the
convex hull of {ν | cν �= 0}.
Lemma 8.3.41 (Corollary (1.1.2) [28], Corollary (4.6.1) [29]) Let

W ∗ := {z ∈ C
∗n | h1(z) = · · · = hk(z) = 0}

be a full non-degenerate complete intersection variety. Then the inclusion map ι :
W ∗ → C

∗n is an (n − k)-equivalence.

Here W ∗ is called to be full if dim �(hi ) = n for any i = 1, . . . , k. In the case
k = 1, it reduces to

Corollary 8.3.42 Let F̂∗ be the toric Milnor fiber of f̂ and assume that f is full
simplicial. Then ι : F̂∗ → C

∗n is an (n − 1)-equivalence. In particular, if n ≥ 3,
π1(F̂∗) is isomorphic to the free abelian group Z

n.

Corollary 8.3.43 Let F̂∗ be the toric Milnor fiber of f̂ and assume that f is sim-
plicial and 1 < s < n. Then ι : F̂∗ → C

∗n is (s − 1)-equivalence. In particular, if
s ≥ 3, π1(F̂∗) is isomorphic to the free abelian group Zn.

Proof Assume that f̂ (z, z̄) =∑s
j=1 zn j−m j . Take a suitable unimodularmatrix�1 so

that g(u) := π∗� f̂ (u) =∑s
i=1 vξi where v = (u1, . . . , us) and ξ1, . . . , ξs ∈ Z+s . Put

F∗g := {v = (u1, . . . , us) ∈ C
∗s | g(u) = 1}. π−1� (F̂∗) = F∗g × C

∗(n−s) where F̂ =
f̂ −1(1). The inclusion F∗g → C

∗s is a (s − 1)-equivalence by Corollary 8.3.42. Thus
the assertion follows immediately.

Remark 8.3.44 1. The numbers λi j need not to be positive and the diffeomorphism
ϕ in Theorem 8.3.39 is only defined on C∗n in general.

1 Consider the sublattice A = (< n1 −m1, . . . , ns −ms > ⊗Q) ∩ Z
n and take a Z-base

{b1, . . . , bs} and extend it to a lattice base B = {b1, . . . , bs , . . . , bn} and consider B as a uni-
modular matrix. Take � = B−1.
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2. Theorem 8.3.39 is not true for non-simplicial mixed polynomials. As an
example, consider a mixed homogeneous polynomial g: g(z, z̄) =∑n

j=1 z
d+q
j z̄qj +

szν
∏q

j=1 z j z̄ j with |ν| = d and the associated homogeneous polynomial ĝ(w) =
∑n

j=1 w
d
j + swν . For a generic s, g and ĝ have isolated singularities at the origin.

By Orlik-Milnor [26], ĝ is equivalent to
∑n

j=1 w
d
j but g and

∑n
j=1 z

d+q
j z̄qj are not

generally equivalent for a big s. Thus g and ĝ are not equivalent in general. See also
Sect. 8.3.11, Example 2.

3. Ruas-Seade-Verjovsky studied a mixed Brieskorn polynomial f (z, z̄) =
za1+b11 z̄b11 + · · · + zan+bnn z̄bnn in [50] In this case, ϕ : C∗n → C

∗n is explicitly given as
follows.

w
aj

j = z
a j+b j

j z̄
b j

j , j = 1, . . . , n

which is equivalent to wj = z j |z j |2b j /a j for j = 1, . . . , n. This ϕ can be extended
continuously to C

n but the differentiability fails on the coordinate subspaces. By
normalizing ϕ, it gives a topological isomorphism of the Milnor fibrations of Ba,b

and B̂a,b.

Two links are isotopic. In fact, the following result is given in [17, 32].

Lemma 8.3.45 ([17, 32]) The links of mixed hypersurfaces B−1(0), f −1I (0), f −1I I (0)
on the sphere S

2n−1
r are isotopic to the corresponding links of the hypersurfaces

defined by the associated polynomial B̂(w), f̂ I (w), f̂ I I (w).

Proof Consider the family of mixed polynomials:

Bt (z, z̄) = (1− t)B(z, z̄)+ t B̂(z)

f I,t (z, z̄) = (1− t) f I (z, z̄)+ t f̂ I (z)

f I I,t (z, z̄) = (1− t) f I I (z, z̄)+ t f̂ I I (z).

Put Ft (z, z̄), 0 ≤ t ≤ 1 be any one of the above family and put Vt = {z ∈
C

n | Ft (z, z̄) = 0}. Then the proof is reduced to the following Lemma and the Ehres-
mann theorem.

Lemma 8.3.46 For any 0 ≤ t ≤ 1, Vt is non-singular except at the origin and the
intersection of S2n−1r and Vt is transversal for any r > 0.

Proof Wewill give a proof for the mixed Brieskorn polynomial, following the proof
of Lemma 1 and Lemma 2 of [32].

f (z, z̄) = za1+b11 z̄1
b1 + · · · + zan+bnn z̄n

bn ,

f̂ (z, z̄) = za11 + · · · + zann ,

ft (z, z̄) = (1− t)(za1+b11 z̄1
b1 + · · · + zan+bnn z̄n

bn )+ t (za11 + · · · + zann )

=
n∑

j=1
z
a j

j (t + (1− t)|z j |2b j ).
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Consider the family of mixed hypersurfaces Vt = f −1t (0), 0 ≤ t ≤ 1.
First we will show that Vt \ {0} is non-singular. For t = 0 and t = 1, the assertion
is obvious. So we assume that 0 < t < 1. Suppose 0 �= w ∈ C

n is a mixed singular
point. Then by Proposition 8.2.2, there exists λ ∈ S

1 such that

∂ ft (w, w̄) = λ ∂̄ ft (w, w̄).

This is equivalent to

(a j + b j )w̄ j
a j+b j−1wbj

j (1− t)+ a j w̄ j
a j−1t = b jw

aj+b j

j w̄ j
b j−1(1− t)λ, ∀ j.

Multiplying w̄ j to both sides and we get

w̄ j
a j
{
(a j + b j )|wj |2b j (1− t)+ a j t

} = b jw
aj

j |wj |2b j (1− t)λ. (8.30)

Putting the left side and the right side of (8.30) L j and R j respectively, we get

|L j | ≥ |wj |a j+2b j (a j + b j )(1− t) ≥ |wj |a j+2b j b j (1− t) = |R j |

and the equality holds only if wj = 0. However as w �= 0, there exists j with wj �= 0
and the equality (8.30) does not hold for this j which gives a contradiction to (8.30).
Thus Vt has a unique singularity at the origin.

Nowwe show the transversality of Vt and the sphere S
2n−1
‖w‖ atw. For this assertion,

it is enough to show the existence of a vector v ∈ TwVt which is transversal to the
sphere. Take an arbitrary point w ∈ Vt ∩ S

2n−1
r0 . Recall that

ft (z, z̄) =
n∑

i=1
ψ j (z j , z̄ j ), ψ j (z j , z̄ j ) := z

a j

j

(
t + (1− t)|z j |2b j

)
.

We will construct real valued functions ϕ j (r), j = 1, . . . , n such that

ϕ j (1) = 1, ψ j (ϕ j (r)wj , ϕ j (r)w̄ j ) = rψ j (wj , w̄ j ), j = 1, . . . , n

and define an analytic curve into Vt by

ϕ : [1− ε, 1+ ε] → Vt , ϕ(r) = (ϕ1(r)w1, . . . , ϕn(r)wn).

As ft (ϕ(r), ϕ(r)) = r ft (w, w) = 0, the image of ϕ is in fact a real analytic curve in
Vt , starting from w at r = 1. Define v := dϕ

dr |r=1. As v ∈ TwVt , it is only necessary
to show v /∈ TwS

2n−1
r0 which implies the transversality of Vt and S

2n−1
r0 at w.

1. Construction ofϕ j : Ifwj = 0, putϕ j ≡ 1. Supposewj �= 0.Note thatψ j (ϕ j (r)wj ,

ϕ j (r)w̄ j ) = rψ j (wj , w̄ j ) is equivalent to

ϕ j (r)
a j (t + (1− t)|wj |2b j ϕ j (r)

2b j ) = r(t + (1− t)|wj |2b j ). (8.31)
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Put ψ̂ j (s) := sa j (t + (1− t)|wj |2b j s2b j ). The left side of (8.31) is equal to
ψ̂ j (ϕ j (r)). As ψ̂ j (s) is a strictly monotone increasing in s, using the Implicit Func-
tion theorem, we solve

ψ̂ j (s)− r |wj |a j (t + (1− t)|wj |2b j ) = 0

in s with the initial condition ϕ(1) = 1 to obtain ϕ j (r).
2. v := (v1, . . . , vn) is not zero: If wj �= 0, v j = dϕ j

dr (1)wj . Differentiating the equal-
ity

ψ̂ j (ϕ j (r))− r |wj |a j (t + (1− t)|wj |2b j ) ≡ 0

in r and putting r = 1, we get

dψ̂ j

ds
(1)

dϕ j

dr
(1) = |wj |a j (t + (1− t)|wj |2b j )

which implies v j �= 0.
3. v /∈ TwS

2n−1
r0 : Consider the square of the norm function ρ(z) :=∑n

i=1 ‖zi‖2. As

dρ(ϕ(r))

dr
|r=1 =

d
∑n

j=1 |ϕ j (r)2|wj |2
dr

|r=1

= 2
n∑

j=1

dϕ j

dr
(1)ϕ j (1)|wj |2 > 0

v is not tangent to the sphere.
The proof for the cases FI , FI I is bit more complicated and we refer to [32] for

the tree case and to [17] for the cyclic case. �

8.3.13 The Join Theorem

Assume that f1(z, z̄) and f2(w, w̄) are mixed weighted homogeneous polynomi-
als of variables z = (z1, . . . , zn) and w = (w1, . . . ,wm) respectively. Let P̂1 =
t (p1, . . . , pn) and Q̂1 = t (q1, . . . , qn) be the normalized polar and radial weight
vectors of f1 and let P̂2 = (r1, . . . , rm), Q̂2 = t (s1, . . . , sm) be the normalized polar
and radial weight vectors of f2. Then the Join Theorem of holomorphic functions
[27] can be generalized as follows.

Lemma 8.3.47 (Cisneros-Molina [6]) Let f1, f2 be as above and put u = (z, w) ∈
C

n+m. Consider the mixed polynomial f (u, ū) := f1(z, z̄)+ f2(w, w̄). Then we
have
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1. f (u) is a mixed weighted homogeneous polynomial of normalized polar weight
vector P̂ = t (p1, . . . , pn, r1, . . . , rm) and the normalized radial weight vector
Q̂ = t (q1, . . . , qn, s1, . . . , sm).

2. Let F1, F2 and F be the respective Milnor fibers of the global Milnor fibrations
of f1, f2 and f . Put h1, h2 and h be the respective monodromy mappings. Then
there exists a natural homotopy equivalence ι : F → F1 ∗ F2 and the following
diagram is commutative.

F
h−→ F⏐

⏐
�ι

⏐
⏐
�ι

F1 ∗ F2
h1∗h2−→ F1 ∗ F2

Here F1 ∗ F2 is the join product of F1 and F2. For the definition of F1 ∗ F2 and
the basic properties, refer Milnor [25]. The proof is exactly the same as that of the
Join Theorem for holomorphic functions [21, 27].

8.3.14 Topology of the Milnor Fiber

For the holomorphic function f (z), the Milnor fiber F has a homotopy type of
(n − 1)-dimensional CW-complex. Moreover if 0 is an isolated singularity, F is
homotopic to a bouquet of (n − 1)-spheres by Milnor [24]. For the proof of the both
assertions, the Morse function method and the complex structure of F play a key
role.

For a mixed function, there does not exist any systematical result on either upper
bound of CW-complex dimension or connectivity of the fiber assuming isolatedness
of the singularity. The following are some results for special cases.
(1) Assume that f (z, z̄) has a tubular Milnor fibration and assume that the locus of
non-singular points of V = f −1(0) is at least one-dimensional. Then F is connected
(Theorem 2.3, [43]).
(2) Let f be a mixed function of two variables with an isolated singularity at the
origin and we assume that it has a tubular Milnor fibration. Then F is a connected
open Riemann surface. Thus the homotopy dimension is 1.
(3) Assume that f (z, z̄) is a full simplicial mixed polynomial (See Sect. 8.3.12). Let
F∗ be the toric Milnor fiber. It is diffeomorphic to the toric Milnor fiber of Laurent
polynomial by Theorem 8.3.39 of Sect. 8.3.12. The inclusion map ι : F̂∗ → C

∗n is
(n − 1)-equivalence ([28], Corollary (4.6.1) [29]). So F∗ → C

∗n is also (n − 1)-
equivalence. If s < n, by change of toric coordinates, f̂ can be a simplicial Laurent
polynomial g of s variables and thus F̂∗f ∼= C

∗(n−s) × F∗g (Corollary 8.3.43) and
χ(F∗f ) = 0. In particular, if s = n and ( f ) is 1-convenient, i.e. F ∩ {zi = 0} �= ∅
for i = 1, . . . , n, F is simply connected. The Euler characteristic can be computed
by the additive formula of Euler characteristics as the restriction f I is also simplicial
for any I . Thus using the decomposition F = �I F∗I (here F∗I = C

∗I ∩ { f I = 1},
one can show that F has a homotopy type of (n − 1)-dimensional CW-complex.
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For the calculation of χ(F∗), use Lemma 8.3.40 in Sect. 8.3.12. Let us see some
examples in the case of n = 3. Note that In this case, F is homotopic to a bouquet
of 2-spheres and χ(F) = μ(F)+ 1.

Here are some examples.

(i) f = za1+b11 z̄b11 + za2+b22 z̄b22 + za3+b33 z̄b33 . This is equivalent to z
a1
1 + za22 + za33 . Thus

its Milnor number is (a1 − 1)(a2 − 1)(a3 − 1).
(ii) f = za1+b11 z̄b11 z2 + za2+b22 z̄b22 z3 + za3+b33 z̄b33 . Then f has the same decomposi-

tion as za11 z2 + za22 z3 + za33 and F = F∗ � F∗{2,3} � F∗{3} andχ(F) = a1a2a3 −
a2a3 + a3 = μ+ 1.

(iii) f = za11 z̄2 + za22 z̄3 + za33 . Then χ(F) = a1a2a3 − a2a3 + a3.
(iv) f = za1+b11 z̄b11 z2 + za2+b22 z̄b22 z3 + za3+b33 z̄b33 z1. Then it has the same decompo-

sition as za11 z2 + za22 z3 + za33 z1 and F = F∗ � F∗{2,3} � F∗{3,1} � F∗{1,2} and
χ(F) = a1a2a3 + 1. Note that χ(F∗{i, j}) = 0 for i �= j .

(v) f = za11 z̄2 + za22 z̄3 + za33 z̄1. Then χ(F) = a1a2a3 − 1.

(4) Let f = f1 + · · · + fk where f j is a mixed weighted homogenous polynomial of
one or two variables. Assume that the variables of f j and fi are all different for i �= j
so that the variables of f are the disjoint sum of variables of f j for j = 1, . . . , k.
We assume that the critical points of f j are isolated. Let Fj be the Milnor fiber of
f j and let F be the Milnor fiber of f . Then by Join Theorem (Lemma 8.3.47), F
is homotopic to the join of F1, . . . , Fk . Thus F is (n − 2)-connected where n is the
number of variables. Using the recent result of Inaba [16], the assertion holds without
assuming that f j , j = 1, . . . , k are mixed weighted homogeneous.

8.3.15 The Milnor Fibration for f ḡ

In this section, we consider a mixed function H which takes the form H(z, z̄) =
f (z)ḡ(z) where f, g are holomorphic functions. Here we mean ḡ(z) := g(z). We
consider hypersurfaces V ( f ) := f −1(0), V (g) := g−1(0), V (H) := H−1(0) and
the intersection variety V ( f, g) = V ( f ) ∩ V (g). As the points of the intersection
V ( f ) ∩ V (g) are singular points of V (H), f ḡ can not be strongly non-degenerate for
n ≥ 3 by Lemma 8.3.10. However H(z, z̄) is a very special type of mixed function,
as it is defined by two holomorphic functions f, g. We consider the existence of
the Milnor fibration for such a mixed function. Pichon and Seade have studied such
functions, especially for the case n = 2 ( [46–48]). There are also related works by
Fernandez de Bobadilla and Menegon Neto [12] and also [2, 3, 18, 45] in a general
setting. This section follows completely from [41, 42].

Basic Assumption

Recall that a real analytic mapping ϕ : R2n → R
2 has a 1-dimensional critical values

in general. Thus without any assumption on f, g, there are many examples which do
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not have a Milnor fibration. So we need some assumptions which are easy to check
and under which H can not have a non-isolated critical value locus. More precisely
we look for the conditions so that the conditions (SN) and (ST) of Sect. 8.2.3 will be
satisfied. For simplicity, we assume that

(I1) f and g are holomorphic functions such that V ( f ) and V (g) have isolated
singularities at the origin.

(I2) The intersection variety V ( f, g) := { f = g = 0} is a complete intersection
variety with an isolated singularity at the origin.

We fix a positive number r0 > 0 so that V ( f ), V (g), V ( f, g) are only singu-
lar at the origin in the ball B2n

r0 , f, g has only 0 as a critical value on B
2n
r0 and

for any r with 0 < r ≤ r0, the sphere S
2n−1
r intersects transversely with these

varieties. We consider the canonical stratification of V (H) = V ( f ) ∪ V (g), S :=
{V ( f )∗, V (g)∗, V ( f, g)∗, {0}} where V ( f )∗ = V ( f ) \ V ( f, g) and V ( f, g)∗ =
V ( f, g) \ {0}.

The Multiplicity Condition

Wewish to have a condition to get the isolatedness of the critical values for H = f ḡ.
We say that H satisfies the multiplicity-condition if there exists a good resolution
π : X → C

n of the holomorphic function h = f g such that

(i) π : X \ π−1(0)→ C
n \ {0} is biholomorphic and the divisor defined by

π∗( f g) = 0 has only normal crossing singularities and the respective strict
transforms Ṽ ( f ), Ṽ (g) of V ( f ) and V (g) are smooth.

(ii) Put π−1(0) = ∪s
j=1Dj where D1, . . . , Ds are smooth compact divisors in X .

Denote the respective multiplicities of π∗ f and π∗g along Dj by m j and n j .
Then m j �= n j for j = 1, . . . , s.

Fernandez de Bobadilla and Menegon Neto have considered the multiplicity con-
dition for the case of plane curves [12].

Lemma 8.3.48 (Isolatedness of critical values, [41])Under the assumption (I1), (I2)
and the multiplicity-condition, there exists a positive number r1 so that H restricted
on B2n

r1 has the only critical value {0}.
Proof Wedenoteπ−1(V ( f g)) = D1 ∪ · · · ∪ Ds+2 whereDs+1 = Ṽ ( f ) andDs+2 =
Ṽ (g). Put D = π−1(0) . For simplicity, we put Ds+1 = Ṽ ( f ) and Ds+2 = Ṽ (g). In
this notation, we putms+1 = 1,ms+2 = 0 and ns+1 = 0, ns+2 = 1. Take an arbitrary
point p ∈ D and assume that p ∈⋂ j∈J D j \⋃ j /∈J D j where J ⊂ {1, . . . , s + 2}.
By the assumption (i), |J | ≤ n. Then there is a local holomorphic chart Ud with
coordinates (u1, . . . , un) and an injective map τ : J → {1, . . . , n} so that uτ( j) = 0
defines Dj in Ud and by the multiplicity assumption (i) and (ii), we can write

π∗ f = k f

∏

j∈J
u
m j

τ( j), π∗g = kg
∏

j∈J
u
n j

τ( j). (8.32)
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where k f , kg are units onUd .We chooseUd small enough so thatUd ∩⋃ j /∈J D j = ∅.
Consider the pull-back H̃ := π∗H . By the assumption, we can write H̃ in Ud as

H̃ = k f k̄g
∏

j∈J
u
m j

τ( j)ū
n j

τ( j).

Note that J ∩ {1, . . . , s} �= ∅ as p ∈ D. By Proposition 8.2.2, if u ∈ Ud is a critical
point of H̃ , we must have | ∂ H̃

∂u j
|/| ∂ H̃

∂ ū j
| = 1. However the above expression says that

∣
∣
∣
∣
∣

∂ H̃

∂u j
/
∂ H̃

∂ ū j

∣
∣
∣
∣
∣
=
∣
∣
∣
∣

(

m j + uτ( j)
∂k f

∂uτ( j)
k̄g

)

/

(

n j + ūτ( j)
∂ k̄g

∂ ūτ( j)
k f

)∣
∣
∣
∣

→ m j

n j
�= 1, u → p.

Put

Hτ( j) := ∂ H̃

∂u j
, H ′τ( j) :=

∂ H̃

∂ ū j
.

Thus we can take a smaller neighborhood U ′d if necessary and we may assume that
|Hτ( j)| �= |H ′τ( j)| for any u ∈ U ′d \ D ∪ Ds+1 ∪ Ds+2. We do this operation for any
p ∈ D. As D is compact, we find finite points p1, . . . , pμ such that ∪μ

i=1U ′pi ⊃ D.

Put W = ∪μ

i=1U ′pi . W is an open set containing D so that H̃ : W \ (D ∪ Ds+1 ∪
Ds+2)→ C

∗ has no critical point. Put W ′ = π(W ). W ′ is an open neighborhood
of the origin in C

n and π : W \ π−1(V (H))→ W ′ \ V (H) is biholomorphic. This
implies that H : W ′ \ H−1(0)→ C

∗ has no critical point. This proves the assertion.

In general, the tangent space of a mixed hypersurface does not have a complex
structure.However in our case,wehave the following assertionwhich is also observed
in the proof of Theorem 3.1, [45].

Proposition 8.3.49 (Proposition 15, [41]) Let H = f ḡ be as in the basic assump-
tion and assume that Vη := H−1(η) ∩ B

2n
r is mixed non-singular. For any point

p ∈ Vη, TpVη contains a complex subspace Tp f −1( f (p)) ∩ Tpg−1(g(p)).

The above observation implies the following assertion.

Lemma 8.3.50 (Theorem 3.1, [45], Lemma 5, [41]) Let S be the stratification of
V (H) and let r1 ≤ r0 be the positive number as in Lemma 8.3.48. We assume also
that each strata in S is smooth in B2n

r1 . Then H satisfies Thom’s a f -condition.

By Lemmas 8.3.48 and 8.3.50 and 8.2.7, we have the following.

Corollary 8.3.51 Assume (I1), (I2) and the multiplicity condition. Then f has a
tubular Milnor fibration.
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The Spherical Milnor Fibration for f ḡ

We now consider the spherical Milnor mapping ϕ : S2n−1r \ K → S
1 defined by

ϕ(z) := H(z)/|H(z)| where K = V (H) ∩ S
2n−1
r . For the existence of a spherical

fibration, we need a stronger assumption than the basic assumption. We assume in
this subsection that

(n1) f (z) and g(z) are convenient non-degenerate holomorphic functions in the
neighborhood of the origin with respect to the Newton boundaries.

(n2) V ( f, g) = {z ∈ C
n | f (z) = g(z) = 0} is a non-degenerate complete intersec-

tion variety2 in the sense of Newton boundary [29].

We call (n1) and (n2) the Newton non-degeneracy condition.
The hypersurfaces V ( f ) and V (g) have isolated singularities at the origin by the

convenience and non-degeneracy assumption (n1). The intersection variety V ( f, g)
also has an isolated singularity at the origin and the intersections of V ( f ), V (g) are
transverse outside of the origin by (n2). See Lemma (2.2) [29].

We consider a little stronger assumption than the multiplicity condition. We say
that H satisfies the Newton multiplicity condition if for any strictly positive weight
vector P , the weighted degrees of f and g under P are not equal, i.e. d(P, f ) �=
d(P, g).

The Newton multiplicity condition can be checked by the Newton boundaries
( f ) and (g) as follows.

Proposition 8.3.52 (Proposition 9, [41]) Assume that f, g have convenient Newton
boundaries. Then H satisfies the Newton multiplicity condition if and only if ( f ) ∩
(g) = ∅.

Taking an admissible toricmodification π̂ : X → C
n for the dualNewton diagram

∗( f g), as a good resolution, the following is obvious.

Proposition 8.3.53 Assume that the Newton non-degeneracy condition (n1), (n2)
and the Newton multiplicity condition. Then (I1), (I2) and the multiplicity condition
are satisfied with the toric modification π̂ : X → C

n.

Lemma 8.3.54 (Lemma 11, [41]) We assume (n1), (n2) and the Newton multiplicity
condition. There exists a positive number r3 so that ϕ : S2n−1r \ K → S

1 has no
critical points for any r, 0 < r ≤ r3.

Combining with the transversality (T), we get the following.

Corollary 8.3.55 (Spherical Milnor fibration) Assuming (n1), (n2) and the Newton
multiplicity condition, ϕ : S2n−1r \ K → S

1 gives a local trivial fibration for any
r ≤ min{r3, r2}where r2 is a positive number in Lemma 8.3.21. Here K = H−1(0) ∩
S
2n−1
r .

2 This means that for any strictly positive weight vector P , fP = gP = 0 is a non-singular complete
intersection variety in C∗n .
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8.3.16 Mixed Projective Hypersurfaces

Recall that amixedpolynomial f (z, z̄) =∑�
j=1 c jzν j z̄μ j isa stronglymixedweighted

homogeneous polynomial if there exists a strictly positive weight vector P =
t (p1, . . . , pn) so that f is mixed weighted homogeneous under the same weight
P with pdegP f = dp and rdegP = dr . Then the associated R

+ × S
1 action on C

n

is in fact the C∗ action which is defined by

τ ◦ z = (z1τ
p1 , . . . , znτ

pn ), τ ∈ C
∗.

In particular, we say f (z, z̄) is a strongly mixed homogeneous polynomial if further
P = t (1, . . . , 1).

Assume that f (z, z̄) is a strongly mixed weighted homogeneous polynomial with
radial degree dr and polar degree dp respectively and let P = (p1, . . . , pn) be the
weight vector. Then f (z, z̄) satisfies the equality:

f ((t, ρ) ◦ z) = tdr ρdp f (z, z̄), (t, ρ) ∈ R
+ × S

1. (8.33)

Let Ṽ be the mixed affine hypersurface

Ṽ = f −1(0) = {z ∈ C
n | f (z, z̄) = 0}.

Weconsider the global fibration f : Cn \ Ṽ → C
∗. Then theMilnor fiber F is defined

by the hypersurface f −1(1). The monodromy map h : F → F is defined by

h(z) = exp(
2π i

dp
) ◦ z =

(

exp(
2p1π i

dp
)z1, . . . , exp(

2pnπ i

dp
)zn

)

.

We also consider the weighted projective hypersurface V defined by

V = {(z1 : z2 : · · · : zn) ∈ P(P)n−1 | f (z, z̄) = 0}

where P(P)n−1 is the weighted projective space defined by the equivalence induced
by the above C∗-action:

z ∼ w ⇐⇒ ∃τ ∈ C
∗, w = τ ◦ z.

It is well-known that P(P)n−1 is an orbifold with at most cyclic quotient singular-
ities. See [10, 52]. By (8.33), the hypersurface V = {[z] ∈ P

n−1(P)| f (z) = 0} is
well-defined. Consider the quotient map π : Cn \ {O} → P(P)n−1 and the restric-
tions π |F : F → P(P)n−1 \ V . This is a branched cyclic covering of order dp whose
branching locus is the union of coordinate hyperplanes Hj = {z j = 0}. The zeta
function of the monodromy can be computed by the Milnor method Theorem 9.6,
[24].
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A Canonical Orientation

It is well known that a complex analytic smooth variety has a canonical orientation
which comes from the complex structure (see for example p. 18, [13]). Let Ṽ =
f −1(0) be a mixed hypersurface.

Proposition 8.3.56 There is a canonical orientation on the smooth part of a mixed
hypersurface.

Proof Take a mixed regular point a ∈ Ṽ . The normal bundle N of Ṽ ⊂ C
n has a

canonical orientation so that d fa : Na → T f (a,ā)C is an orientation preserving iso-
morphism. This gives a canonical orientation on Ṽ so that the ordered union of the
oriented frames {v1, . . . , v2n−2, n1, n2} of TaC

n is the orientation of Cn if and only
if {v1, . . . , v2n−2} is an oriented frame of TaṼ where {n1, n2} is an oriented frame of
the normal bundle Na. �

For brevity, we now concentrate on a strongly mixed homogeneous polynomial
f (z). Let Ṽ = f −1(0) and let V = { f = 0} ⊂ P

n−1 be the corresponding mixed
projective hypersurface for simplicity. V also has a canonical orientation.

The Milnor Fiber

Consider the Hopf fibration π : Cn \ {0} → P
n−1 and its restriction to the Milnor

fiber F . As f is a strongly mixed homogeneous polynomial, it is easy to see that
π : F → P

n−1 \ V is a cyclic covering of order dp where dp is the polar degree of
f and the group of the covering transformation is generated by the monodromy map

h : F → F, z �→ exp(
2π i

dp
) ◦ z = exp(

2π i

dp
)z

and the action is free. Thus we have

Proposition 8.3.57 1. χ(F) = dpχ(Pn−1 \ V ).
2. The following sequence is exact.

1→ π1(F)
π�−→π1(P

n−1 \ V )→ Z/dpZ→ 1.

Corollary 8.3.58 If dp = 1, the projection π : F → P
n−1 \ V is a diffeomorphism.

The monodromy map h : F → F gives a free Z/dpZ action on F . Thus using
the periodic monodromy argument Theorem 9.6 in [24], we get

Proposition 8.3.59 The zeta function of h : F → F is given by

ζ(t) = (1− tdp )−χ(F)/dp .

In particular, if dp = 1, h = idF and ζ(t) = (1− t)−χ(F).
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The Degree of A Mixed Projective Hypersurface

Let M(q + 2r, q, n) be the space of non-degenerate, convenient strongly mixed
homogeneous polynomials of n variables z = (z1, . . . , zn) with the radial degree
q + 2r and the polar degree q. By the definition, f ∈M(q + 2r, q, n) defines a
mixed affine hypersurface in C

n with an isolated singularity at the origin. Suppose
f (z, z̄) ∈M(q + 2r, q, n) and let

V = {[z] ∈ P
n−1 | f (z, z̄) = 0}.

By the non-degeneracy assumption, V is non-singular. It has a fundamental class
[V ] ∈ H2n−4(V,Z). The topological degree of V is the integer d so that ι∗[V ] =
d[Pn−2] where ι : V → P

n−1 is the inclusion map and [Pn−2] is the homology class
of a canonical hyperplane Pn−2 ⊂ P

n−1.

Theorem 8.3.60 The topological degree of V is equal to the polar degree q. Namely
the fundamental class [V ] corresponds to q[Pn−2] ∈ H2(n−2)(Pn−1) by the homomor-
phism ι∗ induced by the inclusion map.

Proof Suppose that f is a non-degenerate mixed polynomial in M(q + 2r, q, n).
Take a generic 1-dimensional complex line L which is isomorphic to P

1. Then the
degree is given by the intersection number [V ] · [L]. Now, changing the coordinates
if necessary, we may assume that

L : z j = a j1z1 + a j2z2, j = 3, . . . , n. (8.34)

Note that a linear change of coordinates does not violate the mixed strong homo-
geneity of f . Substituting (8.34) in f (z, z̄) to eliminate the variables z3, . . . , zn , we
see that the intersection V ∩ L is described by

g(z1, z2, z̄1, z̄2) = 0, [z1 : z2] ∈ L = P
1

where g is the mixed polynomial after substituting z j = a j1z1 + a j2z2 and z̄ j =
ā j1 z̄1 + ā j2 z̄2 for j ≥ 3. As g is still a strongly mixed homogeneous polynomial in
z1, z2 under the restriction to L , g is written as

g(z, z̄) = f (z, z̄)|L =
∑

ν,μ

cν,μz
ν1
1 z

ν2
2 z̄

μ1
1 z̄μ2

2 , z = (z1, z2),

where the summation are for the multi-integers ν = (ν1, ν2), μ = (μ1, μ2) such that

|ν|+|μ| = q + 2r, |ν| − |μ| = q.

Thus the polynomial g(z1, z2, z̄1, z̄2) is a strongly mixed homogeneous poly-
nomial of radial degree q + 2r and of polar degree q. Taking a linear change of
coordinates if necessary, we may assume that the intersections are in the affine space
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z2 �= 0. This implies that g has a monomial zq+r1 z̄r1 with a non-zero coefficient. Use
the affine coordinate z = z1/z2 for the affine coordinate chart {z2 �= 0}. Then g takes
the form:

g(z, z̄) =
∑

i, j

ci, j z
i z̄ j , i ≤ q + r, j ≤ r, i + j ≤ q + 2r

where cq+r,r �= 0. Let {α1, . . . , αm} be the root of =g(z, z̄) = 0. We can see easily
that the local intersection number at α j is given as

I (V, L , α j ) = 1

2π

∫

|z−α j |=ε

Gauss(g)dθ

where z − α j = ε exp(iθ) and Gauss(g)(z, z̄) = arg g(z, z̄) and ε is a sufficiently
small positive number. In fact, the orientation of V is defined so that a frame
{v1, . . . , v2n−4} at α j is positive if and only if {v1, . . . , v2n−4, n1, n2} are positive
where n1, n2 are frames of the normal bundle of V oriented by f . On the other hand,
{ ∂

∂x ,
∂
∂y } is also a frame of the normal bundle where w = x + iy. The orientations

{n1, n2} and { ∂
∂x ,

∂
∂y } are compatible if and only if the Gauss map at α j has the posi-

tive rotation. A root (or a zero point) α of g(z, z̄) = 0 is called simple if α is a regular
point of g : C→ C. It is called positive or negative if the Gauss map at z = α has
the rotation number 1 or−1 respectively. Taking line L generically, we may assume
that the roots of g is all simple. Topologically the local intersection number of V and
L is the mapping degree of the Gauss mapping at a root z = α j :

Gauss(g) : S1ε(α j ) ∼= S
1 → S

1.

Take a sufficiently large positive number R. Consider the region D := DR \
∪m

j=1 Int Dε(α j ).HereDε(α j ) := {z ∈ C | |z − α j | ≤ ε} andS1ε(α j ) = ∂Dε(α j ). The
Gauss map extends to D and as [∂D] =∑m

i=1[∂Dε(α j )] in H2(D), we see that

m∑

j=1

1

2π

∫

|z−α j |=ε

Gauss(g)dθ = 1

2π

∫

|z|=R
Gauss(g)dθ.

The right hand side is equal to the mapping degree of

Gauss(g) : S1R → S
1

which is equal to q, as the highest degree part of g is cq+r,r zq+r z̄r .
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Moduli of Strongly Mixed Homogeneous Polynomials and Zero Points of
Mixed Polynomials

We consider the moduli space of convenient non-degenerate mixed homogeneous
polynomials of twovariablesM(n + m, n − m, 2). Recall f ∈M(n + m, n − m, 2)
defines a finite number of points in P

1 as zero points which are all simple zeros of
f = 0 inP1. Consider the subset ofmixed polynomials of 1-variable which is defined
as follows.

M(n + m, n,m) := { f̌ (z, z̄) ∈ C[z, z̄] | (�1), (�2)}

where (�1) : deg f̌ = n + m, degz f̌ = n, degz̄ f̌ = m, and
(�2) : f = 0 has only simple zeros.

We consider also a subspace of M(n + m, n,m) defined by

L(n + m, n,m) :={ f ∈ M(n + m, n,m) | f (z, z̄) = z̄mq(z)− p(z), (�)}
where (�) : degz q(z) = n, degz p(z) ≤ n

and p(z), q(z) ∈ C[z], r(z̄) ∈ C[z̄] and the coefficient of zn in q is non-zero. We
have the canonical inclusion:

L(n + m, n,m) ⊂ M(n + m, n,m).

The class L(n + m, n,m) comes from the set of harmonic functions z̄m − p(z)
q(z) as

the numerators. Especially L(n + 1, n, 1) corresponds to the lens equation z̄ = p(z)
q(z)

which has been studied by some astronomers (see [49]). We call z̄m − p(z)
q(z) = 0 a

generalized lens equation. The corresponding numerators are called a generalized
lens polynomial. There is a canonical correspondence

ψ :M(n + m, n − m, 2)→ M(n + m, n,m), f (z, z̄) �→ f̌ (z, z̄)

where f̌ (z, z̄) = f (z, z̄)/(zn2 z̄
m
2 ) and z = z1/z2, z̄ = z̄1/z̄2. The polynomial f̌ (z, z̄)

is nothing but the affine equation of f = 0 in P
1 with respect to the affine chart

{z2 �= 0} and the coordinate z = z1/z2. In a connected component U of M(n +
m, n − m, 2), the Milnor fibrations of f ∈ U does not depend on f and thus the
Euler numbers χ( f −1(1)), f ∈ U are constant. Let ρ( f̌ ) be the number of zeros of
f̌ = 0 in P

1 which is equal to the number of lines in the affine cone f = 0 in C
2.

Put R(ρ̂) := {ρ̂( f̌ ) | f̌ ∈ M(n + m, n,m)}. Let ρ± be the number of positive and
negative roots. Then we have the equality n − m = ρ+ − ρ− and ρ( f̌ ) = ρ+ + ρ−.
Recall

χ(F) = (n − m)χ(P1 − V ( f̌ )) = (n − m)(2− ρ( f̌ )).

Therefore if ρ( f̌ ) �= ρ(ǧ), polynomials f, g ∈M(n + m, n − m, 2) belong to
different components. Thus the number of connected components ofM(n + m, n −
m, 2) is not smaller than the number of R(ρ̂). For M(n + 1, n, 1), it is known that
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R(ρ̂) is precisely {n − 1, n + 1, . . . , 5n − 5} by Bleher, Homma, Ji and Roeder [4].
Rhie constructed an explicit polynomial with ρ( f̌ ) = 5n − 5. See [39, 49]. About
the number of connected components of M(n + m, n,m), m ≥ 2, an estimation is
given in [40]

Corollary 8.3.61 (Corollary 5 [40]) ρ( f̌ ) for f ∈ L(n + m, n,m) can take at least
the values {n + m − 2, n + m, . . . , 5n + m − 6}.

In M(n + m, n,m), the value can take {n − m, n − m + 2, . . . , n + m − 4} as
well and thus the value set covers {n − m, n − m + 2, . . . , 5n + m − 6}. We do not
know if 5n + m − 6 is the optimal upper bound or not.

Projective Mixed Curves

We consider projective curves of polar degree q:

C = {[z] = [z1 : z2 : z3] ∈ P
2 | f (z, z̄) = 0}

where f is a strongly mixed homogeneous polynomial with pdeg f = q and f ∈
M(p, q, 3). We have seen that the topological degree (=embedding degree) ofC is q
byTheorem8.3.60. The genus g ofC is not an invariant ofq, under afixed p, q. Recall
that for a differentiable curve C of genus g, embedded in P

2, with the topological
degree q, we have the following Thom’s inequality, which was conjectured by Thom,
[54] and proved by several people, for example, Kronheimer-Mrowka [20]:

g ≥ (q − 1)(q − 2)

2

where the right side number is the genus of algebraic curves of degree q, given by
the Plücker formula. The mixed projective curve has much flexibility.

As an example, we consider the mixed polynomial

hq,r, j (w, w̄) = (wq+ j
1 w̄ j

1 + wq+ j
2 w̄ j

2)(w
r− j
1 − αwr− j

2 )(w̄r− j
1 − βw̄r− j

2 ), r ≥ j ≥ 0

with α, β ∈ C
∗ generic [34, 36]. Note that hq,r, j is a strongly polar homogeneous

polynomial with a radial degree q + 2r and a polar degree q respectively i.e.,
hq,r, j ∈M(q + 2r, q, 2). Let Hq,r, j := h−1q,r, j (1) the Milnor fiber of hq,r, j . Note that

ρ(ȟq,r, j ) = q + 2(r − j) andχ(Hq,r, j ) = −(q + 2(r − j))q + 2q.We consider the
following join type polynomial.

fq,r, j (z, z̄) = hq,r, j (w, w̄)+ zq+r3 z̄r3 ∈M(q + 2r, q, 2), w = (z1, z2).

Let Fq,r, j = f −1q,r, j (1) be the Milnor fiber. By the Join Theorem (Cisneros-
Molina [6]),χ(Fq,r, j ) = q(q − 1)(q − 2)+ 2q(q − 1)(r − j)+ q.LetCq,r, j be the
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projective curve of degree q defined by { fq,r, j (z, z̄) = 0} in P
2. Then the genus

g(Cq,r, j ) of Cq,r, j is given by

g(Cq,r, j ) = (q − 1)(q − 2)

2
+ (q − 1)(r − j) ≥ (q − 1)(q − 2)

2
.

For q = 2, we get
g(C2,r, j ) = (r − j) ≥ 0.

Thus changing r, j , we have degree 2 curves of arbitrary genus. To get a mixed
curve of degree 1 for a given genus g, we consider a twisted join type polynomial:

{
h(w, w̄) := (z1 + z2)(zr1 − αzr2)(z̄

r
1 − β z̄r2), |α| �= |β|,

fr (z, z̄) := h(w, w̄)+ z̄2z
r+1
3 z̄r−13 .

Let Sr : fr = 0. Then the topological degree of Sr is 1 and the genus of Sr is r
(Corollary 10, [34]).

8.3.17 Remarks and Problems

(a) About f ḡ. (1) The equivalence of tubular and spherical Milnor fibrations can be
proved in the same way as Lemma 8.3.28 (see Theorem 16, [42]).
(2)To treat the casewhereV ( f ), V (g)havenon-isolated singularities, the conve-
nience assumption in Corollary 8.3.55 can be replaced by the following assump-
tion (see [42]).
1. f (z) and g(z) is locally tame and Newton non-degenerate.
2. The variety f = g = 0 is non-degenerate and locally tame in the sense that
if CJ ∈ V f ∩Vg and for any P with I (P) = J , there exists a positive number
rJ such that fP = gP = 0 is non-degenerate as a variety of variables {zi |i /∈ J }
fixing zJ with ‖zJ‖ ≤ rJ . Here V f ,Vg are vanishing coordinate subspaces of
f and g.

(b) (Further Join Theorem) Suppose that g(z, z̄) and h(w, w̄) are mixed functions
of n-variables z = (z1, . . . , zn) and m-variables w = (w1, . . . ,wm) which have
tubular Milnor fibrations at the origin but we do not assume that f, g are
mixed weighted homogeneous polynomials. Consider the function f (z, w) :=
f (z)+ g(w) of n + m variables. Show that f has a tubular Milnor fibration and
the Milnor fiber is homotopic to the join of the respective Milnor fibers Ff ∗ Fg .
For holomorphic functions, this is proved by Sakamoto [51]. Formixedweighted
homogeneous polynomials, the assertion is proved by Cisneros-Molina [6]. For
general pair of mixed functions g, h which are not mixed weighted homoge-
neous, the assertion is proved by Inaba [16].
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(c) Let f (z) =∑d
i=0 ci zd−i z̄i be a mixed polynomial of one variable z. Let U =

{ f | f : C∗ → C has no critical point}. Characterize the necessary and sufficient
condition for f to be in U . This is equivalent to f (C∗) = C

∗ and f : C∗ → C
∗

is a finite covering map. A sufficient condition is given in Lemma 8.3.3. Give a
good estimation of the number of connected components of U .

(d) Let f (z, z̄) be a mixed weighted homogeneous polynomial with radial degree dr
and polar degree dp. Let Q := (q1, . . . , qn) and P = (p1, . . . , pn) be the radial
and polar weight vectors respectively. We have seen in Proposition 8.3.8 that
it has a spherical Milnor fibration and a global Milnor fibration and they are
equivalent. If V ( f ) has an isolated singularity at the origin, by the compactness
argument, it satisfies (ST ) condition in Sect. 8.2.3.
Problem. Suppose that f (z, z̄) is a mixed weighted homogeneous polynomial
with a non-isolated singularity. Does f satisfy the (ST )-condition in general so
that a tubular Milnor fibration exists and it is equivalent to the spherical Milnor
fibration and also to the global Milnor fibration?

(e) Let f (z, z̄) be a convenient strongly mixed homogeneous polynomial of polar
degree d and let F = f −1(1) be the Milnor fiber and V ⊂ P

n−1 be the cor-
responding projective hypersurface. Their Euler characteristics are related as
χ(F) = d(n − χ(V )). In the case n = 2, χ(F) = d(2− ρ(V )). Thus
−χ(F) ≥ d2 − 2d = (d − 1)2 − 1 or ρ(V ) ≥ d as ρ(V ) = ρ+ + ρ− ≥ d (see
Sect. 8.3.16). In the case n = 3, Thom’s inequality gives

χ(F) ≥ d(3− 3d + d2), n = 3.

The equalities in both cases are taken if f is in the same connected component
of the moduli space as the mixed Brieskorn polynomials zq+d1 z̄q1 + zq+d2 z̄q2 for
n = 2 or zd+q1 z̄q1 + zd+q2 z̄q2 + zd+q3 z̄q3 for n = 3. So for higher dimensions, we
propose the conjecture:

Conjecture : (−1)n−1χ(F) ≥ (d − 1)n + (−1)n−1, ∀n.

and the equality is taken for the component which contains the mixed Brieskorn
polynomial. Or if we assume further that F is homotopic to a bouquet of (n − 1)-
spheres, the stronger conjecture is

μ( f ) ≥ (d − 1)n.

A similar conjecture can be given for mixed homogeneous polynomials.
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Chapter 9
From Singularities to Polyhedral
Products

Santiago López de Medrano

Abstract The topology of intersections of concentric ellipsoids in R
n have been

studied for some time under the different names of links of pencils of quadrics,
intersections of quadrics in R

n and real moment-angle manifolds. During this time,
different authors were working independently and with different aims without know-
ing about the others’ work. When the relations were stablished, the interchange of
ideas was useful and in some cases there were fruitful collaborations between mem-
bers of different schools.Wewill tell this story, ending with some recent unpublished
work on singular intersections that extends previous results.
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9.1 Introduction

Euler’s differential equations represent the motion of a free rigid body in three
space. Invariants of this motion are given by the kinetic energy and the magnitude of
the angular momentum, both being quadratic forms in the appropriate coordinates.
Jacques Philippe Marie Binet (1786–1856) and Louis Poinsot (1777–1859) gave a
geometrical description of the motion with the use of an ellipsoid in R3 representing
a fixed level set of one of the invariants and drawing on it the possible curves of
intersection with the ellipsoids for different levels of the other invariant. Since then,
this figure has been used in many books and courses of Mechanics and solid models
have been made1:

Today we can see in this figure the topology of the different possible intersections
of two concentric ellipsoids in R

3: it can be empty or homeomorphic to a pair of
disjoint circles, if the ellipsoids are transverse, two points or two circles crossing
at two points if they have generic tangencies (the more degenerate cases, when the
ellipsoids have a common equator or when they are equal, do not appear). It does
not seem that the geometry of these intersections has been studied, their curvature
and torsion might be interesting.

However, the intersections of two or more ellipsoids in R
n for higher n does

not seem to have been considered. The rigid body in Relativity Theory or Quantum
Mechanics does not seem to exist and, although there are studies of the rigid body
in classical mechanics in higher dimension [57, 62] or [68] with many invariants,
the geometry of the intersections of their level sets does not seem to have been
considered.

As far as we know it was in the period 1980–1991 that different papers were
published studying intersections of concentric ellipsoids in R

n as well as abstract
versions of them (within a very general theory). They emerged independently from
three areas of Mathematics (Singularity Theory, Dynamical Systems and Algebraic
Topology) and their interconnections were discovered only after the theories had
been somewhat developed. We will try to describe these different sources and some
consequences.

1 Figure PoinsotDrehimpulsEllipsoid.png taken from [76] under Creative Commons licence CC
BY-SA 4.0.

https://commons.wikimedia.org/wiki/File:PoinsotDrehimpulsEllipsoid.png
https://creativecommons.org/licenses/by-sa/4.0/
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9.2 Singularity Theory

The first published paper I knowwhere the topology of the intersections of concentric
ellipsoids is studied is the remarkable 1980 Presidential Address to the London
Mathematical Society Stability, pencils and polytopes by Wall [74].

The paper’s aim is the understanding of the first instances of topological instability
of differentiable maps f : N → P between differentiable manifolds. We can only
try, inwhat follows, to give a rough idea of the appearance of intersections of quadrics
in the realm of topological stability.

The first part of the paper is a delightful introduction to the theory of C∞ stability
of such maps which starts by recalling that a map f as above is called stable if any
small enough perturbation g of f is equivalent to f through diffeomorphisms h and
k of N and P (by composition k ◦ g = f ◦ h) which are perturbations of the identity
maps. Then he recalls part of the important results of Morse, Whitney, Thom and
Mather. In particular, he recalls the first example (due to René Thom) of the fact that
the set of C∞ stable maps is not dense in some dimensions: essentially it is the map
f : R8 → R

6 given by

f (x1, x2, x3, x4, x5, x6, x7, x8) =

= (x1, x2, x3, x4, q1(x5, x6, x7, x8), q2(x5, x6, x7, x8))

where q1 and q2 is a generic pair of quadratic forms.
This mapping has rank 4 at the origin and its zero set is the quadratic cone given

by the zeros of q1 and q2 in the x1 = x2 = x3 = x4 = 0 subspace. The set M(6, 8; 4)
of matrices 6 × 8 of rank 4 has codimension 8 inside the space of all 6 × 8 matrices,
so if the differential of f at the origin is transversal to M(6, 8; 4), all the mappings
in a neighborhood U of f in the space of mappings R8 → R

6 will have an isolated
point of rank 4 and would be locally equivalent to a mapping of the same form as
f , but with different quadratic terms. If two of these maps were C∞ equivalent, the
differentials of the diffeomorphisms would be linear maps giving an equivalence
between the quadratic terms. But not all pairs of quadratic forms in 4 variables are
linearly equivalent (there is a real invariant) so in U the C∞ type of the maps will
vary and none of them will be C∞ stable.

Among themany results by JohnMather are the characterization of the dimensions
for which the stable maps are dense, and the fact that C∞ topological stable maps
are dense. The question addressed by Wall now is to characterize those that are not
topologically stable.We can not go into the technical details about the varieties in the
space of jets involved, but the main idea is that certain mappings have deformations
that involve two quadratic forms, and now the question is whether two such pairs
are or not topologically equivalent. So Wall attacks with force this question, which
occupies 10 pages of the article.

(1) Normal forms: So we have now a pair q1, q2 of quadratic forms in any number
of variables (or the pencil of quadrics λq1 + μq2) and their set of common zeros is a
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cone that one naturally intersects with the unit sphere obtaining a link L . For a large
dense open set of such pencils (those for which at least one of them is non-degenerate,
say q1) he produces a linear normal form:

q1 = �r
1ai x

2
i + �s

12u j v j

q2 = �r
1bi x

2
i + �s

1

(
β j (u

2
j − v2j ) + 2α j u j v j

)

where (xi , yi , u j , v j ) are coordinates in the space Rn and bi/ai and α j ± iβ j are the
real and complex eigenvalues of the pair q1, q2, that is, the eigenvalues of the matrix
A−1
1 A2, where Ai is the matrix of qi in some coordinate system.
After observing that all the complex eigenvalues, being non-zero, can be moved

around without changing the topological type, he proceeds to the study of the diag-
onalizable real cases.

(2) For the real cases

q1 = �r
1ai x

2
i = 0

q2 = �r
1bi x

2
i = 0

Wall shows that one can assume the pairs (ai , bi ) lay in the unit circle and proves
that the link L is non-singular if, and only if, no pair of these points is antipodal.
Then he moves them into the least number of blocks of coincident points without
breaking that condition and defines the characteristic to be the (cyclic) list of the
sizes of those blocks (m1, m2, . . . , m2g+1), where g is receives the name genus of
the link. And he shows why the characteristic determines the topology of the link.

In the next section he constructs a convex polytope � associated to the link: it
is the quotient by the action of the group generated by reflections in the coordinate
planes which can be identified with the polytope:

�r
1ai ti = 0

�r
1bi ti = 0

�r
1ti = 1

ti ≥ 0

from which the link can be recovered. A deep study of the polytope leads him to
another description that should be called the Wall diagram, which he had introduced
in 1961 for another (failed) purpose.
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From this he is able to prove easily that, when g = 1, L is a product of 3 spheres
(Sm1−1 × Sm2−1 × Sm3−1) and when g > 1 to compute the homology of L , seen as
a frustum of a product of simplices, through an impressive induction feat (guided by
the Wall diagram) involving iterated Mayer-Vietoris sequences.

This complicated homology is sufficient for constructing many examples of non-
topologically stable germs from deformations of pairs of quadratic forms.

There are, however, other cases missing, in particular those corresponding to the
non-diagonalizable pairs which involve complex eigenvalues, for which Wall says
that he has not computed the homology groups and that even that alone will not
suffice. To fill this gap, Wall develops other tools involving deformations of higher
degree. After several more pages he manages to attain his goal.

It is implicit in this work a topological normal form for the non-diagonalizable
pairs of quadratic forms . (This form would be very useful to us many years later in
the description of their topology, [41]). Also, it is a curious fact that there is a link
(of a non-quadratic singularity) that is the connected sum of two products of spheres,
due to James Damon, while all known quadratic connected sums of that type known
so far have always an odd number of terms, a fact that deserves more attention.
Wall states that there is a perfect correspondence between the configuration of the
coefficients and the polytope that is valid for any number of quadrics (and is known
as the Gale diagram in polytope theory) and gives also the abstract definition of L
as a quotient of � × Z

n
2 by the natural equivalence relation dictated by the facets of

�. Many more geometric ideas that appear in this paper will certainly open ways to
other developments.

His computation of the homology of the diagonal case should certainly be studied
and contrastedwith other independent computations that were later discoveredwhich
give the splitting of the homology groups (Sect. 9.3.1), in principle for any number
of quadrics, including the most general one so far, based on a stable homotopical
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splitting of polyhedral products [6], a vast generalization of these objects, that gives
a splitting for any generalized homology theory. (See Sect. 9.5.2).

It must be said that the study of topological (un)stability of maps has been con-
tinued for decades by Wall and Andrew Du Plessis. It is condensed in the 1995 book
The Geometry of Topological Stability [33] with almost 600 pages. It would be a
hard task to follow the line that joins the results in Stability, pencils and polytopes to
those in the book.

9.3 Dynamical Systems

Intersections of quadrics have appeared several times in dynamical systems. We
recall here some of those appearances.

9.3.1 Complex Differential Equations

Camacho, Kuiper and Palis raised in 1978 a question about the topology of the
intersection of two quadratic cones that appeared in the study of Complex Dynamical
Systems [21]. Marc Chaperon generalized those dynamical systems into actions of
more general groups and also raised the same type of topological questions [22].

Unaware of the work by Wall (and also of Chaperon’s developments) I started to
look at that question in January 1984, following a suggestion by Alberto Verjovsky.

Camacho-Kuiper-Palis developed a theory of topological equivalence of linear
complex differential equations which then they applied to general non-linear systems
with critical points. We will recall only the linear case:

Consider a system of linear, complex differential equations in C
n:

ż = �z

where z ∈ C
n and � an n × n non-singular matrix of complex numbers.

If any pair of eigenvalues of � is linearly independent over R, then the system is
called hyperbolic and since this implies that they are all different, the system can be
diagonalized:

żi = λi zi i = 1, . . . n

The solutions are obviously exponentials involving a complex variable τ .

zi (τ ) = zi (0)exp(λiτ)

And it seems that there is not much more to say. Nevertheless, there is much hidden
topology in this simple system.
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The solutions (other than the solution z = 0) are parametrized by τ so they are
1-dimensional complex manifolds. There are two possibilities:

(1) When the origin is not in the convex hull of the coefficients λi , then all the
non-zero solutions have the origin in their closure and one says that the system is in
the Poincaré domain. Topologically, the system is just like the one corresponding to
the identity matrix, whose solutions are the origin and all the lines through the origin
with the origin removed.

(2) When the origin is in the convex hull of the coefficients λi , then most of the
solutions keep their distance from the origin and one says that those solutions are
Siegel leaves and that the system is in the Siegel domain . Some solutions have the
origin in their closure and are called Poincaré leaves. We can only make a sketch of
the picture by drawing the real analog in two dimensions:

There are three types of orbits: the origin, the straight half lines that approach the
origin and the curved ones that are the Siegel leaves.

The origin and the straight lines are points where the space of orbits is not Haus-
dorff: any neighborhood of the origin in the quotient space contains the classes of
the straight lines and any neighborhood of the class of a vertical line intersects every
neighborhood of the class of a horizontal one! The actual complex version is more
complicated: the Siegel leaves approach a straight leaf spiraling around it at the same
time. In fact, the velocity of their rolling is determined by the eigenvalues and is a
topological invariant, so these systems are not topologically stable!

Restricting to the Siegel leaves we have a civilized quotient: Each orbit has a
unique point that is closest to the origin, so the space of Siegel leaves can be identified
with the space of those closest points which is a subset ofCn: it is a Hausdorff space!
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Not only that, they proved that those points are the non-zero solutions of equations

�λi |zi |2 = 0

It turns out that it is a smooth manifold as a consequence of the hyperbolicity
assumption. But it is a hybrid real-complex object: a realmanifold, not a holomorphic
submanifold of the space in which it lives, but if we add to it the leaves themselves
which are holomorphic submanifolds it becomes holomorphic (an open set of Cn!)
We will see later that the fact of being hybrid is not a sin but a blessing...

For the moment, to understand its topology we can observe that, because it is
conical, it is the product of the real line times its intersection with the unit sphere,
which we will denote by Z:

�λi |zi |2 = 0

� |zi |2 = 1

In real terms, it is the intersection of three quadrics in R2n .

�ai (x2
i + y2i ) = 0

�bi (x2
i + y2i ) = 0

�(x2
i + y2i ) = 1

which can also be thought of, by adding large enough multiples of the last equation
to the first ones, as an intersection of three ellipsoids with the same center and axes,
that is an intersection of coaxial ellipsoids.

At first thought one could bet that someone should have described its topology,
sometime in the first half of theXXth century... Having found nothing in the literature
I proceeded to study them in several steps [49, 50]:

(1) Characterizing and classifying the regular cases: drawing the coefficients λi

in the complex plane, it is easy to see that the system is regular if, and only if, the
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origin is not in one of the segments joining the coefficients. This is obviously implied
by the hyperbolicity condition but is weaker, and this will be fundamental for the
classification and topological description of the varieties. It is natural to call this
condition weak hyperbolicity, WH, but I did not use this name until I learned that
Marc Chaperon had already discovered, used and named this property around 1979.

Then I showed that any such configuration of coefficients can be deformed, pre-
serving WH (and therefore the topology of Z), into a normal form consisting of
the vertices of a regular polygon with an odd number of sides, where the i th vertex
appears with a certain multiplicity ni ≥ 1: this gives a cyclic partition.

n = n1 + n2 + · · · + n2	+1

n
n

n

n

n

n

n

1

2
3

4

5

6

7

n = n1 + n2 + n3 + n4 + n5 + n6 + n7

This is enough to describe the simplest cases: if 	 = 0 thenZ is empty and if 	 = 1
then we can consider the example λ1 = 1, λ2 = 1 + i, λ3 = 1 − i with multiplicities
n = n1 + n2 + n3. Then the three real equations can be easily manipulated to obtain
the equations of three spheres with separate variables so that

Z = S2n1−1 × S2n2−1 × S2n3−1.
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For 	 > 1 it is impossible to separate the variables and one has to go deeper.
(2) The construction of the associated convex polytope P :

�n
i=1λi ri = 0, �n

i=1ri = 1, ri ≥ 0

which can be identified with the quotient ofZ by the natural action of the torus (S1)n

given by the action of each factor on the corresponding variable zi .
The combinatorics of P in fact determines completely themanifold and the action,

since they can be recovered abstractly from P × (S1)n by taking a natural quotient
determined by the faces of P . This gives a cell decomposition ofZwhere each cell is
a product of a face of P with a coordinate sub-torus of (S1)n and shows immediately
that Z is always connected.

(3) To read in the polytope the connectivity ofZ and a splitting of its homology:
After writing the chains of the cell complex and their boundaries in some examples,
a pattern emerges that gives a decomposition of the homology ofZ into a direct sum
of small pieces, one for each union of facets of P .

Hi (Z) = ⊕I⊂[n] Hi−|I |(P, PI )

PI =
⋃

i∈I

Pi and Pi = P ∩ {ri = 0}

The rough idea is that a relative cycle of (P, PI ) of dimension r , when rotated
by an adequate sub-torus of dimension s produces a cycle of dimension r + s of
Z and this is compatible with boundary operators. And then one has to do the
concrete computation from the normal form n = n1 + n2 + · · · + nr of the above
decomposition of the homology, which turns out to be without torsion.

One can see easily that Z is simply connected if, and only if, P intersects all
coordinate subspaces zi = 0, which is the case for any 	 > 1, and we will assume
this from now on. But the homology of a manifold, even if simply-connected, does
not determine its differentiable type. There is an unwritten principle in differential
topology that states: if you want to know a compact manifold, try to find and under-
stand a compact manifold it bounds. (That is how one understands the exotic spheres
discovered by Milnor: in the sphere itself there are no non-trivial homotopy invari-
ants, only when one looks at the homotopy invariants of a manifold it bounds is that
one sees something unusual).

(4) The construction of a cobordism Q, a compact manifold whose boundary is
Z : Add one more variable x0 to form the space R × C

n and assign to x2
0 one of the

coefficients in the equations of Z to build a manifold Z′ given by equations

λ1x2
0 + �n

i=1λi |zi |2 = 0

�n
i=1x2

i = 1
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And then take half of it: let Q be its intersection with {x0 ≥ 0}. Then clearly Z
is the boundary of Q. We need now to understand Q, which is a kind of intersection
of quadrics... but not of the kind we have been studying!

First of all, it does not lay in a complex space: it involves one real variable x0.
And secondly, it is only one half of an intersection.

Well, that means that we have to start over again and do steps (1), (2), (3), (4) for
the same type of intersections of quadrics, but now with real variables. And then do
steps (1), (2), (3) for the halves of these quadrics to see what happens.

So we now have to consider all real intersections of quadrics Z :

�n
i=1Ai x

2
i = 0

�n
i=1x2

i = 1

with Ai ∈ R
2 and also Z+, its intersectionwith {x1 ≥ 0}which are again intersections

of coaxial ellipsoids.
Part (1) is identical as before for both Z and Z+: weak hyperbolicity of the

configuration of coefficients Ai is equivalent to regularity and the normal form is
again a regular polygon with multiplicities given by a partition of n. So is part (2)
with polytope P:

�n
i=1Airi = 0, �n

i=1ri = 1, ri ≥ 0

only now it is the quotient of Z by the natural action of Zn
2 given by reflection on the

coordinate hyperplanes of Rn .
The cell decomposition of Z consists of P and all its images by those reflections.

This lets us describe completely one case: for the partition 5 = 1 + 1 + 1 + 1 + 1 it
is easy to see that P is a pentagon with one edge in every coordinate hyperplane.

Then Z is given by iterated reflections of P on all 5 coordinate hyperplanes of
R

5, so it is formed by 32 pentagons, 80 edges and 40 vertices, from which we obtain
its Euler characteristic and conclude that Z is the surface of genus 5.

Reflecting in only 4 of the 5 coordinate hyperplanes of R5 we obtain Z+, which
is easy to see that it is a torus minus 4 open disks.

Part (3) is more complicated because a face of P times a subgroup of Zn
2 is not a

cell. But at the level of chains the process can be mimicked algebraically to obtain
the following splitting:

Hi (Z) = ⊕I⊂{1,...,n} Hi (P, PI )

PI =
⋃

i∈I

Pi and Pi = P ∩ {ri = 0}

and the concrete computation of the above summands from the normal form n =
n1 + n2 + · · · + nr follows as in the case of the homology of Z.
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The same computation works for the homology of any half of Z of the form
Z+ = Z ∩ {x j ≥ 0}, only excluding the index j from I .

Now Z can be disconnected if P is non-empty and does not intersect a coordinate
hyperplane xi = 0.We can assume from now on that this does not happen (otherwise
each component can be treated separately). It is simply connected if, and only if, any
pair of facets of P has a non-empty intersection. To prove this last statement I used
the dual of the cell structure of Z obtained by doing all the iterated reflections of P :
Take a point y in the interior of P and reflect it on all the copies of P , thus obtaining
the vertices of an n-cubeC , one for each reflected copy of P , that is for every (n − 3)
cell of Z . Then add n edges joining y to its reflections on the coordinate hyperplanes
and reflect those edges in all possible ways, thus obtaining the 1-skeleton ofC . These
edges correspond to the n − 4 cells of Z which are the reflections of the facets of P
and for each pair of facets we have constructed an empty square and all its reflections.
Whenever two facets of P intersect fill up those squares. Continuing this way until
there are no more non-empty intersections of facets we get a polyhedron Z∗ which
has one cell of dimension d − i (where d = n − 3 is the dimension of Z ) for every
cell of dimension i of Z and the correspondence inverts the adjacency relation. Thus
Z∗ is combinatorially equivalent to the dual of the cell complex of Z defined by the
copies of P so Z∗ is homeomorphic to Z . Therefore, Z is simply connected when
the 2-skeleton of Z∗ equals the 2-skeleton of the cube, that is, when every pair of
facets intersects. The same argument shows that Z is k-connected if, and only if, any
collection of k + 1 facets of P intersect, but that follows also from the computation
of the homology. Much later, Z∗ turned out to be a special case of the polyhedral
product construction (Sect. 9.5.2).

(4) The construction of a cobordism: Let Z ′ ⊂ R
n+1 be given by equations

A1x2
0 + �n

i=1Ai x
2
i = 0

�n
i=1x2

i = 1

And we take half of it:
Z ′

+ = Z ′ ∩ {x0 ≥ 0}.

(5) The topological description of the cobordism: it can be shownwith some work
that Z ′+ is a handlebody: a connected sum along the boundary of products of spheres
with disks: Sa × Db. This requires the proof of several lemmas: that all the homology
classes of Z ′+ can be represented by embedded spheres with trivial normal bundle,
coming from the boundary, which joined by thin tubes form a handlebody H and that
the space between the boundary of H and Z is an h-cobordism. The h-cobordism
theorem implies that Z is diffeomorphic to the boundary of H . But the h-cobordism
theorem requires some hypotheses: the cobordism should be simply-connected and
of dimension at least 6 so the proof works only in with some restrictions. The result
was proved in all cases with 	 ≥ 4, for all but one of the cases for 	 = 3 and for
most cases if 	 = 2. Fortunately, this includes all the original casesZ that motivated
this study. By the end of 1984 I had the result, but it took me sometime to fill up the
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details. The result is actually true with no exceptions, as we always believed, but it
took several years and a change of point of view to complete:

For 	 = 0, Z is empty.
For 	 = 1, Z = Sn1−1 × Sn2−1 × Sn3−1.

For 	 > 1, Z = #
(
Sdi −1 × Sn−di −2

)
, where di = ni + ... + ni+	−1.

To get the topology of the manifold Z corresponding to the same partition one
just has to multiply all ni by 2 in the above formulas. (That is why I never published
the homology decomposition of Z).

In late 1986 I received a letter from Terry Wall, including a copy of Stability,
pencils and polytopes, where I learned that he had already done parts (1), (2) above,
essentially in the same way, and about part (3), he had computed the homology of Z
in a way I still have to study and understand some day. This was hard to swallow but,
on the other hand, the splitting of the homology (that was immediately generalizable
for the smooth intersection of any number of quadrics and now we know is valid for
more general spaces and has a geometric foundation), the characterization of simple
connectedness through the construction of the dual complex Z∗ and the good parts
(4) and (5) were not in Wall’s paper.

9.3.2 Higher Dimensional Group Actions

Similar actions of Rm on R
n and C

m on C
n for m > 1 can be studied in the same

way. In the work of Chaperon, the notion of weak hyperbolicity plays an essential
role in the study of those non-linear actions.

The linear actions ofCm onCn are given by m commuting linear vector fields that
generate a foliation in Cn with generic leaves of complex dimension m and again,
in some cases, there are leaves that do not have the origin in its closure called again
Siegel leaves. Their union is an open set of Cn and in each Siegel leaf there is a
unique point closest to the origin. The union of those points (which we will denote
by V) is the space of Siegel leaves of the system. It is invariant under the action of
C

∗ and is given by the non-zero solutions of the equations

��i |zi |2 = 0

with�i ∈ C
m . To study this space it one intersects it with the unit sphere� |zi |2 = 1

to obtain, generically, a smooth compact manifold, which, we will denote again by
byZ.

This is clearly the quotient of V under the action of R+. We can take also the
action ofC∗ and get a manifold in complex projective space, but that is another story:
their relation with the complex flow make them a source of important examples in
the theory of Complex Manifolds (see Sect. 9.4.1).

From the point of view of topology, this can be seen as an intersection of real
quadrics. So is the case for certain intermediate objects defined by Laurent Meersse-
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man, whose equations have complex variables, but real coefficients:

� Ai |zi |2 = 0

� |zi |2 = 1

with Ai ∈ R
m , which we will denote by ZC. They are now known as moment-angle

manifolds and we will have a lot to say about them in this and later sections in
relation with dynamical systems, geometry and their role in Toric Topology and
many generalizations.

So we know that it is enough to deal with the topology of the intersections of
quadrics that appear in the real case (coming from linear actions of Rm on R

n). We
will see that many of the constructions for the case m = 2 can be generalized, but the
classification of the regular cases turns out to be practically impossible for m ≥ 3.

So we take all real intersections of quadrics Z :

� Ai x
2
i = 0

�x2
i = 1

with Ai ∈ R
m , that are known now known also as real moment-angle manifolds or

as intersections of coaxial ellipsoids in R
n . We try to follow the same steps as in the

case m = 2:
For parts (2), (3) and (4) we have exactly the same general results with the same

formulas as for the case m = 2 considered in the previous section.
As for part (1), characterizing the regular cases is easy:Weak hyperbolicity means

that the origin is not in the convex hull of any set of m or less coefficients, and is
equivalent to the fact that the system of equations is regular, so under this hypothesis
Z is a smooth manifold of dimension d = n − m − 1.

But classifying them is a very different story. It is still true that, for all m, anyWH
configuration can be assumed to be in the unit sphere ofRm and then deformed into a
primitive onewithmultiplicities, but there are just toomany primitive configurations.
Just image, for m = 3, any generic triangulation of S2 and take the configuration
formed by its vertices, which we can assume that satisfies WH. If in the interior of
a triangle there is the antipode of some other vertex, then no two of the vertices of
that triangle can be put together without breaking WH. If there is no such vertex,
well, just add to the configuration a generic point that does have its antipode in that
triangle. The result will be an arbitrarily complicated configuration that can not be
reduced to a simpler one with multiplicities.

With the failure of step (1) we cannot expect to describe all possible topological
types of Z , it seems that we can only look at the simplest examples. But, still, some
families of them have been detected and studied:

An interesting family with m > 2 was introduced to us by Hirzebruch in 1986:
in our terms, they are obtained by taking P to be the n-gon embedded in R

n+ with
an edge in each coordinate hyperplane. Then the associated intersection of quadrics



9 From Singularities to Polyhedral Products 477

is formed by 2n faces, n 2n−1 edges and n 2n−2 vertices, so it is the surface of Euler
characteristic 2n−2(4 − 2n + n) = 2n−2(4 − n) and genus 2n−3(n − 4) + 1. Some
other surfaces, with non-diagonal quadratic equations were also found in joint work
with Vinicio Gómez Gutiérrez [40].

The varieties Z we had described for m = 2 have also a rather simple topology,
no much more complicated than that of a higher dimensional analog of a compact
orientable surface. One could also take products of the known ones any number of
times, to obtain more examples for m > 2 and for sometime it looked as if they
could be all like this, or at least that they would all have free homology groups. For
sometime, nothing moved.

Around the turn of the century the paper by Frédéric Bosio and Laurent Meersse-
man, Real quadrics in C

n , complex manifolds and convex polytopes [15], in the
context of moment-angle manifolds ZC, showed that this was not true: they showed
that for any simplicial complex K one can find a simple polytope P and a set of
its facets I such that the quotient P/PI has the homotopy type of K . This implies
in particular that the associated ZC can have any amount of torsion in its homol-
ogy groups. This is true also for the associated Z in the corresponding summand
Hi (P, PI ) of its homology group.

But the paper [15] not only proved that the problem was more complicated than
we had thought, it also opened many doors to attack it: a formula for the product in
the cohomology ring of ZC, a very beautiful theory of cobordism of simple polytopes
to describe the passage from one type of simple polytope to another one, including
the description of the simplest changes of the topological type of ZC (wall-crossing)
when the polytope suffers an elementary transformation between two different com-
binatorial types (one of such transformations is the truncation of a vertex of the
polytope), as well as many more ideas and questions. Among them, they brought
attention to a special family of polytopes, called dual-neighbourly: a simple poly-
tope P of even dimension d = 2p is called dual-neighbourly if every collection of p
facets of P has a non-empty intersection (Cf. [17, p. 92] and [15, p. 114]). They are
dual to the much studied neighbourly ones. Studying the cohomology ring of ZC for
those polytopes, they conjectured that they were connected sums of sphere products,
just like in the case m = 2. But it took sometime and a change of point of view to be
able to use the ideas and to attack the questions contained in this paper.

What we knew so far was enough for doing somemorework in dynamical systems
as wewill see now, and in Complex Geometry as wewill see in the following section.

9.3.3 Generalized Hopf Bifurcations

In the classical Poincaré-Andronov-Hopf bifurcation, an attracting fixed point of a
flow in R2 bifurcates into an attracting cycle. Answering a question by Jean Diebolt,
Marc Chaperon and his Ph.D. studentMathilde Kammerer-Colin deVerdière showed
that it was possible in higher dimensional spaces to obtain attracting spheres from
a fixed point and, they also obtained products of any number of spheres. “Spheres
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and products of spheres” sounded familiar to me. After I suggested that there could
be other moment-angle manifolds playing the same role I was invited to join them.
First we obtained some, and finally we obtained all of them [24].

A brief idea of the existence of such a bifurcation is explained as follows: Take a
non-empty intersection of quadrics Z :

�n
i=1Ai x

2
i = 0

�n
i=1x2

i − 1 = 0

with Ai ∈ R
m satisfying the weak hyperbolicity condition.

Then the vector field

X = �n
i=1xi

(
1 − �n

j=1x2
j − �n

j=1Ai · A j x
2
j

) ∂

∂xi

has Z as an attracting normally hyperbolic point-wise invariant manifold.
It took us some time to realize that X = −1/2∇� where � is the sum of the

squares of the left sides of the equations of Z above. This simplified the proof of the
previous statement considerably [24].

Now consider a given a family of vector fields ξu(z) onCn with parameter u ∈ R
q

such that ξ0(0) = 0 and the eigenvalues of Dξ0(0) are all purely imaginary, different
and non-zero. Then we can assume by changes of coordinates in Cn depending
on the parameter u that ξu(0) = 0 and that Dξ0(0) is a linear diagonal vector field
L(x) whose diagonal terms are the eigenvalues. In other words, that it represents a
collection of uncoupled linear oscillators.

Applying the theory of normal forms one can assume now that, for all j , the j th
coordinate of ξu is, up to terms of order greater than 3, of the form

z j
(
λ j (u) + iμ j (u) − �n

k=1(a jk(u) + ib jk(u))|zk |2
)

where λ j (u), μ j (u), a jk(u) and b jk(u) are smooth functions such that a jk(0) =
1 + A j · Ak . Assume also that for some vector v0, we have Dλ j (0)v0 = 1.

A deep theorem by Chaperon [23] implies the following: Assuming some simple
non-resonance conditions on the eigenvalues, that q ≥ n and some generic conditions
on the λ j , a jk , then there is an open set of values of u that has 0 in its closure and
contains an open cone containing v0 such that ξu admits an invariant, attracting,
normally hyperbolic manifold, diffeomorphic to the moment-angle manifold:

�n
i=1Ai |zi |2 = 0

�n
i=1 |zi |2 = 1
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For the proof in a more general setting, including the version of the above result
in the case of transformations instead of flows, as well as many other results about
the birth of invariant manifolds from fixed points, the reader is referred to [23].

With some of the ideas above, Genaro de la Vega and I constructed a theoretical
dynamic model generalizing the famous system by May and Leonard to any number
of species in competition [30]. In the May-Leonard system each of three competing
species is dominant for some time and after a while its population decreases, letting
another species be the dominant one until it comes the turn of the third one to
dominate, and that process repeats cyclically, again and again. The process can be
represented in the first octant as a dynamical system where all trajectories within its
interior tend towards the unit simplex and those in the simplex itself spiral towards
its border.

As in the case 5 = 1 + 1 + 1 + 1 + 1,whose polytope is a regular pentagon inR5+,
we constructed an embedding of the regular n-gon inRn+ with the same properties and
then define the dynamical system which has it as an attracting point-wise invariant
normally hyperbolic manifold. Then, adding a (small) vector field with a repelling
fixed point in the center of the n-gon from which all the other trajectories escape
spiraling toward the borders, one obtains a system with a slightly curved invariant
n-gon (due to the normal hyperbolicity) on which the dynamics is of the same type,
thus making each species in his turn to be dominant over the other ones.

The intersection of quadrics corresponding to this regular n-gon is invariant under
the dihedral group. These surfaces are well-known in the theory of Riemann surfaces
as certain complete intersections of complex quadrics. Our version led to the ques-
tion of finding higher dimensional ones with this symmetry and from there to an
interesting development with unexpected connections with other fields of pure and
applied Mathematics associated to the Discrete Fourier Transform matrix ([54]).

It would be interesting to produce some simple examples of bifurcations where
Z is a sphere to illustrate the possibilities of this type of bifurcation in applications.

9.4 Geometry

Following ideas from Borcea, Haefliger and Loeb-Nicolau, Alberto Verjovsky and
I constructed from the intersections of quadrics Z related to the Siegel leaves of
an action of C a family of compact, complex manifolds that in most cases are not
symplectic [56]. A generalization by Laurent Meersseman [59], now called LV-
M manifolds, that includes all even-dimensional moment-angle manifolds, has been
much studied and hasmany implications that go from the classicalComplexManifold
Theory to a recently developed Quantum Toric Geometry. The reader will find an
excellent and more detailed survey by Alberto Verjovsky in [73].

The odd-dimensional moment-angle-manifolds admit a contact structure, and so
doother non-diagonal intersections of quadrics constructedbyBarreto andVerjovsky.
Also, the moment-angle-manifolds appear in Symplectic Geometry as Lagrangian
submanifolds with special properties.



480 S. López de Medrano

9.4.1 Complex Geometry

The Classical Examples and Their Deformations

The first example of a compact complex manifold which is not algebraic was given
by Hopf in 1948. It is constructed as follows: Given a real number r > 1, we can take
in C

n\0 the action of the infinite cyclic group given by m · z = rm z. The quotient
manifold is diffeomorphic to S2n−1 × S1. Since the action is holomorphic and totally
discontinuous, this manifold inherits a natural complex structure. To see it is not
symplectic, and therefore cannot be algebraic, we can use the following well known
facts:

• On every symplectic manifold M of real dimension 2n there exists an element
x ∈ H 2(M) such that xn = 0 in H 2n(M).

• Every projective, algebraic manifold admits a Kähler structure and, in particular,
it admits a symplectic structure.

For the Hopf manifolds, since H 2(S2n−1 × S1) = 0 for n > 1, they cannot be
symplectic.

Calabi and Eckmann [20] generalized Hopf’s construction to give complex struc-
tures on S2p−1 × S2q−1, which are again non-symplectic for the same reason. They
used the holomorphic bundle with fibre an elliptic curve

S2p−1 × S2q−1 → CP p−1 × CPq−1

The Hopf manifold was constructed using a dynamical system. But nobody used
this fact until Haefliger, inspired by Arnol’d [2] and completing results by C.Borcea,
generalized the construction by taking the quotient of Cn\0 by any action of the
infinite cyclic group which is holomorphic and totally discontinuous. For all these,
the quotient is again topologically S2n−1 × S1. Haefliger [43], using the Poincaré-
Dulac Theorem, obtained a complete description of these manifolds and their small
deformations, showing in particular that they come either from linear actions, like

m · (z1, . . . , zn) = (αm
1 z1, . . . , α

m
n zn)

(where αi are complex numbers with |αi | > 1), or from certain non linear deforma-
tions of them when there are resonances among the αi .

Jean Jacques Loeb andMarcel Nicolau extended Haefliger’s results to the Calabi–
Eckmann situation, thus obtaining a very complete description of a large class of
complex structures on S2n−1 × S2m−1 together with their deformations [47]. This
was based on the study of dynamical systems in the Poincaré domain which are
transversal to that product of spheres and give different complex structures on it
when parameters vary.
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The LV-M Manifolds

Whenwe learned in a conference about thework of Loeb-Nicolau, AlbertoVerjovsky
immediately suggested the construction of complex manifolds from dynamical sys-
tems in the Siegel domain and soon we were able to do that for m = 1, obtaining
a class of non-Kähler compact, complex manifolds, called now LV manifolds, that
included all the classical examples and many, many more. Soon after, Loeb and
Nicolau studied the complex geometry of them [48].

Then LaurentMeersseman extended the construction for allm producingwhat are
now known as LV-M manifolds, and went a lot deeper in the analysis of the complex
geometry: he studied the existence of meromorphic functions and 1-forms, holomor-
phic vector fields, transverse Kähler foliations, analytic subsets and holomorphic
submanifolds, Hodge numbers,...

Later, in jointworkwithAlberto [60] he showed that, under a rationality condition,
the leaves of the transverseKähler foliations are compact and are actually the fibers of
holomorphic bundles over toric varieties, actually over any toric variety with at most
certain simple singularities. This generalizes enormously the classical construction
of Calabi–Eckmann. All this experience has even led Meersseman to obtain new
general results in the classical theory of deformations of complex structures.

Recalling thatV is the space of Siegel leaves of a linear action ofCm onCn and that
it is transversal to the foliation by them on an open set, we can use an observation by
Haefliger stating that this implies that it has a complex structure. To get a compact,
complex manifold we can take its quotient by the action of multiplying by a real
number bigger than one, obtaining a complex structure on Z × S1 (as in the Hopf
manifolds) or, more interestingly, by taking the quotient ofV by the scalar action of
C

∗, i.e., by projectivizing it. So we obtain a projective moment-angle manifold:

PZ = V/C∗ = Z/S1 ⊂ CPn−1

We can also view the complex structure of PZ as follows: the foliation by Siegel
leaves is invariant under the action of C∗ so defines a holomorphic foliation of an
open set in CPn−1 to which PZ is transversal.

PZ is given by homogeneous equations in CPn−1:

��i |zi |2 = 0

with �i ∈ C
m , but, again, it is not a holomorphic submanifold of CPn−1.

These are the LV-M manifolds.
They include all the linear classical examples mentioned above (the Hopf and

Calabi-Eckman manifolds and their linear deformations) which we know are not
symplectic.

Another source of known LV-Mmanifolds is the following: when amoment-angle
manifold ZC is odd dimensional, it can be considered (in many ways) as the real
version of one with complex coefficients and quotient an LV-Mmanifold. But, when
it is even dimensional, Meersseman observed that ZC × S1 is odd dimensional, so
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its projectivization is an LV-M manifold. But its projectivization is ZC itself! So we
have many examples of LV-M manifolds, in particular, many that are 2-connected,
so they are compact complex manifolds that are obviously not symplectic.

The LV-M manifolds also include all elliptic curves and all the complex tori
(S1)2k . All of them are complex manifolds that are Kähler and therefore symplectic,
but appear here embedded in CPn−1 in a non-holomorphic way. They are just real
algebraic smooth subvarieties. It can beproved that these are the onlyLV-Mmanifolds
that admit a symplectic structure.

The topology of LV-M manifolds, other than the ones that are moment-angle
manifolds, is much more complicated than those we studied above. In a few cases
they are connected sums of some sphere products plus a sphere bundle. But it seems
that most of them have a cohomology ring that is not that of a connected sum.

Many developments associated with LV-M manifolds followed, among others:
A generalization of LV-Mmanifolds by Frédéric Bosio, now called LV-M-Bman-

ifolds [14].
The interpretation of the LV-M-Bmanifolds in the context of Geometric Invariant

Theory (GIT) quotients by Cupit-Foutou and Zaffran [27].
The work on almost complex structures by Demailly and Gaussier [31], where

LV-M-B manifolds play an important role.
The tranversally Kähler foliation on the LV-M manifolds when the rationality

condition does not apply has created a lot of interest among geometers, generating
new geometric objects like quasifolds by Prato [67], via symplectic geometry, and
Kähler quasifolds by Battaglia and Prato [11]. Recent work by Battaglia and Zaffran
appears in [12]. These foliations, understood as non-commutative toric varieties,
are the basis of the new Theory of Quantum Toric Geometry by Katzarkov et al.
[45, 46].

9.4.2 Contact and Symplectic Geometry

If the even dimensional moment-angle manifolds do not admit symplectic structures
(except for a few, well-determined cases), all the odd-dimensional ones (and large
families of intersections of ellipsoids) admit contact structures. Additionally, there
are contact structures in a family of concentric intersections of ellipsoids. And then
moment-angle manifolds do appear in symplectic geometry as lagrangian submani-
folds of certain types.

All Odd-Dimensional Moment-Angle Manifolds Admit Contact
Structures

If ZC is odd-dimensional then it admits a contact structure [8].
This is proved by showing that ZC is an almost-contact manifold. A recent theo-

rem by Borman et al. ([13]) implies the result. (Recall that a (2n + 1)-dimensional
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manifold M is called almost contact if its tangent bundle admits a reduction to
SU (n) × R). The proof uses the S1-bundle map ZC �→ ZC/S1 = PZ and the fact
that this quotient is a LV-M and therefore admits a complex structure. Therefore,
ZC has an atlas modeled on C

n−2 × R. Computing the changes of coordinates of
the charts one sees that their differentials lie in a subgroup of GL(2n − 3,R) that
retracts by Gram-Schmidt onto SU (n − 2) × R.

Large Families of Odd-Dimensional Coaxial Intersections of Ellipsoids
Admit Contact Structures

First consider the odd-dimensional coaxial intersections of ellipsoids that are con-
nected sums of spheres products:

An odd dimensional product Sm × Sn of two spheres admits a contact structure
by results of Eliashberg [34] and Giroux [38]. And it was shown by Meckert [58]
and more generally by Weinstein [75] (see also [34]) that the connected sum of
contact manifolds of the same dimension is a contact manifold. Therefore all odd
dimensional connected sums of sphere products admit contact structures.

Additionally, it was proved by Bourgeois [16] (see also Theorem 10 in [38]) that if
a closedmanifold M admits a contact structure, then so does M × T 2m . Therefore, all
intersections of ellipsoids Z × T 2m , where Z is a connected sum of sphere products,
admit contact structures.

As we shall see in Sect. 9.5.2, there are very many intersections of coaxial ellip-
soids are connected sums of sphere products so all the odd-dimensional ones admit
contact structures and so do their products with even dimensional tori [8].

A New Family of Odd-Dimensional Concentric Intersections
of Ellipsoids That Admit Contact Structures

In [9] there is a different construction of contact structures on certain odd-dimensional
concentric but not coaxial intersections of ellipsoids.

w2
1 + �n

j=1λ
1
j
|z j |2 = 0

. . .

w2
m + �n

j=1λ
m
j
|z j |2 = 0

�m
k=1|wk |2 + �n

j=1|z j |2 = 1

The proof uses a geometric heat flow due to Altschuler and Wu [1] to deform a
1-form into a contact structure. The topology of these new objects has not yet been
studied.
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Intersections of Quadrics as Lagrangian Submanifolds

Intersections of ellipsoids do play a role in Symplectic Geometry as special types of
Lagrangian submanifolds or constitutive elements of them:

(a) A Lagrangian submanifold L ⊂ C
n is called H-minimal if its volume is critical

under Hamiltonian deformations. They are the analogs of minimal submanifolds in
Differential Geometry. Mironov and Panov [61] constructed embeddings of many
intersections of quadrics as Lagrangian H-minimal submanifolds.

(b) Another type of Lagrangian submanifold called monotone (see [63] for a
definition) have been constructed byVardanOganesyanwith the help of intersections
of ellipsoids. He constructs interesting examples of such submanifolds that are fibre
bundles over tori of different dimensions, whose fibers are products of spheres,
connected sums of products of spheres like #5(S2p−1 × Sn−2p−2), or the surfaces
of genus 5 or 17. Some of these manifolds have different embeddings as monotone
Lagrangians with different minimal Maslov index. See also [64].

9.5 To the Polyhedral Product Functor

9.5.1 Coxeter Groups, Small Covers and Toric Manifolds

Unaware of the work described in the previous sections, Michael Davis and Tadeusz
Januszkiewicz, in the very important article Convex polytopes, Coxeter orbifolds
and torus actions [29], give the abstract construction of the intersections of coaxial
ellipsoids and moment angle manifolds that was mentioned in the previous sections,
only in a more general setting.

The main objective of the article is the study of certain similar spaces constructed
from simple polytopes called small covers and toric manifolds which are seen as real
versions of the classical toric varieties of Complex Algebraic Geometry. They are
defined as quotients of products of the polytope times a power ofZ2 or a torus. These
constructions are extended in Chap.2 of the paper to simple polyhedral complexes
(not necessarily convex) seen as duals of simplicial complexes and these sections
cover the first half of the paper.

It is only in Sect. 4 that spaces that include the ones we have denoted Z and
ZC appear in Sect. 4.1, as quotients of the product of a simple polyhedral complex
P times a group that can be a power of Z2 or a torus and are denoted generically
by Z . The space corresponding to the group Z2 is identified, in the case that P is
a simple polytope, as the universal abelian cover of the polytope seen as a right-
angled orbifold. Otherwise, these spaces receive no name. (It was later that the now
generally accepted namemoment-angle complexeswas given to them and the letter Z
with more or less ornaments is used for them and their variants). These spaces are not
mentioned in the very long and detailed introduction to the article, their properties
are not much studied and no examples are discussed. One gets the impression that

http://dx.doi.org/10.1007/978-3-030-78024-1_2
http://dx.doi.org/10.1007/978-3-030-78024-1_4
http://dx.doi.org/10.1007/978-3-030-78024-1_4
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they are conceived mainly as tools for constructing other very interesting spaces
and proving some very deep results about them, such as the computation of their
cohomology groups and rings, in particular the analog of the Danilov-Jurkiewicz
Theorem about toric varieties. The article also connects these spaces with Coxeter
groups and with symplectic manifolds constructed by Delzant.

This article is usually called seminal for a very good reason: it has generated an
enormous quantity of very important work on different areas of Algebraic Topology
and other fields. The amount of this work generated by the slightly mentioned objects
Z is comparable to the one generated by themain objects of study in the article (small
covers and toric manifolds). It would be difficult to determine which of the two has
had a greater offspring. A few years later, in a classic on the subject, the book by
Buchstaber and Panov [18], we see already the two types of objects in equal terms.
Later classics like [6, 15, 32] deal only with moment-angle manifolds or moment-
angle complexes.

The relation between these objects and the intersection of quadrics was first men-
tioned in two papers, coming from the two different sides: the published version of
the paper by Bosio and Meersseman [15] and the paper by Denham and Suciu [32],
always in the context of moment-angled manifolds ZC.

One can also observe that the paper by Wall has had repercussions in Singular-
ity Theory, Algebra and Algebraic Geometry, while the papers on intersections of
quadrics have had repercussions inDynamical Systems, ComplexGeometry and Sin-
gularity Theory. But for a long time neither of them attracted the attention of algebraic
topologists. Only decades after their first appearance, when the relation between the
two points of view was stablished, have they been recognized as precursors of the
algebraic topology of polyhedral products .

9.5.2 The Polyhedral Product Functor

We cannot give a complete history of the development of the subject after [29], we
refer the reader to the books by Buchstaber and Panov [18, 19], to the article [6] by
Anthony Bahri, Martin Bendersky, Fred Cohen and Samuel Gitler about polyhedral
products, which are generalized moment-angle complexes and the recent survey [7]
and its bibliography.

Various precursors of the construction ofmoment-angle complexes and their split-
tings converge in [6] to the polyhedral product functor construction,2 whose defini-
tion we quote:

Let X = {(Xi , Ai )
m
i=1} denote a set of pairs of CW–complexes.

Let K denote an abstract simplicial complex with m vertices labeled by the set
[m] = {1, 2, . . . , m}.

For every simplex σ in K , let Xσ = ∏m
i=1 Yi ⊂ ∏m

i=1 Xi where

2 Another precursor discovered later was Coxeter [26] who built surfaces by essentially the same
procedure.



486 S. López de Medrano

Yi =
{

Xi if i ∈ σ

Ai if i ∈ [m] \ {σ }.

The polyhedral product is

Z(K ; X) =
⋃

σ∈K

Xσ

In other words, Z(K ; X) is the set of points (x1, x2, . . . , xm) ∈ ∏m
i=1 Xi such that

the set of i such that xi is not in Ai is a simplex of K . (A point in Xσ may have more
points in Ai for i /∈ σ , but that only means that the set of points not in Ai is smaller
than σ and therefore a simplex of K ). The formal definition above is important for
considering Z(K ; X) as an homotopy colimit.

This is a functor from the category simplicial complexes with morphisms simpli-
cial embeddings to the category of CW -complexes and continuous maps.

This definition includes all the spaces we have defined above (Z , ZC, Z+) and
many more that might appear in the future, as well as the spacesZ and many others
like, for example, the complexes Z(K ; (X, A)) constructed in [32], which is the case
where all the spaces (Xi , Ai ) are equal.

To see this in the case of an intersection Z with an associated polytope P of
dimension d with n facets, one on each coordinate hyperplane, we take K to be the
dual of the boundary of P . Then Z is homeomorphic to Z(K ; (D1, S0)): the above
construction coincides with the that of the dual cell complex Z∗ of Sect. 9.3.1. Also
one has

ZC = Z(K ; (D2, S1))

Z+ = Z(K ; ((D1, {1}), (D1, S0), . . . , (D1, S0))

So these complexes include also the half-intersections Z+ that are not included
when all the (Xi , Ai ) are the same. But in the same way they include fourths, eights,
etc., and any manifolds with corners that may appear.

But here come the best part of all: in [6] there is a geometrical splitting of the sus-
pension of Z(K ; X) valid in all cases, in terms of the suspensions of simpler spaces!
This is a fantastic confirmation and generalization of the splittings of homology we
mentioned in Sects. 9.3.1 and 9.3.2. The splitting, being geometrical, extends to any
generalized homology or cohomology theory, is compatible with stable cohomology
operations of any kind or order, etc.

For our case, where K is the dual of the boundary of the simple polytope P the
result of the splitting is that there are homotopy equivalences:

�Z = �(Z(K ; (D1, S0))) →
∨

I /∈K

�2|K I |.
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�ZC = �(Z(K ; (D2, S1))) →
∨

I /∈K

�2+|I ||K I |.

where KI ⊆ K is the full sub-complex of K consisting of all simplices of K which
have all of their vertices in I .

Polyhedral products have had enormous impact in Algebraic Topology, especially
in homotopy theory, which we cannot describe. We refer to the recent survey [7].
We will try to explain only some of the consequences in the study of the topology of
intersections of quadrics.

The pair of articles [6, 15] gave a new life to the study of the topology of intersec-
tions of quadrics. Combined, they showed that the problemof describing the topology
of them was unthinkable: by the realization theorem of [15] (see Sect. 9.3.2), and
the homotopy splitting theorem of [6], any stable cohomological operation, primary,
secondary or of any order can appear non-trivially in an intersection of ellipsoids.3

But more than any of the deep technical results that they contained, these articles
were for us an incredible source of questions and ideas, a way of looking not at each
example one by one, but of looking at the whole of them and their connections.

Having discovered the connection between our objects of study, and after some
time of adapting to each other’s point of view [53], Samuel Gitler and I were able to
prove the Bosio-Mersseman conjecture (see the end of Sect. 9.3.2) by starting with
the real case: P is a dual-neighbourly polytope of dimension 2p, or equivalently,
Z(P) is (p − 1)-connected, so it has homology in dimension p only (besides the 0
and top dimensional ones) and itmust be torsion-free.We proved in [37], adapting the
techniques of the case m = 2 to this more abstract situation (constructing the cobor-
dism, representing its homology by embedded spheres coming from the boundary
and applying the h-cobordism theorem) that, if p = 2, then Z(P) is diffeomorphic
to a connected sum of copies of S p × S p.

Then we showed that certain operations on P preserved the fact that the corre-
sponding Z(P) are connected sums of sphere products:

(a) The book construction P �→ P ′ on any simple polytope P consists in taking
the product P × [0, 1] and one of its facets Fi = P ∩ {xi = 0} and, for each given
point u ∈ Fi , identifying all points (u, t) for t ∈ [0, 1] into a single point. In terms
of the configuration of coefficients it corresponds to repeating the coefficient Ai as
a coefficient of a new variable. The proof that this operation preserves connected
sums follows the same techniques of case m = 2 and also requires dimension and
connectivity hypotheses. So one can consider succesive book constructions along
different facets which amounts to giving multiplicities to the Ai as before.

In a particular case, if P is dual-neighbourly of dimension d = 2p and we give
multiplicity 2 to the coefficients of Z we obtain ZC that is therefore also a connected
sum of sphere products and this proves the original Bosio–Meersseman conjecture
for p ≥ 2 (when p = 2 we can start from P ′). But this is only one case of an infinite

3 For sometime, it had been known that non-trivial triple Massey products can appear and are
frequent [10, 32].
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lattice of polytopes obtained by successive book constructions on different facets
starting from P or P ′ whose associated manifolds are connected sums if d ≥ 4.

(b) The truncation of a vertex of P gives a new polytope Pv and its corresponding
manifold Zv. Zv is diffeomorphic to Z#Z#(2m−d − 1)(S1 × Sd−1).

(b’) The truncation of a vertex of P followed by the book construction on the
new facet produces a new polytope (Pv)

′ and the corresponding manifold (Zv)
′, it

preserves simply connectedness and we have a complete description of its topology
in terms of that of Z similar to the one in (b).

(c) The truncation of an edge of P gives a new polytope Pe and its corre-
sponding manifold Ze. If Z is simply connected, then Ze is diffeomorphic to
Z#Z#(2m−d−1)(S2 × Sd−2)#(2m−d−1 − 1)(S1 × Sd−1). This can be false if Z is not
simply connected.

(c’) The truncation of an edge of P followed by the book construction on the new
facet produces a new polytope (Pe)

′ and its corresponding manifold (Ze)
′. If Z is

simply connected, then an explicit geometrical description like the one in c) can be
given of (Ze)

′, which turns out to be again simply connected.
Starting from P or P ′, operations (b), (b’), (c) and (c’) can be applied iteratively

any number of times each with only one condition on its order: operations (c) and (c’)
can not longer be applied after one of the operations (b) or (c), because they make
the manifold non-simply connected. The topology of the final result is a connected
sum of sphere products that can be completely described in terms of that of Z .

Starting from P we can also apply iteratively operations (a), (b’) and (c’) in any
order and we obtain always polytopes whose associated manifolds are connected
sums. At the end one can also add one operation (c) and, after that, any number of
operations (b).

But this is still not a complete description of the topology of those connected
sums: we would need to know how many terms and which products appear.

Recently I proved that for an even dimensional dual-neighbourly polytope P of
dimension d = 2p at least 6 and and n = d + m + 1 facets, the number of terms in
the connected sum, which we can naturally call the genus of Z(P) and will denote
by g(p, m), can be expressed in any of the following equivalent forms [55]:

(i) g(p, m) = �m−1
j=0

( j+p
p

)
2 j

(ii) g(p, m), as a sequence parametrized by m, has generating function

z

(1 − z)(1 − 2z)p+1

For p = 1 this gives the gives the formula for the surfaces and for p = 2 we
get the conjectured genus of the 4-dimensional ones, in which case it has not been
proved (but must be true) that they are connected sums of sphere products. For small
m these sequences appear in the Sloane Encyclopedia of Integer Sequences [72] with
different combinatorial and geometrical interpretations.

Operation (a) does not change the genus and Z ′ is the connected sum of g(p, m)

copies of S p × S p+1. But when applied more times and in different facets, or after
other of the operations, it is difficult to have control of which sphere products appear



9 From Singularities to Polyhedral Products 489

because one has to understand the facets of P and even so the splitting of the homol-
ogy may render the computation complicated. So we can only determine the genus
of the result. The reader may try the case where P is the hexagon.

The good news is that there is a very large number of dual-neighbourly polytopes:
experts in the field consider that most of the simple polytopes are neighbourly (which
is verified by explicit computations) and it is a fact and their number grows very fast
with their dimension. See [42, pp. 129, 129a and 129b], [77, p. 402, Sect. 4] and
[66]. And these are only the roots of infinite lattices of non-neighbourly polytopes
stemming from each of them by applying the book construction on the different
facets. If we apply on them iteratively the truncation operations we will get a really
enormous quantity of intersections that are connected sum of sphere products and
for a large number of them we can specify completely their topology.

We also solved another question from [15], when we showed, computing the
cohomology rings, that the manifolds Z and ZC associated to the truncated cube are
not connected sums and we showed that there is an essential difference between the
two, thus contradicting a published result. At the end we announced, prematurely,
a formula for the cohomology ring of any Z , but the proof ran into some technical
problems and then the Bahri–Bendersky–Cohen–Gitler team obtained a version in
their own language. Matthias Franz [35] has recently proved the announced formula.
I still hope to complete one day its geometrical proof in the spirit of our old splitting
of the homology.

With this new perspective, in joint work with Vinicio Gómez Gutiérrez, we were
able to use our version of Wall’s topological normal form

q1 = �r
1ai x

2
i + �s

12u j v j

q2 = �r
1bi x

2
i + �s

1(u
2
j − v2j )

to describe the topology of all the diagonalizable and non-diagonalizable smooth
intersections (i.e., intersections of concentric ellipsoids ) for m = 2 [41].

They include the unit tangent bundle of the sphere, products of two spheres and
connected sums as before, including cases with three terms, as well as the ones in
the diagonal case with s added to the dimensions of the spheres in each term.

For the proof we used another operation consisting in adding new terms to the
equations (passing from s to s + 1) and the truncationmethod inherited from [15], but
with our own touch, to deal with all the remaining cases, including the diagonal ones
(intersections of coaxial ellipsoids) not proved in 1984. (While writing this I realize
that this is a kind of geometric version of Wall’s frustum method for computing the
homology (see Sect. 9.2).

Other results obtained were the construction of examples for equivariant coho-
mology [36], the study of the smoothness in some intersections of quadrics with
dihedral symmetry [54] originated in the work about the generalized May-Leonard
system (9.3.3) and the study of the manifold associated to the dodecahedron [3]. A
different approach [39], based on the theory of oriented matroids allows us, among
other things, to deal with some 4-dimensional cases. There is still much work to do
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in the description of all those intersection of quadrics involved, some of which are
non-diagonal.

9.6 Back to Singularity Theory

Recall the varieties Z of Sect. 9.3.1, whose equations can be written in the form
�λi zi z̄i = 0, �zi z̄i = 1. The study of these varieties suggested several new devel-
opments in Singularity Theory involving polynomials in complex variables zi and
their conjugates. One of these developments was the important work of José Seade
about singularities of varieties and of vector fields on them, in the spirit of theMilnor
Fibration Theorem [69, 70] and the more recent [71]). This work (and the article
[44] I wrote with my Ph.D. student Luis Hernández de la Cruz, more in the spirit
of the classical classification of singularities), initiated a long list of articles, mainly
by Seade himself, by José Luis Cisneros and by Mutsuo Oka (starting with [25] and
[65]) and their collaborators and followers.

But the real varieties Z can also been studied in the spirit of Singularity Theory.
The cones on the smooth ones can be seen as varieties with an isolated singularity
which asks to be smoothed and one can also study the singular intersections of
quadrics Z (for which there is also a formula for the splitting of its homology) and the
smoothings of their simplest cases. The following generalizes to every m published
results about the case m = 2 [51, 52]. Some of the those results will appear in [4].

9.6.1 Quadratic Cones

Now we consider a quadratic homogeneous mapping:

F : Rn → R
m

F(x) = n
�

i=1
Ai x

2
i

where Ai ∈ R
m .

For B ∈ R
m , let VB = F−1(B) and ϕB(x) = |x |2 restricted to VB . So V0 is a cone

with a singularity at the origin, but it is an isolated one when (WH) is satisfied by
the coefficients Ai .

We shall consider also VB,R , the intersection of VB with the ball |x | ≤ R:

�n
1 Ai x

2
i = B

�n
1 x2

i ≤ R2
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F has a singularity at x = 0 which under (WH) is the only singularity in V . To
describe the generic singularities of ϕB(x) we need stronger conditions: not only
hyperbolicity (meaning that no m of the Ai are linearly dependent, as in the first
dynamical example Sect. 9.3.1) but strong hyperbolicity (SH) meaning that also no
m + 1 of the Ai are affinely dependent.

The singularities of ϕB on VB correspond to the intersections of the ray through
B with the simplices spanned by m or less of the Ai . Under (SH) they would be a
finite number of non degenerate singularities.

Rays and sectors of smoothness. Here VB,R is smooth and ϕB is Morse.

Then the diffeomorphism type of VB,R does not change with R for R sufficiently
large and it would be that of a half intersection in R

n+1:

�n
0 Ai x

2
i = 0

�n
0 x2

i = 1

x0 ≥ 0

where A0 = −B/R2.
VB will be diffeomorphic to the interior of thismanifoldwith boundary. In general,

it is an intersection of hyperboloids whose topology would depend on the region
where B is in the complement of the union of all cones on the collections of m of
the Ai , so when B crosses a positive cone generated by no more than m of the Ai it
generally changes its topology. The generic transition would happen when B crosses
through the interior of one of those cones.

For the case m = 2 we cannot use the normal form used to describe the topology
of Z because it does not satisfy (SH) if some of the points have multiplicity ni > 1.
So we have to substitute it by another one where near the i th vertex of the regular
polygon we place ni different points λ j in the unit circle, and then (SH) will be
satisfied, any two being linearly independent and any three non-collinear.

In the case of a complex singularity all pre-images of points close to the origin
have the same topology, according toMilnor’s fibration theorem. In contrast, here for
m = 2 we can have different pre-images as we go around the circle. Enrique Artal
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has proposed that it could be interesting to follow the changes of the homology of
VB,R (or of its boundary) as we go around the origin to see if there is nevertheless
some kind of holonomy.

9.6.2 Singular Intersections and Smoothings

We now consider intersections Z where (WH) is not satisfied . The intersection must
be singular when the polytope is not simple, but also may be singular if P is simple,
but not transverse to all the faces of the first orthant. The simplest example is this:

(1) A transverse interval. (2) A non-transverse interval.

(1) shows a transverse interval with equations x1 − x2 + x3 = 0, x1 + x2 + x3 =
1. Reflecting it on the x1 = 0 and x3 = 0 planes we get a (piecewise linear) S1.
Reflecting now on the x2 = 0 plane gives a second copy. Z is diffeomorphic to
S1 × S0.

(2) shows anon-transverse intervalwith equations x1 − x2 = 0, x1 + x2 + x3 = 1,
joining a = (1/2, 1/2, 0) and b = (0, 0, 1). Reflecting it on the x1 = 0 and x2 = 0
planes we get four segments stemming from b. Reflecting now on the x3 = 0 gives
the suspension of four points on that plane and Z is not a manifold.

This example generalizes as follows: for n = p + q let P be an interval in R
n

where one vertex has p coordinates equal to zero and the other one has the other q
coordinates equal to zero. It is easy to show that Z is the complete bipartite graph
K2p,2q , in other words the join [2p] ∗ [2q ] = (S0)p ∗ (S0)q .

For a transverse triangle inR4+ we know that Z is diffeomorphic to Z = S2 × S0.
For a simplest non-transverse triangle with equations

x2 + x3 − x4 = 0, x1 + x2 + x3 + x4 = 1.

and vertices: (1, 0, 0, 0), (0, 1/2, 0, 1/2), (0, 0, 1/2, 1/2)), Z = �(S1 × S0):
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This could be the transition from a transverse triangle to a square, that is, from
Z = S2 × S0 to Z = S1 × S1.

A more degenerate singularity would be a triangle with equations x3 − x4 =
0, x1 + x2 + x3 + x4 = 1 and vertices: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1/2, 1/2)).

Z is the union of two maximal 2-spheres in S3 that intersect in a maximal S1. A
projection in R

3 could look like the union of two spheres intersecting transversely
in a small circle:

The last casewould be a trianglewith equations: x4 = 0 , x1 + x2 + x3 + x4 = 1,
that is, the unit simplex inR3+. Then Z is the 2-sphere inR3. It is a smooth manifold,
but a singular variety inR4. It can be proved [52] that only in degenerate cases (when
one of the variables or one of the equations plays no role) it may happen that (WH)
is not satisfied but Z is a manifold, answering an old question by José Seade.

Other examples are the suspension and the join:
If to the equations of Z one adds one more variable xn+1 to obtain the system:

�n
i=1Ai x

2
i = 0, �n+1

i=1 x2
i = 1

the new intersection of quadrics is the suspension of Z and the new polytope is the
pyramid on P .

More generally, if we have two varieties Z(A) and Z(B) given by
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�n
i=1Ai x

2
i = 0, �n

i=1x2
i = 1

�m
j=1B j y2j = 0, �m

j=1y2j = 1

one can build up the system

�n
i=1Ai x

2
i = 0

�m
j=1B j y2j = 0

�n
i=1x2

i + �m
j=1y2j = 1

which clearly represents the join P(A) ∗ P(B) of the polytopes and the join of the
varieties Z(A) ∗ Z(B). Compare with the equations of the product Z(A) × Z(B)

obtained by adding to the above three the equation

�n
i=1x2

i − �m
j=1y2j = 0

Other examples are the non-simple polytopes geometrically embedded. This
means that each intersection with a coordinate hyperplane is a facet. The algebraic
topology of the corresponding singular moment-angle manifolds has been studied by
Ayzenberg and Buchstaber in [5]. They have proved that they are homotopy equiva-
lent (but not necessarily homeomorphic) to polyhedral products.

The good news here is that the homology splitting is valid also for singular inter-
sections adequately reinterpreted: Pi should be interpreted as P ∩ {xi = 0}, indepen-
dently of the fact that it is a facet or not or if some Pi = Pj as in our first example.

In general, the simplest singularities that can appear are those for which there is
a unique collection S of at most m of the vectors Ai , such that the origin in R

m is a
convex combination of them. This implies that they are exactly m and are linearly
dependent, but they do not lay in an (m − 2) dimensional subspace of Rm .

This means that we can assume they are the m vertices of an m − 1 simplex in
R

m−1 which can be deformed into a standard one: its first m − 1 elements being the
standard basis of Rm−1 and its last one the point with all coordinates equal to −1.
Let us look at some examples:
Example 1: A regular polygon with an added point.
Take a regular polygon with an odd number of sides in the unit circle of R2 and
add the antipodal point of one of the vertices. In this configuration the two antipodal
points form the only pair that breaks (WH).
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One can add multiplicities to all the points except to those in the antipodal pair to
get more examples. These would give all types of configurations with codimension
one singularities for m = 2. Now moving the new point slightly in both directions
we would get in general two different partitions and two smoothings with different
topology.

This example can be generalized: for any generic configuration of n points
Ai ∈ R

m with non-empty associated polytope P that satisfies (WH) one can take
m − 1 that are linearly independent, which we can assume are A1, . . . , Am−1 and let
H be the hyperplane of Rm they generate. Then add to the configuration a new point
A0 which is in H (but not in any other hyperplane generated by other of the Ai ) and
such that the origin is in the interior of the convex hull of A0, A1, . . . , Am−1. The con-
figuration A0, A1, . . . , An will give an intersection of ellipsoids with a codimension
1 singularity.

A smoothing of this singular intersection can be obtained simply by moving A0

slightly out from H . Actually, we can obtain two smoothings, generally different, by
moving that coefficient into each of the two half-spaces defined by H . The topology
of the deformation in the neighborhood of the singular point can be described.

In the space of all possible configurations of n points inRm , the ones with a singu-
larity form a stratified set of codimension 1 separating the open dense set of regular
ones into chambers. All the configurations in a given chamber give diffeomorphic
smooth intersections of ellipsoids and combinatorially equivalent polytopes. Those
with a single singularity of the above type form an open dense stratum, and a generic
deformation between two transverse intersections of ellipsoids can be approximated
by one that only has codimension 1 singularities and is tranverse to their stratum. The
reader is invited to follow how in the case n = 5, m = 2, Z can transit from being
empty to being the surface of genus 5, passing through being four spheres and being
two tori.

This is our version ofwall-crossing . It differs from the version in [15] formoment-
angle manifolds, mentioned at the end of Sect. 9.3.2, only in that it is presented
in terms of configurations of coefficients instead of polytopes and the fact that in
includes crossing walls where a singular intersection appears, but the combinatorial
type of the polytope does not change. (Recall the first example and figure in this
section).
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Final remarks: In the story we have followed there is an ironic zig-zag between
the “real” and “complex” cases (according to the variables involved): I started with
the question of the space of complex Siegel leaves and their associated manifold Z
(Sect. 9.3.1). To describe its topology I was forced to study the real case Z which I
solved, but with certain exceptions. Nevertheless, this incomplete result was enough
to describe all the complex cases Z.

Then, for sometime the complex case was the one more studied (mainly for
its relevance in Kähler Complex Geometry (Sect. 9.4.1)). In particular, Bosio and
Meersseman in [15] conjectured that the moment-angle manifolds ZC associated
to dual-neighbourly even dimensional polytopes were connected sums of sphere
products (recall (Sect. 9.3.2)). After some time, Sam Gitler and I (Sect. 9.5.2) were
able to prove the B-M conjecture by proving again first the real version and deriving
from it the original complex one. We also developed some real versions of their
truncation operation to obtain more connected sums of sphere products in the real
case. Only that part of our truncation results ran into troubles when we tried to
apply them to the complex case. But another variation of the truncation idea coming
from the complex case [15] was the clue for proving finally the remaining real cases
mentioned in the first paragraph of this remark.

More recently, I proved a quantitative Bosio–Meersseman conjecture in the real
case, giving a formula for the number of terms in the connected sum as a function
of the dimension and the number of facets of the polytope (Sect. 9.5.2), which is
enough to determine completely its topology. The formulaworks also for the complex
case ZC (the original Bosio–Meersseman conjecture), but now this is not enough to
determine completely its topology, since in this case not all the terms are equal, and
I can not tell, for the moment, how many of each type there are or if this depends
only on the dimension and the number of facets of the polytope.
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Chapter 10
Complements to Ample Divisors
and Singularities

Anatoly Libgober

Abstract The paper reviews recent developments in the study of Alexander invari-
ants of quasi-projectivemanifolds usingmethods of singularity theory. Several results
in topology of the complements to singular plane curves and hypersurfaces in pro-
jective space extended to the case of curves on simply connected smooth projective
surfaces.
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10.1 Introduction

These notes review interactions between singularity theory and the study of funda-
mental groups and more generally the homotopy type of the complements to divisors
on smooth projective varieties. The main question considered here is how the local
topology of singularities as well as their global geometry affect the topology of the
complement. Several surveys updating the state of the subject at respective points
in time were written over the years (cf. [54]) but most often focusing on specific
situations: complements to plane curves, arrangements of lines or hyperplanes etc.
reflecting that earlier studies of the complements were mainly focused on the case of
plane curves. Belowwe consider the complements to divisors D on smooth projective
surfaces X and their fundamental groups, sometimes indicating how a generaliza-
tion to the case of homotopy types of the complements in manifolds of dimension
greater than two looks like, but mostly referring to other publications for additional
details on homotopy invariants beyond fundamental groups. An earlier appearances
of the studies of the complements in the context of general pairs (X, D) and their
fundamental groups can be traced to the 80s. Some results on the topology of the
complements in such set up did appear in [92, 104, 181]. A much earlier, beautiful
results, especially those showing the role of the abelian varieties in the subject were
obtained by Italian school (cf. [43] for a modern exposition).

The invariants of the fundamental groupswith known strong relation to singularity
theory are the Alexander type invariants, introduced in [132] and called their char-
acteristic varieties. The connections besides singularity theory run through the knot
theory, the Hodge theory of quasi-projective varieties, study of elliptic fibrations,
symplectic geometry to mention a few.

There are three major approaches to the study of characteristic varieties of funda-
mental groups. One is topological, allowing their calculation in terms of a presenta-
tion of the fundamental group via generators and relations, obtained typically using
braid monodromy. The other one is geometric, going through a study of homology of
the abelian covers and eventually leading to determination of characteristic varieties
in terms of local type of singularities and dimensions of the linear systems deter-
mined by the divisor and the local type of singularities. Finally, one can calculate
the characteristic varieties using Deligne extensions of bundles endowed with a flat
connection.Whole theory is a combination ofmethods and ideas from all these areas.

Many results related to the discussion of this paper are presented in volume [45]
where for themost part the case of plane curveswas considered. The expositionwhich
follows, describes a generalization to the context of the complements to divisors
on smooth simply connected surfaces. A very fruitful approach to a study of the
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complements to divisors is via resolutions of singularities, reducing the case when a
divisor has arbitrary singularities to the case of divisors with normal crossings. In this
way one replaces the complexity of the divisor by complexity of compactification
and the complexity of individual components. The goal here is rather to study how
complexity of singularities affects fundamental groups of the complements. Trying
to make this paper more independent, we included some basic material which is
scattered through existing literature and for which we could not find good references
(e.g. theory of branched covers, the relation between quasi-adjunction and multiplier
ideals etc.). We also survey several results on the fundamental groups which appear
in the last 10–20 years providing an overview of the new results in this area. Several
results here are new or did not appear in the literature: they include the divisibility
of Alexander polynomials of complements on simply-connected surfaces, extending
the case of plane curves (cf. Theorem 10.3.3), calculation of characteristic varieties
in terms of classes of irreducible components in Picard group and invariants of quasi-
adjunction of singularities (cf. Theorem 10.4.18) and others.

The content of the paper is as follows. In Sect. 10.2 we discuss an analog of clas-
sical method of Van Kampen (cf. [214]) to obtain presentations of the fundamental
groups of the complements to divisors on smooth surfaces in terms of mapping class
group valuedmonodromy associated to a divisor.We also review conditions on a divi-
sor which allow to deduce that the fundamental group of the complement is abelian.
In Sect. 10.3 we firstly extend the theory of Alexander invariants of plane algebraic
curves (cf. [129, 143]) to the complements of curves on smooth projective surfaces
(for an earlier work cf. [62]). In particular we obtain a result unifying the divisibility
theorems in the case of plane curves, showing the divisibility of global Alexander
polynomials respectively in terms of local Alexander polynomials and the Alexander
polynomials at infinity.Many results dependon some sort of positivity assumptions of
the componentswhich suggest an interesting problemunderstanding the fundamental
groups and its invariants when positivity is lacking. Theory of Alexander invariants is
closely related to the study of homology of abelian covers. In Sect. 10.3.3 we present
basic definitions and then describe approaches enumerating covers either in terms of
subgroups of fundamental groups or in terms of eigensheaves of direct images of the
structure sheaf. The most interesting results about Alexander invariants are obtained
through interaction of topological and algebro-geometric view points. The last part
of this section deals with multivariable Alexander invariants from topological view
point.We included a brief discussion of multivariable Alexander invariants for quasi-
projective invariants in higher dimensions including recent results on propagation
(cf. [159] for another recent overview of this and related aspects). Section10.4 dis-
cusses a calculation of characteristic varieties in terms of superabundances of the
linear systems associated with a divisor on a smooth projective surface using ideals
of quasi-adjunction of singularities of the divisor. The ideals of quasi-adjunction,
defined in terms of branched covers of the germs of divisors, can be viewed as the
multiplier ideals which received much attention over last 20–30 years. The role of
these ideals in the study of the fundamental groups is to specify the linear system
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which dimensions determine the characteristic varieties and hence allow to give their
geometric description. The section contains also another description of characteristic
varieties using the Deligne’s extension and ends with a brief review of the relations
between the characteristic varieties and other invariants studied in Singularity theory,
including Bernstein-Sato polynomials and Hodge decomposition of characteristic
varieties. Section10.5 mostly is based on recent preprint [47] which describes the
results on distribution of Alexander type invariants when complexity (in appropriate
sense) of the divisor increases. We describe the finiteness results when one searches
for fundamental groups of the complements with large free quotients. The last section
discusses several recent calculations of the fundamental groups of the complements.
In the 80s scarcity of examples of quasi-projective groups and fundamental groups
of the complements was viewed as impediment to development of general theory.
In recent years this problem was amply addressed and we present some of the most
consequential results.

In these notes, we tried at least to direct a reader to the most important recent
developments but nevertheless several important topics were not covered here. Those
missing include the relation between the Alexander invariants and the Mordell-
Weil groups of isotrivial fibrations (cf. [146]), Chern numbers of algebraic surfaces
and arrangements of curves (cf. [183]), free subgroups of the fundamental groups
(cf. [72]), virtual nilpotence of virtually solvable quasi-projective groups (cf. [10]),
singularities of varieties of representations of the fundamental groups (cf. [120]), the
complements to symplectic curves (cf. [23, 24, 97]) among others.

The theory described below appears to be far from completion. Many interesting
problems remain very much open (some are mentioned throughout the text) and
a thorough understanding of the fundamental groups or homotopy type of quasi-
projective varieties is still out of reach.

Finally, I want to thank Alex Degtyarev as well as the referee of this paper for
reading the final version of the text and very helpful comments.

10.2 Braid Monodromy, Presentations of Fundamental
Groups and Sufficient Conditions for Commutativity

10.2.1 Braid Monodromy Presentation of Fundamental
Groups.

In the case of plane curves, Zariski-van Kampen method (cf. [214, 219]) is the oldest
tool for finding presentations of the fundamental groups of the complements. A
convenient way to state the theorem is in terms of braid monodromy. Its systematic
use was initiated in [164] and in such form admits a natural generalization to the
complements to divisors on arbitrary algebraic surface which we describe in this
section. Braid monodromy became an important tool in symplectic geometry (cf.
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[24]). A good exposition of braid monodromy of curves on ruled surfaces can be
found in [57], Sect. 5.1.

Let X be a smooth projective surface and let D be a reduced divisor on X . To
describe a presentation of π1(X \ D, p), p ∈ X \ D we make several choices, on
which the presentation will depend.

• Select a pencil1 of hyperplane sections of X ⊂ P
N , generic for the pair (X, D). Its

base locus is a generic codimension 2 subspace P ⊂ P
N and we can consider the

projection with the center at P , i.e. the map P
N \ P → P

1 sending to p ∈ P
N \ P

to the hyperplane containing P and p. Its restriction to X produces a regular
map π : X \ X ∩ P → P

1. Denoting by ˜X the blow up of the surface X at the
base locus P ∩ X of the pencil, we obtain a regular map ˜X → P

1. Assuming
that P was selected so that D ∩ P = ∅ and still denoting by D its preimage in
˜X we obtain the map π̃ : ˜X \ D→ P

1. Seifert-van Kampen theorem implies that
π1(X \ D) = π1(˜X \ D) and so we can do calculations on ˜X .
• Let B = {b1, . . . , bk} ⊂ P

1 be the set consisting of the critical values of π̃2 and
the images of the fibers of π , either containing a singular point of D or containing
a point of D which is critical point of restriction π |D .
• Let � ⊂ P

1 be a subset, containing B and isotopic to a disk in P
1, and let b0 ∈ ∂�

be a point on the boundary of �.
• Let ∂Bε(p) be the boundary of a small ball Bε(p) in X3 centered at a point

p ∈ X ∩ P or, equivalently, the boundary of a small regular neighborhood of the
exceptional curve Ep in X̃ contracted to p ∈ X . The map π̃ restricted to ∂Bε(p)
is the Hopf fibration ∂Bε = S3→ P

1 = S2. Using its trivialization over �, we
define a section over � \ B: sp : � \ B → π̃−1(� \ B).
• Let Fbi , i = 0, 1, ..., k be the fiber of π̃ over bi . The curves Fbi , i = 1, ...., k either
have singularities at critical points of π or contain singular points of D or have
non-transversal intersections with D, while Fb0 is smooth closed Riemann surface

having genus g = Fb0 (Fb0+K )

2 + 1 where K is the canonical divisor of X .
• For any p ∈ P ∩ X , let F̄◦b0 be the surfacewith one connected boundary component
obtained by removing from Fb0 its intersection with the above regular neighbor-
hood of Ep. Denote by M(F̄◦g , [d]) = Di f f +(Fb0 \ (Fb0 ∩ Bε(p)), [Fb0 ∩ D])
the mapping class group of the Riemann surface with boundary with d marked
points (cf. [88]) i.e. the group of isotopy classes of orientation preserving diffeo-
morphisms taking the subset [d] of cardinality d into itself and constant on the
boundary of the Riemann surface.

Definition 10.2.1 The braid monodromy of the pair (X, D) (for selected pencil on
X ) is the monodromy map

μ : π1(� \ B, b0)→M(F̄◦g , [d]) (10.1)

1 I.e. a family of divisors parametrized by P
1.

2 Those are absent in the classical case on pencils of lines X = P
2 of Zariski-van Kampen theorem.

3 We assume that there are no vanishing cycles corresponding to critical points of π and no points
of D inside this ball.
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obtained by
(a) selecting a loop (denoted in b) and c) below as γ ) for each homotopy class in

π1(� \ B, b0),
(b) a trivialization of the locally trivial fibration π−1(γ )→ γ i.e. a differentiable

map π−1(b0)× [0, 1] → π−1(γ ) inducing a diffeomorphism of the fiber over t ∈
[0, 1] onto the fiber over the image of t in parametrization [0, 1] → γ of the loop.

(c) assigning to γ the diffeomorphism of F̄◦g = π−1(b0) sending a point q ∈
π−1(b0) to the point q ′ ∈ π−1(b0) to which the trivialization mentioned in b) takes
the end point q × 1 of the segment q × [0, 1] ⊂ π−1(b0)× [0, 1] in π−1(γ ).

One verifies that, though the diffeomorphism in (c) depends on both, the loop γ in
(a) and the trivialization in (b), its class in the mapping class group does not depend
on these choices.

Recall that the mapping class group M(F̄◦g , [d]) acts on π1(F̄◦g \ [d], q) (here q
is the base point which we assume is on the boundary of F̄◦g ). For example in the case
g = 0 the groupM(F̄◦0 , [d]) is the Artin’s braid group on d-strings i.e. the group of
orientation preserving diffeomorphisms of a 2-disk �, constant on the boundary and
taking into itself a given subset of� of cardinality d. It has awell known presentation:

< σ1, ..., σd−1, |σiσi+1σi = σi+1σiσi+1 σiσ j = σ jσi , 1 < |i − j | > (10.2)

Note that the center of (10.2) is generated by [σ1(σ2σ1)(σ3σ2σ1)....(σd−1...σ1)]2 (cf.
[98] Sect. 4.3). The action on the free group π1(� \ [d], p) is given by

σi (ti ) = ti+1, σi (ti+1) = t−1i+1ti ti+1, σi (t j ) = t j , j 	= i, i + 1 (10.3)

4(which is the canonical action of the mapping class group on the fundamental
group for appropriate choice of generators ti of the latter). This way in the case of
X = P

2 one obtains the monodromy with the values in the Artin’s braid group, the
case described in [164]. The homomorphism (10.1) in [164] is described in a more
combinatorial form, as a product of collection of braids. The ordered collection of
factors in this product is the collection of braids corresponding to so called “good
ordered system of generators” of the free group π1(� \ B, b0) (cf. [164] for details).

To define the final ingredient for our presentation of π1(X \ D), we consider the
gluing map of the boundaries of π−1(�) and π−1(P1 \�) which can be viewed as
a map 	 : π−1(∂�)→ π−1(∂(P1 \�)), both spaces being locally trivial fibrations
over ∂� = S1, preserving the set D ∩ π−1(∂�) and commuting with projection
onto S1. Such map takes the loop sp(∂�) (as above, sp is a section of restriction of
the Hopf bundle over P

1) to the loop S1→ S1 × (Fb0 \ [d])→ Fb0 \ [d] and hence
determines a conjugacy class in the fundamental group of its target. We shall denote
this class ρX,D . In the case of plane curve of degree d transversal to the line at infinity
and pencil of lines, complement to the base point is the total space of line bundle
OP1(1), the gluingmap	 induced by positive generator ofπ1(GL2(C))which shows

4 This implies that σ−1i (ti ) = ti ti+1t−1i , σ−1i (ti+1) = ti .
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that ρX,D = γ1 · ... · γd is the product of standard ordered system of generators of
fundamental group of the complement in generic fiber to the intersection of this fiber
with the curve.

The mapping class group valued monodromy determines the fundamental group
as follows:

Theorem 10.2.2 One has the isomorphism:

π1(X \ D) = π1(C0 \ C0 ∩ D)/{(μ(γ j )αi )α
−1
i , ρX,D} (10.4)

Theorem 10.2.2 reduces a calculation of the fundamental group to the calculation
of the braid monodromy and the element ρX,D . The literature on calculations of
braid monodromies of curves is very large and is very hard to review. We refer to
[164, 166] where explicite expressions were obtained for the braid monodromy of
smooth plane curves, branching curves of generic projections of smooth surfaces
in P

3, generic arrangements of lines and branching curves of generic projections of
various embeddings of quadric. The survey [209] and the book [57] also are good
references for more recent developments. We refer to the former for examples of
calculations of fundamental groups using van Kampen method and references to
other works on calculation of braid monodromy and the latter for computer use in
calculations of braid monodromy and the fundamental groups.

Besides the fundamental group, the braid monodromy defines the homotopy type
of the complement (cf. [135] for precise statement). It is however and open problem, if
the homotopy type of the complement X \ D is determined by the fundamental group
and the topological Euler characteristic of the complement (cf. [135] for a discussion
of this problem). Considering dependence of the braid monodromy on the curve and
numerous choices made in its construction, in [16] the authors found conditions
implying that the homeomorphism type of the triples (P2, L ,C), where C is a plane
curve and L is oneof the lines of the pencil used to construct the braidmonodromy (the
line at infinity), determines the braid monodromy. Braid monodromy is an essential
tool in showing the existence of symplectic singular curves not isotopic to algebraic
ones (cf. [24, 165]).

10.2.2 Abelian Fundamental Groups

The question “whether the fundamental group of the complement to a nodal curve is
abelian” was known as “Zariski problem” since it was realized that Severi’s proof of
irreducibility of the family of plane curves with fixed degree and the number of nodes
is incomplete (cf. [194]). Zariski derived commutativity of the fundamental groups
of the complements to nodal curves using that irreducibility implies existence of
degeneration of a nodal curve to a union of lines without points ofmultiplicity greater
than two. Once one has degeneration, the relation between fundamental groups of
the complements to a curve and to its degenerations (i.e. that given a degeneration
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C0 = limCt one has surjection π1(P
2 \ C0)→ π1(P

2 \ Ct ) which is a consequence
of definition of the braid monodromy and presentation (10.4)) implies the commuta-
tivity. Severi statements (andwith it the Zariski proof [221]) was eventually validated
(cf. [111]). A proof of commutativity, based on connectedness theorem, was found
prior to this by Fulton [93] for algebraic fundamental group and by Deligne [66]
in topological case.

The central result on commutativity of fundamental groups of complements to
divisors is due to Nori with the key step being a generalization of Lefschetz hyper-
plane section theorem (cf. [174]). See [94, Chap.5] and [127, Chap.3].

Theorem 10.2.3 (Nori’s weak Lefschetz theorem) Let U be a connected complex
manifold of dimension greater than one and let i : H → U be the embedding of a
connected compact complex-analytic subspace defined by a locally principal sheaf
of ideals. Let q : U → X be a locally invertible map to a smooth projective variety,
h = q ◦ i , and R ⊂ X be a Zariski closed subset. Assume that OU (H)|H is ample.
Then

A: G = Imπ1(U \ q−1(R))→ π1(X \ R) is a subgroup of a finite index.
B: If q(H) ∩ R = ∅ then π1(H)→ π1(X \ R) is a subgroup of a finite index.
C: If dim X = dimU = 2 then index of subgroup G of π1(X \ R) is at most

(Div(h))2

H 2 where the divisor in numerator is the first Chern class of h∗OH , the Cartier
divisor on X corresponding to the divisor H on U (cf. [174], 3.16 for details).

If q is embedding and H is reduced, this becomes Zariski-Lefschetz hyperplane
section theorem (cf. [114, 220]). One has to note a subtlety in the finiteness of index
in A and the index bound in C (cf. [110]). Typically π1(q(H)) is much bigger than
π1(H): for example if H → q(H) is normalization and H is rational and q(H) nodal
thenπ1(q(H)) is free groupwith the rank equal to the number of nodes. Nevertheless
the following is still open:

Problem 10.2.4 (M. Nori) Let D be an effective divisor of a surface X and D2 > 0.
Let N be a normal subgroup of π1(X) generated by the images of the fundamental
groups of the normalizations of all irreducible components of D. Is the index of N
in π1(X) finite? In particular, can a surface with infinite fundamental group contain
a rational curve with positive self-intersection?

One of the main consequence of Theorem 10.2.3 is the following:

Corollary 10.2.5 Let D and E be curves on smooth projective surface intersect-
ing transversally and such that D has nodes as the only singularities. Assume that
for each irreducible component C of D one has C2 > 2r(C). Then N =
Ker(π1(X \ (D ∪ E))→ π1(X \ E)) is a finitely generated abelian group and the
centralizer of N has a finite index in π1(X \ (D ∪ E)).

This immediately implies that the fundamental group of a nodal curve in P
2 is

abelian (indeed, for irreducible curve of degree d the maximal number of nodes
r(C) = (d−1)(d−2)

2 satisfies 2r(C) < d2). Moreover, for an irreducible plane curve
with r(C) nodes and κ(C) cusps (with local equation u2 = v3) one obtains that
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π(P2 \ C) is abelian if C2 > 6κ(C)+ 2r(C) (apply Corollary 10.2.5 to resolution
of cusps only). On non-simply connected surfaces, the kernel π1(X \ C)→ π1(X)

belongs to the center ifC2 > 4r(C) (though for 4r(C) ≥ C2 > 2r(C) the centralizer
of this kernel still has a finite index, see [174] p. 324).

A result pointing out toward a positive answer to the Problem 10.2.4 appears in
[126] and can be stated as follows. Let X be a smooth projective variety and Y be
a subvariety such that π1(Y )→ π1(X) is surjective. Let f : Z → Y be dominant
morphism where all irreducible components of Z are normal. Let N be the normal
subgroup of π1(X) generated by the images of irreducible components of Z . Then
for any n, π1(X)/N has only finitely many n-dimensional complex representations,
all of which are semi-simple (an obvious attribute a finite group).

Applications of Nori’s results include [197, 198]. Paper [199] studies further
exact sequence of the fiber spaces. Papers [211, 212] give conditions in opposite
direction than the one considered by Nori, guaranteeing that the fundamental group
of the complement is NON abelian. An important outcome of Nori’sWeak Lefschetz
theorem is that it provides an instance for the finiteness of the index of the image of
the fundamental groups for compositions H → C → X where as above H, X are
smooth and H → C is dominant. This more general context was considered in [110]
in the framework of the study of the representations of the fundamental groups of
varieties dominating divisors in the moduli spaces of (pointed) curves (with level
structure), under the heading of “non-abelian strictness theorems”.

10.3 Alexander Invariants

10.3.1 Alexander Polynomials

Alexander polynomial of knots and links was introduced by James W. Alexander
in 1928 (cf. [3]). In response to a question by D. Mumford (cf. [168]), who noticed
its relation to a construction used by O. Zariski, the Alexander polynomials were
put in [129] in the context of complements to plane algebraic curves. This extension
blends the algebraic geometry and the methods introduced by Fox (cf. [90]) and
Milnor (cf. [161]) for the study of knots. Various generalizations, in which (a zero
set of) polynomial was replaced by a subvariety of a torus and involving germs of
singularities (cf. [140]), extensions to higher dimensions (cf. [134]) and to curves
in complex surfaces (cf. [62]), were considered as well. A twisted versions (cf.
[44, 143, 158]) were studied more recently. Below we shall describe the Alexander
polynomials in the context of divisors on simply connected surfaces and refer to
[144] for the history of the subject and further references.

Let X be a smooth simply connected projective surface and let D be a divisor on
X with irreducible components Di . Let {[Di ]} = H 2(D, Z) = ⊕i H 2(Di , Z) denote
a free abelian group generated by the cohomology classes corresponding to the
irreducible components of D. For α ∈ H2(X, Z), we put Dα =∑

i (α, [Di ])[Di ] ∈



510 A. Libgober

{[Di ]}, where [Di ] ∈ H2(X, Z) is the fundamental class of the component Di and
denote by {Dα} the subgroup of {[Di ]} generated by the classes Dα, α ∈ H2(X, Z).
{Dα} is the image of the homomorphism H2(X, Z)→ H 2(D, Z) obtained using the
excision and duality isomorphisms giving H2(X, X − D, Z) = H2(T (D), ∂T (D),

Z) = H 2(D, Z) where T (D) is a tubular neighborhood of D in X and ∂T (D) is its
boundary. From the exact sequence:

H2(X, Z)→ H 2(D, Z)→ H1(X \ D, Z)→ H1(X, Z) = 0 (10.5)

we deduce that
{[Di ]}/{Dα} = H1(X \ D, Z). (10.6)

For example for an irreducible projective (resp. affine) plane curve D of degree d
we obtain H1(P

2 \ D, Z) = Z/dZ (resp. H1(C
2 \ D) = Z).

Alexander polynomial is an invariant of the complement to a reduceddivisor D and
a surjection φ : π1(X \ D)→ C where C is a cyclic group. We state the definition
for a finite CW complex Y endowed with a surjection φ : π1(Y )→ C such that
H1(Yφ, Q) is finite dimensional where Yφ is the covering space corresponding to the
subgroup Ker(φ) ⊂ π1(Y ) (cf. [115] Sect. 1.3).5

If C is finite then the finiteness of the dimension of H1(Yφ, Q) is automatic.6 If
H1(Y, Z) is infinite cyclic then H1(Yφ, Q) also is finite-dimensional as follows for
example from (10.8) below.

For the covering map Yφ → Y , we have the exact compactly supported homology
sequence corresponding to the sequence of chain complexes

0→ C∗(Yφ, Q)
t−1→ C∗(Yφ, Q)→ C∗(Y, Q)→ 0 (10.7)

Here the first two terms are viewed as the modules over the group ring Q[Z] =
Q[t, t−1], where t denotes preferred generator of C = Z in multiplicative notations,
and the left map being multiplication by t − 1. Hence

H2(Y, Q)→ H1(Yφ, Q)
t−1→ H1(Yφ, Q)→ H1(Y, Q) (10.8)

→ H0(Yφ, Q)
(t−1)→ H0(Yφ, Q)

Consider the cyclic decomposition of H1(Yφ, Q), viewed as a module overQ[t, t−1],

5 In this case we call Yφ 1-finite.
6 An example of infinite cyclic covers which is infinite in dimension 1 is given by the complement to
a set [3] containing 3 points inP

1. Let (a, b) be generators of the free group π1(P
1 \ [3]) and φ is the

quotient of the normal subgroup generated by b. Then P
1 \ [3] is homotopy equivalent to a wedge

of two circles and (P1 \ [3])φ can be viewed as a real line with the circle attached at each integer
point of this line with the covering group Z acting via translations. In particular H1(P

1 \ [3])φ, Z)

is a free abelian group with countably many generators.
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H1(Yφ, Q) = ⊕Q[t, t−1]a0 ⊕p Q[t, t−1]/(p(t)) (10.9)

where the summation is over a finite number of monic polynomials p.
One of immediate consequences is that if rkH1(Y, Q) = 1, then themultiplication

by t − 1 in the top row in (10.8) is surjective (since clearly themultiplication by t − 1
is trivial on H0) and hence in (10.9) a0 = 0.7 Moreover, (t − 1)α, α ∈ N is not among
the polynomials p(t).

Definition 10.3.1 Let Y be a CW-complex as above.
If a0 = 0 in the decomposition (10.9) one defines the Alexander polynomial�(t)

of (Y, φ) as the order of the Q[t, t−1]-module H1(Yφ, Q) i.e. as the product.

�(t) =
∏

p(t) (10.10)

In the case when X is a smooth projective surface and D is a reduced divisor, we
call �(t), the global Alexander polynomial of X \ D (and the surjection φ of its
fundamental group).

�(t) has integer coefficients, is well defined up to ±t i , i ∈ Z and, it follows from
(10.8) that, rkH1(Y, Q) = 1 implies �(1) 	= 0. If the target of φ is a finite cyclic
group then, since Q[Zn] = Q[t, t−1]/(tn − 1), instead of (10.9) one has

H1(Yφ) = ⊕[Q[t, t−1]/(tordC − 1)]ao ⊕Q[t, t−1]/p(t) (10.11)

and the Alexander polynomial defined to be the order (10.10) of this Q[t, t−1]-
module.

This construction, when applied to the intersection of D with a small sphere about
a singular point P of D and when φ is given by evaluation of the linking number in
this sphere with D, yields the local Alexander polynomial. It is not hard to show the
following (cf. [128]).

Proposition 10.3.2 The local Alexander polynomial coincides with the character-
istic polynomial of the local monodromy of the singularity of D at P.

10.3.2 A Divisibility Theorem

This is the central result on theAlexander polynomials allowing to obtain information
about �(t) in terms of geometry of D. In many cases it leads to its determination or
makes possibilities for�(t) rather limited. The case of curves in P

2 appears in [129].

Theorem 10.3.3 Let D = D1
⋃

D2 be a divisor on X such that D1 is ample. Let
φX\D : π1(X \ D)→ H1(X \ D, Z)→ C be a surjection onto a cyclic group C

7 The condition a0 = 0 is equivalent to finite dimensionality of H1(Yφ, Q) over Q.
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(either infinite or finite) and T (D1) denotes a small regular neighborhood of the
divisor D1. Assume also that φ maps the meridian8 of each irreducible component of
D1 to the generator of C corresponding to the variable t of the Alexander polynomial.
Then

1. The cyclic cover (X \ D)φ is 1-finite and so is (T (D1) \ D ∩ T (D1))φT where
φT is the compositionπ1((T (D1) \ D ∩ T (D1)))→ H1((T (D1) \ D ∩ T (D1)))→
H1(X \ D)→ C of the map induced be embedding and the surjection φX\D.

2. Let �φX\D ,�φT be the Alexander polynomials of X \ D and T (D1) \ D ∩
T (D1) corresponding to surjections φ and φT respectively. One has the following
divisibility:

�φX\D (t)|�φT (10.12)

3. Let {pi } be the set consisting of singular points of D1 and the points D1 ∩ D2.
For each pi let Bpi denotes a small ball in X centered at this point. Let �pi denotes
the Alexander polynomial of Bpi \ D ∩ Bpi relative to the map φi : H1(Bpi \ D ∩
Bpi )→ C induced by embedding Bpi \ D ∩ Bpi → X \ D. Then

�φT = (t − 1)α
∏

�pi α ∈ Z. (10.13)

In particular, the roots of the Alexander polynomials �φX\D and �φT are roots of
unity.

Proof Ampleness of D1 implies that for n � 0 there exist a smooth curve D̃1 on X
linearly equivalent to nD1 and belonging to T (D1). Moreover, we can assume that
D̃1 is transversal to all components of D.

Weak Lefschetz theorem (cf. [114, 174]) implies that the composition in the
middle row of the following diagram is a surjection:

KerφT → KerφX\D
↓ ↓

π1(D̃1 \ D̃1 ∩ D)→ π1(T (D1) \ D ∩ T (D1)) → π1(X \ D)

↓ ↓
H1(T (D1) \ D ∩ T (D1), Z) H1(X \ D, Z)

↘ ↓
C

(10.14)

Therefore the right map in that row and hence also KerφT → KerφX\D both are
surjective. The condition that meridians are taken by φT to non-zero element of C

8 I.e. a loop consisting of a path connecting the base point with a point in vicinity of the irreducible
component of D, the oriented boundary of a small disk in X transversal to this component of D at
its smooth point and not intersecting the other components of D, with the same path used to return
back to the base point; orientation of the small disk must be positive i.e. such that its orientation will
be compatible with the complex orientations of smooth locus of divisor and the ambient manifold.
As an element of the fundamental group, only the conjugacy class of a meridian is well defined.
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implies that the covering space (T (D1) \ D ∩ T (D1))φT is 1-finite (cf. [99]) and
surjectivity of the maps of the kernels implies that so is (X \ D)φ . Since the map in
the top row in (10.14) is surjective, Q[C]-module H1((X \ D)φ, Q) is a quotient of
H1((T (D1) \ D ∩ T (D1))φT , Q) hence the divisibility relation (10.12) follows.

Finally, taking T (D1) sufficiently thin, (T (D1) \ D1) \⋃

i (Bpi \ D ∩ Bpi ) can be
assumed isotopic to the trivial C∞-fibration (T (D1) \ D1) \⋃

i (Bpi \ D ∩ Bpi )→
D1 \ {pi }, with the fiber being isotopic to a punctured 2-disk. Due to assumption
that meridians of all components are mapped to generator corresponding to t , the
Alexander polynomial of (T (D1) \ D1) \⋃

i (Bpi \ D ∩ Bpi ) is a power of t − 1.
The decomposition

T (D1) \ D ∩ T (D1) =
⎡

⎣(T (D1) \ D1) \
⋃

i

(Bpi \ D ∩ Bpi )

⎤

⎦ ∪
⋃

i

(Bpi \ D ∩ Bpi )

(10.15)
induces decomposition of the cover (T (D1) \ D)φT of T (D1) \ D corresponding
to subgroup KerφT of π1(T (D1) \ D ∩ T (D1)) into a union of preimages of each
subspace on the right in (10.15). Now the Mayer -Vietoris sequence implies the part
3 of the Theorem (also the 1-finiteness of T (D1) \ T (D1) ∩ D)).

Corollary 10.3.4 ([129]) Let C be an irreducible curve in P
2 and L be the line at

infinity. Then H1(P
2 \ C ⋃

L , Z) = Z and the Alexander polynomial of P
2 \ C ⋃

L
with respect to the abelianization, divides the product of the Alexander polynomials
of links of all singularities of C

⋃

L. It also divides the Alexander polynomial of the
link at infinity i.e. the Alexander polynomial of the complement S∞ \ C ∩ S∞ where
S∞ is the boundary of a small (in the metric on P

2) regular neighborhood of L ⊂ P
2.

Proof It follows from (10.6) and Theorem 10.3.3 applied to C and L separately.
More precisely, the part 2 (resp. part 2 and 3) of Theorem 10.3.3 show that the
global Alexander polynomial divides the Alexander polynomial at infinity (resp. of
the product of local Alexander polynomials).

Corollary 10.3.5 ([62]) Let D be a divisor of a simply connected surface X. Let S
be a subset of the set of singular points of D belonging to an irreducible component
D′ of D such that on log-resolution X̃ of singularities of D′ outside of S, for proper
preimage D̃′ one has (D̃′)2 > 0. Then one has divisibility:

�φX\D |
∏

pi∈S
�pi (10.16)

Proof Condition on self-intersection implies that D̃′ is ample. Now the claim follows
immediately from the Theorem 10.3.3 applied to the proper preimage of D on X̃ and
its component D̃′ since X \ D = X̃ \ D̃ because only points on deleted divisor D
are blown up.

Example 10.3.6 Milnor fibers of homogeneous polynomials and arrangements of
lines LetA ⊂ P

2 be an arrangement of lines given by equations Li (x, y, z) = 0, i =
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1, ..N . Milnor fiber
∏

Li (x, y, z) = 1 of the cone
∏

Li = 0 over this arrangement
(denoted below MAL ) can be identified with the Z/NZ-cyclic cover of the comple-
ment P

2 \A. Theorem 10.3.3 gives restrictions on the degree of the characteristic
polynomial of the monodromy operator acting on H1(MA, Q) (which can be identi-
fied with the Alexander polynomial of P

2 \A) in terms of multiplicities of point of
A along one of the lines (cf. [139]). For example, if A has only triple points along
one of the lines, it follows that the characteristic polynomial of the monodromy of
Milnor fiber has form (t − 1)N−1(t2 + t + 1)κ , κ ≥ 0. See [73, 74, 175] for other
numerous applications.

10.3.3 Branched Covers

A branched cover of a complex space Y is a finite dominant morphism f : X → Y .
We will consider only the case when X is normal and Y is smooth. Ramification
locus R f ⊂ X is the support of the quasi-coherent sheaf �X/Y and the branch locus
is f (R f ) ⊂ Y . It has codimension 1 (Nagata-Zariski purity of the branch locus cf.
[222]).

Given an irreducible divisor D ⊂ Y on a complex manifold Y one associates to
(Y, D) a discrete valuation νD : C(Y )→ ND of the field of meromorphic functions
on Y given by νD(φ)) = ordD(φ), φ ∈ C(Y ) (cf. [113], p.130). Here ND is the
subgroup of Z generated by the values of νD(φ), φ ∈ C(Y ). For a branched cover
X → Y and a pair of irreducible divisors D ⊂ Y,�′ ⊂ X where �′ is a component
of f ∗(D)red the map f ∗ : C(Y )→ C(X) induces the map f ∗N : ND → N�′ .The
index [N�′ : f ∗ND] (cf. [223] cf. Chap. 6, Sect. 12) is the ramification index eD
of f along the component �′. One has eD′ = 1, unless D′ is a component of R f .
Restriction of a branched cover X → Y onto the complement to the ramification
divisor induces étale map X \ R f → Y \ D where D = f (R f ) is the branch locus.
In particular given a branched cover f : X → Y , selection of base point p ∈ Y \ D
allows to construct monodromy:

π1(Y \ D)→ Sym( f −1(p)) (10.17)

into permutation group of points in the preimage of p assigning to each loop and a
point a ∈ f −1(p) the end of the lift of the loop starting at a.

The set of equivalence classes of unramified covers fZ : Z → Y \ D, where
fZ1 , fZ2 are considered to be equivalent iff there exists biholomorphic isomorphism
h : Z1→ Z2 such that fZ1 = fZ2 ◦ h, is in one to one correspondence with the sub-
groups ofπ1(Y \ D, p)where p ∈ Y \ D is a base point. The correspondence is given
by assigning to fZ the subgroup ( fZ )∗π1(Z , p′) ⊂ π1(Y \ D, p). This correspon-
dence depends on a choice of a base point p′ ∈ f −1(p) ⊂ X \ R f , but the subgroups
corresponding to p′, p′′, p′ 	= p′′ are conjugate. A cover Y → X is called Galois if
the corresponding subgroup is normal. The quotient of the fundamental group by this
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subgroup is the Galois group of the cover. This group is the image of the monodromy
(10.17).

Abranched cover isGalois if and only if the extension of the fields ofmeromorphic
functionsC(X)/C(Y ) is Galois and the Galois group of the cover is the Galois group
of this field extension.

It follows from above discussion that the Galois group G acts freely on X \ R f

with the quotient Y \ D and one has the exact sequence 0→ π1(X \ R f , p′)→
π1(Y \ D, p)→ G → 0. Vice versa, given an unramified cover f : X \ R f → Y \
D, it follows fromRiemann Extension Theorem for normal spaces (cf. [101] Chap.7,
Sects. 4 and 2) that this action on X \ R f extends to the G-action on X via biregular
automorphisms.

For an irreducible component � ⊂ R f of the ramification divisor, the subgroup
I (�) ofG of automorphismswhich fixes all x ∈ � is called the decomposition group
of � or inertia group of � (cf. [104], Expose V, Sect. 2).9 Action of inertia group on
the tangent space at a smooth point x ∈ � which it fixes, induces the action on the
normal space of�. The characterψI of this 1-dimensional representation of the cyclic
group I (�) generates the group of characters Char(I (�)). In particular one has a
well defined map Char I (�)→ Z : χ → iχ where χ = ψ iχ , 0 ≤ iχ < ordI (x).

The extension is called abelian (resp. cyclic) if it is Galois and the Galois group is
abelian (resp. cyclic). For a branchedGalois cover X → Y , the ramification index e�′

is the same for all irreducible components �′ ⊂ X , having the same image D ⊂ Y .
Moreover, the order of the inertia group |I (�′)| = e�′ . If r is the number of f -
preimages of a generic point D ⊂ Y then one has |G| = re�′ .

The above correspondence between subgroups of the fundamental group and
covers in Galois case becomes the correspondence (for fixed pair (Y, D)) between
surjections P : π1(Y \ D)→ G and covers with Galois groupG. Given a surjection,
one can construct the corresponding cover, i.e. unique, up to homeomorphism over
Y \ D, topological space Y ′ and the map f : Y ′ → Y \ D making Y ′ into unramified
covering space with groupG, as follows. This space Y ′ can be viewed as the quotient
of the space of paths in Y − D with a fixed initial points p ∈ Y \ D with two paths
γ1, γ2 being equivalent iff they have the same end point and the homotopy class
of γ−11 ◦ γ2 ∈ π1(Y \ D, p) has trivial image in G. Y ′, being an unramified cover,
inherits from Y \ D the structure of complex manifold so that f ′ is étale. We have
the following theorem.

Theorem 10.3.7 (Grauert-Remmert, cf. [101] Chap.7, Grothendieck, [104], SGA1,
Chap. XII, Sect. 5) Let f ∗ : X∗ → Y \ D be a finite unramified map of complex
spaces where Y is a smooth complex manifold and D a divisor on Y . Then there is a
unique normal space X containing X∗ as a dense subset and morphism f : X → Y
such that f ∗ = f |X∗ .

9 Recall that the ground field here is C. For varieties over non-algebraically closed fields, the
inertia group I (x) of x ∈ � (which is the subgroup of the decomposition group consisting of
automorphisms inducing trivial automorphism of the extension of the residue fields of f (x) by the
residue field of x (cf. [104] Expose V, Sect. 2) is a proper subgroup of the decomposition group.
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The inertia group of a component �′ ⊂ X of ramification divisor in a Galois
cover with a group G is the cyclic subgroup of G generated by the image in G of
a representative g in the conjugacy class γ ∈ π1(Y \ D) of a meridian of D. If the
order of this image is s, then gs can be lifted to X \�′ as a closed path (i.e. gs belongs
to the kernel of surjection π1(Y \ D, p)→ G) and is homotopic in the complement
to the ramification divisor in X to a meridian of �′.

10.3.4 Abelian Covers

We discuss two ways to enumerate branched covers with abelian Galois group over
a manifold with given branch locus. One is topological, which follows immediately
from the discussion of previous section (cf. [137]) and another is algebro-geometric
(cf. [4, 178]). A different important perspective, from a view point of root-stacks is
discussed in [196].

Since by Hurewicz theorem H1(Y \ D, Z) is the abelianization of π1(Y \ D), any
surjection of the fundamental group onto an abelian groupG factors asπ1(Y \ D)→
H1(Y \ D, Z)→ G. Hence we have the following.

Corollary 10.3.8 Equivalence class of a branched cover of a complex manifold Y
and having a divisor D =⋃

Di as its branch locus is determined by the surjec-
tion H1(Y \ D)→ G taking neither of meridians of D to identity. Vice versa, an
abelian branched cover f : X → Y determines the branch divisor D ⊂ Y and the
above surjection of the homology group. Moreover, this correspondence induces the
map from the set of irreducible components of the branch locus to the set of cyclic
subgroups of the Galois group (inertia subgroups of the irreducible components of
ramification divisor).

An algebro-geometric description of abelian covers (cf. [178]) is given in terms
of the collections of line bundles labeled by the characters of G. Given such a cover
f : X → Y , one obtains the decomposition into eigen-sheaves:

f∗(OX ) =
⊕

χ∈CharG

L−1χ (10.18)

The left hand side has the structure of a sheaf of algebras and thework [178] describes
the data specifying such structure on the right in (10.18). This is done in terms of
classes of components of branch locus in Pic(Y ), the Galois group G, the collection
of cyclic subgroups H and generators ψH of each group CharH satisfying the
following compatibility conditions. Once the OY -algebra structure, say A, on the
right in (10.18) is specified, the branched cover is just SpecA→ Y .

For a pair (H, ψ), where H ∈ Cyc(G) and ψ is a generator of CharH , let
DH,ψ be the union of irreducible components D of the branch locus which have
H as its inertia group and ψ as the character of representation of H on the normal
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space to a component of the ramification locus over D fixed by H . To a character
χ ∈ CharG corresponds rχ

H,ψ ∈ N such that χ |H = ψrχ

H,ψ , 0 ≤ rχ

H,ψ < ordH . For
a pair χ1, χ2 ∈ CharG, let us set εH,ψ

χ1,χ2
to be 0 (resp.1) if χ1|H = ψ iχ1 , χ2|H =

ψ iχ2 , 0 ≤ iχ1 , iχ2 < CardH and iχ1 + iχ2 < CardH (resp. iχ1 + iχ2 ≥ CardH ).
Then the bundles Lχ in (10.18) satisfy the relations (cf. [178]):

Lχ1χ2 = Lχ1 ⊗Lχ2

⊗

H∈Cyc(G),ψ∈CharH

O(DH,ψ )ε
H,ψ
χ1 ,χ2 (10.19)

In fact, if χ1, .., χs are generators of a decomposition of Char(G) into a direct
sum of cyclic subgroups and d j is the order of χ j , j = 1, ..., s then:

dχLχ =
∑

H,ψ

dχr
χ

H,ψ

|H | DH,ψ (10.20)

Vice versa (cf. [178]), given

(a) a finite abelian group G,
(b) a smooth compact complex manifold Y ,
(c) a divisor D on Y with assignment to each irreducible component a cyclic sub-

group H of G and a generator ψH of Char(H)

(d) collection of line bundles Lχ , χ ∈ Char(G) labeled by the characters of G

with (a), (b), (c), (d) satisfying the relations (10.19), there is abelian branched cover
X of Y satisfying (10.18) (cf. [178]. The data (a), (b), (c), (d) subject to (10.19) called
the building data.

We will show how to recover from Y, D and surjection H1(Y \ D, Z)→ G the
parts (c), (d) of the building data and vice versa, the building data determines the
surjection onto the covering group.

Proposition 10.3.9 Let Y be a smooth projective manifold and let D =⋃r
i=1 Di be

a divisor with irreducible components Di . The surjection π : H1(Y \ D)→ G onto
an abelian group G determines for each character χ ∈ CharG the bundle Lχ so
that the bundlesLχ , χ ∈ CharG satisfy the relations (10.19). Moreover, the bundles
L−1χ are the eigenbundles of decomposition (10.18) for the covering corresponding
to π (cf. Corollary 10.3.8). Vice versa, a building data determines the surjection
H1(Y \ D, Z)→ G.

Proof To a unitary character χ ∈ H 1(Y \ D,U (1)) one associates the element in
Pic(X) as follows. One has the following high dimensional version of the exact
sequence (10.5):

H2(Y, Z)→ H 2 dim D(D, Z)→ H1(Y \ D, Z)→ H1(Y, Z) = 0 (10.21)

Applying Hom(·, K), K = Z, R,U (1) to the terms of (10.21) we obtain:
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0→ Hom(H1(Y \ D, Z), Z)→ H2 dim D(D, Z)
ιZ→ Pic(Y ) ⊂ H 2(Y, Z)

↓ ↓ ↓
0→ H 1(Y \ D, R) → H2 dim D(D, R)

ιR→ Pic(Y )⊗ R ⊂ H 2(Y, R)

↓ ↓ exp ↓ exp

0→ H 1(Y \ D,U (1))
�→ H2 dim D(D,U (1))

ιU (1)→ H 2(Y, Z)⊗U (1)
(10.22)

Here � is evaluation of a character on the meridian of the irreducible component,10

the vertical arrows are induced by the exponentiation exp : R→ U (1), a→ e2π ia

and the map ι (for each choice of coefficients) assigns to a homology class, the
class in H 2 dim D(Y ) which corresponds to the linear function on H2 dim D(X) given
by the intersection index with this class. A lift exp−1(�) of χ ∈ H 1(Y \ D,U (1))
determines uniquely the element χ̃ in the unit cube in H2 dim D(D, R), which is a
fundamental domain for the action of the group H2 dim D(D, Z) on the latter and
which has H2 dim D(D,U (1)) as the quotient. Since ιU (1) takes exp(χ̃) to the trivial
class in H 2(Y, Z)⊗U (1)we obtain that ιR(χ̃) ∈ H 2(Y, R) is an integral class. Since
it has the Hodge type (1, 1), this class defines a line bundle. We shall denote it asLχ .

Let χ(γDi ) = exp(2π iαi ), αi ∈ Q, 0 ≤ αi < 1. If ordχ = d then αi = νi
d , 0 ≤

νi < d, i ∈ N. It follows that ιR(exp−1(�(χ))) =∑

νi
d [Di ] defines an integral class

in H 2(Y, Z) and Lχ is the bundle with the first Chern class corresponding to this
integral class.11 More directly, integrality can be seen as follows: since χ(Dγ ) =
1,∀γ ∈ H2(Y, Z), it follows from (10.6) that one has

∏

i exp(2π iαi )
(γ,Di ) = 1.

Hence (γ,
∑

i
νi
d [Di ]) ∈ Z for all γ ∈ H2(Y, Z) i.e.

∑

i
νi
d Di is an integral class.

Let Lχ be the bundle with the first Chern class corresponding to this class. The
bundle Ld

χ =
∑

νiO(Di ) has a section and it follows from the calculation in [84]
Sect. 3.6 (cf. also [127] Remarks 4.1.7 and 10.3.10 below) that for the cyclic cover
πχ : Yχ → Y corresponding to Ker(χ)onehasπχ(O) =∑d−1

0 L−kχ .Moreover,L−kχ

is the eigensheaf with corresponding character χ k . Considering the full G-cover and
factoring it through Yχ , one sees that this is also the eigenbundle in the G-cover
corresponding to π . Now the relations (10.19) follows from [178], Theorem 2.1.

Vice versa, the map CharG = Hom(G,U (1))→ H2 dim D(D,U (1)) sending a

component with inertia group H to exp(2π i
rχ

H,ψ

ord H ) due to relations (10.19) lifts to
the map to H 1(Y \ D,U (1)) and hence by duality induces the surjection H1(Y \
D, Z)→ G.

Example 10.3.10 (cf. [127], Sect. 4.1.B or [84]) Let Y be a smooth projective vari-
ety, D ⊂ Y be a very ample divisor. Let L be a very ample line bundle such that
Ld = O(D). Clearly, the bundles Li form a part of a building data for G = Zd . The
corresponding cover can be obtained as follows. Let s ∈ H 0(Y,O(D)) be a section
with zero-scheme D and νd : [L] → [O(D)] the map of the total spaces of the line
bundles given by v ∈ L→ v⊗d ∈ Ld . Then ν−1d (s(Y )) is a smooth subvariety Yd of
the total space of the line bundle L and its projection π onto the base endows Yd

10 Recall that this follows from identification H2 dim D(D,U (1)) = H2 dim D(Y, Y \ D,U (1))
obtained by excision and Lefschetz duality.
11 Recall that Y is simply connected and hence Lχ is well defined.
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with the structure of the branched cover over Y with branch locus D. The divisibility
of the fundamental class of D by d, implies that if H1(Y, Z) = 0, then there is well
defined surjection H1(Y \ D, Z)→ Zd . It assignes to a 1-cycle δ representing a class
in H1(Y \ D, Z), the modulo d intersection index of a 2-chain in Y having δ as its
boundary. So Yd is the cyclic cover of Y branched over D with Galois group Zd

and corresponding to this surjection of H1(Y \ D, Z). The inertia group of any point
of D is Zd . On the other hand π∗(OYd ) = ⊕i=d−1

i=0 L−i and L−i is the eigen-bundle
corresponding to the character of Zd given by χi : j → exp( 2π

√−1i j
d ). The relation

(10.19) is immediate.
Vice versa, given the surjection H1(Y \ D, Z)→ Zd , the diagram (10.22) shows

that the character χi , taking value exp(
2π
√−1i
d ) on generator of Z/dZ, has as the lift

iR(exp−1(�(χi )) = c1(Li ) and in this way producing a building data.
In the case Y = P

2, D is an irreducible curve of degree d with equation
f (x0, x1, x2) = 0, one has H1(P

2 \ D, Z) = Zd and the cover corresponding to
this isomorphism is biholomorphic to a hypersurface V f : ud = f (x0, x1, x2) in P

3.
Moreover the decomposition (10.18) becomes f∗(OV f ) = ⊕d−1

i=0OP2(−i).
Example 10.3.11 (cf. [118, 119]) Let A be an arrangement of r lines in P

2. Then
H1(P

2 \A, Z) = Z
r/{(1, ...., 1)} = Z

r−1. Let H1(P
2 \A, Z)→ G = Z

r
n/

{(1, ..., 1)} = Z
r−1
n sending the meridian the i-th line to (0, ..., 0, 1, ...0) mod n. A

character of G can be identify with a vector ( a1n , ..., ar
n ), 0 ≤ ai < n,

∑r
1
ai
n ∈ Z. Let

us denote this character χa1,...,ar . The inertia group Hi of the i-th line is the subgroup
of G isomorphic to Zn and generated by (0, ..., 0, 1, ...0) mod n (all components
except the i-th are zero) and the character ψ of Hi takes the value exp 2π i

n on the
corresponding generator. It follows from discussion of Proposition 10.3.9 that

L−1χa1 ,...,ar
= OP2

(

−(

∑r
1 ai
n

)

)

See [119] for a direct calculation of the direct image of the structure sheaf using
that this abelian cover is the restriction of the Kummer cover: P

r−1→ P
r−1 given

by (x1, ..., xr )→ (xn1 , ..., x
n
r ).

Example 10.3.12 Let D be the hypersurface in C
n given by f1(x1, ..., xn) · ... ·

fr (x1, ...., xn) = 0 where fi ∈ C[x1, .., xn] are irreducible. Using a non-compact
version of the calculation (10.6) one obtains H1(C

n \ D) = Z
r . Let p : H1(C

n \
D)→ G be a surjection onto an abelian group. Then to p corresponds the cover
P : Vp,D̄ → P

n branched over the projective closure D̄ of D and possibly over the
hyperplane at infinity with the following properties. The order ri of p(γi ) ∈ G coin-
cides with the ramification index of the branched cover P at P−1(s) where s is a
generic point in Di . At a generic point s ∈ P

n−1 the ramification index at P−1(s) is
the order in G of the class p(

∑

(deg fi )γi ) ∈ H1(C
n \ D, Z). An explicit model of

such covering can be obtained as the normalization of the projective closure of affine
complete intersection in C

n+r given by equations:

zrii = fi (x1, ..., xn) i = 1, ..., r. (10.23)
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10.3.5 Characteristic Varieties

Alexander Invariants and Jumping Loci of Local Systems

A multivariable generalization of Alexander polynomials was proposed in [137] as
follows. Let Y be a finite CW complex and φ : π1(Y )→ A be a surjection onto a
finitely generated abelian group. The unbranched abelian cover πφ : Yφ → Y corre-
sponding to φ comes with a free action of A via cellular maps. Hence the compact
supported homology Hk(Yφ, C) and also its exterior powers

�i Hk(Yφ, C) (10.24)

can be considered as the modules over the group algebra C[A] of A.
Definition 10.3.13 (cf. [132]) The affine subvariety Charki (Y, φ) of the torus Spec
C[A] defined as support of the module �i Hk(Yφ, C) (cf. [81]) is called the depth i
characteristic variety of Y in dimension k (corresponding to surjection φ)12

Standard results from commutative algebra (cf. [35] or [81] Chap. 20) show that
Charki (Y ) is the zero set of the i-th Fitting ideal of C[A]-module Hk(Yφ, C) i.e.
the ideal generated by (n − i + 1)× (n − i + 1) minors of the matrix of a presen-
tation of this module via n generators and m relations. Moreover, for k = 1, which
unless otherwise stated will be our focus for the rest of this section, presentation
of the module H1(Yφ, C) can be studied using the matrix of Fox derivatives giving
presentation of C[A]-module H1(Yφ, p̃, C) where p̃ = π−1φ (p) is the preimage of
p ∈ Y (cf. [132]). As a consequence, this implies that for a CW complex having as
its fundamental group a group with deficiency 1 and the homomorphism φ being the
abelianization, the characteristic variety Char11 (Y ) of depth 1, has codimension 1 in
SpecC[A]. For example this is the case for Y = S3 \ L where L is a link. In fact,
Char11 (S

3 \ L) is the zero set of the multivariable Alexander polynomial of L [122].
In the case of algebraic curves in C

2, the codimension of Char11 is typically larger
than 1 except for the case A = Z in which case it is the zero set of the 1-variable
Alexander polynomial discussed in Sect. 10.3.113

There is a different interpretation of these subvarieties of the complex tori
SpecC[A].14 Recall (cf. for example [49], Chap. 5) that a rank l local system on
a CW complex Y is a l-dimensional linear representation of the fundamental group
ρ : π1(Y )→ GL(l, C). (Co)homology of a local system are obtained as the coho-
mology of the chain complex:

...→ Ci (Ỹ , C)⊗π1(Y ) C
l → ... (10.25)

12 The support is assumed to be a reduced variety.
13 However Char1(π1(P

1 \ [3]), ab) = (C∗)2 where [3] is a subset containing 3 points and ab is
the abelianization of the free group.
14 SpecC[A] is algebraic group with CardTor A connected components with (C∗)rk A being the
component of identity.
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whereCi (Y, C) are the chainswith compact support on the universal cover considered
as a module over the group ring of the fundamental group.

An important feature of local systems is the following: in the case when Y is
a smooth quasi-projective variety, the cohomology of local systems admit Hodge-
deRham description given by Deligne (cf. [67]). First of all representations of funda-
mental groups can in interpreted as locally trivial vector bundles with constant transi-
tion functions (cf. [67], Corollary1.4), which in turn, in the case when Y is a smooth
manifold, can be interpreted as flat (integrable) connections ∇ : V→ �1

Y ⊗V on
a holomorphic vector bundle V (i.e. a C-linear map satisfying Leibnitz rule). This
differential operator can be extended to higher degree forms and lead to a twisted
deRham complex:

...→ �p(Y )⊗V ∇→ �p+1 ⊗V→ ... (10.26)

The (co)homology of the latter are identified with the (co)homology H∗(Y, ρ) of the
complex (10.25) since both are derived functors of the functor sending a representa-
tion to the subspace of invariants (cf. [67], Propositions 2.27 and 2.28).

Using (co)homology with twisted coefficients of rank one local systems, one can
define jumping loci:

Vk
i (Y ) = {ρ ∈ Hom(π1(Y ), C)|Hk(Y, ρ) ≥ i} (10.27)

There is the canonical identificationofHom(H1(Y, Z), C
∗) and SpecC[H1(Y, Z)]

making two collections of subvarieties of both tori correspond to each other15:

Char1i (Y ) \ {1} = V1
i (Y ) \ {1} (10.28)

This was shown to be the case for any finite CW complex Y in [117] for k = 1 and
arbitrary i (cf. also [75, 137]) i.e. when one is interested in invariants ofπ1(Y ) and for
i = 1 but with arbitrary k (cf. [177]) when one considers invariants of the homotopy
type.

Homology of Abelian Covers

Characteristic varieties determine the homology of covering spaces as follows.

Proposition 10.3.14 (cf. [70, 116, 132]) Let φ : π1(Y )→ A be a surjection onto
a finite abelian group A and let Yφ be the corresponding unbranched cover of Y
with the Galois group A. Let ν(A) be the image of embedding φ∗ : SpecC[A] →
SpecC[H1(Y, Z)]. Then:

15 The order of vanishing of the Fitting ideal of H1(Yφ, C) at (1, ...., 1) in general is different than
rkH1(Y, C) which is the first Betti number of trivial local system.
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rkHk(Yφ, C) =
∑

i

Card(ν(A) ∩Vk
i (Y )) (10.29)

This follows from the definition of jumping loci (10.27), the extension of classical
Shapiro lemma (cf. [70]) from group cohomology to arbitrary spaces (cf. [49]) i.e.
in our notations the identification Hk(Yφ, C) = Hk(Y, C[A]), and the decomposition
C[A] = ⊕χ∈SpecC[A]Cχ where Cχ is the 1-dimensional representation of A given by
the character χ .

Now consider the case of abelian branched covers which according to Corollary
10.3.8 are specified by the branching locus and the abelian quotient of the funda-
mental group of the complement to the latter. The proof below is a version of the
argument due to M. Sakuma (cf. [188]).

Proposition 10.3.15 Let X be a smooth simply-connected projective surface and
D =⋃

Di a reduced divisor. Let φ : H1(X \ D, Z)→ A be a surjection onto a
finite abelian group. For a character χ ∈ A∗ where A∗ = Hom(A, C

∗), let Dχ

be the union of irreducible components Di of D such that for the meridian δi ∈
H1(X \ D, Z) of Di one has χ(δi ) 	= 1. Denote by d(Dχ , χ)16 the maximum of
the integers i such that χ ∈ Char1i (X \ Dχ ), where Char1i (X \ Dχ ) is the depth

i characteristic variety of the curve Dχ as defined in Definition 10.3.13. Let ˜X̄φ

be a resolution of singularities of the branched cover X̄φ of X ramified along D
corresponding to above surjection φ. Then

rkH1(
˜X̄φ, C) =

∑

χ∈A∗
d(Dχ , χ) (10.30)

Proof Denote by SingX̄φ the set of singularities of X̄φ . This is a finite set mapped
by the covering map into the set Sing(D) of singularities of D. We will start by
showing that

rkH1(
˜X̄φ, C) = rkH1(X̄φ \ Sing(X̄φ), C) (10.31)

Indeed, if E is the exceptional set of a resolution ˜X̄φ → X̄φ , then

˜X̄φ \ E = X̄φ \ Sing(X̄φ) (10.32)

On the other hand, the exact sequence of the pair (˜X̄φ, ˜X̄φ \ E) and the identification

Hi (˜X̄φ, ˜X̄φ \ E) = H4−i (E) yield:

0→ H 1(˜X̄φ)→ H 1(˜X̄φ \ E)→ H2(E)→ H 2(˜X̄φ) (10.33)

16 The integer d(Dχ , χ) is called the depth of the character χ of the curve Dχ .
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Together with injectivity of the right map in (10.33), which is a consequence of
Mumford theorem on non-degeneracy of the intersection form on a resolution of a
surface singularity (cf. [167]), we obtain (10.31).

By universal coefficients theorem, allowing to switch to cohomology, the identity
(10.30) will follow from the following calculation of dimensions of χ -eigenspaces

dimH 1(X̄φ \ Sing(X̄φ))χ = d(Dχ , χ) (10.34)

for all characters χ ∈ Char(A).
To show (10.34), note that the group A acts on X̄φ \ Sing(X̄φ) with the quotient

X \ Sing(D). For any character χ of group A we consider the cyclic branched cover
(X \ Sing(D))χ of X \ Sing(D) corresponding to compositionπ1(X \ D)→ A→
Im(χ). One has the biregular isomorphism:

X̄φ \ Sing(X̄φ)/Kerχ = (X \ Sing(D))χ (10.35)

The group A/Ker(χ) = Im(χ) acts on the left side of (10.35) and the identifi-
cation (10.35) is Im(χ)-equivariant. The transfer H∗(X̄φ \ Sing(X̄φ))→ H∗(X̄φ \
Sing(X̄φ)/Ker) (cf. [33], p.118) provides Im(χ)-equivariant isomorphismH∗(X̄φ \
Sing(X̄φ))Ker(χ) = H∗(X̄φ \ Sing(X̄φ)/Ker(χ)) which implies that

H∗(X̄φ \ Sing(X̄φ)χ = H∗(X̄φ \ Sing(X̄φ)Ker(χ)
χ = H∗((X \ Sing(D))χ )χ

(10.36)
Equation (10.34) is obvious for trivial character and the isomorphism (10.36) shows
that (10.30) follows from the cyclic case of the Proposition for non-trivial χ .17

Finally, the cyclic cover (X \ Sing(D))χ is a totally ramified cover of X \ SingD
branched over Dχ and the cyclic case with non-trivial χ follows from the calculation
of homology of unbranched covers in Proposition10.3.14 since the action of Im(χ)

on kernel and cokernel of themap induced by the embedding of the cyclic unbranched
cover (X \ Dχ )χ with Galois group Im(χ)

H 1((X − SingD)χ )→ H 1((X \ Dχ )χ ) (10.37)

is trivial.

Structure of Characteristic Varieties

The central result on the structure of characteristic varieties of quasi-projective man-
ifolds is obtained from their interpretation (cf. [117]) as the jumping loci of the
cohomology of local systems, which allows to apply deep Hodge theoretical meth-
ods [9]. It asserts that the irreducible components of characteristic varieties are a

17 We also use that removal 0-dimensional set SingD from a 4-dimensional manifold does not
change the first Betti number.
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finite order cosets of subtori of SpecC[H1(X \ D, Z)] and that these components
are the pull backs of the characteristic varieties of fundamental groups of curves via
holomorphic maps. The origins of such correspondence are going back to Zariski
[221], Beauville [30], Green-Lazarsfeld [103], Simpson [195] in projective case with
quasi-projective case being addressed by Arapura [9]. In a very special case when the
quasi-projective manifold is a complement to an irreducible plane singular curve the
assertion of the finitness of the order of cosets becomes the cyclotomic property of
the roots of Alexander polynomials ([129], cf. Theorem10.3.3) and does not require
Hodge theory (unlike the Theorem 10.3.16). We shall quote an orbifold version (cf.
[19]) of this correspondence between the holomorphic maps and the components of
characteristic varieties

Theorem 10.3.16 (cf. [9, 19]) Let V1
i (X \ D)irr be an irreducible component of

jumping locus of 1-dimensional cohomology of a smooth quasi-projective variety
X \ D. ThenV1

i (X \ D)irr is a coset of finite order of a subtorus of the commutative
algebraic group SpecC[H1(X \ D, Z)].Moreover, there exist an orbifold curveCorb,
an irreducible componentVi (π

orb
1 (Corb))irr and holomorphic orbifold map f : X \

D→ Corb such V1
i (X \ D)irr = f ∗(Vi (π

orb
1 (Corb))irr ).

Corollary 10.3.17 The array of Betti numbers of finite abelian covers of X branched
over D determines the characteristic varieties of the fundamental group of the com-
plement.

Proof Translated subgroups are specified by the points of finite order on the torus
which they contain. A point χ of the finite order belongs to the i-th characteristic
variety if and only if the multiplicity of χ in the cyclic cover corresponding to the
group Im(χ) is at least i . The claim follows.

A very important application of translated subgroup property is that it provides a
necessary conditions on a group be quasi-projective i.e. to be a fundamental group of
a smooth quasi-projective variety. For application of these and ideas from different
ideas, not discussed here, to the problem of characterisation of quias-projective and
quasi-Kahler groups (in particular the comparison with the fundamental groups of
3-manifolds) see: [10, 19, 32, 76, 77, 91, 124, 133]

10.3.6 Isolated Non-normal Crossings

A generalization of results on Alexander invariants from Sects. 10.3.1–10.3.5 pro-
viding invariants of the homotopy type beyond fundamental groups was proposed in
[141]. The starting point is the following:

Theorem 10.3.18 (cf. [141], Theorem 2.1) Let X, dimX > 2 be a smooth simply
connected projective variety and let D be a divisor such that all its irreducible
components are smooth and ample. Then π1(X \ D) is abelian and πi (X \ D) = 0
for 2 ≤ i ≤ dimX − 1.
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This theorem and Lefschetz hyperplane sections theorem have the following as an
immediate corollary.

Corollary 10.3.19 ([141]) Let X be as in Theorem 10.3.18, let D =⋃r
1 Di be a

divisor with ample irreducible components and let N NC(D) be the subvariety of
X consisting of points x ∈ X at which D fails to be a normal crossings divisor.18

Let s = dimNNC(D).19 Then πi (X \ D) = 0 for i ≤ d − s − 2. Moreover, if H =
⋂s

1 Hi is a sufficiently general intersection of very ample divisors on X then D ∩ H
is a divisor on X ∩ H with isolated non normal crossings and

πi (X \ D) = πi ((X \ D) ∩ H) i ≤ d − s − 1 (10.38)

In particular the first non-trivial homotopy group of the complement to a divisor
with ample components can be calculated using the divisor D ∩ H with isolated
non-normal crossings on H.

The high dimensional analogs of the results on the Alexander invariants of the
complement to curves described in [141] give a similar description of the homotopy
group πd−1(X \ D) where X as in Theorem 10.3.18, D is a divisor with ample
components but now D is allowed to have isolated non normal crossings (INNC)
i.e. dimNNC(D) = 0. The role of the first homology of the infinite abelian cover
in the case of complements to curves is played by the first non-vanishing homotopy
group πi (X \ D), i > 1. In fact one has the identification:

HdimX−1(X̃ \ D, Z) = πdimX−1(X \ D) (10.39)

where X̃ \ D is the universal (hence also universal abelian, cf. Theorem 10.3.18)
cover of X \ D. The Z[π1(X \ D)]-module structure equivalently can be obtained
using the Whitehead product (cf. [141]) and the characteristic variety of X \ D in
dimension dimX − 1 is the support of the module πdimX−1(X \ D)⊗ C.

In the case when a point in NNC(D) belongs to only one component, failure
to be normal crossing means that the point is just an isolated singularity of D. In
this case the local information about the Alexander invariants is contained in the
Milnor fiber of the singularities of D and includes the characteristic polynomial
of the monodromy as well as some the Hodge theoretical invariants (cf. [141]).
Reducible analog of isolated singularities are isolated non-normal crossings i.e. the
intersections of hypersurfaces which are smooth and transversal everywhere except
for a single point. It turns out that many features of isolated singularities described
by Milnor [163] have counterparts in INNC case. They include the analogs of high
connectivity of Milnor fibers, analogs of monodromy action on the cohomology, its
cyclotomic properties and others.

18 We call D a divisor with isolated non-normal crossings, if dim NNC(D) = 0.
19 The convention is that if x /∈ D then D does have normal crossing at x and the dimension of
empty set is −1.
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To be specific, recall that if f (x0, ..., xn) = 0 is a germ of an isolated singularity,
V f is its zero set, Bε is a small ball about the singular point of f , ∂Bε is the boundary
sphere then we have the following.20

Theorem 10.3.20 (cf. [163]) (i) The complement Bε \ (V f ∩ Bε) is homotopy equiv-
alent to ∂Bε \ (V f ∩ ∂Bε).

(ii) There is a locally trivial fibration ∂Bε ∩ (V f ∩ ∂Bε)→ S1, with the fiber (i.e.
the Milnor fiber) being homotopy equivalent to a wedge of spheres of dimension n.

Corollary 10.3.21 If f (x0, ..., xn) is a germ of isolated singularity, then the univer-
sal cyclic cover of Bε \ (Bε ∩ V f ) is homotopy equivalent to a finite wedge of spheres
of dimension n. Moreover, the action of the deck transformation on the homology of
the universal cyclic cover coincides with the action of the monodromy operator on
the homology of the Milnor fiber. In particular, the characteristic polynomial of the
monodromy coincides with the Alexander polynomial of ∂Bε \ (V f ∩ ∂Bε).

A generalization of these results to multi-component germs is as follows (which
is the local counterpart of Corollary 10.3.19).

Theorem 10.3.22 (cf. [140])Let Xr be a germ f1(x0, ..., xn) · ... · fr (x0, ..., xn) = 0
of a hypersurface which is product of r irreducible germs. Then for n > 1

π1(∂Bε \ (Xr ∩ ∂Bε)) = Z
r πi (∂Bε \ (Xr ∩ ∂Bε)) = 0 , 2 ≤ i ≤ n − 1 (10.40)

The role of the Milnor fiber is now played by the universal abelian21 cover of

the complement ˜∂Bε \ (Xr ∩ ∂Bε) and the monodromy action is replaced by the
action of fundamental group of the complement to INNC germ on the universal

abelian cover via deck transformations. The homology Hn( ˜∂Bε \ (Xr ∩ ∂Bε), C)

is equipped with the action of the group algebra C[H1(∂Bε \ (Xr ∩ ∂Bε))]. The
H1(∂Bε \ (Xr ∩ ∂Bε), Z)-action can be, as in global case, identified the Whitehead
product of the elements ofπn(∂Bε \ (Xr ∩ ∂Bε)with the elements ofπ1(∂Bε \ (Xr ∩
∂Bε)) = H1(∂Bε \ (Xr ∩ ∂Bε)). The group ring of the latter is the ring of Laurent
polynomials and the role of the characteristic polynomial of themonodromy is played
by the subvariety of the torus SpecC[H1(∂Bε \ (Xr ∩ ∂Bε))] which is the support
of this module [81].

Example 10.3.23 (cf. [140]) Let fdi (x0, ...., xn) = 0, i = 1, ..., r be the equations
of smooth sufficiently general hypersurfaces in P

n . Then the union in C
n+1 of cones

over these r hypersurfaces is isolated non-normal crossing. The support of this mod-
ule is the zero set of td1 · ... · tdrr − 1 = 0.

Example 10.3.24 Let f1(x, y).... fr (x, y) be a germ of reducible curve inC
2. The

support of the universal abelian cover of the complement to the link coincides the
zero set of the multivariable Alexander polynomial of the link. Further properties of
this support and its Hodge theoretical properties are discussed in [39, 40].

20 Only the last claim in (ii) requires singularity of f to be isolated.
21 Which is also the universal cover for n ≥ 2 since the fundamental group is abelian in this case.
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We refer to the work [141] Sects. 5 and 6 for description of the structure of char-
acteristic varieties of global INNC in terms of the homotopy groups of local INNC
(of germs), as well as the relationship between the cohomology of local systems,
the homology of branched cover and the translated subgroups of SpecC[π1(X \ D)]
which are the irreducible components of SuppπdimX−1(X \ D)⊗ C. The divisibility
relations extending the divisibility theorem from Sect. 10.3.2 to the case of hypersur-
faces in P

n with isolated singularities, the Thom Sebastiani theorems for the orders
of the homotopy groups and other results on the topology of the complements to are
discussed in [134]. For some results in non-isolated case, cf. Sect. 10.3.8.

10.3.7 Twisted Alexander Invariants

A generalization of Alexander polynomials was proposed in the context of knot the-
orywhich uses as an additional input a linear representation of the fundamental group
(cf. [123] for a discussion of this generalization). A twisted version of Alexander
polynomials of algebraic plane curves was considered in [44]. In [143] a multivari-
able extension of this construction called a characteristic varieties of a CW complex
twisted by a unitary representation was defined as follows.

Let π : π1(X)→ U (V ) be a unitary representation of the fundamental group of a
CW complex such that H1(X, Z) is a free abelian group of a positive rank.22 Here V
is a complex vector space endowed with a Hermitian bilinear form and viewed as a
leftC[π1(X)]-module. Let X̃ be the universal cover of X . For a (left or right) module
M over the algebra C[π1(X)] (which is associative but possibly non-commutative),
we denote by M� the module obtained by restriction of the coefficients to the group
algebra C[π ′1(X)] ⊂ C[π1(X)] of the commutator subgroup π ′1(X) of π1(X). Let
C∗(X̃) denotes chain complex of X̃ endowed with the natural structure of (a right)
C[π1(X)]-module. Consider the following complex of tensor products of C[π ′1(X)]-
modules.

C∗(X̃)� ⊗C[π ′1(X)] V � : g(c ⊗ v) = cg−1 ⊗ gv (10.41)

The group π1(X) acts on the module (10.41) and the restriction of this action to the
commutator π ′1(X) is trivial. Hence (10.41) obtains the structure of C[H1(X, Z)]-
module. It passes to the homology of the complex (10.41). We denote the resulting
homology modules as Hi (Xab, Vab).

Definition 10.3.25 The support of C[H1(X, Z)]-module �l Hi (X̃ab, Vab) we call
the ρ-twisted degree i , l-th characteristic variety of X This is a subvariety of the
torus SpecC[H1(X, Z)] which we denote as Chli (X, ρ).

In the case when rkH1(X, Z) = 1 the support is a finite subset of C
∗ and hence the

zero set of a unique monic polynomial of degree Card(Chli (X, ρ)). More generally,
a surjection ε : H1(X, Z)→ Z defines the surjection of the group algebras and hence

22 Torsion freeness condition of H1(X, Z) is introduced to simplify the exposition.
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the embedding ε∗ : C∗ = SpecC[Z] → SpecC[H1(X, Z)]. The Alexander polyno-
mial �l

n(X, ρ, ε) is the unique monic polynomial of minimal degree having in C
∗

the roots (Imε∗) ∩ Chln(X, ρ).
We refer to [143] Sect. 5 for other results on the relation between the twisted

Alexander polynomials and characteristic varieties in the context of complements
to plane curves. For example the cyclotomic property of the roots of Alexander
polynomials becomes the following: the roots of a ρ-twisted Alexander polynomial
belong to a cyclotomic extension of the extension of Q generated by the eigenvalues
of ρ (cf. [143], Theorem 5.4).

10.3.8 Alexander Invariants of the Complements Without
Isolatedness Properties

Investigations of the Alexander invariants of the complements to hypersurfaces with
isolated singularities which were discussed in Sects. 10.3.1, 10.3.2, 10.3.5 and 10.3.6
were extended to the case of hypersurfaces with non-isolated singularities and further
to smooth quasi-projective varieties byL.Maxim and his collaborators (cf. [148, 151,
158]). The D-modules (cf. [186, 192]), the category of complexes of constructible
sheaves, the perverse sheaves and peripheral complex (going back to [41] and first
studied in this context in [158]) are the key technical tools used by these authors.
We will review two most important outcomes of this approach: propagation of char-
acteristic varieties and extension of divisibility theorem for Alexander polynomials.
The propagation property of characteristic varieties was first noticed in the context
of arrangements of hyperplanes (cf. [71, 82]) and extended further in [149, 150].
The key observation is pure topological and concerns the spaces satisfying a version
of cohomological duality.

Definition 10.3.26 (cf. [31, 71, 149]) Let X be a finite CW complex and G =
π1(X, x0), x0 ∈ X . A topological space is called a duality space of dimension n if
H p(X, Z[G]) = 0, p 	= n and Hn(X, Z[G]) is non-zero and torsion free.A spaces X
is called an abelian duality space if for A = H1(X, Z) one has H p(X, A) = 0, p 	= n
and Hn(X, A) 	= 0 is torsion free.

Theorem 10.3.27 (cf. [150], Theorem 3.16) Let X be an abelian duality space of
dimension n. Then the cohomology jumping loci of the characters of the fundamental
group π1(X) satisfy the following properties (the so call propagation package [149,
150]:

(i) Propagation: Subvarieties Vi (X) form descending chain:

Vn(X) ⊇ Vn−1(X) ⊇ .... ⊇ V0(X) (10.42)

(ii) Codimension bound:
codimVn−i ≥ i
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(iii) Irreducible components: if V is an irreducible component of codimension d in
Vn(X) then V ⊂ Vn−d

(iv) Generic vanishing: for characters ρ of the fundamental groupπ1(X) in a Zariski
open set in Hom(π1(X), C

∗) one has Hi (X, Lρ) = 0 for i 	= dimX.
(v) Signed Euler characteristic property: (−1)dimXχ(X) > 0
(vi) Betti numbers inequality: bi (X) > 0 for 0 ≤ i ≤ n and b1(X) ≥ n.

Use of jump loci of constructible complexes on semi-abelian varieties (which are
Albanese varieties of X is appropriate sense) is the key step in the proof of this result.

This theorem suggests the problem of identifying the abelian duality spaces. In
this direction one has the following.

Theorem 10.3.28 (cf. [149]) (i) Let X a compact Kahler manifold which is abelian
duality space. Then X is biholomorphic to an abelian variety.

(ii) Let X be quasi-projective manifold, such the albanese map X → Alb(X) is
proper. Then X is an abelian duality space. In particular a complement to a union
of hypersurfaces in C

n satisfies the propagation package.

Next we will describe the identity having as a special case the divisibility
relation between product of local Alexander polynomials of singularities and the
global Alexander polynomial from Sect. 10.3.2 in the case of curves and in [134]
in higher dimensions. Let f (z0, ...., zn+1) = 0 be a homogeneous polynomial of
degree d having as its zero set the hypersurface V f ⊂ P

n+1 and let fd(z1, .., zd) =
f (0, z1, ...., zn+1) be the equation of the intersection of V f with the hyperplane H∞
at infinity. The map

f : Pn+1 \ (H∞ ∪ V f )→ C
∗ (10.43)

which is the restriction of f : Cn+1 = P
n+1 \ P

n → C given by (1, z1, ..., zn+1)→
f (1, z1, ..., zn+1) allows to define the infinite cyclic cover ˜Pn+1 \ (H∞ ∪ V f ) cor-
responding to the kernel of the map π1(P

n+1 \ (H∞ ∪ V f )→ π1(C
∗) = Z induced

by (10.43). For each 1 ≤ i ≤ n one has a well defined (up to a unit of C[t, t−1])
polynomial �i (t)which is the order of the C[t, t−1]-module Hi ( ˜Pn+1 \ (H∞ ∪ V f ))

(cf. [158]). Let ψ f QCn+1 denotes Deligne’s nearby cycles complex associated to
f and let ψi (t) be the order of H 2n+1−i (V f ∩ C

n+1, ψ f QCn+1). Note that �i (t) =
ψi (t) f or i < n and �n(t) divides ψn . Let h(t) be the characteristic polynomial of
the Milnor fiber fd(z1, .., zn+1) = 1. The final ingredient is the determinant detφ of
the bilinear form:

Hn+1( ˜Pn+1 \ (H∞ ∪ V f ), Q(t))⊗ Hn+1( ˜Pn+1 \ (H∞ ∪ V f ), Q(t))
φ→ Q(t)

(10.44)
given by (α, β)→ α · i(β) where i : ∂(Pn+1 \ (H∞ ∪ V f )))→ P

n+1 \ (H∞ ∪ V f )

is the embedding of the boundary ∂(Pn+1 \ (H∞ ∪ V f )) of a small regular neighbor-
hood ofV f ∪ H∞, and “·” is the Poincare pairing in the homology of the infinite cyclic
cover (cf. [162]) of the pair ((Pn+1 \ (H∞ ∪ V f ), (∂P

n+1 \ (H∞ ∪ V f ))). With these
definitions one can describe the relation between the global Alexander invariants and
the data of the starta of a singular hypersurface as follows.
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Theorem 10.3.29 (cf. [151]) Let f ∈ C[x1, ...., xn+1] be defining polynomial of an
affine hypersurface F ⊂ C

n+1, fd be the top degree form of homogenization of f with
corresponding Milnor fiber Fh and hi (t) be the Alexander polynomial associated to
Hi (Fh). Letψn(t) denotes the Alexander module associated to H 2n−i

c (V0, ψ f QCn+1).
Finally, let φ be the intersection form on the infinite cover associated with f . Then

hn(t)ψn(t) = δn(t)
2det (φ) (10.45)

In the case when V f is transversal to H∞ and has only isolated singularities, this is
translated into the following relation (cf. [151]):

(t − 1)|e(P
n+1\(H∞∪V f ))|+(−1)n+1(td − 1)

1
d ((d−1)n+1+(−1)n) ∏

p∈Sing(V f )

�p = �2
ndet (φ)

(10.46)
i.e. one obtains topological interpretation of terms converting divisibility into equal-
ity. In the case of plane curves one recovers the result in [44].

10.4 Ideals of Quasiadjunction and Multiplier Ideals

Now we will turn to calculation of components of characteristic varieties in terms
of dimensions of linear systems determined by the singular points of the curve. For
earlier expositions of this material in the case of plane curves cf. [142] or [18].

10.4.1 Ideals and Polytopes of Quasi-adjunction

Definition 10.4.1 Let X be a complex n-dimensional manifold, P ∈ X be a point
and let BP be a small ball centered at P . Let D be a reduced divisor on X containing
P , f ∈ OP be a reduced germ of a holomorphic function having D as its divisor and
let f (x1, ..., xn) = f1(x1, ..., xn) · ... · fr (x1, ...., xn) be its prime factorization. Let

( j1, ..., jr ), (m1, ..,mr ), 0 ≤ ji < mi (10.47)

be two arrays of integers. Consider abelian branched cover Vm1,....,mr of B ram-
ified over D and corresponding to the component-wise reduction H1(BP \ D ∩
BP , Z) = Z

r →⊕r
1Z/miZ (cf. Sect. 10.3.3). After selecting local coordinates near

P , this cover can be viewed as a germ at the origin in C
n+r with coordinates

(z1, ...., zr , x1, ..., xn) given by the local equations:

zm1
1 = f1(x1, ..., xn), ......., z

mr
r = fr (x1, ..., xn), (10.48)
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The covering map of subvariety (10.48) onto BP is given by projection

(z1, ..., zr , x1, ...., xn)→ (x1, ..., xn).

The ideal of quasi-adjunction A( f | j1, ..., jr |m1, ...,mr ) of f (x1, ..., xn), corre-
sponding to the array (10.47), is the ideal of germs φ ∈ OP in the local ring of
P , such that the n-form

ωφ = φ(x1, ..., xn)dx1 ∧ ... ∧ dxn

zm1− j1−1
1 .....zmr− jr−1

r

(10.49)

defined on the smooth locus of (10.48), can be extended over a log resolution of
(10.48).

One shows that the idealA( f | j1, .., jr |m1, ...,mr ) is independent of a resolution of
(10.48) and that it depends only on the vector:

(

j1 + 1

m1
, ....,

jr + 1

mr

)

∈ [0, 1]r ⊂ R
r (10.50)

rather than on specific values of ji ,mi . To see that dependence is only on (10.50),
let us consider the following resolution of the germ (10.48): select a log-resolution

μ : (X̃ , D̃)→ (BP , BP ∩ D) (10.51)

with the exceptional set E =⋃K
1 Ek i.e. assume that E ∪ μ∗(D) is a normal crossing

divisor. Consider a resolution Xm of the normalization X̃m1,...,mr of the fiber product
X̃ ×X Vm1,..,m+r

Xm1,...,mr

↓
X̃m1,...,mr

↓
X̃ ×X Vm1,..,mr → Vm1,...,mr

π̃m1,...,mr ↓ πm1,...,mr ↓
X̃

μ→ C
n

(10.52)

The normalization X̃m1,..,mr has abelian quotient singularities and hence is Q-
Gorenstein Kawamata log-terminal (cf. [27]). In particular an n-form on the smooth
locus of X̃m1,..,mr extends over exceptional locus of Xm → Xm1,..,mr iff it is holo-
morphic on the smooth locus of X̃m1,..,mr (cf. [102]). Let ak,i = ordEkμ

∗( fi ), ck =
ordEkμ

∗(dx1 ∧ ... ∧ dxn), ek(φ) = ordEkμ
∗(φ). We obtain that π̃m1,..,mr (ωφ)

extends over the smooth locus of normalization X̃m1,...,mr iff for all irreducible com-
ponents Ek ⊂ X one has:
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∑

i

ak,i
ji + 1

mi
>

∑

i

ak,i − ek − ck − 1 ek = ek(φ) (10.53)

Definition 10.4.2 For a choice of collection E = {ek}, k = 1, ..., K of non-negative
integers labeled by irreducible components of resolution (10.51) and such that there
exist a germ φ ∈ OP such that ek = ek(φ), the closure P(E) in the r -cube [0, 1]r of
the set of solutions to inequalities (10.53) is called a polytope of quasi-adjunction23

of the germ f = f1 · .... · fr .
Using polytopes P(E) or inequalities (10.53), one can describe necessary and

sufficient conditions on (10.47) assuring extendability of the form ωφ (cf. 10.49) on
resolution of singularities of abelian covers in the tower (10.48). While the poly-
topes P(E) form a set which is partially ordered by inclusion and closely related to
Alexander invariants, sometimes it is convenient also to use a partition of [0, 1]r into
a union of (locally closed) non-intersecting and possibly non-convex polytopes Q
compatible with polytopes P(E).

To describe these polytopes consider the hyperplanes in R
r

∑

i

ak,i (γi − 1)+ ck = εk, εk ∈ Z<o (10.54)

labeled by the exceptional components Ek, k = 1, ..., K of resolutionμ (cf. (10.51))
where collections of integers εk are such that there exist φ ∈ OP satisfying εk =
ek(φ) and the remaining coefficients in (10.54) are defined just before (10.53). The
hyperplanes (10.54) partition the unit cube [0, 1]r into a union of locally closed
polytopes Q of various dimensions, such that υ = (..., γi , ..) = (...,

ji+1
mi

, ...) and

υ ′ = (..., γ ′i , ..) = (...,
j ′i+1
m ′i

, ...) belong to the same polytope iff υ, υ ′ satisfy the
same sets of inequalities (10.53). Equivalently, each polytope Q coincides with the
polytope formed by an equivalence class of points in [0, 1]r when one considers
points equivalent if they have the same set of polytopes P(E) containing each. We
wil call the polytopes Q, defining the decomposition of the unit cube into disjoint
union, the strict polytopes of quasi-adjunction to distinguish them from the ordinary
polytopes of quasi-adjunction P(E).

For a fixed vector υ with coordinates (10.50) the germs φ which satisfy the
inequalities (10.53) form the ideal AQ ⊂ OP depending only on the polytope
Q and not on a choice of υ ∈ Q. In particular, the ideal of quasi-adjunction
A( f | j1, ..., jr |m1, ...,mr ) is the ideal AQ such that (...., ji+1

mi
, ...) ∈ Q.

Definition 10.4.3 1. We define an ideal of quasi-adjunction as an ideal coinciding
with an ideal AQ for some strict polytope of quasi-adjunction Q ⊂ [0, 1]r .

23 By a polytope we mean a set of solutions to a finite collection of inequalities. All polytopes
considered here are bounded (subsets of a unit cube) and hence are the convex hulls of the sets of
their vertices. Faces are subsets of the boundary of a polytope which are the convex hulls of a subset
of the set of vertices of the polytope. The dimension of a polytope (including a face) is the maximal
dimension of the balls in its interior (with the dimension of a vertex being zero).
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2. For a polytope in [0, 1]r ⊂ R
r as above, a face of quasi-adjunctionF of dimen-

sion p is the p-dimensional intersection of the polytope of quasi-adjunction with an
affine half-space in R

r , transversal to all coordinated hyperplanes in R
r , such that

each point of this intersection is the boundary point of the polytope and the half-
space.24

Corollary 10.4.4 The polytopes, ideals and faces of quasi-adjunction depend only
on the germ f (x1, ..., xn) and not on a resolution. The inequalities (10.53) show that
there exist firstly, the collection of polytopesP, which are the unions of the polytopes
Q, and secondly to each of these polytopes correspond the ideal AQ such that for
any υ ∈ Q and a germ φ ∈ OP , the corresponding form ωφ can be extended to a
holomorphic form on Xm1,...,mr iff φ ∈ AQ. The boundary of such a polytope Q is a
union of faces each being also a face the boundary of a polytopeP and each such face
being a close polytope in the intersection of hyperplanes given by the Eqs. (10.54)
with

γi = 1− ji + 1

mi
i = 1, ..., r. (10.55)

10.4.2 Ideals of Quasi-adjunction and Multiplier Ideals

For an exposition of the theory of multipler ideals we refer to [127] Part III. Here we
recall the key definitions and relate them to the ideals of quasi-adjunction.

Definition 10.4.5 (cf. [127] Definition 9.2.1) Let X be a smooth complex variety
and D ∈ Div(X)⊗Q an effective Q-divisor. Let μ : X ′ → X be a log resolution,
KX ′/X = KX ′ − μ∗(KX ) is a relative canonical class. The multiplier ideal sheaf
J(X, D) of D is the direct image

μ∗(KX ′/X − �μ∗(D)�) (10.56)

where for a Q-divisor D =∑

γi Di , ai ∈ Q, Di ∈ Div(X), �D� =∑�γi�Di and
�γ � ∈ Z denotes the integral part of γ ∈ Q.

For a collection of Q-divisors F1, ..., Fr (resp. the ideals ℘1, ...℘r ), the mixed
multiplier ideal J(c1F1, ..., cr Fr ) (resp, J(℘c1 · .... · ℘cr

r )) (cf. [127] 9.2.8, [2]) is
defined as the multipler ideal

μ∗(KX ′/X − �c1F1 + ....+ c + r Fr�) (10.57)

(in the case of mixed multiplier ideals attached to ℘1, .., ℘r , the divisors Fi are
determined from ℘iOX ′ = OX ′(−Fi )).
Proposition 10.4.6 The ideal of quasi-adjunctionA( f | j1, ..., jr |,m1, ..,mr ) coin-
cides with the multiplier ideal J(

∑

((1− ji+1
mi

)Di )

24 I.e. the set of solutions to a linear inequality.
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Proof A germ φ is a section of the sheaf given by (10.56) where D =∑

γi Di if and
only if it satisfies the inequality

ek(φ)+ ck −
∑

γi ak,i ≥ 0 (10.58)

This is equivalent to (10.53).

Following [145] one can define the LCT polytope, which is a multi-divisor analog
of the log canonical threshold (cf. [127]).

Definition 10.4.7

LCT (D1, ....., Dr ) = {(λ1, ...., λr ) ∈ R
r
+|(X,

r
∑

1

λi Di ) is log canonical}

Proposition 10.4.8 (log-canonical polytopes and polytopes of quasi-adjunction)Let
I : [0, 1]r → [0, 1]r be the involution of the unite cube given by (γ1, ..., γr )→ (1−
γ1, ..., 1− γr ). Then LCT (D1, .., Dr ) is the I -image of the part in the interior of the
unite cube of the boundary of the polytope of quasiadjuction containing the origin.

Proof Clearly for the vectors (10.50) sufficiently close to zero, the n-form (10.49)
is extendable for any φ in the local ring of P i.e. the “ideal” of quasi-adjunction
is not proper. The ideal of quasi-adjunction is constant for all vectors (10.50) in
the polytope bounded by the faces of quasi-adjunction closest to the origin. Hence
the claim follows from the characterization of log-canonical thresholds in terms of
multiplier ideals (cf. [127] Sect. 9.3.B) and Proposition 10.4.6).

Remark 10.4.9 1. We often use the following correspondence between vectors
(10.50) and the characters of local fundamental group of the complement to the
germof D =⋃

Di . Consider the embedding of [0, 1)r into H 1(BP \ BP ∩⋃

Di , R)

using the basis dual to the meridians δi of the divisors Di i.e. assigning to a vector
(γ1, ...., γr ) the cohomology class h such that h(δi ) = γi .

This embedding induces the identification of the cube [0, 1)r with the group
of characters of the local fundamental group. Indeed, any point in H 1(BP \ BP ∩
⋃

Di , R) via exponential map t → exp(2π i t) determines an element in H 1(BP \
BP ∩⋃

Di ,U (1)) i.e. an unitary character of the local fundamental group.25 Vice
versa, to a character in H 1(BP \ BP ∩⋃

Di ,U (1)) we can assign its unique preim-
age belonging to the fundamental domain of the action of H 1(BP \ BP ∩⋃

Di , Z)

on H 1(BP \ BP ∩⋃

Di , R) which is the unit cube in the coordinates of the above
basis.

2. Exact sequence of a pair (BP , BP \ BP ∩ D) gives the identification:

H 1(BP \ BP ∩ D, R) = H 2(BP , BP \ D, R) = H2(BP ∩ D, ∂(BP ∩ D), R)

(10.59)

25 This is a local version of the global construction used in Proposition 10.3.9. Here the rank of the
fundamental group coincides with the number of irreducible components of the divisor.
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and similarly for the coefficientsZ andU (1). BP ∩ D is homeomoprhic to a bouquet
of disks and ∂(BP ∩ D) is a disjoint union of circles, both having the cardinality
coinciding with the number of branches of D at P . In particular (10.59) is a vector
space with canonical direct sum decomposition with summands corresponding to
the branches of D at P .

10.4.3 Local Polytopes of Quasi-adjunction and Spectrum
of Singularities

Cyclic Theory

The relation between the constants of quasi-adjunction (i.e. the faces of quasi-
adjunction in cyclic case) and the Hodge theory was first discussed in [152] in the
case of isolated singularities. This was continued in [36, 39].

Let f (x0, x1, ..xn) be a germ of an isolated singularity at the origin. Recall that the
cohomologyof theMilnorfiber Ff support amixedHodge structure definedbySteen-
brink and Varchenko (cf. [11, 180, 207, 216]). This mixed Hodge structure provides
the cohomology Hn(Ff , C) with a decreasing filtration F p ∩ Hλ ⊆ F p−1 ∩ Hλ on
each summand of the direct sum decomposition of Hn(Ff , C) into the eigenspaces
of the monodromy operator. A rational number α is an element of the spectrum of
f of multiplicity k if there is an eigenvalue of the monodromy λ such that

n − p − 1 < α ≤ n − p exp(2π iα) = λ dimF p ∩ Hλ/F
p+1 ∩ Hλ = k (10.60)

(cf. [152])

Theorem 10.4.10 A rational number α belongs to the spectrum of f (x0, ...xn) = 0
and satisfies 0 < α < 1 if and only iff −α is a face of quasi-adjunction of f (i.e.
is a constant of quasi-adjunction in terms of [130]; the definition given there is in
terms of the adjoint ideals and is a special case of Definition 10.4.3 corresponding
to cycilc covers of C

2.)

There are many cases when spectrum can be easily calculated explicitly. In the
case of quasi-homogeneous singularities (with weights w0, ...,wn i.e. when defining
polynomial is a sum of monomials axm0

0 ....xmn
n such that

∑i=n
i=0 wimi = 1) the gen-

erating function i.e.
∑

α t
α where α runs through the spectrum of the singularity is

given by
1

t

n
∏

i=0

twi − t

1− twi
(10.61)

cf. [187]; we included the factor 1
t since we use the same normalization of the

spectrum as in [152] where the left end of the spectrum is −1, cf. (10.60). In
particular for an irreducible germ with one characteristic pair x p = yq we obtain
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(t−
1
p + .....+ t−

p−1
p )(t

1
q + ....+ t

q−1
q ) which for the cusp x2 = y3 gives t− 1

6 + t
1
6 .

Explicite calculations of the spectrum and hence the constants of quasi-adjunction
of irreducible plane curve singularities in terms of Puiseux pairs was made in [187]
For related calculations see [36, 96].

Local Abelian Theory

Calculations of the polytopes of quasi-adjunction of singularities of plane curves
were made in [39, 40, 138]. Curves on surfaces with rational singularities were
considered in [2].

Several examples of calculation of polytopes and ideals of quasi-adjunction for
isolated non-normal crossings were considered in [140, 143] which lead to expres-
sions for characteristic varieties mentioned in Example 10.3.23. Related results are
presented in [145].

10.4.4 Ideals of Quasi-adjunction and Homology
of Branched Covers

Oneof thefirst applications of ideals of quasi-adjunctionwas a procedure that allowed
to express the Hodge numbers of abelian covers in terms of dimensions of linear
systems determined by the branch locus and the data of singularities. The relation
between the constants and ideals of quasi-adjunction and Hodge numbers of the
cyclic covers in [130] followed by numerous works (cf. for example [37, 152, 170,
171, 215]), many using the terminology of multiplier ideals.26

In the case of curves on surfaces one has the following result. For a high dimen-
sional extension leading to calculations of the dimensions of the space of holomor-
phic forms on the resolutions of branched covers (the only Hodge numbers which
are independent of resolutions) see [37, 83, 134] etc.

Proposition 10.4.11 Let f : X̄φ → X be an abelian branched cover of a smooth
projective surface X ramified over a divisor D with r irreducible components
and let f∗(OX̄φ

) = ⊕L−1χ be the decomposition (10.18). For a character χ , let
Aχ ⊂ OX , χ = exp(....2π iα(χ), ...), α ∈ [0, 1)r be the ideal sheaf having as stalk
at p ∈ Sing(D) the ideal of quasi-adjunction of singularity at p corresponding to
the polytope of quasi-adjunction containing α(χ).

Then the dimension of the χ -eigenspace of the covering group acting on the space
of holomorphic 1-forms on a resolution ˜Xφ of singularities of X̄φ is given by

dimH 0(˜Xφ,�1
˜Xφ

)χ = H 1(X, KX ⊗ Lχ ⊗ASingD(χ)) (10.62)

26 The term introduced by A. Nadel in 1990, cf. [169].
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10.4.5 Hodge Decomposition of Characteristic Varieties

Calculation of Characteristic Varieties: Deligne Extensions

In this section we sketch a method for calculation of the variety of unitary characters
with corresponding local systems having positive first Betti number and which is
based on the Hodge theoretical description of the cohomology of local systems
due to Deligne and Timmersheidt ([67–69, 210], related works include works of S.
Zucker, M. Saito, El Zein and Illusie cf. discussion in H. Esnault review of [210] in
Math. Reviews). For details we refer to [19, 37, 84, 143].

The starting point is deRham type description of the cohomology of local systems
on smooth quasi-projective varieties using logarithmic forms already mentioned in
Sect. 10.3.5. With notations used in this section, we assume now that Y is smooth
and quasi-projective and that Ȳ is a smooth projective compactification, such that
Ȳ \ Y is a normal crossing divisor Y∞ =⋃

i≥1 Yi . The connection ∇ in (10.26)
can be selected to be holomorphic on Y and meromorphic on Ȳ i.e. in having a
matrix given in local coordinates by meromorphic functions with poles along Ȳ \ Y .
Moreover, this selection can be made so that the matrix of connection has as its
entries the 1-forms having logarithmic poles along Y∞ (i.e. linear combinations:
ω =∑

αi
dzi
zi

where zi are local equations of irreducible components of Y∞ and

αi are holomorphic in a chart in Ȳ (cf. [67], Proposition3.2). Globally, logarithmic
connection can be viewed as a C-linear map E → �1(logY∞)⊗ E where E is a
vector bundle on Ȳ satisfying Leibnitz rule. Note that the matrix of connection, in the
rank one case, is just a logarithmic 1-form. One has a well defined Poincare residue
map �1(logY∞)⊗ E → OYi ⊗ E along each irreducible component Yi . Locally,
residue depends on trivialization and globally on the bundle E .

Definition 10.4.12 (Deligne’s extension of a flat connection∇ on Y ) is a logarithmic
connection on a bundle E on Ȳ such that its residues satisfy the inequality

0 ≤ ResYi (∇) < 1 (10.63)

for any i .

The description of the jumping loci of local systems in terms of Deligne’s extensions,
is based on the degeneration of the Hodge-DeRham spectral sequence

E p,q
1 = H p(�q(logY∞)⊗ Vρ)→ H p+q(Vρ). (10.64)

in term E1.HereVρ is aDeligne’s extensions of a unitary connection corresponding to
the local systemVρ where ρ : π1(Y )→ U (n) is a unitary representation (cf. [210]).
For a rank one local system Vχ , corresponding to a character χ = exp(2π iu) and
the Deligne extension Lχ of the corresponding connection, this degeneration implies
rkH 1(Y,Vχ ) = rkH 0(�1(logY∞ ⊗ Lχ ))+ rkH 1(Lχ ) and the following.
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Proposition 10.4.13 Asubset of [0, 1)b1(X\D) ⊂ H 1(X \ D, R) such that theDeligne
extension of the connection corresponding to a character χ = exp(2π iu) coincide
with a fixed line bundle L is a polytope�L in H 1(X \ D, R). The rank rkH 1(Y,Vχ )

is constantwhen u varieswithin�L . The subset of the torusC
∗b1(X\D) = CharH1(X \

D, Z) consisting of the characters exp(2π iu), u ∈ �L is a jumping set of the Hodge
numbers of unitary local systems. The Zariski closure in (C∗)b1(X\D) of this subset is
a translated by a finite order character a connected subgroup of C

∗b1(X\D) which is
an irreducible component of the characteristic variety of the fundamental group. Vice
versa, any irreducible component of characteristic variety of π1(X \ D), is Zariski
closure of a set exp(�L).

Indeed, after selecting a basis in H 1(X \ D, R), one readily sees that inequality
(10.63) for each component translates into a linear inequality on components of log-
arithm of χ in coordinates in this basis. It is not hard to see that there are only finitely
many bundles on X which are the Deligne extensions of a connection correspond-
ing to a character in [0, 1)b1(X\D) can occur (cf. [143]). This provides an explicite
description of the unitary part of the components of characteristic varieties. Since
by [9] all irreducible components of the characteristic variety are translated subtori
of C

∗b1(X\D), it follows that in this way we obtain all the components as the Zariski
closures of the exponential images of the polytopes �L .

Calculation of Characteristic Varieties: Quasi-adjunction

We will focus on the case of characteristic varieties of curves on surfaces. Similar
results are expected for characteristic varieties associated with higher homotopy
groups. We refer to [137, 141] for some of the results in this direction.

Calculation in terms of ideal of quasi-adjunction is based on comparison of topo-
logical and algebro-geometric calculation of the dimensions of eigenspaces of the
action of the Galois group on the homology of abelian covers given respectively
by Propositions 10.3.15 and 10.4.11. However, the Proposition10.3.15 considers
only the characters of π1(X \ D) which values on the meridians of all irreducible
components of D are non-trivial. This motivates the following definition.

Definition 10.4.14 Let D = D1 ∪ D2 be a decomposition of a reduced divisor on
a smooth projective simply connected surface X . Let sD/D1 : π1(X \ D)→ π1(X \
D1) be the surjection of the fundamental groups induced by inclusion X \ D ⊂
X \ D1 and let sH1

D/D1
, s

π ′1
D/D1

, s
π ′1/π1"
D/D1

be the corresponding surjections respectively
on the homology, commutator of the fundamental group and the abelianization of
the commutator. Let sChari

D,D1
: Char1i (X \ D1)→ Char1i (X \ D) be induced map of

supports of the i-th exterior powers of the homology modules (over C[H1(X \ D1)]
and C[H1(X \ D)] respectively, cf. Definition 10.3.13). An irreducible component
CD of the characteristic variety of π1(X \ D) is called non-essential if there is a
decomposition D = D1 ∪ D2 and a component CD1 of the characteristic variety of
π1(X \ D1) such that sChari

D/D1
(CD1) = CD . An essential component is an irreducible

component of Chari (X \ D) which fails to be non-essential.
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Below we describe a calculation of only essential components, for simplicity
assuming that H1(X \ D, Z) has no torsion. The results certainly can be described
without this assumption. In fact, the first examples of calculations of characteris-
tic varieties (the roots of the Alexander polynomials) in terms of ideals of quasi-
adjunction, were made in [130] in the cases when D is a an irreducible plane curve
i.e. when H1(P

2 \ D, Z) is a cyclic group of order degD. See also Example (10.4.21)
where the complement is torsion as well. Non essential components may exhibit a
subtle behavior: the depth of a component may increase considered as component of
CD instead of CD1 . We refer to discussion of this phenomenon to [17, 19, 21].

Recall (cf. Sect. 10.4.1 and Remark 10.4.9) that with each singular point P of the
reduced divisor D =⋃N

1 Di on a surface X we associated a collection of polytopes
of quasi-adjunction Q j (P), j = 1, ..., n(P) in Us(P) = [0, 1)s(P) ⊂ H 1(BP \ D ∩
BP , R) = H2(BP ∩ D, ∂BP ∩ D, R) (recall that BP is a small ball in X centered
at P). Note that the latter locally homology groups can be endowed with the maps
to the corresponding global groups for each group of coefficients K = Z, R,U (1)
leading to the diagram:

H 1(BP \ BP ∩ D, K)
δP→ H2(BP ∩ D, ∂(BP ∩ D), K)

↑ iP ↑ εP
H 1(X \ D, K) → H2(D, K)

(10.65)

Here the top horizontal map δP is the isomorphisms (10.59), the left vertical map iP
is induced by embedding and the right vertical map εP is the homology boundary
map: H2(D, K)→ H2(D, D \ BP ∩ D, K) = H2(BP ∩ D, ∂(BP ∩ D, K)).

For each polytope Q j (P) ⊂ H 1(BP \ D ∩ BP , R) we consider preimages

QX
j (P) = (i∗P )−1(Q j (P)) ⊂ H1(X \ D, R) and QD

j (P) = ε−1P (δP (Q j (P))) ⊂ H2(D, R)

In (10.65), each group in the top row for K = R and the group H2(D, R) con-
tains the canonical fundamental domain for the action of respective lattice which
one obtains taking for each group K = Z. These fundamental domains are the
unit cubes in the bases corresponding to the fundamental classes of appropri-
ate irreducible component of D. The image of each such fundamental domain
in H 1(BP , B \ BP ∩ D, R), induced by embedding H 1(BP , B \ BP ∩ D, R)→
⊕P∈Sing(D)H2(BP ∩ D, ∂(BP ∩ D), R), is a face of the unit cube in the latter. The
intersection of the image of H2(D, R) in ⊕P H2(BP ∩ D, ∂(BP ∩ D), R) is either
such a face, if the branches of D at P belong to different irreducible components of D,
or a diagonal in such a face, if different branches at P belong to the same irreducible
component of D. We denote by UX,D the unit cube in H2(D, R). From now on we
will use the same nation QX

j (P),QD
j (P) for their intersections with the respective

unite cubes: these and only parts of respective polytopes contain the information we
need below.
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The unit cubes in H2(D, R) and H2(D ∩ BP , ∂(D ∩ BP), R), have canonical
involution corresponding to the lift of the conjugation of characters via inverse of the
map induced on cohomology by exp : R→ U (1). For example on each unit cube in
H 1(BP \ BP ∩ D, R) this involution is given by (u1, .., ur )→ (1− u1, ...., 1− ur )
and similarly in other cases. For a subset U in such a cube we denote the image of
this involution as−U.

Definition 10.4.15 Let Sing(D) be the set of singularities of D and let Q be the
set of collections Q = {Q j (Pk)|Pk ∈ Sing(D), j = 1, ...J (Pk)} (here J (Pk) is the
cardinality of the set of local polytopes of quasi-adjunciton of singularty Pk) of
(strict27) local polytopes of quasi-adjunction Q j (Pk), one for each singularity Pk ∈
Sing(D).

a. The divisorial global polytope of quasi-adjunction is the intersection

GQ =
⋂

Pk∈Sing(D),Q j (Pk )∈Q
prPk

−1Q j (Pk) ⊂ UX,D ⊂ H2(D, R) (10.66)

of preimages of polytopes of quasiadjunction, one for each singular point of D.28

b. A global divisorial face of quasi-adjunction is a face F of a polytope GQ (cf.
10.66) corresponding to a collection Q of local polytopes of quasi-adjunction. We
say that a face F of a global polytope of quasi-adjunction correspond to a subset
S ⊂ Sing(D) if F is a face of a polytope determined already by the local polytopes
of singularities only from S: ⋃Pk∈S,Q j (Pk )∈Q prPk

−1Q j (Pk).
c. The sheaf of quasi-adjunction AQ (or AG(Q)) corresponding to a choice col-

lection Q of local polytopes of quasi-adjunction, is the ideal sheaf in OX having as
the stalk at P /∈ S the local ring of P ∈ X and the ideal of quasi-adjunction AQ j (P)

corresponding to selected local polytope of quasi-adjunction for singularity P ∈ S.
d. The homological global polytope (resp. face) of quasi-adjunction is a polytope

in H 1(X \ D, R), viewed as the trivial coset of H2(D, R)/H 1(X \ D, R) , which is
the translation to this trivial coset29 of the intersection of divisorial global polytope
(resp. face) of quasiadjunction described in a. (resp. b.) of this definition with a coset
in H2(D, R)/H 1(X \ D, R)which image in H 2(X, R) (i.e. the image via the map iR
in (10.22)) is an integral cohomology class (i.e. the first Chern class of a line bundle).

The following Proposition shows that in the case when irreducible components
of D are big and nef, only characters of the fundamental group, which after lift
to H 1(X \ D, R) give classes belonging to the faces of quasi-adjunction, can have
non-trivial eigenspaces for the action of Galois groups on the abelian covers of X
ramified along D.

27 Strict polytopes of quasiadjunction were described just before Definition10.4.3.
28 The number of global polytopes of quasi-adjunction is at most

∏

k∈Sing(D) n(Pk) where n(Pk) is
the number of local polytopes of quasi-adjunction at singular point Pk .
29 cf. construction described in Proposition 10.3.9.
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Proposition 10.4.16 Assume that irreducible components of D are big and nef. Let
u ∈ UX,D be such that u is in interior of all global polytopes of quasi-adjunction GQ

of divisor D or their images P̄Q for the involution u → ū sending (x1, .., xk) ∈ UD,X

to (1− x1, ..., 1− xk). If X̃G is a resolution of singularities of a cover XG of X with
abelian Galois group G and χ = exp(2π iu), then the eigenspace H 1(X̃G, C)χ =
{v ∈ H 1(X̃G, C)|g · v = χ(g)v,∀g ∈ G} is trivial.
Proof Since the characters of H1(X \ D, Z) having a finite order are the charac-
ters χ = exp(2π iu) with u ∈ Q, the density of those in UX,D implies that we can
assume that χ is a character of a finite abelian group G. Let L−1χ be the correspond-
ing line bundle (cf. Proposition 10.3.9). Since the action of G is holomorphic and
hence preserves the Hodge decomposition of H 1(X̃G, C), after possibly replacing
the character χ by the conjugate χ̄ , we can assume that χ has non-trivial eigenspace
for G acting on the holomorphic forms of the cover. Then one has (cf. Proposition
10.4.11)

dim H 0(�1
X̃G

)χ = dimH 1(X,�2
X ⊗Lχ ⊗AG(Q)) (10.67)

whereP(Q) is the global polytopeof quasi-adjunction containingu, χ = exp(2π iu).
Since u is an interior point of G(Q) one can take a small perturbation of it along

the intersection withUX,D with the coset of H 1(X \ D, R) corresponding toLχ (i.e.
an affine subspace) so that it remains insideG(Q). The corresponding line bundle Lχ

is unchanged in this deformation of u. Using multiplier ideal interpretation of ideals
of quasi-adjunction and Kawamata-Viehweg-Nadel vanishing (cf. [127] Sect. 9.4B)
we obtain that the terms in (10.67) are zeros.

Definition 10.4.17 A global divisorial face of quasi-adjunctionF ⊂ G(F ) is called
contributing if for u ∈ F and the resolution of singularities of the cyclic cover
π∗Xχ → X corresponding to the surjection χ : H1(X \ D, Z)→ Im(χ) ⊂ C

∗ one
has H 1(X,�2

X ⊗Lχ ⊗AG(F))) 	= 0 (hereLχ is the dualχ -eigenbundle ofπ∗(OX̃χ
).

A homological face of quasi-adjunction is called contributing if its translation to a
coset H2(D, R)/H 1(X \ D, R) is a contributing divisorial face.

Theorem 10.4.18 Let X be a simply connected smooth projective surface and let
D =∑

Di be a reduced divisor with irreducible components Di which are big
and nef. Assuming as above that H1(X \ D, Z) is torsion free, let r = rkCoker
H2(X, Z)→ H 2(D, Z) denote its rank (cf. 10.6). For any essential component of
characteristic varietyVi having positive dimension i.e. a coset of the r-dimensional
torus H 1(X \ D,U (1)) such that dimVi ≥ 1 there is:

(a) a collection of singularities S of D
(b) a contributing face F of a global polytope of quasi-adjunction G(S) which is

determined by the collection S and a collection of the polytopes of quasi-adjunction
Q(P), one at each of singularities P ∈ S

(c) a line bundle LG(S)

such thatVi is the Zariski closure of exp(±2π iF ) in themaximal compact subgroup
of the r-dimensional torus Char H1(X \ D, Z) and
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dimVi = dimF = dimH 1(X,�2
X ⊗L−1±Q(S) ⊗AG(S))+ 1

Moreover,L±G(S) is the line bundle which is part of the building data of the cyclic
cover corresponding to surjection χ : π1(X \ D)→ Zord(χ) for a character χ which
is generic in the component Vi .

Vice versa, given a maximal30 contributing face F ⊂ G(S) of a global polytope
of quasiadjunction, with the ideal of quasiadjunction AG(S), such that the line bundle
corresponding to the characters exp(2π iu), u ∈ F is a L (satisfying H 1(X,�2

X ⊗
L⊗AG(S)) 	= 0) then the Zariski closure of the set of characters exp(2π iu), u ∈ F
is a component of characteristic variety of π1(X \ D).

Proof Let Q be a maximal contributing face of quasi-adjunction. The Zariski clo-
sure in H 1(X \ D, C

∗) of the set exp(2π iu), u ∈ Q, belongs to a component of
characteristic variety, as follows from the assumptions. If this Zariski closure is a
proper subset of a component, then preimage of the unitary part (i.e. the intersection
with H 1(X,U (1)) ⊂ H 1(X, C

∗)) of the full component must belong to the same
H 1(X \ D, R) coset in H2(D, R) as Q and, as follows from Proposition10.4.16, its
preimage in H2(D, R) must be a face of the same polytope as F i.e. coincide with
F due to maximality assumption.

Now, let Vi be an irreducible component of characteristic variety. A theorem of
D.Arapura implies thatVi is a translated subtorus of the torus H 1(X \ D, C

∗). The
subset exp−1(Vi ∩ H 1(X \ D,U (1)) ⊂ H 1(X \ D, R) consist of a set of H 1(X \
D, Z)-translates of a linear subspace of H 1(X \ D, R). The eigenbundles of the
characters in Vi , for the push forward of the structure sheaf of a cyclic cover of
X corresponding to characters from Vi , define a collection of translates of H 1(X \
D, R) ⊂ H2(D, R) (cf. Proposition10.3.9) which intersect the fundamental domain
(i.e. the unit cube)UX,D for the action of H2(D, Z)on H2(D, R). Due to identification
in Proposition10.4.11 of cohomology of the local systems and the cohomology of
sheaves of quasi-adjunction, one obtains that at least one of translates belongs to
a contributing face of quasi-adjunction. It is maximal since otherwise Vi will be a
proper subset of a component of larger dimension.

Corollary 10.4.19 Let X, D be as in Theorem 10.4.18 and let C be a smooth big and
nef curve intersecting all irreducible components of D at smooth points transversally.
Then H2(D, R) ⊂ H2(D + C, R) has codimension one and divisorial contributing
faces of quasi-adjunction of D coincide with those of D + C.

Proof Since polytope quasiadjunction of ordinary node coincides with the unit
square (node does not impose conditions of quasi-adjunction) it follows that the
global polytopes in H2(D + C, R) are the cylinders over the global polytopes of
H2(D,C) (preimages of projection of H2(D + C, R) onto the later). Kawamata-
Viehweg-Nadel vanishing implies that the characters in a contributing faces of the
eigenbundles Lχ must have trivial ramification along C i.e. belong to H2(D, R)

(triviality of ramification also follows from Divisibility Theorem 10.3.3).

30 I.e. not contained properly in a contributing face of the same strict global polytope of quasi-
adjunction.
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Remark 10.4.20 The removal a line at infinity, transversal to a curve, was used
extensively in [129, 137]. The main theorem in [137] follows immediately from
Theorem 10.4.18 and Corollary 10.4.19.

Numerous examples to the Theorem 10.4.18 can be found in the paper [137] in
the case of line arrangements is a plane and in [130] in the case of irreducible curves.
The local counterpart of the Theorem 10.4.18 and many examples of calculations of
multivariable Alexander polynomials of the links (i.e. the characteristic varieties, cf.
discussion after Definition10.3.13) of singularities in terms of polytopes and ideals
of quasi-adjunction are given in [39]. For results on zero dimensional components
of characteristic varieties we refer to [19, 20]. We will finish this section with an
example of calculation on a large class of surfaces generalizing 6-cuspidal sextic of
Zariski.

Example 10.4.21 Let X be a smooth projective simply connected surface and let L
be a very ample line bundle on X . Let s2 ∈ H 0(X, L2), s3 ∈ H 0(X, L3) be generic
sections of the corresponding tensor powers of L . Let D be the zero set of s =
s32 + s23 ∈ H 0(X, L6). Then the Alexander polynomial of this curve with 6L2 cusps,
corresponding to the surjection H1(X \ D, Z)→ Z6, is t2 − t + 1.

To see this, first note that the existence of the surjection follows from (10.6)
since the class of D in H2(X, Z) is divisible by 6. Using (10.62), the eigenspace
of the generator of Z6 acting on H 1,0 of the 6-fold cyclic can be identified with
H 1(X, Kx ⊗ L5 ⊗ ISing) where Ising is the ideal sheaf such that OX/Ising is the
reduced 0-dimensional subscheme of X with support at the set of cusps of D. One
has the following Koszul resolution of Ising:

0→ L−5→ L−2 ⊕ L−3→ Ising → 0

After taking the tensor product of this sequence with K ⊗ L5 and considering the
corresponding cohomology sequence:

H1(X, KX ⊗ L2)⊕ H1(X, KX ⊗ L3)→ H1(X, Kx ⊗ L5 ⊗ ISing)→ H2(X, KX )→ 0
(10.68)

we see that Kodaira vanishing implies that dimH 1(X, Kx ⊗ L5 ⊗ ISing) = 1. This
shows that 1

6 ∈ [0, 1] is the contributing face of quasi-adjunction and now the claim
about the Alexander polynomial follows from the Theorem 10.4.18. Note that this
example also can be analyzed usingmethods of orbifold pencils discussed in [19–21].

10.4.6 Bernstein-Sato Ideals and Polytopes
of Quasi-adjunction

Let f1, .., fr be germs of holomorphic functions in n variables. The Bernstein-Sato
idealB( f1, ..., fr ) is the ideal generated by polynomials b(s1, ...., sr ) such that there
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exist a differential operator P ∈ C[x1, ..., xn, ∂
∂x1

, ...., ∂
∂x1

, s1, ..., sr ] satisfying the
identity:

b(s1, ...., sr ) f
s1 .... f sr = P f s1+11 .... f sr+1r (10.69)

(cf. [25, 109, 160, 185], in 1-dimensional case cf. [121, 155]). In the case of plane
curves singularities one has the following:

Theorem 10.4.22 Let f1, .., fr be the germs of holomorphic functions in two vari-
ables. Let P be the product of the linear forms Li (s1 + 1, ..., sr + 1) where Li runs
through linear forms vanishing on r − 1-dimensional faces of polytopes of quasi-
adjunction corresponding to a germ with r irreducible components f1, ..., fr . Then
any b ∈ B( f1, ..., fr ) is divisible by P.

The same argument as used in [39], provides extension to isolated non-normal
crossings (cf. [140]). For a general conjecture of the structure of Bernstein ideals we
refer to [38] and for a discussion of the case of arrangements, other related problems
and references cf. [217].

10.5 Asymptotic of Invariants of Fundamental Groups

The problem of characterization of fundamental groups of smooth quasi-projective
varieties is intractable at themoment. Nevertheless some questions about distribution
of Alexander invariants can be addressed. We will see below that one can make
some conclusions about distribution of dimensions of characteristic varieties of such
fundamental groups. A different type of asymptotics, is suggested by the relation
between the degrees of Alexander polynomials and Mordell-Weil ranks of isotrivial
families of abelian varieties (cf. [46, 146]) since it allows to restate the problem
of asymptotic behavior of such degrees in terms of the conjectures on distribution
of Mordell Weil ranks of curves over the function fields. In this section we shall
survey the results in [47] concerning distribution of the dimensions of characteristic
varieties.31

Let X be a smooth simply connected projective variety, D a reduced divisor and let
�be a subset of the effective cone E f f (X) ⊂ NS(X) in theNeronSeveri group of X .
We shall call the set� saturated if d1 ∈ � and d2 ∈ E f f (X) are such that d1 − d2 ∈
E f f (X) implies that d2 ∈ � and d1 − d2 ∈ �. We are interested in distribution of
invariants of π1(X \ D) when the class of D ⊂ E f f (X) is a linear combination of
classes in � with non-negative coefficients. We are specifically interested in curves
D with large dimension of a component of characteristic variety of π1(X \ D) and
D being a curve with all its irreducible components having classes in �. It follows

31 Such circle of problems is inspired by conjectural asymptotic of number fields extensions having
a given group as the Galois group or the group of its Galois closure, which are unramified outside an
arbitrary subset of primes while the size of the norm of discriminant grows [156]: Malle conjectures
implies a positive answer to the inverse problem of the Galois with little hope for solution in near
future (as is obtaining a characterization of quasi-projective group).
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from [9], that existence of a component of dimension r implies existence of surjection
π1(X \ D)→ Fr . Vice versa, existence of the latter implies that the characteristic
variety of π1(X \ D) contains a component of dimension not smaller than r . Note
right away that for the purpose of enumeration of reduced divisors D for which
one has a surjection π1(X \ D)→ Fr we must impose some conditions on such
surjections. For example, given any D with such property and any reduced divisor
D′ one has

π1(X \ D
⋃

D′)→ π1(X \ D)→ Fr (10.70)

and hence, given a curve admitting a surjection of its fundamental group onto Fr ,
there are enlargements of this curve with the same property parametrized by all the
curves on the surface. This motivates the following.

Definition 10.5.1 (cf. [137]) Let D be a reduced divisor on a smooth projective
surface X . A surjection π1(X \D)→ Fr is called essential ifD does not admit split
D = D

⋃

D′ for which one has factorization (10.70).
A surjection π1(X \D)→ Fr is called reduced if there exist a choice of good

ordered system of generators {x1, ..., xr+1|x1 · .... · xr+1 = 1} of Fr such that this
surjection takes meridian of each irreducible component of D to a conjugate of a
generator.

We also will say that singularities ofD satisfy condition (*) if all singular points
belonging to more than one irreducible component are ordinary singularities i.e. are
intersections of smooth transversal branches.32

A rather detailed information about such curves was obtained in [136] in the case
X = P

2,� = {[1]} ∈ Z = Pic(P2) i.e. the fundamental groups of the complements
to arrangements of lines in a plane (see [86, 157] for related results).

Theorem 10.5.2 ([136, 179]) LetA be an arrangement of lines in P
2. If there exist

an essential surjection π1(P
2 \A)→ Fr , r ≥ 4 then A is a union of concurrent

lines, in which case the last surjection is an isomorphism.

Moreover, there is only one known example of essential surjections of the comple-
ments to an arrangement line which admits surjection onto F3

33 and for any d there
exist an arrangement of non-concurrent lines admitting essential surjection onto F2
(e.g. 3d lines forming the zero set of (xd − yd)(yd − zd)(xd − zd) = 0).

Work [47] contains an extension of this theorem to reduced divisors on arbitrary
simply connected surfaces. Before stating the main result, let us describe the analog
of the case of concurrent lines in Theorem 10.5.2, which is a family of the curves
with irreducible components in � and for which the fundamental group of the com-
plements may have a free quotient of arbitrary large rank. For this family of curves,

32 The results in this sectionmake this assumption. It should be possible to eliminate it with essential
conclusions remaining intact.
33 I.e. the Hesse arrangement of 12 lines formed by lines containing triples of inflection points of
plane smooth cubic cf. [137].
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the fundamental groups of the complement form a finite set of groups, having car-
dinality depending on � and, moreover, a presentation of each group in this set can
be described in terms of geometric data we specify. However, unlike the case of
Theorem 10.5.2, the problem of characterizing which specific data is realizable by
curves in this class remains open in general. Enumeration of fundamental groups of
such curves for a class δ ∈ � ⊂ Pic(X) can be made as follows.

Proposition 10.5.3 For any r ≥ 1 and a movable divisor δ ∈ Pic(X),34 there is
a divisor D with classes of components in the linear system of δ and such that
π1(X \ D) admits essential surjection onto Fr . Vice versa, if D has all its irreducible
components being members of a pencil of curves in complete linear system of δ (i.e.
a line in P(H 0(X,OX (δ)))), and π1(X \ D) admits surjection onto Fr , r ≥ 2 this
group is an amalgamated product G ∗Fa H with G belonging to a finite collection of
groups depending on δ, obtained by a construction below and H is an extension:

0→ Fa → H → Fr ′ → 0 r ′ ≤ r (10.71)

defined by a homomorphism Fr ′ → Aut (Fa) coming from a finite set cardinality
depending only on δ. The number of isomorphism classes of such groups π1(X \ D)

with a fixed class δ, stabilises for large r .

Proof Indeed, for any pencil in the linear system containing δ, a union on its r +
1 members yields a divisor D ∈ P(H 0(X, (r + 1)δ)) with π1(X \ D) admitting a
surjection onto Fr since such a pencil induces a dominant map onto the complement
in P

1 to r + 1 points.
To enumerate all possible fundamental groups of the complements to the curves

with all irreducible components belonging to a pencil let us consider the discrim-
inant Disc(P(H 0(X,OX (δ)))) of the complete linear system P(H 0(X,OX (δ)) i.e.
the subvariety consisting of the divisors having singularities worse than singular-
ities of a generic element in P(H 0(X,OX (δ)). Consider also the stratification of
the discriminant into connected components of equisingularity strata, adding to this
stratification the complement to the discriminant as a codimension zero stratum (cf.
[5] on some information about geometry of these strata).

We will use finite sets of collections of such equisingularity strata S1, ...St for
which there exists a pencilP in P(H 0(X,OX (δ)))with the following property: there
exists a union D of members of P such that the curve D satisfies condition (*)
(cf. Definition10.5.1). Let N (δ, t) be the number of isotopy classes of pencils in
P(H 0(X,OX (δ)) such that the number of the strata of this stratification intersected
by the pencil is t and let T be the least upper bound for integers t for all pencils in δ.
Finiteness of these numbers is a consequence of the finiteness of the number of strata
of stratifications since those are an algebraic subsets of discriminant (cf. [100]).

Let D is a curve having r + 1 irreducible components belonging to a pencil P in
P(H 0(X,OX (δ)) in which the members of P have t (where t ≤ r + 1) equisingular-
ity types. We claim that π1(X \ D), can have at most 2t isomorphism types. More

34 I.e. such that the codimension of the base locus of the linear system it defines is at least 2.
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precisely for each subset T of the set of strata S1, ...,St there is at most one isomor-
phism type of the fundamental groups π1(X \ D) where the set of equisingularity
starta of components of D ∈ P(H 0(X,OX ((r + 1)δ))) having non-generic equisin-
gularity type in the pencil coincides with T . This is the case when D is a union of
|T | curves from the strata S1, ...,St and r ′ = r + 1− |T | curves from codimension
zero stratum and none of remaining t − |T | singular members of the pencil are not
components of D. In particular, for r > t there are at most

∑T
t=0 2t N (δ(t)) isomor-

phism classes of the fundamental groups and for r > T the number of isomorphism
classes of fundamental groups of curves with components in the linear system of δ

and admitting surjections onto Fr is bounded, with bound depending only on δ ∈ �.
To describe the structure of the fundamental groups of the complement to a union

D of several members of a pencil P of curves in δ, with the set equisingularity types
of singular members of P consisting of equisingularity strata S1, ..,St , such that
non-generic types of components of D are exactly those in T , and also to enumerate
such fundamental groups, consider the blow up X̃ of X at the base points of the
pencil. We obtain a regular map π : X̃ \ D̃→ P

1 \ Sr+1 where Sr+1 a finite subset
of P

1 with cardinality r + 1.
Let P

1 = B1 ∪ B2 be partition into union of two disks intersecting along their
common boundary and having the following properties: B1 contains all t − |T |
fibers of π which do not have generic equisingularity type in P(H 0(X,OX (δ)) and
are not components of D, while B2 = P

1 \ B1 contains |T | non-generic fibers if π

which are components of D and remaining r ′ = r + 1− (t − |T |) fibers of π which
all are generic in the latter linear system. Over the complement in B2 to the subset
over which the fibers of π are the components of D, the map π is a locally trivial
fibration which global type is determined by δ. Van Kampen Theorem10.2.2 implies
the following: if � is generic fiber of π , G = π1(π

−1(B1)),H = π1(π
−1(B2)) then

π1(X \ D) = G ∗π1(�) H, and 1→ π1(�)→ H → Fr ′ → 1 (10.72)

� is complement in the generic fiber of the pencil to the set of base points of the
pencil i.e. π1(�) is a free group Fa for some a. The group G belongs to a collection
having at most 2t elements (i.e. the number of subsets in S1, ....,St ). The claim
follows.

Example 10.5.4 Let us enumerate the fundamental groups of the complements to
conic-line arrangements which admit a surjection onto a free group of rank greater
than 5. The starting point is that a conic-line arrangement (satisfying condition (*))
having such fundamental group is a union of r + 1 (possibly reducible) quadrics
belonging to a pencil. This is content of improvement for conic-line arrangements of
the general bound in Theorem 10.5.5 below (cf. Example10.5.6 (2).) Equisingular
stratification of P(H 0(P2,OP2(2)) consists of 3 strata: smooth quadrics, reduced and
reducible quadrics i.e. a union of two transversal lines and non-reduced quadrics i.e.
the double lines. The degree of discriminant is 3. We denote these equisingular strata
respectively as S0,S1,S2.
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Any pencil of quadrics containing as generic element a smooth quadric in S0,
has at most 3 singular fibers which are either 3 reducible quadrics or contains 2
singular fibers one reduced and one non reduced. In the latter case, the condition
(*) on D fails. Moreover, there are pencils with generic element inside the stratum
S1. For such a pencil, the divisor D ∈ P(H 0(P2,O(2(r + 1))) is a union of 2r + 2
concurrent lines and hence π1(P

2 \ D) = F2r+1.
There are 4 equisingular classes of divisors D ∈ P(H 0(P2,O((r + 1)2))) with

components formed by curves in a pencil δ, corresponding to the cases when the
number of quadrics which are the singular elements of the pencil and formed by
components of D, is either 0 (i.e. all components of D are smooth quadrics), or is
1, 2 or 3. Respectively, there are 4 corresponding types of fundamental groups.

For example, let us take as D a union of r + 1 quadrics belonging to a pencil, one
of which is reducible. Let B1 be a disk containing remaining 2 reducible fibers of the
pencil and let B2 = P

1 \ B1. Then B2 is a disk containing the points corresponding
to the fibers containing the components of the pencils comprising D. Over B1, the
map π is a fibration with generic fiber being a smooth quadrics and which has two
special fibers which are the union of lines and therefore can be calculated using van
Kampen Theorem 10.2.2. Over the complement in B2 to the points corresponding
to the components of D one has a locally trivial fibration with the fiber being the
complement in a smooth quadric to 4 base points of the pencil. HenceH = π1(B2)

is an extension of free group F3 by the free group Fr with only one type of extension
possible since there is only one isotopy class of generic pencils of quadrics.

Now we turn to the main result of [47] which can be stated as follows:

Theorem 10.5.5 Given a saturated set� of classes in N S(V ) consider the following
trichotomy for the distribution of the curves D with classes of irreducible compo-
nents in � having a free essential reduced quotient of a fixed rank r and satisfying
conditions (*)

(1) There exist infinitely many isotopy classes of curves D admitting surjections
π1(V \D)→ Fr , , r > 1.

(2) There are finitely many isotopy classes of curvesD admitting surjections π1(V \
D)→ Fr , r > 1.

(3) D admitting a surjection π1(V \D)→ Fr , is composed of curves of a pencil.
There are finitely many isotopy classes of such D for given �.

All three cases are realizable at least for some (V,�). Case (2) takes place for
r ≥ 10. There exists a constant M(V,�) such that for r > M(V,�) one has case
(3). In the latter case, π1(V \D) splits as an amalgamated product H ∗π1(�) G
where � is an open Riemann surface which is a smooth member of the pencil, H is
coming from a finite set of groups associated with the linear system H 0(V,O(D)),
D is a divisor having class δ ∈ � and G is an extension:

0→ π1(�)→ G → Fr → 0 (10.73)
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In specific cases of (X,�) information about the constants 10 and M(X�) can
be improved.

Example 10.5.6 1. Above results for the arrangements of lines shows that in this
case one can replace 10 by 2 and M(P2, [1]) = 3.

2. Again in the case X = P
2 but � = {[1], [2]}, the curvesD for which there exist

a surjection π1(P
2 \D)→ Fr must have the type only as described in Example

10.5.4, provided r > 5. However, a generic pencil in the linear system:

λ0x0(x
2
1 − x22 )+ λ1x1(x

2
2 − x20 )+ λ2x2(x

2
0 − x21 ) = 0 (10.74)

has 6 members which are unions of lines and quadrics. This gives a curve D of
degree 18 for which π1(P

2 \D) admits a surjection onto F5 and is not isotopic
to a curve as in Example10.5.4.

The Theorem 10.5.5 can be restated as follows: if N (X,�, r) denotes the number
of equisingular isotopy classes of curves on X with irreducible components having
numerical classes in � and fundamental groups admitting a surjection onto a free
group Fr then for r > M(X,�), N (X,�, r) is finite and all curves have special
type as in the case (C) of the trichotomy. For 10 < r ≤ M(X,�), N (X,�, r) is also
finite but the type of the curves may vary. Finally, for r < 10 the number of isotopy
classes N (X,�, r) may be infinite.

Some information on dependence of the constant M(X,�) on � and X is also
available. For example if X = P

2,�d = {[1], ..., [d]} thenM(P2,�d) ≥ 3d. Indeed,
Ruppert (cf. [184]) found a pencil of curves of degree d + 1 with 3d fibers being a
union of a line an a curve of degree d. In particular a union of these 3d fibers yields a
curve of degree 3d(d + 1) with irreducible components in �d and having surjection
on the free group of rank 3d − 1. In particular the sequence M(X,�d) is unbounded.
The Ruppert pencil is a generic pencil in 2-dimension linear system of curves given
by equation (which for d = 2 it is given in Example 10.5.6):

λ0x0(x
d
1 − xd2 )+ λ1x1(x

d
2 − xd0 )+ λ2x2(x

d
0 − xd1 ) = 0 (10.75)

More precisely, the curve (10.75) is singular if and only if

(λd
0 − λd

1)(λ
d
1 − λd

2)(λ
d
2 − λd

0) = 0

and all reducible fibers are unions of a line and a curve of degree d. Hence generic
line in variables λi is a pencil with 3d reducible members as described.

We refer to [47] for examples of surjections onto free groups of the fundamental
groups of the complements to curves on surfaces besides P

2.
This discussion suggests the following problems:

Problem 10.5.7 1. Determine the rate of growth of N (X,�, r) for various X and
� when r →∞, i.e. how many types of reducible curves admitting surjections
onto Fr , which r large (i.e. r > M(X,�)) exist?
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2. Find a bound on M(X,�) in terms of invariants of X,� i.e. how large should
be r such that there exist curves admitting surjection onto Fr and which are not
the unions of the fibers of a pencil.

3. For n ∈ N let �n = {∑ niδi |δi ∈ �, ni ≤ n} ⊂ NS(X). Determine the asymp-
totic of the number of curves admitting surjection onto Fr , r < 10 with the
classes in �n when n→∞.

4. Determine algebraic properties of the fundamental groups described in Propo-
sition 10.5.3.

Some partial results, mainly in the case of plane, are discussed above and in [47]:
for example the curves (xn − yn)(yn − zn)(xn − zn) = 0 formed by 3n lines show
that the growth in Problem 3 for P

2, [1] for r = 2 is at least linear. The growth of
N (X,�) appears to be related to the asymptotic of the number of strata (cf. the proof
of Proposition10.5.3) and possibly is exponential.

10.6 Special Curves

This section surveys examples of calculations of the fundamental groups and other
topological information about the complements, the properties of fundamental groups
and applications. An important step in each such inquiry is finding a class of curves
with interesting topology of the complements. Most examples in this section are
plane curves.

10.6.1 Arrangements of Lines, Hyperplanes and Plane
Curves

There are many calculations of the fundamental groups of the complements to
arrangements of lines. The braid monodromy can be calculated algorithmically. In
the case of real arrangements finding the braid monodromy and the presentation
are particularly simple: see [116, 191]. In some instances this leads to presenta-
tions allowing a more intrinsic characterization: for example in [87] conditions on
arrangement were found for the fundamental groups to be products of free groups.

The fundamental groups and more subtle questions on the topology of the com-
plements to arrangements formed by hyperplanes fixed by the groups generated
by reflections were very actively studied in many case. In case of real reflection
groups, the fundamental groups of the complements to corresponding complexified
real arrangements were found [29] with presentations closely related to the Dynkin
diagrams of the corresponding Coxeter groups. The topology of the complements
to hyperplanes corresponding to the complex reflection groups also were actively
studied with many deep results. The number of striking results is too large to survey
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here and we refer for example to [28, 34] for some particularly important ones and
for further references.

Several calculations weremade for the fundamental groups of the complements to
unions of lines and quadrics. Work [8] includes the arrangements formed by unions
a quadric and lines with various tangency conditions. Few example of such type of
arrangements, more specifically those real arrangements of quadrics and lines which
admit projections to a line with all critical points being real, were considered in
[172]. Here the standard methods of calculation of the braid monodromy are almost
as simple as in the case of real arrangements of lines and lead quickly to presentations
in terms generators and relators.

Cardinality of the set of connected components of the equisingular families of
reducible curves with fixed combinatorial type (cf. Definition 10.6.2) was investi-
gated in several cases of plane curves of small degree. In particular the classification
for curves of degree 5 was carried out in [64]. The case of arrangements of small car-
dinality and irreducibility of equisingular component was studied for arrangements
up to 9 lines as well as arrangements of 10 and 11 lines with many different types
of combinatorics with some results in the case of arrangements of 12 lines (cf. [6,
14, 89, 107, 173] the latter are in connection with Rybnikov’s example of combi-
natorially equivalent arrangements with distinct homotopy types). Specific types of
presentations of the fundamental groups of arrangements were studied in [80].

10.6.2 Generic Projections

Study of the fundamental groups of the complements to the branching curves of
generic projections35 was initiated by B. Moishezon in work [164] and continued
jointly withM. Teicher and later byM. Teicher and her collaborators. Given a smooth
surface X ⊂ P

N , a projection from a generic P
N−3 gives a generic branched cover

ramified along a curve R ⊂ X . The image of R is the branching curve B ⊂ P
2 of this

projection. If the center of projection P
n−3 is sufficiently generic, then B has nodes

and cusps as the only singularities. The number of cusps and nodes can be found
in terms of intersection indices of Chern classes of X and the class of hyperplane
section (cf. [131]). Work [164] considers the case when X is a smooth surface in
P
3. Then the branching curve B has degree n(n − 1), n(n − 1)(n − 2) cusps and

1
2n(n − 1)(n − 2)(n − 3) nodes (for n = 3 one obtains sextic with six cusps). The
fundamental group of the complement is isomorphic to the quotient of the braid group
on n strings by its center (cf. [164]). The relation between the fundamental groups of
the complements to the branching curves of generic projections and the fundamental
groups of smooth models of Galois closures of these projections is discussed in [147,
166].

35 Important results on geometry of such curves were obtained much earlier by italian school,
notably B.Segre, Chisini and his school cf. [193].
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Works [166] consider generic projections of quadrics X = P
1 × P

1 using a family
of embeddings ia.b, a, b ∈ Z corresponding to various ample divisors in NS(X).
Interest in this class stems form the fact that Galois covers of P

2 with branching
curve of generic projections of these surfaces provide examples of simply connected
surface of general type for which c21 > 2c2. The key step in the showing the simply
connectedness is the calculation of the fundamental group of the complement to the
branching curve.

Since then, the class of surfaces which generic projections produces the curves
for which one has a presentation of the fundamental groups of the complements was
greatly increased. Calculations produced over the span of more than 30 years include
complete intersections in projective spaces [182], very ample embeddings of Hirze-
bruch surfaces, embeddings of K3 surfaces, very ample embeddings of ruled surfaces
which are the products ofP

1 and smooth curves of positive genus and others. Inmany
instances a quite different than in the case of surfaces in P

3 pattern emerged for the
fundamental groups (cf. [208] for references to these calculations). One has to men-
tion that the main technical tool in such calculation is appropriate degeneration of the
surface resulting in degeneration of the branching curve. Steps of calculation include
calculation of the braid monodromy of degenerate curve (which may be reducible)
and then applying rules of regeneration i.e. relating the braid monodromy of degen-
erate curve to the braid monodromy of the curve prior to degeneration. We refer to
a survey article [7] which has useful references to these numerous calculations.

An interesting property of branching curves of generic projections was discovered
by Chisini: (with a small number of exceptions) the cover given by generic projection
is determined by the curve alone, i.e. no subgroup of the fundamental group to specify
the cover (cf. Sect. 10.3.3) is needed. A proof of this result was found in [125] (cf.
also, [42]).

10.6.3 Complements to Discriminants of Universal
Unfoldings

With a germ of isolated hypersurface singularity f (x1, ..., xn) = 0 one associates the
germ of the universal unfolding C

N , N = dimC[x1, ...., xn]/( f, ∂ f
∂x1

, ....,
∂ f
∂xi

) which
comes with the germ of discriminantal hypersurface Disc (corresponding to the
germs having a critical point (cf. [106])).

The fundamental groups of the complements to the germs Disc have appear-
ance in a variety of questions spreading from singularity theory and topology to
representation theory and beyond. An important feature of the fundamental groups
of such complements (as well as complements to other discriminants) is that they
come endowed with geometric monodromy i.e. the homomorphism to the mapping
class group of the Milnor fiber, i.e. the group of diffeomorphisms of the Milnor fiber
constant on its boundary modulo isotopy. This induces the homological monodromy
via the action of the mapping class group on the homology of the Milnor fiber. For
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ADE singularities one obtains the corresponding Coxeter groups (cf. [79]). More-
over, these complements to germs often can be identified with the complement to
the whole affine hypersurfaces in C

N , so these local fundamental groups are quasi-
projective. In the case of simple ADE surface singularities, the fundamental groups
of the complement were identified by Brieskorn (cf. [29]) with the braid groups
corresponding to the respective Coxeter systems.

Calculations for several more complicated classes of singularities weremade also.
An important case of Brieskorn-Pham polynomials f (x1, ..., xn) = xd1 + ...+ xdn
was considered by Lonne (cf. [153] and references there). Generators and relations
of the fundamental group of the complement to discriminant are described in terms
of combinatorial data given by the graph associated to singularity, analogous to
Dynkin diagramor, equivalently, in terms of the corresponding bilinear form.Vertices
correspond to the integer points in the interior of the cube Id,n = {i = (i1, ...., in)|1 ≤
ik ≤ d − 1}. Edges described in terms of bilinear form on the vector space with basis
vi, i ∈ Id,n given by

〈vi, vj〉 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 i f |iν − jν | ≥ 2 f or some ν

0 i f (iν − jν)(iμ − jμ) < 1 f or some μ, ν

−2 i f i = j

−1 otherwise

(10.76)

The edges of the graph connect the pairs of vertices i, j such that < vi, vj >	= 0. In
terms of this bilinear form or the graph the fundamental group of the complement
to discriminant has generators ti corresponding to the vertices and the relations as
follows

titj = tjti i f < vi, vj >= 0,
titjti = tjtitj < vi, vj >	= 0

titjtkti = tjtitktj < vi, vj >< vj, vk >< vk, vi >	= 0
iν ≤ jν ≤ kν f or all ν

(10.77)

10.6.4 Complements to Discriminants of Complete Linear
Systems

This class of singular curves comprised of the curves where the fundamental groups
come endowed with the homomorphisms into non-abelian groups given by either
geometric monodromy i.e. with values in a mapping class group or (co)homological
monodromy (with values in the linear group of automorphisms of the homology).
Homological monodromies often are surjective or are close to such (i.e. the fun-
damental group itself is non-abelian). The construction of these curve is as fol-
lows. Let X be a smooth projective variety and let L be a line bundle. The linear
system P(H 0(X,L)) contains the discriminant consisting of the elements having
singularities worse than singularities of its generic element. With rare exceptions
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the discriminant has codimension 1 (identifying varieties with a small dual is an
interesting problem). Its intersection with a generic plane36 in P(H 0(X,L)) pro-
duces a plane curve which fundamental group of the complement has monodromy
map into the mapping class group of the generic fiber of the universal element of
this linear system i.e. the group of diffeomorphisms modulo isotopy of the fiber
of the incidence correspondence IL ⊂ X × P(H 0(X,L) set theoretically consist-
ing of pairs {(x,C)|x ∈ X,C ∈ P(H 0(X,L)), x ∈ C}. In [78] was considered the
case X = P

2 (resp. X = V2 the quadric in P
3) and L = OP2(3) (resp. L = OV2(2))

when one obtains as the fundamental group of the complement to discriminant the
extension of SL(2, Z) by the Heisenberg group over the field with 3 elements (resp.
the ring Z4). The surjection onto SL2(Z) is the monodromy (the mapping class of
2-dimensional torus coincides with SL2(Z)) and the kernel is the Heisenberg group.
Recently, a progress was made in understanding the kernel of the monodromy in the
case L = OP2(4) cf. [112].

A much more difficult case X = P
n,L = OPn (d), including the case of dis-

criminant of the family of cubic curves just described, was addressed by Lonne
[153]. It also includes apparently the only other known case of this construction i.e.
X = P

1,L = O(d) considered by Zariski (and mentioned in [78]) when the cor-
responding fundamental group is the braid group of two dimensional sphere. The
fundamental group π1(P(H 0(Pn,OPn (d)) \ Disc)) is the quotient of the group with
generators and relations (10.77) by the normal subgroup generated by additional
relations which we now shall describe. They are defined in terms of enumeration
functions: ϒk, k = 0, ...., n : {1, ..., (d − 1)n} → In,d or equivalently the orderings
of the integral points of the cube In,d . Among them,ϒ0 considered as the ordering of
the integral points in In,d according to the reverse lexicographic order: (i1, ...., in) <

(i ′1, ...., i ′n) iff the for the smallest subscript k for which ik 	= i ′k one has ik >

ik ′ (e.g. (d − 1, d − 1, d − 1) < (d − 1, d − 1, d − 2) < (d − 1, d − 1, d − 2) <

... < (d − 1, d − 1, 1) < (d − 1, d − 2, d − 1) < (d − 1, d − 2, d − 2) < ......).
The order <k obtained from this one as follows:

(i1, ..., in) <k ( j1, ... jn)⇐⇒ ik < jk or ik = jk, (i1, ..., in) <0 ( j1, ... jn) (10.78)

With this notations a presentation of π1(P(H 0(Pn,OPn (d)) \ Disc)) is given by
generators and relators (10.77) and

(tiδ0)
d−1 = (δ0t

−1
i )d−1, δ0 · .... · δn = 1whereδk =

(d−1)n
∏

m=1
tϒk (m) k = 0, ...., n

(10.79)
It would be interesting to understand the algebraic structure of such groups and their
relation to other geometrically defined group but see [153] for discussion of the

36 Generic choice assures that the fundamental group of the complement to the intersection with the
plane inside this plane is isomorphic to the fundamental group of the complement to the discriminant
of the complete linear system. Non-generic section were studies in very special cases. For a recent
study cf. [85].
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relation of this presentation with those in cases known earlier. For results on the
monodromy representations of the groups of the complements to discriminant using
presentation (10.77), (10.79) we refer to [190] and for the case of monodromy of
complements to discriminants on toric surfaces to [48, 189].

10.6.5 Plane Sextics and Trigonal Curves

In the last 10–20 years, many important results were obtained in the study of equi-
singular families of curves of degree 6 (and less; cf. [52, 53, 55, 56, 59, 63] and
references below). The number of equisingular families of plane sextics measures in
thousands and hence listing of possible cases is not a reasonable approach. Several
classes of sextics were identified and we will describe some of them below. The
methods include the use of Alexander invariants, connection with K3 surfaces and
relation with the class trigonal curves on ruled rational surfaces. An interesting study
of the moduli of sextics with six cusps i.e. the locus in the moduli spaceMg given by
the curves in distinct equisingular families was done in [95]. Several good surveys
of the subject are already available (cf. [57], Preface and Sect. 7.2 in [54] and [1]).

A. Simple and non-simple sextics. A sextic is called simple if its only singulari-
ties are ADE singularities. Otherwise, a sextic is called non-simple. For irreducible
non-simple sextics the type of equisingular deformation type is determined by the
combinatorial type i.e. the collection of the local types of all singularities (cf. [57]
Theorem 3.2.1). The key to a classification of simple sextics is the relation with the
theory of K3 surfaces. Consider a double cover XC of P

2 branched over a sextic C .
Singularities of this surface, correspond to the singularities of the branching curve
and are simple of the same ADE type as the singularity of the curve. Moreover, the
minimal resolution X̃C comeswith the following data associatedwith the intersection
form on H2(X̃C , Z). Recall that as a lattice with bilinear form the latter is isomor-
phic to L = 2E8 ⊕U 3 whereU is the intersection form of quadric surface. The data
associated with the minimal resolution X̃C consists of the sublattice of H2(X̃C , Z)

spanned by the classes of exceptional curves of the resolution. These curves form a
root system σ in this sublattice. Let S̃C be the primitive hull in H2(X̃C , Z) of these
sublattices and the pull back to X̃C of the class of a line in P

2. An abstract oriented
homological type of a K3 surface is a sublattice in H2(X̃C , Z), which in the case of
a double cover over a ADE sextics is the image of S̃C , plus the orientation of the
positive definite plane in real subspace spanned by transcendental lattice given by
the holomorphic 2-form on X̃C (cf. [60] p. 214).

Theorem 10.6.1 (cf.[50, 213, 218]) There is one to one correspondence between
oriented abstract homological types arising from sextics and the set of equisingular
deformations of sextic curves with simple singularities. Moreover, the moduli space
of sextics in each equisingular component (i.e. its quotient by the group of projective
isomorphisms) is isomorphic to the moduli space of K3 surfaces with such abstract
homological type.
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Particularly well understood class of such sextics is the class of maximizing ones
i.e. for which the sum of Milnor numbers is 19 (i.e. the maximal possible). However,
there is no classification of the fundamental groups for the curves of this type though
very large number of cases was made explicite.

B. Sextics of torus type. Those are sextics given by an equation of the form
f 32 + f 23 = 0 where fi denotes a form of degree i .
If fi generic than for such C , π1(P

2 \ C) is the quotient of the braid group B3

by its center [219]. The fundamental group varies when fi = 0 become singular
or tangent to each other and there are many explicite calculations. For curves with
simple singularities, having such type, the commutativity of the fundamental group
of the complement is detected by the Alexander polynomial (Oka conjecture cf. [46,
51])

C. Sextics with triple points. Blow up of the plane at a triple point of a sextic
results in Hirzebruch surface F1 and a cover of degree 3 of projective line induced
by projection from the triple point. Such curves and their braid monodromy were
studied extensively by Degtyarev in his book [57] in a more general framework
of trigonal curves on arbitrary Hirzebruch surfaces Fd . Relation between the braid
monodromy and the graphs in 2-spheres leads to enumeration of extremal irreducible
trigonal curves which shows that their number grows exponentially (as a function of
appropriate parameter).

10.6.6 Zariski Pairs

Oneof applications of the fundamental groups of the complements (aswas envisioned
and implemented in some cases by Zariski cf. [219, 221]) is detecting the existence of
different connected components of the space of equisingular deformations of curves
on the surface. Indeed, those deformations do not alter the fundamental group. In
fact there are several natural topological equivalence relations of curves on surfaces
interrelationship between which is a natural question.

Definition 10.6.2 Let X be an algebraic surface and let D1, D2 be divisors on X .
Pairs (X, D1) and (X, D2) are equivalent if one of the following conditions is satis-
fied:

(A) There exist an irreducible variety T , a holomorphic map 	 : X→ T with a
fiber biholomorphic to X , a divisor D ⊂ X such that 	 is a locally trivial fibration
of the pair (X,D)37 and such that there exist a pair of points t1, t2 ∈ T the fibers of
	|D over t1, t2 are D1, D2 respectively.

37 I.e. for any t ∈ T there is a neighborhood U ⊂ T such that 	−1(U ) and T ×	−1(t) are equiv-
alent as stratified spaces.
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(A′) There is a symplectic isotopy of pairs (X, Di ) i.e. (X,D) in (A) is a pair of
symplectic spaces with symplectic 	 with fiber being sympletomorphic to D1, D2

respectively.

(B) There exists a diffeomorphism (resp. PL equivalence, reps. homeomorphism,
resp. a homotopy equivalence, resp. proper homotopy equivalence of the comple-
ments) of pairs (X, D1) = (X, D2) i.e. one selects the corresponding type of a con-
tinuous map X → X taking subcomplex D1 to D2.

(C) There exists an isomorphism of fundamental groups π1(X \ D1) = π1(X \
D2) (or sometimes just equality of the Alexander polynomials).

(D) There exist the following:
(i) a one to one correspondence between irreducible components of Di such that

corresponding components are homeomorphic and
(ii) a one to one correspondence between singularities of Di preserving the local

type in X compatible with correspondence (i) between the components.

(E) There exist an automorphism of fields C/Q which takes (a deformation as in
(a)) of the pair (X, D1) to the pair (X, D2).

The names used in literature are respectively, equisingular deformation equiva-
lence for (A), Zariski pairs38 for (D)-equivalent but not (B)-equivalent pairs , π1-
equivalent for (C), combinatorially equivalent for (D) and conjugation equivalent for
(E).

The relation between these conditions is as follows: (A) implies (B) (Thom isotopy
theorem), (B) implies (D) and also (C) by topological invariance of the fundamental
groups. Relation between equivalences in (B) corresponding to different types of
homeomorphisms of pairs are unknown in real dimension 4 and finally (E) implies
(D).

Large and continuing to increase volume of papers deals with finding examples
confirming that these implications cannot be reversed, though until 80s connected
components of the strata were viewed as an aberration. The conditions found in
[105] delineate the range of combinatorial data for which the strata are connected
but numerous examples found up to date outside of this range, suggest that discon-
nectedness of equisingular families is a widespread occurrence. At the same time no
systematic theory of Zariski pairs as to classification or distribution did emerge. A
good survey of this vast subject is given in [15]. Further non-trivial results on the
relations between above equivalences are as follows.

(C) or (D) does not imply (A): Shirane [205] showed that curves in equisingular
families constructed earlier by Shimada (cf. [199]) cannot be transformed by a home-
omorphism of P

2 though fundamental groups are isomorphic. Work [65] contains
examples of such type in the case of sextics.

(D) does not imply (C) for arrangements of lines defined over Q: cf. [107] and
references there for other numerous examples found by those authors giving arrange-
ments of lines for which (D) does not imply (C). (D) does not imply (C) for reducible

38 The term was coined in [22] in reference to first example found by Zariski in 1930s.
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curves with components being a smooth curve and a union of certain 3 tangent lines
cf. [204]. k-tuples of pairwise distinct reducible curveswith one component of degree
4 and several quadrics were considered in [26] (also, see there the references to the
works of these two authors presenting many other examples of failure of this impli-
cation).

(E) does not imply (C): [14] gives examples of conjugate line arrangements with
non-isomorphic fundamental groups. See also [13] where one has conjugacy over Q

and isomorphism of the fundamental groups and even homeomorphism of the com-
plements but there is no homeomorphism of pairs. Examples are the appropriately
chosen unions of sextics and lines. Moreover, (E) and (C) do not imply (B) (cf. [12])

Distinct connected components often even contain curves conjugate overQ (arith-
metic Zariski pairs cf. [201]).

The examples of Zariski pairs or multiplets39 fall in the following groups

A. Arrangements of lines and conics [108]
B. Curves of degree 6 and trigonal curves (cf. [61])
C. Other sporadic examples such as reducible curveswith components of lowdegree

(cf. [176]).

Methods employed in these works include study of the Alexander invariants,
Hurwitz equivalence classes of braid monodromy and more ad hoc invariants of the
fundamental groups (e.g. existence of dihedral cover of the complement to a curve
is an invariant of the fundamental group and hence can be used to distinguish classes
of equisingular deformations) and other sporadic methods (cf. [202, 203, 206]).
Problems here include the question of combinatorial invariance of the Alexander
polynomials and more generally the characteristic varieties or existence of Zariski
pairs defined over Q.

Many examples of fundamental groups of Zariski pairs were computed in [58].
An interesting problem about Zariski multiplets is understanding the asymptotic

of the number of connected components of equisingular families when the num-
ber of classes of the curves grows. Consideration of families of trigonal curves on
Hirzebruch surfaces, shows that the number of equisingular components grows expo-
nentially. One can show exponential growth of the number of connected components
of equisingular families of plane curves with nodes and cusps when degree grows by
considering generic projections of surfaces of general type in a families which have
exponentially large growth of the number of connected components of the moduli
spaces (cf. [154]). This follows from the explicite formulas in terms of Chern num-
bers of the surfaces for the numbers of cusps, nodes and the degree of the branching
curves of generic projection (cf. [131]).

39 Zariski k-tuples are sets of k curves in distinct classes of equivalence (B) but in the same class
(D); sometimes, in a more loose usage, the reference is to sets of k curves in distinct classes for
some equivalences (A)–(E) but not another.
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