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Abstract. A highly efficient multilevel adaptive Lagrange-Galerkin
finite element method for unsteady incompressible viscous flows is pro-
posed in this work. The novel approach has several advantages including
(i) the convective part is handled by the modified method of charac-
teristics, (ii) the complex and irregular geometries are discretized using
the quadratic finite elements, and (iii) for more accuracy and efficiency a
multilevel adaptive L2-projection using quadrature rules is employed. An
error indicator based on the gradient of the velocity field is used in the
current study for the multilevel adaptation. Contrary to the h-adaptive,
p-adaptive and hp-adaptive finite element methods for incompressible
flows, the resulted linear system in our Lagrange-Galerkin finite element
method keeps the same fixed structure and size at each refinement in
the adaptation procedure. To evaluate the performance of the proposed
approach, we solve a coupled Burgers problem with known analytical
solution for errors quantification then, we solve an incompressible flow
past two circular cylinders to illustrate the performance of the multilevel
adaptive algorithm.
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1 Introduction

Unsteady incompressible viscous flows use in their modelling the Navier-Stokes
equations with the property that the convective terms are distinctly more dom-
inant than the diffusive terms especially when the Reynolds numbers reach high
values. At high Reynolds numbers, the convective term is known to be a source of
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computational difficulties and nonphysical oscillations. In addition, sharp fronts,
shocks, vortex shedding and boundary layers are among other difficulties that
most Eulerian finite element methods fail to resolve accurately. In general, Eule-
rian finite element methods employ fixed meshes along with some upstream
weightings in their formulations to stabilize the discretization. Examples of Eule-
rian finite element methods include the Petrov-Galerkin, streamline diffusion,
discontinuous Galerkin methods and also many other methods of the high-order
reconstructions from computational fluid dynamics such as isogeometric analysis,
see for example [1,2,5,13,14,21,23]. However, the main drawback of these meth-
ods for solving the convection-dominated problems is the stability conditions
which impose a severe restriction on the size of the time steps taken in the numer-
ical simulations. Lagrange-Galerkin finite element methods have the potential to
efficiently solve convection-dominated flow problems, see for example [3,6,8,22].
The main idea in these methods lies on reformulating the governing equations
in terms of the Lagrangian coordinates as defined by the particle trajectories (or
characteristics) associated with the problem under study. In this case, the time
derivative and the advection operator are combined in a total directional deriva-
tive along the characteristics which can be integrated using a semi-Lagrangian
time stepping. In [17], an L?-projection on the finite element space is used for
the evaluation of solutions at the departure points. The performance of the L?-
projection Lagrange-Galerkin finite element method has been assessed in [9,10]
for several convection-dominated problems and the incompressible Navier-Stokes
equations at high Reynolds numbers. Comparisons between the conventional and
the L?-projection Lagrange-Galerkin finite element methods have also reported
in these references and the L2-projection has demonstrated higher accuracy and
stronger stability than the conventional method. However, for practical appli-
cations in the incompressible viscous flows, these methods may become com-
putationally very demanding due to the dense quadratures required for the L2
projection.

The objective of the present work is to develop a class of multilevel adaptive
Lagrange-Galerkin finite element methods for the numerical solution of incom-
pressible Navier-Stokes equations. The advantage of this approach is the use of
multiple quadratures in the L2-projection in the numerical solution. This yields
considerable efficiency gains to be made since the matrix in the linear system is
fixed and reused throughout the time stepping procedure. One other objective is
also to implement a multilevel adaptive algorithm for enrichments using the gra-
dient of the velocity field as an error indicator. In contrast to the gradient-based
h-adaptive finite element methods as those investigated in [1,2,2,13,16,18], the
linear systems in the proposed Lagrange-Galerkin finite element method keep
the same structure and size at each adaptation step. Indeed, an initial coarse
mesh is needed for the gradient-based h-adaptive methods to compute a pri-
mary solution for estimation of the gradient. This allows for error accumulations
due to the coarse mesh used in the approximation and the computational cost
becomes prohibitive due to multiple interpolations between adaptive meshes.
The performance of the proposed method is assessed using several test prob-
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lems for incompressible viscous flows. For various parameters like the Reynolds
numbers, multilevel adaptation and mesh refinements, results of the adaptive
Lagrange-Galerkin finite element method are compared with those computed
using the fixed approach.

This paper is organized as follows. In Sect.2 we present the formulation of
the Lagrange-Galerkin finite element method. This section includes the imple-
mentation of the L?-projection procedure for the convection stage. Section 3 is
devoted to the development of a multilevel adaptive Lagrange-Galerkin finite
element method. In this section we also discuss the criteria used for adaptation.
In Sect. 4, we examine the numerical performance of the proposed method using
several examples of incompressible Navier-Stokes flows. Our new approach is
demonstrated to enjoy the expected efficiency as well as the accuracy. Conclud-
ing remarks are summarized in Sect. 5.

2 Enriched Lagrange-Galerkin Finite Element Method

In the present study, we are concerned with solving the incompressible Navier-
Stokes equations reformulated in a dimensionless form as

V-u=0, )
Du 1

— ——Au=f
Dt +Vp Re- 4T
where u = (u,v) " is the velocity field, p the pressure, f a source term, Re the

Reynolds number and % the total derivative defined as

Du u

E::%—t+u~v'u:0, (2)
In order to solve the incompressible Navier-Stokes Eqs. (1)—(2), the Lagrange-
Galerkin finite element method solves separately at each time step, the convective
part (2) then the Stokes Egs. (1). A quasi-uniform partition 2;, C 2 composed
of triangular elements Ky, is considered for the finite element discretization. The
generated triangles are configured in such a manner, that there are no empty
spaces between two elements and that they do not overlap. It is well known
that, for such a problem the mixed Taylor-Hood finite elements P-P; is used
for the conforming finite element spaces. Furthermore, it has been shown that
for this mixed formulation the discrete velocity and pressure solutions satisfy
the inf-sup condition, see for instance [6]. For the time discretization, the time
interval [0, 7] is partitioned into a set of sub-intervals [t,,, t,,+1] with fixed length
At = tp41 —ty, for n > 0. In the rest of this paper, the notation w} := w(xs, t,,)
is used to denote the value of a given function w at time ¢,, and the mesh point
xp,. Using this notation, the solutions u™(x) and p™(z) are formulated in their
associated finite element spaces as

M, M,
up(@) =Y Uiei(x),  pi(@) =Y Plez), (3)
j=1 =1
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where {9, }]le and {wl}l]\ipl are the set of the well known global nodal basis func-
tions of the velocity and the pressure, respectively. In (3), M, and M, represent
the number of the grid points of the velocity and pressure, respectively. Hence,
the semi-Lagrangian solution of the convection problem (2) is formulated for all
mesh points ¢;, j =1,---, M, as

N

Ut =t @) = un (&) = O, Q)

where X = X;(t,) is the departure point defined at time ¢, of a physical
particle that will attain the grid point «; at time ¢, . Here, X';(¢) is the char-
acteristic curve associated to the Eq. (2) for the mesh point &; which is the
solution of the following backward ordinary differential equations

dX;(t)

=X 0), Xj(tea) =z, j=1... M, (5)

To evaluate the solution of the Eq. (5) we use a second-order extrapolation
method based on the mid-point rule, details on these procedures can be found
in [8,10,20] among others. It is worth mentioning that, the evaluated departure
point X does not generally match with any of the mesh points. Consequently,

a search-locate algorithm is needed to allocate the mesh element I/C\j where the
departure point X7 belongs, see for example [7,10]. Thus, the finite element

solution U can be evaluated at the departure point X ;L as

N
Uj =" (X)) = > u"(@)p: (XF) (6)

i=1

where {p;}¥ | are the local shape functions defined on the host element /Ej, N
is the number of nodes which define the velocity mesh points, and {Z;}Y ; are
the vertices of the element K;. Using the Eqgs. (4) and (6), the global solution
obtained suing the conventional Lagrange-Galerkin finite element method can
be expressed as

n+1 Z ﬁ" ¢j (7)

Note that as in most numerical methods, the accuracy of the conventional semi-
Lagrangian finite element method depends on the computational mesh used in
the simulations. Moreover, it has been proved in [10] that if the computational
mesh is not sufficiently fine, the conventional semi-Lagrangian finite element
method fails to accurately resolve the sharp gradients generated by the convec-
tive terms. In the present work, we aim to introduce local enrichments using the
L2 —projection to improve the accuracy of considered the semi-Lagrangian finite
element method without refining the meshes.
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2.1 L2-projection for Local Enrichments

In the present section, we formulate the L2-projection presented in [9,10] as a
local enrichment technique for the convection Eq. (2). Thus, the weak formula-
tion can be achieved by multiplying Eq. (4) by the finite element basis functions
¢; and integrating over the domain {2 as

/ w" M (x)ps(x)dx = / u” (X") ¢i(x) de, i=1,...,M. (8)
fe)

0

The weak form (8) can be expressed in a matrix-vector form as

MJ{U" "} = {r"}, (9)

where [M] is the Lagrange Galerkin finite element mass matrix with entries
mi; = [, ¢;(x)di(x)de, U™ the vector of the unknown nodal values of the

solution with entrles Ut 1 and r™ the known right-hand side with entries 77
defined as

= [ @ e dw—z/ (X)) Gilw) dw,  (10)

where N, is the total number of the mesh elements. The quadrature rule is used
to evaluate the integrals m; ; and r; as

N. Ni,@

N. Ng,@
Mmij ~ Z Z Wa k@5 (Tq,k)Di (T g k) Ty~ Z wq,kUq pPi(Tqn) (11)

k=1 g=1 k=1 g=1

with @, are the quadrature points of the element K;, and wq ) their associated
weights. Here, X7 .k are the departure points associated with @, computed
using (5 ) and N ¢ is the total number of quadrature points in the element K.

Hence, Uq r = up (X} ) is the solution evaluated at the departure point X7
which can be evaluated according to (6) as

N
Uyp = up(@:)ei(X7],). (12)
=1

The approximations in (11) can be enriched by adjusting the number of quadra-
ture points Ny g either globally in the entire mesh or locally at each element
in the computational domain. In the current work, the Dunavant quadrature
rules studied in [4] are used. A distribution of Dunavant quadrature points is
illustrated in Fig. 1 for Ny o = 6, 12, 25, 52 and 70.

3 Multilevel Adaptive Enrichments

In many incompressible viscous flows, the solution involves sharp gradients, local-
ized eddies and shear layers specially when the Reynolds number attends high
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Fig. 1. A schematic distribution of quadrature points used in the L2-projection method
for global and local enrichments.

values. To accurately resolve these flow features, the enriched Lagrange-Galerkin
finite element method introduced in Sect.2 may require very fine meshes and
high number of quadrature points particularly in regions where the solution
gradients become very high. In the present work, to avoid uniform enrichment
in the entire computational mesh, we propose an adaptive local enrichment to
speed up the algorithm. The main idea of this adaptive technique is to refine the
number of quadrature points N ¢ in mesh elements where the solution gradient
attends high values and unrefine otherwise according to a given criterion. In prac-
tice, to perform this adaptation one needs an error estimator or error indicator
along with a given tolerance to adapt the quadrature accordingly. Gradient-
based estimators have been widely used in the literature in h-adaptive finite
element methods for incompressible Navier-Stokes equations, see for example
[1,2,2,13,16,18,19,21]. However, most of gradient-based h-adaptive algorithms
employ an initial coarse mesh to compute a primary solution for estimating
the gradient. As a consequence, error accumulation occurs due to the coarse
mesh used in the approximation and computational cost becomes prohibitive
due to multiple interpolations between adaptive meshes. In [2], the gradient of
the velocity field is used as indicator for mesh adaptation to study vortex shed-
ding in incompressible flows. The results presented demonstrate that this adap-
tation procedure for dynamic refinement and unrefinement is fully operational.
Here, we use similar techniques and the normalized gradient of the velocity is
employed as an adaptation criterion for the local enrichment of each element in
the computational domain as
n+1
E’I“’I“n+1 (K:k) _ NHVU’Ck H 7 (13)
e [
Jj=1 ’

where u’,étl is the solution on element K at time ¢,41 and HVu’,éJk“lH is the
L2-norm of the gradient of u%:l defined as

1

HVU’,%?H = (/ Va1 vt dx + Vot vyt dm) i . (14)
K

K
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Algorithm 1: Multilevel adaptive Lagrange-Galerkin algorithm

Require: {em }m=0,1,...,4;
while ¢,41 < T do

1

2

3 Assuming that the approximated solution U™ is known;

4 foreach element K do

5 Compute the error indicator Err™t! (ICx) using (13);

6 foreach m =0,1,2,3 do

7 if e, < Err™t! (Kk) < €m41 then

8 ‘ NkyQ = Nk,q,,”;

9 end
10 end
11 end
12 Generate the quadrature pair (zq,k,wq,k), ¢ =1,..., Ni,o;
13 Evaluate the L2-projection mass matrix [M] using left part of (11);
14 foreach element K; do
15 foreach quadrature point x4k, g =1,...,Ni,g do
16 Calculate the departure point X7 ;
17 Search for the element I/C\q’;c where X7, resides;
18 Compute the value of ﬁ;k using the equation (12);
19 end
20 end
21 Compute the element right-hand side 7' using equation (11);
22 Assemble the vector r";
23 Solve the resulted linear system (9);
24 Update the solution u}* ! at time t,11 using equation (7);
25 end

Using the finite element discretization on the element K the velocity gradient
(14) can be reformulated as

=

Hvuja-le((UnJrl) S/CkUnJrl (Vn+1) SICkVn+1> ' (15)

where U = (UPH, .., UFT, Vit = (v, VT, and S, is
the elementary stiffness matrlx evaluated at the element K. It should be noted
that the adaptation criterion (13) is a gradient-based error indicator which is
evaluated at time ¢, 1 from the known solutions at time t,, due to the backward
property of the modified method of characteristics. Normalization of the error
indicator is used to keep its values bounded in the interval [0, 1].

Hence, the multilevel adaptation procedure we propose in this study is
performed as follows: given a sequence of three real numbers {e,,} such that
0=¢cg<e1 <&y <eg<eyg =1 If an element K}, satisfies the condition

Em < Err7L+1 (’Ck) < Em+1, m= Oa 17 2) 37

then fCy, is enriched with the quadrature rule (g 4, wg,q) With g =1,2..., Ny 4 .
Here, the values of {e1,e2,e3} can be interpreted as tolerances to be set by
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the user resulting into a three-level refining. Note that the number of levels
m and the values of tolerances {e,,} in the above adaptive enriched Lagrange-
Galerkin finite element method are problem dependent and their discussions is
postponed for Sect.4 where numerical examples are discussed. The steps used
in the proposed adaptive enriched Lagrange-Galerkin finite element method for
solving the convection stage are summarized in Algorithm 1. Note that other
adaptive criteria as those used in h-, p- and hp-adaptivity in [1,13,16,18,19] can
also be implemented in our algorithm without major conceptual modifications.
A posteriori error estimations as those developed in [5,12] can also be adopted
for our enriched Lagrange-Galerkin finite element methods.

4 Numerical Results

In this section we examine the accuracy of the new enriched Lagrange-Galerkin
finite element method introduced in the above sections using two examples of
incompressible flow problems. For the first example the analytical solution is
known, so that we can evaluate the relative L'-error and L2-error at time ¢, as

1
2
/ ’“Z - ugxact| dx (/ |U’Z - u'gxact’2 dm)
0 2 7

L2-error =
) 1
/Q‘”gxm| e ( /Q |l et dw)z

where ul, . and uj are respectively, the exact and numerical solutions at the
gridpoint «; and time ¢,. In all the computations reported in this section, the
resulting linear systems of algebraic equations are solved using the conjugate gra-
dient solver with incomplete Cholesky decomposition. In addition, all stopping
criteria for iterative solvers were set to 1076, which is small enough to guarantee
that the algorithm truncation errors dominate the total numerical errors. All
the computations were performed on an Intel® Core(TM) i7-7500U @ 2.70 GHz
with 16 GB of RAM.

4.1 Viscous Burgers Flow Problem

To evaluate the accuracy of the proposed Lagrange-Galerkin finite element app-
roach, the coupled viscous Burgers flow problem is considered. It should be noted
that, the coupled viscous Burgers system is a suitable form of the incompressible
Navier-Stokes equations. Thus, we solve the following system

Du 1

. _ __Au=0 16

Dt Re T (16)
in the squared domain 2 = [0, 1] x [0, 1]. Initial and boundary conditions for this
example are obtained from the analytical solution studied in [11]

3 1 3 1
u(z,y,t) 17 3w v(z,y,t) 1 +g(x7y7t), (17)
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where

32

It is wroth mentioning that only results of the component u are presented in this
section, and the results of the component v are similar to those of w.

oz, 1) = 4 (1 +exp (—W“W» (18)

1
0.95
= =
o = 0.9
.8 S
= pe}
2 ]
S S 0.85
w0 w2
—e— Analytical —e— Analytical
—e— Fixed 0.8 —e— Fixed
—o- Adaptive —o- Adaptive
—e— Conventional —e— Conventional
0.75
0.2 0.4 0.6 0.8 1 1.2 1.4 0.2 0.4 0.6 0.8 1 1.2 1.4
Diagonal Diagonal

Fig. 2. Cross-sections at the main diagonal y = 1 — x of the solution u obtained for
the viscous Burgers problem at time ¢t = 2 and Re = 10® on a mesh with h = 6%1 using
Ni.g =12 (left) and N, = 52 (I‘ight).

Table 1. Results for viscous Burgers problem obtained by the fixed and adaptive
Lagrange-Galerkin finite element methods on a mesh with A = 1—§8 using different
quadratures at time ¢ = 2. The CPU times are given in seconds.

Re | Ng,q | Fixed Adaptive

L'-error |L?*-error |CPU |L'-error | L?*-error |CPU
10% |12 3.907E-04 | 4.534E-04 | 94.05 | 3.951E-04 | 4.480E-04 1 45.12
25 1.902E-04 | 2.108E-04 | 129.20 | 1.923E-04 | 2.182E-04 | 50.00
52 8.229E-05 | 9.317E-05 | 220.00 | 7.249E-05 | 0.978E-05 | 67.26
10% | 12 7.683E-04 | 8.651E-03 | 113.32 | 7.629E-04 | 8.628E-03 | 62.35
25 6.094E-04 | 5.089E-03 | 150.81 | 6.207E-04 | 5.145E-03 | 69.00
52 3.051E-04 | 2.254E-03 | 270.43 | 3.012E-04 | 2.234E-03 | 85.23
10* | 12 7.063E-03 | 4.120E-03 | 120.32 | 6.500E-03 | 3.939E-03 | 65.42
25 3.524E-03 | 2.834E-02 | 131.74 | 3.924E-03 | 2.998E-02 | 73.27
52 1.921E-03 | 1.939E-02 | 223.00 | 1.807E-03 | 1.865E-02 | 88.54

Cross-sections of the obtained results at the diagonal of equation y =1 — =z
are presented in Fig. 2. These results are computed on a mesh with h = 6%1 for the
Reynold number Re = 103 using two different numbers of quadratures namely,
Nigo = 6 and N g = 52. It can be shown from Fig.2 that by increasing the
number of quadrature points Nj g globally or locally in the considered mesh
yields to an improve in the accuracy of the results calculated using the proposed
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Lagrange-Galerkin finite element method with fixed or multilevel adaptive pro-
jection. From the same figure it can be clearly shown that, the conventional
semi-Lagrangian finite element method suffers from an excessive numerical dif-
fusion while the proposed Lagrange-Galerkin finite element method resolves suc-
cessfully the shock.

Distance y
A W N HF O FH N W b

4 6 10 12
Distance z

IS
n
N} g
o
N}

Fig. 3. Computational mesh used for the flow past two circular cylinders.

For the error quantification, a comparison between the proposed fixed and
adaptive Lagrange-Galerkin finite element approaches is also performed for this
example. The obtained L!'-error, L2-error and CPU times are presented in Table
1 using different numbers of quadrature points for Re = 100, Re = 1000 and
Re = 10000 at time ¢t = 2. With reference to error norms and for all selected
numbers of quadrature points, both the fixed and adaptive approaches generate
similar results for all considered Reynolds numbers Re. Moreover, increasing the
number of quadrature points leads to a significant increase in the accuracy of
the studied approaches. In terms of CPU times, it is clear from Table 1 that the
CPU times of the adaptive method are lower than those of the fixed method.
For example, the CPU time of the adaptive approach is about 64%, 63% and
62% less than the CPU time of the fixed approach for Re = 100, 1000 and 10%,
respectively. Note that this reduction in the CPU times becomes large using fine
meshes. As expected, the adaptive enriched method is more efficient than its
fixed counterpart.

4.2 Flow Past Two Circular Cylinders

To illustrate the performance of the proposed multilevel adaptive Lagrange-
Galerkin finite element method we solve the problem of a viscous flow past two
circular cylinders in a channel. A similar configuration is used in [15]. In our
computations, two circular cylinders with diameter D = 1 are immersed verti-
cally in a viscous incompressible flow entering the channel with a uniform velocity
Uso = 1. The Reynolds number for this test case is defined as Re = Duy, /v, with
v is the kinematic viscosity. We perform computations with the mixed formula-
tion P»-Pj using the unstructured mesh composed of 4372 elements, 9063 velocity
nodes and 2345 pressure nodes, see Fig. 3. The main purpose of this problem is
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to show the capability of the multilevel adaptive approach to accurately capture
these steep gradients and vortex shedding exhibit by the numerical solutions at
low computational costs. In our simulation, we consider single-level, two-level
and three-level adaptive procedure using €7 = 0.065, e = 0.17 and 3 = 0.3.
Initially, the number of quadrature points is Ny o = 6 in each element and we
use Ny g = 70 for the single-level adaptive approach, (Ny o = 52, Ny o = 70) for
the two-level adaptive approach and (Ny,g = 12, Ny o = 52, Ni,g = 70) for the
three-level adaptive approach. At time ¢ = 35.7, the total number of quadrature
points used for fixed approach is 306040 whereas, the total number of quadrature
points used for the single-level, the two-level and the three-level approaches are
85066, 79245 and 65751, respectively.

The distribution of quadrature points using the single-level, two-level and
three-level adaptive Lagrange-Galerkin finite element methods at four different
times ¢t = 7,4, 12.8, 17.4 and 35.7 and the vorticity snapshots obtained using
the three-level method are presented in Fig. 4. In the distribution of quadrature
points, three different colors are used to identify the mesh element with quadra-
ture points for each level of adaptivity. Notice that the single-level and two-level
methods produce results similar to those of the three-level method with differ-
ent CPU time. For this reason, the vorticity results obtained using the single-
level and two-level approaches are not displayed in this figure. It can be shown
from Fig. 4 that the flow past two cylinders exhibits areas with large vorticity
and vortex shedding. Consequentially, elements with high level of adaptivity are
generated in the mesh. Moreover, the proposed Lagrange-Galerkin approach suc-
cessfully captures the small complex structures of the flow and the eddies over
the cylinders. This is because the proposed approach adapts the quadrature
points where it is needed according to the used error indicator.

5 Concluding Remarks

A multilevel adaptive Lagrange-Galerkin finite element method is developed in
this paper for efficiently solving the incompressible viscous flow problems on
unstructured meshes. The proposed method combines the modified method of
characteristics, the finite element method and an adaptive procedure based on
L2-projection using quadrature rules. Therefore, it benefits from the advantages
of all combined procedures to ensure the efficiency and the accuracy of the pro-
posed adaptive algorithm for incompressible viscous flows. Moreover, the con-
sidered multilevel adaptive algorithm increases the number of quadrature points
where it is needed according to an error indicator without refining the compu-
tational mesh during the time integration procedure. As a result and contrary
to other adaptive finite element methods, the resulted linear systems in the pro-
posed Lagrange-Galerkin finite element method preserve the same fixed structure
and size during the adaptation process. The gradient of the velocity is used as
feature-based error indicator for the proposed adaptation technique. We demon-
strate using several numerical test examples that the proposed algorithm can
capture the flow features on coarse meshes and with a significant reduction in
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the computational requirement. Future work will concentrate on solving coupled
flow-transport and natural convection problems to simulate the transport and
dispersion of pollutant in seas. The extension of the proposed multilevel adap-
tive Lagrange-Galerkin finite element method for the incompressible viscous flow
problems in three space dimensions is also under consideration and results will
published in near future.
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