
NVIDIA SimNet™: An AI-Accelerated
Multi-Physics Simulation Framework

Oliver Hennigh, Susheela Narasimhan, Mohammad Amin Nabian(B),
Akshay Subramaniam, Kaustubh Tangsali, Zhiwei Fang, Max Rietmann,

Wonmin Byeon, and Sanjay Choudhry

Nvidia, Santa Clara, CA, USA
{ohennigh,susheelan,mnabian,asubramaniam,ktangsali,zhiweif,

mrietmann,wbyeon,schoudhry}@nvidia.com

Abstract. We present SimNet, an AI-driven multi-physics simulation
framework, to accelerate simulations across a wide range of disciplines
in science and engineering. Compared to traditional numerical solvers,
SimNet addresses a wide range of use cases - coupled forward simula-
tions without any training data, inverse and data assimilation problems.
SimNet offers fast turnaround time by enabling parameterized system
representation that solves for multiple configurations simultaneously, as
opposed to the traditional solvers that solve for one configuration at a
time. SimNet is integrated with parameterized constructive solid geom-
etry as well as STL modules to generate point clouds. Furthermore, it is
customizable with APIs that enable user extensions to geometry, physics
and network architecture. It has advanced network architectures that
are optimized for high-performance GPU computing, and offers scalable
performance for multi-GPU and multi-Node implementation with accel-
erated linear algebra as well as FP32, FP64 and TF32 computations. In
this paper we review the neural network solver methodology, the Sim-
Net architecture, and the various features that are needed for effective
solution of the PDEs. We present real-world use cases that range from
challenging forward multi-physics simulations with turbulence and com-
plex 3D geometries, to industrial design optimization and inverse prob-
lems that are not addressed efficiently by the traditional solvers. Exten-
sive comparisons of SimNet results with open source and commercial
solvers show good correlation. The SimNet source code is available at
https://developer.nvidia.com/simnet.

1 Introduction

Simulations are pervasive in every domain of science and engineering. However,
they become computationally expensive as more geometry details are included
and as model size, the complexity of physics or the number of design evaluations
increases. Although deep learning offers a path to overcome this constraint,
supervised learning techniques are used most often in the form of traditional
data driven neural networks (e.g., [1,2]). However, generating data can be an
c© Springer Nature Switzerland AG 2021
M. Paszynski et al. (Eds.): ICCS 2021, LNCS 12746, pp. 447–461, 2021.
https://doi.org/10.1007/978-3-030-77977-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77977-1_36&domain=pdf
https://developer.nvidia.com/simnet
https://doi.org/10.1007/978-3-030-77977-1_36


448 O. Hennigh et al.

expensive and time consuming process. Furthermore, these models may not obey
the governing physics of the problem, involve extrapolation and generalization
errors, and provide unreliable results.

In comparison with the traditional solvers, neural network solvers [3–5] can
not only do parameterized simulations in a single run, but also address problems
not solvable using traditional solvers, such as inverse or data assimilation prob-
lems and real time simulation. They can also be embedded in the traditional
solvers to improve the predictive capability of the solvers. Training of neural
network forward solvers can be supervised only based on the governing laws of
physics, and thus, unlike the data-driven deep learning models, neural network
solvers do not require any training data. However, for data assimilation or inverse
problems, data constraints are introduced in the loss function.

Rapid evolution of GPU architecture suited for AI and HPC, as well as intro-
duction of open source frameworks like Tensorflow have motivated researchers
to develop novel algorithms for solving PDEs (e.g., [3,5–8]). Recently, a number
of neural network solver libraries are being developed (e.g., TensorFlow-based
DeepXDE [9], Keras-based SciANN [10], and Julia-based NeuralPDE.jl [11]),
aiming at making these solvers more accessible. Although the existing research
studies and libraries played a crucial role in advancing the neural network solvers,
the attempted examples are mostly limited to simple 1D or 2D domains with
straightforward governing physics, and the neural network solvers in their cur-
rent form still struggle to solve real-world applications that involve complex
3D geometries and multi-physics systems. In this paper we present SimNet,
that aims to address the current computational challenges with neural network
solvers. As an example, SimNet enables design optimization of a FPGA heat
sink (see Fig. 1) through a single network training without any training data. In
contrast, the traditional solvers are not capable of simulating geometries with
several design parameters in a single run.

Fig. 1. Design optimization of an FPGA heat sink using SimNet. The center and side
fin heights are the two design variables.

Our Contributions: Several research studies have recently been published
demonstrating solution of PDEs using neural networks. However, our experi-
ence has shown that they do not converge well when used as forward solvers for



NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework 449

industrial problems due to the gradients, singularities and discontinuities intro-
duced by complex geometries or physics. Our main contributions in this paper
are to offer several novel features to address these challenges - Signed Distance
Functions (SDFs) for loss weighting, integral continuity planes for flow simu-
lation, advanced neural network architectures, point cloud generation for real
world geometries using constructive geometry module as well as STL module
and finally parameterization of both geometry and physics. Additionally, for the
first time to our knowledge, we solve high Reynolds number flows (by adopting
the RANS equations and the zero-equation turbulence model [12]) in industrial
applications without using any data.

2 Neural Network Solvers

A neural network solver approximates the solution to a given PDE and a set
of boundary and initial constraints using a feed-forward fully-connected neu-
ral network. The model is trained by constructing a loss function for how well
the neural network is satisfying the PDE and constraints. A schematic of the
structure of a neural network solver is shown in Fig. 2.

Fig. 2. A schematic of the structure of a neural network solver.

Let us consider the following general form of a PDE:

Ni[u] (x) = fi (x) , ∀i ∈ {1, · · · , NN },x ∈ D,

Cj [u] (x) = gj (x) , ∀j ∈ {1, · · · , NC},x ∈ ∂D,
(1)

where Ni’s are general differential operators, x is the set of independent variables
defined over a bounded continuous domain D ⊆ R

D,D ∈ {1, 2, 3, · · · }, and u(x)
is the solution to the PDE. Cj ’s denote the constraint operators and usually cover
the boundary and initial conditions. ∂D also denotes a subset of the domain
boundary that is required for defining the constraints. We seek to approximate
the solution u(x) by a neural network unet(x) that, in it’s most simple form,
takes the following form:



450 O. Hennigh et al.

unet(x; θ) = Wn

{
φn−1 ◦ φn−2 ◦ · · · ◦ φ1 ◦ φE

}
(x) + bn, φi(xi) = σ (Wixi + bi), (2)

where x ∈ R
d0 is the input to network, φi ∈ R

di is the ith layer of the network,
Wi ∈ R

di×di−1 ,bi ∈ R
di are the weight and bias of the ith layer, θ denotes the

set of network’s trainable parameters, i.e., θ = {W1,b1, · · · ,bn,Wn}, n is the
number of layers, and σ is the activation function. We suppose that this neural
network is infinitely differentiable, i.e. unet ∈ C∞. φE is an input encoding layer.
More advanced architectures will be introduced in Sect. 3.3.

In order to train this neural network, we construct a loss function that penal-
izes over the divergence of the approximate solution unet(θ) from the PDE in
Eq. 1, and such that the constraints are encoded as penalty terms. To this end,
we define the following residuals:

r
(i)
N

(
x;unet(θ)

)
= Ni[unet(θ)] (x) − fi (x) ,

r
(j)
C

(
x;unet(θ)

)
= Cj [unet(θ)] (x) − gj (x) ,

(3)

where r
(i)
N and r

(j)
C are the PDE and constraint residuals, respectively. The loss

function then takes the following form:

Lres(θ) =
∑NN

i=1

∫
D λ

(i)
N (x)

∥
∥
∥r

(i)
N

(
x;unet(θ)

)∥∥
∥

p
dx +

∑NC
j=1

∫
∂D λ

(j)
C (x)

∥
∥
∥r

(j)
C

(
x;unet(θ)

)∥∥
∥

p
dx, (4)

where ‖·‖p denotes the p-norm, and λ
(i)
N , λ

(j)
C are weight functions that con-

trol the loss interplay between within and across different terms. The network
parameters θ are optimized iteratively using variants of the stochastic gradi-
ent descent method. At each iteration, the integral terms in the loss function
are approximated using a regular or Quasi-Monte Carlo method, and using a
batch of samples from the independent variables x. Automatic differentiation is
commonly used to compute the required gradients in ∇Lres(θ).

3 SimNet Overview

SimNet is a Tensorflow based neural network solver and offers various APIs that
enable the user to leverage the existing functionality to build their own applica-
tions on the existing modules. An overview of SimNet architecture is presented
in Fig. 3. The geometry modules, PDE module, and data are used to fully specify
the physical system. The user also specifies the network architecture, optimizer
and learning rate schedule. SimNet then constructs the neural network solver,
forms the loss function, and unrolls the graph efficiently to compute the gradi-
ents. The SimNet solver then starts the training or inference procedure using
TensorFlow’s built-in functions on a single or cluster of GPUs. The outputs are
saved in the form of CSV or VTK files and can be visualized using TensorBoard
and ParaView.



NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework 451

Fig. 3. SimNet structure.

3.1 Geometry Modules

SimNet contains Constructive Solid Geometry (CSG) and Tessellated Geometry
(TG) modules. With SimNet’s CSG module, constructive geometry primitives
can be defined and Boolean operations performed. This allows the creation and
parameterization of a wide range of geometries. The TG module uses tesselated
geometries in the form of STL or OBJ files to work with complex geometries.
One area of considerable interest is how to weight the loss terms in the overall
loss function. SimNet offers spatial loss weighting, where each weight parameter
can be a function of the spatial inputs. In many cases we use the Signed Distance
Function (SDF) for this weighting. Assuming Dx is the spatial subset of the input
domain D with boundaries ∂Dx, the SDF-based weight function is defined as

λ(xs) =

{
d(xs, ∂Dx) xs ∈ Dx,

−d(xs, ∂Dx) xs ∈ Dc
x.

(5)

Here, xs is the spatial inputs, and d(xs, ∂Dx) represents the Euclidean distance
between xs and it’s nearest neighbor on Dx. If the geometry has sharp cor-
ners this often results in sharp gradients in the solution of the PDE. Weighting
by the SDF tends to mitigate the deleterious effects of sharp local gradients,
and often results in an improvement in convergence speed and accuracy. Both
of the SimNet geometry modules allow for the SDF and its spatial derivatives
to be computed. CSG uses SDF functions to implicitly define the geometry.
To accelerate the computation of the SDF on tessellated meshes of complex
geometries, we developed a custom library that leverages NVIDIA’s OptiX for
both inside/outside (sign) testing and distance computation. The sign test uses
ray intersection and triangle normal alignment (via dot product). The distance
testing is done by using the bounded volume hierarchy (BVH) interface pro-
vided by OptiX, which yields excellent performance and accuracy for distance
computations.



452 O. Hennigh et al.

3.2 PDE Module

The PDE module in SimNet consists of a variety of differential equations includ-
ing the Navier-Stokes, diffusion, advection-diffusion, wave, and elasticity equa-
tions. To make this module extensible for the user to easily define their own
PDEs, SimNet uses symbolic mathematics enabled by SymPy [13]. A novel con-
tribution of SimNet is the adoption of the zero-equation turbulence model [12],
and this is the first time a neural network solver is made capable of simulat-
ing flows with high Reynolds numbers, as shown in the next section. Moreover,
for fluid flow simulation, we propose the use of integral continuity planes. For
some problems involving channel flow, we found that, in addition to solving the
Navier-Stokes equations in differential form, specifying the mass flow (for com-
pressible flows) or volumetric flow rate (for incompressible flows) through some
of the planes in the domain helps in satisfying the continuity equation better
and faster and improving the accuracy further. Assuming there is no leakage of
flow, we can guarantee that the flow exiting the system must be equal to the flow
entering the system, and also equal to the flow passing from any plane parallel
to the inlet plane throughout the channel.

3.3 Network Architectures

In addition to the standard fully connected networks, SimNet offers more
advanced architectures, including the Fourier feature and Modified Fourier fea-
ture networks, and Sinusoidal Representation Networks (SiReNs) [14] to alleviate
the spectral bias [15] in neural networks and improve convergence. The Fourier
feature network in SimNet is a variation of the one proposed in [16] with trainable
encoding, and takes the form in Eq. 7 with the following encoding

φE =
[
sin (2πf × x) ; cos (2πf × x)

]T
, (6)

where f ∈ R
nf×d0 is the trainable frequency matrix and nf is the number of

frequency sets. The modified Fourier feature network is SimNet’s novel archi-
tecture, where two transformation layers are introduced to project the Fourier
features to another learned feature space, and are then used to update the hid-
den layers through element-wise multiplications, similar to its standard fully
connected counterpart in [8]. It is shown in the next section that this multiplica-
tive interaction between the Fourier features and hidden layers can improve the
training convergence and accuracy. The hidden layers in this architecture take
the following form

φi(xi) =
(
1 − σ (Wixi + bi)

) � σ (WT1φE + bT1) + σ (Wixi + bi) � σ (WT2φE + bT2), (7)

where i > 1 and {WT1 ,bT1}, {WT2 ,bT2} are the parameters for the two trans-
formation layers.



NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework 453

4 Use Cases

In this section, we present four use cases for SimNet to illustrate its capabilities.
Although SimNet is capable of simulating transient flows using the continuous-
time sampling approach [3], the first three use cases are time-independent. A
more efficient and accurate approach based on the convolutional LSTMs for
transient simulations as well as integration of two-equation turbulence models
for turbulent simulations are under development. For the entire networks in
this section, the architectures consist of 6 layers, each with 512 units. Swish
[17] nonlinearities are used in the fully connected, Fourier feature, and modified
Fourier feature networks (except for the Fourier layers). For the simulations
presented in Sects. 4.2 to 4.4, the standard fully connected architecture is used.
Adam optimizer with an initial learning rate of 10−4 and an exponential decay
is used. We use Monte Carlo integration for computing the loss function in Eq. 4.
Moreover, we use integral continuity planes for channel flows. For the simulations
in use cases 4.1 to 4.3, we use the SDF for weighting the PDE residuals. It must
be noted that use cases 4.1 to 4.3 are solved in the forward manner without
using any training data. Please refer to the SimNet user guide for details of the
problem setup.

4.1 Turbulent and Multi-physics Simulations

Using an FPGA heat sink example, we demonstrate the SimNet’s capability in
accurately solving multi-physics problems involving high Reynolds number flows.
The heat sink geometry placed inside a channel is depicted in Figs. 4a, 4b. This
particular geometry is challenging to simulate due to thin fin spacing that causes
sharp gradients that are difficult to learn for a neural network solver. Using the
zero-equation turbulence model, we solve a conjugate heat transfer problem with
a flow at Re = 13,239. Generally, simulation of high-Re flows are particularly
difficult due to the chaotic fluctuations of the flow field properties that are caused
by instabilities in the shear layer. Due to the one-way coupling between the heat
and incompressible flow equations, two separate neural networks are trained
for flow (trained first) and the temperature (trained next) fields. This app-
roach is useful for one-way coupled multi-physics problems to achieve significant
speed-up.

We simulate this conjugate heat transfer problem with different architectures
and also with symmetry boundary conditions. Loss curves are shown in Fig. 5.
This figure also includes the flow convergence results for a Fourier feature model
without SDF loss weighting and a standard fully connected model, showing that
they fail to provide a reasonable convergence and highlighting the importance
of SDF loss weighting and advanced architectures. The streamlines and tem-
perature profile obtained from the modified Fourier feature model are shown in
Fig. 4c. A comparison between the SimNet and OpenFoam results for flow and
temperature fields is also presented in Fig. 6. Results for the pressure drop and
peak temperature are presented in Table 1. The OpenFoam simulation was per-
formed using a conjugate heat solver based on the SIMPLE algorithm and the



454 O. Hennigh et al.

differences between the commercial solver and OpenFoam peak temperatures
are likely due to the differences in the solvers and the schemes used in these two
simulations.

Fig. 4. FPGA heat sink example. (a) heat sink geometry; (b) Simulation domain (with
symmetry plane); (c) SimNet results for streamlines and temperature.

Fig. 5. Loss curves for FPGA training using different architectures.

Fig. 6. A comparison between the SimNet (with modified Fourier feature network) and
OpenFoam results for FPGA on a 2D slice of the domain.



NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework 455

Table 1. FPGA pressure drop and peak temperature from various models.

Case description Pdrop (Pa) Tpeak (°C)

SimNet: Fourier network (axis
spectrum)

25.47 73.01

SimNet: Fourier network (partial
spectrum) with symmetry

29.03 72.36

SimNet: Modified Fourier network 29.17 72.52

SimNet: SiReN 29.70 72.00

OpenFOAM solver 27.82 56.54

Commercial solver 24.04 72.44

4.2 Blood Flow in an Intracranial Aneurysm

We demonstrate the ability of SimNet to work with STL geometries from a
CAD system. Using the SimNet’s TG module, we simulate the flow inside a
patient specific geometry of an aneurysm depicted in Fig. 7a. The SimNet results
for the distribution of velocity magnitude and pressure developed inside the
aneurysm are shown in Figs. 7c and 7d, respectively. Using the same geometry,
the authors in [18] solve this as an inverse problem using concentration data from
the spectral/hp-element solver Nektar. We solve this problem as a forward prob-
lem without any data. When solving the forward CFD problem with non-trivial
geometries, one of the key challenges is getting the flow to develop correctly,
especially inside the aneurysm sac. The streamline plot in Fig. 7b shows that
SimNet successfully captures the flow field very accurately.

4.3 Design Optimization for Multi-physics Industrial Systems

SimNet can solve several, simultaneous design configurations in a multi-physics,
design space exploration problem much more efficiently than traditional solvers.
This is possible because unlike a traditional solver, a neural network trains with
multiple design parameters in a single training run. Once the training is com-
plete, several geometry or physical parameter combinations can be evaluated
using inference as a post-processing step, without solving the forward problem
again. Such throughput enables more efficient design optimization and design
space exploration tasks for complex systems in science and engineering. Here,
we train a conjugate heat transfer problem over the Nvidia’s NVSwitch heat
sink whose fin geometry is variable, as shown in Fig. 8 (nine geometry variables
in total). Details on the problem setup and training can be found in SimNet
user guide. Forward solution of parameterized, complex geometry with turbulent
fluid flow between thinly spaced fins and no training data makes this problem
extremely challenging for the neural networks. Following the training, we per-
form a design optimization to find out the most optimal fin configuration that
minimizes the peak temperature while satisfying a maximum pressure drop con-
straint. The fluid and heat neural networks in this example consist of 12 variables,



456 O. Hennigh et al.

Fig. 7. SimNet results for the aneurysm problem, and a comparison between the Sim-
Net and OpenFOAM results for the velocity magnitude and pressure.

i.e. three spatial variables and nine geometry parameter variables. Using Sim-
Net, we train these two parameterized neural networks, and then use the trained
models to compute the pressure drops and peak temperatures corresponding to
4 million random geometry realizations. Figure 9 shows the streamlines and tem-
perature profile for the optimal NVSwitch geometry.

Fig. 8. NVSwitch base geometry and design parameters.

By parameterizing the geometry, SimNet accelerates this design optimization
task by several orders of magnitude when compared to traditional solvers, which
are limited to single geometry simulations. This also suggests that SimNet can



NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework 457

Fig. 9. SimNet results for the optimal NVSwitch geometry.

provide significant time savings when other design optimization methods, such as
gradient-based design optimization, are used. The total compute time required
by OpenFOAM, a commercial solver, and SimNet (including the training time)
for this design optimization task is reported in Table 2. The OpenFOAM and
commercial solver runs are run on 22 CPU processors, and the SimNet runs are
on 8 V100 GPUs. To confirm the accuracy of the SimNet parameterized model,
we take the NVSwitch base geometry and compare the SimNet results (obtained
from the parameterized model) for pressure drop and peak temperature with the
OpenFOAM and commercial solver results, reported in Table 3.

Table 2. Total compute time for the NVSwitch heat sink design optimization.

Solver OpenFOAM Commercial solver SimNet

Compute time (x 1000 h) 405935 137494 3

Table 3. A comparison for the solver and SimNet results for NVSwitch pressure drop
and peak temperature.

Property OpenFOAM
single run

Commercial
solver single run

SimNet
parameterized run

Pressure drop (Pa) 133.96 128.30 109.53

Peak temperature (◦C) 41.55 43.57 39.33

4.4 Inverse Problems

Many applications in science and engineering involve inferring unknown system
characteristics given measured data from sensors or imaging for certain depen-
dent variables describing the behavior of the system. Such problems usually



458 O. Hennigh et al.

involve solving for the latent physics using the PDEs as well as the data. This
is done in SimNet by combining the data with PDEs to decipher the underlying
physics.

Here, we demonstrate the ability of SimNet to solve data assimilation and
inverse problems on a transient flow past a 2D cylinder example. This example
is adopted from [19]. Given the data consisting of the scattered concentration of
a passive scalar in the flow domain at different times, the task is to infer the flow
velocity and pressure fields as well as the entire concentration field of the passive
scalar. In reality, the data is collected using measurements but for the purpose
of this example, synthetic data generated by OpenFOAM is used. We construct
a model with a hybrid data and physics-driven loss function. Specifically, we
require the neural network prediction for the passive scalar concentration to
fit to the measurements, and also satisfy the governing laws of the system that
includes the transient Navier-Stokes and advection-diffusion equations. Here, the
quantities of interest are also modeled as trainable variables, and are inferred by
minimizing the hybrid loss function. A comparison between the SimNet results
and the ground truth for a snapshot of the flow velocity, pressure, and passive
scalar concentration fields is presented in Fig. 10.

Fig. 10. A comparison between the SimNet and OpenFOAM results for a snapshot
of the flow velocity, pressure, and passive scalar concentration fields. This example is
adopted from [19].

5 Performance Upgrades and Multi-GPU Training

SimNet supports multi-GPU/multi-node scaling to enable larger batch sizes
while time per iteration remains nearly constant, as shown in Fig. 11a. Therefore,
the total time to convergence can be reduced by scaling the learning rate lin-
early with the number of GPUs, as suggested in [20]. Doing so without a warmup
would cause the model to diverge since the initial learning rate can be very large.
Figure 11b shows the Limerock results for large batch training acceleration on
A100 using learning rate scaling. SimNet also supports TensorFloat-32 (TF32),
a new math mode available on NVIDIA A100 GPUs. Based on our experiments



NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework 459

on the FPGA problem, using TF32 provides up to 1.6x and 3.1x speed-up over
FP32 on A100 and V100 GPUs, respectively. Moreover, SimNet supports ker-
nel fusion using XLA that, based on our experiments, can accelerate a single
training iteration in SimNet by up to 3.3x.

Fig. 11. SimNet’s scaling performance results.

6 Conclusion

SimNet is an end-to-end AI-driven simulation framework with unique, state-
of-art architectures that enables rapid training of forward, inverse, and data
assimilation problems for real world geometries and multiple physics types with
or without any training data. SDF is used for loss weighting, which is shown
to significantly improve the convergence in cases where the geometry has sharp
corners and results in sharp solution gradients. SimNet’s TG module enables the
import tessellated geometries from CAD programs. For channel flow problems,
continuity is imposed globally and locally to further improve the convergence and
accuracy. SimNet enables the neural network solvers to simulate high Reynolds
number flows for industrial applications. To the authors knowledge, this is the
first such application of neural network solvers for RANS simulation of turbulent
flows.

SimNet is designed to be flexible so that users can leverage the functionality
in the existing toolkit and focus on solving their problem well rather than re-
creating the tools. There are various APIs that enable the user to implement
their own equations to simulate the physics, their own geometry primitives or
importing complex tessellated geometries, or a variety of domains/boundary
conditions. The geometry parameterization in the CSG module allows the neural
network to address the entire range of all given parameters in a single training,
as opposed to the traditional simulations that run one at a time. The inference
for any design configuration can then be completed in real time. This accelerates
the simulation with neural network solvers by orders of magnitude.



460 O. Hennigh et al.

Acknowledgments. We would like to thank Doris Pan, Anshuman Bhat, Rekha
Mukund, Pat Brooks, Gunter Roth, Ingo Wald, Maziar Raissi, Jose del Aguila Fer-
randis, and Sukirt Thakur for their assistance and feedback in SimNet development.
We also acknowledge Peter Messemer, Mathias Hummel, Tim Biedert and Kees Van
Kooten for integration with Omniverse.

References

1. Guo, X., Li, W., Iorio, F.: Convolutional neural networks for steady flow approx-
imation. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 481–490 (2016)

2. Hennigh, O.: Lat-Net: compressing lattice Boltzmann flow simulations using deep
neural networks. arXiv preprint arXiv:1705.09036 (2017)

3. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a
deep learning framework for solving forward and inverse problems involving non-
linear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

4. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordi-
nary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000
(1998)

5. Sirignano, Justin, Spiliopoulos, Konstantinos: Dgm: a deep learning algorithm for
solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)

6. Kharazmi, E., Zhang, Z., Karniadakis, G.E.: hp-vpinns: variational physics-
informed neural networks with domain decomposition. arXiv preprint
arXiv:2003.05385 (2020)

7. Zhu, Y., Zabaras, N., Koutsourelakis, P.-S., Perdikaris, P.: Physics-constrained
deep learning for high-dimensional surrogate modeling and uncertainty quantifica-
tion without labeled data. J. Comput. Phys. 394, 56–81 (2019)

8. Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient patholo-
gies in physics-informed neural networks. arXiv preprint arXiv:2001.04536 (2020)

9. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library
for solving differential equations. arXiv preprint arXiv:1907.04502 (2019)

10. Haghighat, E., Juanes, R.: Sciann: a keras wrapper for scientific computations
and physics-informed deep learning using artificial neural networks. arXiv preprint
arXiv:2005.08803 (2020)

11. Rackauckas, C., Nie, Q.: Differentialequations.jl — a performant and feature-rich
ecosystem for solving differential equations in julia. J. Open Res. Softw. 5(1)
(2017). https://app.dimensions.ai

12. Wilcox, D.C., et al.: Turbulence Modeling for CFD. volume 2. DCW industries La
Canada, CA (1998)

13. Meurer, A., et al. Sympy: symbolic computing in python. PeerJ Comput. Sci. 3,
e103 (2017)

14. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural
representations with periodic activation functions. arXiv preprint arXiv:2006.09661
(2020)

15. Rahaman, N., et al.: On the spectral bias of neural networks. In: International
Conference on Machine Learning, pp. 5301–5310 (2019)

16. Tancik, M., et al.: Fourier features let networks learn high frequency functions in
low dimensional domains. arXiv preprint arXiv:2006.10739 (2020)

17. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv
preprint arXiv:1710.05941 (2017)

http://arxiv.org/abs/1705.09036
http://arxiv.org/abs/2003.05385
http://arxiv.org/abs/2001.04536
http://arxiv.org/abs/1907.04502
http://arxiv.org/abs/2005.08803
https://app.dimensions.ai
http://arxiv.org/abs/2006.09661
http://arxiv.org/abs/2006.10739
http://arxiv.org/abs/1710.05941


NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework 461

18. Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning veloc-
ity and pressure fields from flow visualizations. Science 367(6481), 1026–1030
(2020)

19. Raissi, M., Wang, Z., Triantafyllou, M.S., Karniadakis, G.E.: Deep learning of
vortex-induced vibrations. J. Fluid Mech. 861, 119–137 (2019)

20. Goyal, P., et al.: Accurate, large minibatch SGD: training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677 (2017)

http://arxiv.org/abs/1706.02677

	NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework
	1 Introduction
	2 Neural Network Solvers
	3 SimNet Overview
	3.1 Geometry Modules
	3.2 PDE Module
	3.3 Network Architectures

	4 Use Cases
	4.1 Turbulent and Multi-physics Simulations
	4.2 Blood Flow in an Intracranial Aneurysm
	4.3 Design Optimization for Multi-physics Industrial Systems
	4.4 Inverse Problems

	5 Performance Upgrades and Multi-GPU Training
	6 Conclusion
	References




