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Abstract. Explainable Artificial Intelligence (XAI) methods form a
large portfolio of different frameworks and algorithms. Although the
main goal of all of explanation methods is to provide an insight into
the decision process of AI system, their underlying mechanisms may dif-
fer. This may result in very different explanations for the same tasks. In
this work, we present an approach that aims at combining several XAI
algorithms into one ensemble explanation mechanism via quantitative,
automated evaluation framework. We focus on model-agnostic explainers
to provide most robustness and we demonstrate our approach on image
classification task.

Keywords: Explainable artificial intelligence · Machine learning ·
Image processing

1 Introduction

Explainable Artificial Intelligence (XAI) has become an inherent component of
data mining (DM) and machine learning (ML) pipelines in the areas where the
insight into decision process of an automated system is important. Although
the explainability (or intelligibility) is not a new concept in AI [16], it has been
most extensively developed over the last decade. This is possibly due to the huge
successes in black-box ML models such as deep neural networks in sensitive appli-
cation contexts like medicine, industry 4.0 etc., but also a legal need of providing
accountability and transparency to the reasoning process of AI systems [4]. A
variety of algorithms for generating justifications for AI decisions and lack of
explanations format standards, make it hard to integrate XAI methods into the
standard ML/DM pipeline. Moreover, assessing quality of generated explana-
tions is also non trivial task, as there is lack of unified metrics for evaluating
XAI methods in an automated, quantitative manner.

The integration and evaluation of different ML methods into one pipeline is
done via unified interfaces and metrics such as accuracy, F1 score, area under
the ROC curve and many others. Different metrics may be relevant for different
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ML/DM tasks (recall over precision in medical diagnosis, F1 over accuracy in
imbalanced datasets, etc.). The same issue arises with explanability. Metrics such
as stability, or consistency or comprehensibility may be relevant depending on
who is the addressee of the explanation and what is a domain of explanations, or
even what is the stage of the ML system development. The variety of explanation
mechanisms makes their validation and inclusion into DM/ML process a non-
trivial process.

Considering all of the above, the main goal of the work presented in this
paper is to deliver a framework for calculating evaluation metrics for various
XAI algorithms, and exploit these metrics in order to build an ensemble expla-
nation mechanism that will combine explanations generated by different algo-
rithms into one, comprehensive solution that can be easily included into the
standard DM/ML pipeline. This approach can also be used to select the best
explanation framework with respect to arbitrary selected criteria (metrics). We
demonstrate our solution on the artificially generated, reproducible dataset and
real-life scenario involving image classification task.

The rest of the paper is organised as follows. The overview of the achieve-
ments in the field of XAI with respect to assessing their quality was given in
Sect. 2. The overview of our solution is given in Sect. 3. In Sect. 4 we present
the results of our approach when applied to image classification taks. Finally, in
Sect. 5 we discuss the limitation of the approach and describe future works.

2 Explainable Artificial Intelligence

The XAI methods are one of the most rapidly developed mechanisms in the last
decade that main goal is to add transparency and accountability to machine
learning (ML) and data mining (DM) models [1].

However, the analysis of explanations generated by the algorithms such as
LIME [13], SHAP [8] or Anchor [14] is most often reduced to feature selec-
tion. This is caused by the fact that such an analysis is a tedious task that
involves generating multiple explanations with possibly multiple algorithms and
then confronting them and assessing their quality by an expert judgement. Tools
and methods for comparable analysis of results of explanations, and selecting or
combining explanations are not fully investigated. Aforementioned frameworks
provide basic methods for investigating explanations that are based mostly on
visual presentation of results in a form of box plots, violin plots and other classi-
cal approaches. There are attempts at visualizing explanations which enhance the
intelligibility of the explanations itself. However, these are mostly model-specific
methods such as saliency maps for DNN [11] or task specific visualization [10].

What is more, although there are metrics used for assessing quality of expla-
nations [9], the assessment is not automated by any framework, nor combined
into a unified framework that will allow for reliable comparison of different expla-
nation mechanisms.

There were several attempts at providing methodological approaches for eval-
uation and verification of given explanation results [9,18]. Among many qualita-
tive approaches there are also ones that allow for quantitative evaluation. In [15]



Towards Model-Agnostic Ensemble Explanations 41

measures such as fidelity, consistency and stability were coined, that can be used
for a numerical comparison of methods. In [22] the aforementioned measures
were used to improve overall explanations. In [2] a measure that allows to cap-
ture stability or robustness of explanations was introduced. Another explanation
framework that implements evaluation metrics is given in [21]. Authors present
a local explainer with evaluation metrics: stability and correctness. However in
neither of the above cases the evaluation is used in further context, limiting
their usefulness only to quantify the explanations given by the particular frame-
work. In [23] authors exploit the context of features within a training instance
to improve explanations generated with LIME. In [6] a context of an instance
that is being explained is generated for the purpose of up-sampling and gen-
erating explanations. A more advanced approach was discussed in [17], where
an interactive explanation architecture was presented that allows for interactive
verification and ad-hoc personalization of the explanations.

Further works on exploiting explanation mechanism as a part of ML/DM
workflow include several papers. In [3] authors introduce ExplainExplore sys-
tem which is an interactive explanation system to explore explanations that fit
the subjective preference of data scientists. It leverages the domain knowledge
of the data scientist to find optimal parameter settings and instance perturba-
tions, and enable the discussion of the model and its explanation with domain
experts. However it does not operationalize it into fully automated system, still
relying in core aspect on human-in-the-loop component. Another example of
auditing framework was presented in [12]. The framework is intended to con-
tribute to closing the accountability gap in the development and deployment of
large-scale artificial intelligence systems by including explainability into the pro-
cess of auditing AI systems. Yet, it is more of a methodological approach rather
than an automated system. Approach described in [7] shows a method for com-
bining many local high quality explanations into one, which makes it similar to
the work presented in our work, however the authors method usage is limited
to tree-based models only. More generic approach was presented in [19], where
authors present a Python toolbox that provides functionality for inspecting fair-
ness, accountability and transparency of all aspects of the machine learning pro-
cess: data (and their features), models and predictions. However, this framework
is more focused on inspecting datasets rather than explanations generated for
models trained with the dataset. Furthermore, similarly to other frameworks, it
does not support combining explanations of arbitrary XAI algorithm into one
explanation, nor compare them as long as they do not provide the same expla-
nation format.

Taking into consideration the full landscape of the aforementioned methods
and frameworks and their limitations, the motivation for our work arised. We
aimed at filling in the gap between XAI methods and ML/DM pipeline by pro-
viding a framework that will allow not only to quantify explanations, but also
use this measures to combine explanations into better ones, or to allow for auto-
matic selection of the best model-explainer pair. More specifically, our goal was
to introduce cross-platform solution that is independent of the XAI algorithm,
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under the assumption that it provides measure of importance of features in the
decision process. The following sections provides more detailed description of
our framework.

3 Ensemble Explanation Framework

In this work we focus on three metrics delivered by the InXAI framework1

developed by us. It can be used along with explanation frameworks either to
choose best explanation mechanism that fits project requirements (high stability,
high consistency, etc.), or to generate unified explanations according to specified
objective metric. Although the description of the framework is out of the scope
of this paper, it is worth mentioning the it follow the scikit-learn2 interface,
which allows the XAI methods to be included in the ML/DM pipeline not only
in theoretical, but also practical way.

3.1 Metrics of Explainability

In this paper we focus for simplicity only on three metrics of explainability
implemented in the InXAI framework: consistency, stability and area under the
loss curve.

For the sake of further discussion we assume following notation. The impor-
tance of feature i and instance j delivered by explanation model e for machine
learning model m will be denoted as Φe→m

i,j . If we skip subscripts, we assume
marginal value over missed subscripts. Therefore, a complete explanation matrix
for every feature and every instance generated by explanation e for model m will
be denoted as Φe→m.

Consistency. Consistency measures how explanations generated for predictions
of different ML models are similar to each other. Therefore, it is more related
to stability of ML models with respect to decision making rather than to expla-
nation mechanisms directly. Assuming that M(X) is a set of ML models with
high accuracy, Eq. (1) depicts the consistency measure:

C(Φe→m1 , Φe→m2 , . . . , Φe→mn) =
1

max
a,b∈m1,m2,...,mn

||Φe→ma
j − Φe→mb

j ||2 + 1
(1)

Stability. Stability (or robustness) assures generation of similar explanations for
similar input. To obtain a numerical value to this property, modified notion of
Lipschitz continuity has been proposed in [2]:

L̂(Φe→m,X) = max
xj∈Nε(xi)

||xi − xj ||2
||Φe→m

i − Φe→m
j ||2 + 1

(2)

1 See: https://github.com/sbobek/inxai.
2 See: https://scikit-learn.org.

https://github.com/sbobek/inxai
https://scikit-learn.org
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where Nε(xi) is a set such as:

Nε(xi) = {xj ∈ X|||xi − xj || < ε} (3)

This optimization problem finds parameter describing most differing explana-
tions f(x) for points in a vicinity of xi, dictated by the set Nε(xi) proportional
to the distance between the neighbours.

Area Under the Loss Curve. Area under the loss curve (AUCx) depicts the loss
in accuracy (or other selected metric) when features are perturbed gradually
according to their inverse importance returned by explanation algorithm.

Therefore, if the AUCx is high, it may imply that the importance of the
features was set incorrectly, as perturbation caused large loss in accuracy. The
loss in accuracy is defined as a difference in baseline accuracy obtained by a
non-perturbed dataset and the accuracy obtained from perturbed dataset. In
our work we used the trapezoidal rule to calculate it over set of accuracy losses
for different perturbation rates.

It is worth noting that current version of the framework does only cover XAI
algorithms that provide explanations in a form of feature importance assigned to
particular features. This makes it more difficult to apply the framework to rule-
based systems that does not provide such information out of the box. Currently
we assume binary feature importance for rule-based explainer, meaning that
features that were used for explanation have importance 1, while others features
importance are 0. However, this feature is not yest provided out of the box, and
needs to be programmed by the user.

3.2 Ensemble Score

Calculating ensemble score is not limited to the metrics defined above and can
be easily extended and modified as we will show in Sect. 4. The main goal of ES
score is to capture the weighted importance of different metrics into one value.
The definition of ES for a set of metrics M and weights w, was given in Eq. (4).

ES(M,w) =
∑

wi · Mi (4)

Having the ensemble score, we calculate a new, combined vector of explana-
tion Φens as a weighted sum of ensemble scores and associated with them original
explanations Φe1 , Φe2 , . . . Φen . The weights are assigned arbitrary depending on
the desired influence of a particular metric to the ensemble explanation.

Therefore, the final ensemble explanation is given by the Eq. (5).

Φens =
ES(M,w) · [γ1Φe1 , γ2Φ

e2 , . . . , γnΦen ]∑n
i=1 ESi(M,w)

(5)

Where γ1, γ2, . . . , γn are scaling factors that make it possible to compare
and combine explanations obtained from different XAI frameworks. Note that
classic per-column or per-sample scaling will corrupt the internal dependencies
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between importance and features. Therefore the scaling is performed over the
whole matrix of explanation generated by the same model. In our approach we
used min-max normalization that is given in Eq. (6).

Φ′ =
Φ − min(Φ)

max(Φ) − min(Φ)
(6)

The following plots and results were generated for the dataset presented in
Fig. 1 along with two ML models and their decision boundaries used for calcu-
lating consistency measures.

Fig. 1. Dataset and two classifiers with their decision boundaries used with InXAI
framework for ensemble explanation generation.

The ES can also serve as a confidence measure of the explanation for single
instance, or explanation framework with respect to selected metrics. Based on
this confidence the ensemble explanations are created. Figure 2 presents ES for
LIME and SHAP. The transparency of a data point depicts the uncertainty of
the explanation.

Fig. 2. Confidence of explanations where the maximum weight was put on the consis-
tency metric.
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The metrics for an ensemble explainer built with Eq. (5) and its two compo-
nents (LIME and SHAP) were given in Fig. 3. It is worth noting that the high
value of weight for consistency, improves the consistency measure (upper row)
in the ensemble. The same can be observed with stability (middle row). How-
ever, comparing to SHAP, only some of explanations were improved in terms of
stability, while the overall (global) measure remained intact, or even worsen (see
Sect. 5 for details of this phenomenon). With the maximum weight set on AUCx
metric, we observe the overall reduction in the curve area. However, due to the
fact that both explainers are correct with respect to this measure, the difference
is not that apparent.

Fig. 3. Metrics for the Ensemble explanations generated for sample dataset. The upper
row presents results for weights [0.8, 0.1, 0.1] assigned to consistency, stability and
AUCx metrics. Middle row gives results for weights [0.1, 0.8, 0.1]. Bottom row presents
results for weights [0.1, 0.1, 0.8]. Single point represents metric value of single datapoint
(local), while the global measure can be considered a spread of local values.

In the next section we demonstrate the solution on the example of a system
for emotion classification based on face expressions photographs.
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4 Image Classification Use Case Scenario

A strong advantage of the Ensemble Score defined in Eq. 4 is that, since it is
problem-agnostic, it can accommodate any metric. Similarly, the formula given
by Eq. 5 does not depend on model-specific assumptions. It provides a flexible
foundation for building ensemble explanations involving a variety of methods.
This section shows how this generic framework can be utilized to generate ensem-
ble explanations for the problem of image classification.

Classification of affective images relies on recognizing facial features in pho-
tographs of human subjects. Model-agnostic methods such as SHAP, LIME or
ANCHOR are all capable of explaining predictions related to such images, how-
ever, due to differences in how they operate, their outcomes are not easily com-
parable. We demonstrate that it is possible to find analogies between results
produced by these methods and to integrate them into an ensemble.

A common characteristic of SHAP, LIME or ANCHOR is that all these meth-
ods allow identifying subareas of the image that contribute to a given predic-
tion. To reduce dimensionality of the feature space to a computationally feasible
level, images must be preprocessed by a segmentation algorithm of choice. Effec-
tively, feature importance Φe→m

i,j determines how individual superpixels in the
segmented image contribute to model prediction. Φe→m

j denotes feature impor-
tance vector for explanation e, which consists of as many elements as there are
superpixels for instance j. In this work the SLIC segmentation algorithm was
used as it performed well on the task of isolating facial features in images in our
dataset.

4.1 Metric Definition for Images

Since Eq. 4 allows arbitrary definition of metric set M we introduce an alternative
formulation of stability and consistency for the purpose of this example.

Firstly, we define an auxiliary metric called similarity in Eq. 7, which evalu-
ates how close two explanations are to each other:

Sim(Φe→m
i , Φe→m

j ) = 1 − ||Φe→m
i − Φe→m

j ||1
S

(7)

where S specifies the number of features (image segments). It is assumed that
explanations are mapped to range [0, 1] so as to guarantee similarity to be a
normalized value between 0 and 1. Value of 1 identifies two explanations as
identical, whereas 0 corresponds to no similarity.

Alternative definition of consistency is given by Eq. 8. In this formulation
consistency is to be interpreted as average similarity between assessed explana-
tion Φe→m0 and a set of reference explanations Φe→m1 through Φe→mn obtained
for independently trained ML models.

C(Φe→m0 , Φe→m1 , Φe→m2 , . . . , Φe→mn) =

∑n
k=1 Sim(Φe→m0

j , Φe→mk
j )

n
(8)
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Stability measure can also be defined in terms of similarity between the
assessed explanation Φe→m

i and explanations obtained for perturbed instances
in the vicinity of xi, as given by Eq. 9.

L̂(Φe→m,X) =
∑

xj∈Nε(xi)

Sim(Φe→m
i , Φe→m

j )
|Nε(xi)| (9)

Consistency and stability metrics proposed in this section are fully compat-
ible with Eq. 4. In this example the Ensemble Score was calculated with equal
weights for both consistency and stability.

4.2 Model Assumptions

The image classifier was built on top of a neural embedding network. The core
of the network was based on Inception Resnet V1 model that was adjusted and
fine-tuned for facial expression classification task. Training and computation of
explanations was performed on RGB images of size 160 × 160 pixels. Images were
sourced from a dataset [20] where no explicit label information was provided
for individual instances, because the dataset was designed for triplet learning.
Therefore, the classifier was built on top of labels generated artificially according
to the following procedure instead:

1. Compute embeddings e1, . . . , en for all n instances in the training set.
2. Perform k-means clustering with the number of clusters selected by optimizing

silhouette score.
3. Build a K-NN classifier that maps any given embedding to index of the cluster

that it fits best. For sake of this research K = 200 was used.

Summarizing, cluster indices were used directly as labels for the purpose of
classifying unknown instances.

Note that from the perspective of the ensemble framework demonstrated
further in this work, implementation details of the image classifier are not critical.
However, defining a classifier was necessary to produce explanations with the
underlying methods: SHAP, LIME and ANCHOR. The ensemble approach by
itself can merge any set of explanations, if only they quantify importance of each
feature of every explained instance.

In order to enable calculating consistency multiple models were trained, each
with a different embedding space size and hyperparameter configuration. Due
to these configuration differences, independent classifiers had to be built sepa-
rately for each model. To ensure a fair comparison, cluster number optimization
(according to silhouette score) was conducted only once for a specific reference
model, and assumed equal for all other models. As a result, count of different
class labels the same across all explanation models. To compute stability we
sampled such instances from neighborhood Nε(xi), for which it was known that
the explanation should remain unaltered.

In the next step a selection of instances was chosen from the validation
dataset [20] and fed to SHAP, LIME or ANCHOR frameworks independently.
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Each framework-specific explanation was evaluated in terms of stability, consis-
tency and, most importantly, Ensemble Score.

4.3 Explanation Scaling and Aggregation

Here we demonstrate how independent explanations obtained from SHAP, LIME
and ANCHOR can be combined into one ensemble explanation.

SHAP and LIME feature importance attributed to each superpixel is a real
number. On the other hand, ANCHOR determines which image segments have
crucial contribution towards a specific model prediction; that is, were they not
part of the image, the prediction would have been different. ANCHOR explana-
tions can be seen as a vector of binary values, where 1 is assigned to the crucial
features and 0 corresponds to features that have no impact on prediction.

To enable aggregation of results originating from different XAI frameworks,
explanations need to be scaled. Recommended choice of scaling factor for expla-
nations generated by k-th model is given by Eq. 10.

γk =
1

||Φe→k||max
(10)

As a consequence, it is guaranteed that – independently of the XAI framework –
scaled feature importance values fit in a normalized range [−1,+1] and that fea-
ture with the strongest contribution is assigned importance of ±1. Sign depends
on whether the maximum contribution is positive or negative.

Inserting the original explanations, their Ensemble Scores and scaling coeffi-
cients γ into Eq. 5 yields the final ensemble explanation.

4.4 Results

We present example results obtained according to the framework described in
this work. Figure 4 provides ensemble explanations for an array of facial images
picked randomly from the validation dataset [20]. Visualization is based on a
color mapping, where color intensity corresponds to importance of specific image
features. Green-colored areas have a positive contribution towards particular
explained label, and red overlay signifies negative contribution.

Fig. 4. Example ensemble explanations for facial expression images

Resulting ensemble explanations are visually appealing combinations of sev-
eral underlying XAI approaches. Note that positive contributions are generally
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dominating, which is partly due to the fact that ANCHOR never attributes
negative contribution to features.

Ability to utilize strengths of multiple explanation models simultaneously
is the primary advantage of the presented approach. We found that, in mul-
tiple cases, facial features captured by the ensemble explanations remained in
stronger agreement with human intuition than in underlying explanation meth-
ods assessed individually. Probably this is because feature importance in ensem-
ble explanations was derived as a weighted average of respective feature impor-
tance values in the underlying methods according to Eq. 5. Therefore potential
errors in importance values might be canceled out by aggregating multiple partial
solutions. The risk that the ensemble overestimates or underestimates contribu-
tion of a feature is lower than in case of any individual underlying explanation
model.

On the other hand, values of stability, consistency and Ensemble Score
obtained in our study were characterized with relatively low variance across
example images considered in this research. A presumable root cause is that
image areas where feature importance was close to zero (neutral impact on pre-
diction) were usually much larger than areas where feature contribution was
strongest. It is a desired characteristic because it makes explanations more spe-
cific and understandable, i.e. focused on critical features. However, the downside
was that the similarity measure between two explanations was influenced pre-
dominantly by neutral areas, resulting in low variance of the similarity measure,
on which stability, consistency and ensemble score are built. To alleviate this
issue, alternative, more sensitive formulations of the similarity measure are also
possible and can easily be used as a drop-in replacement in Eq. 8 and Eq. 9.

Another point is that quantifying stability, consistency and Ensemble Score
allowed objective validation of the explanation model used in our research. Since
each metric takes into account a different set of factors, using a combination of
such metrics made the validation process more robust. For example, note that
a faulty model might also yield high-stability explanations, although it is less
likely to produce high-consistency results.

In conclusion, it was shown that the approach introduced in this work suc-
cessfully unifies various XAI frameworks that were not initially designed with
compatibility on mind. It is also inherently possible to extend this approach on
methods other than SHAP, LIME or ANCHOR. The proposed framework has
high potential to be used in automated assessment and comparison of different
explanation models according to a set of well-defined objective measures. How-
ever, to fully utilize the automation potential, there is a need for comprehensive
tests to confirm that ensemble explanation visualizations are consistent with
human perception.

5 Summary and Future Works

The methods of Explainable Artificial Intelligence methods form a large port-
folio of versatile frameworks and algorithms providing insights into the decision
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process of an AI system. However, their underlying mechanisms may be very
different. Thus it may result in very different explanations for the same tasks.
In this paper, we presented an original approach that aims at combining sev-
eral XAI algorithms into one ensemble explanation mechanism via quantitative,
automated evaluation framework. We focused on model-agnostic explainers to
provide most robustness. We provided an illustrative demonstration of our app-
roach on image classification task.

Weights such as stability works in most of the cases only locally and can be
used to weight single instance explanation. This means that combining several
explanations with high stability does not assure the resulting ensemble will also
have the high stability, as the neighbourhood of explanations was altered. We
plan to use SMAC [5] or similar Bayesian optimizer to optimize explanations
with respect to the selected metric in a way that they will be optimized globally.

We also plan to conduct observational studies with domain experts and real-
life use-cases to validate the feasibility of our solution. Finally we will be evalu-
ating this approach on different datasets, including industrial ones.

Acknowledgements. The paper is funded from the XPM project funded by
the National Science Centre, Poland under CHIST-ERA programme (NCN UMO-
2020/02/Y/ST6/00070).
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