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Abstract. The problem of fitting multidimensional reduced data Mn

is discussed here. The unknown interpolation knots T are replaced by
optimal knots which minimize a highly non-linear multivariable function
J0. The numerical scheme called Leap-Frog Algorithm is used to compute
such optimal knots for J0 via the iterative procedure based in each step
on single variable optimization of J (k,i)

0 . The discussion on conditions

enforcing unimodality of each J (k,i)
0 is also supplemented by illustrative

examples both referring to the generic case of Leap-Frog. The latter forms
a new insight on fitting reduced data and modelling interpolants of Mn.
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1 Introduction

In this work the problem of interpolating n points Mn = {xi}n
i=0 in arbitrary

Euclidean space E
m is addressed. The corresponding knots T = {ti}n−1

i=1 are
assumed to be unknown. The class of fitting functions (curves) I considered in
this paper represents piecewise C2 curves γ : [0, T ] → E

m satisfying γ(ti) = qi

and γ̈(t0) = γ̈(T ) = 0. It is also assumed that γ ∈ I is at least of class C1 over
Tint = {ti}n−1

i=1 and extends to C2([ti, ti+1]). Additionally, the unknown internal
knots Tint are allowed to vary subject to ti < ti+1, for i = 0, 1, . . . , n−1 (here t0 =
0 and tn = T ). Such knots are called admissible and choosing them according to
some adopted criterion permits to control and model the trajectory of γ. One of
such criterion might focus on minimizing “average squared norm acceleration”
of γ. In fact, for a given choice of fixed knots T , the task of minimizing

JT (γ) =
n−1∑

i=0

∫ ti+1

ti

‖γ̈(t)‖2dt , (1)

(over I) yields a unique optimal curve γopt ∈ I forming a natural cubic spline
γNS - see [1] or [8]. Consequently, letting the internal knots Tint change, mini-
mizing JT over I reduces to searching for an optimal natural spline γNS with
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Tint treated as free variables. Thus by [1], having recalled that γNS is uniquely
determined by T , minimizing JT amounts to optimizing a highly non-linear
function J0 in n − 1 variables Tint satisfying ti < ti+1 (see [3]). Due to the high
non-linearity of J0 the majority of numerical schemes applied to optimize J0 lead
to numerical difficulties (see e.g. [3]). Similarly, the analysis of critical points of
J0 forms a complicated task. To alleviate the latter, a Leap-Frog can be applied
to deal with J0 - see [2] or [3]. This scheme minimizes J0 with iterative sequence
of single variable overlapping optimizations of J

(k,i)
0 subject to ti < ti+1.

The novelty of this work refers to the generic case of Leap-Frog (recursively
applied over each internal snapshots). The analysis establishing sufficient condi-
tions for unimodality of J

(k,i)
0 is conducted here. Numerical tests and illustrative

examples supplement the latter. The discussion covers first a special case of data
(see Sect. 4) extended next to its perturbation (see Sect. 5 and Theorem 1). More
information on numerical performance of Leap-Frog and comparison tests with
two standard numerical optimization schemes can be found in [2,3] or recently
published [6]. Some applications of Leap-Frog optimization scheme used also as
a modelling and simulation tool are discussed in [9,10] or [11].

2 Preliminaries

Recall (see [1]) that a cubic spline interpolant γCi

T = γC
T |[ti,ti+1], for given admis-

sible knots T = (t0, t1, . . . , tn−1, tn) is defined as γCi

T (t) = c1,i + c2,i(t − ti) +
c3,i(t − ti)2 + c4,i(t − ti)3, (for t ∈ [ti, ti+2]) to satisfy (for i = 0, 1, 2, . . . , n − 1;
cj,i ∈ R

m, where j = 1, 2, 3, 4) γCi

T (ti+k) = xi+k and γ̇Ci

T (ti+k) = vi+k, for
k = 0, 1 with the velocities v0, v1, . . . , vn−1, vn ∈ R

m assumed to be temporarily
free parameters (if unknown). The coefficients cj,i read (with Δti = ti+1 − ti):

c1,i = xi, c2,i = vi ,

c4,i =
vi + vi+1 − 2xi+1−xi

Δti

(Δti)2
, c3,i =

(xi+1−xi)
Δti

− vi

Δti
− c4,iΔti . (2)

The latter follows from Newton’s divided differences formula (see e.g. [1,
Chap. 1]). Adding n − 1 constraints γ̈

Ci−1
T (ti) = γ̈Ci

T (ti) for continuity of γ̈C
T

at x1, . . . , xn−1 (with i = 1, 2, . . . , n − 1) leads by (2) (for γCi

T ) to the m tridi-
agonal linear systems (strictly diagonally dominant) of n − 1 equations in n + 1
vector unknowns representing velocities at M i.e. v0, v1, v2, . . . , vn−1, vn ∈ R

m:

vi−1Δti + 2vi(Δti−1 + Δti) + vi+1Δti−1 = bi ,

bi = 3(Δti
xi − xi−1

Δti−1
+ Δti−1

xi+1 − xi

Δti
) . (3)

(i) Both v0 and vn (if unknown) can be e.g. calculated from a0 = γ̈C
T (0) = an =

γ̈C
T (Tc) = 0 combined with (2) (this yields a natural cubic spline interpolant γNS

T
- a special γC

T ) which supplements (3) with two missing vector linear equations:
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2v0 + v1 = 3
x1 − x0

Δt0
, vn−1 + 2vn = 3

xn − xn−1

Δtn−1
. (4)

The resulting m linear systems, each of size (n + 1) × (n + 1), (based on
(3) and (4)) as strictly row diagonally dominant result in one vector solution
v0, v1, . . . , vn−1, vn (solved e.g. by Gauss elimination without pivoting - see [1,
Chap. 4]), which when fed into (2) determines explicitly a natural cubic spline
γNS

T (with fixed T ). A similar approach follows for arbitrary a0 and an.
(ii) If both v0 and vn are given then the so-called complete spline γCS

T can be
found with v1, . . . vn−1 determined solely by (3).
(iii) If one of v0 or vn is unknown it can be compensated by setting the respective
terminal acceleration e.g. to 0. The above scheme relies on solving (3) with one
equation from (4). Such splines are denoted here by γvn

T or γv0
T . Two non-generic

cases of Leap-Frog optimizations deal with the latter - omitted in this paper.
By (1) JT (γNS

T ) = 4
∑n−1

i=0 (‖c3,i‖2Δti + 3‖c4,i‖2(Δti)3 + 3〈c3,i|c4,i〉(Δti)2) ,
which ultimately reformulates into (see [2]):

JT (γNS
T ) = 4

n−1∑

i=0

( −1
(Δti)3

(−3‖xi+1 − xi‖2 + 3〈vi + vi+1|xi+1 − xi〉Δti

−(‖vi‖2 + ‖vi+1‖2 + 〈vi|vi+1〉)(Δti)2
)

. (5)

As mentioned before for fixed knots T , the natural spline γNS
T minimizes

(1) (see [1]). Thus upon relaxing the internal knots Tint the original infinite
dimensional optimization (1) reduces to finding the corresponding optimal knots
(topt

1 , topt
2 , . . . , topt

n−1) for (5) (viewed from now on as a multivariable function
J0(t1, t2, . . . , tn−1)) subject to t0 = 0 < topt

1 < topt
2 < · · · < topt

n−1 < tn = T .
Such reformulated non-linear optimization task (5) transformed into minimizing
J0(Tint) (here t0 = 0 and tn = T ) forms a difficult task for critical points exam-
ination as well as for the numerical computations. The analysis addressing the
non-linearity of J0 and comparisons between different numerical methods used
to optimize J0 are discussed in [2,3] or [6]. One of the computationally feasible
schemes handling (5) turns out to be a Leap-Frog (for its 2D analogue for image
noise removal see also [11] or in other contexts see e.g. [9] or [10]). For optimizing
J0 this scheme is based on the sequence of single variable iterative optimization
which in k-th iteration minimizes:

J
(k,i)
0 (s) =

∫ tk−1
i+1

tki−1

‖γ̈CS
k,i (s)‖2ds (6)

over Ik−1
i = [tki−1, t

k−1
i+1 ]. Here ti is set to be a free variable si. The complete spline

γCS
k,i : Ik−1

i → E
m is determined by {tki−1, s, t

k−1
i+1 }, both velocities {vk

i−1, v
k−1
i+1 }

and the interpolation points {xi−1, xi, xi+1}. Once sopt
i is found one updates tk−1

i

with tki = sopt
i and vk−1

i with the vk
i = γ̇CS

k,i (sopt
i ). Next we pass to the shifted

overlapped sub-interval Ik
i+1 = [tki , tk−1

i+2 ] and repeat the previous step of updating
tk−1
i+1 . Note that both cases [0, tk−1

2 ] and [tk−1
n−2, T ] rely on splines discussed in (iii),



340 R. Kozera et al.

where the vanishing acceleration replaces one of the velocities vk−1
0 or vk−1

n . Once
tk−1
n−1 is changed over the last sub-interval Ik−1

n−1 = [tkn−2, T ] the k-th iteration
is terminated and the next local optimization over Ik

1 = [0, tk2 ] represents the
beginning of the (k + 1)-st iteration of Leap-Frog Algorithm. The initialization
of Tint for Leap-Frog can follow normalized cumulative chord parameterization
(see e.g. [8]) which sets t00 = 0, t01, . . . , t

k
n−1, t

0
n = T according to t00 = 0 and

t0i+1 = ‖xi+1 − xi‖T
T̂

+ t0i , for i = 0, 1, . . . , n − 1 and T̂ =
∑n−1

i=0 ‖xi+1 − xi‖.

3 Generic Middle Case: Initial and Last Velocities Given

Assume that for internal points xi, xi+1, xi+2 ∈ E
m (for i = 1, 2, . . . , n − 3 and

n > 3) the interpolation knots ti and ti+2 with the velocities vi, vi+2 ∈ R
m

are somehow given (e.g. by previous Leap-Frog iteration outlined in Sect. 2). We
construct now a C2 piecewise cubic (a complete spline - see Sect. 2), depending
on varying ti+1 ∈ (ti, ti+2) (temporarily free variable). The curve γc

i : [ti, ti+2] →
E

m (i.e. a cubic on each [ti, ti+1] and [ti+1, ti+2]) satisfies:

γc
i (ti+j) = xi+j , j = 0, 1, 2 ; γ̇c

i (ti+j) = vi+j , j = 0, 2 . (7)

Letting φi : [ti, ti+2] → [0, 1], φi(t) = (t − ti)(ti+2 − ti)−1 = s the curve γ̃c
i :

[0, 1] → E
m (with γ̃c

i = γc
i ◦ φ−1

i ) by (7) satisfies, for 0 < si+1 = φi(ti+1) < 1:

γ̃c
i (0) = xi , γ̃c

i (si+1) = xi+1 , γ̃c
i (1) = xi+2 , (8)

with the adjusted initial and the last velocities ṽi, ṽi+2 ∈ R
m fulfilling:

ṽi = γ̃c′
i (0) = (ti+2 − ti)vi , ṽi+2 = γ̃c′

i (1) = (ti+2 − ti)vi+2 . (9)

To reformulate Ẽi define two cubics γ̃lc
i , γ̃rc

i satisfying (with si+1 ∈ (0, 1))
γ̃c

i = γ̃lc
i (over [0, si+1]) and γ̃c

i = γ̃rc
i (over [si+1, 1]) with cij , dij ∈ E

m:

γ̃lc
i (s) = ci0 + ci1(s − si+1) + ci2(s − si+1)2 + ci3(s − si+1)3 ,

γ̃rc
i (s) = di0 + di1(s − si+1) + di2(s − si+1)2 + di3(s − si+1)3 . (10)

Since γ̃c
i is a complete spline the following constraints hold:

γ̃lc
i (0) = xi , γ̃lc

i (si+1) = γ̃rc
i (si+1) = xi+1 , γ̃rc

i (1) = xi+2 , (11)

γ̃lc′
i (0) = ṽi , γ̃rc′

i (1) = ṽi+2 , (12)

together with two C1 and C2 smoothness constraints at s = si+1:

γ̃lc′
i (si+1) = γ̃rc′

i (si+1) , γ̃lc′′
i (si+1) = γ̃rc′′

i (si+1) . (13)

Upon shifting the coordinates origin in E
m to xi+1 we have for x̃i+1 = 0, x̃i =

xi − xi+1 and x̃i+2 = xi+2 − xi+1 (by (11)):

γ̃lc
i (0) = x̃i , γ̃lc

i (si+1) = γ̃rc
i (si+1) = 0 , γ̃rc

i (1) = x̃i+2 . (14)
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Both (10) and xi+1 = 0 yield ci0 = di0 = 0. Next (13) with γ̃lc′
i (s) = ci1 +

2ci2(s − si+1) + 3ci3(s − si+1)2, γ̃rc′
i (s) = di1 + 2di2(s − si+1) + 3di3(s − si+1)2,

γ̃lc′′
i (s) = 2ci2 + 6ci3(s − si+1) and γ̃lr′′

i (s) = 2di2 + 6di3(s − si+1), leads to
ci1 = di1 and ci2 = di2. Hence one obtains:

γ̃lc
i (s) = ci1(s − si+1) + ci2(s − si+1)2 + ci3(s − si+1)3 ,

γ̃rc
i (s) = ci1(s − si+1) + ci2(s − si+1)2 + di3(s − si+1)3 . (15)

The unknown vectors ci1, ci2, ci3, di3 in (15) follow from four linear vector equa-
tions obtained from (12) and (14) (i.e. with data M̃i = {x̃i, x̃i+2, ṽi, ṽi+2}):

x̃i = −ci1si+1 + ci2s
2
i+1 − ci3s

3
i+1 ,

x̃i+2 = ci1(1 − si+1) + ci2(1 − si+1)2 + di3(1 − si+1)3 ,

ṽi = ci1 − 2ci2si+1 + 3ci3s
2
i+1 ,

ṽi+2 = ci1 + 2ci2(1 − si+1) + 3di3(1 − si+1)2 . (16)

Applying Mathematica Solve to (16) yields:

ci1 = −
−si+1ṽi + 2s2i+1ṽi − s3i+1ṽi − s2i+1ṽi+2 + s3i+1ṽi+2 − 3x̃i + 6si+1x̃i

2(si+1 − 1)si+1

−
−3s2i+1x̃i + 3s2i+1x̃i+2

2(si+1 − 1)si+1
,

ci2 = −
si+1ṽi − s2i+1ṽi − si+1ṽi+2 + s2i+1ṽi+2 + 3x̃i − 3si+1x̃i + 3si+1x̃i+2

(si+1 − 1)si+1
,

ci3 = −
si+1(ṽi + 2x̃i) − s3i+1(ṽi − ṽi+2) − s2i+1(ṽi+2 + 3x̃i − 3x̃i+2) + x̃i

2(si+1 − 1)s3i+1

,

di3 = −
−si+1ṽi + 2s2i+1ṽi − s3i+1ṽi + 2si+1ṽi+2 − 3s2i+1ṽi+2 + s3i+1ṽi+2 − 3x̃i

2(si+1 − 1)3si+1

−
6si+1x̃i − 3s2i+1x̃i − 4si+1x̃i+2 + 3s2i+1x̃i+2

2(si+1 − 1)3si+1
, (17)

which satisfy (as functions in si+1) the system (16). Next, since ‖γlc′′
i (s)‖2 =

4‖ci2‖2 + 24〈ci2|ci3〉(s − si+1) + 36‖ci3‖2(s − si+1)2 and ‖γrc′′
i (s)‖2 = 4‖ci2‖2 +

24〈ci2|di3〉(s − si+1) + 36‖di3‖2(s − si+1)2 the formula for Ẽi reads as

Ẽi(si+1) =
∫ si+1

0

‖γlc′′
i (s)‖2ds +

∫ 1

si+1

‖γrc′′
i (s)‖2ds = I1 + I2,

where I1 = 4(‖ci2‖2si+1 − 3〈ci2|ci3〉s2i+1 + 3‖ci3‖2s3i+1) and I2 = 4(‖ci2‖2(1 −
si+1)+3〈ci2|di3〉(1−si+1)2+3‖di3‖2(1−si+1)3). Combining the latter with (17)
(upon applying NIntegrate and FullSimplify from Mathematica) yields:
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Ẽi(si+1) =

1

s3i+1(si+1 − 1)3
(3‖x̃i‖2(si+1 − 1)3(1 + 3si+1) + si+1(−6〈ṽi|x̃i〉

+si+1(‖ṽi+2‖2(si+1 − 4)(si+1 − 1)2si+1 + 3‖x̃i+2‖2si+1(3si+1 − 4)

+‖ṽi‖2(si+1 − 1)3(si+1 + 3) − 2(si+1 − 1)3si+1〈ṽi|ṽi+2〉
+6(2 + (si+1 − 2)s2i+1)〈ṽi|x̃i〉 − 6(si+1 − 1)2si+1〈ṽi|x̃i+2〉 − 6(si+1 − 1)3〈ṽi+2|x̃i〉
+6(si+1 − 2)(si+1 − 1)si+1〈ṽi+2|x̃i+2〉 − 18(si+1 − 1)2〈x̃i|x̃i+2〉))) . (18)

Upon substituting for x̃i+2 = xi+2−xi+1 and x̃i = xi −xi+1 one can reformulate
(18) (and thus (19)) in terms of each data xi, xi+1, xi+2 ∈ E

m. Mathematica
symbolic differentiation and FullSimplify applied to Ẽi yields:

Ẽ ′
i(si+1) =

−3
(si+1 − 1)4s4i+1

(3‖x̃i‖2(si+1 − 1)4(1 + 2si+1) + si+1(‖ṽi‖2(si+1 − 1)4si+1

−‖ṽi+2‖2(si+1 − 1)2s3i+1 + 3‖x̃i+2‖2s3i+1(2si+1 − 3)
+2(si+1 − 1)4(2 + si+1)〈ṽi|x̃i〉 − 2(si+1 − 1)2s3i+1〈ṽi|x̃i+2〉
−2(si+1 − 1)4si+1〈ṽi+2|x̃i〉 + 2(si+1 − 3)(si+1 − 1)s3i+1〈ṽi+2|x̃i+2〉
−6(si+1 − 1)2si+1(2si+1 − 1)〈x̃i|x̃i+2〉)) . (19)

By (19) Ẽ ′
i(si+1) = (−1/((si+1 − 1)4s4i+1))Ni(si+1), where Ni(si+1) is a polyno-

mial of degree 6 (use here e.g. Mathematica functions Factor and CoefficientList)
Ni(si+1) = bi

0 + bi
1si+1 + bi

2s
2
i+1 + bi

3s
3
i+1 + bi

4s
4
i+1 + bi

5s
5
i+1 + bi

6s
6
i+1, where

bi
0

3
= 3‖x̃i‖2 ,

bi
1

3
= −6‖x̃i‖2 + 4〈ṽi|x̃i〉 ,

bi
2

3
= ‖ṽi‖2 − 6‖x̃i‖2 − 14〈ṽi|x̃i〉 − 2〈ṽi+2|x̃i〉 + 6〈x̃i|x̃i+2〉 ,

bi
3

3
= −4‖ṽi‖2 + 24‖x̃i‖2 + 16〈ṽi|x̃i〉 + 8〈ṽi+2|x̃i〉 − 24〈x̃i|x̃i+2〉 ,

bi
4

3
= 6‖ṽi‖2 − ‖ṽi+2‖2 − 21‖x̃i‖2 − 9‖x̃i+2‖2 − 4〈ṽi|x̃i〉 − 2〈ṽi|x̃i+2〉

−12〈ṽi+2|x̃i〉 + 6〈ṽi+2|x̃i+2〉 + 30〈x̃i|xi+2〉 ,

bi
5

3
= −4‖ṽi‖2 + 2‖ṽi+2‖2 + 6‖x̃i‖2 + 6‖x̃i+2‖2 − 4〈ṽi|x̃i〉 + 4〈ṽi|x̃i+2〉〉

+8〈ṽi+2|x̃i〉 − 8〈ṽi+2|x̃i+2〉 − 12〈x̃i|x̃i+2〉 ,

bi
6

3
= ‖ṽi‖2 − ‖ṽi+2‖2 + 2〈ṽi|x̃i〉 − 2〈ṽi|x̃i+2〉 − 2〈ṽi+2|x̃i〉 + 2〈ṽi+2|x̃i+2〉 .

In a search for a global optimum of Ẽi, instead of using any optimization scheme
relying on initial guess, one can apply Mathematica Solve which finds all roots
(real and complex). Indeed upon computing the roots of Ni(si+1) one selects
only these from (0, 1). Next we evaluate Ẽi on each critical point scrit

i+1 ∈ (0, 1)
and choose scrit

i+1 with minimal energy as optimal. This feature is particularly
useful in implementation of Leap-Frog as opposed to the optimization of the
initial energy (5) depending on n − 1 unknown knots.
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4 Special Conditions for Leap-Frog Generic Case

Assume x̃i, x̃i+1, x̃i+2 ∈ E
m with ṽi, ṽi+2 ∈ R

m satisfy now the extra constraints:

ṽi = ṽi+2 , x̃i+2 − x̃i = ṽi = ṽi+2 . (20)

By (20) we get ‖ṽi+2‖2 = ‖ṽi‖2 = 〈ṽi|ṽi+2〉 = ‖x̃i+2‖2 + ‖x̃i‖2 − 2〈x̃i|x̃i+2〉,
〈x̃i|ṽi〉 = 〈x̃i|ṽi+2〉 = 〈x̃i|x̃i+2〉 − ‖x̃i‖2 and 〈x̃i+2|ṽi〉 = 〈x̃i+2|ṽi+2〉 = ‖x̃i+2‖2 −
〈x̃i|x̃i+2〉. Substituting the above into (19) (or into Ẽc

i ) yields Ẽc
i (si+1) =

−3(‖x̃i‖2(si+1 − 1)2 + si+1(‖x̃i+2‖2si+1 − 2(si+1 − 1)〈x̃i|x̃i+2〉))
(si+1 − 1)3s3i+1

(21)

and hence Ẽc′
i (si+1) =

3
(si+1 − 1)4s4i+1

(‖x̃i‖2(si+1 − 1)2(4si+1 − 3)

+si+1(‖x̃i+2‖2si+1(4si+1 − 1) − 4(1 − 3si+1 + 2s2i+1)〈x̃i|x̃i+2〉)) . (22)

The numerator of (22) forms now a polynomial of degree 3 (instead of degree 6
as in (19)) N c

i (si+1) = bic
0 + bic

1 si+1 + bic
2 s2i+1 + bic

3 s3i+1, where:

bic
0

3
= −3‖x̃i‖2 < 0 ,

bic
1

3
= 2(5‖x̃i‖2 − 2〈x̃i|x̃i+2〉) ,

bic
2

3
= −11‖x̃i‖2 − ‖x̃i+2‖2 + 12〈x̃i|x̃i+2〉 = 5(‖x̃i+2‖2 − ‖x̃i‖2) − 6‖x̃i+2 − x̃i‖2 ,

bic
3

3
= 4‖x̃i‖2 + 4‖x̃i+2‖2 − 8〈x̃i|x̃i+2〉 = 4‖x̃i+2 − x̃i‖2 ≥ 0 .

For Ẽc
i to be unimodal over (0, 1) one needs N c

i (si+1) with a single root in (0, 1).
(i) Note that if x̃i+2 = x̃i then N c

i (si+1) = −9‖x̃i‖2 + 18si+1‖x̃i‖2 has exactly
one root ŝi+1 = 1/2 ∈ (0, 1). By (20) we have ṽi+2 = ṽi = 0.
(ii) We assume now that x̃i+2 	= x̃i then N c

i (si+1) becomes a cubic. We find now
the conditions for which N c

i has exactly one root over (0, 1). For the latter as
N c

i (0) = −9‖x̃i‖2 < 0 and N c
i (1) = 9‖x̃i+2‖2 > 0 by Intermediate Value Th. it

suffices to show that either N c′
i (si+1) = cic

0 + cic
1 si+1 + cic

2 s2i+1 > 0 (over (0, 1))
or that the derivative N c′

i has exactly one root ûi+1 ∈ (0, 1) (i.e. N c
i has exactly

one max/min/saddle at ûi+1) and thus N c
i (si+1) = 0 yields exactly single root

ŝi+1 ∈ (0, 1) - note that if ŝi+1 = ûi+1 then ûi+1 is a saddle point of N c
i . Here a

quadratic N c′
i (si+1) (as x̃i+2 	= x̃i) has coefficients (cic

0 /6) = 5‖x̃i‖2 −2〈x̃i|x̃i+2〉,
(cic

1 /6) = 5(‖x̃i+2‖2 − ‖x̃i‖2) − 6‖x̃i+2 − x̃i‖2, and (cic
2 /6) = 6‖x̃i+2 − x̃i‖2 > 0.

The discriminant Δ̃ of the quadratic N c′
i (si+1)/6 reads as:

Δ̃ = ‖x̃i+2‖4 + ‖x̃i‖4 − 98‖x̃i+2‖2‖x̃i‖2 + 24〈x̃i|x̃i+2〉‖x̃i+2 + x̃i‖2 . (23)

Define now two auxiliary parameters (λ, μ) ∈ Ω = (R+ × [−1, 1]) \ {(1, 1)}:

‖x̃i‖ = λ‖x̃i+2‖ , 〈x̃i|x̃i+2〉 = μ‖x̃i‖‖x̃i+2‖ . (24)
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Here μ stands for cos(α), where α is the angle between vectors x̃i and x̃i+2 -
hence μ = λ = 1 is excluded as then x̃i+2 = x̃i. Note, however that as analyzed
in case (i) when x̃i+2 = x̃i there is only one optimal parameter ŝi+1 = 1/2
- thus (μ, λ) = (1, 1) is also admissible. We examine various constraints on
(μ, λ) 	= (1, 1) (with λ > 0 and −1 ≤ μ ≤ 1) for the existence of either no roots
or one root of N c′

i = 0 over [0, 1] (yielding single critical point of Ẽc
i over (0, 1)).

1. Δ̃ < 0. Since cic
2 > 0, clearly the following N c′

i > 0 holds over (0, 1).
Substituting (24) into (23) yields (for Δ = (Δ̃/‖x̃i+2‖4)) Δ(λ, μ) = λ4+24μλ3+
(48μ2 − 98)λ2 + 24μλ + 1. In order to decompose Ω into sub-regions Ω− (with
Δ < 0), Ω+ (with Δ > 0) and Γ0 (with Δ ≡ 0) we resort to Mathematica
functions InequalityPlot, ImplicitPlot and Solve. Figure 1(a) shows the resulting
decomposition and Fig. 1(b) shows its magnification for λ small. The intersection
points of Γ0 and boundary ∂Ω (found by Solve) read: for μ = 1 it is a point (1, 1)
(already excluded - see dotted point in Fig. 1) and for μ = −1 we have two points
(−1, (1/(13 + 2

√
42))) ≈ (−1, 0.0385186) or (−1, 13 + 2

√
42) ≈ (−1, 25.9615).
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Fig. 1. Decomposition of Ω into sub-regions: (a) over which Δ > 0 (i.e. Ω+), Δ = 0
(i.e. Γ0) or Δ < 0 (i.e. Ω−), (b) only for λ small.

The admissible subset Ωok ⊂ Ω of parameters (μ, λ) (for which there is one
local minimum of Ẽc

i ) satisfies Ω− ⊂ Ωok. The set to Ω \ Ω− is a potential
exclusion zone Ωex ⊂ Ω \ Ω−. Next we shrink an exclusion zone Ωex ⊂ Ω
(subset of shaded region in Fig. 1).

2. Δ̃ = 0. There is only one root û0
i+1 ∈ R for N c′

i (si+1) = 0. As explained,
irrespectively whether û0

i+1 ∈ (0, 1) or û0
i+1 /∈ (0, 1) this results in exactly one

root ŝi+1 ∈ (0, 1) of N c
i (si+1) = 0, which in turn yields exactly one local (thus

one global) minimum for Ẽc
i . Hence Ω− ∪ Γ0 ⊂ Ωok.

3. Δ̃ > 0. There are two different roots û±
i+1 ∈ R of N c′

i (si+1) = 0. Note that
since cic

2 > 0 we have û−
i+1 < û+

i+1. They are either (in all cases we use Vieta’s
formulas):

(a) of opposite signs: i.e. (cic
0 /cic

2 ) < 0 or
(b) non-positive: i.e. (cic

0 /cic
2 ) ≥ 0 and (−cic

1 /cic
2 ) < 0 (as û−

i+1 < û+
i+1) or
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(c) non-negative: i.e. (cic
0 /cic

2 ) ≥ 0 and (−cic
1 /cic

2 ) > 0 - split into:
(c1) û+

i+1 ≥ 1: i.e.
(c2) 0 < û+

i+1 < 1 (as here û−
i+1 < û+

i+1).
Evidently for a), b) and c1) there is up to one root ûi+1 ∈ (0, 1) of

N c′
i (si+1) = 0. Therefore as already explained there is only one root ŝi+1 ∈ (0, 1)

of N c
i (si+1) = 0, which is the unique critical point of Ẽc

i over (0, 1). We show
now that the inequalities from a) or b) or c) extend (contract) the admissible
(exclusion) zone Ωok (Ωex) of parameters (μ, λ) ∈ Ω. Indeed:

a) the constraint (cic
0 /cic

2 ) < 0 upon using (24) reads (as λ > 0):

5λ2 − 2μλ < 0 ≡ λ <
2μ

5
. (25)

Figure 2 a) shows Ω1 (over which (25) holds) cut out from the exclusion zone
Ωex of parameters (μ, λ) ∈ Ω (again InequalityPlot is used here).

)b()a(

Fig. 2. Extension of admissible zone Ωok by cutting out from Ωex: (a) Ω1, (b) Ω2.

Thus Ω− ∪ Γ0 ∪ Ω1 ⊂ Ωok. The intersection Γ1 ∩ ∂Ω = {(0, 0), (1, 0.4)}
(here Γ1 = {(μ, λ) ∈ Ω : 5λ − 2μ = 0}). Similarly the intersection Γ0 ∩ Γ1 =
{(5/(2

√
19), 1/

√
19)} ≈ (0.573539, 0.229416) = p1.

b) the constraints (cic
0 /cic

2 ) ≥ 0 and (−cic
1 /cic

2 ) < 0 combined with (24) yield:

λ ≥ 2μ

5
and 11λ2 − 12μλ + 1 < 0 . (26)

Using ImplicitPlot and InequalityPlot we find Ω2 (cut out from Ωex) as the
intersection of three sets defined by (26) and Δ > 0 (for Ω2 see Fig. 2 a–b)).
Thus Ω− ∪ Γ0 ∪ Ω1 ∪ Ω2 ⊂ Ωok (see Fig. 2 b)). Note that for Γ2 = {(μ, λ) ∈ Ω :
11λ2 − 12μλ + 1 = 0} the sets Γ0 ∩ Γ2 = {(5/(2

√
19), 1/

√
19), (1, 1)}, Γ1 ∩ Γ2 =

{(5/(2
√

19), 1/
√

19)}}, and intersection of Γ2 with the boundary μ = 1 yields
{(1, 1), (1, 1/11)}} (use e.g. Solve in Mathematica).

c1) (cic
0 /cic

2 ) ≥ 0, (−cic
1 /cic

2 ) > 0 and u+
i+1 ≥ 1 with (24) yield

λ ≥ 2μ

5
, 11λ2 − 12μλ + 1 > 0 ,

√
Δ ≥ λ2 − 12μλ + 11 . (27)
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)b()a(

Fig. 3. Extension of admissible zone Ωok by cutting out from Ωex: (a) Ω3, (b) Ω4.

The last inequality in (27) is clearly satisfied for λ2 − 12μλ + 11 < 0.
This holds over Ω5 = Ω3 ∪ Ω4 ∪ Γ 3

0 which is the domain bounded by Γ3 =
{(μ, λ) ∈ Ω : λ2 − 12μλ + 11 = 0} and the boundary μ = 1 (see Fig. 3 a)).
Here Γ3 ∩ ∂Ω = {(1, 1), (1, 11)} and Γ3 ∩ Γ0 = {(1, 1), (5/(2

√
19),

√
19)} ≈

{(1, 1), (0.573539, 4.3589)} - again we resort here to InequalityPlot, Implicit-
Plot and Solve functions in Mathematica. Intersecting Ω5 with three subsets
defined by the first two inequalities from (27) and Δ > 0 yields cutting Ω3

from the exclusion zone Ωex (see Fig. 3 a)), where Ω3 is bounded by Γ 3
0 ,

undashed Γ3 and the boundary μ = 1. Thus Ω− ∪ Γ0 ∪ Ω1 ∪ Ω2 ∪ Ω3 ⊂ Ωok.
For the opposite case λ2 − 12μλ + 11 ≥ 0 (satisfied over Ω \ Ω5) the last
inequality from (27) yields Ω8 = Ω6 ∪ Ω7 ∪ Γ 1

3 with the bounding curve
Γ4 = {(μ, λ) ∈ Ω : Δ − (λ2 − 12μλ + 11)2 = 0} (see Fig. 3 b)) - here Ω6

is bounded by Γ 1
4 , Γ 1

3 and ∂Ω and Ω7 is bounded by Γ 2
4 , Γ 1

3 and ∂Ω). The
intersection of Γ4 with boundary μ = 1 yields single point {(1, 5/2)}. Since
Γ0 ∩ Γ3 ∩ Γ4 = {(5/(2

√
19),

√
19)} ≈ {(0.573539, 4.3589)} = p2 the intersection

of Ω8 with the regions defined by first two inequalities in (27) (and by Δ > 0
and λ2 − 12μλ+11 ≥ 0) leads to the further cut out of Ω6 ∪Γ 1

4 ∪Γ 1
3 in the zone

Ω3
+ ⊂ Ωex. The inclusion Ω− ∪ Γ0 ∪ Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω6 ∪ Γ 1

4 ∪ Γ 1
3 ⊂ Ωok follows.

5 Perturbed Special Case

Assume now that for data points {x̃i, x̃i+1, x̃i+2} and velocities {ṽi, ṽi+2} condi-
tion (20) is not met. For the perturbation vector δ = (δ1, δ2) ∈ R

2m we attempt
to extend the results for (20) to its perturbed form (28). Indeed let (δ1, δ2):

x̃i+2 − x̃i − ṽi+2 = δ1 , ṽi+2 − ṽi = δ2 , (28)

with Ẽδ
i derived as in (18). Of course, for δ1 = δ2 = 0 ∈ R

m (28) collapses to
(20) (i.e. with the notation Ẽ0

i = Ēc
i derived for (20)). To obtain formulas for Ẽδ

i

and Ẽδ′
i we resort to (by (28)):
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‖ṽi+2‖2 = ‖x̃i+2‖2 + ‖x̃i‖2 − 2〈x̃i|x̃i+2〉 − 2〈x̃i+2|δ1〉 + 2〈x̃i|δ1〉 + ‖δ1‖2 ,

〈ṽi+2|x̃i〉 = 〈x̃i|x̃i+2〉 − ‖x̃i‖2 − 〈x̃i|δ1〉 ,

〈ṽi+2|x̃i+2〉 = ‖x̃i+2‖2 − 〈x̃i|x̃i+2〉 − 〈x̃i+2|δ1〉 ,

‖ṽi‖2 = ‖x̃i+2‖2 + ‖x̃i‖2 − 2〈x̃i|x̃i+2〉 + ‖δ1‖2 + ‖δ2‖2 + 2〈δ1|δ2〉
−2〈x̃i+2|δ1〉 − 2〈x̃i+2|δ2〉 + 2〈x̃i|δ1〉 + 2〈x̃i|δ2〉 ,

〈ṽi|ṽi+2〉 = ‖x̃i+2‖2 + ‖x̃i‖2 − 2〈x̃i|x̃i+2〉 − 2〈x̃i+2|δ1〉 + 2〈x̃i|δ1〉 − 〈x̃i+2|δ2〉
+〈x̃i|δ2〉 + ‖δ1‖2 + 〈δ1|δ2〉 ,

〈x̃i|ṽi〉 = 〈x̃i|x̃i+2〉 − ‖x̃i‖2 − 〈x̃i|δ1〉 − 〈x̃i|δ2〉 ,

〈x̃i+2|ṽi〉 = ‖x̃i+2‖2 − 〈x̃i|x̃i+2〉 − 〈x̃i+2|δ1〉 − 〈x̃i+2|δ2〉 ,

leading by (18) to (with FullSimplify, Factor and CoefficientList): Ẽδ
i (si+1) =

1
s3i+1(si+1 − 1)3

(3‖x̃i‖2(si+1 − 1)3(1 + 3si+1) + si+1(−6(〈x̃i|x̃i+2〉

−〈x̃i|δ1〉 − 〈x̃i|δ2〉 − ‖x̃i‖2) + si+1(−18〈x̃i|x̃i+2〉(si+1 − 1)2

−6(〈x̃i|x̃i+2〉 − 〈x̃i|δ1〉 − ‖x̃i‖2)(si+1 − 1)3 + 6(−〈x̃i|x̃i+2〉 − 〈x̃i+2|δ1〉
+‖x̃i+2‖2)(si+1 − 2)(si+1 − 1)si+1 − 6(−〈x̃i|x̃i+2〉 − 〈x̃i+2|δ1〉
−〈x̃i+2|δ2〉 + ‖x̃i+2‖2)(s+1 − 1)2si+1 + (−2〈x̃i|x̃i+2〉 + 2〈x̃i|δ1〉
−2〈x̃i+2|δ1〉 + ‖x̃i‖2 + ‖x̃i+2‖2 + ‖δ1‖2)(si+1 − 4)(si+1 − 1)2si+1

−2(−2〈x̃i|x̃i+2〉 + 2〈x̃i|δ1〉 + 〈x̃i|δ2〉 − 2〈xi+2|δ1〉 − 〈x̃i+2|δ1〉 + 〈δ1|δ2〉
+‖x̃i‖2 + ‖x̃i+2‖2 + ‖δ1‖2)(si+1 − 1)3si+1 + (−2〈x̃i|x̃i+2〉 + 2〈x̃i|δ1〉
+2〈x̃i|δ2〉 − 2〈x̃i+2|δ1〉 − 2〈x̃i+2|δ2〉 + 2〈δ1|δ2〉 + ‖x̃i‖2 + ‖x̃i+2‖2 + ‖δ1‖2

+‖δ2‖2)(si+1 − 1)3(3 + si+1) + 3‖x̃i+2‖2si+1(3si+1 − 4)
+6(〈x̃i|x̃i+2〉 − 〈x̃i|δ1〉 − 〈x̃i|δ2〉 − ‖x̃i‖2)(2 + (si+1 − 2)s2i+1)))) (29)

yielding Ẽδ
i (si+1) = M δ

i (si+1)/(s3i+1(si+1 − 1)3). Here deg(M δ
i ) = 6 with the

coefficients (using Mathematica functions Factor and CoefficientList): ai,δ
0 =

−3‖x̃i‖2, ai,δ
1 = −6〈x̃i|x̃i+2〉 + 6〈x̃i|δ1〉 + 6〈x̃i|δ2〉 + 6‖x̃i‖2, ai,δ

2 = 6〈x̃i|x̃i+2〉 −
24〈x̃i|δ1〉 − 18〈x̃i|δ2〉 + 6〈x̃i+2|δ1〉 + 6〈x̃i+2|δ2〉 − 6〈δ1|δ2〉 − 3‖x̃i‖2 − 3‖x̃i+2‖2 −
3‖δ1‖2−3‖δ2‖2, ai,δ

3 = 2(15〈x̃i|δ1〉+9〈x̃i|δ2〉−9〈x̃i+2|δ1〉−6〈x̃i+2|δ2〉+9〈δ1|δ2〉+
3‖δ1‖2 + 4‖δ2‖2), ai,δ

4 = −12〈x̃i|δ1〉 − 6〈x̃i|δ2〉 + 12〈x̃i+2|δ1〉 + 6〈x̃i+2|δ2〉 −
18〈δ1|δ2〉 − 3‖δ1‖2 − 6‖δ2‖2, ai,δ

5 = 6〈δ1|δ2〉 and ai,δ
6 = ‖δ2‖2. The deriva-

tive of Ẽδ
i (si+1) reads as Ẽδ′

i (si+1) = −N δ
i (si+1)/(s4i+1(si+1 − 1)4), where N δ

i

is the 6-th order polynomial in si+1 with the coefficients (e.g. again upon
using symbolic differentiation in Mathematica and functions Factor and Coeffi-
cientList): bi,δ

0 = −9‖x̃i‖2, bi,δ
1 = −12〈x̃i|x̃i+2〉+12〈x̃i|δ1〉+12〈x̃i|δ2〉+30‖x̃i‖2,

bi,δ
2 = 3(12〈x̃i|x̃i+2〉− 18〈x̃i|δ1〉− 16〈x̃i|δ2〉+2〈x̃i+2|δ1〉+2〈x̃i+2|δ2〉− 2〈δ1|δ2〉−

11‖x̃i‖2−‖x̃i+2‖2−‖δ1‖2−‖δ2‖2), bi,δ
3 = 3(−8〈x̃i|x̃i+2〉+32〈x̃i|δ1〉+24〈x̃i|δ2〉−

8〈x̃i+2|δ1〉 − 8〈x̃i+2|δ2〉 + 8〈δ1|δ2〉 + 4‖x̃i‖2 + 4‖x̃i+2‖2 + 4‖δ1‖2 + 4‖δ2‖2), bi,δ
4 =

3(−26〈x̃i|δ1〉−16〈x̃i|δ2〉+14〈x̃i+2|δ1〉+10〈x̃i+2|δ2〉−12〈δ1|δ2〉−5‖δ1‖2−6‖δ2‖2),
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bi,δ
5 = 3(8〈x̃i|δ1〉+4〈x̃i|δ2〉−8〈x̃i+2|δ1〉−4〈x̃i+2|δ2〉+8〈δ̃1|δ2〉+2‖δ1‖2 +4‖δ2‖2)

and bi,δ
6 = −6〈δ1|δ2〉 − 3‖δ2‖2 .

The following result merging (20) with (28) holds (proof is omitted):

Theorem 1. Assume that for unperturbed data (20) the corresponding energy
Ẽ0

i has exactly one critical point ŝ0 ∈ (0, 1) with Ẽ0′′
i (ŝ0) 	= 0. Then there exists

sufficiently small ε0 > 0 such that for all ‖δ‖ < ε0 (where δ = (δ1, δ2) ∈ R
2m) the

perturbed data (28) yield the energy Ẽδ
i with exactly one critical point ŝδ

0 ∈ (0, 1)
(a global minimum ŝδ

0 of Ẽδ
i is sufficiently close to ŝ0).

Example 1. Consider the planar points x̃i = (0,−1), x̃i+1 = (0, 0) and x̃i+2 =
(1, 1) - we set here i = 0. Here cumulative chord parameterization yields ŝcc

1 =
1/(

√
2+1) ≈ 0.414214. Assume that given velocities ṽ0, ṽ2 (upon adjustment by

some perturbation δ = (δ̄, δ̂) ∈ R
4) satisfy both constraints x̃2 − x̃0 = ṽ2 + δ̄ and

ṽ2 = ṽ0 + δ̂. The above interpolation points {x̃i, x̃i+1, x̃i+2} for further testing in
this example are assumed to be fixed. Here ‖x̃0‖2 = 1, ‖x̃2‖2 = 2, 〈x̃0|x̃2〉 = −1
and (μ, λ) = (−1/

√
2, 1/

√
2) ≈ (−0.707107, 0.707107) ∈ Ωok (with δ = 0). The

unperturbed energy with ṽ2 = ṽ0 = (1, 2) (see also (21) or (29) with δ = 0 and
non-perturbed data satisfying (20)) amounts to: Ẽδ

0 (s) = −3(1 + s(5s − 4))((s −
1)3s3)−1. Which yields a global minimum Ẽc

0(0.433436) = 41.6487 (see Fig. 4).
As here (μ, λ) = (−1/

√
2, 1/

√
2) ∈ Ωok and thus Ẽ0

0 has exactly one critical point
ŝ0 ∈ (0, 1). One can show that Ẽ0′′

0 	= 0 at any critical point ŝ0 of Ẽ0
0 . Hence the

assumptions from Theorem 1 are clearly satisfied.
We add now the perturbation δ̄ = (2,−3) and δ̂ = (−1, 2) (for ṽ0 = (0, 3)

and ṽ2 = (−1, 5)). The corresponding perturbed energy (see (29)) Ẽδ
0 (s) = (−3+

s(18+s(−57+s(34+s(45+s(5s−48))))))((s−1)3s3)−1 is plotted in Fig. 5 with
the optimal value ŝδ

0 ≈ 0.390407 (close to ŝcc
1 as perturbation δ is sufficiently

small - here (‖δ̄‖, ‖δ̂‖) = (
√

13,
√

5)) and Ẽc
δ (ŝδ

0) = 149.082 < Ẽc
δ (ŝcc

1 ) = 150.004
- the convexity of Ẽc

0 is visibly preserved by Ẽc
δ (see Fig. 4 and Fig. 5).
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Fig. 4. The graph of Ẽc′
0 for x̃0 = (0, −1), x̃2 = (1, 1), ṽ0 = ṽ2 = (1, 2) (a) over (0, 1),

(b) close to unique root ŝ0 ≈ 0.433 �= ŝcc
1 = 1/(

√
2 + 1) ≈ 0.414, (c) the graph of Ẽc

0 .

For a large perturbation δ̄ = (16, 7) and δ̂ = (−10, 5) (for ṽ0 = (−5,−10)
and ṽ2 = (−15,−5)) the corresponding perturbed energy (see (29) and use
Simplify in Mathematica) Ẽδ

0 (s) = (−3 + s(−60 + s(−189 + s(−74 + 5s(5s −
21)(5s−9)))))((s−1)3s3)−1 is plotted in Fig. 6 a) with the unique optimal value
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Fig. 5. The graph of Ẽc
δ for x̃0 = (0, −1), x̃2 = (1, 1), ṽ0 = (0, 3), ṽ2 = (−1, 5),

δ̄ = (2, −3) and δ̂ = (−1, 2) (a) over (0, 1), (b) close to its unique min. ŝδ
0 = 0.390 �=

scc
1 = 1/(

√
2 + 1) ≈ 0.414.

ŝδ
0 ≈ 0.432069 for which Ẽc

δ (ŝδ
0) = 3229.81 < Ẽc

δ (ŝcc
1 ) = 3236.5 - the convexity of

Ẽc
0 is here visibly also preserved by Ẽc

δ (even for such a quite large perturbation
δ - here (‖δ̄, ‖δ̂‖) = (125, 305)). Note also that though cumulative chord ŝcc

1 is
now farther away from a global minimum ŝδ

0, it is still in its potential basin.
We add now very large δ̄ = (−25,−17) and δ̂ = (−6, 20) (for ṽ0 = (32,−1)

and ṽ2 = (26, 19)). The perturbed energy (see (29)) Ẽδ
0 (s) = (−3 + s(−6 +

s(−3141+2s(3145+s(−1221−570s+218s2)))))((s−1)3s3)−1 is plotted in Fig. 6
b) with the optimal value ŝδ

0 ≈ 0.948503 for which Ẽc
δ (ŝδ

0) = 11146 < Ẽc
δ (ŝcc

1 ) =
12667.7 and another local minimum at ŝ10 ≈ 0.563968 for which Ẽc

δ (ŝ10) = 11781.
There is also a local maximum at ŝmax ≈ 0.879929 > scc

1 = 1/3 - convexity of
Ẽc
0 is here clearly not preserved by Ẽc

δ (δ is here too large for Theorem 1 to hold
- here (‖δ̄‖, ‖δ̂‖) = (914, 436)) - see also Fig. 4 and Fig. 6. Again the cumulative
chord ŝcc

1 ≈ 0.414214 is here in the basin of ŝ10 (not of ŝδ
0) - see Fig. 6 b). ��
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Fig. 6. The graph of Ẽc
δ for x̃0 = (0, −1) and x̃2 = (1, 1) for (a) ṽ0 = (−5, −10),

ṽ2 = (−15, −5) and a big δ̄ = (−16, 7) and δ̄ = (−10, 5) yielding global min. at
ŝδ
0 ≈ 0.432 �= scc

1 ≈ 0.414, (b) ṽ0 = (32, −1), ṽ2 = (26, 19) and a very big δ̄ =
(−25, −17) and δ̄ = (−6, 20) with global min. at ŝδ

0 ≈ 0.949 and a local min. at
ŝ10 = 0.564 �= scc

1 ≈ 0.414.

Example 1 suggests that δ in Theorem 1 can in fact be quite substantial.
Thus a local character of Theorem 1 seems to be more a semi-global one.
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6 Conclusions

We study the problem of finding optimal knots to fit reduced data. The optimiza-
tion task (1) is reformulated into (5) (and (18)) to minimize a highly non-linear
multivariable function J0 depending on knots Tint. Leap-Frog is a feasible numer-
ical scheme to handle (5). It minimizes iteratively single variable functions from
(6). Generic case of Leap-Frog is addressed to establish sufficient conditions for
unimodality of (18). First, its special case (20) is studied. Next a perturbed ana-
logue (28) of the latter is addressed. The unimodality of (21) is shown to be
preserved by large perturbations (28). The performance of Leap-Frog in mini-
mizing (5) against Newton’s and Secant Methods is discussed in [2,3] and [6].
Other contexts and applications of Leap-Frog can be found in [9,10] or [11]. For
more work on fitting Mn (sparse or dense) see [4,5] or [7].
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