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Abstract. We consider the problem of functional, random data classi-
fication from equidistant samples. Such data are frequently not easy for
classification when one has a large number of observations that bear low
information for classification. We consider this problem using tools from
the functional analysis. Therefore, a mathematical model of such data
is proposed and its correctness is verified. Then, it is shown that any
finite number of descriptors, obtained by orthogonal projections on any
differentiable basis of L2(0, T ), can be consistently estimated within this
model.

Computational aspects of estimating descriptors, based on the fast
implementation of the discrete cosine transform (DCT), are also inves-
tigated in conjunction with learning a classifier and using it on-line.
Finally, the algorithm of learning descriptors and classifiers were tested
on real-life random signals, namely, on accelerations, coming from large
bucket-wheel excavators, that are transmitted to an operator’s cabin.
The aim of these tests was also to select a classifier that is well suited
for working with DCT-based descriptors.

Keywords: Functional data classification · Random element · Bias ·
Functional data model · Classifying signals · DCT

1 Introduction

Tasks of classifying functional data are difficult for many reasons. The majority
of them seems to concern a large number of observations, frequently having an
unexpectedly low information content from the point of view of their classifi-
cation. This kind of difficulty arises in many industrial applications, in which
sensors may provide thousands of samples per second (see, e.g., our motivation
example at the end of this section).

We focus our attention on classifying data from repetitive processes, i.e.,
on stochastic processes that have a finite and the same duration T > 0 and
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after time T the process, denoted as X(t), t ∈ [0, T ] is repeated with the same
or different probability measures. For simplicity of the exposition, we confine
ourselves to two such measures and the problem is to classify samples from X(t),
[0, T ] to two classes, having at our disposal a learning sequence Xn(t), [0, T ], n =
1, 2, . . . , N of correctly classified subsequences. An additional requirement is to
classify newly incoming samples almost immediately after the present [0, T ] is
finished, so as to be able to use the result of classification for making decisions for
the next period (also called a pass). This requirement forces us to put emphasis
not only on the theoretical but also on the computational aspects of the problem.

An Outline of the Approach and the Paper Organization. It is conve-
nient to consider the whole X and Xn(t)’s as random elements in a separable
Hilbert space. We propose a framework (Sect. 2) that allows us to impose prob-
ability distributions on them in a convenient way, namely, by attaching them to
a finite number of orthogonal projections, but the residuals of the projections
definitely do not act as white noise, since the samples are highly correlated, even
when they are far in time within [0, T ] interval. After proving the correctness of
this approach (Sect. 2, Lemma 1), we propose, in Sect. 3, the method of learn-
ing descriptors, which are projections of X and Xn(t)’s on a countable basis of
the Hilbert space. We also sketch proof of the consistency of the learning pro-
cess in a general case and then, we concentrate on the computational aspect of
learning the descriptors (Sect. 4) by the fast discrete cosine transform (DCT)
and its joint action together with learning and using a classifier of descriptors.
Finally, in Sect. 5, the proposed method was intensively tested on a large num-
ber of augmented data, leading to the selection of classifiers that cooperate with
the learning descriptors in the most efficient way, from the viewpoint of the
classification quality measures.

Motivating Case Study. Large mechanical constructions such as bucket-wheel
excavators, used in open pit mines, undergo repetitive excitations that are trans-
mitted to an operator’s cabin, invoking unpleasant vibrations, which influence
the operator’s health in the long term. These excitations can be measured by
accelerometers, as samples from functional observations that repeatedly occur
after each stroke of the bucket into the ground. Roughly speaking, these func-
tional observations can be classified into two classes, namely, to class I, repre-
senting typical, heavy working conditions and to class II, corresponding to less
frequent and less heavy working conditions, occurring, e.g., when a sand back-
ground material is present (see Fig. 1 for an excerpt of functional data from Class
I and II, a benchmark file is publicly available from the Mendeley site [28], see
also [29] for its detailed description).

Proper and fast classification can be useful for decision making whether to
use more or fewer vibrations damping in the next period between subsequent
shocks, invoked by strokes of the bucket into the ground. We refer the reader to
[25] to the study on a control system based on magneto-rheological dampers, for
which the classifier proposed here can be used as an upper decision level.
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Fig. 1. An excerpt of functional data, representing accelerations vs sample number
of an operator’s cabin in bucket-wheel excavators. Left panel – curves from Class I
(heavy working conditions), right panel – curves from Class II (less onerous working
conditions)

Previous Works. Over the last twenty years the problems of classifying func-
tions, curves and signals using methods from functional analysis has attracted
considerable attention from researchers. We refer the reader to the fundamental
paper [10] on (im-)possibilities of classifying probability density functions with
(or without) certain qualitative properties. Function classification, using a func-
tional analogue of the Parzen kernel classifier is developed in [6], while in [5,12]
generalizations of the Mahalanobis distance are applied. Mathematical models
of functional data are discussed in [18]. The reader is also referred to the next
section for citations of related monographs and to [21].

All the above does not mean that problems of classifying functions, mainly
sampled signals, were not considered earlier. Conversely, the first attempts at
classifying electrocardiogram (ECG) signals can be traced back, at least, to the
1960s, see [1] for the recent review and to [20] for feature selection using the
FFT.

The recognition problems for many other kinds of bio-medical signals have
been extensively studied. We are not able to review all of them, therefore, we
confine ourselves to recent contributions, surveys, and papers more related to
the present one.

Electroencephalogram (EEG) signals are rather difficult for an automatic
classification, hence the main effort is put on a dedicated feature selection, see
[13,14] and survey papers [4,19] the latter being of special interest for human-
computer interactions. In a similar vein, in [2] the survey of using electromyog-
raphy (EMG) signals is provided. For a long time, also studies on applying the
EMG signals classification for control of hand prosthesis had been conducted.
We refer the reader to recent contributions [17,30] and to [8] for a novel approach
to represent a large class of signals arising in a health care system.

Up to now, problems of classifying data from accelerometers, as those aris-
ing in our motivating case study, have not received too much attention (see
[22], where the recognition of whether a man is going upstairs or downstairs is
considered).
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Our derivations are based on orthogonal projections. One should notice that
classifiers based on orthogonal expansions were studied for a long time, see [15]
for one of the pioneering papers on classifiers based on probability density esti-
mation and [9] for the monograph on probabilistic approaches to pattern recogni-
tion. Observe, however, that in our problem we learn the expansion coefficients in
a way that closer to nonparametric estimation of a regression function with non-
random (fixed design) cases (see, e.g., [23]). Furthermore, in our case observation
errors are correlated, since they arise from the truncation of the orthogonal series
with random coefficients.

2 Model of Random Functional Data and Problem
Statement

Constructing a simple mathematical description of random functional data, also
called random elements, is a difficult task, since in infinite dimensional Hilbert
spaces an analogue of the uniform distribution does not exists (see monographs:
[3,11,16,27] for basic facts concerning probability in spaces of functions). Thus,
it is not possible to define probability density function (p.d.f.) with respect to
this distribution. As a way to get around this obstacle, we propose a simple
model of random elements in the Hilbert space L2(0, T ) of all squared integrable
functions, where T > 0 is the horizon of observations.

V1) Let us assume that vk(t), t ∈ [0, T , k = 1, 2, . . . is a selected orthogonal
and complete, infinite sequence of functions in L2(0, T ), which are addition-
ally normalized, i.e., ||vk|| = 1, k = 1, 2, . . ., where for g ∈ L2(0, T ) its
squared norm ||g||2 is defined as <g, g>, while <g, h> =

∫ T

0
g(t)h(t) dt is

the standard inner product in L2(0, T ).

Within this framework, any g ∈ L2(0, T ) can be expressed as

g =
∞∑

k=1

< g, vk > vk, (1)

where the convergence is understood in the L2 norm. For our purposes we con-
sider a class of random elements, denoted further as X, Y etc. that can be
expressed as follows

X =
K∑

k=1

θk vk +
∞∑

k=K+1

αk vk, (2)

where

– 1 ≤ K < ∞ is a preselected positive integer that splits1 the series expansion
of X into two parts, namely, the first one that we later call an informative part
and the second one, which is either much less informative or noninformative
at all from the point of view of classifying X,

1 For theoretical purposes K is assumed to be fixed and a priori known. Later, we
comment on the selection of K in practice.
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– coefficients θk , k = 1, 2 . . . ,K are real-valued random variables that are
drawn according to exactly one of cumulative, multivariate distribution func-
tions FI(θ̄) or FII(θ̄), θ̄

def
= [θ1, θ2, . . . , , θK ],

– αk, k = (K + 1), (K + 2), . . . are also random variables (r.v.’s), having prop-
erties that are specified below.

We shall write

X(t) =
K∑

k=1

θk vk(t) +
∞∑

k=K+1

αk vk(t), t ∈ [0, T ], (3)

when the dependence of X on t has to be displayed.
Distribution functions FI(θ̄) and FII(θ̄), as well as those according to αk,

k = (K + 1), (K + 2), . . . are drawn, are not known, but we require that the
following assumptions hold.

R1) The second moments of θk, k = 1, 2 . . . ,K exist and they are finite. The
variances of θk’s are denoted as σ2

k.
R2) The expectations E(αk) = 0, k = (K + 1), (K + 2), . . . , where E denotes

the expectations with respect to all θk’s and αk’s. Furthermore, there exists
a finite constant 0 < C0 < ∞, say, such that

E(α2
k) ≤ C0

k2
, k = (K + 1), (K + 2), . . . . (4)

R3) Collections θk, k = 1, 2 . . . ,K and αk, k = (K + 1), (K + 2), . . . are
mutually uncorrelated in the sense that E(θk αl) = 0 for all k = 1, 2 . . . ,K
and l = (K + 1), (K + 2), . . .. Furthermore, E(αj αl) = 0 for j �= l, j, l =
(K + 1), (K + 2), . . ..

To motivate assumption R2), inequality (4), notice that expansion coefficients of
smooth, e.g., continuously differentiable, functions into the trigonometric series
decay as O(k−1), while the second order differentiability yields O(k−2) rate of
decay.

To illustrate the simplicity of this model, consider θ̄ that drawn at random
from the K-variate normal distribution with the expectation vector μ̄c and the
covariance matrix Σ−1

c , where c stands for class label I or II. Consider also
sequence αk, k = (K + 1), (K + 2), . . . of the Gaussian random variables, having
the zero expectations, that are mutually uncorrelated and uncorrelated also with
θ̄. Selecting the dispersions of αk’s of the form: σ0/k, 0 < σ0 < ∞, we can draw
at random θ̄ and αk’s for which R1)–R3) hold. Thus, it suffices to insert them
into (3). We underline, however, that in the rest of the paper, the gaussianity of
θ̄ and αk’s are not postulated.

Lemma 1 (Model correctness). Under V1), R1) and R2) model (2) is cor-
rect in the sense that E||X||2 is finite.
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Indeed, applying V1), and subsequently R1) and R2), we obtain

E||X||2 =
K∑

k=1

E(θ2k) +
∞∑

k=(K+1)

E(α2
k) ≤

K∑

k=1

E(θ2k) + C0 γK , (5)

where γK
def
=

∑∞
k=(K+1) k−2 < ∞, since this series is convergent. •

Lemma 2 (Correlated observations). Under V1), R1) and R2) observa-
tions X(t′) and X(t′′) are correlated for every t′, t′′ ∈ [0, T ] and for their covari-
ance we have:

Cov(X(t′), X(t′′)) =
∞∑

k=(K+1)

E(α2
k)vk(t′)vk(t′′), (6)

and, for commonly bounded basis functions, its upper bound is given by

|Cov(X(t′), X(t′′))| ≤ c20 γK , c0
def
= sup

k
sup

t∈[0, T ]

|vk(t)|. (7)

Problem Statement. Define a residual random element rK as follows: rK =∑∞
k=(K+1) αk vk and observe that (by R2)) E(rK) = 0, E||(rK)||2 ≤ C0 γK < ∞.

Define also an informative part of X as fθ̄ =
∑K

k=1 θk vk and assume that we have
observations (samples) of X at equidistant points ti ∈ [0, T ], i = 1, 2, . . . , m
which are of the form

xi = X(ti) = fθ̄(ti) + rK(ti), i = 1, 2, . . . , m. (8)

Having these observations, collected as x̄, at our disposal, the problem is to
classify X to class I or II. These classes correspond to unknown information on
whether θ̄ in (8) was drawn according to FI or FII distributions, which are also
unknown.

The only additional information is that contained in samples from learn-
ing sequence {(X(1), j1), (X(2), j2), . . . , (X(N), , jN )}. The samples from each
X(n) have exactly the same structure as (8) and they are further denoted as
x̄(n) = [x(n)

1 , x
(n)
2 , . . . x

(n)
m ]tr, while jn ∈ {I, II}, n = 1, 2, . . . , N are class

labels attached by an expert.
Thus, the learning sequence is represented by collection XN

def
= [x̄(n), n =

1, 2, . . . , N ], which is an m × N matrix and the sequence of labels J def
= {jn ∈

{I, II}, n = 1, 2, . . . , N} Summarizing, our aim is to propose a nonparametric
classifier that classifies random function X, represented by x̄, to class I or II and
a learning procedure based on XN and the corresponding jn’s.

3 Learning Descriptors from Samples and Their
Properties

The number of samples in x̄ and x̄n’s is frequently very large (when generated
by electronic sensors, it can be thousands of samples per second). Therefore, it is
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impractical to build a classifier directly from samples. Observe that the orthogo-
nal projection of X on the subspace spanned by v1, v2, . . .vK is exactly fθ̄. Thus,
the natural choice of descriptors of X would be θ̄, but it is not directly accessi-
ble. We do not have also a direct access to θ̄(n)’s constituting X(n)’s. Hence, we
firstly propose a nonparametric algorithm of learning θ̄ and θ̄(n)’s from samples.
We emphasize that this algorithm formally looks like as well known algorithms
of estimating regression functions (see, e.g., [23,26]), but its statistical properties
require re-investigation, since noninformative residuals rN have a different cor-
relation structure than that which appears in classic nonparametric regression
estimation problems.

Denote by θ̂k the following expression

θ̂k =
T

m

m∑

i=1

xi vk(ti), k = 1, 2, . . . , K (9)

further taken as the learning algorithm for θk =< X, vk >.

Asymptotic Unbiasedness. It can be proved that for continuously differen-
tiable X(t), t ∈ [0, T ] and vk’s we have

|Eθ̄(θ̂k) − θk| ≤ T L1

m
(10)

where Eθ̄ is the expectation with respect to αk’s, conditioned on θ̄ and L1 > 0
is the maximum of |X′(t)| and |v′

k(t)|, t ∈ [0, T ].
One can largely reduce errors introduced by approximate integration by

selecting vk’s that are orthogonal in the summation sense on sample points,
i.e.,

T

m

m∑

i=1

vl(ti)vk(ti) = 0 for k �= l, k, l = 1, 2, . . . . (11)

The well known example of such basis is provided by the cosine series

v1(t) = 1, v2(t) =
√

2 cos(π t/T ), v3(t) =
√

2 cos(2 π t/T ), . . . (12)

computed at equidistant ti’s.

Lemma 3 (Bias). For all k = 1, 2, . . . , K we have: 1) if X(t) and vk(t)’s are
continuously differentiable t ∈ [0, T ], then θ̂k is asymptotically unbiased, i.e.,
Eθ̄(θ̂k) → θk as m → ∞,
2) if for vk, k = 1, 2, . . . , K and m conditions (11) hold, then θ̂k is unbiased for
m finite, i.e., Eθ̄(θ̂k) = θk.

Variance and Mean Square Error (MSE). Analogously, assuming that vk’s
and X(t)| are twice continuously differentiable, we obtain:

Varθ̄(θ̂k) ≤ T L2

m2
γK , (13)
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where L2 is the maximum of X′′(t)| and |v′′
k(t)|, t ∈ [0, T ]. Thus, the conditional

mean squared error of learning θ̂k is not larger than T L1
m + T L2

m2 γK and it can
be reduced by enlarging m.

Lemma 4 (Consistency). For all k = 1, 2, . . . , K we have:

Eθ̄

(
θ̂k − θk

)2

→ 0, as m → ∞, (14)

i.e., θ̂k is consistent in the MSE sense, hence also in the probability.

Notice also that this is the worst case analysis in the class of all twice differ-
entiable functions X(t)| and |vk(t)|, which means that L1 and L2 depend on
k.

Observe that replacing xi’s in (9) by x
(n)
i ’s we obtain estimators θ̂

(n)
k of the

descriptors θ
(n)
k in the learning sequence. Obviously, the same upper bounds (10)

and (13) hold also for them.

4 A Fast Algorithm for Learning Descriptors and
Classification

The above considerations are, to a certain extent, fairly general. By selecting
(12) as the basis, one can compute all θ̂k’s in (9) simultaneously by the fast
algorithm, being the fast version of the discrete cosine transform (see, e.g., [7]
and [24]). The action of this algorithm on x̄ (or on x̄(n)’s ) is further denoted
as FDCT (x̄). Notice, however, that for vector x̄, containing m samples, also
the output of the FDCT (x̄) contains m elements, while we need only K < m

of them, further denoted as ˆ̄θ = [θ̂k, k = 1, 2, . . . , K]tr. Thus, if TruncK [.]
denotes the truncation of a vector to its K first elements, then

ˆ̄θ = TruncK [FDCT (x̄)], (15)

is the required version of the learning of all the descriptors at one run, at the
expense of O(m log(m)) arithmetic operations.

Remark 1. If K is not known in advance, it is a good point to select it by
applying TruncK [FDCT (.)] to x̄(n)’s together with the minimization of one of
the well known criterions such as the AIC, BIC etc. Notice also that K plays the
role of a smoothing parameter, i.e., smaller K provides a less wiggly estimate of
X(t), t ∈ [0, T ].

A Projection-Based Classifier for Functional Data. The algorithm:
TruncK [FDCT (.)] is crucial for building a fast classifier from projections, since
it will be used many times both in the learning phase as well as for fast recog-
nition of forthcoming observations of X’s. The second ingredient that we need
is a properly chosen classifier for K dimensional vectors θ̄. Formally, any reli-
able and fast classifier can be selected, possibly excluding the nearest neighbors
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classifiers, since they require to keep and look up the whole learning sequence,
unless its special edition is not done. For the purposes of this paper we select
the support vector machine (SVM) classifier and the one that is based on the
logistic regression (LReg) classifier. We shall denote by Class[θ̄, {θ̄(n), J }] the
selected classifier that – after learning it from the collection of descriptors {θ̄(n)},
n = 1, 2, . . . , N and correct labels J – classifies descriptor θ̄ of new X to I or II
class.

A Projection-Based Classification Algorithm (PBCA)
Learning

1. Convert available samples of random functions into descriptors:

θ̄(n) = TruncK [FDCT (x̄(n))], n = 1, 2, . . . , N

and attach class labels jn to them in order to obtain (θ̄(n), jn), n =
1, 2, . . . , N .

2. Split this sequence into the learning sequence of the length 1 < Nl < N
with indexes selected uniformly at random (without replacements) from n =
1, 2, . . . , N . Denote the set of this indexes by Jl and its complement by Jv.

3. Use θ̄(n), n ∈ Jl to learn classifier Class[., {θ̄(n), Jl}], where dot stands for
a dummy variables, representing a descriptor to be classified.

4. Verify the quality of this classifier by testing it on all descriptors with indexes
from Jv, i.e., compute

ĵn′ = Class[θ̄(n
′), {θ̄(n), Jl}], n′ ∈ Jv. (16)

5. Compare the obtained class labels ĵn′ with proper ones jn′ , n′ ∈ Jv and count
the number of true positive (TP), true negative (TN), false positive (FP)
and false negative (FN) cases. Use them to compute the classifier quality
indicators such as accuracy, precision, F1 score, . . . and store them.

6. Repeat steps 2–5 a hundred times, say, and assess the quality of the classifier,
using the collected indicators. If its quality is satisfactory, go to the on-line
classification phase. Otherwise, repeat steps 2–5 for different K.

On-Line Classification

Acquisition: collect samples xi = X(ti), i = 1, 2, . . . , m of the next random
function and form vector x̄ from them.

Compute descriptors: θ̄ = TruncK [FDCT (x̄)].
Classification: Compute predicted class label ĵ for descriptors θ̄ as ĵ =

Class[θ̄, {θ̄(n), Jl}].
Decision: if appropriate, make a decision corresponding to class ĵ and go to the

Acquisition step.

Even for a large number of samples from repetitive functional random data the
PBCA is relatively fast for the following reasons.
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– The most time-consuming Step 1 is performed only once for each (possibly
long) vector of samples from the learning sequence. Furthermore, the fast
FDCT algorithm provides the whole vector of m potential descriptors in one
pass. Its truncation to K first descriptors is immediate and it can be done
many times, without running the FDCT algorithm. This advantage can be
used for even more advanced task of looking for a sparse set of descriptors,
but this topic is outside the scope of this paper.

– Steps 2–5 of the learning phase are repeated many times for the validation
and testing reasons, but this is done off-line and for descriptor vectors of
the length K << m. The total execution time of the validation and testing
phase depends on the time of learning Class[., {θ̄(n), Jl}] that depends on a
particular choice of the classifier Class. For the SVM and LogReg classifiers
and for K about dozens, it takes a few seconds on a standard PC with 3 GHz
CPU clock.

– The execution time of the on-line usage phase is fast, since it uses the fast
version of DCT only once for the incoming vector of samples x̄ at the expense
of O(m log(m)) operations, while the already trained recognizer has to classify
θ̄ of the length K only.

5 Testing on Accelerations of the Operator’s Cabin

The PBCA was tested on samples of a function (signal), representing the acceler-
ations of an operator’s cabin (see Fig. 1), mounted on a bucket-wheel excavator.
The aim of testing was not only to check the correctness of the algorithm, but
also to select a suitable classifier.

We had 44 000 samples, acquired with the rate 512 Hz and grouped into
portions of T = 2 s. duration each. The resulting x̄(n)’s of the length m = 1024
samples, representing the learning sequence Xn, n = 1, 2, . . . , N = 43, were
extended by adding labels of their proper classifications. A low-pass filter with
the cutoff2 frequency 5 Hz was applied before using FDCT . The number of
K = 16 of estimated descriptors θ̂

(n)
k , k = 1, 2, . . . , K was selected as the first

K elements of FDCT sequences.
As one can notice, 44 000 samples occurred to be low informative for func-

tional data classification. Therefore, for the aim of our tests, we had to use
augmented data. In the augmentation process we used a silent, nice feature of
the projection-based descriptors and the linearity of (9) with respect to samples.
Namely, instead of augmenting raw samples, we augmented θ̂

(n)
k , k = 1, 2, . . . , K

by adding to each of them pseudo-random errors that had Gaussian distribution
with zero mean and dispersion σa = 0.018. Taking into account that most of
θ̂
(n)
k ’s was of the order ±0.5, the interval ±3σa has the length of 10.8% of their

amplitudes. In this way the augmented testing sequence, containing N ′ = 43 000
examples, having K = 16 descriptors, was generated.

The following classifiers were tested as part of the PBCA:
2 From earlier experiments [25], it was known that frequencies of importance are less

than 2.5 Hz.
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LogR – the logistic regression classifier,
SVM – the support vector machine,
DecT – the decision tree classifier,
gbTr – the gradient boosted trees,
RFor – the random forests classifier,
5NN – the 5 nearest neighbors3 classifier.

Table 1. Left table – a summary of learning and testing the PBCA on the augmented
acceleration data for different classifiers (abbreviations explained in the text). Right
table – an example of the confusion matrix when the LogR classifier was used.

Classifier LogR SV M DecT gbTr RFor 5 NN

Accuracy 0.91 0.94 0.84 0.92 0.91 0.90

Cohen κ 0.76 0.82 0.60 0.77 0.73 0.70

MCC 6 0.76 0.82 0.61 0.77 0.73 0.71

Precision 0.96 0.94 0.93 0.94 0.92 0.90

Recall 0.92 0.98 0.86 0.96 0.96 0.98

Specificity 0.88 0.80 0.60 0.79 0.72 0.65

FScore 0.94 0.96 0.89 0.95 0.94 0.94

Pred. class

I II

I 30303 2697

II 1220 8780

MCC is the abbreviation for the Matthews Correlation Coefficient.

The results of learning and testing are summarized in Table 1. Its right panel
contains just one example of the confusion matrix – for illustration only. The
left panel summarizes all the extensive simulations. It contains the values of
indicators that are the most frequently used for assessing the quality of classifiers.

The analysis of these quality indicators allows recommending the SVM and
the LogR classifiers as the decision unit, applied after learning descriptors. Also
the CPU time of 7.5 10−6 s, used for the SVM and LogR classifier to recognize
a new example, was slightly better than for the rest of classifiers displayed in
Table 1, which needed about 10–15 10−6 s, as the average of 30000 simulation
experiments.

6 Concluding Remarks

The mathematical model of random infinite-dimensional data is proposed that
allows us to impose arbitrary probability distribution on a finite dimensional
space of descriptors. Its correctness is proved and the learning algorithm for
these descriptors is proposed and investigated. In particular, it was shown that
the learning algorithm is consistent in the MSE sense for any finite number of
the descriptors.

The fast version of the learning algorithm is tested from the view point of its
cooperation with a finite dimensional classifier. The winners are the SVM and
3 The 5 NN classifier was tested for comparisons only. We do not recommend its usage

with the PCBA, since it requires storing all the learning sequence, unless its editing
(condensation) is not done.
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logistic regression classifiers, as tested on augmented real data. By passing, a new
approach to data augmentation is proposed. Namely, instead of augmenting raw
observations, we use random perturbation of estimated descriptors, which leads
to essential computational savings. On the other hand, the descriptors estimated
from the raw learning sequence are sufficient for learning the classifiers, which
means a kind of raw data compression when they are disregarded.

Further research in this direction is desirable. One can consider extending
them by including ensembles of classifiers and neural network-based recognizers.

From the practical point of view, it would be also of interest to consider the
classification of signals from accelerometers to more than two classes, taking into
account the kind of background that is met by a bucket-wheel excavator. This
is, however, outside the scope of this paper, since it requires cumbersome data
labeling by experts.

Further directions of research may include also other applications, e.g., a
human motion classification, based on a motion capture cameras, a computer-
aided laparoscopy training and theoretical aspects such as classifying random
elements by learning their derivatives.
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Dr. J. Wiȩckowski from the Faculty of Mechanical Engineering, Wroclaw University of
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25. Rafaj�lowicz, W., Wiȩckowski, J., Moczko, P., Rafaj�lowicz, E.: Iterative learning
from suppressing vibrations in construction machinery using magnetorheological
dampers. Autom. Constr. 119, 103326 (2020)

26. Rutkowski, L., Rafaj�lowicz, E.: On optimal global rate of convergence of some non-
parametric identification procedures. IEEE Trans. Autom. Control AC 34, 1089–
1091 (1989)

https://doi.org/10.1007/978-1-4612-0711-5
https://doi.org/10.1007/978-1-4612-0711-5
https://doi.org/10.1080/10485250215323
https://doi.org/10.1007/0-387-36620-2
https://doi.org/10.1109/TNSRE.2003.814441
https://doi.org/10.1109/TNSRE.2003.814441
https://doi.org/10.1007/978-1-4614-3655-3
https://doi.org/10.1080/02331888.2018.1487120
https://doi.org/10.1080/02331888.2018.1487120
https://doi.org/10.1088/1741-2560/4/2/r01
https://doi.org/10.1109/FGCT.2015.7300244
https://doi.org/10.1109/TBME.2008.2006190
https://doi.org/10.1109/TBME.2008.2006190


Classifying Functional Data from Projections 39

27. Srivastava, A., Klassen, E.P.: Functional and Shape Data Analysis. SSS, vol. 1.
Springer, New York (2016). https://doi.org/10.1007/978-1-4939-4020-2
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