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and Diana Dziewa-Dawidczyk

Institute of Information Technology, Warsaw University of Life Sciences,
Warsaw, Poland

{konrad furmanczyk,marcin dudzinski,diana dziewa dawidczyk}@sggw.edu.pl

Abstract. In our work, we propose a new classification method for pos-
itive and unlabeled (PU) data, called the LassoJoint classification pro-
cedure, which combines the thresholded Lasso approach in the first two
steps with the joint method based on logistic regression, introduced by
Teisseyre et al. [12], in the last step. We prove that, under some regu-
larity conditions, our procedure satisfies the screening property. We also
conduct some simulation study in order to compare the proposed clas-
sification procedure with the oracle method. Prediction accuracy of the
proposed method has been verified for some selected real datasets.

Keywords: Positive unlabeled learning · Logistic regression ·
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1 Introduction

Learning from positive and unlabeled (PU in short) data is an approach, where
training data contains only positive and unlabeled examples, which means that
the true labels Y ∈ {0, 1} are not observed directly, since only surrogate vari-
able S ∈ {0, 1} is observable. This surrogate variable equals 1 - if an example
is labeled, or 0 - if otherwise. The PU datasets appear in a large number of
applications. For example, they often appear while dealing with the so-called
under-reporting data from medical surveys, fraud detection and ecological mod-
eling (see, e.g., Hastie and Fithian [6]). Some other interesting examples of the
under-reporting survey data may be found in Bekker and Davis [1] and Teisseyre
et al. [12].

Suppose that X is a feature vector and, as mentioned earlier, Y ∈ {0, 1}
denotes a true class label and S ∈ {0, 1} is a variable indicating, whether an
example is labeled or not (then, S = 1 or S = 0, respectively). We apply a
commonly used assumption, called the Selected Completely At Random (SCAR)
condition, which states that the labeled examples are randomly selected from
a set of positives examples, independently from X, i.e. P (S = 1|Y = 1,X) =
P (S = 1|Y = 1). Let c = P (S = 1|Y = 1). The parameter c is called the
label frequency and plays a key role in the PU learning problem. The primary
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objective of our note is to introduce a new PU learning classification procedure
leading to the estimation of the posterior probability f(x) = P (Y = 1|X = x).

The three basic methods of this estimation have been proposed so far. They
consist in minimizing the empirical risk of logistic loss function and are known
as: the naive method, the weighted method, and the joint method (the last one
has been recently introduced in the paper of Teisseyre et al. [12]). All of these
approaches have been thoroughly described in [12]. As the joint method will be
applied in our procedure’s construction, some details regarding this method will
be presented in the next section of our article. We have named our proposed
classification method as the LassoJoint procedure, since it is a three-step app-
roach combining the thresholded Lasso procedure with the joint method from
Teisseyre et al. [12]. Namely, in its two first steps we perform - for some pre-
specified level - the thresholded Lasso procedure, in order to obtain the support
for coefficients of a feature vector X, while in the third step we apply - on the
previously determined support - the joint method. Apart from the works, where
different learning methods applying logistic regression for PU data have been
proposed, there are also some other interesting articles, where various machine
learning tools in the PU learning problems have been used. In this context, it is
worthwhile to mention: the papers of Hou [7] and Guo [5], where the generative
adversial networks (GAN) for the PU problem have been employed, the work
of Mordelet and Vert [10], where the bagging Support Vector Machine (SVM)
approach for the PU data have been applied, and an article of Song and Raskutti
[11], where the multidimensional PU problem with regard to the features selec-
tion has been investigated, and where the so-called PUlasso design has been
established. It turns out that the LassoJoint procedure, which we propose in our
work, is computationally simple and efficient in comparison to the other existing
methods where the PU problem is considered. The simplicity and efficiency of
our approach have been confirmed by the conducted simulation study.

The remainder of the paper is structured as follows. Namely, in Sect. 2 we
describe our classification procedure in detail, in particular we also prove that the
introduced method is the so-called screening procedure (i.e., it selects with a high
probability the most significant predictors and the number of selected features
is not greater that the sample size), as the screening property is necessary to
apply the joint method in the final step of the procedure. In turn, in Sect. 3 we
carry out some numerical study, in order to check the efficiency of the proposed
approach, while in Sect. 4 we summarize and conclude our research. The results
of numerical experiments on real data are given in Supplement1.

2 The Proposed LassoJoint Algorithm

In our considerations, we assume that we have a random vector (Y,X), where
Y ∈ {0, 1} and X ∈ R

p is a feature vector, and that a random sample
(Y1,X1) , . . . , (Yn,Xn) is distributed as (Y,X) and independent of it. In addi-
tion, we suppose that the coordinates Xji of Xi, i = 1, ..., n, j = 1, ..., p, are
1 https://github.com/kfurmanczyk/ICCS21.
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subgaussian with a parameter σ2
jn, i.e. E exp (uXji) ≤ exp

(
u2σ2

jn/2
)

for all
u ∈ R.

Let: s2n = max1≤j≤p σ2
jn, lim supn s2n < ∞, and P (Y = 1 | X = x) = q(xT β)

for some function 0 < q(x) < 1 and all x ∈ R
p, where p may depend on n and

p > n. Put: I0 = {j : βj �= 0}, I1 = {1, . . . , p}\I0 and |I0| = p0. We shall assume
- as in Kubkowski and Mielniczuk [9] - that the distribution of X satisfies the
linear regression condition (LRC), which means that

E(X | XT β) = u0 + u1X
T β for some u0, u1 ∈ R

p.

This condition is fulfilled (for all β) by the class of elliptical distributions
(such that, e.g., the normal distribution or the multivariate t-Student distribu-
tion). Reasoning as in Kubkowski and Mielniczuk [9], we obtain that under
(LRC), there exists η satisfying β∗ = ηβ, where η �= 0 if cov(Y,XT β) �=
0, and where β∗ = arg minβ R(β), with R standing for the risk func-
tion given by R (β) = −E(X,Y )l (β,X, Y ) , where in turn, l (β,X, Y ) =
Y log σ(XT β) + (1 − Y ) log

(
1 − σ(XT β)

)
, with σ denoting logistic function of

the form σ(XT β) = exp(XT β)/
[
1 + exp(XT β)

]
. Put: I∗

0 =
{
j : β∗

j �= 0
}
, I∗

1 =
{1, . . . , p}\I∗

0 . It may be observed that under (LRC), we have I0 = I∗
0 and con-

sequently that Supp(I0) = Supp(I∗
0 ). In addition, put H(b) = E(XT Xσ′(XT b))

and define a cone C(d,w) = {Δ ∈ R
p : ‖Δwc‖1 ≤ d ‖Δw‖1}, where: w ⊆

{1, . . . , p}, wc = {1, . . . , p}\w, Δw = (Δw1 , . . . ,Δwk
), for w = (w1, . . . , wk).

Furthermore, let κ be a generalized minimal eigenvalue of the matrix H(β∗)
given by κ = infΔ∈C(3,s∗

0)
ΔT H(β∗)Δ

ΔT Δ
. Moreover, we also define β∗

min and βmin as
β∗
min := minj∈I∗

0

∣
∣β∗

j

∣
∣ and βmin := minj∈I0 |βj |, respectively.

After these preliminaries, we are now in a position to depict the proposed
method. Namely, our procedure, called the LassoJoint approach, is a three-step
method, which is described as follows:

(1) For available PU dataset (si, xi), i = 1, . . . , n, we per-
form the ordinary Lasso procedure (see Tibshirani [14]) for some tun-
ing parameter λ > 0, i.e. we compute the following Lasso estima-
tor of β∗: β̂(L) = arg minβ∈Rp+1 R̂(β) + λ

∑p
j=1 |βj | , where R̂(β) =

− 1
n

∑n
i=1

[
si log

(
σ(xT

i β)
)

+ (1 − si) log
(
1 − σ(xT

i β)
)]

and subsequently, we
obtain the corresponding support Supp(L) = {1 ≤ j ≤ p : β̂

(L)
j �= 0};

(2) We perform the thresholded Lasso for some prespecified level δ and obtain
the support Supp(TL) = {1 ≤ j ≤ p :

∣
∣
∣β̂(L)

j

∣
∣
∣ ≥ δ};

(3) We apply the joint method from Teisseyre et al. [12] for the predictors
from Supp(TL).

Remark. The PU problem is related to incorrect specification of the logistic
model. Under the SCAR assumption, we obtain that P (S = 1|X = x) = cq(xT β)
and consequently, if cq() �= σ(), then in step (1) we are fitting misspeci-
fied logistic model to (S,X). Generally speaking, the joint method from [12]
consists in fitting the PU data to logistic function and in the minimization,
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with respect to β and c = P (S = 1 | Y = 1), of the following empirical
risk R̂ (β, c) = − 1

n

∑n
i=1

[
si log

(
cσ(xT

i β)
)

+ (1 − si) log
(
1 − cσ(xT

i β)
)]

, where
σ stands for logistic function and {(si, xi)} is the sample of observations from
the distribution of a random vector (S,X) .

The newly proposed LassoJoint procedure is similar to the LassoSD approach
introduced in Furmańczyk and Rejchel [3]. The only difference between these
two methods is that, we apply the joint method from [12] in the last step of our
procedure - contrary to the procedure from [3] , where the authors use multiple
hypotheses testing in its final stage. The introduced LassoJoint procedure is
determined by the two parameters λ and δ, which may depend on n. The selection
of λ and δ is possible, if we impose the following conditions - denoted as the
assumptions (A1)–(A4):

(A1) The generalized eigenvalue κ, of the matrix H(β∗), is such that m ≤ κ ≤
M , for some 0 < m < M ;

(A2) p20 log(p) = o(n), log(p) = o(nλ2), λ2p20 log(np) = o(1), as n → ∞;
(A3) p0 + c2n

δ2 ≤ n, where cn = 10
√

p0

κ λ;
(A4) βmin ≥ (

δ + cn/
√

p0
)
/η.

Clearly, in view of (LRC), the condition from (A4) is equivalent to the con-
straint that β∗

min ≥ δ + cn/
√

p0. In addition, due to (A2), we get that cn → 0.
The main strictly theoretical result of our work is the following assertion.

Theorem 1. (Screening property) Under the conditions (LRC) and (A1)–(A4),
we have that with a probability at least 1 − εn, where εn → 0:

(a)
∣
∣
∣Supp(TL)

∣
∣
∣ ≤ p0 + c2n

δ2 ≤ n,

(b) I0 ⊂ Supp(TL).

The presented theorem states that the proposed LassoJoint procedure is the
so-called screening procedure, which means that (in the first two steps) this
method selects, with a high probability, the most significant predictors of the
model and that the number of selected features is not greater than the sample
size n. This screening property guarantees that with a high probability, we may
apply the joint procedure from Teisseyre et al. [12], based on fitting logistic
regression to PU data. The proof of Theorem 1 uses the following lemma, which
straightforwardly follows from Theorem 4.9 in Kubkowski [8].

Lemma 1. Under the assumptions (A1)–(A2), we obtain that with a proba-
bility at least 1 − εn, with εn satisfying εn → 0, the following property holds:∥
∥
∥β̂(L) − β∗

∥
∥
∥
2

≤ cn, where cn → 0 and ‖x‖2 =
√∑p

j=1 x2
j for x ∈ R

p.
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Proof. First, we prove the relation stated in (a). By the definition of β̂
(L)
j , we

get
∑

j∈I1∩Supp(TL)

(
β̂
(L)
j

)2

≥ δ2
∣
∣
∣I1 ∩ Supp(TL)

∣
∣
∣ . Hence,

∣
∣
∣I1 ∩ Supp(TL)

∣
∣
∣ ≤ 1

δ2

∑

j∈I1∩Supp(TL)

(
β̂
(L)
j

)2

=
1
δ2

∑

j∈I1∩Supp(TL)

(
β̂
(L)
j − β∗

j

)2

≤ 1
δ2

∥
∥
∥β̂(L) − β∗

∥
∥
∥
2

2
,

and∣
∣
∣Supp(TL)

∣
∣
∣ ≤

∣
∣
∣I0 ∩ Supp(TL)

∣
∣
∣ +

∣
∣
∣I1 ∩ Supp(TL)

∣
∣
∣ ≤ p0 + 1

δ2

∥
∥
∥β̂(L) − β∗

∥
∥
∥
2

2
.

It follows from the cited lemma that with a probability at least 1− εn, where
εn → 0, we have

∣
∣
∣Supp(TL)

∣
∣
∣ ≤ p0 + c2n

δ2 . Combining this inequality with (A3), we
obtain (a). Thus, we only need to prove the property in (b).

Since
{

minj∈I0

(
β̂
(L)
j

)2

≥ δ2
}

⊆
{

I0 ⊂ Supp(TL)
}

, it is sufficient to show

that

P

(
min
j∈I0

(
β̂
(L)
j

)2

≥ δ2
)

≥ 1 − εn. (1)

Let:
β̂
(L)
I0

:=
{

β̂
(L)
j : j ∈ I0

}
, β∗

I0
:=

{
β∗

j : j ∈ I0
}
. As

∥
∥
∥β̂(L) − β∗

∥
∥
∥
2

2
≥

∥
∥
∥β̂

(L)
I0

− β∗
I0

∥
∥
∥
2

2
,

we have from the given lemma that with a probability at least 1 − εn,

p0 min
j∈I0

(
β̂
(L)
j − β∗

j

)2

≤
∥
∥
∥β̂

(L)
I0

− β∗
I0

∥
∥
∥
2

2
=

∑

j∈I0

(
β̂
(L)
j − β∗

j

)2

≤ c2n.

Hence, minj∈I0

∣
∣
∣β̂(L)

j − β∗
j

∣
∣
∣ ≤ cn/

√
p0. In addition, by the triangle inequality, we

obtain that for j ∈ I0,
∣
∣
∣β̂(L)

j

∣
∣
∣ ≥ ∣

∣β∗
j

∣
∣−

∣
∣
∣β̂(L)

j − β∗
j

∣
∣
∣ and therefore, minj∈I0

∣
∣
∣β̂(L)

j

∣
∣
∣ ≥

minj∈I0

∣
∣
∣β̂∗

j

∣
∣
∣−cn/

√
p0. This and (A4) imply that with a probability at least 1−εn,

minj∈I0

(
β̂
(L)
j

)
≥ δ2, which yields (1) and consequently (b).

3 Numerical Study

Suppose that: X1, . . . Xp are generated independently from N(0, 1), and Yi,
i = 1, . . . , n, are generated from the binom(1, pi) distribution, where: pi =
σ(β0 + β1X1i + . . . + βpXpi), β0 = 1. The following high-dimensional models
were simulated:

(M1) p0 = 5, p = 1.2 · 103, n = 103, β1 = . . . = βp0 = 1, βp0+1 = . . . = βp = 0;
(M2) p0 = 5, p = 1.2 · 103, n = 103, β1 = . . . = βp0 = 2, βp0+1 = . . . = βp = 0;
(M3) p0 = 5, p = 103, n = 103, β1 = . . . = βp0 = 2, βp0+1 = . . . = βp = 0;
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(M4) p0 = 20, p = 103, n = 103, β1 = . . . = βp0 = 2, βp0+1 = . . . = βp = 0;
(M5) p0 = 5, p = 2 · 103, n = 2 · 103, β1 = . . . = βp0 = 2, βp0+1 = . . . = βp = 0;
(M6) p0 = 5, p = 2 · 103, n = 2 · 103, β1 = . . . = βp0 = 3, βp0+1 = . . . = βp = 0.

For all of the specified models, the LassoJoint method was implemented. In
its first step, the Lasso method was used with some tuning parameters λ that
were chosen either on the basis of 10-fold cross-validation scheme in the first
scenario or by putting λ = ((log p)/n)1/3 in the second scenario. In the second
step, we applied the thresholded Lasso design for δ = 0.5 · ((log p)/n)1/3.

In the third - and simultaneously - the last step of our procedure, the vari-
ables selected by the thresholded Lasso method were employed to the joint
method from [12] for the problem of the PU data classification. From the listed
models, we randomly selected c · 100% of the labeled observations of S, for
c = 0.1; 0.3; 0.5; 0.7; 0.9. Next, we generated a test sample of size 1000 from our
models and determined their accuracy percentage based on 100 MC replications
of our experiments. The idea of our procedure’s accuracy assesment is similar to
the idea from Furmańczyk and Rejchel [4]. We applied the ‘glmnet’ package [2]
from the R software and [13] in our computations. The results of our simulation
study are collected in Table 1 (the column ‘oracle’ shows the accuracy of classi-
fier that uses only the significant predictors and the true parameters of logistic
models).

Table 1. Results for M1–M6

c Model Scen 1 Scen 2 Oracle Model Scen 1 Scen 2 Oracle

0.1 M1 0.526 0.597 0.808 M4 0.501 0.531 0.939

0.3 M1 0.492 0.456 0.808 M4 0.530 0.529 0.939

0.5 M1 0.598 0.530 0.808 M4 0.671 0.596 0.939

0.7 M1 0.688 0.591 0.808 M4 0.699 0.656 0.939

0.9 M1 0.743 0.623 0.808 M4 0.792 0.733 0.939

0.1 M2 0.505 0.504 0.887 M5 0.410 0.473 0.885

0.3 M2 0.586 0.514 0.887 M5 0.667 0.514 0.885

0.5 M2 0.705 0.565 0.887 M5 0.770 0.588 0.885

0.7 M2 0.770 0.636 0.887 M5 0.803 0.648 0.885

0.9 M2 0.820 0.698 0.887 M5 0.680 0.694 0.885

0.1 M3 0.516 0.568 0.885 M6 0.537 0.548 0.921

0.3 M3 0.608 0.505 0.885 M6 0.742 0.532 0.921

0.5 M3 0.708 0.567 0.885 M6 0.812 0.594 0.921

0.7 M3 0.778 0.640 0.885 M6 0.853 0.668 0.921

0.9 M3 0.820 0.706 0.885 M6 0.710 0.724 0.921

Real data experiments and all codes in R are presented in Supplement, avail-
able on https://github.com/kfurmanczyk/ICCS21.

https://github.com/kfurmanczyk/ICCS21
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4 Conclusions

The results of our simulation study show that if c increases, then the percentage
of correct classifications increases as well. They also show that the classifications
obtained by applying the proposed LassoJoint method display smaller classifica-
tion errors (and thus - better classification accuracy) for the models with larger
signals (i.e., for the M5 and M6 models). Comparing the M3 and M5 models,
we can see that with an increase of the number of significant predictors (p0), the
classification accuracy is slightly decreasing. Furthermore, in all cases - except
for the situation where c = 0.1 - the selection of the tuning parameter λ obtained
by using the cross-validation design results in better classification accuracy. In
addition, we may observe that in the case when c = 0.7 or c = 0.9, our Lasso-
Joint approach is nearly as good as the ‘oracle’ method. In turn, for c = 0.1 the
classification accuracy was low - from 0.41 do 0.60, but in the ‘easiest’ case, i.e.
when c = 0.9, the classification accuracy ranged from 0.7 to 0.82. Furthermore,
the results of our experiments conducted on real datasets show that if c increases,
then the percentage of correct classifications increases as well. In addition, these
results show similar classification accuracy among all of the considered classi-
fication methods (see Supplement). The proposed new LassoJoint classification
method for PU data allows for the relatively low simulation computational costs
to analyze data in a high-dimensional case, i.e. when the number of predictors
exceeds the size of available sample (p > n). We aim to devote our further
research to a more detailed analysis of the introduced procedure, in particular
to the examination regarding optimal selection of the model parameters.
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