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Abstract. The statistical extraction of multiwords (n-grams) from nat-
ural language corpora is challenged by computationally heavy searching
and indexing, which can be improved by low error prediction of the n-
gram frequency distributions. For different n-gram sizes (n≥1), we model
the sizes of groups of equal-frequency n-grams, for the low frequencies,
k = 1, 2, . . ., by predicting the influence of the corpus size upon the Zipf’s
law exponent and the n-gram group size. The average relative errors of
the model predictions, from 1-grams up to 6-grams, are near 4%, for
English and French corpora from 62 Million to 8.6 Billion words.
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1 Introduction

Relevant Expressions (RE) are semantically meaningful n-grams (n ≥ 1), as
“oceanography”, “oil crisis”, useful in document classification [15] and n-gram
applications. However, most word sequences are not relevant in a corpus. Sta-
tistical RE extraction from texts, e.g. [7,18], measures the cohesion among the
n-grams within each distinct multiword; its performance benefits from predict-
ing the n-gram frequency distributions. Low frequency n-grams are significant
proportions of the number of distinct n-grams in a text, as well as of the RE.
Assuming, for language L and n-gram size n, a finite vocabulary V (L, n) in
each temporal epoch [9,16,17], we model the influence of the corpus size upon
the sizes W (k) of equal-frequency (k) n-gram groups, for n ≥ 1, especially for
low frequencies. We present results (and compare to a Poisson-based model), for
English and French Wikipedia corpora (up to 8.6 Gw), for 1≤n ≤ 6. We discuss
background, the model, results and conclusions.

2 Background

Zipf’s law [20] is a good approximation to word frequency distribution, deviating
from real data in high and low frequencies. More accurate approximations pose
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open issues [1,2,6,8,11–14,19]. Low frequency words are often ignored, as well as
multiwords. Most studies use truncated corpora data [5,8], with some exceptions
[17]. In models as [2,3] the probability of a word occurring k times is given by a
power law k−γ corrected by the corpus size influence, but they do not consider
other n-gram sizes, unlike e.g. [16].

3 The Model

Successive model refinements are shown: Wz(k), from Zipf’s Law; Wαd
(k,C) for

corpus size dependence; and W ∗(k,C) for scaling adjustments.

3.1 Wz(k): The Size of the Frequency Levels from Zipf’s Law

By Zipf’s Law [20], the number of occurrences of the rth most frequent word in
a corpus with a number of distinct words given by D, is

f(r) = f(1) · r−α , (1)

α is a constant ∼ 1; r is the word rank (1 ≤ r ≤ D). (1) also applies to n-
grams of sizes n > 1, with α dependent on n (for simplicity α replaces α(n)).
The relative frequency of the most frequent n-gram (r = 1) for each n shows
small fluctuations around a value, taken as an approximation to its occurrence
probability, p1. The absolute frequency f(1) ≈ p1·C. So, ln(f(r)) would decrease
linearly with slope α as ln(r) increases. Real distributions deviate from straight
lines and show, for their higher ranks, groups of equal-frequency n-grams. W(k)
is defined based on Zipf’s law [4,16]. For a level with frequency k, with its lowest
(rlk) and highest (rhk

) n-gram ranks: f(rlk)=f(rhk
)=k; Wz(k) = rhk

− rlk + 1.
The model assumes a minimum observed frequency of 1: f(rl1) = f(rh1) = 1;
rh1 =D; and only applies to the higher ranks / lower frequencies where adjacent
levels (rlk =rhk+1+1) have consecutive integer frequencies: f(rhk+1)=f(rhk

)+1.
Then, (2) is obtained, with constant αz.

Wz(k) =
(

1
Dαz

+
k − 1
f(1)

)− 1
αz −

(
1

Dαz
+

k

f(1)

)− 1
αz

. (2)

D(C;L, n) =
V (L, n)

1 + (K2 · C)−K1
. (3)

For predicting D in a corpus of size C, we use (3), following [16] with good
agreement with real corpora. For language L and n-gram size n, V (L, n) is the
finite vocabulary size; K1, K2 are positive constants. If V is assumed infinite,
(3) equals Heap’s law.
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3.2 An Analytical Model for the Dependence of α on Corpus Size

Empirically, αz is shown to depend on corpus size. So, we consider α in (1) as a
function α(C, r) of the corpus size and the n-gram rank r:

α(C, r) =
ln(fc(1)) − ln(fc(r))

ln(r)
, (4)

where 1 ≤ r ≤ D, and fc(1) and fc(r) are the frequencies, respectively, of the
most frequent n-gram and the rth ranked n-gram, in a corpus of size C. In (2)
α is obtained, for each corpus size, by fitting Wz(1) to the empirical level size
Wobs(1) (for k = 1). For that level, rh1 = D(C,L, n) (denoted D or Dc), and
fc(Dc)=1, so ln(fc(r))=0 in (4) for r = Dc. Let α(C,Dc) (denoted αd(C)), be
the α value at rank D. Let C1 be the size of a reference corpus:

αd(C) − αd(C1)=
ln(fc(1))
ln(Dc)

− Refc1 . (5)

The 2nd term in the right-hand side of (5) (denoted Refc1 ) becomes fixed.
It only depends on fc(1) = C1 ·p1 (p1 is the occurrence probability of the most
frequent n-gram) and Dc1 from (3). Using Table 1 (Sect. 4.2) and tuning αd(C1)
by fitting, for C1, the Wz(1) from (2) to the observed Wobs(1), we find αd(C1)
and Dc1 . Given αd(C1) and Refc1 , then (5) predicts αd(C) for a size C corpus,
and Wz(k) (2) leads to Wαd

(k,C) (6), where αd(C) replaces αz:

Wαd
(k,C)=

(
1

D
αd(C)
c

+
k − 1
fc(1)

)− 1
αd(C)

−
(

1

D
αd(C)
c

+
k

fc(1)

)− 1
αd(C)

. (6)

3.3 W ∗(k, C): The Dependence of Level Size on Corpus Size

The frequency level size depends on frequency k and corpus size C. Firstly, for
a corpus size C, αz in (2) is tuned to best fitting Wz(1) to Wobs(1). Except for
the Wobs(k) fluctuations (Fig. 1a), the deviation, closely proportional to ln(k),
between Wobs(k) and Wz(k), suggests the improvements due to (7) (Fig. 1a).

Wadjusted(k) = Wz(k) · kβ . (7)

β is a constant for each n, obtained from the best fit of W (k) to Wobs(k), for
a given corpus. Secondly, for different corpus sizes, Fig. 1b shows Wobs(k) curves
as a function of k, seeming parallel, but a detailed analysis shows otherwise.
If, for each ln(Wobs(k,C∗)) for the three smaller corpora C∗, an offset equal to
ln(Wobs(1, C))− ln(Wobs(1, C∗)) is added (C =8.6 Gw being the largest corpus),
the resulting curves (omitted due to lack of space) do not coincide, as they should
if they were parallel in Fig. 1b. The gap between the curves is proportional to
ln(k). And, for each ln(k) value, the distance in ln(Wobs(k)) for corpora of sizes
C and C1 is proportional to log2(C/C1). The distance between the ln(W (k))
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Fig. 1. a) 1-gram equal-frequency level size W (k) vs k (log-log scale) – observed and
estimates by (2) and (7) from a 1.1 Gw English corpus; b) Observed 3-gram level size
values, Wobs(k) vs k (log-log scale), for different English corpora sizes.

curves of any two corpora C and C1 is approximated by (8), with δ constant for
each n. Joining (6), (7), (8) leads to the final model, W ∗(k,C), (9):

Δ = δ · ln(
C

C1
) · ln(k) (8)

W ∗(k,C)=Wαd
(k,C) · kβ+δ·ln( C

C1
) . (9)

4 Results and Discussion

4.1 The Poisson-Zipf Model

In the WP (k,C) model of [17] given by (10), an n-gram ranked r occurs, in a size
C corpus, a number of times following Poisson distribution [10] with λr = f(r)
by Zipf’s Law. W (0)=WP (0, C) is the estimated number of unseen n-grams in
the corpus. D=V − W(0), for n-gram vocabulary size V .

WP(k,C)=
r=V∑
r=1

(p1 ·C ·r−α)k · e−p1·C·r−α

k!
≈

∫ V

1

(p1 ·C ·r−α)k · e−p1·C·r−α

k!
dr

≈ (p1 ·C)1/α

α·k!
·
[
Γ (k− 1

α
,
p1 ·C
V α

) − Γ (k− 1
α

, p1 ·C)
]

(10)

4.2 Comparison of Results

Complete corpora were built from documents randomly extracted from English
and French Wikipedia. For evaluating size dependence, they were doubled succes-
sively (Table 2). A space was added between the words and each of the following
characters: {!, ?, :, ;, ,, (, ), [, ], <, >, ”}. All inflected word forms were kept.
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The Model Calculations. (I) To calculate D(C;L, n) in (3), parameters K1,
K2 and V (L, n) were found for each language L and n-gram size n (Table 1,
also showing the β and δ values used in (9)). The V (L, n) value is an estimate
of the vocabulary size, such that further increasing it, does not significantly
reduce the relative error ((E − O)/O) · 100%, between an estimated value (E)
and the corresponding observed value (O). Pairs (K1, K2) were found leading
to the lowest possible relative error, for a selected pair of corpora with sizes
close to the lowest and highest corpora sizes in the considered range for each
language. (II) To evaluate the relative errors, (9) was applied with k such that
the observed level sizes of consecutive frequency levels k and k+1 are mono-
tonic decreasing, Wobs(k,C) > Wobs(k +1, C). This avoids the non-monotony
regions of the observed ln(W (k)) curve (Fig. 1a). We considered a basic set of k
values, K = {1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128}, constrained (to ensure ln(W (k))
monotony) depending on the corpus size C: for C < 250 Mw, we used k ≤ 16;
for C < 1 Gw, k ≤ 32; the full K set was used only for C > 4 Gw. We selected
corpora of sizes (C1) 1.1 Gw (English) and 808 Mw (French). (III) The αd(C1)
values for n-gram sizes from 1 to 6 are: (English) 1.1595, 1.02029, 0.88825,
0.82532, 0.8117, 0.8027; (French) 1.158825, 1.0203, 0.86605, 0.84275, 0.80818,
0.7569. The empirical values of p1 for n-gram sizes from 1 to 6: (English) 0.06704,
0.03250, 0.0062557, 0.0023395, 0.0017908, 0.0014424; (French) 0.07818, 0.037976,
0.004685, 0.0036897, 0.001971, 0.00072944. (IV) To run WP(K,C), α values lead-
ing to the lowest relative errors, are, for n-gram sizes from 1 to 6: (English) 1.17,
1.02, 0.891, 0.827, 0.814, 0.812; (French) 1.156, 1.01, 0.884, 0.842, 0.806, 0.759.

Table 1. Parameter values K1, K2 and vocabulary sizes (V (L, n)) to be used in
D(C; L, n), (3), and β and δ to W ∗(k,C), (9).

English

1-grams 2-grams 3-grams 4-grams 5-grams 6-grams

K1 0.838 0.861 0.885 0.924 0.938 0.955

K2 3.61 e−11 5.1 e−11 2.66 e−11 1.78 e−11 4.29 e−12 6.5 e−13

V 2.45 e+8 9.9 e+8 4.74 e+9 1.31 e+10 6.83 e+10 5.29 e+11

β 0.044 0.113 0.129 0.135 0.122 0.082

δ 0.0039 0.0118 0.0310 0.0353 0.0339 0.0331

French

1-grams 2-grams 3-grams 4-grams 5-grams 6-grams

K1 0.809 0.794 0.838 0.867 0.903 0.907

K2 4.501 e−11 3.801 e−11 3.901 e−11 2.501 e−11 2.201 e−11 2.01 e−12

V 2.35 e+8 1.095 e+9 3.1 e+9 8.18 e+9 1.41 e+10 1.45 e+11

β 0.0812 0.120 0.175 0.140 0.160 0.234

δ 0.0061 0.0190 0.0354 0.0491 0.0469 0.0384
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Table 2 presents the relative errors for the predictions of the frequency level
sizes. For each n-gram size, the left column refers to W ∗(k,C) and the right
one to WP(k,C). For each pair (corpus size, n-gram size), it shows the aver-
age relative error for the K set used: AvgErr(K) = 1

‖K‖
∑

k∈K Err(k), where

Err(k)= |W(k,C)−Wobs(k,C)
Wobs(k,C) |. The average relative errors for W ∗(k,C) are much

lower than for WP (k,C), which assumes an ideal Zipf’s Law. The line Avg shows
the average value of each column over the full range of corpora sizes, with errors
of the same magnitude across the range of n-gram sizes for W ∗(k,C), but having
significant variations in the Avg values for WP (k,C). The global relative error
is the average of the Avg values over the range of n-gram sizes, being around
4% for W ∗(k,C). Thus, W ∗(k,C) curves (omitted due to lack of space) closely
follow the Wobs(k,C) curves forms of Fig. 1.

Table 2. Average relative error (%) for the predictions of the n-gram frequency level
sizes obtained by W ∗(k, C), (9), (left col.), and WP(k, C), (10), (right col.). Each cell
in the table gives an average relative error over a subset of k values within the set K
considered for that cell, as described in the text.

English

Corpus 1-grams 2-grams 3-grams 4-grams 5-grams 6-grams

63 Mw 5.1 29.9 7.5 42.0 3.1 50.1 4.4 53.7 6.3 54.5 5.8 64.7

128 Mw 2.2 23.7 2.8 32.4 4.4 42.5 6.6 45.9 5.7 49.5 7.1 60.3

255 Mw 3.1 22.1 2.0 28.4 2.6 36.3 5.9 37.6 3.7 40.0 5.4 49.8

509 Mw 4.9 15.8 4.7 22.2 3.7 29.4 4.6 30.1 4.7 31.9 6.6 40.3

1.1 Gw 3.1 13.3 2.6 19.8 3.4 26.4 3.9 26.8 5.4 27.9 5.2 32.9

2.2 Gw 5.1 9.5 6.2 23.2 3.9 26.7 3.3 28.5 4.9 31.5 3.7 28.7

4.3 Gw 2.8 10.7 2.7 28.5 2.3 34.8 3.1 37.4 4.2 39.3 4.8 31.4

8.6 Gw 6.1 13.4 6.7 37.6 4.4 47.2 6.0 51.7 5.9 52.4 6.5 40.4

Avg 4.1 17.3 4.4 29.3 3.5 36.7 4.7 39.0 5.1 40.9 5.6 43.6

French

Corpus 1-grams 2-grams 3-grams 4-grams 5-grams 6-grams

108 Mw 2.8 22.6 2.4 30.9 2.6 54.9 4.2 40.8 4.9 42.3 5.5 65.4

201 Mw 1.5 18.6 2.0 25.7 2.1 49.8 2.9 33.0 3.2 33.9 3.5 57.7

404 Mw 2.7 15.5 2.9 23.5 4.0 44.4 4.6 28.4 4.9 29.4 5.0 51.6

808 Mw 2.9 12.6 3.0 26.7 3.2 34.8 3.4 23.6 3.6 24.3 3.7 43.8

1.61 Gw 4.6 16.9 3.5 37.2 3.0 29.0 2.9 28.7 3.3 29.6 3.4 41.9

3.2 Gw 4.0 19.2 3.2 48.6 4.2 22.8 5.3 39.5 3.3 41.1 6.6 49.7

Avg 3.1 17.6 2.8 32.1 3.7 39.3 3.9 32.3 3.9 33.4 4.6 51.7
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5 Conclusions

Estimating n-gram frequency distributions is useful in statistical-based n-gram
applications. The proposed model estimates the sizes W (k,C) of equal-frequency
(k) n-gram groups in a corpus of size C, for the low frequency n-grams. It
applies uniformly to different n-gram sizes n ≥ 1 and languages, assuming a
finite language n-gram vocabulary. It models the dependences of Zipf’s Law
exponent and W (k,C) on C, agreeing well with n-gram frequency data from
unigrams up to hexagrams, from real un-truncated English and French corpora
with million to billion words. Larger corpora evaluation is planned.
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11. Lü, L., Zhang, Z.K., Zhou, T.: Deviation of zipf’s and heaps’ laws in human lan-
guages with limited dictionary sizes. Sci. Rep. 3(1082), 1–7 (2013)

12. Mandelbrot, B.: On the theory of word frequencies and on related Markovian mod-
els of discourse. In: Structural of Language and its Mathematical Aspects (1953)

13. Mitzenmacher, M.: A brief history of generative models for power law and lognor-
mal distributions. Internet Math. 1(2), 226–251 (2003)

14. Piantadosi, S.T.: Zipf’s word frequency law in natural language: a critical review
and future directions. Psychonomic Bull. Rev. 21, 1112–1130 (2014)

15. Silva, J., Mexia, J., Coelho, A., Lopes, G.: Document clustering and cluster topic
extraction in multilingual corpora. In: Proceedings 2001 IEEE International Con-
ference on Data Mining, pp. 513–520 (2001)

16. Silva, J.F., Cunha, J.C.: An empirical model for n-gram frequency distribution
in large corpora. In: Lauw, H.W., et al. (eds.) PAKDD 2020. LNCS (LNAI), vol.
12085, pp. 840–851. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
47436-2 63

https://doi.org/10.1007/978-3-030-22741-8_6
https://doi.org/10.1007/978-3-030-22741-8_6
https://doi.org/10.1007/978-3-030-47436-2_63
https://doi.org/10.1007/978-3-030-47436-2_63


706 J. F. Silva and J. C. Cunha
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