
Improved Lower Bounds for the Cyclic
Bandwidth Problem

Hugues Déprés1, Guillaume Fertin2(B) , and Eric Monfroy3

1 ENS de Lyon, Computer Science Department, Lyon, France
hugues.depres@ens-lyon.fr

2 Université de Nantes, LS2N (UMR 6004), CNRS, Nantes, France
guillaume.fertin@univ-nantes.fr
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Abstract. We study the classical Cyclic Bandwidth problem, an
optimization problem which takes as input an undirected graph G =
(V, E) with |V | = n, and asks for a labeling ϕ of V in which every ver-
tex v takes a unique value ϕ(v) ∈ [1; n], in such a way that Bc(G, ϕ) =
max{minuv∈E(G){|ϕ(u)−ϕ(v)|, n−|ϕ(u)−ϕ(v)|}}, called the cyclic band-
width of G, is minimized.

We provide three new and improved lower bounds for the Cyclic
Bandwidth problem, applicable to any graph G: two are based on
the neighborhood vertex density of G, the other one on the length of
a longest cycle in a cycle basis of G. We also show that our results
improve the best known lower bounds for a large proportion of a set of
instances taken from a frequently used benchmark, the Harwell-Boeing
sparse matrix collection. Our third proof provides additional elements:
first, an improved sufficient condition yielding Bc(G) = B(G) (where
B(G) = minϕ{maxuv∈E(G){|ϕ(u)−ϕ(v)|}} denotes the bandwidth of G) ;
second, an algorithm that, under some conditions, computes a labeling
reaching B(G) from a labeling reaching Bc(G).

Keywords: Cyclic bandwidth problem · Graph labeling · NP-hard
problem · Optimization · Lower bounds

1 Introduction

Let G = (V,E) be an undirected graph without loops and multiple edges.
Let |V | = n, and let ϕ be a bijection from V to [n], where [n] denotes the
set {1, 2, 3 . . . n}. In the rest of the paper, ϕ will be called a cb-labeling of
G (where “cb” stands for “cyclic bandwidth”). For any value p ∈ Z, we let
|p|n = min{|p|, n − |p|}. The Cyclic Bandwidth of G induced by ϕ, which we
denote Bc(G,ϕ), is defined as follows: Bc(G,ϕ) = maxuv∈E{|ϕ(u) − ϕ(v)|n}.
The Cyclic Bandwidth of a graph G, denoted Bc(G), is the minimum value
Bc(G,ϕ) among all possible labelings ϕ, and such a labeling will be called an
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optimal cb-labeling. We are now ready to define the Cyclic Bandwidth prob-
lem, which is the following optimization problem: given a graph G = (V,E)
with n vertices, find Bc(G). In the following, we shall denote by ϕ∗ any optimal
cb-labeling of G, i.e., any labeling of G satisfying Bc(G,ϕ∗) = Bc(G).

The Cyclic Bandwidth problem has been introduced in [6], in the context
of designing a ring interconnection network between computers. It can be seen
as a variant of the well-known Bandwidth Minimization problem, whose for-
mal introduction is due to Harper [3] in 1964 – see also the survey from Chinn
et al. [1] for a more detailed historical account. The Bandwidth Minimization
problem also asks for a bm-labeling ϕ (where “bm” stands for “bandwidth mini-
mization”), i.e., a bijection from V to [n]. The value computed from ϕ is in that
case B(G,ϕ) = maxuv∈E{|ϕ(u)−ϕ(v)|}. The Bandwidth Minimization prob-
lem asks for a labeling ϕ∗ such that B(G,ϕ∗) is minimized, and the latter value
is denoted B(G). Any optimal labeling will be called an optimal bm-labeling
of G. Note that there is a strong connection between B(G) and Bc(G), starting
with the trivial fact that for any graph G, Bc(G) ≤ B(G).

The Cyclic Bandwidth has been extensively studied. It has been shown
to be NP-hard, even in the case of trees with maximum degree 3 [8]. The
value of Bc(G) has also been determined when G belongs to a specific class
of graphs, e.g., paths, cycles, Cartesian products of paths (resp. of cycles, of
paths and cycles), full k-ary trees, complete graphs, complete bipartite graphs,
and unit interval graphs [2,4,7,8]. Some other works studied the relationship
between Bc(G) and B(G), and notably aimed at determining sufficient condi-
tions under which the equality B(G) = Bc(G) holds [5,9]. In particular, it has
been shown that B(T ) = Bc(T ) for any tree T [4]. Another set of results is
concerned with determining bounds for Bc(G), and notably lower bounds, for
general graphs [15]. First, it is easy to see that for any graph G, Bc(G) ≥ Δ(G)

2 ,
where Δ(G) denotes the maximum degree of G. Besides, for any graph G, we
have B(G)

2 ≤ Bc(G) ≤ B(G), the leftmost bound being from [9]. Other lower
bounds have been obtained, most of these results being based on the density
or on a relevant cycle basis of the studied graph (see, e.g., [4,15] which are in
connection with our results).

Finally, more recent papers are concerned with designing efficient heuristics
for the Cyclic Bandwidth problem (see, e.g., [12–14]) where both execution
time and upper bounds for Bc(G) are examined – the latter being tested on a
subset of the classical Harwell-Boeing sparse matrix collection (see, e.g., https://
math.nist.gov/MatrixMarket/collections/hb.html).

Our goal in this paper is to provide lower bounds for Bc(G) that apply to
any graph G. We essentially prove three lower bounds: two of them rely on the
graph density (Theorems 1 and 3), and both improve the best known results; the
third one relies on a relevant cycle basis for G (Theorem 9), and also improves
the best known related result. The latter result also presents improved sufficient
conditions under which Bc(G) = B(G), and provides a relabeling algorithm
which, under these conditions, and given a cb-labeling ϕ of G, computes a bm-
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labeling ϕ′ of G such that Bc(G,ϕ) = B(G,ϕ′). We also successfully applied our
results to a benchmark of 28 Harwell-Boeing graphs.

This paper is organized as follows: in Sect. 2 we discuss our graph density
lower bounds, and in Sect. 3 our lower bound based on a relevant cycle basis
of G. Section 4 describes our results on the abovementioned benchmark.

2 Graph Density Lower Bounds

In this section, we present, in Theorems 1 and 3, two new lower bounds on Bc(G)
that apply to any graph G. As discussed later, they can be seen as generalizations
of previously existing lower bounds.

Theorem 1. Let G be a graph, v any vertex of G, and i ≥ 1 an integer. Let
Ni(v) denote the set of vertices within distance i from v in G. Then we have
Bc(G) ≥

⌈
|Ni(v)|−1

2i

⌉
.

In order to prove Theorem 1, the following lemma is needed.

Lemma 2. Let d ≥ 0 be an integer, and let u0, u1, . . . , ud be a path of length d
in G. Let ϕ∗ be an optimal cb-labeling of G. Then, |ϕ∗(ud)−ϕ∗(u0)|n ≤ d·Bc(G).

Proof. First, note that |x − y|n satisfies the triangle inequality. Since ϕ∗ is an
optimal cb-labeling of G, by definition we have |ϕ∗(ui+1)−ϕ∗(ui)|n ≤ Bc(G) for
any 0 ≤ i < d. Consequently, summing the above expression for all 0 ≤ i < d
yields the required result. ��
Proof. (of Theorem 1). Let i ≥ 1 be an integer, and recall that Ni(v) denotes
the set of vertices lying at distance less than or equal to i from v in G. Let ϕ∗

be an optimal cb-labeling of G, and by extension let ϕ∗(Ni(v)) be the set of
labels used by ϕ∗ to label the vertices of Ni(v). From Lemma 2 we conclude that
ϕ∗(Ni(v)) ⊆ [ϕ∗(v) − i · Bc(G);ϕ∗(v) + i · Bc(G)] mod n, since for any vertex
u ∈ Ni(v) there exists a path of length at most i between v and u.

The above interval [ϕ∗(v) − i · Bc(G);ϕ∗(v) + i · Bc(G)] mod n contains
2i · Bc(G) + 1 distinct values. Since ϕ∗ is injective, we have that |Ni(v)| ≤
2i · Bc(G) + 1, which concludes the proof. ��

Note that Theorem 1 generalizes the trivial lower bound Bc(G) ≥
⌈

Δ(G)
2

⌉

(where Δ(G) denotes the maximum degree of G): take for this i = 1 and any
vertex v of degree Δ(G). Our second result has the same flavor as Theorem 1
above. However, instead of relying on Ni(v), it considers the number of vertices
that lie at distance at most i from either one of two vertices u or v of G, where
uv ∈ E(G).

Theorem 3. Let G = (V,E) be a graph, u and v two distinct vertices of G,
i ≥ 1 an integer, and Ni(u, v) the set of vertices within distance i from either u

or v in G. Then, for every edge uv ∈ E, we have Bc(G) ≥
⌈

|Ni(u,v)|−1
2i+1

⌉
.
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Proof. The arguments are somewhat similar to those used in proof of Theorem 1.
Take any edge uv ∈ E(G), and observe an optimal cb-labeling ϕ∗ of G. First,
note that |ϕ∗(u) − ϕ∗(v)|n ≤ Bc(G) by definition. Moreover, by Lemma 2, we
know that the set of labels used by ϕ∗ to label the vertices of Ni(u, v) is included
in a closed interval of size (2i + 1) · Bc(G), since any two vertices of Ni(u, v) are
connected by a path of length at most 2i + 1. Since ϕ∗ is injective, we conclude
from the above that |Ni(u, v)| ≤ (2i + 1) · Bc(G) + 1, which proves the result.��

We note that, although Theorems 1 and 3 look similar, none of these two
results strictly contains the other. Note also that Theorem 3 generalizes a result
for lower bounds on trees proved in [8]. Due to lack of space, the above two
claims are not proved here. We finally note that the lower bounds of Theorems 1
and 3 are tight for several well-known classes of graphs, such as paths, cycles,
complete graphs, and caterpillars.

3 Cycle Basis Lower Bound

The whole current section is devoted to proving Theorem 9, which provides a
lower bound for Bc(G) based on both B(G) and the length � of the longest
cycle in a cycle basis of G. Theorem 9 also gives an improved sufficient condition
under which Bc(G) = B(G), also based on �. Theorem 9 can be considered as
somewhat similar to Theorem 3.1 from [4], but is actually different as it provides
a lower bound for Bc(G).

Another interesting point is that, on the way to proving Theorem 9, we
also prove the following result, of independent interest: there exists a labeling
algorithm (namely, Algorithm 1) that, when � < n

Bc(G) , computes a bm-labeling
ϕ′ of G starting from a cb-labeling ϕ of G, such that B(G,ϕ′) ≤ Bc(G,ϕ).
In particular, if ϕ is optimal, so is ϕ′, and thus Bc(G) = B(G). The interest
of Algorithm 1 lies in the fact that, when � < n

Bc(G) , a labeling ϕ satisfying
Bc(G,ϕ) = k does not necessarily satisfy B(G,ϕ) = k – and in that case another
labeling ϕ′ is needed in order to reach B(G,ϕ′) = k.

Theorem 9 relies on Lemma 7, which we prove first. Before that, we start
with some definitions.

Definition 4. Let G1 and G2 two graphs such that V (G1) = V (G2) = V . The
pairwise symmetric difference of G1 and G2, denoted psd(G1, G2), is the graph G′

whose set of vertices is V , and whose edges are those belonging to exactly one
of the two graphs G1 and G2. By extension, the symmetric difference sd(G) of
a set G = {G1, G2 . . . Gp} of graphs, each built on the same set V of vertices, is
psd(G1, psd(G2(. . . psd(Gp−1, Gp))).

Definition 5. A cycle basis of a graph G is a set of cycles C of G such that any
cycle of G either belongs to C or can be obtained by symmetric difference of a
subset of C.

Finally, we use a definition from [4], which will prove useful in the following.
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Definition 6. Given a graph G = (V,E), let S ⊂ V ×V be such that (u, v) ∈ S
iff uv ∈ E(G). Let ϕ be a cb-labeling of V , and let αϕ : S → {−1, 0, 1} denote
the following function:

αϕ(u, v) =

⎧
⎨
⎩

0 if |ϕ(u) − ϕ(v)| ≤ Bc(G,ϕ)
1 if ϕ(u) − ϕ(v) ≥ n − Bc(G,ϕ)
−1 if ϕ(u) − ϕ(v) ≤ Bc(G,ϕ) − n

In other words, αϕ(u, v) = 0 whenever u and v have “close enough labels”.
Otherwise, αϕ(u, v) = ±1, depending on which vertex among u and v has the
greatest label. Hence, αϕ is not symmetric, since for any edge uv in E(G),
αϕ(u, v) = −αϕ(v, u). In the following, we will say that an edge uv ∈ E(G) has
a zero αϕ when αϕ(u, v) = 0, and a non-zero αϕ otherwise.

1
2

3

4
5

6

7

8
9

Fig. 1. Illustration of Definition 6 on a graph G with n = 9 with a cb-labeling ϕ
such that Bc(G, ϕ) = 4. Each edge uv crossing the dashed vertical line has a non-zero
αϕ(u, v).

Fig. 1 illustrates the above definition. This figure represents a graph G with
n = 9 vertices, together with a cb-labeling ϕ satisfying Bc(G,ϕ) = 4 (note that
ϕ is not optimal, since B(G) = 2 in this case). Vertices of G are displayed along
a cycle, ordered (clockwise) by their labels in ϕ. For readability, we assume that
labels and vertex identifiers are the same.

It can be seen that all edges having a non-zero αϕ are the ones that cross
the dashed vertical line – because that line separates edges whose end vertices
carry labels that are strictly more than Bc(G,ϕ) = 4 apart. The important thing
to notice here is that, for any edge uv of G, the sign of the corresponding αϕ

depends in which direction the dashed line is crossed, for example αϕ(7, 2) =
αϕ(8, 1) = αϕ(9, 1) = 1 (the dashed line is crossed from left to right), while
αϕ(2, 7) = αϕ(1, 8) = αϕ(1, 9) = −1 (the dashed line is crossed from right
to left). In other words, when computing αϕ(u, v) for an edge uv ∈ E(G), an
orientation is given to that edge.

Let us define sα(C) = αϕ(xp, x0) +
∑p−1

i=0 αϕ(xi, xi+1) for any cycle C =
(x0, x1, . . . xp, x0) of G, and let us call sα(C) the α-sum of C).

It can then be seen that, if C1 and C2 are two cycles in G, and if C =
psd(C1, C2) is also a cycle, not all edges of C necessarily have the same ori-
entation (induced by αϕ) as in C1 or C2. Such a case is illustrated in Fig. 2,
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where, e.g., the edge connecting vertices 2 and 5 in C1 (left) is oriented from
2 to 5 in the α-sum of C1, while in C = spd(C1, C2) (right), the same edge is
oriented from 5 to 2 in the α-sum of C. As a consequence, in this case, we have
sα(C1) = sα(C2) = 0 and sα(C) = 2 
= 0. The example shown in Fig. 2 shows

1

2

3

4

5 1

2

3

4

5 1

2

3

4

5

Fig. 2. A graph G with n = 5 vertices, such that Bc(G) = 2, in which the labels of an
optimal cb-labeling ϕ are also the vertices identifiers. Edges in C1 (left), C2 (middle),
and C = spd(C1, C2) (right) are arbitrarily oriented to compute their respective α-sum.
It can be seen that, in any case, sα(C1) = sα(C2) = 0, while sα(C) = 2.

that sα is not necessarily conserved by symmetric difference. However, in the
following lemma, which is a stronger version of Lemma 3.2 from [4], we are able
to show that all cycles have a 0 α-sum under certain conditions.

Lemma 7. Let G be a graph, and ϕ an optimal cb-labeling of G. If the set of
cycles of G of length at most � < n

Bc(G) contains a cycle basis, then for any cycle
C of G, sα(C) = 0.

Proof. Let ϕ be an optimal cb-labeling of G. Assume, by contradiction, that
there is a cycle C of G such that sα(C) 
= 0. Remove from G all edges that
have a non-zero αϕ, and let S1, S2, .., Sp denote the connected components of
the resulting graph. For each connected component Si, 1 ≤ i ≤ p and any
subgraph G′ = (V ′, E′) of G, we define the following function γi(G′): γi(G′) =∑

e∈E(G′) γi(e), where for any edge uv ∈ E(G′), γi(uv) = 1 if α(u, v) 
= 0 and
at least one vertex (say x) among u, v satisfies (i) ϕ(x) > n

2 and (ii) x ∈ V (Si) ;
and γi(uv) = 0 otherwise.

One of the interests of γi is that, unlike αϕ, this funtion is symmetric: any
edge uv will contribute the same way to γi, whether it is considered from u to v
or from v to u. We will now prove Lemma 7 through a series of three claims.

Claim 1. Let 1 ≤ i ≤ p, and let G1 and G2 be two subgraphs of G such that
γi(G1) and γi(G2) are even. Then, G′ = psd(G1, G2) is such that γi(G′) is even.

Proof. (of Claim 1). Take any 1 ≤ i ≤ p, and let G1 and G2 be two sub-
graphs of G such that both γi(G1) and γi(G2) are even. Then γi(psd(G1, G2)) =
γi(G1) + γi(G2) − 2 · ∑e∈E(G1)∩E(G2)

γi(e), since all edges e present in both G1

and G2 are removed from psd(G1, G2). Since all numbers in the above equation
are even, γi(sd(G1, G2)) is also even. ��
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Claim 2. Any cycle C ′ of G whose length � satisfies � < n
Bc(G) is such that γi(C ′)

is even for any 1 ≤ i ≤ p.

Proof. (of Claim 2). Observe a cycle C ′ = (x0, x1, ..., x�) (with x0 = x�) of G, of
length � < n

Bc(G) , and consider the set L of labels that are used to label V (C ′).
We claim that L belongs to a (cyclic) interval I of cyclic length strictly less
than n

2 . In order to show this, let u (resp. v) be the vertex of C ′ whose label
is minimum (resp. maximum), and let ϕmin = ϕ(u) (resp. ϕmax = ϕ(v)). Now
let us consider the set L of labels that are used to label V (C ′). There are three
possible cases for L: first, suppose L ⊆ [ϕmin;ϕmax]. Then, I = [ϕmin;ϕmax], and
I is of length strictly less than n

2 by definition of the cyclic bandwidth and since
Bc(G) < n

� . Second, suppose L ⊆ [1;ϕmin] ∪ [ϕmax;n]. For the same reasons
as in the previous case, we conclude that the interval I = [1;ϕmin] ∪ [ϕmax;n]
is of cyclic length strictly less than n

2 . Third, suppose we are not in one of
the two above cases, and let us show that this case cannot happen: indeed,
this means that at least one vertex x 
= u, v (resp. y 
= u, v) of V (C ′) satisfies
ϕ(x) ∈ [1;ϕmin[ ∪ ]ϕmax;n] (resp. ϕ(y) ∈ ]ϕmin;ϕmax[. We will say that x
(resp. y) has a small (resp. high) label. Now let Px denote the path from u
to v, that contains x, and that follows the edges of C ′. Let Sx be the sum of
|ϕ(a) − ϕ(b)|n over all edges ab in Px. Then, we know that Sx ≥ ϕmax − ϕmin.
Now consider the path Py going from u to v that contains y, and that follows
the edges of C ′. Let Sy be the sum of |ϕ(c) − ϕ(d)|n over all edges cd in Py.
Then we know that Sy ≥ n − ϕmax + ϕmin. Hence, Sx + Sy ≥ n. We will now
show that, since we supposed � < n

Bc(G) , this cannot happen. Indeed, we have

Sx + Sy =
∑�−1

i=0 |ϕ(xi+1) − ϕ(xi)|n ≤ � · Bc(G), because for any two neighbors
xi+1 and xi in C ′ we have |ϕ(xi+1) − ϕ(xi)|n ≤ Bc(G), by definition of Bc(G).
Moreover, we know by hypothesis that � · Bc(G) < n, thus we conclude that
Sx + Sy < n, a contradiction.

We just proved that L belongs to a (cyclic) interval I of cyclic length strictly
less than n

2 . Let us now observe interval I. There are two cases: first, if either 1
or n is not in I, then all edges uv of C ′ satisfy αϕ(u, v) = 0, by definition of αϕ

and because Bc(G) ≤ n
2 for any graph G. Thus, every edge of C ′ contributes to

zero in γi(C ′), and consequently γi(C ′) = 0 for any 1 ≤ i ≤ p.
Second, if both 1 and n are present in I, take any integer 1 ≤ i ≤ p and

partition the vertices of C ′ in two sets: the first set V1 contains every vertex
u ∈ V (C ′) such that ϕ(u) > n

2 and u ∈ V (Si) ; the second set is V2 = V (C ′)−V1.
Let uv be an edge of C ′. We will say that uv is a crossing edge if u ∈ V1 and

v ∈ V2, or vice-versa – this term refers to the fact that, as we will prove it, a
crossing edge uv necessarily satisfies α(u, v) 
= 0, and thus, crosses the dashed
vertical as in Fig. 1. Take any edge uv in C ′. By definition, γi(uv) ∈ {0, 1}. Our
goal here is to show that γi(uv) = 1 iff uv is a crossing edge.

(⇐) Suppose uv is a crossing edge, and suppose wlog that u ∈ V1 and v ∈ V2.
In that case, ϕ(v) < n

2 . Otherwise, we would have αϕ(u, v) = 0 (by definition
of αϕ, because the labels of u and v are separated by less than Bc(G)), which
implies that both vertices u and v belong to Si, since u ∈ V (Si). But in that
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case v would belong to V1, since v ∈ V (Si) and ϕ(v) > n
2 . This is a contradiction

since v cannot simultaneously belong to V1 and V2. Thus, every crossing edge uv
with u ∈ V1 and v ∈ V2 is such that ϕ(v) < n

2 , and consequently αϕ(u, v) 
= 0.
This implies that for any such edge uv, γi(uv) = 1.

(⇒) Now suppose γi(uv) = 1, which implies αϕ(u, v) 
= 0. Thus, there are two
cases: αϕ(u, v) > 0 or αϕ(u, v) < 0. First, if αϕ(u, v) > 0, and since γi(uv) = 1,
then u ∈ V (Si) by definition. Moreover, αϕ(u, v) > 0 implies (by definition)
ϕ(u) ≥ ϕ(v) + n − Bc(G,ϕ). Since Bc(G,ϕ) ≤ n

2 for any graph G and any
labeling ϕ, and since ϕ(v) ≥ 1, we conclude that ϕ(u) > n

2 . We then know that
u ∈ V1 by definition. Moreover, v 
∈ V1, otherwise uv ∈ E(Si), a contradiction to
the fact that all edges in E(Si) have a zero αϕ. Thus, we conclude that v ∈ V2,
and that uv is a crossing edge. Now if αϕ(u, v) < 0, by a symmetrical argument
as above, we conclude that v ∈ V1 and u ∈ V2, i.e., uv is a crossing edge as well.

We thus know that each edge uv ∈ E(C ′) contributes to 1 to γi iff uv is a
crossing edge. This allows us to prove the claim: if we follow the edges of C ′ to
compute γi(C ′), the number of crossing edges encountered is necessarily even,
since C ′ starts and ends in the same vertex. Since only a crossing edge increases
γi (by exactly 1), we conclude that γi(C ′) is even. ��
Claim 3. There exists an integer 1 ≤ j ≤ p and a cycle C ′ of G such that
γj(C ′) = 1.

Proof. (of Claim 3). Recall that we suppose there exists a cycle C in G such that
sα(C) 
= 0. For each 1 ≤ i ≤ p, let Σi be the sum of the αϕ(u, v) for each edge uv
of C that has an extremity in Si, counting uv twice in Σi if both u, v ∈ V (Si).
The sum of the Σis over every 1 ≤ i ≤ p is thus equal to 2sα(C).

Since we supposed sα(C) 
= 0, we know there exists at least one j, 1 ≤ j ≤ p,
such that Σj 
= 0. Thus, there exists at least one edge uv ∈ E(C) such that (i) at
least one of u, v ∈ V (Sj), and (ii) αϕ(u, v) 
= 0.

Now let us look at every edge along C (following the natural order of the
cycle), and let us observe each pair (uv,wx) of edges (with possibly uv = wx)
satisfying the following: (i) αϕ(u, v) 
= 0 and u ∈ V (Sj) and (ii) αϕ(w, x) 
= 0
and x ∈ V (Sj). Because Σj 
= 0, such a pair (again with possibly uv = wx) must
exist. Moreover, among such pairs, and since Σj 
= 0, there necessarily exists a
pair, say (ab, cd), such that αϕ(a, b) = αϕ(c, d).

There are now two cases to consider. First, if ab = cd, then we construct the
cycle C1 containing edge ab and edges of a path Pa,b joining a to b in Sj (we know
there exists such a path, since a, b ∈ V (Sj), and Sj is connected by definition).
By definition also, Pa,b only contains zero αϕ edges. Thus γj(C1) = 1, since only
edge ab contributes to 1 to γj(C1) – all other edges of C1 contribute to 0.

Second, if ab 
= cd, take the path P = ab . . . cd in C that connects a to d
through ab and cd. Path P has no internal vertex in Sj by construction. Consider
a second path P ′ = a . . . d connecting a to d within Sj (again, P ′ exists since
a, d ∈ V (Sj) by definition, and since Sj is connected). Note that P and P ′ only
intersect in a and d. Then, we can construct cycle C2, which is the concatenation
of P and P ′. What is important to observe is that only one of the two edges ab or
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cd will contribute to 1 in the computation of γj(C2) – the other will contribute
to 0. Moreover, all other edges from P contribute to 0 to γj(C2) (because none
contains a vertex of Sj), and the same conclusion is reached with any edge of
P ′: by definition, each such edge belongs to Sj , and thus is a zero αϕ edge. ��

We are now ready to prove Lemma 7. Suppose the set of cycles of G of length
at most � < n

Bc(G) contains a cycle basis C. Observe an optimal cb-labeling ϕ

of G, and suppose by contradiction that there exists a cycle C in G such that
αϕ(G) 
= 0. By Claim 3, we know that there exists a cycle C ′ and an integer j
such that γj(C ′) = 1. Besides, we know by definition that C ′ can be obtained
by symmetric difference of elements of C.

However, Claims 2 and 1 respectively yield that any cycle in C has even γi

and thus that any symmetric difference of elements of C also has even γi. We
thus get the desired contradiction, which in turn proves Lemma 7. ��

Note that Lemma 7 remains correct if ϕ is not an optimal labeling (but in
that case, Bc(G) should be replaced by Bc(G,ϕ) in the lemma’s statement).

The next lemma provides a sufficient condition yielding B(G) = Bc(G),
improved from [4]. It is the last step towards proving Theorem 9, and needs
Lemma 7 to be proved.

Lemma 8. If the set of cycles of G of length at most � < n
Bc(G) contains a cycle

basis, then Bc(G) = B(G).

Proof. Suppose G satisfies the conditions of the lemma, and let ϕ be a cb-labeling
of G. We will show in the following that Algorithm 1 below computes a bm-
labeling ϕ′ of G satisfying B(G,ϕ′) ≤ Bc(G,ϕ). If ϕ is optimal, then Bc(G,ϕ) =
Bc(G), and consequently B(G,ϕ′) = Bc(G) = B(G) (i.e., ϕ′ is an optimal bm-
labeling) since B(G) ≥ Bc(G) for any graph G.

We need Claims 4 and 5 to show that B(G,ϕ′) ≤ Bc(G,ϕ).

Claim 4. For any adjacent vertices u and v, β(v) = β(u) + αϕ(u, v).

Proof. (of Claim 4). First suppose v has been discovered by u during the Depth-
First Search (DFS) in Algorithm 1: then Line 6 of Algorithm 1 yields β(v) =
β(u) + αϕ(u, v). Symmetrically, the result is proved if u has been discovered by
v during the DFS, since αϕ(u, v) = −αϕ(v, u) for any labeling ϕ and any edge
uv ∈ E(G). Now suppose none of u and v have discovered the other during the
DFS. Since u and v are in the same connected component, by property of DFS,
there exists a vertex s such that β(s) = 0 and two paths Pu = u0u1u2...up (with
u0 = s and up = u) and Pv = v0v1v2...vq (with v0 = s and vq = v), such that
β(ui+1) = β(ui) + αϕ(ui, ui+1) for any 0 ≤ i ≤ p − 1 and β(vi+1) = β(vi) +
αϕ(vi, vi+1) for any 0 ≤ i ≤ q − 1. Therefore, we have β(u) =

∑p−1
i=0 αϕ(ui, ui+1)

and β(v) =
∑q−1

i=0 αϕ(vi, vi+1).
Suppose first that Pu and Pv only share vertex s. In that case, we obtain

a cycle Cuv by concatenating paths Pu, Pv and edge uv. Since we are in
the conditions of Lemma 7, we conclude that sα(Cuv) = 0. Observe that
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Algorithm 1: Transformation of a cb-labeling ϕ into a bm-labeling solution
ϕ′ such that B(G,ϕ′) ≤ Bc(G,ϕ), under the conditions of Lemma 8
Data: A graph G = (V, E) and a cb-labeling ϕ of G
Result: A bm-labeling ϕ′ of G

1 for each connected component S of G do
2 Choose a vertex s in S and set ϕ∗(s) = ϕ(s) and β(s) = 0
3 Apply a Depth-First Search from s
4 for each newly visited vertex y discovered by a vertex x do
5 β(y) = β(x) + αϕ(x, y)
6 ϕ∗(y) = ϕ(y) + n · β(y)

7 end

8 end
9 for i from 1 to n do

10 Set ϕ′(i) to be the rank of ϕ∗(i)
11 end
12 Return ϕ′

sα(Cuv) = SPu
+ αϕ(u, v) + SPv

, where SPu
=

∑p−1
i=0 αϕ(ui, ui+1) = β(u) and

SPv
=

∑q−1
i=0 αϕ(vi+1, vi)) = −∑q−1

i=0 αϕ(vi, vi+1) = −β(v). Hence we conclude
that β(u) + αϕ(u, v) − β(v) = 0, which is the desired result.

If Pu and Pv share more than vertex s, consider the common vertex between
both paths having the largest index r > 0 in Pu = u0u1 . . . up, and let t be
such that ur = vt. Thus, we can write Pu = Pr · P (where Pr = u0u1 . . . ur)
and Pv = Pt · P ′ (where Pt = v0v1 . . . vt), and in that case SPu

= SPr
+ S

and SPv
= SPt

+ S′, where SPr
=

∑r−1
i=0 αϕ(ui, ui+1), S =

∑p−1
i=r αϕ(ui, ui+1),

SPt
=

∑t−1
i=0 αϕ(vi, vi+1) and S′ =

∑q−1
i=t αϕ(vi, vi+1). Again, if we concatenate

P , P ′ and uv, we get a cycle Crt and by Lemma 7 we have sα(Crt) = 0. Thus,
it remains to show that SPr

− SPt
= 0 to conclude. This is done by induction

on r. When r = 0, we are in the case where Pu and Pv only share vertex s,
which has already been discussed. When r = 1, Pr = u0u1 = su1 is limited to
one edge. If t = 1, then v1 = u1 and Pt = Pr = su1 and by antisymmetry of αϕ

we have SPr
−SPt

= αϕ(s, u1)+αϕ(u1, s) = 0. If t > 1, then concatenating edge
Pr and path Pt yields a cycle C ′, for which we know by Lemma 7 again that
sα(C ′) = SPr

−SPt
= 0. Now if r > 1, apply induction hypothesis to r′, where r′

is the largest index (with r′ < r) of a vertex of Pu also belonging to Pv. Let t′ be
the corresponding index in Pv. Then, Pu = Pr′ · Pr′r · P and Pu = Pt′ · Pt′t · P ′,
where Pr′r (resp. Pt′t) is a path from r′ to r (resp. from t′ to t). By induction
hypothesis, SPr′ −SPt′ = 0. Moreover, concatenating Pr′r and Pt′t yields a cycle
C ′′, which satisfies, by Lemma 7, sα(C ′′) = 0. Since sα(C ′′) = SPr′r − SPt′t , we
obtain altogether that (SPr′ +SPr′r )− (SPt′ +SPt′t) = 0. But SPr′ +SPr′r = SPr

and SPt′ + SPt′t = SPt
, hence we conclude SPr

− SPt
= 0, and the proof by

induction holds. Altogether, we have SPr
− SPt

= 0 in all cases. This allows us
to conclude that β(v) = β(u) + αϕ(u, v). ��
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Claim 5. For any two adjacent vertices x and y in G, |ϕ∗(y) − ϕ∗(x)| = |ϕ(y) −
ϕ(x)|n.

Proof. (of Claim 5). If αϕ(x, y) = 0, then β(y) = β(x) by Claim 4. Thus, we
have |ϕ∗(y)−ϕ∗(x)| = |ϕ(y)−ϕ(x)|. However, by definition of αϕ, we know that
|ϕ(y) − ϕ(x)| ≤ Bc(G,ϕ) and thus |ϕ(y) − ϕ(x)|n = |ϕ(y) − ϕ(x)| = |ϕ∗(y) −
ϕ∗(x)|. Suppose now αϕ(x, y) = 1. Then, by Claim 4 again, β(y) = β(x)+1, and
consequently |ϕ∗(y) − ϕ∗(x)| = |ϕ(y) − ϕ(x) + n| = n − (ϕ(x) − ϕ(y)) (because
αϕ(x, y) = 1 implies ϕ(x) > ϕ(y)). We then conclude that |ϕ∗(y) − ϕ∗(x)| =
|ϕ(y) − ϕ(x)|n. Finally, if αϕ(x, y) = −1, by a symmetrical argument as above,
we get that |ϕ∗(y) − ϕ∗(x)| = |ϕ(y) − ϕ(x) − n| = n − (ϕ(y) − ϕ(x)) (because
αϕ(x, y) = −1 implies ϕ(x) < ϕ(y)). Finally, |ϕ∗(y) − ϕ∗(x)| = |ϕ(y) − ϕ(x)|n.

��
We are now ready to finish proof of Lemma 8. First, note that ϕ∗ is injective,

since for any vertex v, ϕ∗(v) is congruent to ϕ(v) modulo n. Moreover, since ϕ∗ is
injective, ϕ′ is also injective. As |V | = n, ϕ′ is a bijection from V to [n]. Moreover,
|ϕ′(y) − ϕ′(x)| is equal to the number of vertices v for which ϕ∗(v) lies between
ϕ∗(y) (included) and ϕ∗(x) (excluded). Since ϕ∗ is injective, this number is less
than or equal to |ϕ∗(y) − ϕ∗(x)|, so we have |ϕ′(y) − ϕ′(x)| ≤ |ϕ∗(y) − ϕ∗(x)|.
Since we know by Claim 5 that |ϕ∗(y) − ϕ∗(x)| = |ϕ(y) − ϕ(x)|n, we conclude
that ϕ′ is a bm-labeling satisfying B(G,ϕ′) ≤ Bc(G,ϕ). In particular, if ϕ is an
optimal cb-labeling, then Bc(G,ϕ) = Bc(G) and thus B(G,ϕ′) ≤ Bc(G). But
since for any graph G, B(G) ≥ Bc(G), we conclude that B(G,ϕ′) = Bc(G).
Consequently ϕ′ is an optimal bm-labeling, and B(G) = Bc(G). ��

Our main result of the section is now stated.

Theorem 9. Let G be a graph and let � be the length of the longest cycle of
a cycle basis of G. Then, we have Bc(G) ≥ min{B(G),

⌈
n
�

⌉}. In particular, if
B(G) ≤ ⌈

n
�

⌉
, then B(G) = Bc(G).

Proof. Suppose first Bc(G) ≥ ⌈
n
�

⌉
. Since B(G) ≥ Bc(G) for any graph, we have

B(G) ≥ ⌈
n
�

⌉
, which proves the result. Now suppose Bc(G) <

⌈
n
�

⌉
. In that case

we have Bc(G) < n
� , since Bc(G) is an integer, and by Lemma 8 we conclude

that B(G) = Bc(G).

4 Applying Our Results on 28 Harwell-Boeing Instances

We now illustrate how the results we obtained in Sects. 2 and 3 improve previ-
ous knowledge, by applying them on instances taken from the Harwell-Boeing
sparse matrix collection. This benchmark contains a large number of matrices
(that we interpret as graphs here) derived from several industrial applications.
This collection has often been used as a benchmark for both the Bandwidth
Minimization and Cyclic Bandwidth problems, see e.g. [10–14]. Before going
further, we note that all lower bound results provided in previous sections can
be computed in polynomial time. Hence, computational performances are not
provided here, as they do not play a major role.
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Table 1. Summary of results applied to a set of 28 instances from the Harwell-Boeing
repository, sorted by increasing n = |V (G)|. The rightmost column presents the best
lower bound obtained by our results (i.e., the maximum value obtained by Theo-
rems 1, 3, and 9). In the leftmost and rightmost column, asterisks indicate optimality,
while bold values in the rightmost column indicate a strict improvement compared
to previous knowledge. Note that the “Best Known Upper Bound” for bcspwr03 we
report here is the only result not imported from [13] (where the reported bound is 10).
Indeed, we know by [11] that B(G) ≤ 9 for that instance; since Bc(G) ≤ B(G) for any
graph G, we get a(n optimal) upper bound of 9 for bcspwr03.

Graph G n m Best
known

Lower bound B(G) = Lower
bound

Lower
bound
from our
results

Upper
bound

Density � Bc(G) ? Cycle
basis

jgl009 9 50 4∗ 4 3 no 3 4∗

rgg010 10 76 5∗ 5 3 no 4 5∗

jgl011 11 76 5∗ 5 3 no 4 5∗

can 24 24 92 5∗ 5 3 yes 5 5∗

pores 1 30 103 7∗ 6 4 yes 7 7∗

ibm32 32 90 9∗ 8 5 no 7 8

bcspwr01 39 46 4∗ 4 13 no 3 4∗

bcsstk01 48 176 12 9 4 no 12 12∗

bcspwr02 49 59 7 6 8 yes 7 7∗

curtis54 54 124 8∗ 8 9 no 6 8∗

will57 57 127 6 6 4 yes 6 6∗

impcol b 59 281 17 14 6 no 10 14

ash85 85 219 9 8 3 yes 9 9∗

nos4 100 247 10 9 4 yes 10 10∗

dwt 234 117 162 11 10 8 yes 11 11∗

bcspwr03 118 179 9∗ 9 10 yes 9 9∗

bcsstk06 420 3720 45 31 4 yes 37 37

bcsstk07 420 3720 45 31 4 yes 37 37

impcol d 425 1267 35 24 21 no 21 24

can 445 445 1682 46 36 10 ? 45 45

494 bus 494 586 28 24 19 ? 25 25

dwt 503 503 2762 41 29 8 yes 29 29

sherman4 546 1341 27 21 4 yes 21 21

dwt 592 592 2256 29 22 3 yes 22 22

662 bus 662 906 38 36 23 ? 29 36

nos6 675 1290 16 15 4 yes 15 15

685 bus 685 1282 32 26 22 yes 30 30

can 715 715 2975 60 52 16 ? 45 52
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We took a set of 28 Harwell-Boeing instances, that have recently been specifi-
cally used for the Cyclic Bandwidth problem [12–14]. Our results are summa-
rized in Table 1. The three leftmost columns describe the instance: respectively
its usual name, its number n of vertices, and m of edges. The next column (“Best
Know Upper Bounds”) provides the best upper bounds results concerning Bc,
which are taken from the recent paper by Ren et al. [13]. Optimal values for
Bc(G) are marked with an asterisk.

The five remaining columns are computations and informations derived from
the present work: in a nutshell, column “Lower Bound Density” contains the best
result obtained by Theorems 1 and 3 (each theorem being applied for all possible
values of i and any vertex v in the case of Theorem 1, and for all possible values of
i and any edge uv in the case of Theorem 3), while column “Lower Bound Cycle
Basis” contains the best results obtained by Theorem 9. Note that for comput-
ing the values in this column, we need to determine the length � of the longest
cycle in a cycle basis for G (column “�”) ; then, based on � and on known upper
bounds on B(G) [11], we can (most of the time, see column “B(G) = Bc(G)?”)
determine whether B(G) = Bc(G). If B(G) = Bc(G), then we can invoke the
best known lower bounds from B(G) taken from [10]. If not, we apply Theorem 9
and take the minimum between n

� and (the best lower bound on) B(G). Finally,
the righmost column, “Lower Bound from our results”, simply takes the max-
imum value between the one in column “Lower Bound Density” (Theorems 1
and 3) and the one in column “Lower Bound Cycle Basis” (Theorem 9).

In the rightmost column of Table 1, which summarizes our results, values in
bold show a strict improvement from previous lower bound results (based on the
lower bounds for Bc(G) taken from [13]), while an asterisk shows that the lower
bound we obtain is actually optimal.

We first note that, among the 28 instances, our density lower bound is strictly
better than our cycle basis lower bound 10 times, while the opposite happens
11 times (and thus it is a draw for the 7 remaining instances). This shows that
both types of lower bounds are useful for improvement.

We also observe that Ren et al. [13] have determined the optimal value for
Bc(G) for 9 instances (the 7 first together with curtis54 and bscpwr03), hence
our results cannot strictly improve them. It should be noted however, that for 8
out of these 9 instances, our lower bounds results are actually optimal (as shown
by the asterisks in the rightmost column). Our results also show that, among
the 19 remaining instances, we have been able to determine the optimal values
for Bc(G) for 6 of them, since our new lower bounds appear to be matching
the upper bounds for Bc provided by [13]. This clearly shows the interest of our
work in aiming at increasing the lower bounds.

Concerning the 13 remaining instances, our results have drastically reduced
the gap between lower and upper bounds for Bc, which now ranges from 1
(instances can445 and nos6) to 12 (instance dwt 503), with an average gap
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of 5.54. Previously, based on the results presented in [13], the gap between lower
and upper bounds ranged between 8 and 40, with an average of 24.31. Over the
28 studied instances, there are only two cases for which our results have neither
reached the optimal value for Bc nor strictly improved previous lower bounds –
namely instances ibm32 and can 715.

5 Conclusion and Open Questions

In this paper, we have studied the Cyclic Bandwidth problem, and have par-
ticularly focused on determining new lower bounds for Bc(G) for any graph G.
We have, on the way, provided a relabeling algorithm (Algorithm 1) of a graph G
that, under specific conditions, computes a labeling ϕ′ for the Bandwidth Min-
imization problem, starting from a labeling ϕ for Cyclic Bandwidth such
that B(G,ϕ′) ≤ Bc(G,ϕ). We have applied our results to a benchmark of 28
Harwell-Boeing instances already used in [12–14], and showed how our results
greatly improve the best current knowledge.

The results we provide here may open the door to further improvements. In
particular, it would be worth investigating whether they could help determining
Bc(G) for new families of graphs. They could also, in a more general setting,
help better characterize properties of graphs satisfying Bc(G) = B(G).

Concerning the benchmark that we used, note that among the 28 Harwell-
Boeing instances from Table 1, we have not been able to determine whether
Bc(G) = B(G) for 4 instances, and investigating that question could be of inter-
est. Finally, we observe that there exists graphs for which Algorithm 1, starting
from a suboptimal labeling ϕ for Cyclic Bandwidth, is able to compute an
optimal labeling ϕ′ for both Bandwidth Minimization and Cyclic Band-
width. Hence, it would be interesting to apply Algorithm 1 on the instances
from Table 1 for which conditions of Lemma 8 are fulfilled, in order to determine
whether this technique helps improving the knowledge on B and/or Bc.
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