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Abstract. In this paper, we make a review of our recent development of
Dirac structures and the associated variational formulation for nonequi-
librium thermodynamics (see, [15,16]). We specifically focus on the case
of simple and open systems, in which the thermodynamic state is repre-
sented by one single entropy and the transfer of matter and heat with
the exterior is included. We clarify the geometric structure by introduc-
ing an induced Dirac structure on the covariant Pontryagin bundle and
then develop the associated dynamical system (the port-Dirac systems)
in the context of time-dependent nonholonomic systems with nonlin-
ear constraints of thermodynamic type. We also present the variational
structure associated with the Dirac formulation in the context of the
generalized Lagrange-d’Alembert-Pontryagin principle.

1 Fundamentals of Open Systems

In this section, we briefly present the fundamental setting for open thermody-
namic systems. We focus on the case of simple systems in the sense of Stueckel-
berg, see [26].

1.1 Stueckelberg’s Formulation of Nonequilibrium Thermodynamics

In order to give a macroscopically dynamic theory to account for irreversible
processes, we use the phenomenological approach to nonequilibrium thermo-
dynamics developed by Stueckelberg [26]. This approach enables us to treat
nonequilibrium thermodynamics as a natural extension of classical mechanics.
We emphasize that this is a pure macroscopic and phenomenological approach
deduced from the axiomatic formulation of the two laws, which does not aim to
derive the equations for the open systems in terms of microscopic arguments.
We refer to e.g. [8,20,21] for the systematic use of Stueckelberg’s formulation
for several examples of closed thermodynamic systems.
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Let us denote by Σ a physical system and by Σext its exterior. Stueckelberg’s
axiomatic formulation of the two laws are given as follows.

First Law: For every system Σ, there exists an extensive scalar state function
E, called energy, which satisfies

d

dt
E(t) = P ext

W (t) + P ext
H (t) + P ext

M (t), (1)

where t denotes time, P ext
W is the power associated with the work done on the

system, P ext
H is the power associated to the heat transfer into the system, and

P ext
M is the power associated with the matter transfer into the system.

Definition 1. For a given thermodynamic system, we employ the following
terminology:

• A system is said to be closed, if there is no exchange of matter, i.e.,
P ext

M (t) = 0. If P ext
M (t) �= 0, the system is said to be open.

• A system is said to be adiabatically closed, if it is closed and there is no
heat exchanges, i.e., P ext

M (t) = P ext
H (t) = 0.

• A system is said to be isolated, if it is adiabatically closed and there is no
mechanical power exchange, i.e., P ext

M (t) = P ext
H (t) = P ext

W (t) = 0.

From the first law, it follows that the energy of an isolated system is preserved.

Second Law: For every system Σ, there exists an extensive scalar state function
S, called entropy, which obeys the following two conditions.

(a) Evolution part: If the system is adiabatically closed, the entropy S is a
non-decreasing function with respect to time, i.e.,

d

dt
S(t) = I(t) ≥ 0,

where I(t) is the entropy production rate of the system accounting for the
irreversibility of internal processes.

(b) Equilibrium part: If the system is isolated, as time tends to infinity the
entropy tends towards a finite local maximum of the function S over all the
thermodynamic states ρ compatible with the system, i.e.,

lim
t→+∞ S(t) = max

ρ compatible
S[ρ].

By definition, the evolution of an isolated system is reversible if I(t) = 0,
namely, the entropy is constant. In general, the evolution of a system Σ is said to
be reversible, if the evolution of the total isolated system with which Σ interacts
is reversible.
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1.2 An Illustrative Example of Open Systems

We present here the fundamental setting for nonequilibrium thermodynamics of
open systems with the help of an illustrative example. We recall that a thermo-
dynamic system is called simple when one (scalar) thermal variable and a finite
set of non-thermal variables are sufficient to describe entirely the state of the
system. From the second law we can always choose the thermal variable to be the
entropy. Recall also that the system is called open if it has a non-vanishing power
exchange due to matter transfer with exterior. In this paper, we specifically focus
on the case of simple and open systems.

A Piston-Cylinder System. Consider a single piston-cylinder system
described in Fig. 1, where the cylinder contains an ideal gas and there exists
a power exchange due to matter and heat transfer with the exterior, as well as a
mechanical power exchange with the exterior by the piston. In addition, there is
an internal irreversible process associated with the collision of the fluid particles
on the piston, macroscopically described by a friction force, see [20].

Fig. 1. An example of a simple and open system: a piston with exterior ports and heat
sources.

For such an open system, we can choose one entropy variable S ∈ R as the
thermodynamic variable and N ∈ R as the number of moles of the chemical
species in the compartment, while we denote the mechanical variable by q ∈ Q,
where Q is given by R. Let U(q, S,N) be the internal energy associated with the
ideal gas contained inside of the cylinder. Let F ext be the external force acting
on the system via the piston and let F fr be the friction force appearing in the
irreversible process associated with the collision of the fluid particles.

Assume that the system has A ports, through which the matter flows out or
into the system and also that there are B ports associated with heat sources.
For the variables associated with these ports, we denote the chemical potential,
temperature, and molar flow rate at the a-th port by μa, T a, and J a (a =
1, ..., A), respectively, and we denote the temperature and entropy flow rate at
the b-th heat source by T̄ b and J̄ b

S (b = 1, ..., B), respectively. It is common
that the thermodynamic quantities at the ports are given by the pressure and
the temperature Pa, T a, from which the other thermodynamic quantities such
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as μa = μa(Pa, T a) or Sa = Sa(Pa, T a) can be computed by the state equations
of the gas; see, for instance, [22]. Notice that these thermodynamic quantities at
the ports are time-dependent in general.

Mass Balance Equation. For such an open system with A ports with a single
chemical component, the mole balance equation is written as

d

dt
N =

A∑

a=1

J a, (2)

where J a is the molar flow rate into the system through the a-th port, so that
J a > 0 for flow into the system and J a < 0 for flow out of the system.

Energy Balance Equation. As matter enters or leaves the system, it may
carry its internal, potential as well as kinetic energy. The energy flow rate at the
a-th port is given by the product UaJ a, where Ua and J a respectively denote
the energy per mole (or molar energy) and the molar flow rate at the a-th port.
Further, as matter enters or leaves the system, it may also exert work on the
system that is associated with pushing the species into or out of the system.
Hence the power exchange due to the mass transfer is given by

P ext
M =

A∑

a=1

J a(Ua + PaVa) =
A∑

a=1

(J aμa + J a
S T a).

Here Pa and Va are the pressure and the molar volume of the substance flowing
through the a-th port. Furthermore, J a

S := SaJ a is the entropy flow rate with
Sa the molar entropy at the a-th port and we have used the relation Ha =
Ua +PaVa = μa +T aSa, where Ha indicates the molar enthalpy at the a-th port.
The heat power exchange with exterior is given by

P ext
H =

B∑

b=1

J̄ b
S T̄ b,

where J̄ b
S and T̄ b respectively denote the entropy flow rate and the temperature

at the b-th port. The mechanical power associated with the external force F ext

is given by
P ext

W = 〈F ext, q̇〉.
Thus, the first law for open system, i.e., the energy balance equation reads as

dE

dt
= 〈F ext, q̇〉 +

A∑

a=1

(J aμa + J a
S T a) +

B∑

b=1

J̄ b
S T̄ b, (3)

where E is the total energy of the system.

Entropy Balance Equation. Regarding the second law for open systems, we
have the entropy balance equation, namely, the rate of total entropy of the
system, given by
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Ṡ = I +
A∑

a=1

J a
S +

B∑

b=1

J̄ b
S , (4)

where I is the rate of internal entropy production given by

I = − 1
T

〈F fr, q̇〉
B∑

b=1︸ ︷︷ ︸
mechanical friction

+
1
T

A∑

a=1

[
J a

(
μa − μ

)
+ J a

S

(
T a − T

)]

︸ ︷︷ ︸
mixing of matter flowing into the system

+
1
T

B∑

b=1

J̄ b
S

(
T̄ b − T

)

︸ ︷︷ ︸
heating

, (5)

with T := ∂U
∂S the temperature and μ := ∂U

∂N the chemical potential. The second
law imposes that the rate of internal entropy production I is always positive
whereas the sign of the rate of entropy flow into the system due to the matter
exchange through A ports and to the heat exchange through B ports (the second
and third terms on the right-hand side of (4)) is arbitrary.

Equation of Motion for the Piston-Cylinder System. The Lagrangian of
the system is given by L(q, q̇, S,N) = 1

2mq̇2 − U(q, S,N). We note that if we
were applying the conventional Lagrange-d’Alembert principle

δ

∫ t2

t1

L(q, q̇, S,N)dt +
∫ t2

t1

〈F fr + F ext, δq〉dt = 0, (6)

for all δq with the fixed endpoint conditions, we would get the following equation

d

dt

∂L

∂q̇
− ∂L

∂q
= F fr + F ext. (7)

In the Lagrange-d’Alembert principle (6) the friction force is treated as if it were
external similarly to F ext. However, the friction force is an essentially internal
force and the power associated with the friction force does not appear on the
right-hand side in the first law (3). It appears as a part of the internal entropy
production rate given in (5), in conjunction with the second law (4). Thus, it is
clear that there is a crucial flaw in the variational formulation (6) which uses the
conventional Lagrange-d’Alembert principle. In addition this principle cannot
provide all the required equations for nonequilibrium thermodynamics, namely,
the mass balance equation (2), the entropy balance equation (4), the energy
balance equation (3) as well as the equation of motion (7). In the next section,
we present a general variational formulation for nonequilibrium thermodynamics
of open systems that enables to formulate all of the required evolution equations.

2 A Variational Formulation for Open Systems

Before going into details on the variational formulation, we first present
the fundamental setting for the Lagrangian formulation of nonequilibrium
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thermodynamics for a simple and open system. Our variational formulation
is a generalized Lagrange-d’Alembert principle, which is an extension of the
Hamilton principle of time-dependent nonholonomic systems with nonlinear con-
straints, see [10–12,14]. This variational formulation is useful as a modelling tool,
see [7,9], and also useful to derive the main bracket formalisms in nonequilibrium
thermodynamics, see [6,17].

2.1 Fundamental Setting for Open Nonequilibrium
Thermodynamics

Time-Dependent Lagrangians. As we mentioned, an open system is in gen-
eral explicitly time-dependent. Hence the state variables that are required to
describe the whole system are (t, q, vq, S,N) ∈ R× TQ ×R×R, where the time
t is explicitly included and (q, vq) ∈ TQ indicate the state variables associated
with the mechanical part of the system, where TQ denotes the tangent bundle
of an n-dimensional configuration manifold Q.

Here we consider the variational formulation for simple and open thermody-
namic systems by following [12]. Let L be a time-dependent Lagrangian defined
on the extended state space, namely,

L : R × TQ × R × R → R, (t, q, vq, S,N) �→ L(t, q, vq, S,N),

which is usually given by the kinetic energy minus the internal energy of the
system. For the open system of Fig. 1, the Lagrangian is simply given by L =
1
2mv2

q −U(q, S,N), which is not time-dependent, however we shall here consider
a more general case in which L is given as a time-dependent function. Recall that
the system is assumed to be subject to an external force F ext : R×TQ×R×R →
T ∗Q and a friction force F fr : R × TQ × R × R → T ∗Q. Recall also that the
system has A ports, through which species can flow into or out of the system
and B ports associated with heat sources.

Thermodynamic Displacements. An essential ingredient for our variational
formulation of thermodynamics is the concept of thermodynamic displacements
(see [10,11,14]). By definition, the thermodynamic displacement associated with
an irreversible process is given by the primitive in time of the thermodynamic
force (or affinity) of the process. For the process of heat transfer, such an affinity
is given by the temperature T , and hence the thermodynamic displacement is
defined as a variable Γ such that Γ̇ = T . The variable Γ is known as a ther-
mal displacement. For the process of mass transfer, the affinity is the chemical
potential μ, and hence the thermodynamic displacement is defined as a variable
W such that Ẇ = μ. Here, by definition, we recall that the chemical potential
and temperature are respectively given by μ := − ∂L

∂N and T := −∂L
∂S . In addition

to these thermodynamic displacements, our variational formulation also involves
the variable Σ, with entropy units, which is defined by the primitive in time of
the rate of internal entropy production of the system. Note that Σ is distinct
from S for open systems.
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2.2 A Lagrangian Variational Formulation for Open Systems

In the context of the fundamental setting mentioned above, we have the following
theorem giving the Lagrangian variational formulation for open systems:

Theorem 1. Suppose that q(t), S(t),Γ(t),Σ(t),W (t), N(t) are critical
curves for the variational condition

δ

∫ t2

t1

[
L(t, q, q̇, S,N) + ẆN + Γ̇(S − Σ)

]
dt +

∫ t2

t1

〈F ext, δq〉dt = 0, (8)

subject to the kinematic (phenomenological) constraint

∂L

∂S
Σ̇ = 〈F fr, q̇〉+

A∑

a=1

[
J a(Ẇ −μa)+J a

S (Γ̇−T a)
]
+

B∑

b=1

J̄ b
S(Γ̇− T̄ b), (9)

and for variations subject to the variational constraint

∂L

∂S
δΣ = 〈F fr, δq〉 +

A∑

a=1

[
J aδW + J a

S δΓ
]

+
B∑

b=1

J̄ b
SδΓ, (10)

with δq(t1) = δq(t2) = 0, δW (t1) = δW (t2) = 0, and δΓ(t1) = δΓ(t2) = 0.
Then q(t), S(t), N(t) are solutions of the generalized Lagrange-

d’Alembert equations
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d
dt

∂L
∂q̇ − ∂L

∂q = F fr + F ext, d
dtN =

A∑
a=1

J a,

∂L
∂S

(
Ṡ −

A∑
a=1

J a
S −

B∑
b=1

J̄ b
S

)
= 〈F fr, q̇〉

−
A∑

a=1

[
J a

(
∂L
∂N + μa

)
+ J a

S

(
∂L
∂S + T a

)]
−

B∑
b=1

J̄ b
S

(
∂L
∂S + T̄ b

)
,

(11)

and Γ(t), W (t), Σ(t) satisfy

Γ̇ = −∂L

∂S
, Ẇ = − ∂L

∂N
, Σ̇ = Ṡ −

A∑

a=1

J a
S −

B∑

b=1

J̄ b
S . (12)

Proof. This theorem is verified by a direct computation. By taking variations
of the action integral in (8), integrating by parts, using δq(t1) = δ(t2) = 0,
δW (t1) = δW (t2) = 0, δΓ(t1) = δΓ(t2) = 0, together with the variational
constraint (10), we obtain the system of evolution equations (11) for the curves
q(t), S(t), N(t), together with the conditions (12) which imposes Γ(t) and W (t)
to be the thermodynamic displacements and Σ(t) to be the primitive in time of
the rate of internal entropy production of the system. 	
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We can recover all the relations developed in Sect. 1.2. Since the total energy
is given from the given Lagrangian as E(t, q, q̇, S,N) = 〈∂L

∂q̇ , q̇〉 − L, the energy
balance for this system is computed as

d

dt
E(t, q, q̇, S,N) = −∂L

∂t
+
〈
F ext, q̇

〉
︸ ︷︷ ︸

=P ext
W

+
A∑

a=1

(J aμa + J a
S T a)

︸ ︷︷ ︸
=P ext

M

+
B∑

b=1

J̄ b
S T̄ b

︸ ︷︷ ︸
=P ext

H

.

When the given Lagrangian does not explicitly depend on time t, the first law
for the open system is recovered as in (3). Furthermore, it follows from the last
equation in (11) that we can recover the entropy balance equation (4), where we
get the rate of internal entropy production as I = Σ̇ in view of Ẇ = − ∂L

∂N = μ

and Γ̇ = −∂L
∂S = T .

Remark 1 (Relation between the kinematic and variational constraints). Note
that the variational constraint (10) follows from the kinematic (phenomenologi-
cal) constraint (9) by formally replacing the time derivatives Σ̇, q̇, Ẇ , Γ̇ by the
corresponding virtual displacements δΣ, δq, δW , δΓ, while the time-dependent
terms that depend uniquely on the exterior, namely, the terms J aμa, J a

S T a,
and J̄ b

S T̄ b have to be removed in the variational constraint. In the following
Sect. 3 concerning the Dirac formulation, we will clarify how this difficulty
can be naturally solved in terms of the geometric setting of time-dependent
mechanics.

3 Dirac Formulation for Time-Dependent Nonholonomic
Systems of Thermodynamic Type

To develop the Dirac formulation for open systems in which there is a power
exchange of matter between the system and the exterior, there are two distinct
levels of essential difficulties in the treatment of the nonlinear constraints of
thermodynamic type. First, the constraint becomes explicitly time-dependent.
Second, the link between the kinematic (phenomenological) and variational con-
straints appearing in (8) and (9) is broken by additional terms that only depend
on the exterior of the system. It is remarkable that both difficulties can be simul-
taneously solved by using the geometric setting of field theories as it applies to
the case of time-dependent mechanics. In particular, the covariant Pontryagin
bundle and the covariant generalized energy have to be employed instead of the
Pontryagin bundle and the generalized energy in mechanics. In this setting, we
show that the time-dependent nonlinear constraint associated with the entropy
production in the open thermodynamic system can be naturally recovered from
a Dirac dynamical system (also called a port-Dirac system, see [16]), in which a
Dirac structure induced from a linear distribution on the covariant Pontryagin
bundle is employed.
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3.1 Time-Dependent Constraints of Thermodynamic Type

In this subsection, we first introduce an extended configuration manifold needed
to treat the time-dependence in the kinematic and variational constraints. Then,
we construct a systematic treatment of the kinematic and variational constraints
for the class of time-dependent nonholonomic constraints of thermodynamic type
which extends treatment of those constraints in isolated systems, see [13].

Extended Configuration Manifolds. Given a configuration manifold Q, we
define the extended configuration manifold as

Y := R × Q � (t, x),

which can be regarded as a trivial fiber bundle over R, namely, Y = R×Q → R,
(t, x) �→ t. Note that this is known as the geometric setting of time-dependent
mechanics in the context of classical field theories, where Y = R × Q → R is
the configuration bundle in the field theory (see [18]).

Time-Dependent Variational and Kinematic Constraints. Consider the
vector bundle (R × TQ) ×Y TY → Y over Y whose fiber at y = (t, x) ∈ Y is
given by TxQ × T(t,x)Y = TxQ × (R × TxQ). An element in the fiber at each
y = (t, x) is denoted by (v, δt, δx). A variational constraint is a subset

CV ⊂ (R × TQ) ×Y TY ,

such that the set CV (t, x, v), defined by

CV (t, x, v) := CV ∩ ({(t, x, v)} × T(t,x)Y
)
,

for all (t, x, v) ∈ R×TQ, is a vector subspace of T(t,x)Y . A kinematic constraint
is given by a submanifold of TY as

CK ⊂ TY .

In general, CK and CV are independent from each other.

Nonlinear Nonholonomic Constraints of Thermodynamic Type. For
the case in which the given constraints CV and CK have no specific relation
between them, one can develop the equations of motion by a variational for-
mulation based on the generalized Lagrange-d’Alembert principle as in [2], while
we cannot establish a formulation with Dirac structures in general, because of
the existence of nonlinearity in the constraints. However, for the case of non-
linear nonholonomic constraints of thermodynamic type that typically appear in
thermodynamics, a Dirac structure formulation can be developed by using the
specific relation between CV and CK described below. We refer to [13] for the
case of isolated systems.

Definition 2. A variational constraint CV ⊂ (R×TQ)×Y TY and a kinematic
constraint CK ⊂ TY are called nonlinear constraints of thermodynamic type if
CK is defined from CV as

CK =
{
(t, x, ṫ, ẋ) ∈ TY | (t, x, ṫ, ẋ) ∈ CV (t, x, ẋ)

} ⊂ TY . (13)
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In local coordinates, if the variational constraint CV is given by

CV =
{
(t, x, v, δt, δx) ∈ (R × TQ) ×Y TY |

n∑

i=1

Ar
i (t, x, v)δxi + Br(t, x, v)δt = 0, r = 1, ...,m

}
(14)

for functions Ar : R×TQ → T ∗Q and Br : R×TQ → R, r = 1, ...,m, then the
associated kinematic constraint CK defined in (13) reads

CK =
{
(t, x, ṫ, ẋ) ∈ TY |

n∑

i=1

Ar
i (t, x, ẋ)ẋi + Br(t, x, ẋ)ṫ = 0, r = 1, ...,m

}
.

3.2 Dirac Structures on Covariant Pontryagin Bundles

In this subsection, we first introduce the covariant Pontryagin bundle by using
the geometric setting of classical field theory and then we develop a time-
dependent Dirac structure on the covariant Pontryagin bundle that is induced
from the distribution CV and a presymplectic form.

The Covariant Pontryagin Bundle. The construction of the geometric set-
ting for time-dependent mechanics is based on that of field theory, see [18,27]. In
this case, the configuration bundle is the trivial bundle Y = R × Q → X = R.
We have the following canonical identifications:

J1Y ∼= R × TQ, J1Y � ∼= T ∗Y = T ∗(R × Q), ΠY ∼= R × T ∗Q,

with J1Y → Y the first jet bundle, J∗Y → Y the dual jet bundle, and
ΠY → Y the restricted dual jet bundle associated to Y → X . By analogy with
the Pontryagin bundle in time-independent mechanics, we define the covariant
Pontryagin bundle over Y = R × Q as

π(P ,Y ) : P = J1Y ×Y J1Y � → Y = R × Q,

whose fiber at y = (t, x) ∈ Y is denoted by (v, p, p). Therefore, for the covariant
Pontryagin bundle over Y = R×Q, we have the identification J1Y ×Y J1Y � ∼=
(R × TQ) ×Y T ∗Y .

Induced Distributions on the Covariant Pontryagin Bundle. From the
given variational constraint CV ⊂ J1Y ×Y TY , the distribution ΔP on the
covariant Pontryagin bundle is defined by

ΔP (t, x, v, p, p) :=
(
T(t,x,v,p,p)π(P ,Y )

)−1(CV (t, x, v)) ⊂ T(t,x,v,p,p)P. (15)

When CV is locally described as in (14), the local expression of ΔP is given by

ΔP (t, x, v, p, p) =
{
(δt, δx, δv, δp, δp) ∈ T(t,x,v,p,p)P |

n∑

i=1

Ar
i (t, x, v)δxi + Br(t, x, v)δt = 0, r = 1, ..., m

}
. (16)
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Dirac Structures on the Covariant Pontryagin Bundle. Associated with
T ∗Y , there is the canonical symplectic form ΩT ∗Y = −dΘT ∗Y , where ΘT ∗Y is
the canonical one-form on T ∗Y . In local coordinates, we have

ΘT ∗Y = pidxi + pdt and ΩT ∗Y = dxi ∧ dpi + dt ∧ dp.

Using the projection π(P ,T ∗Y ) : P → T ∗Y , (t, x, v, p, p) �→ (t, x, p, p) onto
T ∗Y , the presymplectic form on the covariant Pontryagin bundle is obtained as

ωP = π∗
(P ,T ∗Y )ΩT ∗Y , (17)

with local expression ωP = dxi ∧ dpi + dt ∧ dp.
Given the distribution ΔP in (15) and the presymplectic form ωP in (17),

the induced Dirac structure DΔP
on P is defined by, for each x ∈ P,

DΔP (x) =
{
(ux, ax) ∈ TxP × T ∗

x P | ux ∈ ΔP (x),

〈ax, vx〉 = ΩP (x)(ux, vx), ∀ vx ∈ ΔP (x)
}
. (18)

When the local expression of the distribution is given as in (16), using local
coordinates x = (t, x, v, p, p) ∈ P, ux = (ut, ux, uv, up, up) ∈ TxP, vx =
(δt, δx, δv, δp, δp) ∈ TxP, and ax = (π, α, β, γ, w) ∈ T ∗

xP, the condition that
an element (ux, ax) ∈ TxP × T ∗

xP belongs to the section of the induced Dirac
structure

(ux, ax) ∈ DΔP
(x)

takes the following form:
⎧
⎨

⎩

ux = w, ut = γ, β = 0,
(t, x, ut, ux) ∈ CV (t, x, v),
(up + π, up + α) ∈ CV (t, x, v)◦.

(19)

In the above, CV (t, x, v)◦ ⊂ T ∗
(t,x)Y denotes the annihilator of CV (t, x, v) ⊂

T(t,x)Y , which is defined by

CV (t, x, v)◦ =
{
a ∈ T ∗

(t,x)Y | 〈a, η〉 = 0, ∀ η ∈ CV (t, x, v)
}

and hence the local coordinate expression of the annihilator is

CV (t, x, v)◦ = {(t, x, π, α) ∈ T ∗
(t,x)Y | π = λrB

r(t, x, v), α = λrA
r
i (t, x, v), λr ∈ R}.

Thus, the local coordinate expressions for (19) are given by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ui
x = wi, ut = γ, βi = 0,
n∑

i=1

Ar
i (t, x, v)ui

x + Br(t, x, v)ut = 0, r = 1, ...,m,

up + π =
m∑

r=1
λrB

r(t, x, v), (up)i + αi =
m∑

r=1
λrA

r
i (t, x, v), i = 1, ..., n.

(20)
We refer to [28] for the basic construction of the induced Dirac structure from a
distribution in nonholonomic mechanics.
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3.3 Dirac Dynamical Systems on the Covariant Pontryagin Bundle

In this subsection, we define a Dirac dynamical system by employing the induced
Dirac structure and the covariant generalized energy on the covariant Pontryagin
bundle. This is an example of the port-Dirac system, see [16].

The Covariant Generalized Energy. Given a time-dependent Lagrangian
L : J1Y = R×TQ → R, we define the covariant generalized energy E : P → R

on P by
E (t, x, v, p, p) = p + 〈p, v〉 − L (t, x, v). (21)

We also define the generalized energy E : R × (TQ ⊕ T ∗Q) → R by

E(t, x, v, p) = 〈p, v〉 − L (t, x, v), (22)

which satisfies the relation E = E + p. It is important to note that the general-
ized energy (22) is not induced by an intrinsic object for general field theories,
as opposed to the covariant generalized energy (21). In our case, since the con-
figuration bundle is trivial, the expression (22) is still well-defined.

External Forces. Let F ext : J1Y → T ∗Q be an external force field, with
F ext(t, x, v) ∈ T ∗

xQ, for all (t, x, v) ∈ J1Y . Using the natural projection π(P ,Q) :
P → Q, (t, x, v, p, p) �→ x, the external force field F ext on T ∗Q can be lifted as
a horizontal one-form on P as, for (t, x, v, p, p) ∈ P and W ∈ T(t,x,v,p,p)P,

〈F̃ ext(t, x, v, p, p),W 〉 = 〈F ext(t, x, v), T(t,x,v,p,p)π(P ,Q)(W )〉.

Locally, we have F̃ ext(t, x, v, p, p) = (t, x, v, p, p, 0, F ext(t, x, v), 0, 0, 0).

Proposition 1. Given ΔP , L (t, x, v), and F ext(t, x, v) as above, a curve of the
form

x(t) = (t, x(t), v(t), p(t), p(t)) (23)

on the covariant Pontryagin bundle P satisfies the condition for a time-
dependent Dirac dynamical system

(
ẋ(t),dE (x(t)) − F̃ ext(x(t))

) ∈ DΔP
(x(t)) (24)

if and only if it is a solution curve of

iẋΩP − dE (x) + F̃ ext(x) ∈ ΔP (x)◦, ẋ ∈ ΔP (x). (25)

Proof. Using (18), we can easily compute the condition in (24) to derive the
intrinsic equations of motion in (25) for the time-dependent Dirac dynamical
system. 	

Remark 2. In the above, the curve x(t) ∈ P in (23) is not an arbitrary curve in
P since its first component is t. In the language of field theory, it is a section of
the covariant Pontryagin bundle seen as a bundle over R.
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Local Coordinate Expressions. Let us derive the local coordinate expressions
of the Dirac dynamical system. The differential of E is given by

dE (t, x, v, p, p) =
(

−∂L

∂t
,−∂L

∂x
, p − ∂L

∂v
, 1, v

)

and recall that the external force field is

F̃ ext(t, x, v, p, p) =
(
t, x, v, p, p, 0, F ext(t, x, v), 0, 0, 0

)
.

Therefore, using the expression (19) of the Dirac structure, the condition for the
curve x(t) ∈ P to satisfy the Dirac dynamical system (24) can be written as:
{

ẋ = v, ṫ = 1, p = ∂L
∂v ,

(t, x, ṫ, ẋ) ∈ CV (t, x, v),
(
ṗ − ∂L

∂t , ṗ − ∂L
∂x − F ext

) ∈ CV (t, x, v)◦.
(26)

By using the local expressions in (20), the equations of motion of the Dirac
dynamical system in (26) take the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋi = vi, ṫ = 1, pi − ∂L
∂vi = 0, i = 1, ..., n,

n∑
i=1

Ar
i (t, x, v)ẋi + Br(t, x, v) = 0, r = 1, ...,m,

ṗi − ∂L
∂xi =

m∑
r=1

λrA
r
i (t, x, v) + F ext

i (t, x, v),

ṗ − ∂L
∂t =

m∑
r=1

λrB
r(t, x, v).

(27)

Note that ṫ = 1 is always satisfied and also that the last equation in (27) can
be solved apart from the others (as an output equation). Therefore, the equa-
tions of motion (27) reduce to the following evolution equations for the curve
(x(t), v(t), p(t)) ∈ TQ ⊕ T ∗Q:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi = vi, pi = ∂L
∂vi (t, x, v),

ṗi − ∂L
∂xi (t, x, v) =

m∑
r=1

λrA
r
i (t, x, v) + F ext

i (t, x, v), i = 1, ..., n,

n∑
i=1

Ar
i (t, x, v)ẋi + Br(t, x, v) = 0, r = 1, ...,m.

(28)

Finally, the system of evolution equations (28) yields the following equations for
the curve x(t) ∈ Q:

⎧
⎪⎨

⎪⎩

d
dt

∂L
∂ẋi − ∂L

∂xi (t, x, ẋ) =
m∑

r=1
λrA

r
i (t, x, ẋ) + F ext

i (t, x, v), i = 1, ..., n,

n∑
i=1

Ar
i (t, x, ẋ)ẋi + Br(t, x, ẋ) = 0, r = 1, ...,m,

(29)

which are the Lagrange-d’Alembert equations with time-dependent nonlinear con-
straints. In particular, we notice that the second equation in (29) recovers the
nonlinear kinematic constraints CK , although CV was only used to introduce the
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Dirac structure DΔP
. This is due to the special relation between the constraints

CV and CK of thermodynamic type, see Definition 2.
The Lagrange-d’Alembert equations with time-dependent and nonlinear non-

holonomic constraints given in (29) provide the general abstract setting for open
simple thermodynamic systems, as will be illustrated in Sect. 4.

Energy Balance. For the covariant generalized energy E (t, x, v, p, p) defined
in (21), we have the energy balance equation along the solution curve x(t) =
(t, x(t), v(t), p(t), p(t)) of the Dirac dynamical system (27) as

d

dt
E (t, x, v, p, p) =

〈
F ext(t, x, v), ẋ

〉
. (30)

Note that E does not represent the total energy of the system. The total energy
is represented by the generalized energy E in (22). In terms of E, we get from
(30) the following equation:

d

dt
E(t, x, v, p) = − d

dt
p +

〈
F ext(t, x, v), ẋ

〉

= −∂L

∂t
(t, x, v) −

m∑

r=1

λrB
r(t, x, v) +

〈
F ext(t, x, v), ẋ

〉
,

(31)

which yields the balance of energy for the Dirac dynamical system. Note that
d
dtp is interpreted as the power flowing out of the system. The first term on the
right-hand side is uniquely due to the explicit dependence of the Lagrangian
on time, while the second term is due to the affine character of the kinematic
constraint, which will be interpreted later as the energy flowing in or out of the
system through the external ports. For the case where there is no constraint, the
energy balance equation of time-dependent mechanics is recovered (see [24]).

It is also interesting to note that the equation for p is solved apart from
the other equations. A natural initial condition for p is p(0) = −E(0), so that
the covariant generalized energy vanishes, i.e., E (t, x, v, p, p) = 0 for all t, which
is the generalized energy analogue of the super-Hamiltonian constraint (see, for
instance, [18]).

Remark 3 (Time-Dependent Dirac dynamical systems). It is noteworthy that
(24) is called the condition for a time-dependent Dirac dynamical system, since
the Dirac structure DΔP

⊂ TP ⊕ T ∗P is time-dependent, being defined at
each point x = (t, x, v, p, p) ∈ P of the covariant Pontryagin bundle where
the time t is included as a variable. It is remarkable that the Dirac structure
DΔP

can incorporate constraints that are time-dependent, nonlinear, as well as
nonholonomic. From the field theoretic point of view, the time-dependent Dirac
system that satisfies (24) can be interpreted as a special instance of a multi-
Dirac formulation for constrained field theories that extends the multi-Dirac
field theory developed in [27].

Remark 4 (A Lagrange-d’Alembert-Pontryagin principle). Note that the equa-
tions (29) can be obtained from the following Lagrange-d’Alembert-Pontryagin
principle:
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δ

∫ t2

t1

[〈
p, ẋ − v

〉− L (t, x, v)
]

+
∫ t2

t1

〈
F ext(t, x, v), δx

〉
dt (32)

subject to the kinematic constraints

n∑

i=1

Ar
i (t, x, v)ẋi + Br(t, x, v) = 0, r = 1, ...,m (33)

and for variations subject to the variational constraints

n∑

i=1

Ar
i (t, x, v)δxi = 0, r = 1, ...,m (34)

with δx(t1) = δx(t2) = 0.
While this principle does yield the complete equations of motion (29), only

a subset of the conditions associated to the Dirac dynamical system (27) are
recovered; namely, the equation for p is missing. We shall give below a Lagrange-
d’Alembert-Pontryagin principle whose stationary conditions exactly coincide
with the equations given by the Dirac dynamical system.

3.4 The Lagrange-d’Alembert-Pontryagin Principle
on the Covariant Pontryagin Bundle

Associated with the Dirac dynamical systems, there exists an associated
variational formulation which is called the generalized Lagrange-d’Alembert-
Pontryagin principle, where the critical condition yields the time-dependent evo-
lution equations obtained from the Dirac dynamical system.

The Lagrange-d’Alembert-Pontryagin Principle. We begin with introduc-
ing an action functional for arbitrary curves x(τ) on the covariant Pontryagin
bundle P, namely,

x(τ) = (t(τ), x(τ), v(τ), p(τ), p(τ)) ∈ P, (35)

rather than just on sections, while we will see that the critical curve is nec-
essary a section up to a constant rescaling of time, i.e., t(τ) = τ + t0. Let
us denote by x′ the derivative with respect to τ . For such curves x(τ) =
(t(τ), x(τ), v(τ), p(τ), p(τ)) we consider the Lagrange-d’Alembert-Pontryagin
principle

δ

∫ τ2

τ1

[〈
θP (x(τ)), x′(τ)

〉− E (x(τ))
]
dτ +

∫ τ2

τ1

〈F̃ ext(x(τ)), δx(τ)〉dτ = 0, (36)

subject to the kinematic and variational constraints

x′(τ) ∈ ΔP (x(τ)) and δx(τ) ∈ ΔP (x(τ)), (37)

with the endpoint conditions Tπ(P ,Y )(δx(τ1)) = Tπ(P ,Y )(δx(τ2)) = 0.
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Equivalently, the critical point condition (36) reads

d

dε

∣∣∣∣
ε=0

∫ τ2

τ1

[〈
θP (xε(τ)), x′

ε(τ)
〉− E (xε(τ))

]
dτ +

∫ τ2

τ1

〈F̃ ext(x(τ)), δx(τ)〉dτ = 0,

for xε(τ) = (tε(τ), xε(τ), vε(τ), pε(τ), pε(τ)) such that

δx(τ) =
d

dε

∣∣∣∣
ε=0

xε(τ) = (δt(τ), δx(τ), δv(τ), δp(τ), δp(τ))

satisfies the variational constraint given in the second equation of (37). Note
that the above variations are not necessarily vertical. This variational condition
yields the Lagrange-d’Alembert-Pontryagin equations as:

ix′(τ)ωP − dE (x(τ)) + F̃ ext(x(τ)) ∈ ΔP (x(τ))◦, x′(τ) ∈ ΔP (x(τ)). (38)

On the other hand, note that the evolution equations for arbitrary curves
x(τ) ∈ P obtained from the condition of the Dirac dynamical system, namely,

(
x′(τ),dE (x(τ)) − F̃ ext(x(τ))

) ∈ DΔP
(x(τ)) (39)

are equivalent with the equations in (38) obtained from the Lagrange-
d’Alembert-Pontryagin principle (36) and (37).

Local Expressions. By noting the equalities
〈
θP (x), x′〉− E (x) =

〈
p, x′〉+ pt′ − E (t, x, v, p, p)

=
〈
p, x′ − v

〉
+ p(t′ − 1) − L (t, x, v),

the local expression for the Lagrange-d’Alembert-Pontryagin principle in (36)–
(37) for a curve x(τ) given in (35) becomes

δ

∫ τ2

τ1

[〈
p, x′〉+ pt′ − E

(
t, x, v, p, p

)]
dτ +

∫ τ2

τ1

〈F ext(t, x, v), δx〉dτ

= δ

∫ τ2

τ1

[〈
p, x′−v

〉
+ p(t′−1)−L (t, x, v)

]
dτ +

∫ τ2

τ1

〈F ext(t, x, v), δx〉dτ

= 0,

(40)

subject to the kinematic constraints

n∑

i=1

Ar
i

(
t, x, v

)
x′i + Br

(
t, x, v

)
t′ = 0, r = 1, ...,m, (41)

and for variations subject to the variational constraints

n∑

i=1

Ar
i

(
t, x, v

)
δxi + Br

(
t, x, v

)
δt = 0, r = 1, ...,m. (42)
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By direct computations, (40)–(42) yield the following equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ′i = vi, t′ = 1, pi = ∂L
∂vi (t, x, v),

p′
i − ∂L

∂xi (t, x, v) =
m∑

r=1
λrA

r
i (t, x, v) + F ext

i (t, x, v),
n∑

i=1

Ar
i (t, x, v)x′i + Br(t, x, v) = 0,

p′ − ∂L
∂t =

m∑
r=1

λrB
r(t, x, v).

(43)

These equations are the local coordinate expressions of (38). From the condition
t′(τ) = 1, we have t(τ) = τ + t0, and hence the critical curve of (40) is of the
form x(τ) = (τ + t0, x(τ), v(τ), p(τ), p(τ)), for a constant t0 which can be set to
zero by imposing the initial condition t0 := t(0) = 0, so that x becomes a section.
In this case (43) reduces to the system (27) associated to the time-dependent
Dirac dynamical system (24) for sections.

We summarize the obtained statements in the following theorem.

Theorem 2 (Time-Dependent Dirac Dynamical Systems). Given a
variational constraint CV ⊂ J1Y ×Y TY as in (14), consider the induced
Dirac structure DΔP

on P = J1Y ×Y T ∗Y as in (18). Let L : J1Y → R

be a time-dependent Lagrangian and E : P → R be the associated covariant
generalized energy. Let F ext : J1Y → T ∗Q be an external force field. Then
the following statements are equivalent:

• The curve x(τ) = (t(τ), x(τ), v(τ), p(τ), p(τ)) ∈ P satisfies the system

ix′ωP − dE (x) + F̃ ext(x) ∈ ΔP (x)◦, x′ ∈ ΔP (x),

which is locally given by (43).
• The curve x(τ) = (t(τ), x(τ), v(τ), p(τ), p(τ)) ∈ P is a solution of the

Dirac dynamical system
(
x′(τ),dE (x(τ)) − F̃ ext(x(τ))

) ∈ DΔP
(x(τ)).

• The curve x(τ) = (t(τ), x(τ), v(τ), p(τ), p(τ)) ∈ P is a critical point of
the variational formulation

δ

∫ τ2

τ1

[〈
θP (x(τ)), x′(τ)

〉− E (x(τ))
]
dτ = 0,

subject to the kinematic and variational constraints

x′(τ) ∈ ΔP (x(τ)) and δx(τ) ∈ ΔP (x(τ)),

with the fixed endpoint conditions Tπ(P ,Y )(δx(τ1)) = Tπ(P ,Y )(δx(τ2)) =
0.
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Note that the kinematic constraints (41) are imposed on general curves x(τ) ∈
P. On a critical curve we have x′ = ẋ and t′ = ṫ = 1 so that one recovers the
kinematic constraints

∑n
i=1 Ar

i

(
t, x, v

)
ẋi + Br

(
t, x, v

)
= 0.

Remark 5 (Curves versus Sections). So far we have employed arbitrary curves
x(τ) = (t(τ), x(τ), v(τ), p(τ), p(τ)) for the variational formulation. However, we
can assume that all critical curves x(τ) = (t(τ), x(τ), v(τ), p(τ), p(τ)) are sec-
tions, i.e., they are of the form x(t) = (t, x(t), v(t), p(t), p(t)), with the first
component being given by t. This is not a restriction since we have just seen
above that the critical condition imposes, modulo a time translation, that criti-
cal curves are sections.

4 Dirac Formulation for Open Thermodynamic Systems

In this section we apply the Dirac dynamical system formulation for time-
dependent nonholonomic systems with nonlinear constraints of thermodynamic
type developed in Sect. 3 to the case of open thermodynamic systems.

4.1 Application to the Piston-Cylinder System with External Ports

We start by describing the geometric setting, the Lagrangian, and the constraints
for the case of a simple and open thermodynamic system with external ports,
in which the power exchange with exterior is due to matter transfer and heat
sources.

Geometric Setting. Consider a simple and open systems with A exterior ports
and B heat sources, such as the one illustrated in Fig. 1. Let Q be the configura-
tion manifold of the mechanical part of the system with elements denoted q and
let R5 be the configuration space of the thermodynamic part of the system with
elements (S,N,Γ,W,Σ) ∈ R

5, where S is the entropy and N is the number of
moles of the chemical species of the system. Recall that W ∈ R and Γ ∈ R denote
the thermodynamic displacements that are defined such that Ẇ = μ and Γ̇ = T ,
where μ is the chemical potential and T is the temperature. Recall also that
Σ ∈ R denotes the internal entropy. Hence, the thermodynamic configuration
space becomes

Q = Q × R
5 � x = (q, S,N,Γ,W,Σ).

Associated with the external ports, we have the time-dependent external vari-
ables pa, T a, J a, a = 1, ..., A and T̄ b, J̄ b

S , b = 1, ..., B. We also consider an
external force F ext : J1Y → T ∗Q; (t, x, v) �→ F ext(t, x, v) and a friction force
F fr : J1Y → T ∗Q; (t, x, v) �→ F fr(t, x, v), where we recall that Y = R×Q with
(t, x) ∈ Y and x = (q, S,N,Γ,W,Σ).

We use the local coordinates v = (vq, vS , vN , vΓ, vW , vΣ) for v ∈ TxQ, the
local coordinates (t, x, δt, δx) ∈ TY with δx = (δq, δS, δN, δΓ, δW, δΣ) ∈ TxQ
and the local coordinates (t, x, p, p) ∈ T ∗Y with p = (pq, pS , pN , pΓ, pW , pΣ) ∈
T ∗

xQ.
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Augmented Lagrangians for Open Thermodynamic Systems. Consider
the Lagrangian for the system given by a function L(t, q, q̇, S,N) which can be
time-dependent in general. Recall that (q, q̇) ∈ TQ are the state variables of the
mechanical part.

Given L, we define the time-dependent augmented Lagrangian L : J1Y → R

as
L (t, x, ẋ) := L(t, q, q̇, S,N) + ẆN + Γ̇(S − Σ). (44)

Concerning the augmented terms ẆN + Γ̇(S − Σ) in (44), the first part ẆN(=
μN) is the expression corresponding to the Gibbs free energy associated with
the chemical substance, while the second part Γ̇(S − Σ) can be interpreted as a
constraint for the minimum power due to the entropy production associated with
the exchange with the exterior, where S indicates the total entropy of the system
and Σ the internal entropy production. Therefore, the term S − Σ corresponds
to the part of the entropy of the system that is due to the exchange of entropy
with exterior and where Γ̇(= T ) may be interpreted as a Lagrange multiplier.

Constraints for Open Thermodynamic Systems. In the general context of
nonlinear nonholonomic constraints of thermodynamic type in Sect. 3, we choose
the coefficients Ar

i (t, x, ẋ) and Br
i (t, x, ẋ) in the constraints (14) as

Ar
i (t, x, ẋ)δxi = −∂L

∂S
δΣ+〈F fr, δq〉+

A∑

a=1

(
J aδW +J a

S δΓ
)
+

B∑

b=1

J̄ b
SδΓ,

Br
i (t, x, ẋ) = −

A∑

a=1

(
J aμa + J a

S T a
)

−
B∑

b=1

J̄ b
S T̄ b.

(45)

It is important to recall that the molar flow rates J a, the entropy flow rates J a
S ,

J̄ b
S , as well as the temperatures T a, T̄ b and the chemical potentials μa at the A

ports and the B ports are explicit functions of time such as J a = J a(t, x, ẋ),
T a = T a(t, x, ẋ), and J̄ b

S = J̄ b
S(t, x, ẋ).

A First Lagrange-d’Alembert-Pontryagin Principle. With the Lagrangian
(44) and the choice for Ar

i and Br given in (45), the Lagrange-d’Alembert-
Pontryagin principle (32)–(34) recovers the Pontryagin version of the variational
formulation (8)–(10) presented in Sect. 2.2.

4.2 Dirac Dynamical Systems on the Covariant Pontryagin Bundle

In this subsection, we demonstrate that the equations of motion for simple and
open thermodynamic systems can be systematically developed in the context of
Dirac systems.

The Presymplectic Form on the Covariant Pontryagin Bundle. Recall
that the local coordinates for the covariant Pontryagin bundle P = J1Y ×Y

T ∗Y over Y = R × Q are given as x = (t, x, v, p, p) ∈ P.
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The one-form and presymplectic form θP = π∗
(P ,T ∗Y )ΘT ∗Y and ωP =

π∗
(P ,T ∗Y )ΩT ∗Y on P induced from the canonical forms ΘT ∗Y and ΩT ∗Y on

T ∗Y , have the local expressions

θP = pdx + pdt

= pqdq + pSdS + pNdN + pΓdΓ + pW dW + pΣdΣ + pdt,

ωP = dx∧dp + dt ∧ dp

= dq∧dpq+dS∧dpS +dN∧dpN +dΓ∧dpΓ+dW ∧dpW +dΣ∧dpΣ+dt∧dp,

where of course ωP = −dθP holds.

The Variational and Kinematic Constraints. By using the general defini-
tion of the variational constraint given in (14) in view of (45), we get

CV =
{

(t, x, v, δt, δx) ∈ J1Y ×Y TY
∣
∣
∣

∂L

∂S
δΣ = 〈F fr, δq〉

+
A∑

a=1

[
J a(δW − μaδt) + J a

S (δΓ − T aδt)
]
+

B∑

b=1

J̄ b
S(δΓ − T̄ bδt)

}
, (46)

where the affine part of the constraint is now associated with δt. Following
the general construction of the kinematic constraint CK in (13), the kinematic
constraint becomes

CK =
{

(t, x, ṫ, ẋ) ∈ TY
∣∣∣

∂L

∂S
Σ̇ = 〈F fr, q̇〉

+
A∑

a=1

[
J a(Ẇ − μaṫ) + J a

S (Γ̇ − T aṫ)
]
+

B∑

b=1

J̄ b
S(Γ̇ − T̄ bṫ)

}
,

where the affine part of the constraint is now associated with ṫ.

Dirac Structures for Open Thermodynamic Systems. As in (15), the
variational constraint CV induces a distribution ΔP on P. Then, we can define
the induced Dirac structure on P, i.e., DΔP

⊂ TP⊕T ∗P from the distribution
ΔP and the presymplectic form ωP as in (18).

In order to develop the local expressions of the Dirac structure from CV

in (46), we employ the following notations: For each x = (t, x, v, p, p) ∈ P,
we write ux = (ṫ, ẋ, v̇, ṗ, ṗ) ∈ TxP and ax = (π, α, β, γ, w) ∈ T ∗

xP, where
v̇ = (v̇q, v̇S , v̇N , v̇Γ, v̇W , v̇Σ), ṗ = (ṗq, ṗS , ṗN , ṗΓ, ṗW , ṗΣ), α = (αq, αS , αN , αΓ,
αW , αΣ), β = (βq, βS , βN , βΓ, βW , βΣ), and w = (wq, wS , wN , wΓ, wW , wΣ).

The annihilator CV (t, x, v)◦ ⊂ T ∗Y of the variational constraint
CV (t, x, v) ⊂ T(t,x)Y is locally represented by

CV (t, x, v)◦ = {(t, x, π, α) ∈ T ∗
(t,x)Y | π = λrB

r(t, x, v), α = λrA
r
i (t, x, v), λr ∈ R}.
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Hence, eliminating the Lagrange multiplier λ by substituting λ = αΣ
∂L
∂S

, the anni-
hilator may be given by the covectors (t, x, π, α) ∈ T ∗Y that satisfy the following
conditions:

π =
αΣ

∂L
∂S

[
A∑

a=1

(J aμa + J a
S T a) +

B∑

b=1

J̄ b
S T̄ b

]
,

αq +
αΣ

∂L
∂S

F fr = 0, αS = 0, αN = 0,

αΓ +
αΣ

∂L
∂S

[
A∑

a=1

J a
S +

B∑

b=1

J̄ b
S

]
= 0, αW +

αΣ

∂L
∂S

A∑

a=1

J a = 0.

(47)

Using (19), (46) and (47), the condition that (ux, ax) ∈ TxP ×T ∗
xP belongs

to the section of the Dirac structure DΔP
, i.e., the condition

(
(ṫ, ẋ, v̇, ṗ, ṗ), (π, α, β, γ, w)

) ∈ DΔP
(t, x, v, p, p),

is explicitly described by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṫ = γ, q̇ = wq, Ṡ = wS , Ṅ = wN , Γ̇ = wΓ, Ẇ = wW , Σ̇ = wΣ,
βq = βS = βN = βΓ = βW = βΣ = 0,

ṗ + π = 1
∂L
∂S

(ṗΣ + αΣ)
[

A∑
a=1

(J aμa + J a
S T a) +

B∑
b=1

J̄ b
S T̄ b

]
,

ṗq + αq + 1
∂L
∂S

(ṗΣ + αΣ)F fr = 0, ṗS + αS = 0, ṗN + αN = 0,

ṗΓ + αΓ + 1
∂L
∂S

(ṗΣ + αΣ)
[

A∑
a=1

J a
S +

B∑
b=1

J̄ b
S

]
= 0,

ṗW + αW + 1
∂L
∂S

(ṗΣ + αΣ)
A∑

a=1
J a

S = 0,

∂L
∂S Σ̇=〈F fr, q̇〉+

A∑
a=1

[
J a(Ẇ − μaṫ)+J a

S (Γ̇ − T aṫ)
]
+

B∑
b=1

J̄ b
S(Γ̇ − T̄ bṫ).

(48)

Covariant Generalized Energy and External Forces. Recall from (44) that
the augmented Lagrangian on J1Y is given by L (t, x, v) = L(t, q, vq, S,N) +
vW N + vΓ(S − Σ). Therefore, the covariant generalized energy, see (21), is here
given by

E (t, x, v, p, p) = p + 〈p, v〉 − L (t, x, v)
= p + 〈pq, vq〉 + pSvS + pNvN

+ (pΓ + Σ − S)vΓ + (pW − N)vW + pΣvΣ − L(t, q, vq, S,N).

The differential of dE is obtained by

dE (t, x, v, p, p) =
(

−∂L

∂t
,−∂L

∂x
, p − ∂L

∂v
, 1, v

)
= (π, α, β, γ, w),
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where

π = −∂L

∂t
= −∂L

∂t
,

α = −∂L

∂x
=
(

−∂L

∂q
,−vΓ − ∂L

∂S
,−vW − ∂L

∂N
, 0, 0, vΓ

)
,

β = p − ∂L

∂v
=
(

pq − ∂L

∂vq
, pS , pN , pΓ + Σ − S, pW − N, pΣ

)
,

γ = 1, w = v = (vq, vS , vN , vΓ, vW , vΣ).

Using π(P ,Q) : P →Q, (t, x, v, p, p) �→ x, the external force F ext : J1Y →
T ∗Q can be lifted as a horizontal one-form F̃ ext on P by, for W ∈ T(t,x,v,p,p)P,

〈F̃ ext(t, x, v, p, p),W 〉 = 〈F ext(t, x, v), T(t,x,v,p,p)π(P ,Q)(W )〉.

Dirac Dynamical Systems on P for Open Thermodynamic Systems.
The Dirac formulation for open systems is given in the following theorem.

Theorem 3 (Dirac Formulation of Open Systems). Consider a simple
and open thermodynamic system described as before with the Lagrangian
L, molar flow rates J a, entropy flow rates J a

S , J̄ b
S , external variables T a,

μa, T̄ b, and the external force F ext. Consider the associated Dirac structure
DΔP

as defined above.
If the curve x(t) = (t, x(t), v(t), p(t), p(t)) ∈ P, with x = (q, S,N,Γ,

W,Σ), v = (vq, vS , vN , vΓ, vW , vΣ) and p = (pq, pS , pN , pΓ, pW , pΣ), is a solu-
tion curve of the Dirac dynamical system

(
ẋ,dE (x) − F̃ ext(x)

)
∈ DΔP

(x), (49)

then the following evolution equations are satisfied:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pq = ∂L
∂q̇ , pΓ = S − Σ, pW = N,

ṗ − ∂L
∂t = −

A∑
a=1

(J aμa + J a
S T a) −

B∑
b=1

J̄ b
S T̄ b,

ṗq = ∂L
∂q + F fr + F ext, ṗΓ =

A∑
a=1

J a
S +

B∑
b=1

J̄ b
S , ṗW =

A∑
a=1

J a,

Γ̇ = −∂L
∂S , Ẇ = − ∂L

∂N ,

∂L
∂S Σ̇=〈F fr, q̇〉+

A∑
a=1

[
J a(Ẇ −μa)+J a

S (Γ̇−T a)
]
+

B∑
b=1

J̄ b
S(Γ̇−T̄ b),

(50)
which are equivalently reduced to the evolution equations of simple and open
thermodynamic systems given in (11).
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Proof. Using the local expressions of the Dirac structure given in (48), we get
the following system equations for the Dirac dynamical system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṫ = 1, q̇ = vq, Ṡ = vS , Ṅ = vN , Γ̇ = vΓ, Ẇ = vW , Σ̇ = vΣ,
pq − ∂L

∂vq
= 0, pS = 0, pN = 0, pΓ + Σ − S = 0, pW − N =0, pΣ = 0,

ṗ − ∂L
∂t = 1

∂L
∂S

(ṗΣ + vΓ)
[

A∑
a=1

(J aμa+J a
S T a)+

B∑
b=1

J̄ b
S T̄ b

]
,

ṗq − ∂L
∂q + 1

∂L
∂S

(ṗΣ + vΓ)F fr = F ext, ṗS − vΓ − ∂L
∂S = 0,

ṗN − vW − ∂L
∂N = 0,

ṗΓ + 0 + 1
∂L
∂S

(ṗΣ + vΓ)
[

A∑
a=1

J a
S +

B∑
b=1

J̄ b
S

]
= 0,

ṗW + 0 + 1
∂L
∂S

(ṗΣ + vΓ)
A∑

a=1
J a

S = 0,

∂L
∂S Σ̇=〈F fr, q̇〉+

A∑
a=1

[
J a(Ẇ −μaṫ)+J a

S (Γ̇−T aṫ)
]
+

B∑
b=1

J̄ b
S(Γ̇−T̄ bṫ).

Since pS = 0, we have vΓ = −∂L
∂S from an equation in the fourth line. From this

and pΣ = 0, we obtain 1
∂L
∂S

(ṗΣ+vΓ) = −1. Then we obtain the evolution equations
in (50). By eliminating some variables and making further rearrangements, we
can check that the evolution equations (50) are finally reduced to the Lagrange-
d’Alembert equations for the open system given in (11).

Remark 6 (The Lagrange-d’Alembert-Pontryagin principle for open systems).
The variational formulation associated with the Dirac system formulation (49)
for open systems is obtained directly from (40)–(42) by making the correspond-
ing replacements. In particular it yields equations of motion (50).

Interpretation of the Thermodynamic Variables. The system of equations
in (50) allows to make useful physical interpretations of the variables involved
in the Dirac system formulation.

The two equations in the fourth line of (50) attribute to the variables Γ and
W the meaning of thermodynamic displacements associated to the process of
heat and matter transport.

The momentum pW = N conjugate to W is interpreted as the number of
moles in the system. Therefore, from the third equation in the third line of (50),
the mass balance equation given in (2) can be recovered as

ṗW =
A∑

a=1

J a.

The momentum pΓ = S − Σ conjugate to Γ corresponds to the part of the
entropy of the system that is due to the exchange of entropy with exterior. It
follows from the second equation in the third line of (50) that its rate of change
becomes

ṗΓ = Ṡ − Σ̇ =
A∑

a=1

J a
S +

B∑

b=1

J̄ b
S
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and we recover the rate of total entropy change of the system as

Ṡ = Σ̇ + ṗΓ = I +
A∑

a=1

J a
S +

B∑

b=1

J̄ b
S . (51)

The internal entropy production Σ̇ = I is always positive by the second law of
thermodynamics, while ṗΓ =

∑A
a=1 J

a
S +

∑B
b=1 J̄

b
S , giving the rate of entropy

flowing from exterior into the system, has an arbitrary sign. It is noteworthy
that equation (51) is usually denoted in the form

dS = diS + deS

in conventional physics textbooks (see, for instance, [5]), where dS denotes the
infinitesimal change of the total entropy, diS the entropy produced inside the
system and deS the entropy supplied to the system by its surroundings. In our
formulation, it reads as

diS = Σ̇dt and deS = ṗΓdt.

The momentum p represents minus the rate of energy associated with the
matter and heat exchange with the exterior through the ports. In fact, from the
equation in the second line of (50), one obtains

d

dt
p =

∂L

∂t
−

A∑

a=1

(J aμa + J a
S T a)

︸ ︷︷ ︸
=P ext

M

−
B∑

b=1

J̄ b
S T̄ b

︸ ︷︷ ︸
=P ext

H

.

Finally, associated with the momentum pq = ∂L
∂vq

, the first equation in the
third line of (50) represents the Lagrange-d’Alembert equations for the mechan-
ical part of the system:

{ d
dt

∂L
∂vq

= ∂L
∂q + F fr + F ext,

q̇ = vq.

Energy Balance. Consider the total energy of the system given by

E(t, q, q̇, S,N) =
〈

∂L

∂q̇
, q̇

〉
− L(t, q, q̇, S,N).

This energy coincides with the energy E(t, x, ẋ), x = (q, S,N,Γ,W,Σ) defined
from the augmented Lagrangian L (t, x, ẋ) = L(t, q, q̇, S,N) + ẆN + Γ̇(S − Σ)
via the formula E(t, x, ẋ) =

〈
∂L
∂ẋ , ẋ

〉 − L (t, x, ẋ). The energy balance equation
is obtained as

d

dt
E = 〈F ext, q̇〉 − d

dt
p

= −∂L

∂t
+ 〈F ext, q̇〉

B∑

b=1︸ ︷︷ ︸
=P ext

W

+
A∑

a=1

(J aμa + J a
S T a)

︸ ︷︷ ︸
=P ext

M

+
B∑

b=1

J̄ b
S T̄ b

︸ ︷︷ ︸
=P ext

H

.
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Regarding the covariant generalized energy, we have d
dtE = d

dtE+ d
dtp = 〈F ext, q̇〉.

For the case in which the given Lagrangian L does not depend on time t explicitly,
we recover the first law for open systems given in (1) as:

d

dt
E = P ext

W + P ext
H + P ext

M .
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