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Abstract. Boyle et al. (TCC 2019) proposed a new approach for secure
computation in the preprocessing model building on function secret shar-
ing (FSS), where a gate g is evaluated using an FSS scheme for the
related offset family gr(x) = g(x + r). They further presented efficient
FSS schemes based on any pseudorandom generator (PRG) for the offset
families of several useful gates g that arise in “mixed-mode” secure com-
putation. These include gates for zero test, integer comparison, ReLU,
and spline functions. The FSS-based approach offers significant savings
in online communication and round complexity compared to alternative
techniques based on garbled circuits or secret sharing.

In this work, we improve and extend the previous results of Boyle
et al. by making the following three kinds of contributions:

– Improved Key Size. The preprocessing and storage costs of
the FSS-based approach directly depend on the FSS key size. We
improve the key size of previous constructions through two steps.
First, we obtain roughly 4× reduction in key size for Distributed
Comparison Function (DCF), i.e., FSS for the family of functions
f<

α,β(x) that output β if x < α and 0 otherwise. DCF serves as a
central building block in the constructions of Boyle et al.. Second, we
improve the number of DCF instances required for realizing useful
gates g. For example, whereas previous FSS schemes for ReLU and
m-piece spline required 2 and 2m DCF instances, respectively, ours
require only a single instance of DCF in both cases. This improves
the FSS key size by 6 − 22× for commonly used gates such as ReLU
and sigmoid.

– New Gates. We present the first PRG-based FSS schemes for arith-
metic and logical shift gates, as well as for bit-decomposition where
both the input and outputs are shared over Z2n . These gates are
crucial for many applications related to fixed-point arithmetic and
machine learning.
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– A Barrier. The above results enable a 2-round PRG-based secure
evaluation of “multiply-then-truncate,” a central operation in fixed-
point arithmetic, by sequentially invoking FSS schemes for multi-
plication and shift. We identify a barrier to obtaining a 1-round
implementation via a single FSS scheme, showing that this would
require settling a major open problem in the area of FSS: namely, a
PRG-based FSS for the class of bit-conjunction functions.

1 Introduction

Secure multi-party computation (or MPC) [8,20,29,53] allows two or more par-
ties to compute any function on their private inputs without revealing anything
other than the output. A useful intermediate construction goal is that of MPC in
the preprocessing model, wherein the parties receive correlated randomness from
a trusted dealer in an offline input-independent phase, and then use this corre-
lated randomness in the online phase once the inputs are known. Such protocols
can be directly converted to ones in the standard model (without a dealer) via an
assortment of general transformations, e.g. emulating the role of the dealer jointly
using a targeted MPC protocol between the parties (see discussion in Appendix
A in full version [9]). This modular design approach facilitates significant per-
formance benefits, and indeed is followed by essentially all concretely efficient
MPC protocols to date. Common types of correlated randomness include Beaver
triples for multiplication [6], garbled circuit correlations [25,53], OT [16,31,35]
and OLE [32,42] correlations, and one-time truth tables [23,30].

When used to evaluate “pure” Boolean or arithmetic circuits, MPC protocols
in the preprocessing model have the benefit of a very fast online phase in which
the local computation performed by the parties is comparable to computing the
circuit in the clear. Furthermore, the online communication is roughly the same
as communicating the values of all wires in the circuit, and the number of online
rounds is equal to the circuit depth.

Unfortunately, typical applications of MPC in areas such as machine learn-
ing and scientific computing apply computations that cannot be succinctly rep-
resented by pure Boolean or arithmetic circuits. Instead, they involve a mix-
ture of arithmetic operations (additions and multiplications over a large field or
ring) and “non-arithmetic” operations such as truncation, rounding, integer com-
parison, ReLU, bit-decomposition, or piecewise-polynomial functions known as
splines. The cost of naively emulating such mixed computations by pure Boolean
or arithmetic circuits is prohibitively high.

This motivated a long line of work on “mixed-mode” MPC, which supports
efficient inter-conversions between arithmetic and Boolean domains and sup-
ports the above kinds of non-arithmetic operations. General frameworks such
as [15,19,25,36,40] allow mixing of arithmetic gates (additions and multiplica-
tions) and Boolean gates (such as integer comparison), performing a suitable
conversion whenever the type of gate changes. Together with MPC protocols for
Boolean circuits based on garbled circuits or secret sharing, they can support the
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above kinds of non-arithmetic operations. However, the efficiency of these tech-
niques leaves much to be desired, as they typically incur a significant overhead
in communication and rounds even when ignoring the cost of input-independent
preprocessing.

Recently, Boyle et al. [13] proposed a powerful approach for mixed-mode
MPC in the preprocessing model, using function secret sharing (FSS) [10,12]
(their approach can be seen as a generalization of an earlier truth-table based
protocol of Damg̊ard et al. [23]). The FSS-based approach to MPC with prepro-
cessing can support arithmetic operations that are mixed with the above kinds
of non-arithmetic operations with the same online communication and round
complexity as pure arithmetic computations, and while only making use of sym-
metric cryptography. In the present work, we significantly improve the efficiency
of this FSS-based approach and extend it by supporting useful new types of
non-arithmetic operations. Before giving a more detailed account of our results,
we give an overview of the FSS-based approach to MPC with preprocessing.

1.1 MPC with Preprocessing Through FSS

At a high level, a (2-party) FSS scheme [10,12] for a function family F splits a
function f ∈ F into two additive shares f0, f1, such that each fσ hides f and
f0(x) + f1(x) = f(x) for every input x. Here we assume that the output domain
of f is a finite Abelian group G, where addition is taken over G. While this can
be trivially solved by secret-sharing the truth-table of f , the goal of FSS is to
obtain succinct descriptions of f0 and f1 using short keys k0 and k1, while still
allowing their efficient evaluation.

For simplicity, consider semi-honest 2-party secure computation (2PC) with
a trusted dealer – in the full version [9] we discuss how to emulate the trusted
dealer with 2PC (building upon [27]) as well as extensions to malicious security,
in Appendix A and B, respectively. The main idea, from [13], to obtain 2PC with
trusted dealer is as follows. Consider a mixed circuit whose wires take values from
(possibly different) Abelian groups and where each gate g maps a single input
wire to a single output wire. We can additionally make free use of fan-out gates
that duplicate wires, “splitters” that break a wire from a product group G1×G2

into two wires, and “joiners” that concatenate two wires into a single wire from
the product group. This allows us to view a two-input gate (such as addition or
multiplication) as a single-input gate applied on top of a joiner gate.

The FSS-based evaluation of such a circuit proceeds by maintaining the fol-
lowing invariant: for every wire wi in the circuit, both parties learn the masked
wire value wi + ri, where ri is a random secret mask (from the group associated
with wi) which is picked by the dealer and is not revealed to any of the parties.
The only exceptions are input wires, where the mask ri is revealed to the party
owning the input, and the circuit output wires, where the masks are revealed to
both parties.

This above is easy to achieve for input wires by simply letting the dealer
send to each party the masks of the inputs owned by this party, and having
the parties reveal the masked inputs to each other. The challenge is to maintain
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the invariant when evaluating a gate g with input wire wi and output wire
wj = g(wi) without revealing any information about the wire values. The idea is
to consider the function mapping the masked input w′

i = wi + ri to the masked
output w′

j = g(wi) + rj as a secret function f determined by ri and rj , applied
to the public input w′

i. Concretely, f(w′
i) = g(w′

i − ri) + rj .
Since the secret function f is known to the dealer (who picks all random

masks), the dealer can securely delegate the evaluation of f to the two parties by
splitting it into f0 and f1 via FSS and sending to each party σ its corresponding
FSS key kσ. Letting party σ evaluate fσ(w′

i), the parties obtain additive shares
of w′

j , which they can safely exchange and recover the masked output w′
j . Finally,

the circuit output wires are unmasked by having the dealer provide their masks
to both parties.

The key observation is that given a gate g, the secret function f comes
from the family of offset functions Fg that includes all functions of the form
g[r

in,rout](x) = g(x − rin) + rout. (Alternatively, up to a slight loss of efficiency, it is
enough to use FSS for the simpler class of functions of the form gr(x) = g(x+r),
together with separate shares of the masks.) We refer to an FSS scheme for the
offset function family Fg as an FSS gate for g. The key technical challenge in
implementing the approach of [13] is in efficiently realizing FSS gates for useful
types of gates g.

For addition and multiplication gates over a finite ring, the FSS gates are
information-theoretic and essentially coincide with Beaver’s protocol [6] (more
accurately, its circuit-dependent variant from [7,21,23]). A key observation of [13]
is that for a variety of useful non-arithmetic gates, including zero test, integer
comparison, ReLU, splines, and bit-decomposition (mapping an input in Z2n to
the corresponding output in Z

n
2 ), FSS gates can be efficiently constructed using

a small number of invocations of FSS schemes from [12]. The latter FSS schemes
have the appealing feature of making a black-box use of any pseudorandom gen-
erator (PRG). This gives rise to relatively short keys and fast implementations
using hardware support for AES.

Alternative Variants. The above protocol uses circuit-dependent correlated
randomness, since a wire mask is used in two or more gates incident to this wire,
and this incidence relation depends on the circuit topology. At a small additional
cost, one can break the correlations between FSS gates and obtain a circuit
independent variant; see [13] for details. Another variant, which corresponds to
how standard MPC protocols are typically described, is to use an FSS gate for
mapping a secret-shared input to a secret-shared output (rather than a masked
input to a masked output). This variant proceeds as described above, except
that the parties start by reconstructing the masked input using a single round of
interaction, and then use the FSS gate to locally compute shares of the output
(without any interaction). With this variant, one can seamlessly use FSS gates
in combination with other kinds of MPC protocols are based on garbled circuits,
secret sharing, or homomorphic encryption.

Efficiency. When mapping a masked input to a masked output, processing a
gate g requires only a single round of interaction, where each party sends a
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message to the other party. This message consists of a single element in the
output group of g. Similarly, the variant mapping a secret-shared input to a
secret-shared output still requires only a single round of interaction, where the
message here consists of a single element in the input group of g. Assuming a
single round of interaction, this online communication complexity is optimal [13].
Overall, when evaluating a full circuit the communication by each party (using
either the masked-input to masked-output or the shared-input to shared-output
variant) is equal to that of communicating all wire values. The round complexity
is equal to the circuit depth, no matter how complex the gates g are. The only
complexity measures which are sensitive to the FSS gate implementation are
the evaluation time and, typically more significantly, the size of the correlated
randomness communicated by the dealer and stored by the parties. Optimizing
the latter is a central focus of our work.

When is the FSS-Based Approach Attractive? It is instructive to compare
the efficiency features of the above FSS-based approach with that of the two main
approaches for MPC with preprocessing: a Yao-style protocol based on garbled
circuits (GC) [53] and a GMW-style protocol based on secret sharing [29].1

Consider the goal of securely converting input shares for g into output shares
when g is a nontrivial gate, say ReLU, over elements of ZN for N = 2n.

The FSS-based online protocol requires only one round of interaction in which
each party sends only n bits (as argued above, this is optimal). In contrast, in
a GC-based protocol the online phase (as used in several related works [15,19,
25,33,39–41]) requires one of the parties to communicate 256n bits (a pair of
AES keys for each input), which is 128× bigger. Furthermore, the parties need
to interact in two sequential rounds. In the full version of this paper [9], we
discuss a way to reduce the online communication of a GC-based protocol by
2×, which still leaves a 64× overhead in communication and 2× overhead in
rounds over the FSS-based protocol. A GMW-style protocol typically requires
a large number of rounds (depending on the multiplicative depth of a Boolean
circuit implementing g), and has online per-party communication which is bigger
than n by a multiplicative factor which depends on the number of multiplication
gates in the circuit. See full version for a more concrete comparison with previous
works taking the GC-based or GMW-based approach.

Even when considering MPC without preprocessing, namely, when the offline
and online phases are combined, the FSS-based approach can still maintain some
of its advantages. For instance, since keys for all FSS gates in a deep circuit can
be generated in parallel, the advantage in round complexity is maintained. In
the 3PC setting where one party emulates the role of the dealer, or in the 2PC
setting with a relatively small input length n (see Appendix A of full version [9]),
one can potentially beat the communication complexity of a GC-based protocol,
depending on the FSS key size. This will be further discussed below.

1 Here we only consider protocols whose online phase is based on symmetric cryptog-
raphy. This excludes protocols based on homomorphic encryption, whose concrete
costs are typically much higher.
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To conclude, FSS-based protocols will typically outperform competing
approaches in two common scenarios: (1) when offline communication is cheaper
than online communication, or alternatively (2) when latency is the bottleneck
and minimizing rounds is a primary goal. In the setting of MPC with preprocess-
ing, the FSS-based approach beats all previous practical approaches to mixed-
mode secure computation with respect to both online communication and round
complexity.

Finally, we stress that while the above discussion mainly focuses on semi-
honest 2PC with a trusted dealer, most of the above benefits also apply to
malicious security (see full version), and when emulating the trusted dealer using
the different options we discuss: third party, 2PC protocol (full version), or semi-
trusted hardware [43].

Bottlenecks for the FSS-Based Approach. Given the optimality of rounds
and communication in the online evaluation of a gate g, the main bottleneck in
the FSS-based approach lies in the size of the correlated randomness provided
by the trusted dealer, namely the size of the FSS keys kσ. This affects both
offline communication and online storage. In the 3PC setting, where the trusted
dealer is emulated by a third party, the FSS key size directly translates to offline
communication from the third party to the other two parties. In the 2PC set-
ting, where the dealer is emulated by an offline protocol for securely generating
correlated randomness (see full version [9] for more details), the communication
and computation costs of the offline protocol grow significantly with the key
size. Thus, minimizing key size of useful FSS gates is strongly motivated by all
application scenarios of FSS-based MPC.

Many compelling use-cases of MPC, such as privacy-preserving machine
learning, finance, and scientific computing, involve numerical computation with
finite precision, also known as “fixed-point arithmetic.” Arithmetic over fixed-
point numbers not only requires arithmetic operations such as additions and
multiplications, for which efficient protocols can be based on traditional tech-
niques, but also other kinds of operations that cannot be efficiently reduced to
arithmetic operations over large rings. These include Boolean shift operators
needed for adjusting the “scale” of fixed-point numbers. Concretely, for N = 2n,
a logical (resp., arithmetic) right shift by s converts an element x ∈ ZN represent-
ing an n-bit unsigned (resp., signed) number to y ∈ ZN representing �x/2s�. To
date, there are no PRG-based realizations of FSS gates for these Boolean opera-
tions,2 and hence, fixed-point arithmetic operations cannot be realized securely
using existing lightweight FSS machinery.

We now discuss our contributions that address these bottlenecks.

2 An FSS-based protocol for right-shift can be obtained using the FSS gate for bit-
decomposition from [13]. However, their construction only allows output shares of
bits over Z2, whereas such a reduction (as well as other applications) requires output
shares over ZN . Conversion of shares from Z2 to ZN would thus require an additional
round of interaction. Furthermore, this approach would require key size quadratic
in input length: O(n2λ) for N = 2n (i.e., n-bit numbers) and PRG seed length λ.
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1.2 Our Contributions

In this work, we make the following contributions:

– Improved Key Size. We obtain both concrete and asymptotic improve-
ments in key size for widely applicable FSS gates such as integer comparisons,
interval containment, bit-decomposition, and splines.

– New Gates. We extend the scope of FSS-based MPC by providing the first
efficient FSS gates for several useful function families that include (logical
and arithmetic) right shift, as well as bit-decomposition with outputs shared
in ZN (rather than Z2 in the construction from [13]).

– A Barrier. We provide a barrier result explaining the difficulty of obtaining
PRG-based FSS gates for functions such as fixed-point multiplication.

We now give more details about these three kinds of contributions.

Improved Key Size. In Table 1 we summarize our improvements in key size
over [13] and compare our improved FSS key size with garbled circuit size for
the same gates. We provide the key size both as a function of input bitlength
n and for the special case n = 16. Compared to [13], we observe a reduction
in key size ranging from 6× for ReLU to 22× for splines and 77× for multiple
interval containment (MIC) with 12 intervals. (Please refer to Appendix D in full
version [9] for precise definitions of all gate types.) As can be observed, for all of
the FSS gates considered in [13], their key size was significantly larger than the
garbled circuit size. With our constructions, the key size is significantly lower
than garbled circuits, for all gates except bit-decomposition (with output in Z

n
2 ).

For instance, our key size is at least 2× better than garbled circuits for ReLU
and 15× and 27× better for splines and MIC, respectively. Recall that when
compared to MPC protocols that use garbled circuits for preprocessing, protocols
that follow the FSS-based approach have 64× lower online communication and
2× less rounds. So with our new schemes, FSS-based MPC with preprocessing
will typically become more efficient in storage as well. The offline cost can also
be smaller in some MPC settings (such as the 3PC case).

Our improvements in key size are obtained in two steps. The first step is a
roughly 4× improvement for a central building block of useful FSS gates that
we call Distributed Comparison Function (DCF). A DCF is an FSS scheme
for the family of functions f<

α,β(x) that output β if x < α and 0 otherwise,
where α, β ∈ ZN . This improvement is independently motivated by several other
applications, including Yao’s millionaires’ problem and 2-server PIR with range
queries. However, our primary motivation is the fact that previous FSS gate
constructions from [13] are cast as reductions that invoke multiple instances
of DCF. As a second step, we significantly improve the previous reductions
from [13] of useful non-arithmetic FSS gates to DCF. We describe these two
types of improvements in more detail below.
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Optimized DCF. The best previous DCF construction is an instance of an FSS
scheme for decision trees from [12]. Instead, we provide a tighter direct construc-
tion that reduces the key size by roughly 4×. Concretely, the total key size is
improved from ≈ 2n(4λ + n) to ≈ 2n(λ + n) for input and output domains of
size N = 2n and PRG seed length λ, with similar savings for general input and
output domains.3

Better Reductions to DCF. We significantly reduce the number of DCF instances
required by most of the non-arithmetic FSS gates from [13]. The main new
building block is a new FSS scheme for the offset families of interval containment
(IC for short) and splines (piecewise polynomial functions) when the comparison
points are public. Our construction uses only one DCF instance compared to the
analogous constructions from [13] that require 2 and 2m DCF instances for IC
and splines with m pieces, respectively, but can hide the comparison points. We
note that comparison points are public for almost all important applications -
e.g. the popular activation function in machine learning, ReLU,4 absolute value,
as well as approximations of transcendental functions [38,41].

Concretely, for n = 16 (where inputs and outputs are in ZN for N = 2n),
including our improvement in DCF key size, we improve the key size from [13]
by roughly 6×, 12×, and 22× for the spline functions ReLU, absolute value
and sigmoid, respectively, where the sigmoid function is approximated using
12 pieces [38]. Moreover, this improvement in key size makes the FSS-based
construction beat garbled circuits not only in terms of online communication but
also in terms of per-gate storage requirements. See Table 1 for a more detailed
comparison.

The main technical idea that enables the above improvement is that an FSS
scheme for the offset family of a public IC function f[p,q] (that outputs is 1 if
p ≤ x ≤ q and 0 otherwise) can be reduced to a single DCF instance with
α = N − 1 + rin. We build on this construction to reduce FSS keys for multiple
intervals (and hence splines with constant payload) to this single DCF instance.
See Sect. 4 for details. Constructions for splines with general polynomial outputs
employ additional techniques to embed secret payloads (see Sect. 5.1).

Another kind of FSS gate for which we get an asymptotic improvement in
key size over [13] is bit-decomposition with outputs shared over Z2. Here an input
x ∈ ZN is split to its bit-representation (xn−1, . . . , x0) ∈ {0, 1}n, where each xi

is individually shared over Z2. (This type of “arithmetic to Boolean” conversion
can be useful for applying a garbled circuit to compute a complex function of
x that is not efficiently handled by FSS gates.) Non-trivial protocols for bit-
decomposition have been proposed in different MPC models [22,44,49,50]. An
FSS gate for the above flavor of bit-decomposition was given in [13] with O(n2λ)

3 A concurrent work by Ryffel et al. [48] on privacy-preserving machine learning using
FSS also proposes an optimized DCF scheme. Our construction is around 1.7× better
in key size than theirs.

4 A ReLU operator, or Rectified Linear Unit, is a function on signed numbers defined
by g(x) = max(x, 0).
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Table 1. Comparison of our FSS gate key sizes, with those of [13], and Garbled Circuits
(GC) [52]. For FSS (i.e., our work and [13]), we list total key size for both P0, P1. For
GC, we under-approximate and consider only the size of garbled circuit. The table only
captures the size of correlated randomness (offline communication in the 3PC case);
the online communication corresponding to both FSS columns is at least λ

2
× better

than GC (and rounds 2× better). UN , SN denote unsigned and signed n-bit integers,
respectively. We consider gates for: Interval containment (IC), multiple interval con-
tainment (MIC) with m intervals, splines with m intervals and d-degree polynomial
outputs, ReLU, Absolute value (ABS), Bit Decomposition (BD), Logical/Arithmetic
Right Shifts (LRS/ARS) by s. Syntax and definitions of all gates are described in
appendix D in our full version [9]. We provide cost in terms of number of DCFn,G keys
for DCF with input bitlength n and output group G. To disambiguate between our
optimized DCF and DCF used in [13], we use DCFBGI

n,G for the latter. Let � = �log |G|�.
Size of our optimized DCFn,G key is total 2 (n(λ + � + 2) + λ + �) bits. Size of DCFBGI

n,G

key (using [12]) is 2 (4n(λ + 1) + n� + λ) bits. For our BD scheme (with output over
U

n
2 ), w is a parameter (here we assume w | n) and compute grows exponentially with

w. We provide approximate key size expressions here by ignoring lower order terms;
refer to Table 2 in Appendix C.2 of full version [9] for exact expressions. The values
in parenthesis give exact key size in bits for λ = 128, n = 16, m = 12, d = 1, w = 4,
s = 7.

Gate This work BGI’19 [13] GC

IC (n) DCFn,UN 2 × DCFBGI
n,UN

8λn

(4992) (34592) (15616)

MIC (n, m) DCFn,UN + 2mn 2m × DCFBGI
n,UN

6λmn

(5344) (415104) (145152)

Splines (n, m, d) DCF
n,U

m(d+1)
N

+ 4mn(d + 1) 2m × DCFBGI

n,U
(d+1)
N

4λmn(d + 2)

(19040) (427008) (289536)

ReLU (n) DCFn,U2
N

2 × DCFBGI
n,U2

N
6λn

(5664) (35616) (11776)

ABS (n) DCFn,U2
N

4 × DCFBGI
n,U2

N
8λn

(5728) (71168) (15616)

BD (n, w) n
w

× DCFn+w
2 ,U2

(n − 1) × DCFBGI
n
2 ,U2

2λn

(11544) (127952) (3840)

LRS (n, s) DCFs,UN + DCFn,UN – 4λn

(7324) (–) (7680)

ARS (n, s) DCFs,SN + DCFn−1,S2
N

– 4λn

(7608) (–) (7680)

key size. Here we substantially improve the hidden constant by reducing the bit-
decomposition problem to a series of public interval containments. Moreover, we
show how to further reduce the key size by an extra factor of w at the cost of
computational overhead that grows exponentially with w. Setting w = log n, we
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get an asymptotic improvement in key size over [13], while maintaining poly(n)
computation time.

New FSS Gates. A central operation that underlies fixed-point arithmetic with
bounded precision is a Boolean right shift operation that maps a number x ∈ ZN

to y ∈ ZN representing �x/2s� for shift amount s. This operation comes in two
flavors: logical that applies to unsigned numbers and arithmetic that applies to
signed numbers in 2’s complement representation. These operations are typically
applied following a multiplication operation to enable further computations while
keeping the significant bits. Previous results from the literature do not give rise to
efficient PRG-based FSS gates for these shift operators. We present a new design
approach to FSS for right shift that uses only two invocations of DCF, obtaining
asymptotic key size of O(nλ + n2). See Sect. 6 for definitions and construction
details and Table 1 for comparison of key size with garbled circuits.

Another new feasibility result is related to the bit-decomposition problem
discussed above. The FSS gate for bit-decomposition from [13] crucially relies
on the output bits xi being shared over Z2, whereas in some applications one
needs the bits xi to be individually shared over ZN (or a different ZN ′). While a
conversion from Z2 to ZN can be done directly using another FSS gate or obliv-
ious transfer, this costs at least one more round of interaction. We realize this
generalized form of bit-decomposition directly by a single FSS gate, via a similar
approach of reducing the problem to a series of public interval containments.

A Barrier. Most applications of MPC in the areas of machine learning (see
[40,41,46] and references therein) and scientific computing (see [4,5,17,18] and
references therein) use fixed-point arithmetic for efficiently obtaining an approx-
imate output. Fixed-point addition is defined to be the same as integer addition;
however, fixed-point multiplication requires an integer multiplication followed by
an appropriate right shift operation for preventing integer overflows (see Sect. 6).
Many prior works, for efficiency reasons, implement this right shift (or trunca-
tion) through a non-interactive “local truncation” procedure [26,37,40,41,51].
This has two issues. First, the truncated output can be totally incorrect, in the
sense of being random, with some (small) probability. Since this probability
accumulates with the number of such multiplications (and hence truncations),
it necessitates an increase of the modulus N that can take a toll on efficiency.
While this overhead is reasonable in some cases [2,47], local truncation may be
too costly for large scale applications [46]. Second, even when a big error does
not occur, the least significant bit resulting from local truncation is erroneous
with high probability. Such small errors are aggregated over the course of the
computation. This makes the correctness of the implementation more difficult
to verify, and can potentially lead to fraud through salami slicing (or penny
shaving) in financial applications [1], where the adversary ensures that the small
errors are biased in its favorable direction.

Our new FSS gate constructions for right shifts provide an effective solution
for performing fixed-point multiplication operations in two rounds by sequen-
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tially invoking two FSS gates: one FSS gate for performing multiplication over
ZN (implemented via [13] or a standard multiplication triple), followed by a sec-
ond FSS gate to perform an arithmetic right shift for signed integers (or logical
shift for unsigned integers). This approach gives a faithful error-free implemen-
tation of secure fixed-point multiplication for inputs of all bitlengths. A natural
question is whether it is possible to replace the two FSS gates by a single FSS
gate, avoiding the additional round of communication, using only cheap sym-
metric cryptographic primitives such as a PRG.

We demonstrate a barrier toward this goal, showing that this requires set-
tling a major open problem in the area of FSS: namely, whether the family
of conjunctions of a subset of n bits has an FSS scheme based on symmet-
ric cryptography. Currently, FSS schemes for this family are known only under
structured, public-key computational hardness assumptions such as Decisional
Diffie-Hellman [11], Paillier [28] or Learning With Errors [14,26], that imply
homomorphic public key encryption. Such FSS schemes are less efficient than
the PRG-based schemes considered in this work by several orders of magnitude,
with respect to both communication and computation.

2 Preliminaries

We provide an abbreviated version of preliminaries and notation. A more detailed
formal treatment can be found in Appendix E in our full version [9].

Notation. We use arithmetic operations in the ring ZN for N = 2n. We naturally
identify elements of ZN with their n-bit binary representation, where 0 is repre-
sented by 0n and N − 1 by 1n. Unless otherwise specified, we parse x ∈ {0, 1}n

as x[n−1], . . . , x[0], where x[n−1] is the most significant bit (MSB) and x[0] is the
least significant bit (LSB). For 0 ≤ j < k ≤ n, z = x[j,k) ∈ Z2k−j denotes the
ring element corresponding to the bit-string x[k−1], . . . , x[j]. || denotes string con-
catenation. Function family denotes an infinite collection of functions specified
by the same representation. λ denotes computational security parameter.

2.1 Data Types and Operators

Unsigned and Signed Integers. We consider computations over finite bit unsigned
and signed integers, denoted by UN and SN , respectively, over n-bits. We
note that UN = {0, . . . , N − 1} is isomorphic to ZN . Moreover, SN =
{−N/2, . . . , 0, . . . , N/2−1} can be encoded into ZN or UN using 2’s complement
notation or mod N operation. The positive values {0, . . . , N/2− 1} are mapped
identically to {0, . . . , N/2− 1} and negative values {−N/2, . . . ,−1} are mapped
to {N/2, . . . , N − 1}. In this notation, the MSB of (the binary representation
of) x is 0 if x ≥ 0 and 1 if x < 0. Note that addition, subtraction and mul-
tiplication of signed integers modulo N respect this representation as long as
the result is in the range [−N/2, N/2). Our work also considers fixed-point rep-
resentation of numbers and its associated arithmetic. Section 6 provides a more
detailed description of the mapping of rationals into the fixed-point space as well
as fixed-point arithmetic.
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Operators. We consider several standard operators, which can be thought of as
applying to (signed or unsigned) integers. Each operator is defined by a gate: a
function family parameterized by input and output domains and possibly other
parameters. Some of the operators we consider are single and multiple inter-
val containments (Sect. 4), splines and applications to ReLU and absolute value
(Sect. 5.1), bit decomposition (Sect. 5.2 in full version [9]), as well as operators
required for the realization of fixed-point arithmetic - such as fixed-point addi-
tion and multiplication (Sect. 6.1), logical right shifts (Sect. 6.2), arithmetic right
shifts, and comparison (Sect. 6.3 and 6.4 in full version [9]).

2.2 Function Secret Sharing

We follow the definition of function secret sharing (FSS) from [12]. Intuitively, a
(2-party) FSS scheme is an efficient algorithm that splits a function f ∈ F into
two additive shares f0, f1, such that: (1) each fσ hides f ; (2) for every input x,
f0(x) + f1(x) = f(x). The main challenge is to make the descriptions of f0 and
f1 compact, while still allowing their efficient evaluation. As in [10,12,13], we
insist on an additive representation of the output that is critical for applications.

Definition 1 (FSS: Syntax). A (2-party) function secret sharing (FSS)
scheme is a pair of algorithms (Gen,Eval) such that:

– Gen(1λ, f̂) is a PPT key generation algorithm that given 1λ and f̂ ∈ {0, 1}∗

(description of a function f) outputs a pair of keys (k0, k1). We assume that
f̂ explicitly contains descriptions of input and output groups G

in,Gout.
– Eval(σ, kσ, x) is a polynomial-time evaluation algorithm that given σ ∈ {0, 1}

(party index), kσ (key defining fσ : Gin → G
out) and x ∈ G

in (input for fσ)
outputs a group element yσ ∈ G

out (the value of fσ(x)).

Definition 2 (FSS: Correctness and Security). Let F = {f} be a function
family and Leak be a function specifying the allowable leakage about f̂ . When Leak
is omitted, it is understood to output only G

in and G
out. We say that (Gen,Eval)

as in Definition 1 is an FSS scheme for F (with respect to leakage Leak) if it
satisfies the following requirements.

– Correctness: For all f̂ ∈ PF describing f : Gin → G
out, and every x ∈ G

in,
if (k0, k1) ← Gen(1λ, f̂) then Pr [Eval(0, k0, x) + Eval(1, k1, x) = f(x)] = 1.

– Security: For each σ ∈ {0, 1} there is a PPT algorithm Simσ (simulator),
such that for every sequence (f̂λ)λ∈N of polynomial-size function descriptions
from F and polynomial-size input sequence xλ for fλ, the outputs of the fol-
lowing experiments Real and Ideal are computationally indistinguishable:

• Realλ: (k0, k1) ← Gen(1λ, f̂λ); Output kσ.
• Idealλ: Output Simσ(1λ, Leak(f̂λ)).

A central building block for many of our constructions is an FSS scheme for a
special interval function referred to as a distributed comparison function (DCF)
as defined below. We formalize it below.
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Definition 3 (DCF). A special interval function f<
α,β, also referred to as a

comparison function, outputs β if x < α and 0 otherwise. We refer to an FSS
schemes for comparison functions as distributed comparison function (DCF).
Analogously, function f≤

α,β outputs β if x ≤ α and 0 otherwise. In all of these
cases, we allow the default leakage Leak(f̂) = (Gin,Gout).

The following theorem captures the concrete costs of the best known con-
struction of DCF from a PRG (Theorem 3.17 in the full version of [12]):

Theorem 1 (Concrete cost of DCF [12]). Given a PRG G : {0, 1}λ →
{0, 1}2λ+2, there exists a DCF for f<

α,β : G
in → G

out with key size 4n · (λ +
1) + n� + λ,where n = 
log |Gin|� and � = 
log |Gout|�. For �′ = 
 �

λ+2�, the key
generation algorithm Gen invokes G at most n · (4 + �′) times and the algorithm
Eval invokes G at most n · (2 + �′) times.

We use DCFn,G to denote the total key size, i.e. |k0| + |k1|, of the DCF key
with input length n and output group G (see Table 1). This captures the output
length of Gen algorithm. On the other hand, we use DCFn,G (non-bold) to denote
the key size per party, i.e., |kb|, b ∈ {0, 1}. This captures the key size used in
Eval algorithm. In the rest of the paper, we use DCFn,G to count number of
invocations/evaluations as well as key size per evaluator Pb, b ∈ {0, 1}.

2.3 FSS Gates

The recent work of Boyle et al. [13] provided general-purpose transformations
for obtaining efficient secure computation protocols in the preprocessing model
via FSS schemes for corresponding function families.

The key idea is the following FSS-based gate evaluation procedure. For each
gate g : Gin → G

out in the circuit to be securely evaluated, the dealer uses an
FSS scheme for the class of offset functions Ĝ that includes all functions of the
form g[r

in,rout](x) = g(x− rin)+ rout. If the input to gate g is wire i and the output
is wire j, the dealer uses the FSS scheme for Ĝ to split the function g[r

in,rout]

into two functions with keys k0, k1, and delivers each key kσ to party Pσ. Now,
evaluating their FSS shares on the common masked input wi + ri, the parties
obtain additive shares of the masked output wj + rj , which they can exchange
and maintain the invariant for wire j. Finally, the outputs are reconstructed by
having the dealer reveal to both parties the masks of the output wires. We defer
a formal statement of the corresponding transformation to Appendix E in our
full version [9]. In what follows we introduce necessary terminology.

Definition 4 (Offset function family and FSS gates). Let G = {g :
G

in → G
out} be a computation gate (parameterized by input and output groups

G
in,Gout). The family of offset functions Ĝ of G is given by

Ĝ :=
{

g[r
in,rout] : Gin → G

out

∣∣∣∣ g : Gin → G
out ∈ G,

rin ∈ G
in, rout ∈ G

out

}
, where
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g[r
in,rout](x) := g(x − rin) + rout,

and g[r
in,rout] contains an explicit description of rin, rout. Finally, we use the term

FSS gate for G to denote an FSS scheme for the corresponding offset family Ĝ.

As explained above, an FSS gate for G implies an “online-optimal” protocol
for converting a masked input x to a masked output g(x) for g ∈ G. Concretely,
the online phase consists of only one round in which each party sends a message of
length |g(x)|. Alternatively, we can have a similar one-round protocol converting
additively shared input to additively shared output, where here the message
length is |x|. The offline communication and storage correspond to the FSS
key size produced by Gen, and the online compute time corresponds to the
computational cost of Eval.

Boyle et al. [13] constructed FSS gates for most of the operators from Sect. 2.1
by reducing them to multiple invocations of DCF. In this work we will improve
the efficiency of previous DCF constructions, and provide better reductions (both
asymptotically and concretely) from gates in Sect. 2.1 to DCF.

3 Optimized Distributed Comparison Function

A Distributed Comparison Function (DCF), as formalized in Definition 3, is an
FSS scheme for the family of comparison functions. We reduce the key size of
prior best known construction of [12] from roughly n(4λ+n) to roughly n(λ+n),
i.e. roughly 4×, for input and output domains of size N = 2n and security
parameter λ, with similar savings for general input and output domains.

Our construction draws inspiration from the DPF of [12]. The Gen algorithm
uses a PRG G and generates two keys (k0, k1) such that ∀b ∈ {0, 1}, kb includes
a random PRG seed sb and n + 1 shared correction words. A key implicitly
defines a binary tree with N = 2n leaves where a node u is associated with a
tuple (sb, Vb, tb), for a PRG seed sb, an output group element Vb ∈ G and a bit
tb. The construction ensures that the sum V0 + V1 over all nodes leading to an
input x is exactly equal to f<

α,β(x). Therefore, evaluating a key kb on an input x
requires traversing the tree generated by kb from the root to the leaf representing
x, computing (sb, Vb, tb) at each node and summing up the values Vb.

The tuple (sb, Vb, tb) associated with u is a function of the seed associated
with the parent of u and the correction words. Therefore, if s0 = s1 then for any
descendent of u, k0 and k1 generate identical tuples. The correction words are
chosen such that when a path to x departs from the path to α, the two seeds s0
and s1 on the first node off the path are identical, and the sum of V0 + V1 along
the whole path to u is exactly zero if the departure is to the right of the path to
α, i.e. x > α, and is β if the departure is to the left of the path to α. Finally, along
the path to α any seed sb is computationally indistinguishable from a random
string given the key k1−b, which ensures the security of the construction.

The DCF scheme is presented in Fig. 1, and a formal statement of the
scheme’s complexity appears in Theorem 2 (see Appendix F.1 in full version [9]
for detailed security proof). The scheme uses the function ConvertG : {0, 1}λ → G
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Distributed Comparison Function (Gen<
n ,Eval<n )

Let G : {0, 1}λ → {0, 1}2(2λ+1) be a pseudorandom generator.
Let ConvertG : {0, 1}λ → G be a map converting a random λ-bit string to a
pseudorandom group element of G.

Gen<
n (1λ, α, β,G):

1: Let α = α1, . . . , αn ∈ {0, 1}n be the bit decomposition of α

2: Sample random s
(0)
0 ← {0, 1}λ and s

(0)
1 ← {0, 1}λ

3: Let Vα = 0 ∈ G, let t
(0)
0 = 0 and t

(0)
1 = 1

4: for i = 1 to n do
5: sL

0 ||vL
0 ||tL

0 sR
0 ||vR

0 ||tR
0 ← G(s

(i−1)
0 )

6: sL
1 ||vL

1 ||tL
1 sR

1 ||vR
1 ||tR

1 ← G(s
(i−1)
1 )

7: if αi = 0 then Keep ← L, Lose ← R
8: else Keep ← R, Lose ← L
9: end if

10: sCW ← sLose0 ⊕ sLose1

11: VCW ← (−1)t
(i−1)
1 · [ConvertG(vLose

1 ) − ConvertG(vLose
0 ) − Vα]

12: if Lose = L then VCW ← VCW + (−1)t
(i−1)
1 · β

13: end if
14: Vα ← Vα − ConvertG(vKeep

1 ) + ConvertG(vKeep
0 ) + (−1)t

(i−1)
1 · VCW

15: tL
CW ← tL

0 ⊕ tL
1 ⊕ αi ⊕ 1 and tR

CW ← tR
0 ⊕ tR

1 ⊕ αi

16: CW (i) ← sCW ||VCW ||tL
CW ||tR

CW

17: s
(i)
b ← sKeepb ⊕ t

(i−1)
b · sCW for b = 0, 1

18: t
(i)
b ← tKeepb ⊕ t

(i−1)
b · tKeepCW for b = 0, 1

19: end for
20: CW (n+1) ← (−1)tn1 · [ConvertG(s

(n)
1 ) − ConvertG(s

(n)
0 ) − Vα]

21: Let kb = s
(0)
b ||CW (1)|| · · · ||CW (n+1)

22: return (k0, k1)

Eval<n (b, kb, x):

1: Parse kb = s(0)||CW (1)|| · · · ||CW (n+1), x = x1, . . . , xn, let V = 0 ∈ G, t(0) = b.
2: for i = 1 to n do
3: Parse CW (i) = sCW ||VCW ||tL

CW ||tR
CW

4: Parse G(s(i−1)) = ŝL||v̂L||t̂L ŝR||v̂R||t̂R

5: τ (i) ← (ŝL||t̂L ŝR||t̂R) ⊕ (t(i−1) · sCW ||tL
CW ||sCW ||tR

CW )

6: Parse τ (i) = sL||tL sR||tR ∈ {0, 1}2(λ+1)

7: if xi = 0 then V ← V + (−1)b · [ConvertG(v̂L) + t(i−1) · VCW ]
8: s(i) ← sL, t(i) ← tL

9: elseV ← V + (−1)b · [ConvertG(v̂R) + t(i−1) · VCW ]
10: s(i) ← sR, t(i) ← tR

11: end if
12: end for
13: V ← V + (−1)b · [ConvertG(s(n)) + t(n) · CW (n+1)]
14: Return V

Fig. 1. Optimized FSS scheme for the class F<
n,G of comparison functions f<

α,β :
{0, 1}n → G, outputting β for 0 ≤ x < α and 0 for x ≥ α. || denotes string concatena-
tion. b refers to party id. All s and v values are λ-bit strings, V values are elements in
G, which are represented in �log |G|� bits and t values are single bits. α1 and x1 refer
to MSBs of α and x, respectively. Similarly, αn and xn are the corresponding LSBs.
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[12] that converts a pseudo-random string to a pseudo-random group element.
When |G| = 2k and k ≤ λ, the function simply outputs the first k bits of the
input. In any other case, the function expands the input s to a string G(s) of
length at least log |G| using a PRG G, regards G(s) as an integer and returns
G(s) mod |G|.
Theorem 2. Let λ be a security parameter, let G be an Abelian group, � =

log |G|�, and let G : {0, 1}λ → {0, 1}4λ+2 be a PRG. The scheme in Fig. 1 is a
DCF for f<

α,β : {0, 1}n → G with key size n(λ+�+2)+λ+� bits. For �′ = 
 �
4λ+2�,

the key generation algorithm Gen invokes G at most 2n(1 + 2�′) + 2�′ times and
the evaluation algorithm Eval invokes G at most n(1+�′)+�′ times. In the special
case that |G| = 2c for c ≤ λ the number of PRG invocations in Gen is 2n and
the number of PRG invocations in Eval is n.

Dual Distributed Comparison Function (DDCF). Consider a variant of DCF,
called Dual Distributed Comparison Function, denoted by FDDCF

n,G . It is a class of
comparison functions fα,β1,β2 : {0, 1}n → G, that outputs β1 for 0 ≤ x < α and
β2 for x ≥ α. The FSS scheme for DDCF, denoted by DDCFn,G, follows easily
from DCF using fα,β1,β2(x) = β2+f<

α,β1−β2
(x). We provide a formal construction

in Fig. 12 of Appendix F.2 in our full version [9].

4 Public Intervals and Multiple Interval Containments

Computing interval containment for a secret value w.r.t. a publicly known inter-
val, that is, whether x ∈ [p, q], is an important building block for many tasks
occurring in scientific computations [4] as well as machine learning [37,41,51].
Moreover, many popular functions such as splines (Sect. 5.1) and most significant
non-zero bit (MSNZB) (Appendix H.1 of full version [9]) reduce to computing
multiple interval containments on the same secret value x. The work of [13] pro-
vided the first constructions of an FSS gate for interval containment as well as
splines. In their work, the key size of an FSS gate for interval containment was ≈
2 DCF keys. They build on this to construct an FSS gate for splines and multiple
interval containment with m different intervals using key size proportional to 2m
DCF keys, which is quite expensive. We provide the following constructions:

– In Sect. 4.1, we show how to reduce the key size required for a single interval
containment to a single DCF key, compared to two DCF keys needed in [13].
Including the gains from our optimized DCF, we get around 7× reduction in
key size over [13] for n = 32.

– In Sect. 4.2 of our full version [9], we show how to compress the FSS keys
for multiple interval containments to that of an FSS key for a single interval
containment (and ring elements proportional to m). More concretely, over
inputs of length n, and for computing the output of m interval containment
functions on the same input, we reduce the FSS key size from ≈ 2m(4nλ +
n2 + 4n) + mn to ≈ nλ + n2 + mn (including gains from our optimized DCF
construction). As an example, taking n = 32, we reduce the key size by up to
1100× and for instance, for m = 10, the reduction is about 62×.
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While the construction from [13] also works when the interval boundaries are
secret, i.e., known only to the dealer, our techniques crucially rely on the interval
boundaries being public. However, we show that our techniques enable the reduc-
tion of key size for several important applications, such as splines (Sect. 5.1), bit
decomposition and MSNZB (Sect. 5.2 and Appendix H.1 of full version [9]).

We start by setting notation for single and multiple interval containments.
For ease of exposition, in this section, we only consider the ring UN ; however
our ideas easily extend to SN as well. In particular, for signed intervals checking
whether x ∈ [p, q], where p, q ∈ SN , can be reduced to the following unsigned
interval containment: (x+N/2 mod N) ∈ [(p+N/2 mod N), (q+N/2 mod N)].
We define 1{b} as 1 when b is true and 0 otherwise.

Interval Containment Gate. The (single) interval containment gate GIC is
the family of functions gIC,n,p,q : UN → UN parameterized by input and output
groups G

in = G
out = UN , and given by

GIC =
{

gIC,n,p,q : UN → UN

}
0≤p≤q≤N−1

, gIC,n,p,q(x) = 1{p ≤ x ≤ q}.

Multiple Interval Containment Gate. The multiple interval containment
gate GMIC is the family of functions gMIC,n,m,P,Q : UN → U

m
N for m interval

containments parameterized by input and output groups G
in = UN and G

out =
U

m
N , respectively, and for P = {p1, p2, . . . , pm} and Q = {q1, q2, . . . , qm}, given

by

GMIC =
{
gMIC,n,m,P,Q : UN → U

m
N

}
0≤pi≤qi≤N−1

, gMIC,n,m,P,Q(x) =
{
1{pi ≤ x ≤ qi}

}
1≤i≤m

,

Next, we describe our construction for single interval containment that
reduces to universal comparison function f<

(N−1)+rin,1
and this is the key idea

that allows us to compress keys for multiple interval containments.

4.1 Realizing FSS Gate for [p, q] Using FSS Scheme for f<
(N−1)+rin,1

First, in Fig. 2, we describe a construction of an FSS gate for GIC that is a slight
modification of the construction in [13]. This will enable us to build upon it
to obtain an FSS gate for GIC with a reduced key size (when the intervals are
public). The modification that we make is as follows: in [13], the FSS keys for
GIC were generated differently in the case when only q + rin wraps around in UN

as opposed to when either both or none of p+ rin and q + rin wrap around. In our
construction (Fig. 2), we unify these cases, except that the dealer additionally
includes an additive correction term 1{(p + rin mod N) > (q + rin mod N)} in
the key, which makes up for the difference between the cases. For completeness,
we provide a correctness proof in Appendix G.1 of full version [9]. We note that
the key size of our construction in Fig. 2 is identical to the scheme presented in
[13], that is, 2 DCF keys and a ring element in UN .

Next, we present an alternate construction of FSS gate for GIC again using
two DCF keys that are independent of interval [p, q]. Later, we will optimize this
construction to use only a single DCF key.
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Interval Containment Gate (GenICn,p,q,Eval
IC
n,p,q)

GenICn,p,q(1
λ, rin, rout):

1: (k
(p)
0 , k

(p)
1 ) ← Gen<

n (1λ, α(p), N − 1,UN ), α(p) = p + rin ∈ UN .

2: (k
(q)
0 , k

(q)
1 ) ← Genn (1λ, α(q), 1,UN), α(q) = q + rin ∈ UN .

3: Sample random w0, w1 ← UN s.t. w0 + w1 = rout + 1{α(p) > α(q)}.
4: For b ∈ {0, 1}, let kb = k

(p)
b ||k(q)

b ||wb.
5: return (k0, k1).

EvalICn,p,q(b, kb, x):

1: Parse kb = k
(p)
b ||k(q)

b ||wb.

2: Set t
(p)
b ← Eval<n (b, k

(p)
b , x).

3: Set t
(q)
b ← Evaln (b, k

(q)
b , x).

4: return t
(p)
b + t

(q)
b + wb.

Fig. 2. FSS Gate for GIC using 2 DCFs [13], b refers to party id.

Using 2 DCF keys independent of p and q. Below, we state our main
technical lemma that allows us to give an alternate construction of FSS gate for
gIC,n,p,q using 2 keys for comparison that are independent of the interval [p, q]
and only depend on rin. More concretely, we will use FSS keys for f<

(N−1)+rin,N−1

and f≤
(N−1)+rin,1

. In the lemma statement and its proof (Appendix G.2 of full
version [9]), unless explicitly stated using mod N , all expressions and equations
are over Z and we consider the natural embedding of UN into Z.

Lemma 1. Let a, ã, b, b̃, r ∈ UN , where a ≤ b, ã = a + r mod N and b̃ =
b + r mod N . Define 4 boolean predicates over UN → {0, 1} as follows: P (x)
denotes x < ã, P ′(x) denotes x ≤ ã, Q(x) denotes (x + (b − a) mod N) < b̃,
Q′(x) denotes (x + (b − a) mod N) ≤ b̃. Then, the following holds:

P (x) = Q(x) + (ea − ex) and P ′(x) = Q′(x) + (ea − ex)

where ea = 1{ã + (b − a) > N − 1} and ex = 1{x + (b − a) > N − 1}
Intuitively, Lemma 1 allows us to reduce comparison of x with ã (both <

and ≤) to similar comparison with b̃ modulo some additive correction terms, i.e.
ea and ex. Our next observation is that in the FSS setting, ea can be computed
by the dealer (with the knowledge of r) and ex can be locally computed by
P0, P1 (with the knowledge of x at runtime). Using Lemma 1 and this observa-
tion, we can construct an FSS gate for gIC,n,p,q using 2 DCF keys, for functions
f<
(N−1)+rin,N−1

and f≤
(N−1)+rin,1

(see Appendix G.4 of full version [9] for this).

Reducing to 1 DCF Key. We now optimize the key size of our construction
to a single DCF key using Lemma 2 (proof in Appendix G.3 of full version).
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Interval Containment Gate (GenICn,p,q,Eval
IC
n,p,q)

GenICn,p,q(1
λ, rin, rout):

1: Set γ = (N − 1) + rin ∈ UN .

2: (k
(N−1)
0 , k

(N−1)
1 ) ← Gen<

n (1λ, γ, 1,UN ).
3: Set q = q + 1 ∈ UN , α(p) = p + rin ∈ UN , α(q) = q + rin ∈ UN and

α(q ) = q + 1 + rin ∈ UN .
4: Sample random z0, z1 ← UN s.t.

z0 + z1 = rout + 1{α(p) > α(q)} − 1{α(p) > p} + 1{α(q ) > q } + 1{α(q) = N − 1}.
5: For b ∈ {0, 1}, let kb = k

(N−1)
b ||zb.

6: return (k0, k1).

EvalICn,p,q(b, kb, x):

1: Parse kb = k
(N−1)
b ||zb.

2: Set q = q + 1 ∈ UN , x(p) = x + (N − 1 − p) ∈ UN and

x(q ) = x + (N − 1 − q ) ∈ UN .

3: Set s
(p)
b ← Eval<n (b, k

(N−1)
b , x(p)).

4: Set s
(q )
b ← Eval<n (b, k

(N−1)
b , x(q )).

5: return yb = b · (1{x > p} − 1{x > q }) − s
(p)
b + s

(q )
b + zb.

Fig. 3. FSS Gate for GIC using DCF key for f<
(N−1)+rin,1

, b refers to party id.

Lemma 2. Let c, c′ ∈ UN , where c′ = c + 1 mod N . Define 2 boolean predicates
over UN → {0, 1} as follows: R(x) denotes x ≤ c and S(x) denotes x < c′. Then
the following holds: R(x) = S(x) + 1{c = N − 1}

This lemma lets us get rid of the DCF key for f≤
(N−1)+rin,1

and work with the
key for f<

(N−1)+rin,1
using an additional correction term which can be computed

by the dealer. Formally, we have the following theorem.

Theorem 3. There is an FSS Gate (GenICn,p,q,Eval
IC
n,p,q) for GIC that requires

2 invocations of DCFn,UN
, and has a total key size of n bits plus key size of

DCFn,UN
.

Proof. We present our construction formally in Fig. 3. For arguing correctness we
need to prove that y = y0 + y1 mod N = 1{p ≤ (x − rin mod N) ≤ q} + rout. We
use correctness of FSS gate in Fig. 2 and prove that output of Fig. 3 is identical
to output of Fig. 2. In Fig. 2, using correctness of FSS schemes for f<

α,β and f≤
α,β ,

t(p) = t
(p)
0 + t

(p)
1 mod N = −1 · 1{x < α(p)} and

t(q) = t
(q)
0 + t

(q)
1 mod N = 1{x ≤ α(q)}

Also, from correctness of FSS gate in Fig. 2, t(p) + t(q) +1{α(p) > α(q)} + rout =
1{p ≤ (x − rin mod N) ≤ q} + rout.

First, we look at t(q) = 1{x ≤ α(q)}. From Lemma 2, we can write t(q) =
1{x < α(q′)} + 1{α(q) = N − 1}, where α(q′) = α(q) + 1 mod N . Now, using
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Lemma 1 with a = q′, b = N − 1, r = rin, ã = α(q′), and b̃ = γ:

t(q) = 1{x < α(q′)} + 1{α(q) = N − 1}
= 1{x + (N − 1 − q′) mod N < γ} + 1{α(q′) + (N − 1 − q′) > (N − 1)}

− 1{x + (N − 1 − q′) > (N − 1)} + 1{α(q) = N − 1}
= 1{x(q′) < γ} + 1{α(q′) > q′} − 1{x > q′} + 1{α(q) = N − 1}
= s

(q′)
0 + s

(q′)
1 + 1{α(q′) > q′} − 1{x > q′} + 1{α(q) = N − 1}

Similarly, using Lemma 1, it can be proven that: t(p) = −1·(s(p)0 +s
(p)
1 )−1{α(p) >

p}+1{x > p}. Therefore, in Fig. 3, y = y0+y1 = t(p)+t(q)+1{α(p) > α(q)}+rout

matches the output of Fig. 2.

5 Applications of Public Intervals

5.1 Splines with Public Intervals

A spline is a special function defined piecewise by polynomials. Formally, consider
P = {pi}i ∈ U

m
N such that 0 ≤ p1 < p2 < . . . < pm−1 < pm (pm = N − 1) and

d−degree univariate polynomials F = {fi}i. Then, a spline function hn,m,d,P,F :
UN → UN parameterized by input and output rings UN , list of m interval
boundaries P and degree d polynomials F is defined as

hn,m,d,P,F (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1(x) if x ∈ [0, p1]
f2(x) if x ∈ [p1 + 1, p2]

...
fm(x) if x ∈ [pm−1 + 1, pm]

Commonly used functions such as Rectified Linear Unit (ReLU) and Absolute
value are special cases of splines. Moreover, splines have been used to approx-
imate transcendental functions such as sigmoid [38,41], sometimes with up to
m = 12 intervals. Boyle et al. [13], gave a construction of an FSS gate for splines
by reducing it to m instances of interval containment, resulting in both key size
and online evaluation cost being proportional to the cost of 2m DCF keys. In this
work, building upon our techniques for multiple interval containment5, we reduce
both the key size as well as online evaluation. More concretely, [13] requires
2m DCFn,Zd+1

N
keys and each key is evaluated once during online phase. We pro-

vide a construction using a single DCF
n,Z

(d+1)m
N

key that is evaluated m times
and additional 2m(d+1)+1 ring elements. Hence, including our improved DCF
construction, we reduce the overall key size from ≈ 2m

(
4n(λ + 1) + n2(d + 1)

)
to ≈ (

λ(n + 1) + mn2(d + 1)
)

+ 2mn(d + 1) bits. As an example, for n = 32,

5 As we explain later, our FSS gate for splines requires secret payload (function of rin)
in DCF known only to the dealer and hence, it does not black-box reduce to GMIC.
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m ≥ 2 and degree 1 polynomials, this represents a reduction in key size of about
8 − 17×, and for instance, for m = 10, the reduction is 14×.

The spline gate Gspline is the family of functions gspline,n,m,d,P,F : UN → UN
with m intervals parameterized by input and output rings UN , and for P =
{p1, p2, . . . , pm} and F = {f1, f2, . . . , fm}, given by

Gspline =
{
gspline,n,m,d,P,F : UN → UN

}
0≤pi<pi+1≤N−1

p0=pm=N−1

, gspline,n,m,d,P,F (x) = hn,m,d,P,F (x).

Construction Overview. Our FSS gate for splines builds upon our techniques
from multiple interval containment to incorporate secret payloads as required.
At a high level, the basic idea, also used in [13], is to check for interval contain-
ment [pi−1 + 1, pi] and output the coefficients of the polynomial f ′

i = fi(x − rin)
as payload. Once the evaluators P0 and P1 learn the shares of the correct coeffi-
cients, they compute an inner product with (xd, . . . , x0) to learn shares of final
output. We note that coefficients of f ′

i depend on the randomness rin that is
secret and known only to the dealer. Due to this, we cannot invoke our FSS
gate for multiple interval containment GMIC directly. Next, [13] used a different
interval containment key for each interval with payload as the corresponding
coefficients of the polynomials. In our construction, we only use a single DCF
key for all intervals, and hence, the payload of this key has to encode the coef-
ficients of all the polynomials. Moreover, naively building on GMIC, the online
computation would require 2m evaluations of the DCF key. However, for the
case of splines, we use the property that the intervals are consecutive, that is, of
the form [pi−1 + 1, pi], to reduce this to m evaluations.

We present our final construction in 2 steps. First, we present the construction
for a simpler spline gate, Gspline-one that is a family of functions hn,d,p,f with only
1 interesting interval i.e., it outputs f(x) on [0, p] and 0 otherwise. With this
construction, we describe our techniques for embedding secret payloads in our
optimized FSS gate for GIC that uses a single DCF key. Note that ReLU function,
the most commonly used activation in machine learning, is a function in Gspline-one.
We discuss about ReLU and absolute value function in the full version of this
paper [9]. Then, we will give our construction for general splines using our ideas
of common payload for all intervals and reducing number of DCF evaluations.

Spline with One Interesting Interval. The simple spline gate Gspline-one is
a family of functions hn,d,p,f : UN → UN such that p ∈ UN , f is a d-degree
univariate polynomial and hn,d,p,f (x) = f(x) for x ∈ [0, p] and 0 otherwise.
We give a formal construction for FSS gate for Gspline-one in Fig. 4. At a high
level, we build on our construction for GIC and modify it to allow for secret
payloads as follows: Recall that in FSS gate for GIC, we give out a DCF key
with payload 1 and shares of a correction term that depends on rin, say cr. Also,
during evaluation, P0, P1 compute a correction term, say cx, that depends on x.
Overall, at the time of evaluation, P0, P1 evaluate the DCF key and add cr and
cx. Now we desire the payload to be coefficients of f ′ = f(x − rin), say β. To
enable this, the dealer sets the payload of the DCF key as β. But now, this β
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also needs to be multiplied with cr and cx. For this the dealer gives out shares
of cr ·β and shares of β. Shares of β allow P0 and P1 to compute shares of cx ·β,
as cx can be computed locally.

Spline Gate (Genspline-onen,d,p ,Evalspline-onen,d,p )

Genspline-onen,d,p (1λ, f, rin, rout):

1: Let (fd, . . . , f0) ∈ U
(d+1)
N be coefficients of f such that f (x) = f(x − rin).

2: Set β = (fd, . . . , f0) ∈ U
(d+1)
N and γ = (N − 1) + rin ∈ UN .

3: (k
(N−1)
0 , k

(N−1)
1 ) ← Gen<

n (1λ, γ, β,U
(d+1)
N ).

4: Set α(L) = rin ∈ UN , α(R) = p + rin ∈ UN and α(R ) = p + 1 + rin ∈ UN .
5: Set

cr = 1{α(L) > α(R)}−1{α(L) > 0}+1{α(R ) > (p+1 mod N)}+1{α(R) = N −1}.
6: Sample random e0, e1 ← U

(d+1)
N s.t. e0 + e1 = cr · β.

7: Sample random β0, β1 ← U
(d+1)
N s.t. β0 + β1 = β.

8: Sample random r0, r1 ← UN s.t. r0 + r1 = rout.
9: For b ∈ {0, 1}, let kb = k

(N−1)
b ||eb||βb||rb.

10: return (k0, k1).

Evalspline-onen,d,p (b, kb, x):

1: Parse kb = k
(N−1)
b ||eb||βb||rb.

2: Set x(L) = x + (N − 1) ∈ UN and x(R ) = x + (N − 1 − (p + 1)) ∈ UN .

3: Set s
(L)
b ← Eval<n (b, k

(N−1)
b , x(L)).

4: Set s
(R )
b ← Eval<n (b, k

(N−1)
b , x(R )).

5: Set cx = (1{x > 0} − 1{x > (p + 1 mod N)}).
6: wb = (wd,b, . . . , w0,b) = cx · βb − s

(L)
b + s

(R )
b + eb.

7: return ub = rb + d
i=0(wi,b · xi) mod N .

Fig. 4. FSS Gate for single interval splines Gspline-one, b refers to party id.

Theorem 4. There is an FSS Gate (Genspline-onen,d,p ,Evalspline-onen,d,p ) for Gspline-one that
requires 2 invocations of DCF

n,U
(d+1)
N

, and has a total key size of n(2d + 3) bits
plus the key size of DCF

n,U
(d+1)
N

.

Proof. We present our construction of FSS Gate for single interval spline formally
in Fig. 4. To prove correctness of our scheme it suffices to show that w = w0+w1

is β when (x − rin) ∈ [0, p] and 0d+1 otherwise. In our scheme, w =
∑

b(cx · βb −
s
(L)
b + s

(R′)
b + eb) = cx · β − s(L) + s(R

′) + cr · β. Now, by correctness of DCF
keys, s(L) = β · 1{x(L) < γ} and s(R

′) = β · 1{x(R′) < γ}. Using these, we get
that w =

(
cx − 1{x(L) < γ} + 1{x(R′) < γ} + cr

)
· β = 1{0 ≤ (x − rin) ≤ p} · β

as required, by using similar arguments as in correctness of GIC in Fig. 3.
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General Splines. To construct an FSS gate for general splines, we make two
modifications to the previous construction. First, we change the payload of our
DCF key to be the long vector containing coefficients of all polynomials {f ′

i}i,
where f ′

i = f(x − rin). Now, during evaluation, we do DCF evaluations similar
to GMIC separately for each interval. For each interval, output would be over
U

m(d+1)
N . While considering the ith interval, i.e., [pi−1+1, pi], we will only use the

ith segment of (d+1) ring elements. These would either be shares of coefficients
of f ′

i (if (x − rin) ∈ [pi−1 + 1, pi]) or 0d+1. Next, to reduce number of evaluations
from 2m to m, we rely on intervals in splines being consecutive, i.e., an interval
ends at pi and next interval starts at pi + 1. Recall from our construction of
GMIC, that we need to do two DCF evaluations for each interval of interest, one
for the left point and one for the right point. This is also true for Fig. 4, where
we do one DCF evaluation each for x(L) and x(R′). In general splines, for the ith

interval [pi−1 +1, pi], let these points be x
(L)
i and x

(R′)
i . Now, observe that since

x
(R′)
i = x

(L)
i+1, we need to evaluate the DCF only once for them. For consistency

of notation, we set p0 = pm = N − 1, so that the first interval, i.e., [0, p1] can
also be written as [p0+1, p1] and similarly the last interval, i.e., [pm−1+1, N −1]
can be written as [pm−1 + 1, pm]. In our construction, we do DCF evaluations
for all points xi = x

(L)
i = x + (N − 1 − (pi−1 + 1)) for i ∈ {1, . . . , m}.

Theorem 5. There is an FSS Gate (Gensplinen,m,d,{pi}i
,Evalsplinen,m,d,{pi}i

) for Gspline

that requires m invocations of DCF
n,U

m(d+1)
N

, and has a total key size of 2mn(d+
1) + n bits plus the key size of DCF

n,U
m(d+1)
N

.

We provide our scheme and its proof formally in the full version [9].

6 FSS Gates for Fixed-Point Arithmetic

Fixed-point representation allows us to embed rational numbers into fixed bit-
width integers. Let Qu denote non-negative rational numbers. Assuming no over-
flows, the unsigned (resp. signed) forward mapping fufix

n,s : Q
u → UN (resp.

f sfix
n,s : Q → SN ) is defined by �x · 2s� and the reverse mapping hufix

n,s : UN → Q
u

(resp. hsfix
n,s : SN → Q) is defined by x/2s, where x is lifted to Q and “/” denotes

the regular division over Q. The value s associated with a fixed-point repre-
sentation is called the “scale” which defines the precision, i.e., the number of
bits after the decimal point, that the fixed-point number preserves. When 2
fixed-point numbers are added or multiplied in n-bit integer ring, the bits at the
top (significant bits) can overflow leading to incorrect results. To prevent this
from happening, these operations are accompanied by a “scale adjustment” step
where the scale of operands are appropriately reduced to create enough room in
the top bits for the computation to fit. Scale adjustment is also used in multi-
plication to maintain the scale of the output at s instead of getting doubled for
every multiplication performed. Many applications of secure computation require
computing over the rational numbers. One such application is privacy-preserving
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machine learning where most prior works use fixed-point representation to deal
with rational numbers [33,37,39–41,46,51]6,7.

In this section we build efficient FSS gates for realizing secure fixed-point
arithmetic. In particular, we consider the following operations: addition, multi-
plication, and comparison. We begin (in Sect. 6.1) by first describing how fixed-
point addition and multiplication work given access to a FSS gates for secure
right shift operations. We then describe the FSS gate constructions for right shift
operator - logical right shift (LRS) in Sect. 6.2, which enables scale adjustment,
and hence fixed-point multiplication, over unsigned integers. We defer the details
on arithmetic right shift (ARS) and fixed-point comparison to Sects. 6.3 and 6.4
respectively of our full version [9].

6.1 Fixed-Point Addition and Multiplication

We describe the case when the scales of both operands is the same, i.e. s - the
case of different scales is similar8. Fixed-point addition is a local operation where
the corresponding shares of the operands are added together by each party and
no scale adjustment is typically performed. This is same as the construction of
FSS gate for addition from [13] as described in Fig. 17, Appendix I.1 (of full
version [9]). Fixed-point multiplication involves 2 steps: first, using the FSS gate
for multiplication from [13] (presented in Fig. 18, Appendix I.2 of full version
for completeness) the operands are multiplied resulting in an output of scale 2s,
and second, using our FSS gate for right shift, values are shifted (ARS/LRS for
signed/unsigned operands respectively) by s to reduce the scale back to s.

6.2 Logical Right Shift

Logical right shift of unsigned integers is done by shifting the integer by a pre-
scribed number of bits to the right while removing the low-order bits and insert-
ing zeros as the high order bits. Implementing the shift operation on secret
shared values is a nontrivial task even when the shift s is public, and is typically
achieved via an expensive secure bit-decomposition operation. Prior FSS gate
for bit-decomposition [13] output shares of bits in U2 (which must then be con-
verted into shares over UN , if it is to be used in computing logical right shift).
Hence, this leads to construction for right shift that has 2 online rounds. Here we
provide a much more efficient construction, which a) requires only 1 online round
6 Although there are a handful of works outside the secure ML context that give secure

protocols directly for floating-point numbers [3,24,34,45], they are usually orders of
magnitude slower than the ones based on fixed-point.

7 All of these works except [24,45] consider simplified variants of the IEEE 754 floating-
point standard.

8 When scales of the operands differ, they need to be aligned before addition can
happen. For this, a common practice is to left shift (locally) the operand with smaller
scale by the difference of the scales. Fixed-point multiplication remains the same and
shift parameter for the right shift at the end can be chosen depending on the scale
required for the output.
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of communication of a single group element; and b) further, improves upon the
key size of the approach based on bit-decomposition, by roughly a factor of n
(when n ≤ λ), i.e. O(nλ + n2) vs O(n2λ).

If an integer x ∈ UN (N = 2n) is additively shared into x ≡ x0 + x1 mod N
with one party holding x0 and the other holding x1 then locally shifting x0 and
x1 by s bits is not sufficient to additively share a logically shifted x. Lemma 3
(proof appears in Appendix I.3 of full version [9]) gives an identity showing that
the LRS of a secret shared x can be computed as the sum of the LRS of the
shares and the output of two comparison functions. This identity is the basis for
an FSS gate realizing the offset family associated with LRS.

Notation. Given integers 0 < n, 0 ≤ s ≤ n, let (�L s) : UN → UN , 0 ≤ s ≤ n
be the logical right shift function with action on input x denoted by (�L s)(x) =
(x �L s) and defined by (x �L s) = x−(x mod 2s)

2s over Z.

Lemma 3. For any integers 0 < n, 0 ≤ s ≤ n, any x ∈ UN and any x0, x1 ∈ UN

such that x0 +x1 ≡ x mod N , the following holds over Z (and in particular over
UN ) (x �L s) = (x0 �L s) + (x1 �L s) + t(s) − 2n−s · t(n), where for any
0 ≤ i ≤ n, t(i) is defined by:

t(i) =
{

1 (x0 mod 2i) + (x1 mod 2i) > 2i − 1
0 otherwise ,

The logical right-shift gate G�L
is the family of functions g�L,s,n : UN → UN

parameterized by input/output groups G
in = G

out = UN , shift s and given by

G�L
=

{
g�L,s,n : UN → UN

}
0≤s≤n

, g�L,s,n(x) = (x �L s).

We denote the corresponding offset gate class by Ĝ�L
and the offset functions

by ĝ
[rin,rout]
�L,s,n(x) = g�L,s,n(x − rin) + rout = ((x − rin) �L s) + rout. We use Lemma

3 to construct our FSS gate for LRS (as described in Fig. 6 of full version [9])
and which satisfies the following theorem.

Theorem 6 (LRS from DCF). There is an FSS Gate (Gen�L
n,s ,Eval�L

n,s ) for
G�L

that requires a single invocation each of DCFn,UN
and DCFs,UN

, and has a
total key size of n bits plus the key sizes of DCFn,UN

and DCFs,UN
.

7 FSS Barrier for Fixed-Point Multiplication

In the previous sections, we presented FSS gates for several fixed-point opera-
tions, enabling secure computation of fixed-point multiplication FFPM with “FSS
depth 2”: namely, one FSS gate for performing multiplication of the two inte-
ger inputs over UN (resp. SN ), followed by a second FSS gate to perform a
logical right shift (resp. arithmetic right shift). While this provides an effective
solution, a downside of two sequential FSS gates is that the resulting secure
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computation protocol requires information communicated between parties via
two sequential rounds, and a natural goal would be to construct a single FSS
gate to perform both steps of the fixed-point multiplication together. Such a
single FSS gate would not only lead to optimal round complexity (one instead
of two rounds), but also to optimal online communication complexity (a factor-2
improvement over the current implementation). In this section, we demonstrate
a barrier toward achieving this goal using only symmetric-key cryptography.

More specifically, we show that the existence of any FSS gate construction
for fixed-point multiplication, denoted by GuFPM (resp. GsFPM) for operation over
unsigned (resp. signed) integers, (with polynomial key size) directly implies the
existence of FSS scheme for the class of all bitwise conjunction formulas (with
polynomial key size), from the same underlying assumptions. As discussed below,
FSS schemes for conjunctions from symmetric-key primitives have remained elu-
sive despite significant research effort. As such, this constitutes a barrier toward
symmetric-key constructions for fixed-point multiplication.

FSS for Conjunctions. We will denote by F∧
n,UN

the collection of bit-conjunction
functions on n-bit inputs, each parameterized by a subset S ⊆ [n], where [n] =
{i | (0 ≤ i ≤ n−1)∧ (i ∈ Z)}), of input bits, evaluating to a given nonzero value
if the corresponding input bits are all 1.

Definition 5. The family F∧
n,UN

of conjunction functions is

F∧
n,UN

=
{

fS : {0, 1}n → UN

}
S⊆[n]

, where fS(x) =

{
β

∧
i∈S x[i] = 1

0 otherwise
.

Presently the only existing construction of FSS scheme for F∧
n,UN

with neg-
ligible correctness error relies on the Learning With Errors (LWE) assump-
tion [14,26]. A construction with inverse-polynomial correctness error can be
obtained from the Decisional Diffie-Hellman (DDH) assumption [11] or from
the Paillier assumption [28]. All assumptions are specific structured assump-
tions, and corresponding constructions require heavy public-key cryptographic
machinery. It remains a highly motivated open question to attain such an FSS
construction using only symmetric-key cryptography, even in the case when pay-
load β is public.

Open Question (FSS for conjunctions). Construct FSS scheme for the class
F∧

n,UN
of bit-conjunction functions (with key size polynomial in the security

parameter and input length n) based on symmetric-key cryptographic primitives.

The Barrier Result. We prove the desired barrier result via an intermediate
function family: F×MSB

η,UN
, a simplified version of fixed-point multiplication.

Definition 6. The family F×MSB
η,UN

of multiply-then-MSB functions is given by

F×MSB
η,UN

=
{

fc : U2η → UN

}
c∈U2η

, where fc(x) = MSB(c · x),

and where n ≤ η and c · x is multiplication over U2η .
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The description of a function fc above is assumed to explicitly contain a
description of the respective parameter c ∈ U2η (similarly for fS ∈ F∧

n,UN
and

S ⊆ [n]).

Our overall barrier result will proceed in two steps. First, we build an FSS
scheme for conjunctions F∧

n,UN
from an FSS scheme for multiply-then-MSB

F×MSB
n(
log n�+1),UN

. Next, we give a reduction from the FSS scheme for F×MSB
η,UN

to the FSS gate for unsigned fixed-point multiplication, GuFPM over U2η , and set
η = n(
log n� + 1). We now focus only on the case of unsigned fixed point mul-
tiplication - the case of signed fixed point multiplication follows in an analogous
manner (details of the changes needed can be found in the full version [9]).

Step One of the Barrier Result. Intuitively, for a function fS ∈ F∧
n,UN

, the
input/output behavior will be emulated by a corresponding function fcS

∈
F×MSB

n(
log n�+1),UN
, i.e., fS(x) = fcS

(x) = MSB(x′ · cS), where x′ is a public encod-
ing of the input x, and cS is a (secret) constant determined as a function of
S. The Gen algorithm of FSS scheme for fS ∈ F∧

n,UN
will output FSS keys for

fcS
∈ F×MSB

n(
log n�+1),UN
, where cS is determined from S. The Eval algorithm will

encode the public x ∈ U2n to x′ ∈ U2n(�log n�+1) and evaluate the given FSS key
for fcS

.
More concretely, the new FSS evaluation will encode the input x to x′ by

“spacing out” the bits of x with m = 
log n� zeros with x[0] as the least significant
bit (as depicted below). Now, cS is carefully crafted to “extract” and add the
bits in x at indices in S such that: the value x′ · cS will have most significant
bit (MSB) as 1 if and only if bits of x in all indices of S are equal to 1. For
ease of exposition, first consider the case when size h = |S| is a power of 2
and let � = log h. Moreover, consider an alternate representation of S ⊆ [n] as
(sn−1, . . . , s0) ∈ {0, 1}n such that si = 1 iff i ∈ S, else 0. Then, cS ∈ U2n(m+1)

(depicted below) will be constructed by spacing out the bits si by m zeros and
put in reverse order, and has � leading zeros and m − � trailing zeros.

Mathematically, we can write, x′ =
∑n−1

i=0 x[i] · 2i(m+1) ∈ U2n(m+1)

and cS = 2n(m+1)−�−1 · ∑n−1
i=0 si · 2−i(m+1) ∈ U2n(m+1) . We will make

use of these equations in formal construction and correctness of reduction.
m m m m

x = 0 · · · 0 x[n−1] 0 · · · 0 x[n−2] 0 · · · 0 · · · 0 · · · 0 x[0]
m m m m−

cS = 0 · · · 0 s0 0 · · · 0 s1 0 · · · 0 · · · 0 · · · 0 sn−1 0 · · · 0
The interesting part in the product x′ · cS is the upper � + 1 bits which will

capture the sum
∑n−1

i=0 x[i] · si. Things have been structured so that none of
the other terms in x′ · cS affect these upper bits due to the large spacing of 0s
(preventing additive carries), as shown in the proof of Theorem 7. Therefore,
MSB(x′ · cS) = MSB(

∑n−1
i=0 x[i] · si) = MSB(

∑
i∈S x[i]) (because si = 1 for i ∈ S,

else 0), which is equal to 1 precisely if all bits {x[i]}i∈S are equal to 1. Namely,
precisely if fS(x) = 1, as desired.
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The more general case where h = |S| is not necessarily a power of 2 can be
addressed by replacing si ∈ {0, 1} with arbitrary positive integer values such
that the sum of all terms

∑
i∈S si is precisely equal to 2�, where � = 
log h�, and

{si}i/∈S = 0. The analysis remains the same.

Theorem 7. Assume the existence of an FSS scheme for the function class
F×MSB

n(m+1),UN
, where m = 
log n�. Then there exists an FSS scheme for F∧

n,UN
.

Proof. Details of this proof can be found in our full version [9].

Step two of the barrier result. In the full version, we give a formal reduction
from the FSS scheme for F×MSB

η,UN
to GuFPM over U2η . Setting η = n(
log n� + 1)

completes the barrier result for unsigned fixed-point multiplication. The high
level idea is as follows: we set the shift parameter of GuFPM as s = η − 1 and
include c + r as a part of the FSS key (along with the key for GuFPM) which still
hides the secret constant c of member functions in F×MSB

η,UN
, where r is randomly

sampled from U2η and known only to the Gen algorithm. Then using these FSS
keys, the evaluation algorithm computes ((x · c) �L η − 1) = MSB(x · c), as
desired.
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