
Breaking the Circuit Size Barrier for
Secure Computation Under

Quasi-Polynomial LPN

Geoffroy Couteau1(B) and Pierre Meyer2(B)

1 CNRS, IRIF, Université de Paris, Paris, France
couteau@irif.fr

2 École Normale Supérieure de Lyon and IDC Herzliya, Herzliya, Israel
pierre.meyer@ens-lyon.fr

Abstract. In this work we introduce a new (circuit-dependent) homo-
morphic secret sharing (HSS) scheme for all log / log log-local circuits,
with communication proportional only to the width of the circuit, and
polynomial computation, assuming the super-polynomial hardness of
learning parity with noise (LPN). At the heart of our new construction is
a pseudorandom correlation generator (PCG), which allows two partie to
locally stretch, from short seeds, pseudorandom instances of an arbitrary
log / log log-local additive correlation.

Our main application, and the main motivation behind this work, is a
generic two-party secure computation protocol for every layered (boolean
or arithmetic) circuit of size s with total communication O(s/ log log s)
and polynomial computation, assuming the super-polynomial hardness
of the standard learning parity with noise assumption (a circuit is lay-
ered if its nodes can be partitioned in layers, such that any wire connects
adjacent layers). This expands the set of assumptions under which the
‘circuit size barrier’ can be broken, for a large class of circuits. The
strength of the underlying assumption is tied to the sublinearity factor:

we achieve communication O(s/k(s)) under the s2
k(s)

-hardness of LPN,
for any k(s) ≤ log log s/4.

Previously, the set of assumptions known to imply a PCG for cor-
relations of degree ω(1) or generic secure computation protocols with
sublinear communication was restricted to LWE, DDH, and a circularly
secure variant of DCR.

Keywords: Homomorphic secret sharing · Multiparty computation ·
Sublinear communication · Learning parity with noise · Pseudorandom
correlation generators

1 Introduction

In this work, we present a novel (circuit dependent) homomorphic secret sharing
(HSS) scheme for any (log / log log)-local circuit which is secure under the super-
polynomial hardness of the learning parity with noise (LPN) assumption. The
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 842–870, 2021.
https://doi.org/10.1007/978-3-030-77886-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_29&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_29

Breaking the Circuit Size Barrier 843

main application, and motivation for this work, is a new protocol for securely
computing layered arithmetic and boolean circuits with communication sublinear
in the circuit size, under the quasi-polynomial hardness of LPN.

Homomorphic Secret Sharing (HSS). An HSS is a compact secret sharing scheme
equipped with homomorphism: the parties can locally convert compact (addi-
tive) shares of an input into (additive) shares of some function of it, without
interaction. Compactness here means that the input shares should be much
smaller than, and ideally independent of, the size of the evaluated circuit. More
precisely, HSS for a circuit class allows the parties to homomorphically convert
their shares for any circuit in the class. This powerful primitive has been instan-
tiated for all circuits under LWE [BKS19], or for NC1 under DDH [BGI16a], or a
circularly secure variant of DCR [FGJS17], and for the class of constant degree
polynomials from LPN [BCG+19b].

The Circuit Size Barrier in Secure Computation. Secure computation allows
mutually distrustful parties to securely compute a public function of their joint
private inputs, concealing all information beyond the output. Since its introduc-
tion in the seminal works of Yao [Yao86], and Goldreich, Micali, and Wigder-
son [GMW87b,GMW87a], secure computation has received a constant attention.
For a long time, however, all standard approaches to secure computation have
been stuck at an intriguing circuit-size barrier, in that they require an amount of
communication (at least) proportional to the size of the circuit being computed.
In contrast, insecure computation only requires exchanging the inputs, which
might be considerably smaller than the entire circuit. Getting beyond this limi-
tation has been a major challenge in secure computation. Early positive results
required exponential computation [BFKR91,NN01], or were limited to very sim-
ple functions such as point functions [CGKS95,KO97,CG97] or constant-depth
circuits [BI05].

The situation changed with the breakthrough result of Gentry [Gen09] on
fully-homomorphic encryption (FHE), which led to optimal communication pro-
tocols in the computational setting [DFH12,AJL+12]. On the downside, the set
of assumptions under which we know how to build FHE is very narrow; it is
restricted to lattice-based assumptions such as LWE, and in particular does not
include any of the traditional assumptions which were used in the 20th century.
More recently, the elegant work of [BGI16a] showed for the first time that secure
computation with sublinear communication could be based on assumptions not
known to imply FHE, by building a two-party secure computation protocol under
the DDH assumption, with communication O(s/ log s) for layered circuits of size
s.1 [FGJS17] later followed this blueprint and switched out the DDH assump-
tion for the circular security of the Pallier encryption scheme. It remains open
whether secure computation with sublinear communication can be based on any
other traditional and well-studied assumption, such as code-based assumptions.

1 A depth-d circuit is layered if it can be divided into d layers such that any wire
connects adjacent layers.

844 G. Couteau and P. Meyer

1.1 Our Contribution

We show that circuit-dependent homomorphic secret sharing, i.e.HSS where the
share generation requires knowing in advance the circuit to be evaluated homo-
morphically, for the class of log-local circuits exists, conditioned on (the quasi-
polynomial hardness of) a well-studied 20th century assumption: the learning
parity with noise (LPN) assumption [BFKL94]. Informally, the LPN assumption
captures the hardness of solving an overdetermined system of linear equations
over F2, when a small subset of the equations is perturbed with a random noise.
The LPN assumption has a long history in computational learning theory, where
it emerged. Furthermore, our results only require a flavour of LPN where the
adversary is given a very limited number of samples (typically, O(n) equations in
n indeterminates). In this regime, LPN is equivalent to the hardness of decod-
ing random linear codes over F2, which is the well-known syndrome decoding
problem in the coding theory community, where it has been studied since the
60’s [Pra62].

Details on the Underlying Assumption. In a bit more detail, given a security
parameter λ, the (T, n,N, r)-LPN assumption with dimension n = n(λ), number
of samples N = N(λ) and noise rate r = r(λ) states that for every adversary
Adv running in time at most T = T (λ),

Pr
[
A

$← F
N×n
2 , �e

$← BerNr , �s
$← F

n
2 : Adv(A,A · �s + �e) = �s

]
= negl(λ),

where Berr denotes the Bernouilli distribution which outputs 1 with probability
r, and negl denote some negligible function. When T can be any polynomial
(resp. any super-polynomial function, some super-polynomial function), we say
that we assume the polynomial (resp. quasi-polynomial, super-polynomial) hard-
ness of LPN. For arithmetic circuits, we need to assume LPN over large fields, or
equivalently syndrome decoding for random linear codes over large fields; this is
also a well-founded and well-studied assumption, used in several previous works,
e.g. [BCGI18,BCG+19b].

HSS for Any Loglog-Depth Circuit. We introduce a new circuit-dependent
HSS scheme for the class of all log log-depth circuits. More precisely,

Main Theorem 1 (HSS for any loglog-Depth Circuit, Informal). Let C be a
size-s, n-input, m-output, (ε · log log)-depth arithmetic circuit over F (for some
ε < 1/4). If the F-LPN assumption with super-polynomial dimension �, O(�)
samples, and inverse super-polynomial rate holds, then there exists a secure HSS
scheme for the class {C} with share size n+O(m ·s · log s/clog

1−ε s−log1−2ε s) (for
some constant c) and computational complexity O(m · poly(s) · (log |F|)2).

Restricting the circuit class to depth-k size-s circuits where k(s) ≤ log log s/4
leads to quantitative improvements in the size of the shares, the computational
complexity of expanding shares, and the strength of the LPN assumption.

Breaking the Circuit Size Barrier 845

Application to Sublinear Computation. Our HSS scheme has (non black-
box) implications for sublinear computation. As in [BGI16a], our results holds
for all layered (boolean or arithmetic) circuits, in the two-party setting.

Main Theorem 2 (Sublinear Computation of Layered Circuits, Informal).
For any layered arithmetic circuit C of polynomial size s = s(λ) with n inputs
and m outputs, for any function k(s) ≤ log log s−log log log s+O(1), there exists
a two party protocol for securely computing C in the honest-but-curious model,
with total communication [2(n + m + s/k)] · log |F| + o(s/k) and computation
bounded by s3 · polylogs · (log |F|)2 under a set of LPN assumptions, the exact
nature of which depends on the sublinearity factor k.

In particular, setting k ← O(log log s) leads to a protocol with total com-
munication O(n + m + s/ log log s), secure under the super-polynomial hardness
of:

– F-LPN with super-polynomial dimension �, O(�) samples, and inverse super-
polynomial rate,

– F2-LPN with super-polynomial dimension �′, O(�′) samples, and inverse poly-
nomial rate 1/sO(1) (which is implied by the above if F = F2).

Furthermore (but with a slighly different choice of parameters than the one
described above), as k is reduced to an arbitrarily small k = ω(1), we need only
assume the quasi-polynomial hardness of:

– F-LPN with quasi-polynomial dimension �, O(�) samples, and inverse quasi-
polynomial rate,

– F2-LPN with quasi-polynomial dimension �′, O(�′) samples, and inverse poly-
nomial rate 1/sO(1) (which is implied by the above if F = F2).

and the computation is reduced to O(s1+o(1) · (log |F|)2).
Remark 1. While we require security against super-polynomial-time adversaries,
this remains a relatively weak flavour of LPN where the dimension is very high,
i.e. super-polynomial as well (and the adversary is allowed to run in time O(�2)
where � is the dimension), and the number of samples which the adversary gets is
very limited, O(�). On the other hand, we require a very small noise rate λ/N . For
example, instantiating the above with k = (log log s)/5, we obtain a secure com-
putation protocol with total communication O(�+m+ s/ log log s) (sublinear in
s) and polynomial computation, assuming that LPN is hard against adversaries
running in super-polynomial time λO(log λ), with dimension � = λO(log λ), N = 2�
samples, and noise rate λ/N . More generally, for any super-constant function
ω(1), there is a two-party protocol with communication O(n + m + s/ log ω(1))
assuming the λω(1)-hardness of LPN (i.e., the quasi-polynomial hardness of
LPN).

We note that, in this regime of parameters, the best known attacks are the
information set decoding attack [Pra62] and its variants (which only shave con-
stant in the exponents, hence have the same asymptotic complexity), which

846 G. Couteau and P. Meyer

require time 2O(λ).2 Therefore, assuming hardness against λO(log λ)-time adver-
saries is a very plausible assumption.

Remark 2 (On the Generality of Layered Circuits). Our construction is restricted
to the class of (boolean or arithmetic) layered circuits. This restriction stems
from the blockwise structure of the construction, and was also present in the
previous works of [BGI16a] and [Cou19]. As noted in [Cou19], layered circuits are
a relatively large and general class of circuits, which furthermore capture many
“real-world” circuits such as FFT-like circuits (used in signal processing, integer
multiplication, or permutation networks [Wak68]), Symmetric crypto primitives
(e.g. AES and algorithms that proceed in sequences of low-complexity rounds
are naturally “layered by blocks”), or dynamic-programming algorithm (e.g. the
Smith-Waterman distance, or the Levenshtein distance and its variants).

Generalisation to the Malicious Setting. Our result can directly be gener-
alised to the malicious setting using a generic GMW-style compiler [GMW87a],
which is communication preserving when instantiated with succinct zero-
knowledge arguments [NN01]. Such arguments exist under collision-resistant
hash functions; hence, Theorem 2 extends to the malicious setting as well,
at the cost of further assuming collision-resistant hash functions (which is a
mild assumption). We note that CRHFs have recently been built from (sub-
exponentially strong) flavours of LPN [AHI+17,YZW+19,BLVW19].

1.2 Our Techniques

Our starting point is the construction of pseudorandom generator (PCG) from
the work of [BCG+19b], under the LPN assumption. At a high level, a PCG
allows to distributively generate long pseudorandom instances of a correlation.
More precisely, a PCG for a correlation corr (seen as a distribution over pairs
of elements) is a pair (Gen,Expand) where Gen(1λ) generates a pair of seeds
(k0, k1) and Expand(b, kb) output a string Rb. A PCG must satisfy two properties:
(correctness) (R0, R1) is indistinguishable from a random sample from corr, and
(security) for b ∈ {0, 1}, the string Rb is indistinguishable, even given k1−b, from
a string R′

b sampled randomly conditioned on satisfying the correlation with
R1−b.

The technical contribution at the heart of this paper is to show that, under
a certain LPN assumption, there exists a 2-party PCG for the following corre-
lation, which we call substrings tensor powers (stp) correlation. It is (publicly)
parametrised by

– a string length n;
– subsets S1, . . . , Sns ∈ (

[n]
≤K

)
of at most K = log n/ log log n many coordinates

each;

2 BKW and its variants [BKW00,Lyu05] do not improve over information set decoding
attacks in this regime of parameters, due to the very low number of samples.

Breaking the Circuit Size Barrier 847

– a tensor power parameter tpp (which can be super-constant, as high as K);

and generates additive shares of all the tensor powers of the prescribed substrings
of a random string, i.e.

(�r, ((1F || �r[Si])
⊗tpp)1≤i≤ns), where �r ∈ F

n is (pseudo)random.

In the above, �a⊗b denotes a vector �a tensored with itself b rimes. In order
to build shares of (�r, �r⊗2) for some (pseudo)random �r ∈ F

n (the bilinear cor-
relation), the PCG of [BCG+19b] uses a multi-point function secret sharing
scheme (MPFSS) (defined in Sect. 3.1) to give the parties small seeds which can
be expanded locally to shares of (�e,�e⊗2) for some random sparse vector �e ∈ F

n.
Thence, if H is some suitable public matrix the parties can get shares of �r := H ·�e,
which is pseudorandom under LPN, and of �r⊗2 = H⊗2 ·�e⊗2 by locally multiply-
ing their shares of �e and �e⊗2 by H and H⊗2 respectively. The main issue in using
this approach directly is that performing the expanding �r⊗tpp = H[Si]⊗tpp ·�e⊗tpp

(where H[Si]–abusively–denotes the submatrix of H with only the rows indexed
by elements of Si) would require super-polynomial computation, as H[Si] has n
columns.

The core idea of our work is to develop a very careful modified strategy.
Instead of letting each �r be a (pseudo)random mask, we construct �r as a sum of
n·log n vectors �rj , each associated with a public subset of at most K coordinates:
these K coordinates are random, but all others are zero. The crucial property
achieved by this construction is the following: with high probability, the sum of
these sparse vectors will be pseudorandom, but every size-K substring of �r (and
in particular S1, . . . , Sns) will be expressible as a sum of ‘not too many’ of the
�rj . This allows the expanding to be done by raising to the tensor power tpp a
matrix whose dimensions are both KO(1), and not n as before. Thus computation
remains polynomial.

If we were to stop here, the size of the seeds would grow linearly with ns,
the number of subsets; this would violate the compactness requirement. Instead,
we show that we can batch the subsets into ns/β groups of at most β subsets
each, for some parameter β to be refined, to reduce the share size and recover
compactness, without harming computational efficiency. Indeed, so long as β is
not too large, the substring of �r associated with the union of any β size-K subsets
of coordinates will still be expressible as a sum of ‘not too many’ of the �rj . Our
computations reveal a sweet spot for the choice of β, for which the PCG seeds
are compact and yet the complexity of expanding them remains polynomial.

1.3 Related Work

Pseudorandom correlation generators were first studied (under the name of
cryptocapsules) in [BCG+17]. Constructions of PCGs for various correlations,
under variants of the LPN assumptions, and applications of PCGs to low-
communication secure computation, have been described in [BCGI18,BCG+19b,
BCG+19a,SGRR19,BCG+20b,BCG+20a].

848 G. Couteau and P. Meyer

Early works on sublinear-communication secure computation either incurred
some exponential cost, or were restricted to very limited types of computations.
The first protocols to break the circuit size barriers was shown in [BFKR91]
(which gave a protocol with optimal communication, albeit with exponential
computation and only for a number of parties linear in the input size). The
work of [NN01] gave a sublinear protocol, but with exponential complexity.
The work of [BI05] gives a low-communication protocol for constant-depth cir-
cuit, for a number of parties polylogarithmic in the circuit size, and the works
of [CGKS95,KO97,CG97] gave sublinear protocols for the special case of point
functions. The result of Gentry [Gen09] led to the first optimal communica-
tion protocols in the computational setting [DFH12,AJL+12] under LWE-style
assumptions, for all circuits and without incurring any exponential cost. The
work of [IKM+13] gave an optimal communication protocol in the correlated
randomness model, albeit using an exponential amount of correlated random-
ness. More recently, [Cou19] constructed an unconditionally secure MPC protocol
with sublinear communication for layered circuits, in the two-party setting, with
a polynomial amount of correlated randomness. Finally, progress in breaking the
circuit-size barrier for layered circuits in the computational setting is closely tied
to the advances in HSS for super-constant depth circuits [BGI16a,FGJS17].

2 Technical Overview

Notations. We say that a function negl : N → R
+ is negligible if it vanishes

faster than every inverse polynomial. For two families of distributions X = {Xλ}
and Y = {Yλ} indexed by a security parameter λ ∈ N, we write X

c≈ Y if X
and Y are computationally indistinguishable (i.e. any family of circuits of size
poly(λ) has a negligible distinguishing advantage), X

s≈ Y if they are statistically
indistinguishable (i.e. the above holds for arbitrary, unbounded, distinguishers),
and X ≡ Y if the two families are identically distributed.

We usually denote matrices with capital letters (A,B,C) and vectors with
bold lowercase (�x, �y). By default, vectors are assumed to be column vectors. If
�x and �y are two (column) vectors, we use �x||�y to denote the (column) vector
obtained by their concatenation. We write �x ⊗ �y to denote the tensor product
between �x and �y, i.e., the vector of length nxny with coordinates xiyj (where nx

is the length of �x and ny is the length of �y). We write �x⊗2 for �x ⊗ �x, and more
generally, �x⊗n for the n-th tensor power of �x, �x ⊗ �x ⊗ · · · ⊗ �x. Given a vector �x
of length |�x| = n, the notation HW (x) denotes the Hamming weight �x, i.e., the
number of its nonzero entries. Let k be an integer. We let {0, 1}k denote the set
of bitstrings of length k. For two strings (x, y) in {0, 1}k, we denote by x ⊕ y
their bitwise xor.

Circuits. An arithmetic circuit C with n inputs and m outputs over a field F

is a directed acyclic graph with two types of nodes: the input nodes are labelled
according to variables {x1, · · · , xn}; the (computation) gates are labelled accord-
ing to a base B of arithmetic functions. In this work, we will focus on arithmetic

Breaking the Circuit Size Barrier 849

circuits with indegree two, over the standard basis {+,×}. C contains m gates
with no children, which are called output gates. If there is a path between two
nodes (v, v′), we say that v is an ancestor of v′. In this work, we will consider a
special type of arithmetic circuits, called layered arithmetic circuits (LBC). An
LBC is a arithmetic circuit C whose nodes can be partitioned into D = depth(C)
layers (L1, · · · , Ld), such that any edge (u, v) of C satisfies u ∈ Li and v ∈ Li+1

for some i ≤ d−1. Note that the width of a layered arithmetic circuit is also the
maximal number of non-output gates contained in any single layer. Evaluating
a circuit C on input �x ∈ F

n is done by assigning the coordinates of �x to the
variables {x1, · · · , xn}, and then associating to each gate g of C (seen as an
arithmetic function) the value obtained by evaluating g on the values associated
to its parent nodes. The output of C on input �x, denoted C(�x), is the vector of
values associated to the output gates.

2.1 PCG and HSS

Much like a PCG for the bilinear correlation yields an HSS for degree-two cir-
cuits [BCG+19b], given a PCG for the stp correlation with tpp = K, it is
almost immediate to build an HSS scheme for any singleton class comprised
of a log/loglog-local circuit C (which is the case in particular if its depth is
at most log log − log log log, since the gates have in-degree at most 2). Since
the circuit to be homomorphically evaluated on the input shares is known, the
Share procedure can depend on it (which is not usually the case for HSS). Let
S1, . . . , Sm be the subsets of inputs on which each output depends, and let K
denote the locality of C; we build a (circuit dependent) HSS scheme as follows:

– HSS.Share(�x): Generates compact PCG key (k0, k1) which expand to shares
of (�r, ((1F || �r[Si])

⊗tpp)1≤i≤m), set �x′ ← �x ⊕ �r, and give to each party Pσ a
share sσ = (kσ, �x′).

– HSS.Eval(σ, sσ): Expand sσ and, for each i = 1 . . . m, extract a share of
(1F || �r[Si])⊗tpp. Use it to generate shares of the coefficients of the “degree-
K polynomial” on |Si| ≤ K variables Pi satisfying Pi(X) = C(X − �r[Si]).
Output the inner product of the vector of coefficient shares with the vector
(1F || �x′)⊗K . (This linear product is a share of Pi(�x′).)

Correctness and security follow from inspection, along the same lines as
[BCG+19b]. Usually, HSS.Share is given only a circuit class as auxiliary input,
not a specific circuit, and the parties should be able to homomorphically eval-
uate any circuit in the class. In our case however the HSS is circuit-dependent,
because the subsets S1, . . . , Sm are intrinsically tied to the evaluated circuit. An
alternative formulation is that our HSS scheme supports singleton circuit classes
(or, more generally, local circuits with the same pattern of subsets).

2.2 Generating Correlated Randomness from a PCG

From now on, we set the number of parties to N = 2. The work of [BCG+19b,
Section 6] provides a pseudorandom correlation generator under the LPN

850 G. Couteau and P. Meyer

assumption, generates correlated (pseudo) random strings for the low-degree
polynomial correlation, i.e. shares of (�r, �r⊗2, . . . , �r⊗d) for some constant d, where
�r is a (pseudo)random vector. With the construction from the previous para-
graph, this yields an HSS for constant-depth circuits. Our goal is to design a
PCG which would lead to an HSS for super-constant depth circuits. More specif-
ically, and keeping our end application in mind, we would like for our PCG to
have short enough seeds to lead to a compact HSS scheme (i.e., shares of an
input x should be at most O(x)). This is fundamental when using the scheme
to generate correlated randomness in the protocol of [Cou19], which achieves
sublinear communication in the correlated randomness model, and which is the
starting point of our application to sublinear secure computation.

Our approach is therefore to directly plug in the construction of [BCG+19b]
and see where it fails. Two issues emerge: the computation is super-polynomial,
and the communication not sublinear. Below, we outline each of these issues,
and explain how we overcome them.

First Issue: Too Many Polynomials. The first problem which appears when
plugging the PCG of [BCG+19b] in the protocol of [Cou19] is that the latter
requires distributing many shares of multivariate polynomials Q̂ – more precisely,
s/k such polynomials (one for each coordinate of each first layer of a bloc). While
the PCG of [BCG+19b] allows to compress pseudorandom pairs (�r,Q(�X − �r))
into short seeds, these seeds will still be of length at least ω(log λ), where λ is the
security parameter, for the PCG to have any hope of being secure. That means
that even if we could manage to securely distribute all these seeds with optimal
communication protocols, the overall communication would still be at the very
least ω((s log λ)/ log log s), which cannot be sublinear since log log s = o(log λ)
(as s is polynomial in λ).

We solve this first issue as follows: we fix a parameter β, and partition each
�yi into w/β subvectors, each containing β consecutive coordinates of �yi. Then,
the core observation is that a simple variant of the PCG of [BCG+19b] allows
in fact to generate shares of (�r, �r⊗2, · · · , �r⊗2k

) for some pseudorandom r, where
�r⊗j denotes the tensor product of �r with itself j times (which we call from now
on the j-th tensor power of �r): this correlation is enough to generate shares
of all degree-2k polynomial in �r rather than a single one. We will build upon
this observation to show how to generate a batch of β shares of multivariate
polynomials from a single tensor-power correlation, thus reducing the number
of PCG seeds required in the protocol by a factor of β, at the tolerable cost of
slightly increasing the size of each seed.

Solution: Batching β Multivariate Polynomials. Consider the first length-β sub-
vector of �yi+1, which we denote �v. Observe that the entire subvector �v can depend
on at most β ·2k coordinates of �yi, since each coordinate of �v depends on at most
2k coordinates of �yi. Therefore, we can now see the computation of �v from �yi

as evaluating β multivariate polynomials (Q1 · · · , Qβ), where all multivariate
polynomials take as input the same size-(β2k) subset of coordinates of �yi. To
securely compute shares of �v from shares of �yi, the parties can use the following

Breaking the Circuit Size Barrier 851

type of correlated randomness: they will have shares of (�r, �r⊗2, · · ·�r⊗2k

), where
�r is a random mask of length β · 2k. Consider the following polynomials:

(Q̂1(�X), · · · , Q̂β(�X)) def= (Q1(�X − �r), · · · , Qβ(�X − �r)).

Each coefficient of each Q̂ can be computed as a degree-2k multivariate poyno-
mial in the coordinates of �r – or, equivalently, as a linear combination of the
coordinates of (�r, �r⊗2, · · ·�r⊗2k

). Hence, given additive shares of (�r, �r⊗2, · · ·�r⊗2k

),
the parties can locally compute additive shares of the coefficients of all the poly-
nomials (Q̂1, · · · Q̂β). Using the PCG of [BCG+19b], the seeds for generating
pseudorandom correlations of the form (�r, �r⊗2, · · ·�r⊗2k

) have length:

O

(
λ2k · log

((
β · 2k

)2k
))

,

where λ is some security parameter related to the hardness of the underlying LPN
assumption. Or more simply, using the fact the computational cost of generating

the correlations contains the term
(
β · 2k

)2k

which must remain polynomial in
s. Therefore, the total number of bits which the parties have to distribute (for
all (d/k) · (w/β) = s/(βk) such seeds) is O((s/k) · (λ2k · log s)/β).

Choosing the Parameter β. Suppose for simplicity that we already have at hand
an MPC protocol allowing to securely distribute such seeds between the par-
ties, with linear overhead over the total length of the seeds generated. This
means that generating the full material will require a total communication of
c · s · λ2k · log s/(βk). By setting β to be larger than c · λ2k · log s, the total
communication will be upper bounded by O(s/k) = O(s/ log log s) when set-
ting k ← O(log log s), which is the highest our techniques will allow it to be
pushed. The most important remaining question is whether we can execute this
process in polynomial time given such a large β. Put more simply, the core
issue is that the computational complexity of expanding short seeds to shares
of (�r, �r⊗2, · · ·�r⊗2k

) with the PCG of [BCG+19b] contains a term of the form
(β · 2k)2

k

. To make the computation polynomial, we must therefore ensure that
β is at most sO(2−k), which is subpolynomial. Fortunately, this can be done
by setting the security parameter λ of the underlying PCG to be sO(2−2k). For
instance, for any constant ε ∈]0, 1[, we can set λ ← 2log

ε s, k ← log log s/cε, and
β ← sO(2−k) for some explicit constant cε > 2, at the cost of now having to
assume the quasi-polynomial security of the LPN assumption.

Second Issue: Too Much Communication. In the previous paragraphs, we
focused on generating the appropriate correlated random coins using sublinear
total communication. But doing so, we glossed over the fact that in the full
protocol, the parties must also broadcast (shares of) values of the form �y + �r,
where �y contains values of some layer, and �r is some mask. Recall that with the
method which we just outlined, the parties must generate such a length-(β2k)

852 G. Couteau and P. Meyer

mask �r for the k-ancestors of each length-β subvector of each last layer of a
block. Since there are d/k blocks, whose first layers contain w/β subvector each,
and since each �y + �r is of length β · 2k, this requires to communicate a total of
(d/k) · (w/β) · β2k = s · 2k/k values – and this cannot possibly be sublinear in
s. In fact, this issue already appears in [Cou19], where it was solved as follows:
rather than picking an independent mask for each vector of ancestors of a node
on a layer (or, in our case, of a length-β block of nodes), pick a single �ri to mask
a full layer �yi, and define the mask for the subset Si,j of ancestors of a target
value yi+1,j to be �ri[Si,j]. This implies that the parties must mow broadcast a
single masked vector �yi + �ri for each first layer of a block, reducing the overall
communication back to O(s/k). The correlated randomness which the parties
must securely distribute now consists of tensor powers of many subsets of the
coordinates of each mask.

Using the PCG of [BCG+19b] for ‘Subvectors Tensor Powers Correlations’.
However, attemping to construct a PCG for generating this kind of correlated
randomness from the PCG of [BCG+19b] blows up the computation to the point
that it can no longer be polynomial. To explain this issue, we briefly recall the
high level construction of the PCG of [BCG+19b]. To share a pseudorandom
vector (�r, · · · , �r⊗2k

) where �r is of length w, the PCG will first generate a very
sparse vector �r′, with some number t of nonzero coordinates. Then, each (�r′)⊗n

for some n ≤ 2k is itself a tn-sparse vector, of length wn. Using multi-point func-
tion secret sharing (MPFSS, a primitive which was developed in a recent line of
work [GI14,BGI15,BGI16b,BCGI18] and can be built from one way functions),
one can compress shares of (�r′)⊗n to length-tn · log w seeds. Then, the final pseu-
dorandom correlation is obtained by letting the parties locally compress �r′ by
multiplying it with a large public matrix H, giving a vector �r = H ·�r′. Similarly,
�r⊗n can be reconstructed by computing H⊗n · (�r′)⊗n = (H · �r′)⊗n = �r⊗n, using
the multilinearity of tensor powers. The security relies on the fact that if H is a
large compressing public random matrix, then its product with a random sparse
noise vector �r′ is indistinguishable from random, under the dual LPN assump-
tion (which is equivalent to the standard LPN assumption). Concretely, one can
think of �r′ as being of length 2w, and of H as being a matrix from F

w×2w which
compresses �r′ to a pseudorandom length-w vector.

Now, the issue with this construction is that even if we need only tensor
powers of small subvectors (of length β · 2k in our construction) of the vector �r,
the computation for expanding the seed to these pseudorandom tensor powers
will grow super-polynomially with the length of entire vector w. Indeed, consider
generating the 2k-th tensor power of a subvector �r[S] of �r, for some size-β · 2k

subset S of [w]. Then with the PCG of [BCG+19b], this requires computing
(H[S])⊗2k · (�r′[S])⊗2k

, where the share of (�r′[S])⊗2k

are obtained from a short
seed using MPFSS, and H[S] ∈ F

|S|×2w is the submatrix of H whose columns
are indexed by S. The core issue becomes now visible: even though H[S] has
only |S| rows, it still has 2w columns, and computing H[S]⊗2k

requires roughly
(|S| ·w)2

k

arithmetic operation. But since we want ultimately to have k be some

Breaking the Circuit Size Barrier 853

increasing function of s, the above will contain a term of the form w2k

= wω(1),
where w (the circuit width) can be polynomial in the circuit size s, leading to
an overall computational complexity of sω(1), which is super-polynomial.

Solution: Covering the Private Values with the Sum of Separable Masks. Our
solution to circumvent the above problem is to generate �r as the sum of a certain
number m of shorter masks �r1, �r2, . . . which each only cover θ values (note
that they may – and will – overlap). This way the 2k-th tensor power of a
subvector �v can be obtained from appropriate linear combinations of coordinates
of the 2k-th tensor power of the concatenation of only the �rj which overlap with
�v. The amount of computation grows super-polynomially in the length of this
concatenated vector only (instead of w as before).

More formally, we have a list of w/β target subsets S1, . . . , Sw/β (each one
corresponding to the 2kβ ancestors of a batch of β outputs) for which we want
to compute the 2k-th tensor power of �r[Si], for some random �r ∈ F

w. We want
to find M size-K sets α1, α2, . . . , αM ∈ (

[w]
K

)
such that each Si intersects with

a small number B of αjs, while ∪M
i=1αi = [w]. We associate each αj with a

vector �rj ∈ F
K : together they define a sparse subvector of F

w. If we let �r be the
sum of these sparse vectors, it is clear that for any i ∈ [w/β], each element of
(1F || �r[Si])⊗2k

can be obtained by a linear combination of the elements of the
2k-th tensor power of the vector of size (1+BK) obtained by concatenating (1F)
and the �rjs such that αj ∩ Si �= ∅. The amount of computation required is then
of the order (BK)2

k

.
The problem of deterministically finding such subsets α1, . . . , αM – which

we call a B-Good Cover of (Si)i∈[w/β] – turns out to be difficult in the general
case. Fortunately, there is a straightforward probabilistic solution: choosing them
independently and at random works with high probability. More specifically,
taking M ← O(w · ln w) i.i.d. uniformly random submasks covering K ← β2k

values each means that the β2k ancestral inputs of any batch of β outputs will be
covered by only a total of roughly B = log w submasks (the proof of this relies on
standard concentration bounds). This effectively lifts the cost of the computation
from being super-polynomial in w to being only super-polynomial in β2k log w,
which remains polynomial overall when setting β and k to be appropriately
small.

2.3 Application to Sublinear Secure Computation

The work of [Cou19] gives a generic secure protocol with sublinear communica-
tion for layered circuits. It works in the corruptible correlated randomness model :
before the protocol, a trusted dealer lets the adversary choose the strings that the
corrupted parties will get, samples the correlated random coins of the remaining
parties afterwards, and distributes them to the parties. As shown in [BCG+19b],
generating this corruptible randomness using a PCG leads to a secure protocol
in the standard model. In a bit more detail, the parties use a generic secure
protocol to generate the short seeds (k0, k1) then expand them locally; it might

854 G. Couteau and P. Meyer

have a high overhead, but it will not be a bottleneck since the seeds are very
small. We show that our new PCG can be used for just this purpose.

The general idea is to split a layered circuit of size s into carefully cho-
sen blocks, each containing O(log log s) consecutive layers. The precise block
decomposition is detailed in [Cou19]. Using our PCG cast as an HSS scheme
for O(log log s)-depth circuits (with the duality described in Sect. 2.1) allows the
parties to evaluate the circuit in a block-by-clock fashion: for each block the
parties start with additive shares of

– the inputs of the circuit;
– the values of the first layer of the block;

and, using HSS, compute additive shares of

– the outputs of the circuit which are in the block;
– the values of the last layer, which are also the values of the first layer of the

next block.

Let us note that since the circuit and its blocks are publicly known to both par-
ties, so the fact our HSS scheme is circuit-dependent is not an issue here. This
block-by-block approach allows the parties to ‘skip’ a fraction O(log log(s)) of
the gates when computing the circuit, by communicating at each block rather
than at each gate. Unfortunately, combining all these blocks together involves
pesky technicalities which prohibit a very modular approach and require us to
consider the protocol in its entirety. Indeed, the inputs can appear arbitrarily
many times–up to O(s) even–across many blocks, so the randomness used to
mask them has to be reused, and we cannot deal with each block using an inde-
pendent instance of HSS. However, dealing with this problem does not require
any additional insight, only more cumbersome notations.

In the above outline, we assumed that we had access to a sufficiently low-
communication MPC protocol to distribute the generation of the seeds to our
new PCG. To obtain our claimed result, it remains to show that this build-
ing block can be instantiated under the quasi-polynomial hardness of LPN. In
fact, this MPC protocol needs not have linear communication in the seed size;
it turns out that by tuning the parameters appropriately, any fixed polyno-
mial in the seed size suffices to guarantee the existence of a “soft spot” for the
parameters of our PCG such that we simultaneously get sublinear total commu-
nication O(s/log log s) and polynomial computation. Distributing the generation
procedure of our PCG essentially boils down to generating (many) seeds for a
multi-point function secret sharing scheme, which itself boils down mainly to
securely generating seeds for a standard length-doubling pseudorandom gen-
erator (PRG), and securely executing about log(domsize) expansions of these
short seeds, where domsize denotes the domain size of the MPFSS. Using a stan-
dard LPN-based PRG and GMW-style secure computation, instantiated with an
LPN-based oblivious transfer protocol, suffices to securely generate the MPFSS
seeds we need.

Breaking the Circuit Size Barrier 855

3 Preliminaries

3.1 Function Secret Sharing

Informally, an FSS scheme for a class of functions C is a pair of algorithms
FSS = (FSS.Gen,FSS.Eval) such that:

– FSS.Gen given a function f ∈ C outputs a pair of keys (K0,K1);
– FSS.Eval, given Kb and input x, outputs yb such that y0 and y1 form additive

shares of f(x).

The security requirement is that each key Kb computationally hide f , except
for revealing the input and output domains of f . For the formal definition of
FSS, we refer the reader to the full version of this paper. Our application of FSS
requires applying the evaluation algorithm on all inputs. Following [BGI16b,
BCGI18,BCG+19b,BCG+19a], given an FSS scheme (FSS.Gen,FSS.Eval), we
denote by FSS.FullEval an algorithm which, on input a bit b, and an evaluation
key Kb (which defines the input domain I), outputs a list of |I| elements of G

corresponding to the evaluation of FSS.Eval(b,Kb, ·) on every input x ∈ I (in
some predetermined order). Below, we recall some results from [BGI16b] on FSS
schemes for useful classes of functions.

Distributed Point Functions. A distributed point function (DPF) [GI14]
is an FSS scheme for the class of point functions fα,β : {0, 1}� → G which
satisfies fα,β(α) = β, and fα,β(x) = 0 for any x �= α. A sequence of works [GI14,
BGI15,BGI16b] has led to highly efficient constructions of DPF schemes from
any pseudorandom generator (PRG).

Theorem 3 (PRG-based DPF [BGI16b]). Given a PRG G : {0, 1}λ →
{0, 1}2λ+2, there exists a DPF for point functions fα,β : {0, 1}� → G with key
size �·(λ+2)+λ+�log2 |G|� bits. For m = � log |G|

λ+2 �, the key generation algorithm
Gen invokes G at most 2(� + m) times, the evaluation algorithm Eval invokes G
at most �+m times, and the full evaluation algorithm FullEval invokes G at most
2�(1 + m) times.

FSS for Multi-Point Functions. Similarly to [BCGI18,BCG+19b,
BCG+19a], we use FSS for multi-point functions. A k-point function evaluates
to 0 everywhere, except on k specified points. When specifying multi-point func-
tions we often view the domain of the function as [n] for n = 2� instead of
{0, 1}�.

Definition 4 (Multi-Point Function [BCGI18]). An (n, t)-multi-point func-
tion over an abelian group (G,+) is a function fS,	y : [n] → G, where S =
(s1, · · · , st) is an ordered subset of [n] of size t and �y = (y1, · · · , yt) ∈ G

t,
defined by fS,	y(si) = yi for any i ∈ [t], and fS,y(x) = 0 for any x ∈ [n] \ S.

856 G. Couteau and P. Meyer

We assume that the description of S includes the input domain [n] so that
fS,	y is fully specified. A Multi-Point Function Secret Sharing (MPFSS) is an
FSS scheme for the class of multi-point functions, where a point function fS,	y

is represented in a natural way. We assume that an MPFSS scheme leaks not
only the input and output domains but also the number of points t that the
multi-point function specifies. An MPFSS can be easily obtained by adding t
instances of a DPF.

3.2 Learning Parity with Noise

Our constructions rely on the Learning Parity with Noise assumption [BFKL93]
(LPN) over a field F (the most standard variant of LPN typically assumes F = F2,
but other fields can be considered). Unlike the LWE assumption, in LPN over F

the noise is assumed to have a small Hamming weight. Concretely, the noise is a
random field element in a small fraction of the coordinates and 0 elsewhere. Given
a field F, Berr(F) denote the distribution which outputs a uniformly random
element of F \ {0} with probability r, and 0 with probability 1 − r.

Definition 5 (LPN). For dimension k = k(λ), number of samples (or block
length) q = q(λ), noise rate r = r(λ), and field F = F(λ), the F-LPN(k, q, r)
assumption states that

{(A,�b) | A
$← F

q×k, �e
$← Berr(F)q, �s

$← F
k,�b ← A · �s + �e}

c≈{(A,�b) | A
$← F

q×k,�b
$← F

q}

Here and in the following, all parameters are functions of the security param-
eter λ and computational indistinguishability is defined with respect to λ. Note
that the search LPN problem, of finding the vector can be reduced to the
decisional LPN assumption [BFKL93,AIK09]. In this paper, our protocols will
mostly rely on a variant of LPN, called exact LPN (xLPN) [JKPT12]. In this vari-
ant, the noise vector �e is not sampled from Berr(F)q, but it is sampled uniformly
from the set HWrq(Fq) of length-q vectors over F with exactly rq nonzero coordi-
nates (in contrast, a sample from Berr(F)q has an expected number r·q of nonzero
coordinates). While standard LPN is usually preferred since the Bernouilli dis-
tribution is convenient to analyze, xLPN is often preferred in concrete implemen-
tations, since it offers a potentially higher level of security for similar parameters
(by avoiding weak instances with a low amount of noise). Furthermore, as out-
lined in [JKPT12], xLPN and LPN are equivalent: xLPN reduces to its search
version using the sample-preserving reduction of [AIK07], and search-xLPN is
easily seen to be polynomially equivalent to search-LPN.

Dual LPN. In our protocols, it will also prove convenient to work with the
(equivalent) alternative dual formulation of LPN.

Breaking the Circuit Size Barrier 857

Definition 6 (Dual LPN). For dimension k = k(λ), number of samples (or
block length) q = q(λ), noise rate r = r(λ), and field F = F(λ), the dual-
F-LPN(k, q, r) assumption states that

{(H,�b) | H
$← F

q−k×q, �e
$← Berr(F)q,�b ← H · �e}

c≈{(H,�b) | H
$← F

q−k×q,�b
$← F

q}

Solving the dual LPN assumption is easily seen to be at least as hard as
solving LPN: given a sample (A,�b), define H ∈ F

q−k×q to be the parity-check
matrix of A (hence H · A = 0), and feed (H,H ·�b) to the dual LPN solver. Note
that the parity check matrix of a random matrix is distributed as a random
matrix. Furthermore, when �b = A · �s + �e, we have H ·�b = H · (A · �s + �e) = H · �e.
For discussions regarding existing attacks on LPN and their efficiency, we refer
the reader to [BCGI18,BCG+19b].

3.3 Pseudorandom Correlation Generators

Pseudorandom correlation generators (PCG) have been introduced in
[BCG+19b]. Informally, a pseudorandom correlation generator allows to gen-
erate pairs of short keys (or seeds) (k0, k1) such that each key kσ can be
expanded to a long string Rσ = Expand(σ, kσ), with the following guaran-
tees: given the key k1−σ, the string Rσ is indistinguishable from a random
string sampled conditioned on satisfying the target correlation with the string
R1−σ = Expand(1 − σ, k1−σ). The formal definition of PCGs is given in the full
version of this paper

4 Secure Computation from Super-Constant-Degree
Low-Locality Polynomial Correlated Randomness

4.1 Block Decomposition of Layered Circuits

Given an arithmetic circuit C and an input vector �x, we call value of the gate g
on input �x the value carried by the output wire of a given gate g of C during the
evaluation of C(�x). The following decomposition of layered circuits is implicit
in [Cou19]; for completeness, we give the proof in the full version.

Lemma 7 (Block-Decomposition of Layered Circuits). Let C be a layered
arithmetic circuit over a field F with n inputs and m outputs, of size s and depth
d = d(n). For any integer k, denoting t = t(k) = �d/k�, there exists 2t+1 integers
(s0 = 0, s1, · · · , st−1, st = 0), (m0, · · · ,mt−1), and functions (f0, · · · , ft−1) with
fi : F

n × F
si → F

si+1 × F
mi , such that:

– The algorithm A given below satisfies, for any input vector �x ∈ F
n, A(�x) =

C(�x) (that is, A computes C);
function A(�x)

858 G. Couteau and P. Meyer

�x0 ← �x
for i = 0 to t − 1 do (�xi+1, �yi) ← fi(�xi)
�y ← �y0|| · · · ||�yt−1

return �y

– For any i ∈ [[0, t − 1]], j ≤ si+1 + mi, the j-th output3 of fi : F
n × F

si �→
F

si+1 × F
mi can be computed by a multivariate polynomial Pi,j over F

2k

of
degree deg Pi,j ≤ 2k;

–
∑t−1

i=0 si ≤ s/k and
∑t−1

i=0 mi = m.

4.2 Securely Computing C in the Correlated Randomness Model

We represent in Fig. 1 the ideal functionality for securely evaluating the layered
arithmetic circuit C.

Ideal Functionality FC

– Parameters. The functionality is parametrised with an arithmetic circuit C
with n inputs over a finite field F.

– Parties. An adversary A and N parties P1, · · · , PN . Each party P has p ∈
[0, n] inputs over F, with ≤N p = n.

The functionality aborts if it receives any incorrectly formatted message.

1. On input a message (input,) from each party P where ∈ F
p , set

1|| · · · || N ∈ F
n.

2. Compute C(). Output to all parties, and terminate.

Fig. 1. Ideal functionality FC for securely evaluating an arithmetic circuit C among
N parties.

We represent on Fig. 2 an ideal functionality for distributing (function-
dependent) correlated randomness between the parties.

Theorem 8. Let k ≤ log log s − log log log s. There exists a protocol ΠC which
(perfectly) securely implements the N -party functionality FC in the Fcorr-hybrid
model, against a static, passive, non-aborting adversary corrupting at most N −1
out of N parties, with communication complexity upper bounded by O(N · (n +
s
k + m) · log |F|) and polynomial computation.

The protocol follows closely the construction of [Cou19], with some tedious
technical adaptations which are necessary to rely on the specific type of corre-
lated randomness which we will manage to securely generate with low commu-
nication overhead. The protocol and its security analysis are given in the full
version.
3 i.e. the jth coordinate of the image by fi, seen as fi : F

n × F
si → F

si+1+mi .

Breaking the Circuit Size Barrier 859

Ideal Functionality

– Parameters.

– Parties.

The functionality aborts if it receives any incorrectly formatted message.

5. Output

(c) Setup evaluation of the output gates in the ith chunk:

– Wait for a message

– Compute uniformly random shares

Fig. 2. Ideal corruptible functionality Fcorr to deal out correlated randomness to the
parties.

5 Generating Correlated Randomness from LPN

In this section, we construct a protocol Πcorr, which implements the ideal func-
tionality Fcorr with small communication, under the quasi-polynomial LPN
assumption. A very natural approach to realise a functionality that distributes
correlated random coins using a small amount of communication is to rely

860 G. Couteau and P. Meyer

on pseudorandom correlation generators, a primitive recently defined an con-
structed (for various types of correlations, and under a variety of assumptions)
in [BCG+19b]. At a high level, [BCG+19b] suggests to distribute correlated
randomness with the following approach:

– Use a generic secure computation protocol ΠGen to distributively execute
the PCG.Gen functionality of the pseudorandom correlation generator. Note
that PCG.Gen outputs short seeds, much smaller than the correlated pseudo-
random strings which can be stretched from these seeds. Therefore, ΠGen can
potentially have a relatively high communication overhead in its inputs and
outputs, while maintaining the overall communication overhead of Πcorr small.

– Expand the distributively generated seeds locally using the Expand algorithm
of the PCG. Each such string is guaranteed, by the security of the PCG, to be
indistinguishable (from the viewpoint of the other parties) from a uniformly
random string sampled conditioned on satisfying the target correlation with
the expanded strings held by the other parties.

While this approach does not necessarily leads to a secure implementation
of an ideal functionality generating correlated random coins, it was shown in
[BCG+19b] (Theorem 19 in [BCG+19b]) that it provides a provably secure
implementation for all corruptible ideal functionalities for distributing correlated
random coins. Note that this property is satisfied by our functionality Fcorr. Our
protocol Πcorr will follow this approach. We start by constructing a pseudoran-
dom correlation generator for the type of correlated randomness produced by
Fcorr, building upon an LPN-based construction of [BCG+19b].

5.1 Substrings Tensor Powers Correlations (stp)

We now describe our construction of a PCG for generating the type of correlated
randomness produced by Fcorr. As all constructions of [BCG+19b], our con-
struction will be restricted to the two-party setting; hence, we focus on N = 2
parties from now on. Abstracting out the unnecessary details, the functional-
ity Fcorr does the following. It is parametrised with a vector length w, subsets
(Si)1≤i≤ns ∈ (

[w]
≤K

)ns
, a tensor power parameter tpp, and generates shares of:

(�r, ((1F || �r[Si])
⊗tpp)1≤i≤ns), where �r ∈ F

w is random.

We call C the correlation generator associated with Fcorr, i.e. the PPT
algorithm that, on input the security parameter in unary 1λ, samples cor-
related random string as above (where the parameters (ns,K, tpp) are func-
tions of λ). It is straightforward to see that C is a reverse-samplable cor-
relation generator , since it is an additive correlation: given any fixed share
share0, a matching share can be reverse-sampled by sampling �r and setting
share1 ← (�r, ((1F || �r[Si])

⊗tpp)1≤i≤ns) − share0. We call this type of correlated
randomness a subsets tensor powers (stp). Below, we describe a pseudorandom
correlation generator for such correlations.

Breaking the Circuit Size Barrier 861

5.2 Good Cover

Before we proceed with the description of a PCG to generate such correlations,
we need to introduce a concept, that of a good cover. The notations in this
subsection are completely self-contained, and may conflict with the parameters
defined for the main protocol. In the course of our construction we will want to
solve the following problem: given a vector �v of size n, a family (Si)i∈[t] ∈ P([n])t

of t (short) subsets of coordinates of �v, and a (small) bound B > 0, the problem
is to find a family (�vj)j∈[M] of some number m of size-K subvectors of �v such
that:

1. The subvectors collectively cover �v;
2. For each i ∈ [t], there are at most B subvectors in (�vj)j∈[M] whose coordinates

intersect Si.

We call such a family a B-Good Cover of (�v, (Si)i∈[t]). First of all we note that the
values of the vectors and subvectors do not matter, so we will conflate them with
sets and subsets (of coordinates) for simplicity, which leads to a more natural
formulation.

Definition 9 (Good Cover – Set Formulation). Let n,B,K, t, q,M ∈ N

and (Si)i∈[t] ∈ (
[n]
≤q

)t
a family of t subsets of [n] of size at most q each. A family

A = (�αj)j∈[M] ∈ (
[n]
K

)M
is a B-Good Cover of (Si)i∈[t] if:

1. A covers [n]:
⋃M

j=1 �αj = [n]
2. Each Si intersects at most B elements of A: ∀i ∈ [t], |{j ∈ [M] : �αj ∩ Si �=

∅}| ≤ B.

We abusively conflate the two views, where a good cover is just a family of
subsets A ∈ (

[n]
K

)M
and where the good cover is a family of sparse vectors—given

by a set of coordinates and a short vector of values—A ∈ (
(
[n]
K

) × F
K)M .

Lemma 10 (Random Covers are Good Covers.). Let n, κ, κ′ ∈ N�{0, 1},
and (Si)i∈[t] ∈ (

[n]
≤q

)t
a family of t subsets of [n] of size at most q each. Let

A = (�αj)j∈[M] ∈ (
[n]
K

)M
be a sequence of M i.i.d. uniform random size-K subsets

of [n], with M = κ · n ln n/K. Let B ← κ′κ · q · ln n.
It holds that A = (�αj)j∈[M] is a B-Good Cover of (Si)i∈[t] with probability at

least:
1 − 1

nκ−1
− t

n(κ′−2)κ·q/2
.

The proof is given in the full version.

862 G. Couteau and P. Meyer

5.3 PCG for Subsets Tensor Powers (PCGstp)

We now proceed with the description of a pseudorandom correlation generator
for subsets tensor powers.

PCG for Low-Degree Polynomials from [BCG+19b]. We start by recalling a
natural variant of pseudorandom correlation generator of [BCG+19b, Section 6],
which generates shares of �r⊗tpp, for a parameter tpp and a pseudorandom �r. It
relies on the xLPN assumption with dimension n, number of samples n′ > n,
and a number λ of noisy coordinates. In our instantiation, we will typically
consider n′ = O(n), e.g. n′ = 12n; this corresponds to a particularly conservative
variant of LPN with a very limited number of samples, and is equivalent to the
hardness of decoding a random constant-rate linear code (which is known as
the syndrome decoding problem). As discussed in Sect. 3, all known attacks on
the syndrome decoding problem for constant-rate codes have complexity 2O(λ).
The PCG of [BCG+19b] is parametrised by integers 1λ, n, n′, λ, tpp ∈ N (where
n′ > n), a field F, and a random parity-check matrix Hn′,n

$← F
(n′−n)×n′

(Fig. 3).

PCG for Degree-tpp Polynomial Correlations

PCG.Gen: On input 1λ:

PCG.Expand:

Fig. 3. PCG for low-degree polynomials from [BCG+19b].

Correctness follows from the fact that �v0 + �v1 = �e⊗tpp by the correctness of
MPFSS, and H⊗tpp

n′,n ·�e⊗tpp = (Hn′,n ·�e)⊗tpp by multilinearity of the tensor product.
Hence, denoting �r = Hn′,n ·�e, it holds that �r0 +�r1 = �r⊗tpp. For security, we must
show that the following distributions are indistinguishable for any σ = 0, 1:

{(kσ, �r1−σ) : (k0, k1)
$← Gen(1λ), �r1−σ ← Expand(1 − σ, k1−σ)}

c≈{(kσ, �r1−σ) : (k0, k1)
$← Gen(1λ), �rσ ← Expand(σ, kσ), �r $← F

n,

�r1−σ ← �r⊗tpp − �rσ}
Proof. We sketch the analysis for the sake of completeness; the full proof is given
in [BCG+19b]. Security is shown with the following sequence of hybrids: first

Breaking the Circuit Size Barrier 863

generate (kσ, �r1−σ) as in the first distribution above. Then, generate (kσ, �r1−σ)
as before, and generate an alternative key k′

σ solely from the parameters (1λ, F, n,
n′, t, tpp), using the simulator of the MPFSS. Output (k′

σ, �r1−σ); under the secu-
rity of the MPFSS, this distribution is indistinguishable from the previous one.
Note that k′

σ does not depend anymore on the noise vector �e. In the next hybrid,
generate �r

$← Hn′,n · �e and set �r1−σ ← �r⊗tpp − Expand(σ, kσ); this game is per-
fectly indistinguishable from the previous one. Finally, replace �r

$← Hn′,n · �e by
�r

$← F
n; under the LPN assumption, this last game (which correspond exactly to

the second distribution) is computationally indistinguishable from the previous
one, and security follows. ��

Our New PCG. We now describe a variant of the above PCG, tailored to com-
puting the tensor powers of many short subsets. The PCG is parametrised by
(Si)i∈[K] ∈ (

[w]
≤K

)ns
, ns subsets of at most K indices taken from [w]. We assume

for simplicity, but morally without loss of generality4, that
⋃ns

i=1 Si = [w]. Our
goal is for the parties to obtain shares of some pseudorandom vector �r ∈ F

w as
well as shares of (1 || �r[Si])⊗tpp ∈ F

w·tpp for each i ∈ [ns].
We start by generating a B-good cover (for some integer B) of the (Si)i of the

form (αj , �rj)j∈[m] ∈ (
(
[w]
θ

) × F
θ)m where each �rj is pseudorandom. We generate

each of the m pseudorandom masks �rj using a different instance of xLPN, i.e.
�rj ← Hj ·�ej , where �ej ∈ F

θ′
is λ-sparse and Hj

$← F
θ×θ′

for some θ′ = O(θ). For
each Si, we denote Ii := {j ∈ [m] : αj ∩ Si �= ∅} = {j1, . . . , j|Ii|} the set of the
indices of the masks which ‘intersect’ with Si. Note that ∀i ∈ [ns], |Ii| ≤ B by
definition of a B-good cover. We can now proceed with our main goal: generating
shares of a subsets tensor powers correlation.

We define �r :=
∑m

j=1 fαj ,	rj
∈ F

w, where fαj ,	rj
∈ F

w is the sparse vector
defined by (fαj ,	rj

)|αj
= �rj (and which is equal to 0F on [w]�αj). Since

⋃ns
i=1 Si =

[w] and each of the �rj is pseudorandom, �r is also pseudorandom.
Note that for any given i ∈ [ns], (1F || �r[Si]) is a subvector of

the vector �̃ri obtained by multiplying the block-diagonal matrix H ′
i =

Diag((1F),Hj1 , . . . , Hj|Ii|) with the vector �e′
i = (1F||ej1 || · · · ||ej|Ii|). Therefore

for any tensor power tpp (i.e. the degree of the polynomial correlation), �̃r
⊗tpp

i =
(H ′

i · �e′
i)

⊗tpp = (H ′
i)

⊗tpp · (�e′
i)

⊗tpp. If the parties use an MPFSS scheme to gener-
ate small seeds which expand to (�e′

i)
⊗tpp, they can then locally obtain shares of

�̃r
⊗tpp

i (since (H ′
i)

⊗tpp is public), and therefore of (1F || �r[Si])⊗tpp. From all these
shares of all the (1F || �r[Si])⊗tpp, i ∈ [ns] the parties can locally extract shares of
all the �r[Si] and thence shares of �r (since

⋃ns
i=1 Si = [w]). The protocol is given

in Fig. 4.

4 If
⋃ns

i=1 Si �= ∅, and with the notations of the rest of the section, the vector �r we
generate is equal to 0F on [w] �

⋃ns
i=1 Si, hence not pseudorandom. However, we can

simply have the parties generate another mask �r′ = H ′ · �e′, pseudorandom under
xLPN, to cover [w] �

⋃ns
i=1 Si. Since the parties do not need shares of (�r′)⊗tpp, the

communication complexity of generating the λ-sparse �e′ using an MPFSS is not an
issue.

864 G. Couteau and P. Meyer

Pseudorandom Correlation Generator PCGstp

Parameters: w, tpp, λ ∈ N and (Si)1≤i≤ns ⊆ [w]ns .

Gen: On input 1λ:

Expand:

// If there are several ways
to do so, it must be consistent accross σ ∈ {0, 1}.

a Implicitly, the Hj are supposed to be ‘suitably chosen’ for xLPN to be presumed
hard, e.g. that they were randomly and independently sampled.

Fig. 4. Pseudorandom correlation generator PCGstp for generating pseudorandom
instances of the subsets tensor powers correlation over a field F.

Theorem 11. Let w > 0, and (Si)i∈[ns] a list of ns subsets of [w]. Let B, θ′ such
that there exists a B-good cover of (Si)i∈[ns] comprised of size-θ′ vectors, and let
θ < θ′. Assume that the F-xLPN(θ, θ′, λ) assumption holds, and that MPFSS is a
secure multi-point function secret-sharing scheme for the family of (1+μ ·λ)tpp-
point functions from [(1+μ · θ′)tpp] to F for all μ ∈ [B]. Then PCGstp is a secure
pseudorandom correlation generator, which generates pseudorandom shares of a
subsets tensor powers correlation (�r, ((1F || �r[Si])

⊗tpp)1≤i≤ns) where �r ∈ F
w.

Breaking the Circuit Size Barrier 865

– Communication: If the MPFSS seeds have size O[λ · (1 + Bλ)tpp · log((1 +
Bθ′)tpp)] and MPFSS.FullEval can be computed with O((1+Bλ)tpp·(1+Bθ′)tpp·
log |F|

λ) invocations of a pseudorandom generator PRG : {0, 1}λ �→ {0, 1}2λ+2,
then PCGstp.Gen outputs seeds of size:

|kσ| = O
(
ns · λ · (1 + Bλ)tpp · log

(
(1 + Bθ′)tpp

))
.

– Computation: The computational complexity of PCGstp.Expand is predomi-
nantly that of O(ns · (1+Bλ)tpp · (1+Bθ′) · log |F|

λ) invocations of a PRG, plus
ns matrix-vector products with a matrix of dimensions (1+Bθ)tpp×(1+Bθ′)tpp

which requires at most O(ns · (Bθ)tpp · (Bθ′)tpp) ⊆ O(ns · (Bθ′)2·tpp) arithmetic
operations over F.

The proof of the above theorem is omitted in this version of the paper.

5.4 Instantiating the MPFSS

Theorem 11 assumes the existence of an MPFSS scheme MPFSS for the family
of all (1 + μ · λ)tpp-point functions from [(1 + μ · θ′)tpp] to F for some μ ∈ [B]
(or, equivalently, an MPFSS for each μ which can then all be combined into
one scheme), with the following efficiency guarantees: MPFSS.Gen(1λ) outputs
seeds of size O((1 + Bλ)tpp · λ · log((1 + Bθ′)tpp)), and MPFSS.FullEval can be
computed with O((1+Bλ)tpp ·(1+Bθ′)tpp · log |F|

λ) invocations of a pseudorandom
generator PRG : {0, 1}λ �→ {0, 1}2λ+2. The works of [BGI16b,BCGI18] provides
exactly such a construction, which makes a black box use of any pseudorandom
generator PRG : {0, 1}λ �→ {0, 1}2λ+2. We instantiate the PRG using the LPN-
based construction of [BKW03], which we recall in the full version of the paper.

5.5 Securely Distributing MPFSS.Gen an Πstp

The seeds of the MPFSS scheme of [BCGI18] can be securely generated by using
parallel instances of a generic secure computation protocols to securely evaluate
the above PRG. Using GMW to instantiate the generic protocol, we have:

Corollary 12. There exists a semi-honest secure two-party protocol ΠMPFSS

which distributes the seeds of a multi-point function secret-sharing scheme
MPFSS for the family of t′-point functions from [(1+Bθ′)tpp] to F, using O(t′ ·ν ·
λ2) calls to an ideal oblivious transfer functionality, where ν = log((1 + Bθ′)tpp)
and t′ = (1+Bλ′)tpp, with an additional communication of O(t′ ·ν ·λ2) bits, and
total computation polynomial in t′ · ν · λ.

We prove the above corollary by exhibiting ΠMPFSS in the full version. As
a direct corollary of Corollary 12, since the seeds of PCGstp contain exactly ns
independent MPFSS seeds, we have:

Corollary 13. There exists a semi-honest secure two-party protocol Πstp which
distributes the seeds of the pseudorandom correlation generator PCGstp repre-
sented on Fig. 4, using O(ns · t′ · ν · λ2) calls to an ideal oblivious transfer func-
tionality, where ν = log((Bθ′ + 1)tpp) and t′ = (1 + Bλ)tpp, with an additional
communication of O(ns ·t′ ·ν ·λ2) bits, and total computation O(ns ·poly(t′ ·ν ·λ)).

866 G. Couteau and P. Meyer

Instantiating the oblivious transfer. To execute the GMW protocol, we need an
oblivious transfer. Under the F2-LPN(λ,O(λ), 1/λδ) assumption (δ is any small
constant), there exists oblivious transfers (with simulation security) with poly(λ)
communication and computation; see for example [DGH+20].

Constructing Πcorr. The work of [BCG+19b] shows that any corruptible func-
tionality distributing the output of a correlation generator C can be secure
instantiated using any semi-honest secure two-party protocol Π for distributing
the Gen procedure of a PCG for C , with the same communication as Π, and
with computational complexity dominated by the computational complexity of
Π plus the computational complexity for computing the PCG.Expand procedure.
Therefore, using their result together with our protocol Πstp for generating the
seeds of a PCG for subsets tensor powers correlation allows to securely instan-
tiate Fcorr (with N = 2).

Recall that the computation of PCGstp.Expand is dominated by O(ns · (1 +
Bλ)tpp · (1 + Bθ′)tpp · log |F|

λ) invocations of a PRG – which requires at most
O(λ2 ·ns ·(1+Bλ)tpp ·(1+Bθ′)tpp · log |F|

λ) operations over F2 using the simple LPN-
based PRG from [BKW03] –, plus an additional O(ns · (1 + Bθ)tpp · (1 + Bθ′)tpp)
arithmetic operations over F. Since each operation over F can be computed
with O(log |F|)2) boolean operations, combining the two, we get computation
O(λ · ns · (1 + Bθ)tpp · (1 + Bθ′)tpp · (log |F|)2).

All that remains is for the parties to generate the necessary material for
PCGstp: m random F

θ×θ′
matrices and m size-θ′ subsets of [w]. At its core,

this is just a matter for the parties to generate and hold the same m · (θ · θ′ ·
log |F| + log

(
w
θ′

)
) (pseudo)-random bits. This can be achieved by having one

party sample a seed of size λ, send it to the other, and both parties can expand
it locally by calling the length-doubling PRG from [BKW03] (and used above)
m · θ′ · (θ · log |F| + log w)/λ times (in a GGM tree-like approach). This requires
λ bits of communication and O(m · θ′ · (θ · log |F| + log w) · λ) bits of local
computation. This is summarised in an intermediate theorem, omitted from this
version. Wrapping up, using Πstp with an appropriate good cover suffices to
construct a protocol Πcorr for securely implementing the functionality Fcorr. The
detailed choice of parameters is deferred to the full version. Below, we describe
a specific choice of parameters for the full construction which suffices to arrive
at the claimed result.

6 Choice of Parameters

In this section, we tune the parameters of our protocol. We want to ensure the
scheme is correct with all but negligible probability, that it is secure, that the
communication is sublinear, and that the computation is polynomial. We make
two sets of choices for the parameters: the first optimising for communication,
and the other for computation (and incidentally for the strength of the security
assumption). The full discussion is deferred to the full version.

Combining Theorem 8–which provides a secure protocol in the Fcorr-hybrid
model–and the instantiation of the Fcorr as provided in the full version, with an

Breaking the Circuit Size Barrier 867

appropriate choice of parameters, also made explicit in the full version, we get
our main theorem, Main Theorem 1 below.

Main Theorem 1 (Sublinear Computation of Layered Circuits – Optimised
for Communication). Assuming the super-polynomial security of

– F-LPN with super-polynomial dimension �, O(�) samples, and inverse super-
polynomial rate,

– F2-LPN with super-polynomial dimension �′ = sO((1)), O(�′) samples, and
inverse polynomial rate (which is implied by the above if F = F2),

there exists a probabilistic semi-honest two-party protocol which securely evalu-
ates any layered arithmetic circuit over F with success probability 1 − negl(s)
and which uses O ([n + s/ log log s + m] · log |F|) bits of communication and
s3 · polylogs · (log |F|)2 bits of computation (where s, n, and m are respectively
the number of gates, inputs, and outputs of the circuit).

Instantiating the protocol with an alternative choice of parameters, also
detailed in the full version, instead yields the following.

Main Theorem 2 (Sublinear Computation of Layered Circuits – Optimised
for Computation). Assuming the quasi-polynomial security of

– F-LPN with quasi-polynomial dimension �, O(�) samples, and inverse quasi-
polynomial rate,

– F2-LPN with quasi-polynomial dimension �′, O(�′) samples, and inverse poly-
nomial rate (which is implied by the above if F = F2),

there exists a probabilistic semi-honest two-party protocol which securely eval-
uates any layered arithmetic circuit over F with success probability 1 − negl(s)
and which uses O ([n + o(s) + m] · log |F|) bits of communication and s1+o(1) ·
(log |F|)2 bits of computation (where s, n, and m are respectively the number of
gates, inputs, and outputs of the circuit).

References

AHI+17. Applebaum, B., Haramaty-Krasne, N., Ishai, Y., Kushilevitz, E., Vaikun-
tanathan, V.: Low-complexity cryptographic hash functions, pp. 7:1–7:31
(2017)

AIK07. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant
input locality. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
92–110. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74143-5 6

AIK09. Applebaum, B., Ishai, Y., Kushilevitz, E.: J. Cryptol. Cryptography with
constant input locality. 22(4), 429–469 (2009)

AJL+12. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computa-
tion and interaction via threshold FHE. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 29

https://doi.org/10.1007/978-3-540-74143-5_6
https://doi.org/10.1007/978-3-540-74143-5_6
https://doi.org/10.1007/978-3-642-29011-4_29

868 G. Couteau and P. Meyer

BCG+17. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic
secret sharing: Optimizations and applications, pp. 2105–2122 (2017)

BCG+19a. Boyle, E., et al.: Efficient two-round OT extension and silent non-
interactive secure computation, pp. 291–308 (2019)

BCG+19b. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient
pseudorandom correlation generators: silent OT extension and more. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 16

BCG+20a. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Corre-
lated pseudorandom functions from variable-density LPN, pp. 1069–1080
(2020)

BCG+20b. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Effi-
cient pseudorandom correlation generators from ring-LPN. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 387–416.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 14

BCGI18. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE,
pp. 896–912 (2018)

BFKL93. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives
based on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2 24

BFKL94. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primi-
tives based on hard learning problems, pp. 278–291 (1994)

BFKR91. Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Security with low com-
munication overhead. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO
1990. LNCS, vol. 537, pp. 62–76. Springer, Heidelberg (1991). https://doi.
org/10.1007/3-540-38424-3 5

BGI15. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 12

BGI16a. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4 19

BGI16b. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and
extensions, pp. 1292–1303 (2016)

BI05. Barkol, O., Ishai, Y.: Secure computation of constant-depth circuits with
applications to database search problems. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 395–411. Springer, Heidelberg (2005). https://
doi.org/10.1007/11535218 24

BKS19. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices
without FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. Homo-
morphic secret sharing from lattices without FHE, vol. 11477, pp. 3–33.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 1

BKW00. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity
problem, and the statistical query model, pp. 435–440 (2000)

BKW03. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM (JACM) 50(4), 506–
519 (2003)

https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-38424-3_5
https://doi.org/10.1007/3-540-38424-3_5
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/11535218_24
https://doi.org/10.1007/11535218_24
https://doi.org/10.1007/978-3-030-17656-3_1

Breaking the Circuit Size Barrier 869

BLVW19. Brakerski, Z., Lyubashevsky, V., Vaikuntanathan, V., Wichs, D.: Worst-
case hardness for LPN and cryptographic hashing via code smoothing.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478,
pp. 619–635. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 21

CG97. Chor, B., Gilboa, N.: Computationally private information retrieval
(extended abstract), pp. 304–313 (1997)

CGKS95. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information
retrieval, pp. 41–50 (1995)

Cou19. Couteau, G.: A note on the communication complexity of multiparty
computation in the correlated randomness model. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 473–503. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 17

DFH12. Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with
low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 54–74. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28914-9 4

DGH+20. Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round
oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 768–797. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45724-2 26

FGJS17. Fazio, N., Gennaro, R., Jafarikhah, T., Skeith, W.E.: Homomorphic secret
sharing from Paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li,
Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 381–399. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68637-0 23

Gen09. Gentry, C.: Fully homomorphic encryption using ideal lattices, pp. 169–178
(2009)

GI14. Gilboa, N., Ishai, Y.: Distributed point functions and their applications.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 35

GMW87a. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority, pp. 218–229
(1987)

GMW87b. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements
in zero-knowledge and a methodology of cryptographic protocol design
(Extended Abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol.
263, pp. 171–185. Springer, Heidelberg (1987). https://doi.org/10.1007/3-
540-47721-7 11

IKM+13. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky,
A.: On the power of correlated randomness in secure computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-36594-2 34

JKPT12. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient
zero-knowledge proofs from learning parity with noise. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-34961-4 40

KO97. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE
database, computationally-private information retrieval, pp. 364–373
(1997)

https://doi.org/10.1007/978-3-030-17659-4_21
https://doi.org/10.1007/978-3-030-17659-4_21
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-030-45724-2_26
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-34961-4_40

870 G. Couteau and P. Meyer

Lyu05. Lyubashevsky, V.: The parity problem in the presence of noise, decoding
random linear codes, and the subset sum problem. In: Chekuri, C., Jansen,
K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX/RANDOM -2005. LNCS,
vol. 3624, pp. 378–389. Springer, Heidelberg (2005). https://doi.org/10.
1007/11538462 32

NN01. Naor, M., Nissim, K.: Communication preserving protocols for secure func-
tion evaluation, pp. 590–599 (2001)

Pra62. Prange, E.: The use of information sets in decoding cyclic codes. IRE
Trans. Inf. Theory 8(5), 5–9 (1962)

SGRR19. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed
vector-OLE: improved constructions and implementation, pp. 1055–1072
(2019)

Wak68. Waksman, A.: A permutation network. J. ACM (JACM) 15(1), 159–163
(1968)

Yao86. Yao, A.C.C.: How to generate and exchange secrets (extended abstract),
pp. 162–167 (1986)

YZW+19. Yu, Yu., Zhang, J., Weng, J., Guo, C., Li, X.: Collision resistant hash-
ing from sub-exponential learning parity with noise. In: Galbraith, S.D.,
Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 3–24. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34621-8 1

https://doi.org/10.1007/11538462_32
https://doi.org/10.1007/11538462_32
https://doi.org/10.1007/978-3-030-34621-8_1

	Breaking the Circuit Size Barrier for Secure Computation Under Quasi-Polynomial LPN
	1 Introduction
	1.1 Our Contribution
	1.2 Our Techniques
	1.3 Related Work

	2 Technical Overview
	2.1 PCG and HSS
	2.2 Generating Correlated Randomness from a PCG
	2.3 Application to Sublinear Secure Computation

	3 Preliminaries
	3.1 Function Secret Sharing
	3.2 Learning Parity with Noise
	3.3 Pseudorandom Correlation Generators

	4 Secure Computation from Super-Constant-Degree Low-Locality Polynomial Correlated Randomness
	4.1 Block Decomposition of Layered Circuits
	4.2 Securely Computing C in the Correlated Randomness Model

	5 Generating Correlated Randomness from LPN
	5.1 Substrings Tensor Powers Correlations (stp)
	5.2 Good Cover
	5.3 PCG for Subsets Tensor Powers (PCGstp)
	5.4 Instantiating the MPFSS
	5.5 Securely Distributing MPFSS.Gen an stp

	6 Choice of Parameters
	References

