
Constant-Overhead Unconditionally
Secure Multiparty Computation Over

Binary Fields

Antigoni Polychroniadou1 and Yifan Song2(B)

1 J.P. Morgan AI Research, New York, USA
2 Carnegie Mellon University, Pittsburgh, USA

yifans2@andrew.cmu.edu

Abstract. We study the communication complexity of unconditionally
secure multiparty computation (MPC) protocols in the honest major-
ity setting. Despite tremendous efforts in achieving efficient protocols
for binary fields under computational assumptions, there are no effi-
cient unconditional MPC protocols in this setting. In particular, there
are no n-party protocols with constant overhead admitting communica-
tion complexity of O(n) bits per gate. Cascudo, Cramer, Xing and Yuan
(CRYPTO 2018) were the first ones to achieve such an overhead in the
amortized setting by evaluating O(log n) copies of the same circuit in
the binary field in parallel. In this work, we construct the first uncondi-
tional MPC protocol secure against a malicious adversary in the honest
majority setting evaluating just a single boolean circuit with amortized
communication complexity of O(n) bits per gate.

1 Introduction

Secure multiparty computation (MPC) [Yao82,GMW87,CCD88,BOGW88]
allows n parties to compute any function of their local inputs while guaran-
teeing the privacy of the inputs and the correctness of the outputs even if t of
the parties are corrupted by an adversary.

A. Polychroniadou—This paper was prepared in part for information purposes by the
Artificial Intelligence Research group of JPMorgan Chase & Co and its affiliates (“JP
Morgan”), and is not a product of the Research Department of JP Morgan. JP Morgan
makes no representation and warranty whatsoever and disclaims all liability, for the
completeness, accuracy or reliability of the information contained herein. This docu-
ment is not intended as investment research or investment advice, or a recommenda-
tion, offer or solicitation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evaluating the merits of partic-
ipating in any transaction, and shall not constitute a solicitation under any jurisdiction
or to any person, if such solicitation under such jurisdiction or to such person would
be unlawful. 2020 JPMorgan Chase & Co. All rights reserved.
Y. Song—Work done in part while at J.P. Morgan AI Research. Supported in part by
the NSF award 1916939, DARPA SIEVE program, a gift from Ripple, a DoE NETL
award, a JP Morgan Faculty Fellowship, a PNC center for financial services innovation
award, and a Cylab seed funding award.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 812–841, 2021.
https://doi.org/10.1007/978-3-030-77886-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_28

Constant-Overhead Unconditionally Secure Multiparty Computation 813

Given that point-to-point secure channels are established across the parties,
any function can be computed with unconditional (perfect) security, against a
semi-honest adversary if n ≥ 2t+1 and against a malicious adversary if n ≥ 3t+1
[BOGW88,CCD88]. If we accept small error probability, n ≥ 2t + 1 is sufficient
to get malicious security [RBO89,Bea89].

The methods used in unconditional secure protocols tend to be computation-
ally much more efficient than the cryptographic machinery required for compu-
tational security. So unconditionally secure protocols are very attractive from a
computational point of view, but they seem to require a lot of interaction. In
fact, such protocols require communication complexity proportional to the size
of the (arithmetic) circuit computing the function. In this work we focus on the
communication complexity per multiplication of unconditional MPC protocols
in the honest majority setting.

Known unconditional secure MPC protocols represent the inputs as ele-
ments of a finite field Fq and represent the function as an arithmetic circuit
over that finite field. Moreover, protocols that are efficient in the circuit size of
the evaluated function process the circuit gate-by-gate using Shamir secret shar-
ing [Sha79]. This approach usually allows non-interactive processing of addition
gates but requires communication for every multiplication gate. However, secret-
sharing-based protocols require that the size of the underlying finite field is larger
than the number of parties, i.e., q > n. The work of [BTH08] based on hyper-
invertible matrices requires the underlying finite field to be q ≥ 2n.1 Other types
of protocols with unconditional online phase based on message authentication
codes, such as the SPDZ-based protocol [DPSZ12], require the size of the under-
lying finite field to be large, i.e., q > 2κ, where κ is the security parameter. This
is based on the fact that the cheating probability of the adversary needs to be
inverse proportional to the size of the field.

In this paper, we ask a very natural question for unconditionally secure pro-
tocols which, to the best of our knowledge, has not been studied in detail before:

Is it possible to construct unconditional MPC protocols for t < n/2 for com-
puting an arithmetic circuit over a small field Fq (such as q = 2) with amortized
communication complexity O(n) field elements (bits) per gate?

Note that the standard solution of applying the existing protocols to functions
which are already represented as binary circuits requires to lift the circuit to a
large enough extension field. That said, in such a scenario the communication
complexity incurs a multiplicative overhead of log n.

Recently, Cascudo, et al. [CCXY18] revisited the amortized complexity of
unconditional MPC. At a high level, the authors leverage the large extension
field to evaluate more than one instance of the same binary circuit in parallel. In
particular, the authors compile an MPC protocol for a circuit over an extension

1 In [CCXY18], Cascudo, et al. show that the requirement q ≥ 2n of using hyper-
invertible matrices can be relaxed to any field size. However, q > n is still necessary
to use Shamir secret sharing in [BTH08].

814 A. Polychroniadou and Y. Song

field to a parallel MPC protocol of the same circuit but with inputs defined over
its base field. That said, their protocol can evaluate O(log n) copies of the same
circuit in the binary field in parallel and achieve communication complexity of
O(Cn) bits where C is the size of the circuit. However, such an overhead cannot
be achieved for a single copy of the circuit. The works of [DZ13,CG20] also
allow efficient parallel computation of several evaluations of the same binary
circuits with a special focus on the dishonest majority. Note that these works
are based on packed secret sharing for SIMD circuits, however this induces an
extra overhead of log C in the circuit size when using for a single binary circuit.

Our Results. We answer the above question in the affirmative, obtaining an
unconditional MPC protocol in the honest majority setting for calculations over
F2. Informally, we prove the following:

Theorem 1 (informal). There exists an unconditional MPC protocol for n
parties secure against t < n/2 corruptions in the presence of a malicious adver-
sary evaluating a single boolean circuit with an amortized communication com-
plexity of O(n) bits per gate.

We formally state our results and communication overhead in Theorem 5. To
establish our result, we propose an online phase based on additive sharings where
we are able to authenticate the shares with O(Cn) communication overhead as
opposed to prior works which achieve an overhead of O(Cnκ) for a single boolean
circuit, where κ is the security parameter.

We are aware that the works of Hazay et al. [HVW20] and Boyle
et al. [BGIN20] (building on Boneh et al. [BBCG+19]) provide general compilers
from semi-honest security to malicious security in the honest-majority setting,
with at most a constant communication overhead. We leave the possibility of an
alternative approach to achieve malicious security by applying these compilers to
a semi-honest protocol which communicates O(n) field elements per gate, such
as our semi-honest protocol, to future work.

2 Technical Overview

In the following, we will use n to denote the number of parties and t to denote
the number of corrupted parties. In the setting of the honest majority, we have
n = 2t + 1.

Our construction will utilize two kinds of secret sharing schemes:

– The standard Shamir secret sharing scheme [Sha79]: We will use [x]t to denote
a degree-t Shamir sharing, or a (t+1)-out-of-n Shamir sharing. It requires at
least t + 1 shares to reconstruct the secret and any t shares do not leak any
information about the secret.

– An additive sharing among the first t + 1 parties: We will use 〈x〉 to denote
an additive sharing, which satisfies that the summation of the shares held by
the first t+1 parties is the secret x, and the shares of the rest of parties are 0.

Constant-Overhead Unconditionally Secure Multiparty Computation 815

In this paper, we are interested in the information-theoretic setting. Our goal
is to construct a secure-with-abort MPC protocol for a single arithmetic circuit
over the binary field F2, such that the communication complexity is O(Cn) bits
(ignoring terms which are sub-linear in the circuit size), where C is the circuit
size and n is the number of parties. The structure of our overview is as follows:

1. We first provide an overview of related works and discuss why their protocols
cannot achieve O(Cn) bits for a single binary circuit.

2. Then we introduce a high-level structure of our construction. Very informally,
our protocol uses additive sharings to achieve high efficiency in the online
phase. However, using additive sharings requires authentications of the secrets
to detect malicious behaviors. Based on the prior works, directly generating
an authentication for each sharing already requires the communication of
O(Cnκ) bits, where κ is the security parameter. The main difficulty is how
to efficiently authenticate the secrets of additive sharings.

3. Next we review the notion of reverse multiplication-friendly embeddings
(RMFE) introduced in [CCXY18], which is an important building block of
our protocol.

4. Finally, we introduce our main technique. Our idea stems from a new way to
authenticate the secret of an additive sharing. Combining with RMFEs, we
can authenticate the secret of a single additive sharing with the communi-
cation of O(n) bits. Relying on this new technique, we can obtain a secure-
with-abort MPC protocol for a single binary circuit with the communication
complexity of O(Cn) bits.

How Previous Constructions Work. In the honest majority setting, the best-
known semi-honest protocol is introduced in the work of Damg̊ard and Nielsen
[DN07] in 2007 (hereafter referred to as the DN protocol). The communication
complexity of the DN protocol is O(Cnφ) bits, where φ is the size of a field
element. A beautiful line of works [GIP+14,LN17,CGH+18,NV18,GSZ20] have
shown how to compile the DN protocol to achieve security-with-abort. In partic-
ular, the recent work [GSZ20] gives the first construction where the communica-
tion complexity matches the DN protocol. At a high-level, these protocols follow
the idea of computing a degree-t Shamir sharing for each wire, and making use
of the properties of the Shamir secret sharing scheme to evaluate addition gates
and multiplication gates. However, the Shamir secret sharing scheme requires the
field size to be at least n + 1. It means that the size of a field element φ ≥ log n.
When we want to evaluate a binary circuit by using these protocols, we need to
use a large enough extension field so that the Shamir secret sharing scheme is
well-defined, which results in O(Cn log n) bits in the communication complexity.

[CCXY18] revisited the amortized complexity of information-theoretically
secure MPC. Their idea is to compile an MPC for a circuit over an extension
field to a parallel MPC of the same circuit but with inputs defined over its base
field. In this way, we can evaluate O(log n) copies of the same circuit in the
binary field at the same time and achieve O(Cn) bits per circuit. The main
technique is the notion of reverse multiplication-friendly embeddings (RMFE)

816 A. Polychroniadou and Y. Song

introduced in this work [CCXY18]. At a high-level, RMFE allows us to perform a
coordinate-wise product between two vectors of bits by multiplying two elements
in the extension field. When evaluating O(log n) copies of the same circuit in the
binary field, each multiplication is just a coordinate-wise product between the
vectors of bits associated with the input wires. Relying on RMFE, all parties
can transform the computation to one multiplication between two elements in
the extension field, which can be handled by the DN protocol. This is the first
paper which sheds light on the possibility of evaluating a binary circuit with
communication complexity of O(Cn) bits. However, it is unclear how to use this
technique to evaluate a single binary circuit.

In the setting of the dishonest majority, the well-known work SPDZ [DPSZ12]
shows that, with necessary correlated randomness prepared in the preprocess-
ing phase, we can use an information-theoretic protocol in the online phase to
achieve high efficiency. The high-level idea of the online phase protocol is to
use the notion of Beaver tuples to transform a multiplication operation to two
reconstructions. We will elaborate this technique at a later point. In the online
phase, all parties will compute an additive sharing for each wire. One benefit of
the additive secret sharing scheme is that it is well-defined in the binary field
and each party holds a single bit as its share. As a result, the communication
complexity in the online phase is just O(Cn) bits. However, unlike the honest
majority setting where the shares of honest parties can determine the secret of a
degree-t Shamir sharing, the secret of an additive sharing can be easily altered by
a corrupted party changing its own share. Therefore, a secure MAC is required
to authenticate the secret of each additive sharing. To make the MAC effective,
the MAC size should be proportional to the security parameter κ. Although it
does not necessarily affect the sharing space, e.g., the work TinyOT [NNOB12]
uses an additive sharing in the binary field with a secure MAC in the exten-
sion field, generating a secure MAC for each sharing in the preprocessing phase
brings in an overhead of κ, which results in O(Cnκ) bits in the overall communi-
cation complexity. We however note that, this protocol achieves a highly efficient
online phase, which is O(Cn) bits. Our starting idea is the online phase protocol
in [DPSZ12]. In the honest majority setting, the preprocessing phase can also
be done by an information-theoretic protocol. In fact, the idea of using Beaver
tuples has been used in several previous works [BTH08,BSFO12,CCXY18] in the
honest majority setting. We first describe a prototype protocol of using Beaver
tuples in this setting.

A Prototype Protocol of Using Beaver Tuples. This protocol follows the same
structure as the protocol in [DPSZ12], but in the honest majority setting. Recall
that we use 〈x〉 to denote an additive sharing among the first t + 1 parties. We
use MAC(x) to denote an abstract MAC for x. It satisfies that all parties can use
MAC(x) to check the correctness of x. We further require that MAC(·) is linear
homomorphic, i.e., MAC(x) +MAC(y) = MAC(x + y). Let [[x]] := (〈x〉,MAC(x)).

In the preprocessing phase, all parties prepare a batch of Beaver tuples in
the form of ([[a]], [[b]], [[c]]), where a, b are random bits and c := a · b. These tuples
will be used in the online phase to evaluate multiplication gates.

Constant-Overhead Unconditionally Secure Multiparty Computation 817

In the online phase, all parties start with holding [[x]] for each input wire.
Addition gates and multiplication gates are evaluated in a predetermined topo-
logical order.

– For an addition gate with input sharings [[x]] and [[y]], all parties can locally
compute

[[z]] := (〈z〉,MAC(z)) = (〈x〉,MAC(x)) + (〈y〉,MAC(y)) = [[x]] + [[y]].

– For a multiplication gate with input sharings [[x]] and [[y]], let ([[a]], [[b]], [[c]]) be
the first unused Beaver tuple. Note that:

z = x · y = (x + a − a) · (y + b − b)
= (x + a) · (y + b) − (x + a) · b − (y + b) · a + a · b

Therefore, if all parties know x+ a and y + b, [[z]] can be locally computed by

[[z]] := (x + a) · (y + b) − (x + a) · [[b]] − (y + b) · [[a]] + [[c]].

The task of computing [[z]] becomes to reconstruct [[x]]+ [[a]] and [[y]]+ [[b]]. We
will use 〈x + a〉 and 〈y + b〉 to do the reconstructions. All parties send their
shares of 〈x + a〉, 〈y + b〉 to the first party. Then, the first party reconstructs
the x + a, y + b, and sends the result back to other parties.

To check the correctness of the computation, it is sufficient to verify the recon-
structions. For each x+a, all parties use [[x]], [[a]] to compute MAC(x+a), which
can be used to verify the reconstruction.

Note that we only need to communicate O(n) bits per multiplication gates.
Therefore, the communication complexity is O(Cn) bits in the online phase. The
main bottleneck of this approach is how to generate Beaver tuples efficiently. Our
protocol relies on the notion of reverse multiplication-friendly embeddings and
a novel MAC to achieve high efficiency in generating Beaver tuples.

Review of the Reverse Multiplication-Friendly Embeddings [CCXY18]. We note
that a Beaver tuple can be prepared by the following two steps: (1) prepare two
random sharings [[a]], [[b]], and (2) compute [[c]] such that c := a · b. Note that a, b
are random bits. It naturally connects to the idea of RMFE, which allows us
to perform a coordinate-wise product between two vector of bits by multiplying
two elements in the extension field. We first give a quick review of this notion.

Let F
k
2 denote a vector space of F2 of dimension k, and F2m denote the

extension field of F2 of degree m. A reverse multiplication-friendly embedding
is a pair of F2-linear maps (φ, ψ), where φ : Fk

2 → F2m and ψ : F2m → F
k
2 , such

that for all x,y ∈ F
k
2 ,

x ∗ y = ψ(φ(x) · φ(y)),

where ∗ denotes the coordinate-wise product. In [CCXY18], it has been shown
that there exists a family of RMFEs such that m = Θ(k).

In [CCXY18], recall that k = O(log n) copies of the same circuit are evaluated
together. For each wire, there is a vector of k bits associated with this wire, where

818 A. Polychroniadou and Y. Song

the i-th bit is the wire value of the i-th copy of the circuit. Thus, an addition gate
corresponds to a coordinate-wise addition, and a multiplication gate corresponds
to a coordinate-wise product. In the construction of [CCXY18], for each wire,
the vector x associated with this wire is encoded to φ(x) ∈ F2m . All parties hold
a degree-t Shamir sharing [φ(x)]t. Since φ(·) is an F2-linear map, addition gates
can be computed locally. The main task is to evaluate multiplication gates:

– For a multiplication gate with input sharings [φ(x)]t, [φ(y)]t, the goal is to
compute a degree-t Shamir sharing [φ(z)]t such that z = x ∗ y.

– Relying on the DN protocol [DN07], all parties can compute a degree-t Shamir
sharing [w]t := [φ(x) · φ(y)]t. By the property of the RMFE, we have z =
ψ(w). Therefore, all parties need to transform [w]t to [φ(ψ(w))]t.

– In [CCXY18], this is done by using a pair of random sharings ([r]t, [φ(ψ(r))]t).
All parties reconstruct [w + r]t and compute [φ(ψ(w))]t := φ(ψ(w + r)) −
[φ(ψ(r))]t. The correctness follows from the fact that φ and ψ are F2-linear
maps.

– Finally, all parties set [φ(z)]t := [φ(ψ(w))]t.

As analyzed in [CCXY18], the communication complexity per multiplication gate
is O(m · n) bits. Since each multiplication gate corresponds to k multiplications
in the binary field, the amortized communication complexity per multiplication
is O(m/k · n) = O(n) bits.

Following the idea in [CCXY18], we can prepare a random tuple of sharings
([φ(a)]t, [φ(b)]t, [φ(c)]t), where a, b are random vectors in F

k
2 , and c = a ∗ b. In

particular, the communication complexity per tuple is O(m · n) bits. Suppose
that a = (a1, a2, . . . , ak), b = (b1, b2, . . . , bk), and c = (c1, c2, . . . , ck). If we can
transform a random tuple ([φ(a)]t, [φ(b)]t, [φ(c)]t) to k Beaver tuples:

([[a1]], [[b1]], [[c1]]), ([[a2]], [[b2]], [[c2]]), . . . , ([[ak]], [[bk]], [[ck]]),

then the communication complexity per Beaver tuple is O(m/k · n) = O(n)
bits! More concretely, our goal is to efficiently separate a degree-t Shamir
sharing [φ(a)]t to k sharings [[a1]], [[a2]], . . . , [[ak]]. For all i ∈ [k], recall that
[[ai]] = (〈ai〉,MAC(ai)). Therefore, we need to efficiently obtain an additive shar-
ing 〈ai〉 and a secure MAC(ai) from a degree-t Shamir sharing [φ(a)]t.

Establish a Connection between [φ(x)]t and {[[xi]]}k
i=1. We first consider the fol-

lowing question: Given φ(x), how can we obtain the i-th bit xi from φ(x)? Let
e(i) be a vector in F

k
2 such that all entries are 0 except that the i-th entry is 1.

Then e(i) ∗ x is a vector in F
k
2 such that all entries are 0 except that the i-th

entry is xi. According to the definition of RMFEs, we have

e(i) ∗ x = ψ(φ(e(i)) · φ(x)).

To obtain xi from e(i)∗x, we can compute the summation of all entries in e(i)∗x.
We define an F2-linear map val(·) : F2m → F2 as follows:

Constant-Overhead Unconditionally Secure Multiparty Computation 819

– For an input element y ∈ F2m , suppose ψ(y) = (y1, y2, . . . , yk).
– val(y) is defined to be

∑k
i=1 yi.

Therefore, we have
xi := val(φ(e(i)) · φ(x)).

Note that φ(e(i)) is an element in F2m and is known to all parties. Therefore,
all parties can locally compute [y(i)]t := φ(e(i)) · [φ(x)]t. In particular, we have
val(y(i)) = xi. In the honest majority setting, a degree-t Shamir sharing satisfies
that the secret is determined by the shares of honest parties. In particular,
corrupted parties cannot alter the secret of this sharing. Therefore, [y(i)]t can be
seen as a secure MAC for xi. Thus for an element x ∈ F2, we set MAC(x) := [y]t,
where y ∈ F2m satisfies that val(y) = x. Note that [y]t can be used to check the
correctness of x, and for all x, x′ ∈ F2,

MAC(x) + MAC(x′) = [y]t + [y′]t = [y + y′]t = MAC(x + x′),

where the last step follows from the fact that val(y + y′) = val(y) + val(y′).
Recall that [[xi]] = (〈xi〉,MAC(xi)). So far, we have obtained MAC(xi) from

[φ(x)]t. Therefore, the only task is to obtain 〈xi〉. Let 〈x〉 := (〈x1〉, 〈x2〉, . . . , 〈xk〉)
denote a vector of additive sharings of x ∈ F

k
2 . For each party, its share of 〈x〉 is

a vector in F
k
2 . For the last t parties, they take the all-0 vector as their shares.

We note that for a degree-t Shamir sharing [φ(x)]t, the secret φ(x) can be
written as a linear combination of the shares of the first t+1 parties. Therefore,
the first t + 1 parties can locally transform their shares of [φ(x)]t to an additive
sharing of φ(x), denoted by 〈φ(x)〉. Let ui denote the i-th share of 〈φ(x)〉. Then
we have φ(x) =

∑t+1
i=1 ui. In Sect. 3.3, we give an explicit construction of an F2-

linear map φ̃−1 : F2m → F
k
2 which satisfies that for all x ∈ F

k
2 , φ̃−1(φ(x)) = x.

Utilizing φ̃−1, we have

t+1∑

i=1

φ̃−1(ui) = φ̃−1(
t+1∑

i=1

ui) = φ̃−1(φ(x)) = x.

Thus, the i-th party takes φ̃−1(ui) as its share of 〈x〉.
In summary, we show that given [φ(x)]t, all parties can locally obtain

{[[xi]]}k
i=1. Together with RMFEs, the communication complexity per Beaver

tuple is O(n) bits. Relying on the prototype protocol of using Beaver tuples, we
obtain a secure-with-abort MPC protocol for a single binary circuit which has
communication complexity O(Cn) bits. We note that these k sharings {[[xi]]}k

i=1

are correlated since they are computed from a single degree-t Shamir sharing
[φ(x)]t. Our protocol will make use of additional randomness as mask to protect
the secrecy of these sharings when they are used. The preparation of this addi-
tional randomness is done in a batch way at the beginning of the protocol and
does not affect the asymptotic communication complexity of the main protocol.
We refer the readers to Sect. 6.3 and Sect. 6.4 for the additional randomness we
need in the construction.

820 A. Polychroniadou and Y. Song

An Overview of Our Main Construction. Our main protocol follows the same
structure as the prototype protocol of using Beaver tuples. Recall that for x ∈ F2,
we use 〈x〉 to denote an additive sharing of x among the first t+1 parties, and the
shares of the rest of parties are 0. Let (φ, ψ) be a RMFE, where φ : Fk

2 → F2m

and ψ : F2m → F
k
2 are F2-linear maps. Recall that val(·) : Fqm → Fq is an

Fq-linear map, defined by val(y) =
∑k

i=1 yi, where (y1, y2, . . . , yk) = ψ(y). For
x ∈ F2, let [[x]] := (〈x〉, [y]t), where 〈x〉 is an additive sharing among the first
t + 1 parties in F2, and [y]t is a degree-t Shamir sharing of y ∈ F2m such that
val(y) = x.

In the preprocessing phase, all parties prepare a batch of Beaver tuples in
the form of ([[a]], [[b]], [[c]]), where a, b are random bits and c := a · b. The Beaver
tuples are prepared by the following steps:

– All parties first prepare a batch of random tuples of sharings in the form
of ([φ(a)]t, [φ(b)]t, [φ(c)]t), where a, b are random vectors in F

k
2 and c =

a ∗ b. In our protocol, preparing such a random tuple of sharings require the
communication of O(m · n) bits.

– For each tuple of sharings ([φ(a)]t, [φ(b)]t, [φ(c)]t), all parties locally trans-
form it to k Beaver tuples in the form of ([[a]], [[b]], [[c]]).

Note that the amortized cost per Beaver tuple is O(n) bits.
In the online phase, all parties start with holding [[x]] for each input wire.

Addition gates and multiplication gates are evaluated in a predetermined topo-
logical order.

– For an addition gate with input sharings [[x]] and [[y]], all parties locally com-
pute [[z]] := [[x]] + [[y]].

– For a multiplication gate with input sharings [[x]] and [[y]], let ([[a]], [[b]], [[c]])
be the first unused Beaver tuple. All parties use the additive sharings 〈x +
a〉, 〈y + b〉 to reconstruct x + a and y + b. Then all parties compute

[[z]] := (x + a) · (y + b) − (x + a) · [[b]] − (y + b) · [[a]] + [[c]].

All parties also locally compute [[x + a]] := [[x]] + [[a]] and [[y + b]] := [[y]] + [[b]].
These sharings will be used to verify the reconstructions at the end of the
protocol.

After evaluating the whole circuit, all parties together verify the value-sharing
pairs in the form of (x + a, [[x + a]]), where x + a is the reconstruction of [[x + a]].
In Sect. 7.3, we show that all the value-sharing pairs can be verified together
with sub-linear communication complexity in the number of pairs.

Note that addition gates can be computed locally, and the communication
complexity per multiplication gate is O(n) bits. Therefore, the communication
complexity of our protocol is O(Cn) bits.

Other Building Blocks and Security Issues. We note that the work [CCXY18]
only focuses on the setting of 1/3 corruption. These protocols cannot be
used directly in the honest majority setting. Some techniques even fail when

Constant-Overhead Unconditionally Secure Multiparty Computation 821

the corruption threshold increases. In this work, we rebuild the protocols
in [CCXY18] to fit the honest majority setting by combining known techniques
in [BSFO12,GSZ20]. Concretely,

– We follow the definition of a general linear secret sharing scheme (GLSSS)
in [CCXY18]. Following the idea in [BSFO12] of preparing random degree-
t Shamir sharings, we introduce a protocol to allow all parties efficiently
prepare random sharings of a given GLSSS. We use this protocol to prepare
various kinds of random sharings in our main construction. Let Frand denote
the functionality of this protocol.

– To prepare Beaver tuples, we first prepare a random tuple of sharings

([φ(a)]t, [φ(b)]t, [φ(c)]t),

where a, b are random vectors in F
k
2 and c = a ∗ b. This random tuple of

sharings is prepared as follows:
• The first step is to prepare random sharings [φ(a)]t, [φ(b)]t. We show that

they can be prepared by using Frand.
• Then all parties compute [φ(a) · φ(b)]t. We rely on the multiplication

protocol and the efficient multiplication verification in [GSZ20].
• Finally, all parties need to transform a sharing [w]t to [φ(ψ(w))]t, where

w = φ(a) ·φ(b). We model this process in the functionality Fre-encode. We
extend the idea in [CCXY18] from the 1/3 corruption setting to the honest
majority setting, and construct an efficient protocol for the functionality
Fre-encode.

More details can be found in Sect. 4 and Sect. 6.
We note that the idea of using Beaver tuples to construct an MPC pro-

tocol in the honest majority setting has been used in several previous works
[BTH08,BSFO12,CCXY18]. These protocols all have an additional term O(D ·
n2) in the communication complexity, where D is the circuit depth. It is due
to a verification of the computation in each layer. Recall that relying on Beaver
tuples, an multiplication can be transformed to two reconstructions. In [GLS19],
Goyal, et al. show that, without verification of the computation in each layer,
corrupted parties can learn extra information when doing reconstructions for
multiplications in the next layer. It turns out that our protocol has a similar
security issue.

To avoid the verification of the computation per layer, Goyal, et al. [GLS19]
rely on an n-out-of-n secret sharing to protect the shares of honest parties. In
this way, even without verifications, the share of each honest party is uniformly
distributed. It allows Goyal, et al. to only check the correctness at the end of
the protocol. We follows the idea in [GLS19]. Concretely, we want to protect the
shares of honest parties when using 〈x+a〉, 〈y+b〉 to do reconstructions. To this
end, we add a uniformly random additive sharing of 0 for each reconstruction.
In this way, each honest party simply sends a uniformly random element to the
first party. It allows us to delay the verification to the end of the protocol. More
details can be found in Sect. 7.

822 A. Polychroniadou and Y. Song

3 Preliminaries

3.1 The Model

In this work, we focus on functions that can be represented as arithmetic circuits
over a finite field Fq of size q with input, addition, multiplication, and output
gates. We use κ to denote the security parameter and C to denote the size of
the circuit. In the following, we will use an extension field of Fq denoted by Fqm

(of size qm). We always assume that |Fqm | = qm ≥ 2κ.
For the secure multi-party computation, we use the client-server model. In

the client-server model, clients provide inputs to the functionality and receive
outputs, and servers can participate in the computation but do not have inputs
or get outputs. Each party may have different roles in the computation. Note
that, if every party plays a single client and a single server, this corresponds
to a protocol in the standard MPC model. Let c denote the number of clients
and n = 2t + 1 denote the number of servers. For all clients and servers, we
assume that every two of them are connected via a secure (private and authentic)
synchronous channel so that they can directly send messages to each other.
The communication complexity is measured by the number of bits via private
channels.

An adversary A can corrupt at most c clients and t servers, provide inputs to
corrupted clients, and receive all messages sent to corrupted clients and servers.
Corrupted clients and servers can deviate from the protocol arbitrarily. We refer
the readers to Sect. 3.1 in the full version of this paper [PS20] for the security
definition.

Benefits of the Client-Server Model. In our construction, the clients only
participate in the input phase and the output phase. The main computation is
conducted by the servers. For simplicity, we use {P1, . . . , Pn} to denote the n
servers, and refer to the servers as parties. Let C denote the set of all corrupted
parties and H denote the set of all honest parties. One benefit of the client-server
model is the following theorem shown in [GIP+14].

Theorem 2 (Lemma 5.2 [GIP+14]). Let Π be a protocol computing a c-client
circuit C using n = 2t + 1 parties. Then, if Π is secure against any adversary
controlling exactly t parties, then Π is secure against any adversary controlling
at most t parties.

This theorem allows us to only consider the case where the adversary controls
exactly t parties. Therefore in the following, we assume that there are exactly t
corrupted parties.

3.2 Secret Sharing Scheme

Shamir Secret Sharing Scheme. In this work, we will use the standard Shamir
Secret Sharing Scheme [Sha79]. Let n be the number of parties and G be a finite
field of size |G| ≥ n + 1. Let α1, . . . , αn be n distinct non-zero elements in G.

Constant-Overhead Unconditionally Secure Multiparty Computation 823

A degree-d Shamir sharing of x ∈ G is a vector (x1, . . . , xn) which satisfies
that, there exists a polynomial f(·) ∈ G[X] of degree at most d such that f(0) =
x and f(αi) = xi for i ∈ {1, . . . , n}. Each party Pi holds a share xi and the
whole sharing is denoted by [x]d.

We recall the properties of a degree-d Shamir sharing: (1) It requires d + 1
shares to reconstruct the secret x, and (2) any d shares do not leak any infor-
mation about x.

Abstract General Linear Secret Sharing Schemes. We adopt the notion of
an abstract definition of a general linear secret sharing scheme (GLSSS)
in [CCXY18]. The following notations are borrowed from [CCXY18].

For non-empty sets U and I, UI denotes the indexed Cartesian product∏
i∈I U . For a non-empty set A ⊂ I, the natural projection πA maps a tuple

u = (ui)i∈I ∈ UI to the tuple (ui)i∈A ∈ UA. Let K be a field.

Definition 1 (Abstract K-GLSSS [CCXY18]). A general K-linear secret
sharing scheme Σ consists of the following data:

– A set of parties I = {1, . . . , n}
– A finite-dimensional K-vector space Z, the secret space.
– A finite-dimensional K-vector space U , the share space.
– A K-linear subspace C ⊂ UI , where the latter is considered a K-vector space

in the usual way (i.e., direct sum).
– A surjective K-linear map Φ : C → Z, its defining map.

Definition 2 ([CCXY18]). Suppose A ⊂ I is nonempty. Then A is a privacy
set if the K-linear map

(Φ, πA) : C −→ Z × πA(C), x 	→ (Φ(x), πA(x))

is surjective. Finally, A is a reconstruction set if, for all x ∈ C, it holds that

πA(x) = 0 ⇒ Φ(x) = 0.

A Tensoring-up Lemma. We follow the definition of interleaved GLSSS: the
m-fold interleaved GLSSS Σ×m is an n-party scheme which corresponds to m
Σ-sharings. We have the following proposition from [CCXY18]:

Proposition 1 ([CCXY18]). Let L be a degree-m extension field of K and let Σ
be a K-GLSSS. Then the m-fold interleaved K-GLSSS Σ×m is naturally viewed
as an L-GLSSS, compatible with its K-linearity.

Let [x] denote a sharing in Σ. This proposition allows us to define λ : Σ×m →
Σ×m for every λ ∈ L such that for all [x] = ([x1], . . . , [xm]) ∈ Σ×m:

– for all λ ∈ K, λ · ([x1], . . . , [xm]) = (λ · [x1], . . . , λ · [xm]);
– for all λ1, λ2 ∈ L, λ1 · [x] + λ2 · [x] = (λ1 + λ2) · [x];
– for all λ1, λ2 ∈ L, λ1 · (λ2 · [x]) = (λ1 · λ2) · [x].

824 A. Polychroniadou and Y. Song

An Example of a GLSSS and Using the Tensoring-up Lemma. We will use the
standard Shamir secret sharing scheme as an example of a GLSSS and show
how to use the tensoring-up lemma. For a field K (of size |K| ≥ n + 1), we may
define a secret sharing Σ which takes an input x ∈ K and outputs [x]t, i.e.,
a degree-t Shamir sharing. The secret space and the share space of Σ are K.
According to the Lagrange interpolation, the secret x can be written as a K-
linear combination of all the shares. Therefore, the defining map of Σ is K-linear.
Thus Σ is a K-GLSSS.

A sharing [x]t = ([x1]t, [x2]t, . . . , [xm]t) ∈ Σ×m is a vector of m sharings
in Σ. Let L be a degree-m extension field of K. The tensoring-up lemma says
that Σ×m is a L-GLSSS. Therefore we can perform L-linear operations to the
sharings in Σ×m.

3.3 Reverse Multiplication Friendly Embeddings

Definition 3 ([CCXY18]). Let k,m be integers and Fq be a finite field. A pair
(φ, ψ) is called an (k,m)q-reverse multiplication friendly embedding (RMFE) if
φ : Fk

q → Fqm and ψ : Fqm → F
k
q are two Fq-linear maps satisfying

x ∗ y = ψ(φ(x) · φ(y))

for all x,y ∈ F
k
q , where ∗ denotes coordinate-wise product.

Note that when picking 1 = (1, 1, . . . , 1), we have x ∗ 1 = x and therefore,
x = ψ(φ(x) · φ(1)). It implies that φ is injective. Therefore, there exists φ−1 :
Im(φ) → F

k
q such that for all x ∈ F

k
q , it satisfies that

φ−1(φ(x)) = x.

It is easy to verify that φ−1 is also Fq-linear.
Now we show that there exists an Fq-linear map φ̃−1 : Fqm → F

k
q such that

for all x ∈ F
k
q ,

φ̃−1(φ(x)) = x.

Lemma 1. Let k,m be integers and Fq be a finite field. Suppose (φ, ψ) is an
(k,m)q-reverse multiplication friendly embedding. Then there exists an Fq-linear
map φ̃−1 : Fqm → F

k
q such that for all x ∈ F

k
q ,

φ̃−1(φ(x)) = x.

Proof. Let 1 = (1, 1, . . . , 1) ∈ F
k
q . We explicitly construct φ̃−1 as follows:

φ̃−1 : Fqm −→ F
k
q , x 	→ ψ(φ(1) · x)

It is clear that φ̃−1 is Fq-linear. For all x ∈ F
k
q , by the definition of RMFE, we

have
φ̃−1(φ(x)) = ψ(φ(1) · φ(x)) = 1 ∗ x = x.

��

Constant-Overhead Unconditionally Secure Multiparty Computation 825

In [CCXY18], Cascudo et al. show that there exist constant rate RMFEs,
which is summarized in Theorem 3.

Theorem 3. For every finite prime power q, there exists a family of constant
rate (k,m)q-RMFE where m = Θ(k).

3.4 Useful Building Blocks

In this part, we will introduce three functionalities which will be used in our
main construction.

– The first functionality Fcoin allows all parties to generate a random element.
An instantiation of this functionality can be found in [GSZ20] (Protocol 6 in
Sect. 3.5 of [GS20]), which has communication complexity O(n2) elements in
Fqm (i.e., O(n2 · m) elements in Fq).

– The second functionality Fmult allows all parties to evaluate a multiplication
with inputs being shared by degree-t Shamir sharings. While Fmult protects
the secrets of the input sharings, it allows the adversary to add an arbitrary
fixed value to the multiplication result. This functionality can be instanti-
ated by the multiplication protocol in the semi-honest DN protocol [DN07].
In [GSZ20], Goyal et al. also provide a detailed proof of the security of the
multiplication protocol in [DN07] (Lemma 4 in Sect. 4.1 of [GS20]). The amor-
tized communication complexity per multiplication is O(n) field elements per
party.

– The third functionality FmultVerify allows all parties to verify the correctness
of multiplications computed by Fmult. An instantiation of FmultVerify can be
found in [GSZ20] (Protocol 17 in Sect. 5.4 of [GS20]), which has communi-
cation complexity O(n2 · log N · κ) bits, where n is the number of parties
and κ is the security parameter. Note that the amortized communication per
multiplication tuple is sub-linear.

We refer the readers to Sect. 3.4 in the full version of this paper [PS20] for
the descriptions of these functionalities.

4 Preparing Random Sharings for Fq-GLSSS

In this section, we present the protocol for preparing random sharings for a given
general Fq-linear secret sharing scheme, denoted by Σ. Let [x] denote a sharing
in Σ of secret x. For a set A ⊂ I, recall that πA([x]) refers to the shares of [x]
held by parties in A. We assume that Σ satisfies the following property:

– Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, let

Σ(A, (ai)i∈A) := {[x]| [x] ∈ Σ and πA([x]) = (ai)i∈A}.

Then, there is an efficient algorithm which outputs that either
Σ(A, (ai)i∈A) = ∅, or a random sharing [x] in Σ(A, (ai)i∈A).

826 A. Polychroniadou and Y. Song

The description of the functionality Frand appears in Functionality 1. In
short, Frand allows the adversary to specify the shares held by corrupted parties.
Based on these shares, Frand generates a random sharing in Σ and distributes
the shares to honest parties. Note that, when the set of corrupted parties is a
privacy set, the secret is independent of the shares chosen by the adversary.

Functionality 1: Frand

1. Frand receives from the adversary the set of corrupted parties, denoted by C,
and a set of shares (si)i∈C such that Σ(C, (si)i∈C) �= ∅. Then Frand randomly
samples [r] ∈ Σ(C, (si)i∈C).

2. Frand asks the adversary whether it should continue or not.
– If the adversary replies abort, Frand sends abort to honest parites.
– If the adversary replies continue, for each honest party Pi, Frand sends

the i-th share of [r] to Pi.

We will follow the idea in [BSFO12] of preparing random degree-t Shamir
sharings to prepare random sharings in Σ. At a high-level, each party first deals
a batch of random sharings in Σ. For each party, all parties together verify that
the sharings dealt by this party have the correct form. Then all parties locally
convert the sharings dealt by each party to random sharings such that the secrets
are not known to any single party.

We refer the readers to Sect. 4 in the full version of this paper [PS20] for
the construction for Frand. Suppose the share size of a sharing in Σ is sh field
elements in Fq. The communication complexity of preparing N random sharings
in Σ is O(N · n · sh + n3 · m) elements in Fq.

5 Hidden Additive Secret Sharing

Let (φ, ψ) be an (k,m)q-RMFE. Recall that n denotes the number of parties and
φ : Fk

q → Fqm is an Fq-linear map. Recall that |Fqm | = qm ≥ 2κ ≥ n + 1. Thus,
the Shamir secret sharing scheme is well-defined in Fqm . In our construction, we
will use φ to encode a vector x = (x(1), . . . , x(k)) ∈ F

k
q . All parties will hold a

degree-t Shamir sharing of φ(x), denoted by [φ(x)]t.

Defining Additive Sharings and Couple Sharings. For x ∈ Fq, we use 〈x〉 to
denote an additive sharing of x among the first t + 1 parties in Fq. Specifically,
〈x〉 = (x1, . . . , xn) where the party Pi holds the share xi ∈ Fq such that x =
∑t+1

i=1 xi and the last t shares xt+2, . . . , xn are all 0.
Recall that ψ : Fqm → F

k
q is an Fq-linear map. For all y ∈ Fqm , if ψ(y) =

(y1, y2, . . . , yk), we define val(y) :=
∑k

i=1 yi. Note that val(·) is an Fq-linear map
from Fqm to Fq. We say a pair of sharings (〈x〉, [y]t) is a pair of couple sharings
if

Constant-Overhead Unconditionally Secure Multiparty Computation 827

– 〈x〉 is an additive sharing of x ∈ Fq;
– [y]t is a degree-t Shamir sharing of y ∈ Fqm ;
– val(y) = x.

In the following, we will use [[x]] := (〈x〉, [y]t) to denote a pair of couple sharings
of x ∈ Fq. Note that for the additive sharing 〈x〉, a corrupted party in the first
t + 1 parties can easily change the secret by changing its own share. However,
the secret of [y]t is determined by the shares of honest parties and cannot be
altered by corrupted parties. Therefore, [y]t can be seen as a robust version of
the sharing 〈x〉.

Properties of Couple Sharings. We note that couple sharings are Fq-linear. Con-
cretely, for all couple sharings [[x]] = (〈x〉, [y]t) and [[x′]] = (〈x′〉, [y′]t), and for all
α, β ∈ Fq, the linear combination

α · [[x]] + β · [[x′]] := (α · 〈x〉 + β · 〈x′〉, α · [y]t + β · [y′]t)

is still a pair of couple sharings. This property follows from the fact that val(·)
is an Fq-linear map.

We can also define the addition operation between a pair of couple sharings
[[x]] and a field element x′ in Fq. This is done by transforming x′ to a pair of
couple sharings of x′. For 〈x′〉, we set the share of the first party to be x′, and
the shares of the rest of parties to be 0. For the degree-t Shamir sharing, we
first need to find y′ ∈ Fqm such that val(y′) = x′. This is done by choosing two
vectors a, b ∈ F

k
q such that:

– For a, the first entry is 1 and the rest of entries are 0.
– For b, the first entry is x′ and the rest of entries are 0.

By the property of RMFE, ψ(φ(a) · φ(b)) = a ∗ b. In particular, the first entry
of a ∗ b is x′ and the rest of entries are 0. Therefore y′ := φ(a) · φ(b) satisfies
that val(y′) = x′. For [y′]t, we set the share of each party to be y′. Finally, the
addition operation between [[x]] and x′ ∈ Fq is defined by

[[x]] + x′ := (〈x〉, [y]t) + (〈x′〉, [y′]t).

Generating Couple Sharings from [φ(x)]t. In this part, we show how to non-
interactively obtain k pairs of couple sharings [[x(1)]], [[x(2)]], . . . , [[x(k)]] from a
degree-t Shamir sharing [φ(x)]t, where x = (x(1), x(2), . . . , x(k)) ∈ F

k
q . It allows

us to prepare k pairs of random couple sharings with the cost of preparing one
random sharing [φ(x)]t.

We first show how to obtain [y(i)]t such that val(y(i)) = x(i) for all i ∈ [k].
Let e(i) be a vector in F

k
q such that all entries are 0 except that the i-th entry

is 1. By the property of RMFE, we have

ψ(φ(e(i)) · φ(x)) = e(i) ∗ x.

828 A. Polychroniadou and Y. Song

For e(i) ∗ x, all entries are 0 except that the i-th entry is x(i). Therefore by the
definition of val(·), we have val(φ(e(i)) ·φ(x)) = x(i). To obtain [y(i)]t, all parties
compute

[y(i)]t := φ(e(i)) · [φ(x)]t.

Now we show how to obtain 〈x(i)〉 from [φ(x)]. Let 〈x〉 := (〈x(1)〉, . . . , 〈x(k)〉)
denote a vector of additive sharings of x ∈ F

k
q . For each party, its share of 〈x〉 is

a vector in F
k
q . For the last t parties, they take the all-0 vector as their shares.

Recall that the degree-t Shamir sharing [φ(x)]t corresponds to a degree-t
polynomial f(·) ∈ Fqm [X] such that f(αi) is the share of the i-th party Pi and
f(0) = φ(x), where α1, . . . , αn are distinct non-zero elements in Fqm . In partic-
ular, relying on Lagrange interpolation, f(0) can be written as a linear combi-
nation of the first t+1 shares. For i ∈ {1, . . . , t+1}, let ci =

∏
j �=i,j∈[t+1]

αj

αj−αi
.

We have

f(0) =
t+1∑

i=1

cif(αi).

Therefore, the Shamir sharing [φ(x)]t can be locally converted to an additive
sharing of φ(x) among the first t + 1 parties by letting Pi take cif(αi) as its
share. For each i ∈ {1, . . . , t+1}, Pi locally applies φ̃−1(cif(αi)), which outputs
a vector in F

k
q . It is sufficient to show that these t + 1 shares correspond to an

additive sharing of x. Note that

t+1∑

i=1

φ̃−1(cif(αi)) = φ̃−1(
t+1∑

i=1

cif(αi)) = φ̃−1(f(0)) = x.

The description of Separate appears in Protocol 2.

Protocol 2: Separate([φ(x)]t)

1. For all i ∈ [k], let e(i) be a vector in F
k
q such that all entries are 0 except that

the i-th entry is 1. All parties locally compute [y(i)]t := φ(e(i)) · [φ(x)]t.
2. Let α1, . . . , αn be n distinct elements in Fqm defined in the Shamir secret

sharing scheme.
– For each i ∈ {1, . . . , t + 1}, Pi locally computes ci =

∏
j �=i,j∈[t+1]

αj

αj−αi
.

Let f(αi) denote the i-th share of [φ(x)]t. Pi locally computes
φ̃−1(cif(αi)) and regards the result as the i-th share of 〈x〉 =
(〈x(1)〉, . . . , 〈x(k)〉).

– For each i ∈ {t + 2, . . . , n}, Pi takes the all-0 vector as its share of 〈x〉.
3. For all i ∈ [k], all parties set [[x(i)]] := (〈x(i)〉, [y(i)]t). All parties take the

following k pairs of couple sharings as output:

[[x(1)]], [[x(2)]], . . . , [[x(k)]]

Constant-Overhead Unconditionally Secure Multiparty Computation 829

6 Building Blocks for Preprocessing Phase

In this section, we will introduce 4 functionalities which are used to prepare
necessary correlated-randomness for the computation.

– The first functionality Frandom allows all parties to prepare random sharings
in the form of [φ(r)]t, where (φ, ψ) is a RMFE, and r is a random vector in
F

k
q .

– The second functionality Ftuple allows all parties to prepare random tuple
of sharings in the form of ([φ(a)]t, [φ(b)]t, [φ(c)]t), where a, b are random
vectors in F

k
q , and c = a ∗ b. For each tuple, relying on Separate, all parties

can locally obtain k multiplication tuples in the form of ([[a]], [[b]], [[c]]), where
a, b are random elements in Fq, and c = a · b. Such a multiplication tuple is
referred to as a Beaver tuple. In the online phase, one Beaver tuple will be
consumed to compute a multiplication gate.

– Recall that we use 〈x〉 to denote an additive sharing of x ∈ Fq among the
first t + 1 parties, and the shares of the rest of parties are 0. The third
functionality Fzero allows all parties to prepare random additive sharings of
0. When evaluating a multiplication gate in the online phase, we will use
random additive sharings of 0 to protect the shares of honest parties.

– Recall that val(·) : Fqm → Fq is an Fq-linear map, defined by val(y) =
∑k

i=1 yi,
where (y1, y2, . . . , yk) = ψ(y). The last functionality Fparity allows all parties
to prepare random sharings in the form of [p]t, where val(p) = 0. These
random sharings are used at the end of the protocol to verify the computation.

6.1 Preparing Random Sharings

In this part, we introduce the functionality to let all parties prepare random
sharings in the form of [φ(r)]t. Recall that (φ, ψ) is an (k,m)q-RMFE. Here
each [φ(r)]t is a random degree-t Shamir sharing of the secret φ(r) where r is
a random vector in F

k
q . The description of Frandom appears in Functionality 3.

In Sect. 6.1 of the full version of this paper [PS20], we show how to use Frand

to instantiate Frandom. Relying on the protocol (Sect. 4 in [PS20]) for Frand, we
can generate N random sharings in the form of [φ(r)]t with communication of
O(N · n · m + n3 · m) elements in Fq.

6.2 Preparing Beaver Tuples

In this part, we show how to prepare random tuples of sharings in Fqm in the
form of ([φ(a)]t, [φ(b)]t, [φ(c)]t) where a, b are random vectors in F

k
q , and c =

a ∗ b. The description of Ftuple appears in Functionality 4. In Sect. 6.2 of the
full version of this paper [PS20], we introduce an instantiation of Ftuple. The
communication complexity of preparing N tuples of sharings in the form of
([φ(a)]t, [φ(b)]t, [φ(c)]t) is O(N · n · m + n3 · m + n2 · log N · m) elements in Fq.

In the online phase, each tuple ([φ(a)]t, [φ(b)]t, [φ(c)]t) will be separated by
Separate (Protocol 2) to k Beaver tuples

([[a(1)]], [[b(1)]], [[c(1)]]), ([[a(2)]], [[b(2)]], [[c(2)]]), . . . , ([[a(k)]], [[b(k)]], [[c(k)]]).

830 A. Polychroniadou and Y. Song

Functionality 3: Frandom

1. Frandom receives {si}i∈C from the adversary, where C is the set of corrupted
parties. Then Frandom randomly samples r ∈ F

k
q and generates a degree-t

Shamir sharing [φ(r)]t such that the share of Pi ∈ C is si.
2. Frandom asks the adversary whether it should continue or not.

– If the adversary replies abort, Frandom sends abort to honest parties.
– If the adversary replies continue, for each honest party Pi, Frandom sends

the i-th share of [φ(r)]t to Pi.

A Beaver tuple ([[a(i)]], [[b(i)]], [[c(i)]]) satisfies that a(i), b(i) are random elements
in Fq and c(i) = a(i) · b(i). A multiplication gate is then evaluated by consuming
one Beaver tuple. More details can be found in Sect. 7.2.

Functionality 4: Ftuple

1. Ftuple receives {(ui, vi, wi)}i∈C from the adversary, where C is the set of cor-
rupted parties. Then Ftuple randomly samples a, b ∈ F

k
q and computes c = a∗

b. Finally, Ftuple generates 3 degree-t Shamir sharings [φ(a)]t, [φ(b)]t, [φ(c)]t
such that the shares of Pi ∈ C are ui, vi, wi respectively.

2. Ftuple asks the adversary whether it should continue or not.
– If the adversary replies abort, Ftuple sends abort to honest parties.
– If the adversary replies continue, for each honest party Pi, Ftuple sends

the i-th shares of [φ(a)]t, [φ(b)]t, [φ(c)]t to Pi.

6.3 Preparing Zero Additive Sharings

With Beaver tuples prepared in the preprocessing phase, all parties only need
to do reconstructions in the online phase. To protect the shares held by honest
parties, for each reconstruction, we will prepare a random additive sharing of 0
among the first t + 1 parties. We summarize the functionality for zero additive
sharings in Functionality 5. In Sect. 6.3 of the full version of this paper [PS20],
we show how to use Frand to instantiate Fzero. Relying on the protocol (Sect. 4
in [PS20]) for Frand, we can generate N random sharings in the form of 〈o〉 with
communication of O(N · n + n3 · m) elements in Fq.

Constant-Overhead Unconditionally Secure Multiparty Computation 831

Functionality 5: Fzero

1. Fzero receives {si}i∈C ⋂{1,...,t+1} from the adversary, where C is the set of
corrupted parties. Then Fzero randomly samples an additive sharing 〈o〉 such
that o = 0, and for each i ∈ C ⋂{1, . . . , t + 1}, the i-th share of 〈o〉 is si.

2. Fzero asks the adversary whether it should continue or not.
– If the adversary replies abort, Fzero sends abort to honest parties.
– If the adversary replies continue, Fzero distributes the shares of 〈o〉 to

parties in H ⋂{1, . . . , t + 1}, where H is the set of honest parties.

6.4 Preparing Parity Sharings

Recall that all parties only need to do reconstructions in the online phase. At
the end of the online phase, it is sufficient to only verify the reconstructions. To
this end, we first define what we call parity elements and parity sharings.

Recall that val(·) : Fqm → Fq is an Fq-linear map, defined by val(y) =
∑k

i=1 yi, where (y1, y2, . . . , yk) = ψ(y). For an element p ∈ Fqm , we say p is a
parity element if val(p) = 0. A parity sharing is a degree-t Shamir sharing of a
parity element. At the end of the protocol, we will use uniformly random parity
sharings as masks when checking the correctness of the reconstructions. We sum-
marize the functionality for preparing random parity sharings in Functionality 6.
In Sect. 6.4 of the full version of this paper [PS20], we show how to use Frand to
instantiate Fparity. Relying on the protocol (Sect. 4 in [PS20]) for Frand, we can
generate N random parity sharings with communication of O(N ·n ·m+n3 ·m)
elements in Fq.

Functionality 6: Fparity

1. Fparity receives {ui}i∈C from the adversary, where C is the set of corrupted
parties. Then Fparity randomly samples p ∈ Fqm such that val(p) = 0. Finally,
Fparity generates a degree-t sharing [p]t such that the share of Pi ∈ C is ui.

2. Fparity asks the adversary whether it should continue or not.
– If the adversary replies abort, Fparity sends abort to honest parties.
– If the adversary replies continue, for each honest party Pi, Fparity sends

the i-th share of [p]t to Pi.

832 A. Polychroniadou and Y. Song

7 Online Phase

Let (φ, ψ) be an (k,m)q-RMFE. Recall that

– val(·) : Fqm → Fq is defined by val(y) =
∑k

i=1 yi, where (y1, . . . , yk) = ψ(y).
– We use 〈x〉 to denote an additive sharing of x ∈ Fq among the first t + 1

parties, and the shares of the rest of parties are 0.
– A pair of couple sharings [[x]] := (〈x〉, [y]t) contains an additive sharing of

x ∈ Fq and a degree-t Shamir sharing of y ∈ Fqm such that val(y) = x.

In the online phase, our idea is to compute a pair of couple sharings for each
wire. For an addition gate, given two pairs of couple sharings as input, all parties
can locally compute the addition of these two sharings. For a multiplication
gate, relying on Beaver tuples prepared in the preprocessing phase, all parties
only need to reconstruct two pairs of couple sharings. We note that for the two
sharings in a pair of couple sharings:

– The first sharing is an additive sharing in Fq. The share of each party is just a
field element in Fq. We will use this sharing to do reconstruction. However, the
correctness cannot be guaranteed since a single corrupted party can change
the secret by changing its own share.

– The second sharing is a degree-t Shamir sharing in Fqm . The share of each
party is a field element in Fqm . Note that the secret is determined by the shares
of honest parties, and cannot be altered by corrupted parties. However, using
this sharing to do reconstruction is expensive. Therefore, we will use this
sharing to verify the correctness of reconstruction at the end of the protocol.

7.1 Input Gates

Recall that we are in the client-server model. In particular, all the inputs belong
to the clients. In this part, we introduce a protocol Input, which allows a client
to share k inputs to all parties. In the main protocol, we will invoke Input for
every client with k inputs.

The description of Input appears in Protocol 7. The communication com-
plexity of Input(Client, {x(1), . . . , x(k)}) is O(m+k) elements in Fq plus one call
of Frandom. Note that this protocol guarantees the security of the inputs of
honest clients. This is because the input of honest clients are masked by random
vectors r’s which are chosen by Frandom. However, a corrupted client can send
different values to different parties, which leads to incorrect or inconsistent cou-
ple sharings in the final step. We will address this issue by checking consistency
of the values distributed by all clients at the end of the protocol.

7.2 Addition Gates and Multiplication Gates

For each fan-in two addition gate with input sharings [[x(1)]], [[x(2)]], all parties
locally compute

[[x(0)]] := [[x(1) + x(2)]] = [[x(1)]] + [[x(2)]].

Constant-Overhead Unconditionally Secure Multiparty Computation 833

Protocol 7: Input(Client, {x(1), . . . , x(k)})

1. All parties invoke Frandom to prepare a random sharing [φ(r)]t, where r is
a random vector in F

k
q . Then, all parties send their shares of [φ(r)]t to the

Client.
2. After receiving the shares of [φ(r)]t, the Client checks whether all the shares

lie on a polynomial of degree at most t in Fqm . If not, the Client aborts.
Otherwise, the Client reconstructs the secret φ(r).

3. The Client computes r from φ(r). Then, the Client sets x = (x(1), . . . , x(k)),
where x(1), . . . , x(k) are its input. The Client sends x + r to all parties.

4. After receiving x + r from the Client, all parties locally compute [φ(x)]t :=
φ(x + r) − [φ(r)]t.

5. All parties invoke Separate on [φ(x)]t to obtain couple sharings for the input
of the Client:

(〈x(1)〉, [y(1)]t), . . . , (〈x(k)〉, [y(k)]t)

For each multiplication gate with input sharings [[x(1)]], [[x(2)]], we want to
obtain a pair of couple sharings [[x(0)]] such that x(0) = x(1) · x(2). To this end,
we will use one Beaver tuple ([[a]], [[b]], [[c]]) prepared in Sect. 6.2. It satisfies that
a, b are random field elements in Fq and c = a · b. Note that

x(0) = x(1) · x(2)

= (a + x(1) − a) · (b + x(2) − b)
= (a + x(1)) · (b + x(2)) − (b + x(2)) · a − (a + x(1)) · b + a · b

= (a + x(1)) · (b + x(2)) − (b + x(2)) · a − (a + x(1)) · b + c.

Therefore, all parties only need to reconstruct the sharings [[a]] + [[x(1)]] and
[[b]] + [[x(2)]], and the resulting sharing can be computed by

[[x(0)]] = (a + x(1)) · (b + x(2)) − (b + x(2)) · [[a]] − (a + x(1)) · [[b]] + [[c]].

To reconstruct [[a]] + [[x(1)]], we will use the additive sharing 〈a + x(1)〉 :=
〈a〉+〈x(1)〉. We first add a random additive sharing 〈o〉 of 0 (prepared in Sect. 6.3)
to protect the shares of honest parties. The first t + 1 parties locally compute
〈a〉+〈x(1)〉+〈o〉 and send their shares to P1. P1 reconstructs the secret a+x(1) and
sends the result to all other parties. Similar process is done when reconstructing
〈b + x(2)〉 := 〈b〉 + 〈x(2)〉.

Note that 〈a〉 + 〈o〉 is a random additive sharing. The share of each honest
party in {P1, . . . , Pt+1} is uniformly distributed. Essentially, each honest party
in {P1, . . . , Pt+1} uses a random element as mask to protect its own share. The
protocol Mult appears in Protocol 8. The communication complexity of Mult
is O(n) elements in Fq plus two calls of Fzero. The protocol Mult can go wrong
at three places:

834 A. Polychroniadou and Y. Song

Protocol 8: Mult([[x(1)]], [[x(2)]], ([[a]], [[b]], [[c]]))

1. All parties invoke Fzero to prepare two random additive sharings 〈o(1)〉, 〈o(2)〉
where o(1) = o(2) = 0.

2. Let 〈x(1) + a〉, 〈x(2) + b〉 denote the additive sharings in [[x(1) + a]], [[x(2) + b]]
respectively. The first t+1 parties locally compute 〈u(1)〉 := 〈x(1) +a〉+ 〈o(1)〉
and 〈u(2)〉 := 〈x(2) + b〉 + 〈o(2)〉. Then, they send their shares of 〈u(1)〉, 〈u(2)〉
to the first party P1.

3. P1 reconstructs the secrets u(1), u(2) by computing the summation of the shares
of 〈u(1)〉 and 〈u(2)〉 respectively. Then, P1 sends u(1), u(2) to all other parties
(including the last t parties).

4. After receiving u(1), u(2), all parties locally compute the resulting couple shar-
ings

[[x(0)]] = u(1) · u(2) − u(2) · [[a]] − u(1) · [[b]] + [[c]],

and take [[x(0)]] as output.

– A corrupted party may send an incorrect share to P1.
– P1 is corrupted and distributes an incorrect reconstruction result to all other

parties.
– P1 is corrupted and distributes different values to different parties.

Note that, relying on the random additive sharing of 0, honest parties in the first
t + 1 parties only send random elements to P1. Therefore, Mult does not leak
any information about the shares of honest parties even if the input sharings
of the multiplication gate are not in the correct form. It allows us to delay the
verification of the values distributed by P1 to the end of the protocol. It also
allows us to delay the verification of the values distributed by clients in the input
phase to the end of the protocol since a corrupted client distributing different
values to different parties has the same effect as P1 distributing different values
to different parties. During the verification of the computation, we will first check
whether all parties receive the same values to resolve the third issue. Then, for
the first two issues, it is sufficient to check the correctness of the reconstructions.

7.3 Verification of the Computation

Before all parties revealing the outputs, we need to verify the computation. Con-
cretely, we need to verify that (1) the clients distributed the same values in the
input phase, and P1 distributed the same values when evaluating multiplication
gates, and (2) the reconstructions are correct.

Checking the Correctness of Distribution. All parties first check whether they
receive the same values when handling input gates and multiplication gates.
Note that these values are all in Fq. Assume that these values are denoted by

Constant-Overhead Unconditionally Secure Multiparty Computation 835

x(1), x(2), . . . , x(N). The protocol CheckConsistency appears in Protocol 9.
The communication complexity of CheckConsistency(N, {x(1), . . . , x(N)}) is
O(n2 · m) elements in Fq.

Protocol 9: CheckConsistency(N, {x(1), . . . , x(N)})

1. All parties invoke Fcoin(Fqm) to generate a random element r ∈ Fqm . All
parties locally compute

x := x(1) + x(2) · r + . . . + x(N) · rN−1.

2. All parties exchange their results x’s and check whether they are the same. If
a party Pi receives different x’s, Pi aborts.

Lemma 2. If there exists two honest parties who receive different set of values
{x(1), . . . , x(N)}, then with overwhelming probability, at least one honest party
will abort in the protocol CheckConsistency.

We refer the readers to Sect. 7.3 in the full version of this paper [PS20] for
the proof of Lemma 2.

This step makes sure that all (honest) parties receive the same values from
clients and P1. Therefore, the remaining task is to verify the correctness of the
reconstructions.

Verification of Reconstructions. Recall that a pair of couple sharings [[x]] :=
(〈x〉, [y]t) satisfies that 〈x〉 is an additive sharing of x and [y]t is a degree-t Shamir
sharing of y such that val(y) = x. For a multiplication gate with input sharings
(〈x(1)〉, [y(1)]t), (〈x(2)〉, [y(2)]t), one Beaver tuple ((〈a〉, [α]t), (〈b〉, [β]t), (〈c〉, [γ]t))
is consumed to compute the resulting sharing. All parties reconstruct

(〈x(1)〉, [y(1)]t) + (〈a〉, [α]t) and (〈x(2)〉, [y(2)]t) + (〈b〉, [β]t),

and learn x(1)+a and x(2)+b. Note that, the secret of a degree-t Shamir sharing
is determined by the shares held by honest parties. Therefore, the correctness
can be verified by checking val(y(1) + α) = x(1) + a and val(y(2) + β) = x(2) + b.

This task can be summarized as follows: Given N value-sharing pairs

(u(1), [w(1)]t), . . . , (u(N), [w(N)]t),

where u(i) ∈ Fq and w(i) ∈ Fqm for all i ∈ [N], we want to verify that for all
i ∈ [N], val(w(i)) = u(i). Here u(i) corresponds to x(1) + a and [w(i)]t corre-
sponds to [y(1) + α]t. The functionality FcheckRecon appears in Functionality 10.
In Sect. 7.3 of the full version of this paper [PS20], we introduce an instantiation
of FcheckRecon. The communication complexity of this instantiation is O(n2 ·m2)
elements in Fq plus m calls of Fparity.

836 A. Polychroniadou and Y. Song

Functionality 10: FcheckRecon

1. Let N denote the number of value-sharing pairs. These value-sharing pairs are
denoted by

(u(1), [w(1)]t), (u
(2), [w(2)]t), . . . , (u

(N), [w(N)]t).

FcheckRecon will check whether val(w(i)) = u(i) for all i ∈ [N].
2. For all i ∈ [N], FcheckRecon receives from honest parties their shares of [w(i)]t.

Then FcheckRecon reconstructs the secret w(i). FcheckRecon further computes
the shares of [w(i)]t held by corrupted parties and sends these shares to the
adversary.

3. For all i ∈ [N], FcheckRecon computes val(w(i)) and sends u(i), val(w(i)) to the
adversary.

4. Finally, let b ∈ {abort, accept} denote whether there exists i ∈ [N] such that
val(w(i)) �= u(i). FcheckRecon sends b to the adversary and waits for its response.

– If the adversary replies abort, FcheckRecon sends abort to honest parties.
– If the adversary replies continue, FcheckRecon sends b to honest parties.

7.4 Output Gates

Recall that we are in the client-server model. In particular, only the clients
receive the outputs. In this part, we will introduce a functionality Foutput which
reconstructs the output couple sharings to the client who should receive them.
In the main protocol, we will invoke Foutput for every client.

Suppose we need to reconstruct the following N pairs of couple sharings to
the Client:

[[x(1)]], [[x(2)]], . . . , [[x(N)]].

Recall that a pair of couple sharings [[x]] := (〈x〉, [y]t) satisfies that 〈x〉 is an addi-
tive sharing of x, and [y]t is a degree-t Shamir sharing of y such that val(y) = x.
The functionality Foutput appears in Functionality 11. In Sect. 7.4 of the full
version of this paper [PS20], we introduce an instantiation of Foutput. The com-
munication complexity of this instantiation is O(N ·n+n2 ·m+n ·m2) elements
in Fq plus N calls of Fzero and m calls of Fparity.

7.5 Main Protocol

Now we are ready to introduce our main construction. Recall that we are in
the client-server model. In particular, all the inputs belong to the clients, and
only the clients receive the outputs. The functionality Fmain is described in
Functionality 12. The protocol Main appears in Protocol 13.

Theorem 4. Let c be the number of clients and n = 2t+1 be the number of par-
ties. The protocol Main securely computes Fmain with abort in {Ftuple,Frandom,

Constant-Overhead Unconditionally Secure Multiparty Computation 837

Functionality 11: Foutput

1. Let N denote the number of output gates belonging to the Client. The couple
sharings are denoted by

[[x(1)]], [[x(2)]], . . . , [[x(N)]].

Foutput will reconstruct x(1), x(2), . . . , x(N) to the Client.
2. For all i ∈ [N], suppose [[x(i)]] = (〈x(i)〉, [y(i)]t). Foutput receives from honest

parties their shares of (〈x(i)〉, [y(i)]t). Then Foutput reconstructs the secret y(i)

and computes val(y(i)).
– For [y(i)]t, Foutput computes the shares of [y(i)]t held by corrupted parties

and sends these shares to the adversary.
– For 〈x(i)〉, note that the summation of all the shares should be val(y(i)).

Foutput computes the summation of the shares of corrupted parties,

denoted by x
(i)
C , which can be computed from val(y(i)) and the shares

of 〈x(i)〉 held by honest parties. Foutput sends x
(i)
C to the adversary.

3. Depending on whether the Client is honest, there are two cases:
– If the Client is corrupted, Foutput sends {val(y(i))}N

i=1 to the adversary. If
the adversary replies abort, Foutput sends abort to all honest parties.

– If the Client is honest, Foutput asks the adversary whether it should con-
tinue. If the adversary replies abort, Foutput sends abort to the Client
and all honest parties. If the adversary replies continue, Foutput sends
{val(y(i))}N

i=1 to the Client.

Functionality 12: Fmain

1. Fmain receives from all clients their inputs.
2. Fmain evaluates the circuit and computes the outputs. Fmain first sends the

outputs of corrupted clients to the adversary.
– If the adversary replies continue, Fmain distributes the outputs to honest

clients.
– If the adversary replies abort, Fmain sends abort to honest clients.

Fzero,Fcoin,FcheckRecon,Foutput}-hybrid model in the presence of a fully mali-
cious adversary controlling up to c clients and t parties.

We refer the readers to Sect. 7.5 in the full version of this paper [PS20] for
the proof of Theorem 4.
Analysis of the Communication Complexity of Main. Let cI , cM , cO denote the
numbers of input gates, multiplication gates, and output gates. Recall that c is
the number of clients. In Main, we need to invoke

838 A. Polychroniadou and Y. Song

Protocol 13: Main

Let (φ, ψ) be an (k, m)q-RMFE. Recall that val(·) : Fqm → Fq is an Fq-linear map,
which is defined by val(y) =

∑k
i=1 yi where (y1, . . . , yk) = ψ(y). A pair of couple

sharings [[x]] := (〈x〉, [y]t) satisfies that val(y) = x.

1. Preparing Beaver Tuples: Let cM denote the number of multiplication
gates in the circuit. All parties invoke Ftuple to prepare cM/k random tuples
in the form of

([φ(a)]t, [φ(b)]t, [φ(c)]t),

where a, b are random vectors in F
k
q and c = a ∗ b. Then all parties invoke

Separate to locally transform these cM/k tuples into cM random Beaver
tuples in the form of

([[a]], [[b]], [[c]]),

where a, b are random elements in Fq and c = a · b.
2. Input Phase: For every Client with k inputs x(1), . . . , x(k) ∈ Fq, all parties

and the Client invoke Input(Client, {x(1), . . . , x(k)}). At the end of the proto-
col, all parties take the couple sharings [[x(1)]], [[x(2)]], . . . , [[x(k)]] as output.

3. Computation Phase: All parties start with holding a pair of couple sharings
for each input gate. The circuit is evaluated in a predetermined topological
order.

– For each addition gate with input sharings [[x(1)]], [[x(2)]], all parties locally
compute [[x(0)]] := [[x(1) + x(2)]] = [[x(1)]] + [[x(2)]].

– For each multiplication gate with input sharings [[x(1)]], [[x(2)]], all parties
invoke Mult with the first unused Beaver tuple ([[a]], [[b]], [[c]]) to compute
[[x(0)]]. Let u(1), u(2) denote the reconstruction results of [[x(1)+a]], [[x(2)+b]]
sent by P1 in Step 3 of Mult.
Suppose [w(1)]t is the degree-t Shamir sharing in [[x(1) + a]], and [w(2)]t is
the degree-t Shamir sharing in [[x(2) +b]]. All parties will use (u(1), [w(1)]t)
and (u(2), [w(2)]t) to verify the reconstructions.

4. Verification phase:
– Suppose that u(1), u(2), . . . , u(cI) are the values all parties receive from

the clients in Input, and u(cI+1), . . . , u(cI+2·cM) are the values all
parties receive from P1 in Mult, where cI denotes the number of
inputs and cM denotes the number of multiplications. All parties invoke
CheckConsistency(cI +2·cM , {u(1), . . . , u(cI+2·cM)}) to verify that they
receive the same values.

– Suppose (u(1), [w(1)]t), . . . , (u
(2·cM), [w(2·cM)]t) are the value-sharing pairs

generated when evaluating multiplication gates. All parties invoke
FcheckRecon to verify that for all i ∈ [2 · cM], val(w(i)) = u(i).

5. Output Phase: For every Client, let [[x(1)]], [[x(2)]], . . . , [[x(N)]] denote the shar-
ings associated with the output gates, which should be reconstructed to the
Client. All parties and the Client invoke Foutput on these N pairs of couple
sharings.

Constant-Overhead Unconditionally Secure Multiparty Computation 839

– cM/k times of Ftuple in Step 1, which has communication complexity O(cM ·
n · m/k + n3 · m + n2 · log(cM/k) · m) elements in Fq,

– cI/k times of Input in Step 2, which has communication complexity O(cI ·
(m + k)/k) elements in Fq and cI/k calls of Frandom,

– cM times of Mult in Step 3, which has communication complexity O(cM ·n)
elements in Fq and 2 · cM calls of Fzero,

– one time of CheckConsistency in Step 4, which has communication com-
plexity O(n2 · m) elements in Fq,

– one time of FcheckRecon in Step 4, which has communication complexity O(n2 ·
m2) elements in Fq plus m calls of Fparity,

– c times of Foutput in Step 5, which has communication complexity O(cO ·n+
c · n2 · m + c · n · m2) elements in Fq plus cO calls of Fzero and c · m calls of
Fparity.

For Frandom,Fzero,Fparity, we will instantiate them using Rand with suitable
secret sharing schemes. As analyzed in Sect. 6,

– the communication complexity for cI/k calls of Frandom is O(cI ·n·m/k+n3·m)
elements in Fq,

– the communication complexity for 2 · cM + cO calls of Fzero is O((2 · cM +
cO) · n + n3 · m) elements in Fq,

– the communication complexity for (c + 1) · m calls of Fparity is O((c + 1) · n ·
m2 + n3 · m) elements in Fq.

Let C = cI + cM + cO be the size of the circuit. In summary, the communi-
cation complexity of Main is

O(C · n · m/k + n2 · log(C/k) · m + n3 · m + n2 · m2 + c · (n2 · m + n · m2))

elements in Fq. Recall that we require the extension field Fqm to satisfy that
qm ≥ 2κ. Therefore, we use κ as an upper bound of m. According to Theorem 3,
there exists a family of constant rate (k,m)q-RMFEs with m = Θ(k). Thus,
m/k is a constant. The communication complexity becomes

O(C ·n+n2·log C ·κ+n3·κ+n2·κ2+c·(n2·κ+n·κ2)) = O(C ·n+poly(c, n, κ, log C))

elements in Fq.

Theorem 5. In the client-server model, let c denote the number of clients, and
n = 2t + 1 denote the number of parties (servers). Let κ denote the security
parameter, and Fq denote a finite field of size q. For an arithmetic circuit over
Fq of size C, there exists an information-theoretic MPC protocol which securely
computes the arithmetic circuit with abort in the presence of a fully malicious
adversary controlling up to c clients and t parties. The communication complexity
of this protocol is O(C · n + poly(c, n, κ, log C)) elements in Fq.

840 A. Polychroniadou and Y. Song

References

BBCG+19. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-
knowledge proofs on secret-shared data via fully linear PCPs. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol.
11694, pp. 67–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8 3

Bea89. Beaver, D.: Multiparty protocols tolerating half faulty processors. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer, New
York (1990). https://doi.org/10.1007/0-387-34805-0 49

BGIN20. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Efficient fully secure computation
via distributed zero-knowledge proofs. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part III. LNCS, vol. 12493, pp. 244–276. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64840-4 9

BOGW88. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pp.
1–10. ACM (1988)

BSFO12. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure
multiparty computation with a dishonest minority. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 39

BTH08. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear com-
munication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 213–230. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 13

CCD88. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure
protocols. In: Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, pp. 11–19. ACM (1988)

CCXY18. Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity
of information-theoretically secure MPC revisited. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 395–
426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-
0 14

CG20. Cascudo, I., Gundersen, J.S.: A secret-sharing based MPC protocol for
boolean circuits with good amortized complexity. Cryptology ePrint
Archive, Report 2020/162 (2020). https://eprint.iacr.org/2020/162

CGH+18. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious
adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
III. LNCS, vol. 10993, pp. 34–64. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96878-0 2

DN07. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty
computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
572–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74143-5 32

DPSZ12. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5 38

https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/0-387-34805-0_49
https://doi.org/10.1007/978-3-030-64840-4_9
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-319-96878-0_14
https://eprint.iacr.org/2020/162
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-32009-5_38

Constant-Overhead Unconditionally Secure Multiparty Computation 841

DZ13. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of
boolean circuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 621–641. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 35

GIP+14. Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Circuits
resilient to additive attacks with applications to secure computation. In:
Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, pp. 495–504. ACM (2014)

GLS19. Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional MPC
with guaranteed output delivery. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 85–114. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 4

GMW87. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game.
In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, pp. 218–229. ACM (1987)

GS20. Goyal, V., Song, Y.: Malicious security comes free in honest-majority
MPC. Cryptology ePrint Archive, Report 2020/134 (2020). https://eprint.
iacr.org/2020/134

GSZ20. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in
honest majority MPC. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020, Part II. LNCS, vol. 12171, pp. 618–646. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 22

HVW20. Hazay, C., Venkitasubramaniam, M., Weiss, M.: The price of active secu-
rity in cryptographic protocols. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part II. LNCS, vol. 12106, pp. 184–215. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45724-2 7

LN17. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arith-
metic circuits with malicious adversaries and an honest-majority. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 259–276. ACM (2017)

NNOB12. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach
to practical active-secure two-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 40

NV18. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-
majority MPC by batchwise multiplication verification. In: Preneel, B.,
Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 321–339.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 17

PS20. Polychroniadou, A., Song, Y.: Constant-overhead unconditionally secure
multiparty computation over binary fields. Cryptology ePrint Archive,
Report 2020/1412 (2020). https://eprint.iacr.org/2020/1412

RBO89. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols
with honest majority. In: Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, pp. 73–85. ACM (1989)

Sha79. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Yao82. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium

on Foundations of Computer Science, 1982, SFCS 2008, pp. 160–164. IEEE
(1982)

https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-030-26951-7_4
https://eprint.iacr.org/2020/134
https://eprint.iacr.org/2020/134
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-45724-2_7
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-319-93387-0_17
https://eprint.iacr.org/2020/1412

	Constant-Overhead Unconditionally Secure Multiparty Computation Over Binary Fields
	1 Introduction
	2 Technical Overview
	3 Preliminaries
	3.1 The Model
	3.2 Secret Sharing Scheme
	3.3 Reverse Multiplication Friendly Embeddings
	3.4 Useful Building Blocks

	4 Preparing Random Sharings for Fq-GLSSS
	5 Hidden Additive Secret Sharing
	6 Building Blocks for Preprocessing Phase
	6.1 Preparing Random Sharings
	6.2 Preparing Beaver Tuples
	6.3 Preparing Zero Additive Sharings
	6.4 Preparing Parity Sharings

	7 Online Phase
	7.1 Input Gates
	7.2 Addition Gates and Multiplication Gates
	7.3 Verification of the Computation
	7.4 Output Gates
	7.5 Main Protocol

	References

