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Abstract. Motivated by new applications such as secure Multi-Party
Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-
Knowledge proofs (ZK), the need for symmetric encryption schemes that
minimize the number of field multiplications in their natural algorithmic
description is apparent. This development has brought forward many
dedicated symmetric encryption schemes that minimize the number of
multiplications in F2n or Fp, with p being prime. These novel schemes
have lead to new cryptanalytic insights that have broken many of said
schemes. Interestingly, to the best of our knowledge, all of the newly
proposed schemes that minimize the number of multiplications use those
multiplications exclusively in S-boxes based on a power mapping that is
typically x3 or x−1. Furthermore, most of those schemes rely on complex
and resource-intensive linear layers to achieve a low multiplication count.
In this paper, we present Ciminion, an encryption scheme minimizing the
number of field multiplications in large binary or prime fields, while using
a very lightweight linear layer. In contrast to other schemes that aim to
minimize field multiplications in F2n or Fp, Ciminion relies on the Toffoli
gate to improve the non-linear diffusion of the overall design. In addition,
we have tailored the primitive for the use in a Farfalle-like construction
in order to minimize the number of rounds of the used primitive, and
hence, the number of field multiplications as far as possible.
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1 Introduction

Recently, several symmetric schemes have been proposed to reduce the number of
field multiplications in their natural algorithmic description, often referred to as
the multiplicative complexity. These ciphers fall into two main categories. The first
one contains ciphers that minimize the use of multiplications in F2, for instance,
Flip [54], Keyvrium [22], LowMC [4], and Rasta [33]. The second category is com-
prised of ciphers having a natural description in larger fields, which are mostly
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binary fields F2n and prime fields Fp. Examples include MiMC [3], GMiMC [2],
Jarvis [8], Hades [41], Poseidon [40] and Vision and Rescue [6]. The design of
low multiplicative complexity ciphers is motivated by applications such as secure
Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and
Zero-Knowledge proofs (ZK). These recent ciphers based on specialized designs
highly outperform “traditionally” designed ones in these applications. The search
of minimizing the multiplicative complexity while providing a sufficient security
level is an opportunity to explore and evaluate innovative design strategies.

The sheer number of potentially devastating attacks on recently published
designs implies that the design of schemes with low multiplicative complexity
has not reached a mature state yet. Indeed, we count numerous attacks on vari-
ants of LowMC [32,59], Flip [35], MiMC [36], GMiMC [15,19], Jarvis [1], and
Starkad/Poseidon [15]. Attacks that are performed on schemes defined for larger
fields mostly exploit weaknesses of the algebraic cipher description, e.g., Gröb-
ner bases attacks on Jarvis [1] or higher-order differential attacks on MiMC [36].
Nonetheless, attack vectors such as differential cryptanalysis [17] and linear
cryptanalysis [52] do not appear to threaten the security of these designs. Indeed,
the latter two techniques seem to be able to attack only a tiny fraction of the
rounds compared to algebraic attacks.

Interestingly, the mentioned ciphers working over larger fields are inspired by
design strategies proposed in the 1990s to mitigate differential cryptanalysis. For
example, MiMC resembles the Knudsen-Nyberg cipher [56], Jarvis claims to be
inspired by the design of Rijndael [27,28], while Hades, Vision, and Rescue take
inspiration from Shark [60]. The latter ciphers have a linear layer that consists
of the application of a single MDS matrix to the state. An important common-
ality between all those examples is a non-linear layer that operates on individ-
ual field elements, e.g., cubing single field elements or computing their inverse.
Furthermore, design strategies naturally working over larger fields easily pre-
vent differential cryptanalysis. However, algebraic attacks seem to be their main
threat. Therefore, it is worth exploring different design strategies to increase the
resistance against algebraic attacks.
Our Design: Ciminion. In that spirit, Ciminion offers a different design app-
roach in which we do not apply non-linear transformations to individual field
elements. Instead, we use the ability of the multiplication to provide non-linear
diffusion between field elements. Our cipher is built upon the Toffoli gate [62],
which is a simple non-linear bijection of field elements that transforms the triple
(a, b, c) into the triple (a, b, ab + c). The binary version of the Toffoli gate is used
as a building block in modern ciphers, such as FRIET [61], which inspired our
design. In addition to this, the S-box of Xoodoo [26] can also be described as the
consecutive application of three binary Toffoli gates. With respect to the linear
layer, we learned from ciphers like LowMC [4] that very heavy linear layers can
have a considerably negative impact on the performance of applications [31].
Therefore, we decide to pair the Toffoli gate with a relatively lightweight lin-
ear layer to construct a cryptographic permutation on triples of field elements.
Compared to the designs that use a non-linear bijection of a single field element,
e.g., cubing in F2n for odd n, we can define our permutation on any field, and
then provide a thorough security analysis for prime fields and binary fields.
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Fig. 1. Comparison of a Farfalle construction and a Hades-like scheme.

We do not use a bare primitive in the applications, but we employ prim-
itives in a mode of operation. Indeed, instead of constructing a primitive of
low multiplicative complexity, our goal is to provide a cryptographic function
of low multiplicative complexity. We achieve this by using a modified version
of the Farfalle construction to make it possible to perform stream encryption.
Farfalle [12] is an efficiently parallelizable permutation-based construction with
a variable input and output length pseudorandom function (PRF). It is built
upon a primitive, and modes are employed on top of it. The primitive is a PRF
that takes as input a key with a string (or a sequence of strings), and produces
an arbitrary-length output. The Farfalle construction involves two basic ingre-
dients: a set of permutations of a b-bit state, and the so-called rolling function
that is used to derive distinct b-bit mask values from a b-bit secret key, or to
evolve the secret state. The Farfalle construction consists of a compression layer
that is followed by an expansion layer. The compression layer produces a single
b-bit accumulator value from a tuple of b-bit blocks representing the input data.
The expansion layer first (non-linearly) transforms the accumulator value into a
b-bit rolling state. Then, it (non-linearly) transforms a tuple of variants of this
rolling state which are produced by iterating the rolling function, into a tuple
of (truncated) b-bit output blocks. Both the compression and expansion layers
involve b-bit mask values derived from the master key.

We slightly modify Farfalle (see Fig. 3) and instantiate it with two differ-
ent permutations: pC for the compression part, and pE for the expansion part.
Those two permutations are obtained by iterating the same round function,
but with a different number of rounds. In our construction, the permutation
pC takes an input that is the concatenation of a nonce ℵ and a secret key,
and it derives a secret intermediate state from this input. Then, the intermedi-
ate state is updated by using a simple rolling function, and fixed intermediate
keys. From this intermediate state, the keystream for encrypting the plaintext is
derived by using the permutation pE . In order to prevent backward computation,
the outputs of the expansion layers are truncated. Our security analysis that is
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Fig. 2. Number of MPC multiplications of several designs over (Fp)t, with p ≈ 2128

and t ≥ 2 (security level of 128 bits).

presented in Sect. 4 shows that pE requires a significantly lower number of rounds
than pC . The relatively low number of multiplications that is used per encrypted
plaintext element leads to a remarkably overall low multiplicative complexity.
The full specification for Ciminion is presented in Sect. 2. A detailed rationale
of the choices made during the design process is given in Sect. 3. A reference
implementation can be found at https://github.com/ongetekend/ciminion.

A Concrete Use Case: Multi-party Computation. The primary motivation
of our design is to explore the limits on the use of non-linear operations in
cipher design, while limiting the use of linear operations, and ensuring a secure
design. The main body of our paper is thus dedicated to cryptanalysis which is
accompanied by one specific use-case, namely Secure Multi-Party Computation.

MPC is a subfield of cryptography that aims to create methods for parties to
jointly compute a function over their inputs, without exposing these inputs. In
recent years, MPC protocols have converged to a linearly homomorphic secret
sharing scheme, whereby each participant is given a share of each secret value.
Then, each participant locally adds shares of different secrets to generate the
shares of the sum of the secrets. In order to get data securely in and out of
a secret-sharing-based MPC system, an efficient solution is to directly evaluate
a symmetric primitive within such system. In this setting, “traditional” PRFs
based on, e.g., AES or SHA-3 are not efficient. Indeed, they were designed with
different computing environments in mind. Hence, they work over data types that
do not easily match the possible operations in the MPC application. As devel-
oped in [43], “traditional” PRFs like AES and SHA-3 are rather bit/byte/word-
oriented schemes, which complicate their representation using arithmetic in Fp

or/and F2n for large integer n, or prime p.
From a theoretical point of view, the problem of secure MPC is strongly

connected to the problem of masking a cryptographic implementation. This

https://github.com/ongetekend/ciminion
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observation has been made in [45,46]. The intuition behind is that both mask-
ing and MPC aim to perform computations on shared data. In more detail, the
common strategy behind these techniques is to combine random and unknown
masks with a shared secret value, and to perform operations on these masked
values. Only at the end of the computation, the values are unmasked by combin-
ing them, in a manner that is defined by the masking scheme. In our scheme, we
use a linear sharing scheme, because affine operations (e.g., additions, or mul-
tiplications with a constant) are non-interactive and resource efficient, unlike
the multiplications that require some communication between the parties. The
number of multiplications required to perform a computation is a good estimate
of the complexity of an MPC protocol.

However, in practice, other factors influence the efficiency of a design. For
instance, while one multiplication requires one round of communication, a batch
of multiplications can be processed into a single round in many cases. In that
regard, Ciminion makes it possible to batch several multiplications due to the
parallel execution of pE . Another alternative to speed up the processing of mes-
sages is to execute some communication rounds in an offline/pre-computation
phase before receiving the input to the computation. This offline phase is cheaper
than the online rounds. For example, in the case of Ciminion, precomputing sev-
eral intermediate states is possible by applying pC to different nonces ℵ. As a
result, for the encryption of arriving messages, those intermediate states only
have to be expanded, and processed by pE to encrypt the plaintext.

Section 5 demonstrates that our design Ciminion has a lower number of
multiplications compared to several other schemes working over larger fields.
The comparison of the number of multiplications in MPC applications to the
ciphers that are presented in the literature, is shown in Fig. 2, when working
over a field (Fp)t with p ≈ 2128 and t ≥ 1, and with a security level of 128 bits
(which the most common case in the literature). It indicates that our design
needs approximately t + 14 · �t/2� ≈ 8 · t multiplications compared to 12 · t
multiplications that are required by HadesMiMC, or 60 · t multiplications that
is needed by Rescue. These two schemes that have recently been proposed in
the literature are our main competitors. Additionally, our design employs a low
number of linear operations when compared with other designs present in the
literature. Indeed, Ciminion grows linearly w.r.t. t, whereas the number of linear
operations grows quadratically in HadesMiMC and Rescue. That is because their
rounds are instantiated via the multiplication with a t × t MDS matrix. Even if
the cost of a linear operation is considerably lower than the cost of a non-linear
one in MPC applications, it is desirable to keep both numbers as low as possible.
Our design has this advantage.

2 Specification

2.1 Mode

In order to create a nonce-based stream-encryption scheme, we propose to work
with the mode of operation described in Fig. 3. First, the scheme takes a nonce
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Fig. 3. Encryption with Ciminion over F2n . The construction is similar over Fp (⊕ is
replaced by +, the addition modulo p).

ℵ along with two subkey elements K1 and K2 as input, and processes these
input with a permutation pC to output an intermediate state. This intermediate
state is then processed by a permutation pE , and truncated to two elements
so that two plaintext elements P1 and P2 can be encrypted. If more elements
need to be encrypted, the intermediate state can be expanded by repeatedly
performing an addition of two subkey elements to the intermediate state, then
followed by a call to the rolling function rol. After each call to the rolling function
rol, two more plaintext elements P2i and P2i+1 can be encrypted thanks to the
application of pE to the resulting state. We consider the field elements as atomic,
and therefore, our mode can cope with a different number of elements without
the need for padding. The algorithmic description of the mode of operation that
is described in Fig. 3, is provided in [34, App. A. I].

2.2 Permutations

We describe two permutations of the vector space F
3
q. They act on a state of

triples (a, b, c) ∈ F
3
q. The first permutation is defined for a prime number q = p

of log2(p) ≈ n bits, while the second permutation is specified for q = 2n. Both
permutations are the result of the repeated application of a round function.
Their only difference is the number of repeated applications that we call rounds.



Ciminion: Symmetric Encryption Based on Toffoli-Gates 9

RC1 �

ai−1

bi−1

ci−1

ai

bi

ci

RC2 �

RC3 �

·RC4 �

Fig. 4. Round function fi.

Fig. 5. rol.

pC

MK2

MK1

IV H

K1

pC

. . .

. . .

. . . pC

K2l−1 K2l

Fig. 6. Key generation.

As presented in Fig. 3, we employ two permutations pC and pE that have respec-
tively N and R rounds.

Round Function. We write fi for round i (Fig. 4). It uses four round constants
RC �, with � = i for pC , and � = i+N −R for pE . We assume that RC4 � /∈ {0, 1}.
For each i ≥ 1, fi maps a state (ai−1, bi−1, ci−1) at its input to the state (ai, bi, ci)
at its output, where the relation between these two states is

⎡
⎣

ai

bi

ci

⎤
⎦ :=

⎡
⎣

0 0 1
1 RC4 � RC4 �

0 1 1

⎤
⎦ ·

⎡
⎣

ai−1
bi−1

ci−1 + ai−1 · bi−1

⎤
⎦ +

⎡
⎣

RC3 �

RC1 �

RC2 �

⎤
⎦ .

2.3 The Rolling Function

Our rolling function rol is a simple NLFSR as depicted in Fig. 5. The rolling
function takes three field elements ιa, ιb, and ιc at the input. It outputs three
field elements: ωa := ιc + ιa · ιb, ωb := ιa, and ωc := ιb. The latter variables form
the input of the permutation pE in our Farfalle-like mode Fig. 3.

2.4 SubKeys and Round Constants

SubKeys Generation. We derive the SubKey material Ki from two master
keys MK1, and MK2. As a result, the secret is shared in a compact manner,
while the expanded key is usually stored on a device, and used when needed.
To expand the key, we use the sponge construction [13] instantiated with the
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Table 1. Proposed number of rounds based on f . The security level s must satisfy
64 ≤ s ≤ log2(q), and q ≥ 264, where q is the number of elements in the field.

Instance pC pE (two output words per block)
Standard s + 6 max

{⌈
s+37
12

⌉
, 6

}
Data limit 2s/2 elements 2(s+6)

3 max
{⌈

s+37
12

⌉
, 6

}
Conservative s + 6 max

{(⌈
3
2 · s+37

12

⌉)
, 9

}

permutation pC (Fig. 6). The value IV H can be made publicly available, and is
typically set to one.

Round Constants Generation. We generate the round constants RC1 �,
RC2 �, RC3 �, and RC4 � with Shake-256 [14,55]. The detail is provided in [34,
App. A].

2.5 Number of Rounds and Security Claim for Encryption

In this paper, we assume throughout that the security level of s bits satisfies the
condition 64 ≤ s ≤ 	log2(q)
. This implies that q ≥ 264.

In Table 1, we define three sets of round numbers for each permutation in
our encryption scheme:

– The “standard” set guarantees s bit of security; in the following sections, we
present our security analysis that supports the chosen number of rounds for
this case.

– For our MPC application, we propose a number of rounds if the data available
to the attacker is limited to 2s/2; our security analysis that supports the
chosen number of rounds for this case is presented in [34, App. F].

– Finally, we present a “conservative” number of rounds where we arbitrarily
decided to increase the number of rounds by 50% of the standard instance.

Since many cryptanalytic attacks become more difficult with an increased
number of rounds, we encourage to study reduced-round variants of our design
to facilitate third-party cryptanalysis, and to estimate the security margin. For
this reason, it is possible to specify toy versions of our cipher, i.e., with q < 264
which aim at achieving, for example, only 32 bits of security.

3 Design Rationale

3.1 Mode of Operation

In order to provide encryption, our first design choice is to choose between a mode
of operation that is built upon a block cipher or a cryptographic permutation. In
either case, a datapath design is necessary. However, a block cipher requires an
additional key schedule, unlike a cryptographic permutation. If a designer opts
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Fig. 7. Intermediate step in constructing Fig. 3

for a block cipher, the key schedule can be chosen to be either a non-linear, an
affine, or a trivial transformation, where the round keys are equal to the master
key apart from round constants. In this case, the designer has to be careful,
because a poor key schedule leads to weaknesses and attacks [19]. Considering
that the research in low multiplicative complexity ciphers is a relatively new
research area, we decided to limit our focus to the essential components of a
primitive. Therefore, we opted for permutation-based cryptography.

Since we consider the application of low multiplicative ciphers in areas that
have enough resources to profit from parallel processing, we base our mode of
operation on the Farfalle construction [12] as depicted in Fig. 1a. The Farfalle
construction is a highly versatile construction that provides many functionalities.

A Modified Version of Farfalle. As already mentioned in the introduction,
our mode of operation resembles the Farfalle construction. In this section, we
explain and support the modifications that we performed on the original Farfalle
construction, as depicted in Fig. 1a. The aim of those modifications is to both
increase the resistance of the construction against algebraic attacks which are the
most competitive ones in our scenario, and to increase its efficiency in our target
application scenario, that is to say to minimize the number of multiplications.
We focus first on the security aspect, before explaining in further detail how we
reach our efficiency goal.

Our first modification is for simplicity. Since the functionality provided by
the Farfalle construction to compress information is not needed, we merge pc

and pd to a single permutation pC .
Our second modification is to truncate the output. This prevents meet-in-

the-middle style attacks that require the knowledge of the full output.
The third modification is to manipulate different keys Ki (see Fig. 7) instead

of employing the same key k′ for each output block. Since we aim to have a
permutation with a low degree, Gröbner bases are the main threat. For the
scheme that is depicted in Fig. 7, an attacker has to exploit equations of the
form f(x) + Ki = y and f(x′) + Ki = y′, with f(x) − f(x′) = y − y′ for a
Gröbner basis attack. We describe this scenario in more detail in Sect. 4.4.
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Our last modification is to move the keys Ki from the output of pE to the
input of our rolling function, and hence, effectively to the input of pE (Fig. 3).
Figure 3 is our final construction, and it provides two main benefits. First, hav-
ing the keys at the input does not make it possible to easily cancel them by
computing the difference of the output as described before. Hence, this adds
an additional barrier in mounting successful Gröbner basis attacks. Second, we
can use a simple non-linear rolling function, because the addition of the key
stream during the rolling function prevents the attacker from easily detecting
short cycles within it.

Minimizing the Number of Multiplications. One main reason to use the
Farfalle construction is that its three permutations pc, pd, and pe do not have
to provide protection against all possible attack vectors. Indeed, the permuta-
tion pe alone does not have to provide resistance against higher-order differential
attacks [48,50]. The latter are particular algebraic attacks that exploit the low
degree polynomial descriptions of the scheme. Resistance against higher-order
differential attacks (higher-order attacks in short) can be provided by the per-
mutations pc, and pd, and it inherently depends on the algebraic degree that a
permutation achieves. Hence, requiring protection against higher-order attacks
provides a lower bound on the number of multiplications that are needed in a per-
mutation. In a nutshell, since pe does not have to be secure against higher-order
attacks, we can use a permutation with fewer multiplications. This benefits the
multiplication count of the scheme, since the permutations pc and pd are called
only once independently of the number of output words.

The Rolling Function. An integral part of the Farfalle construction is the
rolling function rol. The permutations pc and pe (Fig. 1a) in the Farfalle construc-
tion are usually chosen to be very lightweight, such that the algebraic degree is rel-
atively low. Hence, to prevent higher-order attacks, the rolling function is chosen
to be non-linear. In our modified version, the same is true up to the intermediate
construction as depicted in Fig. 7. In this case, rol has to be non-linear in order to
use a permutation pE of low degree. For our final construction (Fig. 3), we do not
see any straightforward way to exploit higher-order attacks due to the unknown
keys at the inputs of pE . Thus, we could use a linear rolling function rol, but we
rather choose to use a simple non-linear rol forCiminion. That is because it makes
it possible to analyze the security of Fig. 7, and to keep the same conclusion when
we opt for the stronger version of Fig. 3. In addition, we present Aiminion in [34,
App. B], a version of our design that does not follow this line of reasoning. Aimin-
ion uses a linear rolling function, and nine rounds of pE . We deem this version
to be an interesting target for further analysis that aims to evaluate the security
impact of switching from a non-linear to a linear rolling function.

Generating the Subkeys. Instead of sharing all subkeys Ki directly by com-
municating parties to encrypt messages, we specify a derivation of the subkeys
Ki from two master keys MK1, and MK2. These subkeys can be generated in
a single precomputation step. For the storage of the subkeys, trade-offs can be
made to store as many subkeys as needed, and to split messages into lengths
that match the stored subkey lengths.
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3.2 The Round Function

Our round function is composed of three layers: a non-linear transformation, a
linear transformation, and a round constant addition. Like classical designs, we
employ the same non-linear and linear transformations for each round, but with
different round constant additions. This makes it easier to implement, and to
reduce code-size and area requirements. Nonetheless, some primitives that have
been designed to lower the multiplicative complexity use a different linear layer
for each round, like in LowMC [4].

Non-linear Transformation. Most primitives operating in large fields have
a variant of powering field elements, e.g., x3 or x−1. These mappings became
popular to guard against linear and differential cryptanalysis due to their prop-
erties [56]. The most popular design that uses such mappings is the AES [28],
where x−1 is used as part of its S-box. For ciphers that aim at a low multiplica-
tive complexity, these power mappings are interesting because they often have
an inverse of high degree, which provides protection against algebraic attacks.
However, they impose some restrictions, e.g., the map x �→ xα for integer α ≥ 2
is a bijection in Fq if and only if gcd(q − 1, α) = 1 (e.g., x �→ x3 is a permutation
over F2n for odd n only). Hence, one has to consider several power values α in
order for xα to stay a permutation for any field. In a design that should make it
possible to be instantiated for a wide variety of fields, considering those special
cases complicates the design of the cipher.

Instead of a power mapping, the non-linear element in our designs is the
Toffoli gate [62]. Indeed, algebraic attacks are the main threat against designs
aiming to lower the multiplicative complexity, and the multiplications are the
main cost factor in our design. It thus seems counter intuitive to spend the non-
linear element on simply manipulating a single field element, as is the case for
power mappings. Therefore, we choose to multiply two elements of the state,
instead of operating on a single state element, in order to increase the non-
linear diffusion. Furthermore, the Toffoli gate is a permutation for any field, and
therefore we are not restricted to a specific field. We mitigate potential negative
effects of the property of the Toffoli gate to provide the same degree in forward
and backward direction by mandating its use only in modes that truncate the
permutation output, and that never evaluate its inverse using the secret key.

Linear Transformation. We present the linear transformation in its matrix
form, the coefficients of which must be carefully chosen. One possibility is to
use an MDS matrix. Since an MDS matrix has the highest branch number [24]
among all possible matrices, it plays an important role in proving lower bounds
on the linear and differential trail weight. However, we do not need to rely on
MDS matrices as the field multiplications already have advantageous properties
against linear and differential attacks.

Another option is to randomly choose the coefficients of the matrix for each
round, and then verify that the matrix is invertible. This strategy was used in one
of the first low multiplicative complexity designs, namely LowMC [4]. However,
the drawback is that random matrices contribute significantly to the cost of the
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primitive in some scenarios, and the security analysis becomes more involved.
Hence, we have decided to use a much simpler linear layer.

In order to provide sufficient diffusion, complex equation systems, and low
multiplicative complexity, the degree of the functions that output equations
depending on the input variables must grow as fast as possible. By applying
a single multiplication per round, the degree doubles per round in the best sce-
nario. However, this also depends on the linear layer. For instance, this layer
could be a simple layer permuting the elements (e.g., the 3 × 3 circulant matrix
circ(0, 0, 1)), for which the univariate degree of a single element only grows
according to a Fibonacci sequence. To ensure that the univariate degree of a
single element doubles per round, the result of the previous multiplication has
to be reused in the multiplication of the next round. This is also applicable to
the inverse of the permutation. Hence, we decided to use the following matrix
for the linear layer:

M =

⎡
⎣

0 0 1
1 RC4 RC4
0 1 1

⎤
⎦ (and M−1 =

⎡
⎣

0 1 −RC4
−1 0 1
1 0 0

⎤
⎦ ),

Here, M0,2, M1,2, M−1
0,2, M−1

1,2 
= 0 with Mi,j denoting the element of the
matrix M at row i and column j. The use of the round constant RC4 /∈ {0, 1}
is motivated by aiming to improve the diffusion, and to avoid a weakness with
respect to linear cryptanalysis that we discuss in Sect. 4.1.

About Quadratic Functions. In addition to the matrix multiplication, another
(semi-)linear transformation1 over a binary field F2n is the quadratic permuta-
tion x �→ x2. This transformation can be exploited as a component in the round
function (e.g., as a replacement of the multiplication by RC4 ) to both increase
the diffusion and the overall degree of the function that describes the scheme.
However, we do not employ it for several reasons. First, even if the quadratic
permutation is linear over F2n , its cost in an application like MPC might not be
negligible. Indeed, the quadratic permutation costs one multiplication as detailed
in [43]. As a result, even if it makes it possible to reduce the overall number of
rounds due to a faster growth of the degree, the overall number of multipli-
cations2 would not change for applications like MPC. Secondly, the quadratic
function is not a permutation over Fp for a prime p 
= 2. Thus, its introduction
implies having to work with two different round functions: one for the binary
case and one for the prime case. Since our goal is to present a simple and elegant
general scheme, we decided not to use it.

Round Constants. The round constants break up the symmetry in the design.
They prevent the simplification of the algebraic description of the round func-
tion. However, as we manipulate many round constants, and since they influence
1 A function f over (F, +) is semi-linear if for each x, y ∈ F: f(x + y) = f(x) + f(y).

It is linear if it is semi-linear and if for each x ∈ F: f(α · x) = α · f(x).
2 A minimum number of multiplications is required to reach maximum degree, which

is one of the property required by a cryptographic scheme to be secure.



Ciminion: Symmetric Encryption Based on Toffoli-Gates 15

the rounds in a complex manner, we use an extendable output function to obtain
round constant values without an obvious structure. We performed some exper-
iments where we added round constants to one or two state elements. These
instances provided simpler algebraic descriptions. Considering the small costs of
manipulating dense round constants, we decide to use three round constants to
complicate the algebraic description of the cipher, even after a few rounds.

4 Security Analysis

We present our security analysis of Ciminion with respect to “standard” applica-
tion of the attacks that are found in the literature. This analysis determines the
required number of rounds to provide some level of confidence in its security. Due
to page limitation, further analysis is presented in the full version of the paper.

First and foremost, the number of rounds that guarantees security up to s
bits are computed under the assumption that the data available to the attacker
is limited to 2s, except if specified in a different way. Moreover, we do not make
any claim about the security against related-key attacks and known- or chosen-
key distinguishers (including the zero-sum partitions). The latter are out the
scope of this paper.

We observe that the attack vectors penetrating the highest number of rounds
are algebraic attacks. On the contrary, traditional attacks, such as differen-
tial and linear cryptanalysis, are infeasible after a small number of rounds. As
detailed in the following, in order to protect against algebraic attacks and higher-
order differential attacks, we increase the number of rounds proportionally to the
security level s. A constant number of rounds is added to prevent an adversary
from guessing part of the key or the initial or middle state, or to linearize part
of the state. Hence, the numbers of rounds for pC and pE are respectively s + 6
and

⌈
s+19
12 + 1.5

⌉
for the standard security level.

4.1 Linear Cryptanalysis

Linear cryptanalysis [52] is a known-plaintext attack that abuses high correla-
tions [25] between sums of input bits and sums of output bits of a cryptographic
primitive. However, classical correlation analysis is not restricted to solely primi-
tives operating on elements of binary fields. In this section, we apply the existing
theory developed by Baignères et al. [9] for correlation analysis of primitives that
operate on elements of arbitrary sets to the permutations defined in Sect. 2.

General Correlation Analysis. An application of the theory to ciphers oper-
ating on elements of binary fields is presented by Daemen and Rijmen [29]. In
this section, we apply the theory to the more general case of primitives operating
on elements of Fq where q = pn. Henceforth, we suppose that f : (Fq)l → (Fq)m.

Correlation analysis is the study of characters, and their configuration in the
l-dimensional vector space L2((Fq)l) of complex-valued functions (Fq)l → C.
The space L2((Fq)l) comes with the inner product 〈g, h〉 =

∑
g(x)h(x), which

defines the norm ‖g‖ =
√〈g, g〉 = q

l
2 .
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Fig. 8. Mask propagation in f

A character is an additive homomorphism from (Fq)l into S := {z ∈ C : |z| =
1}. It is well-known that any character on (Fq)l is of the form

χu(x) = e
2πi

p Trq
p(u

�x) ,

for some u ∈ (Fq)l. We recall that for q = 2 we have that χu(x) = (−1)u�x, which
appears in classical correlation analysis. Here, Trq

p(x) = x+x2 + · · ·+xpl−1 ∈ Fp

is the trace function. For this reason, u�x is called a vectorial trace parity and
u a trace mask vector. We call the ordered pair (u, v) a linear approximation of
f , where u is understood to be the mask at the input and v to be the mask at
the output of f .

We define the vectorial trace parity correlation in the following definition.

Definition 1 (Correlation).

Cf (u, v) = 〈μu, μv ◦ f〉
‖μu‖‖μv ◦ f‖ = 1

ql

∑
x∈(Fq)l

e
2πi

p Trq
p(u

�x−v�f(x))

This helps us to define a more general linear probability metric as follows.

Definition 2 (Linear probability). LPf (u, v) = | Cf (u, v)|2

The idea is then to consider the permutation as a circuit made of simple building
blocks. Those blocks correspond to the operators that we apply, and for which we
attach to each edge a trace mask vector. Importantly, these trace mask vectors
are in one-to-one correspondence with characters. The goal of the attacker is to
construct a linear trail from the end of the permutation to the beginning, with
the goal of maximizing the linear probability of each building block. A list of the
linear probabilities of each such building block can be found in [34, App. C.2] to
deduce the result of the analysis.

On Three-Round Linear Trails. Figure 8 illustrates how the linear masks
propagate through the round function when the linear probabilities of all building
blocks are maximized. In this Figure, c� := RC4 �. The attacker is able to choose
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u, v, and w freely at the beginning of the first round, and afterwards, a mask at
the input of the next round is determined by a mask at the output of the former
round. We write Ri for the i’th round function. Moreover, we use the notation
cij := cicj and cijk := cicjck, where the subscript refers to the round number.
The masks evolve as follows:⎛

⎝
u
v
w

⎞
⎠ R0−−→

⎛
⎝

v
c1v + w

u + c1v + w

⎞
⎠ R1−−→

⎛
⎝

c1v + w
u + (c1 + c12)v + (1 + c2)w

u + (1 + c1 + c12)v + (1 + c2)w

⎞
⎠

R2−−→
⎛
⎝

u + (c1 + c12)v + (1 + c2)w
(1 + c3)u + (1 + c1 + c12 + c13 + c123)v + (1 + c2 + c3 + c23)w
(1 + c3)u + (1 + 2c1 + c13 + c12 + c123)v + (2 + c2 + c3 + c23)w

⎞
⎠ .

An implicit assumption in both Fig. 8, and the mask derivation above, is that the
masks at the output of the multiplication and at the input of the third branch
are equal. However, an attacker can only make sure that this assumption is valid
if the following system of equations has a non-zero solution:

⎛
⎝

1 c1 1
1 1 + c1 + c12 1 + c2

1 + c3 1 + 2c1 + c13 + c12 + c123 2 + c2 + c3 + c23

⎞
⎠

⎛
⎝

u
v
w

⎞
⎠ =

⎛
⎝

0
0
0

⎞
⎠ .

If we denote by A the matrix above, then this happens if and only if the matrix is
singular, i.e., if det(A) = c2c3 +1 = 0. If either c2 or c3 is equal to zero, then the
condition does not hold. If both are non-zero, then the condition is equivalent
to requiring that c2 = −c−1

3 . In this case, we can freely choose one value, which
determines the other. Hence, the probability that the condition holds is equal to
q−1
q2 < 1

q . Since log2(q) is the security parameter, this probability is negligible
and there exists no three-round trail with a linear probability of 1.
Clustering of Linear Trails. We have LPf (u, v) ≥ ∑

Q∈LTf (u,v) LP(Q), where
LTf (u, v) is the set of linear trails contained in (u, v). If we suppose now that
an attacker is able to find more than q linear trails, i.e., if |LTf (u, v)| > q, then
we have LPf (u, v) > 1

q . However, log2(q) is the security parameter, therefore the
latter condition is not feasible. In a nutshell, three rounds are sufficient to resist
against linear cryptanalysis.
Round Constant Multiplication Necessity. If the multiplication by the
round constant is not present, or RC4 � = 1, then the masks evolve as follows
over a single round:

⎛
⎝

u
v
w

⎞
⎠ f−1

−−→
⎛
⎝

v + x
v + w + y
u + v + w

⎞
⎠ if u=v and x=y=w=0−−−−−−−−−−−−−−→

⎛
⎝

v
v
0

⎞
⎠ f−1

−−→
⎛
⎝

v
v
2v

⎞
⎠ ,

where (x, y) is the mask vector at the input of the multiplication function, which,
like u, v, and w, can be freely chosen. Hence, if we choose u = v, and x = y =
w = 0, and since the characteristic of the field is equal to two, then a one-round
approximation with a linear probability of one can be chained indefinitely. This
is the reason behind including a multiplication by a non-trivial constant.
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4.2 Differential Cryptanalysis

Differential cryptanalysis exploits the probability distribution of a non-zero input
difference leading to an output difference after a given number of rounds [17].
As Ciminion is an iterated cipher, a cryptanalyst searches for ordered sequences
of differences over r rounds that are called differential characteristics/trails. A
differential trail has a Differential Probability (DP). Assuming the independence
of the rounds, the DP of a differential trail is the product of the DPs of its one-
round differences (Definition 3).

Definition 3 (One-round differential probability). Let (αa, αb, αc) ∈
(Fp)3 be the input of the round, and (α∗

a, α∗
b , α∗

c) ∈ (Fp)3 the chosen non-zero
input difference. The probability that an input difference is mapped to an output
difference (β∗

a, β∗
b , β∗

c ) ∈ (Fp)3 through one iteration of the round function f is
equal to

|f(α∗
a + αa, α∗

b + αb, α∗
c + αc) − f(αa, αb, αc) = (β∗

a, β∗
b , β∗

c )|
|(Fp)3| .

The operation + is replaced by ⊕ in F2n .

However, in general, the attacker does not have any information about the
intermediate differences of the differential trail. Hence, the attacker only fixes
the input and the output differences over r rounds, and works with differentials.
A differential is a collection of differential trails with fixed input and output
differences, and free intermediate differences. The DP of a differential over r
rounds is the sum of all DPs of the differential trails that have the same input
and output difference over the same number of rounds as the differential.

In this paper, we perform the differential cryptanalysis by grouping fixed
differences in sets. Those sets impose some conditions to satisfy between the
differences of the branches of the round, and/or specify that some differences at
the input of the branches equal zero. Then, given an input difference, we study
the possible sets of output differences after a round, and we determine the DP
that an input difference is mapped into an output difference over a round. The
goal is to find the longest differential trail with the highest DP.

Toward this end, we build a state finite machine (more details in [34, App.
C.3]) that represents all the encountered sets of differences as states associated
to their differential probabilities. To construct the graph, we start with a differ-
ence of the form {(0, 0, x)|x 
= 0}, and we search for the possible sets of output
differences until we have explored all the possibilities from each newly reached
set. Hereafter, let us assume that the difference x is not zero. We see that an
input difference from {(0, 0, x)} is mapped into an output difference of the form
{(x, RC4 �x, x)} after one round with probability one. Indeed, since the input
difference goes through the non-linear operation and stays unchanged, the out-
put difference is simply the result of the linear operation applied to the input
difference. For the other cases, a non-zero input difference propagates to an out-
put difference over one round with probability equal to p−1 in Fp, or 2−n in
F2n . From those results, we determine the differential over three rounds with
the highest DP.
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On Three-Round Differentials. The differential trail in Fp with the highest
DP is

{(0, 0, x)} prob. 1−−−−→ {(x, RC4 �x, x)} prob. p−1
−−−−−−→ {(−RC4 �x, x, 0)} prob. p−1

−−−−−−→ {(0, 0, x)} ,

where the fixed input difference x is equal to another fixed value in the following
rounds, and satisfies the conditions imposed by the set (for details see [34, App.
C.3]). Additionally, this differential trail holds if and only if the round constant
RC4 � introduced by the first round is equal to the round constant RC4 � of the
third round.

In F2n , we obtain almost the same state finite machine as in Fp. The
only exception is that the set of differences {(−RC4 �x, x, 0)} corresponds to
{(RC4 �x, x, 0)}, because −z is equal to z for each z ∈ F2n . Hence, the differen-
tial trail in F2n with the highest DP is

{(0, 0, x)} prob. 1−−−−→ {(x, RC4 �x, x)} prob. 2−n

−−−−−−→ {(RC4 �x, x, 0)} prob. 2−n

−−−−−−→ {(0, 0, x)} ,

under the same conditions that in Fp.
In summary, a fixed difference from {(0, 0, x)} is mapped to the difference

of the form {(x, RC4 �x, x)} after one round with probability one in F2n and in
Fp. Moreover an input difference can be mapped to an output difference of the
form {(0, 0, x)} with DP p−1 (resp. 2−n) if and only if this difference is of the
form {(−RC4 �x, x, 0)}. This means that the only possible differential trail over
three rounds with input and output differences of the form {(0, 0, x)} are the
ones given before. The DP of this differential trail is expressed in the following
Lemma.

Lemma 1. A differential trail over three rounds has a probability at most equal
to p−2 in Fp and 2−2n in F2n .

The DP of all other differential trails over three round are at most equal to
p−3 in Fp and 2−3n in F2n . Since the security level s satisfies s ≤ log2(p) in Fp

and s ≤ n in F2n , we therefore conjecture that three rounds are sufficient to guar-
antee security against “basic” differential distinguishers. We thus choose to have
at least six rounds for the permutations pE and pC , which is twice the number
of rounds necessary to guarantee security against “basic” differential/linear dis-
tinguishers. The minimal number of rounds for the permutations should provide
security against more advanced statistical distinguishers.

4.3 Higher-Order Differential and Interpolation Attacks

If a cryptographic scheme has a simple algebraic representation, higher-order
attacks [48,50] and interpolation attack [47] have to be considered. In this part,
we only focus on higher-order differential attacks. We conjecture that the number
of rounds necessary to prevent higher-order differential attacks is also sufficient
to prevent interpolation attacks (see details in [34, App. D]). This result is not
novel, and the same applies for other schemes, like MiMC, as further explained
in [36].
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Background. We recall from Fig. 3 that an attacker can only directly manip-
ulate a single element, and the two other elements are the secret subkeys. We
therefore operate with this single element to input value sets, while keeping the
two other elements fixed. Each output element is the result of a non-linear func-
tion depending on the input element x, and two fixed elements that are the
input of the permutation. Thus, we have fN (x) = p(x, const, const) in F2n , and
fp(x) = p(x, const, const) in Fp.

A given function fp over prime fields Fp is represented by fp(x) =
∑p−1

i=0 κix
i

with constants κi ∈ Fp. The degree of the function fp(x) that we denote by
dFp

, corresponds to the highest value i for which κi 
= 0. The same holds for a
function fn working over binary extension fields F2n . For the latter, fN (x) =⊕d

i=0 κix
i with κi ∈ F2n , and dF2n is the degree of the function fn(x). Like

previously, the degree is the highest value i for which κi 
= 0. In F2n , the function
can as well be represented by its algebraic norm form (ANF)

−→
fn(x1, . . . , xn),

whose output element j is defined by its coordinate function fn,j(x1, . . . , xn) =⊕
u=(u1,...,u2) κj,u ·xu1

1 · . . . ·xun
n with κj,u ∈ F2. The degree dF

n
2
of

−→
fn corresponds

to the maximal Hamming weight of u for which κj,u 
= 0, that is to say dF
n
2

=
maxi≤d{hw(i) | κi 
= 0}.

For the last representation, as proved by Lai [50] and in[48], if we iterate
over a vector space V having a dimension strictly higher than dF

n
2
, we obtain

the following result:
⊕

v∈V⊕ν fn(v) = 0 . A similar result has also been recently
presented for the prime case in [36, Proposition 2]. More precisely, if the degree
of fp(x) is dFp

, then iterating over all elements of a multiplicative subgroup G of
F

t
p of size |G| > dFp

leads to
∑

x∈G fp(x) = fp(0) · |G| . The last sum is equal to
zero modulo p since |G| is a multiple of p.

In order to provide security against higher-order differential attacks based on
the presented zero-sums, we choose the number of rounds of our permutation to
have a function of a degree higher than our security claim.

Overview of our Security Argument. In our construction, we assume that
an attacker can choose the nonce ℵ, which is the input of the permutation pC . For
the first call of this permutation, we want to prevent an attacker to input value
sets that always result in the same constant after the application of the permuta-
tion pC . This requirement is necessary, since we assume in the remaining analysis
that the output values of pC are unpredictable by an attacker. We emphasize
that if the output of the permutation pC is guaranteed to be randomly dis-
tributed, then this is sufficient to prevent higher-order differential attacks. That
is because the inverse of the final permutations pE is never evaluated, and the
attacker cannot construct an affine subspace in the middle of the construction.

Estimating the Degree of pC : Necessary Number of Rounds. We study
the evolution of the degrees dFp

and dF2n for the permutation pC for which the
round function f (Fig. 3) is iterated r times. We conclude that the degree of
the permutation pC remains unchanged for two rounds, if an input element is
present at branch a, and the input at the branch b is zero. For a higher number
of rounds, the degree increases. We have chosen the affine layer to ensure that
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the output of the multiplication can affect both inputs of the multiplication in
the next round. This should make it possible for the maximal possible degree
of the output functions to increase faster than having affine layers without this
property. In the best case, the maximal degree of the function can be doubled
per round.

Considering both previous observations, a minimum of s + 2 rounds are
required to obtain at least dFp

≈ 2s, or dF2n ≈ 2s. As we want to ensure that
the polynomial representation of pC is dense, it is then advisable to add more
rounds as a safety margin. In order to reach this goal, we arbitrarily decided to
add four more rounds.

4.4 Gröbner Basis Attacks

Preliminary. To perform a Gröbner basis [21] attack, the adversary constructs
a system of algebraic equations that represents the cipher. Finding the solution
of those equations makes it possible for the attacker to recover the key that is
denoted by the unknown variables x1, ..., xn hereafter. In order to solve this sys-
tem of equations, the attacker considers the ideal generated by the multivariate
polynomials that define the system. A Gröbner basis is a particular generating
set of the ideal. It is defined with respect to a total ordering on the set of mono-
mials, in particular the lexicographic order. As a Gröbner basis with respect to
the lexicographic order is of the form

{x1 − h1(xn), . . . , xn−1 − hn−1(xn), hn(xn)},

the attacker can easily find the solution of the system of equations. To this end,
one method is to employ the well-known Buchberger’s criterion [21], which makes
it possible to transform a given set of generators of the ideal into a Gröbner basis.
From a theoretic point of view, state-of-the-art Gröbner basis algorithms are
simply improvements to Buchberger’s algorithm that include enhanced selection
criteria, faster reduction step by making use of fast linear algebra, and an attempt
to predict reductions to zero. The best well-known algorithm is Faugère’s F5
algorithm [11,37].

Experiments highlighted that computing a Gröbner basis with respect to
the lexicographic order is a slow process. However, computing a Gröbner basis
with respect to the grevlex order can be done in a faster manner. Fortunately,
the FGLM algorithm [38] makes it possible to transform a Gröbner basis with
respect to the grevlex order to another with respect to the lexicographic order.
To summarize, the attacker adopts the following strategy:

1. Using the F5 algorithm, compute a Gröbner basis w.r.t. the grevlex order.
2. Using the FGLM algorithm, transform the previous basis into a Gröbner basis

w.r.t. the lexicographic order.
3. Using polynomial factorization and back substitution, solve the resulting sys-

tem of equations.
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Henceforth, we consider the following setting: let K be a finite field, let
A = K[x1, . . . , xn] be the polynomial ring in n variables, and let I ⊆ A be an
ideal generated by a sequence of polynomials (f1, . . . , fr) ∈ Ar associated with
the system of equations of interest.

Cost of the F5 Algorithm. In the best adversarial scenario, we assume that the
sequence of polynomials associated with the system of equations is regular.3 In
this case, the F5 algorithm does not perform any redundant reductions to zero.

Write FA/I for the Hilbert-Series of the algebra A/I and HA/I for its Hilbert
polynomial. The degree of regularity Dreg is the smallest integer such that
FA/I(n) = HA/I(n) for all n ≥ Dreg. The quantity Dreg plays an important role
in the cost of the algorithm. If the ideal I is generated by a regular sequence of
degrees d1, . . . , dr, then its Hilbert series equals FA/I(t) =

∏r

i=1
(1+t+t2+···+tdi−1)

(1−t)n−r .
From this, we deduce that deg(I) =

∏r
i=1 di, and Dreg = 1 +

∑r
i=1(di − 1).

The main result is that if f1, . . . , fr is a regular sequence in K[x1, . . . , xn],
then computing a Gröbner basis with respect to the grevlex order using the F5
algorithm can be performed within

O
((

n + Dreg

Dreg

)ω)

operations in K, where 2 ≤ ω ≤ 3 is the matrix multiplication exponent.

Costs of Gröbner Basis Conversion and of Back Substitution. FGLM is an algo-
rithm that converts a Gröbner basis of I with respect to one order, to a Gröbner
basis of I with respect to a second order in O(n deg(I)3) operations in K. Finally,
as proved in [39], the cost of factorizing a univariate polynomial in K[x] of degree
d over Fpn for a prime p is O(d3n2 + dn3).

Number of Rounds. After introducing the Gröbner Basis attack, we analyze
the minimum number of rounds that is necessary to provide security against this
attack. However, we first emphasize that:

– there are several ways to set up the system of equations that describes the
scheme. For instance, we could manipulate more equations, and thus more
variables, of lower degree. Alternatively, we could work with less equations,
and thus less variables, of higher degree. In addition, we could consider the
relation between the input and the output, or between the middle state and
the outputs, and so on. In the following, we present some of these strategies,
that seem to be the most competitive ones;

– computing the exact cost of the attack is far from an easy task. As largely
done in the literature, we assume that the most expensive step is the “F5
Algorithm”. If the cost of such a step is higher than the security level, we
conclude that the scheme is secure against the analyzed attack.

3 A sequence of polynomials (f1, . . . , fr) ∈ Ar is called a regular sequence on A if the
multiplication map mfi : A/〈f1, . . . , fi−1〉 → A/〈f1, . . . , fi−1〉 given by mfi ([g]) =
[g][fi] = [gfi] is injective for all 2 ≤ i ≤ r.
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A Weaker Scheme. Instead of using the model that is described in Fig. 3, we
analyze a weaker model as illustrated in Fig. 7. In the latter, the key is added after
the expansion part, instead of before the rolling function application. This weaker
model is easier to analyze, and makes it possible to draw a conclusion regarding
the security of our scheme. Thus, we conjecture that if the scheme proposed
in Fig. 7 is secure w.r.t. Gröbner Basis attack, then the scheme in Fig. 3 is
secure. Indeed, in the scheme proposed in Fig. 7, it is always possible to consider
the difference between two or more texts to remove the final key addition. For
instance, given f(x) + K = y and f(x′) + K = y′, it follows that f(x) − f(x′) =
y−y′. As a result, the number of variables in the system of equations to be solved
remains constant independently of the number of considered outputs. However,
in Fig. 3, given g(x+K) = y and g(x′ +K) = y′, this is not possible except if g(·)
is inverted. Nevertheless, since it is a truncated permutation, this does not seem
feasible, unless the part of the output which is truncated is either treated as a
variable (that results to have more variables than equations) or guessed by brute
force (that results in an attack whose cost is higher than the security level, and
2s ≤ q). Such consideration leads us to conjecture that the number of rounds
necessary to make the scheme proposed in Fig. 7 secure is a good indicator of
the number of rounds necessary to make the scheme in Fig. 3 secure as well.

Input-Output Relation. The number of rounds must ensure that the maximum
degree is reached. Based on that, we do not expect that the relation that holds
between the input and the output, makes it possible for the attacker to break
the scheme. In particular, let N be the nonce, and k1, k2 be the secret keys.
If we assume that a single word is output, then an equation of degree 2r can
be expressed between each input (N, k1, k2) ∈ (Fq)3, and the output T ∈ Fq

with r the number of rounds. Hence, if there are two different initial nonces,
then the attacker has to solve two equations in two variables. In that case,
Dreg = 1 + 2 · (2r − 1) ≈ 2r+1. The cost of the attack is thus lower bounded
by

[(2+2r+1

2r+1

)]ω

≥
[
(1+2r+1)2

2

]ω

≥ 22r+1, where ω ≥ 2. Consequently, 22r+1 ≥ 2s

if the total number of rounds is at least
⌈

s−1
2

⌉
(e.g., 64 for s = 128). Since the

number of rounds for pC is s + 6, this strategy does not outperform the previous
attacks as expected.

Finally, we additionally consider a strategy where new intermediate variables
are introduced to reduce the degree of the involved polynomials. We concluded
that this strategy does not reduce the solving time as it increases the number of
variables.

Middle State-Output Relation. There is another attack strategy that exploits the
relation between the middle state and the outputs. In this strategy, only pE is
involved, and several outputs are generated by the same unknown middle state.
For a given nonce N , let (xN

0 , xN
1 , xN

2 ) ∈ (Fq)3 be the corresponding middle
state. Since the key is added after the permutation pE , we first eliminate the key
by considering two initial nonces, and taking the difference of the corresponding
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output. This makes it possible to remove all the secret key material at the end,
at the cost of having three more unknown variables in the middle.4

Hence, independently of the number of outputs that are generated, there are
six variables, and thus simply the two middle states. That means that we need
at least six output blocks, and an equivalent number of equations. Since two
words are output for each call of pE , we have six equations of degree 2r−1 and 2r

for the first two words, 2r and 2r+1 for the next two words, and so on. We recall
that every call of the rolling function increases the degree by a factor two, while
the function that describes the output of a single block has a maximum degree,
namely 2r after r rounds for one word, and 2r−1 for the other two words. Hence,
Dreg = 1 + (2r−1 − 1) + 2 · ∑1

i=0(2r+i − 1) + (2r+2 − 1) = 21 · 2r−1 − 5 ≈ 2r+3.4,
and the cost of the attack is lower bounded by

[(
6 + 2r+3.4

2r+3.4

)]ω

≥
[

(1 + 2r+3.4)6

6!

]ω

≥ 212(r+3.4)−19 ,

where ω ≥ 2. Therefore, 212(r+3.4)−19 ≥ 2s if the number of rounds for pE is at
least

⌈
s+19
12 − 3.4

⌉
(e.g., 9 for s = 128). Like previously, potential improvement

of the attack (e.g., an enhanced description of the equations) can lead to a lower
computational cost. We thus decided to arbitrarily add five rounds as a security
margin. We conjecture that at least

⌈
s+19
12 + 1.5

⌉
rounds for pE are necessary to

provide some security (e.g., 14 for s = 128).
In addition, in order to reduce the degree of the involved polynomials, we

studied the consequences of introducing new intermediate variables in the mid-
dle, e.g., at the output of the rolling function or among the rounds5. In that
regard, we did not improve the previous results. Moreover, we also considered a
scenario in which the attacker accesses more data, without being able to improve
the previous results.

4.5 On the Algebraic Cipher Representation

Algebraic attacks seem to be the most successful attack vector on ciphers that
have a simple representation in larger fields, while restricting the usage of mul-
tiplications. Until now, we have mainly focused on the growth of the degree to
estimate the costs of the algebraic attacks that we considered. However, this
is not the only factor that influences the cost of an algebraic attack. It is well
known that such attacks (including higher-order, interpolation, and Gröbner
basis attacks) can be more efficient if the polynomial that represents the cipher
4 Another approach would be to involve the keys in the analysis. However, since the

degree of the key-schedule is very high, the cost would then explode after few steps.
It works by manipulating the degree of the key-schedule, or by introducing new
variables for each new subkeys while keeping the degree as lower as possible. This
approach does not seem to outperform the one described in the main text.

5 For example, new variables can be introduced for each output of the rolling state. It
results in having more equations with lower degrees. Our analysis suggests that this
approach does not outperform the one described in the main text.
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Table 2. Number of monomials of a certain degree for Fp.

Output Degree
Round Variable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Max 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406
2 a 1 3 4 3 1

b 1 3 4 3 1
c 1 3 4 3 1

3 a 1 3 6 8 11 8 6 3 1
b 1 3 6 8 11 8 6 3 1
c 1 3 6 8 11 8 6 3 1

4 a 1 3 6 10 15 19 24 28 33 28 24 19 15 10 6 3 1
b 1 3 6 10 15 19 24 28 33 28 24 19 15 10 6 3 1
c 1 3 6 10 15 19 24 28 33 28 24 19 15 10 6 3 1

5 a 1 3 6 10 15 21 28 36 45 53 62 70 79 87 96 104 113 104 96 87 79 70 62 53 45 36 28 21
b 1 3 6 10 15 21 28 36 45 53 62 70 79 87 96 104 113 104 96 87 79 70 62 53 45 36 28 21
c 1 3 6 10 15 21 28 36 45 53 62 70 79 87 96 104 113 104 96 87 79 70 62 53 45 36 28 21

is sparse. Consequently, it is necessary to study the algebraic representation of
the cipher for a feasible number of rounds.

To evaluate the number of monomials that we have for a given degree, we
wrote a dedicated tool. This tool produces a symbolic evaluation of the round
function without considering a particular field or specific round constants. Nev-
ertheless, it considers the fact that each element in F2n is also its inverse with
respect to the addition. Since we do not instantiate any field and constants, the
reported number of monomials might deviate from the real number of monomi-
als here, e.g., due to unfortunate choices of round constants that sum to zero for
some monomials. As a result, the entries in the tables are in fact upper bounds,
but we do not expect high discrepancies between the numbers reported in the
tables and the “real” ones.

Prime Case. First, we consider iterations of the round function f over Fp. In
Table 2, we evaluate the output functions at ai, bi, and ci depending on the
inputs a0, b0, and c0 after a certain number of rounds i ≥ 2. We count in Table 2
the number of monomials for a certain multivariate degree up to a fixed degree
dFp

. Higher degree monomials might appear, but they are not presented in the
table. To report this behavior, we do not input 0 in the table after the highest
degree monomial. The column ‘max’ indicates the maximal number of monomials
that can be encountered for three variables. As reported in Table 2, the number
of monomials increases quite quickly, and we do not observe any unexpected
behavior, or missing monomials of a certain degree.
Binary Case. Table 3 provides the number of monomials of a certain degree in
F2n . We notice that the diffusion is slower than in Fp, and it may be because of
the behavior of the addition that is self inverse in F2n . More discussions on the
algebraic cipher representation in the binary case can be found in [34, App. D].

5 Comparison with Other Designs

In this section, we compare the performance of our design with other designs that
are presented in the literature for an MPC protocol using masked operations. We
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Table 3. Number of monomials of a certain degree for F2n .

Output Degree
Round Variable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Max 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406
2 a 1 3 4 2 1

b 1 3 4 2 1
c 1 3 4 2 1

3 a 1 3 6 7 7 3 3 0 1
b 1 3 6 7 7 3 3 0 1
c 1 3 6 7 7 3 3 0 1

4 a 1 3 6 9 15 14 19 12 13 5 6 2 3 0 0 0 1
b 1 3 6 9 15 14 19 12 13 5 6 2 3 0 0 0 1
c 1 3 6 9 15 14 19 12 13 5 6 2 3 0 0 0 1

5 a 1 3 6 9 15 18 28 28 39 35 41 36 39 24 26 16 19 9 10 7 9 3 3 0 3 0 0 0
b 1 3 6 9 15 18 28 28 39 35 41 36 39 24 26 16 19 9 10 7 9 3 3 0 3 0 0 0
c 1 3 6 9 15 18 28 28 39 35 41 36 39 24 26 16 19 9 10 7 9 3 3 0 3 0 0 0

mainly focus on the number of multiplications in an MPC setting, which is often
the metric that influences the most the cost in such a protocol. In addition,
we discuss the number of online and pre-computation/offline rounds, and we
compare those numbers to the ones specified for other schemes. The influence of
the last two metrics on the overall costs highly varies depending on the concrete
protocol/application, and the concrete environment, in which an MPC protocol
is used, e.g., network of computers vs. a system on chip. Finally, we consider the
advantages and the disadvantages of our design w.r.t. the other ones.

5.1 MPC Costs: CIMINION and Related Works

We compare the MPC cost of Ciminion with the cost of other designs that are
published in the literature with q ≈ 2128, and s = 128 bits. We assume that
the amount of data available to the attacker is fixed to 2s/2 = 264, which is the
most common case. Due to page limitation, we limit our analysis to Ciminion
and HadesMiMC. The latter is the main competitive design currently present in
the literature for the analyzed application. The detailed comparison with other
designs (including MiMC, GMiMC, Rescue and Vision) is provided in [34, App.
G]. A summary of the comparison is given in Table 4 and 5 for the binary and
prime case, respectively.

Our design has the lowest minimum number of multiplications w.r.t. all other
designs, in both Fp and F2n . In (Fq)t for q ≈ 2128, our design needs approximately
t + 14 · �t/2� ≈ 8 · t multiplications w.r.t. 12 · t multiplications required by
HadesMiMC or 60 · t by Rescue. Additionally, our design has a low number of
linear operations compared to other designs. For instance, for large t � 1, our
design needs approximately 50 · t affine operations (sums and multiplications
with constants) while HadesMiMC requires approximately 12 · t2 + (157 + 4 ·
max{32; �log3(t)�}) · t affine operations. However, this advantage comes at the
price of having more online rounds than the other schemes. In particular, 104 +
�t/2� online rounds are required by our design whereas HadesMiMC and Rescue
have respectively 78 and 20 online rounds.
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Table 4. Comparison on the MPC cost of schemes over F2n
t for n = 128 (or 129),

and a security level of 128 bits. With the exception of Vision (whose number of offline
rounds is equal to max

{
20, 2 ·

⌈
136+t

t

⌉}
), the number of offline rounds for all other

schemes is zero.

Scheme Multiplications (MPC) Online rounds
Element in F2n

t Asymptotically (t 	 1)
Ciminion 8 · t + 89 8 104 + 
t/2�
MiMC-CTR 164 · t 164 82
Vision t · max

{
70, 7 ·

⌈
136+t

t

⌉}
70 max

{
50, 5 ·

⌈
136+t

t

⌉}

Table 5. Comparison on the MPC cost of schemes over Fp
t for p ≈ 2128, and a security

level of ≈ 128 bits. With the exception of Rescue (whose number of offline rounds is
equal to max{30; 6 ·

⌈
32.5

t

⌉
}), the number of offline rounds for all other schemes is zero.

Scheme Multiplications (MPC) Online rounds
Element in Fp

t Asymptotically (t � 1)

Ciminion 14 · �t/2� + t + 89 8 104 + �t/2�
MiMC-CTR 164 · t 164 82

GMiMCerf 4 + 4t + max
{
4t2, 320

}
4 · t 2 + 2t + max

{
2t2, 160

}
Rescue (α = 3) t · max{60; 12 ·

⌈
32.5

t

⌉
} 60 max{20; 4 ·

⌈
32.5

t

⌉
}

HadesMiMC 12t+max{78+�log3(t2)�; 142} 12 max{45 + �log3(t)�; 77}

Ciminion. For q ≈ 2128, and a security level of 128 bits with data limited to
264, the permutation pC counts 90 rounds. In order to output 2t′ − 1 ≤ t ≤ 2t′

words, we call t′ times the permutation pE that is composed of 14 rounds, and
(t′ − 1) times the rolling function. Therefore, for the binary and the prime case,
the cost of Ciminion in MPC applications to generate t words is

# multiplications: 14 · �t/2� + (t − 1) + 90 ≈ 8 · t + 89 ,

# online rounds: 104 + �t/2� ,

# affine operations: 99 · �t/2� + 629 ≈ 50 · t + 629 .

The number of online rounds depends on t, because the rolling function is serial.
It is noteworthy that the expansion part can be performed in parallel. We empha-
size that the number of sums and multiplications with a constant6 (denoted as
“affine” operations) is proportional to the number of multiplications. That is one
of the main differences w.r.t. to the Hades construction as we argue afterwards.

HadesMiMC. HadesMiMC [41] is a block cipher that is proposed over (Fp)t

for a prime p such that gcd(p − 1, 3) = 1, and t ≥ 2. It combines RF = 2Rf

rounds with a full S-box layer (Rf at the beginning, and Rf at the end), and
RP rounds with a partial S-box layer in the middle. Each round is defined with
Ri(x) = ki + M × S(x), where M is a t × t MDS matrix, and S is the S-box
layer. This layer is defined as the concatenation of t cube S-boxes in the rounds
6 Each round counts six additions and one multiplication with a constant.
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with full layer, and as the concatenation of one cube S-Box and t − 1 identity
functions in the rounds with partial layer.

In addition, hash functions can be obtained by instantiating a Sponge con-
struction with the Hades permutation, and a fixed key, like Poseidon & Starkad
[40]. In [15], the authors present an attack on Starkad that exploits a weakness
in the matrix M that defines the MixLayer. The attack takes advantage of the
equation M2 = μ · I. This attack can be prevented by carefully choosing the
MixLayer (we refer to [44] for further detail). There is no attack that is based
on an analogous strategy that has been proposed for the cipher7.

In order to guarantee some security, RF and RP must satisfy a list of inequal-
ities [41]. There are several combinations of (RF , RP ) that can provide the same
level of security. In that regard, authors of [41] present a tool that makes it
possible to find the best combination that guarantees security, and minimizes
the computational cost. For a security level of approximately log2(p) bits, and
with log2(p) � t, the combination (RF , RP ) minimizing the overall number of
multiplications is

(RF , RP )=
(

6, max
{⌈

log3(p)
2

⌉
+ �log3(t)�; �log3(p)� − 2	log3(log2(p))


}
− 2

)
.

In MPC applications (p ≈ 2128 and s = 128 bits), the cost of HadesMiMC is

# multiplications: 2 · (t · RF + RP ) = 12t + max{78 + �log3(t2)� ; 142} ,

# online rounds: RF + RP = max{45 + �log3(t)�; 77} ,

# affine operations: 2 · t2 · RF + (4 · RP + 1) · t − 2 · RP

≈ 12 · t2 + (157 + 4 · max{32; �log3(t)�}) · t .

Parallel S-boxes can be computed in a single online round8. To compute the
number of affine operations, we considered an equivalent representation of the
cipher in which the MixLayer of the rounds, with a partial S-box layer, is defined
by a matrix. In this matrix, only 3t − 2 entries are different from zero, that is
to say the ones in the first column, in the first row, and in the first diagonal.
(A (t − 1) × (t − 1) submatrix is an identity matrix.) The details are presented
in [41, App. A]. Therefore, the total number of affine operations required grows
quadratically w.r.t. the number of rounds with full S-box layer, and thus w.r.t.
the number of multiplications.

Finally, we highlight that the number of multiplications is minimized when
HadesMiMC takes as input the entire message. Indeed, let us assume that the
input message is split into several parts, and that HadesMiMC is used in CTR
mode (as suggested by the designers). In the analyzed case in which the secu-
rity level is of the same order of the size of the field p, the number of rounds

7 The main problem, in this case, regards the current impossibility to choose texts in
the middle of the cipher by bypassing the rounds with full S-Box layer when the
secret key is present.

8 We refer to [43] on how to evaluate x → x3 within a single communication round.
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is almost constant, and independent of the parameter t ≥ 2. It follows that
using HadesMiMC in CTR mode would require more multiplications, because
every process requires the computation of the rounds with a partial S-box layer,
whereas this computation is needed only once when the message size equals the
block size. We stress that a similar conclusion holds for Rescue/Vision, for which
the total number of multiplications would barely change when they are used in
CTR mode, rather than when the message size is equal to the block size.

5.2 Ciminion Versus Hades: Advantages and Similarities

The previous comparison highlights that the two most competitive designs
for MPC applications with a low multiplicative complexity are Ciminion and
HadesMiMC. Referring to Fig. 1, we further develop the similarities and advan-
tages between a block cipher based on a Hades design, and a cipher based on
Farfalle. We present a brief comparison between our new design and the “Fork-
Cipher” design that is proposed in [7] in [34, App. G.2].

Similarities: Distribution of the S-Boxes. We focus our attention on the
distribution of the S-boxes, or more generally, the non-linear operations. Both
strategies employ a particular parallelization of the non-linear operations/S-
boxes to their advantage, in order to minimize the number of non-linear opera-
tions. More precisely, each step is composed of t parallel non-linear operations
in the external rounds, i.e., the rounds at the end and at the beginning. Fur-
thermore, each step is composed of a single non-linear operation in the internal
rounds.

Both strategies take advantage of an attacker that cannot directly access the
state in the middle rounds, because the state is masked both by the external
rounds or phases, and by the presence of a key. In a Farfalle design, the attacker
knows that each output of the expansion phase always employs the same value
at the input, without accessing those inputs. In a Hades design, the attacker is
able to skip some rounds with a partial S-box layer by carefully choosing the
texts (see [15]). However, they cannot access the texts without bypassing the
rounds with the full S-box layer that depends on the key.

Having middle rounds with a single S-box makes it possible to reduce the
overall number of non-linear operations. In addition, they ensure some secu-
rity against algebraic attacks. Indeed, even a single S-box makes it possi-
ble to increase the overall degree of the scheme. For a concrete example, let
(Rc, Rm, Re) be the rounds for respectively the compression part, middle part
and expansion part of Farfalle. Like previously, let (RF , RP ) be the number of
rounds with respectively a full and a partial S-box layer in Hades. The number of
multiplications is respectively (Rc +Re)·t+Rm and RF ·t+RP . If RP � RF and
Rm � Rc + Re. For a similar number of round, i.e., proportional to ≈ RP + RF

or/and ≈ Rm + Rc + Re, it is then necessary to reach the maximum degree.
Our number of multiplications is lower compared to a classical design where the
rounds have a full S-box layer.
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Advantages. There are major differences between Farfalle-like designs and
Hades-like designs, because of their primary intention. The Farfalle-like design
aims to behave like a Pseudo-Random Function (PRF), and the Hades-like design
like a Pseudo-Random Permutation (PRP). The latter is used as a PRF in the
Counter mode (CTR).9 Under the assumption that affine operations are cheaper
than non-linear ones, designers of Hades defined the MixLayer as the multipli-
cation with a t × t MDS matrix. Consequently, each round with full S-box layer
counts t2 multiplications with constants. However, when t � 1, linear operations
cannot be considered as free anymore, and their presences influence the overall
performance.

This problem is not present in a Farfalle-like design. Indeed, by construction,
in the first Rc and the last Re rounds, the MixLayer is not required. That
implies that the first three words are never mixed with the following ones. On
the contrary, the elements are simply added together to generate the input of the
compression phase. In addition, the expansion part’s input is generated through
a non-linear rolling function whose cost grows linearly with t. Finally, since
invertibility is not required, the number of input words can be lower than the
number of output words to design a function from (Fq)3 to (Fq)t for any t ≥ 1.
Thus, independently of the number of output words, one multiplication per round
is present in the compression phase, contrary to O(t) of a Hades-like scheme.
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